
Computational Social Sciences

Bruno Gonçalves
Nicola Perra    Editors 

Social 
Phenomena
From Data Analysis to Models



Computational Social Sciences

A series of authored and edited monographs that utilize quantitative and compu-
tational methods to model, analyze, and interpret large-scale social phenomena.
Titles within the series contain methods and practices that test and develop theories
of complex social processes through bottom-up modeling of social interactions.
Of particular interest is the study of the co-evolution of modern communication
technology and social behavior and norms, in connection with emerging issues such
as trust, risk, security, and privacy in novel socio-technical environments.

Computational Social Sciences is explicitly transdisciplinary: quantitative methods
from fields such as dynamical systems, artificial intelligence, network theory,
agent-based modeling, and statistical mechanics are invoked and combined with
state-of-the-art mining and analysis of large data sets to help us understand social
agents, their interactions on and offline, and the effect of these interactions at the
macro level. Topics include, but are not limited to social networks and media,
dynamics of opinions, cultures and conflicts, socio-technical co-evolution, and
social psychology. Computational Social Sciences will also publish monographs
and selected edited contributions from specialized conferences and workshops
specifically aimed at communicating new findings to a large transdisciplinary
audience. A fundamental goal of the series is to provide a single forum within which
commonalities and differences in the workings of this field may be discerned, hence
leading to deeper insight and understanding.

Series Editors

Elisa Bertino
Purdue University, West Lafayette,
IN, USA

Jacob Foster
University of California,
Los Angeles,
CA, USA

Nigel Gilbert
University of Surrey, Guildford, UK

Jennifer Golbeck
University of Maryland,
College Park,
MD, USA

James A. Kitts
University of Massachusetts, Amherst,
MA, USA

Larry Liebovitch
Queens College, City University of
New York, Flushing, NY, USA

Sorin A. Matei
Purdue University, West Lafayette,
IN, USA

Anton Nijholt
University of Twente, Enschede,
The Netherlands

Robert Savit
University of Michigan, Ann Arbor,
MI, USA

Alessandro Vinciarelli
University of Glasgow, Scotland

More information about this series at http://www.springer.com/series/11784

http://www.springer.com/series/11784




Bruno Gonçalves • Nicola Perra
Editors

Social Phenomena
From Data Analysis to Models

123



Editors
Bruno Gonçalves
Centre de Physique Théorique
Aix-Marseille Université

Campus de Luminy, Case 907
Marseille, France

Nicola Perra
MoBS Lab
Northeastern University
Boston, MA, USA

Computational Social Sciences
ISBN 978-3-319-14010-0 ISBN 978-3-319-14011-7 (eBook)
DOI 10.1007/978-3-319-14011-7

Library of Congress Control Number: 2015939174

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


To Duygu Balcan,
Forever in our memory





Foreword

An unprepared reader could be easily fooled by this book’s title. While it hints at
being a classic social science book, readers will quickly discover that the 12 chapters
are in many cases more similar to Computer Science or Physics articles, and the
authors of the chapters are not just social scientists, but rather interdisciplinary
teams with a strong representation of physicists, computer scientists, and applied
mathematicians. Indeed, this book is about Social Systems and Social Phenomena,
but the approach followed is the one that has emerged in the last 10 years at the
convergence of complex systems, networks, big data, and social sciences. This
emerging field of research has been given the name of “computational social
science” in a farseeing paper by Lazer and coworkers in 2009.1

I have worked in the area of complex systems for about two decades, and I can
witness the huge fascination that social science has always had on the community of
complex systems researchers. On the other hand, social phenomena can be seen in
many cases as self-organizing systems with many degrees of freedom that develop
collective behavior, and exhibit non-trivial emergent phenomena. All these features
are the quintessential summary of a complex system, and it is no wonder that
complex systems scientists have used their mathematical and computational tools
to approach social science questions such as the emergence of consensus, social
opinion dynamics, conflicts, and cooperation. However, although they provided
powerful conceptual metaphors, these approaches often have suffered from being
oversimplified and not grounded on actual data. Very often social scientists could
not help but critique those attempts by saying that complex systems scientists were
looking at society as an array of ordered magnetic spins, a view that was too
simplistic by many accounts.

In the last decade, however, the research landscape has been redefined by the
big data revolution. It is not just that an increasing number of socio-economic data
have been made readily available by the progressive digitalization of our world. The
advent of mobile and pervasive technologies, the Web, and the myriad of digital

1D. Lazer et al., Computational Social Science, Science 323, pp. 721–723 (2009).
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viii Foreword

social networks have triggered an unprecedented avalanche of social behavioral
data ranging from human mobility and social interaction to the very real-time
monitoring of conversation topics, memes, and information consumption. Data on
mobile device usage allow the measure of people mobility, even in remote regions
of the world. Phone call records show us patterns of social interactions that can be
integrated with a multitude of social networks and microblogging data. The spread
of memes and information over these networks can be monitored in real time on a
planetary scale. Finally, new pervasive technologies are capable of gathering data
down to the level of face-to-face interactions for thousands of people at once.

By rushing into this “Data El Dorado” scientists have thus been able to
understand the complex networks underlying social interactions and to analyze
the dynamics of social phenomena. Instead of a simple array of individuals,
models are now informed by the intricate and large-scale connectivity patterns
encapsulated in the theory of complex networks. Size does matter, and having a
high quality dataset for thousands or millions of individuals has triggered the search
for statistical patterns, ordering principles, and generative mechanisms that could be
used to achieve greater realisms in the modeling of social phenomena. Nowadays
computational social science has definitely moved from toy/conceptual models to
data-driven approaches that can be validated quantitatively. From the spread of
emerging infectious diseases and crime rates to road traffic and crowd movement,
computational approaches are now achieving quantitative success, both for scenario
analysis and in real-time forecasts.

The research activity emerging from ever-increasing data availability, novel
computational tools and methods, and the rich conceptual framework provided by
complex networks and systems science provides an exciting understanding of a
variety of socio-technical systems. It is also promising to be truly disruptive in the
way we act on and manage those systems and in the development of new interactive
and adaptive information and communication technologies. The research landscape
in this area is, however, fast paced and scattered across different areas. The many
scientific contributions of recent years are dispersed across different disciplinary
journals and conference proceedings. This book is one of the first editorial attempts
at providing a coherent presentation of recent areas of investigation that range from
human mobility to online interactions and the financial market. The book editors,
Bruno Gonçalves and Nicola Perra, have been able to assemble a fantastic number
of contributing authors who are among the scientific leaders at the forefront of
the research activity presented here. Each chapter provides a clear and rigorous
introduction to the incredible advances witnessed in this research field in the last 10
years. The final result is a book that delivers, for an entire research field, a coherent
presentation of the workflow that we could simply summarize as “from data to
knowledge”. This book will certainly be an important contribution to the field—
one from which many more advances of our future understanding of socio-technical
systems will be built.

Boston, MA, USA Alessandro Vespignani
March 2015



Preface

The story of this book is one that spans the better part of a decade. Even though we
are both physicists by training, our interest in the study of social behavior goes back
many years. It was thus natural that, in 2009, when we found ourselves working in
the same group in Bloomington, Indiana, we would work together in the data-driven
study of Human Behavior. These were the early days of the big data revolution when
Twitter was practically unknown in the research community and new datasets were
appearing almost every day.

A few years before, Barabási had drawn the first wave of attention to human
behavior with a series of papers on what he called “Human Dynamics” that focused
on the study of the impact that a broad-tailed inter-event time distribution can have
on some dynamical process. This ramp-up in attention culminated in 2009 when
Science published a position paper by some of the leading physicists, economists,
and social scientists: A call to arms to combine large-scale datasets with new
computational and analytical tools under the umbrella of “Computational Social
Science”.

Our collaboration started with a work on the empirical validation of Dunbar’s
number using Twitter data and continued on to cover the effect that behavioral
changes can have on epidemic spreading and on how broadly distributed activity
patterns influence the structure of social networks.

In 2012, after we had both left Bloomington behind, we jointly organized the first
edition of the Computational Approaches to Social Modeling (ChASM) workshop
collocated with the International Conference on Computational Science (ICCS) with
the explicit goal of bridging the chasm between the social and physical sciences
and bringing together practitioners and theorists from Computational, Physical,
and Social Sciences to exchange ideas and techniques useful to the study of
human behavior. In 2014, ChASM celebrated its third edition as a workshop of the
ACM Web Science conference back where it all started, in Bloomington, Indiana.
Preparations for the next edition are ongoing.

In parallel with ChASM we also organized several editions of a “Special Topic”
session in the American Physical Society annual March Meeting. Here the goal was
to help diffuse the idea of studying social behavior to an audience of “traditional”

ix
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physicists. It was during the runup to one of these sessions that we were contacted
by Chris Coughlin, a Physics & Complex Systems Editor at Springer, with the
invitation to organize this edited volume.

With this book the goal is to showcase what some of the leading researchers,
from fields of study as different as Social, Computational, and Physical Science, are
doing in this important subject. We tried to give the authors as much freedom as
possible while still preserving the unified view and touching on what we consider
to be the most interesting developments in this field.

For this opportunity we are truly thankful to the Springer editors and, in
particular, to all the authors who have agreed to participate in this work.

Marseille, France Bruno Gonçalves
Boston, MA, USA Nicola Perra
March 2015
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Chapter 1
Introduction

Bruno Gonçalves and Nicola Perra

When it was first conceived by Tim Berners-Lee in 1990, the World Wide Web
(WWW) [1] was intended as a way for the publication and sharing of information
among researchers at CERN. The original WWW browser allowed users to both
browse and edit pages but the full vision of a network where anyone could be a
producer and publisher of content didn’t come to fruition until almost a decade
later. Before the DotCom boom and the arrival of wikis, blogs, etc. was possible,
a whole global infrastructure had first to be built. Routers and service providers to
route traffic, Web browsers to allow users to access pages provided by Web servers,
caching and billing protocols to improve performance and allow for the development
of commercial enterprises, among many others.

A direct consequence of these advances was the inadvertent generation of
unprecedented quantities of information documenting what pages are accessed by
whom, who buys what product, who emails whom, and about every other activity
occurring online. Originally collected for logging, billing, and debugging purposes,
it would not be long before this kind of data attracted the attention of companies and
researchers as a means to better understand their users and research subjects. Neither
the potential nor the challenges that posed by this untapped wealth of information
went unnoticed for long.

The Big Data revolution [2] that followed, and is still ongoing, is poised to change
not only the way online systems work but also how we study Human Behavior on
a large scale. Indeed, hiding within the mountain of data is not only information on
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2 B. Gonçalves and N. Perra

how people use the system but also on how individuals communicate and interact.
An email server not only records when a specific email was sent, but also who sent
it and who it was addressed to, if there was a reply, etc. Search engines store all the
queries submitted associating them with users’ information as IP, location, gender,
age, and other personal information, when available. A cell phone company must
keep track not only of who made the call and who received it, but also the date and
time it was made, to which cell tower those two users were connected to and how
long the call lasted. Wikipedia records which account or IP address edited which
page and what changes were made.

Using this so-called metadata, much progress was done in the study of social
interactions, but it wouldn’t be until the recent rise of full fledged online social
systems that are specifically designed to facilitate social interaction and discussions
(like Facebook, Twitter, or Google+), large scale collaboration (such as GitHub,
Wikipedia or OpenStreetMaps), online gaming worlds (of which World of Warcraft
and Eve Online are perhaps the most famous examples) or even dating (Match.com,
OkCupid, etc.) that we would be able to start having a more complete view of the
functioning of society.

Furthermore, the miniaturization of sensors and electronic devices has made
increasingly easier the realization of tools to record duration, frequency, and other
features also of offline contacts. Such devices, based on Bluetooth, WiFi, and RFID
technologies, allow for the first time probing, at scale, face-to-face interactions
in many different settings ranging from schools and hospitals to museums and
conferences.

With the advent of these systems, it became possible for the first time to observe
many aspects of social behavior that had never been amenable to large scale
analysis. Each different system was created with a specific goal in mind and the
choices made during the design process limit the kind of phenomena that can be
analyzed. Research in this area takes advantage of a veritable bounty of different
datasets, but with particular emphasis on Online Queries, Twitter, Cell phones,
Bibliographic, and Offline Interactions databases, due to their intrinsic richness.
Below we highlight some of the characteristics, advantages, and limitations of these
types of data sources.

1.1 Online Queries

The short history of the WWW is signed by the release of Google in 1998.
The company revolutionized search engines making simple and effective users’
exploration for information. Indeed, with the exponential growth of webpages
retrieving content was becoming increasingly difficult. The first search engines
used natural language processing techniques to assess the relevance of webpages
to specific queries. Google’s founders realized that considering just the properties
of single pages neglecting the structure of the network where they were embedded
was not the optimal strategy. Starting from this observation they introduced the

http://www.Martch.com


1 Introduction 3

PageRank [3]. The algorithm measures the relevance/importance of a webpage
considering the relevance/importance of the webpages linked to it. The PageRank
constituted a real paradigm shift in information retrieval, and clearly showed the
importance of going beyond the local properties of nodes (webpages) when dealing
with complex networks. Thanks to Google, and many advances that followed, we
are now able to browses about 60 trillion of pages within few clicks.

Current estimates consider that about half of the population of the planet is active
online [4]. Although the coverage is still far from being homogenous across the
globe, users come from many different backgrounds, languages, and age groups
resulting in a wide range of interests behind online activities. Among these, the use
of search engines is one of the most common. Indeed despite the final goal, people
accessing the WWW, are likely to start their sessions with a query to Google, Yahoo,
or Bing. Online searches are expression of interests for specific products, events, or
topics. While implications of this simple observation run deep in within our digital
society, here we focus just on those associated with the study of social phenomena.
In particular, increases in the volume of queries associated with specific keywords
are driven by external (exogenous) or internal (endogenous) events. Examples are
the spreading of infectious diseases, elections, social protests, online movements,
and trends in financial markets. Online queries can be considered as proxies for
such events, and their study allows near real time analyses at an unprecedented
scale/resolution.

Online searches data come also with several important limitations. The data are
proprietary and cannot be shared for privacy and financial concerns. Researches
have access just to aggregated indicators subject to several constraints as the
lack of any information about the users, or the ability to compare the relative
interest of large number of keywords. The data is typically available just for
very popular queries. This might limit the possibility of monitoring the unfolding
of new trends or topics. Finally, search engines are dynamic entities. They are
constantly changed to achieve better performances and to be more user friendly.
Some features, as for example the auto-completion, modify the way we access
or explore information. These modifications and their effects in our behaviors
should be considered when studying societal phenomena through the lens of search
engines. Furthermore, comparing trends in different period of time might introduce
strong biases. Unfortunately, the lack of transparence in the data collection and post
processing makes these crucial steps often impossible.

1.2 Twitter

Twitter is perhaps the most widely studied online social network. Twitter was
designed to be a broadcast system so that one person could easily send a message
to thousands or even millions of others. Given this asymmetry between content
producers and consumers, it makes sense to have directional connections with
individuals electing to follow someone who may or may not follow them back and
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that any content produced is considered public by default. Anyone who follows, say,
Alice, will automatically receive all the content produced by Alice. By following
Alice, Bob is explicitly declaring an interest in what Alice says and the more
followers Alice has the more famous she is, providing a lens through which to
observe the evolution of popularity and the rise of celebrities.

Twitter was originally conceived to be used through SMS, which led to an intrin-
sic limitation on the amount of text that can be included in one single tweet. SMS
are limited to 160 characters and Twitter reserved the first 20 characters for the id of
the user, resulting in the now famous 140 character limit. Users immediately started
to try to find ways to work around this limitation using abbreviations and hashtags.
Hashtags then took on a life of their own and became, perhaps, the defining feature
of Twitter and a fixture of social systems, eventually being adopted by Facebook,
Google+, and many others. Hashtags mark the topic under discussion and can be
freely adopted by any user. Studying how they rise and fall in popularity allows us
to analyze what are the broad topics under discussion at a given point in time.

As the system grew and users became more engaged with it, some mechanism
to forward information a user received from the individuals he followed to his
followers became necessary. Informally, users adopted a convention to quote one
another while giving full credit to the original poster, a process that became
known as ReTweet. Through the analysis of retweets we are able to observe how
information spreads through social connections.

Despite the original formulation as a broadcasting system, the social component
is becoming increasingly more important and conventions for mentioning and
replying to other users have also been adopted. As a result one can observe how
actual conversations occur between two or more Twitter users.

The most recent development has occurred with the widespread adoption of
geocoding. Twitter has always allowed users to declare in their profile where they
lived. As GPS enabled smart phones reached the market some Twitter clients
started updating the users location field with the GPS coordinates provided by the
cellphone whenever they tweeted. Twitter eventually modified its infrastructure to
allow GPS information to be associated with individual tweets instead of just the
users, allowing us to track where the user is located whenever he tweeted from a
smartphone. This provides yet another layer to the phenomena that can be studied
through Twitter. A conceptual illustration of the different types of interactions
occurring in Twitter can be seen in Fig. 1.1.

As with any new tool, Twitter has, along with its many possibilities, also some
severe limitations. Twitter users are tendentially younger and wealthier than the
general population [5]. The use of GPS enabled smartphones is biased towards
richer populations who tend to travel more. It also remains to be conclusively
demonstrated that we interact with others online similarly to how we do offline,
but the wealth of results obtained using this type of datasets and that corroborate or
agree with results obtained with more traditional social science approaches points
in that direction. All of these limitations pose challenges that must be addressed.
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Fig. 1.1 The different layers of Twitter. As example we consider users located in some cities of
France

1.3 Cell Phones

While Twitter use is limited to a specific subset of the general population, cell
phones have quickly gone from a niche technology reserved to the rich and famous
to the default mode of communication for the vast majority of the world population
with market penetration, in some countries, surpassing 100 % or more than one cell
phone number per person.

Cell phones are becoming increasingly sophisticated and sensor rich significantly
increasing the range of large scale population measurements that are possible.
While some studies rely on the use of custom made applications aimed at specific
smartphone models, the most successful efforts have been done in collaboration with
cell phone operators using only Call Detail Records. CDRs are collected by mobile
carriers for billing and legal purposes and include information on any action that
the user performs on their device that implies the use of the network (phone calls,
SMS, MMS, or internet access). Call duration, origin and destination are recorded
along side the date and time and the physical location of the user can be inferred by
triangulating from the position of the cell phone towers that are within range of the
device.

Cell phone data of this kind provides the widest possible view on the social
interactions of an entire population so it is much less sensitive to the limitations



6 B. Gonçalves and N. Perra

Fig. 1.2 Phone call network during one day in Senegal

mentioned above for Twitter. The biggest limitation to their use is one of privacy.
While in the case of Twitter all activity is considered public, users are much more
privacy conscious about their cell phone activity and cell phone service providers
are afraid of the potential ramifications of privacy breaches. This has severely
limited the use of this wealth of behavioral data to researchers inside or in close
collaboration with mobile operators. Notably, Orange recognizes the potential of
cell phone data and actively tries to overcome the privacy limitations with their Data
for Development (D4D) challenges.1 For each challenge they release anonymized
call and mobility datasets for their entire user base in one developing country (Ivory
Coast in 2012 and Senegal in 2014) to researchers that submit a proposal on how
to use this data to help foster the development of that country. The 2014 edition
is still ongoing but the 2012 one resulted in several dozen original articles being
published with various approaches on how to use this data. In Fig. 1.2 we plot the
phone call network for a single day in Senegal based on the D4D dataset. Each node
is a cell phone tower and the color of edges between towers indicates the strength
of the connection with lighter colors representing stronger connections. It is easy to
see how the density of cell phone towers follows the population distribution making
major cities such as Dakar in the central West Coast clearly identifiable.

1http://www.d4d.orange.com.

http://www.d4d.orange.com
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Another important limitation of cell phone datasets is that, although it contains
information about the timing and frequency of communication, nothing is known
about the content. This makes it impossible to use this kind of data to observe which
topics are popular at the societal level or to directly track information diffusion.
Also, location information is limited by the distribution of cell phone towers that
closely follows the population distribution, with high concentrations and precision
in urban areas and much lower levels of service in more rural areas.

1.4 Bibliographic Databases

As a society relies on efficient means of communication, such as cell phones and
transportation, to function and prosper, Science relies on the publication of peer-
reviewed manuscripts as a way of diffusing its latest findings and foster the debate
about which directions to follow. Each manuscript, in addition to its scientific
content, includes also information about who the authors are, which institution they
work for and what were their sources of inspiration in the form of a list of references
(Fig. 1.3).

Fig. 1.3 PRL collaboration network for the 1974–2004 period, from [6]
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With the evolution of science in the last centuries, the number of scientific
journals and conferences has only increased and so has the number of scientific
production in the form of papers. In order to allow individual scientists to navigate
the ensuing sea of information large scale databases were collated containing
information on several million manuscripts, who the authors were and who cited
whom. These databases provide an unprecedented view on the scientific enterprise
and the longest running dataset on large scale collaborative work towards a common
goal. The ebb and flow of scientific collaborations has shown that as fields evolve
and become more complex, the number of authors and references per manuscript has
steadily increased and the citation network has documented how ideas generated
in one field or area of expertise eventually reach out to influence researchers in
completely separate fields.

Recent works have also focused on using this type of information as a basis to
try to develop quantitative and fair measures of scientific productivity, influence and
merit. Are the most important scientists those who generate more papers or those
who receive more citations. How to account for varying numbers of researchers
in different fields? How to recognize papers that will prove to be influential ahead
of time?

While such databases provide an extremely detailed view and often full historical
coverage of a given field or family of journals they tend to be limited by the fact
that they cover only a limited subset of the full range of scientific production. For
example, Thompson Reuters Web of Science2 offers perhaps the most complete
coverage of scientific journals, but has extremely limited coverage of the type of
peer reviewed conference proceedings that are common in Computer Science and
related fields. On the other hand, Scopus,3 the largest bibliometric database, has
a much more complete coverage of conferences but a more limited coverage of
journals. Finally, Google Scholar4 the most herculean effort to offer full coverage
suffers from the fact that it is limited to web accessible sources resulting in a limited
coverage of older, historical, issues.

1.5 Offline Interactions

As clear from the previous sections the digital revolution is providing a wealth
of datasets to probe and explore human dynamics and social phenomena. Some
more than others, i.e. phone calls and geolocalized mention networks on Twitter,

2http://thomsonreuters.com/thomson-reuters-web-of-science/.
3http://www.scopus.com/.
4http://scholar.google.com.

http://thomsonreuters.com/thomson-reuters-web-of-science/
http://www.scopus.com/
http://scholar.google.com
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can be used also as proxies of actual, offline, interactions. The basic assumption
behind these approaches is that phone calls, or discussion on Twitter are different
expression of an underlying network of social ties. However, some features of each
interaction type can be driven by the particular design of the medium used. This
observation is particularly important when studying dynamical processes unfolding
on networks structures as the spreading of infectious diseases. Indeed, viruses can
spread just through the direct physical contacts between susceptible and infected
individuals.

The collection of real data of human contacts has been traditionally done through
questionnaires or surveys. While this collection method provides a rich set of
information, it suffers from well-known limitations. Examples are excessive costs,
difficulties in finding participants, and several biases associated with self-reporting
procedures. Gathering data about face-to-face interactions using more direct and
unobtrusive approaches become then of particular importance also to measure
independently the quality of indirect sources as Twitter, phone calls, and surveys.

The development of tools able to accomplish this goal has been hampered by
technological and other practical issues for many years. Interestingly, the digital
revolution has lifted such limitations, making increasingly easier the cost-effective
production of very small and portable sensor able to measure proximity. Indeed, we
have now the possibility of creating inexpensive wearable tools, based on a range
of technologies as Bluetooth, WiFi, and RFID, able to monitor and record face-to-
face as well as other interactions. Remarkably, such sensors succeed in defining and
recording objectively close contacts, accessing also to short encounters. However,
there are still a set of important limitations. The data collection is typically done in
closed and controlled settings. This might introduce biases in individuals behavior.
Furthermore, due to experimental challenges the group of individuals under study is
still relative small.

1.6 Structure of the Book

The remainder of the book is divided into two parts. In Part I, “Human Behavior
Under Normal Conditions,” we focus on characterizing the daily behavior of
individuals going about their daily lives. In Part II, “Social Behavior Under Stress,”
we analyze instead how individuals act under extraordinary circumstances such as
War, Epidemics, or Crime. Our aim is that by considering both sides of the same
coin we are able to summarize current state-of-the-art research and start taking the
first steps towards a more general understanding of Human Behavior.

We start in Chap. 2 by studying large scale cell phone datasets to analyze
human mobility. Mobility is a fundamental aspect of our daily lives. We travel
on vacation, commute from home to work, go visit friends and relatives in nearby
neighborhoods or distant cities or even in order to participate in social and sport
events. Understanding how we move over the course of a day is fundamental to
help improve the infrastructure and organization of our cities. The wide availability
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of mobile devices facilitates the observation, in real time, of where people are,
where they are going, and where the mobility bottlenecks are. An understanding
of which is fundamental if we are to optimize our transportation systems and
improve the efficiency of our cities. Furthermore, the quantitate characterization of
human mobility at different scales is instrumental to model processes driven by our
movements as, for example, the spreading of infectious diseases. Surprisingly, the
authors find that the overwhelming majority of individuals is both predictable and
unique. Most of our time is spent at home, at work or in between, which makes it
easy to predict where a given person will be at a point in time, but the exact location
of these places and how we reach them is fundamentally unique and personal.

In Chap. 3 we move on to the study of Human face-to-face interactions. Here the
authors use specially crafted sensors to measure real world face-to-face interactions.
Their devices detect when one individual is facing another in close proximity for an
extended period. With this rich dataset they are able to characterize in detail face-to-
face interactions and present a new methodology to identify mesoscopic structures
of the ensuing patterns. As close proximity is a fundamental requirement for the
spreading of infectious diseases the authors also consider how the empirical patterns
observed impact the spreading of diseases and lay the groundwork for a research
agenda in this fascinating and practically unexplored area.

After covering mobility and face-to-face interactions we are in a perfect position
to move on to the study of epidemics, one of the most prominent driving forces
of human history. In Chap. 4 the authors present a review summary of epidemic
modeling approaches. Starting from the simplest of mathematical models, the entire
formalism necessary to understand state-of-the-art epidemic models is developed
with a strong focus on recent advancements. In particular, two realistic data
driven models are analyzed in detail, GLEaM and FLuTe, that while starting from
completely different levels of approximation have gradually converged towards
being able to tackle common goal of large scale forecasting of epidemics. The
authors finalize with an overview of digital epidemiology, an emerging branch of
modeling approaches that stems from the big data revolution.

Chapter 5 continues the analyses of the possibilities of big data by considering
applications to the study of financial markets. Investing decisions are made individ-
ually but as investors research online leave traces containing valuable information
about future stock movements of a given company. The authors demonstrate that
peaks in online search activity predate large market movements, giving credence
to this idea and demonstrating the feasibility of using online activity to study and
predict offline behaviors.

In Chap. 6 we continue the analysis of the online world by studying the mutual
influence between information flows and social connections. Following a review
of the literature on online interactions a longitudinal case study of Yahoo! Meme
is presented. The authors analyze the complete history of the system studying
how individual user behavior impacts the structure of the network and vice versa.
Interestingly, the authors found that combining the dynamics occurring on the
network with the dynamics of the network is crucial to reproduce empirical
observations.
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Chapter 7 looks in more depth into the question of individual user behavior and
the factors that motivate it. What factors determine online collaboration and what
leads perfect strangers to dedicate large fractions of their free time to help each
other by contributing content to online communities? Why are such behaviors more
common online than in our everyday lives? The authors tackle these questions by a
combination of empirical studies and modeling efforts in order to identify the role
played by the various factors.

We close Part I of the book by continuing, in Chap. 8, the discussion of human
collaboration through the study of bibliographic databases. The authors provide a
review of the most relevant recent results in field of bibliometric with a special
focus on the statistical description of citation distributions and citation dynamics.
Importantly, the authors discuss methods to rescale citation distributions across
fields allowing the observation and characterization of their universal features.
Furthermore, a framework to predict the future impact of a publication based on
its behavior in the first years of publication is presented.

In Part II we move on from the study of Human Behavior under normal
conditions and consider instead how we behave under extraordinary circumstances.
We initiate the discussion in Chap. 9 where we modify the epidemic models
introduced in Chap. 4 to take into account behavioral changes induced by risk
perception during the course of an epidemic. A game theoretical approach is used to
show how individual defensive behaviors can actually have a negative impact over
the course of epidemic leading to a re-emergence of the disease.

In Chap. 10 our analyses move on from the consideration of the consequences or
motivations of individual behavior to focusing instead on detecting specific patterns
of behavior. The authors apply techniques from social network analysis to the study
of cell phone networks with the aim of uncovering criminal behavior or illicit
activities and introduce LogViewer, a computational framework developed with the
goal of helping criminal investigators in the field perform these analyses without
the added burden of having to be social network analysis experts. Several use-cases
based on real-world criminal investigations are also discussed.

Chapter 11 takes one step further and considers global terrorism. A wide set
of data sources covering the complete range of geographical scales is used to
analyze the common patterns underlying asymmetric conflicts where terrorists,
rebels, revolutionaries or freedom fighters are drawn to fight a larger and more
conventional force. Despite all the differences between the conflicts considered
several common patterns emerge pointing towards universal human behaviors in
asymmetrical struggles. A generative model is proposed that is able to reproduce
the patterns observed using a minimal set of physically motivated parameters.

Finally, in Chap. 12 we move definitely away from individual behavior and
consider instead crowd behavior. The author presents a perspective on the literature
on the use of social media like Twitter to analyze crowd behavior. Different aspects
are considered, with a special emphasis on practical applications towards event
detection and prediction. Implications and challenges are considered and future
research directions are proposed.
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Chapter 2
Modeling and Understanding Intrinsic
Characteristics of Human Mobility
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Abstract Humans are intrinsically social creatures and our mobility is central
to understanding how our societies grow and function. Movement allows us to
congregate with our peers, access things we need, and exchange information.
Human mobility has huge impacts on topics like urban and transportation planning,
social and biologic spreading, and economic outcomes. So far, modeling these
processes has been hindered by a lack of data. This is radically changing with
the rise of ubiquitous devices. In this chapter, we discuss recent progress deriving
insights from the massive, high resolution data sets collected from mobile phone
and other devices. We begin with individual mobility, where empirical evidence
and statistical models have shown important intrinsic and universal characteristics
about our movement: we, as human, are fundamentally slow to explore new places,
relatively predictable, and mostly unique. We then explore methods of modeling
aggregate movement of people from place to place and discuss how these estimates
can be used to understand and optimize transportation infrastructure. Finally, we
highlight applications of these findings to the dynamics of disease spread, social
networks, and economic outcomes.
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2.1 Introduction

Mobility has been a steering force for much of human history. The movement of
peoples has determined the dynamics of numerous social and biological processes
from tribal mixing and population genetics to the creation of nation-states and the
very definition of our living areas and identities. Urban and transportation planners,
for example, have long been interested in the flow of vehicles, pedestrians, or goods
from place to place.

With more than half of the world’s population is now living in urban areas,1

understanding how these systems work and how we can improve the lives of
people using them is more important than ever. Insights from models informed
by novel data sources can identify critical points in road infrastructure, optimize
public services such as busses or subways, or study how urban form influences its
function. Epidemiologists are also relying heavily on models of human movement
to predict and prevent disease outbreaks [1, 2] as global air travel makes it possible
for viruses to quickly jump continents and dense urban spaces facilitate human-to-
human contagion. This has made understanding human movement a crucial part
of controlling recent disease outbreaks.2 Finally, social scientists are increasingly
interested in understanding how mobility impacts a number of social processes such
as how information spreads from person to person in offices and cafes across the
world. These interactions have been theorized to impact crime rates, social mobility,
and economic growth [3, 4] and understanding their dynamics may improve how we
live, work, and play.

The growing need to understand and model human mobility has driven a large
body of research seeking to answer basic questions. However, the lack of reliable
and accessible data sources of individual mobility has greatly slowed progress
testing and verifying these theories and models. Data on human mobility has thus
far been collected through pen and paper surveys that are prohibitively expensive
to administer and are plagued by small and potentially biased sample sizes. Digital
surveys, though more convenient, still require active participation and often rely
on self-reporting [5]. Despite the development of statistical methods to carefully
treat this data [6–8] new, cheaper, and larger data sources are needed to push our
understanding of human mobility efforts further.

The evolution of technology over the past decade has given rise to ubiquitous
mobile computing, a revolution that allows billions of individuals to access people,
goods, and services through “smart” devices such as cellular phones. The pene-
tration of these devices is astounding. The six billion mobile phones currently in
use triples the number of internet users and boast penetration rates above 100 % in
the developed word, e.g. 104 % in the United States and 128 % in Europe.3 Even

1United Nations Department of Economic and Social Affairs—World Urbanization Prospects—
2014 Update. http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf.
2http://www.worldpop.org.uk/ebola/.
3GSMA European Mobile Industry Observatory 2011 http://www.gsma.com/publicpolicy/wp-
content/uploads/2012/04/emofullwebfinal.pdf.

http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf
http://www.worldpop.org.uk/ebola/
http://www.gsma.com/publicpolicy/wp-content/uploads/2012/04/emofullwebfinal.pdf
http://www.gsma.com/publicpolicy/wp-content/uploads/2012/04/emofullwebfinal.pdf
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in developing countries, penetration rates are of 89 %4 and growing fast. These
devices and the applications that run on them passively record the actions of their
users including social behavior and information on location5 with high spatial and
temporal resolution. Cellular antennas, wifi access points, and GPS receivers are
used to measure the geographic position of users to within a few hundred meters or
less. While the collection, storage, and analysis of this data presents very real and
important privacy concerns [9, 10], it also offers an unprecedented opportunity for
researchers to quantify human behavior at large-scale. With billions of data points
captured on millions of users each day, new research into computational social
science [11] has begun to augment and sometimes replace sparse, traditional data
sources, helping to answer old questions and raise new ones.

In this chapter, we present an overview of mobility research in the current data
rich environment. We describe a variety of new data sources and detail the new
models and analytic techniques they have inspired. We start by exploring research on
individuals that emphasizes important intrinsic and universal characteristics about
our movement: we are slow to explore, we are relatively predictable, and we are
mostly unique. We then discuss efforts to add context and semantic meaning to
these movements. Finally, we review research that models aggregates of human
movements such as the flow of people from place to place. Throughout and at
the end of this chapter, we point out applications of this research to areas such
as congestion management, economic growth, or the spreading of both information
and disease.

2.2 New Data Sources

Traditional data sources for human mobility range from census estimates of daily
commutes to travel diaries filled out by individuals. These surveys are generally
expensive to administer and participate in as they require intensive manual data
encoding. To extract high-resolution data, individuals are often asked to recall large
amounts of information on when, where, and how they have traveled making them
prone to mistakes and biases. These challenges make it hard for surveys to cover
more than a day or week at a time or to include more than a small portion of the
population (typically less than 1 %).

Mobile phones, however, with their high penetration rates, represent a fantastic
sensor for human behavior. A large fraction of location data from mobile phones
are currently in the form of call detail records (CDRs) collected by carriers when
users perform actions on their devices that make use of the telecommunications

4ITU. (2013) ICT Facts and Figures http://www.itu.int/en/ITU-D/Statistics/Documents/facts/
ICTFactsFigures2013-e.pdf.
5Lookout (2010) Introducing the App Genome Project https://blog.lookout.com/blog/2010/07/27/
introducing-the-app-genome-project/.

http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf
https://blog.lookout.com/blog/2010/07/27/introducing-the-app-genome-project/
https://blog.lookout.com/blog/2010/07/27/introducing-the-app-genome-project/
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Fig. 2.1 Mobile phones are increasingly being used to collect high-resolution mobility data. This
figure from de Montjoye et al. [9] depicts (a) a sequence of calling events made by a user at
different locations. (b) These events are localized to the area served by the closest mobile phone
tower to the use and (c) can be aggregated into individual specific neighborhoods where a user is
likely to be found at different times of the day or week

network. The location of each device at the time a call, text, or data request is
registered (Fig. 2.1) is recorded by carriers for billing, network performance, and
legal purposes. Locations are inferred either by observing the tower through which
the phone is connected or by triangulation with nearby towers. With the increasing
use of mobile phones, each individual generates tens to hundreds of these digital
breadcrumbs on a daily basis and this number is only increasing. Through specific
agreements or through open-data challenges [12], location data on millions of
users is readily available to researchers and has been used extensively to augment
and sometimes replace traditional travel surveys. This data now forms the core of
numerous new mobility studies and models some of which we describe below.

Though generally less common than CDRs, applications running on smartphones
may access even more precise estimates of a user’s position. A variety of these
sensors, from GPS to wifi, can pinpoint the location of a device to within just
a few meters and can record data every few minutes [13]. Similarly, protocols
such as bluetooth and NFC (near field communication) allow devices to discover
and connect to one another within a few meter radius, creating ad hoc sensor and
social proximity networks [14]. Some of these applications and underlying social-
networks explicitly add crucial context to mobility data. Foursquare invites users to
“check-in” at specific places and establishments, Twitter will automatically geotag
tweets with precise coordinates from where they were sent, and the Future Mobility
survey app passively maintains an activity diary [5] requiring little input from users.

Infrastructure and public services have also become much smarter and now
collect data on their usage to improve and help plan operations. Toll booths
automatically count and track cars and this data has helped create accurate and real-
time traffic estimates used by mapping and navigation services to provide better
routing information. Subways, streetcars, and busses use electronic fare systems
that record when millions of users enter and exit transportation systems to help
better predict demand. In addition to smarter public infrastructure, the ecosystem
created by digital devices has given birth to entirely new transportation services
such as Hubway, the Boston bike rental service, that collects data of every bike ride
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and has even released some publicly6 or Uber, an on-demand car service, that uses
historical usage data to balance the time a user has to wait for a car to arrive and
the time drivers spend without clients. Finally, on-board devices and real-time data
feeds from automatic vehicle location (AVL) systems power applications such as
NextBus to track the location of thousands of busses and subways across the world
to display and predict when the next bus will arrive. While smart infrastructure
comes with its own privacy challenges [15],7 vehicle and public transport data offer
additional information to urban planners and mobility modelers to better understand
these systems.

Finally, most practical mobility models need to properly account for geography
such as mountains and rivers, transportation infrastructure such as bridges and
highways, differences in density between urban and rural areas, and numerous other
factors. Thankfully, the digitization of maps has led to an explosion of geographic
data layers. Geographic information systems (GIS) have improved dramatically
while falling data storage prices have made it possible for small and large cities
to offer their public mapping data to citizens in an online, machine readable format.
The U.S. Census Bureau’s TIGERline program, San Francisco’s OpenSF, and New
York City’s PLUTO data warehouse are just a few sources that offer huge reposi-
tories of publicly accessible geographic data on everything from building footprints
and the location of individual trees in a city. Open- and crowd-sourced initiatives
like OpenStreetMap allow anyone in the world to contribute and download high-
resolution digital maps of roads, buildings, subways, and more, even in developing
areas that may not have institutional resources to create them. Private efforts such as
Google Maps and MapBox offer high-resolution satellite imagery, route planning,
or point of interest information through free or low cost APIs. Put together, these
resources provide a digital map of the world that serves as a rich backdrop on which
to study human mobility and the infrastructure built to facilitate it.

Put together, new sources from CDRs to public transport data, from mobile
phone applications to AVLs generate a data with size and richness prohibitively
expensive to match via traditional methods. Collected passively and without any
effort from the user, this data is often more robust to manipulation by conscious
or unconscious biases and provides a signal that is difficult to fake. While we are
convinced of the potential of this data, it is always important to remember that it is
not without pitfalls. It would be illusory to think that all of the old biases or hidden
variables would simply disappear because the data is large. In some cases, data
is only recorded when an individual interacts with a device which may bias when
samples are taken [16]. Similarly it is important to keep in mind that even if it covers
a significant fraction of the population this data might not be representative. Finally,
these data generally come stripped of context. We do not know why an individual

6Hubway Data Visualization Challenge (2012) http://hubwaydatachallenge.org/.
7New York taxi details can be extracted from anonymized data, researchers say (2014) http://www.
theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-
warn.

http://hubwaydatachallenge.org/
http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn
http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn
http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn
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has chosen to move or what they will be doing there. For these reasons, sampling
and robust statistical methods are still–maybe more than ever8—needed to use this
data to augment our current understanding of human mobility while still providing
robust conclusions. We now discuss a number of studies that aim to do just this.

2.3 Individual Mobility Models

Understanding mobility at an individual level entails collecting and analyzing sets
of times, places, and semantic attributes about how and why users travel between
them. For example, on a typical morning one may wake up at home, walk to a local
coffee shop on the way to the bus that takes them to work. After work they may
go to the grocery store or meet a friend for dinner before returning home only to
repeat the process the next day. The goal of modeling this mobility is to understand
the underlying patterns of individuals using new high resolution data. Models can be
used to plan infrastructure or public transport. Furthermore, models provide insights
into the underlying nature of human behavior helping us understanding how we are
slow to explore, relatively predictable, and mostly unique.

Early modeling work draws a great amount of inspiration from statistical physics,
with numerous efforts making parallels with human mobility and random walk or
diffusion processes. One of the used data from the crowd-sourced “Where’s George”
project. Named after George Washington, whose head appears on the $1 bill, the
project stamped bills asking volunteers to enter the geographic location and serial
number of the bills in order to build a travel history of various banknotes. As
bills are primarily carried by people when traveling from store to store, a note’s
movement serves as a proxy for human movement. Modeling the bills trajectories
as continuous random walks, Brockmann et al. found that their movement appears to
follow a Lévy flight process [20]. This process is characterized by subsequent steps
whose angular direction is uniformly distributed, but whose step-lengths follow a
fat-tailed distribution. While small jumps are most probable, bills have a significant
probability of making long jumps from time to time. These findings are aligned with
observations that humans tend to make many short trips in a familiar area, but also
take longer journey’s now and then.

