
Liqun Chen
Chris Mitchell (Eds.)

 123

LN
CS

 8
89

3

First International Conference, SSR 2014
London, UK, December 16–17, 2014
Proceedings

Security
Standardisation
Research

Lecture Notes in Computer Science 8893
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Liqun Chen Chris Mitchell (Eds.)

Security
Standardisation
Research

First International Conference, SSR 2014
London, UK, December 16-17, 2014
Proceedings

13

Volume Editors

Liqun Chen
HP Labs
Bristol, UK
E-mail: liqun.chen@hp.com

Chris Mitchell
University of London
Information Security Group
Egham, UK
E-mail: me@chrismitchell.net

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-14053-7 e-ISBN 978-3-319-14054-4
DOI 10.1007/978-3-319-14054-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014956396

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The First International Conference on Research in Security Standardisation was
held at Royal Holloway, University of London, UK during December 16–17, 2014.
This event was the first in what is planned to become a series of conferences
focusing on the theory, technology, and applications of security standards.

The conference program consisted of two invited talks, 14 contributed papers,
and a panel session. We would like to express our special thanks to the distin-
guished keynote speakers, Charles Brookson (Zeata Security, UK) and Marijke
De Soete (Security4Biz, Oostkamp, Belgium), who gave very enlightening talks.
Special thanks are due also to the panel organizer, Joshua D. Guttman (MITRE
Corporation), and the panel members, who included Karthikeyan Bhargavan
(INRIA), Cas Cremers (University of Oxford), and Kenneth Paterson (Royal
Holloway, University of London).

Out of 22 submissions from 12 countries, 14 papers were selected, presented
at the conference, and included in the proceedings. The accepted papers cover a
range of topics in the field of security standardisation research, including cryp-
tographic evaluation, standards development, analysis with formal methods, po-
tential future areas of standardisation, and improving existing standards.

The success of this event depended critically on the help and hard work of
many people, whose help we gratefully acknowledge. First, we heartily thank
the Programme Committee and the external reviewers, listed on the following
pages, for their careful and thorough reviews. Each paper was reviewed by at
least three people, and most by four. Significant time was spent discussing the
papers. Thanks must also go to the hard-working shepherds for their guidance
and helpful advice on improving a number of papers.

We must also sincerely thank the authors of all submitted papers. We further
thank the authors of accepted papers for revising papers according to the various
referee suggestions and for returning the source files in good time. The revised
versions were not checked by the Programme Committee, and so authors bear
final responsibility for their contents.

Thanks are due to the staff at Springer for their help with producing the
proceedings. We must further thank the developers and maintainers of the Easy-
Chair software, which greatly helped simplify the submission and review process.

December 2014 Liqun Chen
Chris Mitchell

Security Standardisation Research 2014

Royal Holloway, University of London, UK
December 16–17, 2014

General Chair

Chris Mitchell Royal Holloway, University of London, UK

Programme Chair

Liqun Chen Hewlett-Packard Laboratories, UK

Programme Committee

Ian Bryant Trustworthy Software Initiative, UK
David W. Chadwick University of Kent, UK
Takeshi Chikazawa Information-technology Promotion Agency,

Japan
Lizzie Coles-Kemp Royal Holloway, University of London, UK
Cas Cremers University of Oxford, UK
Riaal Domingues South Africa
Andreas Fuchsberger Microsoft
Aline Gouget Gemalto, France
Phillip H. Griffin Griffin Information Security, USA
Bridget Kenyon University College London, UK
Eva Kuiper Hewlett-Packard, Canada
Xuejia Lai Shanghai Jiaotong University, China
Pil Joong Lee Postech, Republic of Korea
Jiangtao Li Facebook, USA
Peter Lipp Graz University of Technology, Austria
Joseph Liu Institute for Infocomm Research, Singapore
Javier Lopez University of Malaga, Spain
Andrew Martin University of Oxford, UK
Shin’ichiro Matsuo National Institute of Information and

Communications Technology, Japan
Jinghua Min China Electronic Cyberspace Great Wall

Corporation, China
Atsuko Miyaji Japan Advanced Institute of Science and

Technology, Japan

VIII Security Standardisation Research 2014

Kenji Naemura Institute of Information Security, Japan
Valtteri Niemi University of Turku, Finland
Kenny Paterson Royal Holloway, University of London, UK
Angelika Plate help AG, UAE
Bart Preneel KU Leuven and iMinds, Belgium
Sihan Qing Peking University, China
Kai Rannenberg Goethe University Frankfurt, Germany
Phillip Rogaway UC Davis, USA
Christoph Ruland University of Siegen, Germany
Kazue Sako NEC, Japan
Dieter Sommer IBM Zurich Research Laboratory, Switzerland
Jacques Traore Orange Labs, France
Thyla Van Der Merwe Royal Holloway, University of London, UK
Vijay Varadharajan Macquarie University, Australia
Claire Vishik Intel Corporation, UK
Debby Wallner USA
Michael Ward MasterCard, UK
Yanjiang Yang Institute for Infocomm Research, Singapore
Jianying Zhou Institute for Infocomm Research, Singapore

External Reviewers

Futa, Yuichi
Ji, Qingguang
Kim, Geonwoo
Lee, Eunsung
Luo, Rui

Mori, Kengo
Shin, Jinsuh
Su, Chunhua
Tabatabaei, Amir
Teranishi, Isamu

Table of Contents

Cryptographic Evaluation

Unpicking PLAID: A Cryptographic Analysis of an ISO-Standards-
Track Authentication Protocol . 1

Jean Paul Degabriele, Victoria Fehr, Marc Fischlin,
Tommaso Gagliardoni, Felix Günther,
Giorgia Azzurra Marson, Arno Mittelbach,
and Kenneth G. Paterson

The SPEKE Protocol Revisited . 26
Feng Hao and Siamak F. Shahandashti

Analyzing Proposals for Improving Authentication on the
TLS/SSL-Protected Web . 39

Christopher W. Brown and Michael Jenkins

Standards Development

Standardization Transparency: An Out of Body Experience 57
Phillip H. Griffin

Size-Efficient Digital Signatures with Appendix by Truncating
Unnecessarily Long Hashcode . 69

Jinwoo Lee and Pil Joong Lee

Blinded Diffie-Hellman: Preventing Eavesdroppers from Tracking
Payments . 79

Duncan Garrett and Michael Ward

Analysis with Formal Methods

Security Goals and Evolving Standards . 93
Joshua D. Guttman, Moses D. Liskov, and Paul D. Rowe

Analysis of the IBM CCA Security API Protocols in Maude-NPA 111
Antonio González-Burgueño, Sonia Santiago, Santiago Escobar,
Catherine Meadows, and José Meseguer

Robustness Modelling and Verification of a Mix Net Protocol 131
Efstathios Stathakidis, Steve Schneider, and James Heather

X Table of Contents

Potential Future Areas of Standardisation

Stego Quality Enhancement by Message Size Reduction and Fibonacci
Bit-Plane Mapping . 151

Alan A. Abdulla, Harin Sellahewa, and Sabah A. Jassim

Secure Modular Password Authentication for the Web Using Channel
Bindings . 167

Mark Manulis, Douglas Stebila, and Nick Denham

A Modular Framework for Multi-Factor Authentication and Key
Exchange . 190

Nils Fleischhacker, Mark Manulis, and Amir Azodi

Improving Existing Standards

Improving the ISO/IEC 11770 Standard for Key Management
Techniques . 215

Cas Cremers and Marko Horvat

Computationally Analyzing the ISO 9798–2.4 Authentication
Protocol . 236

Britta Hale and Colin Boyd

Author Index . 257

Unpicking PLAID
A Cryptographic Analysis of an ISO-Standards-Track

Authentication Protocol

Jean Paul Degabriele1, Victoria Fehr2, Marc Fischlin2,
Tommaso Gagliardoni2, Felix Günther2, Giorgia Azzurra Marson2,

Arno Mittelbach2, and Kenneth G. Paterson1

1 Information Security Group, Royal Holloway, University of London, U.K.
2 Cryptoplexity, Technische Universität Darmstadt, Germany

{j.p.degabriele,kenny.paterson}@rhul.ac.uk,
marc.fischlin@cryptoplexity.de,

{victoria.fehr,tommaso.gagliardoni,giorgia.marson,
arno.mittelbach}@cased.de, guenther@cs.tu-darmstadt.de

Abstract. The Protocol for Lightweight Authentication of Identity
(PLAID) aims at secure and private authentication between a smart card
and a terminal. Originally developed by a unit of the Australian Depart-
ment of Human Services for physical and logical access control, PLAID
has now been standardized as an Australian standard AS-5185-2010 and
is currently in the fast track standardization process for ISO/IEC 25185-
1.2. We present a cryptographic evaluation of PLAID. As well as report-
ing a number of undesirable cryptographic features of the protocol, we
show that the privacy properties of PLAID are significantly weaker than
claimed: using a variety of techniques we can fingerprint and then later
identify cards. These techniques involve a novel application of standard
statistical and data analysis techniques in cryptography. We also discuss
countermeasures to our attacks.

Keywords: Protocol analysis, ISO standard, PLAID, authentication
protocol, privacy.

1 Introduction

PLAID, the Protocol for Lightweight Authentication of Identity, is a contactless
authentication protocol intended to be run between terminals and smartcards.
The protocol was designed by Centrelink, an agency of the Australian govern-
ment’s Department of Human Services (DHS). According to the developers it
is supposed to provide a cryptographically strong, fast, and private protocol
for physical and logical access control, without exposing “card or cardholder
identifying information or any other information which is useful to an attacker”
[8,1,14].

PLAID was initially proposed for use in the internal ID management of Cen-
trelink [19]. However, the intended scope of applications has since significantly

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 1–25, 2014.
c© Springer International Publishing Switzerland 2014

2 J.P. Degabriele et al.

broadened to include the whole of DHS and the Australian Department of De-
fence [26]. Indeed, the protocol’s promoters aspire to broader commercial and
governmental deployment, including on an international level [10]. Strategies
that are mentioned to support these aspirations include freely available intellec-
tual property and outreach to other governmental organizations. To the latter
end, NIST organized a workshop to explore the potential of PLAID for U.S. Fed-
eral Agencies in July 2009 [22].

Another strategy that is being actively pursued is standardization. PLAID
was previously registered as the Australian standard AS-5185-2010 [1] and was
then entered into the ISO/IEC standardization process via the fast track proce-
dure. At the time of writing, the current ISO/IEC version is draft international
standard (DIS) 25185-1.2 [14] and is currently in the “Enquiry phase” 40.60
(close of voting). Minor changes in the original protocol to match the inter-
national standard have been applied. Reference implementations, based on the
Australian standard, are available both from the Australian Department of Hu-
man Services (in Version 8.04) and of the Australian Department of Defence
(in draft version 1.0.0).

The protocol. The main aim of the protocol is to perform mutual authentication
and establish a shared key between the terminal (IFD) and the card (ICC).
To this end the terminal and the card exchange nonces RND1 and RND2 in
encrypted form and then derive the session key as part of the hash value of
the two nonces. Encryption here uses both asymmetric RSA-based encryption
(when the card transmits RND1 to the terminal) and symmetric AES-based
encryption (when the terminal sends RND2 to the card). Authentication of the
partner is presumably guaranteed by the fact that a party should know the secret
key in order to be able to decrypt the other party’s nonce. An overview of the
protocol is depicted in Figure 1, where the encrypted nonces are exchanged with
transmissions eSTR1 and eSTR2. The card confirms the receipt of RND2 by
sending a string encrypted under the derived key in eSTR3.

The role of the terminal’s initial message KeySetIDs is as follows. Each PLAID
deployment involves a set of key pairs consisting of an RSA key and an AES key.
Each terminal and each card stores a certain subset of these pairs. More precisely,
each terminal holds a set of RSA key pairs (both encryption and decryption key)
and corresponding AES master keys, while each card holds a set of RSA public
keys and card-specific AES keys, derived from the corresponding AES master
keys using a card identity. The keys held by a card are intended to control
what types of access the card should have, so each key represents a capability.
The actually deployed pair of keys is negotiated during the protocol itself, by
having the terminal send a sequence of supported RSA key identifiers KeySetID
in the first message. Even though the encryption key in RSA is usually public, in
PLAID it is kept secret to enhance privacy (since, for example, the set of RSA
keys held by a card could be used to identify the card and track its use in a
deployment).

One distinctive feature of the protocol, added for privacy reasons, is that the
card switches to using a pair of so-called shill keys in case of an error. That is,

Unpicking PLAID 3

IFD ICC

retrieve list of KeySetIDs1 choose first matching KeySetID or else
use ShillKey in 3© on random string

2
KeySetIDs

compute
STR1 = KeySetID ‖ DivData ‖ RND1 ‖ RND1

eSTR1 = RSAIAKey
Encrypt(STR1)

3
try all keys to decrypt

eSTR1 and check for RND1 ‖ RND1
if unsuccessful “authentication fails”

4
eSTR1

INITIAL AUTHENTICATE
FINAL AUTHENTICATE

FAKey(Div) = AESFAKey
Encrypt(DivData)

KeysHash = SHA-256(RND1 ‖ RND2)0,...,127
STR2 = OpModeID ‖ RND2 ‖ [Payload] ‖ KeysHash

eSTR2 = AESFAKey(Div)

Encrypt (STR2)

5
decrypt and check KeysHash

if unsuccessful use ShillKey in 7©6
eSTR2

compute
STR3 = ACSRecord ‖ [Payload] ‖ DivData

eSTR3 = AESKeysHash
Encrypt (STR3)

7
decrypt and check DivData
if correct “process” data

else “authentication fails”
8

eSTR3

Fig. 1. PLAID protocol overview

if the card detects some potential error, then it uses its card-specific RSA shill
key and AES shill key to encrypt random data. This mechanism is intended to
hide information about failures from an adversary and thereby prevent leakage
about which keys are possessed by a particular card.

Previous security analyses. Centrelink’s accompanying description of PLAID [8]
claims that PLAID is highly resistant against leakage of card or card holder
identifying information, against various forms of active attacks, and provides
mutual authentication. The document states as a goal that the protocol shall be
“evaluated by the most respected cryptographic organisations, and the broader
cryptographic community.” For version 8 the document [8] refers to the input
by various agencies like NIST and of “a number of independent cryptographic
experts and consultants, a number of respected commercial cryptographic teams,
as well as the internal Centrelink team.”

However, we are not aware of any publicly available cryptographic evaluation
of PLAID. None of the claimed security properties is backed up by arguments,
nor matched against more precise formalizations in the description [8] or stan-
dards [1,14]. Some useful comments about the protocol’s security have been given
by the national representatives in the previous version of the ISO standard and
documented there [13]. These comments refer partly to the points discussed in
Section 5, where we asses them in a cryptographic context.

4 J.P. Degabriele et al.

PLAID has been scrutinized to some extent by using formal methods and au-
tomated tools. Watanabe [28], using Scyther, and Sakurada [25], using ProVerif,
confirmed that PLAID satisfies some form of mutual authentication and some
level of secrecy of the session key, assuming idealized cryptographic primitives.
It remained unclear to us what this assurance means in a cryptographic sense.
Neither of the works considers privacy aspects.

Finally, the Master’s thesis of Kiat and Run [18] at the Naval Postgraduate
School compares PLAID with a similar protocol, the ANSI/INCITS 504-1-2013
standard OPACITY. The conclusion is indecisive and is primarily based on de-
ployment characteristics. The authors evaluate cryptographic properties only
on a superficial level. Indeed, while the thesis does not pinpoint at any major
weakness in OPACITY, a cryptographic analysis [9] was less positive.

Our results. According to the developers of PLAID, the lack of privacy in previ-
ous efforts was one of the main reasons to introduce a new authentication pro-
tocol [24]. Indeed, PLAID is described as highly resistant against “the leakage
of individually identifiable, unique or determinable data or characteristics of the
smart card or the holder during authentication.” [8]. We argue here that PLAID
does not achieve this ambitious goal. More precisely, we describe and evaluate
a suite of attacks that break the privacy goals of PLAID, enabling cards to be
efficiently identified in a number of realistic scenarios. We also identify some
countermeasures to our attacks.

In more detail, two of our attacks exploit PLAID’s use of shill keys, which,
being card-specific, can serve as a proxy for the card identity. While the shill
keys themselves are not transmitted in the protocol, we show how they can be
statistically estimated from RSA ciphertexts observed in protocol runs, enabling
cards to be initially fingerprinted and then later re-identified. These two “shill
key fingerprinting” attacks, presented in Section 3, deploy different techniques
to perform the statistical estimation, and apply in different attack scenarios.
Our first attack uses the standard solution to what is known as the “German
Tank Problem”, which concerns estimating the maximum of a discrete uniform
distribution from a number of samples, while our second attack uses clustering
techniques (and in particular the standard k-means clustering algorithm) to
perform the estimation of the shill keys.

Our third attack, targeting the terminal’s initial message KeySetIDs, is called
“keyset fingerprinting” and is presented in Section 4. It exploits specific prop-
erties of the protocol flow to extract information about the set of keys held by
a given card, potentially allowing us to draw conclusions about the card holder
(e.g., via access authorizations). We show that this information can be efficiently
extracted by interacting with a card a number of times and observing how the
protocol proceeds (or fails to proceed). The information obtained in this attack
may already be sufficient to identify individual cards from amongst a population,
depending on the exact characteristics of a given deployment. The attack can
also be combined with our first two attacks to increase their efficiency (by reduc-
ing the number of possible keys that need to be considered in the re-identification
phase).

Unpicking PLAID 5

Finally, in Section 5, we make a number of other observations on cryptographic
aspects of the PLAID protocol, focusing in particular on its lack of forward
security, the use of weak RSA encryption, the lack of integrity protection for the
symmetric encryption and a number of imprecisions in its specification. Some of
the issues have already been briefly touched upon in the national body comments
on the previous ISO standard version [13]; some aspects, like the lack of forward
security, are new.

Reaction of the Responsible Authorities. We communicated our results to both
the ISO 25185-1.2 project editor and to a contact person at the Department of
Human Services. They are currently looking into our findings. The ISO project
editor Graeme Freedman pointed out to us [11] that card-identifying information
may be also available by other means, such as through the so-called Card Pro-
duction Life Cycle (CPLC) data. The CPLC data contain information like serial
numbers and manufacturers, uniquely identifying cards on a global scale. For pri-
vacy reasons access to the CPLC data must thus be restricted for PLAID. Indeed,
the ISO draft standard itself already mentions this issue: “Consider switching
off access to administrative applications from contactless interfaces, particularly
ones which store unique card identification information such as the GlobalPlat-
form Card Production Life Cycle (CPLC) data.” [14]. Our results show, however,
that even if one restricts access to such administrative data, then PLAID still
leaks card and cardholder identifying information.

2 PLAID Protocol Description

In this section we give a detailed description of PLAID according to the spec-
ification of the draft ISO/IEC DIS 25185-1.2 [14]. A more concise overview of
the protocol flow is depicted in Figure 1. To make our description as close as
possible to the original specification [14] we denote terminal and card by IFD (In-
terface Device) and ICC (Integrated Circuit Card) respectively. Table 1 provides
a summary of the most important fields and objects occurring in the protocol.

2.1 PLAID Setup

In the setup phase PLAID initializes both terminals (IFDs) and cards (ICCs).
PLAID supports up to 216 key sets, each consisting of an RSA key pair IAKeyi

and an AES key FAKeyi. Each terminal and each card hold a subset of these over-
all possible key pairs, according to some access-control policy. However, the card
only holds the public key part of the IAKey as well as a processed version of the
original FAKey. More concretely, the card does not keep the FAKeys directly, but
only a diversified version FAKey(Div) = AESFAKey

Encrypt(DivData), where DivData is
a 128-bit card identifier. The standard [14] highlights that these diversification
data should be “random or unique”. Using the diversified key instead of FAKey
should retain security for other cards, in the case of a card being compromised
and hence some of the (diversified) keys are disclosed. In addition to the RSA

6 J.P. Degabriele et al.

Table 1. Most important fields and identifiers of PLAID

Variable Description
ACSRecord An access-control system record for each operation mode required for authentication.
DivData A “random or unique” 16-byte ICC identifier.
FAKey A 16-byte AES key which can be seen as master key to compute the diversified key used in

the protocol (only known to the IFD).
FAKey(Div) A 16-byte AES key derived from the FAKey and used in the FA phase.
IAKey A 2048-bit pre-shared RSA key pair used in the IA phase. The ICC only knows the public

key part.
KeySetID A 2-byte index value identifying an IAKey and FAKey or FAKey(Div), respectively.
OpModeID A 2-byte index value identifying the operation mode. This value indicates which ACSRecord

and payload the ICC needs to provide for authentication.
RNDi A 16-byte random string for i = 1, 2.
KeysHash1 A 16-byte session key computed by IFD and ICC used in the FA phase.
ShillKey A pair of 2048-bit RSA public key and 16-byte AES key of the ICC (randomly chosen per

ICC during setup). These keys are to be used instead of error messages to simulate the next
step of the protocol camouflaging that something went wrong.

keys, FAKey(Div) and the value DivData, each card receives a pair of individual
distress-keys (called ShillKey): a random encryption RSA key and a random
AES key. These “shill keys” should be used to encrypt random data in case an
error is detected, thus camouflaging errors or de-facto aborts on the card.

2.2 Initial Authenticate

The IA phase aims at exchanging the necessary information to compute the
symmetric keys used in the FA phase as well as transferring DivData, the card-
specific data later needed to guarante authenticity of the final message, securely
to the terminal.

Step 1 (IFD) – IA Command: The interaction is initiated by the IFD, which
transmits the complete sequence of supported KeySetIDs (in order of pref-
erence) to the ICC.

Step 2 (ICC) – IA Command Evalution: Upon receiving a set of
KeySetIDs, the ICC traverses the entire list of indices to find the first
KeySetID it supports, which determines the IAKey for RSA encryption.
To prevent timing attacks it does not abort the search, even if a match has
occurred. If no match is found, in Step 3 the ICC will encrypt a randomly
generated string using its ShillKey.2

Step 3 (ICC) – IA Response: The ICC generates RND1, retrieves its
DivData and derives string STR1, together with an encryption of it un-
der IAKey, as follows:

1 Note that in the original draft KeysHash refers to the entire 32 byte output
of SHA-256(RND1 ‖ RND2) and the term session key is used to refer to the first
16 bytes which are used as secret key in the final message. For simplicity we refer to
the session key as KeysHash in this paper.

2 The standard neither specifies the exact format nor the length of this randomly
generated string.

Unpicking PLAID 7

STR1 = KeySetID ‖ DivData ‖ RND1 ‖ RND1, eSTR1 = RSAIAKey
Encrypt(STR1) .

The encrypted string eSTR1 is sent to the IFD. Here PKCS#1 v1.5 padding
is used.

Step 4 (IFD) – IA Response Evaluation: The IFD trial-decrypts eSTR1
with all possible private IAKeys indexed by its KeySetID list and, for each
valid decryption, it checks if the last two 16-byte blocks are equal. Again,
to prevent timing attacks the IFD will continue the search even if a match-
ing string has already been found. The (first) match is then used to extract
KeySetID3, DivData, and RND1. If no plaintext is of the anticipated format,
authentication fails.4

2.3 Final Authenticate

The FA phase permits to specify the operation mode and to exchange data, like
a PIN or biometrics, needed to complete the authentication. Here the diversified
key FAKey(Div) (stored on the card and previously computed by the terminal
during the IA phase) and a derived session key are used to secure the communi-
cation. The card authenticates by proving its ability to decrypt eSTR2 as well
as to include the correct DivData (transmitted in the previous IA phase) in the
final message eSTR3.

Step 5 (IFD) – FA Command: The IFD generates the 16-byte nonce RND2
and computes the unique session key KeysHash as the first 128 bits of

SHA-256(RND1 ‖ RND2) .

Next, using the master FAKey indexed by KeySetID, it computes the diver-
sified AES key

FAKey(Div) = AESFAKey
Encrypt(DivData) ,

which corresponds to the AES key stored on the ICC under index KeySetID.
The latter is used to encrypt

STR2 = OpModeID ‖ RND2 ‖ [Payload] ‖ KeysHash ,

using AES in CBC mode with the all-zero string as initialization vector,
where Payload is an optional, variable-size field that depends on the opera-
tion mode. Concerning padding, the standard refers to the ISO/IEC 9797-1

3 The standard is ambiguous in whether the trial KeySetID of the IFD or the value
contained in eSTR1 is stored.

4 The standard does not specify what is meant by “authentication fails.” We assume
the protocol aborts in this case.

8 J.P. Degabriele et al.

method 2, where one byte 0x80 is appended, followed by blocks of 0x00 bytes
until the length is a multiple of the block length.5 The resulting string

eSTR2 = AESFAKey(Div)

Encrypt (STR2) ,

is then transmitted to the ICC.
Step 6 (ICC) – FA Command Evaluation: The ICC decrypts eSTR2 with

FAKey(Div) and retrieves RND2. It computes the session key as described
above as first half of SHA-256(RND1 ‖ RND2) and compares the result to
the value KeysHash extracted from the decrypted eSTR2. If they do not
match the ICC encrypts a random byte string6 using its AES ShillKey in
the FA Response. Else Payload, if given, should be processed as specified by
the implementation.

Step 7 (ICC) – FA Response: The ICC retrieves the Payload data specified
by the operation mode (if necessary) and encrypts

STR3 = ACSRecord ‖ [Payload] ‖ DivData ,

using AES in CBC mode with the all-zero string as initialization vector.
Again, Payload is an optional, variable-size field which may (and usually
will) differ from the Payload in Step 5. The resulting ciphertext

eSTR3 = AESKeysHash
Encrypt (STR3) ,

is transmitted as final message to the IFD.
Step 8 (IFD) – FA Response Evaluation: The IFD decrypts eSTR3 and

checks whether the recovered DivData matches the one received in the IA
phase: if so, then the other data is considered authenticated and processed
according to the implementation, otherwise authentication fails.

3 ShillKey Fingerprinting – Tracing Cards in PLAID

According to the developers of PLAID, privacy was one of the main reasons to
introduce a new authentication protocol. In this and the next section we present
three attacks on the privacy of PLAID contradicting the claims that no static
information is available to be exploited. In this section we focus on the traceability
of cards, that is, we consider an adversary who learns some information about
one or more cards and then tries to identify these cards at a later time.

We consider two distinct attack scenarios, each consisting of a fingerprinting
phase and then an identification phase. The difference is roughly that in the first
scenario the fingerprinting is a supervised learning phase in the sense that we
can attribute execution traces to cards, whereas the second setting corresponds
to unsupervised learning where we get a set of random traces. More precisely:
5 Though referring to ISO/IEC 9797-1 method 2, the standard explicitly describes

a different padding method and thus makes unambiguous decoding impossible (cf.
Section 5.4).

6 Again, the standard does neither specify the exact format nor the length (note that
STR3 in Step 7 contains a variable sized field Payload) of this random byte string.

Unpicking PLAID 9

– In the first scenario we allow the adversary to first interact in turn with each
and every card in the system in a number of protocol runs (the fingerprinting
phase). We then draw a card at random and let the adversary interact with
this specific card a number of times, with the adversary’s goal being to
identify which of the cards was selected. The adversary’s ability to interact
with each card in the system in turn in the identification is not wholly
realistic. However, given the high success rates of this attack that we will
report below, we believe that good success rates would still be achieved in
the more realistic scenario where the adversary does not have the guarantee
of being able to interact with each distinct card in turn in a first phase, but
instead must build up its picture of the system as it goes along.

– In the second scenario, which is much more challenging for the adversary,
we do not allow the adversary to interact in turn with every card in a num-
ber of protocol runs, but simply present it with a sequence of transcripts of
individual protocol executions, each execution involving a randomly chosen
card. The identification phase and the adversary’s goal are the same as be-
fore. This much more demanding attack scenario models a situation where
the adversary cannot interact many times with each distinct card during
fingerprinting, but only in one protocol run at a time with a random card.

In Section 4 we consider a different attack scenario and show how an adversary
can learn the capabilities of a card (that is, it learns which keys are stored on a
card). Besides being a serious breach of privacy on its own, this attack can also be
combined with the attacks described in this section to gain better performance.

Our attacks in this section specifically target the ShillKey values used by
PLAID. A ShillKey pair, generated for every card, contains an RSA public key
and an AES key that are to be used in the IA and in the FA phases respec-
tively in place of the actual keys should an error in the terminal message be
detected. Intended as a security measure—to prevent attackers from exploiting
potential information leaked by error messages—the use of the ShillKey turns
out to drastically weaken the anonymity properties of PLAID.

Before explaining the details of the attacks, we note that in order to run the
attacks in this section, we need to be able to force each card into replying with
RSA ciphertexts generated using its ShillKey in the first phase of the protocol.
This can, however, easily be arranged by sending the card a first message con-
taining an empty sequence of KeySetIDs, or a set of KeySetIDs containing a
single and particularly high index that is not in use in any card on the system.
Thus we may assume that the adversary is able to gather samples of ShillKey
ciphertexts from cards at will.

3.1 Tracing Cards via ShillKey Ciphertexts

We consider the following situation: we assume the system has t cards with cor-
responding ShillKey moduli N1, . . . , Nt, where each Ni is an n-bit RSA modulus
(the current draft version gives n = 2048 [14]). Our basic attack considers the
following scenario. In a first phase the adversary learns, for every card in the

10 J.P. Degabriele et al.

system, k1 encryptions of a random message under the card’s ShillKey (Nj , ej);
then, in a challenge phase the adversary is given k2 fresh ciphertexts (again for
random messages) computed under ShillKey (Nj∗ , ej∗), for j∗ chosen uniformly
at random from {1, . . . , t}. The adversary’s goal is to identify from which card
the challenge ciphertexts come, that is, to output the correct index j∗. We de-
fine the adversary’s advantage as its success probability bounded away from the
guessing probability 1

t .
The idea behind our first attack is that, although each ShillKey (Nj , ej)

is meant to be kept private, each of the k1 ciphertexts Xi,j computed us-
ing (Nj , ej) leaks some information about the modulus Nj . Specifically, we learn
that Xi,j < Nj for each i. Similarly, in the challenge phase, where we have k2
ciphertexts computed using (Nj∗ , ej∗), each ciphertext leaks some information
about the challenge ShillKey modulus. Starting from this observation, we now
seek a procedure to obtain a good estimate of the ShillKey moduli given only a
certain number of corresponding ciphertexts for each modulus.

The problem can be reposed as follows. Notice that each ciphertext Xi,j can
be regarded as a uniformly random integer in the range [1, Nj − 1]. We are
then faced with the task of estimating Nj, which is one more than the size of
the interval from which the sample comes. This is essentially an instance of a
classical statistical problem that is known as the German Tank Problem7. A
naive approach would be to use twice the mean values of the samples Xi,j as an
estimate for Nj . A statistically strictly better approach is to use as an estimator
for Nj the value

Ñj = mj +
mj

k1
,

where mj is the maximum value of the observed samples Xi,j and k1 is the
number of samples. It basically corresponds to the maximum plus the average
distance of observed samples. This estimator arises from a frequentist interpre-
tation of the problem, and has the benefit of providing what is known as a
Minimum-variance Uniform Estimator (MVUE). It can be replaced by a more
appropriate Bayesian estimator, but the estimator above is sufficient for our
purposes.

Our first attack proceeds using this estimator as follows. In the first phase,
we use it to produce estimates Ñj for each of the ShillKey moduli Nj . In the
challenge phase, we again use it to produce an estimate Ñ∗ for the challenge
ShillKey modulus (now with parameter k2, representing the number of samples
available in that phase). We finally output as our guess for the challenge index
j∗ the index j for which Ñ∗ is closest in absolute value to Ñj , that is,

arg min
j

∣
∣Ñ∗ − Ñj

∣
∣ .

This concludes the description of our first attack.
7 See [17] for a good introduction. The name stems from the problem initially being

posed as that of estimating the total number of tanks in the German army from
observing a subset of their serial numbers.

Unpicking PLAID 11

Fig. 2. Simulations of the ShillKey attack. On the left with k1 (the number of samples
during the fingerprinting phase) set to 100 and on the right with k1 set to 1000.
The success probability is averaged over ten runs with one hundred repetitions of the
identification phase and the simulation was done with t = 10, 15, 20, 25, 50, 100 cards.
The baseline indicates the success probability of an adversary that tries to win the
game by purely guessing.

Simulation results. We have conducted extensive simulations of the first attack
above for various values of t (the number of cards), k1 (the number of ciphertext
samples per card available in the first phase) and k2 (the number of ciphertext
samples in the challenge phase). A selection of our results are depicted in Figure 2.

It can be seen that even with many cards in the system (t = 100, say),
our attack significantly outperforms simply guessing the card’s identity. This is
particularly so when the number of samples k2 available in the challenge phase
is large. However, even with k2 as low as 50, the attack performance is still
significantly better than guessing; given the target execution time of the PLAID
protocol of 300 ms, this many samples could be gathered from a card within 15 s.

It is also the case that increasing the number of samples available in the
first phase of the attack, k1, improves the attack performance (compare the left
and right sub-figures in Figure 2, which correspond to values of k1 equal to 100
and 1000, respectively). This is particularly accentuated at higher levels of k2,
where the attack’s success probability is better than 75%, even for a system with
t = 100 cards.

3.2 Tracing Cards from a Mixed Set of ShillKey Ciphertexts

For the basic attack in Section 3.1, we assumed that during the initial phase the
attacker was able to identify ciphertexts computed from the same key. In our
second attack, we relax this assumption: we now give the attacker a large mixed
set of k1 × t ciphertext samples, each sample coming from a randomly selected
card. The challenge phase of the attack proceeds as before where the attacker
obtains a small sample of k2 ciphertexts computed by the same card, and the
attacker’s goal is to identify this card.

12 J.P. Degabriele et al.

The challenge now is to somehow process this mixed set of samples in order
to extract reasonable estimates of the individual RSA moduli. We accomplish
this by means of a heuristic clustering technique. Assuming that we know the
number of cards t used to produce the mixed sample set, let N1, . . . , Nt represent
their ShillKey moduli in increasing order. From the mixed sample of ciphertexts
we ignore all samples smaller than 22047. We then use a standard clustering tech-
nique based on the k-means algorithm to group the remaining ciphertext samples
into t clusters approximating the intervals [Nj , Nj+1), for j ∈ {0, 1, . . . , t} and
N0 = 22047. Once we have this set of clusters, we then obtain an estimate for
the ShillKey modulus Ni+1 by using the German Tank estimator on the cluster
corresponding to the interval [Ni, Ni+1).

We now describe the clustering algorithm in more detail. We initially assign to
each of the t clusters a uniformly random value in the range (22047, 22048). This
value is called the centroid of the cluster. For each ciphertext sample greater
than 22047 we calculate its distance from each of the cluster centroids, and as-
sign that ciphertext to the cluster to whose centroid it is closest. The distance
metric is merely the absolute value of the arithmetic difference. Once that every
ciphertext sample has been assigned to a cluster we ensure that no cluster is
empty. If an empty cluster is found, we pick another cluster at random whose
size is greater than one and move its largest element to the empty cluster. We
then set the centroid of each cluster to be the mean of the ciphertext samples
contained in that cluster, as per the standard k-means algorithm. We iterate
this process of assigning ciphertext samples to clusters and recalculating their
centroids until the centroids converge to stable values, or the maximum number
of iterations is exceeded.

In the challenge phase of the attack, the attacker is given k2 ciphertexts
computed by the same card. Here, our attack proceeds identically to the previous
one: the attacker uses the estimator to produce an estimate Ñ∗ for the challenge
ShillKey modulus and outputs as its guess the index of the modulus from the
first phase that is closest to Ñ∗.
Simulation results. We ran simulations of the above clustering attack for a mixed
sample set of size t×k1 for various values of t (the number of cards) and values of
k1 equal to 100 and 1000. The results of our simulations are depicted in Figure 3.

Being a more ambitious type of attack, the success probabilities for this at-
tack are considerably lower than for the previous attack. Nonetheless we see that
our clustering approach is able to correctly identify a card with a probability of
roughly 4 times the guessing probability. Notably, as we increase the values of
k1 and k2 beyond 100 we do not get a corresponding increase in performance
as in the previous attack. On the other hand, for low parameter values its per-
formance is comparable to the previous attack. In fact if we compare Figures 2
and 3 we see that for k2 = 10 the two attacks perform almost identically. There-
fore if the attacker is limited to a small number of samples (≈ 10) during the
identification phase, he can trace cards as effectively without requiring a sorted
set of ciphertext samples during fingerprinting.

Unpicking PLAID 13

Fig. 3. Simulations of the clustering attack for k1 equal to 100 and 1000, and varying
values of k2 for each. The success probability is averaged over fifty runs, and the
simulation was done with t = 10, 15, 20, 25, 50, 100 cards. The baseline indicates the
success probability of an adversary that tries to win the game by pure guessing.

3.3 Connection to Key Privacy of RSA Encryption

We remark that our two ShillKey fingerprinting attacks only consider proper-
ties of RSA moduli and are, thus, of independent interest in the study of key
privacy (or key anonymity) of RSA encryption, a security notion introduced by
Bellare et al. in [2]. In the key privacy security model of [2], an adversary plays
against two key pairs and is given both the public keys. Security is modelled in
terms of key indistinguishability, requiring that it is infeasible for any efficient
adversary, which can request encryptions of messages of its choice under one of
the two public keys, to tell which key was chosen with probability higher than
guessing. As already pointed out in [2], the RSA cryptosystem does not provide
key privacy. Security is trivially broken when the two key lengths are different.
However, RSA keys of the same bit length are easy to tell apart, too: let N0 < N1
be two RSA moduli: independently of the underlying plaintext, a ciphertext c
computed under one of the two corresponding keys satisfies c < Nb. A single-
query attack which succeeds with non-negligible advantage simply requests to
encrypt an arbitrary message and then compares the resulting ciphertext c with
the smallest modulus: if c < N0 then it returns 0 and else guesses 1.

This attack is not directly applicable to the PLAID setting because there
the RSA encryption keys are kept secret. Moreover, a realistic adversary against
card untraceability should play against a number of cards t � 2. Still, our
ShillKey fingerprinting attacks on PLAID can be seen as similar in spirit to,
but obviously harder to perform than, the above single-query attack. Moreover,
if the encryption scheme used in PLAID were to enjoy key privacy, then the
attacks presented would be completely thwarted (and the RSA moduli would no
longer need to be kept secret).

14 J.P. Degabriele et al.

3.4 Countermeasures to Our Attacks

A very simple countermeasure to our attacks is for every card to use the same
RSA ShillKey. This does not seem to have any negative security consequences
and renders ineffective any tracing attacks based on the analysis of RSA ShillKey
ciphertexts. A second countermeasure to our attacks is to modify the RSA en-
cryption scheme so that it is key private. This can be done in two ways: padding
by adding multiples of the modulus to the ciphertext, and selection of RSA
moduli that all lie in a small interval.

4 Keyset Fingerprinting – Determining a Card’s
Capabilities

In this section we present another type of attack on PLAID’s privacy, which
we call keyset fingerprinting. This attack reveals the exact set of keys a card
knows8, thereby determining its capabilities in terms of which keyset it can use,
i.e., which specific terminal it is able to talk to. In order to mount the attack,
we exploit the following observations: (i) the KeySetIDs list sent by the terminal
(in the clear) in the IA Command contains all keys known by the terminal [14,
6.1], and is not authenticated9, (ii) in its IA Response, the card is required to
use the first key of the received KeySetIDs list it knows [14, 6.2], and (iii) if the
card uses its ShillKey, in the IA Response, then the terminal aborts [14, 6.4].

4.1 The Attack in a Nutshell

We first explain the core idea of our attack by describing a concrete attack sce-
nario. Assume an adversary observes a successful protocol run between a card
and a terminal where the latter had sent (in the clear) KeySetIDs = (2, 5, 8).
From this, the attacker not only learns that the ICC holds at least one of the
keys with IDs {2, 5, 8}, but it can also determine all of the keys the ICC sup-
ports, independently of the identifiers announced in KeySetIDs. To this end, the
adversary can trigger a protocol run and mount a man-in-the-middle attack as
described below.

In a first phase, the attacker sequentially replaces the IFD’s original ini-
tial message by one containing only a single identifier from the original list
of KeySetIDs, that is, 2, 5 or 8 in our example; by observing the subsequent
protocol run, the attacker deduces that the ICC supports the selected key if
and only if the protocol execution reaches the third step, i.e., if the terminal
8 Recall that terminals announce their supported keysets by sending correspond-

ing KeySetIDs in the clear. As a consequence, any observer can see which keys
are related to which resource/terminal.

9 We note that the unauthenticated nature of the PLAID protocol messages has al-
ready been criticized in the national body comments on an earlier ISO draft [13]. In
our attack we exploit this weakness, refuting the claim of the current ISO draft [14,
Annex H.1.1] that sending KeySetIDs in clear is “of no use to an attacker.”

Unpicking PLAID 15

responds with a third message. In a second phase, the attacker sequentially
prepends to the IFD’s original initial message all key identifiers that were not
contained in KeySetIDs, e.g., (1, 2, 5, 8), (3, 2, 5, 8), . . . , (65536, 2, 5, 8) in our ex-
ample. Then, from each of the subsequent protocol runs, the attacker learns that
the ICC knows the inserted key if and only if the IFD does not respond with a
third message. This is because of observation (ii) above about the first matching
key in the list to be used. At the end of the two phases, the attacker knows the
identifiers of all keys supported by the ICC.

We stress the attack above can be performed in a remote fashion where two
attackers, placed in physical proximity to the terminal (respectively, the card)
relay the exchanged messages between each other, playing the role of a card
(respectively, a terminal). Moreover, this attack can be mounted independently
of the values announced in KeySetIDs, as long as the attacker observes a single,
successful protocol execution.

Note that knowledge of all the keys supported by a card also reveals its ca-
pabilities (e.g., access authorizations), thereby potentially disclosing highly sen-
sitive information. While this is not, in general, sufficient to identify a card
uniquely, it effectively allows to derive capability classes, containing cards with
the same capabilities. Moreover, in certain scenarios, capabilities like access au-
thorizations might even leak the identity of a card’s owner, hence breaking its
anonymity, as some keys might be used exclusively to access security-critical
infrastructure [14, Annex C] such as, e.g., server rooms or the CEO’s office. The
impact of keyset fingerprinting is furthermore increased by the remote nature
and the low cost of the attack (in terms of the number of interactions between
terminal and card). Even in large-scale, realistic scenarios, the attack requires
only few seconds (and no physical proximity of card and terminal) to determine
a card’s capabilities. See Section 4.2 for a more detailed discussion.

We remark that keyset fingerprinting can, in addition, be used as a prefilter
for the tracing attacks discussed in Section 3 based on ShillKey Fingerprinting.
Recall that the performance of these attacks heavily depends on the number
of cards in the system that have to be distinguished. By first performing keyset
fingerprinting on the card(s) in question, this number can potentially be reduced
substantially (thereby improving the overall efficiency), as the ShillKey Finger-
printing in a second step only has to discriminate amongst the smaller number
of cards belonging to the same capability class. Finally, we note that there are
cases where the cheaper keyset fingerprinting attack on its own is actually al-
ready sufficient for a tracing attack: whenever a traced card has a unique set of
supported keys (i.e., is the only member in its capability class), this attack is
able to uniquely (re)identify that card. Furthermore, keyset fingerprinting suf-
fices to distinguish two cards as long as there is a key supported by only one of
the cards.

4.2 The Attack Details

Suppose that we observe a successful authentication between an honest termi-
nal IFD and an honest card ICC. In the course of the protocol execution, the

16 J.P. Degabriele et al.

IFD starts by sending the list KeySetIDs = (KeySetIDi1 , . . . , KeySetIDi�
) of (all)

KeySetIDs it supports. The keyset fingerprinting attack proceeds in two phases,
focusing first on the keys supported by the IFD and then on the remaining keys.
Phase 1. In the first phase, we replace the initial KeySetIDs list with a list

containing only one of the keys supported by the IFD at a time, i.e., we
replace the first message by (KeySetIDij

) for j = 1, . . . , � in � sequential
interactions. We relay the response of the ICC unmodified to the IFD. If the
IFD replies with a third message in the jth interaction, we can infer that the
ICC knows the key with KeySetIDij

. Otherwise, the ICC did not support
this key and hence used its ShillKey, leading the IFD to abort.

Phase 2. In the second phase, we prepend the initial KeySetIDs list with one
(or multiple, see below) values KeySetIDj /∈ {KeySetIDi1 , . . . , KeySetIDi�

}
at a time. We relay the response of the ICC unmodified to the IFD. If the
IFD replies with a third message, we can infer that the ICC knows none of
the prepended keys. Otherwise, the ICC did know at least one of these keys
(which the IFD does not support), leading the IFD to abort. This relies on
observations (ii) and (iii) above.

We measure the attack costs in terms of the number of interactions between
IFD and ICC needed to extract the keys supported by the ICC. In the first
phase, which requires � interactions between the IFD and the ICC, we are able
to determine exactly which of the keys {KeySetIDi1 , . . . , KeySetIDi�

} supported
by the IFD the ICC knows. The second phase aims at determining which of the
remaining 216−� KeySetIDs are known by the ICC. There are different strategies
to proceed in Phase 2:
1. The basic approach is to simply prepend each one of the 216 − � KeySetIDs

not supported by the IFD one at a time, resulting in 216 − � interactions in
order to determine exactly which of the keys the ICC knows. Together with
the first phase, this approach leads to 216 interactions to fingerprint a card.

2. In the binary search approach, the set of KeySetIDs is partitioned along a
binary tree with the full set of all 216 − � KeySetIDs at the root, the first
half of them as the left child, the second half of them as the right child, etc.
In Phase 2, first the root (i.e., all 216 − � KeySetIDs) is prepended. If the
IFD replies, the ICC knows none of these keys and we have thus completed
the keyset fingerprinting for the card. Otherwise, both the left half and the
right half are prepended (sequentially) and, again, if the IFD replies then
the ICC knows none of the prepended keys. This process can be repeated
recursively until the IFD replies for each branch.
Using this approach, we can quickly rule out those parts of the KeySetID
space where the ICC does not know any key. More precisely, denote by n
the number of keys the ICC knows in total and by �′ the number of keys
the ICC knows amongst the � keys supported by the IFD. Then we can
upper bound the number of interactions needed to fingerprint a card by
(n − �′) · log(216) + � = (n − �′) · 16 + �, since a traversal of the binary search
tree in order to pinpoint a single key requires at most log(216) (i.e., height
of the tree) additional interactions.

Unpicking PLAID 17

3. The binary search with known maximum approach is a further optimization
which is applicable in scenarios where the highest KeySetID in the system,
MaxID, is known in advance. In this case, the binary tree can be reduced to
the tree having only the MaxID − � remaining unknown KeySetIDs (instead
of all 216 − �) as leaves. The number of interactions to fingerprint a card
therefore is reduced to (n − �′) · �log(MaxID)� + �.

When comparing the strategies for the second phase, in the (unlikely) worst
case where the card knows all 216 possible keys, the basic approach requires
216 interactions whereas the binary search approach takes approximately 220
interactions. We observe however that the binary search is more efficient as long
as the card holds less than 212 keys (which we assume to be the case in any
practical scenario).

A practical example. For the sake of providing the reader with some estimates on
a more realistic, but still large-scale example, consider a scenario where MaxID =
5000 keys are deployed (enough for, e.g., a large building or a small campus) and
the considered terminal and card both hold � = n = 10 keys, from which �′ = 1
key is known by both.

We chose these parameters in the light of the targeted execution time for
PLAID and the resource restrictions imposed by the terminal and card hardware.
First, in every execution of the PLAID protocol, the terminal has to perform �
RSA decryptions, which is an expensive cryptographic operation for a computa-
tionally constrained embedded device.10 But since the previous ISO draft aims
at an overall protocol execution time of less than 300 ms [13, p. 27], this means
that � cannot be too large. Second, the card has to store all of its n keys in a
protected, tamper-proof memory [14, Annex B]. As this kind of memory is very
expensive, it is reasonable to assume that a card can store only a small num-
ber of keys. With these parameters, the binary search approach would require
(10 − 1) · 16 + 10 = 154 interactions to fingerprint the card which, knowing the
highest KeySetID MaxID, can be optimized to (10 − 1) · log(5000) + 10 ≈ 121
interactions using the binary search with known maximum.

4.3 Potential Countermeasures against Our Attack

As the keyset fingerprinting attack relies heavily on the malleability of the initial
KeySetIDs message sent by the terminal, tamper-protecting this message is the
obvious way to prevent this attack. One potential and immediate remedy to
detect and to prevent tampering with the initial message would be to let the
ICC include a hash value of the KeySetIDs value in the plaintext of STR1.
The terminal could then check whether the ICC obtained the unmodified initial
message by comparing the hash value that it receives with the hash of the original
KeySetIDs value. However, a rigorous analysis would be required to put this idea
on a profound foundation.
10 For 2048-bit RSA decryptions or signatures, [23] reports times of over 100 ms for

mobile devices, while our simulations on an Intel Core i7 2.4 GHz are around 10 ms.

18 J.P. Degabriele et al.

5 Further Security Considerations

Here we discuss further security considerations, and mainly the secrecy of the
established keys which, according to the standard, can be optionally used “as
a secure messaging, session or encryption key in subsequent sessions.” We also
point out that the design of PLAID also deviates in several ways from good
cryptographic practice. We observe that some of these issues have already been
pointed out in the comments on the previous ISO draft version [13].

5.1 Forward (In)security

Forward security [3] demands that one cannot recover session keys generated in
the past, even if the long-term secrets of a party become known. In the case of
PLAID, the long-term secrets correspond to the secret RSA keys and the FAKey
on the terminal side, and to the public RSA keys, DivData, and the diversified
keys FAKey(Div) on the card side. The loss of keys of either party immediately
reveals all past session keys, and also of future sessions, even if they are executed
honestly between the parties and the adversary merely observes these execution
traces. Furthermore, revealing a card’s secrets also allows the identification, a-
posteriori, of traces belonging to that card and so breaches privacy in this sense.

Assume first that a terminal’s long-term secrets become known to the ad-
versary, and consider the trace of an execution between this terminal with an
arbitrary card: the adversary can, analogously to the genuine server, try to de-
crypt the ciphertext encrypting string eSTR1 under all possible RSA private keys
of the terminal, until it succeeds with one key. It then obtains DivData, hence
can compute FAKey(Div) by executing AESFAKey

Encrypt(DivData) and then decrypt
eSTR2 sent by the honest terminal to recover the session key KeysHash.

Next, suppose that the adversary gets hold of the diversification data DivData
and the diversified key FAKey(Div) of a card. It can then try to decrypt eSTR2
with this key to obtain some candidate KeysHash for the session key. The adver-
sary can verify the validity of this candidate by checking that eSTR3 decrypts
under the candidate key to the given DivData. This way, the adversary is able
to identify traces belonging to the specific card and to determine correct session
keys of the card.

Most importantly, any such breach would lead to the disclosure of the payload
data which may be highly sensitive (for example, a user’s biometric data).

5.2 Key (In)security in the Bellare–Rogaway Model

The PLAID protocol specifies the option of reusing the negotiated session key
KeysHash for subsequent secure communication. We comment on possible con-
sequences of doing so. Our starting point is the widely-used Bellare–Rogaway
(BR) security model [4] for key exchange protocols. This model demands that
all session keys should look random to the adversary. Neglecting technical de-
tails, this is formalized by presenting the adversary either the genuine session
key or an independent random key and challenging it to decide which is the case.

Unpicking PLAID 19

This immediately requires of a protocol that its session keys are not themselves
used in a non-trivial way in the key exchange steps, otherwise the adversary can
try to test the given key against a protocol execution trace. In the specific case
of PLAID, the adversary can try to decrypt eSTR3 with the given key, and will
recover a meaningful plaintext with overwhelming probability if and only if this
key equals the genuine key KeysHash. Thus PLAID cannot achieve security in
the BR model.

Note that the lack of security in the BR sense does not necessarily imply
that a protocol is insecure. It merely means that other models must be used to
assess its security. PLAID is not unique in this respect: a prominent example of
a protocol not achieving BR security is TLS, leading researchers to investigate
various alternative security evaluations [15,20,7,12,5]. The usage of the session
key in the exchange step is often alleviated by the fact that messages in this
part and in the channel protocol differ in format, e.g., if a counter value is
used and incremented with each application. This form of “domain-separation”,
however, is not necessarily given in case of PLAID, because the subsequent
channel message format has not been specified.

Interestingly, PLAID could easily avoid the problems with the session key
being used in the key exchange phase. Recall that the session key KeysHash
for AES (with 128 bits) is derived as the first 128 bits of the hash value
SHA-256(RND1 ‖ RND2). Since the hash value has 256 bits one could easily
use the remaining 128 bits as the AES-128 key for the final message in the key
exchange step, and then switch to KeysHash as before in the channel proto-
col. In the original protocol the card in some sense demonstrates knowledge of
FAKey(Div) by being able to decrypt the terminal’s message and answer under
the derived key. This would still be true with the proposed modification. Note
however that this modification still requires a formal security treatment.

5.3 On the Applicability of Bleichenbacher’s Attack

Recall that PLAID uses PKCS#1 v1.5 padding for RSA encryption. The ac-
companying protocol description [8] argues that there is no need to use OAEP
padding, because “PLAID doesn’t expose the modulus or any other RSA prim-
itive” and that “there is a significant performance advantage in using PKCS#1
v1.5 padding.” While we do not feel inclined to comment on the performance
related issue, the first part of the argument is debatable in light of the fact that
exposure of a card’s secrets does reveal the public keys. Further, our attacks in
the previous sections show that some information about the moduli is revealed,
and the exponent e may be fixed. We note that the comments section in the
previous ISO version of PLAID [13] also asks for investigations of the possibility
of mounting Bleichenbacher’s attack.

Once the RSA public key is known one can in principle mount Bleichen-
bacher’s attack [6] on PKCS# v1.5 padding. In this attack the adversary takes
a ciphertext c ∈ Z

∗
N of some unknown padded message m and “shifts” the

message by multiplying c with a random se mod N . With sufficiently high prob-
ability the derived “message” sm mod N is PKCS#1 v1.5 padding compliant.

20 J.P. Degabriele et al.

The adversary could thus potentially deduce information about m in case of an
error message11 indicating correct or incorrect padding, and given sufficiently
many error messages, recover m. The attack has been significantly improved in
a series of papers, e.g., [16,21].

For PLAID, the message format carries some redundancy in terms of repeating
RND1. Hence, most likely the shifted message sm mod N will not be accepted
by the terminal in any case, independently of the padding. However, the detailed
behaviour is implementation-specific. For example, the current implementation
is based on the JavaCard framework and the decryption procedure of PKCS#1
v1.5 merely throws an exception in case of incorrect padding and leaves it up to
the higher level program to treat this exception.

5.4 CBC-Mode Encryption

PLAID proposes to use CBC-mode encryption based on AES. The standard
explicitly demands that the initialization vector IV is set to the all-zero string
for both eSTR2 (from the terminal to the card) and eSTR3 (from the card to the
terminal). This usage does not conform with standard practice, which demands
the use of random IVs to achieve security against chosen plaintext attacks. As
remarked before, the PLAID specification states that padding is only applied “if
necessary” and is thus not compliant with ISO/IEC 9797-1 padding method 2,
where padding is always applied. Indeed, this imprecision makes the standard
unimplementable as currently specified, since there will be cases arising during
decryption where it is not possible to discern whether padding should be removed
or not. It is well-known that CBC-mode encryption is especially vulnerable to
padding oracle attacks [27], and that careful implementation is needed to avoid
them. The lack of precision in this aspect of the PLAID specification does not
bode well.

It is also now well-understood in the cryptographic community that CBC-
mode encryption does not offer sufficient integrity guarantees on its own to
provide adequate security against active attacks. The usual solution is to add
explicit integrity protection through the application of a MAC algorithm to the
CBC-mode ciphertext. PLAID does not do so, and a justification for why this
lack of integrity does not endanger security was requested in the comments of
the previous ISO standard draft [13], but was not addressed in the latest version
[14].

PLAID does offer mild forms of plaintext integrity. For example, STR2 con-
tains the session key KeysHash computed as the hash of RND1 ‖ RND2 while
STR3 contains DivData. These elements can be checked for after decryption by
the relevant party, and this would detect some forms of adversarial plaintext ma-
nipulation through simple bit-flipping in the corresponding ciphertexts eSTR2
and eSTR3. However, it is easy to see that an attacker can still manipulate other
fields in STR2 and STR3 by bit-flipping in ciphertexts (even with a fixed IV).
11 The protocol explicitly notes that no error messages should be issued, but wrong

implementations or side-channel attacks may reveal such information.

Unpicking PLAID 21

While this lack of integrity has not led us to the discovery of specific attacks
on PLAID, it is a worrying feature that could be easily avoided through the
application of mainstream cryptographic design principles.

5.5 Entity Authentication

Note that both parties, IFD (reader) and ICC (card), basically authenticate one
another by proving knowledge of a secret key. For the terminal this is done via
the secret RSA key, whereas the card uses its unique DivData and therefore
unique key FAKey(Div) = AESFAKey

Encrypt(DivData). The standard mechanism to do
so would be either to compute a signature or a message authentication code for
a random challenge, or to return, in clear, a nonce encrypted under the party’s
key.

PLAID follows the encryption-based approach. Yet the usual security ar-
gument for this type of authentication requires chosen-ciphertext security for
the deployed encryption scheme. PLAID, on the other hand, uses two encryp-
tion schemes which are known not to provide this level of security, i.e., RSA-
PKCS#1 v1.5 and plain AES-CBC-encryption. This does not mean that the
protocol is insecure and does not provide any form of entity authentication.
However one cannot infer security from known results but would instead need
carefully constructed de novo arguments.

5.6 Payload Insecurity

During the ISO standardization process the PLAID protocol was changed to
introduce an optional payload field in the third protocol message, the second
message from the IFD to the card (see Step 5 in Figure 1) [13]. The standard
motivates the purpose of this payload field—this field should not be confused
with the payload field in the last message by the card in Step 7 (Figure 1)—for
scenarios where, for example, a user enters a PIN and the verification should be
done on the card. In this case, the PIN is to be sent to the card within the payload
field [14, Annex G]. The problem is that sensitive information send by the IFD
can always be intercepted via a simple man-in-the-middle attack, assuming an
adversary has corrupted any card. Breaking a card allows the attacker to learn
the diversified FAKey(Div) of the card, the card’s DivData field as well as the
public part of one (or more) IAKeys. Thus, an adversary can simply replace
the second message during an honest execution with one corresponding to the
broken card. This will lead to the IFD encrypting the third message under the
FAKey(Div) of the broken card and hence, if a PIN (or any other payload) is
included, the adversary can trivially learn it by a simple decryption operation.
Note that this problem is not due to the payload being sent in the third message,
but that a user, when entering a PIN, cannot tell whether or not the terminal
is actually communicating with his/her card. Therefore, PIN comparison on the
card as proposed [14, Annex G] is generically insecure due to the given attack
scenario.

22 J.P. Degabriele et al.

5.7 On the Impossibility of Key Revocation

Although PLAID uses a public-key encryption system (i.e. RSA) during the
initial authentication phase, the overall setup resembles more a symmetric set-
ting where all static keys used by parties are exchanged during system setup
(abstracting away the diversification procedure of PLAID). As a consequence,
it is not possible to revoke any compromised keys within PLAID. In order to
exemplify the resulting consequences, assume that an attacker is able to break
into an IFD (terminal). The IFD contains a list of IAKeys and a list of FAKeys
which thereby are revealed to the attacker. With this information, the attacker
can generate arbitrary new cards with the capabilities of any of the KeySetIDs
known by the broken IFD. Furthermore, there is no way to revoke the compro-
mised keys in the system without issuing new cards, as the keys known by IFDs
are hardcoded into the cards. Thus, even the break of a single IFD can lead to
an entire PLAID setup becoming insecure.

5.8 Key Legacy Attack

A key legacy attack is related to the same issues allowing for the KeySet finger-
printing attack, namely, the lack of authentication in the list of keys used by a
card and a terminal to establish a connection. Recall that the protocol specifies
that the first commonly shared key in the list has to be used, even if there are
other shared keys. This means that an adversary could force the card to use one
particular key (among those supported by both card and terminal) by reordering
the list of keys sent by the terminal in a man-in-the-middle fashion. This could
be dangerous in case one or more of the keys in the system are compromised,
or turn out to provide inferior security for any reason, even if the use of these
keys is de-prioritized (e.g., by having the terminals set them always last in order
of preference). We note that this type of attack was already mentioned in the
national body comments to the first ISO draft [13], but remained unconsidered
in the current version [14].

6 Conclusion

Our results show that PLAID has significant privacy weaknesses. The shill key
attack and the keyset fingerprinting attack reveal card identifying information
and, via access authorizations, information about the card holder. As for entity
authentication and the secrecy of established keys for subsequent communica-
tion, in several places the design of PLAID follows some uncommon strategies
and reveals potential attack vectors, such as the lack of forward security. The case
of PLAID also shows that standards should specify details thoroughly, in order
to avoid vulnerable implementations. An example here is the ISO/IEC 9797-
1 non-compliant CBC padding in PLAID, which potentially enables padding
attacks (see our remark in Section 5).

Unpicking PLAID 23

We do not recommend the indiscriminate usage of PLAID in its current form,
especially not for privacy-critical scenarios. While our proposed countermea-
sures seem to thwart our attacks on privacy, a more comprehensive analysis of
the protocol in light of clearly stated security goals would be necessary. The
PLAID description promises that the protocol should be scrutinized by “the
most respected cryptographic organisations, as well as the broader cryptographic
community” [8]. Unfortunately, we are not aware of any available documents in
this regard. Indeed, standardization processes in general would benefit if sup-
porting material, arguing the security of a proposal, was available at the time of
evaluation.

Acknowledgments. We thank Pooya Farshim for his contributions during the
early stages of this paper and the anonymous reviewers for valuable comments.
Marc Fischlin is supported by the Heisenberg grants Fi 940/3-1 and Fi 940/3-2 of
the German Research Foundation (DFG). Tommaso Gagliardoni and Felix Gün-
ther are supported by the German Federal Ministry of Education and Research
(BMBF) within EC SPRIDE. Felix Günther and Giorgia Azzurra Marson are
supported by the DFG as part of the CRC 1119 CROSSING. Giorgia Azzurra
Marson and Arno Mittelbach are supported by the Hessian LOEWE excellence
initiative within CASED. Kenneth G. Paterson and Jean Paul Degabriele are
supported by EPSRC Leadership Fellowship EP/H005455/1.

References

1. Standards Australia: AS 5185-2010 Protocol for Lightweight Authentication of
IDentity (PLAID). Standards Australia (2010)

2. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

5. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Béguelin, S.: Proving the TLS Handshake Secure (as it is). In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 235–255. Springer,
Heidelberg (2014)

6. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

7. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less is more:
relaxed yet composable security notions for key exchange. Int. J. Inf. Sec. 12(4),
267–297 (2013)

24 J.P. Degabriele et al.

8. Centrelink: Protocol for Lightweight Authentication of Identity (PLAID) — Logical
Smartcard Implementation Specification PLAID Version 8.0 - Final (December
2009), http://www.humanservices.gov.au/corporate/publications-
and-resources/plaid/technical-specification

9. Dagdelen, Ö., Fischlin, M., Gagliardoni, T., Marson, G.A., Mittelbach, A., Onete,
C.: A cryptographic analysis of OPACITY (extended abstract). In: Crampton,
J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 345–362.
Springer, Heidelberg (2013)

10. Department of Human Services: Protocol for Lightweight Authentication of Iden-
tity, PLAID (2014), http://www.humanservices.gov.au/corporate/
publications-and-resources/plaid/

11. Freedman, G.: Personal communication by e-mail (July 2014)
12. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegotiation. In:

Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 387–398. ACM
Press (November 2013)

13. ISO: Draft International Standard ISO/IEC DIS 25185-1 Identification cards
— Integrated circuit card authentication protocols — Part 1: Protocol for
Lightweight Authentication of Identity. International Organization for Standard-
ization, Geneva, Switzerland (2013)

14. ISO: Draft International Standard ISO/IEC DIS 25185-1.2 Identification cards
— Integrated circuit card authentication protocols — Part 1: Protocol for
Lightweight Authentication of Identity. International Organization for Standard-
ization, Geneva, Switzerland (2014)

15. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012)

16. Jager, T., Schinzel, S., Somorovsky, J.: Bleichenbacher’s attack strikes again:
Breaking PKCS#1 v1.5 in XML encryption. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 752–769. Springer, Heidelberg (2012)

17. Johnson, R.: Estimating the size of a population. Teaching Statistics 16(2), 50–52
(1994), http://www.mcs.sdsmt.edu/rwjohnso/html/tank.pdf

18. Kiat, K.H., Run, L.Y.: An Analysis of OPACITY and PLAID Protocols for Con-
tactless Smart Cards. Master’s thesis, Naval Postgraduate School, Monterey, CA,
USA (September 2012)

19. Kline, R.: Improving contactless security is goal of emerging PLAID project, se-
cureIDNews (January 2010), http://secureidnews.com/news-item/
improving-contactless-security-is-goal-of-emerging-plaid-project/

20. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

21. Meyer, C., Somorovsky, J., Weiss, E., Schwenk, J.: Revisiting SSL/TLS Implemen-
tations: New Bleichenbacher Side Channels and Attacks. In: 23rd USENIX Secu-
rity Symposium (USENIX Security 2014). USENIX Association, San Diego (2014),
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/meyer

22. National Institute of Standards and Technology: Protocol for Lightweight Authen-
tication of Identity (PLAID) Workshop (July 2009), http://csrc.nist.
gov/news_events/plaid-workshop/

23. Rifà-Pous, H., Herrera-Joancomartí, J.: Computational and energy costs of cryp-
tographic algorithms on handheld devices. Future Internet 3(1), 31–48 (2011)

http://www.humanservices.gov.au/corporate/publications-and-resources/plaid/technical-specification
http://www.humanservices.gov.au/corporate/publications-and-resources/plaid/technical-specification
http://www.humanservices.gov.au/corporate/publications-and-resources/plaid/
http://www.humanservices.gov.au/corporate/publications-and-resources/plaid/
http://www.mcs.sdsmt.edu/rwjohnso/html/tank.pdf
http://secureidnews.com/news-item/improving-contactless-security-is-goal-of-emerging-plaid-project/
http://secureidnews.com/news-item/improving-contactless-security-is-goal-of-emerging-plaid-project/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
http://csrc.nist.gov/news_events/plaid-workshop/
http://csrc.nist.gov/news_events/plaid-workshop/

Unpicking PLAID 25

24. Risky.biz: Risky Business 106 — Centrelink’s new PLAID auth protocol (May
2009), http://risky.biz/netcasts/risky-business/risky-business-106-
centrelinks-new-plaid-auth-protocol

25. Sakurada, H.: Security evaluation of the PLAID protocol using the ProVerif tool
(September 2013), http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_
Protocols/25185-1/25185-1_ProVerif.pdf

26. Taylor, J.: Centrelink ID protocol still in trial phase, zDNet (May 2012), http://
www.zdnet.com/centrelink-id-protocol-still-in-trial-phase-1339336953/

27. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS ... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (2002)

28. Watanabe, D.: Security analysis of PLAID (September 2013),
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/
25185-1/25185-1_Scyther.pdf

http://risky.biz/netcasts/risky-business/risky-business-106-centrelinks-new-plaid-auth-protocol
http://risky.biz/netcasts/risky-business/risky-business-106-centrelinks-new-plaid-auth-protocol
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_ProVerif.pdf
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_ProVerif.pdf
http://www.zdnet.com/centrelink-id-protocol-still-in-trial-phase-1339336953/
http://www.zdnet.com/centrelink-id-protocol-still-in-trial-phase-1339336953/
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_Scyther.pdf
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_Scyther.pdf

The SPEKE Protocol Revisited

Feng Hao and Siamak F. Shahandashti

Newcastle University, UK
{feng.hao,siamak.shahandashti}@ncl.ac.uk

Abstract. The SPEKE protocol is commonly considered one of the clas-
sic Password Authenticated Key Exchange (PAKE) schemes. It has been
included in international standards (particularly, ISO/IEC 11770-4 and
IEEE 1363.2) and deployed in commercial products (e.g., Blackberry).
We observe that the original SPEKE specification is subtly different from
those defined in the ISO/IEC 11770-4 and IEEE 1363.2 standards. We
show that those differences have critical security implications by pre-
senting two new attacks on SPEKE: an impersonation attack and a key-
malleability attack. The first attack allows an attacker to impersonate a
user without knowing the password by engaging in two parallel sessions
with the victim. The second attack allows an attacker to manipulate the
session key established between two honest users without being detected.
Both attacks are applicable to the original SPEKE scheme, and are only
partially addressed in the ISO/IEC 11770-4 and IEEE 1363.2 standards.
We highlight deficiencies in both standards and suggest concrete changes.

1 Introduction

Password Authenticated Key Exchange (PAKE) is a protocol that aims to es-
tablish a secure communication channel between two remote parties based on
a shared low-entropy password without relying on any external trusted parties.
Since the seminal work by Belloven and Merrit in 1992 [2], many PAKE protocols
have been proposed, and some have been standardised [10, 11].

The Simple Password Exponential Key Exchange (SPEKE) protocol is one of
the most well-known PAKE solutions. It was originally designed by Jablon in
1996 [7]. Although some concerns have been raised [8, 9], no major flaws seems
to have been uncovered. Over the past decade, SPEKE has been included in the
IEEE P1362.2 [10] standard draft1 and ISO/IEC 11770-4 [11]. Furthermore,
SPEKE has been deployed in commercial applications – for example in Black-
Berry devices produced by Research in Motion [6] and in Entrust’s TruePass
end-to-end web products [5].

In this paper, we revisit the original SPEKE protocol and review its spec-
ifications in the two standardisation documents: IEEE P1363.2 and ISO/IEC
11770-4. We observe that the original protocol is subtly different from those

1 At the time of writing, the latest draft available on the IEEE P1363.2 website is
D26. See http://grouper.ieee.org/groups/1363/passwdPK/draft.html

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 26–38, 2014.
c© Springer International Publishing Switzerland 2014

http://grouper.ieee.org/groups/1363/passwdPK/draft.html

The SPEKE Protocol Revisited 27

defined in the standards. The reason for the difference, or deviation from the
original specification, is not justified clearly in the standards.

During this investigation, we have identified several issues with SPEKE that
have not been reported before. Our findings are summarised below:

1. We show that the original SPEKE protocol is subject to an impersonation
attack when the victim is engaged in two parallel sessions with an active at-
tacker. The attacker is able to achieve mutual authentication in both sessions
without knowing the password.

2. We show that the original SPEKE protocol is subject to a key-malleability
attack. The attacker, sitting in between two honest users, is able to manip-
ulate the session key without being detected.

3. While both attacks clearly succeed against the original SPEKE protocol, we
show they are partially addressed in IEEE P1363.2 and ISO/IEC 11770-4,
but not in any rigorous manner. We propose explicit and concrete changes
to both standards.

Details of our findings are explained in the following sections.

2 The Original SPEKE Scheme

First, we define the original SPEKE scheme based on Jablon’s 1996 paper [7]. Let
p be a safe prime, p = 2q+1 where q is also a prime. Assume two remote parties,
Alice and Bob, share a common password s. SPEKE defines a function f(·) to
map a password s to a group element: f(s) = s2 mod p. We use g to denote the
result returned from f(s), i.e., g = f(s). The SPEKE protocol provides implicit
authentication in one round, which is defined below. (Unless stated otherwise, all
modular operations are performed modulo p, hence the explicit mod p is omitted
for simplicity.)

SPEKE (one round). Alice selects x ∈R [1, q − 1] and sends gx to Bob.
Similarly, Bob selects y ∈R [1, q − 1] and sends gy to Alice.

Upon receiving the sent data, Alice verifies that gy is within [2, p− 2]. This is
to ensure the received element does not fall into the small subgroup of order two,
which contains {1, p − 1}. Alice then computes a session key κ = H((gy)x) =
H(gxy), where H is a secure one-way hash function. Similarly, Bob verifies that
gx is within [2, p− 2]. He then computes the same session key κ = H((gx)y) =
H(gxy).

To provide explicit key confirmation, the SPEKE paper defines the following
procedure. One party sends H(H(κ)) and the other party replies with H(κ).
The paper does not specify who must initiate the key confirmation and hence
leaves it as a free choice for specific applications to decide.

28 F. Hao and S.F. Shahandashti

3 Previously Reported Attacks

In 2004, eight years after SPEKE was initially designed, Zhang presented an
exponential-equivalence attack [8]. The attack is based on the observation that
some passwords are exponentially equivalent. Hence, an active attacker can ex-
ploit that equivalence to test multiple passwords in one protocol execution. This
is especially problematic when the password is digits-only, e.g., a Personal Iden-
tification Numbers (PIN). As a countermeasure, Zhang proposed to hash the
password before taking the square operation. In other words, he redefined the
password mapping function as: f(s) = (H(s))2 mod p. The hashing of passwords
makes it much harder for the attacker to find exponential equivalence among the
hashed outputs. Zhang’s attack is acknowledged in IEEE P1363.2 [10], which
adds a hash function in SPEKE when deriving the base generator from the
password.

In 2005, Tang and Mitchell presented three attacks on SPEKE [9]. The first
attack is similar to Zhang’s [8] – an on-line attacker tests multiple passwords
in one execution of the protocol by exploiting the exponential equivalence of
some passwords. The second attack assumes that the user shares the same pass-
word with two servers, say S1 and S2. By relaying the messages between the
client and S2, the attacker may trick the client into believing that she shares a
key with S1, but actually the key is shared with S2. The authors call this an
“unknown key-share” attack. They suggest to address this attack by including
the server’s identifier into the computation of g. (However, we note that this
suggested countermeasure has the side-effect of breaking the symmetry of the
original protocol.) The third attack indicates a generic vulnerability. In this sce-
nario, two honest parties launch two concurrent sessions. The attacker can swap
the messages between the two sessions to exchange the two session keys. The
two communicating parties will be able to decrypt messages successfully but
they may get confused about which message belongs to which session.

4 New Attacks

In this section, we describe two new attacks: an impersonation attack and a key-
malleability attack. The first attack indicates a practical weakness in the original
design of SPEKE, while the second attack has an unfavourable implication on
the theoretical analysis of the protocol.

4.1 Impersonation Attack

The impersonation attack works when the user is engaged in several sessions in
parallel with another user. This is a realistic scenario in practice as two users may
want to run several concurrent SPEKE key exchange sessions and use each estab-
lished channel for a specific application, as explained by Tang and Mitchell [9].

We assume Alice and Bob share a common password. Their respective iden-
tities are denoted by Â and B̂. Without loss of generality, we assume Alice

The SPEKE Protocol Revisited 29

Alice Mallory (impersonating Bob)

Select x ∈R [1,q-1] 1. gx, Â−−−−−−−→
Choose arbitrary z (Session 1)Compute κ = H(gxyz) 4. gy·z, B̂←−−−−−−−−−

Start key confirmation 5. H(H(κ)), Â−−−−−−−−−−→
Verify key confirmation 8.H(κ), B̂←−−−−−−−−−

{gxz,H(H(κ))} ↓↑ {gy, H(κ)}
Select y ∈R [1,q-1] 2. gx·z, B̂←−−−−−−−−−

(Session 2)Compute κ = H(gxyz) 3. gy, Â−−−−−−−→
Verify key confirmation 6. H(H(κ)), B̂←−−−−−−−−−−
Reply key confirmation 7.H(κ), Â−−−−−−−−→

Fig. 1. Impersonation attack on SPEKE

initiates a SPEKE session – which we call Session 1 – with Bob by sending gx

(see Figure 1; we append the sender’s purposed identity in the key exchange flow
to make the illustration of the attack clearer). But the message is intercepted by
Mallory. Mallory chooses an arbitrary z from [2, p−2] and raises the intercepted
gx by the power of z to obtain gxz. Pretending to be “Bob”, Mallory initiates
another SPEKE session – which we call Session 2 – with Alice by sending gxz.
The use of z serves to make the messages different between the two sessions. In
the second session, Alice replies with gy. Mallory raises this item to the power of
z to obtain gyz, and sends the result to Alice as the reply in Session 1. Following
the key confirmation procedure as in the original SPEKE paper, Alice provides
the first key confirmation challenge in Session 1 H(H(κ)), which is subsequently
relayed to Session 2 as Bob’s key confirmation challenge. In Session 2, Alice
answers the key confirmation challenge by replying with H(κ), which is then re-
layed in Session 1 to complete the mutual authentication in both sessions. Recall
that in a Password Authenticated Key Exchange protocol, the notion of “au-
thentication” is defined based on the knowledge of a secret password. However,
without knowing the password, Mallory has been successfully authenticated by
Alice as “Bob”, someone who supposedly shares the exclusive knowledge with
Alice about a secret password.

In essence, this impersonation attack follows the “wormhole attack” [3], in
which the attacker relays the sender’s message back to the sender in order to
pass authentication. However, the “wormhole attack” presented in [3] works
in a PKI-based key exchange setting while the attack reported here occurs in a
password-based key exchange setting. The two settings are distinct. Nonetheless,
both attacks highlight the importance of including explicit user identities in the
authenticated key exchange process.

