
Chapter 37
Density Functional Theory
of Atoms and Molecules

The Schrödinger equation is a (linear) partial differential equation that can be solved
exactly only in very few special cases such as the Coulomb potential or the har-
monic oscillator potential. For more general potentials or for problems with more
than two particles, the quantum mechanical problem is no easier to solve than the
corresponding classical one. In these situations, variational methods are one of the
most powerful tools for deriving approximate eigenvalues E and eigenfunctions ψ .
These approximations are done in terms of a theory of density functionals as pro-
posed by Thomas, Fermi, Hohenberg and Kohn. This chapter explains briefly the
basic facts of this theory.

37.1 Introduction

Suppose that the spectrum σ (H ) of a Hamilton operator H is purely discrete and can
be ordered according to the size of the eigenvalues, i.e., E1 < E2 < E3 < · · · . The
corresponding eigenfunctions ψi form an orthonormal basis of the Hilbert space H.
Consider a trial function

ψ =
∞∑

i=1

ciψi ,
∞∑

i=1

|ci |2 = 1.

The expectation value of H in the mixed state ψ is

E = 〈ψ ,Hψ〉 =
∞∑

i=1

|ci |2Ei.

It can be rewritten as

E = E1 + |c2|2(E2 − E1) + |c3|2(E3 − E1) + · · · ≥ E1.

Hence, E is an upper bound for the eigenvalue E1 which corresponds to the ground
state of the system. One basic idea of the variational calculations concerning spectral
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properties of atoms and molecules is to choose trial functions depending on some
parameters and then to adjust the parameters so that the corresponding expectation
value E is minimized.

Application of this method to the helium atom by Hylleras played an important
role in 1928–1929 when it provided the first test of the Schrödinger equation for
a system that is more complicated than the hydrogen atom. In the limit of infinite
nuclear mass, the Hamilton operator for the helium atom is

H = − h̄2

2m
(�1 +�2) − e2

r1
− e2

r2
+ e2

r12
,

where ri = |xi | and where r12 = |x1 − x2| is the electron–electron separation. The
term e2

r12
describes the Coulomb repulsion between two electrons. Hylleras intro-

duced trial functions of the form ψ = ∑
i,j ,k aijkr

i
1r

j

2 r
k
12 e −αr1−βr2 depending on the

parameters aijk , α and β.
The history of the density functional theory dates back to the pioneering work of

Thomas [1] and Fermi [2]. In the 1960s, Hohenberg and Kohn [3] and Kohn and
Sham [4] made substantial progress to give the density functional theory a foundation
based on the quantum mechanics of atoms and molecules. Since then an enormous
number of results has been obtained, and this method of studying solutions of many
electron problems for atoms and molecules has become competitive in accuracy with
up to date quantum chemical methods.

The following section gives a survey of the most prominent of these density func-
tional theories. These density functional theories are of considerable mathematical
interest since they present challenging minimization problems of a type which has
not been attended to before. In these problems, one has to minimize certain function-
als over spaces of functions defined on unbounded domains (typically on R

3) and
where nonreflexive Banach spaces are involved.

The last section reports on the progress in relating these density functional theories
to the quantum mechanical theory of many electron systems for atoms and molecules.
Here the results on self-adjoint Schrödinger operators obtained in Part B will be the
mathematical basis. The results on the foundation of density functional theories are
mainly due to Hohenberg–Kohn [3] and Kohn–Sham [4]. The original paper by
Hohenberg–Kohn has generated a vast literature, see, for instance, [5–9].

Fifty years after the starting point of density functional theory its applications in
chemistry and the study of electronic structures have been growing steadily, but the
precise form of the energy functional is still elusive. Recently, in the same spirit, a
formulation with phase space variables and Wigner functions has been suggested in
[10].
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37.2 Semiclassical Theories of Density Functionals

The main goal of these semiempirical models is to describe correctly the ground state
energy by minimizing various types of density functionals.

In all these density functional theories, we are looking for the energy and the
charge density of the ground state by solving directly a minimization problem of the
form

min

{
F (ρ) +

∫
ρ(x)v(x) d x : ρ ∈ DF

}
.

