
Analyzing Proposals for Improving

Authentication on the TLS/SSL-Protected Web

Christopher W. Brown1 and Michael Jenkins2

1 National Security Agency / U. S. Naval Academy, Annapolis, MD USA
wcbrown@usna.edu

2 National Security Agency, Maryland, USA
mjjenki@tycho.ncsc.mil

Abstract. “Secure” web browsing with HTTPS uses TLS/SSL and
X.509 certificates to provide authenticated, confidential communication
between web clients and webservers. The authentication component of
the system has a variety of weaknesses, which have led to a variety of pro-
posals for improving the current environment. In this paper we survey,
analyze, compare and contrast three prominent proposals. To do this,
we attempt to systematically capture the properties one might require
of such a system: authentication properties, forensics/privacy properties,
usability properties, and pragmatic properties. Enumerating these prop-
erties is an important part of understanding these proposals and the
nature of the authentication problem for the secure web. Finally, we of-
fer a few conclusions and suggestions pertaining to these proposals, and
possible future directions of research.

Keywords: web security, authentication, TLS, HTTPS, certificates.

1 Introduction

This article provides a summary and analysis of three proposals for improving the
authentication component of the current environment for the TLS/SSL protected
web (HTTPS) — specifically the client’s authentication of the server. As a part of
this analysis, we identify the properties the overall system would, ideally, satisfy,
and describe the various proposals in terms of the degree to which they do or do
not provide/have these properties. The paper’s real contributions, hopefully, are
a clearer picture of what the authentication problem for the TLS/SSL protected
web really is, and a framework for evaluating new proposals both individually,
and in combination with one another.

The current environment for secure web-browsing is based on TLS (see
RFC5246 [1]). TLS provides a mechanism by which a web client (browser) and
a webserver establishing a connection between one another make use of public
key cryptography to agree on a shared secret key, which is then used to encrypt
communication using symmetric encryption for the rest of that session. Typi-
cally the process begins with the client being furnished a domain name by the
user, which is then translated to an IP address via DNS name resolution, after

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 39–56, 2014.
c© Springer International Publishing Switzerland 2014



40 C.W. Brown and M. Jenkins

which the client sends the ClientHello TLS message to the server presumed to
be listening on port 443 at that IP Address. The client then receives messages
from the server, one of which contains a public key. The client chooses a secret
key (more accurately, a value that determines the secret key), encrypts it with
the public key the client received, and sends the resulting ciphertext back to
the server. At this point, both parties have the same secret key, and encrypted
communication can commence.

This process guarantees that the client and the owner of the public key —
i.e. the entity in control of the associated private key — are the only ones who
know the secret key, assuming that the private key is kept private. It does not,
however, guarantee anything about the identity of the owner of the private key.
There is no assurance that the party the user of the client wanted to contact is
the one with whom the client now has a secure connection. Routing to the IP
address could have gone wrong. DNS resolution could have produced the wrong
IP address. The domain name itself might be wrong — e.g., amazen.com instead
of amazon.com. Thus, there is a critical authentication problem to be dealt with!

The current environment for secure web-browsing generally handles this au-
thentication problem in the following (highly simplified!) way: 1) It is the user’s
responsibility to ensure that the domain name provided to the browser is in
fact the correct domain name for the entity they are trying to contact. 2) The
webserver sends its public key to the client in an X.509 certificate (see RFC5280
[2]) as part of a certificate chain in the TLS Server Certificate message, and it
is the browser’s responsibility to validate the certificate chain, and verify that it
chains to one the certificates in the browser’s list of trust anchors. 3) It is the
responsibility of the CA that issued the trust anchor at the end of the certificate
chain to ensure that the public key in the certificate really belongs to the entity
that owns the given domain name.1

It is assumed that the reader of this paper is familiar with this process, in-
cluding details like certificate revocation lists, self-signed certificates, X.509 val-
idation, etc. not covered in the very brief description above. It is also assumed
that the reader is familiar with the manifold problems inherent in this system —
for instance, that every CA trusted by the browser represents a single point of
failure for the whole system, or realities of how users usually bypass the whole
system [3,4]. The key point is that the authentication component of the current
secure web-browsing environment has problems both in principle and in practice.

The many problems that exist in the current environment have prompted a
wide variety of proposals for improvements. The proposals considered in this pa-
per are limited to ones with a reasonable level of pragmatism (full scale replace-
ment of the current environment with something new is extremely unlikely!),
and a reasonable degree of visibility or momentum behind them. User interface
improvements, while important, are also outside of the scope of this analysis.
The proposals examined here are: DANE, Certificate Transparency and HTTP
Pinning. We looked at the Sovereign Keys proposal closely, but it is not yet

1 The responsibility for managing trust anchors falls to some combination of browser
vendors, OS vendors, users and, perhaps, IT support departments.



Analyzing Proposals for Improving Authentication 41

mature enough to really analyze to the same extent as the above. Space restric-
tions forced us to remove our coverage of TACK [5], which is, however, similar in
many respects to HTTP Pinning. Perspectives [6] and similar projects like Con-
vergence, Google’s now defunct Certificate Catalog project, and the Berkeley
ICSI project, are interesting as well, but space precludes covering them here.

This paper consists of three parts. The first describes the set of properties
that might be desirable for the authentication component of the “secure web”.
The second provides summaries of three proposals, along with some commentary
and analysis — all of which is done in terms of the properties from the previous
section. The last focuses on comparisons of different proposals and their potential
to work in combination with one another.