To some extent, this impersonation attack is similar to the “unknown key-
share” attack described in Tang-Mitchell’s paper [9]. However, our attack seems
to be more feasible and more harmful than theirs. The main difference is that

30 F. Hao and S.F. Shahandashti

in our attack, the attacker changes the user’s message and sends the modified
message back to the user herself (instead of to a third party as in [9]). At the
end of the key establishment process, Alice thinks she is sharing a session key
with the real “Bob”, but she is actually sharing the key with another instance of
herself. This confusion of identity in the key establishment can cause problems in
some scenarios. For example, using the derived session key κ in an authenticated
mode (e.g., AES-GCM), Alice may send an encrypted message to “Bob”: “Please
pay Charlie 5 bitcoins”. But Mallory can relay the message back to Alice in the
second session. Since the message is verified to be authentic from “Bob”, Alice
may follow the instruction and pay Charlie instead (in a practical application,
Alice is likely an automated program that follows the protocol). Thus, although
Alice’s initial intention is to make “Bob” pay Charlie 5 bitcoins, she ends up
paying Charlie instead. In this attack, the supposed “Bob” seems to be liable
but the real Bob is actually never involved.

4.2 Key-Malleability Attack

A second attack is called the key-malleability attack. In this attack, the attacker
sits in the middle between two honest users (see Figure 2). The attacker chooses
an arbitrary z within the range of [2, q − 1], raises the intercepted item to the
power of z and passes it on. The users at two ends are still able to derive the
same session key κ = H(gxyz), but without being aware that the messages have
been modified.

We do not claim there is a direct practical harm caused by this attack. How-
ever, the fact that an attacker is able to manipulate the session key without
being detected may have significant implications on the theoretical analysis of
the protocol. In the original SPEKE paper, the protocol comes with no secu-
rity proofs2. However, it is heuristically argued that the security of the session
key in SPEKE depends on either the Computational Diffie-Hellman assumption
(i.e., an attacker is unable to compute the session key) or the Decisional Diffie-
Hellman assumption (i.e., an attacker is unable to distinguish the session key
from random). The existence of such a key-malleability attack suggests that a
tight reduction to CDH or DDH is impossible. The attacker’s ability to inject
randomness into the session key without being noticed can significantly compli-
cate the theoretical analysis. As an example, let us assume the attacker chooses

2 In 2001, MacKenzie published a manuscript “On the Security of the SPEKE
Password-Authenticated Key Exchange Protocol” on IACR ePrint 2001/057. Al-
though an ePrint manuscript is usually not regarded as a formal peer-reviewed pub-
lication, it is cited in IEEE P1363.2 [10] to support the argument that the SPEKE
protocol has been formally proved to be secure based on some number theoretical
assumptions. We observe that the formally analysed SPEKE is substantially differ-
ent from the original SPEKE: e.g., 1) the derivation of the generator is different, and
as a result, the protocol is two-round instead of one-round as in the original SPEKE
paper or the standards; 2) the definition of the key confirmation function is different
from that in the original paper or standards; 3) it regards the key confirmation as
mandatory rather than optional.

The SPEKE Protocol Revisited 31

Alice (Â) MITM Bob (B̂)

Select x ∈R [1, q − 1] gx, Â−−−−→ gy, B̂←−−−−− Select y ∈R [1, q − 1]

Select z ∈ [2, q − 2]

Check (gy)z ∈ [2, p− 2] (gy)z, B̂←−−−−− Raise to power z (gx)z, Â−−−−−→ Check (gx)z ∈ [2, p− 2]

Compute κ = H(gxyz) Compute κ = H(gxyz)

Fig. 2. Key-malleability attack on SPEKE

z as a result of an arbitrary function with the incepted inputs, i.e., z = f(gx, gy).
Because of the correlation of items on the exponent, standard CDH and DDH
are no longer applicable here (recall that in the CDH/DDH assumption, the
secret values on the exponent are assumed to be independent).

5 Discussion

While the two attacks clearly work on the original SPEKE protocol [7], it may
be arguable whether they are applicable to the variants of SPEKE defined in
IEEE P1363.2 and ISO/IEC 11770-4. In this section, we explain the difference
between the original protocol and its variants in the standards in relation to the
two attacks.

5.1 Explicit Key Confirmation

First of all, we observe that the key confirmation procedure of SPEKE defined
in the standards is different from that in the original SPEKE paper [7]. For
example, in ISO/IEC 11770-4, the key confirmation works as follows [11] (the
procedure in IEEE P1363.2 [10] is basically the same).

Alice → Bob : H(“0x03”‖gx‖gy‖gxy‖g)
Bob → Alice : H(“0x04”‖gx‖gy‖gxy‖g)

As explicitly stated in the ISO/IEC 11770-4 standard, there is no order in the
above two steps3. Either party is free to send out the key confirmation message
without waiting for the other party.

Effect on impersonation attack We observe that the above key confirmation
procedure does not prevent the impersonation attack. The attacker is still able
to relay the key confirmation string in one session to another parallel session to
accomplish mutual authentication in both sessions without being detected. The
attack works largely because the session keys are identical in the two sessions.

3 In the same standard, it is also stated that there is no order during the SPEKE
exchange phase. We find the two statements contradictory: the fact that gx comes
before gy in the definition of key confirmation implies there is an order during the
key exchange phase.

32 F. Hao and S.F. Shahandashti

Effect on Key-malleability attack The key-malleability attack no longer works
with the key confirmation procedure defined in ISO/IEC 11770-4 (and IEEE
P1363.2). However, it is worth noting that the key confirmation procedures in
both standards are marked as “optional”. Hence, the key-malleability attack is
not completely addressed.

5.2 Definition of Password

In the original SPEKE paper, the mapping of a password s to a group ele-
ment over the prime field is simply achieved by f(s) = s2. To prevent Zhang’s
exponential-equivalence attack, it is necessary to add a hash function before
performing the squaring operation, i.e., f(s) = (H(s))2. This is essentially the
mapping function defined in ISO/IEC 11770-4 and IEEE P1363.2 (for the case
that p is a safe prime). However, the definition of the shared secret is subtly
changed in both standards. For example, in IEEE P1363.2 [10], the shared low-
entropy secret (denoted π in the standard document) is defined as follows:

“A password-based octet string, used for authentication. π is generally
derived from a password or a hashed password, and may incorporate a
salt value, identifiers for one or more parties, and/or other shared data.”

It is worth nothing that in the above definition, the incorporation of “a salt
value, identifiers for one or more parties, and/or other shared data” is not manda-
tory (as indicated by the use of the word “may”).

In ISO/IEC 11770-4 [11], the shared low-entropy secret is defined as follows
with an additional note:

“A password-based octet string which is generally derived from a password
or a hashed password, identifiers for one or more entities, an identifier
of a communication session if more than one session might execute con-
currently, and optionally includes a salt value and/or other data.

NOTE - it is required to include one or more the entity identifiers and a
unique session identifier into the value of π, in order to avoid that a key
establishment mechanism might be vulnerable to an unknown key share
attack addressed in [TC05].”

The above definition seems to include the “identifiers for one or more entities”
as part of the shared secret. However, the standard does not provide any formula.
It is not even clear if one or both entities’ identifiers should be included, and if
only one identifier needs to be included, which one and how. Furthermore, the
word “generally” weakens the rigour in the definition and makes it subject to
potentially different interpretations. The note below the definition states that:
the inclusion of the entity/session identifiers is required to address the UKS
attack in [TC05] [9]. However, the UKS attack reported in [9] works under the
assumption that the user shares the same password with two different servers. In
many applications, it is often considered reasonable to exclude that assumption

The SPEKE Protocol Revisited 33

from the threat model (otherwise, the solution may become overly complex).
In those cases, the justification becomes no longer valid. Therefore, on whether
the entity/session identifier “should”, “must” or “may” be included as part of
the shared secret, we find the current ISO/IEC 11770-4 standard not sufficiently
clear.

Effect on impersonation attack. Strictly speaking, if the entity identifiers (or the
session identifiers) are included in the definition of the shared secret, the imper-
sonation attack presented in Section 4 will not work. In the IEEE definition, the
inclusion of the entity identifiers is clearly not mandatory, hence the imperson-
ation attack should be applicable to the IEEE variant of SPEKE. On the other
hand, we cannot state the same for the ISO/IEC variant of SPEKE, because its
definition of the shared secret is not sufficiently clear. Neither standard provides
any clear formula about the definition of the shared secret. This is unsatisfactory,
especially because the detail here has critical security implications.

For a more concrete discussion, let us denote Alice’s identifier as Â, Bob’s iden-
tifier as B̂ and the session identifier as SID. One straightforward way to include
all these identifiers is: s = H(Password‖Â‖B̂‖SID). But this implies a preferred
order of the parties’ identifiers, which need to be agreed beforehand. A slightly
better definition is as follow: s = H(Password‖min(Â, B̂)‖max(Â, B̂)‖SID). Yet
it remains questionable how the SID should be defined and by whom. In the
general case, the unique session ID is decided by both parties as part of the key
exchange process, but this usually requires extra rounds of communication. The
requirement for extra rounds is undesirable as it would remove the most notable
advantage of SPEKE in terms of its optimal one-round efficiency. The way that
the two standards address this extra-round issue is by defining the session ID
(together with the entity identifiers) as part of the “prior shared parameters”
before the key exchange. Hence, the SPEKE protocol remains one-round.

However, we believe the above solution in the standards is inappropriate,
as it does not address the real problem. It is not a safe assumption that the
user must know the other party’s identifier or a session identifier before any
communication is started. It is often difficult enough for a user to remember
her own user name (identifier) and password; requiring the user to remember
the other entity’s (exact) identifier will only add to the burden on the user’s
memory and consequently make a PAKE protocol less useful. When the PAKE
session fails, it will be no longer clear if that is due to the mismatch of the
password, or simply because the user misremembered the identifiers. The user
identifiers, as well as the session ID, should be determined as part of the key
exchange process. In Section 5.3, we will present a solution that addresses the
identified attacks without requiring any extra memory burden, in the meanwhile
still keeping the SPEKE protocol one-round only.

Effect on Key-malleability attack. The inclusion of identifiers for one or more
entities and the specific session into the definition of the password-based string
has no effect in preventing the key-malleability attack.

34 F. Hao and S.F. Shahandashti

Alice (Â) Bob (B̂)

Select x ∈R [1, q − 1]. Compute M = gx Â,M = gx−−−−−−−−→ Check M ∈ [2, p− 2]

Check N ∈ [2, p− 2] B̂,N = gy←−−−−−−−− Select y ∈ [1, q − 1]. Compute N = gy

Alice Computes: κa = H
(
min(Â, B̂),max(Â, B̂),min(M,N),max(M,N), Nx

)

Bob Computes: κb = H
(
min(Â, B̂),max(Â, B̂),min(M,N),max(M,N),My

)

Fig. 3. Patched SPEKE

5.3 Countermeasures and Suggested Changes to Standards

There are several reasons to explain the cause of the two attacks. First, there is
no reliable method in SPEKE to prevent a sent message being relayed back to
the sender. Second, there is no mechanism in the protocol to verify the integrity
of the message, i.e., whether they have been altered during the transit. Third,
no user identifiers are included in the key exchange process. It may be argued
that all these issues can be addressed by using a Zero Knowledge Proof (ZKP)
(as done in [4]). However, in SPEKE, the generator is a secret, which makes
it incompatible with any existing ZKP construction. Since the use of ZKP is
impossible in SPEKE, we need to address the attacks in a different way.

Our proposed solution is to redefine the session key computation. Assume
Alice sends M = gx and Bob sends N = gy. The session key computation is
defined as follows:

κ = H
(
min(Â, B̂),max(Â, B̂),min(M,N),max(M,N), gxy

)
(1)

The patched SPEKE protocol is summarized in Fig. 3. When the two users
are engaged in multiple concurrent sessions, they need to ensure the identifiers
are unique between these sessions. As an example, assume Alice and Bob launch
several concurrent sessions. They may use “Alice” and “Bob” in the first session.
When launching a second concurrent session, they should add an extension to
make the identifier unique – for example, they may agree at the protocol level to
start the extension from “1” and increment by one if a new concurrent session is
created. Thus, the actual user identifiers become “Alice-1” and “Bob-1” in the
second session. In the third session, the user identifiers become “Alice-2” and
“Bob-2”, and so on. As long the user identifiers are unique between concurrent
sessions, the use of the extra session identifier does not seem needed.

The new definition of the session-key computation function in Eq. 1 should
address the impersonation and key-malleability attacks in Section 4 (and also
the “unknown-key share” attack and the generic attack reported by Tang and
Mitchell [9]). This is achieved without having to involve explicit key confirmation,
so the key confirmation can remain as “optional” as it is in the current standards.
Furthermore, this countermeasure preserves the optimal one-round efficiency of
the original SPEKE protocol.

The SPEKE Protocol Revisited 35

There is an alternative solution, which is to make the definition of a shared
low-entropy secret more explicit in the standards. One way is to define the shared
secret as below:

s = H
(
Password‖min(Â, B̂)‖max(Â, B̂)

)
(2)

In the above definition, the session identifier SID is not included, as the concept
seems to have been absorbed in the user identifiers as long as they are ensured
to be unique between concurrent sessions.

Comparing the two solutions, we recommend the first solution in Eq. 1 (also
see Fig. 3) for the following reasons.

– The first solution is more flexible to accommodate pre-computation of gx

and gy. In the second solution, the user must know the identifier of the other
party before the key exchange, which effectively prevents pre-computation.

– The first solution is more round-efficient. Alice and Bob do not have to know
the exact identifier of the other party before starting the key exchange. But
in the second solution, Alice and Bob may need an extra round before they
are able to compute the generator g.

– The first solution is computationally more efficient. Because the generator g
is unchanged for the same password, it only needs to be computed once. In
comparison, the generator needs to be re-computed with any change in the
user identifiers. (This may not make much difference in terms of computation
if a safe prime is used, but it can significantly decrease performance in some
other group settings.)

A further suggestion we would like to make for both standards is to reconsider
the definition of the key confirmation method. The existing method, as defined
in ISO/IEC 11770-4 and IEEE 1363.2, breaks the symmetry of the protocol (the
key confirmation cannot be completed within one round). The key confirmation
method in the original SPEKE paper [7] has the same limitation.

Our rationale for suggesting this change is not based on security consider-
ations, but on the grounds of round efficiency. The key confirmation method
defined in the original SPEKE paper [7] and the two standards [10, 11] cannot
be completed in one round. We use the method defined in [7] as an example.
If both parties attempt to initiate the explicit key confirmation at the same
time, i.e., Alice sends H(H(κ)) and without receiving Alice’s message, Bob also
sends H(H(κ)). In that case, they may enter a deadlock and may have to abort
the session and restart a new one. The chance of such an occurrence would be
non-negligible in a high-latency network.

The solution we propose is based on the key confirmation defined in NIST SP
800-56A Revision 1 [1]. It works as follows:

Alice → Bob : HMAC(κ, “KC 1 U”‖Â‖B̂‖gx‖gy)
Bob → Alice : HMAC(κ, “KC 1 U”, ‖B̂‖Â‖gy‖gx)

36 F. Hao and S.F. Shahandashti

Table 1. Summary of results

SPEKE protocol Round Impersonation Key-malleability
variants efficiency attack attack

Original SPEKE with KC 3 Yes Yes
Original SPEKE without KC 1 Yes Yes

SPEKE in IEEE P1363.2 with KC 3 Yes No
SPEKE in IEEE P1363.2 without KC 1 Yes Yes
SPEKE in ISO/IEC 11770-4 with KC ≥ 3 Maybe No

SPEKE in ISO/IEC 11770-4 without KC ≥ 1 Maybe Yes
SPEKE in IETF I-D with KC 3 Yes No

SPEKE in IETF I-D without KC 1 Yes Yes

Patched SPEKE with KC 2 No No
Patched SPEKE without KC 1 No No

In the above key confirmation method, HMAC is a hash-based MAC algorithm
and the string “KC 1 U” refers to unilateral key confirmation [1]. There is no
dependence between the two flows, so Alice and Bob can send messages in one
round.

5.4 Summary of Results

We summarize the applicability of the reported attacks on various variants of
SPEKE in Table 1. For the completeness of discussion, we also include the ver-
sion of the SPEKE protocol defined in the IETF Internet Draft4, authored by the
original SPEKE designer Davlid Jablon. In this Internet Draft, the entity iden-
tifiers are not included into the default definition of the shared secret. From the
Draft, “... in a peer-to-peer application using SPEKE, both parties may compute
<g> directly from the shared password.”. The key confirmation function defined
in this Internet Draft is basically the same as that in IEEE P1363.2.

With the exception of ISO/IEC 11770-4, all previous versions of SPEKE are
vulnerable to the impersonation attack regardless of whether the key confirma-
tion is in place. In ISO/IEC 11770-4 [11], we cannot determine the applicability
of the same attack because the wording in the standard is not sufficiently clear.
Hence, we mark “Maybe” instead of “Yes” in the table.

The key-malleability attack is applicable to the original SPEKE (patched
against the exponential-equivalence attack [8]) regardless of whether the key
confirmation is used. In both the IEEE and ISO/IEC standards (and also in the
submitted IETF Internet Draft), the key confirmation is modified to include the
key exchange messages. Hence, the key-malleability attack no longer works when
the modified key confirmation is used. But the key confirmation is marked as
“optional” in these standards. Therefore, the versions that do not use explicit
key confirmation are still vulnerable to the key-malleability attack.

In this paper, we propose two changes to the standardized SPEKE protocol:
one is to redefine the session key computation based on Equation 1 and the

4 The latest draft version is “02”, dated 22 October, 2003. See
http://www.ietf.org/archive/id/draft-jablon-speke-02.txt

http://www.ietf.org/archive/id/draft-jablon-speke-02.txt

The SPEKE Protocol Revisited 37

other one is to redefine the key confirmation function based on NIST SP 800-
56A Revision 1 [1]. The first change addresses both the impersonation and the
key-malleability attacks. The second change allows the key confirmation to be
completed in one round.

Our patched SPEKE preserves the overall round-efficiency in the optimal
manner. By comparison, in the original SPEKE paper, the IEEE 1363.2 standard
and the IEFT Internet Draft, the specified protocol is one-round without explicit
key confirmation, and is three-round with explicit key confirmation. In ISO/IEC
11770-4, it is not clear if the entity/session identifiers must be included into
the definition of the shared secret. If such an inclusion is mandatory, it would
generally need an extra round to send the entity/session identifiers before the
key exchange.

Finally, we examine how the SPEKE protocol is actually implemented in
practice, particularly with regard to whether or not the entity/session identi-
fiers are included. In practice, SPEKE has been used by Blackberry for secure
messaging. In this implementation, only the password (no entity/session identi-
ties) is used to derive the generator of the designated group. From the on-line
documentation about the derivation of the generator5: “The function applies the
ECREDP-1 primitive to the password to derive a generator point.” Hence, the
impersonation attack is in principle applicable to the protocol that underpins the
Blackberry application. This does not necessarily mean the Blackberry applica-
tion must be insecure, since it also depends on the context of an application and
other implementation details (e.g., if the application supports parallel sessions).
We leave this as a subject for further investigation.

6 Conclusion

In this paper, we present two new attacks on SPEKE, a protocol that has been
included in the IEEE P1363.2 and ISO/IEC 11770-4 standards, and deployed in
commercial products. The first attack indicates a practical flaw that needs to be
addressed, while the second attack has an unfavourable theoretical implication.
We explain the differences between the original SPEKE protocol and its variants
defined in both standards and show how these differences are critically relevant
to the presented attacks. We suggest concrete changes to both standards to
address the issues identified in this paper.

Acknowledgement. We thank the anonymous reviewers from SSR’14, Brian
Randell, Liqun Chen and Chris Mitchell for many useful comments. This work
is supported by the European Research Council (ERC) Starting Grant (No.
106591).

5 http://developer.blackberry.com/native/reference/core/

com.qnx.doc.crypto.lib ref/topic/hu ECSPEKEKeyGen.html

http://developer.blackberry.com/native/reference/core/com.qnx.doc.crypto.lib_ref/topic/hu_ECSPEKEKeyGen.html
http://developer.blackberry.com/native/reference/core/com.qnx.doc.crypto.lib_ref/topic/hu_ECSPEKEKeyGen.html

38 F. Hao and S.F. Shahandashti

References

1. Barker, E., Johnson, D., Smid, M.: Recommendation for pair-wise key establish-
ment schemes using discrete logarithm cryptography (revised), NIST Special Pub-
lication 800-56A (March 2007),
http://csrc.nist.gov/publications/nistpubs/800-56A/

SP800-56A Revision1 Mar08-2007.pdf

2. Bellovin, S., Merritt, M.: Encrypted Key Exchange: password-based protocols se-
cure against dictionary attacks. In: Proceedings of the IEEE Symposium on Re-
search in Security and Privacy (May 1992)

3. Hao, F.: On robust key agreement based on public key authentication. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 383–390. Springer, Heidelberg (2010)

4. Hao, F., Ryan, P.Y.A.: Password authenticated key exchange by juggling. In: Chris-
tianson, B., Malcolm, J.A., Matyas, V., Roe, M. (eds.) Security Protocols 2008.
LNCS, vol. 6615, pp. 159–171. Springer, Heidelberg (2011)

5. Entrust TruePass Product Portfolio: Strong Authentication, Digital Signatures and
end-to-end encryption for the Web Portal, Technical Overview, Entrust Inc. (July
2003), http://www.entrust.com/wp-content/uploads/2013/05/
entrust truepass tech overview.pdf

6. BlackBerry Bridge App and BlackBerry PlayBook Tablet, Security Technical
Overview - Version 2.0, Research in Motion Ltd. (February 2012), Available online
through Blackberry Knowledge Base at
http://btsc.webapps.blackberry.com/btsc/microsites/searchEntry.do

7. Jablon, D.: Strong password-only authenticated key exchange. ACM Computer
Communications Review 26(5), 5–26 (1996)

8. Zhang, M.: Analysis of the SPEKE password-authenticated key exchange protocol.
IEEE Communications Letters 8(1), 63–65 (2004)

9. Tang, Q., Mitchell, C.J.: On the security of some password-based key agreement
schemes. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-M., Yin, H., Jiao, L., Ma,
J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3802, pp. 149–154. Springer,
Heidelberg (2005)

10. IEEE P1363 Working Group, P1363.2: Standard Specifications for Password-Based
Public-Key Cryptographic Techniques. Draft available at
http://grouper.ieee.org/groups/1363/

11. International Standard on Information Technology, Security Techniques, Key Man-
agement, Part 4: “Mechanisms based on week secrets”, ISO/IEC 11770-4:2006

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://www.entrust.com/wp-content/uploads/2013/05/entrust_truepass_tech_overview.pdf
http://www.entrust.com/wp-content/uploads/2013/05/entrust_truepass_tech_overview.pdf
http://btsc.webapps.blackberry.com/btsc/microsites/searchEntry.do
http://grouper.ieee.org/groups/1363/

Analyzing Proposals for Improving

Authentication on the TLS/SSL-Protected Web

Christopher W. Brown1 and Michael Jenkins2

1 National Security Agency / U. S. Naval Academy, Annapolis, MD USA
wcbrown@usna.edu

2 National Security Agency, Maryland, USA
mjjenki@tycho.ncsc.mil

Abstract. “Secure” web browsing with HTTPS uses TLS/SSL and
X.509 certificates to provide authenticated, confidential communication
between web clients and webservers. The authentication component of
the system has a variety of weaknesses, which have led to a variety of pro-
posals for improving the current environment. In this paper we survey,
analyze, compare and contrast three prominent proposals. To do this,
we attempt to systematically capture the properties one might require
of such a system: authentication properties, forensics/privacy properties,
usability properties, and pragmatic properties. Enumerating these prop-
erties is an important part of understanding these proposals and the
nature of the authentication problem for the secure web. Finally, we of-
fer a few conclusions and suggestions pertaining to these proposals, and
possible future directions of research.

Keywords: web security, authentication, TLS, HTTPS, certificates.

1 Introduction

This article provides a summary and analysis of three proposals for improving the
authentication component of the current environment for the TLS/SSL protected
web (HTTPS) — specifically the client’s authentication of the server. As a part of
this analysis, we identify the properties the overall system would, ideally, satisfy,
and describe the various proposals in terms of the degree to which they do or do
not provide/have these properties. The paper’s real contributions, hopefully, are
a clearer picture of what the authentication problem for the TLS/SSL protected
web really is, and a framework for evaluating new proposals both individually,
and in combination with one another.

The current environment for secure web-browsing is based on TLS (see
RFC5246 [1]). TLS provides a mechanism by which a web client (browser) and
a webserver establishing a connection between one another make use of public
key cryptography to agree on a shared secret key, which is then used to encrypt
communication using symmetric encryption for the rest of that session. Typi-
cally the process begins with the client being furnished a domain name by the
user, which is then translated to an IP address via DNS name resolution, after

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 39–56, 2014.
c© Springer International Publishing Switzerland 2014

40 C.W. Brown and M. Jenkins

which the client sends the ClientHello TLS message to the server presumed to
be listening on port 443 at that IP Address. The client then receives messages
from the server, one of which contains a public key. The client chooses a secret
key (more accurately, a value that determines the secret key), encrypts it with
the public key the client received, and sends the resulting ciphertext back to
the server. At this point, both parties have the same secret key, and encrypted
communication can commence.

This process guarantees that the client and the owner of the public key —
i.e. the entity in control of the associated private key — are the only ones who
know the secret key, assuming that the private key is kept private. It does not,
however, guarantee anything about the identity of the owner of the private key.
There is no assurance that the party the user of the client wanted to contact is
the one with whom the client now has a secure connection. Routing to the IP
address could have gone wrong. DNS resolution could have produced the wrong
IP address. The domain name itself might be wrong — e.g., amazen.com instead
of amazon.com. Thus, there is a critical authentication problem to be dealt with!

The current environment for secure web-browsing generally handles this au-
thentication problem in the following (highly simplified!) way: 1) It is the user’s
responsibility to ensure that the domain name provided to the browser is in
fact the correct domain name for the entity they are trying to contact. 2) The
webserver sends its public key to the client in an X.509 certificate (see RFC5280
[2]) as part of a certificate chain in the TLS Server Certificate message, and it
is the browser’s responsibility to validate the certificate chain, and verify that it
chains to one the certificates in the browser’s list of trust anchors. 3) It is the
responsibility of the CA that issued the trust anchor at the end of the certificate
chain to ensure that the public key in the certificate really belongs to the entity
that owns the given domain name.1

It is assumed that the reader of this paper is familiar with this process, in-
cluding details like certificate revocation lists, self-signed certificates, X.509 val-
idation, etc. not covered in the very brief description above. It is also assumed
that the reader is familiar with the manifold problems inherent in this system —
for instance, that every CA trusted by the browser represents a single point of
failure for the whole system, or realities of how users usually bypass the whole
system [3,4]. The key point is that the authentication component of the current
secure web-browsing environment has problems both in principle and in practice.

The many problems that exist in the current environment have prompted a
wide variety of proposals for improvements. The proposals considered in this pa-
per are limited to ones with a reasonable level of pragmatism (full scale replace-
ment of the current environment with something new is extremely unlikely!),
and a reasonable degree of visibility or momentum behind them. User interface
improvements, while important, are also outside of the scope of this analysis.
The proposals examined here are: DANE, Certificate Transparency and HTTP
Pinning. We looked at the Sovereign Keys proposal closely, but it is not yet

1 The responsibility for managing trust anchors falls to some combination of browser
vendors, OS vendors, users and, perhaps, IT support departments.

Analyzing Proposals for Improving Authentication 41

mature enough to really analyze to the same extent as the above. Space restric-
tions forced us to remove our coverage of TACK [5], which is, however, similar in
many respects to HTTP Pinning. Perspectives [6] and similar projects like Con-
vergence, Google’s now defunct Certificate Catalog project, and the Berkeley
ICSI project, are interesting as well, but space precludes covering them here.

This paper consists of three parts. The first describes the set of properties
that might be desirable for the authentication component of the “secure web”.
The second provides summaries of three proposals, along with some commentary
and analysis — all of which is done in terms of the properties from the previous
section. The last focuses on comparisons of different proposals and their potential
to work in combination with one another.

2 Desirable Properties for the Authentication
Component of the “Secure Web”

It is easier to understand and compare these various proposals if we first describe
what it is we really want. In other words, What properties do we really desire of
the authentication component of the “secure web”? What follows is a list of such
properties, grouped into four categories. The fourth category is more accurately
described as a list of properties we’d like to see in a proposal for improving
on the current state of affairs, for example that the proposal is realistic. These
properties were in large part deduced from reading a number of proposals and
commentary on those proposals.

Authentication Properties2

continuity: that when a client connects to a host with name X, one can be sure
that, in some meaningful sense, it is communicating with the same entity
as it was communicating with the last time it connected to a host with
name X. Note: it could make sense to think of continuity on two levels, the
individual client level and the community level. Pinning proposals are about
individual clients observing continuity. Notary proposals like Perspectives or
the Berkeley ICSI, and gossiping proposals are about a community of clients
observing continuity.

domain-name authentication: that the client is connected to the server au-
thorized, intended or allowed to run under that name-and-port by the legit-
imate owner of that domain name.

higher-level authentication: that the client is connected to the server au-
thorized, intended or allowed to run under that name-and-port by an entity
described by some notion of identity beyond merely ownership of a given
domain name. (e.g., Southwest Airlines, the U. S. Postal Service) There are
actually different classes of certificates — EV (extended validation) [7], OV
(Organization Validation), DV (Domain Validation) — that seek to provide
some higher-level authentication. NOTE: Many companies have made their

2 This article is only concerned with server authentication, so client-authentication
properties are not addressed.

42 C.W. Brown and M. Jenkins

domain name their identity, e.g., amazon.com, so that domain-name identity
and higher-level identity are one and the same.

attribute authentication: that the client is connected to the server autho-
rized, intended or allowed to run under that name-and-port by an entity
with certain attributes (e.g., FDIC insured bank, NASDAQ listed company).

Forensics and Privacy Properties
client privacy: that third parties cannot, without the willing participation

of the client or the server, deduce what websites a given client has been
connecting to (without special access to the client machine).

impostor discoverability: that the legitimate owner of a given domain name
should be able to discover what servers are presenting themselves as belonging
to that name.

server privacy: that third parties cannot, without the willing participation
of the client or the server, deduce the existence of a given server without
actually attempting a connection themselves.

local privacy: that someone with access to the client machine after a website
has been visited cannot deduce facts about what sites have been visited by
the client. Of course, if a proposal includes client-side data, a user should
be able to “clear history” as they can with current mechanisms like cook-
ies. However, this presumably degrades the improvements to authentication.
So this property refers to privacy concerns assuming that this clearing of
authentication history hasn’t happened.

Usability Properties
minimal false positives: that the client seldom refuses a connection or presents

the user with an error message when the server it is connected to is indeed the
right one. Ideally the client never decides to disbelieve that the entity with
which it is communicating has the proper identity when, in fact, it does.
This is the ideal. In reality, we can only try to minimize the number of false
positives. As noted elsewhere, encountering many false positives conditions
users to simply override-and-accept. Conversely, users that err on the side of
caution are actually discouraged from connecting to legitimate servers. Note
that this is described as a “false positive” because of the analogy to medicine
— the test says there is a problem when, in fact, everything is OK.

maximal actionable information: that the client should have good, action-
able information to present to the user, information that allows for good
decisions. This includes information that allows for a reasonable plan of ac-
tion in case the user decides not to override-and-accept.

minimal user trust: that the trust users must place in other entities is min-
imized. Note: this is a complex issue, since it involves not only how many
entities need to be trusted, but also to what extent they are trusted, and
how bad things could be if some number of them colluded.

user control: that the user is allowed to override decisions, determine who or
what to trust, etc. This means the system must allow for it. Particular clients
might not.

Analyzing Proposals for Improving Authentication 43

minimal server trust: that the trust server operators must place in other
entities is minimized.

minimal server roadblocks: that setting up a TLS server is not overly burden-
some. Already, lots of people and organizations have difficulty doing it right.
Ideally improved authentication mechanisms shouldn’t set up too many bar-
riers, technical, logistical or financial, to organizations that want to set up
websites that use them.

Implementation/Infrastructure/Pragmatics Properties
incremental: that there are benefits (progress towards other properties) for

those that opt-in without requiring that everyone participates.
minimal-impact: that big changes to the internet architecture are not required.

Client-only solutions, for instance are very low impact, as are server-only.
When both have to change, when third-parties are involved, and so forth,
the impact grows.

no-break: that things that currently work relying on relatively common prac-
tices (e.g., local network TLS connections, changing domain ownership, web-
hosting services, user-level TLS servers on hosts, etc.) do not break under
the new proposal.

scalable/maintainable/robust: that the system works at internet scale, and
can function over a long period of time. For example, if keys are lost or no
longer secure: can they be changed? The system should function reasonably
in the face of outages and attacks.

resource-friendly: that adopting the proposal does not slow communication
too much, or require too much CPU time or memory. Resource-constrained
mobile devices must be able to participate.

realistic: that the proposal does not make unreasonable assumptions or de-
mands on individuals or society. For example, expecting organizations with
no suitable financial or other incentive to run big servers might not be real-
istic.

In each of the following three sections we briefly describe a well-known pro-
posal for improving authentication on the secure web, and analyze that proposal
in terms of the properties described above. Each property is listed, along with
commentary on the proposal in terms of that property. A small “gauge” icon ac-
companies each property to give a quick indication of whether the proposal pos-
itively or negatively affects a certain property, or has no substantial impact. For
the first three categories — Authentication, Forensics and Privacy, and Usability
— the gauge value is to be understood as relative to the current secure web en-
vironment. For the last category — Implementation/Infrastructure/Pragmatics
— gauge values are to be understood as relative to all the other proposals for
improvements. The gauge values are simply manifestations of qualitative judg-
ments, not true quantitative data. The hope is that when combined in tables
as in the following sections, they are a concise means to provide insight into
the strengths, weaknesses, and purpose of any given proposal. However, it is the
accompanying commentary that provides the actual analysis.

44 C.W. Brown and M. Jenkins

3 DNS-Based Authentication of Named Entities (DANE)

DNS-Based Authentication of Named Entities (DANE) uses DNSSEC to make
assertions that constrain valid certificate chains. These assertions can specify the
end entity certificate or public key, the trust anchor certificate or public key, or
an intermediate certificate or public key. By using DNSSEC to distribute these
assertions, clients can guarantee that the assertions really belong to the domain
name in question. Thus, DANE is a mechanism that provides very strong do-
main name authentication. DANE depends on DNSSEC, and DNSSEC adoption
seems to be proceeding very slowly. DANE (see RFC6698 [8]) adds a new record
type to DNS, the TLSA resource record, which allows the nameserver that is
authoritative for a given domain name to make assertions tied to a pairing of
the name with a port-and-protocol. These assertions are of the following form:

(usage, selector, matching type, certificate association data)

where usage ∈ {0, 1, 2, 3}, selector ∈ {0, 1}, matching type ∈ {0, 1}, and the
“certificate association data” can be a certificate, the Public KeyInfoField of a
certificate, or a hash value.

The semantics of DANE assertions are essentially this: The certificate chain
is constrained in usage 0 to contain a given certificate/public key, and in usage
1 to start with a given certificate/public key (which specifies the end-entity).
For both, the client is still required to validate the certificate chain up to a
client-trusted anchor. Usages 2 and 3 are similar, except that the client’s role in
determining trust is eliminated. The certificate chain is constrained in usage 2
to contain a given certificate/public key as trust anchor, and that trust anchor
must be trusted by the client for purposes of that validation, regardless of the
client’s current trust store. The certificate chain is constrained in usage 3 to have
a given end-entity certificate/public key, and if it does the client must accept
the connection without doing certification path validation of the chain.

Because it is tied to DNSSEC, DANE’s pragmatic outlook is tied to DNSSEC
adoption. It’s worth clarifying the sense in which DANE offers something more
than DNSSEC alone would offer. A client relying on DNSSEC to resolve a given
hostname to an IP address has a strong guarantee that the IP address it uses
for that domain name is correct. However, it has no guarantees that the entity
it connects to is a really a host properly associated with that IP address. After
all, the attacker could be corrupting routing rather than DNS. With DANE,
however, the client has stronger guarantees that the host it is connected to is
properly associated with the given domain name.

Usage 2 & 3 assertions are potentially problematic. With usage 3, certifica-
tion path validation does not occur, i.e. if the end-entity certificate presented
to the client matches the certificate in the DANE assertion the connection is
accepted. A usage 2 DANE response mandates a certain trust anchor for valida-
tion, and mandates that it be trusted — regardless of whether it is currently in
the client’s trust store. Both deny the user (or system administrator) the oppor-
tunity to make trust decisions. The security issue here is that without usages 2 &
3 both DNSSEC/DANE and the CA system have to be defeated in a successful

Analyzing Proposals for Improving Authentication 45

attack, while with them an attacker that can successfully subvert DNSSEC can
successfully pull off a man-in-the-middle attack. Defense in depth has been lost.

+continuity: —
+domain-name auth.: this is DANE’s strength.

+higher-level auth.: a usage 2&3 response bypasses certification path
validation, so information in certificates is less trustworthy than in the
current system.

+attribute auth.: —

+client privacy: generally, having to contact a third party server is a
client privacy concern. However, clients would almost always be con-
tacting a DNS server for name resolution anyway, so it’s not really a
concern here.

+impostor discoverability: —

+server privacy: normally a DNS server would store the IP address
associated with a given name, and nothing more. DANE records include
a port as well as IP, so the fact that a particular host is running a TLS
server at a particular port number is then known to the DNS server.

+local privacy: —
+minimal false positives: DANE provides mechanisms (usages 3 & 4)
by which a certificate that does not chain to a trust anchor would be
accepted without any error or warning, which reduces false positives ...
although it can also defeat authentication, as pointed out above.

+maximum actionable info: if a site uses DANE and the client issues
an error, the DANE assertion itself provides extra information about
what public key / certificate should have been expected.

+minimal user trust: the user doesn’t need to trust the CAs as much,
but they put more trust in DNS.

+user control: with usages 2 & 3, there are situations in which a con-
nection will be accepted regardless of the user’s trust anchor settings.

+minimal server trust: with DANE, the webserver operator puts even
more trust in the DNS, however CAs don’t need to be trusted as much.

+minimal server roadblocks: to use DANE the webserver operator
requires the cooperation of the DNS administrator. To also ensure that
clients that do not support DANE aren’t locked out, a certificate from
a CA would also be required.

+incremental: both web clients and sites (though not really webservers)
need to change for DANE to work, any pair that supports DANE gain
the security of the system, regardless of whether it’s adopted elsewhere.
However, it’s not enough for just one of the two parties to elect to
participate.

46 C.W. Brown and M. Jenkins

Fig. 1. Diagram illustrating CT. A full picture would show multiple logfile servers.

+minimal-impact: it’s not enough for client and server to change, the
infrastructure has to change if DNSSEC is not already available.

+no-break: —
+scal./maint./robust: —

+resource-friendly: DNSSEC has some overhead (see [9]) and more
signed info will be sent when DANE is used than would be sent using
DNSSEC solely for name resolution.

+realistic: given that DNSSEC is in use, DANE is quite realistic. The
question is whether it’s realistic to expect significant DNSSEC adoption
anytime soon.

4 Certificate Transparency

Certificate Transparency is described in RFC6962 [10]. Its primary purpose is
to provide “impostor discoverability”. The basic idea is this: If there was a
public logfile of all certificates issued, then domain name holders could view the
public logfile to root out bogus certificates for their domain names and, as the
proposal puts it, “invoke existing business mechanisms for dealing with misissued
certificates”. If TLS clients all agree to reject any certificate not recorded in the
public logfile, attackers would be forced to record their forged certificates in the
logfile where, hopefully, server/domain owners would observe the bogus certs and
do something about it. While this basic idea is straightforward, realizing it in
a secure way is non-trivial. The Certificate Transparency proposal is somewhat
complicated in terms of the number of entities involved: in addition to servers
and clients, there are logfile servers, trusted auditors, and logfile monitors (see
Figure 1). So the description that follows adds these various pieces in small steps.

Step 1: We first consider how clients determine whether a certificate record
is in the logfile. Of course the client could contact the logfile server and ask.

Analyzing Proposals for Improving Authentication 47

Even if that could be done in an utterly secure and authenticated manner, there
are still two issues: 1) contacting the third party has a performance and avail-
ability concern, and 2) letting the logfile server know every domain name you
want to contact has privacy concerns. Therefore, the proposal calls for a different
approach. Clients have preloaded/out-of-band-received public keys for the logfile
server. The TLS server is supposed to send a “Signed Certificate Timestamp”
(SCT) along with the certificate, which is essentially a hash of the certificate con-
catenated with a timestamp, signed by the logfile server. This gives the client
something that it can verify quickly, without any third-party communication, so
it addresses both concerns 1 and 2. IANA has issued a value for the TLS SCT
extension. For technical reasons beyond the scope of this overview, the SCT is
issued before the certificate is logged. However, the SCT contains an additional
field with a value called the Maximum Merge Delay (MMD). Implicit in the
SCT is a promise by the logfile server that the time between when the SCT was
issued and when it is logged will not exceed that MMD value.

Step 2: If the logfile is misbehaving, or if it has been compromised, or its
private key stolen or broken, clients could get forged SCTs. In other words, they
could be accepting certificates that weren’t actually logged. To address this, the
proposal calls for “trusted auditors” that clients are supposed to submit SCTs
to, in order to keep tabs on the logfile server and make sure it really is reporting
the submitted SCT as part of the log. The RFC mentions having the client do
this (asynchronously, so as not to take the performance hit), but 1) that has
all the same privacy concerns, and 2) the logfile server could systematically lie
to that one host. So it makes more sense to introduce trusted auditors into the
system. It’s unclear who or what auditors are notifying in case they detect a
misbehaving logfile server, nor is it clear what the plan would be were a logfile
server discovered to be misbehaving. Recovering from that situation could be
quite challenging.

Step 3: Another way that a logfile server could misbehave is by modifying past
entries in the log. For instance, maybe a bogus certificate gets a real SCT from
the logfile server and is in the logfile (so the auditor doesn’t see any trouble) but
then after the attack the logfile entry gets erased, and all this happens before the
domain name owner gets a chance to check for any new entries in the logfile for his
domain name. This would defeat the whole purpose of certificate transparency.
Therefore, the logfile is append-only — once an entry is there, it’s there forever.
This is done with Merkle trees, which provide a mechanism whereby anyone
observing the logfile server could detect modifications or erasures of past entries.
Of course, some entity has to bother to make these checks, so the proposal calls
for “logfile monitors”, which would periodically query the logfile server and and
check that it was really operating in append-only mode. These might do double
duty by also checking for new logfile entries for domains the host is interested
in.

Step 4: Finally, the proposal envisages not one, but multiple logfile servers.
To protect against Denial of Service attacks, in which the attacker floods a

48 C.W. Brown and M. Jenkins

logfile server with bogus certificates to be logged, the proposal suggests that
each logfile server would publish a list of root CAs, and it would only log entries
that validate via a chain up to one of the CAs in the list. The proposal also calls
for “gossiping” to root out misbehaving logfile servers. However, no details on
the gossiping protocol are given.

Certificate Transparency provides impostor discoverability. This is a benefit to
server/domain-name owners, but only secondarily a benefit to users. It provides
no benefit for the initial targets of attacks, but it does offer a potential benefit to
the larger user community, in as much as a vigilant server/domain-name owner
may notice the attacker and take steps to shut him down. The proposal takes
great pains to ensure that entities that care to do so can monitor the activities
of logfile servers in order to ensure that they are being honest, so that logfile
operators don’t need to be trusted. There are, however, some issues to consider.

The purpose of the logfile monitors is to ensure that the logfile servers behave
properly. However, once again, it is unclear how to deal with a logfile server
that has misbehaved. It could be blacklisted somehow, but it’s not clear what
to make of the SCTs it had previously issued. Webservers would be sending
them out, potentially unaware that it was no longer trusted. Perhaps a bigger
question is what to do with logfile servers that are not purposefully acting badly,
but fail to meet an obligation — for example a logfile server that does not not
get the SCT into the log within the window specified by the MMD because of
an attack, or a simple programming or administrative error. Simply blacklisting
such a server seems highly undesirable. An alternative would be to rollback the
log to the point of the error, but that’s a problem because all the legitimate
SCTs that had been issued in between issuing this SCT and noticing that the
merge deadline had been missed would then be invalidated. Some mechanism is
required to deal with this gracefully.

The proposal doesn’t address how logfile public keys are distributed and up-
dated. It seems that we end up in a similar situation as with CAs, namely that
some arbitrary list of trusted logfile servers is preloaded into the browser. There
is then the potential for even more certificate-related error messages, since a
client could receive a certificate that is actually OK, but receive an SCT along
with it that refers to a logfile server that is not trusted by the client (or for which
the public key stored in the client is too old or too new).

It is not clear why users/clients would opt to submit SCTs to auditors. Collec-
tively, there is the benefit that attackers could be discovered and eventually dealt
with. But for the individual user there is little short-term benefit, and there is
definitely a risk to privacy. If the intended model is that browser vendors would
run their own trusted auditors, the privacy issue is mitigated, since their users
are essentially trusting them completely anyway ... at least for Google, Microsoft
and Apple. Less so for open source projects like Firefox, where users may put
their faith in the “many eyes” that are supposedly on the source code. How a
“trusted auditor” run by the Mozilla foundation is set up would not be sub-
ject to all those eyes, making it easier for a single individual or small group to

Analyzing Proposals for Improving Authentication 49

misuse it than to introduce errors into the Firefox codebase. Below is a summary
analysis of CT.3

+continuity: no real first-order effect.

+domain-name authentication: no real first-order effect.

+higher-level authentication: —
+attribute authentication: —

+client privacy : the auditor sees every secure site the client connects
to.

+impostor discoverability : this is the whole point of CT!

+server privacy : a legitimate server has to announce its presence by
submitting to a logfile server.

+local privacy: no additional data is stored locally.

+minimal false positives : with CT users could be faced with errors
when valid certificates aren’t logged, or when SCTs are sent to clients
that don’t have that logfile server’s public key.

+maximal actionable information : when a cert’s trust anchor is un-
trusted by the client, but the cert is logged, the user at least knows that
the cert has been available for scrutiny and for how long. Otherwise,
the user will know that it is unlogged (which is more suspicious).

3 Draft revisions of the RFC address some of the issues raised here. This evaluation
notes server privacy as an issue — a legitimate server needs to announce its presence
by submitting its certificate to a public logfile server. To address this, draft revision
3 of the RFC includes a mechanism for redacting portions of the domain name in
the certificate information submitted to a logfile server. For example, if the domain
name in the certificate was super.secret.example.com, the information submitted
to the logfile server might be (PRIVATE).example.com. Another mechanism added
in the draft that addresses this problem is logging a name-constrained intermediate
authority, along with a field that explicitly allows the SCT for the intermediate
authority to stand in lieu of an SCT for the end-entity certificate. Thus, the situation
above might be handled be having super.secret.example.com send an SCT for an
intermediate CA constrained to .example.com. Concerns raised here regarding the
Minimal Impact and Minimal Server Roadblocks Properties are addressed in draft
revision 3 by providing a mechanism for including a server’s SCT in its certificate.
This way, the server/server owner does not necessarily need to change or do anything
different in order for CT to be used. Instead, CA’s could make sure SCTs are bundled
in the certificates they issue, and servers simply send those certificates as they always
do. Of course, this creates a chicken-and-egg problem: the CA needs the SCT to
create the certificate, but the logfile server needs the certificate to create the SCT.
To deal with this, draft revision 3 allows CA’s to submit “pre-certificates” to the
logfile server, which contain enough information for the logfile server to create an
SCT. The SCT gets sent back to the CA, which then can complete the certificate.
Because these mechanisms are only described in draft revisions under very active
development, we are not including them in our analysis.

50 C.W. Brown and M. Jenkins

+minimal user trust : on one hand, CT means users don’t need to
place so much trust in CAs (that’s the “transparency”), but since a
logfile server could essentially blackball a site by refusing to issue a
SCT for it, users have to trust them to behave honorably. If there is
one (or few) logfile servers for your client, that could become a problem.

+user control: —

+minimal server trust : server/domain owners don’t need to place as
much trust in CAs.

+minimal server roadblocks : server/domain owners have to submit
their certs to a logfile server, and have to find one that supports their
trust anchor.

+incremental : adoption is a major issue. If clients do participate, all
sorts of legitimate sites will suddenly stop working, and users will get
swamped in false positives.

+minimal-impact : both clients and webservers need to change in order
for CT to work, and a lot of additional infrastructure and new kinds of
servers needs to be created.

+no-break : how will this work in local network only situations? Will
organizations be forced to run logfile servers inside their local networks?
How about enterprise trust anchors? None of the usual logfile servers
will support them, of course, so would such an enterprise need to run
its own logfile server?

+scal./maint./robust : lots of questions: what happens when logfiles
make errors or are found to be acting improperly? How can logfile server
keys change? How are logfile server keys distributed to clients? There
are some significant maintenance problems!

+resource-friendly: not a lot of extra burden on client or server; al-
though clients have to report to auditors, they do it asynchronously.

+realistic it is unclear what would motivate operators to stand up logfile
servers, monitors or auditors.

5 An HTTP Extension for Public Key Pinning (HPKP)

At its most basic, “pinning” just means hard-coding or caching cert/public key
(or the hash of the cert/public key) in a client, and requiring the cert/public key
received at connection time to match what is currently “pinned”. More flexibly,
the client might pin a set of certs/public keys, or pin the cert/public key of
an intermediate element of the certificate chain, both of which allow the end
entity cert/public key to change in a controlled manner. Essentially, pinning is
a commitment that the user won’t allow certs/public keys to change. What’s
interesting is looking at the question of who controls whether, when and what
pinning takes place. Pinning could be directed by 1) the user, 2) the client

Analyzing Proposals for Improving Authentication 51

(e.g., hard-coded pins, or pinning that would be updated by the client “calling
home” or calling an external service, or a policy of caching certs/public keys after
an initial unpinned connection), or 3) the server (directing pinning for itself or
for subdomains). An example of (1) is when a user preloads or chooses to accept
an ssh public key. An example of (2) is when applications (like Chrome) have
preloaded pins or call back home to get new pinning directives. If a website
were to send pinning directives to the client, that would be an example of (3).
Pinning, obviously, is a mechanism for providing authentication continuity.

The IETF draft document draft-ietf-websec-key-pinning (at the time of this
writing in revision 12) [11] proposes an HTTP extension (HPKP) that allows
the server to direct the pinning performed by the client — i.e. it is an exam-
ple of the category (3) type of pinning described above. In this proposal, the
server sends clients HTTP directives (the proposed extension) providing (hash-
algorithm,hash-of-public-key) pairs that are to be pinned. The client saves this
pin information indexed by the domain name it used in creating the connection.
On subsequent connections to the same name, the client then checks whether
any hash value in the set of pins is matched by a hash of any of the public keys
in the certifying chain. If so, the client continues as normal. If not, there is an
error. A hash-algorithm + hash-of-public-key pair must be accompanied by a
“max-age” value and may be accompanied by a “report-uri” value. The max-
age value instructs the client to keep the pin for a certain time. The report-uri
gives a URI that is to be used by clients to report pinning errors for that domain
name. An additional assertion may be sent that directs the client to apply the
pin not only to the server’s domain name, but to all of its subdomains as well.

The obvious benefit of HPKP is the continuity authentication it provides.
When a user connects to a server often enough (meaning that the time between
visits is less than the max age) with the same client, man-in-the-middle attacks
should be detected. Because the server directs the pinning, and because sets of
pins are allowed and intermediate public keys can be pinned, servers can pull
off planned transitions to new public keys gracefully. As will be described in
more detail below, the proposal is very good in terms of the Usability Proper-
ties. Among the Implementation/Infrastructure/Pragmatics properties, the only
real concern is the extra resources required by a participating client — namely
that a potentially large number of of pins will have to be stored, which could be
problematic for resource-constrained clients. There is an especial concern that a
malicious site could flood the pin store and use up all the available space. The
specification could perhaps be modified to bound the storage given a (non-top-
level) domain, or reclaim space from the non-top-level domain with the largest
storage footprint. Maintainability questions surrounding unplanned key transi-
tions are answered by requiring servers to pin a “backup key”, which is a key to
be used in case the current public key is compromised and needs to be revoked
and its use discontinued.

Next we consider Forensics & Privacy Properties. What should be another
obvious benefit of HPKP is impostor discoverability. This is, after all, the point
of the reporting mechanism provided by the report-uri directive. But to what

52 C.W. Brown and M. Jenkins

degree will HPKP really provide this property? In the case of a man-in-the-
middle attack (which is what an “impostor” really has to do), the client will be
provided with a domain name X, and the attacker will somehow arrange things so
that the client will think it is communicating with the host properly referred to by
that name when, in fact, it is communicating with some other host — for example
by disrupting routing. If the client receives a certificate chain and it doesn’t
match what is pinned for the name X, the client is supposed to send information
about the pinning error to the URI in the report-uri directive. However, it seems
quite likely that this message will never arrive at its destination given that the
attacker is already subverting network traffic to carry out the man-in-the-middle
attack. So the only case in which this would actually have its desired effect is
when the attacker was unwary enough to allow the reporting message through.
We note that this could be remedied by having clients send these reports at
exponentially decaying intervals — perhaps until a signed acknowledgment is
received. As long as the attack is not permanent, the report should eventually
get through. To avoid flooding-style attacks, a carefully analyzed approach that
looks at domain relationships and drops multiple error reports from the same
(non top level) parent domain should be investigated.

There are a variety of ways clients may end up with pins that don’t match the
public key presented by a legitimate server. A domain name may change hands
without the willing cooperation of the party losing the domain. Both primary
and backup keys could be lost. An attacker manages to pull off a successful man-
in-the-middle attack for a period of time on a site that doesn’t use pinning, and
puts a “poison pin” in the browser of all clients that connect during that time,
with a very big max-age. In all these cases, there’s actually a hole in the DNS
namespace — a domain name that, for a large number of clients, is unusable for
HTTPS connections. This is a potentially serious problem.

Finally, HPKP breaks with the general design principle of separating concerns,
and the specific cryptographic principle that different security properties should
be safeguarded by different keys (see, for example, Section 5.2 of [12]). TACK,
which space precludes us from covering here, is a similar proposal, but it uses
a separate key (the “Tack Signing Key”) to provide continuity authentication,
and the certificate chain keys provide (as they are supposed to) domain name
and higher-level authentication.

+continuity: this is the point of HPKP, although the fact that pins
expire limit this property.

+domain name auth: —

+higher-level auth: —
+attribute auth: —

+client privacy: attacks referenced above.

+impostor discoverability : the report-uri directive provides this but,
for reasons described above, it’s unclear how effectively.

+server privacy: —

Analyzing Proposals for Improving Authentication 53

+local privacy: there is forensics information in the pins themselves,
and simply clearing the pinstore as you would the browser’s cache is
not an attractive option because the user would lose security.

+minimal false positives: sites the user visits often shouldn’t generate
false positives, but those visited infrequently might; doesn’t address
first use.

+max actionable information: for some errors, pinned information
shows what public key user should expect to see, this can be actionable.

+minimal user trust: the user trusts server X’s pinning directives, but
these only pertain to server X itself, so that’s a pretty low level of trust.
Pinning reduces the trust that must be placed in CAs.

+user control: —

+minimal server trust: a server making use of HPKP needs very little
trust in CAs after a given client’s first connection.

+minimal server roadblocks: the server doesn’t need to rely on, or
coordinate with, outside entities to use HPKP in a limited way, but
using it flexibly so that new keys can be introduced in a reasonable
way may require getting a signing cert, which is a much bigger deal.

+incremental: with a conforming client, any participating site is more
secure (for the user), however, both client and server must participate.

+minimal-impact: clients and web-servers need small modifications.

+no-break: —
+scal./maint./robust: some small concern about how domain names
change hands.

+resource-friendly: all the pin information needs to be stored, which
could be problematic for memory-constrained clients. There are also
concerns about attacks on memory resources via HPKP.

+realistic: HPKP only requires buy-in from browser vendors to get
started. Given that this is a Google draft, that buy-in might be there.

6 Comparisons and Conclusions

We have surveyed three proposals for for improving the current condition of
authentication for the secure web, each of which are fairly well-known.

– DANE offers the prospect of providing strong guarantees of domain name
authentication. However, with “usage values” 2 and 3 it eliminates the de-
fense in depth that the system of certificate authorities was supposed to
bring. Moreover, DANE is built on top of DNSSEC, and DNSSEC adoption
has not progressed very quickly.

– Certificate Transparency offers a mechanism by which domain/server owners
can detect attackers that are impersonating their sites. However, it has a

54 C.W. Brown and M. Jenkins

number of pragmatic problems, as detailed above, and may increase the
number of “false positive” warnings experienced by users.

– The HTTP Extension for Server-directed Pinning (HPKP) is designed to
provide continuity authentication. HPKP suffer from the “poison pin” prob-
lem, namely that once the wrong pin gets in a client’s pin store, the client
will present the user with a “false positive” error message.

DANE (ignoring usage 2 and 3), Certificate Transparency and HPKP are
pretty much orthogonal to one another, meaning that they could be used in com-
bination without interfering with one another or overlapping in what they pro-
vide. In fact, used in conjunction we would have stronger domain name authen-
tication (from DANE), continuity authentication (from HPKP) and improved
impostor discoverability (from Certificate Transparency).

We finish up by looking beyond the proposals analyzed in this paper, and
asking whether the analysis suggests new ideas to investigate or has any other
interesting implications. The first thing we would like to point out is that in-
stead of viewing proposals like these as trying to “fix” authentication for the
TLS-protected web, we should evaluate a proposal by clearly understanding the
authentication or forensics property it is trying to provide, and analyzing the
extent to which it provides that property along with the positive and negative
impacts on the other properties that would result from adopting the proposal.

A second point is that once we stop looking for a single, monolithic, universal
fix to authentication for the TLS-protected web, the importance of “orthogonal-
ity” of proposals becomes quite clear, by which we mean that the adoption of
a proposal wouldn’t interfere with existing mechanisms or other proposed im-
provements. When proposals are orthogonal they can be composed, and that
strengthens authentication. DANE’s usages 2 and 3 are unfortunate precisely
because they ruin orthogonality. Without usage 2 or 3, DANE and the current
certificate infrastructure compose nicely.

A third point is that when we view these various mechanisms as providing
evidence for one or more of the four authentication properties, we see each con-
nection attempt as making a case for accepting the proposed identity of the
server on the other end. It might be reasonable to pin the “shape” of that ev-
idence — i.e. what kind of evidence was presented. So, for example, suppose a
user has been using client-directed pinning, and DANE (without usage 2 or 3) is
used in conjunction with the usual Certificate validation process. The user tries
to go to https://example.com and there is an error — the public key in the
Certificate presented by the server does not match what the browser has pinned
for the name example.com. However, the DANE record is validated, and the cer-
tificate chains to a trust anchor. The decision about whether to trust this server
despite the pin mismatch is unclear. Now suppose that on prior connections,
example.com had sent the client an EV certificate, and suppose the client had
pinned that fact. It would not be at all unreasonable to base the trust decision
on whether or not the certificate presented by the server is an EV certificate.
Note that pinning the “shape” of the authentication evidence provided by a site
has the really nice property that it actually provides increased security to sites

Analyzing Proposals for Improving Authentication 55

that choose to employ stronger authentication evidence. In the example above,
the client would have “pinned” the facts that example.com employs DANE and
uses an EV certificate. Thus, an attack will generate a warning to the user un-
less the attacker both subverts DNSSEC and gets a fraudulent EV certificate
for example.com. Taking control of DNS records might be enough to get an
ordinary certificate for example.com, but it shouldn’t be enough to get an EV
certificate. This kind of pinning could also make gradual adoption of some of
these proposals easier. For example, if the client pinned the fact that a given site
used Certificate Transparency (i.e. sent an SCT) in prior connections, then the
client could be configured to require CT for that site from that point on, but
not for other sites. This would eliminate the problem of clients being flooded
with false positives. One of the interesting things about Perspectives [6] is that
it explicitly presents itself as a mechanism for providing evidence about identity,
not as a procedure that proscribes trust decisions. That’s a powerful and flexible
idea.

The fourth and final point is a suggestion that we feel falls out of this analysis.
We start with the observation that if clients were to do client-directed pinning
of end-entity certificates and servers would do OCSP stapling, then most of the
time there would be strong authentication of the server on the basis of those two
pieces of evidence alone, and and the connection could proceed4. The process
would be quick and involve very little overhead provided that the certificates
match, and the point is that they usually would. So the question really is how
to deal with the infrequent situation in which the above is unable to confirm
authentication. This can happen when a client connects with a given name for
the first time, when a different end entity certificate is sent by the server, or
when an end-entity certificate is revoked. Making the right decision in these
cases, and doing it to the greatest extent possible without user intervention, is
crucial. However, since these situations are infrequent (as well as important),
when they do arise it would be acceptable to have the client take substantially
longer to make a decision, or to gather information to present to the user in
case it is necessary. We suggest research into mechanisms or the development of
standards that allow the client to collect a lot of relevant data in order to make a
strong case for or against trusting the server. As a very simple example, suppose
there was a standard way for a client that was not able to authenticate the server
using the pinning & stapling mechanism above, to fetch additional certificates
for the server. A client could implement a policy requiring that, in this event, it is
able to fetch an additional certificate that contains the same TLS key, the same
domain name, and chains to a different trust anchor (without cross signing).

4 Client-directed pinning would ensure that the certificate hadn’t changed since the
client’s last connection to the site, and OCSP stapling would ensure that the cer-
tificate had not been revoked — at least as of some reasonably recent point in the
past. Online Certificate Status Protocol (OCSP) stapling is a piece of the modern
certificate infrastructure. It allows a server to send clients a message, signed by the
relevant certificate authority, that asserts that as of a certain point in time, the
server’s certificate has not been revoked. This is a nice alternative to contacting
OCSP servers to check for revocation, or either pushing or pulling blacklists.

56 C.W. Brown and M. Jenkins

This increases the difficulty of a man-in-the-middle attack significantly, since
the attacker would have to obtain fraudulent certificates from two different trust
anchors. This is orthogonal to other proposals, and it strengthens all of them. For
example, HPKP has potential problems with unplanned key transitions. With
a mechanism like this, an organization that is forced to deal with an unplanned
key transition could have strong evidence (we’ve suggested multiple certificates
as a possible form) that a client could fetch on that single connection for which
HPKP broke. The client could be convinced with overwhelming evidence and
accept the TLS connection — without user intervention. The delay caused by
fetching and analyzing this extra evidence would only be incurred once, then
HPKP would suffice for subsequent connections.

References

1. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.1.
RFC 5246, RFC Editor (April 2006)

2. Housley, R., Santesson, S.: Update to directorystring processing in the internet
X.509 public key infrastructure certificate and certificate revocation list (CRL)
profile. RFC 5280, RFC Editor (August 2006)

3. Herley, C.: So long, and no thanks for the externalities: the rational rejection of
security advice by users. In: Proceedings of the 2009 Workshop on New Security
Paradigms Workshop, NSPW 2009, pp. 133–144. ACM, New York (2009)

4. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying wolf: an
empirical study of ssl warning effectiveness. In: Proceedings of the 18th Conference
on USENIX Security Symposium, SSYM 2009, pp. 399–416. USENIX Association,
Berkeley (2009)

5. Marlinspike, M., Perrin, T.: Trust assertions for certificate keys. Internet-Draft
draft-perrin-tls-tack-02, IETF Secretariat (January 2013)

6. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: improving ssh-style host
authentication with multi-path probing. In: USENIX 2008 Annual Technical Con-
ference on Annual Technical Conference, ATC 2008, pp. 321–334. USENIX Asso-
ciation, Berkeley (2008)

7. CA/Browser Forum. Guidelines for the issuance and management of extended val-
idation certificates (March 2014),
https://cabforum.org/wp-content/uploads/

EV-SSL-Certificate-Guidelines-Version-1.4.6.pdf

8. Hoffman, P., Schlyter, J.: The DNS-based authentication of named entities (DANE)
transport layer security (tls) protocol: TLSA. RFC 6698, RFC Editor (August
2012)

9. National Institute of Standards and Technology (NIST),
http://www.dnsops.gov/dnssec-perform.html

10. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC 6962, RFC Ed-
itor (June 2013)

11. Evans, C., Palmer, C., Sleevi, R.: Public key pinning extension for http. Internet-
Draft draft-ietf-websec-key-pinning-08, IETF Secretariat (July 2013)

12. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management - part 1: General (revision 3). Technical Report NIST Special Publi-
cation 800-57, National Institute of Standards and Technology (March 2007)

https://cabforum.org/wp-content/uploads/EV-SSL-Certificate-Guidelines-Version-1.4.6.pdf
https://cabforum.org/wp-content/uploads/EV-SSL-Certificate-Guidelines-Version-1.4.6.pdf
http://www.dnsops.gov/dnssec-perform.html

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 57–68, 2014.
© Springer International Publishing Switzerland 2014

Standardization Transparency

An Out of Body Experience

Phillip H. Griffin

Griffin Information Security Consulting, Raleigh, North Carolina, USA
phil@phillipgriffin.com

Abstract. This paper examines the issue of transparency in standards setting
organization processes used to select security techniques for standardization.
Analysis of data collected from interviews, electronic mail, and other documen-
tation is presented as a narrative in two case studies. A Kaleidoscope confe-
rence case study illustrates the positive impacts of open participation on im-
proving transparency through the reduction of bias in the selection process.
These impacts include more timely inputs from researchers on emerging tech-
nology issues, and greater diversity in the sources of creative new ideas and so-
lutions considered for standardization. Restrictions imposed on the selection
process by government control of national body activities are described through
a second case study of practice in the United States. Finally, recommendations
are proposed on actions standards setting organizations can take to broaden par-
ticipation in the selection of techniques for standardization and to strengthen
communications between standards developers and the research community.

Keywords: openness, security, standardization, transparency.

1 Introduction

Transparency is an important issue in the development of security standards for in-
formation and communication technology (ICT). Standards development organiza-
tions (SDOs) implement processes aimed at enhancing the perception of transparency
by standards users and other stakeholders. When SDO transparency is mentioned in
research literature, discussion is often confined to processes within a standards devel-
opment lifecycle that starts with the idea for a new standard. Though the names of
lifecycle components vary by SDO, those under SDO control typically begin with
creation of a standards project.

The initial selection of techniques for standardization occurs much earlier, before
the project is created. A selected technique may stem from an idea, a novel approach,
or a perceived need for a standard. Participation in the selection process may be li-
mited to a small number of SDO members and not involve most stakeholders. The
participants may be biased or serve narrow interests. The selection process may lack
transparency, since it occurs on the edge of the standards development lifecycle, be-
fore formal SDO approval and project creation. Transparency in the initial selection
process is the focus of this paper, and transparency is defined here as the perception

58 P.H. Griffin

of an objective observer that “the process of selecting security techniques for standar-
dization” is “as scientific and unbiased as possible” [1]. Accounts are presented as
case studies of the ITU Kaleidoscope conference and United States (US) security
standardization practice. These reports are informed by personal experience as a par-
ticipant in US SDO activities and analysis of data collected from interviews, electron-
ic mail, and other documentation used to examine selection process transparency in
global standards setting organizations.

The standardization branch of the International Telecommunication Union (ITU) is
the ITU-T. Along with the International Organization for Standardization (ISO) and
the International Electrotechnical Commission (IEC), these three are considered the
global ‘de-jure’ standards setting bodies [2]. ISO, IEC, and ITU follow “the principle
of territorial representation” with their voting members being “national SDO or other
national representatives” [3]. There are committees within the global SDO that pro-
duce international information security standards (e.g., in ITU-T Study Group 17
Security, ISO/TC68/SC2 Financial Services Security, and ISO/IEC JTC 1/SC 27 IT
Security techniques).

Together, ISO, IEC and ITU-T are the “most prominent official international SDO
(with national membership)” [3] that produce information security standards. Through
its Kaleidoscope conferences, ITU has opened up the standardization selection
process to be more inclusive. These conferences attract members of the research and
development community that may not participate in national SDO activities. Kalei-
doscope provides ‘an out-of-body experience’ that does not depend on national body
approval or processing of proposals considered for standardization.

Through Kaleidoscope conference papers, presentations, discussions, and social
events, ITU has found a way to increase the transparency and openness of its standar-
dization selection process. These conferences augment formal ITU standardization
practices to include more academic and research institutions and to foster greater
input from these important sources of standardization ideas. Section 2 of this paper
presents a case study of a paper written by this author that was accepted for the 2013
Kaleidoscope conference. That section describes the impact of the author’s paper on
information security and data privacy standards.

Governments have an important role to play in national SDO by ensuring transpa-
rency and facilitating open participation, and “in stimulating innovation and standar-
dization” in the area of ICT security techniques [4]. Since openness “appears feasible
only in a local (maybe national) context”, governments should ensure balanced repre-
sentation in the minority of stakeholders that select technologies for standardization
and that form the delegations attending international standardization committees [3].
From the viewpoint of standards as public goods, governments have a responsibility
to promote collaboration among diverse participants having widely different perspec-
tives, expertise, and resources. Governments can act to promote transparency and
openness by requiring SDOs to provide “access to standardisation activities without
obliging SMEs to become a member of a national standardisation body”, “free access
or special rates to participate in standardisation activities”, and “free access to draft
standards” [5].

 Standardization Transparency 59

In the United States, government agencies have taken managerial control over the
SDOs that support international standardization of biometrics and IT security tech-
niques. The scope of the primary US security SDO has been changed from one solely
devoted to international standards to one whose members also focus on the develop-
ment and promotion of government sourced national standards. SDO control has been
used to ignore technical criticism of agency-sponsored work and to circumvent con-
sensus agreement processes. Section 3 of this paper presents a case study of US stan-
dardization practice and its impact on information security standardization.

2 Kaleidoscope Conference Case Study

2.1 Background

The International Telecommunication Union (ITU) was founded in Paris in 1865 to
become the first formal standards organization. The ITU was established by the Euro-
pean states as a public-private partnership to create “a forum for the negotiation of
standards to ensure network interoperability” [6]. Since its founding, ITU has evolved
into a worldwide organization with “a membership of 193 countries and over 700
private-sector entities”, including 63 academic and research institutions [2].

The ITU began holding its Kaleidoscope conferences in 2008, with the goal of
hosting one conference per year from a different location around the world. An im-
portant purpose of these events is to facilitate greater communication between the
academic research community and standards developers. To ensure diverse global
participation, ITU selects a new conference theme for each event and an academic
institution or research organization to serve as conference host [2]. Through the pres-
entation of original, multi-disciplinary papers around a central theme, Kaleidoscope
conferences foster dialog between research and practitioner attendees.

Academia is viewed as an important external source of new concepts, technologies,
and ideas for ITU-T standardization. Using conference presentations, technical pa-
pers, and discussions, the ITU seeks to identify new areas for standardization from
outside of its standards development community to support the creation of new or
improved ICT products and services. Through its Kaleidoscope conferences, ITU can
respond to the increasing “globalization of technology development” and the need for
greater transparency and broader participation in standardization by “opening up of
the process to a wider range of actors” [6].

ITU organizes Kaleidoscope conferences in collaboration with the Institute of
Electrical and Electronics Engineers (IEEE). ITU publishes accepted academic papers
in conference proceedings and ensures their wide dissemination by making them free-
ly available for download from its web site. IEEE lists each paper from the complete
proceedings in the IEEE XPlore Digital Library. IEEE also publishes select confe-
rence papers that have a high potential impact on standardization in a special stan-
dards edition of the IEEE Communications Magazine.

60 P.H. Griffin

2.2 Openness

The principle of openness in international SDOs is one that has traditionally “put
more emphasis on input legitimacy” [3]. To achieve the perception of openness,
SDOs establish processes to facilitate stakeholder input as standards are being
created, extended, or modified to correct defects. SDO charters, directives, and
processes attempt to ensure that “all affected individuals and organizations have the
opportunity to get involved in the decision-making process” [3] as standards are being
developed. The ITU Kaleidoscope program seeks to apply the principle of openness
earlier in the standards development process, to the stage at which security techniques
are considered and selected for standardization.

Open participation, inclusiveness, and freedom of discourse are key features of the
Kaleidoscope paper acceptance process. Paper submissions may be submitted by any-
one from any of the 193 ITU member countries, including students, academics, inven-
tors, and researchers. No topic or content approval by the author’s national standards
body is required. Authors need not have any experience or prior involvement in stan-
dardization activities, and need not be a member of an SDO.

The scope of ITU-T standardization has evolved as telecommunication networks
have matured to include standards for multimedia, cloud computing, telebiometrics,
information security, and more. Kaleidoscope authors might address any of these
areas. Original technical papers can be submitted at no cost, though accepted papers
must be presented at the conference by one of the authors to be published. The cost of
attending may present a financial obstacle to some authors, and no accommodation is
made by ITU for teleconference presentation. There is no academic affiliation re-
quirement, and papers are selected from both academia and industry submissions
based strictly on merit. The nationality of the author, the ranking of the author institu-
tion or the company size or worth are not considered in the acceptance process.

Submissions are anonymous and peer reviewed against criteria listed in a published
rubric using a double-blind process. Unlike many academic conferences, the Kalei-
doscope conference uses a scoring rubric to guide authors and reviewers. This rubric
is used to evaluate submitted papers based on five criteria: content that demonstrates
excellent or novel research, originality, clarity of communication, relevance to the
conference objectives, and standards. The standards criterion is weighted higher than
the others are. Taken together the criteria call for authors to submit clearly articulated
original research that is relevant to the conference theme and that could have an im-
pact on future ICT standardization.

2.3 Impact on Standardization

From the first six Kaleidoscope conferences held between 2008 and 2014, ITU re-
ceived important contributions that would influence the course of their standardiza-
tion efforts. Authors submitted papers to all conferences that identified new areas for
ITU-T standardization. Their contributions included a new network architecture, a
standards-based service management implementation, and a business model for
next generation networks. A recent paper led directly to a new information security

 Standardization Transparency 61

standards project for secure messaging to support cryptographic key management
techniques.

In the 2008 Innovations in NGN (next generation networks) conference, the best
paper described an architecture and business model for an open heterogeneous mobile
network. This paper by Murata, Hasegawa, Murakami, Harada, and Kato [7] inspired
the creation of a new ITU-T Focus Group on Future Networks (FG FN). Subsequent-
ly, future networks became a key theme in ITU-T Study Group 13, underlying their
standardization efforts in the areas of cloud computing, NGN, and mobile networks.

The 2009 Innovations for Digital Inclusion conference provided an important mod-
el and implementation methodology for quality of service (QoS) management for
internet service providers. This award winning contribution was based on extensive
review and study of the ITU-T Recommendation E.802 framework described in a
paper by Ibarrola, Xiao, Liberal, and Ferro [8]. As participants of an ITU-T Academic
Member institution, these authors regularly provide input to the protocols and test
specifications standardization work of ITU-T Study Group 11.

The 2013 Building Sustainable Communities conference would provide the first
new information security standards project to come from an ITU Kaleidoscope confe-
rence presentation. My paper on telebiometric information security and safety man-
agement would win an award and reveal security and other defects in several widely
used international standards [9] and in the cryptographic messaging used to protect
their information. Affected standards included the International Civil Aviation Organ-
ization (ICAO) standard for electronic passports, the ISO/IEC 24761 Authentication
context for biometrics (ACBio), and the ISO/IEC 19785-4 Common Biometric Ex-
change Format Framework (CBEFF) – Security block format specifications. Example
defects are shown in Fig. 1.

My Kaleidoscope paper noted that while there were several “widely deployed
CMS standards”, including the “RSA Public Key Cryptography Standard (PKCS) #7,
the Secure Electronic Mail (S/MIME) CMS standard defined by the Internet

Fig. 1. Invalid and deprecated ICAO schema definitions (Source: IEEE 52.1, p. 188)

62 P.H. Griffin

Engineering Task Force (IETF), and the X9.73 Cryptographic Message Syntax:
ASN.1 and XML standard, there was no “normative international CMS standard” that
used valid ASN.1 syntax to define its messages [10]. All of the defective security
standards identified in my paper relied on the IETF CMS SignedData type for data
integrity and origin authenticity. They all relied on secure messaging that was “based
on X.208, the deprecated 1988 version of ASN.1 that was withdrawn as a standard in
2002”, and which contained known defects that “were never corrected before it was
abandoned” by ISO/IEC and ITU-T [10].

Another defect identified in my paper involved the protection provided by “the op-
tional signature block defined in the ISO/IEC 19785 CBEFF standard” [10]. A cryp-
tographic message wrapper that encapsulates the entire template provides stronger
protection of biometric templates in some environments than using the optional
CBEFF security block. Using a message wrapper approach “allows a trivial attack on
reference templates to be detected using signature verification” [10]. As described in
Fig. 2, when used in “environments in which the optional signature block is not re-
quired to be present, it is possible for a low skill attacker to remove the entire signa-
ture block to thwart the signature safeguard's effectiveness” [10].