In 2008, Gonzalez et al. [17] showed that the movement of these bills does not
tell the whole story. Using a CDRs dataset of more than 100; 000 users over a 6-
month period in a European country (Fig. 2.2a), they showed that the step-length
distribution for the entire population was better approximated by a truncated power-
law P.�r/ D .�r C �r0/

�ˇ exp.��r=�/ with exponent ˇ D 1:79 and cutoff
distances between 80 km and 400 km. This suggests that Lévy flights are only a
good approximation of individual’s mobility for short distances. To understand the

8Flowing data—Where People Run in Major Cities http://flowingdata.com/2014/02/05/where-
people-run/.

http://flowingdata.com/2014/02/05/where-people-run/
http://flowingdata.com/2014/02/05/where-people-run/
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Fig. 2.2 (a) Individual mobility trajectories are passively collected from mobile devices [17].
(b) Measuring the distribution of radius of gyrations, rg within a population of 100,000 users in
a European country reveals considerable heterogeneity in typical travel distance of individuals.
Moreover, this distribution cannot be explained by modeling each individual’s movement as
realizations of a single Lévy flight process [17]. (c) and (d) Show the slower than linear growth
in new locations visited over time S.t/ and that the probability a location is visited next is
inversely proportional to the frequency it has been visited in the past [18]. (e) This preferential
return contributes to strikingly high predictability R.t/ over time while (f) the number of unique
locations visited in any given hour is highly periodic and corresponds to the sleep-wake cycles of
individuals [19]

mechanism that gives rise to this distribution, the authors borrowed a quantity from
polymer physics known as the “radius of gyration” rg:

rg.t/ D
v
u
u
t 1

N.t/

N.t/
X

iD1

.r � rcm/2; (2.1)

where N(t) are the number of observed locations and rcm is the mean location
of the user during the observation period. In essence, the radius of gyration
is a measurement of the characteristic distance an individual travels during an
observation period t. The authors then showed that the distribution of rg in the
population is itself well approximated by a truncated power-law with r0

g D 5:8 km,
ˇrg D 1:65, and a cutoff of � D 350 km (Fig. 2.2b). Simulations suggest that
the step-length distribution of the entire population is produced by the convolution
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of heterogeneous Lévy flight processes, each with a different characteristic jump
size determined by an individual’s radius of gyration. Put differently, each person’s
mobility can be approximated by a Lévy flight process up to trips of some individual
characteristic distance rg. After this distance, however, the probability of long trips
drops far faster than would be expected from a traditional Lévy flight.

Further investigation by the authors revealed the source of this behavior: the
idiosyncrasy of human movements. Unlike random processes, humans are creature
of habits and tend to return to previously visited locations such as home or work.
The nature of these returns was also found to follow a very particular pattern. An
individual returns to a previously visited location with a probability proportional
to that location’s rank P.L/ � 1=L amongst all the places he or she visits.
These non-random, predictable return visits are unaccounted for in random walk
and Lévy flight models and have been shown to be at the heart of deviations
of observed behavior from random processes. Additional studies [21] have found
similar patterns in both other CDRs datasets and Foursquare or Twitter check-ins.

Subsequent work by Song et al. [18] further studied how individual-specific
locations need to be taken into account in mobility models. Using a similar CDR
dataset, the authors showed three important characteristics of human behavior. First,
the number of unique locations visited by individuals S.t/ scales sub-linearly with
time S.t/ � t� where � D 0:6 (Fig. 2.2c). Second, the probability an individual
returning to a previously visited locations scales with the inverse of the rank of
that location P.L/ � L�� where � D 1:2 (Fig. 2.2d), a phenomena labeled as
“preferential return.” Third, the mean displacement, �r, of an individual from
a given starting point shows slower than logarithmic growth, demonstrating the
extremely slow diffusion of humans in space. In essence, these findings pinpoint
the dampening of explorative human movement overtime. Long jumps are observed
so infrequently that they do not affect the average displacement of individuals.
The authors then propose a new model of human mobility to capture these three
characteristics. The model is as follows: starting at time t, an individual will make a
trip at some future time �t drawn from a fat-tailed probability distribution measured
from CDRs. With probability �S�� , the individual travels to a new, never-before
visited location some distance �r away, where �r is drawn from the fat-tailed
distribution characterized in the previous model. With probability 1 � �S�� an
individual returns to a previously visited location according to the inverse rank
equation.

These early models do not attempt to recover periodic aspects of movement
(e.g., daily commuting) or semantic meaning of visits (e.g., to visit a friend or go
shopping), or attempt to do so. They do, however, emphasize important statistical
and scaling properties of human mobility and often successfully reproduce them.
Taken together, these models show that human explore slowly space, returning more
often than not to known places and with less long steps than predicted by a power-
law distribution.

Approaching the problem from the perspective of machine and statistical learn-
ing, another set of models has uncovered and explored another facet of human
mobility: how predictable we are. In [19], Song et al. used information theory
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metrics on CDRs to show the theoretical upper-bound on predictability using three
entropy measures: the entropy S, the random entropy Srand, and the uncorrelated
entropy Sunc. They then use their empirical distributions to derive an upper bound
on a user’s predictability (

Qmax,
Qrand, and

Qunc). On average, the potential pre-
dictability of an individual’s movement is an astounding 93 % and no user displayed
a potential predictability of less than 80 %. To further quantify predictability, the
author introduced two new metrics. They defined regularity R.t/ as the probability
a user is found at their most visited location during a given hour t, along with
the number of unique locations visited during a typical hour of the week N.t/
(Fig. 2.2e, f). Both show strong periodicity and regularity. These quantities have
since been measured in different data sets in different cities and countries and have
been shown to be consistent among them [21].

While the previous study provided a theoretic upper bound on the predictability
of an individual, a number of statistical learning techniques have been developed
to make predictions in the traditional sense. Early work in the area, predating
even analytic computations, used Markov models and information on underlying
transportation networks to predict transitions between mobile phone towers within
cities. These models have been used to improve quality of service of wireless
networks through proper resource allocation [22–25]. Later work incorporated
various trajectory estimation and Kalman filtering algorithms to predict movements
in small spaces such as college campuses [26, 27].

Temporal periodicity was used by Cho et al. [28] in their Periodic Mobility Model
and social behavior incorporated in the Period Social and Mobility Model. These
approaches derive the probability distribution of a user to be at any given location
at a given time from previous location data. The latter also account for the location
history of social contacts. The authors used these models to estimate that as much
as 30 % of our trips may be taken for social purposes. Multivariate nonlinear time
series forecasting produced similar results [29, 30] predicting where an individual
will be either in the next few hours or at a given time of a typical day. These models,
however, are all focused on predicting the geographic position of individuals at
different times and do not attempt to understand what individuals may be doing
there or any other semantics of place.

Though acquiring semantic information about mobility is more difficult than
simply measuring geographic coordinates, it provides a much richer abstraction
to study behavior. In one of the first studies to mine the behavior of college
students using mobile phones, Eagle et al. [31] gave a few hundred students smart
phones that recorded not only locations, but also asked users to label each place
with its function such as home or work. Applying principal component analysis
to these abstract movements from semantic place to semantic place (as opposed
to geographic movements alone), the authors found that an individual’s behavior
could be represented as a linear combination of just a few “eigenbehaviors.” These
eigenbehaviors are temporal vectors whose components represent activities such
as being at home or being at work. They can be used to predict future behaviors,
perform long range forecasts of mobility, and label social interactions [14, 32].
The price paid for such detailed predictions, however, is the need for semantic
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information about locations. Geographic positions need to be tagged with attributes
such as home or work in order for them to be grouped and compared across
individuals.

Another approach to studying more abstract measurements of individual location
information comes from recent work by Schneider et al. [33]. The authors intro-
duced “mobility motifs” by examining abstract trip chains over the course of a day.
A daily mobility motif is defined a set of locations and a particular of visits. More
formally, these motifs constitute directed networks where nodes are locations and
edges are trips from one location to another. For example, the motif of an individual
whose only trips in a day are to and from work will consist of two nodes with a
two directed edges (one in both directions). Counting motifs in mobility data from
both CDRs and traditional travel surveys, they found that, on average, individuals
visit three different places in a given day. They then construct all possible daily
motifs for a given number of locations n and compute their frequencies. Shockingly,
while there exists over 1 million ways for a user to travel between 6 or fewer
locations, 90 % of people use one of just 17 motifs and nearly a quarter follow
the simple two location commute motif introduced earlier (Fig. 2.3a). The authors
found similar results in travel survey data and introduced a simple Markov model
for daily mobility patterns which reproduces empirical results.

It is tempting to hypothesize that high theoretical and practical predictability
results from high levels of similarity between individuals in a region. Perhaps the
pace of life, full of mono-centric downtowns, or the structure of transportation
systems funnel users to the same places and route choices. de Montjoye et
al. [9] explored this hypothesis and found that, while predictable, an individual’s
movement patterns are highly unique. The authors introduced “unicity” Ep as the
fraction of traces uniquely defined by a random set of p spatiotemporal points
where a trace T is a set of spatiotemporal points, each containing a location and
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Fig. 2.3 (a) Removing geographic coordinates from locations and only focusing on a set of unique
places and the directed travel between them, mobility motifs reveal that the daily routines of people
are remarkably similar. Despite over 1 million unique ways to travel between 6 or fewer points, just
17 motifs are used by 90 % of the population. Moreover, the frequency of their appearance in CDR
data matches very closely with more traditional survey methods [33]. (b) Despite this similarity
and predictability, our movement displays a high degree of unicity. Just four spatiotemporal points
is enough to differentiate a user from 95 % of all others individuals [9]
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a timestamp. A trace is said to be uniquely defined by a set of points Ip if it is the
only trace that matches Ip in the entire dataset. Applying this measure to a CDR
dataset on 1.5 million users, the authors found that just four spatiotemporal points is
enough to uniquely identify 95 % of all users (Fig. 2.3b). The authors further study
unicity when the data is coarsened spatially or temporally. They found E Ï .v � h/ˇ

unicity decrease as a power function with the spatial (v) and temporal resolution
of the data (h) and that ˇ Ï �p=100. Taken together, these equations show that
unicity decreases slowly with the spatial and temporal resolution of the data and
that this decrease is easily compensated by the number of points p. High uniqueness
in human mobility traces exists across many spatiotemporal scales. These results
not only raise many questions about the privacy of massive, passively collected
metadata datasets, but also highlight an incredibly interesting nuance of human
mobility: though individuals are predictable, they are also unique.

Merging concepts of predictability and unicity, work by Sun et al. [34] used
temporal encounter networks to study repeated co-locations between passengers
using data from bus passengers in Singapore. Temporal encounter networks were
constructed by connecting individuals if they rode the same bus at the same time.
An average individual encountered roughly 50 people per trip and these trips were
highly periodic, occurring at intervals associated with working hours as well as daily
and weekly trips. A pair of individuals who encountered each other tended to meet
an average of 2.5 times over the course of a week. The distribution of time between
encounters reveals strong periodicity, with passengers riding the same bus to work
in the morning riding the same home, or riding the same bus at the same time each
morning. This finding illustrates the idiosyncrasies of human mobility. Not only we
visit a few places very during the day, but we also do so at the same times and by
the same routes. Amazingly, though both of these results suggest that our unicity
should be low, the previous work shows us that this is not the case.

In summary, new data sources have allowed researchers to show that, over weeks
and months, human movement is characterized by slow exploration, preferential
return to previous visited places, exploration of daily motifs, and predictable unique-
ness. These regularities have been used to develop algorithms capable of predicting
movement with high degrees of accuracy and have been shown to mediate other
important processes such as social behavior and disease spread. Individual mobility
patterns, however, are not the only level of granularity of interest to researchers,
city planners, or epidemiologist. Aggregate movement can be either derived from
individual level model or modeled as an emergent, personified phenomena. In the
next section, we discuss works and models which aim at describing and modeling
aggregate movement and flows of many individuals from place to place.

2.4 Aggregate Mobility

Aggregated mobility is used for planning urban spaces, optimizing transportation
networks, studying the spread of ideas or disease, and much more. Perhaps the
largest component in these models are origin-destination matrices that store the
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number of people traveling from any location to any other at different times or
by different means. Like many complex systems, aggregate behavior is often more
than the sum of individual parts and can be modeled separately. Additional layers of
complexity are also needed to account for and sometimes explain individual choice
of mode of transportation or route as described by the “four step model” [8, 37].

Like their individual-focused counterparts, many of these aggregate models are
inspired by physical processes. Some of the earliest techniques for estimating origin-
destination matrices are gravity models which have been used to model flows on
multiple scales, from intra-city to international [8, 38]. Borrowed directly from
Newton’s law of gravitation, the number of trips Tij taken from place i to place
j is modeled as a function of the population of each place mi and mj and some
function of the distance between them f .rij/. The intuition is that the population of
a place, its mass, is responsible for generating and attracting trips and thus the total
flux between the two places should be proportional to the product of the two masses
while the distance between them mitigates the strength of this connection. In the
fully parameterized version of this model, an exponent is applied to the population

at the origin and destination Tij D a
m˛

i m
ˇ
j

f .rij/
to account for hidden variables that may

be specific to local regions or populations. While the classical gravity model from
physics is recovered by setting ˛ D ˇ D 1, and f .rij/ D r2

ij, these parameters are
generally calibrated for specific application using survey data.

Gravity models, however, are not without limitations. First, they rely on a large
number of parameters to be estimated from sparse survey data which often leads
to overfitting and, second, they fail to account for opportunities that exist between
the two masses of people. The latter fault results in the same flow of people being
estimated between two locations whether there is an entire city or an empty desert
between them. Intuitively, one would expect that trips between places would be
affected by the intervening opportunities to complete a journey. These shortcomings
lead Simini et al. to develop the radiation model [35]. Again borrowing from physics
(this time radiation and absorption), they imagined individuals being emitted from a
place at a rate proportional to its population and absorbed by other locations at a rate
proportional to the population there. In this model, the probability that an emitted
person arrives at any particular place is a function of their probability of not being
absorbed before getting there. The model is as follows: Tij D Ti

mimj

.miCsij/.miCmjCsij/
,

where Ti is total number of trips originating from location i and sij is the population
within a disc centered on location i with a radius equal to the distance between i
and j. The radiation model does not directly depend on the distance between the two
places, taking instead into account the opportunities in-between them (Fig. 2.4a).
Unlike the gravity model, the radiation model is parameterless and requires only
data on populations to estimate flow. The authors showed that despite its lack of
parameters, the radiation model provides better estimates of origin-destination flows
than the gravity model for areas the size of counties or larger.

Yang et al. adapted Simini’s radiation model to correct for distortions caused at
different scales [39]. They showed the original radiation model’s lower accuracy
in urban environment is due to the relatively uniform density and small distances
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Fig. 2.4 (a) The radiation model accounts for intervening opportunities, producing more accurate
estimates of flows between two places than more traditional gravity models [35]. (b) Routing
millions of trips measured from CDR data to real road networks makes it possible to measure the
importance of a road based on how many different locations contribute traffic to it, Kroad. Under-
standing how transportation systems perform under different loads presents new opportunities to
solve problems related to congestion and make infrastructure more efficient [36]
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that characterize cities. In dense urban areas, distances are all relatively short and
an individual may choose to visit a particular location due to hedonic attributes
regardless of whether it is convenient to get to or not. Yang et al. subsequently intro-
duced a scaling parameter ˛ in the function describing the conditional probability an
individual is absorbed at a location. This single parameter was enough to correct for
these distortions and to provide a model that works on any length scale. Moreover,
the authors suggested that for urban areas, the density of points of interest (POIs)
such as restaurants and businesses is a better predictor of the absorption of a place
than its population. Iqbal et al. [40] have demonstrated an improved way to extract
valid, empirical OD matrices from CDR data to validate the model.

Finally, activity-based approaches [6] model user intent more explicitly. They
hypothesize that all trips are made to fulfill certain needs or desires of an individual.
Travel and survey diaries are used to identify those needs for different segments
of the population and how they are typically fulfilled. This knowledge can then be
used by the model given the demographics of individuals and environmental factors.
These models are closely related to agent-based models simulating the behavior of
city residents and rely heavily on the idea of economic utility.

From a practical perspective, city planners need to know not only how many
people will go from point A to point B at a certain time of the day but also the mode
of transportation and route choice of these individuals. For example, we would like
to predict which route they will take so that we can properly estimate the stress
placed on transportation systems and potentially optimize performance. Models of
route choice typically assume that individual rationally chose the path from A to B
that minimize some cost function such as total travel time or distance. Paths can be
computed on a road network using shortest path algorithms such as the traditional
Dijkstra algorithm or A-Star, an extension that enjoy better performance thanks to
heuristics. Other informations such as speed limits can also be taken into account to
estimate free flow travel times.

More advanced models are needed to account for the impact of congestion as
drivers rarely encounter completely empty freeways. Iterative traffic assignment
algorithms model congestion endogenously [41]. Trips are first split into segments
containing only a fraction of total flow between two points. Trips in each segment
are then routed along shortest paths independently of all other trips in that segment
keeping counts of how many trips were assigned to each road. The travel times are
then adjusted according to a volume delay function that accounts for the current
congestion on a road where congestion is computed as the ratio between the volume
of traffic assigned to the segment and the capacity of the road (referred to as volume-
over-capacity). Trips in the next segment are then routed using updated costs until
all flow has been accounted for. In this way, as roads become more congested and
the travel time increases, drivers in later iterations are assigned to different, less
congested routes. Values of total volume on each road, congestion, and travel times
can then be validated against traffic counters, speed sensors, or data from vehicle
fleets like taxis and busses but also smartphones such as in the Mobile Millennium
project [42–45].
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Wang et al. [36] further explored the use of CDRs as input for these iterative algo-
rithms to estimate traffic volume and congestion. After correcting for differences in
market share and vehicle usage rates, they measure trips by counting consecutive
phone calls of individuals as they move through the city to generate flow estimates
that were then routed. Using this approach, Wang et al. show the distribution of
traffic volume and congestion to be well approximated by an exponential mixture
model. This model depends on the number of major and minor roadways in a
cities network. Using the same approach, the authors describe the usage patterns
of drivers by a bipartite usage graph connecting locations in the city to roads used
by those travelers (Fig. 2.4b). Roads can be defined by the number of locations that
contribute traffic to them while place can be described by the roads used to visit
them. The “function” of a road can then be classified by comparing its typological
to its behavioral importance. For example, a bridge may be topologically important
because it is the only way to cross a river, but a main street may be behaviorally
important because it attracts motorists from many different neighborhoods. Using
these measures, researchers were able to devise congestion reduction strategies that
target the 2 % of neighborhoods where trip reduction will have the largest network
wide effect. They found this smart reduction strategy is three to six times as effective
as a random trip reduction strategy. Further work used this analysis to predict traffic
jams [46, 47].

Private cars, however, are not the only mode of transportation studied. Using
smartphones and AVL data, researchers have been mapping the routes followed
by public transport and even privately owned mini-buses in the developing coun-
tries [48–50]. Similarly, data on air travel has been increasingly available to study
aggregated mobilities between cities for applications in epidemiology (see below).

2.5 Human Behavior and Mobility

While of obvious interest to travelers, urban planners and transportation engineers,
people’s movement strongly impacts other areas. Though by no means an exhaustive
list, we highlight three areas here: social behavior, disease and information spread,
and economic outcomes. Many of these dynamics are discussed in greater detail in
further sections of this volume.

2.5.1 Mobility and Disease Spread

Human movement via cars, trains, or planes has always been a major vector in
the propagation of diseases. Consequently, the human mobility data and models
discussed so far have increasingly been used to study the propagation of diseases.
For example, CDR data has been used to map mobility patterns in Kenya helping
researchers in their fight against Malaria [1, 54]. More recently, CDR and other data
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Fig. 2.5 (a) Global air travel has dramatically increased the speed at which diseases can spread
from city to city and continent to continent [51]. (b) Mobility also impacts social behavior as
we are far more likely to be friends with someone who lives nearby than far away [52]. (c)
Mobility and the access it provides has strong correlations with economic outcomes. Children
have dramatically different chances at upward economic mobility in certain places of the United
States than others [53]

from West-Africa has been used to model regional transportation patterns to help
control the spread of Ebola.9 Finally, air travel data has become central to the study
of global epidemics when planes allow an individual to travel between nearly any
two points on the globe in a matter of hours. The global airline network therefore
often determines how potent an epidemic could be and its likely path across the
globe [2, 51, 55, 56] (Fig. 2.5a).

9Cell-Phone Data Might Help Predict Ebola’s Spread (2014) http://www.technologyreview.com/
news/530296/cell-phone-data-might-help-predict-ebolas-spread/

http://www.technologyreview.com/news/530296/cell-phone-data-might-help-predict-ebolas-spread/
http://www.technologyreview.com/news/530296/cell-phone-data-might-help-predict-ebolas-spread/
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2.5.2 Mobility and Social Behavior

Intent is a crucial element of human mobility and movement is often a means to a
social end. Despite new communications technologies making it easier than ever to
connect across vast distances, face-to-face interactions still play an important role
in social behavior whether it is the employees of a company commuting to a central
workplaces or friends meeting at a restaurant on a weekend. The link between social
contacts and mobility has becoming increasingly prominent in research as mobility
data is often collected through mobile phones or location-based social networks.

Using data from an online social-network, Liben-Nowell showed the probability
of being friends with another individual to decrease at a rate inversely proportional
to the distance between them suggesting a gravity model of the form discussed
above [52] (Fig. 2.5b). Subsequent work verified Liben-Nowell findings in other
social networks [57, 58] while Toole et al. [59] showed the importance of taking into
account geography when studying social-networks and how information spreads
through them. Moreover, geographic characteristics can be used to predict the social
fluxes between places [60]. Conversely, social contacts are very useful in predicting
where an individual would travel next [28, 29, 61] and Cho et al. find that while
50–70 % of mobility can be explained as periodic behavior, another 10–30 % are
related to social interactions.

Models such as the one proposed by Grabowicz et al. [58] have subsequently
been developed to incorporate this dynamic and evolve both social networks and
mobility simultaneously. The authors incorporate social interactions by having indi-
viduals travel in a continuous 2D space where an individual travel’s is determined
by the location of their contacts and use location as a determinant of new social tie
creation. The model is as follows: with probability pv, an individual moves to the
location of a friend, and, with probability 1�pv, they choose a random point to visit
some distance �r away. But, while social ties impact mobility, mobility can also
impact social ties. Upon arriving at a new location, the individual can thus choose to
form social ties with other individuals within a radius with probability p or random
individuals anywhere in the space with probability pc, a free parameter. Although
simple, this model is able to reproduce many empirical relationships found in social
and mobility data.

2.5.3 Mobility and Economic Outcomes

Mobility not only provides people with social opportunities, it also provides
economic ones. Economists and other social scientists have developed numerous
theories on the role of face-to-face interactions in socio-economic outcomes and
economic growth. In-person meetings are thought to unlock human capital, making
us productive [62, 63]. For example, jobs in dense cities tend to pay higher wages
than the same jobs in more rural areas even after controlling for factors such as age
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and education [64] in part due to productivity and creativity gains made possible by
the rich face-to-face interactions that close spatial proximity facilitates. Universal
urban scaling laws have been repeatedly found showing that societal attributes
from the number of patents to average walking speed scales with population and
theoretic models have been proposed that suggest density is at the heart of these
relationships [3, 4, 65]. While density is one way of propagating these benefits,
increased mobility is another. Poorer residents of cities have been, for example,
shown to have better job prospects and higher chances of retaining jobs when given
a personal car instead of being constrained by public transit [66]. Finally, Chetty
et al. [53] found strong correlations between intergenerational economic mobility
and variables related to the commuting times and spatial segregation of people
(Fig. 2.5c). While we are only beginning to explore these relationships, early returns
suggest that mobility is a critical component of many economic systems.

2.6 Conclusion

In this chapter, we reviewed a number of ways new data sources are expanding
our understanding of human mobility. Applying methods from statistical physics,
machine learning, and traditional transportation modeling, reproducible character-
istics of human movement become visible. We explore slowly [17, 18], we are
highly predictable [19, 29], and we are mostly unique [9]. Models of aggregate
flows of people from place to place have also found success with analogies to
statistical physics validated by new data sources [35]. More accurate measurements
of city-wide traffic have made it easier than ever to assess the performances of
transportation systems and devise strategies to improve them [36]. Valuable in
their own rights, these insights have informed our understanding of other social
phenomena as well, leading to more accurate models of disease spread, social
interactions, and economic outcomes. As cities become home to millions of people
each year, the insights gained from these new data are critical in making them more
sustainable, safer, and better places to live.

References

1. Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. L., Noor, A. M., Snow, R. W., et al. (2012,
October). Quantifying the impact of human mobility on malaria. Science, 338(6104), 267–270.

2. Colizza, V., Barrat, A., Barthélemy, M., & Vespignani, A. (2006, February). The role of
the airline transportation network in the prediction and predictability of global epidemics.
Proceedings of the National Academy of Sciences of the United States of America, 103(7),
2015–2020.

3. Bettencourt, L. M. A. (2013). The origins of scaling in cities. Science, 340, 1438–1441.
4. Pan, W., Ghoshal, G., Krumme, C., Cebrian, M., & Pentland, A. (2013) Urban characteristics

attributable to density-driven tie formation. Nature Communications, 4, 1961.



2 Modeling and Understanding Intrinsic Characteristics of Human Mobility 33

5. Cottrill, C. D. A., Pereira, F. C. A., Zhao, F. A., Dias, I. F. B., Lim, H. B. C., Ben-Akiva, M. E.
D., et al. (2013) Future mobility survey. Transportation Research Record, 2354, 59–67.

6. Ben-Akiva, M. E., & Lerman, S. R. (1985). Discrete choice analysis: Theory and application
to travel demand. Cambridge: MIT Press.

7. Hall, R. W. (Ed.) (1999). Handbook of transportation science. International series in operations
research & management science (Vol. 23). Boston: Springer.

8. de Dios Ortúzar, J., & Willumsen, L. G. (2011). Modelling transport. Chichester: Wiley.
9. de Montjoye, Y.-A., Hidalgo, C. A., Verleysen, M., & Blondel, V. D. (2013). Unique in the

Crowd: The privacy bounds of human mobility. Nature Scientific Reports, 3, 1376.
10. de Montjoye, Y.-A., Shmueli, E., Wang, S. S., & Pentland, A. S. (2014). OpenPDS: Protecting

the privacy of metadata through SafeAnswers. PLoS ONE, 9, e98790.
11. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., et al. (2009).

Computational social science. Science, 323(5915), 721–723.
12. de Montjoye, Y. A., Smoreda, Z., Trinquart, R., Ziemlicki, C., & Blondel, V. D. (2014, July).

D4D-Senegal: The second mobile phone data for development challenge.
13. Aharony, N., Pan, W., Ip, C., Khayal, I., & Pentland, A. (2011). Social fMRI: Investigating and

shaping social mechanisms in the real world. In Pervasive and mobile computing (Vol. 7, pp.
643–659).

14. Eagle, N., & Pentland, A. S. (2009). Eigenbehaviors: Identifying structure in routine.
Behavioral Ecology and Sociobiology, 63, 1057–1066.

15. Kosta, E., Graux, H., & Dumortier, J. (2014). Collection and storage of personal data: A critical
view on current practices in the transportation sector. In Privacy technologies and policy SE -
10 (Vol. 8319, pp. 157–176).

16. Ranjan, G., Zang, H., Zhang, Z.-L., & Bolot, J. (2012). Are call detail records biased
for sampling human mobility? ACM SIGMOBILE Mobile Computing and Communications
Review, 16(3), 33–44. http://dl.acm.org/citation.cfm?id=2412101.

17. González, M. C., Hidalgo, C. A., & Barabási, A. L. (2008). Understanding individual human
mobility patterns. Nature, 453(7196), 779–782.

18. Song, C., Koren, T., Wang, P., & Barabási, A.-L. (2010, September). Modelling the scaling
properties of human mobility. Nature Physics, 6(10), 818–823

19. Song, C., Qu, Z., Blumm, N., & Barabási, A.-L. (2010) Limits of predictability in human
mobility. Science, 327(5968), 1018–1021.

20. Brockmann, D., Hufnagel, L., & Geisel, T. (2006). The scaling laws of human travel. Nature,
439, 462–465.

21. Cheng, Z., Caverlee, J., Lee, K., & Sui, D. Z. (2011). Exploring millions of footprints in
location sharing services. In ICWSM (pp. 81–88).

22. Kim, H. S. (2003, January). QoS provisioning in cellular networks based on mobility prediction
techniques. IEEE communications magazine, 41(1), 86–92.

23. Liu, T., Bahl, P., Chlamtac, I. (1998). Mobility modeling, location tracking, and trajectory
prediction in wireless ATM networks. IEEE Journal on Selected Areas in Communications,
16, 922–935.

24. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., & Toledo, S.
(2009). VTrack: accurate, energy-aware road traffic delay estimation using mobile phones. In
Proceedings of the 7th ACM conference on embedded networked sensor systems - SenSys ’09
(pp. 85–98).

25. Krumm, J., Horvitz, E., Dourish, P., & Friday, A. (2006). Predestination: Inferring destinations
from partial trajectories. UbiComp 2006: Ubiquitous Computing, 4206, 243–260.

26. Minkyong, K., Kotz, D., & Songkuk, K. (2006). Extracting a mobility model from real user
traces. In Proceedings - IEEE INFOCOM.

27. Lee, K., Hong, S., Kim, S. J., Rhee, I., & Chong, S. (2009). SLAW: a new mobility model for
human walks. In IEEE INFOCOM 2009.

28. Cho, E., Myers, S. A., & Leskovec, J. (2011). Friendship and mobility. In Proceedings of the
17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD
11 (p. 1082). New York: ACM Press.

http://dl.acm.org/citation.cfm?id=2412101


34 J.L. Toole et al.

29. De Domenico, M. (2012). Interdependence and predictability of human mobility and social
interactions. Journal Pervasive and Mobile Computing, 9, 798–807.

30. Scellato, S., Musolesi, M., Mascolo, C., Latora, V., & Campbell, A. T. (2011). NextPlace:
A spatio-temporal prediction framework for pervasive systems. In Pervasive computing,
Lecture notes in computer science (Vol. 6696, pp. 152–169). Heidelberg: Springer.

31. Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal
and Ubiquitous Computing, 10, 255–268.

32. Sadilek, A., & Krumm, J. (2012). Far out: Predicting long-term human mobility. In AAAI (pp.
814–820).

33. Schneider, C. M., Belik, V., Couronné, T., Smoreda, Z., & González, M. C. (2013). Unravelling
daily human mobility motifs. Journal of the Royal Society, Interface the Royal Society, 10(84),
20130246.

34. Sun, L., Axhausen, K. W., Lee, D.-H., & Huang, X. (2013, August). Understanding
metropolitan patterns of daily encounters. Proceedings of the National Academy of Sciences,
110(34), 13774–13779.

35. Simini, F., González, M. C., Maritan, A., & Barabási, A.-L. (2012). A universal model for
mobility and migration patterns. Nature, 484(7392), 8–12.

36. Wang, P., Hunter, T., Bayen, A. M., Schechtner, K., & González, M. C. (2012, January).
Understanding road usage patterns in urban areas. Scientific Reports, 2, 1001.

37. McNally, M. G. (2008, November). The four step model. Irvine: Center for Activity Systems
Analysis.

38. Hansen, W. G. (1959, May). How accessibility shapes land use. Journal of the American
Institute of Planners, 25(2), 73–76.

39. Yang, Y., Herrera, C., Eagle, N., & González, M. C. (2014, January). Limits of predictability
in commuting flows in the absence of data for calibration. Scientific Reports, 4, 5662.

40. Iqbal, Md. S., Choudhury, C. F., Wang, P., & González, M. C. (2014, March). Development
of origin-destination matrices using mobile phone call data. Transportation Research Part C:
Emerging Technologies, 40, 63–74.

41. Spiess, H. (1990, May). Technical note-conical volume-delay functions. Transportation
Science, 24(2), 153–158.

42. Samaranayake, S., Blandin, S., & Bayen, A. (2011). Learning the dependency structure of
highway networks for traffic forecast. In Proceedings of the IEEE conference on decision and
control (pp. 5983–5988).

43. Herring, R., Nasr, T. A., Khalek, A. A., & Bayen, A. (2010). Using mobile phones to forecast
arterial traffic through statistical learning. Electrical Engineering, 59, 1–22.

44. Herrera, J. C., Work, D. B., Herring, R., Ban, X., Jacobson, Q., & Bayen, A. M. (2010).
Evaluation of traffic data obtained via GPS-enabled mobile phones: The mobile century field
experiment. Transportation Research Part C: Emerging Technologies, 18, 568–583.

45. Jariyasunant, J. (2012). Improving traveler information and collecting behavior data with
smartphones. PhD thesis.

46. Wang, J., Mao, Y., Li, J., Xiong, Z., & Wang, W.-X. (2015). Predictability of road traffic and
congestion in urban areas. PLoS One, 10(4), e0121825. doi:10.1371/journal.pone.0121825.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121825.

47. Wang, P., Liu, L., Li, X., Li, G., & González, M. C. (2014, January). Empirical study of long-
range connections in a road network offers new ingredient for navigation optimization models.
New Journal of Physics, 16(1), 013012.

48. Lorenzo, G. D., Sbodio, M. L., Calabrese, F., Berlingerio, M., Nair, R., & Pinelli, F. (2014,
January). AllAboard. In Proceedings of the 19th international conference on Intelligent User
Interfaces - IUI ’14 (pp. 335–340). New York: ACM Press.

49. Ching, A. M. L. (2012). A user-flocksourced bus intelligence system for Dhaka. Diss.
Massachusetts Institute of Technology.

10.1371/journal.pone.0121825
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121825


2 Modeling and Understanding Intrinsic Characteristics of Human Mobility 35

50. Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S. H., & Ratti, C. (2014).
Quantifying the benefits of vehicle pooling with shareability networks. Proceedings of the
National Academy of Sciences 111(37), 13290–13294. http://www.pnas.org/content/111/37/
13290.short.

51. Nicolaides, C., Cueto-Felgueroso, L., González, M. C., & Juanes, R. (2012). A metric of
influential spreading during contagion dynamics through the air transportation network. PLoS
ONE, 7, e40961.

52. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., & Tomkins, A. (2005). Geographic
routing in social networks. Proceedings of the National Academy of Sciences of the United
States of America, 102(33), 11623–11628.

53. Chetty, R., Hendren, N., Kline, P., & Saez, E. (2014). Where is the land of oppor-
tunity? The geography of intergenerational mobility in the United States. No. w19843.
National Bureau of Economic Research. http://qje.oxfordjournals.org/content/early/2014/10/
16/qje.qju022.full#cited-by.

54. Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W., & Buckee, C. O. (2013, April). The
impact of biases in mobile phone ownership on estimates of human mobility. Journal of the
Royal Society, Interface / the Royal Society, 10(81), 20120986.

55. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J. L., & Vespignani, A. (2009,
December). Multiscale mobility networks and the spatial spreading of infectious diseases.
Proceedings of the National Academy of Sciences of the United States of America, 106(51),
21484–21489.

56. Meloni, S., Perra, N., Arenas, A., Gómez, S., Moreno, Y., & Vespignani, A. (2011, January).
Modeling human mobility responses to the large-scale spreading of infectious diseases.
Scientific Reports, 1, 62.

57. Backstrom, L., Sun, E., & Marlow, C. (2010). Find me if you can: Improving geographical
prediction with social and spatial proximity. In Proceedings of the 19th international
conference on World wide web (pp. 61–70).

58. Grabowicz, P. A., Ramasco, J. J., Gonçalves, B., & Eguiluz, V. M. (2013). Entangling mobility
and interactions in social media. PLoS One, 9(3), e92196. http://dx.plos.org/10.1371/journal.
pone.0092196.

59. Toole, J. L., Cha, M., & González, M. C. (2012). Modeling the adoption of innovations in the
presence of geographic and media influences. PLoS ONE, 7(1), e29528.

60. Herrera-Yagüe, C., Schneider, C. M., Smoreda, Z., Couronné, T., Zufiria, P. J., & González,
M. C. (2014). The elliptic model for communication fluxes. Journal of Statistical Mechanics:
Theory and Experiment, 2014(4), P04022.

61. van den Berg, P., Arentze, T. A., & Timmermans, H. J. P. (2010). Size and composition of
ego-centered social networks and their effect on geographic distance and contact frequency.
Transportation Research Record, 2135, 1–9.

62. Kim, S. (1989). Labor specialization and the extent of the market. Journal of Political Economy,
97, 692–705.

63. Freedman, M. L. (2008). Job hopping, earnings dynamics, and industrial agglomeration in the
software publishing industry. Journal of Urban Economics, 64, 590–600.

64. Yankow, J. J. (2006). Why do cities pay more? An empirical examination of some competing
theories of the urban wage premium. Journal of Urban Economics, 60, 139–161.

65. Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C., & West, G. B. (2007, April). Growth,
innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of
Sciences of the United States of America, 104(17), 7301–7306.

66. Gurley, T., & Bruce, D. (2005). The effects of car access on employment outcomes for welfare
recipients. Journal of Urban Economics, 58, 250–272.

http://www.pnas.org/content/111/37/13290.short
http://www.pnas.org/content/111/37/13290.short
http://qje.oxfordjournals.org/content/early/2014/10/16/qje.qju022.full#cited-by
http://qje.oxfordjournals.org/content/early/2014/10/16/qje.qju022.full#cited-by
http://dx.plos.org/10.1371/journal.pone.0092196
http://dx.plos.org/10.1371/journal.pone.0092196


Chapter 3
Face-to-Face Interactions

Alain Barrat and Ciro Cattuto

Abstract Face-to-face interactions of humans play a crucial role in their social
relationships as well as in the potential transmission of infectious diseases. Here
we discuss recent research efforts and advances concerning the measure, analysis
and modelling of such interactions measured using strategies ranging from surveys
to decentralised infrastructures based on wearable sensors. We present a number
of empirical characteristics of face-to-face interaction patterns and novel techniques
aimed at uncovering mesoscopic structures in these patterns. We also mention recent
modelling efforts and conclude with some open questions and challenges.

3.1 Introduction

Our modern interconnected societies make many channels available for commu-
nications and social interactions, such as phone calls, email, virtual conferences,
micromessaging, or online social networks. Despite this wealth of alternatives,
direct face-to-face interactions between individuals remain an essential element
of human behaviour and of human societies. Mining and analysing face-to-face
interaction patterns between individuals therefore has a clear impact towards
the fundamental knowledge and understanding of human behaviour and social
networks. Most crucially, contact patterns among individuals play an important role
in determining the potential transmission routes of infectious diseases, in particular
of respiratory pathogens. An accurate description of these patterns represents
therefore a crucial tool for identifying contagion pathways, for informing models

A. Barrat (�)
Aix Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332,
13288 Marseille, France

Data Science Laboratory, ISI Foundation, Torino, Italy
e-mail: alain.barrat@cpt.univ-mrs.fr

C. Cattuto
Data Science Laboratory, ISI Foundation, Torino, Italy
e-mail: ciro.cattuto@isi.it

© Springer International Publishing Switzerland 2015
B. Gonçalves, N. Perra (eds.), Social Phenomena, Computational
Social Sciences, DOI 10.1007/978-3-319-14011-7_3

37

mailto:alain.barrat@cpt.univ-mrs.fr
mailto:ciro.cattuto@isi.it


38 A. Barrat and C. Cattuto

of epidemic spread, and for the design and evaluation of control measures such as
the targeting of specific groups of individuals with appropriate prevention strategies
or interventions.

Empirical data describing direct interactions between individuals are however
by nature difficult to gather as, contrarily to online interactions, phone calls
or electronic communications, they do not leave any digital trace. Various data
collection strategies have therefore been used, in particular in the epidemiological
context and at different scales: surveys and diaries, synthetic population models,
and, thanks to the increase in the availability and use of novel technologies, wearable
sensors (see [1] for a review).

Here we first briefly review the measurement strategies and some of their
advantages and intrinsic limitations (Sect. 3.2). We then discuss in Sects. 3.3 and 3.4
a number of empirical characteristics of face-to-face interactions as obtained by
recent projects using wearable sensors, and review in Sect. 3.5 some recent attempts
at modelling these processes. We conclude in Sect. 3.6 by presenting a number of
open questions.

3.2 Proxies of Face-to-Face Interactions
and Measurement Strategies

Face-to-face interactions between individuals occur in a variety of contexts and
situations, contributing to phenomena as diverse as social coordination, information
propagation, disease spread and more. Gathering data and understanding the
patterns of these direct contacts is therefore of interest to fields of research ranging
from the fundamental understanding of human behaviour to the epidemiology of
transmissible diseases, and many efforts have been devoted to these tasks. We refer
the reader to [1] for a recent review of the methods and technologies that have
been used in various projects and provide here only a brief discussion on the range
of methods available and non-exhaustive references to the corresponding research
efforts.

A commonly employed method consists in asking individuals about their
contacts, using surveys and diaries. Volunteer participants are asked to record their
social interactions during a certain time period, for instance on a specific day, or
on consecutive days. While social science studies can be interested in all such
interactions (face-to-face, by email or by phone), the strongest focus on obtaining
information on face-to-face interactions has emerged in epidemiological studies
of infectious diseases, as such direct interactions are considered as relevant for
transmission events. Many efforts have therefore been deployed to use contact
diaries under various forms (using both paper and web-based questionnaires), either
in specific contexts ranging from hospitals to schools or among the general popula-
tion [2–9], and sometimes at very large scale with thousands of respondents [5, 7, 8].
Surveys have both advantages and limitations. One of the main advantages is that
well-studied questionnaires allow to gather information not only on the existence of
contacts but also on additional characteristics, such as their context (home, work,
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travel), estimates of their durations, existence of repeated contacts with the same
individual, or even the distance from home at which the contacts take place [8].
Metadata such as the age, gender and occupation of the respondent can also be
correlated with his/her contact numbers and durations. Questionnaires can even ask
to specify for each contact if it involved physical contact and distinguish periods
of well-being and illness of the respondent [10]. Surveys have also important
limitations. First, questionnaires are costly and it is notoriously difficult to recruit
participants [8, 9]. Second, self-reporting procedures entail biases that are difficult to
estimate [4, 11, 12], as participants might not recall all their contacts or might make
incorrect estimates of their durations. As surveys give access to ego-networks, the
fraction of triangles in contact networks is also difficult to estimate and typically
relies on each individual estimating if two of his/her contacts have themselves been
in contact [8]. Finally, subtleties in questionnaire design might also influence the
results, as discussed in [8]: for instance, the distribution of the number of reported
contacts varies significantly whether individuals have to report the name of each
contact or not.

Alternative approaches to the use of surveys have emerged in the recent years,
giving usually access to proxies of face-to-face interactions. For instance, the
availability of large-scale computing facilities and of detailed socio-demographic
data have made it possible to recreate in silica synthetic populations at the scale of
a whole city or country. These synthetic populations are typically used to generate
contact networks to simulate the spread of infectious diseases [13–15]. Interestingly,
the contact patterns obtained within such synthetic populations have been shown to
match those obtained in large-scale surveys [14, 15].

Another approach takes advantage of the development of various types of sensors
which can in particular measure the proximity of other similar devices, using
technologies ranging from Bluetooth, WiFi or RFID [16–24]. Depending on the
range of the signals used, such methods might yield information only on proximity
at a range that might not imply face-to-face interaction (e.g., Bluetooth signals
between devices can typically be received through a wall), or can be tuned to
specifically detect close-range face-to-face proximity [19, 21, 22]. We will here
mostly report on results obtained with the latter technology. Wearable sensors
are nowadays simple to use and come at reasonable costs. They also afford an
objective definition of contact and can report even short encounters. Their main
limitation comes from the fact that they do not register contacts with individuals
not participating to the data collection (and therefore not wearing any sensor) and
therefore provide data on the contacts among a closed population. Sampling issues
can thus arise if not all the members of the population of interest agree to wear the
sensors [22].