2 Desirable Properties for the Authentication
Component of the “Secure Web”

It is easier to understand and compare these various proposals if we first describe
what it is we really want. In other words, What properties do we really desire of
the authentication component of the “secure web”? What follows is a list of such
properties, grouped into four categories. The fourth category is more accurately
described as a list of properties we’d like to see in a proposal for improving
on the current state of affairs, for example that the proposal is realistic. These
properties were in large part deduced from reading a number of proposals and
commentary on those proposals.

Authentication Properties2

continuity: that when a client connects to a host with name X, one can be sure
that, in some meaningful sense, it is communicating with the same entity
as it was communicating with the last time it connected to a host with
name X. Note: it could make sense to think of continuity on two levels, the
individual client level and the community level. Pinning proposals are about
individual clients observing continuity. Notary proposals like Perspectives or
the Berkeley ICSI, and gossiping proposals are about a community of clients
observing continuity.

domain-name authentication: that the client is connected to the server au-
thorized, intended or allowed to run under that name-and-port by the legit-
imate owner of that domain name.

higher-level authentication: that the client is connected to the server au-
thorized, intended or allowed to run under that name-and-port by an entity
described by some notion of identity beyond merely ownership of a given
domain name. (e.g., Southwest Airlines, the U. S. Postal Service) There are
actually different classes of certificates — EV (extended validation) [7], OV
(Organization Validation), DV (Domain Validation) — that seek to provide
some higher-level authentication. NOTE: Many companies have made their

2 This article is only concerned with server authentication, so client-authentication
properties are not addressed.



42 C.W. Brown and M. Jenkins

domain name their identity, e.g., amazon.com, so that domain-name identity
and higher-level identity are one and the same.

attribute authentication: that the client is connected to the server autho-
rized, intended or allowed to run under that name-and-port by an entity
with certain attributes (e.g., FDIC insured bank, NASDAQ listed company).

Forensics and Privacy Properties
client privacy: that third parties cannot, without the willing participation

of the client or the server, deduce what websites a given client has been
connecting to (without special access to the client machine).

impostor discoverability: that the legitimate owner of a given domain name
should be able to discover what servers are presenting themselves as belonging
to that name.

server privacy: that third parties cannot, without the willing participation
of the client or the server, deduce the existence of a given server without
actually attempting a connection themselves.

local privacy: that someone with access to the client machine after a website
has been visited cannot deduce facts about what sites have been visited by
the client. Of course, if a proposal includes client-side data, a user should
be able to “clear history” as they can with current mechanisms like cook-
ies. However, this presumably degrades the improvements to authentication.
So this property refers to privacy concerns assuming that this clearing of
authentication history hasn’t happened.

Usability Properties
minimal false positives: that the client seldom refuses a connection or presents

the user with an error message when the server it is connected to is indeed the
right one. Ideally the client never decides to disbelieve that the entity with
which it is communicating has the proper identity when, in fact, it does.
This is the ideal. In reality, we can only try to minimize the number of false
positives. As noted elsewhere, encountering many false positives conditions
users to simply override-and-accept. Conversely, users that err on the side of
caution are actually discouraged from connecting to legitimate servers. Note
that this is described as a “false positive” because of the analogy to medicine
— the test says there is a problem when, in fact, everything is OK.

maximal actionable information: that the client should have good, action-
able information to present to the user, information that allows for good
decisions. This includes information that allows for a reasonable plan of ac-
tion in case the user decides not to override-and-accept.

minimal user trust: that the trust users must place in other entities is min-
imized. Note: this is a complex issue, since it involves not only how many
entities need to be trusted, but also to what extent they are trusted, and
how bad things could be if some number of them colluded.

user control: that the user is allowed to override decisions, determine who or
what to trust, etc. This means the system must allow for it. Particular clients
might not.



Analyzing Proposals for Improving Authentication 43

minimal server trust: that the trust server operators must place in other
entities is minimized.

minimal server roadblocks: that setting up a TLS server is not overly burden-
some. Already, lots of people and organizations have difficulty doing it right.
Ideally improved authentication mechanisms shouldn’t set up too many bar-
riers, technical, logistical or financial, to organizations that want to set up
websites that use them.

Implementation/Infrastructure/Pragmatics Properties
incremental: that there are benefits (progress towards other properties) for

those that opt-in without requiring that everyone participates.
minimal-impact: that big changes to the internet architecture are not required.

Client-only solutions, for instance are very low impact, as are server-only.
When both have to change, when third-parties are involved, and so forth,
the impact grows.

no-break: that things that currently work relying on relatively common prac-
tices (e.g., local network TLS connections, changing domain ownership, web-
hosting services, user-level TLS servers on hosts, etc.) do not break under
the new proposal.

scalable/maintainable/robust: that the system works at internet scale, and
can function over a long period of time. For example, if keys are lost or no
longer secure: can they be changed? The system should function reasonably
in the face of outages and attacks.

resource-friendly: that adopting the proposal does not slow communication
too much, or require too much CPU time or memory. Resource-constrained
mobile devices must be able to participate.

realistic: that the proposal does not make unreasonable assumptions or de-
mands on individuals or society. For example, expecting organizations with
no suitable financial or other incentive to run big servers might not be real-
istic.