Fig. 2. Security vulnerability (Source: IEEE 52.1, p. 189)

My Kaleidoscope paper proposed four areas for standardization. One information
security proposal called for the creation of an international Cryptographic Message
Syntax (CMS) standard containing correct messaging syntax and based on the current
ASN.1 standards. A new CMS standard could be used to correct defects identified in
the ICAO, ACBio, and CBEFF standards. A second proposal called for the standardi-
zation of a new SigncryptedData CMS message type. Two biometric information
management and security proposals called for the creation of a standard event journal
and security alert system for logging distributed biometric system security and safety
events, and for the creation of a telebiometric system heartbeat message that could
support optional inclusion of digitally signed or signcrypted ACBio system security
verification reports [9].

2.4 Security Standards Proposals

During the 2013 conference in Kyoto, the Kaleidoscope Secretariat and her staff in-
formed me that they had submitted my conference paper and presentation deck to the

 Standardization Transparency 63

delegates of the ongoing ITU-T Study Group 17 Security meeting. A staff member
arranged for me to make a presentation to the Question 9 (telebiometrics) standardiza-
tion delegates meeting that week in Geneva. A member of the ITU Telecommunica-
tions Standards Bureau and the conference hosts arranged to provide an office next to
the conference auditorium, a laptop, and a headset for the remote presentation of my
proposals for new standardization.

The presentation was well received and followed by a brief question and answer
session. However, neither of the biometric security management proposals described
in the presentation would result in new standardization projects. The author would
later discuss these proposals with a US delegate to SG17 who had not attended the
Question 9 meeting in Geneva. After being thanked for presenting new standardiza-
tion proposals to the committee, the delegate advised the author that the National
Institute of Standards and Technology (NIST) was opposed to any biometrics stan-
dardization work being performed outside of the ISO/IEC JTC 1/SC 37 Biometrics
group. The delegate noted that it would not be possible to propose new biometric
standards development work from the US without NIST approval, and that the Kalei-
doscope biometric security management proposals would not be put forward for con-
sideration as new work items. No documentation was offered as evidence by the dele-
gate that their remarks were an official US government position.

My 2013 Kaleidoscope paper and presentation slide deck were also provided to
Study Group 17 Question 11 (Specification and Implementation Languages) for re-
view. The two secure message proposals in the paper were viewed favorably, and the
Rapporteur to the Study Group 17 plenary from France submitted a new work item
proposal. The proposal was approved, and a project was started to create an interna-
tional CMS standard that would correct and extend the defective Internet Engineering
Task Force (IETF) CMS standard. The new CMS project would include a Signcrypted
data type based on the ISO/IEC 29150 Signcryption security standard. No US approv-
al was required to submit or approve the CMS new work item proposal.

3 US Practice Case Study

3.1 Government Roles

The American National Standards Institute (ANSI) is the US national body member
of two of the three global SDOs responsible for information security standardization:
ISO and IEC. The third SDO is ITU-T, which produces some security standards joint-
ly with ISO and IEC, and whose US member is the US Department of State.
ANSI establishes “the standards setting process that US national SDOs need to
implement” to ensure their operations are based on “attributes like openness and
transparency” [11]. There are over 200 ANSI-accredited SDOs in the US system,
each typically associated with a single industry sector. NIST plays a special role in
US standardization.

NIST “co-ordinates standards policy among the federal agencies”, who are “en-
couraged to actively contribute to standards setting and to standards policy” as re-
quired by the National Technology Transfer and Advancement Act (NTTAA) [11].

64 P.H. Griffin

Ideally, the role of NIST would be indirect, and as suggested by Sherif and Seo, li-
mited to “promoting an environment in which firms can be innovative” and “promot-
ing quality and performance standards with a global focus” [4]. However, NIST does
not perform a limited, indirect role in US information security standardization. NIST
contributes significant technical expertise to the development of international security
standards. NIST also contributes the time of employees who have served as talented
technical editors (i.e., ISO/IEC 29150, ISO/IEC 19790, etc.). However, a primary
focus of NIST has been on national standards that serve government agency needs
rather than on global standards that serve wider US interests [12].

Jakobs recognizes that the US government plays important coordination and pro-
motional roles in standardization. He notes that with respect to technical details, “the
US administration does not intervene in the process” of standardization, “nor does it
mandate any standards” [11]. Rather, proposals developed by US SDOs result in vo-
luntary, consensus standards. However, for information security standards there have
been notable exceptions to this view.

These exceptions have resulted in defects remaining uncorrected for years in some
standards. This was noted at Kaleidoscope 2013 in my presentation describing
CBEFF defects and the defective information exchange syntax used in a widely refe-
renced IETF cryptographic message standard. Government restrictions on the devel-
opment of new standards are illustrated in the treatment of proposals for telebiometric
security management standards described above. In the case of the NIST Role Based
Access Control (RBAC) standard, there has been direct government intervention in
the technical details of a security standard and in the consensus standards process.

3.2 Role Based Access Control

The NIST timeline for its RBAC standard starts in 2004. In that year, ANSI Interna-
tional Committee for Information Technology Standards (INCITS) adopted the
“RBAC proposal as an industry consensus standard” [13]. Consensus agreement on
the proposal was reached by the INCITS Executive Board, but it was never reached in
the committee assigned by INCITS to review and comment on the technical details of
the proposal. While under review by the T4 IT Security Techniques committee, the
RBAC proposal failed to pass successive ballots. These failures were due to technical
defects that subsequent research described as “limitations, design flaws, and technical
errors” [14].

The authors of the RBAC proposal never addressed editorial and technical defects
cited in the ballot comments of T4 members. Following a second failed ballot, T4
invited the authors to discuss how the concerns of the committee might be resolved,
but received no response. Instead, NIST intervened directly in the standardization
process. Using its standing as a member of the INCITS Executive Board, NIST ap-
pealed directly to the board for approval. Ignoring the sustained technical concerns
raised by T4 members, the INCITS board approved the RBAC proposal as ANSI
INCITS 359-2004, despite “a number of spelling and technical errors in the standard”
[14].

 Standardization Transparency 65

Hoel argues that the role of government in standardization should be minimal. If
government is to support technology innovation, direct government control is not
needed, but instead, “initiatives to support consensus processes, in which govern-
ments do not have the final word regarding technical details” [15]. In the case of
RBAC, NIST bypassed the consensus building process, and failed to reach agreement
with fellow T4 members or to respond to their criticism of its work.

Following the negative committee response to its RBAC proposal, the role of NIST
in the standardization of security techniques changed. NIST went from being an im-
portant technical contributor to assuming a more direct and controlling managerial
role over the US SDO for information security. In 2005, NIST proposed that the
INCITS Executive Board create a new security committee, one that could focus on
the development of US national standards in its program of work [12], standards in
which the T4 committee had expressed no interest. The INCITS board approved the
proposal and created the CS1 Cyber Security committee. NIST has chaired CS1 since
its inception, giving it greater control over US contributions to international security
standardization.

In its recommendation to create INCITS CS1, NIST proposed that the T4 commit-
tee be stripped of most of its Technical Advisory Group (TAG) responsibilities in
ISO/IEC JTC 1/SC27 IT Security techniques. Despite the growing global adoption of
the ISO/IEC 17799 Code of practice for information security management [16], the
NIST proposal asserted that there was not “wide consensus on best practices for in-
formation security management” and proposed development of a US national stan-
dard for “Risk Based Information Security Management” based on work “in progress
at NIST” [12]. NIST proposed further development of national standards, such as
extension of the RBAC standard and development of an IT security metrics standard
with no indication given that these would be proposed for international standardiza-
tion. This direct intervention in US security SDO practices by NIST changed the di-
rection of US efforts from a focus on international information security standards to a
focus on competing national alternatives.

3.3 Cryptographic Message Syntax

RSA Data Security first proposed the Secure/Multipurpose Internet Mail Extensions
(S/MIME) for IETF standardization in the mid-1990s. The RSA proposal was based
on their proprietary secure messaging standard, RSA Public Key Cryptography Stan-
dard 7 (PKCS #7) Cryptographic Message Syntax (CMS). NIST has a long history of
involvement in the development of IETF CMS and in its promotion.

The 2002 NIST Special Publication (SP) 800-49 Federal S/MIME Client Profile
recommends a version of IETF CMS whose message schema is based on the 1988
and 1990 Abstract Syntax Notation One (ASN.1) standards, X.208 and X.209 [17].
Both X.208 and X.209 were withdrawn as international standards that same year,
2002, due to well-known deficiencies and documented defects [18]. Their withdrawal
followed several years in which they had been formally deprecated, and users in IETF
and elsewhere encouraged to migrate to the current ASN.1 standards.

66 P.H. Griffin

X.208 and X.209 were replaced and superseded by the X.680 and X.690 series of
ASN.1 standards in 2002. These replacements corrected all known defects in the
withdrawn versions, but these defects were never removed from X.208 and X.209.
Efficient national language support in the current ASN.1 standards was never added
to X.208. The XML Encoding Rules (XER), and the Distinguished Encoding Rules
(DER) that provide the unambiguous data representations required by CMS and other
cryptographic protocols were never defined for use with the X.208 syntax. Reliance
on invalid and deprecated cryptographic message schema for data security in the AC-
Bio, CBEFF, and ICAO standards does not enhance their ability to provide informa-
tion assurance and security.

Recently, reference to IETF 3852 CMS began to appear in several important inter-
national biometrics and information security standards, despite its continued reliance
on withdrawn standards to define its secure information exchange messages. Affected
standards that depend on CMS for data security include ICAO electronic passports,
ISO/IEC 24761 biometric security, ISO/IEC 19785-4 biometrics, and the
ANSI/NIST-ITL biometric information exchange standard widely used by law en-
forcement and defense agencies. The design of the optional US National Security
Agency (NSA) Type-98 information assurance record in the ITL standard is based on
the same approach described in Fig. 2.

A paper presented at the 2013 ITU Kaleidoscope conference in Kyoto described
these issues and recommended corrections [9]. The presentation proposed that ITU-T
create a new international CMS standard that would correctly use the current ASN.1
schema definition standards. Once completed, a new corrected CMS standard could
be referenced in other international security standards. Like most ITU-T standards it
would be freely available to SDOs and implementers. Following approval of a new
CMS project by Study Group 17, work began in January 2014 on a joint ISO/IEC
24824-4 standard and ITU-T ‘x.CMS’ recommendation.

The selection of CMS security techniques for standardization did not require the
approval of the national body of the proposer, or on national body procedural support.
The proposal did not depend on membership in a national body SDO. ITU Kaleidos-
cope conferences provide a venue that allows proposals to be presented, discussed,
and evaluated strictly on their technical merits. These conferences establish an impor-
tant new open and transparent process for the initial selection of security techniques
for standardization that can circumvent restrictions that may be imposed by govern-
ment controlled SDO.

4 Conclusion and Recommendations

From its roots as the first international standards organization, ITU has again shown
the way forward for global SDO that strive to remain relevant in an increasingly in-
terdependent world of rapidly changing technology. ITU Kaleidoscope conferences
foster greater openness and transparency in the initial selection of security techniques
for international standardization. Kaleidoscope conferences invite new proposals for
standardization from the broad community of academic and research institutions.

 Standardization Transparency 67

Participation is not limited to national SDO members, but open to all standards stake-
holders, to everyone who lives in an ITU member country.

Kaleidoscope conferences are hosted by academic and research institutions at dif-
ferent locations around the world. These events bring standards developers together
with inventors and researchers who are closest to new and emerging technologies that
may be appropriate for standardization. The Kaleidoscope proposal process shortens
the gap between the discovery of innovative solutions and their standardization, and
can circumvent restrictions imposed by government controlled national SDO.

ITU could improve their conferences by allowing authors to present their work re-
motely by teleconference or videoconference. Author presentations could also be
recorded and made freely available by ITU in audio or video format, as is presently
the case for USENIX security conferences. Recorded presentations could provide an
additional educational benefit and enhance the ability of the conference to foster the
free exchange of research information.

The US economy is diverse and immense. The broad interests of US standards
stakeholders cannot be served by a single government agency alone. The government
should not have the final say on the technical details of any standard, especially secu-
rity standards such as RBAC or CMS. NIST should play only an indirect role in inter-
national standardization, a role that facilitates open, transparent processes that benefit
all standards stakeholders.

NIST should not exert managerial control over SDO activities or use SDO man-
agement boards to quash technical criticism of their work. They should limit their
involvement to promoting standards adoption and use, providing contributions of
technical expertise, and promoting broad and inclusive participation. In an increasing-
ly global economy, NIST would better serve the interests of US citizens and business-
es by promoting the development and adoption of international standards, rather than
promoting their own information security and information security management work
as sources for national standards alternatives.

Recently, security techniques proposed at a Kaleidoscope academic conference re-
sulted in creation of a new international standardization project in ITU. All of the
global security SDOs could benefit from the closer ties to researchers afforded by the
ITU model. The SC 27 IT Security techniques and TC68/SC2 Financial Services Se-
curity groups should provide a means for academic papers and conference presenta-
tions to inform their information security standardization selection processes. They
should encourage greater openness through wider participation in the development of
new standards by academic and research institutions.

The ITU Kaleidoscope conference serves as a model to be replicated by others.
Conferences with a focus on information security techniques that can provide new
inputs for international security standardization should be sponsored by security stan-
dards setting bodies. Sponsored conferences should be attended by SDO representa-
tives who can transform proposals into actions, such as the creation of study groups
and new work item proposals. Examples of promising conferences to be considered
include the new 2014 Security Standardization Research (SSR) conference in
the United Kingdom and the 2014 International Conference on Smart Computing in
Hong Kong.

68 P.H. Griffin

References

1. SSR 2014: Security Standardisation Research, http://www.ssr2014.com/
2. International Telecommunication Union, http://www.itu.int
3. Werle, R., Iversen, E.: Promoting legitimacy in technical standardization. Science, Tech-

nology & Innovation Studies 2 (2006)
4. Sherif, M.H., Seo, D.: Government role in information and communications technology

innovations. In: Innovations for Digital Inclusions. ITU-T Kaleidoscope, pp. 1–5. IEEE
(2009)

5. Regulation of the European Parliament and Council, (EU) No 1025/2012,
http://eur-lex.europa.eu/legal-content/EN/TXT/
?uri=CELEX:32012R1025

6. Graham, I.: Reflexive Standardization of Network Technology. In: Proceedings of the ITU
Kaleidoscope Academic Conference, pp. 83–88 (2011)

7. Murata, Y., Hasegawa, M., Murakami, H., Harada, H., Kato, S.: The architecture and a
business model for the open heterogeneous mobile network. In: Proceedings of the 2008
ITU Kaleidoscope Academic Conference: Innovations in NGN, pp. 143–150 (2008),
http://www.itu.int/pub/T-PROC-KALEI-2008/en

8. Ibarrola, E., Xiao, J., Liberal, F., Ferro, A.: Quality of Service management for ISP: A
model and implementation methodology based on ITU-T Rec. E.802 framework. In: Pro-
ceedings of the 2009 ITU Kaleidoscope Academic Conference: Innovations for Digital In-
clusion, pp. 35–42 (2009), http://www.itu.int/pub/T-PROC-KALEI-2009

9. Griffin, P.: Telebiometric Security and Safety Management. In: Proceeding of the 2013
ITU Kaleidoscope Academic Conference: Building Sustainable Communities, pp. 127–
134 (2013), http://www.itu.int/pub/T-PROC-KALEI-2013

10. Griffin, P.: Telebiometric Security and Safety Management. IEEE Communications Maga-
zine 52(1), 186–192 (2014)

11. Jakobs, K.: ICT Standardisation in China, the EU, and the US. In: Innovations for Digital
Inclusions, K-IDI 2009. ITU-T Kaleidoscope, pp. 1–6. IEEE (2009)

12. INCITS Proposal to create new security technical committee CS1, in050057 (2005),
http://csrc.nist.gov/groups/SNS/rbac/documents/in050057.pdf

13. National Institute of Standards and Technology - Computer Security Resource Center,
http://csrc.nist.gov/groups/SNS/rbac/faq.html#timeline

14. Li, N., Byun, J., Bertino, E.: A Critique of the ANSI Standard on Role Based Access Con-
trol. IEEE Security & Privacy 5(6), 41–49 (2007)

15. Hoel, T.: Paradoxes in LET standardisation–towards an improved process. In: Proceedings
of the 21st International Conference on Computers in Education. Asia-Pacific Society for
Computers in Education, Indonesia (2013)

16. Backhouse, J., Hsu, C., Silva, L.: Circuits of power in creating de jure standards: shaping
an international information systems security standard. MIS Quarterly 30, 413–438 (2006)

17. National Institute of Standards and Technology SP 800-49 Federal S/MIME V3 Client
Profile, http://csrc.nist.gov/publications/nistpubs/

18. ITU-T Recommendation X.208, https://www.itu.int/rec/T-REC-X.208/en

Size-Efficient Digital Signatures with Appendix

by Truncating Unnecessarily Long Hashcode�

Jinwoo Lee and Pil Joong Lee

Department of Electrical Engineering, POSTECH, Republic of Korea
{woojung3,pjl}@postech.ac.kr

Abstract. Digital signature mechanism with appendix(DSwA) is a type
of digital signature in which, after the message, a signature Σ is ap-
pended. When DSwA is constructed based on the discrete logarithm
problem, Σ is composed of a pair (R,S). When R is a hashcode with bit
length γ and S is an element of subgroup of order q with bit length β,
it is recommended to adjust γ and β to be similar because the security
strength depends on the smaller value between γ and β. However in some
circumstances only hash functions with longer output could be available.
Then γ becomes unnecessarily longer than β, and hence the longer Σ
is appended. For the above case, we propose a generalized method for
reducing the size of Σ by truncating R by β without loss of any se-
curity strength. Our proposed method can be applied to mechanisms
like KCDSA, SDSA, EC-KCDSA, and EC-SDSA in ISO/IEC 14888-3:
Digital signatures with appendix — Part 3: Discrete logarithm based
mechanisms.

Keywords: Digital Signature, KCDSA, SDSA, ISO/IEC 14888-3.

1 Introduction

The notion of digital signature is an alternative for handwritten signatures in
digital world [11]. The concept of a digital signature first appeared in [9]. In
their scheme they proposed that each user can publish a public key, which is
used for verifying signatures, while keeping secret a private key, which is used
for producing signatures.

There are two types of digital signature mechanisms [3]. If the whole message
has to be stored and/or transmitted along with the signature, the mechanism is
called a “digital signature mechanism with appendix (DSwA)”. If the verifica-
tion process reveals all or part of the message, the mechanism is called a “digital
signature mechanism giving message recovery”. In this work, we consider the

� This research was supported in part by the MSIP (Ministry of Science, ICT and
Future Planning), Korea, under the ITRC (Information Technology Research Center)
support program (NIPA-2014-H0301-14-1004) supervised by the NIPA (National IT
Industry Promotion Agency) and in part by the MSIP (Ministry of Science, ICT and
Future Planning), Korea, under the “IT Consilience Creative Program” (NIPA-2014-
H0201-14-1001) supervised by the NIPA (National IT Industry Promotion Agency).

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 69–78, 2014.
c© Springer International Publishing Switzerland 2014

70 J. Lee and P.J. Lee

DSwA which is constructed based on the Discrete Logarithm Problem(DLP).
DSwA based on DLP is specified in a International Organization for Standard-
ization/International Electrotechnical Commission Joint Technical Committee 1
(ISO/IEC JTC 1) 14888-3 “Information technology — Security techniques —
Digital signatures with appendix — Part 3: Discrete logarithm based mecha-
nisms” [4].

DSwA based on DLP has a digital signature in which, after the message, a
signature Σ of pair (R,S) is appended. When R is a hashcode with bit length γ
and S is an element of subgroup of order q with bit length β, it is recommended
to adjust γ and β to be similar. This is because the security strength depends
on the smaller value between γ and β.

To prevent unnecessarily long hashcode R from being used, some standards
made a restriction. For example, in [7] it is recommended to use SHA-224 with
q of length 224-bits and SHA-256 with q of length 256-bits, but it is allowed to
use SHA-256 with q of length 224-bits when only SHA-256 is available, while
SHA-224 is not.

There are many DSwA based on DLP in which R is a hashcode. Among twelve
mechanisms in the standard document [4], four mechanisms, Korean Certificate-
based Digital Signature Algorithm (KCDSA), Schnorr Digital Signature Algo-
rithm (SDSA), Elliptic Curve KCDSA (EC-KCDSA), and Elliptic Curve SDSA
(EC-SDSA), are such cases. In this paper we propose a generalized method of
truncating R by β for mechanisms with R as a hashcode. By doing this, when R
is longer than β, Σ with shorter length can be made without loss of any security
strength.

We note here that the idea of truncating R by β was first given by Eric Peeters
(personal communication, February 23, 2011), although he only mentioned about
EC-KCDSA.

2 Preliminaries

2.1 General Model for Digital Signatures with Appendix Based on
Discrete Logarithm Problem

Generation of Domain Parameters. For mechanisms of DSwA based on
DLP, the set of domain parameters includes the following parameters:

– E , a finite commutative group;
– q, a prime divisor of #E ;
– G, a generator of the subgroup of order q

A private signature key of a signer is a randomly or pseudo-randomly generated
secret integer X such that 0 < X < q. The corresponding public verification key

Y is an element of E and is computed as Y = GXD

. The value of D is one of
two values, -1 and 1.

Size Efficient Digital Signatures with Appendix 71

Signature Process. Signature process makes use of a randomizing value K,
which is used to produce a witness R. The signature Σ for the message M is the
pair (R, S).

1. Producing the randomizer: For each signature, the signer freshly generates a
secret randomizer K with 0 < K < q. The output of this stage is K, which
shall be kept secret and destroyed safely after use.

2. Producing the pre-signature: The inputs to this stage are the randomizer K
and signature key X , with which the signer computes the pre-signature, Π .

3. Computing the witness: The inputs to this stage are Π and optionally M . If
M is used here, then M is not used in the next “Computing the assignment”
stage. The output of the witness function is the witness R.

4. Computing the assignment: The inputs to the assignment function are R, and
optionally Y . If M is not used in the above “Computing the witness” stage,
then M is used as input too in this stage. The output of the assignment
function is assignment V .

5. Computing the second part of the signature: The inputs to this stage are K,
X , V , domain parameter q, and D. The signer solves the signature equation
for S.

6. Constructing the signed message: The signed message is obtained by the con-
catenation of a message and the signature, so M ||Σ. Here, the signature Σ
is the pair (R,S).

Verification Process

1. Retrieving the witness: From the signed message M ||Σ, the verifier retrieves
the signature Σ and divides it into R and S. Also, the verifier checks the
range or the bit length of the signature elements, R and S, according to the
rule specified by each signature process. If the predefined rule is violated,
the signature shall be rejected.

2. Retrieving the assignment: The inputs to the assignment function consist of
R, and optionally Y and M . If M is used here, then M is not used in the
next “Recomputing the witness” stage. The assignment V is recomputed as
the output from the assignment function.

3. Recomputing the pre-signature: The inputs to this stage are the set of domain
parameters, Y , V , R, and S. The verifier computes the element Π ′.

4. Recomputing the witness: The computations at this stage are the same as in
computing the witness of signature process. The input is Π ′. If M is not used
in the above “Retrieving the assignment” stage, then M is used as input too
in this stage. The output is the recomputed R′.

5. Verifying the witness: The signature is verified if the recomputed R′ is equal
to R.

2.2 Conversion Functions

– Conversion from a bit sequence to an integer (BS2I): A g-long sequence of
bits {x1, ..., xg} is converted to an integer by the rule

{x1, ..., xg} → x1 · 2g−1 + x2 · 2g−2 + ...+ xg−1 · 2 + xg.

72 J. Lee and P.J. Lee

– Conversion from an integer to a bit sequence (I2BS): An integer x in the
range 0 ≤ x < 2g may be converted to a g-long sequence of bits by using its
binary expansion as shown below:

x = x1 · 2g−1 + x2 · 2g−2 + ...+ xg−1 · 2 + xg → {x1, ..., xg}.

2.3 Hash Functions

In this work, we use hash functions from [2]. Note that SHA-224 is identical to
SHA-256, except that the IV is different and the output is truncated to 224 bits
[6]. This truncation method is also used with SHA-384, Snefru, and Tiger [10].

3 Applicable Mechanisms of Digital Signatures with
Appendix Based on Discrete Logarithm Problem

Our proposed method can be applied when R is a hashcode and S is an integer
such that 0 < S < q. In this section, we present KCDSA and SDSA from
ISO/IEC 14888-3 2nd edition [4].

– KCDSA
• R = h(I2BS(Π))
• V = BS2I(R⊕ h(I2BS(Y mod 2l||M)) mod q
• S = X(K − V) mod q

– SDSA
• R = h(I2BS(Π)||M)
• V = −BS2I(R) mod q
• S = (K − V X) mod q

As shown above, both KCDSA and SDSA are mechanisms in which R is a
hashcode and S is an integer which satisfies 0 < S < q.

Followings are illustrations of KCDSA and SDSA. The detailed explanations
which are same with the general model is excluded.

KCDSA: Korean Certificate-based Digital Signature Algorithm

– Domain parameters: A finite commutative group E is Z∗
p , D is −1.

– Generation of signature key and verification key: The signature key of a signer
is randomly or pseudo-randomly generated random integer X such that 0 <
X < q. The corresponding public verification key Y is GX−1

mod p.
– Signature process:

1. Producing the randomizer: The signer randomly or pseudo-randomly gen-
erates an integer K such that 0 < K < q.

2. Producing the pre-signature: The input to this stage is K. The signer
computes Π = GK mod p.

3. Computing the witness: The signer computes R = h(I2BS(Π)).

Size Efficient Digital Signatures with Appendix 73

4. Computing the assignment: The signer computes V = BS2I(R⊕H) mod
q, where H = h(Y ′||M) is the hashcode of the concatenation of Y ′ =
I2BS(Y mod 2l) and message M . Here, mod 2l is used for truncating
Y by least significant l bits.

5. Computing the second part of the signature: The signature is (R,S) where
S = X(K − V) mod q.

6. Constructing the signed message: A signed message is the concatenation
of a message and the signature, so M ||(R,S).

– Verification process:

1. Retrieving the witness: The verifier retrieves R and S from the signature.
The verifier then checks whether the following conditions hold or not:

• 0 < S < q;
• The bit length of R is equal to the output bit length of the employed
hash-function h.

If any of the above conditions does not hold the signature shall be re-
jected.

2. Retrieving the assignment: This stage is identical to computing the as-
signment. The inputs to the assignment function consist of R and M . V ′

is recomputed as output from the computing the assignment.
3. Recomputing the pre-signature: The inputs to this stage are Y , S, V ′, and

domain parameters. The verifier obtains a recomputed value Π ′ using
the formula Π ′ = Y (S mod q)G(V ′ mod q) mod p.

4. Recomputing the witness: The computations at this stage are the same
as in computing the witness. The verifier executes the witness function.
The input is Π ′. The output is the recomputed R′.

5. Verifying the witness: The verifier compares the recomputed R′ to the
value of R. If R′ = R, then the signature is valid.

SDSA: Schnorr Digital Signature Algorithm

– Domain parameters: A finite commutative group E is Z∗
p , D is 1.

– Generation of signature key and verification key: The signature key of a signer
is a randomly or pseudo-randomly generated secret integer X such that
0 < X < q. The corresponding public verification key Y is GX mod p.

– Signature process:

1. Producing the randomizer: The signer randomly or pseudo-randomly gen-
erates an integer K such that 0 < K < q.

2. Producing the pre-signature: The input to this stage is K, and the signer
computes Π = GK mod p.

3. Computing the witness: The signer computes the witness R as the hash-
code of the pre-signatureΠ and the messageM so R = h(I2BS(Π)||M).

4. Computing the assignment: The input to the assignment function is R.
V = −BS2I(R) mod q.

5. Computing the second part of the signature: The signature is (R,S) where
S = (K − V X) mod q.

74 J. Lee and P.J. Lee

6. Constructing the signed message: A signed message is the concatenation
of a message and the signature, so M ||(R,S).

– Verification process:

1. Retrieving the witness: The verifier retrieves R and S from the signature.
The verifier checks to see that R is within the range of the hash function
and that 0 < S < q.

2. Retrieving the assignment: This stage is identical to computing the as-
signment. The input to the assignment function is R. V ′ is recomputed
as output from the computing the assignment.

3. Recomputing the pre-signature: The inputs to this stage are Y , S, V ′,
and domain parameters. The verifier obtains a recomputed value Π ′ by
computing it using the formula Π ′ = Y (V ′ mod q)G(S mod q) mod p.

4. Recomputing the witness: The computations at this stage are the same
as in computing the witness. The verifier executes the witness function.
The inputs are Π ′ and M . The output is the recomputed R′.

5. Verifying the witness: The verifier compares the recomputed R′ to the
retrieved version of R. If R′ = R, then the signature is verified.

4 The Proposed Method

4.1 Construction

The following construction can be applied to the mechanisms of the standard
document [4] in which R is a hashcode and S is an integer of length β such that
0 < S < q. This is a generalized method of truncating R by β when γ, length
of R, is longer than β. By doing this, signature Σ with shorter length can be
made without loss of any security strength. A detailed discussion on the security
strength of the proposed method is in section 5. For each mechanism, all the
other stages are same with the general model except for the following stages:

– Signature process:

• Computing the witness: The signer computes R by witness function, f(·).
If γ is longer than β, then the witness function f(·) is replaced by f ′(·) =
I2BS(BS2I(f(·)) mod 2β). Here, mod 2β is used for truncating R by
least significant β bits.

• Computing the assignment: If γ is longer than β, then all the operands
which is used with R should be truncated by β.

– Verification process:

• Retrieving the witness: The verifier retrieves R and S from the signature.
The verifier then checks whether the following conditions hold or not:

∗ 0 < S < q;
∗ If the length of the value γ is not longer than β, the bit length of R
is equal to the output bit length of the employed hash-function h;

∗ If the length of the value γ is longer than β, the bit length of R is
equal to β.

Size Efficient Digital Signatures with Appendix 75

If any of the above conditions does not hold the signature shall be re-
jected.

In short, we truncate R by β when γ is longer than β. By doing this the size
of the signature Σ decreases without loss of security strength. The security of
the proposed method has no problem if the hash function used does not lose its
security when truncated.

Our construction can be applied to KCDSA, SDSA, EC-KCDSA, and EC-
SDSA, which are in the standard document [4]. Here, we present detailed stages
of modified KCDSA in 4.2, which is recently included in N13975 Text of ISO/IEC
3rd WD 14888-3 [5]. Korean domestic standard was also modified in [7], accord-
ingly. We also present a detailed stages of modified SDSA in 4.3. The other
mechanisms, EC-KCDSA and EC-SDSA, can also be improved by our method,
but is not illustrated here. We note that EC-KCDSA is also modified in [5] and
[8] as we proposed.

4.2 Modified KCDSA

– Signature process:
• Computing the witness: The signer computes R = h(I2BS(Π)). If γ is
longer than β, then the computation ofR is replaced byR = I2BS(BS2I
(h(I2BS(Π))) mod 2β). Here, mod 2β is used for truncating R by least
significant β bits.

• Computing the assignment: The signer computes V = BS2I(R⊕H) mod
q, where H = h(Y ′||M) is the hashcode of the concatenation of Y ′ =
I2BS(Y mod 2l) and message M . The value of Y ′ is a bit string of
length l. If γ is longer than β, then the computation of H is replaced by
H = I2BS(BS2I (h(Y ′||M)) mod 2β).

– Verification process:
• Retrieving the witness: The verifier retrieves R and S from the signature.
The verifier then checks whether the following conditions hold or not:
∗ 0 < S < q;
∗ If the length of the value γ is not longer than β, the bit length of R
is equal to the output bit length of the employed hash-function h;

∗ If the length of the value γ is longer than β, the bit length of R is
equal to β.

If any of the above conditions does not hold the signature shall be re-
jected.

4.3 Modified SDSA

– Signature process:
• Computing the witness: The signer computes R = h(I2BS(Π)||M). If
γ is longer than β, then the computation of witness is replaced by
R = I2BS(BS2I(h(I2BS(Π)||M)) mod 2β). Here, mod 2β is used for
truncating R by least significant β bits.

76 J. Lee and P.J. Lee

– Verification process:
• Retrieving the witness: The verifier retrieves R and S from the signature.
The verifier then checks whether the following conditions hold or not:
∗ 0 < S < q;
∗ If the length of the value γ is not longer than β, the bit length of R
is equal to the output bit length of the employed hash-function h;

∗ If the length of the value γ is longer than β, the bit length of R is
equal to β.

If any of the above conditions does not hold the signature shall be re-
jected.

5 Security

Figure 1 represents the original DSwA scheme and a modified DSwA scheme to
which our proposed method is applied. There, DSwA scheme with hash function
is Λ and modified DSwA scheme with truncated hash function is Λ′. Both Λ and
Λ′ have a signature Σ of a pair (R, S). R is a hashcode for Λ, and a truncated
hashcode for Λ′. S is an element of subgroup of order q. In Λ, bit length of R is
γ, bit length of S is β, and γ > β. In Λ′, bit length of R is γ′, bit length of S is
β, and γ′ = β.

The security strength of Λ solely depends on the smaller value between γ and
β. Therefore, Λ has security strength of β. If the security strength of Λ′ is also β
then modified scheme applying our method is secure. To satisfy this, truncated
hashcode should not have security strength less than β. Thus, for the modified
scheme to be secure, truncation of the hashcode should not have any side effects
rather than reducing its length.

However, not every hash function is free from the side effects of truncation.
For example, SHA-0 is easily broken through near-collsions when truncated [12].
Truncating SHA-0 by the first 142 bits makes unsafe variant. On the other hand,
the hash functions that we consider in this paper are safe from near-collisions.

Fig. 1. DSwA Scheme with hash function (left) and truncated hash function (right)

Size Efficient Digital Signatures with Appendix 77

Moreover, in [2], the output for the hash functions is the hashcode which is
derived by taking the leftmode LH(length of a hashcode) bits of the final output
string from the last round function. This means that a truncated hash funtion
is allowed in the ISO/IEC specification.

As shown above, extra assumptions about hash functions are needed to per-
form a formal security proof of truncated hash functions, since not every hash
function is free from the side effects of truncation. To the best of our knowledge,
there is no such proof for now. In this paper we remain the formal security proof
as an open question and assume that truncation of the proper hashcode does
not have any side effects rather than reducing its length.

6 Conclusion

We proposed a general method for reducing the size ofΣ(= (R,S)) by truncating
R when R is a hashcode of length γ and S is an integer of length β such that
0 < S < q. For such cases, it is preferred to adjust γ and β to be similar,
because the security strength depends on the smaller value between γ and β.
If γ becomes longer than β, it makes longer Σ without increasing any security
strength. However in some cases only hash functions with longer output can
be available. In that case our method can be useful to reduce the size of Σ
without loss of any security strength (We assume that the truncation of the
proper hashcode does not have any side effects rather than reducing its length
as discussed in the section 5. For the moment, we leave formal security proof as an
open question). If our method is applied, length of Σ is reduced from γ+β to 2β.
Applying our method to a mechanism in which R is a hashcode of SHA-256 and
S is an integer of 224-bit results in a visible reduction of the length of the Σ from
480-bit to 448-bit. Among twelve mechanisms in the standard document [4], our
proposed method can be applied to four mechanisms, Korean Certificate-based
Digital Signature Algorithm (KCDSA), Schnorr Digital Signature Algorithm
(SDSA), Elliptic Curve KCDSA (EC-KCDSA), and Elliptic Curve SDSA (EC-
SDSA).

References

1. ISO/IEC 10118-1 (3rd edn.): Information technology — Security techniques —
Hash-functions — Part 1: General (2000)

2. ISO/IEC 10118-3 (3rd edn.): Information technology — Security techniques —
Hash-functions — Part 3: Dedicated hash-functions (2004)

3. ISO/IEC 14888-1 (2nd edn.): Information technology — Security techniques —
Digital signatures with appendix — Part 1: General (2008)

4. ISO/IEC 14888-3 (2nd edn.): Information technology — Security techniques —
Digital signatures with appendix — Part 3: Discrete logarithm based mechanisms
(2006)

5. N13975 Text of ISO/IEC 3rd WD for 3rd edition of 14888-3: Information technol-
ogy — Security techniques — Digital signatures with appendix — Part 3: Discrete
logarithm based mechanisms (2014)

78 J. Lee and P.J. Lee

6. FIPS 180-4: Secure Hash Standard (SHS) (2012)
7. TTAK.KO-12.0001/R3: Digital Signature Mechanism with Appendix — Part 2:

Korean Certificate-based Digital Signature Algorithm KCDSA (2014)
8. TTAK.KO-12.0015/R2: Digital Signature Mechanism with Appendix — Part 3:

Korean Certificate-based Digital Signature Algorithm using Elliptic Curves EC-
KCDSA (2014)

9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inform.
Theory, 644–654 (1976)

10. Kelsey, J.: SHA-160: A Truncation Mode for SHA256 (and most other hashes).
Cryptographic Hash Workshop, NIST (2005)

11. Matyas, S.: Digital signatures — an overview. Computer Networks, 87–94 (1979)
12. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO

2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 79–92, 2014.
© Springer International Publishing Switzerland 2014

Blinded Diffie-Hellman

Preventing Eavesdroppers from Tracking Payments

Duncan Garrett and Michael Ward

EMVCo Security Working Group
www.emvco.com

Abstract. In this paper we present a novel form of ECC Diffie-Hellman key
agreement that provides privacy and anti-tracking for contactless payments. The
payer's device can be authenticated by a payment terminal using a static public
key with associated certificates belonging to the payer's device; however, a pas-
sive eavesdropper is unable to determine the static data and keys that might
otherwise be used to identify and track the payer. The new protocol has better
performance than alternative protocols; it avoids the payer's device having to
support signature algorithms with dedicated hashes and it has a security proof
given in [3]. The new protocol does not appear in any standards known to the
authors.

Keywords: Elliptic curve cryptography, Diffie-Hellman, Key agreement,
Privacy, Payments, Standards.

1 Introduction

The purpose of this paper is to describe a new protocol, called 'Blinded Diffie-
Hellman', for establishing and using a secure channel between a payment card and a
merchant terminal.

EMVCo (www.emvco.com) has stated [7] that it needs such a protocol as the ba-
sis of future payment technology which is intended to use elliptic curve cryptography
(ECC) rather than RSA. In the absence of suitable standardised techniques, EMVCo
has developed new key agreement technology. Two candidate mechanisms were
published in November 2012 [7], and subsequently a security proof for the more effi-
cient mechanism, the Blinded Diffie-Hellman protocol, was published by Brzuska,
Smart, Warinschi and Watson [3]. This paper provides a detailed description of this
protocol and of its security and performance benefits.

The rest of the paper is organized as follows. We first describe the EMV security
requirements for the EMV secure channel and then we review the landscape of cur-
rently available standards and mechanisms. In Section 3 we describe the only protocol
in the literature (Station-to-Station protocol) that meets the EMV security objectives,
and then describe the Blinded Diffie-Hellman protocol that also meets the EMV secu-
rity objectives but is more efficient. In Section 4 we compare the performance of the
new protocol with the Station-to-Station protocol and briefly describe its security

80 D. Garrett and M. Ward

properties and associated proof of security (more details of which are provided in [3]).
Section 5 contains concluding remarks.

2 EMV Security Requirements and the Standards Landscape

2.1 EMV Security Requirements

The EMV specifications form the basis for debit and credit card transactions in many
parts of the world. The current specifications enable the card to locally authenticate
itself to the merchant's terminal using an RSA based PKI and also to remotely authen-
ticate itself (and the payment details) to the card-issuing bank using symmetric cryp-
tography. Local card authentication is achieved by the card creating a digital signature
in response to a random challenge from the terminal and the terminal verifying this
signature using public key certificates provided by the card and a root public key in-
stalled in the terminal. However a consequence of choosing this method of local card
authentication is that a passive bugging device located near the terminal might eave-
sdrop on a contactless transaction and discover the card account number and the pub-
lic key of the card. Even if the card account number could be protected, the public key
of the card is still on its own sufficient to track card use at this terminal and at other
terminals whose transactions are similarly eavesdropped.

It would clearly be desirable if, when making the changes to introduce elliptic
curve cryptography, the part of the EMV protocol that provides local card authentica-
tion could be enhanced to provide protection against such passive eavesdropping. In
[7] EMVCo states the security objectives for a new secure channel protocol as fol-
lows:

The protocol takes place between a payment card and a merchant terminal and es-
tablishes a secure channel between the card and terminal.

The security objectives of the secure channel are

─ to provide authentication of the card to the terminal,
─ to detect modifications to the communications, and
─ to protect against eavesdropping of transactions and card tracking.

It is given that the card contains

─ a private key unique to the card,
─ the corresponding card public key certified by the card issuer, and
─ the corresponding issuer public key certified by a Payment System,

and that the terminal contains the corresponding Payment System public key.
The card and terminal achieve a secure channel by using a key agreement protocol

based on Diffie-Hellman, a session key derivation function and a block-cipher based
authenticated encryption algorithm (see [29]). The payments may take place in situa-
tions that require fast contactless transactions and where the contactless card is only
briefly in range of the terminal's contactless field, so good performance of the key
agreement protocol is critical.

 Blinded Diffie-Hellman 81

2.2 Standards Landscape

Key management standards within ISO/IEC [22], ANSI [21], IETF [14,15], NIST
[18], IEEE [13] and SECG [16] do not appear to have methods for hiding the authen-
ticated party's public key. For example ISO/IEC 11770-3 [23] defines 12 key agree-
ment mechanisms, classifying them in terms of number of passes, implicit key authen-
tication, key confirmation, entity authentication, public key operations, forward secre-
cy and key freshness. However none of the mechanisms offer secrecy of the public
key and only two of them (mechanisms 2 and 11) support one-sided key agreement
where only one party is authenticated. The Handbook of Applied Cryptography [12]
discusses variants of the Diffie-Hellman algorithm that provide anonymity and this
includes the Station-to-Station protocol which does afford anonymity for the partici-
pants; however it is described as a scheme where both parties have public keys which
can be authenticated and this is not the situation for the EMV system.

One might also consider key transport mechanisms using public key encryption
methods such as El Gamal and ECIES as specified in ISO/IEC 18033-2 [27]. Howev-
er, although such key transport mechanisms provide confidentiality for the payl-
oad/message, they do not in themselves protect the confidentiality of the public key
used nor offer joint key control.

Finally, there do exist standardised methods for achieving privacy and anonymity
objectives (e.g. ISO/IEC 20008 Anonymous Digital Signatures [30], ISO/IEC 20009
Anonymous Authentication [31], ISO/IEC 18370 Blind Signatures [28]); however the
privacy issues that these methods aim to solve are different to those considered in this
paper (e.g. they provide anonymity via group signatures).

The only 'standard' method in the literature that might meet the EMV privacy ob-
jectives would appear to be a one-sided version of the Station-to-Station protocol (see
[12]) where both card and terminal conduct a Diffie-Hellman key agreement using
ephemeral ECC keys to establish a secure channel and then the card digitally signs its
ephemeral key using its static and certified ECC keys. However, the performance of
this protocol is not very good (see Section 4) and this therefore led to the design of a
new alternative protocol [7] referred to as "Blinded Diffie-Hellman" that is described
in detail in the next section.

3 Description of Protocols

In this section we describe the Station-to-Station protocol using elliptic curve crypto-
graphy. We also describe a variant that meets the one-sided constraints of EMV de-
scribed in the previous section and the new Blinded Diffie-Hellman protocol that also
meets the one-sided constraints of EMV.

In the descriptions below, the following conventions are used:

─ Conversion between integers and byte strings and between elliptic curve points
and byte strings is not considered. Rules for this are defined in ISO/IEC 15946
[26].

82 D. Garrett and M. Ward

─ For simplicity the descriptions do not include important aspects such as bounds
checking, parsing and checking that points are on curves.

─ Optimisations such as point compression are not considered.
─ The derivation of a single symmetric key for authenticated encryption is shown,

whereas in practice it is expected that two uni-directional keys would be derived
according to standard methods (see Section 4.3).

3.1 Station-to-Station Protocol

The original Station-to-Station protocol described in [12] is an extension of the Diffie-
Hellman protocol that allows the establishment of a shared secret key between two
parties A and B with mutual entity authentication and mutual explicit key authentica-
tion. The Station-to-Station protocol also facilitates anonymity whereby the identities
of A and B may be protected from eavesdroppers.

The Station-to-Station protocol also employs digital signatures. In our description
we assume the use of elliptic curve cryptography for the Diffie-Hellman aspects, so
the signature mechanism could, for example, be ECDSA or a variant thereof (see
[25]). In the description below we introduce a key derivation function KDF which is
not mentioned in [12].

Summary:

 Parties A and B exchange 3 messages

Result:

 key agreement, mutual entity authentication, explicit key authentication,
anonymity.

Notation:

 G is a generator of a group of points on an elliptic curve whose order is
n, and d G is scalar multiplication of G by an integer d (i.e. the point
on the curve resulting from adding G to itself d times).

 E(k)[m] denotes encryption of m under key k using an encryption algo-
rithm E.

 SA(m) denotes A's signature (e.g. using ECDSA) on m.
 Cert(A) denotes A's public key and associated public key certificates.
 KDF is a key derivation function that generates, from a point on the el-

liptic curve, a symmetric key suitable for the encryption algorithm E.

Protocol steps:

1. A generates an ephemeral private key da and generates A's ephemeral

public key as Qa = da G

2. A → B : Qa = da G

 Blinded Diffie-Hellman 83

3. B generates an ephemeral private key db and generates B's ephemeral

public key Qb = db G

4. B computes key Kb = KDF(db Qa) and signs Qb || Qa

5. B → A : Qb || E(Kb)[Cert(B) || SB(Qb || Qa)]

6. A computes key Ka = KDF(da Qb). A authenticates B's public key using

B's certificates and verifies B's signature on Qb || Qa. A only accepts the

validity of key Ka if the signature verifies successfully. A signs Qa || Qb

7. A → B : E(Ka)[Cert(A) || SA(Qa || Qb)]

8. B authenticates A's public key using A's certificates and verifies A's signa-

ture on Qa || Qb. B only accepts the validity of key Kb if the signature ve-

rifies successfully.

3.2 One-Sided Station-to-Station Protocol

We now describe the variant of the Station-to-Station protocol, which we refer to as
'one-sided Station-to-Station'. This variant would suit the requirements of EMV,
namely where only one party, the card, has a static certified public key. Note that
according to [7] the EMV secure channel will use authenticated encryption instead of
plain encryption, so this is included in the description below.

In our description below we denote the participants as C and T (rather than A and
B) to better reflect that the participants are a payment card and a payment terminal,
respectively.

Summary:

 Parties C and T exchange 3 messages

In the description below, party C is the card and party T is the terminal. Sub-
scripts c and t are used for their associated data.

Result:

 key agreement, entity authentication of party C to party T, explicit key
authentication to party T, anonymity.

Notation:

 G is a generator of a group of points on an elliptic curve whose order is
n, and d G is scalar multiplication of G by an integer d (i.e. the point
on the curve resulting from adding G to itself d times).

84 D. Garrett and M. Ward

 Æ(k)[m] denotes encryption of m under key k using an authenticated
encryption algorithm Æ.

 SC(m) denotes C's signature (e.g. using ECDSA) on m.
 Cert(C) denotes C's public key and associated public key certificates.
 KDF is a key derivation function that generates, from a point on

the elliptic curve, a symmetric key suitable for the encryption algorithm
Æ.

Protocol steps:

1. C generates an ephemeral private key dc and generates C's ephemeral

public key as Qc = dc G

2. C → T : Qc = dc G

3. T generates an ephemeral private key dt and generates T's ephemeral

public key Qt = dt G

4. T computes key Kt = KDF(dt Qc)

5. T → C : Qt || Æ(Kt)[Qt || Qc]

6. C uses Qt to compute key Kc = KDF(dc Qt) and uses Kc to authenti-

cate and decrypt the payload Qt || Qc. (With correct operation of the

protocol Kc = Kt; if authentication fails then as soon as this happens

the protocol is terminated). C signs Qc || Qt

7. C → T : Æ(Kc)[Cert(C) || SC(Qc || Qt)]

8. T uses Kt to authenticate and decrypt the payload. (With correct op-

eration of the protocol Kc = Kt; if authentication fails then as soon as

this happens the protocol is terminated) and authenticates C's public

key using the certificates and verifies C's signature on Qc || Qt. T only

accepts the validity of key Kt if the signature verifies successfully.

3.3 Blinded Diffie-Hellman Protocol

We now describe the Blinded Diffie-Hellman protocol, a protocol that also suits the
requirements of EMV, namely where only party C, the card, has a static certified pub-
lic key, but which also has advantages compared to the one-sided Station-to-Station
protocol (see Section 4.1).

 Blinded Diffie-Hellman 85

Summary:

 Parties C and T exchange 3 messages

In the description below, party C is the card and party T is the terminal. Sub-
scripts c and t are used for their associated data.

Note that in this description C has a static private key dc and corresponding pub-

lic key Qc with associated certificates Cert(Qc).

Result:

 key agreement, entity authentication of party C to party T, explicit key
authentication to party T, anonymity.

Notation:

 G is a generator of a group of points on an elliptic curve whose order is
n, and d G is scalar multiplication of G by an integer d (i.e. the point
on the curve resulting from adding G to itself d times).

 Æ(k)[m] denotes encryption of m under key k using an authenticated
encryption algorithm Æ.

 Cert(Qc) denotes C's public key and associated public key certificates.
 KDF is a key derivation function that generates, from a point on the el-

liptic curve, a symmetric key suitable for the encryption algorithm Æ.

Protocol steps:

1. C generates a random integer r (1 ≤ r < n) and generates C's blinded

public key R = r Qc .

2. C → T : R

3. T generates an ephemeral private key dt and generates T's ephemeral

public key Qt = dt G

4. T computes key Kt = KDF(dt R)

5. T → C : Qt || Æ(Kt)[D1], where D1 can be an optional application-

level message

6. C uses Qt to compute key Kc = KDF(rdc Qt) and optionally uses Kc

to authenticate and decrypt the payload D1. (With correct operation of

the protocol Kc = Kt; if authentication fails then as soon as this hap-

pens the protocol is terminated.)

86 D. Garrett and M. Ward

7. C → T : Æ(Kc)[r || Cert(Qc) || D2] where D2 is optional data that the

card may wish to send protected to the terminal.

8. T uses Kt to authenticate and decrypt the payload. (With correct op-

eration of the protocol Kc = Kt; if authentication fails then as soon as

this happens the protocol is terminated) and authenticates C's public

key using the certificates and verifies that R received in Step 2 is

equal to r Qc.

The diagram below illustrates the Blinded Diffie-Hellman key agreement using the

notation defined above and where the dotted arrow represents a secure channel
created using the derived AES keys.

Fig. 1. The Blind-Diffie Hellman protocol

4 Performance and Security

This section addresses the performance and security of the Blinded Diffie-Hellman
protocol.

 Blinded Diffie-Hellman 87

4.1 Performance Comparison with Alternative Protocol

This section makes a performance comparison between the one-sided Station-to-
Station protocol and the Blinded Diffie-Hellman protocol. As can be seen from the
extract below, the message flows for the two protocols are similar.

Step Station-to-Station Blinded Diffie-Hellman

2. C → T Qc = dc G R = r Qc

5. T → C Qt || Æ(Kt)[Qt || Qc] Qt || Æ(Kt)[D1]

7. C → T Æ(Kc)[Cert(C) || SC(Qc || Qt)] Æ(Kc)[r || Cert(Qc) || D2]

Although the authenticated encryption payload is significantly larger for Station-to-

Station compared to Blinded Diffie-Hellman, the authenticated encryption is likely to
consume significantly less time than the elliptic curve computations. However, for
completeness, we outline the possible impact.

Suppose, for example, that the protocols use an elliptic curve defined over a 256-
bit prime field, the public keys (represented as (x,y)-coordinates on the curve) and
signatures occupy 64 bytes and the certificates occupy over 256 bytes and the random
blinding factor r is 32 bytes. Note that here the certificates are assumed to include at
least the public key of the card, a signature of the issuing bank on that public key, the
public key of the issuing bank, and a signature of the payment system on that public
key.

Then, for the authenticated encryption payloads in steps 5 and 7, the size of the
payload for the Station-to-Station is roughly 384 bytes and for Blinded Diffie-
Hellman is roughly 288 bytes. If processing of the authenticated encryption by the
card would take about 50ms for 100 bytes then this in itself might make Station-to-
Station as much as 50ms slower than Blinded Diffie-Hellman.

However the main performance penalty introduced by Station-to-Station is the cost
of the ECC operations. With contactless card transactions performance can be critical
and the main performance concern is the time taken for ECC operations on the card-
side, especially the ECC scalar multiplications. We see that the Blinded Diffie-
Hellman protocol requires two scalar multiplications:

• Blinding the card public key in Step 1, and

• Calculating rdc Qt in Step 6

whereas the one-sided Station-to-Station protocol requires two scalar multiplications:

• Generating the ephemeral public key in Step 1, and

• Calculating dc Qt in Step 6

and a signature generation in Step 6.
Thus if we allocate 100ms for a card scalar multiplication or ECDSA calculation

(although in reality a signature calculation involves more than a simple scalar

88 D. Garrett and M. Ward

multiplication depending on the algorithm) then Blinded Diffie-Hellman would re-
quire 200ms (plus time for the authenticated encryption and communications
processing); whereas the one-sided Station-to-Station would require 300ms (plus time
for the authenticated encryption and communications processing). This 100ms differ-
ence between the two protocols is very significant when one considers requirements
for special environments such as transit ticketing.

Note that these performance considerations focus on the card computations re-
quired while the card is in the contactless field and although pre-computations may be
possible it is likely that both protocols could benefit equally from this (e.g. step 1 for
both protocols might be pre-computed).

So clearly Blinded Diffie-Hellman is more efficient and has the added benefit that
the card does not need to implement ECC signature algorithms (e.g. ECDSA) and any
associated hash function (e.g. SHA256).

The Blinded Diffie-Hellman mechanism would also provide improved perfor-
mance if a smaller than full-size blinding factor would be used. However in this case
the security proof no longer holds (see next section).

4.2 Security of Blinded Diffie-Hellman

As stated in Section 2.1, the EMV security objectives for the secure channel using the
Blinded Diffie-Hellman protocol are

• to provide authentication of the card to the terminal (entity authentication),
• to detect modifications to the communications (message authentication), and
• to protect against eavesdropping of transactions and card tracking (privacy and

unlinkability).

The first and second of these together ensure bilaterally that messages transmitted
over the resulting secure channel are guaranteed to come from the other party engaged
in the protocol and that for the terminal this other party is guaranteed to be the card
identified by the card public key certificate that was verified. This does not, and be-
cause the card does not authenticate the terminal it clearly cannot, provide assurance
to the card that it is corresponding with a legitimate terminal.

Similarly for the third objective, if the card is engaged in a legitimate transaction
with a legitimate terminal then privacy and unlinkability are achieved even in the
presence of active adversaries capable of intercepting, modifying, or injecting mes-
sages. However this does not rule out the possibility that a rogue device could per-
form the whole protocol with a card. Thus, in particular, communications confiden-
tiality is assured for the corresponding parties against eavesdroppers (passive and
active), but active adversaries can still engage with a card by pretending to be a ter-
minal for the whole protocol run.

Brzuska, Smart, Warinschi, and Watson [3] have proved the security of the Blinded
Diffie-Hellman key agreement protocol on the basis that the secure channel uses se-
cure authenticated encryption and the PKI ensures secure authentication of the card
public key. Their proof uses reductions in the Random Oracle Model and assumes the
intractability of hard problems on the elliptic curve: the Gap Diffie-Hellman problem,

 Blinded Diffie-Hellman 89

the Diffie-Hellman problem and the Discrete Logarithm problem. The proof uses a
modular security technique wherein the reduction takes a component of a hard prob-
lem and embeds this into the card's blinded public key. See [9] and [3] for more de-
tails of this technique.

[3] provides full details of the security proof for the Blinded Diffie-Hellman proto-
col (an earlier version can also be found at http://www.iacr.org/
2013/031).

Although performance would certainly be improved by using a smaller blinding
factor (e.g. 128 bits), the security proof from [3] would no longer hold. Indeed this
possibility has also been considered in [4] where it is shown that bounded height dis-
crete logarithm attacks may become feasible when using shorter blinding factors.

Note that because the card initiates the protocol rather than the terminal, it is possi-
ble that a terminal may be able to partially control the value of the uni-directional
keys. As described in Section 8 of ISO/IEC 11770-3 [23], the terminal could control
the value of s bits in the established key at the cost of generating 2s candidate values
for their ephemeral key in the time interval between discovering the card's blinded
public key and choosing their ephemeral key. However with no terminal authentica-
tion and with the requirement for very fast transactions, this type of attack is not so
relevant. If it would be considered relevant then the terminal could instead initiate the
protocol (and it is understood that the security proof of [3] would still hold in this
case) and/or the terminal could be required to make an initial commitment of its
ephemeral key.

The Blinded Diffie-Hellman key agreement protocol requires the use of a secured
communications channel after the key has been agreed and derived. This secure chan-
nel is constructed using the derived keys and enables the card public key certificates
and the blinding factor to be sent protected to the terminal so that the terminal can
authenticate the card public key and validate the blinded public key received pre-
viously. The secure channel should use a standard authenticated encryption algorithm
(e.g. mechanism from ISO/IEC 19772 [29]) and a standard technique for deriving
keys (see next section).

4.3 Uni-directional Keys and Key Derivation Function KDF()

According to the security proof in [3], the terminal and card should use message
counters to ensure statefulness and should use uni-directional keys. Such uni-
directional keys can be easily derived as (K1, K2) = KDF(Q), where

• for the terminal Q = dt R
• for the card Q = r dc Qt

where Q is a point on the elliptic curve and is the same for both terminal and card
(assuming the protocol is operating correctly).

The key derivation function KDF() can be any standard key derivation function
(see for example ISO/IEC 11770-6 [24] and NIST SP-800-56A [18], NIST SP-800-
56C [19], NIST SP-800-108 [20]) so long as it is secure and known to both card and
terminal.

90 D. Garrett and M. Ward

For completeness this section concludes by providing an example where the key
derivation function KDF() generates two AES keys K1 and K2 by encrypting two fixed
strings using a key derivation key KDK that has been generated by MACing the x-
coordinate of Q with an all-zero key (per CMAC in ISO/IEC 9797-1 [22] and NIST
SP800-38B [17]). As with the performance example, the example below assumes that
the elliptic curve is defined over a 256-bit prime field.

1. Key Extraction

Convert the x-coordinate of Q to be the 256-bit string Z = Z0||Z1 where Zi is a 128-
bit string for i=0,1.

2. Randomness Extraction

Compute a 128-bit KDK as an AES128 CBC MAC of Z using the all zero key (no
padding)

 KDK = AES128[0](AES128[0](Z0) xor Z1)

3. Key Expansion

Derive uni-directional keys as

 K1 = AES128[KDK] (0x00 || S)
 K2 = AES128[KDK] (0x01 || S)

where the value S could be any 15 byte field and could be chosen to represent a KDF
version number, card/terminal identifiers, authenticated encryption algorithm identifi-
er, an extra card nonce, and/or the bit-length of the total keying material produced.

Note that one could alternatively take Z as a function of the x and y coordinates,
however, the use of the x-coordinate only is consistent with NIST SP-800-56A [18].

5 Conclusions

This paper has described a new key agreement protocol that has important privacy
and performance properties that are not available in existing standards. The protocol
has a security proof and a potential application in card payments.

Acknowledgements. We would like to thank the anonymous referees and Chris Mit-
chell for their helpful comments.

 Blinded Diffie-Hellman 91

References

1. Blake-Wilson, S., Menezes, A.: Authenticated Diffie-Hellman key agreement protocols.
In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 339–361. Springer,
Heidelberg (1999)

2. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security
analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 30–
45. Springer, Heidelberg (1997)

3. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.: An Analysis of the EMV Channel
Establishment Protocol. In: ACM CCS 2013, pp. 373–386. ACM (2013)

4. Blackburn, S., Scott, S.: The discrete logarithm problem for exponents of bounded height.
J. Computation and Mathematics 17(Special Issue A), 148–156 (2014)

5. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–
474. Springer, Heidelberg (2001)

6. Dagdelen, O., Fischlin, M., Gagliardoni, T., Marson, G.A., Mittelbach, A., Onete, C.: A
Cryptographic Analysis of OPACITY (2013), http://www.iacr.org/2013/234

7. EMVCo: EMV ECC Key Establishment Protocols. Draft, 1st edn. (2012),
http://www.emvco.com/specifications.aspx?id=243

8. Goldberg, G., Stebila, S., Ustaoglu, B.: Anonymity and one-way authentication. In: Key
Exchange Protocols. Designs, Codes and Cryptography, vol. 67(2), pp. 245–269 (May
2013)

9. Kudla, C., Paterson, K.G.: Modular security proofs for key agreement protocols. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 549–565. Springer, Heidelberg (2005)

10. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer
(2004) ISBN 0-387-95273-X

11. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for authenti-
cated key agreement, Dept. C & Q, Univ. of Waterloo, CORR 98-05 (1998)

12. Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press
(1997)

13. IEEE P1363: A standard for RSA, Diffie-Hellman, and Elliptic-Curve cryptography (1999)
14. IETF RFC 2631, Diffie-Hellman Key Agreement Method (June 1999)
15. IETF RFC 4492, Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer

Security (TLS) (2006)
16. Certicom Research, Standards for Efficient Cryptography (2000)
17. NIST Special Publication 800-38B, Recommendation for Block Cipher Modes of Opera-

tion: the CMAC Mode for Authentication (May 2005)
18. NIST Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment

Schemes Using Discrete Logarithm Cryptography (Revised) (March 2007)
19. NIST Special Publication 800-56C, Recommendation for Key Derivation through Extrac-

tion-then-Expansion (November 2011)
20. NIST Special Publication 800-108, Recommendation for Key Derivation using Pseudoran-

dom Functions (Revised) (October 2009)
21. ANSI X9.63, Public Key Cryptography for the Financial Services Industry Key Agreement

and Key Transport Using Elliptic Curve Cryptography (2011)
22. ISO/IEC 9797-1: Information technology — Security techniques — Message authentica-

tion codes — Part 1: Mechanisms using a block cipher (2011)
23. ISO/IEC 11770-3: Information technology — Security techniques — Key management —

Part 3: Mechanisms using asymmetric techniques (2008)

92 D. Garrett and M. Ward

24. ISO/IEC CD 11770-6. Information technology — Security techniques — Key manage-
ment — Part 6: Key derivation

25. ISO/IEC 14888-3: Information technology — Security techniques — Digital signatures
with appendix — Part 3: Discrete logarithm based mechanisms (2006)

26. ISO/IEC 15946-1: Information technology — Security techniques — Cryptographic tech-
niques based on elliptic curves (2008)

27. ISO/IEC 18033-2: Information technology — Security techniques — Encryption algo-
rithms — Part 2: Asymmetric ciphers (2006)

28. ISO/IEC CD 18370-1. Information technology — Security techniques — Blind digital sig-
natures — Part 1: General

29. ISO/IEC 19772: Information technology — Security techniques — Authenticated Encryp-
tion (2009)

30. ISO/IEC 20008-1: Information technology — Security techniques — Anonymous digital
signatures — Part 1: General (2013)

31. ISO/IEC 20009-1: Information technology — Security techniques — Anonymous entity
authentication — Part 1: General (2013)

Security Goals and Evolving Standards

Joshua D. Guttman, Moses D. Liskov, and Paul D. Rowe

The MITRE Corporation, Bedford MA, USA
{guttman,mliskov,prowe}@mitre.org

Abstract. With security standards, as with software, we cannot expect
to eliminate all security flaws prior to publication. Protocol standards
are often updated because flaws are discovered after deployment. The
constraints of the deployments, and variety of independent stakehold-
ers, mean that different ways to mitigate a flaw may be proposed and
debated.

In this paper, we propose a criterion for one mitigation to be at least
as good as another from the point of view of security. This criterion is
supported by rigorous protocol analysis tools. We also show that the
same idea is applicable even when some approaches to mitigating the
flaw require cooperation between the protocol and its application-level
caller.

1 Introduction

Security standards, which often contain errors, evolve over time as people correct
them. Often, their flaws may be discovered after considerable product deploy-
ment, which places great pressure on the choice of mitigation. The constraints
of the operational deployments and the need to satisfy the various stakeholders
involved is crucial, but so is a precise understanding of the attack and what it
enables.

How are we to choose among various proposed alternatives for mitigating a
flaw? A security flaw is a failure of the protocol to meet a goal—possibly one
not well understood until after the flaw becomes apparent—and a revised under-
standing of the goals of the protocol is necessary to ensure that the mitigation is
secure. Obviously, satisfying a goal that was not previously met is essential to any
mitigation. However, any two alternatives both of which eliminate a particular
insecure scenario may not have equivalent security implications.

In this paper, we describe a formal language for expressing protocol security
goals that supports “enrich-by-need” analysis tools such as the Cryptographic
Protocol Shapes Analyzer (cpsa) [18]. We will use it to guide our description,
even though there are other tools that are using other versions of enrich-by-
need [5,13].

Each “enrich-by-need” analysis process starts from a scenario containing some
protocol behavior, and also some assumptions about freshness and uncompro-
mised keys. The analysis returns a set of result scenarios that show all of the min-
imal, essentially different ways that the starting scenario could happen. When

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 93–110, 2014.
c© Springer International Publishing Switzerland 2014

94 J.D. Guttman, M.D. Liskov, and P.D. Rowe

the starting scenario is undesirable (e.g. a confidentiality failure), we would like
this to be the empty set. When the starting scenario is the behavior of one
principal, then the results indicate what authentication guarantees the protocol
ensures.

For each run of the analyzer, there is a formula expressing the security goal
that the analysis justifies. These security goals are independent of the particular
protocol variant described.

Our Contributions. We make two main contributions in this paper. First, we
show how to compare security consequences by analyzing alternatives in a formal
framework. The protocol analyses determine a partial order on protocols. When
one protocol Π1 is above another protocol Π2 in this order, that means that Π1

achieves at least as much security as Π2 with regard to the starting scenario of
the analysis.

Second, we show that our techniques are flexible enough to accommodate
a variety of viewpoints on the protocol and its goals during the remediation
discussion. Whether an attack represents a flaw in the protocol, or a flaw in
the interface between protocol and application, or perhaps some mixture of the
two, is often debatable. Our techniques may apply to a model of the protocol
at any level of detail, and we describe how models that include interfaces relate
to models that do not. A model of this sort may help to clarify what goals are
important for a protocol to offer to the applications that use it.

Structure of This Paper. In Section 2, we consider the Kerberos public key
extension PKINIT. The initial version contained a flaw allowing a man-in-the-
middle attack. Two alternatives emerged to fix this. We describe how to evaluate
them with cpsa and the security goal language it suggests, giving a clear result:
From the security point of view, the choices are equally good. In Section 3,
we explain the core ideas of cpsa, which motivates our choice of protocol goal
languages in Section 4.

In Section 5, we turn to cross level issues, illustrated with the TLS vulnera-
bilities arising from renegotiation. One natural diagnosis of this flaw is that the
higher-level application is not aware enough of how the API it uses engages in
the TLS protocol. In Section 6, we show that our techniques support discussion
at this level also. Higher-level goals can thus be described purely in terms of
observable application behavior.

2 Example: Kerberos PKINIT

PKINIT [22] is an extension to Kerberos [17] that allows a client to authenticate
to the Kerberos authentication server (KAS) and obtain a ticket-granting ticket
using public-key cryptography. This is intended to ease the management burden
of establishing shared secrets (specifically passwords) and maintaining them,
which the standard Kerberos exchange requires.

Cervesato et al. found a flaw in PKINIT version 25 [4], which was already
widely deployed. The flaw was eventually fixed in version 27. Figure 1 shows

Security Goals and Evolving Standards 95

C
[tC ,n2]sk(C),C,T,n1 ��

��

KAS

��• •
{|[k,n2]sk(K)|}pk(C),C,TGT,{|AK,n1 ,tK ,T |}k��

Fig. 1. PKINIT version 25, where TGT = {|AK,C, tK |}kT

C
[tC ,n2]sk(C),C,T,n1 ��

��

I
[tC ,n2]sk(I),I,T,n1 ��

��

KAS

��• •
{|[k,n2]sk(K)|}pk(C),C,TGT,{|AK,n1 ,tK ,T |}k�� •

{|[k,n2]sk(K)|}pk(I),I,TGT,{|AK,n1 ,tK ,T |}k��

Fig. 2. Attack on flawed PKINIT, where TGT = {|AK, I, tK |}kT

the expected message flow between the client and the KAS in v. 25. The client
provides the KAS with its identity C, the identity T of the server it would like
to access, and a nonce n1. It also includes a signature over a timestamp tC
and a second nonce n2 using the client’s private key sk(C). The KAS replies
by creating a fresh session key k, signing it together with the nonce n2 and
encrypting the signature using the client’s public key pk(C). It uses the session
key k to protect another session key AK to be used between the client and
the subsequent server T , together with the nonce n1 and an expiration time tK
for the ticket. The ticket TGT is an opaque blob from the client’s perspective
because it is an encryption using a key shared between K and T . It contains AK,
the client’s identity C and the expiration time tK of the ticket.

In Cervesato et al.’s attack [4] (Fig. 2), an adversary I has obtained a private
key to talk with the KAS. I uses it to forward any client C’s initial request,
passing it off as a request from I. I simply replaces C’s identity with I’s own,
re-signing the timestamp and nonce n2. When the KAS responds, I re-encrypts
the response for C, this time replacing the identity I with C. In the process, the
adversary learns the session key k, and thus can also learn the subsequent session
key AK. This allows the attacker to read any subsequent communication between
the client and the next server T . Moreover, the adversary may impersonate the
ticket granting server T to C, because C believes the only other entity with
knowledge of AK is T .

The attack arises from a lack of cryptographic binding between the session
key k, and the client’s identity C [4]. When C completes the two-message ex-
change, although she knows the KAS must have recently produced the keying
material (due to the binding between k and n2), it would be incorrect to con-
clude that the KAS intended the key to be used by C. Identifying this as the
root cause of the attack suggests a natural fix, namely including the client’s

96 J.D. Guttman, M.D. Liskov, and P.D. Rowe

C
[tC ,n2]sk(C),C,T,n1 ��

��

KAS

��• •
{|[k,F (C,n2)]sk(K)|}pk(C),C,TGT,{|AK,n1 ,tK ,T |}k��

Fig. 3. Generic fix for PKINIT

identity C in the signed portion of the second message. Indeed this is the first
suggestion in [4].

The authors of the PKINIT standard offered a different suggestion. For rea-
sons of operational feasibility more than security, the PKINIT authors suggested
replacing n2 with a message authentication code over the entirety of the first
message, keying the MAC with k. Since the client’s identity is contained in the
first message, this proposal also creates the necessary cryptographic binding be-
tween k and C.

Cervesato et al., working with a manual proof method, opted to verify a
generic scheme for mitigating the attack, ensuring that the two proposals were
instances of the scheme. This allowed them to avoid the time-consuming process
of writing proofs for any other proposals that might also fit this scheme. They
verified that the attack is prevented if n2 is replaced with any expression F (C, n2)
that is injective on those values (i.e. F (C, n2) = F (C′, n′

2) implies C = C′ and
n2 = n′

2).
We obtain the first proposal by instantiating F as the identity: F (C, n2) =

(C, n2). The second proposal results by instantiating F as the MAC of the client’s
request: F (C, n2) = Hk([tC , n2]sk(C), C, T, n1). Since the MAC provides second
preimage resistance, the injectivity requirement holds with overwhelming prob-
ability (Fig. 3).

The PKINIT parable illustrates recurring themes in protocol standard de-
velopment and maintenance. Frequently, attacks show us that we care about
previously unstated, unrecognized security goals. PKINIT does achieve some
level of authentication, but it fails a more stringent type of authentication. In
Lowe’s terms [12], PKINIT achieves recent aliveness for both the client and
the KAS because each party signs time-dependent data. However, PKINIT fails
weak agreement which requires each side to know the other party was engaged in
the protocol with them. When we see the attack, it forces us to identify explicitly
the goal that the flawed protocol does not meet.

But an attack itself does not uniquely identify a security goal. We learned
that it is important for the client to be guaranteed that it agrees with the KAS
on the client’s identity, but what about other values such as the expiration
time of the ticket? Operational difficulties might arise if the client is unaware
of this expiration time, but are there any security consequences? Indeed a key
contribution of [4] is to state carefully what security goal the repair provides.

This goal can be achieved by different mitigations. Issues of efficiency, ease
of deployment, or robustness to future protocol modifications may influence

Security Goals and Evolving Standards 97

various stakeholders to prefer different mitigations. In our PKINIT example,
the researchers opted for a change that was minimally invasive to their formal
representation, thereby highlighting the root cause of the problem. The protocol
designers had more operational context to constrain the types of solutions they
deemed feasible.

While a pair of choices might both manage to satisfy some stated security
goal, one of them may actually satisfy strictly stronger goals than another. We
propose a goal language (Section 4) to express when a protocol mitigation is
at least as good as a competitor—or strictly better than it—from the security
point of view.

3 Enrich-by-Need Protocol Analysis

Our approach to protocol analysis is based on what we call the “point-of-view
principle.” Most of the security goals we care about in protocol design and anal-
ysis concern the point of view of a particular participant P . P knows that it has
sent and received certain messages in a particular order. P may be willing to
assume that certain keys are uncompromised, which for us means that they will
be used only in accordance with the protocol in question. And P may also be
willing to assume that certain randomly chosen values will not also be indepen-
dently chosen by another participant, whether a regular (compliant) participant
including P itself on another occasion, or an adversary.

The protocol analysis question is, given these facts and assumptions, what
follows about what may happen on the network? These conclusions are of two
main kinds. Positive conclusions assert that some regular participant Q has taken
protocol actions. These are authentication goals. They say that P ’s message
transmissions and receptions authenticate Q as having taken some corresponding
actions, subject to the assumptions. Negative conclusions are generally non-
disclosure assertions. They say that a value cannot be found available on the
network in a particular form; often, that a key k cannot be observed unprotected
by encryption on the network.

Skeletons and Cohorts. The enrich-by-need process starts with a representa-
tion of the hypothesis. We will refer to these representations of behavior and as-
sumptions as skeletons A. The skeleton A0 we start from includes some behavior
of P , together with the stipulated assumptions. At any point in the enrich-by-
need process, we have a set S of skeletons to work with. Initially, S = {A0}.

At each step, we select one of these skeletons A ∈ S, and ask if the behavior of
the participants recorded in it is possible. When a participant receives a message,
then the adversary should be able to generate that message, using messages that
have been sent earlier, without violating the assumptions. In this case, we regard
that reception as “explained,” since we know how the adversary can arrange to
deliver the expected message. We say that that particular reception is realized.
When every reception in a skeleton A is realized, we call A itself realized. It then
represents—together with behavior that the adversary can supply—a possible
complete execution. We collect the realized skeletons in a set R.

98 J.D. Guttman, M.D. Liskov, and P.D. Rowe

If the skeleton A ∈ S we select is not realized, then we use a small number
of rules to generate an enrichment step. An enrichment step takes one unre-
alized reception and considers how to add some or all of the information that
the adversary would need to generate its message. It returns a cohort of skele-
tons, meaning a finite set {A1, . . . ,Ai} of skeletons which together supply this
information to the adversary in all of the ways that the regular participants
could supply it. We update S by removing A and adding the cohort members:
S ′ = (S \ {A}) ∪ {A1, . . . ,Ai}.

As a special case, a cohort may be the empty set, i.e. i = 0, and in this case
A is discarded and nothing replaces it. This occurs when there are no possible
behaviors of the regular participants that would explain the required reception.
Then the skeleton A cannot contribute any executions (realized skeletons).

This process may not terminate, and in fact the underlying class of problems
is undecidable [9]. However, when it does terminate, it yields a finite set R of re-
alized skeletons with a crucial property: For a class of security goals, if they have
no counterexample in the set R, then the protocol really achieves that goal [11].
Moreover, we can inspect the members of R and determine whether any of them
is a counterexample. We call the members of R shapes, and they represent the
minimal, essentially different executions consistent with the starting point.

Enrich-by-need protocol analysis originates with Meadows’s NPA [13]. Dawn
Song’s Athena [20] applied the idea to strand spaces [21]. Two systems in use
currently that use the enrich-by-need idea in a form close to what we describe
here are Scyther [5] and CPSA [18]. See [10,11] for a comprehensive discussion,
and for more information about our terminology here.

In particular, we will use the term regular strand to mean a local run of a
particular principal in a single compliant local session of a protocol. A regular
strand (or often, we will just say strand) contains a sequence of transmission
and reception actions. We will refer to any one of these actions as a node.