Here, F is a functional of the charge density and depends only on the number N of
electrons but not on the potential v generated by the nuclei. The minimum has to be
calculated over a set DF of densities which is either equal to or a subset of DN ={
ρ ∈ L1(R3) : 0 ≤ ρ, ‖ρ‖1 = N

}
depending on the specific theory considered. Let

us mention some of the prominent models.

• The model of Thomas and Fermi uses the functional

FTF(ρ) = cTF

∫

R3
ρ(x)5/3 d x +D(ρ, ρ)

on the domain DTF = DN ∩ L5/3(R3). In the simplest models of this theory, the
potential v is given by v(x) = − Z

|x| , whereZ > 0 is a fixed parameter representing
the charge of the atomic nucleus and

D(ρ, ρ) = 1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x − y| d x d y

is nothing else than the Coulomb energy for the charge density ρ. The constant
cTF has the value 3/5.

• The model of Thomas–Fermi–von Weizsäcker is associated with the functional

FTFW (ρ) = cW

∫

R3
(∇ρ(x)1/2)2 d x + FTF(ρ)

on the domain DTFW = DTF ∩H 1(R3).
• The model of Thomas–Fermi–Dirac–von Weizsäcker leads to the functional

FTFDW (ρ) = FTFW (ρ) − cD

∫

R3
ρ(x)4/3 d x

on the same domain DTFW . Note that for 1 ≤ p1 < q < p2 one has Lq(R3) ⊂
Lp1 (R3) ∩ Lp2 (R3) and ‖u‖q ≤ ||u||tp1

‖u‖1−t
p2

with t =
1
q
− 1

p2
1
p1

− 1
p2

which we apply

for p1 = 1, p2 = 5/3 and q = 4/3. It follows that ‖ρ‖4/3 is finite on DTFW .
Therefore, the domain of FTFDW is DTFW .

All these models describe partially some observed natural phenomena but are nev-
ertheless rather rudimentary and are no longer in use in the practice of quantum
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chemistry. From a theoretical point of view these models are quite interesting since
we are confronted with the same type of (mathematical) difficulties as in more realistic
approaches.

Though the Thomas–Fermi theory is quite old, a mathematically rigorous solution
of the minimization problem has been found only in 1977 by Lieb and Simon [11].
The basic aspects of this solution are discussed in [12, 13].

37.3 Hohenberg–Kohn Theory

The Hohenberg–Kohn theory is a successful attempt to link these semiclassical
density functional theories to the quantum mechanics of atoms and molecules. Never-
theless from a mathematical point of view there remain several challenging problems
as we will see later.

The N -particle Hamilton operators which are considered are assumed to be of the
form

HN = HN (v) = −
N∑

j=1

�j +
∑

j<k

u(xj − xk) +
N∑

j=1

v(xj ) ≡ H0 + V , (37.1)

where v(x) is a real-valued function on R
3 and V = ∑N

j=1 v(xj ). In typical situations
u denotes the Coulomb interaction, but many other interactions can be used in this
approach too. We restrict ourselves to the Coulomb case u(xj −xk) = e2

|xj−xk | . In this
case, the operatorH0 is well defined and self-adjoint on the domainD(T ) of operator
T = −∑N

j=1 �j of the kinetic energy (compare Theorem 23.9 and the exercises for
this theorem). For the one-particle potential v we assume in the following always
v ∈ L2(R3) + L∞(R3) so that for these potentials too Kato’s perturbation theory
applies and assures that HN is self-adjoint on D(T ). Note that L2(R3) + L∞(R3) is
a Banach space when equipped with the norm

‖v‖ = inf
{‖v1‖2 + ‖v2‖∞ : v1 ∈ L2(R3), v2 ∈ L∞(R3), v = v1 + v2

}
.

However, this Banach space is not reflexive. It is actually the topological dual of the
Banach space X = L1(R3) ∩ L2(R3) for the norm ‖u‖ = ‖u‖1 + ‖u‖3, i.e.,

X′ = L2(R3) + L∞(R3).

