
Chapter 6
Online Interactions

Lilian Weng, Filippo Menczer, and Alessandro Flammini

Abstract The ubiquitous use of the Internet has led to the emergence of countless
social media and social networking platforms, which generate large-scale digital
data records of human behaviors online. Here we review the literature on online
interactions, focusing on two main themes: social link formation and online com-
munication. The former is often studied in the context of network evolution models
and link prediction or recommendation tasks; the latter combines classic social
science theories on collective human behaviors with analysis of big data enabled
by advanced computation techniques. But the structure of the network, and the flow
of information through the network influence each other. We present a case study to
illustrate the connections between social link formation and online communication.
Analysis of longitudinal micro-blogging data reveals that people tend to follow
others after seeing many messages by them. We believe that research on online
interactions will benefit from a deeper understanding of the mutual interactions
between the dynamics on the network (communication) and the dynamics of the
network (evolution).

6.1 Introduction

User activity within online socio-technical systems is exploding. Social and micro-
blogging networks such as Facebook, Twitter, and Google Plus host the information
sharing activity of billions of users every day. Using these network platforms, people
communicate ideas, opinions, videos, and photos among their circles of friends and
followers across the world. These interactions generate an unprecedented amount of
data that can be used as a social observatory, providing a unique opportunity to study
the mechanisms behind human interactions with a quantitative approach [1–4].

Research on human online interactions revolves around two main themes: social
link formation and online communication. People can build virtual connections
with others to subscribe to their messages (i.e., following on Twitter and Google
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Plus) or to claim a mutual friendships between them (i.e., friending on Facebook).
The established social links enable people to easily communicate with friends,
sharing and spreading information on top of the social network.

Most work on social link formation frames the problem as network evolution
modeling, in which each new link creation is driven by predefined mechanisms that
resemble the observations from real-world data. Meanwhile, many algorithms have
been presented to predict or recommend missing links in a given network.

Communication dynamics is a long-lasting research topic in the social sciences.
Many theories of how people interact, exchange ideas, and influence each other
have been proposed decades ago. With the availability of big data and advanced
computational power, researchers can apply, verify, and enrich classic hypotheses
on human behaviors, leveraging the capacity to collect and analyze data on a large
scale to reveal patterns of human interactions [3]. New interdisciplinary research
fields, namely computational social science and human dynamics, have emerged in
such a scenario [3, 5].

6.1.1 Social Link Formation

Understanding the formation of online social links is a key ingredient for modeling
the evolution of online social networks, as the rules for creating new links determine
the network structure in time. Various models were introduced to capture the growth
and evolution of network topology, as well as different characteristics of complex
networks. Most such models focused on defining basic mechanisms that drive link
creation [6–10].

6.1.1.1 Classic Network Evolution Models

The random network model is the oldest attempt at characterizing a non-regular
network. Although, strictly speaking, it is not an evolutionary model, it can be
regarded as such when links are added sequentially to the network. It is character-
ized by the fact that each link exists independently with the same probability [11].
The random network inspired many subsequent studies in network science, but it
was not thought to reproduce several crucial properties of social networks [12],
such as the small-world effect [13–15], high clustering coefficient [14, 16, 17],
temporal dynamics [18, 19], information propagation [20], and heterogeneous
distributions in connectivity patterns [21–25]. Many such characteristics were
indeed yet undiscovered at the time when the random network model was proposed.

The small-world effect, also known as “six degrees of separation,” originated
from the Milgram experiment [13], in which the average length of communication
chains between two random individuals was found to be around six—smaller than
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what expected in a regular network, such as a lattice. The Watts-Strogatz model
was designed to reproduce the small-world phenomenon by rewiring each link in a
regular network with a small probability [14].

A scale-free network has a power-law degree distribution, commonly seen in
many real-world social networks such as the film actor network, the scientific
collaboration network, and the citation network [6, 8, 21]. A highly skewed degree
distribution in a social network indicates that, although the majority of nodes
is poorly connected, there is a consistent group of them (compared to what
happens in a random graph) that is extremely well connected, and whose collective
connections account for a relevant portion of the entire set of links in the network.
In a large group of people, only a few are extremely popular and most others
do not have many contacts. Many models have been proposed to reproduce the
heterogeneous distribution in connectivity [12, 22–25]. The Barabási-Albert model
generates a scale-free network by continuously adding new nodes into the system
(“growth”) and connecting them with other nodes with preference to high-degree
ones (“preferential attachment”) [21]. Motivated by the structure of the Web graph,
the copying model adds a new node into the network at a time and links it to
a random existing node or its neighbors [24, 25]. Another model proposed by
Newman, Watts, and Strogatz aimed to build up a random graph with arbitrary
degree settings [12]. The ranking model grows the network according to a rank of
the nodes by any given prestige measure, reproducing arbitrary power-law degree
distributions [23].