Example 1: Initiator’s Authentication Guarantee in PKINIT. Suppose
that the client C has executed a strand of the client role in the fixed PKINIT,
where for now we will instantiate F (C, n2) = (C, n2). Suppose also that we
are willing to assume that the authentication server K has an uncompromised
signature key sk(K). We annotate this assumption as sk(K) ∈ non, meaning
that sk(K) is non-compromised.

•
��

��

• ��

Client[C,K,T, n1, n2, tC, tK, k,AK] sk(K) ∈ non

(1)

This is our starting point A0. C receives a message that contains the digital
signature [k, (C, n2)]sk(K), and we know that the adversary cannot produce this
because sk(K) is uncompromised. Thus, this second node of the local run is
unrealized.

To explain this reception, we look at the protocol to see what ways a regular
participant might create a message of the form [k, (C, n2)]sk(K). In fact, there is

Security Goals and Evolving Standards 99

only one. Namely, the second step of the KAS role does so. Knowing the KAS
sends this signature means it will agree on the parameters used: K, k, C, n2.
However, we do not yet know anything about the other parameters used in K’s
strand. They could be different values t′C , T

′, n′
1, TGT ′, AK ′, t′K . Thus, we obtain

a cohort containing a single skeleton A1 that includes an additional KAS strand
with the specified parameters.

sk(K) ∈ non

•
��

�� �� •
��• �� •��

Client[C,K, T, n1, n2, tC , tK , k, AK] KAS[C,K, T ′, n′
1, n2, t

′
C , t

′
K , k, AK′]

(2)

This skeleton is now already realized, because, with this weak assumption, the
adversary may be able to use C’s private decryption key to obtain k and modify
the authenticator {|AK,n1, tK , T |}k as desired. The adversary might also be able
to guess k, e.g. if K uses a badly skewed random number generator. Similarly,
the components that are not cryptographically protected are under the power of
the adversary.

We can we now re-start the analysis with two additional assumptions to elim-
inate these objections. First, we add sk(C) to non. Second, we assume that K
randomly generates k, and we write k ∈ unique, meaning that k is chosen at
a unique position. We are uninterested in the negligible probability of a colli-
sion between k and a value chosen by another principal, even one chosen by the
adversary.

sk(K), sk(C) ∈ non k ∈ unique

•
��

�� �� •
��• �� •��

Client[C,K, T, n1, n2, tC , tK , k, AK] KAS[C,K, T ′, n′
1, n2, t

′
C , t

′
K , k, AK′]

(3)

This skeleton is not realized, because with the assumption on sk(C), the adver-
sary cannot create the signed unit [t′C , n2]sk(C); it must come from a compliant
principal. Examining the protocol, this can only be a client strand with matching
parameters C, n2, t

′
C , i.e. a local run Client[C,K ′′, T ′′, n′′

1 , n2, t
′
C , t

′′
K , k′′, AK ′′].

Curiously, there are two possibilities now. This strand could be identical with
the one already in the diagram, in which case the doubly-primed parameters are
identical with the unprimed ones. Or alternatively, it might be another client
strand that has also by chance selected the same n2, since we have not assumed
n2 ∈ unique. In this case, the doubly-primed variables are not constrained. If we
further add the assumption that n2 ∈ unique, then the second client strand must
coincide with the first.

In all of these cases, C and K do not have to agree on TGT , since this item
is encrypted with a key shared between K and T , and C cannot decrypt it or
check any properties about what he receives.

100 J.D. Guttman, M.D. Liskov, and P.D. Rowe

This summary of enrich-by-need protocol analysis illustrates several impor-
tant points. Authentication properties are built up by successive inferences of
regular behavior, driven by some message component the adversary cannot build.
When two inferences are possible the method branches, potentially resulting in
a set of outputs. Various levels of authentication may be achieved according to
which parameters principals agree on, and which parameters may vary. Secrecy
properties are met when we can infer that no execution is compatible with the
disclosure of the secret.

More formally, there is a notion of homomorphism between skeletons [10].
Given a starting point A0, with shapes C1, . . . ,Ci, for each Cj , there is a homo-
morphism Hj from A0 to Cj . Moreover, every homomorphism K : A0 → D from
A0 to a realized skeleton D agrees with at least one of the Hj . Specifically, we
can regard K as the result of adding more information after one of the Hj . We
mean that we can always find some J : Cj → D such that K is the composition
K = J ◦Hj .

4 A Language of Protocol Goals

Shape Analysis Formulas. The pattern of enrich-by-need protocol analysis
suggests how to express the security properties of protocols. These security prop-
erties are essentially implications, that say that if the circumstances described
in the starting point A0 hold, then some further information must hold. Given a
skeleton, we can summarize all of the information in it in the form of a conjunc-
tion of atomic formulas. We call this formula the characteristic formula for the
skeleton, and write cf(A). Thus, a cpsa run with starting point A0 is essentially
exploring the security consequences of cf(A0).

When cpsa reports that A0 leads to the shapes C1, . . . ,Ci, it is telling us
that any formula that is true in all of these skeletons, and is preserved by ho-
momorphisms, is true in all realized skeletons D accessible from A0. The set
of formulas preserved by homomorphism are called positive existential, and are
those formulas built from atomic formulas, ∧,∨, and ∃. By contrast, formulas
using negation ¬φ, implication φ =⇒ ψ, or universal quantification ∀y . φ are
not always preserved by homomorphisms.

Thus, the disjunction of the characteristic formulas of the shapes C1, . . . ,Ci

tell us just what security goals A0 leads to. However, we can be somewhat more
precise. The skeleton Cj may have nodes that are not in the image of A0, and it
may involve parameters that were not relevant in A0. Thus, A0 will not deter-
mine exactly which values these new items take in Cj , e.g. which session key is
chosen on some local run not present in A0. Thus, these new values should be
existentially quantified. Effectively, these are all the variables that do not appear
in cf(A0). Thus, for each Cj , let yj list all the variables in cf(Cj) that are not in
cf(A0). Let x list all the variables in cf(A0). Then this run of cpsa has validated
the formula:

∀x . (cf(A0) =⇒
∨

1≤j≤i

∃yj . cf(Cj)) (4)

Security Goals and Evolving Standards 101

The conclusion
∨

1≤j≤i ∃yj . cf(Cj) is the strongest formula that is true in all of
the Cj .

We call the formula (4) the shape analysis formula for this run of cpsa. In
the special case where i = 0, so that the conclusion of the implication is the
empty disjunction, (4) is ∀x . cf(A0) =⇒ false, or equivalently ∀x . ¬cf(A0), since
the empty disjunction is the constantly false formula.

The Goal Language GL(Π). So far, we have discussed characteristic for-
mulas without concern for the vocabulary we use to build them. We choose a
vocabulary that is motivated by the kinds of analysis cpsa does. In particular,
it is adapted to expressing which instances of roles have occurred, and how far
each has progressed. It also allows us to say what value each parameter takes;
we have already seen that a prime category of flaw occurs when local runs that
should agree on a parameter do not. The language also expresses the orderings
among events, and assumptions on uncompromised keys and fresh values.

However, it is also designed to have the minimum possible expressiveness.
It contains no arithmetic; it contains no inductively defined data-types such as
terms; and it has no ability to describe the syntax of messages. As a consequence,
its formulas are preserved under a class of “security preserving” transformations
between protocols [11]. Also, for interesting restricted classes of protocols, the
set of security goals they achieve is decidable [8]. These properties require careful
control over expressiveness.

In this language, we may summarize Eqn. (1) by the formula:

ClientDone(n) ∧ Peer(n,K) ∧ Non(sk(K)) (5)

This asserts of a node n that it completes a client run, i.e. it is the second event
on that local run. It also asserts that the peer parameter of this node n is a name
K such that the signature key of K is non-compromised. The letters n,K here
are free variables, and this formula is satisfied under an assignment of values to
the free variables if those values have the properties we mentioned. A precise
semantics is given in [11].

Observe that we don’t have to say ClientStart(m), referring to the first
node of the run. The presence of a second node ensures that the previous step
occurred, and we don’t need to say anything in particular about it.

Turning to Eqn. (2), the conjuncts of Eqn. (5) still hold. There is however
also another strand, which is a complete KAS run. We also know that several
of its parameters agree with those of C:

(5) ∧ Self(n, c)∧ AuthNonce(n, n2) ∧
KASDone(m) ∧ Self(m,K)∧ AuthNonce(m,n2) ∧ (6)

Peer(m, c)∧ Preceq(m,n)

The shape analysis formula that results has a single disjunct in the conclusion:

∀n,K . (5) =⇒ ∃m, c, n2 . (6) (7)

102 J.D. Guttman, M.D. Liskov, and P.D. Rowe

More generally, suppose that we are given a protocol Π . It has a number of
roles, and each of its roles has a number of nodes. For each of these nodes, the goal
language GL(Π) has a role position predicate. The two predicates ClientDone(n)
and KASDone(m) used above are examples. Each one is a one-place predicate that
says what kind of node its argument n,m refers to.

On each node, there are parameters. The parameter predicates are two place
predicates. Each one associates a node with one of the values that has been
selected when that node occurs. For instance, Self(n, c) asserts that the self
parameter of n is c. This allows us to assert agreement between different strands.
Peer(m, c) asserts that m appears to be partnered with the same principal who
is in fact the self parameter of n.

The role position predicates and parameter predicates vary from protocol
to protocol, depending on how many nodes the protocol has, and how many
parameters. The predicate names may be chosen as convenient. For instance, we
may choose to use the same predicates for two different protocols, using this to
emphasize structural similarities between them.

All protocols also have some shared common vocabulary (summarized in Ta-
ble 1) that helps to express the structural properties of bundles. Preceq(m,n)
asserts that one node occurs before another; Coll(m,n) says that they lie on the
same strand. Non(v) and Unq(v) express non-compromise and freshness (unique
origination). pk(a) and sk(a) relate a principal to its keys, ltk(a, b) represents
the long-term key of two principals, and inv(k) is the inverse of a key.

Table 1. Protocol-independent vocabulary of the languages GL(Π)

Functions: pk(a) sk(a) inv(k)
ltk(a, b)

Relations: Preceq(m,n) Coll(m,n) =
Unq(v) UnqAt(n, v) Non(v)

Using Shape Analysis Formulas to Evaluate Alternatives. We now re-
turn to the intuitive notions of “good enough” and “as good as” and describe how
these notions can be rigorously reflected through a combined understanding of
shape analysis formulas and goal languages.

The notion of “good enough”, naturally, is to be defined relative to a goal or
set of goals. A protocol Π is good enough if all the required goals are satisfied
in all executions. Each goal is of the form

∀x . (Φ =⇒
∨

1≤j≤i

∃yj . Ψj) (8)

where Φ and Ψ are conjunctions of atomic formulas of the goal language GL(Π).
We can evaluate whether Π achieves the goal by running cpsa starting from
a suitable skeleton, the “characteristic skeleton” of Φ. If some Ψj is satisfied in
each of the resulting shapes, the goal is achieved.

Security Goals and Evolving Standards 103

“At Least as Good as.” We relativize our definition of one protocol being at
least as good as another to a particular hypothesis Φ. This hypothesis should
be a formula of both GL(Π1) and GL(Π2). In that case, Π2 is at least as good
as Π1 relative to the hypothesis Φ if, for every goal of the form ∀x̄ . Φ =⇒

∨
Ψj

with this hypothesis Φ, if Π1 achieves this goal, then so does Π2.
We can write Π1 �Φ Π2 to mean that Π2 is at least as good as Π1 relative to

Φ.
Two protocols are equally good relative to Φ if each is at least as good as the

other relative to it.
We can establish Π1 �Φ Π2 from shape analysis formulas. Φ determines a

skeleton A0 in protocol Π1 and a skeleton B0 in protocol Π2. Suppose the set
of shapes for A0 are C1, . . . ,Cn, and the set of shapes for B0 are D1, . . . ,Dm. If
the disjunction of the characteristic formulas of the Di entails the disjunction of
the characteristic formulas of the Cj , then Π1 �Φ Π2:∨

i≤m

∃yi . cf(Di) =⇒
∨
j≤n

∃zj . cf(Cj). (9)

If Π1 achieves a goal ∀x̄ . Φ ⇒ Ψ , then
∨

j≤n ∃zj . cf(Cj) =⇒ Ψ . Hence, Π2

achieves the goal also, because in protocol Π2,

∀x̄ . Φ ⇒
∨

1≤i≤n

∃yi . cf(Di)

⇒
∨

1≤j≤m

∃zj . cf(Cj) ⇒ Ψ

5 Example: TLS Renegotiation

Our method gives a good criterion for deciding that two protocols are equally
good—or one is at least as good as the other—relative to a hypothesis Φ. But as
described, this method applies if the fix consists of internal protocol modifications
only. In the remainder of this paper, we would like to consider the possibility
that the fix involves both modifying the protocol and also the information that
it passes up to the application on behalf of which it is acting. Thus, part of the
resolution is for the application to use this additional information correctly, so
as to achieve its security goals. The underlying protocol is obligated to provide
it with accurate information, and signaling when relevant events occur. We start
with an example.

Transport Layer Security (TLS) [7] is a globally deployed protocol designed to
add confidentiality, authentication and data integrity between two communicat-
ing applications. It is secure, scalable, and robust enough to protect e-commerce
transactions performed over HTTP. Despite the success of TLS it has been forced
to evolve over time, in part due to the discovery of various flaws in the design
logic.

One such flaw, discovered in 2009 by Marsh Ray, concerns renegotiating TLS
parameters. It works on the boundary between the TLS layer and the application

104 J.D. Guttman, M.D. Liskov, and P.D. Rowe

layer it supports. [19] contains a good description of the flaw; we give a brief
summary.

Client Attacker Server
------ ------- ------

<----------- Handshake ---------->
<======= Initial Traffic ========>

<--------------------- Handshake ============================>
<=================== Client Traffic ==========================>

Fig. 4. TLS renegotiation attack

Fig. 4 (borrowed from [19]) is a high-level picture of the attack. The at-
tacker first creates a unilaterally authenticated session with the server in the
first handshake. Thus, the server authenticates itself to the attacker, but not
vice versa. The attacker and server then exchange initial traffic protected by
this TLS session. Later, a renegotiation occurs, possibly when the application
at the server requires mutual authentication for some action. The attacker then
allows the client to complete a handshake with the server, adding and removing
TLS protections. The client’s handshake occurs in the clear (depicted by <-->
in Fig. 4), while the server’s handshake is protected by the current TLS session.
The attacker has no access to this newly negotiated session, but the server may
retroactively attribute data sent in the previous session to the authenticated
client. The server may then perform a sensitive action in response to a request
sent by the attacker, but based on the credentials subsequently provided by the
client. Which level is to blame for this attack?

– Does TLS fail to achieve a security goal that it should achieve?
– Or should the application take responsibility? It accepts some data out of

a stream that is not bilaterally authenticated, and lumps it with the future
data which will be bilaterally authenticated.

– Or is there shared responsibility? Perhaps TLS should provide clearer indi-
cations to the application when a change in the TLS properties takes place,
and then the application should heed these indications.

In fact TLS was updated with a renegotiation extension [19]. TLS renegoti-
ation now cryptographically binds the new session to the existing session. If a
server completes a mutually authenticated renegotiation with a client, then the
current session was also negotiated with the same client. However, the authors
of [19] also note:

While this extension mitigates the man-in-the-middle attack described
in the overview, it does not resolve all possible problems an application
may face if it is unaware of renegotiation.

As Bhargavan et al. [2]’s recent attacks showed, the practically important issue
was not in fact resolved by this.

Security Goals and Evolving Standards 105

However, for applications to take partial responsibility, some signals and com-
mands must be shared between TLS and the application. Enrich-by-need pro-
tocol analysis—coupled with our goal language—fits in naturally here. With a
little effort the goal language can be updated to address the multilayer nature
of flaws such as this.

6 Goals for Protocol Interfaces

We now describe how to express protocol goals to make cross-level choices ex-
plicit.

The job of TLS, acting in either direction, is to take a stream of data from
a transmitting application, and to deliver as much as possible of this stream
to the receiving application. When the sender is authenticated to the receiver,
TLS guarantees that the portion delivered is an initial segment of what the
authenticated sender transmitted. When the mode offers confidentiality, no other
principal should learn about the content (as opposed to the length).

Naturally, these goals are subject to the usual assumptions, such as that the
certificate authorities are trustworthy, that the private keys are uncompromised,
and that randomness was freshly chosen.

When a renegotiation occurs, this affects what the application should rely
on. If a handshake authenticates a client identity C, then the authentication
guarantee should apply to the data starting when the cipher spec changes. We
will call the period starting from a cipher spec change, and lasting until the next
one (if any) an epoch, and part of the work of a handshake is to agree on an
epoch ID between the endpoints. Thus, any guarantee should apply throughout
an epoch. Authentication guarantees for the Client Traffic should definitely not
apply to the Initial Traffic of Fig. 4, which lies on the other side of an epoch
boundary from the authenticated traffic.

The interface between the protocol and its application, then, is an essential
part of expressing the guarantees that the application should rely on. We can
enlarge our notion of “protocol” to include signals across the API as well as the
message roles. This enlarged protocol can itself be used to define a goal language.
Some goal formulas refer only to API events and their parameters, not to the
nuts-and-bolts events of the core protocol itself. These formulas express API-level
goals. They are of course true only if the lower level protocol behaves properly.
However, their content speaks explicitly only about the events of interest to the
upper level.

Such a language allows us to apply our notions of “good enough” and “at least
as good as”, showing that they are relevant to our enlarged, API-aware protocols.

Representing APIs. An API is a set of signals and commands that may occur
in a certain pattern, between an application and the service that implements the
API. In our case, the service directly controls actual protocol interactions. The
API thus consists of the signals (from service to application) and commands
(from application to service), and how the reception of those signals and com-
mands line up with the implemented protocol behavior.

106 J.D. Guttman, M.D. Liskov, and P.D. Rowe

The communication between service and application is of a different nature
than the communication that takes place in protocol execution: in particular, this
communication is not observable or controllable by a typical network adversary.

We enlarge our notion of the protocol to one that includes the signals and
commands as well as how they interact with protocol messages. This enlarged
notion of the protocol allows us to describe a goal language. In that language, an
application goal is a goal expressible in terms directly referring to application-
level roles.

Enrich-By-Need Analysis for APIs. In order to evaluate “good enough”
or “as good as” for application goals, we need an enrich-by-need analysis that
respects the distinct nature of communication between the API and the pro-
tocol service. There is some recent research on analyzing protocols with state
that could be relevant. But no special machinery is required beyond protocol
messages: all we need to do is emulate the information passed between applica-
tion and service as a secure channel independent from all others involved in the
protocol.

Let Π be a protocol. An API-enhanced version of Π is a protocol Π ′ that
has a set of new nodes api such that the result of omitting the nodes api from
Π ′ yields Π . A goal formula Φ is an API goal if it refers only to nodes in api,
and their parameters.

If Φ is an API goal then its truth or falsehood can be established by an
appropriate enrich-by-need analysis of Π ′. In other words, “good enough” can be
established through enrich-by-need analysis just as was the case for protocol-level
goals.

Furthermore, for any particular API goal, its antecedent references a certain
subset of API role events and variables. Thus, it can be meaningful to compare
two APIs (even for exactly the same underlying protocol) in terms of goals that
are API goals for both APIs. In such circumstances, our notion of “as good as”
applies here.

TLS Renegotiation, Revisited. Now we state an example of an application-
level goal for TLS that addresses the interface concerns specific to the rene-
gotiation flaw. In particular, the authors of [19] point out the dangers of an
application being unaware of renegotiation. The flaw that arises from the rene-
gotiation attacks is most easily understood from the application level. Here, we
describe that goal in a formal manner.

The application is aware of data being exchanged over a TLS connection, and
may also query for the status of the connection. Consider the following set of
predicates:

– DataSend(n): a command was issued at node n to send data over TLS.
– DataRecv(n): a signal was received at node n that data was received from

TLS.
– DataVal(n, d): d is the data involved in the DataSend or DataRecv event

occurring at node n.
– Self(n, ID): ID is the identifier of the actor at node n.

Security Goals and Evolving Standards 107

– Status(n): a status signal was received at node n about a TLS connection.
– EID(n, eid): eid is the epoch ID involved in the DataSend, DataRecv, or

Status event occurring at node n.
– Client(n, cID): cID is either the ID of the client reported as the authenti-

cated client in a status event, or “anon” otherwise.
– Server(n, sID): sID is the ID of the server reported in a status event.

Informally, the goal we will describe is that if the server receives d over some
TLS connection, and also gets a report about the status of that same connection,
then either the status report identifies the client as anonymous, or the identified
client actually sent the data d. Formally,

DataRecv(n) ∧ DataVal(n, d) ∧ Self(n, s) ∧ EID(n, eid),

∧ Status(m) ∧ Server(m, s) ∧ Client(m, c) ∧ EID(m, eid)

⇒ c = “anon” ∨
∃n′ : DataSend(n′) ∧ Self(n′, c) ∧ DataVal(n′, d) ∧ EID(n′, eid)

for all values of the free variables.
Here the first line of the hypothesis assumes that a data reception signal

occurred for s at node n, involving data d, epoch identifier eid. The second line
assumes that a status was checked for epoch identifier eid, and the signal was
received at node m and indicates that the client is c and the server is s. If both of
these conditions are met for a common eid, the goal states that either c is “anon”
(indicating that the client is not authenticated), or otherwise that the client c
actually sent d. This last claim is the mirror-image of the first line: namely, that
a data transmission command occurred for c at node n, involving data d and
epoch identifier eid.

Note that the goal does not specify that Preceq(m,n): in other words, the
status may be reported even after the data is received and we still expect the
status to reflect an accurate assessment of the identity of the client if the client
is not anonymous. This is precisely what goes wrong in the renegotiation attack:
the adversary initiates an anonymous session, causes data to be received, and
then convinces an honest client to renegotiate the session so that it is later
reported as authenticated.

Goals and Mandates. Describing the goal for TLS at this level is natural,
but the discussion ultimately must match the mandate of the standard itself: to
specify the actual protocol messages and to advise about how applications are
to be informed on its use. Delving into details of the interface, in this case, is not
appropriate (but if it was, the notions of “good enough” and “as good as” apply
just as well to the more complex interface-inclusive protocol model). However,
stakeholders present in the discussion will be able to comment on the constraints
they are under.

One particular constraint is that a TLS API will ultimately aim to set up a
simple type of data stream functionality in which status issues are separated from
data signals. In other words, the Status and DataRecv events cannot occur at

108 J.D. Guttman, M.D. Liskov, and P.D. Rowe

the same node. Another important constraint is that status reports be limited to
a current status, so that the API is not responsible for maintaining an exhaustive
status history.

7 Related Work and Conclusion

The full literature on the use of formal methods for analyzing cryptographic pro-
tocols is too vast to summarize here, although we would direct the reader to [15]
for a (now classic) survey. As methods and tools have become more developed,
they have been effectively applied to the analysis of published standards, demon-
strating their maturity and applicability [14,16,1,2,4]. Many of these efforts have
explicitly engaged with the the relevant standards body to ensure their input
was reflected in the standard.

We are not the only ones to propose a logical language of security goals. Nu-
merous efforts attempt to use a formal logic in which to reason directly about
cryptographic protocols [3,6]. While they do provide formal statements of secu-
rity goals, the proof methods do not lend themselves to natural comparisons of
the goals that various protocols might achieve. [12] contains a hierarchy of au-
thentication goals demonstrating the relationship between the goals themselves,
and [5,1] integrate the hierarchy with an enrich-by-need analysis method.

The process of standardizing cryptographic protocols is both difficult and
important. Getting a variety of stakeholders to converge on a single point of
view requires careful consideration of all proposed options and a clear way of
comparing them. Although many unchangeable constraints exist pertaining to
issues such as efficiency, computational limitations, or backwards compatibility,
the security of the designed protocol is typically of paramount importance. Un-
fortunately, the term “security” can mean different things in different contexts.
A clear and precise formulation of the security requirements of a protocol can
help focus group discussions on the precise outcomes that it is most important
for a protocol to achieve. It can also help to distinguish those constraints that
pertain to security from operational constraints, allowing committees to better
understand the space of trade-offs for design decisions.

In this paper we demonstrated how automated tools based on formal methods
can assist in this complicated decision-making process. We presented a formal
language in which to express security goals. We focused on how the enrich-by-
need method of protocol analysis integrates with this goal language and demon-
strated its applicability to the historical case of mitigating a flaw in the PKINIT
protocol. We then demonstrated how the goal language might be adapted to
accommodate goals that lie at the intersection of security protocols and the ap-
plications they support, reinforced by the example of a previously discovered
flaw in TLS renegotiation.

While we believe the goal language paired with enrich-by-need protocol anal-
ysis is particularly interesting, we also believe other formal languages and tools
could be used in a quite similar way. The precision and clarity that comes from
the abstraction of formal methods must be balanced against the practical con-
siderations of potential implementations. We present here a vision for how the

Security Goals and Evolving Standards 109

results of formal analyses can be incorporated with real-world decision mak-
ing processes to focus discussion and strengthen the security of the resulting
standards.

References

1. Basin, D.A., Cremers, C., Meier, S.: Provably repairing the ISO/IEC 9798 standard
for entity authentication. Journal of Computer Security 21(6), 817–846 (2013)

2. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., Strub, P.-Y.: Triple
handshakes and cookie cutters: Breaking and fixing authentication over TLS. In:
IEEE Symposium on Security and Privacy (2014)

3. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transac-
tions on Computer Systems 8, 18–36 (1990)

4. Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K., Walstad, C.: Breaking and
fixing public-key Kerberos. Inf. Comput. 206(2-4), 402–424 (2008)

5. Cremers, C., Mauw, S.: Operational Semantics and Verification of Security Proto-
cols. Springer (2012)

6. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (PCL).
Electr. Notes Theor. Comput. Sci. 172, 311–358 (2007)

7. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), Updated by RFCs 5746, 5878, 6176 (August
2008)

8. Dougherty, D.J., Guttman, J.D.: Decidability for lightweight Diffie-Hellman pro-
tocols. In: IEEE Symposium on Computer Security Foundations (2014)

9. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewriting and the com-
plexity of bounded security protocols. Journal of Computer Security 12(2), 247–311
(1999), Initial version appeared Workshop on Formal Methods and Security Pro-
tocols (1999)

10. Guttman, J.D.: Shapes: Surveying crypto protocol runs. In: Cortier, V., Kremer, S.
(eds.) Formal Models and Techniques for Analyzing Security Protocols. Cryptology
and Information Security Series. IOS Press (2011)

11. Guttman, J.D.: Establishing and preserving protocol security goals. Journal of
Computer Security 22(2), 201–267 (2014)

12. Lowe, G.: A hierarchy of authentication specification. In: CSFW, pp. 31–44 (1997)
13. Meadows, C.: The NRL protocol analyzer: An overview. The Journal of Logic

Programming 26(2), 113–131 (1996)
14. Meadows, C.: Analysis of the Internet Key Exchange Protocol using the NRL

Protocol Analyzer. In: IEEE Symposium on Security and Privacy, pp. 216–231
(1999)

15. Meadows, C.: Formal methods for cryptographic protocol analysis: Emerging is-
sues and trends. IEEE Journal on Selected Areas in Communications 21(1), 44–54
(2003)

16. Mitchell, J.C., Roy, A., Rowe, P., Scedrov, A.: Analysis of EAP-GPSK authenti-
cation protocol. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.)
ACNS 2008. LNCS, vol. 5037, pp. 309–327. Springer, Heidelberg (2008)

17. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos Network Authen-
tication Service (V5). RFC 4120 (Proposed Standard), Updated by RFCs 4537,
5021, 5896, 6111, 6112, 6113, 6649, 6806 (July 2005)

110 J.D. Guttman, M.D. Liskov, and P.D. Rowe

18. Ramsdell, J.D., Guttman, J.D.: CPSA: A cryptographic protocol shapes analyzer
(2009), http://hackage.haskell.org/package/cpsa

19. Rescorla, E., Ray, M., Dispensa, S., Oskov, N.: Transport Layer Security (TLS)
Renegotiation Indication Extension. RFC 5746 (Proposed Standard) (February
2010)

20. Song, D.X.: Athena: A new efficient automated checker for security protocol anal-
ysis. In: Proceedings of the 12th IEEE Computer Security Foundations Workshop.
IEEE CS Press (June 1999)

21. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security proto-
cols correct. Journal of Computer Security 7(2/3), 191–230 (1999)

22. Zhu, L., Tung, B.: Public Key Cryptography for Initial Authentication in Kerberos
(PKINIT). RFC 4556 (Proposed Standard), Updated by RFC 6112 (June 2006)

http://hackage.haskell.org/package/cpsa

Analysis of the IBM CCA Security API

Protocols in Maude-NPA�

Antonio González-Burgueño1, Sonia Santiago1, Santiago Escobar1,
Catherine Meadows2, and José Meseguer3

1 DSIC-ELP, Universitat Politècnica de València, Spain
{agonzalez,ssantiago,sescobar}@dsic.upv.es

2 Naval Research Laboratory, Washington DC, USA
meadows@itd.nrl.navy.mil

3 University of Illinois at Urbana-Champaign, USA
meseguer@illinois.edu

Abstract. Standards for cryptographic protocols have long been attrac-
tive candidates for formal verification. It is important that such standards
be correct, and cryptographic protocols are tricky to design and subject
to non-intuitive attacks even when the underlying cryptosystems are se-
cure. Thus a number of general-purpose cryptographic protocol analysis
tools have been developed and applied to protocol standards. However,
there is one class of standards, security application programming in-
terfaces (security APIs), to which few of these tools have been applied.
Instead, most work has concentrated on developing special-purpose tools
and algorithms for specific classes of security APIs. However, there can
be much advantage gained from having general-purpose tools that could
be applied to a wide class of problems, including security APIs.

One particular class of APIs that has proven difficult to analyze us-
ing general-purpose tools is that involving exclusive-or. In this paper
we analyze the IBM 4758 Common Cryptographic Architecture (CCA)
protocol using an advanced automated protocol verification tool with
full exclusive-or capabilities, the Maude-NPA tool. This is the first time
that API protocols have been satisfactorily specified and analyzed in the
Maude-NPA, and the first time XOR-based APIs have been specified
and analyzed using a general-purpose unbounded session cryptographic
protocol verification tool that provides direct support for AC theories.
We describe our results and indicate what further research needs to be
done to make such protocol analysis generally effective.

Keywords: IBM 4758 Common Cryptographic Architecture, security
Application Programming Interfaces (security APIs), symbolic crypto-
graphic protocol analysis, automatic reasoning modulo XOR theory.

� Antonio González-Burgueño, Sonia Santiago and Santiago Escobar have been par-
tially supported by the EU (FEDER) and the Spanish MINECO under grants
TIN 2010-21062-C02-02 and TIN 2013-45732-C4-1-P, and by Generalitat Valenciana
PROMETEO2011/052. José Meseguer has been partially supported by NSF Grant
CNS 13-10109.

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 111–130, 2014.
c© Springer International Publishing Switzerland 2014

112 A. González-Burgueño et al.

1 Introduction

Standards for cryptographic protocols have long been attractive candidates for
formal verification. Cryptographic protocols are tricky to design and subject
to non-intuitive attacks even when the underlying cryptosystems are secure.
Furthermore, when protocols that are known to be secure are implemented as
standards, the modifications that are made during the standardization process
may introduce new security flaws. Thus a considerable amount of work has been
done in the application of formal methods to cryptographic protocol standards
[26,4,25,1]. In this work the protocols are treated symbolically, with the cryp-
tosystems treated as black-box function symbols. The formal methods tool at-
tempts to show that there is no way an attacker, by interacting with the protocol
and applying the cryptographic functions symbols in any order, can break the
security of the protocol. Such tools can be used both to search for attacks and
to prove security with respect to the symbolic model.

Such symbolic formal analyses can be of great benefit to standards develop-
ment. The environment in which these standards must be developed makes it dif-
ficult to maintain security. Standards often must compromise between different
and conflicting requirements. The main focus is often interoperability instead of
security. Moreover, standards are often evolving documents; they do often must
be updated as new requirements arise. However, standards are chiefly intended
as guides to implementation, and often contain little information about the secu-
rity decisions that were made in the design of previous versions of the protocol.1

All of this means that security flaws often creep into a standard even when it
is based on a protocol that was originally secure. Symbolic formal analysis can
provide a rapid means of evaluating and re-evaluating the security of a standard
and the security requirements it must satisfy as it evolves.

Most symbolic analysis work has concentrated on standards for key generation
and secure communication, as these are the types of protocols that are most
widely standardized. However, recently another type of application has begun to
attract interest: secure Application Programming Interface (API) protocols. This
is the functionality a secure device provides for use by applications that run on it.
The API allows the application to authenticate itself to the device and perform
the functions it is authorized to do. However, it must also be constructed so that
the application can not use it to perform any actions that it is not authorized to
do. For example, it should not be able to obtain cryptographic keys in the clear. It
is clearly more economical, both from the point of view of guaranteeing security
and producing applications, if APIs are standard across different platforms, and
as a result such standards as the IETF’s GSSAPI [21] have appeared. But even
when an API is not standardized across different platforms, but is created by a
single company or other entity to guide application implementers in the use of the
devices it creates, it still has many of the properties of a standard. The focus of
the documentation is more on implementation than explaining security decisions,

1 The IETFs insistence on a Security Considerations section in every document is an
attempt to address this last problem.

Analysis of the IBM CCA Security API Protocols in Maude-NPA 113

and the APIs often evolve as the hardware and the requirements it must satisfy
evolve. Moreover, they are widely distributed and available for formal analysis.
Thus lessons learned by analysis of APIs that are not official standards can still
be useful to the designers of such standards.

APIs face many of the same issues as key distribution protocols. However,
although some of the earliest formal cryptographic protocol analysis work was
applied to security APIs [19,22,23], it was a long time before there was any
work following up on that. Indeed, it was not until more recent work uncovered
security problems in a number of well-known APIs, such as Bond’s discovery of
flaws in the IBM 4758 Common Cryptographic Architecture API (CCA-API)
[3] that this again became an active area of investigation. Even so, application
of symbolic formal methods tools for cryptographic protocol analysis to this
problem have not been that common until recently. Even now, work has mostly
concentrated on developing special-purpose algorithms and tools fine-tuned for
specific classes of APIs, rather than expanding general-purpose cryptographic
protocol analysis tools to deal with this kind of problem. Indeed, even though
Bond’s attacks on CCA were discovered almost fifteen years ago, and they have
become one of the benchmarks for symbolic protocol analysis, general-purpose
tools often still struggle with them.

One of the reasons we believe that general-purpose symbolic cryptographic
protocol analysis tools have not been applied yet that widely to security APIs
is that the analysis of some API protocols involves features that are not usually
considered in the analysis of cryptographic protocols. An illustrative example
of this case is the work of Mukhamedov et. al. [28]. In this work the authors
analyze a fragment of the API for a Trusted Platform Module in ProVerif [2],
but encountered problems in encoding state information and in handling such
information during the analysis. However, we note that the model of APIs and
their desired behavior is possible to formalize and verify by hand, as in [5,10];
the issue here is implementing the appropriate functionality into cryptographic
protocol analysis tools.

Another reason that is perhaps harder to address is that many of the APIs
rely on properties of the cryptoalgorithm that are not supported by many of the
tools, or are supported only partially. Many of these properties can be expressed
as equations describing the behavior of the crypto system. For example, CCA-
API makes extensive use of exclusive-or, which satisfies the following equations,
where ∗ denotes the exclusive-or symbol:

x ∗ (y ∗ z) = (x ∗ y) ∗ z (associativity)

x ∗ y = y ∗ x (commutativity)

x ∗ 0 = x (neutral element)

x ∗ x = 0 (self-cancellation)

Although there are a number of tools, e.g. ProVerif, that can deal with equa-
tions that can be expressed as rewrite rules (that is, that can be given an ori-
entation), tools that can deal with equations that involve both associativity

114 A. González-Burgueño et al.

and commutativity (AC) are rarer. Even those tools that do support AC theories
do not always support exclusive-or. For example, the Tamarin tool is optimized
[27] for modular exponentiation and bilinear pairing, but has not been applied to
or optimized for exclusive-or. However, the problem is not necessarily completely
intractable. Hand proofs have been developed for some APIs, a number of de-
cision procedures have been developed for the bounded session model, in which
the attacker can interact with the protocol only a finite number of times [6,7],
and others have been developed for the unbounded session model for certain
subclasses of protocols [8,32,9]. In particular, the class of algorithms addressed
by [9] is focused on IBM-CCA-like protocols, and has been applied to several
versions of IBM-CCA, including the ones analyzed in this paper. Steel [31] has
also proposed the use of XOR constraints and applied them to the analysis of the
IBM CCA protocols, as well as some key exchange protocols using XOR, such as
a modified version of Needham-Schroeder. However, this also assumes a bounded
session model, e.g. a bounded number of executions of the API operators.

There have, however, been some notable exceptions to this rule, in which gen-
eral cryptographic protocol analysis tools that allow search in the unbounded ses-
sion model have been applied to protocols using exclusive-or. One is the Maude-
NPA protocol analysis tool [12], which supports equational theories having finite
variant decompositions, which includes exclusive-or. It has been used successfully
to analyze a number of protocols that use exclusive-or, e.g. in [13,15], but had not
been applied to cryptographic APIs until now. The other is the work of Küsters
and Truderung [20], who give an algorithm for compiling a class of xor-based
protocols called XOR-linear to protocols that can be analyzed via ProVerif, a
tool that does not in itself support AC theories. Not all XOR-based protocols
are XOR-linear, but in some cases it is possible to transform a protocol to an
XOR-linear protocol that is equivalent to the original with respect to secrecy
properties. Küsters and Truderung perform such a transformation for the IBM
CCA, and then use their algorithm to analyze it in ProVerif.

In this paper we apply Maude-NPA to the analysis of IBM CCA. We analyze
not only the original protocol, but the different fixes provided by IBM in [16],
and the different XOR-linear versions provided by Küesters and Truderung in
[20]. In particular, we seek to reproduce Bond’s attack on the different versions.
We demonstrate that it is indeed possible to perform analyses of APIs using
XOR, and in some cases to achieve termination. We also discuss what needs to
be done to improve Maude-NPA’s performance.

In addition we demonstrate the use of never patterns to refine and guide our
search. Maude-NPA finds attacks by searching backwards from an attack pattern.
A never pattern is a state pattern that can be added to the attack pattern to
reduce the size of the search space; if Maude-NPA creates a state in the search
tree that contains an instantiation of a never pattern, then it does not look
for any children of that state. We show how never patterns can be used in a
way that reduces the size of the search space but is complete with respect to
reachability of the original attack pattern. In some cases it may not be possible
to maintain completeness; but we show how never patterns can be used in a way

Analysis of the IBM CCA Security API Protocols in Maude-NPA 115

that maintains completeness with respect to the existence of a particular attack
trace or class of traces. Both types of never patterns were used in the IBM-CCA
analyses.

2 Maude-NPA

In this section we give a high-level summary of Maude-NPA, with particular
interest paid to the use of never patterns. For further information, please see
[12].

2.1 Preliminaries on Unification and Narrowing

We assume an order-sorted signature Σ = (S,≤, Σ) with a poset of sorts
(S,≤) and an S-sorted family X = {Xs}s∈S of disjoint variable sets with each
Xs countably infinite. TΣ(X)s is the set of terms of sort s, and TΣ,s is the set
of ground terms of sort s. We write TΣ(X) and TΣ for the corresponding order-
sorted term algebras. For a term t, Var(t) denotes the set of variables in t.

Positions are represented by sequences of natural numbers denoting an access
path in the term when viewed as a tree. The top or root position is denoted by
the empty sequence ε. The subterm of t at position p is t|p and t[u]p is the term
t where t|p is replaced by u.

A substitution σ ∈ Subst(Σ,X) is a sorted mapping from a finite subset of X
to TΣ(X). Substitutions are written as σ = {X1 �→ t1, . . . , Xn �→ tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X). The application of a substitution σ to
a term t is denoted by tσ.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X)s for some
sort s ∈ S. Σ and a set E of Σ-equations, The E-equivalence class of a term
t is denoted by [t]E and TΣ/E(X) and TΣ/E denote the corresponding order-

sorted term algebras modulo E. An equational theory (Σ,E) is a pair with Σ
an order-sorted signature and E a set of Σ-equations.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUW

E (t = t′) is said to be
a complete set of unifiers for the equality t = t′ modulo E away from W iff:
(i) each σ ∈ CSUW

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ
of t = t′ there is a σ ∈ CSUW

E (t = t′) such that σ|W �E ρ|W (i.e., there is a
substitution η such that (σ ◦ η)|W =E ρ|W); and (iii) for all σ ∈ CSUW

E (t = t′),
Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩W = ∅.

A rewrite rule is an oriented pair l → r, wherel �∈ X and l, r ∈ TΣ(X)s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a
set of rewrite rules. The (R,E) rewriting relation →R,E on TΣ(X) is defined as:
t →p,R,E t′ iff there exist p ∈ PosΣ(t), a rule l → r in R, and a substitution σ
such that t|p =E lσ and t′ = t[rσ]p.

116 A. González-Burgueño et al.

Let t be a term and W be a set of variables such that Var(t) ⊆ W , the R,E-
narrowing relation on TΣ(X) is defined as t �p,σ,R,E t′ if there is a non-variable
position p ∈ PosΣ(t), a rule l → r ∈ R properly renamed s.t. (Var(l)∪Var(r))∩
W = ∅, and a unifier σ ∈ CSUW ′

E (t|p = l) for W ′ = W ∪ Var(l), such that
t′ = (t[r]p)σ.

2.2 Maude-NPA Syntax and Semantics

Given a protocol P , states are modeled as elements of an initial algebra TΣP/EP ,
where ΣP is the signature defining the sorts and function symbols (for the
cryptographic functions and for all the state constructor symbols) and EP is
a set of equations specifying the algebraic properties of the cryptographic func-
tions and the state constructors. Therefore, a state is an EP -equivalence class
[t]E ∈ TΣP/EP with t a ground ΣP -term.

In Maude-NPA a state pattern for a protocol P is a term t of sort State (i.e.,
t ∈ TΣP/EP (X)State) which has the form {S1& · · · &Sn& {IK}} where & is an
associative-commutative union operator with identity symbol ∅. Each element
in the set is either a strand Si or the intruder knowledge {IK} at that state.

The intruder knowledge {IK} also belongs to the state and is represented as
a set of facts using the comma as an associative-commutative union operator
with identity element empty. There are two kinds of intruder facts: positive
knowledge facts (the intruder knows m, i.e., m∈I), and negative knowledge
facts (the intruder does not yet know m but will know it in a future state, i.e.,
m/∈I), where m is a message expression.

A strand [14] specifies the sequence of messages sent and received by a princi-
pal executing the protocol and is represented as a sequence of messages
[msg−1 ,msg+2 ,msg−3 , . . . ,msg−k−1,msg+k] such that msg−i (also written −msgi)

represents an input message, msg+i (also written +msgi) represents an output
message, and each msgi is a term of sort Msg (i.e., msgi ∈ TΣP/EP (X)Msg).

Strands are used to represent both the actions of honest principals (with a
strand specified for each protocol role) and the actions of an intruder (with a
strand for each action an intruder is able to perform on messages). In Maude-
NPA strands evolve over time; the symbol | is used to divide past and future.
That is, given a strand [m1

±, . . . , mi
± | mi+1

±, . . . , mk
±], messages m±

1 ,
. . . ,m±

i are the past messages, and messages m±
i+1, . . . ,m

±
k are the future mes-

sages (m±
i+1 is the immediate future message). A strand [msg±1 , . . . ,msg±k] is

shorthand for [nil | msg±1 , . . . ,msg±k , nil]. An initial state is a state where the
bar is at the beginning for all strands in the state, and the intruder knowledge
is empty. A final state is a state where the bar is at the end for all strands in
the state and there is no intruder fact of the form m/∈I.

Since the number of states TΣP/EP is in general infinite, rather than explor-
ing concrete protocol states [t]E ∈ TΣP/EP Maude-NPA explores symbolic state
patterns [t(x1, . . . , xn)]E ∈ TΣP/EP (X) on the free (ΣP , EP)-algebra over a set
of variables X . In this way, a state pattern [t(x1, . . . , xn)]E represents not a
single concrete state but a possibly infinite set of such states, namely all the in-

Analysis of the IBM CCA Security API Protocols in Maude-NPA 117

stances of the pattern [t(x1, . . . , xn)]E where the variables x1, . . . , xn have been
instantiated by concrete ground terms.

The semantics of Maude-NPA is expressed in terms of rewrite rules that de-
scribe how a protocol moves from one state to another via the intruder’s inter-
action with it. One uses Maude-NPA to find an attack by specifying an insecure
state pattern called an attack pattern. Maude-NPA attempts to find a path from
an initial state to the attack pattern via backwards narrowing (narrowing using
the rewrite rules with the orientation reversed). Such a backwards narrowing
sequence is called a backwards path from to the attack state. Maude-NPA at-
tempts to find paths until it can no longer form any backwards narrowing steps,
at which point it terminates. If it at that point it has not found an initial state,
the attack pattern is judged unreachable. Note that Maude-NPA puts no bound
on the number of sessions, so reachability is undecidable in general. Note also
that Maude-NPA does not perform any data abstraction such as bound num-
ber of nonces. However, the tool makes use of a number of sound and complete
state space reduction techniques that help to identify unreachable and redundant
states, and thus make termination more likely.

2.3 Never Patterns in Maude-NPA

It is often desirable to exclude certain patterns from transition paths leading
to an attack state. For example, one may want to determine whether or not
authentication properties have been violated, e.g., whether it is possible for a
responder strand to appear without the corresponding initiator strand. For this
there is an optional additional field in the attack state containing the never
patterns. Each never pattern is itself a state pattern. When we provide an
attack state A and some never patterns NP1, . . . , NPk to Maude-NPA, every
time the tool produces a state S via backwards narrowing from A, it checks
whether there is a substitution θ such that NPiθ =EP S. If that is the case, the
state is discarded. 2 We will write A with the never patterns NP1, . . . , NPk as
A || never(NP1) . . . || never(NPk).

Although never patterns were introduced as a means for specifying authenti-
cation properties, they can also be used to reduce the search space. However, we
want to preserve completeness as much as possible. Hence we make use of the
following results.

Proposition 1. Let M be a never pattern containing terms of the form m∈I.
Suppose that the state M is unreachable in Maude-NPA, Then for any state
pattern S, if S || never(M) is unreachable, then so is S.

Proof. (Sketch) Suppose that there is a backwards narrowing sequence from S
to an initial state. Then it must pass through a state containing Mθ for some
substitution θ. But since M is unreachable, so is any state containing Mθ.

2 Maude-NPA also checks whether NPiθ satisfies irreducibility constraints, as de-
scribed in [11].

118 A. González-Burgueño et al.

We refer to never patterns that satisfy the conditions of Proposition 1 as
completeness-preserving never patterns. Given a completeness-preserving never
pattern, we can add it to any attack state without affecting its reachability.

In Proposition 2 below, we say that T is a substate of S, where T and S are
state patterns, if every strand or intruder knowledge statement that appears in
T also appears in S.

Proposition 2. Let S0 �σ1,RP ,E−1
P

S1 . . . Sk−1 �σk,RP ,E−1
P

Sk = S be a back-

wards narrowing from an attack pattern S to an initial state, and M a never
pattern containing terms of the form m∈I, such that for each Si there is no
θ and T such that Mθ =EP= T , where T is a substate of Si. Then the se-
quence S0 �σ1,RP ,E−1

P
S1 . . . Sk−1 �σk,RP ,E−1

P
Sk = S is a backwards narrowing

sequence from S || never(M) to an initial state.

Proof. (Sketch.) The result follows straightforwardly from the definition of never
pattern.

We refer to never patterns that satisfy the conditions of Proposition 2 for
a given attack trace as attack-preserving never patterns. We can use attack-
preserving never patterns to help show that a new version of a protocol is im-
mune to a known attack on the old one. Suppose that we have found an attack
on a protocol, and we want to see whether a modified version of the protocol is
immune to that attack. Suppose that the search space is intractibly large, even
after adding completeness-preserving never patterns. We may be able to reduce
the search space by adding attack-preserving never patterns. In that case, un-
reachability of the attack state with the attack-preserving never patterns does
not necessarily imply unreachability of the attack state without these never pat-
terns. But it does imply that a specific class of attacks, including the original
attack we were concerned about, is no longer possible.3

We make use of both completeness-preserving and attack-preserving never
patterns in our analysis of the IBM-CCA protocols. This is described in more
detail in Section 5.

3 IBM CCA API

CCA stands for the Common Cryptographic Architecture API [17] as imple-
mented on the hardware security module IBM 4758, which is an IBM crypto-
graphic coprocessor widely used in security critical systems such as electronic
payment and automated teller machine (ATM) networks.

The CCAAPI contains several protocols, namely the CCA-0 protocol, which is
subject to an attack presented by Bond in [3], and other versions of this protocol

3 Note that if the attack state with the attack-preserving never patterns is reachable,
but the original attack is not found, that does not mean that the original attack is not
subsumed by any of the found attacks. This is a result of Maude-NPA’s state space
reduction techniques, which make Maude-NPA produce only some of the possible
attacks (but always at least one), when an attack state is reachable.

Analysis of the IBM CCA Security API Protocols in Maude-NPA 119

(CCA-1A, CCA-1B, CCA-2B, CCA-2C, and CCA-2E), designed to avoid this
attack.

As explained in [18,9], the CCA is a key management system, which provides
commands that use encrypted keys to achieve desired functions. A 168-bit triple-
DES key, known as the master key, is stored in the security module’s tamper-
proof memory and is used to encrypt all other keys, which are then kept on the
host computer. These other keys, known as working keys, are used to perform the
various functions provided by the CCA API. There are several types of working
keys, depending on the type of action they will be involved in. The CCA API
supports the following functions and features:

– Encryption and decryption of data, using the DES algorithm [29].
– Message authentication code (MAC) generation, and data hashing functions.
– Generation and validation of digital signatures.
– Generation, encryption, translation and verification of Personal Identifica-

tion Number (PIN) and transaction validation messages.
– General key management facilities.
– Administrative services for controlling the initialization and operation of the

security module.

The CCA API uses four main types for classifying DES working keys, each of
which is further sub-divided into more specific and restrictive types. A working
key is stored outside of the security module, encrypted under the exclusive-or of
the device’s master key and the control vector representing the type of the key.
The main key types, and their uses, are as follows:

– Data Keys: used for cryptographic operations on arbitrary data.
– PIN Keys: used for cryptographic operations on PINs.
– Key Encryption Keys (KEK): used to encrypt and decrypt other working

keys during transfer between security modules, and divided into import and
export types.

– Key Generation Keys: used as input to a key generation algorithm.

The typing mechanism restricts the working keys that can be used for a par-
ticular command. For example, the PIN derivation key (PDK) used in the veri-
fication of a customer’s PIN cannot be used to encrypt arbitrary data.

The following constants and variables are used throughout this section to
denote the various control vectors, cryptographic keys and other exchanged data:

– constant DATA, IMP, EXP: control vectors for data, import-type key encryp-
tion, and export-type key encryption keys, respectively

– constant KP: a part of a key, and not a complete key
– constant KM: the security module’s master key
– constants Km1, Km2, and Km3: Those are used as a simplification of the CCA

protocol where it is assumed that the environment produces the term e(IMP

* KP * KM, Km1 * Km2).
– variable ekek : an arbitrary key encryption key

120 A. González-Burgueño et al.

– variable eK : a key generation key to encrypt messages
– variable T : an unknown, randomly generated, new cryptographic key or an

arbitrary key type control vector. This variable is restricted to constants
DATA, IMP, EXP and PIN.

– variables km1, km2, km3 : i’th key part (used to build an arbitrary key)
– variable X : arbitrary (plain) data

In the following, we provide an informal description of the CCA APIs com-
mands. Table 1 summarizes the exchange of messages performed for each com-
mand: messages in the left hand side of the “rule” denote the messages that need
to be received; messages in the right hand side denotes messages that are sent as
a result of the left hand messages being received. Note that PKA Symmetric
Key Import is a later addition that converted a public key encryption of eK
to a symmetric key encryption; it did not appear in the original CCA.

Table 1. CCA API commands and description

API command Description

Encipher X, {eK}{KM∗DATA} → {X}eK
Decipher {X}eK , {eK}{KM∗DATA} → X

Key Export {eK}(KM∗T}, T, {ekek}{KM∗EXP}
→ {eK}(ekek∗T)

Key Import {eK}(kek∗T}, T, {ekek}{KM∗IMP}
→ {eK}{KM∗T}

Key Part Import First km1, T → {km1}{KM∗KP∗T}

Key Part Import km2, km1{KM∗KP∗T}, T
Middle → (km1 * km2){KM∗KP∗T}

Key Part Import Last km3, km2{KM∗KP∗T}, T
→ (km2 * km3){KM∗KP∗T}

Key Translate {eK}ekek1∗T , T, {ekek1}KM∗IMP ,
{ekek2}KM∗EXP → {eK}(ekek2∗T)

PKA Symmetric Key Import {eK ; T}PKA → {eK }KM∗T

These commands are explained in more detail below.

– Encipher encrypts the given plaintext with the supplied data key. The data
key can be either of the general Key type, or of one of the subtypes that
allow data ciphering.

– Decipher decrypts ciphertext which has been encrypted under the supplied
data key eK. The data key can be either of the general type, or of one of
the subtypes that allow data deciphering.

– Key Export converts a working key eK encrypted under the local master key
to one encrypted under the supplied export-type key encryption key ekek.

Analysis of the IBM CCA Security API Protocols in Maude-NPA 121

– Key Import converts a complete key eK encrypted by the supplied import-
type key encryption key kek to one encrypted by the local master key KM .

– The Key Part Import commands can be used one after the other, by three
different security officers, each in possession of one key part, to create the
complete working import key. Note that km1, km2 and km3 are variables.

– Key Translate translates a key eK from encryption by an import key to
encryption by an export key.

– PKA Symmetric Key Import converts a complete key eK encrypted by the
a public key PKA to one encrypted by the local master key KM .

The exact steps that the security module performs for each command have
not been included, since the process is virtually the same in all cases. The master
key and all control vectors are known to the security module, and any additional
information required is either passed on as a plaintext parameter, or is encrypted
under a known key.

Converting these rules to Maude-NPA is straightforward; terms before the
arrow are negative terms, and the term after the arrow is positive.

For further details about the specification of the CCA-API commands in
Maude-NPA, we refer the reader to [15]. Complete specifications and the analyses
outputsmay be found in http://www.dsic.upv.es/~sescobar/Maude-NPA Protocols/

API Protocols.html

For example, the Maude-NPA version of Key Import is as follows

:: nil :: [(e(kek ∗ T, eK))
−
, (T))

−
, (e(KM ∗ IMP, kek))

−
, (e(KM ∗ T, eK))

+
]

In [3] Bond points out that it is possible to obtain PDK in the clear by
combining the commands in an unexpected way. This is described in Table 2,
where we have reproduced the attack using the Maude-NPA tool. The terms
preceded by a minus sign describe those the attacker needs to know to in order
to perform an operation, while the terms preceded by a plus sign describes the
term output by an operation.

3.1 IBM’s Recommendations to Avoid CCA-0’s Attack

In order to prevent the attack of the CCA-0 protocol described above, IBM
suggested two recommendations in [16]. In the first one, they recommended the
use of a public key version of Key Import, the PKA Symmetric Key Import

described above. This version was broken by Cortier et al. in [9]. They then
recommended that access control be used, and that no principal be allowed to
execute both PKA Symmetric Key Import and Key Import. Following [9] we
refer to this as CCA-1. We specify two versions of this in Maude-NPA: CCA-
1A in which the attacker has access to Key Import, and CCA-2A, in which the
attacker has access to PKA Symmetric Key Import.

In the second recommendation IBM proposed the use of a more elaborate
form of role-based access control. Principals are assigned to roles determining
which commands they are allowed to execute. The goal is to prevent one single

http://www.dsic.upv.es/~sescobar/Maude-NPA_Protocols/API_Protocols.html
http://www.dsic.upv.es/~sescobar/Maude-NPA_Protocols/API_Protocols.html

122 A. González-Burgueño et al.

Table 2. Bond’s Attack on CCA-0

Exchanged messages Explanation

+(e(IMP * KP * KM, Km1 * Km2)), The intruder receives e(IMP * KP * KM, km1 * km2) from the

environment.

-(PIN * Km3),

-(IMP),

-(e(IMP * KP * KM, Km1 * Km2)),

+(e(IMP * KM, PIN * Km1 * Km2 * Km3)),

It executes command “Key Part Import Last” where variable

km3 is instantiated with Km3 * PIN. In this way he obtains

e(IMP * KM, PIN * km1 *km2 * km3).

-(PIN * EXP * Km3),

-(IMP),

-(e(IMP * KP * KM, Km1 * Km2)),

+(e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3)),

The intruder uses the same command again, this time with

variable km3 instantiated with PIN * EXP * Km3, obtaining

e(IMP * KM, PIN * EXP * km1 * km2 * km3).

+(e(PIN * Km1 * Km2 * Km3, PDK)), The intruder receives e(PIN * Km1 * Km2 * Km3, PDK)).

-(e(PIN * Km1 * Km2 * Km3, PDK)),

-(null),

-(e(IMP * KM, PIN * Km1 * Km2 * Km3)),

+(e(KM, PDK)),

When PDK is imported, the intruder uses “Key Import” twice:

The first time with inputs e(IMP * KM, PIN * Km1 * Km2 *

Km3) and e(PIN * Km1 * Km2 * Km3, PDK) generating the mes-

sage e(KM, PDK).

-(e(PIN * Km1 * Km2 * Km3, PDK)),

-(EXP),

-(e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3)),

+(e(EXP * KM, PDK)),

The second time “Key Import” is used with in-

puts e(IMP * KM, PIN * EXP * Km1 * Km2 * Km3), and

e(PIN * Km1 * Km2 * Km3, PDK), which gives the message

e(EXP * KM, PDK).

-(e(KM, PDK)),

-(null),

-(e(EXP * KM, PDK)),

+(e(PDK, PDK))

Finally, using the “Key Export” command, the intruder gets

e(PDK,PDK).

Table 3. CCA-API commands for IBM’s recommendations

API command CCA-1A CCA-1B CCA-2B CCA-2C CCA-2E

Encipher � � � � �
Decipher � � � � �
Key Export � � � � �
Key Import � � �
Key Part Import First � �
Key Part Import Last �
Key Test � �
PKA Sym. Key Import �
Key Translate �

individual from having access to all the commands required to mount Bond’s
attack. IBM provided an example of the KEK transfer process involving five roles
(A-E) such that no single role is able to mount the attack. Following [9], we refer
to this as CCA-2. We specify three versions in Maude-NPA depending on which
role the attacker is playing; CCA-2B, CCA-2C, and CCA-2E respectively. Since
roles A and D do not have access to any of the operations, we do not supply
specifications of them.

Table 3 summarizes the commands that each protocol can perform. In the
original attack the intruder played the roles C and E together. Note that CCA-
XY describes the actions prescribed for Role Y participating in protocol
CCA-X.

Analysis of the IBM CCA Security API Protocols in Maude-NPA 123

4 Küsters’ and Truderung’s XOR-Linear Versions of
CCA-Protocols

In [20], Küesters and Truderung analyzed the CCA API protocols in ProVerif
via a protocol transformation technique. However, this work does not support
full exclusive-or capabilities and requires restricting the analysis to XOR-linear
protocols; see [20] for details on the XOR-linear property. Because of this, they
needed to modify and transform by hand some of the CCA API commands, to
produce an XOR-linear protocol equivalent to the original with respect to secrecy
properties. We will refer to protocols using these manually-modified commands
as “XOR-linear versions” of that protocols.

Table 4. Original specification of the protocol

API command Description

Key Part Import First km1, T → {km1}{KM∗KP∗T}

Key Part Import Middle km2, km1{KM∗KP∗T}, T
→ (km1 * km2){KM∗KP∗T}

Key Part Import Last km3, km2{KM∗KP∗T}, T
→ (km2 * km3){KM∗KP∗T}

Key Translate {eK}ekek1∗T , T, {ekek1}KM∗IMP , {ekek2}KM∗EXP

→ {eK}(ekek2∗T)

Table 5. Küesters and Truderung version

API command Description

KPI-First + KPI-Add/Middle km12, T → {KM * KP * IMP}
Key Part Import Last x, T, KM * KP * T → (x){KM∗T} x, IMP

→ (X * km12){KM∗IMP}

Key Translate {eK}ekek1∗T , T, {ekek1}KM∗IMP

→ transf(eK,T)
transf(eK,T), {ekek2}{KM∗EXP}
→ {eK}(ekek2∗T)

As we can see in Tables 4 and 5, the XOR-linear versions of the CCA operators
are as follows. The “KPI-First + KPI-Add/Middle” and “Key Part Import

Last” API commands are the XOR-linear equivalent to the original “Key Part

Import First”, “Key Part Import Middle” and “Key Part Import

Last” commands. Note that now the “Key Translate” command requires two
steps instead of one in the original version. All the other commands remain the
same without any transformation.

124 A. González-Burgueño et al.

5 Maude-NPA’s CCA Analysis

In this section we describe the results of Maude-NPA’s analysis of both the origi-
nal CCA protocols as proposed by IBM and the XOR-linear versions of Küesters
and Truderung. We did not analyze the versions for ProVerif that were produced
automatically from the XOR-linear versions, since these did not use XOR nor
AC. In each case we asked if the attacker could learned e(PDK,PDK), since
this is the information that Bond’s attacker needs to compute PDK. In the
following we give the results of our Maude-NPA analyses, comparing the results
for the original protocol with those for its XOR-linear transformation when one
exists. The results are given in Table 7, where the number of states at depth N
is the number of different N -length backwards narrowing sequences produced af-
ter N backwards narrowing steps. Complete specifications and the analyses out-
puts may be found in http://www.dsic.upv.es/ sescobar/Maude-NPA Protocols/

API Protocols.html.
In some cases, we were not able to obtain termination unaided, and were

required to use never patterns as follows. We use two completeness-preserving
never patterns: (i) e(Key, KM * Msg) inI and (ii) e(IMP * KM, Type * Key)

inI. These have been proved unreachable in Maude-NPA. We also use several
attack-preserving never patterns. One of these is (iii) PDK inI. This is motivated
by the fact that in Bond’s attack the intruder is trying to find e(PDK,PDK)
so that it can learn PDK, so we would not expect it to have learned PDK
already. The others are different terms of the form (X ∗Y)∈I not used in Bond’s
attack. These are: (iv) (Km1 ∗ Y)∈I, (v) (Km2 ∗ Y)∈I , (vi) (PDK ∗ Y)∈I,
(vii) (KM ∗ Y)∈I, and (viii) (Y ∗ e(K,Y))∈I where K and Y are variables. In
Table 7 we give the cases in which we use and do not use never patterns. Since
the protocols are similar, we use the same never patterns for all cases.

CCA-0. The CCA-0 protocol is insecure, since it is subject to the attack found
by Bond in [3]. In this attack the intruder obtains a PIN derivation key in the
clear, as in the IBM attack and, thus, can compute PINs from bank account
numbers. This attack is the same found by Küesters and Truderung in [20].

Using the same assumptions as in [3] in terms of the role played by the intruder
and its knowledge, Maude-NPA finds the attack of the CCA-0 protocol after 7
steps of protocol analysis. Table 6 shows the numbers of states generated at each
depth of the backwards reachability analysis from an attack state in which the
intruder has learned the expression e(PDK,PDK).

As we can see from rows 1 and 2 of Table 7, Maude-NPA finds the initial
state for both protocols, the original CCA-0 and XOR-linear version, at the
same depth of the backwards search tree. If the analysis is continued, the XOR-
linear version produces a finite search space containing 2495 states in total. The
use of the never patterns was required to guarantee termination for the more
complex original protocol, but not the XOR-linear version. For both protocols
Maude-NPA terminated at Step 7; that is, it produced no new states at Step 8.

CCA-1A. This protocol is XOR-linear and Küesters and Truderung do not
transform it. Row 3 of Table 7 summarizes the result of the analysis of the pro-

http://www.dsic.upv.es/~sescobar/Maude-NPA_Protocols/API_Protocols.html
http://www.dsic.upv.es/~sescobar/Maude-NPA_Protocols/API_Protocols.html

Analysis of the IBM CCA Security API Protocols in Maude-NPA 125

Table 6. CCA-0 Analysis Output

Level 1 2 3 4 5 6 7
States 1 7 27 79 89 44 1

Solutions 0 0 0 0 0 0 1

Table 7. Experimental results

Protocol States Depth Terminates

1 CCA-0 291∗ 7 Yes

2 CCA-0-XOR-linear 2495 7 Yes

3 CCA-1A 21∗ 5 Yes

4 CCA-1B 48∗ 6 Yes

5 CCA-1B-XOR-linear 1 2 Yes

6 CCA-2B 324∗ 11 Yes

7 CCA-2C 131∗ 6 No

8 CCA-2C-XOR-linear 105 4 No

9 CCA-2E 385∗ 7 No
*This protocol analysis uses never patterns

tocol specified in Maude-NPA using never patterns. The search space terminates
at step 5 (that is there are no states produced at step 6).

CCA-1B. This protocol is not XOR-linear and Küesters and Truderung man-
ually transformed it. In Table 8 we can see the differences between the two
CCA-1B protocols, the original and the XOR-linear versions. Rows 4 and 5 of
Table 7 summarize the results of the analysis of both versions. As we can see, the
XOR-linear version is extremely simple and the analysis is almost immediate in
Maude-NPA, requiring no never patterns. The search space terminates at depth
6, finding no initial state.

CCA-2B. Row 6 of Table 7 summarizes the result of the analysis of CCA-
2B. Note that this protocol is XOR-linear and Küesters and Truderung do not
transform it. The search, using never patterns, terminates at depth 11, finding
no initial state.

CCA-2C. Table 8 shows the original protocol and the XOR-linear version pro-
vided by Küesters and Truderung in [20]. Rows 7 and 8 of Table 7 summarize
the results of the analysis of both versions. In these two cases we were not able
to run Maude-NPA to termination. For the XOR-linear version we were able to
run Maude-NPA to depth 4, and depth 6 in the original version.

CCA-2E. Row 9 of Table 7 summarizes the result of the analysis of the protocol
specified in Maude-NPA. Note that this protocol is XOR-linear and Küesters and
Truderung do not transform it. In this case we were able to run Maude-NPA to
depth 7, but were not able to achieve termination.

126 A. González-Burgueño et al.

In all the cases in which we were unable to achieve termination, the issue does
not seem to be so much state explosion as the time to produce all the states at
a given depth. Indeed, in the case of CCA-2E, Maude-NPA found 76 states at
step 6 and 54 states at step 7, suggesting that it might have terminated if run
to a greater depth.

Table 8. Original and Küesters-Truderung versions of CCA-1B and CCA-2C

API command Description

CCA 1-B Original {eK}ekek1∗T , T, {ekek1}KM∗IMP , {ekek2}KM∗EXP

Key Translate → {eK}(ekek2∗T)

CCA-1B-XOR-linear {eK}ekek1∗T , T, {ekek1}KM∗IMP → transf(eK,T)
Key Translate transf(eK,T), {ekek2}{KM∗EXP} → {eK}(ekek2∗T)

CCA-2C Original km3, (km2){KM∗KP∗T}, T
Key Part Import Last → (km2 * km3){KM∗KP∗T}

CCA-2C-XOR-linear x, T, KM * KP * T → (x){KM∗T}
Key Part Import Last x, IMP → (X * km12){KM∗IMP}

6 Discussion

We have demonstrated that in certain cases Maude-NPA is indeed able to prove
properties of XOR-based cryptographic APIs. This is to the best of our knowl-
edge the first application of a general-purpose unbounded session cryptographic
protocol analysis tool that directly models the properties of XOR to XOR-based
cryptographic APIs. However, there were a number of performance issues that
affected termination. We discuss these in more detail below, and what can be
done to address them.

We do not provide a detailed comparison of the performance of the different
tools, since the way protocols are modeled and security properties proved vary
from case to case. For example, Cortier et al. analyze a slightly different ver-
sion of CCA-2 in which principals are given greater privileges. Also, each of the
analyses of Cortier et al., Küsters and Truderung, and ourselves makes different
assumptions about the initial knowledge available to the attacker. On the other
hand, we can make some general comparisons. Küsters and Truderung are able
to achieve termination in all cases, although this comes at a cost, since it is
not clear that all protocols can be converted to XOR-linear versions, and it is
unknown whether the conversion process can be made sound and complete with
respect to authentication as well as secrecy properties. Cortier et. al. are able
to obtain termination for CCA-1, but for CCA-2 they ran their algorithm only
up to a certain bound, and then verified informally that the attacker could not

Analysis of the IBM CCA Security API Protocols in Maude-NPA 127

gain any useful terms by interacting further with the protocol.4 Maude-NPA
terminated for CCA-0, CCA-1, and CCA-2B with never patterns, and for the
XOR-linear versions without. However, it had more problems with CCA-2C and
CCA-2E, even the XOR-linear version. We note that state explosion could be
controlled with never patterns; the main problem we were experiencing was that
Maude-NPA took longer and longer to complete its search at a given depth, even
though it might not be producing that many states.

The chief cause of state explosion seems to be the failure of Maude-NPA
state space reduction techniques, in particular the Maude-NPA grammars to
deal with complex combinations of exclusive-or expressions. Maude-NPA uses
inductive techniques to recognize terms that are unlearnable by the intruder,
and generates grammars that describe these terms. It works well with most
theories but occasionally has problems with XOR and Abelian group theories,
especially when they occur many times in a protocol, as they do in IBM CCA.
We are currently reassessing our grammar generation techniques in the light of
our experience with IBM CCA.

The fact that Maude-NPA is taking a long time to complete, even when it does
not produce that many states, means that it is generating many states which are
subsequently rejected as unreachable or redundant using the state space reduc-
tion techniques. Paradoxically, this behavior could be improved by improving
the state space reduction techniques, since if unreachable states are removed
earlier, less states are generated later on. Performance may also be improved by
sound and complete transformations to simpler protocols. For example, Küster’s
and Truderung’s transformations to XOR-linear protocols generally resulted in
protocols that were easier for Maude-NPA to analyze, and although they were
done manually, they use a general strategy that could possibly be automated. We
could perhaps employ similar techniques to produce protocols that are “small”
with respect to an XOR-complexity metric, rather than XOR-linear.

Finally, we note the contribution made to this work by never patterns. As far
as we know, this is the first work that considers their effect on soundness and
completeness. Completeness-preserving never patterns have the potential to be
a valuable tool for use as an additional state space reduction technique. Indeed it
should be fairly straightforward to prove that a pattern unreachable and add it
automatically to a specification as a completeness-preserving never pattern; this
was indeed a feature of the NPA tool [24] that preceded Maude-NPA. A more
ambitious plan would be to search automatically for completeness-preserving
never patterns, e.g. by finding patterns that keep on occurring in unreachable
states, testing them for unreachability, and adding them as never patterns if
they past the test.

4 It is not clear from [9], whether performance was the chief factor in not choosing a
higher bound.

128 A. González-Burgueño et al.

7 Conclusions

We have specified, analyzed and compared different versions of the IBM CCA
API protocols. This is to the best of our knowledge the first application of
a general-purpose unbounded session cryptographic protocol analysis tool that
directly models the properties of XOR to XOR-based cryptographic APIs. We
have identified the bottlenecks and performance issues and have outlined plans
for handling them. Finally, we have introduced the notion of completeness- and
attack-preserving never patterns as a new means of controlling the size of the
search space, and have outlined plans for automating their use.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just fast keying in the pi calculus. ACM
Trans. Inf. Syst. Secur. 10(3) (2007)

2. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW 2014), Cape
Breton, Nova Scotia, Canada, June 2001, pp. 82–96. IEEE Computer Society (2014)

3. Bond, M.: Attacks on cryptoprocessor transaction sets. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg
(2001)

4. Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A.: A formal analysis of some
properties of kerberos 5 using msr. In: CSFW, pp. 175–1790. IEEE Computer
Society (2002)

5. Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proceedings
of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port
Jefferson, New York, USA, July 8-10, pp. 141–153 (2009)

6. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision proce-
dure for protocol insecurity with XOR. In: 18th Annual IEEE Symposium on Logic
in Computer Science, LICS 2003 (2003)

7. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and in-
security decision in presence of exclusive-or. In: 18th Annual IEEE Symposium on
Logic in Computer Science (LICS 2003), pp. 271–280 (2003)

8. Comon-Lundh, H., Cortier, V.: New decidability results for fragments of first-order
logic and application to cryptographic protocols. In: Nieuwenhuis, R. (ed.) RTA
2003. LNCS, vol. 2706, pp. 148–164. Springer, Heidelberg (2003)

9. Cortier, V., Keighren, G., Steel, G.: Automatic analysis of the aecurity of XOR-
based key management schemes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 538–552. Springer, Heidelberg (2007)

10. Cortier, V., Steel, G.: A generic security API for symmetric key management
on cryptographic devices. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS,
vol. 5789, pp. 605–620. Springer, Heidelberg (2009)

11. Erbatur, S., et al.: Effective Symbolic Protocol Analysis via Equational Irreducibil-
ity Conditions. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012.
LNCS, vol. 7459, pp. 73–90. Springer, Heidelberg (2012)

Analysis of the IBM CCA Security API Protocols in Maude-NPA 129

12. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic Protocol
Analysis Modulo Equational Properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg
(2007)

13. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: Sequential Protocol Com-
position in Maude-NPA. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.)
ESORICS 2010. LNCS, vol. 6345, pp. 303–318. Springer, Heidelberg (2010)

14. Thayer Fabrega, F.J., Herzog, J., Guttman, J.: Strand Spaces: What Makes a
Security Protocol Correct? Journal of Computer Security 7, 191–230 (1999)

15. González-Burgueño, A.: Protocol Analysis Modulo Exclusive-Or Theories: A Case
study in Maude-NPA. Master’s thesis, Universitat Politècnica de València (March
2014), https://angonbur.webs.upv.es/Previous_work/Master_Thesis.pdf

16. IBM. Comment on Mike’s Bond paper A Chosen Key Difference Attack on Control
Vectors (2001),
http://www.cl.cam.ac.uk/~mkb23/research/CVDif-Response.pdf

17. IBM. CCA basic services reference and guide: CCA basic services reference and
guide for the IBM 4758 PCI and IBM 4764 (2001),
http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf.2008

18. Keighren, G.: Model Checking IBM’s Common Cryptographic Architecture API.
Technical Report 862, University of Edinburgh (October 2006)

19. Kemmerer, R.A.: Using formal verification techniques to analyze encryption proto-
cols. In: IEEE Symposium on Security and Privacy, pp. 134–139. IEEE Computer
Society (1987)

20. Küsters, R., Truderung, T.: Reducing protocol analysis with xor to the xor-free
case in the horn theory based approach. J. Autom. Reasoning 46(3-4), 325–352
(2011)

21. Linn, J.: Generic security service application program interface version 2, update
1. IETF RFC 2743 (2000), https://datatracker.ietf.org/doc/rfc2743

22. Longley, D., Rigby, S.: An automatic search for security flaws in key management
schemes. Computers & Security 11(1), 75–89 (1992)

23. Meadows, C.: Applying formal methods to the analysis of a key management pro-
tocol. Journal of Computer Security 1(1) (1992)

24. Meadows, C.: The NRL protocol analyzer: An overview. Journal of Logic Program-
ming 26(2), 113–131 (1996)

25. Meadows, C., Cervesato, I., Syverson, P.: Specification and Analysis of the Group
Domain of Interpretation Protocol using NPATRL and the NRL Protocol Analyzer.
Journal of Computer Security 12(6), 893–932 (2004)

26. Meadows, C.: Analysis of the internet key exchange protocol using the nrl proto-
col analyzer. In: IEEE Symposium on Security and Privacy, pp. 216–231. IEEE
Computer Society (1999)

27. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic snalysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013)

28. Mukhamedov, A., Gordon, A.D., Ryan, M.: Towards a verified reference implemen-
tation of a trusted platform module. In: Christianson, B., Malcolm, J.A., Matyáš,
V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp. 69–81. Springer,
Heidelberg (2013)

29. National Institute of Standards and Technology. FIPS PUB 46-3: Data Encryption
Standard (DES), supersedes FIPS 46-2 (October 1999)

https://angonbur.webs.upv.es/Previous_work/Master_Thesis.pdf
http://www.cl.cam.ac.uk/~mkb23/research/CVDif-Response.pdf
http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf.2008
https://datatracker.ietf.org/doc/rfc2743

130 A. González-Burgueño et al.

30. Nieuwenhuis, R. (ed.): CADE 2005. LNCS (LNAI), vol. 3632. Springer, Heidelberg
(2005)

31. Steel, G.: Deduction with xor constraints in security api modelling. In: Nieuwenhuis
(ed.) [30], pp. 322–336

32. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational horn
clauses. In: Nieuwenhuis (ed.) [30], pp. 337–352

Robustness Modelling and Verification
of a Mix Net Protocol

Efstathios Stathakidis1, Steve Schneider1, and James Heather2

1 Computing Department, University of Surrey, Guildford, UK
{e.stathakidis,s.schneider}@surrey.ac.uk

2 Chiastic Security Ltd, Guildford, UK
james@chiastic-security.co.uk

Abstract. Re-encryption Mix Nets are used to provide anonymity by
passing encrypted messages through a collection of servers which each
permute and re-encrypt messages. They are used in secure electronic
voting protocols because they provide a combination of anonymity and
verifiability. The use of several peers also provides for robustness, since
a Mix Net can run even in the presence of a minority of dishonest or in-
correctly behaving peers. However, in practice the protocols for peers to
decide when to exclude a peer are complex distributed algorithms, and
it is non-trivial to gain confidence that the Mix Net will be robust and
live in the presence of faulty or malicious peers. In this paper we model
and analyse the algorithm used by Ximix, a particular Mix Net imple-
mentation, using the CSP process algebra and the FDR model checker.
We model and analyse the protocol in the presence of a realistic intruder
based on Roscoe and Goldsmith’s perfect Spy [1]. We show that in the
current implementation the protocol does not satisfy the robustness re-
quirement. Finally, we propose a method of making it robust, and verify
in FDR that the proposed solution is sound and provides this robustness.
Along the way, we highlight the omissions and deviations from the origi-
nal RPC proposal; Mix Net protocols are extremely fragile, and small and
seemingly benign changes may result in security flaws. Our experimental
results show that, with our modification, Ximix guarantees termination
and produces a correct output in the presence of an intruder who can
corrupt a minority of mix servers.