In each of the following three sections we briefly describe a well-known pro-
posal for improving authentication on the secure web, and analyze that proposal
in terms of the properties described above. Each property is listed, along with
commentary on the proposal in terms of that property. A small “gauge” icon ac-
companies each property to give a quick indication of whether the proposal pos-
itively or negatively affects a certain property, or has no substantial impact. For
the first three categories — Authentication, Forensics and Privacy, and Usability
— the gauge value is to be understood as relative to the current secure web en-
vironment. For the last category — Implementation/Infrastructure/Pragmatics
— gauge values are to be understood as relative to all the other proposals for
improvements. The gauge values are simply manifestations of qualitative judg-
ments, not true quantitative data. The hope is that when combined in tables
as in the following sections, they are a concise means to provide insight into
the strengths, weaknesses, and purpose of any given proposal. However, it is the
accompanying commentary that provides the actual analysis.



44 C.W. Brown and M. Jenkins

3 DNS-Based Authentication of Named Entities (DANE)

DNS-Based Authentication of Named Entities (DANE) uses DNSSEC to make
assertions that constrain valid certificate chains. These assertions can specify the
end entity certificate or public key, the trust anchor certificate or public key, or
an intermediate certificate or public key. By using DNSSEC to distribute these
assertions, clients can guarantee that the assertions really belong to the domain
name in question. Thus, DANE is a mechanism that provides very strong do-
main name authentication. DANE depends on DNSSEC, and DNSSEC adoption
seems to be proceeding very slowly. DANE (see RFC6698 [8]) adds a new record
type to DNS, the TLSA resource record, which allows the nameserver that is
authoritative for a given domain name to make assertions tied to a pairing of
the name with a port-and-protocol. These assertions are of the following form:

(usage, selector, matching type, certificate association data)

where usage ∈ {0, 1, 2, 3}, selector ∈ {0, 1}, matching type ∈ {0, 1}, and the
“certificate association data” can be a certificate, the Public KeyInfoField of a
certificate, or a hash value.

The semantics of DANE assertions are essentially this: The certificate chain
is constrained in usage 0 to contain a given certificate/public key, and in usage
1 to start with a given certificate/public key (which specifies the end-entity).
For both, the client is still required to validate the certificate chain up to a
client-trusted anchor. Usages 2 and 3 are similar, except that the client’s role in
determining trust is eliminated. The certificate chain is constrained in usage 2
to contain a given certificate/public key as trust anchor, and that trust anchor
must be trusted by the client for purposes of that validation, regardless of the
client’s current trust store. The certificate chain is constrained in usage 3 to have
a given end-entity certificate/public key, and if it does the client must accept
the connection without doing certification path validation of the chain.

Because it is tied to DNSSEC, DANE’s pragmatic outlook is tied to DNSSEC
adoption. It’s worth clarifying the sense in which DANE offers something more
than DNSSEC alone would offer. A client relying on DNSSEC to resolve a given
hostname to an IP address has a strong guarantee that the IP address it uses
for that domain name is correct. However, it has no guarantees that the entity
it connects to is a really a host properly associated with that IP address. After
all, the attacker could be corrupting routing rather than DNS. With DANE,
however, the client has stronger guarantees that the host it is connected to is
properly associated with the given domain name.

Usage 2 & 3 assertions are potentially problematic. With usage 3, certifica-
tion path validation does not occur, i.e. if the end-entity certificate presented
to the client matches the certificate in the DANE assertion the connection is
accepted. A usage 2 DANE response mandates a certain trust anchor for valida-
tion, and mandates that it be trusted — regardless of whether it is currently in
the client’s trust store. Both deny the user (or system administrator) the oppor-
tunity to make trust decisions. The security issue here is that without usages 2 &
3 both DNSSEC/DANE and the CA system have to be defeated in a successful



Analyzing Proposals for Improving Authentication 45

attack, while with them an attacker that can successfully subvert DNSSEC can
successfully pull off a man-in-the-middle attack. Defense in depth has been lost.

+continuity: —
+domain-name auth.: this is DANE’s strength.

+higher-level auth.: a usage 2&3 response bypasses certification path
validation, so information in certificates is less trustworthy than in the
current system.

+attribute auth.: —

+client privacy: generally, having to contact a third party server is a
client privacy concern. However, clients would almost always be con-
tacting a DNS server for name resolution anyway, so it’s not really a
concern here.

+impostor discoverability: —

+server privacy: normally a DNS server would store the IP address
associated with a given name, and nothing more. DANE records include
a port as well as IP, so the fact that a particular host is running a TLS
server at a particular port number is then known to the DNS server.

+local privacy: —
+minimal false positives: DANE provides mechanisms (usages 3 & 4)
by which a certificate that does not chain to a trust anchor would be
accepted without any error or warning, which reduces false positives ...
although it can also defeat authentication, as pointed out above.

+maximum actionable info: if a site uses DANE and the client issues
an error, the DANE assertion itself provides extra information about
what public key / certificate should have been expected.

+minimal user trust: the user doesn’t need to trust the CAs as much,
but they put more trust in DNS.

+user control: with usages 2 & 3, there are situations in which a con-
nection will be accepted regardless of the user’s trust anchor settings.

+minimal server trust: with DANE, the webserver operator puts even
more trust in the DNS, however CAs don’t need to be trusted as much.

+minimal server roadblocks: to use DANE the webserver operator
requires the cooperation of the DNS administrator. To also ensure that
clients that do not support DANE aren’t locked out, a certificate from
a CA would also be required.

+incremental: both web clients and sites (though not really webservers)
need to change for DANE to work, any pair that supports DANE gain
the security of the system, regardless of whether it’s adopted elsewhere.
However, it’s not enough for just one of the two parties to elect to
participate.



46 C.W. Brown and M. Jenkins

Fig. 1. Diagram illustrating CT. A full picture would show multiple logfile servers.