6.1.1.2 Models with Social Components

The preferential attachment mechanisms in the Barabási-Albert and ranking models
have a clear rationale in the social context: people prefer to form edges with
well-connected individuals, such as celebrities. However, this prescription alone
is not sufficient to reproduce several other important features of real networks.
Other models have been put forth to fill the gap, including ingredients such as
homophily [26–29], triadic closure [15–17, 30, 31], hierarchical structure [32], and
information diffusion [20, 33].

Homophily can be regarded as people’s propensity for linking with similar
others [26, 28, 29]. The triadic closure mechanism is based on the intuition that
two individuals with mutual friends have a higher probability to establish a new
contact [30, 31]. This tendency was observed in both undirected and directed online
social networks and incorporated into several network growth models [15–17]. In
particular, Leskovec et al. tested triadic closure against many other mechanisms in
four different large-scale social networks. By using maximum likelihood estimation
(MLE) [34], they identified triadic closure as the best rule, among those considered,
to explain link creation and to reproduce the clustering coefficient and the degree
distribution of the real networks under study [16].
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6.1.1.3 Link Prediction

Missing link prediction algorithms aim at inferring new social connections that may
happen in the near future given a current snapshot of the network structure. The
prediction has practical applications in the online systems; one of the most popular
use cases is to provide recommendations for new contacts (i.e., “People You May
Know” on Facebook and LinkedIn). Common approaches consider link prediction
as a classification task or ranking problem, using node similarity [35, 36], the
hierarchical structure of the network [32], random walks [16], supervised random
walks [37], graphical models [38], and user profile features [39].

One class of link prediction algorithms is designed on the premise that only
the network topology is known. Liben-Nowell and Kleinberg [36] examined and
compared a rich set of metrics for quantifying the similarity between a pair of nodes
in the social network, where high similarity implies high likelihood of being con-
nected on the basis of homophily. Tested metrics were built upon different network
topological features associated with each node, including overlap between neighbor
sets, preferential attachment, shortest path distance, and PageRank hitting time. The
analysis identified Adamic-Adar similarity [35] as the metric providing the best
performance. Clauset, Moore, and Newman [32] explored the observation that real-
world networks often exhibit community structure and hierarchical organization.
They proposed a link prediction method that uses knowledge about the network’s
hierarchical structure.

Other link prediction algorithms depend on additional attributes of existing
individuals or connections, as well as the topology of the network. Supervised
random walks can incorporate the knowledge of nodes and links so that a random
walker is guided to follow preferred paths with higher probability [37]. Attributes
may include, for example, the number of co-authored papers in a collaboration
network and the frequency of interactions between a pair of friends on Facebook.
In online systems like Flickr and Last.fm, users can annotate content revealing their
topical interests. Schifanella et al. found that users with similar interests in these
networks are more likely to be friends and proposed to use the similarity between
user annotation metadata as a predictor of missing social links [39].

6.1.2 Communication Dynamics

Early models concerning communication dynamics were inspired by studies of
epidemics, assuming that a piece of information could pass from one individual
to another through social contacts [40–42]. Recently, starting from observations and
theories in social sciences, a wealth of computational models have been proposed to
describe human communication.
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6.1.2.1 Threshold Model

One class of models is based on the idea of a threshold: people tend to follow the
same trends as most of their friends do [43, 44]. A threshold can be defined as
the number or fraction of others who must make a decision before a given actor
does the same. Many empirical studies have demonstrated the existence of such
a threshold in social and behavioral contagion online [45–48]. Threshold models
have been widely applied to understand the diffusion of rumors, norms, strikes,
voting, educational attainment, migration, and other human behaviors [43, 49, 50],
and extended to study the role of competition for finite attention [51].

6.1.2.2 Homophily

The principle of homophily states that similar people are more likely to have contact
than dissimilar ones [27, 52, 53]. The existence of homophily in social groups
has been supported by various empirical observations and experiments in online
settings [26, 29, 39, 54, 55]. Crandall et al. proposed a homophily-based model
to predict a user’s future activity and interactions with others according to user
similarities [56].