Given the respective advantages and limitations of methods based on surveys
and wearable sensors, a comparison of data collected by both types of methods in
a given population is of great interest. To our knowledge, only one such study has
been performed to date, namely in a high school context, showing in particular that
many contacts registered by sensors are not reported in surveys, especially for short
contacts, while long contacts are better reported [12]. More such studies in various
contexts would be highly welcome in the future.
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3.3 Face-to-Face Interactions as Temporal Networks

One of the advantages of decentralised sensing infrastructures based on wearable
sensors is that they not only yield information on the existence of a face-to-face
interaction between two individuals but also give access to the starting and ending
time of each such interaction, with a certain time resolution (typically of the order
of 20 s to a couple of minutes). The collected data can therefore adequately be
represented as a time-varying social network of contacts within the monitored
community, i.e., an instance of a “temporal network” [25].

The amount of activity, quantified as the number of observed face-to-face
contacts in a given time-window, varies substantially over time and can be very
different in different contexts. For instance, children in a primary school interact
much more than adults in offices. Despite these differences, some generic statistical
properties of the temporal networks of human interactions have emerged through the
various data collection efforts. First, the time intervals between successive contacts
are broadly distributed, spanning several orders of magnitude: most intercontact
durations are short, but very long durations are also observed, and no characteristic
timescale emerges [16, 19, 22, 26–28]. This bursty behaviour is a well-known
feature of human dynamics and has been observed in a variety of systems driven by
human actions [29]. Moreover, the distributions of the durations of single contacts
are also broad, spanning several orders of magnitude, and their functional form
displays a remarkable robustness across contexts [22, 28], measurement periods,
and measurement methods [30], as illustrated in Fig. 3.1.

Overall, temporal networks of face-to-face contacts between individuals exhibit
strongly heterogeneous dynamics, with robust statistical features. This implies two
important facts for modelers, in particular when dealing with processes depending
on contact durations between individuals, such as epidemic spreading. First, the
broadness of the distributions means that taking into account only average contact
durations and assuming that all contacts are equivalent might be a too coarse
representation of the reality. Indeed, different contacts might yield very different
transmission probabilities: many contacts are very short and correspond to a small
transmission probability, but some are much longer than others and could therefore
play a crucial role in disease dynamics, Second, the robustness of the distributions
found in different contexts means that these distributions can be assumed to depend
negligibly on the specifics of the situation being modeled and thus directly plugged
into the models.
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Fig. 3.1 Distributions of the face-to-face contact durations measured in different environments
ranging from a museum (SG) to a school (PS) and several scientific conferences

3.4 Structures and Structure Discovery

3.4.1 Structures in Aggregated Data

3.4.1.1 Contact Networks

It is often useful to aggregate the temporal network of contacts between individuals
over a given time window, in order to obtain static summaries of the contact
sequence. In the obtained aggregated network, each node represents an individual,
and a link between two nodes i and j denotes the fact that the corresponding
individuals have been in contact at least once during the time window under
consideration. Each such link is weighted by a summary of the temporal contact
activity that took place between i and j, such as the number of contact events or the
cumulative duration w of the contact events between the corresponding individuals.

The time window considered for aggregation can range from the finest time
resolution of the recording system (that can be of the order of seconds or minutes)
up to the entire duration of the data collection (e.g., days or weeks). In the case
of surveys, the detailed temporal information on the contacts’ timing is often not
available, and the natural aggregation time scale is 1 day. Surveys thus typically give
access to daily aggregated networks. Overall, different aggregation levels typically
provide complementary views of the network dynamics at different scales.
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The obtained aggregated networks unveil important information about the
contact patterns of the population under study. A first characterisation is provided
by the statistical distributions of nodes’ degrees: in a contact network, the degree
of a node (individual) is given by the number of distinct individuals with whom
that individual has been in contact. In datasets collected through wearable sensors,
the observed degree distributions are typically narrow, with an exponential decay
at large degrees and characteristic average values that depend on the particular
context [30, 31]. Interestingly, contact data obtained through surveys can lead either
to narrow or broad degree distributions, as discussed in [8], and the result might
be influenced by the way in which the survey is designed. When individuals are
asked to report a precise list of persons encountered during the day, the obtained
degree distributions are typically narrow [4, 6, 7], and the data of [8] actually show
a good agreement with sensor data. However, if the respondents have in addition the
possibility to report encounters with “groups” of individuals without specifying the
identity of each group member, the distribution becomes broad [8].

While the number of distinct individuals met is certainly important when
discussing behavioural patterns of humans, the durations and cumulated durations
of face-to-face contacts also carry crucial information, in particular with respect to
social or epidemiological contexts. The distributions of links’ weights is thus a very
relevant characteristic of these networks. Such distributions have been found to be
broad in many different datasets collected either through sensors [19, 22, 24, 28] or
surveys [8]: most pairs of interacting individuals have been in face-to-face proximity
for a short total amount of time, but some cumulated contact durations are very
long. No characteristic interaction timescale can be naturally defined, except for
obvious temporal cutoffs due to the finite duration of the measurements. Strikingly,
and similarly to the case of the durations of single contacts, recent studies have
shown a strong robustness of the functional shape of these distributions in different
contexts and even different data collection methods [22, 28, 30]. The empirically
found distributions seem therefore to be a robust property of human behaviour and
can be used directly for modelling purposes in various contexts.

While statistical distributions of node and link features display a strong robust-
ness, the detailed structures of aggregated networks of contacts are much more
diverse depending on the context. For instance, aggregated networks of interactions
during a typical day at a small conference are rather “compact” with a close-
knit structure [31], as participants are typically engaged in interacting with known
individuals as well as in meeting new persons. Networks of contacts among
children in a primary school or students in a high school display on the contrary
a strong community structure, shown in Fig. 3.2, as a consequence of the grouping
of individuals in classes [30, 33]. A similar structure has been observed in an
office building, where workers from the same department have more contacts than
with workers from other departments, even during lunch hours [34]. In hospitals,
different structures emerge due to the different roles of individuals: as shown in
[35, 36], nurses tend to form a rather dense group of nodes in the aggregated
network. The network of links involving patients and caregivers has, on the other
hand, a particular structure linking each patient to a specific caregiver, with very few
links among caregivers or among patients (see [35, 37] for graphical illustrations).
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Fig. 3.2 Primary school contact network, aggregated over 1 day. Only links that correspond to
cumulated face-to-face proximity in excess of 5 min are shown. The color of nodes indicates the
grade and class of students. Grey nodes represent teachers. The network layout was generated by
using the force atlas graph layout implementation available in Gephi [32]

3.4.1.2 Contact Matrices

It is often convenient to go one step further in the aggregation of contact data when
the population under study is structured, i.e., when individuals can be classified
according to specific characteristics or role (e.g., according to their age class or
professional activity). A convenient summary of their contact patterns is then
provided by contact matrices whose elements give the average number (or duration)
of the contacts that individuals in one given class have with individuals of another
class. Such a representation can be used at different scales: to describe, e.g., the
contact patterns between individuals having different roles in a hospital ward (e.g.,
nurses, doctors, patients) [35, 36], or between children or students of different
classes in schools [30, 33], but also to account for the mixing patterns between
individuals of different age classes in the population of a country, as obtained by
surveys [5].

Of note, the use of contact matrices for modeling contact patterns relies on a set
of restricted homogeneous mixing assumptions within each class and on the repre-
sentativeness of the average mixing behaviour between classes. Such an approach
neglects the strong fluctuations observed in the distributions of the numbers and
durations of contacts between two individuals of given classes [5, 6, 28, 38]. It
neglects also the fact that contact networks are typically sparse, and that the density
of links connecting individuals in given classes depends on the specific classes and
is sometimes very small: many pairs of individuals never have any contact.
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In order to provide a data representation that is not as specific as a high-resolution
temporal network of contacts but does not discard relevant heterogeneities in the
contact patterns, the contact matrix of distributions (CMD) has been introduced
in [38]. This representation, instead of considering only the average of the contact
time between individuals of specific classes, considers the whole distribution of
contact times, typically fitted by a negative binomial distribution. Similarly to the
customary contact matrices, the CMD is not an individual-based representation,
and does not retain the detailed structure of the empirical contact network. It thus
keeps the simplicity of a contact matrix formulation by grouping the individuals into
role classes, but takes into account the heterogeneity of contact durations between
individuals and the sparseness of the contact network. Such a representation is
useful for designing interventions as it can suggest easily generalizable strategies
that target specific classes of individuals [38].

3.4.1.3 Different Types of Contacts

Let us finally note that we have here mostly discussed aggregated networks of
contacts as registered by wearable sensors in different contexts. Contacts are then
gathered only between individuals participating to the data collection, and within the
considered environment. Individuals however have contacts in different situations,
ranging from home to workplaces and transportation means. In this respect, surveys
can help understand and quantify how contacts depend on context. For instance,
the large-scale survey analysed in [8] highlights how contact time decreases
with age and how contacts involving touch tend be of longer duration. It also shows
that home contacts account for the majority of contact hours, while work corre-
sponds to more numerous but shorter contacts. Different occupations correspond
also to different average daily numbers of contacts. Finally, the survey answers show
that the time in contact decreases when the distance from home increases [8].

3.4.2 Longitudinal Structures

Human activity and contact patterns are highly non-stationary. In particular, the
number of contacts among a given population varies strongly in time, obeying
typical circadian rhythms and possibly modulated by the unfolding of scheduled
activities [22]. It is therefore important to assess how statistical properties of
contacts are impacted by and possibly coupled with these activity variations.
Moreover, high-resolution datasets on contacts between individuals are typically
gathered during few days or weeks in a certain context, and assessing the long-term
stability of the data characteristics across different periods is also crucial.
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3.4.2.1 Short-Term Stability

Despite the strong variations in activity, i.e., in the numbers of registered contacts,
the main statistical properties of the contacts have been empirically shown to
be stable [22, 28]. In particular, the contact duration distributions measured over
different time windows coincide, as well as the structure of contact matrices across
different workdays [30, 34, 36]. In fact, even the activity timelines can be remarkably
stable across days when they depend on schedules either externally imposed as in
schools [30] or driven by the organisation of work as in hospitals [36], as illustrated
in Fig. 3.3.

On the other hand, surveys have shown that important differences between
contact matrices describing contact patterns in the population are observed between
work and non-work days [6, 8, 39], as well as, for a given individual, between
periods of well-being and periods of illness [10].
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doctor. From [36]
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3.4.2.2 Long-Term Stability

Few datasets afford a comparison between contact patterns observed in a given
context or in similar contexts during different periods. In particular, the comparison
of the data gathered in different hospital wards [23, 35, 36] shows the robustness of
stylised facts such as the central role of nurses and the small number of contacts
between patients. Very few studies report and compare high-resolution contact
networks measured in the same context at different points in time. Fournet and
Barrat [30] compares contact data gathered in the same high school in two different
years, and reports a very strong qualitative and quantitative similarity between
contact matrices for different years.

3.4.3 Mesoscopic Structures and Latent Factor Analysis

In the previous sections we discussed the short-term and long-term stability of some
statistical distributions of interest. The aggregation over time or over node attributes
that is required to compute such distributions projects away many specificities,
structures, and correlations of the original data. Depending on the problem at hand,
these aggregated representations may overlook or confound important structural
features of the network.

For example, a node or group of nodes may belong to different communities at
different points in time: aggregating the network over time will artificially merge the
communities and create a cluster that does not represent the network at any point
in time. Similarly, groups of nodes may exist that share similar activity patterns
over time. This is a common occurrence in environments such as schools, where
an externally imposed schedule of social activities (e.g., class and lunch breaks)
drives and constrains the interactions that are possible at a given time. In this case,
temporal aggregation of the network may retain the topology of interactions but
loses the information on correlated activity patterns, which may play an important
role for, e.g., epidemic processes unfolding over the temporal network [40]. In
general, correlated topological and temporal features of the network may give rise
to structures that are neither local features of individual nodes or edges nor global
structures, such as, for instance, a suitably defined network backbone. Hence, in
the following we will refer to these structures as “mesoscopic structures”. It is
important to remark that meso-scale structures are not limited to the (possibly
hierarchical) community structure of the network: communities are usually defined
as cohesive clusters, whereas the structures under study may also comprise two-
mode communities [41], groups of links with correlated activity patterns, and more.

Detecting mesoscopic structures in high-resolution social network data is an out-
standing challenge that calls for principled approaches and efficient computational
techniques. Recent work focuses on extending well-known community detection
techniques to the case of temporal networks. A common approach is to detect
communities in static networks snapshots obtained by aggregating the temporal
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network over consecutive time intervals. The changes of the community structure
over time are then analysed to relate communities found at different times and
track their evolution. Simple approaches to mine the temporal community structure
of a system are based on a continuity assumption for the (static) community
structure detected at successive time intervals [42–44]. These approaches may
prove useful in specific cases, but fail in the presence of discontinuous activity
patterns, abrupt community formation or dissolution, and in general they cannot
deal with temporal correlations over extended periods of time. Instead of separately
treating the community structure and the temporal evolution of the network, some
studies [45–47] pioneered global approaches to the problem of community detection
in temporal networks.

More recently, we have investigated the use of techniques for latent factor analy-
sis to simultaneously identify mesoscopic network structures and track their activity
over time, without the assumption that the sought structures should be cohesive
clusters. The starting point for this analysis is a mathematical representation of time-
varying network data that treats topology and time on an equal footing: A temporal
network can be naturally represented as a time-ordered sequence of adjacency
matrices, each describing the state of the network at a discrete point in time. The
adjacency matrices can be combined into a three-way tensor T 2 R

N�N�S, where
N is the number of nodes of the network and S the number of network snapshots.
The tensor T encodes the entire information about the temporal network and has
been recognized as a convenient representation both for multi-layer networks and
temporal networks [48].

Once the network and its evolution are represented in a tensor form, we can
use a variety of methods from data mining and machine learning to identify latent
structures. We focused on tensor decomposition techniques that were developed in
diverse domains like signal processing, psychometrics and brain science [49, 50].
In particular, we investigated the use of non-negative tensor factorization [50, 51]
because, like non-negative matrix factorization [52], it is recognized as a powerful
tool for learning parts-based representations. The basic idea is to approximate the
tensor T by a sum of products of lower-dimensional factors, each of which can be
interpreted in terms of groups of nodes and temporal activity patterns. Formally, T
can be approximated by a sum QT of rank-1 tensors:

QT D
R
X

rD1

ar ı br ı cr ; (3.1)

subjected to non-negativity constraints on ar, br and cr. The number R of terms in
the decomposition controls the complexity of the model: for small values of R, QT
is a crude approximation of T , whereas for high values of R the decomposition
yields a good approximation but eventually overfits T . The choice of R is usually
set by means of heuristics or quality metrics for the decomposition [53]. The vectors
a1; a2; : : : ; aR, b1; b2; : : : ; bR and c1; c2; : : : ; cR can be arranged into matrices A 2
R

N�R, B 2 R
N�R and C 2 R

S�R. Rows correspond to the nodes of the network,
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Fig. 3.4 Component-node matrix obtained via non-negative tensor factorization, for R D 13.
Rows correspond to network nodes and columns to components, here regarded as mesoscopic
structural features of the network. The matrix is obtained from the factor A by classifying each
node as belonging (light colours) or not belonging (dark blue) to a given component. Node order
has been rearranged to expose the block structure of the matrix. Colours identify components, and
the structures that correspond to school classes are annotated with the corresponding class name.
From [53]

while columns correspond to terms of the decomposition: specifically, the elements
air and bir relate individual nodes to components, while the elements ckr associate
each component with the times k it spans and can be regarded as an activity level of
that component over time. As an illustration, in Fig. 3.4 we display matrix A for a
sample decomposition of the high-resolution school social network of [33], obtained
via non-negative tensor factorization. The method detects both cohesive structures
corresponding to school classes and components that describe mixing patterns of
the classes induced by scheduled social events such as lunch breaks [53].

Overall, this decomposition model can accommodate the description of
mesoscale network structures that mix topological and temporal features in complex
fashions: cohesive communities, overlapping communities, groups of links that are
only active at specific times, abrupt transitions of the community structure, similar
connectivity patterns at distant times, and more. The non-negativity constraints
make the decomposition purely additive, and hence yield terms that are more inter-
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pretable [54] in relation to contextual information or other background knowledge
about the network at hand. We notice that non-negative factorization, because of the
properties summarized above, has been already proposed for community detection
in static networks [55, 56] when dealing with densely overlapping communities.

We finally remark that a central challenge in designing techniques for detecting
mesoscopic structures is the ability to validate the obtained results either by running
the decomposition on synthetic benchmark networks or by using empirical data for
which a ground truth is independently available, (e.g., the case of [53]).

3.5 Modelling Face-to-Face Interactions

The modelling activity concerning time-varying networks of contacts between
individuals is quite recent, mainly because it has followed the availability of time-
resolved datasets.1 For instance, Scherrer et al. [27] have proposed a model of
Markovian graph dynamics, in which each link can appear or disappear with
probabilities depending on the graph state at each time: This model was tuned
to reproduce detailed features of a specific dataset. Another approach consists in
considering a set of agents, defining rules of interactions between these agents,
and studying the statistical properties of the contact network that emerge from
these “microscopic” rules. In particular, the model developed in [58, 59] considers
N agents who can either be isolated or form groups. Each agent is characterized
by his/her coordination number indicating the number of agents interacting with
him/her, and the time at which this coordination number last changed. At each time
step, an isolated agent can create a link with another isolated agent, and an agent
who is part of a group can leave the group or invite an isolated agent to join it.
Each such creation or deletion of links occurs with probabilities that can depend
on the concerned agents’ status. Interestingly, the introduction of memory effects in
the definition of these probabilities is able to generate dynamical contact networks
with properties similar to the ones of empirical data sets [58, 59]. In particular, a
reinforcement principle can be implemented by considering that the probability that
an agent changes his/her state decreases with the time elapsed since his/her last
change of state: This is equivalent to the assumption that the longer an agent is
interacting in a group, the smaller is the probability that s/he will leave the group,
and that the longer an agent is isolated, the smaller is the probability that s/he will
form a new group. As a result, the distributions of contact durations and of time
intervals between successive contacts of an individual are power-law distributed,
and the aggregated contact networks display features similar to the empirically
observed ones [58, 59].

Vestergaard et al. [60] consider a similar model in which, for each pair of agents,
the probabilities of creation and deletion of links between agents depend on the

1See also [57] for more abstract modelling of adaptive networks.
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time elapsed since the last evolution of the involved agents. The model considers
four different “memory mechanisms” inspired by empirical evidence showing that
long-term memory effects akin to self-reinforcing effects are present in the creation
and disappearance of links in contact networks. For instance, more active agents
tend to create more new contacts and are more attractive to other agents initiating
new contacts; moreover, one of the mechanisms captures the fact that one tends
to interact more often with close acquaintances. While all these memory effects
are combined in empirical data, the modeling framework of [60] makes it possible
to explore their individual roles both analytically and numerically. The model
analysis shows how each memory mechanism by itself can lead to the emergence
of some heterogeneity in the temporal characteristics of the contact networks, as
quantified by broad distributions of, e.g., contact durations or inter-contact times.
Interestingly however, the whole empirical phenomenology is retrieved only when
all four memory mechanisms are introduced into the model.

Another model of interacting agents is put forward in [61, 62]: agents perform
here random walks in two dimensions, and two agents are considered as in contact if
they are within a certain distance d of each other. The main ingredient of the model
is that each agent i is characterised by an intrinsic “attractiveness” ai 2 Œ0; 1� that
can be interpreted as due, for instance, to social status. When an agent is in contact
with other agents, s/he can either perform a random walk step or keep the interaction
by staying immobile, and the probability to maintain the contact is proportional to
the attractiveness of the most attractive neighbour. Agents can also be active (i.e.,
can have contacts) or inactive with certain probabilities, to mimic the fact that in
empirical datasets, individuals can leave the premises and stop having contacts, or
come back and start again interacting. The mechanism is illustrated in Fig. 3.5 and
leads to heterogeneous distributions of contact durations, of inter contact times and
of aggregated contact durations very similar to empirical data (see Fig. 3.6).

3.6 Conclusions and Open Problems

Face-to-face interactions are a crucial element in the fabric of social connectivity.
Their properties and their dynamics entangle many complex aspects that comprise
the free agency of individuals, social coordination, human mobility and dynamics
under spatial constraints, the interplay of stochasticity and deterministic activity
patterns, social network structure, organizational structure, multi-layer and time-
varying social networks, and more. On top of this, face-to-face interactions mediate
and constrain important dynamical processes, such as information diffusion and
epidemic spread of infectious agents that are transmissible during a face-to-face
interaction. The research agenda on face-to-face interactions, of course, cannot
be fully decoupled from domain-specific aspects, but—as it is usually the case
for many complex systems—it is possible to discover and exploit summarized
data representations, statistical regularities, stylised facts, and minimal models that
reproduce a set of observations across diverse contexts.
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Fig. 3.5 Illustration of the mechanism of interaction of [61]. Each circle represents an agent.
Left: Dark agents are active, grey (light) agents do not move nor interact. Agents interact if they
are within a distance d, and are then connected by a link. Right: Each agent is characterized
by a number representing attractiveness. The probability for the central individual to move is
p D 1�max.0:1; 0:6/ D 0:4 since the attractiveness of the inactive agent is not taken into account.
Reprinted figure with permission from Michele Starnini, Andrea Baronchelli, and Romualdo
Pastor-Satorras, Phys. Rev. Lett. 110, 168701 (2013). Copyright 2013 by the American Physical
Society [61]

The research agenda we envision, thus, starts by building an “atlas” of human
contacts, which is incrementally assembled by adding map after map of human
encounters, obtained by measuring face-to-face interactions in a variety of social
contexts, at different points in time, at different scales, and using different proxies
to assess individual interactions. The availability of these empirical datasets allows
to make progress in the direction of the following goals:

• To learn which proxy is best suited to measure a given type of close-range
interaction in a given context, and how different proxies relate to one another
when used to quantify the same face-to-face interactions. We illustrated some of
these points in Sect. 3.2.

• To uncover statistical regularities, as discussed in Sect. 3.3. The ultimate goal is
not to empirically quantify all interactions in any given environment, but rather to
learn what should be measured and what we do not need to measure every time.

• To design summarised data representations such as the contact matrices and
aggregated networks discussed in Sect. 3.4 that, ideally, retain only the essential
information and generalise well to other environments or social contexts.

• To devise minimal dynamical models, like those described in Sect. 3.5, that
reproduce a set of important stylised facts and observed statistical properties
under minimal assumptions. Models like these are precious to generate synthetic
but realistic interaction networks, and to gain insight into the deep mechanisms
that are responsible for the observed behaviors.

All of the above points are aimed at achieving parsimonious representations of the
empirical data and parsimonious mathematical models for selected observables.
However, it is important to remark that whereas simple generative models can
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Fig. 3.6 Comparison of the model of [61] with empirical data. Main figure: distribution P.w/ of
links’ weights (i.e., aggregated contact durations between pairs of individuals) in the aggregated
contact network. Inset: average strength s of nodes of degree k in the aggregated network, i.e.,
average total time in contact (s) of agents having had contacts with k other agents. The datasets
correspond to contacts gathered by the SocioPatterns collaboration [21] in a hospital (“hosp”),
conferences (“ht” and “sfhh”) and in a primary school (“school”). Reprinted figure with permission
from Michele Starnini, Andrea Baronchelli, and Romualdo Pastor-Satorras, Phys. Rev. Lett. 110,
168701 (2013). Copyright 2013 by the American Physical Society [61]

reproduce some or even many of the observed statistical distributions, the rich multi-
level structure that is visible in face-to-face interaction data cannot emerge from
such models: when aiming at realistic scenarios, both in a data mining perspective
and in a mathematical modeling perspective, there are specificities of the system at
hand that we cannot ignore. Because of this, is it important to develop and validate
techniques for detecting structures and correlated activity patterns of face-to-face
interactions, as discussed in Sect. 3.4.3. Many highly relevant ideas and methods
rooted in the domains of data mining and machine learning can be brought to bear
on network science. The design of mathematical models that naturally incorporate
the observed longitudinal structures, mesoscopic structures, and correlated activity
patterns is an outstanding problem.

In this chapter we often discussed, explicitly or implicitly, epidemic processes
over face-to-face interaction networks. This disciplinary focus arises from two
reasons:

• A need for simplicity. Biological contagion processes unfold over face-to-face
interaction in a mechanistic fashion. To describe their dynamics we need not take
into account complex cultural attributes of the individuals that may play a crucial
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role when dealing with, e.g., information spreading over face-to-face encounters.
Moreover, when dealing with airborne infectious agents, the network of close-
range encounters in space is generally regarded to be the relevant network for
the epidemic process. The same does not hold for, e.g., information diffusion,
as face-to-face encounters are just one of many information exchange modalities
among humans and the relevant network structure for this process is likely to be
a multi-layer network.

• Moving from understanding to control. Controlling and mitigating epidemic
processes on face-to-face interaction networks is a challenge that combines
data-intensive approaches and mathematical models, with a potentially huge real-
world impact. Nosocomial infections alone are a huge burden, both financially
and in terms of individual health outcomes, and they occur in a context, the
hospital, where it is comparatively easy to measure face-to-face interactions
and put them in relation with infection surveillance and microbiological data.
In general, there is an opportunity to use knowledge on high-resolution social
networks to design mitigation strategies and targeted interventions. In [63],
for example, we investigated targeted class-closure strategies for mitigating the
epidemic of a flu-like disease in schools.

Despite the recent important advances that we have in part described in this
chapter, many other open problems and challenges remain [64]. They include
further measurements of face-to-face interactions at different scales and in different
contexts, with in particular the comparison and integration of different measurement
strategies and the development of means to compensate for missing data due to sam-
pling issues and to the finiteness of the population studied. A crucial challenge, in
the context of understanding infectious disease dynamics over face-to-face contact
networks, regards also the combination of contact data with virological data to better
understand the links between contacts and infection events and to better assess the
relative importance of different routes of transmission of various infectious diseases.
Another important open problem lies in measuring, understanding, and modeling
the reactive aspects of social contact in relation to disease status. This entangles the
biological contagion dynamics and behavioural/cultural aspects, greatly increasing
the complexity of the dynamics [10, 65, 66].

Let us finally note that, in order to make progress in the research agenda
described in this section, continued data gathering efforts using various strategies
and in contexts as diverse as possible remain essential, as well as the availability of
the corresponding datasets for the research community [21].
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Chapter 4
Modeling and Predicting Human
Infectious Diseases

Nicola Perra and Bruno Gonçalves

Abstract The spreading of infectious diseases has dramatically shaped our history
and society. The quest to understand and prevent their spreading dates more than two
centuries. Over the years, advances in Medicine, Biology, Mathematics, Physics,
Network Science, Computer Science, and Technology in general contributed to the
development of modern epidemiology. In this chapter, we present a summary of
different mathematical and computational approaches aimed at describing, model-
ing, and forecasting the diffusion of viruses. We start from the basic concepts and
models in an unstructured population and gradually increase the realism by adding
the effects of realistic contact structures within a population as well as the effects
of human mobility coupling different subpopulations. Building on these concepts
we present two realistic data-driven epidemiological models able to forecast the
spreading of infectious diseases at different geographical granularities. We conclude
by introducing some recent developments in diseases modeling rooted in the big-
data revolution.

4.1 Introduction

Historically, the first quantitative attempt to understand and prevent infectious
diseases dates back to 1760 when Bernoulli studied the effectiveness of inoculation
against Smallpox [1]. Since then, and despite some initial lulls [2], an intense
research activity has developed a rigorous formulation of pathogens’ spreading. In
this chapter, we present different approaches to model and predict the spreading
of infectious diseases at different geographical resolutions and levels of detail. We
focus on airborne illnesses transmitted from human to human. We are the carriers of
such diseases. Our contacts and mobility are the crucial ingredients to understand
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and model their spreading. Interestingly, the access to large-scale data describing
these human dynamics is a recent development in epidemiology. Indeed, for many
years only the biological roots of transmission were clearly understood, so it is not
surprising that classical models in epidemiology neglect realistic human contact
structures or mobility in favor of more mathematically tractable and simplified
descriptions of unstructured populations. We start our chapter with these modeling
approaches that offer us an intuitive way of introducing the basic quantities and
concepts in epidemiology.

Advances in technology are resulting in increased data on human dynamics
and behavior. Consequently, modeling approaches in epidemiology are gradually
becoming more detailed and starting to include realistic contact and mobility
patterns. In Sects. 4.3 and 4.4 we describe such developments and analyze the
effects of heterogeneities in contact structures between individuals and between
cities/subpopulations.

With these ingredients in hand we then introduce state-of-the-art data-driven
epidemiological models as examples of the modern capabilities in disease modeling
and predictions. In particular, we consider GLEAM [3, 4], EpiSims [5], and
FLuTE [6]. The first model is based on the metapopulation framework, a paradigm
where the inter-population dynamics is modeled using detailed mobility patterns,
while the intra-population dynamics is described by coarse-grained techniques. The
other tools are, instead, agent-based model (ABM). This class of tools guarantees
a very precise description of the unfolding of diseases, but need to be fed with
extremely detailed data and are not computationally scalable. For these reasons their
use so far has been limited to the study of disease spread within a limited numbers
of countries. In comparison, metapopulation models include a reduced amount of
data, while the approximated description of internal dynamics allows scaling the
simulations to global scenarios.

Interestingly, the access to large-scale data on human activities has also started a
new era in epidemiology. Indeed, the big-data revolution naturally results in real
time data on the health related behavior of individuals across the globe. Such
information can be obtained with tools that either require the active participation
of individuals willing to share their health status or that is mined silently from
individuals’ health related data. Epidemiology is becoming digital [7, 8]. In Sect. 4.6
we introduce the basic concepts, approaches, and results in this new field of epidemi-
ology. In particular, we describe tools that, using search queries, microblogging, or
other web-based data, are able to predict the incidence of a wide range of diseases
two weeks ahead respect to traditional surveillance.

4.2 Basic Concepts in Mathematical Epidemiology

Epidemic models divide the progression of the disease into several states or
compartments, with individuals transitioning compartments depending on their
health status. The natural history of the disease is represented by the type of
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compartments and the transitions from one to another, and naturally varies from
disease to disease. In some illnesses, Susceptible individuals (S) become infected
and Infectious when coming in contact with one or more Infectious (I) persons and
remain so until their death. In this case the disease is described by the so-called
SI (susceptible-infected) model. In other diseases, as is the case for some sexual
transmitted diseases, infected individuals recover becoming again Susceptible to the
disease. These diseases are described by the SIS (susceptible-infected-susceptible)
model. In the case of influenza like illnesses (ILI), on the other hand, infected
individuals Recover becoming immune to future infections from the same pathogen.
ILIs are described by the SIR (susceptible-infected-recovered) model. These basic
compartments provide us with the fundamental description of the progression of an
idealized infection in several general circumstances. Further compartments can be
added to accurately describe more realistic illnesses such as Smallpox, Chlamydia,
Meningitis, and Ebola [2, 9, 10]. Keeping this important observation in mind, here
we focus on the SIR model.

4.2.1 Modeling Transitions Between Compartments

Epidemic models are often represented using chart such as the one seen in Fig. 4.1.
Such illustrations are able to accurately represent the number of compartments and
the disease’s behavior in a concise and easily interpretable form. Mathematically,
models can also be accurately represented as reaction equations as we will see
below.

In general, epidemic models include two type of transitions, “interactive” and
“spontaneous.” Interactive transitions require the contact between individuals in two
different compartments, while spontaneous transitions occur naturally at a fixed rate
per unit time. For example, in the transition between S to I, Susceptible individuals
become Infected due to the interaction with Infected individuals, i.e. SCI ! 2I. The
transition is mediated by individuals in the compartment I, see Fig. 4.1. On the other
hand, an Infectious individual can naturally recover from infection after a certain

β

Infectious

Susceptible Infectious 
μ

Recovered

Fig. 4.1 Schematic representation of the SIR model. The transition from S to I is due to the
interaction between susceptible and infectious individuals. The transition from I to R is instead
spontaneous. The transition rates are ˇ and �, respectively
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amount of time and become Recovered, i.e. I ! R. Individuals are considered to
have a fixed recovery rate, �, defined as the inverse of the average time 	 spent in
the infected compartment, � D 	�1

But how can we model the infection process? Intuitively we expect that the
probability of single individual becoming infected must depend on (1) the number of
infected individuals in the population, (2) the probability of infection given a contact
with an infectious agent and, (3) the number of such contacts. In this section we
neglect the details of who is in contact with whom and consider instead individuals
to be part of a homogeneously mixed population where everyone is assumed to be
in contact with everyone else (we tackle heterogeneous contacts in Sect. 4.3). In
this limit, the per capita rate at which susceptible contract the disease, the force of
infection 
, can be expressed in two forms depending on the type of population.
In the first, often called mass-action law, the number of contacts per individual is
independent of the total population size, and determined by the transmission rate ˇ

and the probability of randomly contacting an infected individual, i.e. 
 D ˇI=N
(where N is the population size). In the second case, often called pseudo mass-
action law, the number of contacts is assumed to scale with the population size, and
the transmission rate ˇ, i.e. 
 D ˇI. Without loss of generality, in the following we
focus on the first kind of contact.

4.2.2 The SIR Model

The SIR framework is the crucial pillar to model ILIs. Think, for example, at the
H1N1 pandemic in 2009, or the seasonal flu that every year spread across the globe.
The progression of such diseases, from the first encounter to the recovery, happens
in matters of days. For this reason, birth and death rates in the populations can be
generally neglected, i.e. dtN � 0 for all times t.

Let us define the fraction of individuals in the susceptible, infected, and recovered
compartments as s; i, and r. The SIR model is then described by the following set of
differential equations:

8

<

:

dts D �s

dti D s
 � �i
dtr D �i

(4.1)

where 
 D ˇi � ˇ I
N is the force of infection, and dt � d

dt . The first equation
describes the infection process in a homogeneous mixed population. Susceptible
individuals become infected through random encounters with Infected individuals.
The second equation describes the balance between the in-flow (infection process,
first term), and the out-flow (recovery process, second term) in compartment i.
Finally, the third equation accounts for the increase of the recovered population
due to the recovery process. Interestingly, the SIR dynamical equations, although
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apparently very simple, due to their intrinsic non-linearity cannot be solved
analytically. The description of the evolution of the disease can be obtained only
through numerical integration of the system of differential equations. However,
crucial analytic insight on the process can be obtained for early t � t0 and late
times t ! 1.

4.2.2.1 Epidemic Threshold

Under which conditions a disease starting from a small number, I0, of individuals at
time t0 is able to spread in the population? To answer this question let us consider the
early stages of the spreading, i.e. t � t0. The equation for the infected compartment
can be written as dti D i.ˇs��/, indicating an exponential behavior for early times.
It then follows that if the initial fraction of susceptible individuals, s0 D S0=N, is
smaller than �=ˇ, the exponent becomes negative and the disease dies out. We call
this value the epidemic threshold [11] of the SIR model. The fraction of susceptibles
in the population has to be larger than a certain value, that depends on the disease
details, in order to observe an outbreak.

Typically, the initial cluster of infected individuals is small in comparison with
the population size, i.e. s0 � i0, or s0 � 1. In this case, the threshold condition can
be re-written as ˇ=� > 1. The quantity:

R0 � ˇ

�
(4.2)

is called the basic reproductive number, and is a crucial quantity in epidemiology
and provides a very simple interpretation of the epidemic threshold. Indeed, the
disease is able to spread if and only if each infected individual is able to infect, on
average, more than one person before recovering. The meaning of R0 is then clear:
it is simply the average number of infections generated by an initial infectious seed
in a fully susceptible population [10].

4.2.2.2 Disease-Free Equilibrium

For any value of � > 0, the SIR dynamics will eventually reach a stationary,
disease-free, state characterized by i D dti D 0. Indeed, infected individuals will
keep recovering until they all reach the R compartment. What is the final number
of recovered individuals? Answering this apparently simple question is crucial to
quantify the impact of the disease. We can tackle such conundrum dividing the first
equation with the third equation in the system 4.1. We obtain drs D �R0s which
in turn implies st D s0e�R0rt . Unfortunately, this transcendent equation cannot be
solved analytically. However, we can use it to gain some important insights on the
SIR dynamics. We note that for any R0 > 1, in the limit t ! 1, we must have
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s1 > 0. In other words, despite R0, the disease-free equilibrium of an SIR model
is always characterized by some finite fraction of the population in the Susceptible
compartment, or, in other words, some individuals will always be able to avoid
the infection. In the limit where R0 � 1 we can obtain an approximate solution
for r1 (or equivalently for s1 D 1 � r1) by expanding s1 D s0e�R0s1 at the
second order around r1 � 0. After a few basic algebraic manipulations we obtain
r1 D 2.R0�1/

R2
0

[9].

4.3 Beyond Homogeneous Mixing

In the previous sections we presented the basic concepts and models in epi-
demiology by considering a simple view of a population where individuals mix
homogeneously. Although such approximation allows a simple mathematical for-
mulation, it is far from reality. Individuals do not all have the same number of
contacts, and more importantly, encounters are not completely random [12–15].
Some persons are more prone to social interactions than others, and contacts with
family members, friends, and co-workers are much more likely than interactions
with any other person in the population.

Over the last decade the network framework has been particularly effective
in capturing the complex features and the heterogeneous nature of our con-
tacts [12–16]. In this approach, individuals are represented by nodes while links
represent their interactions. As described in different chapters of the book (see
Chaps. 3, 6, and 10), human contacts are not heterogeneous in both number and
intensity [12–15, 17] but also change over time [18]. This framework naturally
introduces two timescales, the timescale at which the network connections evolve,
	G and the inherent timescale, 	P, of the process taking place over the network.
Although the dynamical nature of interactions might have crucial consequences on
the disease spreading [19–24], the large majority of results in the literature deal with
one of two limiting regimens [25, 26]. When 	G � 	P, the evolution of the network
of contacts is much slower than the spreading of the disease and the network can
be considered as static. On the other hand, when 	P � 	G, the links are said to be
annealed and changes in networks structure are much faster than the spreading of the
pathogen. In both cases the two time-scales are well separated allowing for a simpler
mathematical description. Here we focus on the annealed approximation (	P � 	G)
that provides a simple stage to model and understand the dynamical properties of
epidemic processes. We refer the reader to Chap. 3 Face-to-Face Interactions for
recent approaches that relax this time-scale separation assumption.

Let us consider a network G .N; E/ characterized by N nodes connected by
E edges. The number of contacts of each node is described by the degree k.
The degree distribution P .k/ characterizes the probability of finding a node of
degree k. Empirical observations in many different domains show heavy-tailed
degree distributions usually approximated as power-laws, i.e. P .k/ � k�˛ [12, 13].
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Furthermore, human contact networks are characterized by so-called assortative
mixing, meaning a positive correlation between the degree of connected individuals.
Correlations are encoded in the conditional probability P .k0jk/ that a node of
degree k is connected with a node of degree k0 [12, 13]. While including realistic
correlations in epidemic models is crucial [27–29] they introduce a wide set of
mathematical challenges that are behind the scope of this chapter. In the following,
we consider the simple case of uncorrelated networks in which the interdependence
among degree classes is removed.

4.3.1 The SIR Model in Networks

How can we extend the SIR model to include heterogeneous contact structures? Here
we must take a step further than simply treating all individuals the same. We start
distinguishing nodes by degree while considering all vertices with the same degree
as statistically equivalent. This is known as the degree block approximation and is
exact for annealed networks. The quantities under study are now ik D Ik

Nk
; sk D

Sk
Nk

, and rk D Rk
Nk

, where the Ik; Sk, and Rk are the number of infected, susceptible,
recovered individuals in the degree class k. Nk instead describes the total number of
nodes in the degree class k. The global averages are given by i D P

k P .k/ ik; s D
P

k P .k/ sk; r D P

k P .k/ rk. Using this notation and heterogeneous mean field
(HMF) theory [26], the system of differential equations (4.1) can now be written as:

8

<

:

dtsk D �sk
k

dtik D sk
k � �ik
dtrk D �ik

(4.3)

The contact structure introduces a force of infection function of the degree. In
particular, 
k D �k�k where � is the rate of infection per contact, i.e. ˇ D �k,
and �k describes the density of infected neighbors of nodes in the degree class k.
Intuitively, this density is a function of the conditional probability that a node k
is connected to any node k0 and proportional to the number of infected nodes in
each class k0: �k D P

k0 P .k0jk/ ik0 . In the simple case of uncorrelated networks the
probability of finding a node of degree k0 in the neighborhood of a node in degree
class k is independent of k. In this case �k D � D P

k0 .k0 � 1/ P .k0/ ik0=hki where
the term k0 � 1 is due to the fact that at least one link of each infected node points to
another infected vertex [15].

4.3.1.1 Epidemic Threshold

In order to derive the epidemic threshold let us consider the early time limit of
the epidemic process. As done in Sect. 4.2.2.1 let us consider that at t � t0 the
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population is formed mostly by susceptible individuals. In the present scenario this
implies sk � ik and rk � 0 8k. The equation for the infected compartment then
becomes dtik D �k� � �ik. Multiplying both sides for P .k/ and summing over
all values of k we obtain dti D �hki� � �i. In order to understand the behavior
of i around t0 let us consider an equation built by multiplying both sides of the
last equation by .k � 1/ P .k/ =hki and summing over all degree classes. We obtain

dt� D �. hk2i�hki
hki /� � ��. The fraction of infected individuals in each value of k

will increase if and only if dt� > 0. This condition is verified when [15]:

R0 � ˇ

�
>

hki2

hk2i � hki (4.4)

giving us the epidemic threshold of an SIR process unfolding on an uncorrelated
network.

Remarkably, due to their broad-tailed nature, real contact networks display
fluctuations in the number of contacts (large hk2i) that are significantly larger than
the average degree hki resulting in very small thresholds. Large degree nodes (hubs)
facilitate an extremely efficient spreading of the infection by directly connecting
many otherwise distant nodes. As soon as the hubs become infected diseases are able
to reach a large fraction of the nodes in the network. Real interaction networks are
extremely fragile to disease spreading. While this finding is somehow worrisome,
it suggests very efficient strategies to control and mitigate the outbreaks. Indeed,
hubs are central nodes and play a crucial role in the network connectivity [12] and
by vaccinating a small fraction of them one is able to quickly stop the spread of
the disease and protect the rest of the population. It is important to mention that
in realistic settings the knowledge of the networks’ structure is often limited. Hubs
might not be easy to easily known and other indirect means must be employed.
Interestingly, the same feature of hubs that facilitates the spread of the disease
also allows for their easy detection. Since high degree nodes are connected to a
large number of smaller degree nodes, one may simply randomly select a node, A,
from the network and follow one of its links to reach another node, B. With high
probability, node B has higher degree than A and is likely a hub. This effect became
popularized as the friend paradox: on average your friends have more friends than
you do [12]. Immunizing node B is then much more effective than immunizing
node A. Remarkably, as counter-intuitive as this methodology might seem, it works
extremely well even in the case of quickly changing networks [30–32].