In 1964, Hohenberg and Kohn proposed a method to solve the problem of finding
the ground state energy of HN through a varational principle. To explain this method
we need some preparation. The single-particle reduced density matrix γ of an N -
particle wave function ψ is given by the kernel

γ (z, z′) =
∫

ψ(z, z2, . . ., zN )ψ(z′, z2, . . ., zN ) d z2 · · · d zN , (37.2)
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where zi = (xi , σi) denotes the space variable xi and the spin variable σi . This
formula defines a mapping ψ → γ . This density matrix allows us to express the
single particle density as

ρ(x) = N
∑

σ

γ ((x, σ ), (x, σ )) (37.3)

which defines a mapping γ → ρ and thus a mapping v → ρv = R(v) from potentials
v to one-particle densities ρ when ψ is a ground state of HN (v). This mapping R

plays a fundamental role in the Hohenberg–Kohn theory. Denote by GN the set of
all those potentials v for which the Hamiltonian HN (v) has a (unique) ground state
ψ ∈ D(T ). Then we consider R as a mapping

R : GN ∩X′ → {
ρ ∈ L1(R3) : 0 ≤ ρ

}
, (37.4)

and one wants to know when this mapping has an inverse. In order to be able to
make progress in this problem one has to have a characterization of the range of the
mapping R, i.e., one has to know: Under which conditions on ρ there is a potential
v ∈ GN ∩ X′ such that the Hamilton operator HN (v) has a ground state ψ which
defines ρ = ρψ through Eqs. (37.2) and (37.3).

Up to now this problem has found only a partial solution which nevertheless allows
us to proceed. There are two conditions which are obviously necessary, namely
0 ≤ ρ(x) for all x ∈ R

3 and ‖ρ‖1 = N , i.e., ρ ∈ L1(R3). The following lemma
gives additional necessary conditions.

Lemma 37.1 Suppose ρ = ρψ is obtained by Eqs. (37.2) and (37.3) from a state
ψ the kinetic energy T . Then

a) ρ1/2 ∈ H 1(R3) and
∥∥∇ρ1/2

∥∥2
2 ≤ T (ψ)

b) ρ ∈ L3(R3) ∩ L1(R3) and
∥∥ρψ

∥∥
3 ≤ constant T (ψ)

Proof The kinetic energy is defined by

T (ψ) =
N∑

i=1

∫
|∇iψ(x1, . . ., xi , . . ., xN )|2 d x1 · · · d xN

= N

∫
|∇1ψ(x1, . . ., xN )|2 d x1 · · · d xN .

For the density we calculate

∇ρ(x) = N (
∫

[(∇ψψ)(x, x2, . . ., xN ) + (ψ∇ψ)(x, x2, . . ., xN )] d x2 · · · d xN ,

and Schwarz’ inequality implies

|∇ρ(x)|2 ≤ 4N
∫

|(∇1ψ)(x, x2, . . ., xN )|2 d x2 · · · d xNρ(x).
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We deduce
∥∥∇ρ1/2

∥∥2

2 =
1

4

∫
(∇ρ(x))2 d x

ρ(x)
≤ T (ψ).

This implies Part a).
Sobolev’s inequality in R

3 states (see (36.9)) ||u||26 ≤ S ‖∇u‖2
2 which we apply

for u = ρ1/2 to get ‖ρ‖3 = ∥∥ρ1/2
∥∥2

6 ≤ S
∥∥∇ρ1/2

∥∥2
2 ≤ S T (ψ) < ∞. Thus, the

statement of part b) follows. �

Corollary 37.1

ranR ⊆ {
ρ ∈ L1(R3) ∩ L3(R3) : 0 ≤ ρ, ρ1/2 ∈ H 1(R3)

} ≡ D

and for ρ ∈ D there is a state ψ in the domain D(T ) such that ρ = ρψ .

Proof The first part of the corollary is just a summary of the previous lemma. Given
ρ ∈ D define ψ as a normalized symmetric N -fold tensor product of ρ1/2. Since∫

(∇ρ(x))2 d x
ρ(x) < ∞ it follows that ψ ∈ D(T ). �

Note that this corollary only gives some estimate of the set of those densities ρ
for which there is v ∈ GN ∩ X′ such that ρ is the density of a ground state ψ of
HN (v). The problem is that the set GN is not known explicitly and thus the range of
the map R is not known precisely.