Keywords: Mix Nets, formal methods, model-checking, CSP, FDR.

1 Introduction

Since ancient times, elections have been the most important aspect in ensuring
democracy. A voting system should provide voters with the assurance that her
vote has been cast as intended and included in the tally without being modified,
whilst guaranteeing the secrecy of the vote. Recent proposals for secure elec-
tronic voting aim to provide end-to-end verifiability using cryptographic tech-
niques, and can use anonymising Mix Nets to provide secrecy of the ballot (by
anonymising which voter has cast any particular vote) while also providing the

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 131–150, 2014.
c© Springer International Publishing Switzerland 2014

132 E. Stathakidis, S. Schneider, and J. Heather

assurance that the votes have been decrypted correctly. The upcoming elections
in the State of Victoria, Australia, will be the world’s first large-scale political
elections where a verifiable electronic voting system will be used. A key compo-
nent in achieving this is the Mix Net and, of course, this should be robust and
produce its required output. However, this key liveness property is generally not
analysed in the literature, and it is one that the Victorian system’s Mix Net
(Ximix) is required to provide.

A Mix Net is a cryptographic protocol, which unlinks the correspondence be-
tween its input vector of encrypted values and the permuted vector of decrypted
values given as output, thus providing anonymity to the communicating entities.
The first Mix Net was introduced by Chaum [2] for constructing anonymous mail
systems. In its general construction, a Mix Net consists of a sequence of servers
M1 . . .Mn , also called mix servers, that collectively execute a protocol. Based on
the way the mix servers operate on the input ciphertexts, Mix Nets are classified
as decryption and re-encryption Mix Nets. However, most of those proposed in
the literature fall into the second category. We briefly explain how a re-encryption
Mix Net works; for more details about decryption and re-encryption Mix Nets,
we refer the reader to [2, 3].

The first re-encryption Mix Net was introduced by Park et. al [4]. In this
type of Mix Net, a joint public-key is generated by combining the public-keys
of the mix servers. The inputs are encrypted under the joint public-key and
then submitted to the Mix Net. Each mix server, in turn, re-encrypts its inputs,
shuffles them using its own secret permutation and fresh randomnesses and then
posts them onto a publicly accessible Web Bulletin Board (WBB). Once all the
mix servers have finished their mixing, the decryption phase starts, where the
final list of ciphertexts is decrypted in a distributed manner to achieve robustness
and then posted on the WBB for public verification. To ensure correctness of
the execution, each mix server produces a zero-knowledge proof, which is posted
on the WBB alongside the mixed and decrypted messages.

Owing to their importance in providing anonymity to the communicating
parties, Mix Nets play a significant role in building systems where security re-
quirements, such as privacy, should hold. Their main application is in electronic-
voting [5–8], but they have been also used in other real-life applications, such as:
electronic cash payments, RFID tags and anonymous Web browsing. In electronic
voting schemes, Mix Nets are used to ensure that no one can track and reveal
a voter’s vote, thereby guaranteeing the privacy of the vote and the anonymity
of the voter. However, this is not always enough; a well constructed Mix Net
should fulfill a number of security and safety requirements, such as robustness,
correctness and public verifiability. A Mix Net is called robust if it terminates
and produces a proof of the correctness of the operation in the presence of (a
limited number of) faulty or malicious mix servers. Correctness guarantees that
the output is, indeed, a valid permutation of the input ciphertexts. Additionally,
it is crucial for misbehaviour to be detectable by anyone who is interested in
checking the correctness of the execution, a property called public verifiability.

Robustness Modelling and Verification of a Mix Net Protocol 133

In this work we are interested in the liveness properties that a Mix Net should
meet; a Mix Net which does not produce any output is of no interest.

For the first time in the literature, we construct here a formal model and
present an automated verification of the Ximix1 Mix Net, which will be used in
the real large-scale elections in Victoria State, Australia, in November 2014. The
Victorian Electoral Commission’s (VEC) vVote voting system, which uses Ximix,
is based on the Prêt à Voter [6] voting scheme and how it works is presented
in [7, 8]. It is a requirement that Ximix be robust and be able to produce a correct
result provided that a threshold number of mix servers are available and follow
the protocol without deviating from it. Auditing in Ximix is performed according
to the Randomised Partial Checking (RPC) auditing technique [9] and its source
code is available at http://www.cryptoworkshop.com/ximix/doku.php.

There are numerous different Mix Net proposals existing in the literature.
Each of those designs follows a different method in constructing such schemes,
and it is not always clear which of the desired security requirements are met,
or how best to resolve some of the implementation questions such as what to
do if a mix server fails. For example, a Mix Net based on randomized partial
checking for verification does not normally indicate where the random challenges
come from, yet this is a subtle issue in practice and an inappropriate approach
can undermine the security of the Mix Net. Standardisation of Mix Nets would
address issues such as this, providing some clear direction for developers and
thus confidence for users.

Once such questions are addressed, the advantages and benefits of Mix Nets
being standardised will be apparent. Having a standard for Mix Nets would pro-
vide a reference point for future implementations and the properties that they
provide. For example, Verificatum [10], the most advanced Mix Net implemen-
tation up to date, has been used in small-scale elections in Norway and Israel.
Hence, in the case where Verificatum would become a standard, techniques like
RPC verification would also become standardised and not leave up to the con-
structor to decide. The benefits of Mix Nets having a standard is also apparent
from the subject matter of this paper: the approach taken to the development
of Ximix, the Mix Net under analysis, was to combine results from a number
of different research papers, and to provide additional implementation detail,
resulting in a system which required further formal analysis. Its correctness re-
lies entirely on the programmers and the way they interpret and implement the
proposed techniques. In the presence of a Mix net standard, we might hope that
these opacities could have been avoided.

2 Preliminaries

Here, for convenience, names, sets, data and functions used throughout the model
are detailed. The set of all mix servers is denoted by P and is defined to be H∪D,
1 The modelling has been performed on the snapshot of the source code taken on

1st April 2014. The authors of this paper have checked the published code and can
confirm that any changes since then have no effect in this work.

http://www.cryptoworkshop.com/ximix/doku.php

134 E. Stathakidis, S. Schneider, and J. Heather

where H (resp. D) denotes the set of all honest (resp. dishonest) mix servers.
By PA we denote the powerset function as applied to a set A. By c, we denote
the unmixed vector of inputs and by Mj (m), we denote the vector m mixed
twice using mix server j ’s secret permutation values, where m is either the un-
mixed vector c or some received signed mixed vector thereof. The set of all
commitments to the secret permutation values is denoted by C. When sending
to a mix server, these commitments are individually hashed, thereby creating
then a hash value, here h(commit). Messages have the form Sj (skj ,Mj (m)),
where skj is the j th mix server’s secret key. The set of all messages that can
be feasibly sent and received in a protocol run is denoted by M. For example,
consider the channel name comm of type P × PP × M × C. In this scenario,
comm.A.{B ,C}.SA(skA,MA(m)).SA(skA, h(commit)) may be an event indicat-
ing that a vector of messages, m, has been sent by the mix server A to {B ,C}.
Additionally, the length of a message m is denoted by #m and is calculated by
counting the layers of signatures. The outer signatory of a message is verified
using the corresponding public key and we use a function outer(m) to return the
signatory of a given message m. Similarly, the function seq(m) returns the outer
mix sequence of m. The function val(id) returns the index of a given mix server
in the shuffle plan. The function prev(id) returns the identity of the preceding
mix server. The set of all possible partially decrypted mixed messages, L, is
taken to be {Pj (ptj , seq(m), zkp) | m ∈ M}, where ptj is the j th mix server’s
share of the distributed secret key and zkp is the associated zero-knowledge
proof, thus proving the correctness of the partial decryption. Finally, the set of
all possible fully decrypted messages, O, is considered to be {dec(m) | m ∈ L},
where dec(m) is a function that decrypts a permuted vector of ciphertexts into
a permuted vector of plaintexts.

3 Ximix Mix Net Outline

Ximix is an Elliptic Curve El Gamal [11] based re-encryption Mix Net written in
Java, where the main idea behind its design follows the RPC auditing technique.
It consists of a number of execution phases: (i) initialisation; (ii) mixing; (iii)
checking and; (iv) decryption. We will analyse each of these separately. There
are two more important components of Ximix:

1. the Command Service;
2. a Transient Board for each mix server.

The Command Service (CS) is the central trusted component of the system,
which is responsible for talking to the mix servers and instructing them to mix,
transmit their output list of ciphertexts to another mix server and to create
Transient Boards (T B) to host their produced data. The CS, which is under the
control of the VEC, has a great deal of power, controls the data flow, controls the
whole process and specifies the execution plan (also called shuffle plan) used to
emulate the RPC pairing of mix servers. In a setting with four mix servers A, B,
C and D, the shuffle plan looks like 〈AA,BB ,CC ,DD〉. Robustness in the Ximix

Robustness Modelling and Verification of a Mix Net Protocol 135

implementation relies heavily on the CS, as it is a single point of trust and a
single point of failure. Any misbehaviour could potentially lead to the Mix Net’s
crash, thus violating the robustness requirement. Additionally, in Ximix, the
mix servers exist to provide services, including board hosting. That is, as the
shuffle plan progresses, a new T B is created on the appropriate mix server (as
specified in the shuffle plan) to host the intermediate and output data (shuffled
messages and commitments to the secret permutation). The primary mix server
is responsible for sending the unmixed data to the first mix server in the shuffle
plan and it is also responsible for maintaining a Visible Board (VB), which
differs from its internal T B in that all the mix servers have read access to this.
At the end of the process, the contents of the last mix server’s T B, as well as all
the partially decrypted messages, are posted to the VB. How these components
interact with each other, in the case where all faithfully follow the protocol,
is illustrated (for the case of two mix servers) in Figure 1. One can note that
actions internal to the mix servers and the CS, such as receiving a message,
mixing and then posting it onto the corresponding T B have been abstracted
away and shown as self messages. Additionally, for clarity, all the instructions
the CS can send and the mix servers are willing to accept, have been presented
as instruct events.

4 Ximix Message Communication Diagram

For clarity, the diagram of Figure 1 illustrates how the data flows in a faithful
run of Ximix with two mix servers.

Initialisation Phase. When the execution starts, the CS selects the shuffle plan
and chooses the primary mix server. The original unmixed data are handed to
the Mix Net by the VEC authorities and the CS instructs the primary mix server
to transmit them to the head of the shuffle plan. The mixing phase now begins.

Mixing Phase. The mixing phase starts with the first mix server in the shuffle
plan re-encrypting and shuffling its input data using fresh randomness and secret
permutation values. As the shuffle progresses, each mix server is asked by the
CS to create a T B to store its own shuffled messages and commitments to secret
permutations. Once the data have been stored on the T B, the CS instructs the
mix server that is currently mixing to transmit them to the next mix server
in the plan. When the mixing phase is complete, only the shuffled data of the
last transient board in the plan are copied onto the VB. Currently, a significant
omission is that neither the data transmitted between the mix servers nor the
final sequence of mixes is posted anywhere for public verification. Consequently,
Ximix does not currently provide universal verifiability.

Checking Phase. The Mix Net uses static verification, i.e. each mix server main-
tains separate sets of commitments to the secret permutation values. At the end
of the mixing phase, these commitments are downloaded by the CS and checked

136 E. Stathakidis, S. Schneider, and J. Heather

Fig. 1. Ximix protocol with two servers

Robustness Modelling and Verification of a Mix Net Protocol 137

for consistency. No attempt to verify anything is made during the actual mixing
phase (verification not in-phase with mixing). This stands in contrast to the ap-
proach taken by Verificatum, where checking is in-phase with mixing and each
mix server checks the received data before proceeding to the mixing. In Ximix,
the checking is done in the order of the mixing, but after all commitments have
been downloaded. The CS issues periodic RPC challenges as it goes, and up
to half the input-output relationships are revealed for each mix server. This is
done using an interactive zero-knowledge protocol [12] between the CS, but the
produced proof convinces only the verifier (CS), which interacts with the prover
(mix servers). As a consequence, the CS cannot prove to a third party the cor-
rectness of the execution, even if all the mix servers have faithfully followed the
protocol. If cheating is found, the whole process stops and an operator’s inter-
vention is required; the corrupt mix server is replaced and the whole process
restarts. Otherwise, the execution proceeds with the decryption phase.

Decryption Phase. Assuming checking success, the data from the VB are down-
loaded by the CS and decrypted, by a quorum (threshold number) of mix servers,
using El Gamal threshold decryption, whereby each is asked to provide a par-
tial decryption of the final list of encrypted data. In Ximix, mix servers act
as decryption servers, in that they partially decrypt what has been output by
the last mix server, but they send their partial decryptions only to the CS.
Once the CS has received a threshold number of partial decryptions for each
message, it assembles them into the plaintext messages and publishes the fully
decrypted message(s). As part of the decryption process, periodic challenges are
issued against the partial decryptions, using an interactive zero-knowledge proof
protocol (IZKP) between the CS and the mix servers.

5 Modelling and Formal Analysis in CSP

In the preceding section, Ximix was described based on how it operates and
processes the input messages. In this section, we present the processes modelling
the individual components of Ximix, and how these are composed into models
to be checked for robustness. Before proceeding to the modelling, it is pertinent
to discuss the modelling decisions and assumptions we will make.

Modelling Decisions and Assumptions. We follow the typical approach to mod-
elling of security properties, treating cryptographic primitives, such as digital
signatures, encryption and decryption, as symbolic operations with the appro-
priate algebraic properties. Each component is modelled as an individual pro-
cess; the communications between them are synchronous and over authenticated
channels. We assume that the checking phase will always succeed. No partici-
pant wishes to be expelled from the protocol, and for this reason they provide
the checker with valid commitments to secret permutations when asked to reveal
a subset of them.

138 E. Stathakidis, S. Schneider, and J. Heather

Faithful Model of Ximix. Ximix will be used under the strong assumption
that all its components faithfully follow the protocol without deviating from it.
Additionally, VEC can tolerate failure of one mix server, which provides us with
our threshold value. Before the execution starts, the shuffle plan is fed to the
mix servers so they know their position and the neighbouring mix servers. The
complete script for this model can be found at http://www.tvsproject.org/
csp/Ximix faithful.csp.

Honest mix servers. An honest mix server waits for an instruction, sent by
the CS, to be received and then starts to operate. It is willing to receive any
structurally correct message signed by the previous mix server in the plan and
then posts the received message on its T B. Obviously, the head of the plan is
willing to receive the unmixed data signed by the primary mix server. This is
represented in HON SRVR by the external choice over the set of the messages
signed by the sender and the set of the hashed commitments. Then, CS instructs
the first mix server to mix the received data and the execution proceeds to the
mixing phase.

HON SRVR(id) =
if id == primaryServer then

�
m∈{m′∈M|#m′=0},
commit∈C

(
send.Sid (skid ,m).Sid (skid , h(commit)) →
MIX (id, 1,m)

)

else
CS instructsToCopy.id →

�
m∈{m′∈M|outer(m′)=prev(id)},
commit∈C

⎛
⎜⎝

recv .m.commit →
postInData!id!m!commit →
CS instructsToShuffle.id →
MIX (id, val(id),m)

⎞
⎟⎠

The mix server mixes the received data twice (in order to emulate the RPC
pairing) and the CS then instructs it to create a T B to store the output data
for future verification. Once this has been done, the CS requests the mix server
to transmit only the output message and the commitments to the secret permu-
tations to the next mix server in the shuffle plan. This is modelled in the MIX
process below. Here, the toBeMixed value indicates the message received from
the previous mix server, which will be mixed twice by the current one. The rnd
symbolises the round number of the mixing; a mix server proceeds to the mixing
phase only when this value equals its own number in the sequence.

Command Service. The CS sends instructions to the mix servers and announces
the phase’s success or failure. The instructions are sent sequentially and at the
end of the execution of each phase and a done event indicates its successful
completion.

CS(〈〉) = mixing done → STOP

CS(〈id〉 � ids) =⎛
⎜⎝

CS instructsToCopy.id →
CS instructsToShuffle.id →
CS instructsToCreateTB.id →
CS(ids)

⎞
⎟⎠

MIX(id, rnd, toBeMixed) =⎛
⎜⎜⎜⎝

CS instructsToCreateTB.id →
postInterData!id!interData!interCommit →
postOutData!id!outData!finalCommit →
send.Sid (skid , outData).Sid (skid , h(finalCommit)) →
SKIP

⎞
⎟⎟⎟⎠

http://www.tvsproject.org/csp/Ximix_faithful.csp
http://www.tvsproject.org/csp/Ximix_faithful.csp

Robustness Modelling and Verification of a Mix Net Protocol 139

Transient and Visible Board. As we have described earlier, each mix server
maintains a T B, which always allows post and read requests from the owner
mix server. The other mix servers are blind on what has been posted to the
other T Bs and when the execution starts, they are both empty.

TB(id, inData, interData, outData, interCommit, outCommit) =

�
inD,interD,outD∈M
inC ,outC∈C

⎛
⎜⎝

postInData!id.inD.inC →
postInterData!id.interD.interC →
postOutData!id.outD.outC →
TB(id, inData

⋃
inD, interD, outD, interC , outCommit

⋃
inC)

⎞
⎟⎠

The VB is visible to all mix servers as well as to the CS. The mix servers
read what has been posted there and post their partial decryptions. The CS
reads all the partially decrypted messages, combines them and outputs (posts)
the fully decrypted messages on the VB. (For brevity, the partial decryption and
the combination processes are run in the CS’s side and are not presented here;
we refer the reader to the full script.)

VB(primaryServer , outData, outCommit,partDec) =

�
id∈P,outD∈M,
outC∈C,newPartDec∈L

⎛
⎜⎝

postDataToVB .id!outD!outC → VB(. . . , outD, outC , . . .)
� readFromVBData.id!outData → VB(. . .)
� postPartDec.id!newPartDec → VB(. . . , partDec

⋃
newPartDec)

� CSreadFromVBPartDec!partDec → VB(. . .)

⎞
⎟⎠

Putting the Network Together. Based on the modelling assumptions pre-
sented in Section 5, and connecting the channels of the various processes so
they can synchronise, we can produce our final SYSTEMXimix process, which
is defined in terms of the parallel composition of all the following processes,
synchronised on their common events. The MIXING process is defined as the
parallel composition of the HON SRVR and the TB processes.

SYSTEMXimix = MIXING‖CHECKING‖DECRYPT‖COMBINE‖VB(. . .)‖CS(ShufflePlan)

We should now verify whether our system satisfies the robustness require-
ment or not and to check this, we need to determine whether a fully decrypted
message is always output. In [13], the output of the system was modelled as
a synchronous agree event among the majority of the mix servers, whilst here,
the CS is responsible for combining all the partial decryptions and publishing
the fully decrypted message(s). No consensus among the mix servers is provided
for. For this purpose, we create the specification process RBST, which always
performs an output event, and use the Failures/Divergences refinement model
(FD), to check in FDR that the following assertion holds:

RBST = output → RBST, RBST
FD (SYSTEMXimix \ Σ�{| publish |})[[output/publish.m |m∈O]]

To perform a rigorous analysis of the system, we must include an intruder
model. To this end, in the next section, we introduce our threat model and place
it in parallel with the SYSTEMXimix process defined here.

140 E. Stathakidis, S. Schneider, and J. Heather

6 Adapting the Intruder

In the previous section, we modelled and verified Ximix under the assumption
that all the components are honest. However, this is a strong assumption; a sys-
tem consisting of honest participants is of little interest. In this section, we use
Roscoe and Goldsmith’s perfect Spy [1, 14] as the basis of our threat model and
investigate whether Ximix still meets the robustness requirement. The descrip-
tion of the Spy presented in the first half of this section it will be used as well
in the second, subject to some minor modifications, in order to accommodate
the behaviour of the proposed scheme. However, our Spy is not as powerful as
in the original Roscoe and Goldsmith version, which is in complete control of
the whole network. Obviously, that would be pointless in the current case, as it
would clearly violate robustness.

Here, the Spy plays the role of a mix server that can receive ingoing mes-
sages over a learn channel, infer events based on received messages and its ini-
tial knowledge and then say messages that it has inferred. This intruder model
provides active attacks against the system, by blocking outgoing messages and
sending those that deviate from the protocol. The Spy is constructed using the
same approach as taken by Roscoe and Goldsmith, with respect to the messages
of the Ximix system.

The initial knowledge of the intruder consists of all the mix servers’ identities
and public-keys, the initial unmixed vector of values and, of course, its own
secret key as well as the assigned share of the secret key.

Apart from the channels learn, say and infer, that allow messages to be re-
ceived, sent and internally inferred, the Spy has in its alphabet all the events
that an honest mix server can perform, so it can communicate with the other
components. Furthermore, the Spy can ignore the instructions sent by the CS
by absorbing them and carrying on its operation.

In this model of Ximix, the intruder learns messages sent to him only from
the previous mix server and says to the next one in the shuffle plan. In the case
where he is the last mix server in the plan, an additional say event is renamed
to postDataToVB and can post any message that has been learnt. In the same
fashion, a say event is renamed to postPartDec, which means that he can post
partial decryptions of messages that he has received and, of course, these are of
length larger than or equal to the threshold. In the next section, we shall show
that the intruder hears all the messages sent to any of the honest mix servers and
he can choose to send different messages to different mix servers, so each message
can be potentially be sent to an individual mix server, that is, to the singleton
{x}, where x is the identity of some honest mix server. The new SYSTEMSpy

process is now defined in terms of the parallel composition of the SYSTEMXimix

and the renSpy processes, as:

SYSTEMSpy = SYSTEMXimix αSYSTEMXimix
‖αrenSpy renSpy

where, αSYSTEMXimix and αrenSpy, are the alphabets containing all the events
these processes can engage in. Using the assertion presented in Section 5, we

Robustness Modelling and Verification of a Mix Net Protocol 141

check that SYSTEMSpy does not satisfy its liveness property and in Section 7
we present some traces illustrating this behaviour.

The Spy can also mount a Denial of Service (DoS) attack, by perpetually
posting messages to the VB, thus leading the system to an unstable condition
(divergence, in CSP terms) and one defence against this is to add an extra
constraint that allows only one post (per event) for each mix server. This is
modelled as:

DIVERGE = VB(primaryServer, empty, empty, empty) |||(post.x? → STOP | x ∈ D)

where post is an abbreviation for the postDataToVB and postPartDec events the
intruder can perform and “ ” allows any message of the appropriate type.

A misbehaving CS can also break robustness. For example, it can refuse to
send instructions to a specific mix server, making it wait indefinitely, and causing
deadlock. We describe this attack in Section 7. Additionally, upon receiving a
threshold number of partially decrypted data, it can either refuse to combine
them or output an unrelated message.

So far, we have seen that the proposed Ximix is not resilient in the cur-
rent implementation, for it is vulnerable to attacks carried out by an intruder
and a dishonest CS. FDR confirms that the RBST assertion specified in Sec-
tion 5 does not hold and the complete script for this model can be found at
http://www.tvsproject.org/csp/Ximix_Spy.csp. In the following section we
show how to make the system robust.

Robust Ximix. Here, we describe the changes required to guarantee successful
termination in the presence of the intruder introduced above. In our modified
Ximix, upon termination, a valid and fully decrypted message is published and
any external party interested in verifying its correctness can do so.

One of the purposes of a Mix Net is to distribute the trust among the mix
servers, so that the whole system does not rely on the integrity of a single com-
ponent. However, Ximix relies critically on the availability and honesty of the
CS. Hence, the first step in making Ximix robust is to remove the CS and in-
stead, allow the mix servers to broadcast their messages. In this context, an
honest mix server sends the same message to all the mix servers, while a dishon-
est one may send different messages to different mix servers, or refuse to send
to some of them. We also allow any external party interested in checking and
combining the partial decryptions to do so, in order to check the fully decrypted
messages. A few changes to the previous model are needed to accommodate
these decisions, which we describe below and the complete script can be found
at http://www.tvsproject.org/csp/Ximix_robust.csp.

Honest mix servers. An honest mix server is willing to receive messages from
another mix server; he can, however, timeout before or after receiving it. Adding
this behaviour in the system, we allow the execution to continue even when a
dishonest mix server refuses to send messages to some of the honest ones (simply
times out without performing any action). In this case, the honest mix servers

http://www.tvsproject.org/csp/Ximix_Spy.csp
http://www.tvsproject.org/csp/Ximix_robust.csp

142 E. Stathakidis, S. Schneider, and J. Heather

will absorb the timeout and continue to operate. At the end of the mixing phase,
the honest mix servers will have posted on their T Bs at least one message of
threshold length, mixed by the majority of the mix servers. The requisite changes
in the HON SRVR and renHON SRVR processes are shown below. Additionally,
an extra timeout is added after the send event in the MIX process presented in
Section 5.

HON SRVR(id) =
if id == primaryServer then

�
m∈{m′∈M|#m′=0},
commit∈C

⎛
⎝ send.Sid (skid ,m).Sid (skid , h(commit)) →

timeout →
MIX (id, 1,m)

⎞
⎠

else
timeout → MIX (id, val(id),m)

� �
m∈{m′∈M|outer(m′)=prev(id)},
commit∈C

⎛
⎜⎝

recv .m.commit →
postInData!id!m!commit →
timeout →
MIX (id, val(id),m)

⎞
⎟⎠

The (non-replicated) external choice in the HON SRVR process models the
ability of an honest mix server to timeout before receiving a message. This will
only occur where a dishonest mix server refuses to send anything. Minor changes
are required when renaming the HON SRVR process:

renHON SRVR(id) = HON SRVR(id)[[comm.id.P�{id}.m.c/send.m.c m∈M,c∈C]]

[[comm.P�{id}.z.m.c/recv.m.c m∈M,c∈C,z∈P]]

Here, each send is renamed to a comm.id.P �{id}, broadcasting a message to all
mix servers other than id. Each recv is renamed to an incoming comm.P �{id}.z ,
where z can be either a singleton containing only id or a set of some mix servers.

Dishonest mix servers. A dishonest mix server learns all messages sent to any of
the honest mix servers, so learn events are renamed to incoming comm.x .P �{x},
where x is an honest mix server. The renaming of say events is slightly more
complicated in that we allow the Spy to send messages only to individual servers
(singleton sets). This simplifies the modelling, but without loss of generality: if
he wants to send different messages to different mix servers then he can now do
so, and if he wishes to send the same message to all mix servers, he can send it
to each of them separately.

renSpy = Spy[[comm.x.P�{x}.m.c/learn.m.c m∈M,x∈H,c∈C]]

[[comm.y.{x}.m.c/say.m.c m∈M,x∈H,y∈D,c∈C]]

[[postDataToVB.y.m.c/say.m.c m∈M,y∈D,c∈C]]

[[postPartDec.y.m/say.m.c m∈M,y∈D,c∈C,#m>=threhold]]

Putting the Network Together. Our final SYSTEMXimixNoCS process is now de-
fined in terms of the parallel composition of the new renSpy and the processes
defined in the earlier sections, as:

SYSTEMXimixNoCS = MIXING‖CHECKING‖DECRYPT‖COMBINE‖DIVERGE‖ renSpy

Robustness Modelling and Verification of a Mix Net Protocol 143

Eventually, using the RBST assertion defined in Section 5, we check that the
robustness of the system is maintained and the traces described in Section 7
support this argument.

7 Results and Analysis

In this section, we verify the protocols against the liveness property and we
present interesting traces illustrating their behaviour. Each of the traces dis-
cussed in this section were obtained via simulating the models in ProBE, a CSP
animator (built into FDR3), which allows the user to explore the behaviour of a
process. Due to the number of events occurring in the traces, we keep only those
highlighting the importance of the trace. For clarity, throughout this section, we
give traces using three mix servers; the shuffle plan will always be 〈AA,BB ,CC 〉
and B the primary mix server. There are numerous possible corruption scenarios
that can be modelled and analysed and we have chosen the most representative
ones. We start with the SYSTEMXimix process, which is a faithful model of
Ximix where all the components are honest.

〈CS instructsToCopy.A,
comm.B .{A}.SB (c).SB (h(commit)),
postInData.A.SB (c).SB (h(commit)),
CS instructsToShuffle.A,
CS instructsToCreateTB.A,
CS instructsToCopy.B,
comm.A.{B}.SA(MA(c)).SA(h(commit)),
. . .
comm.B .{C}.SB (MB (SA(MA(c)))).SB (h(commit)),
. . .
postDataToVB.C .SC (MC (SB (MB (SA(MA(c)))))).SC (h(commit)),
mixing done, checking done,
readFromVBData.A.SC (MC (SB (MB (SA(MA(c)))))),
postPartDec.A.PA(ptA,MC (MB (MA(c)))),
. . .
decryption done,
CSreadFromVBPartDec.{PA(ptA,MC (MB (MA(c)))), . . . },
publish.MC (MB (MA(p))) 〉

In general, after the decryption done event, the CS combines all the partial
decryptions of length greater than or equal to the threshold with preference given
to longer messages. Hence, MC (MB (MA(p))) will be considered the published
output as it is of length greater than the threshold. Of course, more interesting
traces result from checking the protocol under the existence of our Spy.

In SYSTEMSpy , consider the case where the intruder is the primary mix server,
B ; he starts by sending the unmixed data to A. A is honest, mixes twice the orig-
inal data, produces its own mixed messages and communicates them to B. Now,
B decides to act dishonestly and instead of sending to C that received by A,
he sends the unmixed data. At this point, C, being unable to distinguish which
of the preceding mix servers misbehaved, accepts what B sent and operates on
them. As C is the last in the shuffle plan, he posts a mixed message of length 1
(mixed only by C) to the VB. Each server is now instructed by the CS to read
the posted message and partially decrypt it. However, none of them will post
any partial decryption of the posted message because it is of length being less

144 E. Stathakidis, S. Schneider, and J. Heather

than the threshold. Subsequently, the CS cannot read or combine any partial
decryptions and the whole process stops without publishing anything. Clearly,
this violates the robustness requirement. This is demonstrated in the left trace
below.

〈. . .
comm.B .{C}.SB (c).SB (h(commit)),
. . .
postDataToVB.C .SC (MC (c)).SC (h(commit)),
readFromVBData.A.SC (MC (c)),
postPartDec.A.nothing,
. . .
CSreadFromVBPartDec.empty,
STOP 〉

〈. . .
comm.A.{B}.SA(MA(c)).SA(h(commit)),
. . .
CS instructsToCopy.B,
. . .
CS instructsToCopy.C,
×〉

A similar behaviour arises when C is the spy. Upon receiving a message from
B, he ignores it, mixes the initial data and posts them on the VB. No one can now
partially decrypt the posted message and the CS cannot publish anything. In
another scenario, (trace above on the right), the intruder, B, sends the unmixed
data to A and absorbs the instructions sent by the CS, but refuses to transmit
the received messages to C, thus resulting in a deadlock. This is because C is
willing to receive a message from B, but it never arrives.

However, as we have seen in Section 6, the CS can also break robustness.
The empty trace 〈×〉 illustrates the scenario in which the CS does not send
a copy instruction to A. Although the mix server is always willing to receive
and execute it, such an instruction never arrives and the SYSTEMSpy deadlocks
without performing even one event.

In our revised system, in the trace below, the intruder, acting as dishonest
mix server A, times out without sending any message. However, this does not
prevent the other mix servers from continuing to operate.

〈comm.B .{A,C}.SB (c).SB (h(commit)), timeout,
timeout,
comm.B .{A,C}.SB (MB (c)).SB (h(commit)), timeout,
. . .
comm.C .{A,B}.SC (MC (SB (MB (c)))).SC (h(commit)), timeout
. . .
timeout,
postPartDec.B.PB (ptB ,MC (MB (c))),
postPartDec.C.PC (ptC ,MC (MB (c))),
readFromVBPartDec.{PC (ptB ,MB (MB (c))),PC (ptC ,MC (MB (c)))},
publish.MC (MB (p))〉

Having received nothing from A, mix server B mixes the original data (which
are visible to everyone on the VB) and broadcasts them to {A,C}. Honest C op-
erates similar to B and posts its own mixed data onto the VB. All the mix servers
proceed now to the partial decryption of the messages that they have received
during the mixing phase and post them onto the VB. The intruder can choose
either to post a valid partial decryption of a message of correct length or not to
post anything. Neither of these can violate the robustness of the system: enough
partial decryptions of the same message (posted by the honest mix servers) ap-
pear on the VB. Any external party can now combine them and publish the fully
decrypted message.

Robustness Modelling and Verification of a Mix Net Protocol 145

A more interesting behaviour occurs when the intruder sends different mes-
sages to different mix servers, or does not send to some of them, in order to
cause a dispute among them. More specifically, the intruder acting as dishon-
est mix server B, refuses to communicate the initial data to A and times out.
Honest A reads the initial data from the VB, mixes and broadcasts them to
{B,C}. Now, dishonest B chooses to send different mixed messages to A and C :
he sends a mix of the received messages to A and a mix of the initial data to C.
At this point, C cannot work out which of A or B has misbehaved. When re-
ceiving SB (MB(c)) from B, he might think that A did not mix the initial output
and simply forwarded them to B (or timed out). On the other hand, he might
think that B ignored message from A and that B mixed the initial data and
transmitted to him. This is shown in the following trace.

〈timeout,
. . .
comm.A.{B ,C}.SA(MA(c)).SA(h(commit)), timeout,
. . .
comm.B .{A}.SB (MB (SA(MA(c)))).SB (h(commit)),
comm.B .{C}.SB (MB (c)).SB (h(commit)), timeout,
. . .
comm.C .{A,B}.SC (MC (SB (MB (c)))).SC (h(commit)), timeout,
. . .
postPartDec.A.PA(ptA,MC (MB (c))),
postPartDec.B.PB (ptB ,MB (MA(c))),
postPartDec.C.PC (ptC ,MC (MB (c))),
readFromVBPartDec.{PA(ptA,MC (MB (c))),PB (ptB ,MB (MA(c))),PC (ptC ,MC (MB (c)))},
publish.MC (MB (p))〉

In the partial decryption phase, dishonest B is able to post two different
partially decrypted messages, both of threshold length: PB (ptB ,MB (MA(c)))
and PB(ptB ,MC (MA(c))). A has seen two different messages, both of threshold
length; he partially decrypts the latest to arrive. C has enough information to
partially decrypt only one message and finally, the output is MC (MB (p)).

All these traces describe some of the possible behaviours of the system, and
might not have been appreciated without this analysis. We saw that it is easy
for the intruder to break the robustness of the original protocol by choosing not
to perform some specific actions. To recognise our contributions in making the
system robust, the above traces show that whatever actions an intruder is willing
to perform, the robustness of the protocol remains intact.

Moreover, in order to make sure that our changes for making Ximix robust
are sound, we further analysed the system in the presence of a stronger intruder,
who controls more than the threshold number of mix servers (that is, two). As
expected, and verified in FDR, the modified Ximix is not robust in this setting,
and FDR provides a trace where two dishonest servers (out of three) can prevent
the Mix Net from completing.

The automated verification of the models, with three mix servers, completes
in a matter of minutes in a modern laptop. However, when adding an extra
mix server, the state space escalates quickly. Table 1 in Appendix B shows this
problem.

146 E. Stathakidis, S. Schneider, and J. Heather

8 Previous Work

In this context, the first formal model of a re-encryption Mix Net was provided
by Stathakidis et. al [13]. In their work, they verify the robustness and privacy
properties of a typical WBB-based re-encryption Mix Net in the presence of a
realistic intruder, using the FDR model-checker and show the modifications that
are needed in order to make such a Mix Net robust. The Mix Net verified in their
work was inspired by Verificatum [10], and it has few similarities with Ximix. For
example, the partial decryption phase is absent from [13] and the mix servers
check the received messages before proceeding to their mixing. As we saw in
Section 5, in Ximix, the mix servers are willing to accept any structurally correct
message and proceed to their mixing without checking their validity. Obviously,
this may lead to an incorrect output. Furthermore, a different notion of a WBB
is presented in [13], where it acts as a broadcast channel and keeps a consistent
record of all messages being sent between the mix servers. In Ximix, only the
messages produced by the last mix server are posted on the WBB and each of
them maintains a local board, called a Transient Board (T B). Küsters et. al [15],
provide a formal security analysis of Chaumian RPC Mix Nets. They propose
a new security definition, called accountability, which allows one to measure the
level of privacy and verifiability of such a Mix Net precisely. Their analysis is
interesting, but it is not automated.

9 Conclusion

We have described and conducted a formal modelling and verification of the
Ximix Mix Net which will be used in real large-scale elections in Victoria, Aus-
tralia, in November 2014. It was our aim to be explicit about all the subtleties of
the protocol and to apply sufficient rigour in ensuring its robustness. We demon-
strated that Ximix is not robust in the presence of an intruder, based on Roscoe
and Goldsmith’s perfect Spy, and described the modifications that are needed in
order to satisfy this liveness requirement. In our revised Ximix, the election does
not rely on the integrity of a single component, but instead distributes the trust
among them. Our analysis demonstrates that Ximix guarantees completion and
produces a valid output in the presence of a dishonest component. Additionally,
we explained the impact on the lack of standardisation in Mix Nets and in what
extent they can be standardised. Although this standardisation is difficult to
be achieved in practice, it would be useful and solve issues occurring when Mix
Nets are used in real world applications, such as in constructing trustworthy
electronic voting systems.

Acknowledgements. This work was supported by the EPSRC project Trust-
worthy Voting Systems, project EP/G025797/1. We would like to thank Chris
Culnane, University of Surrey, Chris Mitchell, Royal Holloway University of Lon-
don, and the anonymous reviewers for their pertinent comments.

Robustness Modelling and Verification of a Mix Net Protocol 147

A CSP

Communicating Sequential Processes (CSP) is a process algebra designed for de-
scribing processes that interact with each other. It was introduced by Hoare [16]
in 1978 and since then it has been extensively used for applying the theory of
concurrency in practice. The core of the CSP algebra is a process, which is de-
scribed by the way it communicates with its environment. Processes proceed
from one state to another by engaging in events. An event describes a particular
action that can be performed or refused by a process and the set of all possible
events is denoted by Σ. In CSP, all the communication events are instantaneous
and they happen only when both the processes and the environment agree on
their occurrence (handshaken communication). At the construction of a process
in CSP, the alphabet of a process P , denoted αP , is the set of all visible com-
munication events that this process may perform. For a detailed explanation of
CSP and its associated FDR model-checker, we refer the reader to [17–19].

STOP is the simplest CSP process, which does nothing and SKIP is the
process indicating successful termination. The process a → P is initially willing
to communicate a and then behaves like P . P � Q can act either as P or Q , the
choice of which is in the hands of the environment. Replicated external choice
replicates the choice over the set A, and is denoted by �

x∈A
P(x). By P ‖

A
Q we

denote generalised parallel, which synchronises P and Q on events lying in the
set A. Alphabetised parallel is denoted by P αP‖αQ Q and synchronises P and
Q on events lying in the intersection of αP and αQ . We write ‖i∈I [αP]P(i) for
the replicated alphabetised parallel composition of processes P(i) indexed over
I , where each P(i) is allowed to perform events from αP and the processes are
synchronised on the common events. In hiding, P \ A, the internal events from A
are hidden from the environment. In renaming, [[a/b]], the events b occurring in
the process are replaced by the events a. P ||| Q is the interleaving process, where
the processes P and Q run independently of each other without synchronising
on any event.

B State-Space Explosion Problem

Individual checks were performed for each possible instantiation of the models,
with a minority of mix servers, testing the inevitability of an output being pro-
duced. For the case where three mix servers where used, six models were checked
(three for SYSTEMSpy and three for SYSTEMXimixNoCS). Similarly, in the case
where four mix servers were participating in the process, eight checks, in total,
were performed. All checks verified the inevitability of a publish event, regardless
of the behaviour of the dishonest mix servers. All checks were performed using
the refinement checker FDR3 beta 7 on a desktop with an Intel i7 Quad-Core
CPU @ 3.6GHz with 8GiB of memory running 64-bit Ubuntu 12.04.

148 E. Stathakidis, S. Schneider, and J. Heather

Looking at SYSTEMXimixNoCS, one can see how the state-space grows when
the intruder is the last in the shuffle plan. In this case, he learns, infers and
is able to deduce and finally say many more messages due to the fact that he
receives many messages broadcast from all the previous honest mix servers.

Table 1. The FDR verification results for our models of Ximix. As the state-space
increases quickly with the number of mix servers, it was not possible for FDR to
handle such huge states. These are denoted as “NA” in the table.

�������PH,PD
System SYSTEMXimix SYSTEMSpy SYSTEMXimixNoCS

RBST States RBST States RBST States
{A,B,C} � 45 - - - -
{A,B,C,D} � 56 - - - -
{B,C}, {A} - - × 5680 � 289
{A,C}, {B} - - × 13544 � 2679
{A,B}, {C} - - × 11882 � 2060
{A}, {B,C} - - × 57869 × 1695
{B,C,D}, {A} - - NA NA NA NA
{A,C,D}, {B} - - NA NA NA NA
{A,B,D}, {C} - - NA NA NA NA
{A,B,C}, {D} - - NA NA NA NA
{A,B}, {C, D} - - NA NA NA NA

However, FDR cannot handle the state-space produced when four mix servers
are taking part in the process. An honest mix server is required to post onto
(resp. read from) its internal T B all the received messages, as well as to post
(resp. read) the intermediate and ouputted messages. In a similar fashion, the
mix servers post their partially decrypted messages onto the VB. Internally, the
Spy, does not need to maintain a T B, as he is able to say any received (or mixed
by him) message. All these communications between the mix servers and the
boards are computationally expensive and increase the overall state-space.

In the way the models are constructed, COMBINE is the most demanding
process. That is, the combiner (the CS in SYSTEMSpy and any interested party
in SYSTEMXimixNoCS), is responsible for reading all the partial decryptions from
the VB, checking the associated generated zero-knowledge proofs, combining
them into a fully decrypted plaintext message and publishing it. Hence, it is
willing to read all the possible sets of partially decrypted messages and the
correct way for implementing it in CSP involves the use of powersets. In the
case with four mix servers, each of them is able to partially decrypt any received
message of length greater than or equal to the threshold (here, three). Using
the assumption that messages are in strictly increasing order, i.e. a mix server
can mix only a message signed by a preceding mix server, the cardinality of the
set containing all the possible partially decrypted messages is 20. Under this
circumstance, the combiner is willing to read any possible combination of these
20 messages, that is, P(20) = 220 � 1M , but FDR struggles when performing
such calculations.

Robustness Modelling and Verification of a Mix Net Protocol 149

References

1. Roscoe, A.W., Goldsmith, M.: The perfect spy for model-checking crypto-protocols.
In: Proceedings of DIMACS Workshop on the Design and Formal Verification of
Crypto-Protocols. Rutgers University (September 1997)

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

3. Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for
mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004)

4. Park, C.-s., Itoh, K., Kurosawa, K.: Efficient Anonymous channel and all/nothing
election Scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
248–259. Springer, Heidelberg (1994)

5. Adida, B.: Helios: Web-based open-audit voting. In: Proceedings of the 17th
USENIX Security Symposium (Security 2008) (2008)

6. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a
voter-verifiable voting system. IEEE Transactions on Information Forensics and
Security 4(4), 662–673 (2009)

7. Burton, C., Culnane, C., Heather, J., Peacock, T., Ryan, P.Y.A., Schneider, S.,
Srinivasan, S., Teague, V., Wen, R., Xia, Z.: A supervised verifiable voting protocol
for the victorian electoral commission. In: Kripp, M.J., Volkamer, M., Grimm, R.
(eds.) Electronic Voting. LNI, vol. 205, pp. 81–94. GI (2012)

8. Burton, C., Culnane, C., Heather, J., Peacock, T., Ryan, P.Y.A., Schneider, S.,
Srinivasan, S., Teague, V., Wen, R., Xia, Z.: Using prêt à voter in victorian state
elections. In: Proceedings of the 2012 International Conference on Electronic Vot-
ing Technology/Workshop on Trustworthy Elections, EVT/WOTE 2012, p. 1.
USENIX Association, Berkeley (2012)

9. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: Boneh, D. (ed.) USENIX Security Symposium,
USENIX, pp. 339–353 (2002)

10. Wikström, D.: Verificatum. Website (2014),
http://www.verificatum.org/verificatum/index.htm

11. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

12. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg
(1993)

13. Stathakidis, E., Williams, D.M., Heather, J.: Verifying a mix net in csp. In: Pro-
ceedings of the 13th International Workshop on Automated Verification of Critical
Systems (AVoCS 2013). Electronic Communications of the EASST, vol. 66. Euro-
pean Association of Software Science and Technology (2013)

14. Roscoe, A.W.: The theory and practice of concurrency. Prentice Hall (1998)
15. Küsters, R., Truderung, T., Vogt, A.: Formal analysis of chaumian mix nets with

randomized partial checking. IACR Cryptology ePrint Archive 2014, 341 (2014)
16. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–

677 (1978)

http://www.verificatum.org/verificatum/index.htm

150 E. Stathakidis, S. Schneider, and J. Heather

17. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach, 1st edn.
John Wiley & Sons, Inc., New York (1999)

18. Roscoe, A.: Understanding Concurrent Systems, 1st edn. Springer-Verlag New
York, Inc., New York (2010)

19. Gardiner, P., Goldsmith, M., Hulance, J., Jackson, D., Roscoe, B., Scattergood,
B., Armstrong, P.: Fdr2 user manual (2010),
http://www.fsel.com/fdr2_manual.html

http://www.fsel.com/fdr2_manual.html

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 151–166, 2014.
© Springer International Publishing Switzerland 2014

Stego Quality Enhancement by Message Size Reduction
and Fibonacci Bit-Plane Mapping

Alan A. Abdulla, Harin Sellahewa, and Sabah A. Jassim

Applied Computing Department, University of Buckingham, Buckingham, UK
alananwer@yahoo.com,

{harin.sellahewa,sabah.jassim}@buckingham.ac.uk

Abstract. An efficient 2-step steganography technique is proposed to enhance
stego image quality and secret message un-detectability. The first step is a pre-
processing algorithm that reduces the size of secret images without losing
information. This results in improved stego image quality compared to other ex-
isting image steganography methods. The proposed secret image size reduction
(SISR) algorithm is an efficient spatial domain technique. The second step is an
embedding mechanism that relies on Fibonacci representation of pixel intensi-
ties to minimize the effect of embedding on the stego image quality. The
improvement is attained by using bit-plane(s) mapping instead of bit-plane(s)
replacement for embedding. The proposed embedding mechanism outperforms
the binary based LSB randomly embedding in two ways: reduced effect on ste-
go quality and increased robustness against statistical steganalysers. Experimen-
tal results demonstrate the benefits of the proposed scheme in terms of: 1) SISR
ratio (indirectly results in increased capacity); 2) quality of the stego; and 3) ro-
bustness against steganalysers such as RS, and WS. Furthermore, experimental
results show that the proposed SISR algorithm can be extended to be applicable
on DICOM standard medical images. Future security standardization research
is proposed that would focus on evaluating the security, performance, and
effectiveness of steganography algorithms.

Keywords: Steganography, LSB, Fibonacci, SISR, bit-plane mapping.

1 Introduction

Steganography is concerned with concealing a secret message by embedding it in
another innocuous message during seemingly mundane communication sessions in
such a way that only the sender and intended recipient are aware of the secret’s exis-
tence. Steganography is becoming a common tool in protecting sensitive communica-
tions used by: intelligence and law enforcing agencies to prevent crime and terrorism;
in health care systems to maintain the privacy of critical information such as medical
records; and in financial organizations such as banks to prevent customers’ account
information from being accessed by illegally.

Security and privacy are important issues when medical images and their patient
information are stored and transmitted across public networks. The well-known
standard for storage and exchange of medical images is DICOM (Digital Imaging and

152 A.A. Abdulla, H. Sellahewa, and S.A. Jassim

Communication in Medicine). A historical background and a brief overview of
DICOM are reported in [1,2].

In steganography, the secret information (e.g. text, image, video, audio) one wishes
to send is called the message. This message is embedded in a cover, which is typically
an image, a video or an audio file. After the message is embedded, the cover becomes
a stego. Here, we are focused on the scenario whereby both the message and the cover
are 8-bit grey scale images. The reason for choosing images as a cover is images
usually have a high degree of redundancy, which makes them suitable to embed in-
formation without degrading their visual quality. Moreover, images are widely ex-
changed over the internet than other digital media and they attract little suspicion.

General factors that need to be addressed by embedding techniques are: the quality
of the stego, message detectability, payload capacity, and the robustness of the stego
against distortion attacks. Least significant bit (LSB) replacement [3,4] and its
variants are common embedding techniques in the spatial domain. Embedding in LSB
of a pixel (i.e. only the LSB plane of the cover image is overwritten with the secret bit
stream), makes it difficult to notice a change in the value of these pixel by naked eye.
A review of few embedding techniques will be presented in Section 2.

In recent years, different Fibonacci systems of representing integers have been
used as an alternative to the binary representation to improve quality and capacity by
embedding in more than one bit-plane. In 8-bit grey scale images, a pixel value in the
range 0-255 can be represented by 12 bits using Fibonacci representation [5]. Howev-
er, unlike the binary based embedding methods, capacity of Fibonacci based embed-
ding depends on the selected cover image -- not every pixel of the cover is a “good
candidate” for the embedding. The non-uniqueness of Fibonacci representation of
integers means that the embedding procedure cannot comply the Zeckendorf’s theo-
rem, i.e. the embedding procedure should not create a two consecutive 1s. To avoid
this situation, Fibonacci based schemes may have to skip the current pixel and con-
sider the next candidate pixel for selection [5]. In our paper, the redundancy problem
of Fibonacci representation will be avoided the restrictions of Zeckendorf‘s theorem,
and thereby resulting that each pixel of the cover can be used for embedding.

Whilst steganographers aim to design techniques to meet the goals of steganograpy,
steganalysers attempt to defeat the goal of steganography by detecting the presence of
a hidden message. There are a number of statistical and structural attacks to determine
the presence/absence of a hidden message and estimate the size of the embedded secret
message. Two well-known steganalysis techniques used to detect and estimate the
secret message are Regular Singular groups (RS) [6], and Weighted Stego (WS) [7].

Some steganographic schemes attempt to be robust against steganalysis while others
attempt to have better stego quality, but such schemes usually have capacity limitations
[8]. Decreasing the capacity increases the un-detectability [9]. There is a trade-off be-
tween hiding capacity and quality of stego image. It is a challenge for a steganographer
to achieve a good balance among the different steganography requirements. It is worth
noting that is no agreed benchmarking standard to evaluate steganography algorithms
[10]. An international standard for evaluating the security, performance, and effective-
ness of steganography algorithms would be of great benefit to security researchers, and
to producers and consumers of steganography products.

 Stego Quality Enhancement by Message Size Reduction 153

This paper is primarily concerned with improving quality and robustness aspects of
steganography techniques whilst maintaining a full payload capacity. The contribu-
tions of the paper are: 1) we present an algorithm, SISR, to reduce the secret image
size as a pre-processing step prior to secret image embedding; and 2) we present a bit-
plane mapping technique for Fibonacci based message embedding. As a result of
these two proposals, we are able to improve stego image quality and un-detectability
without affecting the payload capacity. Although our focus for SISR algorithm is to
reduce embedding impact on the stego image, it can also be applied on the well-
known DICOM standard images for storage and exchange of medical images. The
proposed SISR algorithm is useful for both secure and privacy-preserving archiv-
ing/storing and transmission of medical images. Furthermore, the output bits from
SISR algorithm that represent the DICOM image can be embedded with less impact
on the stego quality.

The rest of the paper is organized as follows: a review of literature on steganogra-
phy is presented in Section 2. Section 3 presents the proposed SISR algorithm to pre-
process secret images before embedding and Section 4 presents the proposed embed-
ding technique. The experimental results are shown in Section 5. Finally, our conclu-
sions and direction future work are given in Section 6.

2 Literature Review

The LSB [3,4], LSB Matching (LSBM) [11], and LSBM Revisited (LSBMR) [12] are
basic embedding techniques. Other embedding techniques based on region selection
such as randomly embedding across the cover [13], and embedding in edge areas
[14,15,16] have been proposed. The sequential LSB replacement increases even pixel
values either by one or they are left unchanged, while odd pixel values are decreased
by one or are left unchanged. This could create an imbalance in the embedding distor-
tion, referred to in the literature as the asymmetry problem, in the stego image that can
be exploited to detect the presence of a hidden message. More seriously, the secret
message embedded by the sequential LSB replacement is easily detected. This prob-
lem can be partially mitigated by the use of pseudorandom number generator (PRNG)
to randomly distribute the message across the cover instead of embedding the mes-
sage in sequential order [13]. This is called LSB randomly embedding. However, the
LSB randomly still suffers from the asymmetry problem.

The LSBM scheme is designed to solve the asymmetry problem by checking if the
next secret bit does or does not match the LSB of the corresponding cover pixel. If
not, then LSBM randomly increases or decrease the pixel value by 1 [11]. LSBM
does not suffer from the asymmetry problem, and has the advantage of high payload
capacity, as well as good visual imperceptibility property [17]. In these LSB methods,
the probability of pixel value change is 0.5 (i.e. they have almost the same stego qual-
ity). Mielikainen [12], used a function to develop the LSBM technique called LSB
Matching Revisited (LSBMR) to improve the imperceptibility of the stego whereby
two secret bits are embedded in a pair of pixels of the cover. Incorporating this func-
tion reduces the probability of changing pixel values from 0.5 to 0.375. However,

154 A.A. Abdulla, H. Sellahewa, and S.A. Jassim

these improvements come at the expense of limited payload capacity because LSBMR
algorithm cannot be performed on saturated pixels.

Another approach to secret hiding is to embed a message in selective regions of an
image using some criteria. Embedding the secret message in edge area of the cover
helps improve imperceptibility and robustness against detection [14]. Sobel, Prewitt,
and Canny [15] are the most popular edge detection techniques that have been used in
steganography. However, edge based embedding have problems with determining the
same edge area by the receiver because the act of embedding in an edge area could
change the original edge pixels into non-edge pixels. Therefore, some parts of a secret
message may be lost, i.e. the survivability of secret message cannot be guaranteed at
the receiving end. Hempstalk, [14], suggested to overcome this problem by first re-
placing all LSBs of the cover with 0. Then the edge detection technique is applied on
the modified cover to select the edge pixels for embedding. The receiver applies the
same pre-processing then use the edge detection technique on the modified stego to
select edge pixels. In [16], Weiqi et al. attempted to tackle the same problem by limit-
ing the edge pixels involved in embedding using a threshold that depends on size of
the secret message, and proposed an embedding algorithm based on edge areas and
LSBMR embedding method. Their algorithm is, therefore adaptive, and only sharper
edge pixels are used for embedding. All selective regions (variants of edge-based)
algorithms have the advantage of improved quality of stego and detectability, but at
the expense of limiting payload capacity because the secret bits can be embedded in
only edge areas.

Fibonacci bit-plane representation of the cover pixel has been investigated for ste-
ganography due to their advantages over binary representation when embedding in
higher bit-planes than the LSB. This alternative representation of integers provides
more bit-planes than the binary [18]. When embedding in higher bit-planes, the effect
on the quality of the stego is less with the Fibonacci than with the binary [5].

Diego et al. [5], produced a Fibonacci embedding technique by strict observation
of the Zeckendorf theorem. In their scheme, they first select a pixel then decompose
the pixel value into Fibonacci and also select the plane that use for embedding. Then
they check if the selected pixel is a good candidate or not, and if it is not, skip it and
select the next candidate pixel. If it is a good candidate, then the secret bit is replaced
with the agreed bit-plane. They claimed that the same embedding scheme can be also
applied to different planes resulting in more robust data hiding and possibly higher
visual distortion. As they mentioned, the main aim of their scheme is to investigate
the possibility of inserting a secret bit without altering the perceptual quality of stego.
Also they claimed that if the secret bits are embedded in the LSB using binary or
Fibonacci based embedding, the PSNR of Fibonacci becomes similar or higher com-
paring to the binary embedding based. The limitation of their algorithm is, not every
pixel of the cover is going to be used for embedding.

A generalized Fibonacci decomposition is proposed in [18] as an improvement
of [5]. The most common generalization of Fibonacci is the p-number Fibonacci
sequence. In order to provide more places for embedding, the authors of [18]

 Stego Quality Enhancement by Message Size Reduction 155

investigated the p-number Fibonacci bit-planes to determine which planes are suitable
for embedding. In their scheme, they first decompose the selected pixel into bit-planes
using p-number Fibonacci. Then the selected plane is chosen for embedding and also
the Zeckendorf theorem is applied on the selected pixel. Finally, they did a compari-
son between the proposed scheme and binary embedding in term of quality and capac-
ity. As a result, even they claimed that the proposed scheme is better than binary in
term of capacity and quality, but still their limitation is capacity because some pixel
values are not candidates for embedding.

The use of more advanced versions of Fibonacci, and other representations have
been investigated [19,20,21] to increase security. Fibonacci-like steganography by
bit-plane(s) mapping instead of bit-plane(s) replacement has been proposed to in-
crease embedding capacity by embedding two bits of the message in three bits of a
cover pixel. However, the increase of security is achieved at the expense of a margin-
al loss in stego quality. In this paper, we extend the work in [21] to improve cover
quality by embedding one secret bit in a cover pixel whilst maintaining the same ro-
bustness against statistical steganalysers. In this paper, the purpose of using Fibonacci
representation instead of the binary representation is to gain higher stego quality, i.e.
by embedding the obtained bits from SISR algorithm into Fibonacci representation of
a cover pixel provides higher PSNR than embedding into binary representation (see
Tables 9,11, and 12). This happens because of two reasons, first the obtained stream
of bits from the proposed SISR algorithm that represent the secret image contains
more 0s than 1s (see Tables 7 and 8) for natural images, the reason is discussed in
Section 5.3. The second reason is in the Fibonacci representation complying with
Zeckendorf theorem, more cover pixels’ LSB have a value of 0 than 1, while in binary
representation the number of cover pixels’ LSB that have 0 value are almost equal to
those have 1 (see Table 10). These two reasons increase the probabilities of similari-
ty/matching between the secret bit and the cover pixel’s LSB of the Fibonacci repre-
sentation. Moreover, unlike the exiting Fibonacci-based bit-plane replacement tech-
niques, the proposed mapping algorithm can be applied on all pixel intensities to
embed secret bits.

3 Secret Image Size Reduction (SISR) Algorithm

Here we propose the SISR algorithm to reduce the size of secret images prior to em-
bedding it in a cover image in order to reduce the impact of embedding on the stego
quality (i.e. PSNR).

3.1 SISR Algorithm: Encoding

The SISR encoding algorithm works as follows:

• Split the secret image into non-overlapping blocks of size 4x4.
• Let Bi j be a block of 16 pixels, and i, j ϵ {1,.., 4}. For each such block do the

following steps:

156 A.A. Abdulla, H. Sellahewa, and S.A. Jassim

1. Let m = mini j (Bi j), be the minimum pixel value, and let i*, j* be the indices of the
element in Bi j achieving m with smallest j, then smallest i.

2. Let Di j = Bi j – m, be the difference between each pixel and m.
3. Let Dmax = maxi j (Di j), be the maximum difference value.
4. Let T be a set of possible thresholds to determine the length of bits that represent

Di j.

 T = {2n -1 | 0 ≤ n ≤ 7}

5. Let T* = min (z), where z ϵ T and z ≥ Dmax, in other words, T* is the closest value
in T to Dmax that is greater than or equal to Dmax.

When T* = 0, it means that the maximum value of differences Di j between each pixel
and the minimum pixel (m) is 0, i.e., all pixels in that block have the same value.
When T* = 1, it means that the maximum value of differences Dij between each pixel
and the minimum pixel (m) is 1, and so on for other values of T*.

6. If T* = 255, record 1 and followed by the original pixels’ value in 8 bits, otherwise
record 0. If T* = 0, the recorded 0 is followed by the minimum pixel value in 8
bits, then the value of T* in 3 bits (111), and no information is needed to represent
the position of the minimum pixel value because all of the pixels have the same
value, therefore in this case only 12 bits are needed to represent the block. Other-
wise, when T* = 1, 3, 7, 15, 31, 63 or 127, the recorded 0 is followed by:

─ 8 bits: indicates the minimum pixel value.
─ 3 bits: indicates the value of T*, should be 110, 101, 011, 100, 010, 001, or 000

representing 1, 3, 7, 15, 31, 63, or 127 respectively.
─ 4 bits: indicates as the position of the minimum pixel value (in each block there

are 16 pixels) therefore the positions are from 0 to 15.
─ From T* = 2L -1, L is the length of bits that are needed for representing Di j ,

where 1 ≤ L ≤ 7

Note that the 8 bits that indicate the minimum pixel value and the 3 bits that indicate
the value of T* are needed when the image pixel value is between 0 and 255. It is
possible to extend this reduction algorithm to be applicable on different pixel value
ranges, for example if the image pixel value is between 0 to 511, we can extend the
algorithm to be applicable by representing the minimum pixel value in 9 bits instead
of 8 bits and the value of T* in 4 bits instead 3 bits.

3.2 SISR Algorithm: Recovery

The following steps describe the recovery of the original images from the obtained
stream of bits bi described in Section 3.1:

1. Take the first bit; if it is 1 take each of the following 8 bits and convert them into
decimal (repeat it 16 times). If this is the case, terminate here, otherwise follow
the next steps.

 Stego Quality Enhancement by Message Size Reduction 157

2. Next 8 bits indicate m.
3. Next 3 bits indicate T*.
4. Next 4 bits indicate index of m.
5. From value of T*, the length of the bits are decided so as to represent Di j. For ex-

ample if T* = 15, 4 bits are needed to represent Di j.
6. Bi j = Di j + m.

3.3 Example Application of SIRS Algorithm

The example 4x4 block of pixel intensities in Table 1 will be used to illustrate the
SISR encoding and recovery steps.

Table 1. Block of 16 pixels

30 25 26 35

35 22 29 28

31 24 22 29

30 34 32 30

SISR Encoding Steps

1. The minimum pixel value is 22 (00010110 in 8 bits), and its index is 5 (0101 in 4
bits).

2. The differences between pixels and the minimum pixel are presented in Table 2.
3. The maximum value of the subtraction, see 3rd and 7th column of the Table 2,

is 13.
4. The nearest value in set T that should be equal or greater than the maximum value

of the subtraction, which is 13, is 15 (i.e. T* = 15).
5. Now this stream of bits represents the block of Table 1:

0: indicates that the algorithm has been done on the block, i.e. T* is not equal to
255.

00010110: represents the minimum pixel value.
100: represents the value of T*.
0101: represents the index of the minimum pixel value.
1000, 0011, 0100, 1101, 1101, 0111, 0110, 1001, 0010, 0000, 0111, 1000, 1100,

1010, 1000: representing values of difference (see 3rd and 7th column of Table 2)
8, 3, 4, 13, 13, 7, 6, 9, 2, 0, 7, 8, 12, 10, 8 respectively.

Finally, this stream (0 00010110 100 0101 1000 0011 0100 1101 1101 0111 0110
1001 0010 0000 0111 1000 1100 1010 1000) represents the 4x4 block (see
Table 1), i.e. 76 bits are representing original 128 bits.

158 A.A. Abdulla, H. Sellahewa, and S.A. Jassim

Table 2. Differences between pixels and minimum pixel value

Bi j m Di j b Bi j m Di j b
30 22 8 1000 24 22 2 0010
25 22 3 0011 22 22 0 0000
26 22 4 0100 29 22 7 0111
35 22 13 1101 30 22 8 1000
35 22 13 1101 34 22 12 1100
29 22 7 0111 32 22 10 1010
28 22 6 0110 30 22 8 1000
31 22 9 1001

In Table 2, the 1st and 5th column, Bi j, is the values of the pixels in the Table 1 (ex-

cluding first minimum pixel value 22). The 2nd and 6th column is the minimum pixel
value m, and the 3rd and 7th column, Di j, is the subtraction of the minimum pixel value
from each pixel value. The 4th and 8th column, b, represents the result of subtraction in
binary form.

SISR Recovery Steps
From the obtained stream above, the original 4x4 block of pixels can be recovered as
follows:

1. Take the first bit; which is 0, then go to the next step.
2. Convert the next 8 bits into decimal, which is 22, that represents the minimum

pixel value m.
3. The next 3 bits, 100, represent the value of T*, i.e. T*=15.
4. The next 4 bits, 0101, represent the index of m.
5. As T* = 15, take each next 4 bits 15 times and convert them into decimal to

represent Di j as illustrated in Table 3.
6. Add m to Di j, then the original pixels Bi j are obtained (see 4th and 8th column of

Table 3).
7. Sequentially insert each value in the 4th and 8th column of Table 3 to its position in

the block; the block is recovered exactly as it is (see Table 1).

Table 3. Producing original pixels from the recovered Di j

b Di j m Bi j b Di j m Bi j
1000 8 22 30 0010 2 22 24
0011 3 22 25 0000 0 22 22
0100 4 22 26 0111 7 22 29
1101 13 22 35 1000 8 22 30
1101 13 22 35 1100 12 22 34
0111 7 22 29 1010 10 22 32
0110 6 22 28 1000 8 22 30
1001 9 22 31

 Stego Quality Enhancement by Message Size Reduction 159

Table 4. Number of obtained bits from proposed SISR algorithm for block size 4x4

 Number of bits
 T* Obtained Original Reduction
 0 12 128 116

1 31 128 97
3 46 128 82
7 61 128 67

15 76 128 52
31 91 128 37
63 106 128 22

127 121 128 7
255 129 128 -1

Table 4 illustrates the number of obtained bits and the number of reduced bits de-

pending on the value of T* for the 4x4 block. From this table, one can notice that only
in the case T* = 255, the algorithm increases the number of bits by 1; otherwise, the
algorithm reduces the number of bits to represent the block of 16 pixels.

Although the main focus in this paper of proposing SISR algorithm is to reduce the
secret image size prior to embedding, it can also be used for the image storage and
transmission purposes.

4 Proposed Embedding Algorithm

A PRNG is used to randomly select a cover pixel. Converting the cover pixel value
into Fibonacci results in more than one representation for each pixel value. Comply-
ing with Zeckendorf theorem means that the first three LSBs of a cover pixel in Fibo-
nacci representation belong to the set {000, 001, 010, 100, 101} as illustrated in Table
5. Depending on the set, our mapping embeds a secret bit into a cover pixel by map-
ping the secret bit onto the first 3 LSB bits according to Table 5.

Table 5. Mapping Algorithm

 3 Cover bits
 Secret bits

0 1
000 000 001
001 000 001
010 010 001
100 100 101
101 100 101

From the structure of Table 5, the secret bits can be recovered by extracting

the 1st LSB of the selected stego pixel using the same PRNG used at the embedding
stage.

160 A.A. Abdulla, H. Sellahewa, and S.A. Jassim

5 Experimental Results

Two sets of experiments were performed to evaluate the proposed algorithms: one to
evaluate the proposed SISR algorithm and one to evaluate the performance of the
proposed mapping based embedding technique.

5.1 Experimental Setup

The following databases were used in our experiments:

1. The Miscellaneous volume of Signal and Image Processing Institute (SIPI) da-
tabase of University of Southern California [22]. This database consists of 44
images of which 16 are color and 28 are monochrome images. We resized
these 44 images to 512 x 512 and convert them into gray level images with 8
bits per pixel. These images will be considered as cover images. Also, the
original 44 images were resized to 256 x 128 and converted to gray scale with
8 bits per pixel to be used as secret images. The reason for resizing these im-
ages to 256 x 128 is to make the number of bits that represent a secret image is
equal to the number of cover pixels (262144 pixels).

2. Two sample databases of DICOM images: BU001015-V01 database contains
193 gray level images of size 256 x 256 with 16 bits per pixel, and MR data-
base contains 140 gray level images of sizes 256 x 256 or 512 x 512 with 16
bits per pixel [23]. These two databases are used to test the proposed SISR
algorithm.

5.2 SISR Algorithm Evaluation

The proposed SISR algorithm was applied on SIPI database images of size 256 x 128,
BU001015 database images of size 256 x 256, and MR database images of sizes 256
x 256 and 512 x 512. The original number of bits in each tested image is 128 *256 *8
= 262144 bits, 256 x 256 x 16 = 1048576 bits, and 1048576 bits or 512 x 512 x 16 =
4194304 bits for SIPI, BU001015, and MR database respectively. We used the reduc-
tion ratio factor RR in Eq. 1 to evaluate the reduction efficiency of our approach.

 (1)

Table 6 shows RR after applying the SISR algorithm on the three databases for 3
different block sizes (i.e., 4x4, 8x8, and 16x16). From Table 6, we can see that the
best RR is achieved with 4x4 blocks. The RR decreases as the block size increases.
Furthermore, Table 7 and 8 demonstrates that the SISR algorithm produces a higher
ratio of 0s bits than 1s.

 Stego Quality Enhancement by Message Size Reduction 161

Table 6. Average RRs for SISR algorithm for different block sizes

Databases
Block Size

4x4 8x8 16x16
Average Std. Average Std. Average Std.

SIPI 0.697 0.141 0.754 0.138 0.841 0.111
DICOM(

BU001015)
0.442 0.017 0.446 0.020 0.469 0.020

DICOM(MR) 0.426 0.031 0.429 0.034 0.455 0.035

Table 7. Ratio of Zero and One value bits obtained after applying the proposed SISR algorithm
on 4x4block size

Databases
Ratio of 0s Ratio of 1s

Average Std. Average Std.
SIPI 0.55 0.037 0.45 0.037

DICOM(BU001015) 0.58 0.004 0.42 0.004

DICOM(MR) 0.58 0.010 0.42 0.010

In order to embed DICOM images, we resized the first 10 images of databases

BU001015 and MR to 128 x 128 to embed them in the first 10 cover images of SIPI
database. The images were resized to 128 x 128 to make the number of bits that
represent secret medical DICOM images equal to the number of cover pixels (262144
pixels). The result of the SISR algorithm is illustrated in Table 8.

Table 8. RRs and the ratio of Zero and One value bits Obtained after applying the proposed
SISR algorithm on block size 4x4 for resized DICOM database images

Databases
RR Ratio of 0s Ratio of 1s

Average Std. Average Std. Average Std.

BU001015 0.403 0.038 0.60 0.005 0.40 0.005

MR 0.438 0.028 0.58 0.005 0.42 0.005

5.3 Embedding Algorithm Evaluation

Two experiments are conducted to evaluate the performance of the proposed embed-
ding technique. The first is to test stego quality and the other is to measure the detec-
tability of secrets. The results are compared with the binary based LSB randomly
(LSB binary) and Fibonacci based LSB randomly (LSB Fibonacci) embedding tech-
nique. Images of SIPI database (44 images) of size 512 x 512 are used as cover im-
ages. For each cover image, 44 secret images of SIPI database of size 256 x 128 are
embedded producing (44 x 44 = 1936) stego images for each tested embedding tech-
nique including the proposed embedding technique.

162 A.A. Abdulla, H. Sellahewa, and S.A. Jassim

Stego Quality. Average PSNR values for the 1936 stego images are shown in Table 9
for LSB binary, LSB Fibonacci and the proposed embedding technique.

Table 9. Stego quality (PSNR) after embedding the original image (SIPI) vs. the reduced image

Binary LSB Fibonacci LSB Fibonacci mapping

Original Reduced Original Reduced Original Reduced

PSNR 51.15 52.80 52.24 52.92 51.14 52.90

The second column of Table 9 presents the results when the original image bits are

embedded in the cover using binary based LSB randomly embedding technique. The
third column presents the results when reduced image bits are embedded using binary
based LSB randomly embedding technique. The same for the fourth and fifth columns
using Fibonacci based embedding technique. Finally, the sixth and seventh columns
present the results when original image bits and reduced image bits are embedded
using the proposed mapping based embedding technique. Results show that reducing
the secret image using the proposed SISR algorithm leads to better stego quality com-
pared to embedding the original image. The reason why the Fibonacci based LSB has
higher PSNR value than others is because in the case of Fibonacci based LSB embed-
ding technique, not every pixel is used for embedding, i.e. some pixels are excluded
from embedding whereas in the binary based LSB and the proposed Fibonacci based
mapping embedding technique, every pixel can be, and is, used for embedding. The
average of maximum number of pixels, for the SIPI database, used for embedding for
each tested technique is illustrated in figure 1. Moreover, the stego quality is better
with the proposed mapping based embedding compared to binary based LSB. This is
achieved because: 1) the proposed SISR algorithm always provide a bit stream that
contains more 0s than 1s; and 2) in the Fibonacci representation compliant with the
Zeckendorf theorem, the probability of pixels that have a value of 0 as the LSB is
always greater than those that have 1. Whilst in the binary representation, the proba-
bility of pixels’ LSB that have a value of 0 is equal to those that have 1. These two
factors increase the probability of the secret bit and the LSB of the Fibonacci repre-
sentation being the same. The reasons of why the proposed reduction algorithm pro-
vides a stream of bits that always contains more 0s than 1s are:

1. First recorded bit (see Section 3.1) is 1 when T*=255 otherwise it is 0. As in most
blocks of the secret image T* is not equal to 255, the stream has more number of
0s than 1s.

2. There is one possible 3-bit string (i.e., 000, 001, 010, 100, 101, 011, 110) to
represent each T* value. The four most frequently occurring T* values are
represented by the 3 bits with two or more 0s. Then the three remaining 3-bit
strings represents the three least frequent T* value.

 Stego Quality Enhancement by Message Size Reduction 163

Table 10. Ratio of Zeros and Ones of cover pixels’ LSB value for SIPI database

LSB of Binary LSB of Fibonacci

Number of 0s Number of 1s Number of 0s Number of 1s
Average 0.47 0.53 0.60 0.40

Std. 0.095 0.095 0.126 0.126

Table 11. Stego quality (PSNR) after embedding the original DICOM (BU00105) image vs.
the reduced image

Binary LSB Fibonacci LSB Proposed

Original Reduced Original Reduced Original Reduced

PSNR 51.14 55.10 52.30 55.09 51.81 55.30

Table 12. Stego quality (PSNR) after embedding the original DICOM (MR) image vs. the
reduced image

Binary LSB Fibonacci LSB Proposed

Original Reduced Original Reduced Original Reduced

PSNR 51.14 54.73 52.30 54.72 51.70 54.90

In Table 11 and 12, the first 10 images of databases BU001015 and MR are resized
to 128 x 128 and embedded in each of the first 10 cover images of size 512 x 512 of
SIPI database. Results in each cell are the average of 100 stego images. For the same
reasons that we discussed before, we can see that the proposed embedding technique
has higher quality than binary based LSB randomly embedding and Fibonacci LSB
randomly embedding, and for the same reasons discussed before, the Fibonacci LSB
has higher quality than binary based LSB randomly embedding and proposed embed-
ding technique when the original secret image is embedded.

Fig. 1. Embedding Capacity

0

20

40

60

80

100

Fibonacci LSB Binary LSB Proposed

Percentage of
Pixels

Embedding Techniques

164 A.A. Abdulla, H. Sellahewa, and S.A. Jassim

From figure 1, we can see that the Binary LSB and proposed embedding tech-
niques have 100% of embedding capacity, i.e. every cover pixel can be used to embed
the secret; while in Fibonacci LSB, only 78% of the cover pixels on average can be
used for embedding the secret.

Detectability. Two steganalysers have been used to evaluate the detectability of the
proposed embedding technique. Results are compared with binary based LSB ran-
domly embedding technique.

In Table 13 and 14, binary LSB (Original) means the secret image is embedded us-
ing binary based LSB randomly; Binary LSB (Reduced) means the obtained bits from
Table 6 (2nd column) is embedded using binary based LSB randomly; and proposed
technique means the obtained bits from Table 6 (2nd column) is embedded using the
proposed embedding technique.