A feedback loop has been claimed to result in increasing similarity among users:
people grow to resemble their friends because of social (peer) influence, while being
more likely to form links with similar people (homophily) [29, 56]. Such a feedback
loop could lead to the so-called echo-chamber effect, by which people are exposed
to limited diversity of opinions in online social networks [57, 58]. Though it is hard
to fully distinguish between peer influence and homophily [59], the latter effect
contributes to promoting behavioral contagion [54].

6.1.2.3 Weak Tie Hypothesis

Friendships vary in their intensity and intimacy. The concept of tie strength has
been introduced to capture this variation: strong ties are our closest confidants and
supporters, while weak ties, to whom we feel less close, comprise the majority of
our personal networks. Granovetter defined the strength of social ties proportionally
to the size of shared social circles and proposed the weak-tie hypothesis [31, 60],
according to which weak ties do not carry as much communication as strong ties,
but act as bridges between communities and thus as important channels for novel
information.

Following up on Granovetter’s work, many empirical studies have tested the
weak-tie hypothesis [61–69]. Brown and Reingen found an important bridging
function of weak ties in word-of-month referral behavior, allowing information to
travel from one distinct subgroup of referral actors to another [62]. Gilbert and
Karahalios tested several dimensions of tie strength on social media, revealing that
both intensity of communication and intimate language are strong indicators of
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relationship closeness [69]. Onnela et al. analyzed a mobile call network and showed
that individuals in clusters tend to communicate more, while ties between clusters
have less traffic [68]. Bakshy et al. compared individual adoption rates on Facebook
when an external URL shared by friends is or is not included in the newsfeed and
found that although stronger ties are individually more influential in persuading
others to adopt and spread information, more abundant weak ties are responsible for
the propagation of novel information [61].

In summary, strong ties are believed to provide greater emotional support [69, 70]
and to be more influential [61, 62, 71], while weak ties provide novel information
and connect us to opportunities outside our immediate circles [31, 68, 72].

6.1.2.4 Limited Attention

People have limited attention during communication. This constraint may be related
to a cognitive limit on the number of stable social relationships that one can
sustain, as postulated by Dunbar [73] and later supported by analyses of Twitter
data [74, 75]. Huberman, Romero, and Wu defined friends of a Twitter user as those
who have been mentioned at least twice. They found that most users have a very
small number of friends compared to a large number of followers, and the friend
network is more influential than the follower network in driving Twitter usage [74].
Wu and Huberman analyzed the dynamics of collective attention on Digg.com and
modeled the delay of collective attention with a single novelty factor. Their mea-
surements indicated that novelty within groups decays with a stretched-exponential
law, suggesting the existence of a natural time scale over which attention fades [76].

6.1.2.5 Communication Dynamics on Evolving Networks

The large majority of studies on communication dynamics consider a static under-
lying social network, under the assumption that the network evolves on a slower
time scale than that characteristic of the information spread. Recent research has
addressed the modeling of cases in which the time scales of communication
dynamics and network evolution are comparable. These approaches consider the
two processes as either independent [19, 77] or coupled [33, 78, 79]. In particular, the
studies focused on the former case considered mainly epidemic processes in which
links are deleted or rewired according to the disease status of each node [78, 79].

6.2 Case Study: Traffic-Based Social Link Formation

We probe into the effects of information diffusion in shaping the evolution of the
social network structure. As a case study, we present a longitudinal analysis of
micro-blogging data to better understand the strategies employed by users when

http://dx.doi.org/Digg.com
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expanding their social circles. While the network structure affects the spread of
information, the network is, in turn, shaped by this communication activity. This
leads us to hypothesize a mechanism whereby people tend to follow others after
seeing many messages from them. Interestingly, the coupling of social link forma-
tion and information sharing allows to depict a more accurate and comprehensive
view of the network evolution [33].

We analyzed a dataset collected from Yahoo! Meme,1 including the entire history
of the system from April 2009 until March 2010. A user j following a user i is
represented in the follower network by a directed edge ` D .i; j/, indicating j can
receive messages posted by i. We adopt this notation, in which the link creator
is the target, to emphasize the direction of information flow. In our notation, the
in-degree of a node j is the number of people followed by j. Users can repost
received messages, which become visible to their followers. When user j reposts
content from i, we infer a flow of information from i to j. Each link is weighted by
the numbers of messages from i that are reposted or seen by j. At the end of the
observation period, the Yahoo! Meme follower network consisted of 128,199 users
with at least one edge, connected by a total of 3,485,361 directed edges.