The map ψ #→ ρ is clearly not bijective and different ψ can give the same ρ.
However, one can prove continuity though the proof is not too easy (see the appendix
of [14]). Part of the difficulty comes from the fact that this map is not linear. Observe
that the space H 1(R3N ) is the form domain of the kinetic energy T .

Theorem 37.1 ψ #→ ρ1/2 is a continuous map H 1(R3N ) → H 1(R3).
Recall that we only consider one-particle potentials v ∈ X′ so that the domain of

the N -particle Hamiltonian HN (v) is the domain

WN = {
ψ ∈ L2(R3N ) : T (ψ) < ∞} = D(T )

of the kinetic energy T . This allows us to determine the ground state energy of HN (v)
as the solution of a minimization problem:

E(v) = inf
ψ∈WN \{0}

〈ψ ,HN (v)ψ〉
〈ψ ,ψ〉 . (37.5)

There may or may not be a minimizing element ψ for the minimization problem
(37.5) for the ground state energy. And if there exists one we do not always have
uniqueness. Accordingly, any minimizing element ψ of (37.5) is called a ground
state of HN (v). It satisfies HN (v)ψ = E(v)ψ at least in the sense of distributions.
E(v) has some important properties.
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Theorem 37.2 The ground state energy E(v) defined by (37.5) has the following
properties.

a) E(v) is concave in v ∈ X′, i.e., for all v1, v2 ∈ X′ and all 0 ≤ t ≤ 1 one has
E(tv1 + (1 − t)v2) ≥ tE(v1) + (1 − t)E(v2)

b) E(v) is monotone increasing, i.e., if v1, v2 ∈ X′ and v1(x) ≤ v2(x) for all x ∈ R
3,

then E(v1) ≤ E(v2)
c) E(v) is continuous with respect to the norm of X′ and it is locally Lipschitz.

Proof See the Exercises. �

The key result of the Hohenberg–Kohn theory is the observation that under certain
conditions different potentials v1, v2 ∈ GN ∩ X′ lead to different densities ρ1, ρ2,
thus proving injectivity of the map R.

Theorem 37.3 (Uniqueness Theorem) Suppose v1, v2 ∈ GN ∩ X′ are potentials
for which the Hamilton operators HN (v1) and HN (v2), respectively, have different
ground statesψ1,ψ2. Then the densities ρψ1 , ρψ2 defined by these states are different,
ρψ1 (x) �= ρψ2 (x) for all points x in a set of positive Lebesgue measure.

Proof We give the proof for the case where the ground state energies for both
operators HN (v1) and HN (v2) are not degenerate. For the general case, we refer to
the literature [7].

According to our definitions, we know E(vi) = 〈ψi ,HN (vi)ψi〉, ψi ∈ WN ,
‖ψi‖ = 1 and E(vi) ≤ 〈ψ ,HN (vi)ψ〉 for all ψ ∈ WN , ‖ψ‖ = 1 and E(vi) <

〈ψ ,HN (vi)ψ〉 for all ψ ∈ WN , ‖ψ‖ = 1, ψ �= ψi , i = 1, 2. Equations (37.1)–(37.3)
imply 〈ψ ,HN (vi)ψ〉 = 〈ψ ,H0ψ〉 +N

∫
vi(x)ρψ (x) d x, hence

E(v1) = 〈ψ1,H0ψ1〉 +N

∫
v2(x)ρψ1 (x) d x +N

∫
(v1(x) − v2(x))ρψ1 (x) d x

> E(v2) +N

∫
(v1(x) − v2(x))ρψ1 (x) d x

and similarly E(v2) > E(v1) + N
∫

(v2(x) − v1(x))ρψ2 (x) d x. By adding these two
inequalities we get

0 > N

∫
(v1(x) − v2(x))(ρψ1 (x) − ρψ1 (x)) d x.

All the above integrals are well defined because of part b) of Lemma 37.1 and the
interpolation estimate ‖ρ‖2 ≤ ‖ρ‖1/4

1 ‖ρ‖3/4
3 . �

Note that the assumption that HN (v1) and HN (v2) have different ground states ex-
cludes the case that the potentials differ by a constant. This assumption was originally
used by Hohenberg–Kohn.

Certainly one would like to have stronger results based on conditions on the
potentials v1, v2 which imply that the Hamilton operators HN (v1) and HN (v2) have
different ground states ψ1 and ψ2. But such conditions are not available here.