4.4 Metapopulation Models

The next step in the progression towards more realistic modeling approaches is to
consider the internal structure of the nodes. If each node in the network represents
a homogeneously mixed sub-population instead of a single individual and we
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consider the edges to represent interactions or mobility between the different sub-
populations, then we are in the presence of what is known as meta-population.
This concept was originally introduced by R. Levins in 1969 [33] for the study
of geographically extended ecological populations where each node represents one
of the ecological niches where a given population resides.

The metapopulation framework was later extended for use in epidemic modeling
by Sattenspiel in 1987. In a landmark paper [34] Sattenspiel considered two different
types of interactions between individuals, local ones occurring within a given node,
and social ones connecting individuals originating from different locations on the
network. This idea was later expanded by Sattenspiel and Dietz to include the effects
of mobility [35] and thus laying the foundations for the development of epidemic
models at the global scale.

Metapopulation epidemic models are extremely useful to describe particle
reaction-diffusion models [36]. In this type of model each node is allowed to have
zero or more individuals that are free to diffuse among the nodes constituting the
network. In our analysis, as done in the previous section, we follow the HMF
approach and consider all nodes of degree k to be statistically equivalent and write
all quantities in terms of the degree k. To start, let us define the average number of
individuals in a node of degree k to be Wk D 1

Nk

P

i Wiı .ki � k/, where Nk is the
number of nodes with degree k and the sum is taken over all nodes i. The mean field
dynamical equation describing the variation of the average number of individuals in
a node of degree k is then:

dWk .t/

dt
D �pkWk .t/ C k

X

k0

P
�

k0jk� pk0kWk0 .t/ (4.5)

where pk and pkk0 represent, respectively, the rate at which particles diffuse out of a
node of degree k and diffuse from a node of degree k to one of degree k0.

With these definitions, the meaning of each term of this equation becomes
intuitively clear: the negative term represents individuals leaving the node, while
the positive term accounts for individuals originating from other nodes arriving
at this particular class of node. The conditional probability P .k0jk/ encodes all
the topological correlations of the network. By imposing that the total number of
particles in the system remains constant, we obtain:

pk D k
X

k0

P
�

kjk0� pkk0 (4.6)

that simply states that the number of particles arriving at nodes of degree k0
coming from nodes of degree k must be the same as the number of particles
leaving nodes of degree k. The probabilities pk and pkk0 encode the details of the
diffusion process [37]. In the simplest case, the rate of movement of individuals
is independent of the degree of their origin pk D p for all values of the degree.
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Furthermore, if individuals that are moving simply select homogeneously among
all of their connections, then we have pkk0 D p=k. In this case, the diffusion process
will reach a stationary state when:

Wk D k

hkiW (4.7)

where W D W=N, W is the total number of walkers in the system, and N the total
number of nodes. The simple linear relation between Wk and k serves as a strong
reminder of the importance of network topology. Nodes with higher degree will
acquire larger populations of particles while nodes with smaller degrees will have
proportionally smaller populations. However, even in the steady state, the diffusion
process is ongoing, so individuals are continuously arriving and leaving any given
node but are doing so in a way that maintains the total number of particles in each
node constant.

In more realistic settings, the traffic of individuals between two nodes is function
of their degree [37]:

pkk0 D w0

.kk0/�

Tk
(4.8)

In this expression � modulates the strength of the diffusion flow between degree
classes (empirical values are in the range �0:5 � � � 0:5 [3]), where w0 is
a constant and Tk D w0hk1C�i=hki is the proper normalization ensured by the
condition in Eq. (4.6). In these settings, the diffusion process reaches a stationary
state when:

Wk D k1C�

hk1C� iW (4.9)

Note that for � D 0 this solution coincides with the case of homogeneous diffusion
[Eq. (4.7)].

Combining this diffusion process with the (epidemic) reaction processes
described above we finally obtain the full reaction-diffusion process. To do so
we must simply write Eq. (4.5) for each state of the disease (e.g., Susceptible,
Infectious, and Recovered for a simple SIR model) and couple the resulting
equations using the already familiar epidemic equations. The full significance
of Eq. (4.7) now becomes clear: nodes with higher degree have higher populations
and are visited by more travelers, making them significantly more likely to also
receive an infected individual that can act as the seed of a local epidemic.

In a metapopulation epidemic context we must then consider two separate
thresholds, the basic reproductive ratio, R0, that determines whether or not a disease
can spread within one population (node) and a critical diffusion rate, pc, that
determines if individual mobility is sufficiently large to allow the disease to spread
from one population to another. It is clear that if p D 0 particles are completely
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unable to move from one population to another so the epidemic cannot spread
across subpopulations and that if p D 1 all individuals are in constant motion and
the disease will inevitably spread to every subpopulation on the network with a
transition occurring at some critical value pc.

In general, the critical value pc cannot be calculated analytically using our
approach as it depends non-trivially on the detailed structure of the network and
the fluctuations of the diffusion rate of single individuals. However, in the case of
uncorrelated networks a closed solution can be easily found for different mobility
patterns. Indeed, in the case where the mobility is regulated by Eq. (4.8) we obtain:

pc D 1

W

hk1C� i2

hk2C2�i � hk1C2�i
�R2

0

2.R0 � 1/2
(4.10)

Interestingly, the critical value of p is inversely proportional to the degree hetero-
geneity in the network, so that broad tailed networks have very low critical values.
This simple fact explains why simply restricting travel between populations is a
highly ineffective way to prevent the global spread of an epidemic.

The mobility patterns considered so far are so-called Markovian: individuals
move without remembering where they have been nor they have a home where
they return to after each trip. Although this is a rough approximation of individuals
behavior, Markovian diffusion patterns are allowed to analytically describe the
fundamental dynamical properties of many systems. Recently, new analytic results
have been proposed for non-Markovian dynamics that include origin-destination
matrices and realistic travel routes that follow shortest paths [38]. In particular, the
threshold within such mobility schemes reads as:

pc D 1

W

hk
i
hk1C
i

hki�R2
0

2 .R0 � 1/2
(4.11)

The exponent 
, typically close to 1:5 in heterogeneous networks, emerges from
the shortest paths routing patterns [38]. Interestingly, for values of � � 0:2, fixing

 D 1:5, pc in the case of Markovian mobility patterns is larger than the critical
value in a system subject to non-Markovian diffusion. The presence of origin-
destination matrices and shortest paths mobility lower the threshold facilitating the
global spreading of the disease. Instead, for values of � > 0:2 the contrary is true.

In these models the internal contacts rate is considered constant across each
subpopulation. Interestingly, recent longitudinal studies on phone networks [39]
and Twitter mention networks [40] point to the evidence that contacts instead
scale super-linearly with the subpopulation sizes. Considering the heterogeneity in
population sizes observed in real metapopulation networks, the scaling behavior
entails deep consequence in the spreading dynamics. A recent study generalized the
metapopulation framework considering such observations. Interestingly, the critical
mobility thresholds, in the case of mobility patterns described by Eq. (4.8), changes
significantly being lowered by such scaling features of human contacts [40].
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Despite their simplicity, metapopulation models are extremely powerful tools in
large scale study of epidemics. They easily lend themselves to large scale numerical
stochastic simulations where the population and state of each node can be tracked
and analyzed in great detail and multiple scenarios as well as interventions can be
tested.

The state of the art in the class of metapopulation approaches is currently defined
by the global epidemic and mobility model (GLEAM) [3, 4]. GLEAM integrates
worldwide population estimates [41, 42] with complete airline transportation and
commuting databases to create a world wide description of mobility around the
world that can then be used as the substrate on which the epidemic can spread.
GLEAM divides the globe into 3362 transportation basins. Each basin is defined
empirically around an airport and the area of the basin is determined to be the region
within which residents would likely use that airport for long distance travel. Each
basin represents a major metropolitan area such as New York, London, or Paris.
Information about all civilian flights can be obtained from the International Air
Transportation Association (IATA) [43] and the Official Airline Guide (OAG) [44]
that are responsible for compiling up-to-date databases of flight information that
airlines use to plan their operations. By connecting the population basins with the
direct flight information from these databases we obtain the network that acts as a
substrate for the reaction diffusion process.

While most human mobility does not take place in the form of flights, the flight
network provides the fundamental structure for long range travel that explains
how diseases such as SARS [45], Smallpox [46], or Ebola [47] spread from
country to country. To capture the finer details of within country mobility further
information must be considered. GLEAM uses census information to create a
commuting network at the basin level that connects neighboring metropolitan areas
proportionally to the number of people who live in one are but work in the other.

Short-term short-distance mobility such as commuting is fundamentally different
from medium-term long-distance airline travel. In one case, the typical timescale is
work-day (8h) while in the other it is 1 day. This timescale difference is taken into
account in GLEAM in an effective, mean-field, manner instead of explicitly through
a reaction process such as the one described above. This added layer is the final
piece of the puzzle that brings the whole together and allows GLEAM to describe
accurately the spread from one country to the next but also the spread happening
within a given country [48].

In Fig. 4.2 we illustrate the progression in terms of detail that we have undergone
since our initial description of simple homogeneously mixed epidemic models in
a single population. With all these ingredients in place we have a fine grained
description of mobility on a world wide scale on top of which we can finally build
an epidemic model.

Within each basin, GLEAM still uses the homogeneous mixing approximation.
This assumption is particularly suited for diseases that spread easily from person
to person through airborne means such as ILI. GLEAM describes influenza through
an SEIR model as illustrated in Fig. 4.3. SEIR models are a modification of the SIR
model described above that includes a further compartment, Exposed, to represent



4 Modeling and Predicting Human Infectious Diseases 71

Fig. 4.2 The multilayer structure of GLEAM. Each layer increases the level of detail with respect
to the previous ones
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Fig. 4.3 SEIR Epidemic structure used in GLEAM

individuals in the incubation phase of the disease that are already infected but not yet
Infectious. GLEAM further expands on this model by distinguishing three classes of
Infectious individuals based on the severity of the disease. One third of the infectious
individuals are asymptotic individuals do not display any symptoms and continue
to behave normally while having an infectiousness reduced by a factor rˇ D 0:5.
Of the remaining symptomatic individuals, one half is sick enough to decide to not
travel or commute while the remaining half continue to travel normally.

Despite their apparent complexity, large scale models such as GLEAM are
controlled by just a small number of parameters and ultimately, it’s the proper setting
of these few parameters that is responsible for the proper calibration of the model
and validity of the results obtained. Most of the disease and mobility parameters are
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set directly from the literature or careful testing so that as little as possible remains
unknown when it is time to apply it to a new outbreak.

GLEAM was put to the test during the 2009 H1N1 pandemic with great success.
During the course of the epidemic, researchers were able to use official data as it was
released by health authorities around the world. In the early days of the outbreak
there was a great uncertainty about the correct value of the R0 for the 2009/H1N1
pdm strain in circulation so a methodology to determine it had to be conceived.

One of the main advantages of epidemic metapopulation models is their com-
putational tractability. It was this feature what proved invaluable when it came to
determine the proper value of R0. By plugging in a given set of parameters one is
able to generate several hundreds or thousands of in silico outbreaks. Each outbreak
contains information not only about the number of cases in each city or country as a
function of time but also information about the time when the first case occurs within
a given country. In general, each outbreak will be different due to stochasticity and
by combining all outbreaks generated for a certain parameter set we can calculate
the probability distribution of the arrival times. The number of times that an outbreak
generated the seeding of a country, say the UK, in the same day as it occurred in
reality provides us with a measure of how likely the parameter values used are.
By multiplying this probability for all countries with a known arrival time we can
determine the overall Likelihood of the simulation:

L D
Y

c

Pc .tc/ (4.12)

where the product is taken over all countries c with known arrival time tc and the
probability distribution of arrival times, Pc .t/ is determined numerically for each set
of input values. The set of parameters that maximizes this quantity is then the one
whose values are the most likely to be correct. Using this procedure the team behind
GLEAM determined that the mostly likely value of the basic reproductive ratio was
R0 D 1:75 [49], a value that was later confirmed by independent studies [50, 51].

Armed with an empirical estimate of the basic reproductive ratio for an ongoing
pandemic, they then proceeded to use this value to estimate the future progression
of the pandemic. Their results predicting that the full peak of the pandemic would
hit in October and November 2009 were published in early September 2009 [49].
A comparison between these predictions and the official data published by the
health authorities in each country would be published several years later [52] clearly
confirming the validity of GLEAM for epidemic forecasting in real time. Indeed, the
model predicted, months in advance, the correct peak week in 87 % of countries
in the north hemisphere for which real data was accessible. In the rest of cases the
maximum error reported has been 2 weeks. GLEAM can also be further extended to
include age-structure [53], interventions and travel reductions.
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4.5 Agent-Based Models

The next logical step in the hierarchy of large scale epidemic models is to take the
description of the underlying population all the way down to the individual level
with what are known as ABM. The fundamental idea behind this class of model is a
deceptively simple one: treat each individual in the population separately, assigning
it properties such as age, gender, workplace, residence, family structure, etc: : :

These added details give them a clear edge in terms of detail over metapopulation
models but do so at the cost of much higher computational cost.

The first step in building a model of this type is to generate a synthetic population
that is statistically equivalent to the population we are interested in studying.
Typically this is in a hierarchical way, first generating individual households,
aggregating households into neighborhoods, neighborhoods into communities, and
communities into the census tracts that constitute the country.

Generating synthetic households in a way that reproduces the census data is
far from a trivial task. The exact details vary depending on the end goal of the
model and the level of details desired but the household size, age, and gender of
household members are determined stochastically from the empirically observed
distributions and conditional probabilities. One might start by determining the
size of the household by extracting from the distribution of household size of the
country of interest and selecting the age and gender of the head of the household
proportionally to the number of heads of households for that household size that are
in each age group. Conditional on this synthetic individual we can then generate the
remaining members, if any, of the household. The required conditional probability
distributions and correlation tables can be easily generated [54] from high quality
census data that can be found for most countries in the world. This process is
repeated until enough synthetic households have been generated. Households are
then aggregated into neighborhoods by selecting from the households according
to the distribution of households in a specific neighborhood. Neighborhoods are
similarly aggregated into communities and communities into census tracts.

Each increasing level of aggregation (from household to country) represents a
decrease in the level of social contact, with the most intimate contacts occurring at
the household level and least intimate ones at the census tract or country level. The
next step is to assign to each individual a profession and work place. Workplaces
are generated following a procedure similar to the generation of households and
each employed individual is assigned a specific household. School age children are
assigned a school. Working individuals are assigned to work places in a different
community or census tract in a way that reflects empirical commuting patterns.

At this point, we have a fairly accurate description of where the entire population
of a city or country lives and works. It is then not entirely surprising that this
approach was first used to study in detail the demands imposed on the transportation



74 N. Perra and B. Gonçalves

system of a large metropolitan city. TRANSIMS,1 the TRansportation ANalysis and
SIMulation System [55], used an approach similar to the one described above to
generate a synthetic population for the city of Portland, in Oregon (OR) and coupled
it with a route planner that would determine the actual route taken by each individual
on her way to work or school as a way of modeling the daily toll on Portland’s
transportation infrastructure and the effect that disruptions or modification might
have in the daily lives of its population.

EpiSims [5] was the logical extension of TRANSIMS to the epidemic world.
EpiSims used the TRANSIMS infrastructure to generate the contact network between
individuals in Portland, OR. Susceptible individuals are able to acquire the infection
whenever they are in a location along with one or more infectious individuals. In
this way the researchers are capable of observing as the disease spreads through the
population and evaluate the effect that measures such as contact tracing and mass
vaccination.

More recent approaches have significantly simplified the mobility aspect of this
kind of models and simply divide each 24 h period into day time and nighttime.
Individuals are considered to be in contact with other members of their workplace
during the day and with other household members during the night. In recent years,
modelers have successfully expanded the large scale Agent Based approach to the
country [6] and even continent level [56].

As the spatial scale of the models increased further modes of long-range
transportation such as flights had to be considered. These are important to determine
not only the seeding of the country under consideration through importation of cases
from another country but also to connect distant regions in a more realistic way.
FluTE [6] is currently the most realistic large scale Agent-Based epidemic model
of the continental United States. It considers that international seeding occurs at
random in the locations that host the 15 largest international airports in the US
by, each day, randomly infecting in each location a number of individuals that is
proportional to the international traffic of those airports.

FluTE is a refinement of a previous model [57] and it further refines the modeling
of the infectious process by varying the infectiousness of an individual over time in
the SIR model that they consider. At the time of infection each individual is assigned
one of six experimentally obtained viral load histories. Each history prescribes the
individuals viral load for each day of the infectious period and the infectiousness is
considered to be proportional to the viral load. Individuals may remain asymptotic
for up to 3 days after infection during which their infectiousness is reduced by 50 %
with respect to the symptomatic period. The total infectious period is set to 6 days
regardless of the length of the symptomatic period.

Given the complexity of the model the calibration of the disease parameters
in order to obtain a given value of the basic reproductive ratio, R0 requires some
finesse. Chao et al. [6] uses the definition of R0 to determine “experimentally”
its value from the input parameters. It numerically simulates 1000 instances of

1The source code for TRANSIMS can be obtained from https://www.code.google.com/p/transims/.

https://www.code.google.com/p/transims/
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the epidemic caused by a single individual within a 2000 person fully susceptible
community for each possible age group of the seeding individual and use it to
calculate the Ra

0 of each age group a. The final R0 is defined to the average of
the various Ra

0 weighted by age dependent attack rate [57]. The final result of this
procedure is that the value of R0 is given by:

R0 D 5:592
 C 0:0068 (4.13)

where 
 is the infection probability per unit contact and is given as input. FluTE was
a pioneer in the way it completely released its source code,2 opening the doors of a
new level of verifiability in this area. It has successfully used to study the spread of
influenza viruses and analyze the effect of various interventions in the Los Angeles
County [58] and United States country level [6].

4.6 Digital Epidemiology

The unprecedented amount of data on human dynamics made available by recent
advances technology has allowed the development of realistic epidemic models able
to capture and predict the unfolding of infectious disease at different geographical
scales [59]. In the previous sections, we described briefly some successful examples
that have been made possible thanks to high resolution data on where we live, how
we live, and how we move. Data availability has started a second golden age in
epidemic modeling [60].

All models are judged against surveillance data collected by health departments.
Unfortunately, due to excessive costs, and other constraints their quality is far
from ideal. For example, the influenza surveillance network in the USA, one of
the most efficient systems in the world, is constituted of just 2900 providers that
operate voluntarily. Surveillance data is imprecise, incomplete, characterized by
large backlogs, delays in reporting times, and the result of very small sample
sizes. Furthermore, the geographical coverage is not homogeneous across different
regions, even within the same country. For these reasons the calibration and test of
epidemic models with surveillance data induce strong limitations in the predictive
capabilities of such tools. One of the most limiting issues is the geographical
granularity of the data. In general, information are aggregated at the country or
regional level. The lack of ground truth data at smaller scales does not allow a more
precise selection and training of realistic epidemic models.

How can we lift such limitations? Data, data and more data is again the answer.
At the end of 2013 almost 3 billion of people had access to the Internet while
almost 7 billion are phone subscribers, around 20 % of which are actively using
smartphones. The explosion of mobile usage boosted also the activity of social

2http://www.cs.unm.edu/~dlchao/flute/.

http://www.cs.unm.edu/~dlchao/flute/
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media platforms such as Facebook, Twitter, Google+ etc. that now count several
hundred million active users that are happy to share not just their thoughts, but also
their GPS coordinates. The incredible amount of information we create and access
contain important epidemiologically relevant indicators. Users complaining about
catching a cold before the weekend on Facebook or Twitter, searching for symptoms
of particular diseases on search engines, or Wikipedia, canceling their dinner
reservations on online platforms like OpenTable are just few examples. An intense
research activity, across different disciplines, is clearly showing the potential, as
well as the challenges and risks, of such digital traces for epidemiology [61]. We
are at the dawn of the digital revolution in epidemiology [7, 8]. The new approach
allows for the early detection of disease outbreaks [62], the real time monitoring of
the evolution of a disease with an incredible geographical granularity [63–65], the
access to health related behaviors, practices and sentiments at large scales [66, 67],
inform data-driven epidemic models [68, 69], and development of statistical based
models with prediction power [67, 70–78].

The search for epidemiological indicators in digital traces follows two method-
ologies: active and passive. In active data collection users are asked to share their
health status using apps and web-based platforms [79]. Examples are influenzanet
that is available in different European countries [64], and Flu near you in the
USA [65] that engage tens of thousands of users that together provide the infor-
mation necessary for the creation of interactive maps of ILI in almost real time.
In passive data collection, instead, information about individuals health status is
mined from other available sources that do not require the active participation
of users. News articles [63], queries on search engines [74], posts on online
social networks [67, 70–73], page view counts on Wikipedia [75, 76] or other
online/offline behaviors [77, 78] are typical examples. In the following, we focus
on the prototypical, and most famous, method of digital epidemiology, Google Flu
Trends (GFT) [80], while considering also other approaches based on Twitter and
Wikipedia data.

4.6.1 Social Media Based Epidemic Models

GFT is by far the most famous model in digital epidemiology. Launched in
November 2008 together with a Nature paper [80] describing its methodology, it has
continuously made predictions on the course of seasonal influenza in 29 countries
around the world.3 The method used by GFT is extremely simple. The percentage of
ILI visits, a typical indicator used by surveillance systems to monitor the unfolding
of the seasonal flu, is estimated with a linear model based on search engine queries.
This approach is general, and used in many different fields of Science. A quantity
of interest, in this case the percentage of ILI visits P, is estimated using a correlated

3Data available at http://www.google.org/flutrends.

http://www.google.org/flutrends
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signal, in this case the ILI related queries fraction Q, that acts as surrogate. The fit
allows the estimate of P as a function of the value of Q:

logit .P/ D ˇ0 C ˇ1logit .Q/ C �; (4.14)

where logit .x/ D ln
�

x
1�x

�

, ˇ0 and ˇ1 are fitting parameters, and � is an error term.
As clear from the expression, the GFT is a simple linear fit, where the unknown
parameters are determined considering historical data. The innovation of the system
lies on the definition of Q that is evaluated using hundreds of billions of searches
on Google. Indeed, GFT scans all the queries we submit to Google, without using
information about users’ identity, in search of those that ILI related. This is the
paradigm of passive data collection in digital epidemiology. In the original model
the authors measured the correlation of 50 millions search queries with historic CDC
data, finding that 45 of them were enough to ensure the best correlation between the
number of searches and the number of ILI cases. The identity of such terms has
been kept secret in order to avoid changes in users’ behavior. However, the authors
provided a list of topics associated with each one of them: 11 were associated with
influenza complications, 8 to cold/flu remedies, 5 to general terms for influenza,
etc. Although the search for the terms has been performed without prior information,
none of the most representative terms were unrelated to the disease. In these settings
GFT showed a mean correlation of 0:97 with real data and was able to predict the
surveillance value with 1–2 weeks ahead.

GFT is based on proprietary data that for many different constraints cannot be
shared with the research community. Other data sources, different in nature, are
instead easily accessible. Twitter and Wikipedia are the two examples. Indeed, both
systems are available for download, with some limitations, through their respective
APIs.

The models based on Twitter are built within the same paradigm of GFT [67, 71–
73, 81]. Tweets are mined in search of ILI-related tweets, or other health conditions
such as insomnia, obesity, and other chronic diseases [67, 82], that are used to
inform regression models. Such tweets are determined either as done in GFT, or
through more involved methods based on support vector machine (SVM) or other
machine learning methods that, provided an annotated corpus, find disease related
tweets beyond simple keywords matches [67, 71–73, 81]. The presence of GPS
information or other self-reported geographical data allows the models to probe
different granularities ranging from countries [67, 71, 73, 81] to cities [72].

While models based on Twitter analyze users’ posts, those based on Wikipedia
focus on pages views [75, 76]. The basic intuition is that Wikipedia is used to learn
more about a diseases or a medication. Plus, the website is so popular that is most
likely one of the first results of search queries on most search engines. The methods
proposed so far monitor a set of pages related to the disease under study. Examples
are Influenza, Cold, Fever, Dengue, etc. Page views at the daily or weekly basis are
then used a surrogates in linear fitting models. Interestingly, the correlation with
surveillance data ranges from 0:02 in the case of Ebola to 0:99 in for ILIs [75, 76],
and allows accurate predictions up to 2 weeks ahead. One important limitation of
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Wikipedia based methods is the lack of geographical granularity. Indeed, the view
counts are reported irrespective of readers’ location but the language of the page
can be used as a rough proxy for location. Such approximation might be extremely
good for localized languages like Italian but it poses strong limitations in the case
of global languages like English. Indeed, it is reported that 51 % of pages views
for English pages are done in the USA, 11 % in the UK, and the rest in Australia,
Canada and other countries [76]. Besides, without making further approximation
such methods cannot provide indications at scales smaller than the country level.

Despite these impressive correlations, especially in the case of ILIs, much still
remains to be done. GFT offers a particular clear example of the possible limitations
of such tools. Indeed, despite the initial success, it completely failed to forecast
the 2009 H1N1 pandemic [61, 83]. The model was updated in September 2009 to
increase the number of terms to 160, including the 40 terms present in the original
version. Nevertheless, GFT missed high 100 out of 108 weeks in the season 2011–
2012. In 2013 GFT predicted a peak height more than double the actual value
causing the underlying model to be modified again later that year.

What are the reasons underlying the limitations of GFT and other similar tools?
By construction, GFT relies just on simple correlations causing it to detect not only
the flu but also things that correlate strongly with the flu such as winter patterns.
This is likely one of the reasons why the model was not able to capture the unfolding
of an off-season pandemic such as the 2009 H1N1 pandemic. Also, changes in the
Google search engine, that can inadvertently modify users’ behavior, were not taken
into account in GFT. This factor alone possibly explains the large overestimation of
the peak height in 2013. Plus, simple auto-regressive models using just CDC data
can perform as well or better than GFT [84]. The parable of GFT clearly shows both
the potential and the risks of digital tools for epidemic predictions. The limitations
of GFT can possibly affect all similar approaches based on digital passive data
collection. In particular, the use of simple correlations measures does not guarantee
the ability of capturing the phenomena across different scales in space and time
with respect to those used in the training. Not to mention that correlations might
be completely spurious. In a recent study for example, a linear model based on
Twitter simply informed with the timeline of the term zombie was shown to be a
good predictor of the seasonal flu [71].

Despite such observations the potential of these models is invaluable to probe
data that cannot be predicted by simple auto-regressive models. For example, flu
activity at high geographical granularities, although very important, is measured
with great difficulties by the surveillance systems. GFT and other spatially resolved
tools can effectively access to these local indicators, and provide precious estimates
that can be used a complement for the surveillance and as input for generating
epidemic models [49, 68].
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4.7 Discussion

The field of epidemiology is currently undergoing a digital revolution due to the
seemingly endless availability of data and computational power. Data on human
behavior is allowing for the development of new tools and models while the
commoditization of computer resources once available only for world leading
research institutions is making highly detailed large scale numerical approaches
feasible at last.

In this chapter, we present a brief review not only of the fundamental mathe-
matical tools and concepts of epidemiology but also of some of the state-of-the-art
and computational approaches aimed at describing, modeling, and forecasting the
diffusion of viruses. Our focus was on the developments occurring over the past
decade that are sure to form the foundation for developments in decades to come.

Acknowledgements BG was partially supported by the French ANR project HarMS-flu (ANR-
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Chapter 5
Early Signs of Financial Market Moves
Reflected by Google Searches

Tobias Preis and Helen Susannah Moat

Abstract The complex behaviour of our society emerges from decisions made by
many individuals. In certain combinations, these numerous decisions can lead to
sudden catastrophe, as demonstrated during crowd disasters and financial crises.
Here, we investigate whether analyses of queries to the search engine Google may
be able to give us insight into the early information gathering stages of collective
decision making in financial markets. Results of the implementation of a profitable
hypothetical trading strategy are consistent with the proposal that changes in the
volume of online searches for information about a company may be detected before
large stock market moves. These results suggest that big data capturing our everyday
interactions with the Internet may be able to provide new evidence for the science
of collective decision making.

5.1 Introduction

The increasing volumes of “big data” reflecting various aspects of our everyday
activities represent a vital new opportunity for scientists to address fundamental
questions about the complex social world we inhabit [1–13]. Studies in this
area have demonstrated promising links between aggregate online behaviour and
collective real world behaviour across a range of data sources such as the search
engine Google [14–21], the search engine Yahoo! [22, 23], the online encyclopedia
Wikipedia [24–28], the microblogging platform Twitter [29–34] and the photo-
sharing website Flickr [35, 36]. For example, a recent study has demonstrated that
Internet users from countries with a higher per capita GDP are more likely to search
for information about years in the future than years in the past [37, 38].

Such studies have generally interpreted changes in search volume as changes
in interest and attention to a subject. This permits compelling explanations of
relationships between online and real life behaviour in areas where increases in
search activity can be linked to increases in real life activity in a straightforward
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manner. For example, an increase in searches for a movie title has been shown to
correspond to an increase in attendance figures for that movie [23], and an increase
in searches for a company name has been shown to correspond to an increase in
trading activity on the stock markets [19].

In some cases however, this simple interpretation does not offer an intuitive
prediction for the most interesting aspects of the behaviour in question. Economic
decision making in the stock markets is a clear case in point [39–56]. In such
situations, we would like to anticipate not only whether more trading may take place
[19], but whether traders are generally looking to buy or to sell.

Here, we analyse the performance of a hypothetical trading strategy, where
we make decisions to trade stocks in the market depending on changes in search
volume for company related terms. We investigate whether increases in searches
for company related terms may be interpreted as a sign of increased confidence or
concern about the future value of a stock.

5.2 Results

To investigate the relationship between the volume of search queries for company
related terms and trading decisions made in the financial markets, we build on
the method introduced by Preis, Moat and Stanley, in which they use trading
strategies based on search volume data provided by Google Trends to identify online
precursors for stock market moves [20]. Their analysis of search volume for 98

terms of varying financial relevance suggests that, at least in historic data, increases
in search volume for financially relevant search terms tend to precede large losses
in financial markets. Similarly, Moat et al. [26, 57] demonstrate that increases in
the number of views of Wikipedia articles relating either to companies listed in the
Dow Jones Industrial Average (DJIA) or more general financial topics tend to be
followed by stock market falls. Conversely, Moat et al. find no such relationship
between stock market behaviour and changes in the number of views of Wikipedia
articles relating to the less financially relevant topic of actors and filmmakers. The
method introduced by Preis, Moat and Stanley was also used by Curme et al. [24]
to quantify the semantics of search behaviour before stock market moves.

Here, we consider data on Google search queries from the public service Google
Trends1 alongside prices pi.t/ for all components i of the DJIA on the first trading
day of week t. Specifically, we analyse data generated between the first week in
January 2004, the earliest date for which Google Trends makes search volume data
publicly available, and the last week in September 2012, when we collected the
data. We use the Google Trends service to calculate how many searches ni.t � 1/

have been carried out for the company name or ticker symbol relating to stock i

1We accessed the Google Trends website (http://www.google.com/trends) on 30th September 2012.
Note that Google changed the format in which search volume is provided at the end of 2012.

http://www.google.com/trends
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in week t � 1, where Google defines weeks as ending on a Saturday, relative to
the average number of searches carried out on Google for this keyword during the
whole period considered. Details of the company names and ticker symbols used are
provided in the Appendix. To quantify changes in information gathering behaviour,
we use the relative change in search volume:

�ni.t; �t/ D ni.t/ � Ni.t � 1; �t/ (5.1)

with

Ni.t � 1; �t/ D ni.t � 1/ C ni.t � 2/ C � � � C ni.t � �t/

�t
; (5.2)

where t is measured in units of weeks.
We explain our analysis using the example of Cisco Systems, Inc. stocks.

Following Preis et al. [20] and Moat et al. [26], we first implement a hypothetical
investment strategy using search volume data for the company name (in this case,
“Cisco Systems”) relating to a specific stock i (in this case, Cisco Systems, Inc.
stocks) where we sell the stock i at the closing price pi.t/ on the first trading day of
week t, if �ni.t � 1; �t/ > 0, and buy the stock i at price pi.t C 1/ at the end of the
first trading day of the following week to close the position. Note that mechanisms
exist which make it possible to sell stocks in a financial market without first owning
them. If instead �ni.t � 1; �t/ � 0, then we buy the stock i at the closing price pi.t/
on the first trading day of week t, and close the position by selling the stock i at price
pi.t C 1/ at the end of the first trading day of the coming week. At the beginning of
trading, we set the value of all 30 portfolios to an arbitrary value of 1. Each portfolio
trades one DJIA component. If we open and close a short position—selling at the
closing price pi.t/ and buying back at price pi.t C 1/—then the cumulative return
R changes by log.pi.t// � log.pi.t C 1//. If we open and close a long position—
buying at the closing price pi.t/ and selling at price pi.t C 1/—then the cumulative
return R changes by log.pi.t C 1// � log.pi.t//. In this way, buy and sell actions
have symmetric impacts on the cumulative return R of a strategy’s portfolio. In
addition, we neglect transaction fees, since the maximum number of transactions
per year when using our strategy is only 104, allowing a closing and an opening
transaction per week. The implementation of this strategy for Cisco Systems, Inc.
stocks is depicted in Fig. 5.1a. We find that this strategy would have increased an
investor’s portfolio by 131 %.

Augmenting the analyses performed by Preis et al. [20] and Moat et al. [26], we
compare this to a reversed strategy too. In the reversed strategy, we buy the stock i
at the closing price pi.t/ on the first trading day of week t, if �ni.t � 1; �t/ > 0.
Otherwise, we sell. Positions are then closed at on the first trading day of the
following week. Figure 5.1b illustrates an implementation of this strategy for Cisco
Systems, Inc. stock. We find that this approach would have resulted in an overall
loss to an investor’s portfolio of 57 %, in contrast to the profit made by the previous
strategy.
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Fig. 5.1 Comparison of cumulative profit and loss for hypothetical trading strategies based on
Google Trends data. Cumulative profit and loss for strategies based on search query volume data
with an aggregation interval of �t D 2 weeks, plotted as a function of time. We illustrate the
different strategies using the stock price time series of the Cisco Systems, Inc. as an example.
We compare all strategies to the distribution of returns generated by a random strategy. The mean
profit from random strategies is 0 %. The intervals of �1 and C1 standard deviations around this
mean, depicted with dashed lines, correspond to the random strategy return distribution. We also
depict returns from a “buy and hold” strategy, implemented by buying a stock and selling it at the
end of the hold period, to show the underlying movement in stock price, which in this case falls
by 30 %. (a) On an increase in weekly search volume for the company name “Cisco Systems”,
we sell stocks of the Cisco Systems, Inc. Otherwise, we buy. (b) On an increase in the weekly
search volume for the company name “Cisco Systems”, we buy stocks of the Cisco Systems, Inc.
Otherwise, we sell. In other words, we reverse the strategy used in (a). This reversed strategy results
in a negative cumulative return. (c) More experienced financial market participants may also search
for specific abbreviations of company names which are frequently used in the industry—namely,
ticker symbols. On an increase in the weekly search volume for Cisco’s ticker symbol “CSCO”
we sell, and otherwise we buy. In line with results depicted in (a), purchasing stocks following
increases in search volume leads to an overall profit. This strategy vastly outperforms the random
strategies. (d) On an increase in the weekly search volume for Cisco’s ticker symbol “CSCO”
we buy, and otherwise we sell. Similar to the approach depicted in (b), this strategy results in a
negative overall return



5 Early Signs of Financial Market Moves Reflected by Google Searches 89

To confirm that these results represent profits and losses significantly greater than
would be expected by chance, we calculate the returns from a random strategy. In the
random strategy, a decision is made each week to buy or sell stock i. The probability
that the stock will be bought rather than sold is always 50 %, and the decision is
unaffected by decisions in previous weeks. For each stock i, we simulate 10,000
independent realisations of this random strategy. At the beginning of trading, we set
the value of all 10,000 random strategy portfolios to the value of 1 too.

Returns of the strategies are calculated as the logarithm of percentage profit,
following the usual definition. The distribution of profits of the final portfolio
resulting from the random investment strategies is close to log-normal. Cumulative
returns from the random investment strategy, derived from the logarithm of these
portfolio values, therefore, follow a normal distribution. Importantly, while the mean
return from a random strategy is by definition 0, the standard deviation of the returns
from a random strategy differs between stocks, due to differences in movement of
stock price and the associated differences in opportunities for profit and loss.

We implement our Google Trends trading strategy for all 30 components of the
DJIA. Preis et al. [20] analyse the behaviour of Google Trends strategies based on
a set of 98 keywords ranging from words with clear financial connotations (e.g.,
“debt”) to words with less financial connotations (e.g., “colour”). The approach
taken here, as in Moat et al.’s [26] analysis of Wikipedia page views, allows us
to investigate the nature of the relationship between changes in search volume and
stock market moves across a well-defined and finite set of search terms with a clear
relationship to the stock market index in question.

In order to compare the returns from the 30 Google Trends strategies to the
returns generated by purely random strategies, we calculate the returns of the
Google Trends strategies as the logarithm of the portfolio values produced by these
strategies, and then normalise these returns. We implement this normalisation by
dividing the return of each Google Trends strategy by the standard deviation of the
random strategy returns for the relevant stock. We then consider the distribution
of returns generated by the 30 Google Trends strategies. If the returns of the 30

strategies do not differ from the returns which would be expected by chance, then
this distribution should be symmetrically distributed around 0, with a standard
deviation of 1.

Figure 5.2 shows the cumulative returns Ri for strategies based on Google Trends
search volumes for company names related to all 30 stocks of the DJIA. For �t D
2 weeks, we find that returns from a strategy where stocks are sold when search
volume for company names increases (Fig. 5.2a) are significantly higher overall than
the mean return of 0 expected from random strategies (mean � D 0:62 standard
deviations of random strategy returns, � D 3:87, df D 29, p < 0:001, two-sided
one-sample t-test). In direct contrast, returns from a strategy where stocks are bought
when search volume for company names increases (Fig. 5.2b) are significantly lower
overall than the mean return of 0 expected from random strategies (� D �0:62,
� D 3:87, df D 29, p < 0:001, two-sided one-sample t-test). In summary, following
increases in search volume for company names, a strategy where stocks are sold
leads to profit, whereas a strategy where stocks are bought leads to loss.
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Fig. 5.2 Returns of two hypothetical trading strategies based on Google Trends data for company
name searches. Distribution of returns gained from strategies based on Google Trends search
volume for company names for all 30 stocks of the Dow Jones Industrial Average (DJIA) using
�t D 2 weeks. Returns are depicted in terms of standard deviations �i of the returns from a random
strategy, where a given stock i is bought and sold in an uncorrelated random fashion, and ranked
according to this measure. The standard deviation �i is determined from results of simulations
using 10,000 independent realisations for each stock i. Numbers placed beside the bars denote
percentage profits and percentage losses. Dashed lines correspond to the mean � D 0 and �3,
�2, �1, C1, C2, C3 and C4 standard deviations � of the global distribution of random strategy
returns against which all results are normalised. Positive returns are shown in blue, and negative
returns in red, where different shades are used only to improve readability. (a) On an increase
in search volume for a company name, we sell the corresponding stock; otherwise, we buy. The
mean cumulative return across all DJIA components when using this strategy is 0:62 standard
deviations above the random strategy mean (� D 3:87, df D 29, p < 0:001, two-sided one-sample
t-test). (b) On an increase in the weekly search volume for a company name, we buy, and where
search volume decreases or does not change, we sell, in direct contrast to the strategy depicted in
(a). Consequently, we find a mean cumulative return which is 0:62 standard deviations below the
random strategy mean (� D 3:87, df D 29, p < 0:001, two-sided one-sample t-test)

Financial market specialists and more experienced market participants may also
search for ticker symbols, specific abbreviations of company names used on stock
exchanges. We perform a parallel analysis using search volume for ticker symbols.
Figures 5.1c, d illustrate an implementation of both proposed strategies using search
volumes for the ticker symbol of the Cisco Systems, Inc., “CSCO”. Where Cisco
Systems, Inc. stocks are sold on an increase in search volume for “CSCO”, the
portfolio value is increased by 621 % (Fig. 5.1c). In contrast, buying Cisco Systems,
Inc. stocks on an increase in search volume for “CSCO” would have resulted in an
overall loss of 86 % (Fig. 5.1d).
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Fig. 5.3 Returns of two hypothetical trading strategies based on Google Trends data for ticker
symbol searches. Parallel analyses for Google Trends data on searches for ticker symbols of DJIA
components using �t D 2 weeks, depicted in (a) and (b), provide further evidence that an increase
in searches for terms related to companies registered on the stock market is associated with stock
price drops in the coming week, rather than stock price rises. (a) On an increase in search volume
for a ticker symbol, we sell the corresponding stock; otherwise, we buy. The mean cumulative
return across all DJIA components when using this strategy is 0:58 standard deviations above the
random strategy mean (� D 3:31, df D 29, p < 0:01, two-sided one-sample t-test). (b) On
an increase in the weekly search volume for a ticker symbol, we buy, and where search volume
decreases or does not change, we sell. This strategy leads to a mean cumulative return which is 0:58

standard deviations below the random strategy mean (� D 3:30, df D 29, p < 0:01, two-sided
one-sample t-test)

Figure 5.3 shows cumulative returns for strategies based on Google Trends search
volumes for all DJIA ticker symbols. In line with our results for company names, we
find that returns from a strategy where stocks are sold when search volume for ticker
symbols increases (Fig. 5.3a) are significantly higher overall than the mean return
of 0 expected from random strategies (� D 0:58, � D 3:31, df D 29, p < 0:01,
two-sided one-sample t-test). Returns from a strategy where stocks are bought when
search volume for ticker symbols increases (Fig. 5.3b) are significantly lower overall
than the mean return of 0 expected from random strategies (� D �0:58, � D 3:30,
df D 29, p < 0:01, two-sided one-sample t-test), again in line with our company
name results.