Regular and Singular (RS) steganalyser [6]. Fridrich et al. found that the RS ratio of a
typical image should satisfy the rule: (RM RM- and SM SM-) through large
number of experiments. When LSB of the cover is changed, the difference between
RM and RM- and the difference between SM and SM- increases. Then, the rule is
violated; therefore, one could conclude that the tested image carries a secret message.
Note that when payload capacity p = 0 %, i.e. cover without an embedded message,
the value of RM is close to RM-, and the value of SM is close to SM-. Depending on
the description above, we can discuss the results in Table 13, which presents the aver-
age values of RM, RM-, SM, and SM- based on embedding 44 secret images of the
SIPI database in each of 44 different covers of SIPI database resulting 1936 stego
images. In the case of using binary LSB, embedding higher rate of secret bits lead to
an increase in the differences between RM and RM-, SM and SM-, indicating the
presence of a secret message. Whereas in the case of the proposed embedding tech-
nique, there are no such differences. This indicates that these images are non-stegos.
Therefore, the proposed technique is robust against the RS steganalyser. When re-
duced-size messages are embedded using binary LSB, the RS is still able to detect the
secret bits but with lower message size estimation. When embedding the reduced bits
using the proposed mapping scheme, the RS is unable to detect the secret bits. This
demonstrates that proposed embedding technique is robust against RS.

Table 13. Message detection based on RS steganalyser

 RM SM RM- SM-
Binary LSB (Original) 25.69 25.68 55.42 14.21
Binary LSB (Reduced) 28.63 24.06 53.40 15.56

Proposed technique 39.02 19.82 43.42 19.48

Weighted Stego (WS) steganalyser [7]. When an image is submitted to the WS, its
output indicates the probability of having a hidden message. A negative value is
treated as 0 and any number >1 is an indication of full 100% secret load. The average
result of 1936 stegos is displayed for each embedding technique. Table 14 shows the
estimation results of the secret message length of two steganographic techniques,

 Stego Quality Enhancement by Message Size Reduction 165

including our proposed by this steganalyser. From Table 14, it is noticeable that the
proposed scheme mostly scores a value close to zero indicating the absence of an
embedded secret. On the other hand, when embedded using the binary LSB, the ste-
ganalyser detects the secret message with high probability. This demonstrates that
proposed embedding technique is robust against WS.

Table 14. WS Steganalyser

 Message length
LSB random (original) 0.970

LSB random (Reduced) 0.734
Proposed technique 0.151

6 Conclusion

A two-step efficient steganography scheme has been proposed to enhance stego quali-
ty and secret un-detectability. The first step of reducing the number bits required to
represent a secret image (i.e., SISR) prior to embedding led to improved stego quality.
The second step is the Fibonacci-based mapping technique to embed the message bits.
This technique further improved the stego quality by embedding the obtained bits
from the SISR algorithm in the cover by bit-plane(s) mapping instead of bit-plane(s)
replacement. The proposed embedding mechanism outperforms the binary based LSB
randomly embedding in two aspects: stego quality and robustness against steganalys-
ers. Furthermore, this scheme overcomes the limitation imposed by the Zeckendorf
theorem which improves capacity as well as the stego quality. The improvement in
stego quality is the result of the combined effect of the SISR which results in secret
message bit stream that has more 0s than 1s and the nature of the Fibonacci represen-
tation of cover pixel values which results in more 0s at the LSB than 1s. The experi-
mental results demonstrated that the proposed embedding scheme is also secure
against RS, and WS steganalyser attacks.

Our future work directions are: 1) investigate all existing pixel value decomposi-
tion techniques such as Prime, Natural, Lucas, Catalan in terms of providing higher
ratio of cover pixels’ LSB having the zero value and also propose a new pixel values
decomposition technique that provides higher ratio of cover pixels’ LSB having zero
value; and 2) find a mechanism to improve the SISR algorithm in order to provide
higher ratio of obtained bits that their values are zeros than 1s. Thus, these two factors
are increase the probability of similarity between the secret bits and cover pixels’ LSB
results in better stego quality and less message detectability.

References

1. Mildenberger, P., Eichelberg, M., Martin, E.: Introduction to the DICOM standard. Euro-
pean Radiology 12, 920–927 (2002)

166 A.A. Abdulla, H. Sellahewa, and S.A. Jassim

2. Gibaud, B.: The Dicom Standard: A Brief Overview. In: Molecular Imaging: Computer
Reconstruction and Practice, pp. 229–238. Springer (2008)

3. Chan, C., Cheng, L.M.: Hiding data in images by simple LSB substitution. Pattern Recog-
nition 37, 469–474 (2004)

4. Thien, C., Lin, J.: A simple and high-hiding capacity method for hiding digit-by-digit data
in images based on modulus function. Pattern Recognition 362, 875 (2003)

5. Picione, D.D.L., Battisti, F., Carli, M., Astola, J., Egiazarian, K.: A Fibonacci LSB data
hiding technique. In: Proc. 14th EUSIPCO (2006)

6. Fridrich, J., Goljan, M., Du, R.: Reliable detection of LSB steganography in color and
grayscale images. In: Proc. ACM Workshop on Multimedia and Security, pp. 27–30
(2001)

7. Fridrich, J., Goljan, M.: On estimation of secret message length in LSB steganography in
spatial domain. Electronic Imaging, International Society for Optics and Photonics, 23–34
(2004)

8. Najeena, K.S., Imran, B.M.: An efficient steganographic technique based on chaotic maps
and adpative PPM embedding. In: Signal Processing Image Processing & Pattern Recogni-
tion (ICSIPR), pp. 293–297. IEEE (2013)

9. Kurtuldu, O., Arica, N.: A new steganography method using image layers. In: ISCIS, pp.
1–4. IEEE (2008)

10. Kraetzer, C.: Visualisation of Benchmarking Results in Digital Watermarking and Stega-
nography. In: ECRYPT, pp. 30–46. Citeseer (2007), IST-2002-507932

11. Sharp, T.: An implementation of key-based digital signal steganography. In: Moskowitz,
I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 13–26. Springer, Heidelberg (2001)

12. Mielikainen, J.: LSB matching revisited. LSP IEEE 13(5), 285–287 (2006)
13. Provos, N., Honeyman, P.: Hide and seek: An introduction to steganography. IEEE Securi-

ty & Privacy 1, 32–44 (2003)
14. Hempstalk, K.: Hiding behind corners: Using edges in images for better steganography. In:

Proceedings of the Computing Women’s Congress, Hamilton, New Zealand, pp. 11–19
(2006)

15. Chen, W.J., Chang, C.C., Le, T.: High payload steganography mechanism using hybrid
edge detector 37(4), 3292–3301 (2010)

16. Weiqi, L., Fangjun, H., Huang, J.: Edge Adaptive Image Steganography Based on LSB
Matching Revisited. TIFS 5(2), 201–214 (2010)

17. Yi, L., Xiaolong, L., Bin, Y.: Locating steganographic payload for LSB matching embed-
ding. In: ICME, pp. 1–6 (2011)

18. Battisti, F., Carli, M., Neri, A., Egiaziarian, K.: A Generalized Fibonacci LSB Data Hiding
Technique. In: CODEC, pp. 671–683 (2006)

19. Patsakis, C., Fountas, E.: Extending Fibonacci LSB data hiding technique to more integer
bases. In: ICACTE, vol. 4, pp. 18–27 (2010)

20. Mammi, E., Battisti, F., Carli, M., Neri, A., Egiazarian, K.: A novel spatial data hiding
scheme based on generalized Fibonacci sequences. Proc. SPIE 6982, 1–7 (2008)

21. Abdulla, A.A., Jassim, S., Sellahewa, H.: Efficient high-capacity steganography tech-
niques. Proc. SPIE 8755, 875508-1–875508-11 (2013)

22. http://sipi.usc.edu/database/database.php?volume=misc
(last access date was Spetember 15, 2014)

23. http://www.microdicom.com/downloads.html
(last access date was September 15, 2014)

Secure Modular Password Authentication

for the Web Using Channel Bindings

Mark Manulis1, Douglas Stebila2, and Nick Denham2

1 Surrey Centre for Cyber Security, University of Surrey, UK
mark@manulis.eu

2 Queensland University of Technology, Brisbane, Australia
{stebila,n.denham}@qut.edu.au

Abstract. Secure protocols for password-based user authentication are
well-studied in the cryptographic literature but have failed to see wide-
spread adoption on the Internet; most proposals to date require extensive
modifications to the Transport Layer Security (TLS) protocol, making
deployment challenging. Recently, a few modular designs have been pro-
posed in which a cryptographically secure password-based mutual au-
thentication protocol is run inside a confidential (but not necessarily
authenticated) channel such as TLS; the password protocol is bound to
the established channel to prevent active attacks. Such protocols are use-
ful in practice for a variety of reasons: security no longer relies on users’
ability to validate server certificates and can potentially be implemented
with no modifications to the secure channel protocol library.

We provide a systematic study of such authentication protocols. Build-
ing on recent advances in modelling TLS, we give a formal definition
of the intended security goal, which we call password-authenticated and
confidential channel establishment (PACCE). We show generically that
combining a secure channel protocol, such as TLS, with a password au-
thentication protocol, where the two protocols are bound together using
either the transcript of the secure channel’s handshake or the server’s
certificate, results in a secure PACCE protocol. Our prototype based on
TLS is available as a cross-platform client-side Firefox browser exten-
sion and a server-side web application which can easily be installed on
deployed web browsers and servers.

Keywords: password authentication, Transport Layer Security, channel
binding.

1 Introduction

Authentication using passwords is perhaps the most prominent and human-
friendly user authentication mechanism widely deployed on the Web. In this
ubiquitous approach, which we refer to as HTML-forms-over-TLS, the user’s
password is sent encrypted over an established server-authenticated Transport
Layer Security (TLS, previously known as Secure Sockets Layer (SSL)) channel
in response to a received HTML form. This approach is subject to many threats:

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 167–189, 2014.
c© Springer International Publishing Switzerland 2014

168 M. Manulis, D. Stebila, and N. Denham

the main problems with this technique are that security fully relies on a func-
tional X.509 public key infrastructure (PKI) and on users correctly validating
the server’s X.509 certificate. In practice, these assumptions are unreliable due
to a variety of reasons: the many reported problems with the trustworthiness
of certification authorities (CAs), inadequate deployment of certificate revoca-
tion checking, ongoing threats from phishing attacks, and the poor ability of the
users to understand and validate certificates [1,2]. Hypertext Transport Protocol
(HTTP) basic and digest access authentication [3] has been standardized, and
digest authentication offers limited protection for passwords, but usage is rare.
Public-key authentication of users, e.g. using X.509 certificates, is also rare.

1.1 Password-Authenticated Key Exchange (PAKE)

Password-authenticated key exchange (PAKE) protocols, which were introduced
by Bellovin and Merritt [4], and the security of which was formalized in several
settings [5,6,7], could mitigate many of the risks of the HTML-forms-over-TLS
approach as they do not rely on any PKI and offer stronger protection for client
passwords against server impersonation attacks, such as phishing. PAKE pro-
tocols allow two parties determine whether they both know a particular string
while cryptographically hiding any information about the string. They are resis-
tant to offline-dictionary attacks: an adversary who observes or participates in
the protocol cannot test many passwords against the transcript. Successful exe-
cution of a PAKE protocol also provides parties with secure session keys which
can be used for encryption.

Despite the many benefits of PAKE, and the presence of a variety of exist-
ing protocols in the academic literature and in standards [8,9,10], PAKE-based
approaches for client authentication have not been adopted in practice. There
is no PAKE standard that has been agreed upon and implemented in existing
web browser and server technologies. This is due to several practical obstacles,
including: patents covering PAKE in general (some of which have recently ex-
pired in the US), patents on proposed standards such as the Secure Remote
Password (SRP) protocol [11], lack of agreement on the appropriate layer within
the networking stack for the integration of PAKE [12], complexity of backwards-
compatible deployment with TLS, and user-interface challenges.

There have been a few proposals to integrate PAKE into TLS by adding
password-based ciphersuites as an alternative to public-key authenticated ci-
phersuites. SRP has been standardized as a TLS ciphersuite [13] and has several
reference implementations but none in major web browsers or servers. Abdalla
et al. [14] proposed the provably secure Simple Open Key Exchange (SOKE)
ciphersuite, which uses a variant of the PAKE protocol from [15] that is part
of the IEEE-P1363.2 standard [10]. The J-PAKE protocol [16] is used in a few
custom applications. Common to all PAKE ciphersuite approaches is that the
execution of PAKE becomes part of the TLS handshake protocol: the key output
by PAKE is treated as the TLS pre-master secret, which is then used to derive
further encryption keys according to the TLS specification. An advantage of this
approach is that secure password authentication could subsequently be used in

Secure Modular Password Authentication 169

any application that makes use of TLS, and that standard TLS mechanisms for
key derivation and secure record-layer communication can continue to be used.
However, a major disadvantage is that any new ciphersuites in TLS require sub-
stantial vendor-side modifications of the web browser and server software. This
is problematic for modern web server application architectures within large orga-
nizations, where a TLS accelerator immediately handles the TLS handshake and
encryption, then hands the plaintext off to the first of many application servers;
requiring the TLS accelerator to have access to the list of valid usernames and
passwords may mean a substantial re-architecting. Moreover, using solely PAKE
in TLS means abandoning the web public key infrastructure.

1.2 Running PAKE at the Application Layer

A better approach for realizing secure password-based authentication on the web
may be to rely on existing TLS implementations to provide confidential commu-
nication between clients and servers, and integrate application-level PAKE for
password-based authentication, without requiring any modifications to the TLS
specification or implementation; in particular, without proposing any new TLS
ciphersuites or changing any of the steps of TLS handshake protocol.

However, if the TLS channel is only assumed to provide confidentiality, not
authentication, then one must use an alternative mechanism to rule out man-
in-the-middle attacks on the TLS channel. Since it is the password-based proto-
col that provides mutual authentication, there should be a binding between the
TLS channel and the password-based protocol. There are several potential values
which might be used for binding: the transcript of the TLS handshake protocol,
the TLS master secret key (or a value derived from it, such as the TLS Finished

message), or even the server’s certificate. A recent standard [17] describes three
TLS channel bindings, two of which are relevant to us: tls-unique in which the
binding string is the Finished message, and tls-server-end-point in which
the binding string is the hash of the server’s certificate. Notably, TLS channel
bindings do not change the TLS protocol itself: all TLS protocol messages, ci-
phersuites, data transmitted, and all other values are entirely unchanged. Rather,
TLS channel bindings expose an additional value to the application that can be
obtained locally, thereby requiring minimal changes to TLS implementations.

The high-level approach of running PAKE at the application level is given in
Figure 1. Using PAKE at the application-level supplements, rather than replaces,
the use of public key certificates.

Several recent works have proposed protocols of this form. Oiwa et al.
[18,19,20,21] published an Internet-Draft that employs an ISO-standardized
PAKE protocol (KAM3 [8, §6.3],[22]) and binds it to the TLS channel using
either the server’s certificate or the TLS master secret key, but no formal justi-
fication is given for security of the combined construction.

Dacosta et al. [23] proposed the DVCert protocol which aims to achieve direct
validation of the TLS server certificates by using a modification of the protocol
from [24] for secure server-to-client password-based authentication. Dacosta et
al. used an automated cryptographic protocol verifier, ProVerif, to demonstrate

170 M. Manulis, D. Stebila, and N. Denham

that their protocol does not leak password information without addressing any
further security properties of secure channels. In particular, the analysis carried
out in [23] is insufficient for showing the actual benefit of using PAKE protocols
to strengthen the security of the TLS channel: Dacosta et al. simply show that
the protocol does not leak password information, which is not surprising since
they build on a PAKE protocol which already did not leak information. Rather,
the security goals of the overall channel must be fully modelled to provide a
complete analysis. This is where our model for PACCE fills the gap: it explains
the expected security goals from the combination of PAKE and TLS. While we
have no reason to expect that the protocol from [23] is insecure, our model would
enable such an analysis of that protocol.

Outside of the world of TLS, the Off-the-Record Messaging protocol [25,26]
uses a PAKE-like password authentication functionality that is based on secure
two-party computation techniques to authenticate the long-term public keys used
in establishing confidential (yet deniable) channel, but with no justification for
the security of the combined construction.

1.3 Contributions

We analyze the modular approach to secure password authentication on the web,
in which a secure channel protocol such as TLS is combined—in a black box
way—with a password-authentication protocol. The black-box approach enables
smooth integration of PAKE functionality with secure channels such as TLS
without requiring any modification to the original channel protocol specification,
nor requiring abandoning public key certificates for server authentication.

At a high level, in our approach, a normal secure channel is established with
no assumptions on correct validation of certificates; then a PAKE protocol is run
within the secure channel to demonstrate (a) mutual knowledge of the password,
and (b) absence of a man-in-the-middle attack on the channel; once the PAKE
succeeds, the parties continue application communication. Notably, the session
key established by the PAKE is not used for symmetric encryption; while it could
replace the secure channel session key, in practice, such as in TLS, there is no
standardized mechanism to do so. Moreover, using the existing channel session
key is fine provided we bind the execution of the PAKE and the original channel
establishment in a provably secure way. We show how to realize this binding
using available TLS standards.

Our formal approach is as follows.
First, we define formally in Section 2 the security property we aim for in our

protocol: since the most suitable definition for the security of the combined TLS
handshake and record layer protocols is the authenticated and confidential chan-
nel establishment (ACCE) model of Jager et al. [27], we give a corresponding
password-based ACCE (PACCE) notion. We apply our PACCE model to ana-
lyzing strong passwords in TLS; as ACCE has been used to analyze many real
world protocols (SSH [28], EMV [29], and QUIC), PACCE should be suitable
for strong password variants of those.

Secure Modular Password Authentication 171

Client Server

TLS handshake

TLS record layer

tag-based password authentication
(tag = TLS transcript or server certificate)

application data

Fig. 1. High-level approach for combining secure password authentication with a TLS
channel to establish a single password-authenticated secure channel

Next, we define the various primitives we employ to achieve this goal; these
include the original ACCE notion, as well as an unauthenticated confidential
channel establishment (CCE) protocol. Rather than using a PAKE protocol,
we actually employ a newly defined tag-based password authentication (tPAuth)
protocol, which provides mutual authentication based on knowledge of a shared
password, with acceptance only if both parties input the same, possibly public,
tag to the protocol.

Then, when we run the tPAuth protocol inside the established confidential
channel, we bind the two protocols together by setting the tag to be either
the transcript of the channel establishment or the long-term public key used
by the server in the channel establishment. We prove in Sections 4 and 5 that
both of these tags are sufficient to achieve the end result of a password-based
authenticated and confidential channel establishment (PACCE) protocol. Our
two security theorems provide a qualitative distinction between those two tags
as binding mechanisms because they use slightly different assumptions on the
confidential channel establishment protocol: when the tag used is the transcript,
it suffices to use a CCE protocol, but when the tag used is the server’s public
key, we require the underlying protocol to be an ACCE protocol. (These results
give the first security justification of two standardized TLS channel binding
mechanisms, tls-unique and tls-server-end-point [17].)

Applicability of results to other approaches. Our results, by employing the
CCE/ACCE frameworks, are generic and could be applicable to constructions
employing a wide variety of protocols, not just TLS. These results justify the
general approach of the recent proposals of Oiwa et al.’s protocol [18,19,20,21]
and Dacosta et al.’s DVCert protocol [23]. We caution that our theorems do not
immediately imply security of those particular protocols for several reasons.

Our theorems depend on a formal construction called a tag-based password
authentication (tPAuth) protocol. Only the tSOKE protocol we describe in Ap-
pendix B is known to be a secure tPAuth. For most PAKE protocols, such as
the PAK protocol employed by Dacosta et al., it seems not hard to modify the
PAKE security proof to demonstrate tPAuth, but this requires additional work
for each particular protocol.

172 M. Manulis, D. Stebila, and N. Denham

Oiwa et al. provide three channel binding mechanisms: the server’s TLS certifi-
cate, the server host string (e.g., http://www.example.com:80), and the server’s
TLS master secret key.

– Our results do not address the cryptographic security of server host string
binding; indeed, Oiwa et al. intend for this mode mainly to be used when
TLS is not employed.

– Section 5.3 provides a justification for the use of the TLS server certificate,
though as noted our results only apply when the PAKE is also a tPAuth.

– Section 4.4 provides a justification for the use of the TLS Finishedmessage,
whereas Oiwa et al. allow use of the TLS master secret key. Since the TLS
handshake will not complete unless both parties compute the same Finished
messages, our results also justify the use of the TLS master secret key for
channel binding, though security of the whole construction again is not im-
plied by our results due to the caveat above that our results only apply with
the PAKE is also shown to be a tPAuth.

Dacosta et al.’s DVCert protocol only provides server-to-client password-based
authentication, whereas our PACCE notion provides mutual authentication.

Implementation. In Section 6, we demonstrate the practical merit of our ap-
proach with a reference implementation for the Mozilla Firefox web browser and
the Apache web server that takes advantage of the modularity of the construc-
tion.

– On the client side, our implementation is achieved entirely as a Firefox ex-
tension: it is a cross-platform Javascript-based bundle that can be installed
by the user at run-time, without any modifications to the source code of the
Firefox browser or its TLS library, Network Security Services (NSS).

– On the server side, our implementation is achieved entirely as a cross-platform
PHP application: it can be added at run-time without any modifications to
the source code of the Apache web server or its TLS library, OpenSSL.

Binding the password authentication protocol to the TLS channel is achieved
using the server’s TLS certificate as the tag; both Firefox and Apache have APIs
exposing the server’s certificate to the extension and PHP application, respec-
tively; the server certificate is one of two channel binding mechanisms standard-
ized for TLS [17]. The source code size of our implementation is quite small. Our
pure Javascript implementation is completely cross-platform and provides toler-
able performance, with total round-trip time under half a second on a laptop,
while our native C implementation using OpenSSL libraries provides high client
and server performance with a total protocol execution time, including network
latency in a corporate network, around 109ms. Our implementation is available
for immediate download.

Though the ultimate goal of this line of work would be for such a protocol to
be built into the browser, our Javascript extension may be amenable to gradual
deployment to seed adoption while still achieving good performance, especially
when making use of native libraries.

Secure Modular Password Authentication 173

2 Password-Authenticated Confidential Channels

The security goal for our main construction is that it be a secure password-
authenticated and confidential channel establishment (PACCE) protocol, which
is a new password-based variant of the ACCE model of Jager et al. [27]. ACCE
seems to be the most suitable for describing the security requirements of real-
world secure channel protocols such as TLS [27,30,31,32] and SSH [28], and so
it is natural to adapt it to the password setting.

A PACCE protocol is a two-party protocol that proceeds in two stages: in the
handshake stage both participants perform an initial cryptographic handshake
to establish session keys which are then used in the record layer stage to authen-
ticate and encrypt the transmitted session data.1 At some time during execution,
the parties may accept the session as being legitimately authenticated, or reject.
The main difference in PACCE compared to the original ACCE model is the use
of passwords instead of long-term public keys for authentication.

At a high level, a PACCE protocol is secure if the adversary cannot break
authentication, meaning it cannot cause a party to accept without having in-
teracted with its intended partner, and cannot break the confidential channel,
meaning it cannot read or inject ciphertexts.

We consider the standard client-server communication model where a party
is either a client C or a server S. For each client-server pair (C, S) there exists
a corresponding password pwC,S drawn from a dictionary D.

An instance of party U ∈ {C, S} in a session s is denoted as Πs
U . Each instance

Πs
U records several variables:

– Πs
U .pid: the partner identity with which Πs

U believes to be interacting in the
protocol session.

– Πs
U .ρ ∈ {init, resp}: the role of this instance in the session, either initiator

or responder. init(Πs
U) and resp(Πs

U) denote Π
s
U ’s view of who the initiator

and responder are in the session, namely (U,Πs
U .pid) when Πs

U .ρ = init, and
(Πs

U .pid, U) when Πs
U .ρ = resp.

– Πs
U .T : a transcript composed of all messages sent and received by the in-

stance in temporal order.
– Πs

U .α ∈ {active, accept, reject}: the status of this instance.
– Πs

U .k: the session key computed by this stage; initially set to empty ∅; when
non-empty, it consists of two symmetric keys Πs

U .k
enc and and Πs

U .k
dec for

encryption and decryption with some stateful length-hiding authenticated
encryption scheme [27] used to provide confidentiality in the record layer
stage. If Πs

U .α = accept, then Πs
U .k �= ∅

– Πs
U .b ∈ {0, 1}: a randomly sampled bit used in the Encrypt oracle.

1 In the original ACCE model, these stages were called the pre-accept and post-accept
stages respectively. In PACCE, the parties may start sending encrypted data before
accepting, so we have renamed the stages to handshake and record layer, which is
suggestive of TLS, but of course can be used to model any appropriate protocol.

174 M. Manulis, D. Stebila, and N. Denham

Two instances Πs
U and Πs′

U ′ are said to be partnered if and only if Πs
U .pid = U ′,

Πs′
U ′ .pid = U , Πs

U .ρ �= Πs′
U ′ .ρ, and their transcripts form matching conversa-

tions [27], denoted Πs
U .T ≈ Πs′

U ′ .T .
The adversary A controls all communications and can interact with parties

using certain oracle queries. Normal operation of the protocol is modelled by the
following queries:

– Sendpre(Πs
U ,m): This query is answered as long as Πs

U .k = ∅. In response the
incoming message m is processed by Πs

U and any outgoing message which
is generated as a result of this processing is given to A. Special messages
m = (init, U ′) and m = (resp, U ′) are used to initialize the instance as
initiator or responder, respectively, and to specify the identity of the intended
partner U ′. Note that processing of m may eventually lead to the end of the
handshake stage, in which case Πs

U either computes Πs
U .k and switches to

the record layer stage or terminates with a failure.
– Encrypt(Πs

U ,m0,m1, len, head),
– Decrypt(Πs

U , C, head): The Encrypt and Decrypt queries proceed as defined in
the original ACCE definition [27] and are omitted due to space restrictions.
Note that, compared with ACCE, we allow protocol messages to be sent
on the encrypted channel: If Πs

U .α = active, then the returned plaintext
messagem is processed as a protocol message; the resulting outgoing message
m′ is encrypted using Encrypt(Πs

U ,m
′,m′, len(m′), head) and the resulting

ciphertext C is returned to A. Otherwise, when Πs
U .α = accept, the output

of Decrypt is returned to A.

Furthermore, the adversary may obtain some secret information:

– RevealSK(Πs
U): Return Πs

U .k.
– Corrupt(C, S): Return pwC,S.

Note that, compared with AKE models like the eCK model [33] that use pub-
lic key authentication, password-based protocols cannot tolerate ephemeral key
leakage while maintaining resistence to offline dictionary attacks, hence we do
not include an ephemeral key leakage query.

Definition 1 (PACCE security). An adversary A is said to (t, ε)-break a
PACCE protocol if A runs in time t and at least one of the following two condi-
tions hold:

1. A breaks authentication: When A terminates, then with probability at least
ε + O(n/|D|) where n is the number of initialized PACCE instances there
exists an instance Πs

U such that
(a) Πs

U .α = accept, and
(b) A did not issue Corrupt(init(Πs

U), resp(Π
s
U)) before Πs

U accepted, and

(c) A did not issue RevealSK(Πs
U) or RevealSK(Πs′

U ′) for any Πs′
U ′ that is

partnered to Πs
U , and

(d) there is no unique instance Πs′
U ′ that is partnered to Πs

U .

Secure Modular Password Authentication 175

2. A breaks authenticated encryption: When A terminates and outputs a triple
(U, s, b′) such that conditions (a)–(c) from above hold, then we have that∣∣Pr [b′ = Πs

U .b]− 1
2

∣∣ ≥ ε+O(n/|D|).
A PACCE protocol is (t, ε)-secure if there is no A that (t, ε)-breaks it; it is secure
if it is (t, ε)-secure for all polynomial t and negligible ε in security parameter κ.

Observe that Definition 1 accounts for online dictionary attacks against PACCE
protocols by using a lower bound ε+O(n/|D|) for the adversarial success prob-
ability, which models A’s ability to test at most one password (or a constant
number) from the dictionary D in a single session.

3 Generic Construction

Our generic construction for secure PACCE between a client C and a server S
from password-based authentication and a secure channel is as follows. First, the
channel establishment protocol (CCE or ACCE) is run until it accepts. Then,
using the secure channel, the two parties run a tag-based password authentica-
tion (tPAuth) protocol where the tag is a binding value from the secure channel;
when the tPAuth protocol accepts, then the parties accept in the overall PACCE
protocol, and then continue to use the channel for communication. Our two con-
structions in Sections 4 and 5 differ only in the way the tPAuth is bound to the
established channel: the tag is either the transcript of the channel establishment
protocol or the long-term public key of the server.

We now concretely describe the combination of a tPAuth protocol with TLS,
as detailed in Figure 2. C and S first build up a standard TLS channel: that
is, they execute a normal TLS handshake, then exchange ChangeCipherSpec

messages to start authenticated encryption within the TLS record layer, and then
exchange their Finishedmessages for explicit key confirmation. Once Finished
messages are successfully exchanged, the parties continue using the authenticated
encryption mechanism of the TLS record layer to communicate messages of
the tag-based password-authentication protocol tPAuth. In our first construction
this binding is achieved by using the Finished messages as the tag; note that
Finishedmessages depend on the (hash of the) entire TLS handshake transcript.
In our second construction the tag is the server’s certificate (which includes the
server’s public key) that was communicated by S in its Certificatemessage of
the TLS handshake. Upon successful completion of the password authentication
phase both parties continue using session keys and authenticated encryption
mechanism of the established TLS channel for secure communication.

4 Construction #1: Binding Using CCE Transcript

Our first generic PACCE protocol ΓT := ΓT (π, ξ) is constructed as in Section 3
from a confidential channel establishment (CCE) protocol π and a tag-based
password authentication (tPAuth) protocol ξ where the tag τ used is the tran-
script T of the CCE handshake stage. We will see that, because we are using

176 M. Manulis, D. Stebila, and N. Denham

Client Server

TLS.ClientHello

TLS.ServerHello

TLS.Certificate†

TLS.ServerKeyExchange†

TLS.CertificateRequest†

TLS.Certificate†

TLS.ClientKeyExchange

TLS.CertificateVerify†

TLS.Record Layer

TLS.Finished

TLS.Finished

tPAuth.ServerHello
(sid)

tPAuth.ClientExchange

(sid, username, clientDH)

tPAuth.ServerExchange

(sid, salt, serverDH+H(pw, salt))

k ← H(DH, TLS.tag,
tPAuth.transcript)serverDH−H(pw, salt)

k ← H(DH, TLS.tag,
tPAuth.transcript)

tPAuth.ClientFinished
(sid, auth1 = H(k, “auth1”))

verify auth1
accept

tPAuth.ServerFinished
(sid, auth2 = H(k, “auth2”))

verify auth2
accept

application data application data

Fig. 2. Protocol message diagram for TLS with tunnelled tag-based password authenti-
cation, with example messages for the tSOKE protocol. TLS.tag is either TLS.Finished
or TLS.Certificate. † denotes optional messages.

the full transcript from the channel establishment to bind the two protocols to-
gether, we need not rely on any authenticity properties of the channel, and thus
can use a CCE protocol, not an ACCE protocol.

4.1 Building Block: CCE

As a building block in our analysis we use the notion of confidential channel es-
tablishment (CCE) that differs from (P)ACCE in that it is supposed to guarantee
only confidentiality (and integrity) of the established channel, but not authen-
tication of partners; hence, security is only assured for sessions in which the
adversary A remains passive during the handshake stage. We thus model CCE
by slightly modifying the PACCE model from Section 2. The differences are
explained in Appendix A. Every secure (P)ACCE protocol is also CCE-secure:
if we ignore the authentication aspects, then we still get confidential channel
establishment in sessions where the adversary is passive during the handshake.

TLS does, when public keys are managed and used properly, provide strong
authentication based on public keys, and can be proven ACCE-secure [27]. But,

Secure Modular Password Authentication 177

as we observed in the introduction, practice suggests we cannot rely on the
web PKI to provide ideal authentic distribution and mapping of public keys to
identities. TLS can in practice be seen as a CCE protocol: even though long-term
public keys may be used in TLS, we are not confident in their authenticity, so
we only take TLS to provide CCE security.

4.2 Building Block: Tag-Based Password Authentication

Tag-based authentication [34] accounts for the use of auxiliary, possibly public,
strings (tags) in authentication protocols — each party uses a tag, in addition
to the authentication factor, and the protocol guarantees that if parties accept
then their tags match. This concept was introduced in [34] for public key-based
authentication protocols and then generalized in [35] for other types of authen-
tication factors, including passwords and biometrics. In our analysis we will use
a tag-based password authentication protocol, denoted tPAuth.

The model of tPAuth can be described using the setting of PACCE protocols
from Section 2. A tPAuth session is executed between a client instance Πs

C

and a server instance Πs′
S on input the corresponding password pwC,S from the

dictionary D and some tag τ ∈ {0, 1}∗. A tPAuth session is successful if both
instances use the same password pwC,S and tag τ as their input. The security of
tPAuth protocols, extends the traditional password authentication requirement
that accounts for online dictionary attacks with the requirement of tag equality,
and is achieved formally by an extended definition of partnering. The details of
tPAuth security appear in Appendix B.

In Appendix B, we present tSOKE, a tag-based variant of the Simple Open
Key Exchange (SOKE) variant [14]. An example of the tSOKE message flow
can be seen in Figure 2. Since SOKE is a password-authenticated key exchange
protocol, it does establish a secure session key; however, we only use its properties
of mutual authentication and resistance to dictionary attacks. The tag is inserted
into the key used for explicit key confirmation; it does not need resistance to
dictionary attacks since it is known to the adversary, and thus is not used in the
Diffie–Hellman portion like the password.

4.3 Security Analysis of Construction #1

Theorem 1 (CCE+ tPAuthτ=TCCE
=⇒ PACCE). The generic construction of a

PACCE protocol ΓT (π, ξ) from a CCE protocol π and a tPAuth protocol ξ, with
the tag equal to the transcript TCCE from the CCE handshake stage, is PACCE-
secure, assuming the underlying protocols are secure.

The proof consists of a sequence of games. In the first game, the simulator
continues to simulate the CCE portion of the protocol but undetectably replaces
the tPAuth simulation with that of a real tPAuth challenger. Next, the simula-
tor aborts if any of its instances accept without a partnered instance existing;
this will correspond to a violation of authentication in the underlying tPAuth
challenger. In the third game, the simulator now undetectably replaces the CCE

178 M. Manulis, D. Stebila, and N. Denham

simulation with that of a real CCE challenger. An adversary who can win against
the resulting PACCE simulator can be used to win against the underlying CCE
challenger. The proof appears in the full version [36].

4.4 Using tls-unique Channel Binding

The tls-unique channel binding mechanism [17] can be used to instantiate
construction #1. For tls-unique the channel binding string is the first Finished
message, which is the output of a pseudorandom function on the hash of the TLS
handshake transcript.

It is straightforward to see that if the Finished message is used as the tag for
channel binding instead of the full transcript in an analogous generic construction
Γfin(π, ξ), and the hash function H is collision-resistant and the pseudorandom
function PRF is secure, then Γfin is a secure PACCE. This follows by noting that,
except with negligible probability, the parties must use the same transcript in
order to arrive at the same tag, and then the proof of Theorem 1 applies.

5 Construction #2: Binding Using Server Public Key

Our second generic PACCE protocol Γpk := Γpk(π, ξ) is constructed as in Sec-
tion 3 from an authenticated and confidential channel establishment (ACCE)
protocol π and a tPAuth protocol ξ where the tag τ used is the long-term public
key used by the server in the ACCE protocol.

Because we are using only the server’s long-term public key, and not the full
transcript from the channel establishment, to bind the two protocols together,
we now must rely on some authenticity properties of the channel. However, we
will not be relying on users to correctly validate the server’s public key or decide
which long-term server public key corresponds with which password: from the
external perspective, the protocol is still a PACCE protocol, with authentication
only coming from passwords, not from long-term server public keys.

5.1 Building Block: ACCE (With Key Registration)

ACCE [27] is currently the most complete model for the security properties of
the core TLS protocol. We use a variant of ACCE as a building block in our
generic construction. The first variation is that we allow for either server-only or
mutual authentication, as in Giesen et al. [32]; when server-only authentication
is used, only client instances are legitimate targets for breaking authentication.
The second variation is in how static public keys are distributed. In typical AKE
and ACCE models, it is simply assumed that parties have authentic copies of
all static public keys, abstracting the problem away. Since we will use ACCE
as a building block under the assumption that the “static” public keys are not
to be trusted as authentic, we allow the adversary to cause any public key to
be accepted as a static public key using a Register query; only sessions where
the key is not an adversary-registered key are legitimate targets for breaking.
The formal differences between the ACCE model with key registration and the
original ACCE model appear in the full version [36].

Secure Modular Password Authentication 179

5.2 Security Analysis of Construction #2

Theorem 2 (ACCE + tPAuthτ=pk =⇒ PACCE). The generic construction of
a PACCE protocol ΓT (π, ξ) from an ACCE protocol π and a tPAuth protocol ξ,
with tag set to the server’s public key pk from the ACCE handshake stage, is
PACCE-secure, assuming the underlying protocols are secure.

In the first game, the simulator simulates the ACCE portion of the protocol
and undetectably replaces the tPAuth portion using messages that it obtains
from a real tPAuth challenger. Next, the simulator aborts if any of its instances
accept without an instance whose tPAuth transcripts and the input tags match,
which corresponds to an attack against the tPAuth protocol. In the third game,
the simulator will use messages obtained from a real ACCE challenger such that
it can use any adversary who wins against the resulting PACCE simulator to
break the security of the ACCE protocol; when the adversary uses its own long-
term public keys (which is allowed since they are not authenticated), we use the
key registration functionality of the (modified) ACCE challenger. Due to space
constraints, the proof appears in the full version [36].

5.3 Using tls-server-end-point Channel Binding

The tls-server-end-point channel binding mechanism [17] can be used to
instantiate construction #2. For tls-server-end-point the channel binding
string is the hash of the server’s X.509 certificate. Note that the certificate con-
tains the server’s public key as a canonically identifiable substring.

It is straightforward to see that if the hash of the certificate is used as the
tag for channel binding instead of the raw public key in an analogous generic
construction Γcert(π, ξ), and the hash function is second-preimage-resistant, then
Γcert is a secure PACCE. This follows by noting that an active adversary must
use a certificate that hashes to the same value as the server’s certificate.

6 Implementation

As an important motivation for our modular protocol design was the ability
to modularly implement the protocol, we produced a prototype to demonstrate
this.

For the tag-based password authentication protocol, we propose tSOKE, a
tag-based version of the SOKE protocol [14], a highly efficient Diffie–Hellman
based PAKE; see Appendix B for details of tSOKE. We used the NIST P-192
elliptic curve group [37].

We implemented the client side of the protocol as an extension for Mozilla
Firefox (320 lines of custom Javascript, plus libraries), and the server side of the
protocol as a PHP application (210 lines of custom PHP code, plus libraries)
on an Apache web server. No modifications to the source code of the underlying
web browser (Firefox) or the underlying web server (Apache with OpenSSL)

180 M. Manulis, D. Stebila, and N. Denham

were required—in particular, we did not have to alter the SSL/TLS implemen-
tation and we did not have to recompile Firefox or Apache. Since the mechanism
that the server code uses to obtain the certificate of the TLS connection is an
Apache CGI (Common Gateway Interface) variable, any server-side language
would work, not just PHP.

Our implementation is available online under an open-source license at
http://www.douglas.stebila.ca/research/papers/MSD14/ and http://

eprints.qut.edu.au/76270.

6.1 Firefox Extension

The client-side Firefox extension is written in Javascript and uses an existing
Firefox API to obtain the certificate of the TLS connection. The client imple-
mentation of our protocol (excluding underlying cryptographic primitives) is
just 320 lines of Javascript code. Cryptographic operations can be done in either
pure Javascript (relying on about 1400 lines of code from Wu’s Javascript ellip-
tic curve cryptography and big integer arithmetic implementation2 and about
6KB of minified Javascript from the Stanford Javascript Crypto Library3 for
the PBKDF2 algorithm) or can make use of native C OpenSSL libraries using
Firefox’s js-ctypes API4.

When the extension detects (using an appropriate triggering mechanism; see
the full version [36]) a page that supports the protocol, it displays a notification
bar that secure password authentication is supported (Figure 3(a)). The user
then clicks on the “Login” button in the notification bar to bring up the password
entry dialog box (Figure 3(b)). Note that the notification bar is displayed using
Firefox’s API for notifications, similar to how alerts are rendered for missing
plugins. By using the standard notification mechanism, we provide a trusted
UI path to the notification bar, and then, through the login button on that
bar, a trusted UI path to the dialog box, somewhat mitigating concerns about
the difficulty of providing a trusted UI path in browser-based secure password
authentication [38,12]. The status of the mutual authentication is displayed in
the notification bar (Figures 3(c), (d)); if successful the browser is redirected to
the URL indicated by the server.

At present, Firefox is the only web browser whose extension APIs offer partial
implementation of the channel bindings for TLS from RFC5929 [17], providing
access to the certificate of the page’s TLS connection. The APIs for Google
Chrome and Apple Safari extensions do not seem to permit this ability so far,
nor does the API for Microsoft Internet Explorer browser toolbars. However, our
modular approach is still validated, in that Chrome, Safari, and IE would only
need to implement the recommendations from [17] such that our extension could
do the rest of the protocol, rather than requiring the full protocol be implemented
within the core browser source code as many other approaches require.

2 http://www-cs-students.stanford.edu/~tjw/jsbn/
3 http://crypto.stanford.edu/sjcl/
4 https://developer.mozilla.org/en-US/docs/Mozilla/js-ctypes

http://www.douglas.stebila.ca/research/papers/MSD14/
http://eprints.qut.edu.au/76270
http://eprints.qut.edu.au/76270
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://crypto.stanford.edu/sjcl/
https://developer.mozilla.org/en-US/docs/Mozilla/js-ctypes

Secure Modular Password Authentication 181

(a) Login notification bar.

(c) Login success notification bar.

(d) Login failure notification bar.

(b) Login dialog box.

Fig. 3. User interface for Mozilla Firefox extension

Branding. Our prototype allows the server to specify some limited “branding”
customizations to the login dialog box, including displaying a logo and explana-
tory text, as can be seen in Figure 3(b). A common objection to server-specified
branding is that the protocol becomes insecure due to phishing attacks: while
it is true that an attacker could put in a different logo or text in Figure 3(b),
the attacker gains nothing in doing so: the protocol cryptographically protects
the password, even when the user’s browser runs the protocol with attacker’s
server. At best, the attacker can interrupt communication, but will gain no in-
formation. Our limited branding does not give the attacker enough power to
completely spoof the user interface and trick the user into using the attacker’s
own dialog box, due to the trusted UI path via the browser notfication bar.

6.2 Performance

In Table 1, we report timings for our implementation. Timings reported are an
average of 10 timings, with standard deviation. The total runtime of the protocol
includes the network latency for the communication within a corporate network
where the client and server machines were located. The average ping time on
the network was 48.55ms (stdev. 37.76).

We report two different sets of timings: “cross-platform” timings, using pure
Javascript on the client side and PHP with built-in GMP libraries on the server
side; and “native” timings, using calls to OpenSSL for cryptographic operations
on both the client side and the server side.

The average total runtime from when the user clicked “Login” after entering
their password until the protocol completes was 487.72ms (stdev. 49.93) using
cross-platform code, and 109.04ms (stdev. 47.96) using native code. In compar-
ison, the average total runtime of password authentication based on an HTML
form over TLS in our setting takes 66.16ms (stdev. 27.80)). The difference of
about 40ms with our native code implementation corresponds to one additional
round trip and is unlikely to be perceptible by the users. Our native crypto-
graphic code is further comparable to Dacosta et al.’s reported performance
of DVCert on laptops [23]. Our protocol implementation includes a variety of

182 M. Manulis, D. Stebila, and N. Denham

Table 1. Average runtime in ms (± standard deviation) of extension using cross-
platform Javascript cryptographic code, native C (OpenSSL) cryptographic code, com-
pared with standard passwords submitted using an HTML form over SSL

Operation Pure Javascript Native C HTML form + SSL

Client cryptographic 354.06 ± 5.12 5.32 ± 0.23 —
computations

Server cryptographic 36.27 ± 2.20 6.34 ± 0.48 —
computations

Total runtime 487.72 ± 49.93 109.04 ± 47.96 66.16 ± 27.80

Software: Mozilla Firefox 21.0, Apache 2.2.22, PHP 5.4.14, GMP 5.1.1, MySQL 5.5.28, OpenSSL
1.0.1e, Mac OS X 10.8.3.

Hardware: 2.6GHz Intel Core i7 (3720QM), 16GB of RAM.

Network: Corporate network, ping time 48.55 ± 37.76ms

operations beyond cryptographic computations, so the total runtime is greater
than the sum of cryptographic runtime and communication time.

7 Discussion

7.1 TLS Channel Bindings

The tls-unique channel binding works with all TLS ciphersuites, whereas
the tls-server-end-point binding only works with TLS ciphersuites that use
certificate-based server authentication, though these are most widely used in
practice.

tls-server-end-point may be easier to deploy on the server side since the
server certificate is often fixed for long periods, and thus more suitable for multi-
server architectures where for example an SSL accelerator handles the TLS con-
nection and then passes the plaintext onto one of potentially many layers of ap-
plication servers. tls-server-end-point is also easily deployable on the client
side: for example, the Firefox extension API already makes the server certificate,
but not the Finished message, available.

In some sense tls-unique is a stronger channel binding string: with it, we can
achieve security of our generic construction using only CCE security of the TLS
channel, whereas with tls-server-end-point we rely on the stronger ACCE
security notion of TLS. In the end, both allow us to achieve our goal.

TLS keying material exporters [39] are another option for binding to the TLS
channel, as they allow an application to obtain keying material derived from the
master secret key for a given label. However, TLS channel bindings appear to
be the preferred mechanism, and so we focus on them.

Secure Modular Password Authentication 183

7.2 Challenges with PAKE

Although PAKE protocols have been known in the literature since their invention
1992, they have seen almost no deployed adoption for user authentication in
real-world protocols and implementations, with the exception of the use of the
socialist millionaires’ protocol in the Off-the-Record Messaging (OTR) protocol
for private instant messaging [26]. Engler et al. [12] recently identified several
challenges—divided into two classes, user interface and deployment challenges—
to adopting cryptographic protocols for password authentication in the web.
It has also been noted that the myriad patents related to PAKE have had a
negative impact on adoption [40].

Deployment challenges. This modular architecture may address certain deploy-
ment challenges. Engler et al. ask “What is the appropriate layer in the network-
ing stack to integrate PAKE protocols?” They compare two proposed options:
TLS-SRP [13] and an earlier draft of the HTTPS-PAKE approach of Oiwa et
al. [20]. Adding SRP as a TLS ciphersuite has benefits in that, once implemented,
allows multiple applications to use the same TLS implementation. But many
drawbacks are identified by Engler et al., including: (i) the need to integrate the
application layer with the TLS layer on both the client side (necessitating a com-
plex API between the TLS library and the web browser, for example) and on the
server side (which could negatively affect the ability of HTTPS load balancers to
terminate TLS connections and then hand them off to web application servers);
and (ii) the difficulty of supporting multiple authentication realms within the
same domain. HTTPS-PAKE, running as an HTTP authentication mechanism
at the application layer, avoids both of these problems. The version of HTTPS-
PAKE reviewed by Engler et al. did not have cryptographically strong binding
between the two protocols and thus could not prevent man-in-the-middle at-
tacks, but later revisions addressed that issue. Our modular approach avoids the
problems that Engler et al. identify for TLS-SRP.

Our approach also better handles the transition from unauthenticated en-
crypted browsing to authenticated encrypted browsing: a user may browse an
HTTPS site for a while before logging in; with TLS-SRP, a new TLS connection
is required (and the mechanism for triggering a new TLS connection is unclear);
it is much easier to trigger the authentication at the application layer when it is
required.

User interface challenges. Engler et al. [12] identify several user interface chal-
lenges. We do not aim to fully solve all these challenges in our prototype, as
demonstrating a convincing solution to these challenges requires critical exami-
nation by usability experts and appropriate user studies. Nonetheless, we have
endeavoured to follow some best practices that may at least partially address
the identified UI challenges.

184 M. Manulis, D. Stebila, and N. Denham

It is essential for the security of PAKE protocols that the user always enter
their password into a secure dialog box. If the entry mechanism can be spoofed by
an attacking website, then the user could be tricked into entering their password
directly into a textfield controlled by the attacker. Thus, there must be a trusted
path to the dialog box in the UI, usually achieved by placing the password entry
visibly in the browser chrome (i.e., the parts of the window that make up the
browser UI, such as the location bar, rather than the page content). In our
prototype, we follow this practice by using Firefox’s notification bar. It has been
suggested that permitting users to customize notification bars helps to reduce
spoofing attacks [38].

The second and third of Engler et al.’s UI challenges are about how to train
users to use the system in the first place, and how to communicate failures to
users in a way that they do not fall back on insecure methods. Both of these
remain a challenge for usability designers, though again, delivering failure noti-
fications via Firefox’s trusted path for notifications may provide some benefit.
Providing forgotten password resets securely remains an open challenge both in
practice and in theory and is outside the scope of our goals.

The final challenge noted by Engler et al. is on how to allow website design-
ers to customize and brand the login dialog without compromising security; it
has been suggested that lack of customization and branding was a contributing
factor to the lack of adoption of HTTP basic and digest authentication. Our
prototype allows the server to provide a few customizations to the login dialog
box, including a logo, some explanatory text, as shown in Figure 3(b). While an
attacker could use stolen images, the benefit to the attacker is minimal since the
password entry will be cryptographically protected.

Adoption challenges. A final challenge for any new security technology is fa-
cilitating widespread adoption. Such protocols see a “network effect”: it is only
useful for a client Alice to use the technology if there are many Bobs who support
it, and vice versa. In the end, any secure password authentication technology will
be most successful once built in to all major web browsers and web application
frameworks. In the meantime, the modular approach in this paper is suitable for
gradual deployment. For example, an organization can internally standardize on
the use of this approach by deploying an extension to all of its users’ browsers
without needing to wait for the browser vendor to support the protocol. The
more adoption via extension, the more evidence for interest in the technology,
and the greater incentive for vendors to provide a native implementation.

Acknowledgements. Mark Manulis was supported by the German Research
Foundation (DFG), project PRIMAKE (MA 4957). Douglas Stebila acknowl-
edges funding from Australian Research Council (ARC) Discovery Project
DP130104304.

Secure Modular Password Authentication 185

References

1. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security
indicators. In: 2007 IEEE Symposium on Security and Privacy, pp. 51–65. IEEE
Computer Society Press (2007)

2. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying wolf: An
empirical study of SSL warning effectiveness. In: USENIX Security 2009 (2009)

3. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,
Stewart, L.: HTTP Authentication: Basic and Digest Access Authentication. RFC
2617 (Draft Standard), Updated by RFC 7235 (1999)

4. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols se-
cure against dictionary attacks. In: 1992 IEEE Symposium on Security and Privacy,
pp. 72–84. IEEE Computer Society Press (1992)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

6. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

7. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party
password-based key exchange protocols in the UC framework. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 335–351. Springer, Heidelberg (2008)

8. International Organization for Standardization (ISO): ISO/IEC 11770-4: Informa-
tion technology — security techniques — key management — part 4: Mechanisms
based on weak secrets (2006)

9. ITU-T X.1035: Password-authenticated key exchange (PAK) protocol (2007)

10. IEEE P1363.2: Standard specifications for password-based public-key crypto-
graphic techniques (2008)

11. Wu, T.D.: The secure remote password protocol. In: NDSS 1998. The Internet
Society (1998)

12. Engler, J., Karlof, C., Shi, E., Song, D.: Is it too late for PAKE? In: Web 2.0
Security and Privacy (W2SP) 2009 (2009)

13. Taylor, D., Wu, T., Mavrogiannopoulos, N., Perrin, T.: Using the Secure Remote
Password (SRP) Protocol for TLS Authentication. RFC 5054, Informational (2007)

14. Abdalla, M., Bresson, E., Chevassut, O., Möller, B., Pointcheval, D.: Provably
secure password-based authentication in TLS. In: Lin, F.C., Lee, D.T., Lin, B.S.,
Shieh, S., Jajodia, S. (eds.) ASIACCS 2006, pp. 35–45. ACM Press (2006)

15. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005)

16. Hao, F., Ryan, P.Y.A.: Password authenticated key exchange by juggling. In: Chris-
tianson, B., Malcolm, J.A., Matyas, V., Roe, M. (eds.) Security Protocols 2008.
LNCS, vol. 6615, pp. 159–171. Springer, Heidelberg (2011)

17. Altman, J., Williams, N., Zhu, L.: Channel Bindings for TLS. RFC 5929 (Proposed
Standard) (2010)

18. Oiwa, Y., Takagi, H., Watanabe, H., Suzuki, H.: PAKE-based mutual HTTP au-
thentication for preventing phishing attacks. In: Maarek, Y., Nejdl, W. (eds.) Proc.
18th International World Wide Web Conference (WWW 2009), pp. 1143–1144.
ACM (2009)

186 M. Manulis, D. Stebila, and N. Denham

19. Oiwa, Y., Watanabe, H., Takagi, H.: PAKE-based mutual HTTP authentication
for preventing phishing attacks (2009), http://arxiv.org/abs/0911.5230

20. Oiwa, Y., Watanabe, H., Takagi, H., Ioku, Y., Hayashi, T.: Mutual authentication
protocol for HTTP (2012), Internet-Draft,
http://tools.ietf.org/html/draft-oiwa-http-mutualauth-12

21. AIST Research Center for Information Security: (Mutual authentication protocol
for HTTP), https://www.rcis.aist.go.jp/special/MutualAuth

22. Kwon, T.: Authentication and key agreement via memorable passwords. In: NDSS
2001. The Internet Society (2001)

23. Dacosta, I., Ahamad, M., Traynor, P.: Trust no one else: Detecting MITM attacks
against SSL/TLS without third-parties. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 199–216. Springer, Heidelberg (2012)

24. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

25. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why not
to use PGP. In: ACM Workshop on Privacy in Electronic Society (WPES 2004),
pp. 77–84. ACM Press (2004)

26. Alexander, C., Goldberg, I.: Improved user authentication in Off-The-Record mes-
saging. In: Yu, T. (ed.) ACM Workshop on Privacy in Electronic Society (WPES
2007), pp. 41–47. ACM Press (2007)

27. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012)

28. Bergsma, F., Dowling, B., Kohlar, F., Schwenk, J., Stebila, D.: Multi-ciphersuite
security of the Secure Shell (SSH) protocol. In: Yung, M., Li, N. (eds.) ACM CCS
2014. ACM Press (2014)

29. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV
channel establishment protocol. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 373–386. ACM Press (2013)

30. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

31. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA
in the standard model. Cryptology ePrint Archive, Report 2013/367 (2013),
http://eprint.iacr.org/2013/367

32. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegotiation. In:
Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 387–398. ACM
Press (2013)

33. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

34. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Generic compilers for authenticated
key exchange. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 232–249.
Springer, Heidelberg (2010)

35. Fleischhacker, N., Manulis, M., Azodi, A.: A Modular Framework for Multi-Factor
Authentication and Key Exchange. Cryptology ePrint Archive, Report 2012/181
(2012), http://eprint.iacr.org/2012/181

http://arxiv.org/abs/0911.5230
http://tools.ietf.org/html/draft-oiwa-http-mutualauth-12
https://www.rcis.aist.go.jp/special/MutualAuth
http://eprint.iacr.org/2013/367
http://eprint.iacr.org/2012/181

Secure Modular Password Authentication 187

36. Manulis, M., Stebila, D., Denham, N.: Secure modular password authentication for
the web using channel bindings (full version). Cryptology ePrint Archive, Report
2014/731 (2014), http://eprint.iacr.org/2014/731

37. National Institute of Standards and Technology: Recommended elliptic curves for
federal government use (1999),
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

38. Dhamija, R., Tygar, J.D.: The battle against phishing: Dynamic security skins.
In: Cranor, L.F., Zurko, M.E. (eds.) Symposium on Usable Privacy and Security
(SOUPS 2005), pp. 77–88. ACM Press (2005)

39. Rescorla, E.: Keying Material Exporters for Transport Layer Security (TLS). RFC
5705 (Proposed Standard) (2010)

40. Abdalla, M., Bresson, E., Chevassut, O., Möller, B., Pointcheval, D.: Strong
password-based authentication in TLS using the three-party group Diffie–Hellman
protocol. International Journal of Security and Networks 2, 284–296 (2007)

41. Certicom Research: SEC 1: Elliptic curve cryptography, Version 2.0 (2009)

A Confidential Channel Establishment (CCE)

The model of CCE protocols can be described using the setting of PACCE
protocols from Section 2, with a few differences. The first difference is that there
are no passwords or identities involved; hence no Corrupt oracle is needed, nor
is the U ′ parameter required in the initialization in the Sendpre query. Further,
the security condition is adjusted so that only sessions where the adversary was
passive in the handshake stage are considered. The oracles RevealSK, Encrypt and
Decrypt remain unchanged. The following definition of CCE security is obtained
from Definition 1 by considering the above mentioned modifications.

Definition 2 (CCE security). An adversary A is said to (t, ε)-break a CCE
protocol if A runs in time t and, when A terminates and outputs a triple (U, s, b′)
such that
(a) Πs

U .α = accept, and

(b) there exists an instance Πs′
U ′ that is partnered to Πs

U , and

(c) A did not issue RevealSK(Πs
U) or RevealSK(Πs′

U ′) for any Πs′
U ′ that is part-

nered to Πs
U ,

then
∣∣Pr [b′ = Πs

U .b]− 1
2

∣∣ ≥ ε.

B Tag-Based Password Authentication (tPAuth)

The model of tPAuth can be described using the setting of PACCE protocols
from Section 2. A tPAuth session is executed between a client instance Πs

C

and a server instance Πs′
S on input the corresponding password pwC,S from the

dictionary D and some tag τ ∈ {0, 1}∗. A tPAuth session is successful if both
instances use the same password pwC,S and tag τ as their input. The requirement

http://eprint.iacr.org/2014/731
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

188 M. Manulis, D. Stebila, and N. Denham

on tag equality leads to the extended definition of partnering: two instances Πs
C

and Πs′
S are partnered if Πs

C .pid = S, Πs′
S .pid = C, Πs

C .T ≈ Πs′
S′ .T (matching

transcripts), and Πs
C .τ = Πs′

S .τ (equal tags).
A tPAuth adversary A is active and interacts with instances of U ∈ {C, S}

using the following oracles:

– Send(Πs
U ,m): This query is identical to Sendpre from the PACCE model

except for one important difference — when A initializes some instance Πs
U

using the special messages m = (init, U ′, τ) or m = (resp, U ′, τ) then it
additionally provides as input a tag τ which will be used by the instance in
the tPAuth session. This essentially gives A full control over the tags that
are used in the protocol.

– Corrupt(C, S): This query reveals the corresponding password pwC,S .
The security of tPAuth protocols, defined in the following, extends the traditional
password authentication requirement that accounts for online dictionary attacks
with the requirement of tag equality, which is implied by condition 3 due to the
extended definition of partnering.

Definition 3 (tPAuth security). An adversary A is said to (t, ε)-break a
tPAuth protocol if after the termination of A that runs in time t with proba-
bility at least ε+O(n/|D|) where n is the number of initialized tPAuth instances
there exists an instance Πs

U such that
1. Πs

U .α = accept, and
2. A did not issue Corrupt(init(Πs

U), resp(Π
s
U)) before Πs

U accepted, and

3. there is no unique instance Πs′
U ′ that is partnered to Πs

U .
A tPAuth protocol is (t, ε)-secure if there is no A that (t, ε)-breaks it; it is secure
if it is (t, ε)-secure for all polynomial t and negligible ε in security parameter κ.

Our tagged variant tSOKE of the Simple Open Key Exchange (SOKE) protocol
[14] is shown in Figure 4, and is a secure tPAuth protocol (see full version [36]).

Secure Modular Password Authentication 189

System parameters

Elliptic curve group nistp192 with generator G of order n
Second generator G′ constructed verifiably at random with 〈G〉 = 〈G′〉
G′ = (0x8da36f68628a18107650b306f22b41448cb60fe5712dd57a,

0x1f64a649852124528a09455de6aad151b4c0a9a8c2e8269c)
(constructed verifiably at random [41, §3.1.3.2] with seed string “This is the seed string for the web passwords protocol.”)

Registration stage (takes place over a secure channel)

Client A Server B
1. Enter username idA.
2. Enter password pwAB .
3. salt ← {0, 1}128.
4. Choose iteration counter c ∈ N

+.
5. h ← PBKDF2(SHA-256, pwAB , salt, c, 256)

6.
idA,salt,c,h−−−−−−→

7. Store salt, c, h for idA.

Login stage

Client A Server B
Input: tag τ Input: tag τ

1. Enter username idA.
2. Enter password pwAB .
3. x ←R {2, . . . , n− 1}
4. X ← xG

5.
idA,X−−−−−−→

6. Look up salt, c, h for idA.
7. y ←R {2, . . . , n− 1}
8. Y ← yG
9. Y ∗ ← Y + (h mod n)G′

10.
salt,c,Y ∗

←−−−−−−
11. h ← PBKDF2(SHA-256, pwAB , salt, c, 256)
12. Y ← Y ∗ − (h mod n)G′

13. Z ← xY Z′ ← yX
14. pms ← SHA-256(idA, h, τ,X, Y ∗, Z) K ← SHA-256(idA, h, τ, X, Y ∗, Z)
15. A1 ← SHA-256(pms, “auth1”)

16.
A1−−−−−−→

17. Abort if A1
= SHA-256(pms, “auth1”)
18. A2 ← SHA-256(pms, “auth2”)

19.
A2←−−−−−−

20. Abort if A2
= SHA-256(pms, “auth2”)
21. Accept Accept

Fig. 4. tSOKE protocol registration and login stages

A Modular Framework for Multi-Factor

Authentication and Key Exchange

Nils Fleischhacker1, Mark Manulis2, and Amir Azodi3

1 Saarland University, Germany
fleischhacker@cs.uni-saarland.de

2 Surrey Centre for Cyber Security, University of Surrey, UK
mark@manulis.eu

3 Hasso Plattner Institute, Germany
amir.azodi@hpi.de

Abstract. Multi-Factor Authentication (MFA), often coupled with Key
Exchange (KE), offers very strong protection for secure communication
and has been recommended by many major governmental and industrial
bodies for use in highly sensitive applications. Over the past few years
many companies started to offer various MFA services to their users and
this trend is ongoing.

The MFAKE protocol framework presented in this paper offers à la
carte design of multi-factor authentication and key exchange protocols
by mixing multiple types and quantities of authentication factors in a se-
cure way: MFAKE protocols designed using our framework can combine
any subset of multiple low-entropy (one-time) passwords/PINs, high-
entropy private/public keys, and biometric factors. This combination is
obtained in a modular way from efficient single-factor password-based,
public key-based, and biometric-based authentication-only protocols that
can be executed in concurrent sessions and bound to a single session of
an unauthenticated key exchange protocol to guarantee forward secrecy.

The modular approach used in the framework is particularly attractive
for MFAKE solutions that require backward compatibility with existing
single-factor authentication solutions or where new factors should be
introduced gradually over some period of time. The framework is proven
secure using the state-of-the art game-based security definitions where
specifics of authentication factors such as dictionary attacks on passwords
and imperfectness of the biometric matching processes are taken into
account.

Keywords: two-factor, multi-factor authentication, tag-based authen-
tication, key exchange, framework, modular design.

1 Introduction

Authentication Factors. An authentication factor is used to produce some
evidence that an entity at the end of the communication channel is the one

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 190–214, 2014.
c© Springer International Publishing Switzerland 2014

A Modular Framework for Multi-Factor Authentication and Key Exchange 191

which it claims to be. Modern computer security knows different types of au-
thentication factors, all of which are widely used in practice. Their standard
classification considers three main groups (see e.g. [18]), characterized by the
nature of provided evidence: knowledge, possession, and physical presence. The
evidence of knowledge is typically offered by low-entropy passwords. These in-
clude memorizable (long-term) passwords or PINs, e.g. for login purposes and
banking ATMs, and one-time passwords that are common to many online bank-
ing and e-commerce transactions. The evidence of possession corresponds to
physical devices such as smart cards, tokens, or TPMs, equipped with long-term
(high-entropy) secret keys and some cryptographic functionality. These devices
have tamper-resistance to protect secret keys from exposure. The evidence of
physical presence refers to unique biometric identifiers of human beings.

A different approach might be needed for an attacker to compromise a particu-
lar factor, depending on its type and use. For instance, passwords are susceptible
to social engineering (e.g. phishing) and dictionary attacks. Digital devices can be
lost or stolen. Those offering tamper-resistance may nonetheless fall to reverse-
engineering [20,21], side-channel attacks [17], and trojans (e.g. recent Sykipot
Trojan attacks against smart cards). Biometric data can be obtained from a
physical contact with the human or copied if available in a digital form. Since
the number of personal biometrics that permit efficient use in security technolo-
gies is limited, their wide use across different application domains makes it even
harder to keep those factors private.

Multi-Factor Authentication (with Key Exchange). The strength of
Multi-Factor Authentication (MFA) is based on the assumption that if an entity
has many authentication factors, regardless of their nature, then it is hard for the
attacker to compromise them all. That is, by combining different factors within
a single authentication process, MFA aims at higher assurance in comparison
to single-factor schemes. MFA has found its way into practice1, most notable
are combinations of long-term passwords with secret keys, possibly stored in
tokens (e.g. Two-Factor SSH with USB sticks) or any of these with one-time
passwords (e.g. OATH HOTP/TOTP, RSA SecurID, Google Authenticator).
Many companies, e.g. Google, Facebook, Yahoo are now offering their users op-
tional two-factor authentication mechanisms based on one-time passwords. The
increasing use of smart phones to access services and the recent progress by Ap-
ple and Samsung to equip smart phones with fingerprint readers is expected to
further boost the practical deployment of the MFA technology. Since MFA is

1 MFA definitions and usage in practice are not consistent. For example, according to
[1, Sec. 8.3], for two-factor authentication it suffices to deploy RADIUS authentica-
tion or use a single tamper-proof hardware token or a VPN access with individual
certificate, whereas using two factors of the same type is not regarded as a two-factor
solution. [2, Level 3] explicitly requires hardware tokens and some additional factor,
e.g. password or biometric. This is in line with the perception of MFA where au-
thentication with a certificate alone is considered single-factor [33] but deployment
of two or more passwords multi-factor [35]. For the purpose of generality, we regard
any approach with at least two factors irrespective of their type as MFA.

192 N. Fleischhacker, M. Manulis, and A. Azodi

mostly used to authenticate a client/user to a remote server the authentication
of the client becomes its main security goal. The server-side authentication in
MFA protocols offers further protection and is typically performed without using
multiple factors on the server side.

The concept of Multi-Factor Authenticated Key Exchange (MFAKE), for-
malized in [33], extends MFA with establishment of secure session keys. In ad-
dition to authentication goals it aims at key secrecy, usually modeled in terms
of (Bellare-Rogaway style) AKE-security [7,9,14]. Earlier MFAKE protocols fo-
cused mostly on two factors and were often unsuccessful: for instance, password-
token combination from [31] was broken in [37] which itself was broken in [28],
the scheme from [34] was cryptanalyzed in [36], and a biometric-token combina-
tion from [29] has fallen in [30]. Partially, these attacks were due to the missing
modeling and analysis in those works.

A formal approach to MFAKE introduced in [33] was the first to account
simultaneously for all three types of authentication factors. Most notable is
their modeling of biometric factors. Unlike some previous single-factor biometric
schemes, e.g. [16,10], that regarded biometrics as low- or high-entropy secrets,
[33] drops biometric secrecy in favor of the liveness assumption (see also [13,12])
aiming at physical presence of a user. The protocol from [33] has recently been
cryptanalysed in [24], who showed how an adversary that steals user’s password
and impersonates the server can essentially compromise all other authentication
factors of the client. The model in [33] didn’t consider server authentication
and the only way to prevent the above attack against the protocol is to require
mandatory authentication on the server side. The protocol would remain inse-
cure if server authentication is left optional (as intended by the model) due to
the way in which client messages bind different authentication factors together,
as also exploited in [24].

MFAKE protocols may differ not only in nature of factors but also in their
quantity. To this end, [35] introduced Multi-Factor Password AKE (MFPAKE),
extending the PAKE setting [6], where arbitrary many low-entropy passwords
(long-term and one-time) can be combined to authenticate the client. Their
protocol further offers public-key based server-side authentication and supports
verifier-based PAKE setting from [22,23].

Generalized and Modular MFAKE Approach? Various problems in the
design of secure MFAKE protocols, coupled with the fact that existing protocols
differ in nature and quantity of deployed factors and that perception of MFA
varies across products, standards, and research literature, motivates the need for
a simpler and modular MFAKE approach.

Our goal is to build secure MFAKE protocols out of well-known and under-
stood concepts behind existing single-factor solutions. We argue that in general
this approach though not necessarily more efficient helps to avoid caveats, arising
in the combination of factors and results in a cleaner, less error-prone protocol
design. The generality of the approach can further be used to formally explain
the relationships between MFAKE and single-factor authentication schemes, and

A Modular Framework for Multi-Factor Authentication and Key Exchange 193

its modularity is beneficial for an independent accommodation of other factors,
e.g. for social authentication [11,15].

A general MFAKE protocol can be built from different types of single-factor
AKE protocols that are then combined in a smart way into a secure MFAKE
solution. The feasibility of this approach and its formal correctness is implied
by our work. A direct combination of different black-box AKE schemes is sub-
optimal since it would include some redundancy in the computations of forward-
secure session keys. Therefore, our approach for a general MFAKE is to use
single-factor authentication-only protocols (to avoid computation of multiple
session keys) and derive one forward-secure session key at the end of the protocol.

1.1 Contributions and Organization

General MFAKE Model. We introduce and model a general framework for
(α, β, γ)-MFAKE, including its MFA-only version, building on the three-factor
AKE model from [33]. In a standard client-server setting we admit arbitrary
quantities and combinations of low-entropy passwords (long-term and one-time),
high-entropy secret keys (possibly with corresponding public keys), and biomet-
ric factors (with explicit and implicit matching). We model dictionary attacks on
passwords and also account for the imperfect matching process of biometric tem-
plates. When modeling biometrics we follow the liveness assumption of [33] and
do not treat biometric distributions as secret. We discuss why this assumption
is realistic from the practical point of view.

Remark 1. In the full version of this paper [19] we further relate our (α, β, γ)-
MFAKE framework to several existing authentication models and protocols. By
varying the parameters α, β, and γ we can show that many current single-factor
and multi-factor settings can be seen as special cases of our general framework:
(1, 0, 0)-MFAKE implies PAKE models from [6,22], (0, 1, 0)-MFAKE implies two-
party AKE models from [7,9], (1, 1, 1)-MFAKE subsumes the three-factor client
authentication approach from [33], while (α, 0, 0)-MFAKE is related to the MF-
PAKE protocol introduced in [35].

Modular (α, β, γ)-MFAKE Framework. We give a simple generic (α, β, γ)-
MFAKE protocol construction, based on sub-protocols that can be instantiated
from a wide range of existing, well-understood and efficient authentication-only
schemes. More precisely we consider arbitrary many independent runs of efficient
authentication-only protocols that rely on passwords, secret keys, and biomet-
rics and link them to a single independent session of an Unauthenticated Key
Exchange (UKE) in a way that generically binds authentication and key estab-
lishment and results in an AKE-secure MFAKE protocol (with forward secrecy)
that offers MFA for the client and strong (optional) authentication of the server.

To this end, we define a generalized notion of tag-based MFA, extending the
preliminary concepts from [25] that considered the use of tags (auxiliary strings)
in public key-based challenge-response scenarios. For all types of single-factor
authentication-only protocols we demonstrate existence of efficient tag-based

194 N. Fleischhacker, M. Manulis, and A. Azodi

flavors and discuss their generic extensions with tags. We show how to use tags in
an (α, β, γ)-MFAKE protocol to bind all independent (black-box) sub-protocols
in a secure way. (In this way, for example, we avoid the type of problems identified
in [24] for the protocol in [33].)

Organization. Generalized (α, β, γ)-MFAKE, its MFA-only version, and secu-
rity goals are modeled in Section 2. Our modular and generic construction of
(α, β, γ)-MFAKE is specified and analyzed in Section 3, along with the underly-
ing sub-protocols and their instantiations.

2 Generalized MFAKE: Definitions and Security

Our definitions of generalized MFAKE extend the model from [33], which in turn
builds on the models from [7,6].

2.1 System Model and Correctness

Participants, Sessions, and Authentication Factors. An MFAKE protocol
is executed between two participants: a client C and a server S. Several instances
of any participant can exist at a time. This models multiple concurrent protocol
sessions. An instance of participant U ∈ {C, S} in session s is denoted as [U, s].
The session id s is the transcript of all messages sent and received by the instance,
except for the very last protocol message. At the end of the protocol each instance
either accepts or rejects.

By pid([U, s]) we denote partner identity with which [U, s] is interacting in
the protocol session. Two instances [U, s] and [U′, s′] are said to be partnered if
and only if pid([U, s]) = U′, pid([U′, s′]) = U, and their session ids form matching
conversations [7,9], denoted s = s′.

Each client C may have arbitrary types and quantities of authentication fac-
tors that it may use in multiple protocol sessions as detailed in the following.

Passwords. A client C may hold an array of α passwords, denoted pwdC . Each
password pwdC [i], i = 1, . . . , α is assumed to have low entropy, chosen from a
dictionary Dpwd. Passwords can be used across multiple sessions, in which case
they are considered to be long-term. We also allow for one-time passwords [3,32]
that have been previously registered with the server. Our setting can be extended
to deal with verifier-based password authentication, e.g. [23,8,26], where the
server stores some non-trivial function of pwdC [i] for better protection against
server compromise attacks.

Client Secret Keys. A client C may hold an array of β secret keys, denoted
skC . Each secret key skC [i] ∈ KeySp, i = 1, . . . , β is assumed to have high
entropy. In case of public key-based client authentication there exists an array of
corresponding public keys, denoted pkC , which is assumed to be known system-
wide. Any skC [i] can be stored in a secure hardware token (e.g. in a smartcard
or TPM), in which case its usage in the protocol assumes client’s access to

A Modular Framework for Multi-Factor Authentication and Key Exchange 195

the corresponding device, i.e., our model doesn’t distinguish between hardware
tokens and private keys of the client.

Biometrics For each client C there are γ public biometric distributions DistC,i,
i = 1, . . . , γ. The process of measuring some biometric (being it face, any par-
ticular finger, or iris) is comprehended as drawing a biometric template WC,i

according to DistC,i. Upon the enrollment of the client an array WC contain-
ing γ biometric templates WC [i], i = 1, . . . , γ is created and will be used as a
reference for the session-dependent matching process on the server’s side. We do
not need to require that WC is stored in clear on the server’s side. Our model
admits the case, where the server stores some non-trivial transformation of WC ,
e.g. using secure sketches [16,10].

Functionality of biometric data matching is modeled through an algorithm
BioMatch, which takes as input a candidate template W ∗ and a reference tem-
plate W , which may also be given implicitly in a transformed form, and outputs
1 indicating that W ∗ matches W and 0 otherwise. For example, BioMatch can
require that the Hamming distance between W and W ∗ remains below some
threshold, an approach used, e.g. in [10,33]. We also take into account that bio-
metric measurements are not perfect:

– For any client C,

Pr
[
BioMatch(W ∗

C,i,WC [i]) = 1 | W ∗
C,i ← DistC,i, i ∈ [1, γ]

]
≥ 1− falsenegi ,

where falsenegi is the probability with which ith biometric of C is falsely
rejected.

– For any two clients C′, C with C′ �= C,

Pr
[
BioMatch(W ∗

C′,i,WC [i]) = 0 | W ∗
C′,i ← DistC′,i, i ∈ [1, γ]

]
≥ 1− falseposi ,

where falseposi is the probability with which ith biometric of C′ is falsely
accepted.

While false rejection is important for MFA correctness, false acceptance impacts
the lower bounds of the protocol’s security.

Server Secret Key We assume that server S may have a high-entropy secret
key skS with the corresponding system-wide known public key pkS .

Generalized MFAKE. We define generalized MFAKE and its correctness
property.

Definition 1 ((α, β, γ)-MFAKE). A multi-factor authenticated key exchange
protocol (α, β, γ)-MFAKE(C, S) is a two-party protocol, executed between a client
instance [C, s] with α passwords, β secret keys, and γ biometric templates and
a server instance [S, s′] such that at the end of their interaction each instance
either accepts or rejects. The correctness property of the protocol requires that for
all κ ∈ N, if at the end of the protocol session [C, s] accepts holding session key
kC and [S, s] accepts holding session key kS, and [C, s] and [S, s] are partnered,
then Pr[kC = kS] = 1.