The basic Hohenberg–Kohn uniqueness theorem is an existence theorem. It claims
that there exists a bijective map R : v → ρ between an unknown set of potentials
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v and a corresponding set of densities which is unknown as well. Nevertheless,
this result implies that the ground state energy E can in principle be obtained by
using v = R−1(ρ), i.e., the potential v as a functional of the ground state density ρ.
However, there is a serious problem since nobody knows this map explicitly.

37.3.1 Hohenberg–Kohn Variational Principle

Hohenberg and Kohn assume that every one-particle density ρ is defined in terms
of a ground state ψ for some potential v, i.e., HN (v)ψ = E(v)ψ . Accordingly, they
introduce the set

AN = {
ρ ∈ L1 ∩ L3(R3) : 0 ≤ ρ,

√
ρ ∈ H 1(R3), ∃ ground state ψ : ψ #→ ρ

}

and on AN they considered the functional

FHK (ρ) = E(v) −
∫

v(x)ρ(x) dx. (37.6)

This definition of FHK requires Theorem 37.3 according to which there is a one-
particle potential v associated with ρ, v = R−1(ρ). Using this functional the
Hohenberg–Kohn variational principle reads

Theorem 37.4 (Hohenberg–Kohn Variational Principle) For any v ∈ GN ∩X′,
the ground state energy is

E(v) = min
ρ∈AN

[FHK (ρ) +
∫

v(x)ρ(x) d x]. (37.7)

It must be emphasized that this variational principle holds only for v ∈ GN ∩ X′
and ρ ∈ AN . But we have three major problems: The sets GN and AN and the form
of the functional FHK are unknown. On one hand the Hohenberg–Kohn theory is an
enormous conceptual simplification since it gives some hints that the semiclassical
density functional theories are reasonable approximations. On the other hand, the
existence Theorem 37.3 does not provide any practical method for calculating phys-
ical properties of the ground state from the one electron density ρ. In experiments
we measure ρ but we do not know what Hamilton operator HN (v) it belongs to.

The contents of the uniqueness theorem can be illustrated by an example. Consider
the N2 and CO molecules. They have exactly the same numbers of electrons and
nuclei, but whereas the former has a symmetric electron density this is not the case for
the latter. We are, therefore, able to distinguish between the molecules. Imagine now
that we add an external electrostatic potential along the bond for the N2 molecule.
The electron density becomes polarized and it is no more obvious to distinguish
between N2 and CO. But according to the Hohenberg–Kohn uniqueness theorem it
is possible to distinguish between the two molecules in a unique way.

The Hohenberg–Kohn variational principle provides the justification for the
variational principle of Thomas Fermi in the sense that ETF(ρ) is an approxima-
tion to the functional E(ρ) associated with the total energy. Let us consider the
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functional Ev(ρ) = FHK (ρ) + ∫
v(x)ρ(x) d x. The Hohenberg–Kohn variational

principle requires that the ground state density is a stationary point of the functional
Ev(ρ) − μ[

∫
ρ(x) d x − N ] which gives the Euler–Lagrange equation (assuming

differentiability)

μ = DEv(ρ) = v +DFHK (ρ), (37.8)

where μ denotes the chemical potential of the system.
If we were able to know the exact functional FHK (ρ) we would obtain by this

method an exact solution for the ground state electron density. It must be noted that
FHK (ρ) is defined independently of the external potential v; this property means
that FHK (ρ) is a universal functional of ρ. As soon as we have an explicit form
(approximate or exact) for FHK (ρ) we can apply this method to any system and the
Euler–Lagrange Eq. (37.8) will be the basic working equation of the Hohenberg–
Kohn density functional theory. A serious difficulty here is that the functionalFHK (ρ)
is defined only for those densities which are in the range of the map R, a condition
which, as already explained, is still unknown.