We compare the success of strategies based on company names and strategies
based on ticker symbols. We find no difference between returns from a strategy
where stocks are sold when search volume for company names increases, and
returns from a strategy where stocks are sold when search volume for ticker symbols
increases (� D 0:17, df D 29, p D 0:87, two-sided paired t-test). Equally, we find
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Fig. 5.4 Mean returns of hypothetical trading strategies based on Google Trends data for various
�t. We compare the mean cumulative returns for search volume based strategies for various values
of �t to the mean return of 0 expected from random strategies, using two-sided one-sample t-tests
with FDR correction for multiple comparisons. Mean values that are significantly different from 0
(t-test, ˛ D 0:05, FDR corrected) are depicted in blue or red. (a) Mean returns of trading strategies
based on Google Trends data for ticker symbols. (b) Mean returns of trading strategies based on
Google Trends data of company names. Hypothetical trading strategies for �t D 2 to �t D 11

weeks give significantly higher returns than a random strategy using both search volume for ticker
symbols and for company names

no difference between returns from a strategy where stocks are bought when search
volume for company names increases, and returns from a strategy where stocks are
bought when search volume for ticker symbols increases (� D 0:17, df D 29,
p D 0:87, two-sided paired t-test). We therefore find no empirical basis to draw
any conclusion about preferences to use company names or ticker symbols when
gathering information to enhance trading decisions.

For all of our analyses, we report results for �t D 2 weeks. Parallel analyses for
�t D 2 to �t D 11 weeks give results with no qualitative differences. Figure 5.4
depicts the mean cumulative returns for search volume based strategies for various
values of �t. We compare the mean return of the strategies to the mean return of
0 expected from random strategies, using two-sided one-sample t-tests with FDR
correction for multiple comparisons. Our analyses show that hypothetical trading
strategies using values of �t between 2 and 11 weeks lead to significantly higher
returns than a random strategy. It is possible that the weekly change in search
volume (�t D 1) is too noisy, whereas much higher values of �t do not allow the
algorithm to be sufficiently influenced by the most relevant recent search behaviour.
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5.3 Discussion

Large trading datasets from financial markets provide detailed records of decisions
made within a complex social system [58]. However, such trading records capture
only the final actions which result from the decision making processes. Our
investigations provide evidence in line with the intriguing hypothesis that by
combining data collected from search engine queries with financial trading data, we
may be able to gain insight into an earlier information gathering stage of collective
economic decision making. Specifically, a historic analysis of the performance of
a hypothetical trading strategy using Google Trends data during the period January
2004 to September 2012 suggests that increases in the volume of online searches for
information about a company might have been found before drops in the company’s
stock price. We offer one possible explanation for our results, following Moat et al.
[26]. Studies in experimental behavioural science have repeatedly demonstrated that
people are loss averse [59]; that is, they consider the impact of losing something that
they possess to be much greater than the impact of gaining something of the same
value. We suggest that an increase in information gathering activity may therefore
indicate an increase in upcoming attempts to sell, as people may be prepared to
invest more resources into gathering information before making a potentially higher
impact decision. In summary, our findings are consistent with the possibility that
online search data may contain early signs of large scale attempts to avert loss, as
individuals increase efforts to gather information before trading stocks at a lower
price. Our results help demonstrate the notable value of data generated through
interactions with the Internet for our understanding of collective decision making.
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Appendix

The ticker symbols and company names of all components of the Dow Jones Indus-
trial Average in September 2012, as used in our search volume analysis, are given in
Table 5.1. Ticker symbols are unique identifiers defined at the exchange when stocks
are registered for trading. Company names were retrieved from the Dow Jones
Industrial Average listing at the Yahoo! Finance website (http://finance.yahoo.com/
q/cp?s=%5EDJI+Components) on 30th September 2012. We removed the following

http://finance.yahoo.com/q/cp?s=%5EDJI+Components
http://finance.yahoo.com/q/cp?s=%5EDJI+Components
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Table 5.1 Ticker symbols
(left) and company names
(right) of all components of
the Dow Jones Industrial
Average in September 2012

Ticker symbols Company name

“AA” “Alcoa”

“AXP” “American Express”

“BA” “Boeing”

“BAC” “Bank of America”

“CAT” “Caterpillar”

“CSCO” “Cisco Systems”

“CVX” “Chevron”

“DD” “du Pont”

“DIS” “Walt Disney”

“GE” “General Electric”

“HD” “Home Depot”

“HPQ” “Hewlett Packard”

“IBM” “IBM”

“INTC” “Intel”

“JNJ” “Johnson & Johnson”

“JPM” “JP Morgan Chase”

“KFT” “Kraft Foods”

“KO” “Coca Cola”

“MCD” “McDonalds”

“MMM” “3M”

“MRK” “Merck”

“MSFT” “Microsoft”

“PFE” “Pfizer”

“PG” “Procter & Gamble”

“T” “AT&T”

“TRV” “The Travelers”

“UTX” “United Technologies”

“VZ” “Verizon”

“WMT” “Wal Mart”

“XOM” “Exxon Mobil”

generic terms from the names retrieved: “Common”, “Companies”, “Company”,
“Corporation”, “Inc.”, “Stock”, “(The)”, “& Co.”, and “& Company”. To allow
retrieval of Google Trends data, we also removed hyphens and apostrophes. Finally,
we made the following edits to four company names for which there was otherwise
no Google Trends data available: “Wal Mart Stores” was replaced with “Wal Mart”;
“Verizon Communications” was replaced with “Verizon”; “International Business
Machines” was replaced with “IBM”; and “E.I. du Pont de Nemours” was replaced
with “du Pont”.



5 Early Signs of Financial Market Moves Reflected by Google Searches 95

References

1. Balcan, D., Goncalves, B., Hu, H., Ramasco, J. J., Colizza, V., & Vespignani, A. (2010). Mod-
eling the spatial spread of infectious diseases: The global epidemic and mobility computational
model. Journal of Computer Science, 1, 132.

2. Brownstein, J. S., Freifeld, C. C., & Madoff, L. C. (2009). Digital disease detection—
Harnessing the web for public health surveillance. The New England Journal of Medicine,
360, 2153.

3. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade
of failures in interdependent networks. Nature, 464, 1025.

4. Conte, R., Gilbert, N., Cioffi-Revilla, C., Deffuant, G., Kertesz, J., Loreto, V., et al. (2012).
Manifesto of computational social science. European Physical Journal-Special Topics, 214, 25.

5. Johnson, N., Carran, S., Botner, J., Fontaine, K., Laxague, N., Nuetzel, P., et al. (2011). Pattern
in escalations in insurgent and terrorist activity. Science, 333, 81.

6. King, G. (2011). Ensuring the data-rich future of the social sciences. Science, 331, 719.
7. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., et al. (2009).

Computational social science. Science, 323, 721.
8. Moat, H. S., Preis, T., Olivola, C. Y., Liu, C., & Chater, N. (2014). Using big data to predict

collective behavior in the real world. The Behavioral and Brain Sciences, 37, 92.
9. Mondria, J., Wu, T., & Zhang, Y. (2010). The determinants of international investment and

attention allocation: Using internet search query data. Journal of International Economics,
82, 85.

10. Perc, M. (2012). Evolution of the most common english words and phrases over the centuries.
Journal of the Royal Society Interface, 9, 3323.

11. Petersen, A. M., Tenenbaum, J. N., Havlin, S., Stanley, H. E., & Perc, M. (2012). Languages
cool as they expand: Allometric scaling and the decreasing need for new words. Scientific
Reports, 2, 943.

12. Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., & White, D. R.
(2009). Economic networks: The new challenges. Science, 325, 422.

13. Vespignani, A. (2009). Predicting the behavior of techno-social systems. Science, 325, 425.
14. Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecast-

ing. Applied Economics Quarterly, 55, 107.
15. Choi, H., & Varian, H. (2012). Predicting the present with Google trends. The Economic

Record, 88, 2.
16. Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. The Journal of Finance, 66,

1461.
17. Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., Brilliant, L., et al.

(2009). Detecting influenza epidemics using search engine query data. Nature, 457, 1012.
18. Kristoufek, L. (2013). Can Google trends search queries contribute to risk diversification?

Scientific Reports, 3, 2713.
19. Preis, T., Reith, D., & Stanley, H. E. (2010). Complex dynamics of our economic life on

different scales: Insights from search engine query data. Philosophical Transactions of the
Royal Society A, 368, 5707.

20. Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial
markets using Google trends. Scientific Reports, 3, 1684.

21. Preis, T., & Moat, H. S. (2014). Adaptive nowcasting of influenza outbreaks using Google
searches. Royal Society Open Science, 1, 140095.

22. Bordino, I., Battiston, S., Caldarelli, G., Cristelli, M., Ukkonen, A., & Weber, I. (2012). Web
search queries can predict stock market volumes PLoS One, 7, e40014.

23. Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., & Watts, D. J. (2010). Predicting
consumer behavior with Web search. Proceedings of the National Academy of Sciences of
the United States of America, 107, 17486.

24. Curme, C., Preis, T., Stanley, H. E., & Moat, H. S. (2014). Quantifying the semantics of search
behavior before stock market moves. Proceedings of the National Academy of Sciences of the



96 T. Preis and H.S. Moat

United States of America, 111, 11600.
25. Kristoufek, L. (2013). BitCoin meets Google trends and Wikipedia: Quantifying the

relationship between phenomena of the Internet era. Scientific Reports, 3, 3415.
26. Moat, H. S., Curme, C., Avakian, A., Kenett, D. Y., Stanley, H. E., & Preis, T. (2013).

Quantifying Wikipedia usage patterns before stock market moves. Scientific Reports, 3, 1801.
27. Moat, H. S., Curme, C., Stanley, H. E., & Preis, T. (2014). Anticipating stock market

movements with Google and Wikipedia. In D. Matrasulov, & H. E. Stanley (Eds.), Nonlinear
phenomena in complex systems: From nano to macro scale. Dordrecht: Springer.

28. Yasseri, T., Kornai, A., & Kertesz, J. (2012). A practical approach to language complexity:
A Wikipedia case study. PLoS One, 7, e48386.

29. Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of
Computer Science, 2, 1.

30. Ciulla, F., Mocanu, D., Baronchelli, A., Goncalves, B., Perra, N., & Vespignani, A. (2012).
Beating the news using social media: The case study of American idol. EPJ Data Science, 1, 1.

31. Goncalves, B., Perra, N., & Vespignani, A. (2011). Modeling users’ activity on twitter
networks: Validation of Dunbar’s number. PLoS One, 6, e22656.

32. Mocanu, D., Baronchelli, A., Perra, N., Goncalves, B., Zhang, Q., & Vespignani, A. (2013).
The Twitter of Babel: Mapping world languages through microblogging platforms. PLoS One,
8, e61981.

33. Alis, C. M., Lim, M. T., Moat, H. S., Barchiesi, D., Preis, T., & Bishop, S. R. (2015).
Quantifying regional differences in the length of Twitter messages. PLoS One, 10, e0122278.

34. Botta, F., Moat, H. S., & Preis, T. (2015). Quantifying crowd size with mobile phone and
Twitter data. Royal Society Open Science, 2, 150162.

35. Barchiesi, D., Moat, H. S., Alis, C., Bishop, S., & Preis, T. (2015). Quantifying international
travel flows using Flickr. PLoS One, 10, e0128470.

36. Preis, T., Moat, H. S., Bishop, S. R., Treleaven, P., & Stanley, H. E. (2013). Quantifying the
digital traces of Hurricane sandy on flickr. Scientific Reports, 3, 3141.

37. Preis, T., Moat, H. S., Stanley, H. E., & Bishop, S. R. (2012). Quantifying the advantage of
looking forward. Scientific Reports, 2, 350.

38. Noguchi, T., Stewart, N., Olivola, C. Y., Moat, H. S., & Preis, T. (2014). Characterizing the
time-perspective of nations with search engine query data. PLoS One, 9, e95209.

39. Alanyali, M., Moat, H. S., & Preis, T. (2013). Quantifying the relationship between financial
news and the stock market. Scientific Reports, 3, 3578.

40. Fehr, E. (2002). Behavioural science: The economics of impatience. Nature, 415, 269.
41. Feng, L., Li, B., Podobnik, B., Preis, T., & Stanley, H. E. (2012). Linking agent-based models

and stochastic models of financial markets. Proceedings of the National Academy of Sciences
of the United States of America, 109, 8388.

42. Gabaix, X., Gopikrishnan, P., Plerou, V., & Stanley, H. E. (2003). A theory of power-law
distributions in financial market fluctuations. Nature, 423, 267.

43. Haldane, A. G., & May, R. M. (2011). Systemic risk in banking ecosystems. Nature, 469, 351.
44. Hommes, C. H. (2002). Modeling the stylized facts in finance through simple nonlinear

adaptive systems. Proceedings of the National Academy of Sciences of the United States of
America, 99, 7221.

45. Johnson, N., Zhao, G., Hunsader, E., Qi, H., Johnson, N., Meng, J., et al. (2013). Abrupt rise
of new machine ecology beyond human response time. Scientific Reports, 3, 2627.

46. Lillo, F., Farmer, J. D., & Mantegna, R. N. (2003). Econophysics: Master curve for price-
impact function. Nature, 421, 129.

47. Lux, T., & Marchesi, M. (1999). Scaling and criticality in a stochastic multi-agent model of a
financial market. Nature, 397, 498.

48. Preis, T., Golke, S., Paul, W., & Schneider, J. J. (2007). Statistical analysis of financial returns
for a multiagent order book model of asset trading. Physical Review E, 76, 016108.

49. Preis, T., Golke, S., Paul, W., & Schneider, J. J. (2006). Multi-agent-based order book model
of financial markets. Europhysics Letters, 75, 510.



5 Early Signs of Financial Market Moves Reflected by Google Searches 97

50. Preis, T., Paul, W., & Schneider, J. J. (2008). Fluctuation patterns in high-frequency financial
asset returns. Europhysics Letters, 82, 68005.

51. Preis, T., Schneider, J. J., & Stanley, H. E. (2011). Switching processes in financial markets.
Proceedings of the National Academy of Sciences of the United States of America, 108, 7674.

52. Preis, T., Virnau, P., Paul, W., & Schneider, J. J. (2009). Accelerated fluctuation analysis by
graphic cards and complex pattern formation in financial markets. New Journal of Physics, 11,
093024.

53. Preis, T. (2010). Simulating the microstructure of financial markets. Journal of Physics and
Chemistry of Solids, 221, 012019.

54. Preis, T., Kenett, D. Y., Stanley, H. E., Helbing, D., & Ben-Jacob, E. (2012). Quantifying the
behavior of stock correlations under market stress. Scientific Reports, 2, 752.

55. Sornette, D., & Von der Becke, S. (2011). Complexity clouds finance-risk models. Nature,
471, 166.

56. Stanley, H. E., Buldyrev, S. V., Franzese, G., Havlin, S., Mallamace, F., Kumar, P., et al. (2010).
Correlated randomness and switching phenomena. Physica A, 389, 2880.

57. Moat, H. S., Curme, C., Stanley, H. E.,& Preis, T. (2014). Anticipating stock market
movements with Google and Wikipedia. In D. Matrasulov & H. E. Stanley (Eds.), Nonlinear
phenomena in complex systems: From nano to macro scale (pp. 47–59). Dordrecht, Nether-
lands: Springer.

58. Simon, H. A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics,
69, 99.

59. Tversky, A., & Kahneman, D. (1991). Loss aversion in riskless choice: A reference-dependent
model. Quarterly Journal of Economics, 106, 1039.



Chapter 6
Online Interactions

Lilian Weng, Filippo Menczer, and Alessandro Flammini

Abstract The ubiquitous use of the Internet has led to the emergence of countless
social media and social networking platforms, which generate large-scale digital
data records of human behaviors online. Here we review the literature on online
interactions, focusing on two main themes: social link formation and online com-
munication. The former is often studied in the context of network evolution models
and link prediction or recommendation tasks; the latter combines classic social
science theories on collective human behaviors with analysis of big data enabled
by advanced computation techniques. But the structure of the network, and the flow
of information through the network influence each other. We present a case study to
illustrate the connections between social link formation and online communication.
Analysis of longitudinal micro-blogging data reveals that people tend to follow
others after seeing many messages by them. We believe that research on online
interactions will benefit from a deeper understanding of the mutual interactions
between the dynamics on the network (communication) and the dynamics of the
network (evolution).

6.1 Introduction

User activity within online socio-technical systems is exploding. Social and micro-
blogging networks such as Facebook, Twitter, and Google Plus host the information
sharing activity of billions of users every day. Using these network platforms, people
communicate ideas, opinions, videos, and photos among their circles of friends and
followers across the world. These interactions generate an unprecedented amount of
data that can be used as a social observatory, providing a unique opportunity to study
the mechanisms behind human interactions with a quantitative approach [1–4].

Research on human online interactions revolves around two main themes: social
link formation and online communication. People can build virtual connections
with others to subscribe to their messages (i.e., following on Twitter and Google
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Plus) or to claim a mutual friendships between them (i.e., friending on Facebook).
The established social links enable people to easily communicate with friends,
sharing and spreading information on top of the social network.

Most work on social link formation frames the problem as network evolution
modeling, in which each new link creation is driven by predefined mechanisms that
resemble the observations from real-world data. Meanwhile, many algorithms have
been presented to predict or recommend missing links in a given network.

Communication dynamics is a long-lasting research topic in the social sciences.
Many theories of how people interact, exchange ideas, and influence each other
have been proposed decades ago. With the availability of big data and advanced
computational power, researchers can apply, verify, and enrich classic hypotheses
on human behaviors, leveraging the capacity to collect and analyze data on a large
scale to reveal patterns of human interactions [3]. New interdisciplinary research
fields, namely computational social science and human dynamics, have emerged in
such a scenario [3, 5].

6.1.1 Social Link Formation

Understanding the formation of online social links is a key ingredient for modeling
the evolution of online social networks, as the rules for creating new links determine
the network structure in time. Various models were introduced to capture the growth
and evolution of network topology, as well as different characteristics of complex
networks. Most such models focused on defining basic mechanisms that drive link
creation [6–10].

6.1.1.1 Classic Network Evolution Models

The random network model is the oldest attempt at characterizing a non-regular
network. Although, strictly speaking, it is not an evolutionary model, it can be
regarded as such when links are added sequentially to the network. It is character-
ized by the fact that each link exists independently with the same probability [11].
The random network inspired many subsequent studies in network science, but it
was not thought to reproduce several crucial properties of social networks [12],
such as the small-world effect [13–15], high clustering coefficient [14, 16, 17],
temporal dynamics [18, 19], information propagation [20], and heterogeneous
distributions in connectivity patterns [21–25]. Many such characteristics were
indeed yet undiscovered at the time when the random network model was proposed.

The small-world effect, also known as “six degrees of separation,” originated
from the Milgram experiment [13], in which the average length of communication
chains between two random individuals was found to be around six—smaller than
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what expected in a regular network, such as a lattice. The Watts-Strogatz model
was designed to reproduce the small-world phenomenon by rewiring each link in a
regular network with a small probability [14].

A scale-free network has a power-law degree distribution, commonly seen in
many real-world social networks such as the film actor network, the scientific
collaboration network, and the citation network [6, 8, 21]. A highly skewed degree
distribution in a social network indicates that, although the majority of nodes
is poorly connected, there is a consistent group of them (compared to what
happens in a random graph) that is extremely well connected, and whose collective
connections account for a relevant portion of the entire set of links in the network.
In a large group of people, only a few are extremely popular and most others
do not have many contacts. Many models have been proposed to reproduce the
heterogeneous distribution in connectivity [12, 22–25]. The Barabási-Albert model
generates a scale-free network by continuously adding new nodes into the system
(“growth”) and connecting them with other nodes with preference to high-degree
ones (“preferential attachment”) [21]. Motivated by the structure of the Web graph,
the copying model adds a new node into the network at a time and links it to
a random existing node or its neighbors [24, 25]. Another model proposed by
Newman, Watts, and Strogatz aimed to build up a random graph with arbitrary
degree settings [12]. The ranking model grows the network according to a rank of
the nodes by any given prestige measure, reproducing arbitrary power-law degree
distributions [23].

6.1.1.2 Models with Social Components

The preferential attachment mechanisms in the Barabási-Albert and ranking models
have a clear rationale in the social context: people prefer to form edges with
well-connected individuals, such as celebrities. However, this prescription alone
is not sufficient to reproduce several other important features of real networks.
Other models have been put forth to fill the gap, including ingredients such as
homophily [26–29], triadic closure [15–17, 30, 31], hierarchical structure [32], and
information diffusion [20, 33].

Homophily can be regarded as people’s propensity for linking with similar
others [26, 28, 29]. The triadic closure mechanism is based on the intuition that
two individuals with mutual friends have a higher probability to establish a new
contact [30, 31]. This tendency was observed in both undirected and directed online
social networks and incorporated into several network growth models [15–17]. In
particular, Leskovec et al. tested triadic closure against many other mechanisms in
four different large-scale social networks. By using maximum likelihood estimation
(MLE) [34], they identified triadic closure as the best rule, among those considered,
to explain link creation and to reproduce the clustering coefficient and the degree
distribution of the real networks under study [16].
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6.1.1.3 Link Prediction

Missing link prediction algorithms aim at inferring new social connections that may
happen in the near future given a current snapshot of the network structure. The
prediction has practical applications in the online systems; one of the most popular
use cases is to provide recommendations for new contacts (i.e., “People You May
Know” on Facebook and LinkedIn). Common approaches consider link prediction
as a classification task or ranking problem, using node similarity [35, 36], the
hierarchical structure of the network [32], random walks [16], supervised random
walks [37], graphical models [38], and user profile features [39].

One class of link prediction algorithms is designed on the premise that only
the network topology is known. Liben-Nowell and Kleinberg [36] examined and
compared a rich set of metrics for quantifying the similarity between a pair of nodes
in the social network, where high similarity implies high likelihood of being con-
nected on the basis of homophily. Tested metrics were built upon different network
topological features associated with each node, including overlap between neighbor
sets, preferential attachment, shortest path distance, and PageRank hitting time. The
analysis identified Adamic-Adar similarity [35] as the metric providing the best
performance. Clauset, Moore, and Newman [32] explored the observation that real-
world networks often exhibit community structure and hierarchical organization.
They proposed a link prediction method that uses knowledge about the network’s
hierarchical structure.

Other link prediction algorithms depend on additional attributes of existing
individuals or connections, as well as the topology of the network. Supervised
random walks can incorporate the knowledge of nodes and links so that a random
walker is guided to follow preferred paths with higher probability [37]. Attributes
may include, for example, the number of co-authored papers in a collaboration
network and the frequency of interactions between a pair of friends on Facebook.
In online systems like Flickr and Last.fm, users can annotate content revealing their
topical interests. Schifanella et al. found that users with similar interests in these
networks are more likely to be friends and proposed to use the similarity between
user annotation metadata as a predictor of missing social links [39].

6.1.2 Communication Dynamics

Early models concerning communication dynamics were inspired by studies of
epidemics, assuming that a piece of information could pass from one individual
to another through social contacts [40–42]. Recently, starting from observations and
theories in social sciences, a wealth of computational models have been proposed to
describe human communication.
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6.1.2.1 Threshold Model

One class of models is based on the idea of a threshold: people tend to follow the
same trends as most of their friends do [43, 44]. A threshold can be defined as
the number or fraction of others who must make a decision before a given actor
does the same. Many empirical studies have demonstrated the existence of such
a threshold in social and behavioral contagion online [45–48]. Threshold models
have been widely applied to understand the diffusion of rumors, norms, strikes,
voting, educational attainment, migration, and other human behaviors [43, 49, 50],
and extended to study the role of competition for finite attention [51].

6.1.2.2 Homophily

The principle of homophily states that similar people are more likely to have contact
than dissimilar ones [27, 52, 53]. The existence of homophily in social groups
has been supported by various empirical observations and experiments in online
settings [26, 29, 39, 54, 55]. Crandall et al. proposed a homophily-based model
to predict a user’s future activity and interactions with others according to user
similarities [56].

A feedback loop has been claimed to result in increasing similarity among users:
people grow to resemble their friends because of social (peer) influence, while being
more likely to form links with similar people (homophily) [29, 56]. Such a feedback
loop could lead to the so-called echo-chamber effect, by which people are exposed
to limited diversity of opinions in online social networks [57, 58]. Though it is hard
to fully distinguish between peer influence and homophily [59], the latter effect
contributes to promoting behavioral contagion [54].

6.1.2.3 Weak Tie Hypothesis

Friendships vary in their intensity and intimacy. The concept of tie strength has
been introduced to capture this variation: strong ties are our closest confidants and
supporters, while weak ties, to whom we feel less close, comprise the majority of
our personal networks. Granovetter defined the strength of social ties proportionally
to the size of shared social circles and proposed the weak-tie hypothesis [31, 60],
according to which weak ties do not carry as much communication as strong ties,
but act as bridges between communities and thus as important channels for novel
information.

Following up on Granovetter’s work, many empirical studies have tested the
weak-tie hypothesis [61–69]. Brown and Reingen found an important bridging
function of weak ties in word-of-month referral behavior, allowing information to
travel from one distinct subgroup of referral actors to another [62]. Gilbert and
Karahalios tested several dimensions of tie strength on social media, revealing that
both intensity of communication and intimate language are strong indicators of
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relationship closeness [69]. Onnela et al. analyzed a mobile call network and showed
that individuals in clusters tend to communicate more, while ties between clusters
have less traffic [68]. Bakshy et al. compared individual adoption rates on Facebook
when an external URL shared by friends is or is not included in the newsfeed and
found that although stronger ties are individually more influential in persuading
others to adopt and spread information, more abundant weak ties are responsible for
the propagation of novel information [61].

In summary, strong ties are believed to provide greater emotional support [69, 70]
and to be more influential [61, 62, 71], while weak ties provide novel information
and connect us to opportunities outside our immediate circles [31, 68, 72].

6.1.2.4 Limited Attention

People have limited attention during communication. This constraint may be related
to a cognitive limit on the number of stable social relationships that one can
sustain, as postulated by Dunbar [73] and later supported by analyses of Twitter
data [74, 75]. Huberman, Romero, and Wu defined friends of a Twitter user as those
who have been mentioned at least twice. They found that most users have a very
small number of friends compared to a large number of followers, and the friend
network is more influential than the follower network in driving Twitter usage [74].
Wu and Huberman analyzed the dynamics of collective attention on Digg.com and
modeled the delay of collective attention with a single novelty factor. Their mea-
surements indicated that novelty within groups decays with a stretched-exponential
law, suggesting the existence of a natural time scale over which attention fades [76].

6.1.2.5 Communication Dynamics on Evolving Networks

The large majority of studies on communication dynamics consider a static under-
lying social network, under the assumption that the network evolves on a slower
time scale than that characteristic of the information spread. Recent research has
addressed the modeling of cases in which the time scales of communication
dynamics and network evolution are comparable. These approaches consider the
two processes as either independent [19, 77] or coupled [33, 78, 79]. In particular, the
studies focused on the former case considered mainly epidemic processes in which
links are deleted or rewired according to the disease status of each node [78, 79].

6.2 Case Study: Traffic-Based Social Link Formation

We probe into the effects of information diffusion in shaping the evolution of the
social network structure. As a case study, we present a longitudinal analysis of
micro-blogging data to better understand the strategies employed by users when

http://dx.doi.org/Digg.com
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expanding their social circles. While the network structure affects the spread of
information, the network is, in turn, shaped by this communication activity. This
leads us to hypothesize a mechanism whereby people tend to follow others after
seeing many messages from them. Interestingly, the coupling of social link forma-
tion and information sharing allows to depict a more accurate and comprehensive
view of the network evolution [33].

We analyzed a dataset collected from Yahoo! Meme,1 including the entire history
of the system from April 2009 until March 2010. A user j following a user i is
represented in the follower network by a directed edge ` D .i; j/, indicating j can
receive messages posted by i. We adopt this notation, in which the link creator
is the target, to emphasize the direction of information flow. In our notation, the
in-degree of a node j is the number of people followed by j. Users can repost
received messages, which become visible to their followers. When user j reposts
content from i, we infer a flow of information from i to j. Each link is weighted by
the numbers of messages from i that are reposted or seen by j. At the end of the
observation period, the Yahoo! Meme follower network consisted of 128,199 users
with at least one edge, connected by a total of 3,485,361 directed edges.

Social micro-blogging networks, such as Twitter, Google Plus, Sina Weibo, and
Yahoo! Meme, are designed for information sharing. As illustrated in Fig. 6.1,
the dynamics on the network directly affects the dynamics of the networks, and
vice versa. In this case study, we investigate the individual strategies that lead to
the creation of new social links. We characterize link creation processes with a
set of parameters associated with different link creation strategies, estimated by a
Maximum-Likelihood approach [34]. This analysis will show that triadic closure
does have a strong effect on link formation, but shortcuts based on traffic are another
indispensable factor in interpreting network evolution.

6.2.1 Link Creation Mechanisms

When users post or repost messages, all their followers can see these posts and
might decide to repost them, generating spreading paths that, when taken together,
form cascade networks. When receiving a reposted message, a Meme user in such
a path can see both the grandparent (G, the user two steps ahead in the path) and
the origin (O, original source). A user may decide to follow a grandparent or origin,
receiving their future messages directly. These new links create shortcuts connecting
users at any distance in the network. A triadic closure occurs when a user follows a
triadic node (�, the user two steps away in the follower network). The definitions
of different types of link creation mechanisms are illustrated in Fig. 6.2.

1Yahoo! Meme was a social micro-blogging system similar to Twitter, active between 2009 and
2012.
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Dynamics of Network:
Link Creation

Dynamics on Network:
Information flow

A B

A B

Fig. 6.1 The dynamics of and on the network are strongly coupled. The bottom layer illustrates
the social network structure, where the blue arrows represent “follow” relationships with the
direction of information flow. The dashed red arrow marks a newly created link. The upper layer
depicts the flow of information between people in the same group, leading to the creation of the new
link. The social network structure constrains communication patterns, but information propagated
through the network also affect how agents behave and ultimately how the network changes and
grows

Target
User

Information Flow
Following

Others
Grandparent
Origin

Triadic Node

Fig. 6.2 Illustration of link creation mechanisms. A grandparent node is a special case of triadic
node, from which or through which information has reached the target user. Therefore traffic-based
shortcuts to grandparent nodes are a subset of triadic closures

6.2.1.1 Statistical Analyses of Shortcuts

To quantify the statistical tendency of users to create shortcuts, let us consider every
single link creation in the data as an independent event. We test the null hypotheses
that links to grandparents, origins, and triadic nodes are generated by choosing
targets at random among the users not already followed by the creator.

We label each link ` by its creation order, 1 � ` � L, where L is the total number
of links. For each link, we can compute the likelihood of following a grandparent
by chance:

pG.`/ D NG.`/

N.`/ � k.`/ � 1
; (6.1)
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where NG.`/ is the number of distinct grandparents seen by the creator of ` at the
moment when ` is about to be created; N.`/ is the number of available users in
the system when ` is to be created; k.`/ is the in-degree of `’s creator at the same
moment; and the denominator is the number of potential candidates to be followed.

The indicator function for each link ` denotes whether the link connects with a
grandparent or not in the real data:

1G.`/ D
�

1 if ` links to a grandparent in the data
0 otherwise.

(6.2)

The expected number of links to grandparents according to the null hypothesis can
be then computed as:

EG D
L
X

`D1

pG.`/ (6.3)

and its variance is given by:

�2
G D

L
X

`D1

pG .`/ .1 � pG .`// (6.4)

while the corresponding empirical number is:

SG D
L
X

`D1

1G.`/: (6.5)

According to the Lyapunov central limit theorem,2 the variable zG D .SG � EG/=�G

is distributed according to a standard normal N .0; 1/. For linking to origins (O) or
triadic nodes (�), we can define zO and z� similarly. In all three cases, using a z-test,
we can reject the null hypotheses with high confidence (p < 10�10). We conclude
that links established by following grandparents, origins or triadic nodes happen
much more frequently than by random connection. These link creation mechanisms
have important roles in the evolution of the social network.

2Lyapunov’s condition, 1
�4

n

Pn
`D1 EŒ.X.`/ � p.`//4�

n!1�! 0 where X.`/ is a random Bernoulli
variable with success probability p.`/ [80], is consistent with numerical tests. Details are omitted
for brevity.
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Fig. 6.3 Individual
preferences for following
grandparents (red circles),
origins (blue squares), and
triadic nodes (green
triangles) change with the
in-degree of the link creator

6.2.1.2 User Preference

The variables zG, zO, and z�, as defined above, measure how much more likely
links of a given type are formed than by chance—in other words, how strong
individual preferences are for following grandparents, origins or triadic nodes. To
study the dependence of the link formation tendencies on the different stages of an
individual’s lifetime, let us compute zk

G, zk
O, and zk

� for links created by users with in-
degree k, that is, those who are following k users at the time when the link is created.
Figure 6.3 shows that the principle of triadic closure dominates user behavior when
one follows a small number of users (k < 75). In the early stages, one does not
receive much traffic, so it is natural to follow people based on local social circles,
consistently with triadic closure. However, users who have been active for a long
time and have followed many people (k > 75) have more channels through which
they monitor traffic. This creates an opportunity to follow others from whom they
have seen messages in the past.

6.2.1.3 Link Efficiency

In information diffusion networks like Twitter and Yahoo! Meme, social links
may have a key efficiency function of shortening the distance between information
creators and consumers. An efficient link should be able to convey more information
to the follower compared to less efficient links. Hence we define the efficiency of link
` as the average number of posts seen or reposted through ` during one time unit
after its creation:


seen D wseen.`/

T � t.`/
; 
repost D wrepost.`/

T � t.`/
; (6.6)

where w.`/ is the number of messages seen or reposted through `; t.`/ is the time
when ` was created; and T is the time of the last action recorded in our dataset.
Both seen and reposted messages are considered, as they represent different types
of traffic; the former are what is visible to a user, and the latter are what a user is
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Fig. 6.4 Efficiency of links created according to different mechanisms, or average number of
messages (a) seen or (b) reposted per time unit. Each box shows data within lower and upper
quartile. Whiskers represent the 99th percentile. The triangle and line in a box represent the mean
and median, respectively. The black line and grey area across the entire figure mark the median
and interquartile range of the measure across all links, respectively

willing to share. We compute the link efficiency of every grandparent, origin, and
triadic closure link. As shown in Fig. 6.4, both grandparent and origin links exhibit
higher efficiency than triadic closure links, irrespective of the type of traffic. By
shortening the paths of information flows, more posts from the content generators
reach the consumers.

6.2.2 Rules of Network Evolution

To infer the different link creation strategies from the observed data, we characterize
users with a set of probabilities associated with different actions, and approximate
these parameters by MLE [34]. For each link `, we know the actual creator and the
target; we can thus compute the likelihood f .`j�; �/ of the target being followed by
the creator according to a particular strategy � , given the network configuration �

at the time when ` is created. The likelihoods associated with different strategies
can be mixed according to the parameters to obtain a model of link creation
behavior. Finally, assuming that link creation events are independent, we can derive
the likelihood of obtaining the empirical network from the model by the product
of likelihoods associated with every link. The higher the value of the likelihood
function, the more accurate the model.

6.2.2.1 Simple Strategy

We consider five link creation mechanisms and their combinations:

• Random (Rand): follow a randomly selected user who is not yet followed
• Triadic closure (�): follow a randomly selected triadic node
• Grandparent (G): follow a randomly selected grandparent
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• Origin (O): follow a randomly selected origin
• Traffic shortcut (G [ O): follow a randomly selected grandparent or origin

Other mechanisms for link creation could be similarly incorporated, such as
social balance [81] and preferential attachment [21]. However, preferential attach-
ment is built on the assumption that everyone knows the global connectivity of
everyone else, which is not very realistic. The strategies considered here essentially
reproduce and extend the copy model [25], approximating preferential attachment
with only local knowledge.

To model link creation with a single strategy, we can use a parameter p for the
probability of using that strategy, while a random user is followed with probability
1 � p. The calculation of maximum likelihood, taking the single strategy of
grandparents as an example, is as follows:

LG.p/ D
L
Y

`D1

.pf .`jG; �/ C .1 � p/f .`jRand; �//

D
L
Y

`D1

�

p
1G.`/

NG.`/
C .1 � p/

1

N.`/ � k.`/ � 1

�

D
Y

1G.`/D1

�
p

NG.`/
C 1 � p

N.`/ � k.`/ � 1

�
Y

1G.`/D0

1 � p

N.`/ � k.`/ � 1
: (6.7)

Note that since a follow action can be ascribed to multiple strategies, it can
contribute to multiple terms in the log-likelihood expression. For instance, a link
could be counted in both f .`jG; �/ and f .`jRand; �/. For numerically stable
computation, we maximize the log-likelihood:

logLG.p/ D
X

1G.`/D1

ln

�
p

NG.`/
C 1 � p

N.`/ � k.`/ � 1

�

C
X

1G.`/D0

ln
1 � p

N.`/ � k.`/ � 1
: (6.8)

Similar expressions of log-likelihood can be obtained for other strategies (�, O, and
G [ O).

It is not trivial to obtain the best p analytically, so we explore the values of p 2
.0; 1/ numerically (see Fig. 6.5). Triadic closure dominates as a single strategy, with
p� D 0:82. Traffic-based strategies alone account for about 20 % of the links.
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a b c d

Fig. 6.5 The plot of the log-likelihood logL .p/ as a function of link creation strategy probabil-
ities for models with a single strategy. The red circles mark the maximized logL .p/. (a) Triadic
closure, (b) Grandfather, (c) Origin, (d) Grandfather + Origin

6.2.2.2 Combined Strategies

For a more realistic model of the empirical data, let us consider combined
strategies with both triadic closure and traffic-based shortcuts. For each link `,
the follower with probability p1 creates a shortcut by linking to a grandparent
or an origin (G [ O); with probability p2 follows a triadic node (�); and with
probability 1 � p1 � p2 connects to a random node. Taking the combined strategy
with grandparent as an example, we compute the log-likelihood as:

logLGC�.p1; p2/ D log
L
Y

`D1

h

p1f .`jG [ O; �/ C p2f .`j�; �/

C.1 � p1 � p2/f .`jRand; �/
i

: (6.9)

The detailed derivations of the likelihood functions and the cases of the other
combined strategies are omitted for brevity.

Once again, we numerically explore the values of p1 and p2 in the unit square
to maximize the log-likelihood. The likelihood landscape for the combined strategy
considering both grandparents and origins as well as triadic closure is shown in
Fig. 6.6. The parameter settings and the maximum likelihood values for all tested
models are listed in Table 6.1. We can compare the quality of these models
by comparing their maximized logL ’s. The combined models with both traffic
shortcuts and triadic closure yield the best accuracy. In these models, triadic closure
accounts for 71 % of the links, grandparents and origins for 12 %, and the rest of the
links are created at random.
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Fig. 6.6 The contour plot of
log-likelihood logL .p1; p2/

for the combined strategy of
creating traffic shortcuts
(G [ O) with probability p1

and triadic closure links (�)
with probability p2. The black
triangle marks the optimum

Table 6.1 The best parameters in different models and corre-
sponding values of maximized log-likelihood function

Strategy Model Parameters max logL

Single � p D 0:82 �3:15 � 107

G p D 0:19 �3:64 � 107

O p D 0:17 �3:65 � 107

G [ O p D 0:21 �3:63 � 107

Combined G C � p1 D 0:12 p2 D 0:71 �3:12 � 107

O C � p1 D 0:10 p2 D 0:73 �3:13 � 107

G [ O C � p1 D 0:12 p2 D 0:71 �3:12 � 107

6.3 Discussion

Social link formation and information sharing are two major tracks of research on
online interactions. The mechanisms of new link creation determine the topology
of linkages among individuals, and the underlying network structure is critical for
the dynamics of the diffusion process [6–8, 51]. At the same time, as many social
links are driven by the need for more efficient information sharing in social media
sites, social link formation is greatly affected by communication activity. Both the
evolving structure of the social network and information diffusion have been studied
for decades, but the coupling between these dynamical processes has not been
well explored. In the present case study, we demonstrate a feedback loop between
these two dynamics. While triadic closure is the dominant mechanism for social
network evolution, it is mainly relevant in the early stages of a user’s lifetime. As
time progresses, the traffic generated by communication dynamics on the network
becomes an indispensable component for user linking behavior. As users become
more active and influential, their links create shortcuts that make the spread of
information more efficient in the network.

Studies of online interactions—how social networks evolve and how information
spreads—help us gain a better understanding of social influence, user behavior, and
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network efficiency in the context of online systems. The coupling between dynamics
of and on the network provides us with powerful insights into human interactions
in the digital world.
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Chapter 7
The Contagion of Prosocial Behavior
and the Emergence of Voluntary-Contribution
Communities

Milena Tsvetkova and Michael Macy

Abstract Every day, millions of people write online restaurant reviews, leave
product ratings, provide answers to an unknown user’s question, or contribute lines
of code to open-source software, all without any direct reward or recognition. People
help strangers offline as well, as when people anonymously donate blood or stop
to help a stranded motorist, but these behaviors are relatively rare compared to
the pervasiveness of online communities based on user-generated content. Why
are mutual-help communities far more common online than in traditional offline
settings that are not mediated by the Internet? We address this puzzle in two
steps. We begin with empirical evidence from an online experiment that tests two
mechanisms for the contagion of helping behavior: “generalized reciprocity” and
“third-party influence”. We then use an empirically calibrated agent-based model
to show how these mechanisms interact with the rivalness of contributions, that is,
the extent to which the benefit from a contribution is limited to just one beneficiary
(as when helping a stranded motorist) or benefits many people at once (as when
contributing a product review online). The results suggest that the non-rivalness of
most user-generated content provides a plausible explanation for the rapid diffusion
of helping behavior in online communities.

7.1 Introduction

The health regime we follow [1], the music we listen to [2], the new technologies
we adopt [3], the news stories we read [4], and even the likelihood that we vote
in an election [5] are all to a large degree influenced by our friends and peers.
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Many human behaviors spread through social contact, including some that are often
assumed to be acquired independently, such as obesity and fertility [6].

Prosocial behavior has also been shown to be contagious. Fowler and Chris-
takis [7] found experimental evidence that if you help someone, you not only
increase the likelihood that they help others, but that those they help will also help
others, and so on, out to three steps. Suri and Watts [8] and Jordan et al. [9] similarly
found that generous behavior was contagious at least in direct interaction. These
groundbreaking studies have provoked new questions. What are the mechanisms
through which prosocial behavior spreads among strangers? How do these mecha-
nisms affect the contagion dynamics? Can they lead to the emergence of cooperation
in an initially non-cooperating population?

7.1.1 The Puzzle of Online Generosity

The puzzle of contagious generosity is compounded further by the emergence
of online communities with user-generated content, from open source software
development to advice forums to Wikipedia [10]. Why are mutual-help communities
far more common online than in traditional offline settings that are not mediated by
the internet?