Social micro-blogging networks, such as Twitter, Google Plus, Sina Weibo, and
Yahoo! Meme, are designed for information sharing. As illustrated in Fig. 6.1,
the dynamics on the network directly affects the dynamics of the networks, and
vice versa. In this case study, we investigate the individual strategies that lead to
the creation of new social links. We characterize link creation processes with a
set of parameters associated with different link creation strategies, estimated by a
Maximum-Likelihood approach [34]. This analysis will show that triadic closure
does have a strong effect on link formation, but shortcuts based on traffic are another
indispensable factor in interpreting network evolution.

6.2.1 Link Creation Mechanisms

When users post or repost messages, all their followers can see these posts and
might decide to repost them, generating spreading paths that, when taken together,
form cascade networks. When receiving a reposted message, a Meme user in such
a path can see both the grandparent (G, the user two steps ahead in the path) and
the origin (O, original source). A user may decide to follow a grandparent or origin,
receiving their future messages directly. These new links create shortcuts connecting
users at any distance in the network. A triadic closure occurs when a user follows a
triadic node (�, the user two steps away in the follower network). The definitions
of different types of link creation mechanisms are illustrated in Fig. 6.2.

1Yahoo! Meme was a social micro-blogging system similar to Twitter, active between 2009 and
2012.
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Dynamics of Network:
Link Creation

Dynamics on Network:
Information flow

A B

A B

Fig. 6.1 The dynamics of and on the network are strongly coupled. The bottom layer illustrates
the social network structure, where the blue arrows represent “follow” relationships with the
direction of information flow. The dashed red arrow marks a newly created link. The upper layer
depicts the flow of information between people in the same group, leading to the creation of the new
link. The social network structure constrains communication patterns, but information propagated
through the network also affect how agents behave and ultimately how the network changes and
grows

Target
User

Information Flow
Following

Others
Grandparent
Origin

Triadic Node

Fig. 6.2 Illustration of link creation mechanisms. A grandparent node is a special case of triadic
node, from which or through which information has reached the target user. Therefore traffic-based
shortcuts to grandparent nodes are a subset of triadic closures

6.2.1.1 Statistical Analyses of Shortcuts

To quantify the statistical tendency of users to create shortcuts, let us consider every
single link creation in the data as an independent event. We test the null hypotheses
that links to grandparents, origins, and triadic nodes are generated by choosing
targets at random among the users not already followed by the creator.

We label each link ` by its creation order, 1 � ` � L, where L is the total number
of links. For each link, we can compute the likelihood of following a grandparent
by chance:

pG.`/ D NG.`/

N.`/ � k.`/ � 1
; (6.1)
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where NG.`/ is the number of distinct grandparents seen by the creator of ` at the
moment when ` is about to be created; N.`/ is the number of available users in
the system when ` is to be created; k.`/ is the in-degree of `’s creator at the same
moment; and the denominator is the number of potential candidates to be followed.

The indicator function for each link ` denotes whether the link connects with a
grandparent or not in the real data:

1G.`/ D
�

1 if ` links to a grandparent in the data
0 otherwise.

(6.2)

The expected number of links to grandparents according to the null hypothesis can
be then computed as:

EG D
LX

`D1

pG.`/ (6.3)

and its variance is given by:

�2
G D

LX
`D1

pG .`/ .1 � pG .`// (6.4)

while the corresponding empirical number is:

SG D
LX

`D1

1G.`/: (6.5)

According to the Lyapunov central limit theorem,2 the variable zG D .SG � EG/=�G

is distributed according to a standard normal N .0; 1/. For linking to origins (O) or
triadic nodes (�), we can define zO and z� similarly. In all three cases, using a z-test,
we can reject the null hypotheses with high confidence (p < 10�10). We conclude
that links established by following grandparents, origins or triadic nodes happen
much more frequently than by random connection. These link creation mechanisms
have important roles in the evolution of the social network.