+minimal-impact: it’s not enough for client and server to change, the
infrastructure has to change if DNSSEC is not already available.

+no-break: —
+scal./maint./robust: —

+resource-friendly: DNSSEC has some overhead (see [9]) and more
signed info will be sent when DANE is used than would be sent using
DNSSEC solely for name resolution.

+realistic: given that DNSSEC is in use, DANE is quite realistic. The
question is whether it’s realistic to expect significant DNSSEC adoption
anytime soon.

4 Certificate Transparency

Certificate Transparency is described in RFC6962 [10]. Its primary purpose is
to provide “impostor discoverability”. The basic idea is this: If there was a
public logfile of all certificates issued, then domain name holders could view the
public logfile to root out bogus certificates for their domain names and, as the
proposal puts it, “invoke existing business mechanisms for dealing with misissued
certificates”. If TLS clients all agree to reject any certificate not recorded in the
public logfile, attackers would be forced to record their forged certificates in the
logfile where, hopefully, server/domain owners would observe the bogus certs and
do something about it. While this basic idea is straightforward, realizing it in
a secure way is non-trivial. The Certificate Transparency proposal is somewhat
complicated in terms of the number of entities involved: in addition to servers
and clients, there are logfile servers, trusted auditors, and logfile monitors (see
Figure 1). So the description that follows adds these various pieces in small steps.

Step 1: We first consider how clients determine whether a certificate record
is in the logfile. Of course the client could contact the logfile server and ask.



Analyzing Proposals for Improving Authentication 47

Even if that could be done in an utterly secure and authenticated manner, there
are still two issues: 1) contacting the third party has a performance and avail-
ability concern, and 2) letting the logfile server know every domain name you
want to contact has privacy concerns. Therefore, the proposal calls for a different
approach. Clients have preloaded/out-of-band-received public keys for the logfile
server. The TLS server is supposed to send a “Signed Certificate Timestamp”
(SCT) along with the certificate, which is essentially a hash of the certificate con-
catenated with a timestamp, signed by the logfile server. This gives the client
something that it can verify quickly, without any third-party communication, so
it addresses both concerns 1 and 2. IANA has issued a value for the TLS SCT
extension. For technical reasons beyond the scope of this overview, the SCT is
issued before the certificate is logged. However, the SCT contains an additional
field with a value called the Maximum Merge Delay (MMD). Implicit in the
SCT is a promise by the logfile server that the time between when the SCT was
issued and when it is logged will not exceed that MMD value.

Step 2: If the logfile is misbehaving, or if it has been compromised, or its
private key stolen or broken, clients could get forged SCTs. In other words, they
could be accepting certificates that weren’t actually logged. To address this, the
proposal calls for “trusted auditors” that clients are supposed to submit SCTs
to, in order to keep tabs on the logfile server and make sure it really is reporting
the submitted SCT as part of the log. The RFC mentions having the client do
this (asynchronously, so as not to take the performance hit), but 1) that has
all the same privacy concerns, and 2) the logfile server could systematically lie
to that one host. So it makes more sense to introduce trusted auditors into the
system. It’s unclear who or what auditors are notifying in case they detect a
misbehaving logfile server, nor is it clear what the plan would be were a logfile
server discovered to be misbehaving. Recovering from that situation could be
quite challenging.

Step 3: Another way that a logfile server could misbehave is by modifying past
entries in the log. For instance, maybe a bogus certificate gets a real SCT from
the logfile server and is in the logfile (so the auditor doesn’t see any trouble) but
then after the attack the logfile entry gets erased, and all this happens before the
domain name owner gets a chance to check for any new entries in the logfile for his
domain name. This would defeat the whole purpose of certificate transparency.
Therefore, the logfile is append-only — once an entry is there, it’s there forever.
This is done with Merkle trees, which provide a mechanism whereby anyone
observing the logfile server could detect modifications or erasures of past entries.
Of course, some entity has to bother to make these checks, so the proposal calls
for “logfile monitors”, which would periodically query the logfile server and and
check that it was really operating in append-only mode. These might do double
duty by also checking for new logfile entries for domains the host is interested
in.

Step 4: Finally, the proposal envisages not one, but multiple logfile servers.
To protect against Denial of Service attacks, in which the attacker floods a



48 C.W. Brown and M. Jenkins

logfile server with bogus certificates to be logged, the proposal suggests that
each logfile server would publish a list of root CAs, and it would only log entries
that validate via a chain up to one of the CAs in the list. The proposal also calls
for “gossiping” to root out misbehaving logfile servers. However, no details on
the gossiping protocol are given.

Certificate Transparency provides impostor discoverability. This is a benefit to
server/domain-name owners, but only secondarily a benefit to users. It provides
no benefit for the initial targets of attacks, but it does offer a potential benefit to
the larger user community, in as much as a vigilant server/domain-name owner
may notice the attacker and take steps to shut him down. The proposal takes
great pains to ensure that entities that care to do so can monitor the activities
of logfile servers in order to ensure that they are being honest, so that logfile
operators don’t need to be trusted. There are, however, some issues to consider.

The purpose of the logfile monitors is to ensure that the logfile servers behave
properly. However, once again, it is unclear how to deal with a logfile server
that has misbehaved. It could be blacklisted somehow, but it’s not clear what
to make of the SCTs it had previously issued. Webservers would be sending
them out, potentially unaware that it was no longer trusted. Perhaps a bigger
question is what to do with logfile servers that are not purposefully acting badly,
but fail to meet an obligation — for example a logfile server that does not not
get the SCT into the log within the window specified by the MMD because of
an attack, or a simple programming or administrative error. Simply blacklisting
such a server seems highly undesirable. An alternative would be to rollback the
log to the point of the error, but that’s a problem because all the legitimate
SCTs that had been issued in between issuing this SCT and noticing that the
merge deadline had been missed would then be invalidated. Some mechanism is
required to deal with this gracefully.