We address this puzzle using an empirically calibrated agent based model. The
results suggest that the answer may lie in the differences in the rivalness of online
and offline public goods involving anonymous contribution. Many offline public
goods—like blood donation, charities, and giving up one’s seat—are rivalrous,
meaning that the contribution transfers resources from the giver to a particular
receiver. In contrast, many online public goods, especially in communities based
on user-generated content, are non-rival—everyone in the community can benefit
from a given contribution. The difference is not limited to the effect of non-rival
incentives on the independent probability of contribution by a member of the
community. Computer simulation shows that this “within individual” difference is
amplified by the “between individual” effects of the contagion dynamics. More
precisely, we identify two mechanisms of contagion—“generalized reciprocity”
and “third-party influence” (TPI)—and show how these mechanisms interact with
differences between rival and non-rival contributions to explain the spread of
helping behavior in online communities.

7.1.2 Outline of a Theory of Prosocial Contagion

Previous research has suggested that there are two distinct mechanisms for the
contagion of prosocial behavior among strangers: generalized reciprocity and TPI.
Generalized reciprocity (GR) refers to cases in which those who benefit from a
stranger’s prosocial behavior behave more prosocially towards another in the future.
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Fig. 7.1 Two mechanisms for the contagion of prosocial behavior. (GR) Generalized reciprocity:
A helps B because C has helped A. (TPI) Third-party influence: A helps B because A has observed
C help D

As diagrammed in Fig. 7.1, A helps B because C has helped A [11, 12]. TPI
refers to cases in which those who observe prosocial behavior by strangers behave
more prosocially towards a stranger: A helps B because A has seen C help D.
GR characterizes “pay it forward” behavior triggered by a normative or affective
response to being helped [13], while TPI characterizes social learning through
imitation of others’ behavior.

GR and TPI also differ in the pattern of transmission. GR transmits the contagion
from person to person through direct contact and hence its contagious effect is
constrained to the chain of those who were previously helped. In contrast, TPI has
the potential to broadcast the contagion from one person to any number of observers.
The interaction of the two mechanisms could generate a powerful self-reinforcing
dynamic that dramatically increases the rate of prosocial behavior in an initially
uncooperative population.

In this chapter, we summarize an online experiment that distinguished between
the behavioral effects of the two contagion mechanisms [14] and use an agent-based
model to investigate the contagion dynamics and the population-level outcomes
that they entail. The empirical results show that receiving help can increase the
willingness to be generous towards others, but observing help can have the opposite
effect, particularly among those who have not received help. We use a threshold
model with dynamic interaction structure and adaptive behavior to simulate a
population of agents with this behavior. The computational experiments indicate that
the agents can self-organize in communities based on voluntary contributions in two
possible ways. On the one hand, when contributions are rival, a handful of altruists
can lead to the emergence of small clusters of contributors as long as agents observe
contribution beneficiaries in a relatively large radius (for example, via gossip) and
unsatisfied agents are not too mobile. On the other hand, when contributions are non-
rival, communities are much more likely to emerge and the level of contributions is
higher when agents observe contributors rather than recipients. These two pathways
roughly correspond to offline and online interactions. They offer explanation for
the fact that cultures of kindness are rare for anonymous face-to-face interactions
but common on the Web, for example, in the form of communities based on user
generated content.
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7.2 Testing Individual Mechanisms

Causal mechanisms are notoriously difficult to observe in natural settings, and
controlled diffusion experiments with large groups are highly impractical in tra-
ditional laboratory settings. To test the two contagion mechanisms, we therefore
designed and conducted a large behavioral experiment online. The experiment used
anonymity to isolate the effects of GR and TPI from other cooperation-inducing
mechanisms, including direct and indirect reciprocity, as well as peer pressure based
on reputation effects. To isolate GR from TPI, we manipulated the extent to which
participants received and observed help.

7.2.1 Online Experiment

The study was designed as a sequential two-player investment/gift-exchange game
in groups of 150 with random partner selection. In the game, a participant could
choose to return part of their payment so that another anonymous participant could
benefit.

We first recruited a pool of potential participants by posting a task on the online
crowdsourcing platform Amazon Mechanical Turk (AMT). The task invited AMT
users to sign up for a study that offered the chance to earn up to $14–21 for doing
the same $2–3 10-min task multiple times. The AMT users were informed that
they could only participate in the task and earn the promised amount if they were
randomly selected from the pool of potential participants. Participants were eligible
to be selected multiple times but there was no guarantee that they would be selected
even once. If selected, the participant was to receive an e-mail notification with
further instructions.

The email invitation informed recipients that they were randomly chosen to
participate in the game, which they had to complete within 24 h. Participants
were then directed to our website, where they read a description of the game
and made a single decision about whether to donate money to benefit a stranger.
The game description explained to each participant that they would be paid the
amount promised in the original solicitation, which included a “base” payment plus
a “bonus” payment. Participants were also told that they were part of a group of 150
AMT users and that only members of this group who received an invitation could
actually participate and receive the promised payment. The instructions further
informed participants that the study had allocated a limited number of invitations
to be distributed to randomly selected participants (“seeds”). The seeds were invited
by the experimenters to participate. In addition to these invitations created by
the experimenters, each participant who received and accepted an invitation had
the option to create a new invitation and allow one more person to participate.
However, in order to create a new invitation, the participant had to be willing to
donate his or her bonus, even though this would reduce the participant’s earnings.
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If the participant chose to donate his or her bonus, a recipient of the new invitation
(the “invitee”) would then be randomly selected from the other 149 AMT users in
the group. The instructions explained further that when a participant donated his or
her bonus, we supplemented the bonus amount so that the next invited participant
received the same base payment and bonus and had the same options: to keep his or
her bonus or donate it and create a new invitation for one more participant.

All participants knew that the person who received the donated invitation would
not know the identity of the participant who made the donation. Thus, anyone
receiving a donated invitation was unable to directly reciprocate or to pass along a
favorable reputation. We referred to participants by their AMT worker ID, randomly
anonymized in a way that precluded the possibility to identify the same individual
and be influenced by reputation.

The experiment involved five manipulations: whether the participant received a
donated invitation created by another participant (i.e., being a “link”), the number
of times the participant was invited to play the game (ranging from one to six),
whether the participant was able to observe donated invitations, the number of
donated invitations the participant observed (ranging from zero to 223), and the
payment the participant received ($2 base rate and $1 bonus or $1 base rate and $1
bonus).

The observation and payment manipulations were crossed to define four
between-individual treatment groups to which participants were randomly assigned.
The number of invitations received and observed varied within individuals. Further,
some participants were only selected as seeds, others were only selected as invitees,
and still others were selected as invitees after having been previously selected as
seeds.

7.2.2 Results

After removing data from participants who did not demonstrate an adequate
understanding of the instructions, we were left with 518 individuals and 1070
observations. We used random-intercepts logistic regression models of observations
nested in individuals to estimate the change in the odds of donating under the
different manipulations. The models allow us to adjust for the non-independence of
repeated measures and control for the effect of payment level and two other potential
confounders, the time elapsed between subsequent interactions and the number of
previous interactions. To better isolate the mechanisms, the models pool data only
form the relevant treatment conditions: we tested GR in the no-observation condition
only, we tested TPI for seeds only, and we tested the interaction of GR and TPI in
the observation condition only.

Consistent with GR, participants were more likely to be generous towards a
stranger after experiencing generosity (Table 7.1A). However, the effect is limited
to the first receipt of generosity as the critical event in triggering GR. The odds of
donating do not continue to increase with receiving additional donated invitations.
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Table 7.1 Odds ratios for donating across treatments

Manipulation (A) GR (B) TPI (C) GR�TPI

Invitee (receives a 7.006 (0.030)* 0.327 (0.262)

donated invitation)

Has previously received 0.712 (0.686) 1.021 (0.982)

donated invitations

Seeds

Observes 0–75 11.414* (0.043) (Baseline)

Observes 75–150 1.341 (0.787) 0.136 (0.101)

Observes 151+ 0.219 (0.280) 0.015* (0.022)

Invitees

Observes 76–150 19.907* (0.041)

Observes 151+ 89.948* (0.026)

High Payment 64.103** (0.007) 2.532 (0.300) 3.235 (0.295)

Time waited (in hours) 0.972* (0.023) 0.992 (0.577) 0.976 (0.075)

Previous participations 0.690 (0.379) 0.784 (0.622) 0.454 (0.171)

Baseline odds 4.305 (0.181) 5.323 (0.100) 268.707*** (0.000)

Number of observations 516 371 554

Number of participants 252 277 266

Wald �2 5 df, 11.93* (0.036) 6 df, 6.66 (0.354) 8 df, 11.98 (0.214)

The table reports odds ratios and p values (in brackets) from random-intercept logistic
regression models for (A) seeds and invitees in the no-observation treatment by
number of donated invitations received; (B) seeds in the observation and no-observation
treatments by number of donated invitations observed; and (C) seeds and invitees in the
observation treatment by number of donated invitations observed by invitees compared
to seeds. Results show that receiving and observing donations initially increases the
willingness to help others, and that invitees are less susceptible to a subsequent decline
in helping
Two-sided tests: �p < 0:05; ��p < 0:01; ���p < 0:001

Consistent with TPI, there was a statistically significant increase in the odds of
donating among the seeds who observed between 0 and 75 donated invitations,
compared to those who did not observe any (Table 7.1B). However, the level of
donation among those who observed more than 75 invitations was not significantly
greater than the baseline level. In other words, similarly to GR, the effect of TPI
appears to be concave, with most of the effect evident at relatively low levels of
observed donation and little subsequent change.

Less intuitively, the effect from observing widespread generosity is significantly
different for those who have recently benefited from generosity compared to those
who have not. When observing more than 75 donated invitations, the odds of
donating decrease for seeds but do not change for invitees (Table 7.1C). This
difference between seeds and invitees is statistically significant (�2 (1 df) D 3:88,
p D 0:049 for observing 76–150; �2 (1 df) D 5:55, p D 0:019 for observing
151+) and suggests the possibility that seeds succumb to a “free-riding” effect
from which invitees are immune due to having been recipients of generosity.
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Free riding represents the temptation to refrain from contributions, especially when
one becomes aware that others are already contributing. The behavior is common in
collective-action situations [15] and is also known as social loafing [16] and as the
“bystander effect” or “diffusion of responsibility” [17].

In sum, the experimental results show that receiving and observing generosity
can significantly increase the likelihood to be generous towards a stranger. However,
the willingness to contribute can be offset by lower perceived need when the level
of helping is sufficiently high. This “bystander effect” is especially evident among
those who have not themselves benefited from generosity. In other words, the norm
to “be generous if that is what others are doing” weakens when the level of helping
behavior is high, unless it interacts with the normative obligation to “pay it forward.”

The implications of the effects of the two contagion mechanisms for the
dynamics of helping cascades are not intuitively obvious. We therefore incorporated
the empirical findings in an agent-based model to investigate the macro-level effects
of GR and TPI.

7.3 Extrapolating to Population Outcomes

Our model is a threshold model of collective behavior. Such models have been
previously used to study the emergence of collective action and the resolution of
social dilemmas [18–20]. In this literature, a threshold is the critical number or
proportion of contributors at which an individual becomes willing to contribute to
a collective action or to join a collective behavior. Depending on the distribution of
individual thresholds, cascades are possible in which each additional participant
triggers participation by others. It has been established that the emergence of
widespread participation critically depends on the composition of the population,
and in particular, the existence of a critical mass of altruists, or unconditional
contributors.

We model diffusion through the dynamics of selection and influence by relaxing
two common assumptions in existing threshold models: fixed interaction structure
and fixed individual interests in contributing. Our model assumes that agents both
move in space (similarly to [21]) and adapt their behavior (similarly to [19, 22–24]).
By combining dynamic interaction structure with adaptive behavior, our model
is similar to evolutionary-game models on cooperation [25–30]. In these models,
agents choose an action or a strategy in the Prisoner’s Dilemma and play it against
each of their interaction neighbors. The agents update their behavior by imitating
successful neighbors and find more beneficial interaction partners by moving on a
spatial grid or rewiring their interaction network. In our model, agents play a gift
game with a different number of their neighbors, depending on the rivalness of the
exchanged gifts. Influence occurs not because agents imitate others but because they
condition their behavior on others’ behavior.
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7.3.1 Simulation Model

7.3.1.1 Assumptions

The model assumes that agents are heterogeneous with respect to their natural
proclivity to condition their contributions on others’ behavior and their own
outcomes. These proclivities are exogenously predetermined and remain fixed
throughout social interactions. In addition to generalized reciprocity, TPI, and free
riding, the model assumes two other behavioral mechanisms: unconditional altruism
and aspiration. Unconditional altruism captures the extent to which individuals are
willing to help strangers regardless of others’ behavior or their own outcomes.
Aspiration is the expectation about the extent to which one should benefit from
others’ contributions. Aspiration is the benchmark against which the agent evaluates
outcomes as satisfactory [31]. If outcomes are unsatisfactory, the agent can decide
to move to a different community (similarly to [21]). We set the aspiration as
�A � Uniform.0; 0:5/.

Following previous research [24], agents are assigned a level of unconditional
altruism that is randomly drawn from a beta distribution: �UA � Beta.˛; ˇ/. The
model fixes ˛ D 5 and ˇ D 5. The resulting distribution lacks a critical mass
of altruists because the majority of individuals have values close to 0:5. This
distribution matches the empirical distribution of behavioral types in the general
population, characterized by few unconditional altruists (about 13 %) and a majority
of conditional contributors (50–63 %; [32, 33]). Nevertheless, previous analytical
work on deterministic threshold models in fixed populations has shown this type
of distribution not to favor the emergence of high-levels of contribution [18, 24].
Compared to these earlier models, we start from a lower level of unconditional
altruism that is more empirically plausible.

The model assumes that generalized reciprocity GR � Uniform.0; 1/ and TPI
TPI � Uniform.0; 1/. The higher the value of GR (TPI) the more the agent’s
contribution behavior is sensitive to benefits received (observed). For consistency,
the free-riding value is always at least as large as the unconditional-altruism value:
�FR D �UA C FR.1 � �UA/, where FR � Uniform.0; 1/. The higher the value of
FR, the lower the observed level of contribution at which the agent refrains from
contributing in order to free-ride on others’ effort.

The model also assumes that the interaction structure is a square lattice that
wraps into a torus. This structure is characterized by a high average clustering,
long average path-lengths, and regularity in network positions. The structure is a
poor representation for persistent social relations such as friendships and business
contacts. However, it is a suitable heuristic for interactions between strangers in
geographical space. Further, we assume that an agent’s interaction neighborhood
does not entirely coincide with the agent’s observation neighborhood. In both
cases, the neighborhood is a Moore neighborhood (a square with the focal agent
in the center) but the radius of the neighborhood can vary. A larger interaction
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neighborhood corresponds to a larger community size while a larger observation
neighborhood corresponds to a higher degree of gossip or centralized broadcasting.

7.3.1.2 Behavioral Rules

The five behavioral mechanisms come together in two separate threshold functions
that determine whether agents contribute to a neighbor (or multiple neighbors) from
their interaction neighborhood and whether agents move to a new location in their
observation neighborhood.

The contribution threshold models the combined effect from receiving and
observing others’ contributions on one’s likelihood to contribute. As in the empirical
results, benefiting from others’ contributions increases one’s likelihood to contribute
and decreases one’s likelihood to free-ride, while observing others’ contributions
could increase both one’s likelihood to contribute and one’s likelihood to free-
ride. Following previous models of non-monotonic threshold functions [22–24],
the function is characterized by two thresholds: an upward threshold �0!1 and a
downward threshold �1!0. The agent contributes as long as the number of received
and observed contributions is within these two thresholds. The upward threshold
is pre-determined by the agent’s unconditional altruism but decreases if the agent
experiences TPI. The downward threshold is anchored by the agents’ proclivity to
free ride but increases if the agent succumbs to generalized reciprocity (Fig. 7.2).
More specifically:

�0!1.t/ D �UA � TPI 	 Mo.t/ 	 �UA;

�1!0.t/ D �FR � GR 	 Mr.t/ 	 .1 � �FR/; (7.1)

where Mr.t/ is the number of contributions the agent remembers receiving and
Mo.t/ is the proportion of contributions the agent remembers observing in her
observation neighborhood. The agent makes a contribution to the benefit of a
random neighbor(s) within her interaction neighborhood if the contributions she
remembers receiving match or surpass her upward threshold but the contributions
she remembers observing do not exceed her downward threshold:

• Behavior Rule 1: Contribute if Mr.t/ 
 �0!1 and Mo.t/ < �1!0.t/.

Similarly, the agent moves with probability � (mobility) to a random empty site
within her observation neighborhood if the contributions she remembers receiving
do not match her aspiration:

• Behavior Rule 2: Move with probability � if Mr < �A.

Thus, agents who are satisfied with their outcomes tend to stick to the community
they have found but unhappy agents tend to move to communities with higher levels
of contribution. Mr.t/ and Mo.t/ are simply the number of contributions the agent
received and the proportion of local contributions the agent observed in the previous
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Fig. 7.2 Three thresholds in the simulation model. The upward behavior threshold depends on
unconditional altruism (�UA) but can decrease due to third-party influence (TPI � Mo). The
downward behavior threshold depends on the proclivity to free ride (�FR) but can increase due
to generalized reciprocity (GR � Mr). The movement threshold depends on the aspiration (�A).
The agent makes a contribution to the benefit of a random neighbor(s) within her interaction
neighborhood if the contributions she remembers receiving (Mr) match or surpass her upward
threshold but the contributions she remembers observing (Mo) do not exceed her downward
threshold. The agent moves to a new empty site within her observation neighborhood if the
contributions she remembers receiving (Mr) fall below her aspiration

m time periods, where m is the length of memory. More formally, Mr.t/ D
Pt�1

t�m rt

m

and Mo.t/ D
Pt�1

t�m otn�1
t

m , where rt is the number of times the agent benefited from a
contribution at time t, ot is the number of contributions the agent observed at time
t, and nt is the size of the agent’s neighborhood at time t. For the model, m D 5

was chosen because this value produced high variability in the results. Increasing
constricts the conditions for emergence of contributions since more random events
become necessary in an agent’s neighborhood in order to convert that agent into a
contributor.

Updating is synchronous for both the decision to contribute and to move. At each
time period, agents are drawn in random order to decide whether to contribute, given
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the contributions they observed and the amount of contributions they received up
until the last period. Once all agents have had the chance to update their behavior, the
agents decide whether to move, given the amount of contributions they have received
until the end of the current period. Thus, the model assumes that agents observe and
receive contributions within each time period and then decide whether to contribute
(Behavior Rule 1) and whether to leave a community (Behavior Rule 2). Since
threshold models have been shown not to be robust to noise [34], the model assumes
that there is a small probability � D 10�3 that an agent’s contribution or movement
decision is reversed.

7.3.1.3 Parameter Space

To preclude sensitivity to initial conditions and synchronous updating, the model
used behavioral and movement noise, the simulations were run for a sizable agent
population, and the results were averaged over multiple repetitions. The fixed
parameters in the model (the shape and the range of the distributions and the length
of memory) were chosen with the goal to keep them as simple as possible while
producing the highest variation in results along the variable parameters.

The computational experiments were run for a population of 1000 agents
on a torus (40 % occupied locations). The experiments investigated the average
contribution level (i.e., the proportion of contributors) for two different levels of
rivalness: we assume that rival contributions benefit one recipient, while non-rival
contributions benefit three recipients. The effects of four parameters are explored:

• The mobility � 2 Œ0; 0:05; 0:5�. This is the probability to move if the agent is
unhappy with what she receives from the current community. This parameter
represents community turnover. (Turnover could also be adjusted by varying the
average aspiration �A.)

• The radius of the interaction neighborhood 2 Œ1; 2; 3; 4; 5; 7; 10; 15�. Since
the model uses Moore neighborhoods, this is equivalent to a maximum of
Œ8; 24; 48; 80; 120; 224; 440; 960� neighbors for each agent. This parameter cor-
responds to community size.

• The radius of the observation neighborhood 2 Œ0; 1; 2; 3; 4; 5; 6; 10; 15�. Since
the model uses Moore neighborhoods, this is equivalent to a maximum of
Œ0; 8; 24; 48; 80; 120; 224; 440; 960� neighbors for each agent. This parameter is
related to gossip and centralized broadcasting.

• The observation targets 2 Œrecipients; contributors�. Agents observe either the
proportion of contributors or the proportion of beneficiaries within their observa-
tion neighborhood.

The simulations were run for 5000 periods which was sufficient for convergence
to an equilibrium. The equilibrium proportion of contributors was then estimated
by averaging the proportion of contributors over the last 1000 periods.The resulting
equilibrium proportion of contributors was then averaged over 25 replications for
each parameter combination.
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7.3.2 Results

Figure 7.3 shows that for non-rival contributions, the equilibrium level of contribut-
ing is visibly higher than for rival contributions. Further, for non-rival contributions,
the conditions for the emergence of contribution-based communities are signifi-
cantly less restricted.

When the exchanged contributions are non-rival, the global level of contribution
is high over a large range of interaction radii. Widespread contribution fails to
emerge only when the interaction radius and/or the observation radius are extremely
large. This implies that non-rival exchange allows for relatively large contribution-
based communities. For relatively large communities (interaction radius > 1),
observed contribution has little effect, and 100 % contribution is possible even when
there is no observation (observation radius D 0). Overall, observing contributors
has a greater effect than observing recipients (right column in Figs. 7.3 and 7.4).
Community turnover does not affect outcomes except when the communities
are small (interaction radius D 1) or when observation is widespread in large
communities. In the first case, some mobility is better than no mobility (Fig. 7.4,
right) and in the second case, too much mobility is bad (right column in Fig. 7.3).

When the exchanged contributions are rival, only small communities can have
high levels of contribution (optimal interaction radius � 2 � 3; left column in
Fig. 7.3). Further, observation is crucial for the emergence of contribution communi-
ties: the level of contribution is zero when there is no observation. As the observation
radius increases, the level of contribution radically increases initially but eventually
starts decreasing slowly (left in Figs. 7.4 and 7.5). The optimal observation radius
is between 2 and 5, depending on the target of observation. Compared to observing
contributors, observing recipients requires a smaller observation radius to achieve
the maximum level of contribution. Finally, the effect of mobility is non-monotonic:
low mobility (� D 0:05) is better than no mobility (� D 0) or too much mobility
(� D 0:5).

Figure 7.6 identifies the reason for differences between rival and non-rival
contributions. Non-rivalness implies that a larger number of individuals can benefit
from a single contribution, as when a user is given advice that benefits many
others in an online community. This leads to the easy formation of multiple small
communities in which contributors benefit and hence continue contributing, despite
free-riders who benefit enough to hang around the periphery of the clusters. When
contributions are rival and only one individual can benefit from each contribution,
contribution-based communities are much less likely to emerge and persist. If they
do, this usually happens around a core of unconditional altruists (agents with low
�UA and �FR high) who form a critical mass. These agents (the blue agents in Fig. 7.6,
left column) continue contributing regardless of what others around them do. When
outcome-based mobility is relatively low, the agents remain in the neighborhood
long enough to have a chance to benefit from a contribution or to observe many
others benefiting. (If they were observing contributors instead of recipients, they
would have only observed the altruist or the few altruists that started contributing,



7 Contagion of Prosocial Behavior 129

Fig. 7.3 The equilibrium proportion of contributors by observation radius and interaction radius
for contributors as observation target and mobility � D 0 (top), � D 0:05 (middle), and � D 0:5

(bottom). Results are shown for rival (left) and non-rival (right) contributions
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Fig. 7.4 The equilibrium proportion of contributors by observation radius when interaction is
constrained to immediate neighbors only (interaction radius D 1). Line colors show levels of
mobility and line types differentiate the observation target. Results are shown for rival (left) and
non-rival (right) contributions. The thick lines show the proportion averaged over 25 replications
for that particular parameter combination. The thin lines show the minimum and the maximum
proportions achieved in the replications

Fig. 7.5 The emergence of contribution by observation radius when interaction is constrained to
immediate neighbors and neighbors of neighbors (interaction radius D 2). Line colors show levels
of mobility and line types differentiate the observation target. Results are shown for rival (left) and
non-rival (right) contributions. The thick lines show the proportion averaged over 25 replications
for that particular parameter combination. The thin lines show the minimum and the maximum
proportions achieved in the replications

not the many neighbors who benefit). As a result, a few clusters form around the
handful of altruists in the population but the contagion does not spread to agents in
other corners of the space.

The differences in the macro-outcomes between rival and non-rival contributions
result from the structure of interactions and not from the differences in effect size.
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Fig. 7.6 The emergence of contribution communities for rival (left) and non-rival (right) contri-
butions for interaction radius D 1, observation radius D 5, observing recipients, and mobility.
Agents in blue contribute but do not benefit, agents in red benefit but do not contribute, and agents
in purple both contribute and benefit

Assuming that the GR and TPI effects for non-rival contributions are weaker than
the GR and TPI effects for rival contributions does not significantly affect the
emergence of non-rival contributions.

7.4 Discussion

Selfless acts of kindness and anonymous voluntary donations can be puzzling, even
though they are not uncommon. In daily life, people donate blood, contribute money
to charity, hold the door open for the person behind, or vacate a subway seat for
an elderly passenger. In the online world, users review services, rank products,
or answer strangers’ questions on forums. Why do communities vary in the level
of member contributions? This study suggests that the answer could lie in the
contagion of prosocial behavior. We first presented empirical evidence from an
online experiment for the existence and interaction of two distinct mechanisms of
contagion—generalized reciprocity and TPI. We then implemented these mecha-
nisms in an agent-based model to investigate the conditions under which they lead
to high levels of contributions at the population level.

The empirical results showed that receiving and observing helping behavior can
increase the likelihood to help a stranger. However, the willingness to contribute
can be offset by lower perceived need when the level of helping is sufficiently high,
particularly among those who have not themselves been helped.

We implemented these findings in a threshold model with dynamic interaction
structure and adaptive behavior. The computational experiments suggested two
alternative pathways to the emergence of contribution-based communities. It is
useful to think of these two pathways in the context of rival face-to-face interactions
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on the one hand and non-rival online contributions on the other hand. In face-
to-face interactions, acts of generosity are rival if the benefit is limited to the
intended recipient, as happens when holding the door open or vacating one’s seat
for a stranger. The simulation results show that these contributions can emerge and
spread in small and stable communities, that is, communities that are tightly knit
and have little turnover. In such communities, hearing about or seeing other people
who benefit from the kindness of strangers increases contributions. As a result,
a relatively small number of persistent altruists can trigger the spread of helping
behavior. In this situation, gossip and newspaper reports about anonymous acts of
generosity play an important role. For example, in an office environment, a single
active anonymous altruist could trigger a chain of generosity so long as there is
sufficient gossip about the level of charitable behavior such that observers come to
believe that generosity is normative and conform to this “office culture.”

In comparison, non-rival contributions, such as writing a product review on
the Web or answering a question in an online forum, are much more likely to
emerge and spread across a wider range of conditions, including in much larger
groups with high turnover. For example, small esoteric-interest groups and large
general-topic online portals could be equally successful user-generated content
communities. In such communities, hearing about or seeing other people who
contribute sustains high levels of contribution, while awareness of the number of
beneficiaries decreases contribution (perhaps due to the belief that there is little
need for additional sacrifice).

However, a disclaimer is in order. The chapter provides a plausible explanation
for the emergence and persistence of voluntary contribution-based communi-
ties but is mainly intended to address the emergence of contribution communi-
ties among anonymous individuals. Undoubtedly, once a community forms and
anonymity diminishes, cooperation-inducing mechanisms based on social sanctions
(for example, reputation systems or long-term-membership privileges) become
more prominent and more effective.
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Chapter 8
Understanding the Scientific Enterprise:
Citation Analysis, Data and Modeling

Filippo Radicchi and Claudio Castellano

Abstract The large amount of information contained in bibliographic databases has
recently boosted the use of citations, and other indicators based on citation numbers,
as tools for the quantitative assessment of scientific research. Citations counts are
often interpreted as proxies for the scientific influence of papers, journals, scholars,
and institutions. Given their importance in practical contexts, the interest in the study
of bibliographic datasets is no longer restricted to specialists in bibliometrics but
extends to scholars having very different primary fields of research. As a result,
the recent past has witnessed a huge production of papers on this topic of research.
The present chapter aims at providing a brief overview of the progress recently made
in the analysis of bibliographic databases. In the first part of the chapter, we will
focus our attention on studies devoted to the statistical description of distributions
of citations received by individual publications. The second part is instead devoted
at summarizing some recent research efforts towards the modeling of the citation
dynamics and the growth of citation networks.

8.1 Introduction

Traditionally, novel scientific knowledge is transmitted personally, as in presenta-
tions or private communications, or published in articles and books. Whereas spoken
words fly away, the written words of scientific papers remain and thus constitute a
concrete way of keeping track of how scientific knowledge is created and dissemi-
nated along time. Papers represent tangible products of the scientific enterprise, an
immense and complex system whose dynamics depends on complicated processes
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that involve factors at multiple scales, from “macroscopic” economic decisions
to “microscopic” self-organized interactions among scientists. In addition to the
scientific message, an article contains a wealth of meta-data: title, journal and date
of publication, list of authors and their affiliations, bibliographic references, grant
funding numbers, just to mention a few. These data are stored in electronic archives,
and provide an easily analyzable source of information to determine for example, at
the level of the researchers, when and where who was studying what. The meta-data
of a paper can be viewed as the most basic pieces of information about the entire
scientific enterprise. Taken alone, a single paper cannot tell us so much about the
scientific endeavor, but, aggregating the information from the millions of papers
published each year, we can reconstruct, piece by piece, how science looked at
particular points in space and in time, and infer the missing parts of the big picture.

According to this vision, bibliographic databases represent the starting point
for any empirical study of the evolution and dynamics of scientific activity. The
analysis of these data has a long tradition in the social sciences. Bibliographic
datasets were first analyzed by Lotka in the 1920s [1] and later by Shockley in
the 1950s [2] to quantitatively measure the productivity of individual scientists and
research laboratories, respectively. Since the pioneering work in the 1960s of Derek
de Solla Price [3], who realized that bibliographic data have a natural mathematical
representation in terms of directed graphs, the study of co-authorship and citation
networks has become the starting point for the formulation of key hypotheses such
as the mechanism of cumulative advantage [4] to explain the dynamical patterns
of citation accumulation. However, it is only in the last decade that the analysis of
bibliographic data has received a boost from advances in information technology
and the massive digitalization of documents [5].

In addition to scientific purposes, the use of bibliographic databases is acquiring
a practical, and crucial, role in modern science. Citations between scientific
publications are in fact commonly used as quantitative indicators for the importance
of scientific papers, as proxies for the influence of publications in the scientific
community. General criticisms to the use of citation counts have been made [6–8] ,
and the real meaning of a citation between papers can be very different and context
dependent [9]. Nevertheless, a citation can be viewed as a tangible acknowledgment
of the citing paper to the cited one. Thus, the more citations a paper has accumulated,
the more influential the paper can be considered for its own scientific community
of reference. The same unit of measure (i.e., a citation) is commonly used as the
basis for the quantitative evaluation of individual scholars [10, 11], journals [12],
departments [13], universities and institutions [14], and even entire countries [15].
Especially at the level of individual scientists, numerical indicators based on
citation counts are evaluation tools of fundamental importance for decisions about
hiring [16] and/or grant awards [17].

The aim of the present chapter is to review recent progresses in the analysis
of bibliographic datasets, and in particular in the statistical description of citation
distributions. We will consider not only studies about static properties of citation
patterns, but we will also review recent analyses aimed at modeling the evolution
of citation distributions and predicting the accumulation of citations by individual
papers.
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8.2 Bibliographic Datasets

There are many bibliographic databases available on the market. Most of these
databases are now online and their records can be searched by simple web queries.
The Web of Science (WoS) database of Thomson Reuters [18] is the oldest and
best established commercial source of bibliographic data. WoS indexes papers
from every part of the world and from every scientific discipline. Like WoS,
other databases store large sets of bibliographic data: CrossRef [19], Scopus [20],
GoogleScholar [21], CiteSeer [22], inSpire [23], and the Eprint archive at www.
arxiv.org are just a few examples. These databases do not offer the same coverage
of WoS (different journals and conference proceedings are listed depending on
the database), but, with the exception of CrossRef and Scopus, they are accessible
free of charge.

8.3 Static Models

As previously mentioned, in bibliographic databases, several meta- and relational-
information (e.g., journal and year of publication, name and affiliations of the
authors, citations to the other papers in the dataset) are associated with each record,
so that, from the raw data, various kinds of citation graphs can be generated. The
simplest ones are citation networks between papers. Taking the list of references
appearing at the end of each article, one can draw directed connections from citing
articles to cited ones. The same information can be used to construct citation
networks between scientists, journals, and institutions.

8.3.1 Citation Distributions

The primary goal of a large number of empirical studies about citation networks
is represented by the characterization of the probability distribution function of
citations. This is the probability P .c/ that a paper has been cited c times. In the
language of network science, measuring the number of citations of a paper means
counting the number of incoming links (in-degree) c of a node. In the 1960s, de
Solla Price [3] started performing empirical measurements on a relatively small
subset of papers and was able to observe that the number of articles with a given
number of citations had a broad distribution. Price conjectured a power law scaling
P .c/ � c�� with a decaying exponent � ' 3. This result was confirmed much later
in 1998 by Redner [24]. Redner studied much larger datasets (all papers published
in Physical Review D up to 1997 and all articles indexed by Thomson Scientific in
the period from 1981 to 1997 and found again that the right tail of the distribution
(corresponding to highly-cited papers) shows a power law scaling with � D 3.

www.arxiv.org
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At the same time, Redner realized that the left part of the distribution was more
consistent with a stretched exponential. However, different conclusions were drawn
by Laherrére and Sornette [25] in the same year. They studied the dataset of the
top 1120 most cited physicists during the period from 1981 to 1997, finding that
the whole distribution of citations is more compatible with a stretched exponential
P .c/ � exp

��cˇ
�

, with ˇ ' 0:3. The puzzle was seemingly solved by Tsallis and
de Albuquerque [26]. By analyzing the same datasets as Redner’s plus an additional
one composed of all the papers published up to 1999 in Physical Review E, the
authors found that the Tsallis distribution P .c/ D P.0/= Œ1 C .ˇ � 1/ 
 c�ˇ=.ˇ�1/,
with 
 ' 0:1 and ˇ ' 1:5, consistently fits the entire distribution of citations.
However, a new functional form was again attributed to Redner a little later. Redner
performed an analysis over all papers published in the 110-years-long history of
journals in the Physical Review collection [27], finding that the distribution of
citations is best fitted by a log-normal distribution

P .c/ D 1

c
p

2��2
exp

n

� Œln c � ��2 =
�

2�2
�
o

: (8.1)

In subsequent studies, depending on the particular dataset taken under consid-
eration, distributions of citations have been fitted with various functional forms:
power-laws [28–32], log-normals [33–36], Tsallis distributions [37, 38], modified
Bessel functions [39, 40], and more complicated distributions [41].

8.3.1.1 Universality of Citation Distributions

A typical bias present in many empirical results is the fact that citation distributions
are computed without taking into consideration any possible discipline- or age-
dependence of the statistics. Please note that we use the term “bias” to indicate
the systematic error that is introduced when using raw citation numbers to compare
papers belonging to different fields or years of publication. With this term we do
not indicate any prejudice, nor we make any claim about the causes of the field
dependence empirically observed. Older papers may have more citations than recent
ones, not necessarily because of their merits, but because they stayed in the literature
longer and had more time to be cited. Even more serious is the bias related to
discipline dependence: papers in mathematics and biology are part of two almost
disconnected citation networks, which follow different citing behaviors. In [33–36],
the authors accounted for these distinctions by analyzing a large number of papers
and classifying them according to the date and the journal of publication [33, 36]
and the scientific discipline to which they belong [34, 35]. By restricting the statistic
to these subsets, the probability that a paper has received c citations is a log-
normal distribution. Even more surprisingly, the authors of [34] realized that the
only significant difference between different disciplines and years of publication is
the average value c0. When the raw number of citations is replaced by the relative
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Fig. 8.1 Universality of citation distributions. Each curve refers to papers published in a given
year in journals belonging to the same discipline. The disciplines are those identified by ISI Web
of Science [18]. The score on the x-axis is the ratio of the number of cites c of a paper by the
average number of cites c0 collected by all papers in that discipline. From [34]

quantity c=c0, a universal behavior is found and no distinction between curves
corresponding to different publication years and scientific disciplines is visible
(Fig. 8.1).

Although the role of papers with a null number of citations seems to affect
the validity of the universal pattern of citation distributions across disciplines and
publication years [42], universal citation distributions have been recently observed
in rather different contexts [43], including more refined classification of publications
in physics [44] and chemistry [45], impact metrics for scholars [46], as well as
journals and institutions [47, 48].

8.3.1.2 Reverse Engineering Approach to the Study of Citation
Distributions

In a recent publication, Radicchi and Castellano proposed a novel approach to
test the universal behavior of citation distributions across disciplines and years
of publication [49]. Their analysis is based on all records appearing in the WoS
database and corresponding to six different years of publication ranging from 1980

to 2004 (see Fig. 8.2). Using a quantile–quantile plot, they empirically estimated
the function able to map raw citation counts c0 of papers within each discipline to
the raw citation count c in the set that aggregates publications from all disciplines.
They found a power-law relation c0 D ac˛. Such a relation indicates that citation
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Fig. 8.2 (a) Cumulative distribution of raw citation counts for papers published in 1999. The
blue curve is the reference curve used to estimate the mapping, and is calculated by aggregating
all papers from all subject-categories. The red curve, the orange curve, and the green curve
are calculated by considering only papers within the subject-categories “Agronomy,” “Computer
science, software engineering,” and “Genetics & heredity,” respectively. The figure illustrates the
mapping of c0 into c. Citation counts c0 of single subject-categories are matched with the value of c
which corresponds to same value of the cumulative distributions. (b) c0 are plotted against citation
counts of the aggregated data c. The quantities c0 and c are related by the power-law relation
c0 D ac˛ . (c) When raw citation numbers are transformed according to c0 ! c D .c0=a/1=˛ ,
the cumulative distributions of different subject-categories become very similar. (d) Percentage
of subject-categories whose proportion values, after normalization, fall into the 95% confidence
interval of values predicted by the statistical null model. Percentage values are plotted as functions
of the percentage of top papers considered in the analysis. From [49]

distributions of scientific disciplines form a log-scale-location family of univariate
distributions [50]. They also showed that the transformation c0 ! c D .c0=a/

1=˛ ,
allows for a collapse between citations distributions of different disciplines that
is statistically significant. The empirical transformation obtained by Radicchi and
Castellano represents the best way of suppressing biases in citation counts among
different domains of science introduced so far. This fact has been proved in
later publication of the same authors together with Li and Ruiz-Castillo [51]. In
this analysis, the authors compared different renormalization recipes, and proved
the superiority of the “reverse engineering” approach using different statistical
tests [52].
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8.3.2 Citation Networks

Citation networks are directed and, to a great extent, acyclic graphs. The simulta-
neous presence of directedness and the lack of cycles require the introduction of
specific models able to capture the topological properties of citation networks.

These two ingredients are the basis of the theoretical formulation developed
by Karrer and Newman [53, 54], where the statistical properties of static acyclic
and directed graphs are analyzed in detail. Suppose we have a network composed
of N articles (nodes) and that the indices of the nodes are chronologically sorted
according to their publication date: j < i means that paper j has been published
before paper i. Imagine that both the in- and out-degree sequences of the network
are given. This means that the number ci of papers citing the i-th article and the
number ri of publications cited by paper i are completely specified. The study by
Karrer and Newman focuses on the statistical properties of the ensemble of networks
that can be constructed by preserving the constraint that all incoming and outgoing
stubs are paired, with the restriction that only connections of the type i ! j with
i > j are allowed. This static model is very similar to the one represented by the
popular configurational model [55]. A natural variable, fundamental for the analytic
treatment of the model by Karrer and Newman, is


i D
i�1
X

jD1

cj �
i
X

jD1

rj ; (8.2)

which represents the number of incoming stubs “below” node i still available for
connections with outgoing stubs exiting from vertices “above” i. In other words, 
i

counts the number of edges that flow “around” the node i. A necessary and sufficient
condition for the construction of the model, assuming that all incoming and outgoing
stubs are paired in a way that preserves ordering, is that 
i 
 0; 8 1 < i < N,
while 
1 D 
N D 0 arise as the natural boundary conditions of the problem. The
expected number of connections between nodes i and j can be estimated to be

Pij D cirj

Qj�1
lDiC1 
l

Qj
lDiC1 .
l C rl/

; (8.3)

for any pair i < j, while Pij D 0 otherwise. When the network size grows, Pij

becomes small and can be considered equal to the probability of observing a citation
from j to i.

The model by Karrer and Newman can reproduce some non-trivial properties
of real citation networks (Fig. 8.3) and may provide a useful null model for testing
topological properties of real citation networks including correlations and modular
structures. The model by Karrer and Newman is not able to reproduce a very
important topological feature of citation networks, represented by a high occurrence
of local triangular structures [56]. A simple modification of the rules governing
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Fig. 8.3 Comparison of the static model by Karrer and Newman with empirical data. One focuses
on the function fij, which is proportional to the connection probability of vertices i and j. The dataset
is a citation network of papers on high-energy theory posted on the online eprint archive www.
arxiv.org between 1992 and 2003. Papers are ordered from the oldest to the newest. The time of
paper i is i=N, and N is the total number of papers. The left panel deals with citations from papers
at time t > 0:1, the right panel with citations from papers at time t < 0:9. From [53]

the way in which connections are introduced in the network is able to correct
this problem. The model by Wu and Holme [57] is very similar in spirit to the
one by Karrer and Newman, but adds two new fundamental ingredients. First, the
probability that paper i cites paper j is no longer dependent only on topological
and time constraints, but is inversely proportional to the age difference between the
two papers (aging effect). Second, once the connection between i and j has been
established, there is a finite probability that i copies citations from j and therefore
creates triangles. The simultaneous presence of these very intuitive and natural
ingredients makes the model more representative of real citation networks.

8.4 Dynamical Models

8.4.1 Preferential Attachment

Networks of citations between papers are growing systems with complex topolog-
ical features: the rate at which new papers are added (published) to the network is
almost exponential, while the number of references per paper (out-degree) and the
number of citations received (in-degree) are broadly distributed. One of the most
surprising features of the growth of citation networks, discovered already by de

www.arxiv.org
www.arxiv.org
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Solla Price [4], is related to the mechanism ruling the assignment of citations: the
probability that a paper gets cited is proportional to the number of citations it already
has received. This mechanism is the so-called cumulative advantage, based on which
the “rich get richer,” already developed by Yule [58] and Simon [59] in different
contexts. The criterion, now widely referred to as “preferential attachment,” was
recently made popular by Barabási and Albert [60], who proposed it as a general
criterion for the emergence of heterogeneous connectivity patterns in networks
generated for the description of systems belonging to different scientific domains.