196 N. Fleischhacker, M. Manulis, and A. Azodi

In authentication-only MFA protocols parties either reject or accept their com-
munication partner without computing any session keys. The following definition
of client’s MFA towards the server accounts for imperfect biometric matching
process, where servers may falsely reject clients.

Definition 2 ((α, β, γ)-MFA). A multi-factor authentication-only protocol (α,
β, γ)-MFA is a two-party protocol, executed between a client instance [C, s] with
α passwords, β secret keys, and γ biometric templates and a server instance
[S, s′] such that at the end of their interaction the server instance either accepts
C as its communication partner or rejects. Let ‘acc C’ denote the event that
[S, s] accepts the client. The correctness property of the (α, β, γ)-MFA protocol

requires that Pr[acc C] ≥ 1−
γ∑

i=1

falsenegi .

For server-side authentication the multi-factor aspect is typically irrelevant,
i.e., the client decides whether to accept the server based on pkS . The correctness
property in this case is perfect.

2.2 Security Goals: AKE-Security and Mutual Authentication

MFAKE protocols must guarantee standard goals with respect to session key
security and mutual authentication against any probabilistic polynomial-time
adversary A. Due to asymmetry with regard to the use of multiple factors on
the client side and typically one factor (secret key) on the server’s side, mutual
authentication is dealt with separately for clients and servers.

Liveness Assumption for Biometrics. We assume that biometric data is
public and resort to liveness assumption [33] to ensure physical presence of a
client. Liveness of a client C is modeled through a special biometric computation
oracle BioComp([C, s],WA,i): depending on the state of [C, s] this oracle uses
client’s secret keys skC and passwords pwdC together with an input biomet-
ric template WA,i that must be chosen according to some adversary-specified
distribution DistA,i to perform the required computation step that would oth-
erwise be performed using a template W ∗

C,i chosen according to the distribu-
tion DistC,i. The crucial condition here is that DistA,i must significantly differ
from DistC,i such that Pr[BioMatch(WA,i,WC [i]) = 0] ≥ 1 − falseposi for any
WA,i ←R DistA,i. For simplicity, we assume that A queries BioComp only with
templates WA,i from the distributions DistA,i, 1 ≤ i ≤ γ (alternative modeling
of BioComp would require A to specify some template generation algorithm with
a suitable distribution DistA,i which will be invoked within BioComp on each
new query to pick WA,i). Liveness assumption requires that any new message
m, whose computation depends on the ith biometric template of C, must be pre-
viously generated by the BioComp oracle, before an active adversary can make
use of it. Using BioComp oracle A can test own biometric templates in client’s
computations. Note that the liveness assumption allows for replay attacks on
biometric-dependent messages, i.e. A can consult the BioComp oracle to obtain
a new message in one session of C and then replay it in another.

A Modular Framework for Multi-Factor Authentication and Key Exchange 197

Remark 2. Hao and Clarke [24] criticized [33] for the assumption that biometric
data is public, arguing that templates that can be obtained by the adversary in
practice are often of poor quality so that obtaining high-quality templates should
be seen as a corruption of the client. This might be a valid argument in certain
use cases, however, for the purpose of generality, it seems more appropriate
to assume that biometric data is public and resort to the liveness assumption,
when modeling security of biometric-based protocols. Since biometric data is
used in many different domains (e.g. e-passports, personal computers, entry ac-
cess systems, etc.) leakage of high-quality templates is not unlikely. In contrast
to private keys, biometric characteristics are produced by nature and are bound
to a specific person. From this perspective, their modeling via liveness assump-
tion, aiming at user’s physical presence seems to be more appropriate. Liveness
assumption has also been in the focus of recent standardization initiatives, e.g.
ISO/IEC WD 30107 Anti-Spoofing and Liveness Detection Techniques.

Client and Server Corruptions. An active adversary A may corrupt au-
thentication factors of a client C through its CorruptClient(C, type, i) oracle by
indicating the type of the corrupted factor and its position i in the array. Cor-
rupted passwords and secret keys are revealed to A, whereas corrupted biometric
factors imply that A no longer needs to follow restrictions put forth by the live-
ness assumption on those factors. A can ask multiple CorruptClient queries for
different factors of its choice. This models realistic scenarios, where different fac-
tors may require different attacks. Server corruptions are handled through the
CorruptServer oracle, which responds with skS .

Adversarial Queries. Our security definitions will be given in form of games
with a PPT adversary A that interacts with the instances through a set of
oracles, as specified in the following. We assume that U,U′ ∈ {C, S}.

Invoke(U,U′) allows A to invoke a session at party U with party U′. If U is a
client then U′ must be a server, and vice versa. In response, a new instance
[U, s] with pid([U, s]) = U′ is established. [U, s] takes as input the authen-
tication factors of U. If [U, s] is supposed to send a message first then this
message is generated and given to A.

Send([U, s],m) allows A to send messages to the protocol instances (e.g. by
forwarding, modifying, or creating new messages). In general, the oracle
processes m according to the state of [U, s] and eventually outputs the next
message (if any) to A. However, if U = S and m is such that it was not
produced by an instance of C = pid([S, s]) but its computation was expected
to involve ith biometric of C, then m is processed only if it was output by
BioComp([C, ·],WA,i) or if A previously queried CorruptClient(C, 3, i).

BioComp([C, s],WA,i) outputs message m (if any) computed based on the inter-
nal state of [C, s] using skC , pwdC , and WA,i (from DistA,i as explained
above).

RevealSK([U, s]) gives A the session key computed by [U, s] (if such key exists).
CorruptClient(C, type, i) allows A to corrupt authentication factors of C. If

type = 1 then A is given pwdC [i]; if type = 2 then it receives skC [i];

198 N. Fleischhacker, M. Manulis, and A. Azodi

if type = 3 then A receives nothing but the liveness assumption for the ith
biometric of C is dropped.

CorruptServer(S) gives A server’s S secret key skS .

Freshness. The notion of freshness prevents A from using its oracles to attack
the protocol in a trivial way. For instance, key secrecy and authentication goals
will require that no protocol participant was fully corrupted during the protocol
session: a client C is fully corrupted if and only if all existing authentication fac-
tors of C have been corrupted via corresponding CorruptClient(C, ·, ·) queries; a
server S is fully corrupted if and only if a CorruptServer(S) query has been asked.
Our definition of freshness aims at server instances since A will be required to
break AKE-security for their session keys. This is not a limitation since protocol
correctness guarantees that any accepted partnered client instance will compute
the same key as the server instance. In protocols without server authenticationA
can impersonate the server and compute the same key as the client. An instance
[S, s] that has accepted is said to be fresh if all of the following holds:

– Upon acceptance of [S, s] neither the server S nor the client C = pid([S, s])
were fully corrupted.

– There has been no RevealSK query to [S, s] or to its partnered client instance
(if such instance exists).

The above conditions allow full corruption of parties after the session ends (upon
acceptance) and thus capture the property of forward secrecy that is equally
important for all types of authentication factors.

Remark 3. Freshness conditions can be made more complicated to incorporate
specialized goals such as security against key compromise impersonation (KCI)
and corruptions of ephemeral secrets (cf. [27] and its variants). These goals how-
ever are factor-dependent. For instance, (α, 0, 0)-MFAKE protocols with shared
passwords typically wouldn’t offer KCI-security (which by definition makes sense
only in the public key setting). It also seems unlikely that (α, 0, 0)-MFAKE can
tolerate leakage of ephemeral secrets (the only randomness used in the proto-
col) without enabling an offline dictionary attack. Our conditions thus offer a
common security base for all (α, β, γ)-MFAKE flavors, without narrowing the
possibility of extension towards more complex requirements.

Security of Session Keys. Secrecy of session keys is modeled in terms of
AKE-security in the Real-or-Random indistinguishability framework [4] where
multiple Test queries that can be asked only to fresh instances [S, s]. Their
answers depend on the value of bit b, which is fixed in the beginning of the
game: if b = 1 then A receives the real session key held by [S, s]; if b = 0
then A is given a random key chosen uniformly from the set of all possible
session keys. At the end of the game A outputs bit b′ aiming to guess b. Let

Succ
A,(α,β,γ)-MFAKE
AKE (κ) denote the probability of the event b′ = b in a game

played by A against the AKE-security of (α, β, γ)-MFAKE. Let q denote the
total number of invoked sessions. (α, β, γ)-MFAKE is AKE-secure, if for all PPT
adversaries A the following advantage is negligible in κ:

A Modular Framework for Multi-Factor Authentication and Key Exchange 199

Adv
(α,β,γ)-MFAKE,A
AKE (κ) =

∣∣∣Succ(α,β,γ)-MFAKE,A
AKE (κ)− q

(α

|Dpwd|
+

γ∑
i=1

falseposi

)
− 1

2

∣∣∣.
AKE-security is relevant only for (α, β, γ)-MFAKE protocols from Definition

1. It doesn’t apply to (α, β, γ)-MFA protocols from Definition 2 that do not
support key establishment.

Authentication Requirements. An (α, β, γ)-MFAKE protocol must further
provide authentication, which we treat separately for clients and servers. A pro-
tocol which satisfies both offers mutual authentication.

Client Authentication. Let A be an adversary against client authentica-
tion of (α, β, γ)-MFAKE that interacts with client and server instances using the
aforementioned queries (whereby Test queries are irrelevant). A breaks client
authentication if there exists a server instance [S, s] that has accepted a client
C = pid([S, s]), for which there exists no client instance that is partnered with
[S, s], and neither S nor C were fully corrupted upon the acceptance of [S, s].

Let Succ
(α,β,γ)-MFAKE,A
CAuth (κ) denote the success probability in breaking client

authentication. The protocol is CAuth-secure, if for all PPT adversaries A the
following advantage is negligible (in κ):

Adv
(α,β,γ)-MFAKE,A
CAuth (κ) =

∣∣∣Succ(α,β,γ)-MFAKE,A
CAuth (κ)− q

(α

|Dpwd|
+

γ∑
i=1

falseposi

)∣∣∣.
This definition of CAuth-security is directly applicable to (α, β, γ)-MFA pro-

tocols from Definition 2. The advantage of A is denoted then Adv
(α,β,γ)-MFA,A
CAuth (κ)

and its success probability is subject to the same bounds as Succ
(α,β,γ)-MFAKE,A
CAuth (κ).

For (α, β, γ)-MFA protocols CAuth-security is the main property.

Remark 4. The low entropy of passwords and non-perfect biometric matching
impose a lower bound q(α

|Dpwd| +
∑γ

i=1 false
pos
i) on the success probability of a

CAuth-adversary. This bound is not imposed on the success probability with
regard to server authentication as explained below.

Server Authentication. An adversary A against server authentication of
(α, β, γ)-MFAKE interacts with client and server instances and breaks server
authentication if there exists a client instance [C, s] that has accepted a server
S = pid([C, s]), for which there exists no server instance that is partnered with
[C, s], and neither C nor S were fully corrupted upon the acceptance of [C, s].
(α, β, γ)-MFAKE is SAuth-secure, if for all PPT adversaries A the probability

of breaking server authentication, denoted Succ
(α,β,γ)-MFAKE,A
SAuth (κ) is negligible in

the security parameter κ.

200 N. Fleischhacker, M. Manulis, and A. Azodi

3 Modular Design of MFAKE Protocols

Our general (α, β, γ)-MFAKE protocol is built in a modular way from sub-
protocols for different authentication factors, yet with some extensions and op-
timizations. We start with the main building blocks.

3.1 Tag-Based Authentication

Tag-based Authentication (TbA) [25] accounts for the use of auxiliary, possibly
public, strings (tags) in authentication protocols. In TbA each party uses a tag, in
addition to the authentication factor, and the protocol guarantees that if parties
accept then their tags match. For instance, the server accepts some client in a
session if and only if that client was alive during that session and used as input
the same tag as the server. For public key-based challenge-response protocols,
[25] gave a signature-based compiler with the TbA property. In our work we
require a more general TbA notion that in addition to public keys encompasses
passwords and biometrics as defined in the following.

Definition 3 (Tag-based MFA). A tag-based MFA protocol (α, β, γ)-tMFA is
an (α, β, γ)-MFA protocol from Definition 2, where in addition the client instance
[C, s] takes as input tag tC , the server instance [S, s] takes as input tag tS, and
if tC �= tS then both parties reject; otherwise, they accept as in the (α, β, γ)-MFA
protocol.

Tag-based CAuth-security: Let A be a PPT adversary against client authentica-
tion of (α, β, γ)-tMFA that interacts with the instances of C and S using the same
oracles as for (α, β, γ)-MFA, except that the Invoke oracle is modified such that it
receives tag t as an additional input from A. A is said to break CAuth-security
of (α, β, γ)-tMFA if at the end of its interaction there exists a server instance
[S, s] that was invoked with tag tS and has accepted a client C = pid([S, s]), for
which there exists no client instance that was invoked with tag tC = tS and is
partnered with [S, s], and neither S nor C were fully corrupted upon the accep-

tance of [S, s]. The corresponding advantage of A, denoted Adv
(α,β,γ)-tMFA,A
CAuth (κ),

is then defined analog to the advantage in (α, β, γ)-MFA.

A is allowed to test tags of its own choice, i.e. existence of a partnered client
instance that was invoked with a tag tC �= tS leads to a successful attack. Def-
initions of tag-based server authentication in (α, β, γ)-tMFA and success proba-

bility Succ
(α,β,γ)-tMFA,A
SAuth (κ) are obtained by reversing the roles of C and S, as for

(α, β, γ)-MFA in Section 2.2.

3.2 Utilized Sub-protocols and Their Examples

Our framework constructs (α, β, γ)-MFAKE in a modular way from simpler
protocols that represent special cases of tag-based MFA. We first describe corre-
sponding (non tag-based) protocols for authentication and provide some exam-
ples, including the discussion on how to extend those protocols with tags.

A Modular Framework for Multi-Factor Authentication and Key Exchange 201

PwA : (Tag-Based) Password-Based Authentication Protocol. The first
sub-protocol is for password-based authentication, denoted PwA, in which only
one party (in our case the client) authenticates itself to the other party (server).
In our generalized MFA model the adversarial advantage against client authen-

tication of PwA becomes AdvA,PwA
CAuth(κ) = Adv

A,(1,0,0)-MFA
CAuth (κ).

For instance, an AKE-secure PAKE protocol with key confirmation from client
to server, which is proven secure in the model from [6] can be used as PwA. On the
other hand, those PAKE protocols can be somewhat simplified since we do not
require PwA to provide session keys. The following is an example for the PAKE
protocol from [5] when only client-side authentication with key confirmation is
applied.

PwA example. Let (G, g, q) be a description of the cyclic group of prime or-
der q with generator g that together with two elements V,W ∈ G and a hash
function H : {0, 1}∗ �→ {0, 1}κ build public parameters. Assume that pwd ∈
Zq is shared between C and S. In a PwA session, derived from [5], S sends
Y ∗ = gyW pwd for some y ←R Zq to C. C picks x ←R Zq and responds
with (X∗, h) = (gxV pwd,H(C, S, Y ∗, X∗, (Y ∗/W pwd)x, pwd)). S checks whether
h = H(C, S, Y ∗, X∗, (X∗/V pwd)y , pwd) and accepts the client in this case. It is
easy to see that client authentication of this PwA follows from the security of
PAKE in [5].

Verifier-based PwA. The Ω-method introduced in [23,22] transforms any
PAKE into a verifier-based (aka. asymmetric or augmented) PAKE where pass-
words are stored on the server side in a blinded way using a random oracle
H′, a symmetric encryption scheme (Gen,Enc,Dec), and an additional pair of
signing keys (sk, pk), which are not treated as an authentication factor. For a
given password pwd the server stores (H′(pwd),Encpwd(sk)). The Ω-method pro-
ceeds as follows. First a (symmetric) PAKE session is executed using H′(pwd)
as a password on both sides, resulting in an intermediate PAKE key k. This
key is used to derive two independent keys k′ and k′′ and the client is given
Enck′ (Encpwd(sk)). C decrypts sk and sends a signature on the entire protocol
transcript. If this signature verifies using pk the server accepts the client. The
session key of verifier-based PAKE becomes k′′. The Ω-method can be applied
to obtain verifier-based PwA from plain PAKE protocols, in which case k′′ can
be omitted.

Tag-based (verifier-based) PwA. In the symmetric case any PwA protocol
can be transformed into a tag-based tPwA as follows. Parties on input their tags
t first compute HT (pwd, t) using a cryptographic hash function HT , which then
serves as a password for the original PwA. Since in Definition 3 the adversary
specifies tags upon invocation of an instance any successful CAuth-adversary
against tPwA can either be used to break CAuth-security of PwA or to find a
collision for H, i.e. AdvtPwA,ACAuth (κ) ≤ AdvPwA,ACAuth(κ) + qεHT (κ) in q protocol ses-
sions. A similar trick can be applied to verified-based PwA constructed using
the aforementioned Ω-method — instead of H′(pwd) in the initial (symmetric)
PwA session parties would use HT (H′(pwd), t). Security of such verifier-based

202 N. Fleischhacker, M. Manulis, and A. Azodi

tPwA follows from the security of the underlying PwA, the Ω-method, and the
collision-resistance of HT .

PkA: (Tag-Based) Public Key Authentication Protocol. The second sub-
protocol is a single-side authentication protocol in the public key setting, de-
noted PkA, with adversarial advantage against its client authentication defined

as AdvA,PkA
CAuth(κ) = Adv

A,(0,1,0)-MFA
CAuth (κ).

Tag-based PkA. Examples of PkA include challenge-response protocols, where
S sends a (high-entropy) challenge r to C, and C replies with a function of its
secret key, e.g. a signature. A generic extension of such PkA protocols with tags,
denoted tPkA, uses a cryptographic hash function HT and follows immediately
from [25] — the challenge r received by C with tag tC is transformed into
r′C = HT (r, tC), which is then used to generated response to S where it is
verified using rS = HT (r, tS). As shown in [25] this conversion is applicable to
various classes of PkA protocols.

BiA: (Tag-Based) Biometric-Based Authentication Protocol. The third
sub-protocol is a biometric-based authentication protocol, denoted BiA, in which
C authenticates towards S that holds some (possibly blinded) reference template
of C. In line with our model (and [33]) we work with public biometric factors
and denote the adversarial advantage against client authentication of BiA as

AdvA,BiA
CAuth(κ) = Adv

A,(0,0,1)-MFA
CAuth (κ).

Tag-based BiA example. Let (G, g, q) be a cyclic group of sufficiently large
prime order q. C and S first execute an unauthenticated Diffie-Hellman key ex-
change in G by exchanging gx and gy. Consider two hash functions H1,H2 : G �→
{0, 1}κ. Let W ′

C,i resp. WC,i denote the ith bit of the corresponding template.
For each bit i the client computes hi = H1(g

x, gy, gxy,W ′
C,i, i) using its version

of gxy and sends the resulting set {hi}i to S. S re-computes corresponding values
using its version of gxy and the reference template WC , and accepts the client
if τ or more hash values from {hi}i match. Note that if liveness assumption is
in place then the adversary is prevented from sending any hi that was not com-
puted beforehand through the BioComp oracle. The tag-based CAuth-security
of the protocol follows then directly from the classical CDH assumption in the
random oracle model.

UKE: Unauthenticated Key Exchange Observe that tag-based authentica-
tion protocols do not offer computation of session keys. In our modular (α, β,
γ)-MFAKE protocol we will use an unauthenticated key exchange, denoted UKE,
as another sub-protocol. We assume that UKE satisfies the following standard
definition (see e.g. [25]) tailored to the client-server scenario.

Definition 4 (Unauthenticated KE). An unauthenticated key exchange pro-
tocol, denoted UKE, is a two-party protocol executed between a client instance
[C, s] and a server instance [S, s′] such that at the end both instances accept
holding respective session keys kC and kS or reject. Let s = trC and s′ = trS be
respective communication transcripts of the two instances. An UKE protocol is

A Modular Framework for Multi-Factor Authentication and Key Exchange 203

correct if their partnering, i.e. s = s′, implies equality of their session keys, i.e.,
kC = kS.

KE-security. Consider the following attack game against some correct UKE
protocol: A PPT adversary A receives as input the security parameter κ and can
query the Transcript oracle which is parameterized with a random bit b fixed in the
beginning of the game. On an ith query the Transcript oracle executes a protocol
session between two new instances of C and S, and hands its communication
transcript tri and a key ki to A, where ki is real if b = 0 or randomly chosen
(for each new Transcript query) if b = 1. At some point A outputs bit b′. An UKE
protocol is KE-secure if the following advantage is negligible in κ for all A:

AdvUKE,AKE =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
UKE example. The unauthenticated Diffie-Hellman key exchange protocol in
a cyclic group (G, g, q), where C and S exchange gx and gy, respectively, and
derive their session keys via H(gx, gy, gxy) offers a straightforward KE-secure
UKE scheme in the random oracle model under the CDH assumption.

3.3 Modular (α, β, γ)-MFAKE Protocol Framework

We now detail the modular design of a generalized (α, β, γ)-MFAKE protocol,
which supports arbitrary combinations of authentication factors, both in type
and quantity. In addition to the sub-protocols from the previous section, its
construction utilizes four hash functions HT ,HC ,HS ,Hk : {0, 1}∗ �→ {0, 1}κ,
modeled as random oracles that are used for the purpose of tag derivation, key
confirmation, and key derivation.

Protocol description. (α, β, γ)-MFAKE is built from four sub-protocols:
UKE, tPwA, tPkA, and tBiA. The design is based on the following idea (see
also Figure 1): first, C and S run one UKE session resulting in unauthenti-
cated session keys k0 for the client and k′0 for the server, that are then used
by both parties to derive tags (tC and tS) through HT . Then, an appropriate
tag-based sub-protocol is executed independently for each authentication factor
of the client. C and S thus execute α sessions of tPwA, β sessions of tPkA (with
client-side authentication), and γ sessions of tBiA, possibly in parallel. S aborts
the protocol and rejects C if any of those sessions results in the rejection of the
client. The server authentication is optional and is executed through a session of
tPkA (with server-side authentication). After finishing all sub-protocols C and
S hold their so-far transcripts {tri}i=0,...,α+β+γ+1 and {tr′i}i=0,...,α+β+γ+1, re-
spectively, and proceed with the confirmation: C sends a hash value, computed
with HC , on input its unauthenticated key material from the UKE session and
session identifier s, which comprises its so-far transcripts and the identities of
both parties. S verifies that this hash value is as expected. For the optional
server authentication, S responds with its own hash value, computed using HS

204 N. Fleischhacker, M. Manulis, and A. Azodi

C(pwdC , skC ,WC , pkS) (skS , pwdC ,pkC , W ′
C) S

UKE
k0, tr0 k′

0, tr
′
0

tC ← HT (C,S, k0, tr0) tS ← HT (C,S, k
′
0, tr

′
0)

tPwA
pwdC [1], tC

tr1

pwdC [1], tS

if acc C : tr′1...

tPwA
pwdC [α], tC

trα

pwdC [α], tS

if acc C : tr′α

tPkA
skC [1], tC

trα+1

pkC[1], tS

if acc C : tr′α+1
...

tPkA
skC[β], tC

trα+β

pkC [β], tS

if acc C : tr′α+β

tBiA
WC [1], tC

trα+β+1

W ′
C [1], tS

if acc C : tr′α+β+1
...

tBiA
WC [γ], tC

trα+β+γ

W ′
C [γ], tS

if acc C : tr′α+β+γ

tPkA
pkS, tC

if acc S : trα+β+γ+1

skS, tS

tr′α+β+γ+1

s := (C,S, {tri}i=0,...,α+β+γ+1) s′ := (C,S, {tr′i}i=0,...,α+β+γ+1)
μC ← HC(s, k0) μS ← HC(s

′, k′
0)μC

If μC
= μS then reject, else:

νS ← HS(s
′, k′

0)νC ← HS(s, k0) νS

If νS
= νC then reject, else

kS ← Hk(s
′, k′

0)
accept with kS

kC ← Hk(s, k0)

accept with kC

Fig. 1. (α, β, γ)-MFAKE Protocol. The inputs skS and pkS are optional for the case
of server authentication and so is the server-authenticated execution of tPkA and the
confirmation message νS . These optional parts are shown with a light gray background.
Boxed input pwdC on the server side reflects that client’s passwords could be stored
in some blinded way, in which case tPwA is assumed to follow the steps from [23,8,26].
Boxed input W ′

C on the server side means that client’s reference templates are not
necessarily stored in clear, in which case tBiA must provide implicit matching func-
tionality.

on similar inputs as in the client’s case. Upon successful confirmation parties
accept with session keys kC resp. kS , derived using Hk.

Instantiations. Our general (α, β, γ)-MFAKE protocol can be instantiated us-
ing concrete sub-protocols from Section 3.2. That is, working in prime-order
cyclic groups (G, g, q), we can use unauthenticated Diffie-Hellman key exchange

A Modular Framework for Multi-Factor Authentication and Key Exchange 205

for UKE, a tag-based password-based authentication protocol PwA obtained
from the PAKE protocol in [5] (as detailed in Section 3.2), a suitable tag-based
challenge-response protocol for tPkA, e.g. using DSS or Schnorr signatures, and
our simple tBiA protocol with explicit matching based on the Hamming distance
mentioned in Section 3.2. By using the Ω-method from [23] (as also discussed in
Section 3.2) we can obtain a verifier-based version of tPwA and use it in our con-
struction. Finally, as evident from the security analysis in Section 3.4, (α, β, γ)-
MFAKE can be instantiated from arbitrary sub-protocols as long as those satisfy
the required authentication goals. Moreover, as discussed in Section 3.2, tPwA
can be obtained generically from PwA, and for a large class of PkA there exists
a generic conversion to tPkA. Hence, all building blocks of (α, β, γ)-MFAKE can
be realized using existing efficient (single-factor) authentication solutions.

Performance optimizations. The only dependency amongst the different
black-box runs of tag-based authentication sub-protocols is the input tag ob-
tained after the UKE session. Therefore, all subsequent sub-protocol runs can
be parallelized, resulting in three generic rounds (UKE, tag-based sub-protocols,
and confirmation round). Of course, care should be taken to match client and
server messages within each round, in order to account for the potential mis-
match in the sending and delivery order of messages in parallel sub-protocol
sessions. This can be done by pre-pending labels indicating that a message be-
longs to the ith session and using these labels to construct matching transcripts
on both sides. Further optimizations may include interleaving of messages and
using one random challenge of S for all β sessions of tPkA and another one for
all γ sessions of tBiA, resulting in a three-pass protocol for MFA-based client
authentication and five-pass protocol with further authentication of the server.

3.4 Security Analysis

The initial UKE execution contributes to the forward secrecy of the session keys.
In particular, successful key confirmation guarantees that the transcripts tr0 and
tr′0 and the unauthenticated keys k0 and k′0 match. Independent runs of tag-based
authentication-only protocols for each client’s factor ensure that C was alive at
least during that part of the protocol execution. This is because at least one
of those factors must remain uncorrupted prior to the acceptance of the server
and all sub-protocol transcripts are linked together in the key confirmation step.
Since tr0 and tr′0 are linked to the transcripts of all authentication-only sub-
protocols the key confirmation step further guarantees that C was alive during
the UKE session and, hence, the secrecy of unauthenticated keys k0 and k′0 follows
from KE-security of the UKE protocol. The secrecy of k0 and k′0 carries over to
the secrecy of the final session keys kC and kS due to the use of independent
random oracles. The optional server authentication follows the same reasoning as
client authentication using PkA sessions. This intuition is proven in Theorems 1
and 2.

206 N. Fleischhacker, M. Manulis, and A. Azodi

Theorem 1. Our (α, β, γ)-MFAKE protocol is AKE- and CAuth-secure, in the
random oracle model, and

Adv
(α,β,γ)-MFAKE,A
AKE (κ) ≤ AdvUKE,BKE (κ) + α · AdvtPwA,BCAuth (κ) + β · SucctPkA,BCAuth(κ)

+

γ∑
i=1

AdvtBiAi,B
CAuth (κ) + (q2HT

+ q(qHC + qHK)) · 2−κ, and

Adv
(α,β,γ)-MFA,A
CAuth (κ) = Adv

(α,β,γ)-MFAKE,A
AKE (κ)− q(qHk

− 1) · 2−κ.

Proof. We prove this theorem using a series of games that are written for the
AKE-security. To the end of the proof we discuss the impact of game hops on

the CAuth-security. We denote by Succ
(α,β,γ)-MFAKE,A
AKE-x (κ) the success probability

of A in game Gx and define

Δx(κ) = |Succ(α,β,γ)-MFAKE,A
AKE-x (κ)− Succ

(α,β,γ)-MFAKE,A
AKE-(x−1) (κ)|.

G0 This is the original AKE-security game, where the simulator answers the
queries of A on behalf of the instances according to the specification of (α,
β, γ)-MFAKE.

G1 In this game for all simulated server and client instances that have matching
UKE transcripts tr0 = tr′0 the corresponding UKE keys k0 and k′0 are chosen
at random such that k0 = k′0 holds. Otherwise, k0 and k′0 are computed as
in G0.

Claim. Δ1(κ) ≤ AdvUKE,BKE (κ). Proof. For session instances that do not share
matching UKE transcripts both games are identical. Any A that can dis-
tinguish between G1 and G0 with non-negligible probability can be used to
break the KE security from Definition 4. The corresponding KE-adversary
B against UKE would interact with A and simulate all its (α, β, γ)-MFAKE
oracle queries as specified in G0, except for the messages and keys of the UKE
sub-protocol. Assume A invokes an instance of U ∈ {C, S}. If this instance
is supposed to send the first message in the UKE session then B queries its
Transcript oracle and uses the first message of the obtained transcript as a
response to A. If A invokes an instance for U′ �= U that is expected to send
a message only after having received some incoming message then B waits
for the corresponding Send query of A and checks whether input message is
amongst those output by B from some transcript that it holds and responds
with the next response message from this transcript. If the input message
is unexpected then B runs UKE part on behalf of this instance of U′ with-
out consulting its oracle (and will thus be able to compute the UKE key
for that session). Once UKE session on behalf of some instance is finished B
has always a key to continue its simulation, either from its own UKE run or
from a Transcript query. The way in which B simulates UKE sessions ensures
that the latter type of keys are used in sessions that involve instances with
matching UKE transcripts. If Transcript returns real keys then we are in G0;
otherwise in G1. Hence, Δ1(κ) ≤ AdvUKE,BKE (κ).

A Modular Framework for Multi-Factor Authentication and Key Exchange 207

G2 In this game the simulator aborts if in the ith tPwA session, for some i ∈
{1, . . . , α}, a server instance [S, s′] with tag tS and (partial) transcript tr′i
accepts client C but there exists no instance of C with matching (partial)
transcript tri and tC = tS , and pwd[i] is not corrupted.

Claim. Δ2(κ) ≤ α · SucctPwA,BCAuth (κ). Proof. We prove this with a hybrid ar-

gument using sub-games G
upto(j)
2 , j = 0, . . . , α. Let tPwAi, i ∈ {1, . . . , α}

denote the ith tPwA sub-protocol run. In G
upto(j)
2 all tPwAi, 1 ≤ i ≤ j are

handled as in G2 and all tPwAi, j < i ≤ α are handled as in G1. That is,

G1 = G
upto(0)
2 and G2 = G

upto(α)
2 . As before, we define Δ

upto(j)
2 (κ) as the dif-

ference in A’s success probability in two consecutive games G
upto(j−1)
2 and

G
upto(j)
2 . The difference between the two is that G

upto(j)
2 may still abort even

if G
upto(j−1)
2 does not. Any A that can distinguish between the games must

have successfully caused tPwAj to abort in G
upto(j)
2 , in which case an instance

[S, s′] accepts C in tPwAj while no partnered client instance with the same
tag exists and no CorruptClient(C, 0, j) was asked. Such A can be used to
break CAuth-security of tPwA. The simulator can act as CAuth-adversary
B against tPwA by invoking new instances of the server in the tPwA game
using tags of server instances that it simulates in the interaction with A.
The simulator relays all tPwAj related queries of A as its own queries in the

tPwA game and wins if A causes G
upto(j)
2 to abort. Therefore Δ

upto(j)
2 (κ) ≤

SucctPwA,BCAuth (κ) and thus Δ2(κ) =
∑α

j=1 Δ
upto(j)
2 (κ) ≤ α · SucctPwA,BCAuth (κ).

G3 In this game the simulator aborts if in the ith client side tPkA session, for
some i ∈ {1, . . . , β}, a server instance [S, s′] with tag tS and (partial) tran-
script tr′α+i accepts client C but there exists no instance of C with matching
(partial) transcript trα+i and tC = tS , and skC [i] is not corrupted.

Claim. Δ3(κ) ≤ β · SucctPkA,BCAuth(κ). Proof. We can use essentially the same
hybrid argument as in G2, but for tPkA sessions, and thus build a sequence
of β sub-games to show that the difference between any two consecutive
sub-games can be upper-bounded by SucctPkA,BCAuth(κ). This leads to Δ3(κ) =∑β

j=1 Δ
upto(j)
3 (κ) ≤ β · SucctPkA,BCAuth(κ).

G4 In this game the simulator aborts if in the ith tBiA session, for some i ∈
{1, . . . , γ}, a server instance [S, s′] with tag tS and (partial) transcript tr′α+β+i

accepts client C but there exists no instance of C with matching (partial)
transcript trα+β+i and tC = tS , and the ith biometric is not corrupted.

Claim. Δ4(κ) ≤
∑γ

i=1 Succ
tBiAi,B
CAuth (κ). Proof. We denote by tBiAi the tBiA

protocol operating on the ith biometric. Again, using the hybrid argument
as in G2, but for tBiA sessions, we can build a sequence of γ sub-games
and upper-bound the difference between any two consecutive sub-games

G
upto(j−1)
4 and G

upto(j)
4 with Succ

tBiAj ,B
CAuth (κ). The simulator can relay all tBiAj

related queries of A as its own queries in the tBiA game, including those re-
lated to the BioComp oracle since all biometric-dependent tBiA messages

208 N. Fleischhacker, M. Manulis, and A. Azodi

used in the (α, β, γ)-MFAKE protocol remain identical to those of the tBiA

protocol. This leads to Δ4(κ) =
∑γ

j=1 Δ
upto(j)
4 (κ) ≤

∑γ
i=1 Succ

tBiAi,B
CAuth (κ).

Remark 5. If the simulation does not abort in this game then it is guar-
anteed that for each server instance [S, s′] that is entering the confirma-
tion round with partial transcripts {tr′i}1≤i≤α+β+γ (comprising executions
of tPwA, PkA, and tBiA sub-protocols) and tag tS , and that has not disqual-
ified itself as a candidate for a Test query (i.e. fulfills freshness conditions
from Section 2.2), there exists a client instance [C, s] with partial transcripts
{tri}1≤i≤α+β+γ such that there exists an index i, 1 ≤ i ≤ α + β + γ with
tri = tr′i. Moreover, any such client instance holds tag tC = tS .

G5 In this game the simulation aborts if an instance [S, s′] enters the confirma-
tion round with partial transcripts tr′0 and {tr′i}1≤i≤α+β+γ and there exists
[C, s] with partial transcripts tr0 and {tri}1≤i≤α+β+γ such that for some
index i : tri = tr′i but tr0 �= tr′0.

Claim. Δ5(κ) ≤ q2HT
2−κ. Proof. G4 already ensures that if [S, s′] accepts

in all authentication sub-protocols then there exists a client instance with
tC = tS . The only difference between the two games is that G5 may still
abort even if G4 does not. If A can distinguish between the games then A
must have successfully caused the simulator to abort in G5, in which case
[S, s′] and [C, s] hold tags tS = tC but tr0 �= tr′0. We can thus output a
collision for HT . Since HT is a random oracle we get Δ5(κ) ≤ q2HT

2−κ.

Remark 6. G5 implies that any instance [S, s′] that was not disqualified as
a candidate for a Test query (upon entering the confirmation round) has
a corresponding client instance [C, s] with the same UKE transcript and at
least one matching tag-based sub-protocol transcript.

G6 This game proceeds as G5, except that on behalf of an instance [S, s′] that
is not disqualified as a candidate for a Test query the simulator computes
μS ← H′

C(s
′) and kS ← H′

K(s′) using two private random oracles H′
C and

H′
k, and sets μC = μS and kC = kS for the corresponding [C, s] that has

matching UKE transcript and at least one matching tag-based sub-protocol
transcript.

Claim. Δ6(κ) ≤ q(qHC + qHK) ·2−κ. Considering that in the previous game,
confirmation values and session keys of [S, s′] were derived through random
oracles HC and Hk on input k′0 (which is random as ensured by G1) and
the transcript s′, any A that can distinguish between the games must ask
at some point a query for HC or Hk containing k′0 and s′ for any of the q
invoked sessions as input. Therefore, Δ6(κ) ≤ q(qHC + qHk

) · 2−κ.

G6 implies that if [S, s′] accepts and is not disqualified as a candidate for a Test
query then kS is uniformly distributed in the domain of session keys. Hence, the
probability of A to win in G6 no longer depends on the key, i.e. A can win in G6

A Modular Framework for Multi-Factor Authentication and Key Exchange 209

only by guessing bit b (with probability 1
2).

Summarizing the probability differences across all games we obtain

Adv
(α,β,γ)-MFAKE,A
AKE (κ) =

∣∣∣∣∣Succ(α,β,γ)-MFAKE,A
AKE (κ)− q

(
α

|Dpwd|
+

γ∑
i=1

falseposi

)
− 1

2

∣∣∣∣∣
=

∣∣∣∣∣
6∑

i=1

Δi(κ) +
1

2
− q

(
α

|Dpwd|
+

γ∑
i=1

falseposi

)
− 1

2

∣∣∣∣∣ .
Taking into account that

6∑
i=1

Δi(κ) ≤ AdvUKE,BKE (κ) + α · SucctPwA,BCAuth (κ) + β · SucctPkA,BCAuth(κ)

+

γ∑
i=1

SucctBiAi,B
CAuth (κ) + (q2HT

+ q(qHC + qHK)) · 2−κ,

and that

AdvtPwA,BCAuth (κ) =

∣∣∣∣SucctPwA,BCAuth (κ)−
q

|Dpwd|

∣∣∣∣
AdvtBiAi,B

CAuth (κ) =
∣∣∣SucctBiAi,B

CAuth (κ)− q · falseposi

∣∣∣
we obtain

Adv
(α,β,γ)-MFAKE,A
AKE (κ) ≤ AdvUKE,BKE (κ) + α · AdvtPwA,BCAuth (κ) + β · SucctPkA,BCAuth(κ)

+

γ∑
i=1

AdvtBiAi,B
CAuth (κ) + (q2HT

+ q(qHC + qHK)) · 2−κ,

which is negligible by assumptions on UKE, tPwA, tPkA, and tBiA.

Proof for CAuth-security. With regard to client authentication, consider the
above game sequence from the perspective of the CAuth-security game and suc-

cess probability Succ
(α,β,γ)-MFAKE,A
CAuth (κ). Freshness conditions regarding server in-

stances encompass the requirements that are relevant for the CAuth-game. Then,
Remark 6 implies that in G5 for each server instance [S, s′] for which A could
still win the game there exists a client instance [C, s] with the matching UKE
transcript and at least one matching tag-based sub-protocol transcript. In G6,
μC and μS are computed using private oracle, while for CAuth-security mod-
ifications of kC and kS are irrelevant. The probability difference to G5 is thus
upper-bounded by q · qHC · 2−κ. Then, [S, s′] must have received μC = μS with-
out having a partnered client instance. That is A must have asked a Send query
containing a value that matches a uniformly distributed μS . This happens with
probability at most q · 2−κ for up to q invoked server instances. We thus obtain
the following CAuth-success

Succ
(α,β,γ)-MFAKE,A
CAuth (κ) = Succ

(α,β,γ)-MFAKE,A
AKE (κ)− q(qHk

− 1) · 2−κ − 1

2
.

210 N. Fleischhacker, M. Manulis, and A. Azodi

Taking into account that by definition

Adv
(α,β,γ)-MFAKE,A
AKE (κ) =

∣∣∣∣∣Succ(α,β,γ)-MFAKE,A
AKE (κ)− q

(
α

|Dpwd|
+

γ∑
i=1

falseposi

)
− 1

2

∣∣∣∣∣
we obtain a negligible CAuth-advantage

Adv
(α,β,γ)-MFAKE,A
CAuth (κ) =

∣∣∣∣∣Succ(α,β,γ)-MFAKE,A
CAuth (κ)− q

(
α

|Dpwd|
+

γ∑
i=1

falseposi

)∣∣∣∣∣
=

∣∣∣∣Succ(α,β,γ)-MFAKE,A
AKE (κ)− q(qHk

− 1) · 2−κ − 1

2

− q

(
α

|Dpwd|
+

γ∑
i=1

falseposi

)∣∣∣∣∣
=

∣∣∣Adv(α,β,γ)-MFAKE,A
AKE (κ)− q(qHk

− 1) · 2−κ
∣∣∣ .

��

Theorem 2. Our (α, β, γ)-MFAKE protocol with server authentication is SAuth-
secure in the random oracle model, and

Succ
(α,β,γ)-MFAKE,A
SAuth (κ) ≤ AdvUKE,BKE (κ) + SucctPkA,BCAuth(κ) + (q2HT

+ q(qHS + 1)) · 2−κ.

Proof. This proof resembles in part the proof of Theorem 1 and proceeds in a

series of similar games. We denote by Succ
(α,β,γ)-MFAKE,A
SAuth-x (κ) the success prob-

ability of A in game Gx. For each game Gx, we define Δx(κ) as the difference
in A’s success probability when playing against the two consecutive games Gx-1

and Gx, i.e., Δx(κ) = |Succ(α,β,γ)-MFAKE,A
SAuth-x (κ)− Succ

(α,β,γ)-MFAKE,A
SAuth-(x−1) (κ)|.

G0 This is the original SAuth-security game, where the simulator answers the
queries of A on behalf of the instances according to the specification of (α,
β, γ)-MFAKE.

G1 This game proceeds as G0, except that for all simulated server and client
instances that have matching UKE transcripts tr0 = tr′0 the corresponding
UKE keys k0 and k′0 are chosen at random such that k0 = k′0 holds. Otherwise,
k0 and k′0 are computed as in G0.

Claim. Δ1(κ) ≤ AdvUKE,BKE (κ). Proof. For client and server instances that do
not share matching UKE transcripts both games are identical. Any A that
can distinguish between G1 and G0 with non-negligible probability can be
used to break the KE security from Definition 4. The description of the UKE
adversary is exactly the same as in G1 from the proof of Theorem 1. Hence,
Δ1(κ) ≤ AdvUKE,BKE (κ), as claimed.

G2 This game proceeds as G1, except that the simulator aborts if in the server-
side tPkA session a client instance [C, s] with tag tC and (partial) transcript
trα+β+γ+1 accepts server S but there exists no instance of S with matching
(partial) transcript tr′α+β+γ+1 and tag tS = tC , and skS is not corrupted.

A Modular Framework for Multi-Factor Authentication and Key Exchange 211

Claim. Δ2(κ) ≤ SucctPkA,BCAuth(κ). Proof. As already described in games G2

through G4 in proof of Theorem 1 if A can distinguish between the two
games, it can be immediately used to break CAuth-security of tPkA. (In this
game CAuth-security is understood as a security property of PkA in case
where the authenticating party is the server S. Recall that PkA offers single-
side authentication and was defined from the perspective of an authenticating
client. In this game the authenticating party is S but the notion of CAuth-
security remains as defined.) Hence, Δ2(κ) ≤ SucctPkA,BCAuth(κ), as claimed.

Remark 7. Note that if the simulation does not abort in G2 then it is guar-
anteed that for each client instance [C, s] that is entering the confirmation
round with partial transcript trα+β+γ+1 and tag tC , there exists a server
instance [S, s′] with partial transcript tr′α+β+γ+1 = trα+β+γ+1 and tS = tC
if neither C nor S = pid([C, s]) has been fully corrupted.

G3 This game proceeds as G2, except that simulation aborts if an instance [C, s]
enters the confirmation round with partial transcripts tr0 and trα+β+γ+1

and there exists [S, s′] with partial transcripts tr′0 and tr′α+β+γ+1 such that
trα+β+γ+1 = tr′α+β+γ+1 but tr0 �= tr′0.

Claim. Δ3(κ) ≤ q2HT
2−κ. Proof. G2 already ensures that if [C, s′] accepts in

the server side tPkA sub-protocol then there exists a server instance with
tS = tC . The only difference between the two games is that G3 may still
abort even if G2 does not. If A can distinguish between the games then A
must have successfully caused the simulator to abort in G3, in which case
[C, s] and [S, s′] hold tags tC = tS but tr0 �= tr′0. We can thus output a
collision for HT . Since HT is a random oracle we get Δ3(κ) ≤ q2HT

2−κ, as
claimed.

G4 This game proceeds as G3, except that on behalf of an instance [C, s] for
which neither C nor S = pid([C, s]) is fully corrupted the simulator computes
νC ← H′

S(s
′) using a private random oracle H′

S , and sets νS = νC for the
corresponding [S, s′] that has matching UKE transcript and matching server-
side tPkA sub-protocol transcript.

Claim. Δ4(κ) ≤ q · qHS · 2−κ. Proof. Considering that in the previous game,
confirmation values of [C, s] were derived through the random oracle HS on
input k0 (which is random as ensured by G1) and the transcript s, any A
that can distinguish between the games must ask at some point a query for
HS containing k0 and s for any of the q invoked sessions as input. Therefore,
Δ4(κ) ≤ q · qHS · 2−κ, as claimed.

Assume that A wins in G4. Then, [C, s] must have received νS = νC without
having a partnered server instance. That is, A must have asked a Send query
containing a value that matches a uniformly distributed νC . This happens with
probability at most q · 2−κ for up to q invoked client instances. We thus get

212 N. Fleischhacker, M. Manulis, and A. Azodi

Succ
(α,β,γ)-MFAKE,A
SAuth (κ) =

4∑
i=1

Δi(κ) + q · 2−κ

≤ AdvUKE,BKE (κ) + SucctPkA,BCAuth(κ) + (q2HT
+ q(qHS + 1)) · 2−κ,

which is negligible by assumptions on UKE and tPkA.
��

4 Conclusion

The proposed framework for multi-factor authentication and key exchange
protocols enables black-box constructions from existing, better-understood single-
factor authentication-only schemes. Our generic construction of the (α, β, γ)-
MFAKE protocol avoids undesirable interactions amongst the different factors
and bears optimization potential since messages of tag-based authentication sub-
protocols can be interleaved or communicated over different channels. Thanks
to its modularity the framework can easily be extended in the future to ac-
commodate other authentication factors, e.g. based on friend-of-friend or social
authentication [11,15].

Acknowledgments. Nils Fleischhacker was supported by the German Federal
Ministry of Education and Research (BMBF) through funding for the Center for
IT-Security, Privacy, and Accountability (CISPA, www.cispa-security.org).
Mark Manulis was supported by the German Research Foundation (DFG),
project PRIMAKE (MA 4957).

References

1. PCI Data Security Standard, Ver.2 (2010),
http://www.pcisecuritystandards.org/

2. NIST Special Publication 800-63, Rev.1 (2011),
http://csrc.nist.gov/publications/

3. Abdalla, M., Chevassut, O., Pointcheval, D.: One-Time Verifier-Based Encrypted
Key Exchange. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 47–64.
Springer, Heidelberg (2005)

4. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-Based Authenticated Key
Exchange in the Three-Party Setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

5. Abdalla, M., Pointcheval, D.: Simple Password-Based Encrypted Key Exchange
Protocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208.
Springer, Heidelberg (2005)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

7. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

http://www.pcisecuritystandards.org/
http://csrc.nist.gov/publications/

A Modular Framework for Multi-Factor Authentication and Key Exchange 213

8. Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key ex-
change: New models and constructions. Cryptology ePrint Archive, Report
2013/833 (2013), http://eprint.iacr.org/2013/833

9. Blake-Wilson, S., Johnson, D., Menezes, A.: Key Agreement Protocols and Their
Security Analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

10. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure Remote Authen-
tication Using Biometric Data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

11. Brainard, J.G., Juels, A., Rivest, R.L., Szydlo, M., Yung, M.: Fourth-Factor Au-
thentication: Somebody You Know. In: ACM CCS 2006, pp. 168–178. ACM (2006)

12. Bringer, J., Chabanne, H.: An Authentication Protocol with Encrypted Biometric
Data. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 109–124.
Springer, Heidelberg (2008)

13. Bringer, J., Chabanne, H., Izabachène, M., Pointcheval, D., Tang, Q., Zimmer,
S.: An Application of the Goldwasser-Micali Cryptosystem to Biometric Authen-
tication. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 96–106. Springer, Heidelberg (2007)

14. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

15. De Cristofaro, E., Manulis, M., Poettering, B.: Private Discovery of Common Social
Contacts. International Journal of Information Security 12(1), 49–65 (2013)

16. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys
from Biometrics and Other Noisy Data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

17. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the Power of Power Analysis in the Real World: A Complete Break of
the KeeLoq Code Hopping Scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

18. Federal Financial Institutions Examination Council. Authentication in an Internet
Banking Environment (2005),
http://www.ffiec.gov/pdf/authentication_guidance.pdf

19. Fleischhacker, N., Manulis, M., Azodi, A.: A Modular Framework for Multi-Factor
Authentication and Key Exchange. Cryptology ePrint Archive, Report 2012/181
(2012), http://eprint.iacr.org/2012/181.pdf (last updated in 2014)

20. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W., Jacobs, B.: Dismantling MIFARE classic. In: Jajodia, S., Lopez, J.
(eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

21. Garcia, F.D., van Rossum, P., Verdult, R., Schreur, R.W.: Dismantling Secure-
Memory, CryptoMemory and CryptoRF. In: ACM CCS 2010, pp. 250–259. ACM
(2010)

22. Gentry, C., MacKenzie, P.D., Ramzan, Z.: Password authenticated key exchange
using hidden smooth subgroups. In: ACM CCS 2005, pp. 299–309. ACM (2005)

23. Gentry, C., MacKenzie, P.D., Ramzan, Z.: A Method for Making Password-Based
Key Exchange Resilient to Server Compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)

24. Hao, F., Clarke, D.: Security Analysis of a Multi-factor Authenticated Key Ex-
change Protocol. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS,
vol. 7341, pp. 1–11. Springer, Heidelberg (2012)

http://eprint.iacr.org/2013/833
http://www.ffiec.gov/pdf/authentication_guidance.pdf
http://eprint.iacr.org/2012/181.pdf

214 N. Fleischhacker, M. Manulis, and A. Azodi

25. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Generic Compilers for Authenticated
Key Exchange. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 232–249.
Springer, Heidelberg (2010)

26. Kiefer, F., Manulis, M.: Zero-Knowledge Password Policy Checks and Verifier-
Based PAKE. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part II. LNCS,
vol. 8713, pp. 295–312. Springer, Heidelberg (2014)

27. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

28. Lee, Y., Kim, S., Won, D.: Enhancement of Two-Factor Authenticated Key Ex-
change Protocols in Public Wireless LANs. Computers & Electrical Engineer-
ing 36(1), 213–223 (2010)

29. Li, C.-T., Hwang, M.-S.: An Efficient Biometrics-Based Remote User Authenti-
cation Scheme Using Smart Cards. Journal of Network and Computer Applica-
tions 33(1), 1–5 (2010)

30. Li, X., Niu, J.-W., Ma, J., Wang, W.-D., Liu, C.-L.: Cryptanalysis and Improve-
ment of a Biometrics-Based Remote User Authentication Scheme Using Smart
Cards. Journal of Network and Computer Applications 34(1), 73–79 (2011)

31. Park, Y.M., Park, S.K.: Two Factor Authenticated Key Exchange (TAKE) Proto-
col in Public Wireless LANs. IEICE Transactions on Communications E87-B(5),
1382–1385 (2004)

32. Paterson, K.G., Stebila, D.: One-Time-Password-Authenticated Key Exchange.
In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 264–281.
Springer, Heidelberg (2010)

33. Pointcheval, D., Zimmer, S.: Multi-factor Authenticated Key Exchange. In:
Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 277–295. Springer, Heidelberg (2008)

34. Song, R.: Advanced Smart Card Based Password Authentication Protocol. Com-
puter Standards & Interfaces 32(5-6), 321–325 (2010)

35. Stebila, D., Udupi, P., Chang, S.: Multi-Factor Password-Authenticated Key Ex-
change. In: Eighth Australasian Information Security Conference (AISC 2010),
vol. 105, pp. 56–66 (2010)

36. Tapiador, J.E., Hernandez-Castro, J.C., Peris-Lopez, P., Clark, J.A.: Cryptanal-
ysis of Song’s Advanced Smart Card Based Password Authentication Protocol.
arXiv.org, Cryptography and Security (2011),
http://arxiv.org/abs/1111.2744v1

37. Wang, X., Zhang, W.: An Efficient and Secure Biometric Remote User Authenti-
cation Scheme Using Smart Cards. In: Pacific-Asia Workshop on Computational
Intelligence and Industrial Application (PACIIA 2008), vol. 2, pp. 913–917. IEEE
(2008)

http://arxiv.org/abs/1111.2744v1

Improving the ISO/IEC 11770 Standard

for Key Management Techniques

Cas Cremers and Marko Horvat

University of Oxford, Oxford, UK

Abstract. We provide the first systematic analysis of the ISO/IEC
11770 standard for key management techniques [18,19], which describes
a set of key exchange, key authentication, and key transport protocols.
We analyse the claimed security properties, as well as additional modern
requirements on key management protocols, for 30 protocols and their
variants. Our formal, tool-supported analysis of the protocols uncovers
several incorrect claims in the standard. We provide concrete suggestions
for improving the standard.

1 Introduction

The International Organisation for Standardisation (ISO) develops and promotes
international standards, which include a wide variety of security mechanisms.
Many large vendors aim to support ISO standards, for example because they
are mandated by oversight bodies [15] or to prevent trade barriers. Hence, it is
critical that the ISO standards for security mechanisms are thoroughly scruti-
nised. However, most previous analyses of the ISO security standards have been
very limited in scope, e.g., [10,16,23,24]. One exception is the analysis of Basin
et al. of the ISO/IEC 9798 standard for entity authentication [4] in 2012. Their
analysis uncovered a series of issues that led to an updated version of the 9798
standard.

In this paper we focus on the ISO/IEC 11770 standard for key management
protocols, in particular on parts 2 and 3 of this standard. In the most recent
version as of June 2014, these two parts together describe 30 base protocols for
key exchange, key agreement, and key transport. Many of the standard’s pro-
tocols are based on protocols such as Diffie-Hellman, variants of MQV, and the
TLS handshake. For many of the protocols, at least two variants are described.
Thus, analysing these two parts is a significant undertaking.

In positive contrast to other security protocol standards [5], the ISO/IEC
11770 standard explicitly specifies security properties for each of its protocols.
Two of these properties are structural properties, i.e., key control and replay
detection. Additionally, there are four security properties that relate to active
adversaries, namely key authentication, key confirmation, entity authentication,
and forward secrecy.

In this work, we use tool-supported formal methods to determine if the
protocols indeed satisfy their claimed properties. Additionally, we analyse the

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 215–235, 2014.
c© Springer International Publishing Switzerland 2014

216 C. Cremers and M. Horvat

protocols for modern key exchange security properties, such as resilience against
Key Compromise Impersonation (KCI) and Unknown Key Share (UKS) attacks.

Contributions. We perform the first comprehensive analysis of parts 2 and 3
of the ISO/IEC 11770 standard. Our analysis uncovers multiple previously un-
reported errors and weaknesses. For each of the discovered issues, we provide
concrete recommendations for improving the standard.

Our protocol models and tools used are available for download from
http://www.cs.ox.ac.uk/people/cas.cremers/scyther/iso11770/.

Overview In Section 2 we give some background on ISO/IEC 11770 and illustrate
some of its protocols. We describe our analysis approach in Section 3 and present
the results in Section 4. We provide concrete recommendations for improving
the standard in Section 5, discuss related work in Section 6, and conclude in
Section 7.

2 Background on ISO/IEC 11770

The ISO/IEC 11770 standard describes key management techniques. Accord-
ing to the standard, the purpose of key management is to provide procedures
for handling cryptographic keying material to be used in symmetric or asym-
metric mechanisms. Effectively, the standard describes a large number of key
agreement, key transport, and key exchange protocols. We will therefore use the
terms mechanism and protocol interchangeably.

The standard is currently divided into five parts. Part 1 was originally re-
leased in 1996 and has been updated over the years. It describes the context and
framework. Parts 2 and 3 describe mechanisms based on symmetric and asym-
metric techniques. Part 4 describes mechanisms based on weak secrets, such as
password-based key exchange protocols. Part 5 describes group key management
mechanisms. A part 6 on key derivation functions is currently under develop-
ment.

2.1 Protocols

In this work we focus on part 2 [18] and part 3 [19] of the ISO/IEC 11770
standard. Part 2 describes 13 key establishment mechanisms. Part 3 describes
11 key agreement mechanisms and 6 key transport mechanisms. Many of these
30 mechanisms in parts 2 and 3 have optional message parts and message flows,
giving rise to a large number of variants.

Additionally, the mechanisms produce keying material that must be used with
a key derivation function to form a key for use in further messages. The standard
does not specify a single key derivation function; instead it gives examples of
various possible key derivation functions. Thus, using a single mechanism with
different key derivation functions can be regarded as multiple variants of the
same base mechanism. As we will see in Section 4.3, the choice of a key derivation
function can influence the security of a mechanism.

http://www.cs.ox.ac.uk/people/cas.cremers/scyther/iso11770/

Improving the ISO/IEC 11770 Standard for Key Management Techniques 217

P A B

eKAP (1, TA/NA, IB, F,Text1)

eKAP (2, TA/NA, IB,Text2),
eKBP (3, TP/NP , F, IA,Text3)

eKBP (3, TP/NP , F, IA,Text3),
eK(T ′

A/N
′
A, IB,Text4)

K = KDF (F) K = KDF (F)

eK(TB/NB, IA,Text5)

Fig. 1. Protocol 2-12 with optional fields

Naming conventions. We provide a unique name for each base mechanism in
the considered parts of the standard. We refer to the thirteen key establishment
mechanisms from part 2 as protocol 2-1, 2-2, ..., 2-13. We refer to the key agree-
ment mechanisms as 3-KA-1, ..., 3-KA-11 and to the key transport mechanisms
as 3-KT-1, ..., 3-KT-6.

We next describe two protocols from the standard. This enables us to in-
troduce notation and provide an indication of the protocols contained in the
standard.

Key Exchange Mechanism 12 (2-12). We give an example of a protocol
described in part 2 [18], referenced in the standard in Section 7.2 as Key Es-
tablishment Mechanism 12. The protocol is stated to be derived from, but not
fully compatible with, the four-pass mutual authentication mechanism specified
in ISO/IEC 9798-2 [17]. The protocol has several variants. For this example, we
consider the variant with all optional parts included, depicted using a Message
Sequence Chart (MSC) in Figure 1.

In the figure, TA/NA is either a time stamp TA or sequence number NA of A.
IA and IB respectively identify entities A and B. eK(m) denotes the encryption
of the message m with the key K. The protocol assumes that entities A and B
respectively share long-term symmetric keys KAP and KBP with a trusted third
party P . Text1 through Text5 are text fields whose contents are not specified by
the standard. F denotes keying material.

The protocol proceeds as follows. When a party A wants to communicate with
another party B, it contacts trusted third party P . A generates fresh keying
material F and includes it in the message encrypted for P , who responds with
two encrypted messages. They are respectively encrypted with KAP and KBP .
Both encrypted messages are sent to A, who forwards the second encryption to
B. B decrypts the message and obtains the keying material F . A and B now
both use a key derivation function to compute the session key K from F . We
are only considering the protocol variant with optional fields, so the protocol

218 C. Cremers and M. Horvat

A B

rA,Text1

rB ,CertB ,Text2

K = KDF (rA, rB, r
′
A)

eB(r
′
A),MACK(rA,Text1, eB(r

′
A))

K = KDF (rA, rB, r
′
A)

MACK(rB ,CertB,Text2)

Fig. 2. Protocol 3-KA-11

proceeds with two messages that allow both entities to confirm to the other
entity that they have successfully computed the key.

For the key derivation function, we consider two extremes from the KDFs
described in the standard: at the one end, some KDFs take as input only F ,
whereas others include additional parameters, such as the identities IA and IB.

Key Agreement Mechanism 11 (3-KA-11). Key Agreement Mechanism
11 from part 3, shown in Figure 2, establishes a key shared by entities A and
B. First, A generates a random value rA and sends it to B. B responds with
his own random value rB and his certificate. Upon receiving this message, A
generates a new random value r′A. r

′
A is used with the other two random values

to derive a session key K. Then r′A is encrypted using B’s public key, and sent to
B along with a message authentication code (MAC) keyed with K that includes
the earlier randomness rA. B decrypts the message, computes K, and checks the
MAC. B then responds with his own MAC of rB and his certificate.

According to the standard, this protocol is derived from the TLS handshake
protocol [14]. In particular, since only B uses his private key (to decrypt the
message) and the random values are directly input to the key derivation function,
the protocol resembles TLS’s unilaterally authenticated RSA mode, where A
corresponds to the client and B to the server. The random value r′A in 3-KA-11
plays the same role as TLS’s pre-master secret and the two text fields are used
in TLS for the cipher suite negotiation.

2.2 Security Properties and Threat Model of the Standard

Most standards for security protocols do not specify threat models or intended
security properties [5]. In this respect, ISO/IEC 11770 is an exception since
it explicitly specifies a set of security properties, and states for each protocol

Improving the ISO/IEC 11770 Standard for Key Management Techniques 219

which of these properties it satisfies. ISO/IEC 11770 defines the following prop-
erties [18, 19]:

Implicit key authentication from entity A to entity B. Assurance for
entity B that A is the only other entity that can possibly be in possession
of the correct key.

Explicit key authentication from entity A to entity B. Assurance for
entity B that A is the only other entity that is in possession of the correct key.

Key confirmation from entity A to entity B. Assurance for entity B that
entity A is in possession of the correct key.

Entity authentication of entity A to entity B. Assurance of the identity
of entity A to entity B.

Forward secrecy with respect to entity A. Property that knowledge of
entity A’s long-term private key subsequent to a key agreement operation
does not enable an opponent to recompute previously derived keys.

Forward secrecy with respect to both entity A and entity B. Property
that knowledge of entity A’s long-term private key or knowledge of entity B’s
long-term private key subsequent to a key agreement operation does not enable
an opponent to recompute previously derived keys.

Mutual forward secrecy. Property that knowledge of both entity A’s and
entity B’s long-term private keys subsequent to a key agreement operation
does not enable an opponent to recompute previously derived keys.

For example, regarding the protocols described in the previous section, the stan-
dard claims the following: protocol 2-12 with optional parts satisfies mutual
explicit key authentication, mutual key confirmation and mutual entity authen-
tication, and protocol 3-KA-11 provides mutual explicit key authentication, mu-
tual key confirmation, entity authentication to B and mutual forward secrecy.

The standard does not specify an explicit threat model. However, the security
properties stated above are not claimed for all protocols. Because some protocols
apparently do not meet the above properties, we can conclude that the adversary
is considered to have at least the following capabilities:

Injecting network messages. Entity authentication is claimed for some, but
not all mechanisms. Entity authentication can only be effectively violated if
the adversary is able to inject or tamper with network messages.

Eavesdropping on network messages. If the adversary cannot eavesdrop on
messages, we would need no complex key management mechanism, and could
exploit simple authentication mechanisms.

Compromising long-term private keys. For some protocols, perfect forward
secrecy is claimed. The adversary can only violate perfect forward secrecy by
compromising the long-term private keys of some entities.

3 Formally Modelling the Protocols and Their Properties

We analyse all 30 protocols specified in the standard, along with their described
variants, by using formal methods. In particular, we use the Scyther frame-
work [13] for the automatic symbolic analysis of security protocols. The Scyther

220 C. Cremers and M. Horvat

tool [11] has built-in support for compromising adversaries [2], and is therefore
especially suitable for analysing security notions that are common in the domain
of protocols for key agreement, exchange, and transport.

3.1 Protocol Specification

Within the Scyther framework, protocols are specified using so-called role scripts.
A protocol can have any finite number of roles, and is run by entities who execute
those roles. Entities may execute each role multiple times, and every role can
be executed by any entity. We call each such role instance a session. We assume
that, prior to protocol execution, every entity has generated or securely received
a long-term asymmetric key pair consisting of a public and a private key, it has
authentic and secret copies of all its long-term symmetric keys shared with other
entities, and authentic copies of the public keys of all other entities.

Roles are specified as sequences of send, receive and claim events. Events
have term parameters, where terms are constructed from role names, function
names, variables, and constants. Receive events correspond to pattern matching
on incoming messages, and may therefore contain nonces generated in previous
send steps and variables to store incoming payloads. Send events can contain
freshly generated nonces and variables that have been previously initialised in
receive steps. We specify intended security properties using claim events.

For example, we give in Figure 3 the input for the Scyther tool to describe
protocol 2-12 from Section 2.1. Send, receive and claim events are respectively
specified with send, recv, and claim. Freshly generated nonces are declared with
fresh, variables with var, user-defined types with usertype, hash functions
with hashfunction. Every function, constant and variable can have a different
type, such as Nonce or a user-defined type such as Integer, KeyingMaterial,
or String—the types are used to restrict the pattern matching in the execution
of a receive event. The keyword macro can be used to define shorthands.

3.2 Specifying Security Properties

We model the following properties from the standard: key authentication, key
confirmation, entity authentication, and forward secrecy. Additionally, we model
key compromise impersonation (KCI) and unknown key share (UKS) attacks.

Key Authentication. According to the standard, both implicit and explicit
key authentication require that if an entity A uses a protocol to establish a
key K with entity B, then only A and B will learn the key. We model this
by analysing the secrecy of K whilst allowing the adversary to impersonate
any entity except for A and B. The possibility of impersonation is modelled by
allowing the adversary to learn the long-term private key of any entity except for
A and B. Additionally, explicit key authentication requires that entities in fact
compute the key. We cover this requirement in our modelling of key confirmation.

Key Confirmation. This and the following property correspond to authen-
tication properties in Lowe’s hierarchy [22]. Key confirmation from A to B cor-
responds to non-injective data agreement on the key, which we model with two

Improving the ISO/IEC 11770 Standard for Key Management Techniques 221

1 option "--partner-definition=2";
2

3 usertype KeyingMaterial;
4 usertype String;
5 usertype Integer;
6

7 hashfunction KDF;
8 const N1,N2,N3: Integer;
9

10 macro key = KDF(F);
11 macro sid = (A,B,key);
12

13 protocol 2-12-withOptional(A,B,P)
14 {
15 role A
16 {
17 fresh TNA,TNA2: Nonce;
18 fresh F: KeyingMaterial;
19 fresh Text1,Text4: String;
20 var Text2,Text5: String;
21 var T: Ticket;
22 var TNB: Nonce;
23

24 claim(A,SID,sid);
25 claim(A,Running,B,key);
26 send_1(A,P,{N1,TNA,B,F,Text1}k(A,P));
27 recv_2(P,A,{N2,TNA,B,Text2}k(A,P),T);
28 send_3(A,B,T,{TNA2,B,Text4}key);
29 recv_4(B,A,{TNB,A,Text5}key);
30

31 claim(A,SKR,key);
32 claim(A,Commit,B,key);
33 claim(A,Alive,B);
34 }

35 role B
36 {
37 var TNP,TNA2: Nonce;
38 var F: KeyingMaterial;
39 var Text3,Text4: String;
40 fresh TNB: Nonce;
41 fresh Text5: String;
42

43 recv_3(A,B,{N3,TNP,F,A,Text3}k(B,P),
44 {TNA2,B,Text4}key);
45 claim(B,SID,sid);
46 claim(B,Running,A,key);
47 send_4(B,A,{TNB,A,Text5}key);
48

49 claim(B,SKR,key);
50 claim(B,Commit,A,key);
51 claim(B,Alive,A);
52 }
53 role P
54 {
55 var TNA: Nonce;
56 var F: KeyingMaterial;
57 var Text1: String;
58 fresh Text2: String;
59 fresh TNP: Nonce;
60 fresh Text3: String;
61

62 claim(P,SID,P);
63 recv_1(A,P,{N1,TNA,B,F,Text1}k(A,P));
64 send_2(P,A,{N2,TNA,B,Text2}k(A,P),
65 {N3,TNP,F,A,Text3}k(B,P));
66 }
67 }

Fig. 3. Scyther input file for 2-12 with confirmation messages and claimed properties

claims: a Running claim in the A role and a Commit claim in the B role. If the
Commit claim is executed, we require that the corresponding Running claim is
executed as well: it must have the entities in reverse order, and the same contents
(the entities are said to agree on the contents). It is called non-injective data
agreement because replays are not considered.

Entity Authentication. Entity authentication from A to B corresponds
to aliveness [22]: an Alive claim of A is placed in the specification of role B.
Whenever the claim is executed, the entity assumed to be performing the A role
is required to have executed some event.

Forward Secrecy. There are several definitions of forward secrecy in the lit-
erature, and it is not clear from the standard which property is intended. The
mutual forward secrecy (MFS) notion from the standard seems to be closest to
two common formal definitions. Weak Perfect Forward Secrecy (wPFS) [12, 20]
requires that the adversary does not actively inject messages (and thus is pas-
sive) with respect to the session that he attacks. In contrast, (strong) Perfect
Forward Secrecy (PFS) allows the adversary to actively interfere with the mes-
sages received by the session under attack. Scyther directly supports checking for
both properties through its support of the LKRaftercorrect and LKRafter rules [2].

222 C. Cremers and M. Horvat

Our analysis revealed that the majority of protocols for which MFS is claimed
in fact only achieve wPFS, and we therefore interpret MFS as wPFS.

Key Compromise Impersonation (KCI). Resilience to KCI attacks is
a desirable property of key exchange protocols [6]. KCI attacks are attacks in
which the adversary exploits his knowledge of the long-term private key of Alice
to impersonate any entity in subsequent communication with Alice.

This property is modelled in Scyther by a session key secrecy claim of an entity
whose long-term private keys the adversary is allowed to reveal. These attacks
can be seen as a broader class than unilateral forward secrecy attacks because
KCI attacks allow for dynamic usage of the compromised keys: the adversary
can use them during protocol execution to inject messages or otherwise tamper
with the communication.

Unknown Key Share (UKS). Unknown key share attacks are attacks in
which only Alice and Bob know the session key K; however, Alice and Bob
disagree on who they share K with [7]. For example, Alice correctly thinks K
is shared with Bob, but Bob might think that K is shared with Charlie. Even
though the adversary does not learn the key in such attacks, using the key
is not sufficient to authenticate subsequent messages: if Alice sends a message
encrypted with K or accompanied by a MAC keyed by K, Bob will assume that
the message came from Charlie. Similarly, Bob will send messages intended for
Charlie that will be received by Alice.

We model UKS attacks in the standard way, i.e., if the assumptions on the
partner identities of the attacked session s do not match the assumptions of a
session s′, we allow the adversary to reveal the session key of s′. This causes
UKS attacks to manifest as violations of secrecy of the session key computed by
s. Note that false positives can also occur, where the revealed session key is used
for more than computing the session key of s′, e.g., for injecting messages.

We specify session identifiers (SIDs) manually in Scyther input files by in-
cluding option "--partner-definition=2" and annotating each role with SID

claims, in which the SID is specified for the role instance. For example, in Figure
3 we enable the manual specification of a partner session on line 1, define the
session identifier on line 11 and insert it into role specifications on lines 24 and
45. When session key secrecy is analysed for a session s, and Scyther’s SKR
adversary rule (Session-Key Reveal) is enabled in the GUI or --SKR=1 is pro-
vided as a command-line option, the adversary is able to obtain the session keys
computed by any session whose identifier differs from that of s.

4 Results of the Formal Analysis

We analyse the protocol models described in the previous section with respect
to their claimed properties, and afterwards consider KCI and UKS attacks.

4.1 Claimed Properties

We give an overview of our results when analysing the protocols with respect to
their claimed properties in Table 1. The contents of this table are directly taken

Improving the ISO/IEC 11770 Standard for Key Management Techniques 223

from the tables in [18,19], with the difference that we added notes and used red
and bold to mark incorrect statements. We classify the incorrect claims in the
standard into five categories AT1. . .AT5, which we describe below.

Note that the table in [18] only has an (explicit) key authentication column
with “yes” or “no” in the cells, but this information has to be combined with
NOTE 2 [18], which states that all protocols in part 2 achieve implicit key
authentication, and that “yes” should be interpreted as explicit key confirmation.

AT1: Entity Authentication Failures for 2-8, 2-9, 2-12, and 2-13. We
find several possible entity authentication failures for protocols in part 2 that
are derived from protocols in an earlier version of the ISO/IEC 9798-2 standard
for entity authentication [17].

These attacks are closely related to the attacks on the corresponding protocols
from the 9798 standard as presented in [4]. The attacks work in all implemen-
tations where a single entity can perform not only the role of the trusted third
party but also another role. In the attacks, the adversary can cause A to complete
the protocol, apparently with B, even though B is not present. Thus, the attacks
violate even the weakest form of entity authentication. We show an example of
such an attack on protocol 2-12 in Appendix A.

Fixes for these protocols have been proposed in [4], which have been integrated
into the ISO/IEC 9798 standard. As a result, these attacks no longer work on
ISO/IEC 9798, but since no changes have been made to the derived protocols in
ISO/IEC 11770, similar attacks are still possible on this standard.

AT2: 3-KA-11 Key Authentication/Confirmation Failure for B. Ac-
cording to the standard this mechanism (depicted in Figure 2) offers mutual
explicit key authentication and mutual key confirmation. However, there is an
attack on entity authentication on the B role that violates both of these claimed
properties. In the attack, the adversary performs the A role, pretending to be
Alice, and sends messages to Bob in the B role. Because executing the A role
does not require the use of any long-term secrets, the adversary can simply claim
to be anybody. The entity performing the B role therefore cannot obtain any
authentication guarantees about its communication partner or about the secrecy
of the key.

As said before, 3-KA-11 is derived from the unilaterally authenticated RSA
mode of the TLS handshake [14]. In this mode of TLS, the server obtains no
guarantee about whether the client is who he claims to be or not. The same issue
occurs here for the B role of 3-KA-11.

AT3: Failure of MFS for 3-KA-11. Because protocol 3-KA-11 is derived
from the RSA mode of TLS, it provides no forward secrecy. The adversary only
needs to observe a regular session. If he afterwards obtains the long-term private
key of B, he can decrypt eB(r

′
A) and learn r′A. Since rA and rB have been sent

in plaintext, the adversary now has all the ingredients he needs to recompute
the key K.

AT4: Failure of key authentication for 2-11. Depending on the imple-
mentation, it may be possible for an agent to misinterpret an agent identity

224 C. Cremers and M. Horvat

Table 1. Claimed properties Security properties claimed for the protocols in parts
2 and 3 of the standard. Our analysis revealed that some claims are incorrect, and we
mark them using bold and red.

Mechanism Key Key Entity
in part 2 Authentication Confirmation Authentication

2-1 implicit no no

2-2 implicit no no

2-3 explicit no A

2-4 explicit no A

2-5 explicit no A & B

2-6 explicit no A & B

2-7 implicit no no

2-8 explicit (AT1) opt. (AT1) opt. (AT1)
2-9 explicit (AT1) opt. (AT1) opt. (AT1)

2-10 explicit no no

2-11 explicit (AT4) no no

2-12 explicit (AT1) opt. (AT1) opt. (AT1)

2-13 explicit (AT1) opt. (AT1) opt. (AT1)

Mechanism Implicit Key Key Entity Forward
in part 3 Authentication Confirmation Authentication Secrecy

3-KA-1 A,B no no no

3-KA-2 B no no A

3-KA-3 A,B B A A

3-KA-4 no no no MFS

3-KA-5 A,B opt no A,B

3-KA-6 A,B opt B B

3-KA-7 A,B A,B A,B MFS

3-KA-8 A,B no no A

3-KA-9 A,B no no MFS

3-KA-10 A,B A,B A,B MFS

3-KA-11 A,B (AT2) A,B (AT2) B MFS (AT3)

3-KT-1 B no no A

3-KT-2 B B A A

3-KT-3 B B A A

3-KT-4 A A B B

3-KT-5 A,B (A),B A,B no

3-KT-6 A,B A,B (AT5) A,B no

Improving the ISO/IEC 11770 Standard for Key Management Techniques 225

as (random) keying material, for example if both are the same bit length. If
an implementation of 2-11 cannot tell the difference between these, it can be
vulnerable to a type-flaw attack on key authentication.

The 2-11 protocol assumes pre-shared symmetric keys and a trusted third
party P. In a regular execution of the protocol, A sends a request to P for a
ticket to forward to B. The request is a triplet (IB, F,Text1) encrypted with the
key shared between A and P. P then returns a triplet (F, IA,Text2) encrypted
with the key shared between B and P, which A forwards to B.