The proposal doesn’t address how logfile public keys are distributed and up-
dated. It seems that we end up in a similar situation as with CAs, namely that
some arbitrary list of trusted logfile servers is preloaded into the browser. There
is then the potential for even more certificate-related error messages, since a
client could receive a certificate that is actually OK, but receive an SCT along
with it that refers to a logfile server that is not trusted by the client (or for which
the public key stored in the client is too old or too new).

It is not clear why users/clients would opt to submit SCTs to auditors. Collec-
tively, there is the benefit that attackers could be discovered and eventually dealt
with. But for the individual user there is little short-term benefit, and there is
definitely a risk to privacy. If the intended model is that browser vendors would
run their own trusted auditors, the privacy issue is mitigated, since their users
are essentially trusting them completely anyway ... at least for Google, Microsoft
and Apple. Less so for open source projects like Firefox, where users may put
their faith in the “many eyes” that are supposedly on the source code. How a
“trusted auditor” run by the Mozilla foundation is set up would not be sub-
ject to all those eyes, making it easier for a single individual or small group to



Analyzing Proposals for Improving Authentication 49

misuse it than to introduce errors into the Firefox codebase. Below is a summary
analysis of CT.3

+continuity: no real first-order effect.

+domain-name authentication: no real first-order effect.

+higher-level authentication: —
+attribute authentication: —

+client privacy : the auditor sees every secure site the client connects
to.

+impostor discoverability : this is the whole point of CT!

+server privacy : a legitimate server has to announce its presence by
submitting to a logfile server.

+local privacy: no additional data is stored locally.

+minimal false positives : with CT users could be faced with errors
when valid certificates aren’t logged, or when SCTs are sent to clients
that don’t have that logfile server’s public key.

+maximal actionable information : when a cert’s trust anchor is un-
trusted by the client, but the cert is logged, the user at least knows that
the cert has been available for scrutiny and for how long. Otherwise,
the user will know that it is unlogged (which is more suspicious).

3 Draft revisions of the RFC address some of the issues raised here. This evaluation
notes server privacy as an issue — a legitimate server needs to announce its presence
by submitting its certificate to a public logfile server. To address this, draft revision
3 of the RFC includes a mechanism for redacting portions of the domain name in
the certificate information submitted to a logfile server. For example, if the domain
name in the certificate was super.secret.example.com, the information submitted
to the logfile server might be (PRIVATE).example.com. Another mechanism added
in the draft that addresses this problem is logging a name-constrained intermediate
authority, along with a field that explicitly allows the SCT for the intermediate
authority to stand in lieu of an SCT for the end-entity certificate. Thus, the situation
above might be handled be having super.secret.example.com send an SCT for an
intermediate CA constrained to .example.com. Concerns raised here regarding the
Minimal Impact and Minimal Server Roadblocks Properties are addressed in draft
revision 3 by providing a mechanism for including a server’s SCT in its certificate.
This way, the server/server owner does not necessarily need to change or do anything
different in order for CT to be used. Instead, CA’s could make sure SCTs are bundled
in the certificates they issue, and servers simply send those certificates as they always
do. Of course, this creates a chicken-and-egg problem: the CA needs the SCT to
create the certificate, but the logfile server needs the certificate to create the SCT.
To deal with this, draft revision 3 allows CA’s to submit “pre-certificates” to the
logfile server, which contain enough information for the logfile server to create an
SCT. The SCT gets sent back to the CA, which then can complete the certificate.
Because these mechanisms are only described in draft revisions under very active
development, we are not including them in our analysis.



50 C.W. Brown and M. Jenkins

+minimal user trust : on one hand, CT means users don’t need to
place so much trust in CAs (that’s the “transparency”), but since a
logfile server could essentially blackball a site by refusing to issue a
SCT for it, users have to trust them to behave honorably. If there is
one (or few) logfile servers for your client, that could become a problem.

+user control: —

+minimal server trust : server/domain owners don’t need to place as
much trust in CAs.

+minimal server roadblocks : server/domain owners have to submit
their certs to a logfile server, and have to find one that supports their
trust anchor.

+incremental : adoption is a major issue. If clients do participate, all
sorts of legitimate sites will suddenly stop working, and users will get
swamped in false positives.

+minimal-impact : both clients and webservers need to change in order
for CT to work, and a lot of additional infrastructure and new kinds of
servers needs to be created.

+no-break : how will this work in local network only situations? Will
organizations be forced to run logfile servers inside their local networks?
How about enterprise trust anchors? None of the usual logfile servers
will support them, of course, so would such an enterprise need to run
its own logfile server?

+scal./maint./robust : lots of questions: what happens when logfiles
make errors or are found to be acting improperly? How can logfile server
keys change? How are logfile server keys distributed to clients? There
are some significant maintenance problems!

+resource-friendly: not a lot of extra burden on client or server; al-
though clients have to report to auditors, they do it asynchronously.

+realistic it is unclear what would motivate operators to stand up logfile
servers, monitors or auditors.