2Lyapunov’s condition, 1
�4

n

Pn
`D1 EŒ.X.`/ � p.`//4�

n!1�! 0 where X.`/ is a random Bernoulli
variable with success probability p.`/ [80], is consistent with numerical tests. Details are omitted
for brevity.
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Fig. 6.3 Individual
preferences for following
grandparents (red circles),
origins (blue squares), and
triadic nodes (green
triangles) change with the
in-degree of the link creator

6.2.1.2 User Preference

The variables zG, zO, and z�, as defined above, measure how much more likely
links of a given type are formed than by chance—in other words, how strong
individual preferences are for following grandparents, origins or triadic nodes. To
study the dependence of the link formation tendencies on the different stages of an
individual’s lifetime, let us compute zk

G, zk
O, and zk

� for links created by users with in-
degree k, that is, those who are following k users at the time when the link is created.
Figure 6.3 shows that the principle of triadic closure dominates user behavior when
one follows a small number of users (k < 75). In the early stages, one does not
receive much traffic, so it is natural to follow people based on local social circles,
consistently with triadic closure. However, users who have been active for a long
time and have followed many people (k > 75) have more channels through which
they monitor traffic. This creates an opportunity to follow others from whom they
have seen messages in the past.

6.2.1.3 Link Efficiency

In information diffusion networks like Twitter and Yahoo! Meme, social links
may have a key efficiency function of shortening the distance between information
creators and consumers. An efficient link should be able to convey more information
to the follower compared to less efficient links. Hence we define the efficiency of link
` as the average number of posts seen or reposted through ` during one time unit
after its creation:

�seen D wseen.`/

T � t.`/
; �repost D wrepost.`/

T � t.`/
; (6.6)

where w.`/ is the number of messages seen or reposted through `; t.`/ is the time
when ` was created; and T is the time of the last action recorded in our dataset.
Both seen and reposted messages are considered, as they represent different types
of traffic; the former are what is visible to a user, and the latter are what a user is
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Fig. 6.4 Efficiency of links created according to different mechanisms, or average number of
messages (a) seen or (b) reposted per time unit. Each box shows data within lower and upper
quartile. Whiskers represent the 99th percentile. The triangle and line in a box represent the mean
and median, respectively. The black line and grey area across the entire figure mark the median
and interquartile range of the measure across all links, respectively

willing to share. We compute the link efficiency of every grandparent, origin, and
triadic closure link. As shown in Fig. 6.4, both grandparent and origin links exhibit
higher efficiency than triadic closure links, irrespective of the type of traffic. By
shortening the paths of information flows, more posts from the content generators
reach the consumers.

6.2.2 Rules of Network Evolution

To infer the different link creation strategies from the observed data, we characterize
users with a set of probabilities associated with different actions, and approximate
these parameters by MLE [34]. For each link `, we know the actual creator and the
target; we can thus compute the likelihood f .`j�; �/ of the target being followed by
the creator according to a particular strategy � , given the network configuration �

at the time when ` is created. The likelihoods associated with different strategies
can be mixed according to the parameters to obtain a model of link creation
behavior. Finally, assuming that link creation events are independent, we can derive
the likelihood of obtaining the empirical network from the model by the product
of likelihoods associated with every link. The higher the value of the likelihood
function, the more accurate the model.

6.2.2.1 Simple Strategy

We consider five link creation mechanisms and their combinations:

• Random (Rand): follow a randomly selected user who is not yet followed
• Triadic closure (�): follow a randomly selected triadic node
• Grandparent (G): follow a randomly selected grandparent
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• Origin (O): follow a randomly selected origin
• Traffic shortcut (G [ O): follow a randomly selected grandparent or origin

Other mechanisms for link creation could be similarly incorporated, such as
social balance [81] and preferential attachment [21]. However, preferential attach-
ment is built on the assumption that everyone knows the global connectivity of
everyone else, which is not very realistic. The strategies considered here essentially
reproduce and extend the copy model [25], approximating preferential attachment
with only local knowledge.