37.3.2 The Kohn–Sham Equations

The Hohenberg–Kohn uniqueness theorem states that all the physical properties of
a system of N interacting electrons are uniquely determined by its one-electron
ground state density ρ. This property holds independently of the precise form of
the electron–electron interaction. In particular when the strength of this interaction
vanishes the functional FHK (ρ) defines the ground state kinetic energy of a system
of noninteracting electrons as a functional of its ground state density T0(ρ). This fact
was used by Kohn and Sham [4] in 1965 to map the problem of interacting electrons
for which the form of the functional FHK (ρ) is unknown onto an equivalent problem
for noninteracting particles. To this end FHK (ρ) is written in the form

FHK (ρ) = T0(ρ) + 1

2

∫
ρ(x)ρ(y)

|x − y| d x d y + Exc(ρ). (37.9)

The second term is nothing else than the classical electrostatic self-interaction, and
the term Exc(ρ) is called the exchange–correlation energy.

Variations with respect to ρ under the constraint ‖ρ‖1 = N leads formally to
the same equation which holds for a system of N noninteracting electrons under the
influence of an effective potential Vscf , also called the self-consistent field potential
whose form is explicitly given by

vscf (x) = v(x) +
(
ρ ∗ 1

|x|
)

(x) + vxc(x), (37.10)

where the term vxc(x) = DρExc(ρ) is called the exchange–correlation potential, as
the functional derivative of the exchange–correlation energy.
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There have been a number of attempts to remedy the shortcomings of the
Hohenberg–Kohn theory. One of the earliest and best known is due to E. Lieb
[14]. The literature we have mentioned before offers a variety of others. Though
some progress is achieved major problems are still unresolved. Therefore we cannot
discuss them here in our short introduction.

A promising direction seems to be the following. By Theorem 37.2 we know
that −E(v) is a convex continuous functional on X′. Hence (see [15]), it can be
represented as the polar functional of its polar functional (− E)∗:

−E(v) = sup
u∈X′′

[〈v, u〉 − (− E)∗(u)] ∀ v ∈ X′], (37.11)

where the polar functional (− E)∗ is defined on X′′ by

(− E)∗(u) = sup
v∈X′

[〈v, u〉 − (− E)(v)] ∀ u ∈ X′′. (37.12)

Now X = L2(R3) ∩ L1(R3) is contained in the bi-dual X′′ but this bi-dual is much
larger (L1(R3) is not a reflexive Banach space) and L3(R3) ∩ L1(R3) ⊂ L2(R3) ∩
L1(R3). But one would like to have a representation of this form in terms of densities
ρ ∈ AN ⊂ L3(R3) ∩ L1(R3), not in terms of u ∈ X′′.

Remark 37.1 In Theorem 37.4, the densities are integrable functions on all of R
3

which complicates the minimization problem in this theorem considerably, as we
had mentioned before in connection with global boundary and eigenvalue problems.
However having the physical interpretation of the functions ρ in mind as one-particle
densities of atoms or molecules, it is safe to assume that all the relevant densities have
a compact support contained in some finite ball in R

3. Thus, in practice, one considers
this minimization problem over a bounded domain B with the benefit that compact
Sobolev embeddings are available. As an additional advantage we can then work in
the reflexive Banach space L3(B) since L1(B) ⊂ L3(B) instead of L1(R3)∩L3(R3).

37.4 Exercises

1. Prove Theorem 37.2.
Hints: For v1, v2 ∈ X′ and 0 ≤ t ≤ 1 show first that HN (tv1 + (1 − t)v2) =
tHN (v1)+ (1− t)HN (v2). Part a) now follows easily. For part b) consider v1, v2 ∈
X′ such that v1(x) ≤ v2(x) for almost all x ∈ R

3 and show as a first step:
〈ψ ,HN (v1)ψ〉 ≤ 〈ψ ,HN (v2)ψ〉 for all ψ ∈ WN , ‖ψ‖ = 1.
For part c) proceed similarly and show |〈ψ , (HN (v1) − HN (v2))ψ〉| ≤
N ‖v1 − v2‖∞ for all ψ ∈ WN , ‖ψ‖ = 1. This implies ±(E(v1) − E(v2) ≤
N ‖v1 − v2‖∞.

2. Show that the Coulomb energy functional D is weakly lower semi-continuous on
the Banach space L6/5(R3).

3. Prove: The Thomas–Fermi energy functional ETF is well defined on the cone
DTF = {

ρ ∈ L5/3 ∩ L1(R3) : ρ ≥ 0
}
.
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