5 An HTTP Extension for Public Key Pinning (HPKP)

At its most basic, “pinning” just means hard-coding or caching cert/public key
(or the hash of the cert/public key) in a client, and requiring the cert/public key
received at connection time to match what is currently “pinned”. More flexibly,
the client might pin a set of certs/public keys, or pin the cert/public key of
an intermediate element of the certificate chain, both of which allow the end
entity cert/public key to change in a controlled manner. Essentially, pinning is
a commitment that the user won’t allow certs/public keys to change. What’s
interesting is looking at the question of who controls whether, when and what
pinning takes place. Pinning could be directed by 1) the user, 2) the client



Analyzing Proposals for Improving Authentication 51

(e.g., hard-coded pins, or pinning that would be updated by the client “calling
home” or calling an external service, or a policy of caching certs/public keys after
an initial unpinned connection), or 3) the server (directing pinning for itself or
for subdomains). An example of (1) is when a user preloads or chooses to accept
an ssh public key. An example of (2) is when applications (like Chrome) have
preloaded pins or call back home to get new pinning directives. If a website
were to send pinning directives to the client, that would be an example of (3).
Pinning, obviously, is a mechanism for providing authentication continuity.

The IETF draft document draft-ietf-websec-key-pinning (at the time of this
writing in revision 12) [11] proposes an HTTP extension (HPKP) that allows
the server to direct the pinning performed by the client — i.e. it is an exam-
ple of the category (3) type of pinning described above. In this proposal, the
server sends clients HTTP directives (the proposed extension) providing (hash-
algorithm,hash-of-public-key) pairs that are to be pinned. The client saves this
pin information indexed by the domain name it used in creating the connection.
On subsequent connections to the same name, the client then checks whether
any hash value in the set of pins is matched by a hash of any of the public keys
in the certifying chain. If so, the client continues as normal. If not, there is an
error. A hash-algorithm + hash-of-public-key pair must be accompanied by a
“max-age” value and may be accompanied by a “report-uri” value. The max-
age value instructs the client to keep the pin for a certain time. The report-uri
gives a URI that is to be used by clients to report pinning errors for that domain
name. An additional assertion may be sent that directs the client to apply the
pin not only to the server’s domain name, but to all of its subdomains as well.

The obvious benefit of HPKP is the continuity authentication it provides.
When a user connects to a server often enough (meaning that the time between
visits is less than the max age) with the same client, man-in-the-middle attacks
should be detected. Because the server directs the pinning, and because sets of
pins are allowed and intermediate public keys can be pinned, servers can pull
off planned transitions to new public keys gracefully. As will be described in
more detail below, the proposal is very good in terms of the Usability Proper-
ties. Among the Implementation/Infrastructure/Pragmatics properties, the only
real concern is the extra resources required by a participating client — namely
that a potentially large number of of pins will have to be stored, which could be
problematic for resource-constrained clients. There is an especial concern that a
malicious site could flood the pin store and use up all the available space. The
specification could perhaps be modified to bound the storage given a (non-top-
level) domain, or reclaim space from the non-top-level domain with the largest
storage footprint. Maintainability questions surrounding unplanned key transi-
tions are answered by requiring servers to pin a “backup key”, which is a key to
be used in case the current public key is compromised and needs to be revoked
and its use discontinued.

Next we consider Forensics & Privacy Properties. What should be another
obvious benefit of HPKP is impostor discoverability. This is, after all, the point
of the reporting mechanism provided by the report-uri directive. But to what



52 C.W. Brown and M. Jenkins

degree will HPKP really provide this property? In the case of a man-in-the-
middle attack (which is what an “impostor” really has to do), the client will be
provided with a domain name X, and the attacker will somehow arrange things so
that the client will think it is communicating with the host properly referred to by
that name when, in fact, it is communicating with some other host — for example
by disrupting routing. If the client receives a certificate chain and it doesn’t
match what is pinned for the name X, the client is supposed to send information
about the pinning error to the URI in the report-uri directive. However, it seems
quite likely that this message will never arrive at its destination given that the
attacker is already subverting network traffic to carry out the man-in-the-middle
attack. So the only case in which this would actually have its desired effect is
when the attacker was unwary enough to allow the reporting message through.
We note that this could be remedied by having clients send these reports at
exponentially decaying intervals — perhaps until a signed acknowledgment is
received. As long as the attack is not permanent, the report should eventually
get through. To avoid flooding-style attacks, a carefully analyzed approach that
looks at domain relationships and drops multiple error reports from the same
(non top level) parent domain should be investigated.

There are a variety of ways clients may end up with pins that don’t match the
public key presented by a legitimate server. A domain name may change hands
without the willing cooperation of the party losing the domain. Both primary
and backup keys could be lost. An attacker manages to pull off a successful man-
in-the-middle attack for a period of time on a site that doesn’t use pinning, and
puts a “poison pin” in the browser of all clients that connect during that time,
with a very big max-age. In all these cases, there’s actually a hole in the DNS
namespace — a domain name that, for a large number of clients, is unusable for
HTTPS connections. This is a potentially serious problem.

Finally, HPKP breaks with the general design principle of separating concerns,
and the specific cryptographic principle that different security properties should
be safeguarded by different keys (see, for example, Section 5.2 of [12]). TACK,
which space precludes us from covering here, is a similar proposal, but it uses
a separate key (the “Tack Signing Key”) to provide continuity authentication,
and the certificate chain keys provide (as they are supposed to) domain name
and higher-level authentication.

+continuity: this is the point of HPKP, although the fact that pins
expire limit this property.

+domain name auth: —

+higher-level auth: —
+attribute auth: —

+client privacy: attacks referenced above.

+impostor discoverability : the report-uri directive provides this but,
for reasons described above, it’s unclear how effectively.