The adversary Charlie can attack a session of Bob which assumes to be
talking to Alice, even though Alice and Bob are not compromised. Charlie
encrypts a message for the trusted third party Pete, requesting a key for Al-
ice. However, instead of generating new keying material F , Charlie instead in-
cludes Bob’s identity in the keying material field. Pete’s response therefore is
the triplet (IAlice, ICharlie,Text2) encrypted with KPete,Bob. Charlie re-sends this
message to Pete. There is nothing in the standard that prevents Pete from ac-
cepting this message as a valid request. Now, Pete responds with the triplet
(ICharlie, IAlice,Text2) encrypted with KBob,Pete. Upon receiving this message,
Bob will assume that it is a valid message and that ICharlie is secure keying ma-
terial for communicating with Alice. The adversary can now compute the session
key that Bob computes.

MSCs of the protocol and the attack are provided in the appendix.

AT5: Failure of Key Confirmation for 3-KT-6. There is a complex attack
possible on some implementations of 3-KT-6 that meet three conditions. The
3-KT-6 protocol is a three-pass protocol that transfers two secret keys. After
the exchange, a session key can be computed from either or both of these keys.
We give the full attack description and the preconditions in the appendix.

4.2 Key Compromise Impersonation (KCI) Results

All of the protocols in part 2 use symmetric cryptography and hashing only.
Hence, they are necessarily vulnerable to KCI attacks, which is implied by the
impossibility result from [3]. All the key transport and public key transport
protocols from part 3 are KCI resilient.

The automatic analysis shows that four of the eleven key agreement protocols
in part 3 are vulnerable to KCI attacks: 3-KA-1, 3-KA-3, 3-KA-6, and 3-KA-
8. Mechanisms 3-KA-1 and 3-KA-3 are variants of the unsigned Diffie-Hellman
protocol. Mechanism 3-KA-1 is the static Diffie-Hellman protocol, so as expected
the session key is not secret when one of the static keys is known to the adversary.
Similarly, 3-KA-3 is a one-pass Diffie-Hellman variant where A’s ephemeral and
B’s static half keys are used: if the adversary gets B’s static private key, he can
use A’s half key to infer the session key. In 3-KA-6, the fact that the input to
the key derivation function is only protected by the private key of B allows an
adversary who knows B’s key to impersonate A in subsequent communications
that are only protected with the established session key.

226 C. Cremers and M. Horvat

3-KA-8 is derived from one-pass MQV, and is described in Appendix C. The
adversary can construct a message with his own injected randomness, send it to
B, and use B’s key to infer the session key.

Note that all (unilateral) forward secrecy attacks can be considered to be KCI
attacks with late occurrences of long-term key compromise. The converse does
not hold: forward secrecy does not imply KCI resilience in general, because KCI
attacks may require knowledge of the long-term keys before the attacked session
ends. In this specific set of protocols, no KCI attacks require early knowledge of
the relevant long-term keys, because the long-term keys are only needed for ses-
sion key computation. Hence, the protocols in the standard that satisfy forward
secrecy are also KCI resilient.

Therefore, in order to obtain KCI resilience guarantees while preserving the
required properties, we turn to the Forward Secrecy column in Table 1. We
replace each protocol vulnerable to KCI attacks with one that achieves all the
already satisfied security guarantees, plus forward secrecy with respect to both
entities:

– 3-KA-1 can be replaced by 3-KA-5 (optionally, key confirmation can be
enabled),

– 3-KA-3 and 3-KA-6 can be replaced by 3-KA-7 (if entity authentication is
required) or 3-KA-5 (otherwise), and

– 3-KA-8 can be replaced by 3-KA-9.

4.3 Unknown Key Share (UKS) Results

We used Scyther to analyse all protocols for which key authentication was
claimed for UKS attacks. We found that two protocols are vulnerable to UKS for
any implementation, and that some implementations of several other protocols
are vulnerable to UKS attacks.

We first explain the unknown key share attack on the 3-KA-11 protocol in
detail. A graphical representation is given in Figure 4. In the attack, the ad-
versary does not modify the content of any messages, but only changes the
implicit sender/recipient fields. When Alice executes role A with intended part-
ner Bob, she sends out her first message. The adversary modifies the sender field
to “Charlie” and forwards the message to Bob. Bob assumes Charlie wants to
communicate with him and starts to execute the B role, and sends the response
message to Charlie. The adversary redirects this message to Alice. The proto-
col continues as usual except that the adversary continues to modify the sender
fields and redirecting the responses. There is nothing in the messages that allows
the entities to check each other’s beliefs about the communication partner. In
the end, Alice and Bob compute the same key K. Although the adversary does
not know this key, Bob will believe that any subsequent messages he receives,
which are encrypted or authenticated using K, are coming from Charlie, where
in fact they come from Alice, leading to a serious authentication flaw [8, p. 139].

Although 3-KA-11 is derived from the TLS protocol, the TLS protocol is not
vulnerable to unknown key share attacks. The reason for this is that the TLS

Improving the ISO/IEC 11770 Standard for Key Management Techniques 227

role A
executed by Alice
assumes Bob in role B
SID=(A,B,K)

Adversary only modifies sender
and recipient fields (redirect)

role B
executed by Bob
assumes Charlie in role A
SID=(C,B,K)

rA,Text1 rA,Text1

rB,CertBob,Text2rB,CertBob,Text2

K = KDF (rA, rB , r
′
A)

eBob(r
′
A),MACK(rA,Text1, eBob(r

′
A)) eBob(r

′
A),MACK(rA,Text1, eBob(r

′
A))

K = KDF (rA, rB , r
′
A)

MACK(rB ,CertBob,Text2)MACK(rB ,CertBob,Text2)

session key K session key K

Fig. 4. Unknown key share attack on protocol 3-KA-11. Alice shares a key K with Bob
as she expects, but Bob mistakenly assumes he is sharing K with Charlie.

protocol performs confirmation on all previously received messages, which in
TLS contain the identities of the sender and recipient. This confirmation will
fail if the parties have different views on their communication partners. In some
sense, 3-KA-11 can be regarded as a stripped down version of the unilateral
TLS-RSA handshake where security-relevant information (the identities of the
participants) has been removed.

The second UKS attack is possible on the 2-10 protocol, which suffers from a
role-mixup attack in which Alice and Bob both perform the A role and compute
the same session key. This can lead to reflection attacks and misinterpretation
attacks when the session key is later used to encrypt payloads. In implementa-
tions in which entities can perform multiple roles, protocols 2-2, 2-8, 2-9, 2-11,
and 2-12 are also vulnerable to UKS attacks.

Fortunately, UKS attacks can be prevented by choosing a key derivation func-
tion that includes the identifiers (IA and IB) of the involved entities [7, 8]. For
example, this is required by the NIST SP-800-56A key derivation [1], which is
included in part 3 of the standard. We modelled the use of this KDF and used
automated analysis to confirm that this prevents the UKS attacks. Intuitively,
including the identities in the KDF ensures that entities that have different be-
liefs about their intended peers compute different keys, which prevents UKS
attacks.

5 Recommendations

We provide three recommendations to improve the ISO/IEC 11770 standard.

228 C. Cremers and M. Horvat

1. Improving Protocols to Achieve the Stated Properties. Our first
recommendation is to make small changes to the protocols to achieve their prop-
erties, if possible. The most straightforward way is to adopt the recommendations
made for ISO/IEC 9798 in [4, p. 14]. In particular, we require that

– no cryptographic data must be interchangeable, which can be enforced by
including unique tags,

– when optional fields are not used, then they must be set to empty, and
– entities that perform the role of the TTP in the 2-8, 2-9, 2-12 and 2-13

protocols must not perform the A or B role.

Following these recommendations addresses all problems in Table 1 except for
the problems of protocol 3-KA-11.

2. Using Appropriate Key Derivation Functions. Our second recommen-
dation improves the security of the standard by preventing unknown key share
attacks. If the input to the key derivation function includes the identities of
the communicating parties, UKS is directly prevented. We therefore recommend
making this an explicit requirement. For example, the key derivation function
from NIST SP-800-56A [1], which is described in the standard, meets this re-
quirement.

3. Addressing Remaining Issues with 3-KA-11. 3-KA-11 inherently does
not offer perfect forward secrecy or mutual authentication. Switching to a pro-
tocol that does, such as mutually authenticated TLS-DHE RSA, substantially
changes the environmental assumptions, including the pre-distribution of keys.

A simpler solution is to adapt the statements made about the protocol. In
particular, it should not be claimed in the overview table [19, p. 42] that 3-KA-
11 achieves implicit key authentication for both entities, that it achieves key
confirmation for both entities, or that it achieves MFS. Similarly, the running
text [19, p. 26] should not claim that 3-KA-11 achieves mutual explicit key
authentication.

6 Related Work

In 1998, Horng and Hsu presented an attack on an early version of the 3-KT-6
protocol [16]. Their attack violated key confirmation and showed that the pro-
tocol did not offer any strong mutual authentication. In the same year, Mitchell
and Yeun proposed a fix [24] that was later introduced in the standard. It es-
sentially involves adding more identifiers to the messages, similar to Lowe’s fix
of the Needham-Schroeder protocol.

In 2004, Cheng and Comley presented two attacks on a previous version of
the 2-12 protocol [10]. Their first attack is a replay attack. The second attack is
a type flaw attack based on the possibility of interpreting an identity field as a
fresh key. Cheng and Comley presented a fixed version of the protocol. Initially,
protocol 2-12 was withdrawn from the standard, and it was later updated in
2008 with a new version that does not suffer from these attacks.

Improving the ISO/IEC 11770 Standard for Key Management Techniques 229

Mathuria and Sriram used Scyther to discover in 2008 [23] more complex
type-flaw attacks on protocol 2-13 and on Cheng’s and Comley’s proposed fixed
protocol. The attacks rely on the possibility that complex fields (concatenations,
encryptions) can be interpreted as atomic fields (random values, keys, identities)
in some implementations.

In 2010, Chen and Mitchell [9] generalised some of the concepts occurring in
this class of type-flaw attacks and presented countermeasures, some of which
found their way into later versions of ISO standards.

7 Conclusions

In retrospect, though we found all attacks through automatic analysis, it is
clear that some attacks should have been found by manual inspection. This
holds especially for 3-KA-11, which is based on TLS’s unilaterally authenticated
RSA handshake: it is clear that this protocol cannot offer key authentication or
confirmation for both parties, since only one party is authenticated.

One way in which standardisation bodies could be more proactive is by being
aware of analysis of standards on which they build. For example, many protocols
in ISO/IEC 11770 are mentioned to be derived from authentication protocols
in ISO/IEC 9798. In 2012, the ISO/IEC 9798 standard was analysed, several
problems were identified [4], and it was subsequently updated to fix the identified
problems. However, it seems that no attempt was made to determine if the
derived protocols inherited these problems. Our analysis shows that this was in
fact the case, implying that the attacks on protocols from part 2 could have
been identified earlier. Our analysis shows that applying the recommendations
for ISO/IEC 9798 as described in [4] to ISO/IEC 11770 would have prevented
all issues in Table 1, except for those on 3-KA-11.

The standard currently does not claim resilience to UKS or KCI attacks.
One could consider identifying those protocols that achieve these properties or
improve the others. For example, all UKS attacks that we found can easily be
prevented, at negligible cost, by using key derivation functions that include the
identities of the participants. We therefore recommend including the identities
in the input to the KDF.

Compared to other security protocol standards, ISO standards have been
less analysed in the academic literature. A possible reason for this difference is
that people who are not members of the working groups can only access the
standards by purchasing the final versions. One possible way to promote the
external analysis of ISO standards is to publish early drafts of proposed changes
or new standards. Parties that are interested in applying the standards will still
need to purchase the final versions to ensure they comply. However, interested
parties can freely analyse the designs from the early drafts, which may help
identify and prevent problems before the standards are deployed.

Acknowledgements. This work builds on, and extends abstract protocol
models originally developed for an earlier analysis of ISO/IEC 11770 by
Lara Schmid [25].

230 C. Cremers and M. Horvat

References

1. Barker, E., Johnson, D., Smid, M.: NIST SP 800-56: Recommendation for pair-wise
key establishment schemes using discrete logarithm cryptography (revised) (2007)

2. Basin, D., Cremers, C.: Modeling and analyzing security in the presence of compro-
mising adversaries. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 340–356. Springer, Heidelberg (2010)

3. Basin, D., Cremers, C., Horvat, M.: Actor key compromise: Consequences and
countermeasures. In: Proc. of the 27th IEEE Computer Security Foundations Sym-
posium (CSF) (to appear, 2014)

4. Basin, D., Cremers, C., Meier, S.: Provably repairing the ISO/IEC 9798 standard
for entity authentication. Journal of Computer Security 21(6), 817–846 (2013)

5. Basin, D., Cremers, C., Miyazaki, K., Radomirovic, S., Watanabe, D.: Improving
the security of cryptographic protocol standards. IEEE Security & Privacy (2014)

6. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

7. Blake-Wilson, S., Menezes, A.: Unknown Key-Share Attacks on the Station-to-
Station (STS) Protocol (1999)

8. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. In-
formation Security and Cryptography. Springer (2003)

9. Chen, L., Mitchell, C.J.: Parsing ambiguities in authentication and key establish-
ment protocols. Int. J. Electron. Secur. Digit. Forensics 3(1), 82–94 (2010)

10. Cheng, Z., Comley, R.: Attacks on an ISO/IEC 11770-2 key establishment protocol.
I. J. Network Security 3(3), 290–295 (2006)

11. Cremers, C.J.F.: The Scyther Tool: Verification, falsification, and analysis of se-
curity protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
414–418. Springer, Heidelberg (2008), Available for download at
http://www.cs.ox.ac.uk/people/cas.cremers/scyther/index.html

12. Cremers, C., Feltz, M.: Beyond eCK: Perfect forward secrecy under actor compro-
mise and ephemeral-key reveal. Designs, Codes and Cryptography, 1–36 (2013)

13. Cremers, C., Mauw, S.: Operational Semantics and Verification of Security Proto-
cols. Information Security and Cryptography. Springer (2012)

14. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.2.
IETF RFC 5246 (August 2008)

15. European Payments Council. Guidelines on algorithms usage and key management.
Technical report, EPC342-08 Version 1.1 (2009)

16. Horng, G., Hsu, C.-K.: Weakness in the Helsinki protocol. Electronics Letters 34,
354–355(1) (1998)

17. International Organization for Standardization, Genève, Switzerland. ISO/IEC
9798-2:2008, Information technology – Security techniques – Entity Authentica-
tion – Part 2: Mechanisms using symmetric encipherment algorithms, 3rd edn.
(2008)

18. International Organization for Standardization, Genève, Switzerland. ISO/IEC
11770-2:2008, Information technology – Security techniques – Key Management
– Part 2: Mechanisms using Symmetric Techniques, 2009. Incorporating corrigen-
dum (September 2009)

19. International Organization for Standardization, Genève, Switzerland. ISO/IEC
11770-3:2008, Information technology – Security techniques – Key Management
– Part 3: Mechanisms using Asymmetric Techniques, Incorporating corrigendum
(September 2009)

http://www.cs.ox.ac.uk/people/cas.cremers/scyther/index.html

Improving the ISO/IEC 11770 Standard for Key Management Techniques 231

20. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. Cryp-
tology ePrint Archive, Report 2005/176 (2005), http://eprint.iacr.org/ (re-
trieved on June 1, 2014)

21. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography 28, 119–134 (2003)

22. Lowe, G.: A hierarchy of authentication specifications. In: Proc. 10th IEEE Com-
puter Security Foundations Workshop (CSFW), pp. 31–44. IEEE (1997)

23. Mathuria, A., Sriram, G.: New attacks on ISO key establishment protocols. IACR
Cryptology ePrint Archive, 2008:336 (2008)

24. Mitchell, C.J., Yeun, C.Y.: Fixing a problem in the Helsinki protocol. SIGOPS
Oper. Syst. Rev. 32(4), 21–24 (1998)

25. Schmid, L.: Improving the ISO/IEC 11770 standard, Bachelor’s thesis, ETH
Zurich, Switzerland (2013)

A Attack on Protocol 2-12

The attack on entity authentication claimed for protocol 2-12 is depicted in
Figure 5. It depends on the fact that the entity running role A does not check
the contents of the message encrypted for entities running roles B and P . In fact,
normally such a check is impossible because all three roles are run by different
entities. Seeing the payload of that particular message would be the only way for
Pete to detect that something is wrong: he could see that the message contains
IAlice where IPete should be. Pete then gladly confirms the session key to Bob
in role B, who falsely thinks that Alice just confirmed it.

B AT5: 3-KT-6 Attack

There are three preconditions for the attack, which will not be met by most
implementations. However, there is nothing in the standard that ensures that
they are not met.

The first precondition is that the implementation must not implement any
of the optional text fields except for Text1. Second, nonces must be acceptable
values for the Text1 field. Third, entities must be able to perform both the A
and the B role of the protocol, which occurs in many implementations.

If an implementation meets these conditions, the adversary can attack an
instance of the A role by exploiting three instances of the B role. We give a
graphical representation in Figure 7 in the appendix. The adversary redirects
each sent message into the first receive of a new instance of the B role, and
swapping the entity assumptions for the next B instance. This is possible since
entities can perform multiple roles, and enabled by the fact that the nonces in
messages sent by instances of the B role can be accepted into the Text1 field.
After three instances of the B role, the final message is then rerouted back to the
final receive of the A role. Consequently, there is no instance of B that agrees
with the A instance on both of the private keys. Thus, when the session key is
computed from both these keys, key confirmation fails for the A instance.

http://eprint.iacr.org/

232 C. Cremers and M. Horvat

role P
executed by Pete
assumes Alice in role A
assumes Bob in role B

role A
executed by Pete
assumes Bob in role B
assumes Alice in role P

eKPete,Alice
(1, TA/NA, IBob, F,Text1)

eKAlice,Pete
(2, TA/NA, IBob,Text2),

eKBob,Pete
(3, TP /NP , F, IAlice,Text3)

role B
executed by Bob
assumes Alice in role A
assumes Pete in role P

eKBob,Pete
(3, TP /NP , F, IAlice,Text3)

eK(T ′
A/N

′
A, IBob,Text4)

alive(Alice)

eK(TB/NB, IAlice,Text5)

Fig. 5. Entity authentication attack on protocol 2-12 with optional fields

C Key Agreement Mechanism 8 (3-KA-8)

We next give an example from part 3 of the standard, referred to as Key Agree-
ment Mechanism 8. This one-pass mechanism is derived from the one-pass vari-
ant of the MQV protocol [21]. It uses an elliptic curve agreed upon by entities
A and B to establish a shared secret key. As shown in Figure 10, A generates
an ephemeral secret and uses it to transmit to B a public value, modelled as a
point on the elliptic curve. B then computes a fresh session key with his static
private key and the public values of A (similarly, A uses her secrets and B’s
public values).

Improving the ISO/IEC 11770 Standard for Key Management Techniques 233

A B

eB(IA,KA, rA,Text1)

K = KDF (KA,KB)

eA(IB ,KB, rA, rB),

K = KDF (KA,KB)

rB

Fig. 6. Protocol 3-KT-6 combined key variant

role A
executed by Alice
assumes Bob in role B

role B
executed by Bob
assumes Alice in role A

role B
executed by Alice
assumes Bob in role A

eBob(IAlice,KA, rA,Text1)

Running(Bob,Alice,KDF (KA,KB))

eAlice(IBob,KB, rA, rB)

role B
executed by Bob
assumes Alice in role A Running(Alice, Bob,KDF (KB,K

′
B))

eBob(IAlice,K
′
B, rA, r

′
B)

Running(Bob,Alice,KDF (K ′
B,K

′′
B))

eAlice(IBob,K
′′
B, rA, r

′′
B)

Commit(Alice, Bob,KDF (KA,K
′′
B))

r′′B

Fig. 7. 3-KT-6 combined key variant key confirmation attack

234 C. Cremers and M. Horvat

P A B

eKAP (IB , F,Text1)

eKBP (F, IA,Text2) eKBP (F, IA,Text2)

Fig. 8. Protocol 2-11

role P
executed by Pete
assumes Charlie in role A
assumes Alice in role B

Adversary Charlie
knows KCharlie,Pete

eKCharlie,Pete
(IAlice, IBob,Text1)

role P
executed by Pete
assumes Alice in role A
assumes Bob in role B

role B
executed by Bob
assumes Alice in role A
assumes Pete in role P

eKAlice,Pete
(IBob, ICharlie,Text2) eKBob,Pete

(ICharlie, IAlice,Text
′
2)

secret(KDF (ICharlie))

Fig. 9. Protocol 2-11 key authentication attack

A B

rAG

K = (hB + π(PB)hB)(rAG+ π(rAG)PA)

secret(K)

Fig. 10. Protocol 3-KA-8

Improving the ISO/IEC 11770 Standard for Key Management Techniques 235

Formally, let H be an elliptic curve over a finite field Fq and G ∈ H of prime
order n. The parameters H , q, G and n are known to both entities. It is assumed
that each entity X has a private key hX ∈ Z∗

n, a public key PX = hXG, and an
authenticated copy of the other entity’s public key. For the function π defined

for every point P on H by π(P) = (Px mod 2�
ρ
2�) + 2�

ρ
2�, where Px is the x-

coordinate of P and ρ = �log2n�, the protocol is executed as follows: A randomly
generates rA in Z∗

n, computes rAG and sends it to B. B computes the shared
key as K = (hB + π(PB)hB)(rAG+ π(rAG)PA).

Computationally Analyzing the ISO 9798–2.4

Authentication Protocol

Britta Hale and Colin Boyd

Norwegian University of Science and Technology (NTNU), Trondheim, Norway
{britta.hale,colin.boyd}@item.ntnu.no

Abstract. We provide a computational analysis of the ISO 9798–2.4
mutual authentication standard protocol in the model of Bellare and
Rogaway. In contrast to typical analyses of standardized protocols, we
include the optional data fields specified in the standard by applying the
framework of Rogaway and Stegers. To our knowledge this is the first ap-
plication of the Rogaway–Stegers technique in a standardized protocol.
As well as a precise definition of the computational security properties
achieved by the protocol, our analysis supplies concrete security require-
ments for the cryptographic primitive applied, which are absent from the
protocol standard. We show that a message authentication code can be
used to replace the encryption primitive if desired and that if authenti-
cated encryption is applied it must be strongly unforgeable.

Keywords: ISO 9798, Bellare–Rogaway model, real-world protocol
analysis.

1 Introduction

Because it is widely agreed that authentication protocols are difficult to design
correctly, standardized authentication protocols are very useful for practitioners.
Today, there are many such protocols available from a variety of different stan-
dards bodies; some of these, such as the well known TLS and SSH protocols, are
widely deployed. Among its 9798 series of standards, the ISO have standardized
a suite of authentication protocols. Like most standardized authentication pro-
tocols, the 9798 protocols are not defined in a fully formal way. Effectively, this
can lead to a number of undesirable consequences, such as difficulty in estab-
lishing exactly what properties the protocols aim to achieve, doubts regarding
whether the achieved aims are actually achieved, and uncertainty about how to
correctly implement the protocols securely.

Recognizing the value of a formal analysis, Basin et al. [2] analyzed protocols
in the ISO 9798–2 standard and found a number of potential weaknesses leading
to a revision of the standard. However, such a symbolic analysis omits considera-
tion of the specific cryptographic primitives used, instead assuming an idealized
encryption function. Accordingly, implementors cannot be sure whether any cho-
sen cryptographic primitive will satisfy the requirements for security. One of the

L. Chen and C. Mitchell (Eds.): SSR 2014, LNCS 8893, pp. 236–255, 2014.
c© Springer International Publishing Switzerland 2014

Computationally Analyzing the ISO 9798–2.4 Authentication Protocol 237

motivations for our work is to provide computational proofs for one of the 9798–2
protocols which have so far been lacking.

In this paper we focus on the ISO 9798–2.4 protocol (9798–2, section 6.2.2
Mechanism 4 of the standard). This protocol is particularly interesting because
it aims at an advanced level of authentication while at the same time has the
potential to fit in the Bellare–Rogaway ’93 model. First, it is a mutual authen-
tication protocol, as opposed to a unilateral one. Second, unlike some other ISO
9798 protocols, it does not rely upon a time-stamps for freshness – instead using
nonces. Finally, it does not require that confidence be placed in a third party
(TTP), whereas several of the other ISO 9798 protocols do. Hence, the ISO
9798–2.4 standard is more suited than other 9798 protocols to modeling in this
manner. ISO 9798–2.4 is presented in §2.

Choice of cryptographic primitives. ISO 9798–2.4 protocol makes use
of an encipherment algorithm with a shared symmetric encipherment key. Per
the standard, the encipherment algorithm used is required to be able to detect
“forged or manipulated data” and authenticated encryption is recommended
for its implementation. However, any formal definition or technical description
of such properties is missing from the standard. We observe that in order to
achieve entity authentication there is no requirement to use encryption at all.
Therefore, so as to obtain security under maximal efficiency, we will show in
our analysis that a message authentication code (MAC) algorithm can be safely
implemented in place of the protocol’s encipherment function. Using a MAC is
arguably an improvement on the standardized protocol recommendation since
it will generally result in a more efficient protocol than when applying authenti-
cated encryption. Simultaneously, we recognize that, strictly speaking, such an
improved protocol no longer conforms to the standard definition. Therefore we
later show that authenticated encryption, in a formally defined sense, can also
provide the required properties by a simple reduction in which we only use the
authentication properties of the authenticated encryption algorithm.

Optional text fields. Like most of the protocols in the ISO 9798–2 stan-
dard, the ISO 9798–2.4 protocol includes optional text fields which can be chosen
in any way desired by the protocol implementor. Potentially, this flexibility is a
very useful feature since it allows users to include data which is authenticated by
the protocol as an additional service to obtaining entity authentication. However,
computational models for protocol analysis do not usually allow such flexibility
in the protocols which they analyze. In fact, any change to the analyzed protocol
can potentially introduce weaknesses and any security proof will become invalid.
In 2009, Rogaway and Stegers [13] introduced the notion of a partially specified
protocol in order to deal with exactly this problem. Concisely, their model allows
the adversary to actively choose the extra data, but the adversary only wins if
it changes the data while the parties still accept at the end of the protocol. We
apply this technique to the ISO 9798–2.4 protocol to obtain a computational
proof of security no matter how the free text is chosen. Rogaway and Stegers il-
lustrated their technique with an academic protocol – as far as we are aware ours
is the first example of application of the technique in a standardized protocol.

238 B. Hale and C. Boyd

Contributions. We regard the following as the main contributions of this paper:

– a computational proof for the ISO 9798–2.4 protocol;
– the first application of the Rogaway–Stegers framework to a standardized

protocol;
– concrete advice on appropriate primitives to ensure that the ISO 9798–2.4

protocol is provably secure.

Outline. The rest of this paper is structured as follows. In the next section we
explain informally the ISO 9798–2.4 protocol, using the language employed in
the standard. Section 3 describes the formal Bellare–Rogaway model used in this
paper. Section 4 presents the analysis of ISO 9798–4.2 in the BR model on the
assumption that the primitive used is a MAC rather than an authenticated en-
cryption algorithm. Extending this analysis, Section 5 includes consideration of
associated data into the security assessment by applying the framework of Rog-
away and Stegers. In Section 6 we show that our security results will hold when
using authenticated encryption, as informally stated in the standard, instead of
a MAC.

2 ISO 9798–2.4

Notationally, let Text i be an optional text field, EK an “encipherment function”
between A and B [6, p. 4], dK the corresponding decipherment function, IB
a unique identifier of the initiating party, and Ri a random nonce. In imple-
mentation situations where a reflection attack on the protocol is impossible, the
distinguisher IB is optional [6, p. 7]. Moreover, the symbol || is employed to
denote the concatenation of strings when order is specified (see [7] for further
details on implementation). As presented in the standard, Figure 1 shows ISO
9798–2.4 with two-party three-pass authentication.

B → A : RB||Text1

A → B : Text3||EK(RA||RB||IB ||Text2)

B → A : Text5||EK(RB ||RA||Text4)

Fig. 1. ISO 9798–2 Protocol Mechanism 4 Three Pass Authentication

Per the ISO 9798 standard, EK must have the property that “enables the
recipient . . . to detect forged or manipulated data” [6, p. 4]. Furthermore, it is
recommended that authenticated encryption is used [6, p. 4].

Trade-offs between security and efficiency demand heavy consideration and
it is desirable to find the least computationally costly implementation of EK

Computationally Analyzing the ISO 9798–2.4 Authentication Protocol 239

for which the protocol is secure. The chosen encipherment function will be a
critical factor in the security proof presented in §4. While it is recommended
that authenticated encryption (AE) be used for EK , this may in fact not provide
optimal efficiency.

Predominantly, many popular implementations of authenticated encryption
use a composition of a symmetric encryption scheme and a message authen-
tication code (MAC) [3, p. 3]. Schemes which apply this composition method
have, until recently, precluded the authentication of associated data, such as that
which appears in the fields Text2,Text4 above, and even these non-composition
AE schemes contain some MAC function in computation [11,8,12]. Accordingly,
any AE scheme used on a message m will be no more efficient than a MAC on
the same message. Consequently, we consider EK concretized as a MAC func-
tion. Although this will not preserve confidentiality, just integrity, the scheme is
designed for authentication only and not key exchange. Hence it turns out that
a MAC is sufficient for security.

Of special note for consideration is the unique identifier IB , which is addressed
in the ISO standard by the following remark:

When present, distinguishing identifier IB is included. . . to prevent a so-
called reflection attack. Such an attack is characterized by the fact that
an intruder ’reflects’ the challenge RB to B pretending to be A. The
inclusion of the distinguishing identifier IB is made optional so that, in
environments where such attacks cannot occur, it may be omitted. The
distinguishing identifier IB may also be omitted if unidirectional keys
. . . are used.

Analysis of the protocol in this paper will consider the protocol version which
includes the unique identifier IB. The alternative protocol with IB omitted can
still be proven secure in both the core and Rogaway–Stegers frameworks. Details
of the required adjustments to the proofs can be found in Appendix B.

3 BR Model

In the seminal model introduced by Bellare and Rogaway [4] (henceforth referred
to as the BR model), the security of a mutual authentication scheme is estab-
lished on the session individuality of matching conversations. Basically, oracles
for principals A and B should acquire matching conversations if and only if they
both accept.

3.1 Adversary

In BR model, immense power is allowed to the adversary [4]. He is allowed to
read, modify, replay, and delete messages – he is also allowed to provide his own
messages to corresponding parties. Principals may engage in multiple sessions
at once and the adversary may start up new sessions at his choosing.

Oracle calls allowed to the adversary are as follows:

240 B. Hale and C. Boyd

– Send. Adversarial ability to request any instance Πs
A,B of a principal A

to send a message to an instance of another principal B. In addition to
learning the outgoing message, the adversary also learns whether or not it
was accepted [4, p. 9].

– Corrupt. Adversarial ability to take over any principal A, obtain all of its
private keys, and compute EK under any symmetric key K that belongs to
it.

While the Send query is used in the BR model, it should be noted that the
query Corrupt is not. However, this research will employ a Corrupt query be-
cause it is reasonably within the realm of a real adversary’s capabilities. Actually,
it has become a generally accepted practice to allow this query since BR was
published. Any instance will be considered fresh if neither its nor its partner’s
principal, if the partner exists, have been the subject of a Corrupt query by an
adversary, and the instance has accepted.

Since ISO 9798–2.4 is designed for mutual authentication in a symmetric
setting, there is no need for a (Session) Key Reveal query – the Corrupt

query allows the adversary to access the symmetric key when such a query is
desired.

3.2 Matching Conversations

Below is the definition of matching conversations, per the BR model. In short,
matching conversations will be the requirement for the definition of a secure
mutual authentication scheme in the model being considered for ISO 9798–2.4.
Alternative definitions for determining uniqueness of a session have been applied
in other research since the BR model was introduced, including using unspecified
session identifiers [10]. Still later, more fully specified session identifiers that
capture similar information to that of BR (e.g. [9]) have been utilized. Due to
the simplicity of matching conversations and the natural session-identifier format
that they epitomize, they will be employed in this work to capture partnering
between sessions.

Definition 1. Matching Conversations [4]. Fix a number of moves R = 2ρ− 1
and an R-move protocol Π. Run Π in the presence of an adversary E and
consider two oracles, Πs

i,j and Πt
j,i that engage in conversations K and K ′,

respectively. Let τl be time increments, αl be messages sent by Πs
i,j, and βl be

messages sent by Πt
j,i.

1. Responder oracle has a conversation matching the conversation of an initia-
tor oracle.
K ′ is in a matching conversation with K if there exists τ0 < τ1 < . . . < τR
and α1, β1, . . . , αρ, βρ such that K is prefixed by

< τ0, λ, α1 >,< τ2, β1, α2 >,< τ4, β2, α3 >, . . . , < τ2ρ−4, βρ−2, αρ−1 >,
< τ2ρ−2, βρ−1, αρ >

and K ′ is prefixed by

Computationally Analyzing the ISO 9798–2.4 Authentication Protocol 241

< τ1, α1, β1 >,< τ3, α2, β2 >,< τ5, α3, β3 >, . . . , < τ2ρ−3, αρ−1, βρ−1 >.

2. Initiator oracle has a conversation matching the conversation of a responder
oracle.

K is in a matching conversation with K ′ if there exists τ0 < τ1 < . . . < τR
and α1, β1, . . . , αρ, βρ such that K ′ is prefixed by

< τ1, α1, β1 >,< τ3, α2, β2 >,< τ5, α3, β3 >, . . . , < τ2ρ−3, αρ−1, βρ−1 >,
< τ2ρ−1, αρ, ∗ >,

and K is prefixed by

< τ0, λ, α1 >,< τ2, β1, α2) >,< τ4, β2, α3 >, . . . , < τ2ρ−4, βρ−2, αρ−1 >,
< τ2ρ−2, βρ−1, αρ >.

3.3 Secure Mutual Authentication

Concisely, the BR model prescribes that entities accept if and only if the session
transcripts (conversations) match. This is presented below.

Definition 2. Secure Mutual Authentication [4]. Let No− MatchingE(k) be the
event that there exists an uncorrupted oracle Πs

i,j which accepted and there is no
uncorrupted oracle Πt

j,i which engaged in matching conversation with Πs
i,j. The

protocol Π is a secure mutual authentication protocol if for any polynomial time
adversary E,

1. Matching conversations ⇒ acceptance.

If oracles Πs
i,j and Πt

j,i have matching conversations, then both oracles ac-
cept.

2. Acceptance ⇒ matching conversations.

The probability of No− MatchingE(k) is negligible.

In the BR model, the network is viewed as a ‘benign adversary’ whose actions
are restricted to choosing an initiator oracle Πs

i,j and responder oracle Πt
j,i,

“faithfully conveying each flow from one oracle to the other” [4, p. 10], starting
with the initiator. Such an adversary is deterministic. Thus the adversary has
the power to determine i, j, s, and t, but must use these in any protocol execution
with parameter k. While this is mostly of interest in a key-exchange setting, it is
noted here to highlight strength of the model; i.e. if adversary behaves according
to the protocol, with eavesdropping, it gains no additional advantage.

Pursuant to the definition of matching conversations is the uniqueness of
matching partners. Bellare and Rogaway [4, p. 13] show that the probability of
having multiple matching partners is negligible in this model .

242 B. Hale and C. Boyd

B A
Symmetric key K Symmetric key K
RB ← {0, 1}k RA ← {0, 1}k

RB−−−−−−−−−−−−−→
EK(RA, RB, IB)←−−−−−−−−−−−−
EK(RB , RA)−−−−−−−−−−−−→

Fig. 2. ISO 9798–2.4 Protocol Core

4 Security of ISO 9798–2.4

In the following section, the security of Π will be considered in the case where
EK is implemented as a MAC function, with EK(m) = (m, MAC(m)), for a
message m. Assessment will be performed in the BR model. Additionally, this
proof focuses on the protocol core – the associated data in the ISO 9798–2.4
protocol, Text i, will not be considered until §5. Figure 2 summarizes the core.

Theorem 1. Let Π be the core of the ISO 9798–2.4 protocol implemented with
a strongly unforgeable MAC algorithm1 EK(M) = MACK(M) = (M,T), as in
Definition 4. Let E be a polynomial-time adversary against the mutual authen-
tication scheme, running in time t and asking q queries. Then the advantage of
E can be reduced to the advantage of an adversary against the MAC, running in
time tF ≈ t and asking qF = q queries:

AdvMA
Π (E) ≤ 2p2S ·AdvMAC

Π (F) + q2

2k+1 .

where S is the number of sessions and p is the number of principals.

Proof (Proof with EK implemented as a MAC).
Ideas from this proof follow from other proofs for entity authentication [4,5].

When Definition 2 is satisfied, the proof will be complete.
If the principals possess matching conversations, then they will both accept,

by the protocol definition – hence satisfying the first condition of the definition of
a secure mutual authentication protocol is trivial. Correspondingly, the remain-
der of this proof will target the second case; that acceptance implies matching
conversations.

Adversarial advantage, AdvMA
Π (E), will be defined as the probability that it

can succeed in persuading an oracle to accept without a matching conversation.

1 Strong-unforgeability is required since an adversary’s ability to produce a different,
yet valid, MAC on a protocol message flow would trivially result in principals accept-
ing without matching conversations. Essentially, the tag would still verify correctly
even though each instance held a different conversation transcript.

Computationally Analyzing the ISO 9798–2.4 Authentication Protocol 243

Let NC represent the event that two different instances accept with the same
nonce pair. Then we can derive the following:

AdvMA(E) ≤ Pr[¬ Match.Conv]

≤ Pr[NC] + Pr[¬ Match.Conv |¬ NC]

Let E be an adversary that attempts to inveigle acceptance from an oracle
without that oracle being in matching conversation with a partner oracle. Let q
be a polynomial bound on the number of oracle calls allowed to E.

Nonce Collision

As q calls are allowed to E and nonces are selected independently, the birthday
bound yields

Pr[NC] ≤ q2/2k+1. (1)

Matching Conversations without Nonce Collision

E will succeed with probability equal to the sum of the probability of success
against at least one initiator oracle (i.e. gets an initiator oracle to accept without
any other oracle in matching conversation with it) and the probability of success
against at least one responder oracle (but no initiator oracle). Thus the proof
follows two cases.

Description of F : In the protocol game, E will get an oracle Πs
i,j for a

principal i to accept with non-negligible probability, without the existence of an
oracle Πt

j,i in matching conversation with Πs
i,j . Using this fact, F ’s goal is to

compute a valid MAC for a message m where m has not been queried from the
MAC oracle.

F starts the game and initiates E on input 1k. F selects a pair i, j at random
from the set of all principals {1, . . . , p} as well as a session s ∈R {1, . . . , S}
– thus F is selecting Πs

i,j as its guess for the initiator oracle against which
E will succeed. F has a MAC oracle, per definition 4, that runs on a key K
chosen randomly from {0, 1}k which it will use to calculate the tag for messages
between i and j. For all principals in the set {1, . . . , p} \ {i, j}, F also selects
keys kl for each pair of principals; these keys will be used to calculate MACkl

and MAC.verkl
on message flows between all principals other than i and j.

F answers all of E’s Send and Corrupt queries, according to the protocol.
However, should E ask a Corrupt query on the principals corresponding to
either of the instances i or j, F will give up. If E asks a Send query, for Π l

i,j or
Πm

j,i for any l or m, F will compute the response with its MAC generation oracle
and, if necessary, F checks incoming MACs using its MAC verification oracle

Against Initiator: Suppose that E succeeds against at least one initiator ora-
cle with non-negligible probability of success. From E an adversary F will be
constructed against the MAC.

244 B. Hale and C. Boyd

Note: if E never calls on i to initiate a protocol run, F gives up.
Now suppose that E does call on i to initiate a protocol run. Then at some

time τ0, Π
s
i,j will send out a flow Ri. For some time τ2 > τ0, Π

s
i,j must re-

ceive a flow of the form EK(Rj , Ri, Ii), else F gives up. If F has already received
MACK(Rj , Ri, Ii) from its oracle, then it gives up; else it returns
MACK(Rj , Ri, Ii) =

(
(Rj , Ri, Ii), Tag1

)
as its guess for EK(Rj , Ri, Ii).

Game of F : If we assume that E succeeds on the instance guessed by F ,
then the oracle Πs

i,j accepts. Given also that there are no collisions, F cannot
have previously obtained the flow EK(Rj , Ri, Ii). Therefore F outputs a valid
forgery for EK(Rj , Ri, Ii) (i.e. a valid forgery for the MAC per Definition 4).

Ergo (assuming that E always succeeds against at least one initiator oracle),

AdvMAC
Π (F) ≥ 1

p2S
· Pr[¬ Match.Conv |¬ NC] (2)

Against Responder: Suppose that E succeeds against at least one responder
oracle but no initiator oracle with non-negligible probability of success. Similarly
to the initiator case above, an adversary F of the MAC will be constructed.

Note: if E never calls on j as a responder to a protocol run, or if E succeeds
against some initiator oracle, F gives up.

Now suppose that E does call on j as a responder oracle. Then at some time
τ1, Π

t
j,i must receive a flow Ri and respond with a flow EK(Rj , Ri, Ii). At time

τ3 > τ1, Π
t
j,i must receive a flow EK(Ri, Rj), else F gives up. If F has already

calculated MACK(Ri, Rj), then it gives up; else it computes MACK(Ri, Rj) =(
(Ri, Rj), Tag2

)
and returns this as its guess for EK(Ri, Rj).

Game of F : As above, if we assume that the probability that E succeeds on
the instance guessed by F then the oracle Πt

j,i accepts. Given also that there are
no collisions, F cannot have previously obtained the flow EK(Ri, Rj). Therefore
F outputs a valid forgery for EK(Ri, Rj) (i.e. a valid forgery for the MAC).

Therefore (under the assumption that E always succeeds against at least one
responder oracle but no initiator oracle),

AdvMAC
Π (F) ≥ 1

p2S
· Pr[¬ Match.Conv |¬ NC]. (3)

Combining equations (2) and (3), and taking into account the two mutually
exclusive cases, we have:

AdvMAC
Π (F) ≥ 1

2

(
1

p2S
· Pr[¬ Match.Conv |¬ NC]

)
or

2p2S ·AdvMAC
Π (F) ≥ Pr[¬ Match.Conv |¬ NC]. (4)

Negligible Probability of Success

By equations (1) and (4), the probability that E secures its goal of oracle accep-
tance, while maintaining the absence of another oracle in matching conversation,
is negligible. Particularly,

Computationally Analyzing the ISO 9798–2.4 Authentication Protocol 245

AdvMA(E) ≤ Pr[¬ Match.Conv]

≤ Pr[NC] + Pr[¬ Match.Conv |¬ NC]

≤ q2/2k+1 + 2p2S ·AdvMAC
Π (F).

Moreover, if E runs in time t and asks q queries, then F runs in time tF ≈ t
and asks qF = q queries. Thus, the protocol is secure with EK implemented as a
MAC function, where EK(M) = MAC(M) = (M,T), for a message M .

5 Analysis with Associated Data – RS Model

While the analysis above demonstrates security of the ISO 9798–2.4 protocol
core, it omits an important aspect of the original protocol: optional text fields.
As with most protocols, these fields allow additional data to be sent – sometimes
authenticated – during the mutual authentication process. However, the addition
of this data would nullify the security statement in §4 since the inclusion of
additional fields was not considered.

Rogaway and Stegers [13] introduced a model that addresses this issue by
splitting the protocol into two parts: the partially specified protocol core (PSP)
and the protocol details (PD). In essence, the protocol details selects the optional
text fields to be added. Yet, since there is no restriction on the data that is
sent in these fields, it is necessary to maintain the perspective that data choice
could weaken the protocol. Fundamentally, this weakness is modeled by allowing
the adversary itself to choose the optional text fields; thus, not only does the
adversary call the security game but the game also calls the adversary.

Data fields in the model fall into two categories: associated data (AD) which
are authenticated by the protocol and, by protocol security, should be guaranteed
to be mutually held by all parties, and ancillary but unauthenticated data. While
the RS model addresses both categories of data, the former is of salient concern.
Even though the unauthenticated data fields are relevant to the security of the
protocol, as they may influence the selection of the AD fields, they are also
subject to being changed by an adversary en route. Consequently, no authenticity
claims can be made on the non-authenticated fields.

Succinctly, the ISO 9798–2.4 protocol has text fields Text l for l ∈ {1, . . . , 5}.
Data fields Text1, Text3, and Text5 are not authenticated and can therefore
be modified en route later in the protocol. Hence they cannot be classified as
AD. Likewise, since Text4 is sent in the last message by the initiator, there
is no guarantee that it will be received by the responder and is consequently
also not AD, although it is authenticated. Ultimately, this leaves field Text2 as
the only AD. Applying the Rogaway–Stegers (RS) framework, it is our goal to
demonstrate that ISO 9798–2.4 is still secure even when the AD selection is
under adversarial control.

Rogaway and Stegers combine their AD framework with a particular mu-
tual authentication model, using session IDs, and apply it to a variant of the

246 B. Hale and C. Boyd

Needham-Schroeder-Lowe protocol [13, p. 7]. For application of the Rogaway–
Stegers AD framework, we use the BR mutual authentication model with match-
ing conversations, as in §4. To avoid trivial breaks of the matching conversations
by an adversary, conversation transcripts will not include unauthenticated text
fields – i.e. Text1, Text3, and Text5

Notably, the RS model is a public-key mutual authentication model, whereas
ISO 9798–2.4 is a symmetric-key protocol. As a result of these details, slight
model adaptations are required. Nonetheless, security in RS framework for as-
sociated data can be summarized as shown below.

Definition 3. RS Framework for Associated Data with BR Mutual Authenti-
cation
Model [4,13]. Let No− MatchingE(k) be the event that there exists an uncor-
rupted oracle Πs

i,j which accepted and there is no uncorrupted oracle Πt
j,i which

engaged in matching conversation with Πs
i,j. The protocol Π is a secure mutual

authentication protocol if for any polynomial time adversary A,

1. Matching conversations ⇒ acceptance.
If oracles Πs

i,j and Πt
j,i have matching conversations, then both oracles ac-

cept.
2. Acceptance ⇒ matching conversations.

The probability of No− MatchingE(k) is negligible.
3. Matching Conversations ⇒ Matching AD.

If oracles Πs
i,j and Πt

j,i have matching conversations, then the associated
data in the protocol is guaranteed to be mutually held.

Theorem 2. Let Π be the ISO 9798–2.4 protocol implemented with a strongly
unforgeable MAC algorithm EK(M) = (m,MACK(M)), including the optional
text fields Text l and the associated data Text2. Then advantage of an polynomial-
time adversary against the mutual authentication scheme can be reduced to the
adversarial advantage against the MAC:

AdvMA(A) ≤ 2p2S ·AdvMAC
Π (F) + q2/2k+1.

Proof. Succinctly, this proof will build on that of §4 and the following previously
used notation will continue, with the addendum of matching AD. For conciseness,
text fields Text l will be denoted Tl.

– NC: Two different instances accept with the same nonce pair.
– Match.Conv: Two different instances are in matching conversation.
– Match.AD: The AD held by both parties at the end of the protocol matches.
– q: number of calls allowed to the adversary.
– S: number of sessions.
– p: number of principals.
– 1k: security parameter.

Simply, the first requirement for mutual authentication in definition 3 follows
from the protocol description. It remains to be shown that acceptance still im-
plies matching conversations even with the optional text fields included and that

Computationally Analyzing the ISO 9798–2.4 Authentication Protocol 247

this in turn guarantees the associated data is mutually held by both parties at
termination. Adversarial advantage against the mutual authentication scheme
thus complies with the following inequalities. The final reduction will serve as a
triad proof infrastructure.

AdvMA(A) ≤ Pr[(¬ Match.Conv) ∨ (¬ Match.AD | Match.Conv)] (5)

≤ Pr[¬ Match.Conv] + Pr[¬ Match.AD | Match.Conv]

≤ Pr[NC] + Pr[¬ Match.Conv |¬ NC]

+ Pr[¬ Match.AD | Match.Conv ∧ ¬ NC]

Nonce Collision

As q calls are allowed to A and nonces are selected independently, the birthday
bound yields

Pr[NC] ≤ q2/2k+1. (6)

Acceptance Implies Matching Conversations

Immediately, this proof is in parallel to that in §4. Furthermore, nonce collision
has already been accounted for. Correlatively, the following are addenda to the
proof and reduction statement presented in §4:

Case 1: (continued from §4.) Let F be an adversary against the MAC, having
a MAC oracle that runs on a key K chosen randomly from {0, 1}k. Suppose
that the probability that A succeeds in having an initiator oracle accept without
being in matching-conversation is non-negligible.

When the PSP requires a choice of text fields, it calls on the PD, answered by
A, to select Tl. If the responder exists, at time τ1, the PSP calls the PD which
responds with its selection for all text fields in the second message flow while
also setting AD = T2 for the responder. Regardless of the responder’s view, when
the initiator receives the flow T3||EK(Rj , Ri, Ii, T2) at time τ2, the PD sets AD
= T2 for the initiator.

Even though A has power over the PD and is therefore able to choose the AD,
it is deterministic in its selection. Essentially, A is not allowed to simply change
T2 at a later date; once chosen, A may not attempt to insure that principals
i and j hold different AD values by simply reselecting T2 via the PD when
setting the AD from the initiator’s view. Thus, any attempt by A to ensure that
conversations do not match by changing T2, and therefore the AD, must be made
by exchanging the flow with a previous one or by a valid forgery.

Consequently, as in §4, F has previously calculated the flow EK(Rj , Ri, Ii, T2)
or F outputs a valid forgery for it (i.e. a valid forgery for the MAC). Since there
are no nonce collisions, F has not previously calculated the flow. Therefore it
must output a valid forgery for the MAC.

248 B. Hale and C. Boyd

Case 2: (continued from §4.) Let F be an adversary against the MAC, having
a MAC oracle that runs on a key K chosen randomly from {0, 1}k. Suppose
that the probability that A succeeds against a responder oracle but no initiator
oracles is non-negligible.

When the PSP requires a choice of text fields, it calls on the PD, answered
by A, to select Tl. At time τ1, the PD sets AD = T2 for the responder. When
it receives the flow T5||EK(Rj , Ri, Ii, T2), the PD again sets AD = T2 from the
initiator’s view at time τ2.

As in Case 1, the AD is chosen deterministically in the PD call and may
not simply be changed later by the PD to ensure non-matching conversations.
Consequently, in order to get the responder to accept at time τ3, F has either
previously calculated the flow EK(Ri, Rj , T4) or F outputs a valid forgery for it
(i.e. a valid forgery for the MAC). Since there are no nonce collisions, F has not
previously calculated the flow. Therefore it must output a valid forgery for the
MAC.

Combining Case 1 and 2, the reduction is summarized as

AdvMAC
Π (F) ≥ 1

2

(
1

p2S · Pr[¬ Match.Conv |¬ NC]
)
.

Hence,

Pr[¬ Match.Conv |¬ NC] ≤ 2p2S ·AdvMAC
Π (F). (7)

Associated Data Agreement

Compactly, it can be assumed that an instance and its partner are in matching
conversations and that there are no nonce collisions. It remains to show that the
same AD, T2, is equally held by both sides.

Since i and j are in matching conversation, at some time τ1 the responder sent
the message T3j ||EK(Rj , Ri, Ii, T2j) and at some time τ2 the initiator received a
message

T3i ||EK(Rj , Ri, Ii, T2i),

where T3i and T3j may or may not be equal. Moreover, this was authenticated
under the symmetric key K, T2i = T2j . Therefore ADi = ADj .

Ergo,

Pr[¬ Match.AD |¬NC ∧ Match.Conv] = 0. (8)

Combining the reductions from equations 6–8 with equation 5 yields the full
reduction of security for ISO 9798–2.4 with inclusion of associated data.

Remark: As previously observed, there is no guarantee that the final message
flow is received, which limits T4 from inclusion in the AD. However, assuming
matching conversations, a responder that receives a flow T5||EK(Ri, Rj , T4) can
be assured that T4 has been authenticated by the sender. Namely, this follows
from the assumptions above – if T5j ||EK(Ri, Rj , T4) is received by an instance

Computationally Analyzing the ISO 9798–2.4 Authentication Protocol 249

Πt
j,i under a symmetric key, then the flow T5i ||EK(Ri, Rj , T4) was sent by a

partner instance Πs
i,j of principal i and EK(Ri, Rj , T4) must also form part of

the conversation transcript of Πs
i,j .

6 Using Authenticated Encryption

As previously stated, the ISO 9798–2 standard currently does not specify the
primitive to be used as the encipherment function EK . Likewise, while the stan-
dard concurs that its integrity requirements “can be achieved in many ways”
[6, p. 4], authenticated encryption per the ISO/IEC 19772 standard is recom-
mended. Consequently, it is desirable to check that a protocol implemented with
an AE primitive will have security traceable to that of a protocol under a MAC
primitive, proven in §4 and §5.

For the lemmas and theorem below, strongly-unforgeable authenticated en-
cryption (SUF-AE) is defined as in Definition 5. The reader should note that
this definition may be more commonly referred to as INT-CTXTAE [3] – how-
ever, the term SUF-AE is used here for the sake of clarity with its relationship
to SUF-CMA.

Lemma 1. Suppose that (K, E ,D) is a strongly-unforgeable authenticated en-
cryption algorithm according to Definition 5. Then the MAC algorithm with
MACK(M) = (M, E(K,M)) is SUF-CMA secure, according to Definition 4.

Proof. Suppose that E is an adversary that succeeds against the MAC with
advantage AdvSUF-CMA

MAC (E), which is non-negligible; from E an adversary F
will be constructed against the authenticated encryption algorithm.

Let MAC be a strongly-unforgeable message authentication code. F starts the

game, chooses K
$←− K and initiates adversary E on 1n.

Provide F with an oracle for MACK(·) = (·, EK(·)) which it will use to answer
E’s MAC queries. Since E forges the MAC under key K, it can output a valid
pair (M,C) such that DK(C) = M and E did not ask a query MACK(M) such
that C = EK(M).

Now, if F wishes to forge an authenticated encryption on message Ml ∈
Message, l ∈ {0, . . . , w}, it will call E on Ml. Respectively, E will output the
message-tag pair (Ml, Cl) where DK(Cl) = Ml and Cl was not previously the
answer to an oracle call MACK(Ml). Since E succeeds with non-negligible prob-
ability AdvSUF-CMA

MAC (E), F will also succeed in forging the authenticated en-
cryption with EK(Ml) = Cl, where Cl has not previously been produced as a
ciphertext on Ml, with non-negligible probability. Thus,

AdvSUF-CMA
MAC (E) ≤ AdvSUF-AE

(K,E,D) (F).

Lemma 2. Let Π be the 9798–2.4 protocol implemented with a strongly unforge-
able authenticated encryption algorithm (K, E ,D). Let Π ′ be the 9798–2.4 pro-
tocol implemented with the MAC as in Lemma 1. An efficient adversary against
Π can be efficiently converted into an adversary against Π ′.

250 B. Hale and C. Boyd

Proof. Let A be an efficient adversary against the mutual authentication proto-
col Π operating with advantage AdvMA-AE

Π (A); from A, an adversary B will be
constructed against Π ′. Let the advantage of B be denoted AdvMA-MAC

Π′ (B).
Starting the protocol game, B chooses K

$←− K and initiates adversary A on
1k. Let n be a polynomial bound on the number of queries allowed to A.

B will answerA’s first Send query in the open. Thereafter, all Send queries will
be answered by submitting them to MACK(M), B’s oracle for the MAC, and only
passing on the tag part E(K,M) of the answer pair (M, E(K,M)) ← MACK(M)
to A.

When B wishes to succeed against Π ′ it must convince an instance to accept
without matching conversations. To do this, B will pass all messages to A, which
will answer each Send query, outputting encryptions Ci on message queries i =
2, 3 (second and third protocol flows). B will then relay the pair (Mi, Ci) to its
respective instances in the second and third protocol flows as required.

Since A can succeed against Π and therefore get one of its instances to ac-
cept without matching conversations with non-negligible probability, relaying
the message-tag pair will also ensure that one of the instances in Π ′ will accept
without matching conversations, so long as A has not made a forgery on the AE.
Should A forge the AE, then the message added by B to create the message-tag
pair will not match the decryption of the ciphertext output by A. However, with
n queries allowed to A and a probability of forgery AdvSUF-AE

(K,E,D) (F), this only
occurs with negligible probability. Thus,

AdvMA-AE
Π (A) ≤ AdvMA-AE

Π (A succeeds |A does not forge) + Pr(A forges)

≤ AdvMA-MAC
Π′ (B) + n ·AdvSUF-AE

(K,E,D) (F)

Theorem 3. Let Π be the 9798–2.4 protocol implemented with a strongly un-
forgeable authenticated encryption algorithm (K, E ,D). Let Π ′ be the 9798–2.4
protocol implemented with the MAC as in Lemma 1. In the Rogaway–Stegers
framework with associated data considered, an efficient adversary against Π can
be efficiently converted into an adversary against Π ′.

Proof. Applying the reductions from Lemma 6, Lemma 2, and §5 Game 5, it
follows that

AdvMA-AE
Π (A) ≤ AdvMA-MAC

Π′ (B) + n ·AdvSUF-AE
(K,E,D) (F)

≤ 2p2S ·AdvSUF-CMA
MAC (E) + q2/2k+1 + n ·AdvSUF-AE

(K,E,D) (F)

≤ 2p2S ·AdvSUF-AE
(K,E,D) (F) + q2/2k+1 + n ·AdvSUF-AE

(K,E,D) (F)

= (2p2S + n) ·AdvSUF-AE
(K,E,D) (A) + q2/2k+1

7 Conclusion

Ultimately, these results underscore the security of the ISO 9798–2.4, a real-world
mutual authentication standard. Basing security on matching conversations, the

Computationally Analyzing the ISO 9798–2.4 Authentication Protocol 251

protocol core was first analyzed in the Bellare–Rogaway model. Being more
efficient than an authenticated encryption scheme, a MAC function was used in
the security assessment of the protocol and shown to be sufficient. While this
no longer yields privacy, it attests to the security of the mutual authentication
scheme in the most fundamental cases – when merely integrity and authenticity
are required.

Integrated into the proof of security for the protocol core is a polynomial-time
reduction to the security of the MAC. Furthermore, we have shown that while a
strongly-unforgeable MAC is sufficient for security, the current recommendation
of ISO 9798–2 of authenticated encryption will also result in a secure protocol,
albeit a less efficient one. Strong unforgeability is required for both the MAC and
the AE since an adversary’s ability to produce a different, yet valid, encipherment
for a message flow would trivially result in principals accepting without matching
conversations.

Subsequently, the full protocol, inclusive of associated data, was analyzed in
the RS model. With additional data fields included and adversarial selection of
the data for those fields allowed, the protocol was again demonstrated to be
secure under the MAC implementation.

Ad interim, a parallel symbolic analysis of the protocol for juxtaposition was
also performed using Scyther, albeit omitted from this paper. In comparison to
the symbolic analysis by Basin et al. [2] which applied symmetric encryption
and checked for aliveness and weak-agreement, we reconnoitered security while
implementing a MAC for the encipherment function as well as demanding non-
injective agreement and non-injective synchronization; thereby twinning restric-
tions with those used in the computational analysis. Results from the separate
symbolic analysis affirmed those in this research.

Collectively, these results demonstrate a clarification and efficiency improve-
ment to the ISO standard’s current requirements, while also validating the
protocol’s security in the computational model. Even though authenticated en-
cryption is recommended for implementation of the standard, it is confirmed in
this research that security is achievable for the mutual authentication scheme
using only a MAC. If authenticated encryption is applied, our security analysis
demands that it be strong unforgeable.

While this research addresses a specific ISO 9798 protocol, the standard cov-
ers several variants for use in authentication. Of these, some highlight particular
aspects that would need to be taken under consideration, should similar analyses
be performed. Notably, the BR model would require adjustment in the case of
one-pass authentication, as this is not addressed in the traditional model. Like-
wise, some ISO 9798 protocols utilize timestamps instead of nonces for freshness
and care would be required in modeling these if an analysis is to be performed
in the manner of our work.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Heidelberg (2001)

252 B. Hale and C. Boyd

2. Basin, D., Cremers, C.J.F., Meier, S.: Provably repairing the ISO/IEC 9798 stan-
dard for entity authentication. Journal of Computer Security 21(6), 817–846 (2013)

3. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

4. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

5. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

6. ISO. Information technology – security techniques – entity authentication – part 2:
Mechanisms using symmetric encipherment algorithms. ISO ISO/IEC 9798-2:2008,
International Organization for Standardization, Geneva, Switzerland (2008)

7. ISO. Information technology – security techniques – entity authentication –
part 2: Mechanisms using symmetric encipherment algorithms. ISO ISO/IEC
9798-2:2008/Cor 1:2010, International Organization for Standardization, Geneva,
Switzerland, Technical Corrigendum 1 (2010)

8. Jutla, C.S.: Encryption Modes with Almost Free Message Integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

9. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

10. Canetti, R., Krawczyk, H.: Analysis of key-Exchange protocols and Their Use for
Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

11. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: Ninth ACM
Conference on Computer and Communications Security (CCS-9). ACM Press
(2002)

12. Rogaway, P., Bellare, M., Black, J.: OCB: A Block-Cipher Mode of Operation for
Efficient Authenticated Encryption. In: Eighth ACM Conference on Computer and
Communications Security (CCS–8), pp. 365–403. ACM Press (2003)

13. Rogaway, P., Stegers, T.: Authentication without Elision: Partially Specified Pro-
tocols, Associated Data, and Cryptographic Models Described by Code. In: Pro-
ceedings of the 2009 22nd IEEE Computer Security Foundations Symposium, pp.
26–39. IEEE Computer Society (2009)

A Definitions for Security of MAC and Authenticated
Encryption

Definition 4. ([5,1], modified.) A strongly-unforgeable message authentication
code is a probabilistic polynomial-time algorithm MAC(·)(·). Let Message =

{0, 1}∗, mKey = {0, 1}k for some number k, and Tag= {0, 1}tLen for some number
tLen.

A message authentication code is defined by a pair of algorithms
(
MAC(·)(·),

MAC.ver(·)(·, ·)
)
. To compute the MAC, MAC(·)(·) takes a key K ∈ mKey and

a message M ∈ Message and computes:

Computationally Analyzing the ISO 9798–2.4 Authentication Protocol 253

(M,T) = MACK(M).

The authenticated message is the pair (M,T); T is called the tag on M .
To verify a purported message-tag pair (M, τ), any entity with key K computes

MAC.verK(M, τ),

which returns either 0 (message unauthentic) or 1 (message authentic). It is
required for all K ∈ mKey and M ∈ Message, MAC.verK(MACK(M)) = 1.

An adversary F (of the MAC) is a probabilistic polynomial-time algorithm
which has access to an oracle that computes MACs under a randomly chosen
key K ′. The output of F is a pair (M,T) such that (M,T) was not previously
output by the MACing oracle.

A MAC is secure if, for every adversary F of the MAC, the function ε(k)
defined by

ε(k) = P [K ′ ← {0, 1}k; (M,T) ← F : (M,T) = MACK′(M)]

is negligible. Note that F wins even if it outputs a different tag on a previously
queried message.

Definition 5. ([11], modified.) A strongly-unforgeable authenticated encryption
scheme (SUF-AE scheme) is a three-tuple (K, E ,D), with associated set Message
⊆ {0, 1}∗, satisfying M ∈ Message ⇒ M ′ ∈ Message for any M ′ of equal length
to M .

Algorithm E is probabilistic, returning a string C
$
= EK(M) on input of a

string K ∈ K and M ∈ Message.
Algorithm D is deterministic, taking in a string K ∈ K and C ∈ {0, 1}∗, and

returning DK(C) which is either a string in Message or a symbol ⊥. Moreover,
it is required that DK(EK(M)) = M for all K ∈ K and M ∈ Message.

Let $(·) be an oracle that, on input of M , returns a random string of length
l(|M |) where l is the length function of (K, E ,D). Let A be an adversary. Define

AdvIND$-CPA
(K,E,D) (A) = P [K

$−→ K : AEK(·) = 1] − P [A$(·) = 1]. In this instance,

IND$-CPA is the indistinguishability from random bits under a chosen-plaintext
attack.

Let (K, E ,D) be a SUF-AE scheme. Choose K
$←− K and run the adversary

A, providing it with an oracle for EK(·). We say that adversary A forges, under
key K for the particular run, if A outputs a ciphertext C where DK(C) �= ⊥ and
A did not ask a query EK(M) such that C = EK(M). However, A is allowed to
have previously queried EK(M), such that C1 = EK(M), as long as C �= C1. Let
AdvSUF-AE

(K,E,D) (A) be the probability that A forges against the authentication. The
probability is over the random choice of K.

254 B. Hale and C. Boyd

B Security Revisited without Unique Identifier

Per the ISO 9798–2.4 protocol, the unique identifier of the initiator IB may
be excluded if either uni-directional keys are used or the protocol environment
precludes reflection attacks. These two cases will be discussed below for the
security proofs of §2 and §5.

B.1 Analysis of Core Security Proof Revisited

The security argument for the core proof of §4 remains largely unchanged for
an environment where the unique identifier IB is excluded. In particular, in the
case of uni-directional keys, F has two MAC oracles, per definition 4, that run
on keys Ki and Kj chosen randomly from {0, 1}k which it will use to calculate
the tags for messages sent to instances of i and j, respectively. Thus the tag in
the case of A’s success against an initiator is calculated as MACKi(Rj , Ri) and
the tag in the case against a responder is likewise changed to MACKj (Ri, Rj).
Thus, as in the original proof, F must win by producing a forgery

Furthermore, in an environment without reflection attacks, the case of F
against an initiator remains unchanged. Against a responder oracle, A cannot
win by reflecting back to Πt

j,i the flow EK(Rj , Ri). Consequently, F must again
win as in §4 by producing a forgery.

B.2 Analysis with Associated Data Revisited

Theorem B1. Let Π be the ISO 9798–2.4 protocol implemented with a strongly
unforgeable MAC algorithm EK(M) = (m,MACK(M)), including the optional
text fields Text l and the associated data Text2, uni-directional keys in an en-
vironment that precludes reflection attacks, and no unique identifier IB . Then
advantage of an polynomial-time adversary against the mutual authentication
scheme can be reduced to the adversarial advantage against the MAC:

AdvMA(A) ≤ 2p2S ·AdvMAC
Π (F) + q2/2k+1.

Proof. Essentially, the theorem follows from the proof in §5 with some alterations
as noted below.

Nonce Collision

Proof as shown in §5.

Pr[NC] ≤ q2/2k+1. (9)

Acceptance Implies Matching Conversations

Proof as in §5 with the added notes of §B.1.

Pr[¬ Match.Conv |¬ NC] ≤ 2p2S ·AdvMAC
Π (F). (10)

Computationally Analyzing the ISO 9798–2.4 Authentication Protocol 255

Associated Data Agreement

Compactly, it can be assumed that an instance and its partner are in matching
conversations and that there are no nonce collisions. It remains to show that the
same AD, T2, is equally held by both sides.

Uni-Directional Keys Since i and j are in matching conversation, at some time
τ1 a responder sent the message T3j ||EKi(Rj , Ri, T2j) and at some time τ2 an
initiator received a message T3i ||EKi(Rj , Ri, T2i), where T3i and T3j may or may
not be equal. Then the responder must be an instance Πt

j,i of j, and the initiator
must be an instance Πs

i,j of i. Moreover, the data T2 has been authenticated
under the key Ki, so Πs

i,j can be assured of the integrity of T2. Therefore ADi =
ADj .

Ergo,

Pr[¬ Match.AD |¬NC ∧ Match.Conv] = 0. (11)

Reflection Attacks Disallowed Proof as in §3, with unique identifier IB removed.
Combining the reductions from equations 9–11 with equation 5 yields the full

reduction of security for ISO 9798–2.4 with inclusion of associated data.

Author Index

Abdulla, Alan A. 151
Azodi, Amir 190

Boyd, Colin 236
Brown, Christopher W. 39

Cremers, Cas 215

Degabriele, Jean Paul 1
Denham, Nick 167

Escobar, Santiago 111

Fehr, Victoria 1
Fischlin, Marc 1
Fleischhacker, Nils 190

Gagliardoni, Tommaso 1
Garrett, Duncan 79
González-Burgueño, Antonio 111
Griffin, Phillip H. 57
Günther, Felix 1
Guttman, Joshua D. 93

Hale, Britta 236
Hao, Feng 26
Heather, James 131
Horvat, Marko 215

Jassim, Sabah A. 151
Jenkins, Michael 39

Lee, Jinwoo 69
Lee, Pil Joong 69
Liskov, Moses D. 93

Manulis, Mark 167, 190
Marson, Giorgia Azzurra 1
Meadows, Catherine 111
Meseguer, José 111
Mittelbach, Arno 1

Paterson, Kenneth G. 1

Rowe, Paul D. 93

Santiago, Sonia 111
Schneider, Steve 131
Sellahewa, Harin 151
Shahandashti, Siamak F. 26
Stathakidis, Efstathios 131
Stebila, Douglas 167

Ward, Michael 79

	Preface
	Organizations
	Table of Contents
	Cryptographic Evaluation
	Unpicking PLAID
	1Introduction
	2PLAID Protocol Description
	2.1PLAID Setup
	2.2Initial Authenticate
	2.3Final Authenticate

	3ShillKey Fingerprinting – Tracing Cards in PLAID
	3.1Tracing Cards via ShillKey Ciphertexts
	3.2Tracing Cards from a Mixed Set of ShillKey Ciphertexts
	3.3Connection to Key Privacy of RSA Encryption
	3.4Countermeasures to Our Attacks

	4Keyset Fingerprinting – Determining a Card's Capabilities
	4.1The Attack in a Nutshell
	4.2The Attack Details
	4.3Potential Countermeasures against Our Attack

	5Further Security Considerations
	5.1Forward (In)security
	5.2Key (In)security in the Bellare–Rogaway Model
	5.3On the Applicability of Bleichenbacher's Attack
	5.4CBC-Mode Encryption
	5.5Entity Authentication
	5.6Payload Insecurity
	5.7On the Impossibility of Key Revocation
	5.8 Key Legacy Attack

	6Conclusion
	References

	The SPEKE Protocol Revisited
	1Introduction
	2The Original SPEKE Scheme
	3Previously Reported Attacks
	4New Attacks
	4.1Impersonation Attack
	4.2Key-Malleability Attack

	5Discussion
	5.1Explicit Key Confirmation
	5.2Definition of Password
	5.3Countermeasures and Suggested Changes to Standards
	5.4Summary of Results

	6Conclusion
	References

	Analyzing Proposals for Improving Authentication on the TLS/SSL-Protected Web
	1Introduction
	2Desirable Properties for the Authentication Component of the ``Secure Web''
	3DNS-Based Authentication of Named Entities (DANE)
	4Certificate Transparency
	5An HTTP Extension for Public Key Pinning (HPKP)
	6Comparisons and Conclusions
	References

	Standards Development
	Standardization Transparency
	1 Introduction
	2 Kaleidoscope Conference Case Study
	2.1 Background
	2.2 Openness
	2.3 Impact on Standardization
	2.4 Security Standards Proposals

	3 US Practice Case Study
	3.1 Government Roles
	3.2 Role Based Access Control
	3.3 Cryptographic Message Syntax

	4 Conclusion and Recommendations
	References

	Size-Efficient Digital Signatures with Appendix by Truncating Unnecessarily Long Hashcode
	1Introduction
	2Preliminaries
	2.1General Model for Digital Signatures with Appendix Based on Discrete Logarithm Problem
	2.2Conversion Functions
	2.3Hash Functions

	3Applicable Mechanisms of Digital Signatures with Appendix Based on Discrete Logarithm Problem
	4The Proposed Method
	4.1Construction
	4.2Modified KCDSA
	4.3Modified SDSA

	5Security
	6Conclusion
	References

	Blinded Diffie-Hellman
	1 Introduction
	2 EMV Security Requirements and the Standards Landscape
	2.1 EMV Security Requirements
	2.2 Standards Landscape

	3 Description of Protocols
	3.1 Station-to-Station Protocol
	3.2 One-Sided Station-to-Station Protocol
	3.3 Blinded Diffie-Hellman Protocol

	4 Performance and Security
	4.1 Performance Comparison with Alternative Protocol
	4.2 Security of Blinded Diffie-Hellman
	4.3 Uni-directional Keys and Key Derivation Function KDF()

	5 Conclusions
	References

	Analysis with Formal Methods
	Security Goals and Evolving Standards
	1Introduction
	2Example: Kerberos PKINIT
	3Enrich-by-Need Protocol Analysis
	4A Language of Protocol Goals
	5Example: TLS Renegotiation
	6Goals for Protocol Interfaces
	7Related Work and Conclusion
	References

	Analysis of the IBM CCA Security API Protocols in Maude-NPA
	1Introduction
	2Maude-NPA
	2.1Preliminaries on Unification and Narrowing
	2.2Maude-NPA Syntax and Semantics
	2.3Never Patterns in Maude-NPA

	3IBM CCA API
	3.1IBM's Recommendations to Avoid CCA-0's Attack

	4 Küsters' and Truderung's XOR-Linear Versions of CCA-Protocols
	5Maude-NPA's CCA Analysis
	6Discussion
	7Conclusions
	References

	Robustness Modelling and Verification of a Mix Net Protocol
	1Introduction
	2Preliminaries
	3Ximix Mix Net Outline
	4Ximix Message Communication Diagram
	5Modelling and Formal Analysis in CSP
	6Adapting the Intruder
	7Results and Analysis
	8Previous Work
	9Conclusion
	References

	Potential Future Areas of Standardisation
	Stego Quality Enhancement by Message Size Reduction and Fibonacci Bit-Plane Mapping
	1 Introduction
	2 Literature Review
	3 Secret Image Size Reduction (SISR) Algorithm
	3.1 SISR Algorithm: Encoding
	3.2 SISR Algorithm: Recovery
	3.3 Example Application of SIRS Algorithm

	4 Proposed Embedding Algorithm
	5 Experimental Results
	5.1 Experimental Setup
	5.2 SISR Algorithm Evaluation
	5.3 Embedding Algorithm Evaluation

	6 Conclusion
	References

	Secure Modular Password Authentication for the Web Using Channel Bindings
	1Introduction
	Password-Authenticated Key Exchange (PAKE)
	Running PAKE at the Application Layer
	Contributions

	2Password-Authenticated Confidential Channels
	3Generic Construction
	4Construction #1: Binding Using CCE Transcript
	4.1Building Block: CCE
	4.2Building Block: Tag-Based Password Authentication
	4.3Security Analysis of Construction #1
	4.4Using tls-unique Channel Binding

	5Construction #2: Binding Using Server Public Key
	5.1Building Block: ACCE (With Key Registration)
	5.2Security Analysis of Construction #2
	5.3Using tls-server-end-point Channel Binding

	6Implementation
	6.1Firefox Extension
	6.2Performance

	7Discussion
	7.1TLS Channel Bindings
	7.2Challenges with PAKE

	References
	Confidential Channel Establishment (CCE)
	Tag-Based Password Authentication (tPAuth)

	A Modular Framework for Multi-Factor Authentication and Key Exchange
	1Introduction
	1.1Contributions and Organization

	2Generalized MFAKE: Definitions and Security
	2.1System Model and Correctness
	2.2Security Goals: AKE-Security and Mutual Authentication

	3Modular Design of MFAKE Protocols
	3.1Tag-Based Authentication
	3.2Utilized Sub-protocols and Their Examples
	3.3Modular (,,)-MFAKE Protocol Framework
	3.4Security Analysis

	4Conclusion
	References

	Improving Existing Standards
	Improving the ISO/IEC 11770 Standard for Key Management Techniques
	1Introduction
	2Background on ISO/IEC 11770
	2.1Protocols
	2.2Security Properties and Threat Model of the Standard

	3 Formally Modelling the Protocols and Their Properties
	3.1Protocol Specification
	3.2Specifying Security Properties

	4 Results of the Formal Analysis
	4.1Claimed Properties
	4.2Key Compromise Impersonation (KCI) Results
	4.3Unknown Key Share (UKS) Results

	5Recommendations
	6Related Work
	7Conclusions
	References
	Attack on Protocol 2-12
	AT5: 3-KT-6 Attack
	Key Agreement Mechanism 8 (3-KA-8)

	Computationally Analyzing the ISO 9798–2.4 Authentication Protocol
	1Introduction
	2ISO 9798–2.4
	3BR Model
	3.1Adversary
	3.2 Matching Conversations
	3.3Secure Mutual Authentication

	4Security of ISO 9798–2.4
	5Analysis with Associated Data – RS Model
	6Using Authenticated Encryption
	7Conclusion
	References
	Definitions for Security of MAC and Authenticated Encryption
	Security Revisited without Unique Identifier
	Analysis of Core Security Proof Revisited
	Analysis with Associated Data Revisited

	Author Index