To model link creation with a single strategy, we can use a parameter p for the
probability of using that strategy, while a random user is followed with probability
1 � p. The calculation of maximum likelihood, taking the single strategy of
grandparents as an example, is as follows:

LG.p/ D
LY

`D1

.pf .`jG; �/ C .1 � p/f .`jRand; �//

D
LY

`D1

�
p

1G.`/

NG.`/
C .1 � p/

1

N.`/ � k.`/ � 1

�

D
Y

1G.`/D1

�
p

NG.`/
C 1 � p

N.`/ � k.`/ � 1

� Y
1G.`/D0

1 � p

N.`/ � k.`/ � 1
: (6.7)

Note that since a follow action can be ascribed to multiple strategies, it can
contribute to multiple terms in the log-likelihood expression. For instance, a link
could be counted in both f .`jG; �/ and f .`jRand; �/. For numerically stable
computation, we maximize the log-likelihood:

logLG.p/ D
X

1G.`/D1

ln

�
p

NG.`/
C 1 � p

N.`/ � k.`/ � 1

�

C
X

1G.`/D0

ln
1 � p

N.`/ � k.`/ � 1
: (6.8)

Similar expressions of log-likelihood can be obtained for other strategies (�, O, and
G [ O).

It is not trivial to obtain the best p analytically, so we explore the values of p 2
.0; 1/ numerically (see Fig. 6.5). Triadic closure dominates as a single strategy, with
p� D 0:82. Traffic-based strategies alone account for about 20 % of the links.
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a b c d

Fig. 6.5 The plot of the log-likelihood logL .p/ as a function of link creation strategy probabil-
ities for models with a single strategy. The red circles mark the maximized logL .p/. (a) Triadic
closure, (b) Grandfather, (c) Origin, (d) Grandfather + Origin

6.2.2.2 Combined Strategies

For a more realistic model of the empirical data, let us consider combined
strategies with both triadic closure and traffic-based shortcuts. For each link `,
the follower with probability p1 creates a shortcut by linking to a grandparent
or an origin (G [ O); with probability p2 follows a triadic node (�); and with
probability 1 � p1 � p2 connects to a random node. Taking the combined strategy
with grandparent as an example, we compute the log-likelihood as:

logLGC�.p1; p2/ D log
LY

`D1

h
p1f .`jG [ O; �/ C p2f .`j�; �/

C.1 � p1 � p2/f .`jRand; �/
i
: (6.9)

The detailed derivations of the likelihood functions and the cases of the other
combined strategies are omitted for brevity.

Once again, we numerically explore the values of p1 and p2 in the unit square
to maximize the log-likelihood. The likelihood landscape for the combined strategy
considering both grandparents and origins as well as triadic closure is shown in
Fig. 6.6. The parameter settings and the maximum likelihood values for all tested
models are listed in Table 6.1. We can compare the quality of these models
by comparing their maximized logL ’s. The combined models with both traffic
shortcuts and triadic closure yield the best accuracy. In these models, triadic closure
accounts for 71 % of the links, grandparents and origins for 12 %, and the rest of the
links are created at random.
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Fig. 6.6 The contour plot of
log-likelihood logL .p1; p2/

for the combined strategy of
creating traffic shortcuts
(G [ O) with probability p1

and triadic closure links (�)
with probability p2. The black
triangle marks the optimum

Table 6.1 The best parameters in different models and corre-
sponding values of maximized log-likelihood function

Strategy Model Parameters max logL

Single � p D 0:82 �3:15 � 107

G p D 0:19 �3:64 � 107

O p D 0:17 �3:65 � 107

G [ O p D 0:21 �3:63 � 107

Combined G C � p1 D 0:12 p2 D 0:71 �3:12 � 107

O C � p1 D 0:10 p2 D 0:73 �3:13 � 107

G [ O C � p1 D 0:12 p2 D 0:71 �3:12 � 107

6.3 Discussion

Social link formation and information sharing are two major tracks of research on
online interactions. The mechanisms of new link creation determine the topology
of linkages among individuals, and the underlying network structure is critical for
the dynamics of the diffusion process [6–8, 51]. At the same time, as many social
links are driven by the need for more efficient information sharing in social media
sites, social link formation is greatly affected by communication activity. Both the
evolving structure of the social network and information diffusion have been studied
for decades, but the coupling between these dynamical processes has not been
well explored. In the present case study, we demonstrate a feedback loop between
these two dynamics. While triadic closure is the dominant mechanism for social
network evolution, it is mainly relevant in the early stages of a user’s lifetime. As
time progresses, the traffic generated by communication dynamics on the network
becomes an indispensable component for user linking behavior. As users become
more active and influential, their links create shortcuts that make the spread of
information more efficient in the network.

Studies of online interactions—how social networks evolve and how information
spreads—help us gain a better understanding of social influence, user behavior, and
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network efficiency in the context of online systems. The coupling between dynamics
of and on the network provides us with powerful insights into human interactions
in the digital world.
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