The model by Price [4] anticipated the modern models of network growth. It
is very simple: one node (paper) is introduced (published) at each stage of the
growth carrying new connections (citations). The average number of citations (mean
degree) is m. The rate at which older nodes receive incoming connections is assumed
to be linearly proportional to the number of arcs already incident on them and can
be simply indicated by ˘ .c/ � .1 C c/. When a sufficiently large number of papers
has been published, the probability that an article has received c citations becomes
stable and, in the limit of large in-degrees, equals

P .c/ � c�2�1=m ; (8.4)

which means a power law (or “scale free”) distribution with exponent 2 C 1=m. The
exponent of the distribution � depends on the mean degree m and can therefore be
tuned rather arbitrarily.

The Barabási-Albert model [60], in its standard version, considers the total
degree, not the in-degree, and yields a power law degree distribution with � D 3.
Its extension to the directed case is essentially equivalent to the Price model:
the attachment rate is ˘ .c/ � .A C c/, where A > 0 is a parameter that can
be tuned [61, 62]. In this case one has � D 2 C A=m, where m indicates the
number of new citations introduced by each new paper. The exponent � D 3 is
recovered by setting A D m. The preferential attachment model and its subsequent
generalizations not only can predict that the tail of the probability distribution for
citations follows a power law, but also that the tail will be predominantly composed
of the earliest published papers. This effect, supported by empirical evidence and
nicely denominated as “first-mover advantage” [63], reveals that in order to be well
cited it is often more convenient to write one of the first papers in a particular topic
than the best article in that area.

However, the predominant weakness of the preferential attachment model and
its variants is the sensitivity to the assumption that the probability of being cited
is simply proportional to the number of citations previously collected. One might
consider the general ansatz ˘ .c/ � cˇ for the attachment probability, with a
generic ˇ. The scale-free behavior of P .c/ is observed only for ˇ D 1: for ˇ < 1,
the distribution of citations turns out to be a stretched exponential, and for ˇ > 1

a condensation of citations is observed and few papers are cited by nearly all other
articles [61, 62].

The preferential attachment hypothesis has undergone empirical validation.
Jeong et al. [64] considered papers published in Physical Review Letters in 1988 and
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Fig. 8.4 Empirical verification of the validity of the linear preferential attachment mechanism for
citation networks. Attachment probability is modeled as ˘ .c/ � cC7 (continuous line). Standard
preferential attachment ˘ .c/ � c is a good descriptor of citation accumulation only for papers
older than 10 years. From [32]

all citing articles published later. They divided the time axis into several bins and
tested whether the number of citations received up to a certain time was influencing
the number of citations received later (Fig. 8.4).

They found that papers are cited with a probability that is nearly a linear function
of the number of already-received citations, ˘ .c/ � c. A similar result was
also observed by Redner [27] by analyzing the whole dataset of publications in
journals of the American Physical Society (APS). More recently, Eom and Fortunato
reconsider bibliographic data from APS and found signature of growth of citations
compatible with linear preferential attachment [32]. A linear attachment probability
therefore seems to be a typical characteristic of the evolution of citation networks.

Different conclusions were instead obtained by Golosovsky and Solomon, who
tested the linear preferential attachment hypothesis on a citation network composed
of more than 40,000 physics papers [65, 66]. They found that citation dynamics
of individual papers follows a superlinear preferential attachment ˘ .c/ � c˛ with
exponent ˛ in the range Œ1:25; 1:30� (see Fig. 8.5).

8.4.2 Aging

An important effect not included in the preferential attachment mechanism is the
fact that the probability of receiving citations is time dependent. In the Price model,
papers continue to acquire citations independently of their age, while it is reasonable
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Fig. 8.5 Mean citation rate 
 as a function of the number of citations previously accumulated
k. t is the number of years after publication. Data are fitted by the function 
 � .k C 1/˛ . Best
estimates of the exponent ˛ are shown in the inset. From [65]

to think and empirically observed [67–70] that the probability for an article to be
cited decreases as the age of the same article increases. Some recent papers about
growing network models include the aging of nodes as a key feature [67, 70–73].
The probability that a paper receives a citation from a new article can be written as
˘ .c; t/, with explicit dependence not only on the number of citations c already
received but also on the publication time t. For simplicity, the two effects are
generally considered independent of each other and the rate at which papers receive
citations becomes separable ˘ .c; t/ � K .c/ � f .t/. Various models have been
studied by assuming different functional forms for K .c/ and f .t/. In [71] for
example, K .c/ D c and f .t/ D t˛ . When ˛ < 0, the aging effect competes with the
preferential attachment mechanism, while for ˛ > 0 older nodes are more favored
and the age dependence enhances the “rich get richer” effect. The distribution of the
number of citations received continues to be a power law for values of ˛ 
 �1. In
[73], K .c/ D c and f .t/ D e˛0 t. The model produces power law distributions for
the citations only for ˛0 � 0. A more complicated situation is studied in [72], where
K .c/ D cˇ and f .t/ D t˛ . The limiting distributions for the number of citations are
studied in the ˛-ˇ plane: scale-free distributions arise only along the line ˇ D 1;
for ˇ > 1, condensation phenomena happen and a few nodes acquire almost all the
citations; for ˇ < 1 and ˛ � �1, the distribution is a stretched exponential.
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8.4.3 Fitness

Wang et al. have recently developed a model aimed at the description of the temporal
evolution in the accumulation of citations by individual publications [74]. Their
model includes in addition to preferential attachment and aging an intuitive yet
fundamental ingredient: a fitness or quality parameter aimed at accounting for the
perceived novelty and importance of individual papers. According to the model by
Wang et al., the probability that paper p is cited at time t since its publication can be
written as

˘p.t/ � 
p Pp.t/ cp.t/ ; (8.5)

˘p.t/ is given by the product of the three different and independent ingredients of
the model. 
p is the fitness associated with paper p; Pp.t/ is a log-normal distribution
accounting for the aging of the paper p; cp.t/ is the number of citations accumulated
by paper p up to time t, and serves to include the linear preferential mechanism in the
accumulation of citations. The statistical model summarized in Eq. (8.5) has been
tested on the citation histories of papers published in several high-impact journals.
providing a very good description of the effective evolution in the accumulation of
citations by individual papers.

8.5 Impact Prediction

Apart from the challenging goal of uncovering fundamental mechanisms underlying
the production, dissemination and consumption of information and knowledge,
the analysis of citation patterns and in particular of their temporal evolution is
of crucial importance for the more practical but extremely important questions of
(early) impact (or success) prediction. Which papers published today are going to
be game changers? How can the success of a research project be assessed only a
couple of years after its inception? In a group of young postdocs, which one should
be given tenure? Questions like these become more and more relevant and pressing
for institutions and funding bodies.

At the level of single publications, the model of Wang et al. [74] offers
the possibility to predict the future citations of a paper by simply training the
parameter estimation on the early history of the publication, although fitting the
model parameters may represent an issue in particular situations [75]. Whereas
5-year training windows are able to provide estimations of the future impact of a
publication with a somehow large uncertainty, windows 10-year long generate very
accurate predictions (see Fig. 8.6).

An alternative pathway to impact prediction attempts to leverage various types
of information available at the time of publication such as words appearing in it or
properties of the authors and journal [76, 77]. In the same line of thought, other
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Fig. 8.6 Predictive power of the model by Wang et al. using training windows of 5 (a) and 10
(b) years (shaded vertical area). Increasing the training period decreases the uncertainty of the
prediction. From [74]

studies focus instead on the topological properties of the citation networks at the
time of publication. Shibata et al. [78] find a correlation between the centrality
of a paper and its future citations. Sarigöl et al. [79] reveal instead the existence
of correlations between the position of authors in coauthorship networks and the
impact of their papers. In particular, the centrality in the coauthorship network
of authors of highly cited papers is significantly larger than the centrality of
other authors. This probes the social effects underlying scientific success and its
predictability. Leveraging this finding, a machine learning approach based only on
coauthorship network centrality at the moment of publication is able to predict with
high precision whether an article will be highly cited five years after publication.
A method exploiting topological features of both citation and coauthorship network
is in [80].

In this chapter, we only focused on properties related to citation patterns of
individual publications, but it is worth to mention that some research has been done
also towards the prediction of the impact at the aggregate level (such as the future
impact of a scholar, journal, or institution). This is considerably a more complex
problem. For example, a recent attempt to predict the future evolution of the h-index
of authors, based on linear regression models applied to their past performance [81],
turned out to be largely unsuccessful [82], highlighting that cumulative impact
measures (such as the h-index) are not suitable bases for prediction approaches.

8.6 Conclusions

In this chapter, we have briefly presented some recent developments in the rapidly
expanding field of citation analysis. The interest in this area of research will surely
continue to grow in the next future, for several reasons. From a fundamental point
of view, bibliographic databases constitute a very detailed and accurate source of
information about a social system (the scientific enterprise) which, at odds with
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most other data repositories about social systems, spans many decades in time,
thus allowing thorough longitudinal investigations. These databases are therefore a
veritable treasure trove for studying how individuals and groups interact, compete,
cooperate, or clash. From a more practical point of view, it is hard to overestimate
the relevance that quantitative indicators about scientific activity will play in the
future for decisions about how to allocate resources, at all levels from countries
planning how to invest their budget to departments evaluating which researcher to
hire. In this respect, it is in the interest of science at large that citation analysis
rapidly advances, providing a full spectrum of quantitative indicators whose merits
and limits are precisely understood. In this endeavor one of the big challenges is
the construction of sensible aggregated measures of scientific performance. This is
an extremely difficult task, but it is also sorely needed, as the case of the abysmal
quality of world university rankings confirms [83].
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Chapter 9
Behavioral Changes and Adaptation Induced
by Epidemics

Piero Poletti, Marco Ajelli, and Stefano Merler

Abstract In this chapter, a modeling framework that explicitly accounts for human
adaptations induced by risk perception in the epidemic dynamics is proposed. The
diffusion of different behaviors is modeled according to a game theoretical approach
and coupled with classic disease transmission models. The developed framework is
used to assess the impact of human spontaneous behavioral changes on the natural
history of vaccination programs and to investigate how a spontaneous defensive
response enacted by susceptible individuals during an epidemic outbreak can affect
the course of infection events. The complex interplay between behavioral changes
and the epidemic transmission is investigated through the theoretical analysis of
the resulting coupled dynamics and highlighted through some illustrative examples
based on influenza- and measles-like infections. Our results suggest that human
behavioral responses to the risk of infection can either positively or negatively
impact the spread of epidemics.

9.1 Risk Perception, Human Behavior and Epidemics

Human infection dynamics is driven by the complex interplay between the trans-
missibility of a pathogen, the socio-demographic structure of the host population
and behavioral patterns of the individuals involved in the chain of infection
transmission. Changes in the perceived risk of infection can trigger a spontaneous
behavioral response that can dramatically impact the dynamics of an epidemic and
the effectiveness of public health policies.

A first interesting phenomenon is represented by the interplay between the
perceived risk of infection and parental vaccination choices for childhood diseases
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in a system of non-compulsory vaccination. Indeed, decades of immunization at
high coverage and the consequent success of vaccination policies in the past have
generated the widespread perception that many serious infections do not circulate
anymore and that they do not currently represent a concrete risk of illness. As a
consequence, the perception of benefits coming from vaccination for preventing
childhood disease has dramatically decreased with respect to the perceived risks of
suffering vaccine adverse events [1–7]. However, a prolonged period of low vaccine
uptake can produce entire birth cohorts of individuals not adequately immunized,
making the occurrence of large epidemics in the future just a matter of time. As a
matter of fact, large measles outbreaks have occurred recently in several European
sites [8, 9] that are seriously threatening the planned deadlines of the WHO measles
elimination plan for Europe [10], increasing the cost of the programs in terms of
both disease burden and corrective measures such as catch-up campaigns [11].

On the other hand, the awareness of a new epidemic threat has triggered
uncoordinated self-imposed measures enacted by the public to reduce the risk
of infection, ranging from a larger compliance to better hygienic precautionary
behavior to the use of face masks to reduce individual susceptibility, to a change in
mobility and contact patterns of the population [12–19]. Examples of such behaviors
emerged during the 2003 SARS epidemic, the 2009 influenza pandemic and the
2014 Ebola outbreak. Although it is still unclear to what extent the phenomenon has
significantly affected the transmission dynamics in the population, several modeling
works have highlighted that spontaneous public response to epidemics can possibly
hamper, or at least delay, the spread of infectious diseases [7, 20–25].

Therefore, on the one hand, spontaneous reactive response to risk of infection
potentially represents an additional resource to face new epidemic threats but, on
the other hand, a misperception of the risk of infection can produce a decrease in
public compliance to safe, effective and essential public health policies, such as
vaccination.

Although suitable data to calibrate models accounting for human behavioral
responses to epidemics are still lacking, a better understanding of how adaptation
induced by epidemics can affect the dynamics of transmission and vice versa is
crucial to improve model realism and enhance effective public policies and control
strategies.

9.1.1 Epidemic Modeling and Game Theory

Spontaneous behavioral responses and adaptations induced by risk perception are
explicitly modeled here in the epidemic dynamics by coupling two mutually influ-
encing phenomena: (a) the infection transmission and (b) spontaneous behavioral
changes of individuals exposed to the risk of infection. In other words, infection
transmission and population behavior are considered as dynamical variables that
influence each other.
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In this chapter, we look at human behaviors through the lens of game theory,
which provides a rich and natural modeling framework. Specifically, we model
behavioral changes as driven by imitation mechanisms based on the evaluation
of prospective outcomes deriving from alternative decisions (strategies) and cost-
benefit considerations (payoffs) [26]. Individuals may choose to switch to a different
behavior, depending on cost-benefit assessments based on the perceived risk. Past
experience, response to the action of other individuals and changes in exogenous
conditions all contribute to the balance. The resulting model consists in the coupling
of two dynamical systems, one describing the epidemic transitions and the other
one describing the behavioral changes. In principle, there is no reason for the two
phenomena to evolve at the same speed; it is therefore crucial to study the model
allowing for different time scales, embodied in different time units.

9.1.1.1 Modeling Infection Transmission

We describe in this section a family of models for the spread of a non-fatal infection
which includes the possibility of vaccination at birth. The model without vaccination
can be derived as a sub-case of the general model and will be used to discuss the
case of a new pandemic infection spreading in the population.

The epidemic transitions, whose time unit is t, are modeled according to a
S ! I ! R scheme, where S, I, R denote the fraction of susceptible, infective and
recovered/immune individuals in the population, respectively. In this simple formu-
lation, susceptible individuals are assumed to develop the infection upon contact
with infective individuals and, after recovery, to gain a life-long immunity against
reinfection. We assume that individuals’ immunizations occur through the use of
a “perfect” vaccine administered in a single dose at birth and providing life-long
immunity. Recovered individuals are individuals who have developed a resistance
to the infection through either a direct experience of the disease or vaccination. For
simplicity, we assume that individuals mix with other individuals homogeneously
and that the population size is constant over time. Under these simple assumptions,
the epidemiological transitions described above can be modeled by the following
ordinary differential equations system:

8

<

:

dS=dt D �.1 � p/ � �S � ˇSI
dI=dt D ˇSI � .� C �/I
dR=dt D .� � �/I C �p

(9.1)

where 1=� is the average life expectancy of individuals at birth, p denotes the
vaccinated proportion among newborn children, ˇ is the transmission rate and 1=�

defines the average duration of infective period of individuals who acquired the
infection.

When considering a rapid epidemic outbreak for which no vaccine is available,
as in the case of a new pandemic strain, the fraction of vaccinated individuals is
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zero and the demographic component of the system can be neglected. In this case,
system (9.1) can be rewritten as follows:

8

<

:

dS=dt D �ˇSI
dI=dt D ˇSI � � I
dR=dt D � I

(9.2)

9.1.1.2 Modeling Behavioral Changes

We now consider that individuals are able to change their behavior spontaneously,
following cost/benefit considerations, switching from a non-responsive (NR) to a
responsive (R) behavior and vice versa. We assume that the responsive behavior
is associated with a reduced risk of infection. This phenomenon can be cast in
the language of evolutionary game theory, by modeling behaviors as strategies in
a suitable game, with certain expected payoffs. It is clear that whether it is more
convenient to either adopt a responsive behavior or not depends on the state of the
epidemic. Of course, the two phenomena, i.e., the infection transmission and the
change of behaviors’ distribution within the population, may not have the same
time scales. In fact, while epidemic transmission can occur only through person-to-
person contact, it is fairly reasonable to consider that individuals can access the
information required to balance the payoffs of alternative behaviors much more
frequently by telephone, email, the Internet and, in general, the media.

The dynamics of behaviors is modeled as a selection dynamics based on imitation
[26, 27]. Specifically, we assume that a fraction of the individuals playing strategy
NR can switch to strategy R after having compared the payoffs of the two strategies,
at a rate proportional to the difference between payoffs, �P D PR � PNR, with
proportionality constant �. The converse is true for the fraction of the individuals
playing R.

By assuming a constant rate !, equal for both behaviors, and denoting by x the
fraction of individuals adopting R, the resulting dynamics regulating the behavioral
changes within the population can be modeled through the following equation:

dx.	/=d	 D !�x.	/.1 � x.	//�P.	/ (9.3)

where 	 D t=˛ is the time unit of behavioral changes. Therefore, in the time scale of
infection (t), the imitation dynamics driving behavioral changes over time becomes

dx.t/=dt D �x.t/.1 � x.t//�P.t/ (9.4)

where � D !�=˛.
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9.2 Uncoordinated Human Behavioral Response
to an Epidemic

In this section we have applied the approach defined in the previous section to study
how a spontaneous defensive response enacted by susceptible individuals could
develop during an epidemic outbreak and affect the course of infection events. In
particular, we consider that the susceptible population is divided into two classes
of individuals. The first class of individuals adopt self-protective behaviors aimed at
reducing their risk of infection, either through a reduction of contacts (e.g., by avoid-
ing crowded places or traveling less) or through a reduction of their susceptibility
during their contacts (e.g., by using face masks or enacting precautionary behaviors
such as washing hands frequently or following cough/respiratory etiquette).

9.2.1 Model Formulation

In the illustrative example presented in this section, we assume that all susceptible
individuals can conform to either one or the other of two different behaviors:
responsive R or non-responsive NR. The first gives the individuals an advantage in
terms of reduced risk of infection, yet at some extra cost. For example, avoidance of
crowded environments reduces the risk of infection, but also entails disadvantages
deriving from greater isolation. Payoffs can be therefore modeled as follows. All
individuals pay a cost for the risk of infection, which we assume depends linearly
on the fraction of infected individuals, I.t/, and it is lower for individuals adopting
a responsive behavior. Moreover, individuals enacting R pay an extra, fixed cost c.
It may be convenient to think of c as costs associated to self-imposable prophylactic
measures, such as those deriving from less traveling, working, attending school, etc.
The payoffs associated to behaviors R and NR can be therefore modeled as

pR D �mRI � c (9.5)

pNR D �mNRI (9.6)

where mR < mNR. The resultant payoff difference can be written as �P D pR �
pNR D �mRI � k C mNRI D c.mI � 1/, where m D .mNR � mR/=c > 0.

On the other hand, while susceptible individuals adopting a non-responsive
behavior (i.e., a fraction 1 � x of susceptibles S) are assumed to become infected at
a rate ˇ, we assume that individuals adopting a responsive behavior (i.e., a fraction
x of susceptibles S) become infected at a rate qˇ, where 0 � q � 1.
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According to Eqs. (9.4) and (9.2), the combined dynamics of behavioral changes
and epidemic spread can be written as

8

ˆ
ˆ
<

ˆ
ˆ
:

dS=dt D �Œ.1 � x/ C qx�ˇIS
dI=dt D Œ.1 � x/ C qx�ˇIS � � I
dR=dt D � I
dx=dt D kx.1 � x/.mI � 1/

(9.7)

9.2.1.1 Interpretation of Parameters

In this model formulation the timing of the behavioral response is characterized by
parameters m and k. The former describes how the prevalence I is weighted in the
payoff functions, i.e., in the balance of the cost associated to the risk of infection and
the cost of a self-protection strategy. The latter represents the speed of the imitation
process with respect to the disease transmission temporal scale. As a matter of fact,
1=m defines the prevalence threshold above which individuals reducing contacts
have a larger payoff; the larger m, the earlier the responsive behavior is perceived as
the most convenient choice. On the other hand, k entails the delay (embedded in the
imitation dynamics) between the time at which a strategy becomes more convenient
and the time at which the strategy becomes widely adopted in the population. In
sum, the time at which the transition between the two possible behaviors occurs is
driven by m, while the duration of this transition is driven by k. Finally, q is the
reduction in the force of infection to which susceptible individuals who adopt a
responsive behavior are exposed.

9.2.1.2 Equilibria

System (9.7) admits a continuum of equilibria .S?; 0; 1 � S?; x?/) with S? 2 Œ0; 1�

and x? 2 f0; 1g. Notice that, when S? D 1, the equilibrium (1, 0, 0, 0) is unstable
when R0 D ˇŒ.1 � x/ C qx�=� > 1 and stable otherwise. R0 defines the basic
reproductive number of system (9.7) and represents the number of new infections
that a typical infective individual causes during his/her whole period of infectivity
[28]. If we consider the case of a novel pathogen, which can be reflected by the
initial condition .1 � I0; I0; 0; x0/ with I0 close to 0, and we consider that x0 > 0,
then x ! 0, and the equilibrium is stable as long as R0 < 1.

By defining RNR
0 D ˇ=� and RR

0 D qRNR
0 we can see that these two quantities

represent two reproductive numbers themselves. Indeed, RNR
0 is the reproductive

number when all susceptible individuals are non-responsive, and RR
0 is the reproduc-

tive number when all susceptible individuals are adopting the responsive behavior.
Note that, if the population is initially non-responsive (i.e., x0 is close to zero),

RNR
0 > 0 represents the threshold condition for observing an epidemic. On the other

hand, m defines a prevalence threshold for observing the increase of responsiveness
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within the epidemic course. Indeed, given that in a classic SIR model S.t/ C I.t/ �
.1=R0/log.S/ is an invariant and the fraction of susceptibles at the peak is S D 1=R0,
it can be easily checked that I? D 1 � 1=RNR

o C 1=RNR
o log.1=RNR

o / is the fraction of
infected individuals at the peak for the classic SIR model characterized by R0 D
RNR

0 . Therefore, the condition 1=m < I? represents the threshold condition for the
responsive behavior to become convenient during the course of the epidemic.

9.2.2 Study of Dynamics

Let us now consider k ! 1, which defines the case in which behavioral changes
occur extremely faster than the epidemic spreads. In this case the model (9.7) can
be rewritten as follows:

8

ˆ
ˆ
<

ˆ
ˆ
:

dS=dt D �Œ.1 � x/ C qx�ˇIS
dI=dt D Œ.1 � x/ C qx�ˇIS � � I
dR=dt D � I
�dx=dt D x.1 � x/�P

(9.8)

According to this formulation, we can study the case of � ! 0 by approximating the
solution of the singularly perturbed initial value problem by the degenerate system
defined as follows:

8

ˆ
ˆ
<

ˆ
ˆ
:

dS=dt D �Œx C q.1 � x/�ˇIS
dI=dt D Œx C q.1 � x/�ˇIS � � I
dR=dt D � I
0 D x.1 � x/�P

(9.9)

obtained by setting � D 0 and provided that in the last equation of system we use
the asymptotically stable equilibrium of the boundary-layer system,

dx.s/=ds D x.1 � x/�P (9.10)

which is obtained by making the transformation of independent variable s D t=�

and then setting � D 0, which implies that S.s/, I.s/, R.s/ are constant [29, 30].
By analyzing the solutions of the last equations where I is a constant, we can

easily see that

x ! 1 when I < 1=m
x ! 0 when I > 1=m

which means that in the limit case of � ! 0, x becomes discontinuous in I, and
the solution of system (9.7) can be locally approximated with the solution of the
degenerated system (9.10) where x is constantly either 1 or 0 depending on I. More
specifically, this means that as long as I < 1=m the solutions of system (9.7) can
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be approximated by a classical SIR model driven by RNR
0 , while when I > 1=m

the solution of system (9.7) can be approximated by a classical SIR model driven
by RR

0 .
A full detailed characterization of the dynamics of system (9.7) in the case of

k ! 1 can be found in [20].

9.2.2.1 Potential Benefits of Uncoordinated Spontaneous Social
Distancing

An interesting result on the dynamics of system (9.7) is that the fraction of
susceptible individuals at the end of an epidemic, i.e., S1, is a increasing function
of m, and S1 ! 1=Rn

0 when 1=m ! 0. As a consequence the fraction of susceptible
individuals at the end of an epidemic described by system (9.7) is always larger than
the one obtained by considering a classical SIR with transmission rate ˇ and thus
driven by RNR

0 . This means that uncoordinated behavioral response to the risk of
infection has the potential to reduce the final attack rate of an epidemic. This result
is formally proven in [20].

9.2.3 The Effectiveness of Spontaneous Behavioral Changes
in Reducing the Risk of Infection

In order to better understand the interplay between epidemic transmission and
the behavioral responses to the risk of infection, we now investigate the effect of
different reactions on the epidemic spread by varying, one by one, the parameters
regulating the interplay between behavioral changes and the epidemic transmission,
starting from an illustrative parameter configuration. In particular, the impact
of different parameters on the epidemic dynamics is analyzed in terms of final
epidemic size (defined as the total number of infections at the end of the epidemic),
daily peak prevalence and peak day.

The parameter set used as a baseline relies on the following assumptions: (a)
the adoption of the responsive behavior reduces by 15 % the number of potentially
infectious contacts, i.e., q D 0:85; (b) the responsive behavior becomes more
convenient when the prevalence becomes larger than 1 % of the population, i.e.,
1=m D 0:01; (c) the delay between the time at which the responsive behavior
becomes convenient and the time at which more than 50 % of the population
becomes responsive is about 5 days, which corresponds to k D 10. Finally,
parameters merely characterizing the disease transmission process are taken from
reliable estimates available for the 2009 H1N1 pandemic influenza. Specifically,
R0 is assumed to be 1:4 and the generation time (1=� ) is assumed equal to 2:8

days [21, 31–34]. The initial conditions considered are: S.0/ D 1 � 10�3, I.0/ D
10�3, x.0/ D 1 � 10�6, R.0/ D 0.
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9.2.3.1 Baseline Scenario

The resulting dynamics of system (9.7) as simulated according to the baseline
parameter set described above is shown in Fig. 9.1. After an initial growth of the
epidemic, the prevalence reaches the threshold 1=m and the responsive behavior
becomes more convenient. As a consequence, when the responsive behavior
becomes widely adopted in the population, which occurs after a few days, the
epidemic growth rate remarkably reduces. As the prevalence decreases below the
threshold, the non-responsive behavior becomes more convenient and its diffusion
produces a heavy tail in the infection dynamics (Fig. 9.1).

9.2.3.2 Quick Reactions Produce Smaller Epidemics

By analyzing the effect of different m on the infection dynamics we can see (Fig. 9.2)
that a larger reduction in the final epidemic size and in the daily peak prevalence is
observed for larger values of m (which correspond to a smaller prevalence threshold
1=m). The same effect can be observed by increasing k (which corresponds to
considering faster behavioral changes with respect to the transmission dynamics).

However, if the imitation process is too slow (i.e., for small values of k) or the
prevalence threshold is too large (i.e., for small values of m), the human response
never takes place and the epidemic spreads following the dynamics of the SIR
model driven by Rn

0. In particular, the latter corresponds to the case in which an
epidemic is not perceived as sufficiently severe to trigger a behavioral response of
the population. From a mathematical point of view, this happens when 1=m is larger
than I?, i.e., the largest possible daily peak prevalence obtained when all individuals
are not responsive for the whole course of the epidemic (Fig. 9.2).

Fig. 9.1 Daily prevalence of
infection in the case of no
responsiveness (q D 1, red
line), and in the baseline
scenario (q D 0:85, green
line) along with the dynamics
of x (blue line, scale on the
right). The horizontal gray
line represents the prevalence
threshold 1=m. The
behavioral response appears
about 5 days after the
prevalence I.t/ crosses the
threshold 1=m producing a
lower increase in the
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Fig. 9.2 (a) Daily prevalence of infections and (b) final epidemic size as obtained for different
values of the prevalence threshold 1=m. Other parameters are as in the baseline scenario. (c) Same
as (a) but for different values of k. (d) Same as (b) but for different values of k

9.2.3.3 A Little Reduction in Contacts Could Make a Big Difference

Different values of q correspond to a different reduction in the risk of infection
enacted by individuals when adopting a responsive behavior. Thus, it is not
surprising that smaller values for q correspond to lower final epidemic sizes and
daily peak prevalences (see Fig. 9.3). Moreover, for small values of q, multiple
epidemic waves can occur and the possible dynamics of the infections over time
becomes quite rich. A proper discussion on the conditions for observing a similar
pattern as a consequence of behavioral changes can be found in [20]. Our analysis
also shows that a reduction of 100 % in the number of potentially infectious contacts
(corresponding to q D 0, i.e., total isolation) produces the same effects obtained by
considering a reduction of 30 % (q D 0:7). This suggests that there exists a threshold
for q? such that smaller values than q? do not determine a larger reduction in the
final epidemic size. This is related to the fact that for each q < 0:7 we have that
RR

0 D qRNR
0 < 1 since in this example RNR

0 D 1:4. The threshold for q?, as I?,
depends on the value of RNR

0 .
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Fig. 9.3 (a) Daily prevalence of infections and (b) final epidemic size as obtained for different
values of the reduction factor q. Other parameters are as in the baseline scenario

9.3 Dynamic Vaccine Demand Under Voluntary
Vaccination Programs

In this section we have applied the approach described in Sects. 9.1 and 9.2 to study
how the vaccine uptake for childhood infections and the consequent fraction of
immunized children can change over time in relation to changes in the perceived
risk of infection. Indeed, under voluntary vaccination, high levels of herd immunity
might be an incentive for parents to decide not to vaccinate children, ranking the
perceived risk of suffering a vaccine side effect (VSE) as much higher than the
corresponding risk of infection. In industrialized countries, the incidence of many
childhood infections has reduced to negligible levels as a consequence of past
immunization efforts. On the other hand, the large number of vaccines routinely
administered every year yields steady flows of vaccine-associated side effects
(VSEs). Here we model the situation in which individuals can switch between the
decisions to vaccinate or not to vaccinate after comparing the perceived risk of
disease and the perceived risk of VSEs. Specifically, we model that changes in
vaccine coverage for a childhood disease are driven by an underlying imitation
process between the parents of the children to be vaccinated, who are divided
into the categories responsive and non-responsive. Responsive individuals represent
parents who decide to vaccinate their children at birth. For clarity, we denote
hereafter individuals who adopt a responsive behavior as vaccinators (V), and non-
responsive individuals as non-vaccinators (NV).

9.3.1 Model Formulation

We assume that parents of newborn children can conform to either one or the other
of two different behaviors: to vaccinate (V) or not vaccinate (NV) their children.



166 P. Poletti et al.

The first gives the individuals an advantage in terms of reducing the risk of infection
to zero, yet at some cost deriving from the exposure to VSEs.

Specifically, we assume that the cost associated to parents’ choice of not
vaccinating their children is an increasing function on the fraction of infected
individuals, I.t/. On the other hand, we assume that the cost associated to the
perceived risk of developing VSEs after vaccination depends linearly on the fraction
of vaccinated children, p.t/. The latter assumption relies on the idea that the public
evaluates the risk of VSEs by using the information on the total number of adverse
cases in the population. This assumption has the straightforward implication that
periods of large vaccine uptake negatively feed back, through an increase in the
incidence of VSEs, to parents favorable to vaccination. The payoffs associated to
behaviors V and NV can thus be modeled as

pV D �mVp (9.11)

pNV D �Qh.I/ (9.12)

where Qh.I/ 
 0 and mV > 0. The resultant payoff difference can be written as
�P D pV � pNV D �mV p C Qh.I/ D mV Œh.I/ � p�, where h.I/ D Qh.I/=mV > 0.

A noteworthy sub-case of this formulation is when Qh.I/ is assumed to be linear
in I, i.e., pNV D mNVI. However, some results from the equilibria analysis of the
dynamics of vaccine demand in relation to the epidemic spread presented in this
section hold under the more general assumption that Qh is an increasing function of
I. Notice that the latter can also take into account the presence of a baseline non-
zero risk for any value of I, e.g., pNV D mNVI C m0

NV with m0
NV > 0. For instance,

it can represent the case when a positive risk is perceived even in the absence of
infection. The latter is likely the case when the infection has been locally eliminated
by past immunization or reduced to a negligible number of cases, but the risk of
reintroduction from abroad is perceived as non-zero.

As for the effect of vaccination on the epidemic spread, we assume that
vaccinated newborns (i.e., a fraction p of newborns) gain life-long immunity against
the infection while unvaccinated newborns (i.e., a fraction 1 � p of newborns) are
assumed to result susceptible to the infection. Therefore, according to Eqs. (9.4)
and (9.1) the combined dynamics of behavioral changes and epidemic transmission
can be written as

8

ˆ
ˆ
<

ˆ
ˆ
:

dS=dt D �.1 � p/ � �S � ˇIS
dI=dt D ˇIS � � I � �I
dR=dt D � I
dp=dt D kp.1 � p/Œh.I/ � p�

(9.13)

Note that for system (9.13) the basic reproductive number becomes pR0 with R0 D
ˇ=.� C�/ and it defines a critical threshold pc D 1=R0 for the fraction of vaccinated
newborns p over which the infection will be eliminated, i.e., I ! 0 for any value of
p > 1=R0.
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9.3.1.1 Equilibria

The equilibria for system (9.13) are the following:

E1 .S D 1; I D 0; p D 0/ is a disease free equilibrium with no vaccinators;
E2 .S D 0; I D 0; p D 1/ is a disease free equilibrium where all individuals are

vaccinators;
E3 .S D 1

R0
; I D �.1 � 1

R0
/=.� C �/; p D 0/ is an endemic equilibrium with no

vaccinators;
E4 .S D 1 � h.0/; I D 0; p D h.0// is a disease free equilibrium where we recall

that h.0/ is the perceived risk of being infected in the absence of infection. E4 D
E1 when h.0/ D 0.

E5 .S D 1
R0

; I D Ie; p D h.Ie// where Ie is the unique solution of the equation

h.I/ D 1 � 1
R0

� �C�

�
I.

By employing standard mathematical techniques, it can be shown that the first three
equilibria are always unstable, while E4 is globally asymptotically stable when h0 >

pc and unstable otherwise.
On the other hand, the stability of E5 depends on the parameter k and the function

h. Specifically, E5 is asymptotically stable irrespective of the value of k when
ˇIe�h0.Ie/ < .�CˇIe/.�CˇIe C2

p

ˇIe.� C �//. Otherwise there are two positive
values, k1 and k2 with k2 > k1 such that at k D k1; k2 there are Hopf bifurcations
and the stability of E5 depends on the value of k as follows:

(a) if 0 < k < k1 or k > k2 E5 is locally asymptotically stable
(b) if k1 < k < k2 E5 is unstable and the orbits of .S; I; p/.t/ are oscillatory in the

sense of Yakubovich [35], which intuitively means that for sufficiently large t all
state variables are permanently oscillating with regular or irregular oscillations.

A full detailed characterization of equilibria of system (9.13) can be found in [3].

9.3.1.2 Implications and Parameter Interpretations

The analysis of equilibria of system (9.13) suggests that, if any positive risk of VSEs
is perceived by the public and if the infection risk is perceived as close to zero in
the presence of negligible levels of prevalence of infection in the population, the
elimination of the infection is not possible under voluntary vaccination programs.

Depending on the speed at which individuals change their behavior, i.e., their
attitude in vaccinating or not in response to the change in risk perception, the
dynamics can result in steady oscillations around a positive sub-optimal coverage
and in repeated infection outbreaks.

However, the coverage and infection level of post-vaccination endemic equilib-
rium E5, namely pe and Ie, depend on the function h, R0, the generation time 1=�

and the life expectancy 1=�, but do not depend on k.
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9.3.2 The Impact of Vaccine Side Effects on the Natural
History of Immunization Programs

In order to better understand the interplay between epidemic dynamics and vacci-
nation choices, we focus on an illustrative example to explore the impact of human
spontaneous behavioral changes on the natural history of vaccination programs.

In particular, hereafter we assume that Qh.I/ is linear in I, i.e., Qh.I/ D mNVI and
analyze the dynamics of system (9.13) by setting parameters merely characterizing
the disease transmission process according to reliable estimates available in the
literature for measles. In particular, R0 is assumed to be 10, the generation time
(1=� ) is taken equal to 7 days and the average life expectancy (1/�) is assumed to
be 75 years [3].

According to the above assumptions, system (9.13) can be rewritten as

8

ˆ
ˆ
<

ˆ
ˆ
:

dS=dt D �.1 � p/ � �S � ˇIS
dI=dt D ˇIS � � I � �I
dR=dt D � I
dp=dt D kp.1 � p/ŒmI � p�

(9.14)

where m D mNV=mV > 0.
According to this formulation, we can see that the parameter m drives the

balance between the perceived risk associated to each reported case of VSE and
the perceived risk associated to each reported case of infection. In particular, it can
be easily checked that when mI is larger than p, vaccination is the most convenient
strategy to adopt while, when mI is smaller than p, the strategy of not vaccinating
will emerge.

Similar to the model presented in Sect. 9.2.1, k represents the relative speed of
the imitation dynamics with respect to the dynamics of the infection transmission.

Note that close to the equilibrium E5, the last equation of (9.13) can be
approximated as p0 D ˚.mI �p/, with ˚ D kmIe.1�mIe/. In this case the equation
for p can be read as an exponentially fading memory mechanism with average delay
1=˚ . This observation provides an idea of how it is possible to estimate—by using
reliable data on variations of coverage over time—relevant parameters and functions
driving behavioral changes, i.e., k and m.

9.3.2.1 The Balance of Risks from Vaccination and from Infection

In the absence of vaccination, the measles dynamics in the long term leads to an
endemic positive prevalence that, according to the parametric set we are considering,
results in approximately 0.2 per 1000 individuals. Therefore, as vaccination will
reduce the prevalence in the population and given that the unique equilibrium with
positive vaccination is E5, i.e., pe D mIe, it follows that to achieve large equilibrium
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uptakes for measles, the perceived cost of serious disease has to be at least three
orders of magnitude higher than the perceived cost associated to VSEs.

This result is consistent with the epidemiological situation of measles at the
beginning of the twentieth century, when the risk of serious sequelae following
measles infections was extremely large (100–250 deaths per 100,000 cases of
disease), and the absence of a vaccine kept the risk of infection very high.
In such circumstances even a large probability of suffering side effects from
vaccination could have been tolerated by the community. This however suggests that
industrialized countries could face serious difficulties in maintaining high vaccine
uptake in the future. Indeed, the remarkable decrease in the risk of serious morbidity
and mortality from infectious diseases, together with the current high degree of herd
immunity led by decades of sustained vaccination, has dramatically reduced the
perceived risk of serious disease from most infections to negligible levels. Although
such results are based on the equilibrium analysis of a simple deterministic model
with homogeneous mixing and stable demography, more realistic models are not
expected to substantially change these important implications.

On the other hand, equilibrium E5 for system (9.14) becomes

E5 D .Se D 1=R0; Ie D .1 � 1=R0/=.1 C �=� C m/; pe D mIe/ (9.15)

Thus, although according to the equilibria analysis the elimination of the disease
is impossible (i.e., Ie > 0), the infection prevalence at equilibrium can be close to
zero. Indeed, it can be observed that Ie decreases with m and Ie ! 0 when m ! 1.

The prevalence of infection at equilibrium Ie as obtained for different values of m
along with the corresponding coverage level at equilibrium pe are shown in Fig. 9.4.

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10

0

25

50

75

100

E
qu

ili
br

iu
m

 i
nf

ec
ti
on

 i
nc

id
en

ce
(x

 1
,0

00
 i
nd

iv
id

ua
ls
)

E
qu

ili
br

iu
m

 v
ac

ci
na

ti
on

 
co

ve
ra

ge
 (
%

)

m (x 10,000) m (x 10,000)

ba

Fig. 9.4 (a) Infection prevalence and (b) vaccine coverage at equilibrium as obtained for different
values of m in the illustrative case of a measles-like infection



170 P. Poletti et al.

9.3.2.2 The Introduction of a New Vaccine Under a Voluntary
Vaccination Program

We focus now on possible outcomes of introducing a new immunization program
based on a voluntary vaccination program. In particular, we consider a childhood
infectious disease for which the risk associated with the infection is considered
relatively high in the absence of vaccination. Moreover, we assume that a vaccine,
for which no side effects are initially known, is made available. However, we assume
that the increase of vaccination coverage leads to an increase of reported vaccine
adverse events, and we investigate how this could impact, in the long term, the
vaccine uptake and the epidemic dynamics.

In particular, we show how different behavioral responses to the risk of infection
can affect the epidemic spread, by analyzing the dynamics of system (9.14) for
some illustrative values of parameters m and k. Simulations are initialized with a
population at the endemic pre-vaccination equilibrium and with few vaccinators
in the population. In order to better understand the implications of the analysis of
equilibria stability, we assume that a small fraction of new infected cases is steadily
imported from outside the study area (namely 0.001 per 1000 individuals per week),
which can take into account the risk of infection resurgence after local elimination,
for instance as a consequence of international traveling from and to endemic areas.
Results obtained by simulating the model with different values of k and of m are
shown in Fig. 9.5.

In all simulated scenarios, the vaccine uptake starts increasing, as VSEs are
initially negligible with respect to infection disease occurrence. However, as the
vaccination coverage increases, the increase of reported VSEs and the decrease
of the risk of infection progressively counterbalance the initial convenience of
vaccination.

In good agreement with the theoretical results described above, for sufficiently
small values of k, after a transient period (the duration of which is inversely
proportional to k), the dynamics of infection and vaccine coverage converge to
a stable equilibrium. Moreover, for sufficiently large values of m, the epidemic
infection prevalence reduces, at least in the very long term, to negligible levels.

On the other hand, for larger values of k the system converges, in epidemiologi-
cally reasonable time scales, to a stable limit cycle characterized by oscillations in
vaccine uptake around the sub-optimal coverage equilibrium and repeated infection
outbreaks. Specifically, in this case, prolonged periods with high coverage and low
infection rates, during which the circulation of the infection is essentially sustained
by immigration, are followed by periods with low vaccine coverage that periodically
induce new epidemic outbreaks, producing in turn an increase of the perceived risk
of infection.