+server privacy: —



Analyzing Proposals for Improving Authentication 53

+local privacy: there is forensics information in the pins themselves,
and simply clearing the pinstore as you would the browser’s cache is
not an attractive option because the user would lose security.

+minimal false positives: sites the user visits often shouldn’t generate
false positives, but those visited infrequently might; doesn’t address
first use.

+max actionable information: for some errors, pinned information
shows what public key user should expect to see, this can be actionable.

+minimal user trust: the user trusts server X’s pinning directives, but
these only pertain to server X itself, so that’s a pretty low level of trust.
Pinning reduces the trust that must be placed in CAs.

+user control: —

+minimal server trust: a server making use of HPKP needs very little
trust in CAs after a given client’s first connection.

+minimal server roadblocks: the server doesn’t need to rely on, or
coordinate with, outside entities to use HPKP in a limited way, but
using it flexibly so that new keys can be introduced in a reasonable
way may require getting a signing cert, which is a much bigger deal.

+incremental: with a conforming client, any participating site is more
secure (for the user), however, both client and server must participate.

+minimal-impact: clients and web-servers need small modifications.

+no-break: —
+scal./maint./robust: some small concern about how domain names
change hands.

+resource-friendly: all the pin information needs to be stored, which
could be problematic for memory-constrained clients. There are also
concerns about attacks on memory resources via HPKP.

+realistic: HPKP only requires buy-in from browser vendors to get
started. Given that this is a Google draft, that buy-in might be there.

6 Comparisons and Conclusions

We have surveyed three proposals for for improving the current condition of
authentication for the secure web, each of which are fairly well-known.

– DANE offers the prospect of providing strong guarantees of domain name
authentication. However, with “usage values” 2 and 3 it eliminates the de-
fense in depth that the system of certificate authorities was supposed to
bring. Moreover, DANE is built on top of DNSSEC, and DNSSEC adoption
has not progressed very quickly.

– Certificate Transparency offers a mechanism by which domain/server owners
can detect attackers that are impersonating their sites. However, it has a



54 C.W. Brown and M. Jenkins

number of pragmatic problems, as detailed above, and may increase the
number of “false positive” warnings experienced by users.

– The HTTP Extension for Server-directed Pinning (HPKP) is designed to
provide continuity authentication. HPKP suffer from the “poison pin” prob-
lem, namely that once the wrong pin gets in a client’s pin store, the client
will present the user with a “false positive” error message.

DANE (ignoring usage 2 and 3), Certificate Transparency and HPKP are
pretty much orthogonal to one another, meaning that they could be used in com-
bination without interfering with one another or overlapping in what they pro-
vide. In fact, used in conjunction we would have stronger domain name authen-
tication (from DANE), continuity authentication (from HPKP) and improved
impostor discoverability (from Certificate Transparency).

We finish up by looking beyond the proposals analyzed in this paper, and
asking whether the analysis suggests new ideas to investigate or has any other
interesting implications. The first thing we would like to point out is that in-
stead of viewing proposals like these as trying to “fix” authentication for the
TLS-protected web, we should evaluate a proposal by clearly understanding the
authentication or forensics property it is trying to provide, and analyzing the
extent to which it provides that property along with the positive and negative
impacts on the other properties that would result from adopting the proposal.

A second point is that once we stop looking for a single, monolithic, universal
fix to authentication for the TLS-protected web, the importance of “orthogonal-
ity” of proposals becomes quite clear, by which we mean that the adoption of
a proposal wouldn’t interfere with existing mechanisms or other proposed im-
provements. When proposals are orthogonal they can be composed, and that
strengthens authentication. DANE’s usages 2 and 3 are unfortunate precisely
because they ruin orthogonality. Without usage 2 or 3, DANE and the current
certificate infrastructure compose nicely.

A third point is that when we view these various mechanisms as providing
evidence for one or more of the four authentication properties, we see each con-
nection attempt as making a case for accepting the proposed identity of the
server on the other end. It might be reasonable to pin the “shape” of that ev-
idence — i.e. what kind of evidence was presented. So, for example, suppose a
user has been using client-directed pinning, and DANE (without usage 2 or 3) is
used in conjunction with the usual Certificate validation process. The user tries
to go to https://example.com and there is an error — the public key in the
Certificate presented by the server does not match what the browser has pinned
for the name example.com. However, the DANE record is validated, and the cer-
tificate chains to a trust anchor. The decision about whether to trust this server
despite the pin mismatch is unclear. Now suppose that on prior connections,
example.com had sent the client an EV certificate, and suppose the client had
pinned that fact. It would not be at all unreasonable to base the trust decision
on whether or not the certificate presented by the server is an EV certificate.
Note that pinning the “shape” of the authentication evidence provided by a site
has the really nice property that it actually provides increased security to sites



Analyzing Proposals for Improving Authentication 55

that choose to employ stronger authentication evidence. In the example above,
the client would have “pinned” the facts that example.com employs DANE and
uses an EV certificate. Thus, an attack will generate a warning to the user un-
less the attacker both subverts DNSSEC and gets a fraudulent EV certificate
for example.com. Taking control of DNS records might be enough to get an
ordinary certificate for example.com, but it shouldn’t be enough to get an EV
certificate. This kind of pinning could also make gradual adoption of some of
these proposals easier. For example, if the client pinned the fact that a given site
used Certificate Transparency (i.e. sent an SCT) in prior connections, then the
client could be configured to require CT for that site from that point on, but
not for other sites. This would eliminate the problem of clients being flooded
with false positives. One of the interesting things about Perspectives [6] is that
it explicitly presents itself as a mechanism for providing evidence about identity,
not as a procedure that proscribes trust decisions. That’s a powerful and flexible
idea.

The fourth and final point is a suggestion that we feel falls out of this analysis.
We start with the observation that if clients were to do client-directed pinning
of end-entity certificates and servers would do OCSP stapling, then most of the
time there would be strong authentication of the server on the basis of those two
pieces of evidence alone, and and the connection could proceed4. The process
would be quick and involve very little overhead provided that the certificates
match, and the point is that they usually would. So the question really is how
to deal with the infrequent situation in which the above is unable to confirm
authentication. This can happen when a client connects with a given name for
the first time, when a different end entity certificate is sent by the server, or
when an end-entity certificate is revoked. Making the right decision in these
cases, and doing it to the greatest extent possible without user intervention, is
crucial. However, since these situations are infrequent (as well as important),
when they do arise it would be acceptable to have the client take substantially
longer to make a decision, or to gather information to present to the user in
case it is necessary. We suggest research into mechanisms or the development of
standards that allow the client to collect a lot of relevant data in order to make a
strong case for or against trusting the server. As a very simple example, suppose
there was a standard way for a client that was not able to authenticate the server
using the pinning & stapling mechanism above, to fetch additional certificates
for the server. A client could implement a policy requiring that, in this event, it is
able to fetch an additional certificate that contains the same TLS key, the same
domain name, and chains to a different trust anchor (without cross signing).

4 Client-directed pinning would ensure that the certificate hadn’t changed since the
client’s last connection to the site, and OCSP stapling would ensure that the cer-
tificate had not been revoked — at least as of some reasonably recent point in the
past. Online Certificate Status Protocol (OCSP) stapling is a piece of the modern
certificate infrastructure. It allows a server to send clients a message, signed by the
relevant certificate authority, that asserts that as of a certain point in time, the
server’s certificate has not been revoked. This is a nice alternative to contacting
OCSP servers to check for revocation, or either pushing or pulling blacklists.



56 C.W. Brown and M. Jenkins

This increases the difficulty of a man-in-the-middle attack significantly, since
the attacker would have to obtain fraudulent certificates from two different trust
anchors. This is orthogonal to other proposals, and it strengthens all of them. For
example, HPKP has potential problems with unplanned key transitions. With
a mechanism like this, an organization that is forced to deal with an unplanned
key transition could have strong evidence (we’ve suggested multiple certificates
as a possible form) that a client could fetch on that single connection for which
HPKP broke. The client could be convinced with overwhelming evidence and
accept the TLS connection — without user intervention. The delay caused by
fetching and analyzing this extra evidence would only be incurred once, then
HPKP would suffice for subsequent connections.

References

1. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.1.
RFC 5246, RFC Editor (April 2006)

2. Housley, R., Santesson, S.: Update to directorystring processing in the internet
X.509 public key infrastructure certificate and certificate revocation list (CRL)
profile. RFC 5280, RFC Editor (August 2006)

3. Herley, C.: So long, and no thanks for the externalities: the rational rejection of
security advice by users. In: Proceedings of the 2009 Workshop on New Security
Paradigms Workshop, NSPW 2009, pp. 133–144. ACM, New York (2009)

4. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying wolf: an
empirical study of ssl warning effectiveness. In: Proceedings of the 18th Conference
on USENIX Security Symposium, SSYM 2009, pp. 399–416. USENIX Association,
Berkeley (2009)

5. Marlinspike, M., Perrin, T.: Trust assertions for certificate keys. Internet-Draft
draft-perrin-tls-tack-02, IETF Secretariat (January 2013)

6. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: improving ssh-style host
authentication with multi-path probing. In: USENIX 2008 Annual Technical Con-
ference on Annual Technical Conference, ATC 2008, pp. 321–334. USENIX Asso-
ciation, Berkeley (2008)

7. CA/Browser Forum. Guidelines for the issuance and management of extended val-
idation certificates (March 2014),
https://cabforum.org/wp-content/uploads/

EV-SSL-Certificate-Guidelines-Version-1.4.6.pdf

8. Hoffman, P., Schlyter, J.: The DNS-based authentication of named entities (DANE)
transport layer security (tls) protocol: TLSA. RFC 6698, RFC Editor (August
2012)

9. National Institute of Standards and Technology (NIST),
http://www.dnsops.gov/dnssec-perform.html

10. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC 6962, RFC Ed-
itor (June 2013)

11. Evans, C., Palmer, C., Sleevi, R.: Public key pinning extension for http. Internet-
Draft draft-ietf-websec-key-pinning-08, IETF Secretariat (July 2013)

12. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management - part 1: General (revision 3). Technical Report NIST Special Publi-
cation 800-57, National Institute of Standards and Technology (March 2007)

https://cabforum.org/wp-content/uploads/EV-SSL-Certificate-Guidelines-Version-1.4.6.pdf
https://cabforum.org/wp-content/uploads/EV-SSL-Certificate-Guidelines-Version-1.4.6.pdf
http://www.dnsops.gov/dnssec-perform.html

	Analyzing Proposals for Improving Authentication on the TLS/SSL-Protected Web
	1
Introduction
	2
Desirable Properties for the Authentication Component of the ``Secure Web''
	3
DNS-Based Authentication of Named Entities (DANE)
	4
Certificate Transparency
	5
An HTTP Extension for Public Key Pinning (HPKP)
	6
Comparisons and Conclusions
	References