We note that, for sufficiently large values of m and k, oscillations can periodically
lead the coverage p to values larger than the critical threshold pc for rather long
periods of time. During such periods, despite the endemic persistence of infection,
routine vaccination surveys would reveal a satisfactorily high coverage.
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Fig. 9.5 The dynamics of infection prevalence and vaccine coverage as predicted by model simu-
lations for different values of m and k in the illustrative case of a measles-like infection. Horizontal
orange line represents the infection prevalence at pre-vaccination equilibrium. Horizontal green
line represents the critical threshold for vaccination pc. Black lines represent values of coverage
and infection incidence at equilibrium E5

Our results show that the average uptake is not significantly affected by k and
remains close to pe. However, both the amplitude of oscillations of p and the fraction
of total time where p > pc increase in k. Low values of k yield oscillations that are of
small amplitude and make more infrequent the occurrence of outbreaks triggered by
the importation of cases and caused by the decline of p. The frequency of oscillations
increases with k and decreases with m.

9.3.2.3 The Migration from Compulsory to Voluntary Vaccination

It is important to highlight what can happen if voluntary vaccination is introduced
in a population where vaccination is compulsory. In this case, we can assume that
compulsory vaccination has led to high vaccination coverage levels, reducing the
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Fig. 9.6 The effect of migration from compulsory to voluntary vaccination on the dynamics
of infection prevalence and vaccine coverage, as predicted by model simulations by assuming
m D 15,000 and different values of k in the illustrative case of a measles-like infection

infection to negligible levels. This situation can be modeled by considering that
p.0/ D 0:95 > pc and by assuming that the circulation of the infection is initially
sustained by immigration only.

Our results (see Fig. 9.6) show that, in this case, vaccination coverage starts
declining soon after the immunization program has been converted to voluntary
vaccination, and that the spontaneous vaccination choices lead the vaccine uptake
to sub-optimal coverage levels, yielding unavoidably to new epidemic outbreaks.

In other words, if local elimination of the infection is achieved due to a period
of compulsory vaccination, after which vaccination becomes voluntary, VSEs will
progressively induce individuals to switch to non-vaccination, thereby decreasing
the vaccination coverage and progressively increasing the probability of infection
re-emergence from imported cases.

9.4 Conclusions

The analysis carried out in this chapter has highlighted that human adaptations to
the risk of infection can have either a positive or negative impact on the spread of
epidemics.

On the one hand, uncoordinated behavioral changes triggered by a new epidemic
threat can significantly hamper disease transmission and reduce final epidemic size,
even when self-imposed measures produce a small decrease in the force of infection.
On the opposite side, risk perception could decrease the public compliance with
voluntary immunization programs against childhood infections, leading to repeated
infection outbreaks caused by sub-optimal vaccine uptake levels and, in the case
of local elimination of the disease, to a progressive increase of the probability of
infection re-emergence.
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The framework introduced here is fairly general, to be applied to different
diseases and to more complex models accounting, for instance, for heterogeneous
mixing by age and changes in the demographic structure of the population [36–39].
Our results suggest that behavioral changes driven by the perceived risk of
infection can dramatically alter the dynamics of an epidemic and, consequently,
the effectiveness of public health policies, pointing out the need for incorporating
human behavior in prediction models informing public health decisions.
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Chapter 10
Uncovering Criminal Behavior
with Computational Tools

Emilio Ferrara, Salvatore Catanese, and Giacomo Fiumara

Abstract In this chapter we explore the opportunities brought in by advanced
social network analysis techniques to study criminal behaviors and dynamics in
heterogeneous communication media, along multiple dimensions including the
temporal and spatial ones. To this aim, we present LogViewer, a Web framework
we developed to allow network analysts to study combinations of geo-embedded
and time-varying data sources like mobile phone networks and social graphs. We
present some use-cases inspired by real-world criminal investigations where we
used LogViewer to study criminal networks reconstructed from mobile phone and
social interactions to identify criminal behaviors and uncover illicit activities.

10.1 Introduction

The pervasive diffusion of technologically mediated communication channels
pushed to unprecedented frontiers the ability of individuals to interconnect and
exchange information. Mobile phone networks, social networking and media
platforms like Facebook and Twitter, and over-IP messaging systems like Skype
and WhatsUp, represent some examples of the multitude of communication media
broadly adopted in nowadays society. These phenomena generated lot of interest
in the research community. Several aspects of socio-technical systems have been
studied [1]: from macroscopic characteristics, like network structure [2–5], to
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network dynamic, like information diffusion [6–9], from microscopic behaviors,
like how individual address their attention [10, 11] and what topics they discuss
[12, 13], to social issues, like how people organize and mobilize using technology
[14–17] and what effects technological media have at the societal level [18, 19].

One aspect that has vast societal impact is the improper usage of such platforms.
Technologies have been long exploited for criminal activities: for example, various
studies showed how the Internet has been exploited for cybercrime, terror, and
militancy purposes [20–22]. In terms of abuse, mobile communication networks
and social media have been mostly studied as vectors for the diffusion of computer
viruses and malware [23, 24]. On the other hand, the possibility that such communi-
cation channels can be exploited by criminals to organize and coordinate their illicit
activities in the physical world has been recently found very real [25, 26]. The ability
to detect criminal behavior across different communication media is of paramount
importance to avoid abuse and fight crime. For this reason, computational tools and
models have been recently proposed to study criminal behavior in online platforms
[27–29], social media [30], and mobile phone networks [31, 32]. Usually, such
models and techniques are limited to one or few specific use-cases. For example, we
recently proposed a tool called LogAnalysis that allows an investigator to reconstruct
and visualize networks from mobile phone call data [33].

Here we present LogViewer, a next-generation Web-based criminal network
analysis (CNA) framework that yields advanced social network analysis (SNA)
functions, de facto extending LogAnalysis features to different types of networks,
for example phone call networks and social graphs. LogViewer allows to study
each network from three different angles: (1) static analysis, to investigate the role
of nodes and edges, their centrality, and the emerging communities representing
potential criminal rings; (2) temporal analysis, to span across different temporal
events and study the flow of information over time; finally, (3) spatial analysis,
embedding the network in a geographic space to determine physical closeness and
locality effects on the network structure. LogViewer also allows to create multilayer
spatio-temporal networks by merging different network types and to perform the
above-mentioned different types of analysis on such a more complex network.

Our framework inherits different visualization layouts and algorithms from
LogAnalysis: some of them are discussed in detail in our previous work [33]. Here
we first give an overview of the basic concepts borrowed by SNA and their meaning
in CNA; this includes network centrality measure to identify roles in criminal
networks, and community detection to unveil criminal gangs hidden within the
network. After that, we present the new features provided by our CNA framework,
especially ad hoc visualization methods that we devised keeping in mind the
needs of law enforcement agencies, analysts and investigators. We illustrate these
advanced CNA features by presenting examples or use cases inspired by real
investigations, carried out by Italian law agencies, that benefited from the adoption
of LogViewer.
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10.2 LogViewer Framework

10.2.1 Architecture and Workflow

LogViewer is a Web-based framework that allows advanced network analysis on
criminal networks reconstructed from various data sources, including (mobile)
phone data and online social network data. It supports spatio-temporal analysis and
it extends, de facto, the horizon of possibilities provided by LogAnalysis [33].

This framework implements various techniques of network generation, statistical
measurement, partitioning (or clustering), and visualization that rely on powerful
open-sources tools; the list includes GraphML for data storage, Python network
libraries for data import, normalization and network representation like NetworkX1

and iGraph, the Stanford network analysis project (SNAP) library2 to efficiently
compute network statistics, the Louvain method for network clustering [34], and
the Javascript D3.js3 library for interactive network visualization and exploration.

The architecture of LogViewer is represented in Fig. 10.1. In the following
we illustrate the typical workflow to bootstrap a criminal investigation using
LogViewer. Let us use the example of data representing a mobile phone call
network—the analysis of other sources, such as social network data, follows
straightforwardly.

During an investigation, the agency in charge of it will obtain, usually through
court warrants, raw data from a Telecommunication Service Provider related to the
phone call interactions of a (possibly large) set of suspects involved in a certain
criminal activity. Such data are generally provided in different formats: LogViewer

Fig. 10.1 Architecture of LogViewer

1http://www.networkx.github.com/.
2http://www.snap.stanford.edu/.
3http://www.d3js.org/.

http://www.networkx.github.com/
http://www.snap.stanford.edu/
http://www.d3js.org/
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allows some degree of standardization, supporting different formats adopted by
various European service providers, e.g., Vodafone, Orange, and others.

The analyst can import one (or more) datasets into LogViewer, which will take
care of appropriately reconstruct a network representation of such data, where each
node corresponds to a given entity (generally speaking, in the mobile phone cases,
the framework assumes a one-to-one mapping from phone to person, but it also
supports the assignment of multiple phone numbers to the same entity, whereas
such information is provided). Interconnections among entities, representing phone
calls, are imported as links of this network. Duration and frequency of the calls are
encoded in the network representation by means of different weighting systems that
can be adopted by the analysts. For example, the raw number of calls between a
pair of entities, or the average or total duration, among others, are available metrics
that can be used for this purpose. This yields the possibility of performing dynamic
network representation and temporal analysis.

In addition, each phone interaction reports geo-referenced data about the location
of the caller and the called nodes (e.g., extrapolated from the GPS sensors on the
mobile device, or approximated by the telephone cell corresponding to the physical
location of the individuals at the time of the call); such information is attached
to each event, to allow for spatial analysis. Once the data import procedure is
completed, static representation (and spatio-temporal representation when meta-
data are available) becomes available through LogViewer’s visualization interface.

In the following, let us provide a bit more details about the type of data commonly
processed by LogViewer for CNA purposes.

10.2.2 Data and Network Representation

10.2.2.1 Mobile Phone Data

In the context of real-world investigations, mobile phone service providers, upon
request by judiciary authorities, release data logs, normally in textual file format,
with space or tab separation (CSV format). A typical log file contains, at least, the
values shown in Table 10.1.

Similarly, information about owners of SIM cards, dealers of SIM cards and
operations like activation, deactivation, number portability are provided by the
service providers as additional material to ease and support the investigation
activities. Log file formats produced by different companies are heterogeneous.
LogViewer, first of all, parses these files and converts data into GraphML format.
It is an XML valid and well-formed format, containing all nodes and weighted
edges, each weight representing the various weighting strategies (e.g., the frequency
of phone calls) used to represent the interactions between two connected nodes.
GraphML has been adopted both because of its extensibility and ease of import
from different SNA toolkits and graph drawing utilities.
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Table 10.1 An example of
the structure of a phone log
file

Field Description

IMEI IMEI code MS

Called Called user

Calling Calling user

Date/time start Date/time start calling (GMT)

Date/time end Date/time end calling (GMT)

Type SMS, MMS, voice, data etc

IMSI Calling or called SIM card

CGI Lat. long. BTS company

10.2.2.2 Social Graph Data

Another rich source of information that is increasingly becoming adopted during
criminal investigation is represented by Online Social Network data. Such types of
datasets are provided by the Service Providers (like Facebook or Google) through
court warrants to the law enforcement agency, similarly to mobile phone records.

Generally speaking, the datasets obtained by OSN service providers provide
user meta-data related to the set of accounts of interest for the criminal investi-
gation, including registration details (e.g., personal information, dates of account
creation/deletion, etc.) along with the IP addresses corresponding to the devices
used for connection (and/or the GPS coordinates of the mobile device, in case
any connection is performed in mobility). Logs include, among other data, the
entire history of wall posts and comments, pictures and photographs, check-in
events in specific physical locations, the chronology of incoming and outgoing
friendship requests, the list of friends (on Facebook) or contacts (followers and
followees on Twitter and similar platforms). Some platforms, like Facebook and
Twitter, can provide detailed logs of personal interactions, such as chat or personal
messages. Possibly, the same set of information is provided about any number
of friends/contacts of the given individual target of the criminal investigation,
if deemed relevant for the investigation by the judiciary authorities. Such data
about the target’s neighbors help enriching the amount of information available to
LogViewer to perform its analysis.

LogViewer processes these datasets and extracts the information that can be
put in form of network representation. For example, when reconstructing a social
network, link weighting schemes represent the interactions (e.g., number of wall
comments, frequency of chatting, etc.) between a pair of individuals. Although
our framework does not yet provide advanced content analysis, such additional
information is often adopted by the analysts by using external tools for traditional
corpora analysis.

It’s worth noting that, in the context of a criminal investigation, the analysts
will study social network information with different lens, say with respect to
the perspective of phone interactions. This is clearly due to the fact that online
friendship, say on Facebook, has a very different meaning if compared to phone
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interactions. On the other hand, the possibility of performing further analysis on
textual content produced by personal interactions (e.g., chat) eases the analysis, say
with respect to phone calls monitoring and analysis (which might not be possible
whereas recordings are not readily available for investigation purposes or need
additional warrants to be accessed).

10.2.3 Data Normalization and Cleaning

Data clean-up usually means the deletion of redundant edges and nodes. This
step is very important since datasets often contain redundant information, that
crowds graph visualization and biases statistical measures. In these circumstances,
redundant edges between the same two nodes are collapsed and a coefficient—i.e., a
edge weight—is attached, which expresses the number of calls. Our tool normalizes
data after reading and parsing log files whichever format they have been provided
among the standard formats (i.e., fixed width text, delimited, CSV, and more) used
by mobile service providers.

10.3 Static Analysis of Criminal Networks

10.3.1 Centrality Measures

LogViewer takes into account the concept of centrality measure to highlight actors
that cover relevant roles inside the analyzed network [35]. Several notions of
centrality have been proposed during the latest years in the context of SNA.

There are two fundamentally different class of centrality measures in commu-
nication networks. The first class of measures evaluates the centrality of each
node/edge in a network and is called point centrality measure. The second type
is called graph centrality measure because it assigns a centrality value to the whole
network. These techniques are particularly suited to study phone traffic and criminal
networks.

In detail, in LogViewer we adopted four point centrality measures (i.e., degree,
betweenness, closeness, and eigenvector centrality), to inspect the importance of
each node of the network.

The set of measures provided in our tool is a selection of those provided by
SNA [36]. It could be not sufficient to solve any possible task in phone call
network analysis. In fact, for particular assignments it could yet be necessary to
use additional tools in support to LogViewer and in further evolutions we plan to
incorporate new centrality measures.

For each centrality measure, the tool gives the possibility, to rank the nodes/edges
of the network according to the chosen criterion. Moreover, LogViewer allows to
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select those nodes that are central, according to the specified ranking, highlighting
them and putting into evidence their relationships, by exploiting the node-link layout
techniques (discussed in the following). This approach makes it possible to focus
the attention of the analysts on specific nodes of interest, putting into evidence their
position and their role inside the network, with respect to the others.

In the following we formally describe the centrality measures used in LogViewer.
They represent the centrality as an indicator of the activity of the nodes (degree

centrality), of the control on other nodes (betweenness centrality), of the proximity
to other nodes (closeness centrality), and of the influence of a node (eigenvector
centrality).

10.3.1.1 Degree Centrality

The degree centrality of a node is defined as the number of edges adjacent to this
node. For a directed graph G D .N; E/ with N nodes, and E edges, we can define
the in-degree and out-degree centrality measures as

CD.v/in D din.v/

N � 1
; CD.v/out D dout.v/

N � 1
(10.1)

where din.v/ is the number of incoming edges adjacent to the node v, and dout.v/ is
the number of the outgoing ones.

Since a node can at most be adjacent to N � 1 other nodes, N � 1 is the
normalization factor introduced to make the definition independent on the size of
the network and to have 0 � CD.v/ � 1.

In and out-degree centrality indicates how much activity is going on and the most
active members. A node with a high degree can be seen as a hub, an active node,
and an important communication channel.

We chose to include the degree centrality for a number of reasons. First of all, its
calculation is computationally feasible even on large networks. Furthermore, in the
context of phone call networks it could be interpreted as the chance of a node for
catching any information traveling through the network.

Most importantly, in this type of directed networks, high values of in-degree are
considered a reliable indicator of a form of popularity/importance of the given node
in the network; on the contrary, high values of out-degree are interpreted as a form
of gregariousness of the given actor with respect to the contacted individuals.

10.3.1.2 Betweenness Centrality

The communication between two non-adjacent nodes might depend on the others,
especially on those on the paths connecting the two nodes. These intermediate
elements may wield strategic control and influence on many others.
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The core issue of this centrality measure is that an actor is central if she lies along
the shortest paths connecting other pairs of nodes. The betweenness centrality of a
node v can be defined as

BC.v/ D
X

s¤v¤t

�st.v/

�st
(10.2)

where �st is the number of shortest paths from s to t and �st.v/ is the number of
shortest paths from s to t that pass through a node v.

The importance of the betweenness centrality regards its capacity of identifying
those nodes that vehiculate information among different groups of individuals.

In fact, since its definition due to Freeman [37] the betweenness centrality has
been recognized as a good indicator to quantify the ability of an actor of the network
to control the communication between other individuals and, specifically for this
reason it has been included in LogViewer.

In addition, it has been exploited by Newman [38] to devise an algorithm to
identify communities within a network. Its adoption in the phone traffic networks
is crucial to identify those actors that allow the communication among different
(possibly criminal) groups.

10.3.1.3 Closeness Centrality

Another useful centrality measure that has been adopted in LogViewer is called
closeness centrality. The idea is that an actor is central if she can quickly interact
with all the others, not only with her first neighbors [39]. The notion of closeness
is based on the concept of shortest paths (geodesic) d.u; v/, the minimum number
of edges traversed to get from u to v. The closeness centrality of the node v is
defined as

CC.v/ D 1
P

u2V d.u; v/
(10.3)

Such a measure is meaningful for connected graphs only, assuming that d.u; v/

may be equal to a finite value.
In the context of criminal networks, this measure highlights entities with the

minimum distance from the others, allowing them to pass on and receive commu-
nications more quickly than anyone else in the organization. For this reason, the
adoption of the closeness centrality is crucial to put into evidence inside the network,
those individuals that are closer to others (in terms of phone communications).

In addition, high values of closeness centrality in such type of communication
networks are usually regarded as an indicator of the ability of the given actor to
quickly spread information to all other actors of the network. For such a reason, the
closeness centrality has been selected to be included in the set of centrality measures
adopted by LogViewer.



10 Uncovering Criminal Behavior with Computational Tools 185

10.3.1.4 Eigenvector Centrality

Another way to assign the centrality to an actor of the network in LogViewer is based
on the idea that if a node has many central neighbors, it should be central as well.
This measure is called eigenvector centrality and establishes that the importance of
a node is determined by the importance of its neighbors.

The eigenvector centrality of a given node vi is

CE.vi/ /
X

u2Ni

AijCE.u/ (10.4)

where Ni is the neighborhood of the given node vi, and x / Ax that implies Ax D 
x.
The centrality corresponds to the top eigenvector of adjacency matrix A.

In the context of telecom networks, eigenvector centrality is usually regarded as
the measure of influence of a given node. High values of eigenvector centrality are
achieved by actors who are connected with high-scoring neighbors, which in turn,
inherited such an influence from their high-scoring neighbors and so on.

This measure well reflects an intuitive important feature of communication
networks that is the influence diffusion and for such a reason we decided to include
the eigenvector centrality in LogViewer.

10.3.1.5 Clustering Coefficient

The clustering (or transitivity) coefficient of a graph measures the degree of
interconnectedness of a network or, in other words, the tendency of two nodes
that are not adjacent but share an acquaintance, to get themselves in contact. High
clustering coefficients mean the presence of a high number of triangles in the
network.

The local clustering coefficient Ci for a node vi is the number of links among the
nodes within its neighborhood divided by the number of links that could possibly
exist among them

Ci D jfejkgj
ki.ki � 1/

W vj; vk 2 Ni; ejk 2 E (10.5)

where the neighborhood N of a node vi is defined as Ni D fvj W eij 2 E ^ eji 2 Eg,
while ki.ki � 1/ is the number of links that could exist among the nodes within the
neighborhood.

In is well-known in the literature [36] that communication networks show high
values of clustering coefficient since they reflect the underlying social structure of
contacts among friends/acquaintances. Moreover, high values of local clustering
coefficient are considered a reliable indicator of nodes whose neighbors are very
well connected and among which a substantial amount of information may flow.



186 E. Ferrara et al.

For such a reason, LogViewer provides the possibility of computing both the global
clustering coefficient for any given phone call network and the local clustering
coefficient of any given node.

10.3.2 Community Detection in Criminal Networks

A criminal network can be regarded as a special kind of social network in which
attention is devoted to secrecy and efficiency, since its members must communicate
without being detected [40]. On the other hand, the crucial task of uncovering the
functionalities of a criminal organization can be accomplished only by acquiring
knowledge about the structure of the underlying criminal network. Criminal net-
works usually exhibit diversified compositions: hierarchical [41], cellular [42], and
flat structures [43] are the most common. One of the most relevant features of real
networks is the presence of clustering phenomena, or communities. The detection of
communities in criminal networks brings, as a main consequence, the identification
of groups and their structures via the information coded in the topology of the
corresponding graph.

The problem of finding communities in a network is often expressed as a
clustering problem. A widely adopted approach to solve this problem is based on the
concept of network modularity which can be expressed as follows: given a network,
represented by means of a graph G D .N; E/, which has been partitioned into m
communities, its corresponding value of network modularity is

Q D
m
X

sD1

"

ls
j E j �

�
ds

2 j E j
�2
#

(10.6)

assuming ls the number of edges between vertices belonging to the s-th community
and ds is the sum of the degrees of the vertices in the s-th community. High values of
Q imply high values of ls for each discovered community, yielding to communities
internally densely connected and weakly coupled among each other.

The network modularity is therefore used as fitness function to solve an
optimization problem: among the several methods we mention here the Girvan
and Newman (GN) algorithm [44], and an optimized variant known as Newman’s
algorithm [45], which is fast enough to support interactive real-time adjustments.
LogViewer provides two strategies for detecting communities, namely the already
cited Newman’s algorithm and the Louvain method [34], another modularity
maximization algorithm that performs very well with larger networks.

We recently discussed in great detail the problem of detecting communities and
gangs inside criminal networks [31], and we point the reader’s attention toward that
work for an in-depth treatment of this topic.
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10.3.3 Criminal Network Visualization

Typical network visualization tools rely on the popular force-directed layout [46].
The force-directed model represents the structure of the graph on the same foot as a
physical system, in which nodes are physical points subject to various forces; nodes’
coordinates (and therefore the layout itself) derive from the search of an equilibrium
configuration of the physical system modeled by the algorithm [47]. This particular
layout arrangement has the advantage of grouping users in clusters which can be
identified according to the heightened connectivity. The Barnes–Hut algorithm [48]
associated with this layout simulates a repulsive N-body system to continuously
update the position of the elements.

To optimize the visualization, it is possible to interactively modify the parameters
relative to the tension of the springs (edges). Nodes with low degree are associated
a small tension and the elements are located in peripheral positions with respect to
high degree nodes. Other parameters can be tuned, such as spring tension, gravita-
tional force, and viscosity. Our goal, in the following, is to suggest two methods
to improve force-directed based layouts. As we will show, these techniques are
especially well suited for CNA; however, they could potentially be generalized for
broader usage in other domains of network analysis—for example, for applications
in social and political sciences.

For the usage of traditional network visualization methods in CNA, the reader
should consult our recent paper on LogAnalysis [33].

10.3.3.1 Focus and Context Based Visualization

The number of edges within a network usually grows faster than the number of
nodes. As a consequence, the network layout would necessarily contain groups
of nodes in which some local details would easily become unreadable because of
density and overlap of the edges. As the size and complexity of the network grow,
eventually nodes and edges become indistinguishable. This problem is known as
visual overload [49]. A commonly used technique to work around visual overload
consists of employing a zoom-in function able to enlarge the part of the graph of
interest. The drawback of this operation is the detriment of the visualization of the
global structure which, during the zooming, would not be displayed. However, such
a compromise is reasonable in a number of situations including, in some cases, the
domain of CNA.

During an investigation, it is crucial to narrow down the analysis to the relevant
suspects, to efficiently employ human and computational resources. Police officers
typically draw some hypotheses about an individual suspect of being part of a
criminal organization, or of being involved (or about to) in some crime; they
concentrate the initial investigation on this individual, and on that person’s social
circles, as a ground to build the social network object of analysis. The main
role of visual analysis lies in allowing the detection of unknown relations, on



188 E. Ferrara et al.

the base of the available limited information. A typical procedure starts from
known entities, to analyze the relations with other subjects and continue to expand
the network inspecting first the edges appearing the most between individuals
apparently unrelated. During this procedure, only some nodes are relevant and it
is important to focus on them rather than on the network as a whole.

Nevertheless, a spring embedded layout (including force-directed ones) does not
provide any support to this kind of focus and analysis. In these situations, focus and
context visualization techniques are needed to help a user to explore a specific part
of a complex network. To this purpose, we here introduce the fisheye and the foci
layouts.

10.3.3.2 Fisheye Visualization

Focus and context is an interactive visualization technique [50]. It allows the user to
focus on one or more areas of a social network, to dynamically tune the layout as a
function of the focus, and to improve the visualization of the neighboring context.
The fisheye view is a particular focus and context visualization technique which has
been applied to visualize self-organizing maps in the Web surfing [51]. It was first
proposed by Furnas [52] and successively enriched by Brown et al. [53]. It is known
as a visualization technique that introduces distortion in the displayed information.

The fisheye layout is a local linear enlargement technique that, without modifying
the size of the visualization canvas, allows to enhance the region surrounding the
focus, while compressing the remote neighboring regions. The overall structure of
the network is nevertheless maintained. An example of application of this technique
is shown in Fig. 10.2. The picture shows a moderately small criminal network
reconstructed from phone call interactions of about 75 individuals. The layout on
the left panel is obtained by using a force-directed method implemented in our
framework, LogViewer. The analyst can inspect the nodes of the network, which
contains known criminals, suspects, and their social circles. When the focus is
applied on a given node, the visualization transitions to the fisheye layout (see the
right panel). A tool-tip with additional information about the node appears when
the node is selected—it shows the phone number, personal details, address, photo,
etc. The layout causes edges among remote nodes to experience stronger distortions
than local nodes. The upside of the presented method is the possibility to achieve the
three recommendations of Network Nirvana [54] when focusing on a given node:
all the nodes’ neighbors are clearly visible, the node degree is easily countable, and
the edges incident on that node can be identified and followed.

Note that fisheye and force-directed layouts can be used in conjunction. By
combining the two methods, our framework efficiently yields focus and context
views.
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Fig. 10.2 Fisheye visualization

10.3.3.3 Matrix Layout

A network can be represented by using an adjacency matrix in which each cell ij
represents the edge existing between the vertex i and the vertex j. In our case, the
vertices represent the phone numbers of the users (the caller and the called), and the
edges represent their contacts. The natural visualization technique associated with
this two-dimensional representation of the graph is the matrix layout. Nevertheless,
the efficiency of a matrix diagram strongly depends upon the order of rows and
columns: if the nodes that are connected are placed in order, then clusters and
connections among communities can be easily identified. As shown in Fig. 10.3,
matrix cells can be coded to show additional information: in this case, different
colors represent different clusters.

On the contrary of node-link diagrams, matrix layout makes not easily iden-
tifiable the paths connecting the vertices. On the other hand, when dealing with
highly connected networks, the node-link layout rapidly becomes unreadable as a
consequence of the large superposition of nodes and edges.

10.3.3.4 Foci Layout

The foci layout implements three network visualization models: force-directed,
semantic, and clustered layouts. The latter is based on the Louvain community
detection algorithm [34]. Future implementations will explore other methods
[55, 56]. Our model supports multilayer analysis of the network through interactive
transitions from the force-directed layout, with a single gravitational center, to
the clustered one with more force centers placed in predetermined distinct areas.
This layout allows to analyze the network on various layering levels depending on



190 E. Ferrara et al.

Fig. 10.3 Matrix layout and clustering

Fig. 10.4 Foci layout

specified node attributes. Figure 10.4 shows the phone traffic network of some clans
the previous criminal network, in which the color of the nodes denotes the type of
crime committed by the members.

In this example, the clustering truthfully reflects the known territorial division
among the groups belonging to the organization. In Fig. 10.4 the focus is on a
specific node. Using this layout it is possible to contextually analyze the community
structure, the type of committed crime with respect to the members of the clan, and
the direct relations of each single individual. This layout integrates also the forth
Network Nirvana recommendation, namely the possibility to identify clusters and
to highlight the community structure (Figs. 10.5 and 10.6).
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Fig. 10.5 Multi-foci layout

Fig. 10.6 Filtered and clustered multi-foci layout

10.4 Spatio-Temporal Criminal Networks Analysis

10.4.1 Temporal Network Analysis

Phone call records and online social network data comes with temporal information
attached to many events. For example, the time and duration of a call or a chat
session, or the timestamp associated with the creation of a given phone contract or
account on a social platform, are common meta-data available for investigation.

LogViewer provides extensive support to encode and exploit temporal informa-
tion, when available, to perform network dynamic and temporal pattern analysis.
One example is provided in Fig. 10.7, where we display LogViewer’s interface
reporting aggregate temporal statistics related to the activity ongoing on a mobile
phone network under investigation.

In this example three types of information are displayed: on top, a time series
reports the volume of calls per day during the investigation period. It’s possible to



192 E. Ferrara et al.

Fig. 10.7 Temporal analysis of a criminal network

see how heterogeneous is this traffic, with a strong attenuation toward the end of
the observation period, after a spike coinciding with an actual criminal event in the
real world. The analyst has the possibility of zooming in the time series, to select
different sub-intervals, to display different types of statistics over time (e.g., total
volume of calls, or total duration, etc.) and to filter according to different types
of constraints (e.g., showing only the information related to a subset of users, for
example a particular cluster). The applied filters are also reported underneath, for
example as pie charts that show specific statistics per day of the week, per type
of event (e.g., phone calls, texts, video calls, etc.), and per geographic area. Better
resolution is provided by histograms that bin the given statistics, say number of
calls, per hour of the day.

Another example is provided in Fig. 10.8 that shows a stream graph adopted to
visualize a sequence of temporal events on an aggregate basis. Stream graphs show
the potential of tools that provide dynamics and interactive data exploration. The x
axis of the stream graph represents time, whereas the y axis reports an arbitrary
metric, say for the example in Fig. 10.8 the total volume of phone interaction,
subdivided by type (e.g., calls, texts, Internet sessions, etc.), each displayed using
a different color. The stream is proportional to the number of events of each type
per unit of time (one bin here is 1 h). LogViewer also implements stacked graphs.
Stream and stacked graphs represent especially helpful tools when the analysts want
to visually compare extensive metrics that depend on the volume of events in a
predetermined period.

By selecting the various temporal analysis tools and filters available, the analyst
can dissect the dataset under analysis to obtain granular temporal information or to
highlight and let emerge specific patterns of interactions among particular groups
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Fig. 10.8 Stream layout of temporal dynamics in a criminal network

of individuals. This, in conjunction with spatial filters that are discussed in the next
section, yields the ability to determine when (and where) information flows, and to
identify the peeks and lows of interaction activity among the members of a criminal
organization, to narrow down investigations towards specific periods of interest (that
might concur with events in the real world).

10.4.2 Spatial Network Analysis

Along with temporal information, phone call records and online network datasets
report, among others, geographical coordinates of most of the events. Latitude and
longitude can be inferred from the BTS (base transceiver station) of a cell, or directly
derived from the GPS sensors of enabled devices. In related work [31] we provide
some additional detail on the inference mechanism behind the reconstruction of
geo-coordinates from BTS cells.

LogViewer encodes, processes, and presents spatial information to derive the
mobility patterns of individuals, routine paths and points of interest, reconstructed
from the geo-referenced interconnections (both phone calls and online social
network sessions and check-ins). Figure 10.9 shows, for example, a case study
inspired by a real investigation where nodes, displayed in overlay onto a map,
represent areas where, during the observation period, intense contacts among a
subset of the population under investigation took place (node sizes encode the
volume of calls binned by geographic position). Different filters are provided,
along with a slider that allows to “unfold” time and replay the evolution of such
network simulating the temporal dimension. The spatial analysis, combined with the
temporal filters, allow to observe the dynamic patterns of interconnections among
the individuals under observation, and it’s especially helpful to locate them in space
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Fig. 10.9 Spatial analysis of a criminal network

and time, that could help in those cases when evidence is needed to prove someone’s
presence in a determined location during a specific event occurred in the real world
(for example, a robbery or a homicide).

10.5 A Use Case Inspired by Real Investigations

LogViewer has been successfully used in real forensic police investigations. Various
examples, and the details of the analysis presented here, have been discussed in our
latest work [31]: let us summarize few interesting results. Note that, as criminal
lawsuits are still in progress, some information has been intentionally obfuscated.

10.5.1 The Initial Configuration

We here discuss a case in which some people allegedly belong to a criminal
network. Police determined that phone traffic logs acquired (under court warrants)
from the service providers of the suspects might reveal crucial information about
their interpersonal relationships and communication dynamics. The logs reflect the
phone calls occurred throughout 15 days among these individuals allegedly part of
a criminal association responsible of robbery, extortion, and drug illicit trafficking.

From the analysis of the interactions occurred in a given time interval it is also
possible to unveil the most important links, in terms of frequencies of relations and
flow of information. Links do not necessarily reflect the same type of relations:
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different motivations can underlay phone interactions. In lack of advanced methods
for conversation analysis (and due to the lack of phone call recordings), content
analysis in some cases is impossible. However, the topology of the call networks is
precious to reveal possible structural groups and, from there, ascertain the details.

10.5.2 Finding Subgroups

In Fig. 10.10a we show the case study network after the Girvan–Newman (GN)
algorithm has been executed and 16 communities have been detected. Different
colors of the nodes identify different communities. To improve the clarity of
the network visualization, we exploit the clustered view as shown in Fig. 10.10b.
This configuration adopts a modified force-directed layout in which nodes of
the same community (same colors) form macro-nodes visualized with a circular
layout. In such a way, inter-connectivity among communities is captured better.
The macro-nodes can be further exposed to reveal intra-community relationships
(see Fig. 10.10c).

In this case, we are not interested only in the nodes that occupy prominent
positions. Rather, we should focus on those edges whose deletion during the
execution of the GN algorithm unveils new structural configurations, which in turn
can be investigated using additional information available to police. This analysis
will be of central importance for the successful outcome of the investigation.

LogViewer supported this case investigation as follows: first, by automatically
parsing interaction data (phone traffic) from heterogeneous sources; then, by
abstracting a network representation of such data where nodes represent individuals,
being links their interactions—a node-link layout is employed for visualization
purpose. Finally, after performing community detection (and visualizing clusters),
each member of these groups is analyzed in depth, recursively refining the results.

From clustering, two interesting results follow. First, the more central edges are
not always responsible for driving the majority of the information, that is they are
not in charge of communications among clusters. They are, however, still important
edges from a topological point of view, and lethal when regarded inside their group.
Secondly, clustering algorithms used to analyze criminal networks help to detect
the tightest groups, but the nature of the relations must be carefully evaluated using
information which cannot be directly drawn from the mathematical model or its
graphical representation. Network metrics applied to our case study reveal that the
node with the highest degree (i.e., the highest number of phone calls) has a much
lower betweenness centrality than other nodes. In fact, criminal networks heavily
employ secrecy to escape investigations and, in particular, a policy of internal
communications according to which the most important members issue orders to
a very limited number of members which in turn make them known to an increasing
number of less important members until the leaves of the network are informed.

In our case study, the nodes having the highest number of communications (i.e.,
the highest degree) represent the lieutenants of the criminal organization and not the
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Fig. 10.10 Communities as obtained by using Girvan Newman algorithm. (a) Case study network
after the GN algorithm. Sixteen communities have been detected. (b) Clustered view. Nodes of
the same community form macro-nodes visualized with a circular layout. (c) Macro-nodes zoom
reveals intra-community relationships
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boss of the clan, while the edges traversed by the highest number of shortest paths
(i.e., having the highest betweenness centrality) represent the most important links
among the various groups.

Moreover, the granularity of the clustering allows to identify the optimal
members and edges to remove when trying to hinder or disrupt the clan criminal
activities.

The next step of analysis is carried out by using the Newman algorithm. Fig-
ure 10.11a shows communities embedded in convex hulls. Since the visualization
might be cluttered and compromise the interpretation of the results, we here
exploited the community compression techniques described above to improve the
quality of the representation. For example, by setting the inter-community hop filter
to a value of 2, Fig. 10.11b shows the communities, and the respective members, that
can be reached from the selected nodes at most in two hops. Figure 10.11c represents
the egonet of the selected user, and the summary of communities connected in
one hop.

10.5.3 Overlapping Communities

An important aspect in the analysis of communities is represented by the potential
overlap of communities. Both the algorithms implemented in LogViewer actually
perform a partition of the network, thus assigning each of the nodes to exactly one
cluster. Often, this is not a correct representation, at least on a semantic basis, of the
network. In a specific case such ours, even the algorithmic approaches described in
[57, 58] may produce questionable results because of the multiplicity of meanings
which can be given to any edge of the network. For this reason, we decided to
implement LogViewer in such a way to allow the user to choose the level of
clustering in order to approximate the results. This feature is illustrated in Fig. 10.12.

In Fig. 10.12a only one cluster has been detected which is composed of the nodes
interconnected among the external clusters represented by the nodes “Elio” and
“Judy,” while in Fig. 10.12b, Qmax has been interactively decreased to a previous
lower value. As a consequence, the interconnected nodes are subdivided and new
communities emerge.

The in-depth analysis carried out on the members of the clusters interconnected
(shown in Fig. 10.12)—and the temporal analysis—allowed the investigators to
discover that some clans belonging to the criminal network had worked with a
certain degree of autonomy and were responsible for some murders. It turned out
that these clans were tasked of committing murders on account of the organization.
Figure 10.13 shows the clans at times t1 and t2 (all names are fictitious).

Some additional remarks are needed. Applying the GN community detection
algorithm without supervision (i.e., only to maximize the modularity) produces
a partition according to which the criminal network is composed of 14 clusters.
The maximum partition density is 0:014 and the largest community is composed
of 84 nodes. This clustering is not coherent with the real structural subdivision
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Fig. 10.11 Girvan Newman community detection on case study network. (a) Case study network
after applying the Newman algorithm. Nineteen communities have been detected, five of which
are visualized, centered on the selected node (“Tobias,” in red). (b) Filtered communities with
intercommunity hops 2 from Tobias node. (c) Egonet of Tobias node (intercommunity hops = 1)
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Fig. 10.12 An example of community detection using the Newman algorithm [38]. The convex-
hull layout has been adopted for the visualization of the communities. (a) Qmax modularity.
(b) Qmax � 1 modularity

of the criminal network, as it emerged from the supervised interactive community
detection procedure, combined with additional comparisons and in-depth examina-
tions obtained from other informative sources. Nevertheless, this result was very
interesting since important information regarding some members of the criminal
network emerged.

In particular, from the analysis of the different levels of clustering selected
interactively, and from the observation of the relative variations in the obtained
configurations, we identified which elements of the network were affected mostly.

Concluding, the analysis of the distribution of phone calls carried out by each
clan (see Fig. 10.14) is a method generally very useful to decide if a good level
of clustering has been obtained after the execution of the community detection
algorithm. The goal of this analysis is twofold: first, it identifies the groups among
which the largest number of phone calls, texts, MMS, etc., took place; second, it
highlights the peaks of the stream of communications related not to single users but
rather to each cluster as a whole, on the occasion of a crime.
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Fig. 10.13 Community detection of a time-varying criminal network. (a) The criminal network at
time t1. (b) The criminal network at time t2

10.6 Related Work

In the latest 30 years academic research related to the application of SNA to
intelligence and study of criminal organizations has constantly grown. One of the
most important studies is due to Malcolm Sparrow [59], related to the application of
techniques of network analysis, and the study of network vulnerabilities, for intelli-
gence scopes. He underlined three key aspects of so-called CNA: (1) the importance
of SNA for the analysis of criminal data; (2) the potential of added intelligence from
network analysis, and (3) the results deriving from the collaboration between the two
sectors.

Sparrow defined four features peculiar of criminal networks (CNs): (1) limited
dimension—CNs are often composed of at most few thousand nodes; (2) infor-
mation incompleteness—criminal or terrorist networks are unavoidably incomplete
due to fragmentary available information and erroneous information; (3) undefined
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Fig. 10.14 Stacked histogram showing the phone call traffic carried out by each group (or clan)
in the time interval of 15 days

borders—it is difficult to determine all the relations of a node; and, (4) dynamics—
new connections imply a constant evolution of the structure of the network.

Thanks to Sparrow’s work, other authors tried to study criminal networks using
the tools of SNA. For example, Baker and Faulkner [60] studied illegal networks
in the field of electric plants and Klerks [61] focused on criminal organizations in
The Netherlands. In 2001, Silke [62] and Brennan et al. [63] acknowledged a slow
growth in the fight against terrorism, and examined the state of the art in the field of
CNA.

Arquilla and Ronfeldt [20] summarize prior research by introducing the concept
of Netwar and its applicability to terrorism. They illustrate the difference between
social networks and CNs, demonstrating the great utility of network models
to understand the nature of criminal organizations. Their work shed light on
strategies, methods, and systems of information flow for intelligence purpose. The
framework proposed by Arquilla and Ronfeldt provided new ground for conceiving
network analysis. Nevertheless, they received some criticism due to their theoretical
approach. Before 2001-09-11, some criticism can be found in the work of Carley,
Reminga and Kamneva [64], devoted to destabilizing initiatives of dynamic terrorist
networks.

All these early studies somehow neglected the importance of network visual-
ization, stressing aspects related more to statistical network characterization, or
interpretation of individuals’ roles rooted in social theory. However, in 2006, a
popular work by Valdis Krebs [43] applied graph analysis in conjunction with
network visualization theory to analyze the Al Qaeda cell responsible of the 2001-
09-11 terrorist attacks in the USA. This work represents a starting point of a
series of academic papers in which SNA methods become applied to a real-world
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cases, differently from previous work where mostly toy models and fictitious
networks were used. Krebs’ paper is one of the more cited papers in the field of
application of SNA to Criminal Networks and it inspired further research in network
visualization for the design and development of better SNA tools applications
to support intelligence agencies in the fight against terror, and law enforcement
agencies in their quest fighting crime.

In criminology and research on terrorism, SNA has been proved a powerful tool
to learn the structure of a criminal organization. It allows analysts to understand
the structural relevance of single actors and the relations among members, when
regarded as individuals or members of (one or more) subgroup(s). SNA defines
the key concepts to characterize network structure and roles, such as centrality
[37], node and edge betweenness [37, 65], and structural similarity [66]. The
understanding of network structure derived from these concepts would not be
possible otherwise [36]. The above-mentioned structural properties are heavily
employed to visually represent social and criminal networks as a support decision-
making processes.

SNA provides key techniques including the possibility to detect clusters, identify
the most important actors and their roles and unveil interactions through various
graphical representation methodologies [67]. Some of these methods are explicitly
designed to identify groups within the network, while others have been developed to
show social positions of group members. The most common graphical layouts have
historically been the node-link and the matrix representations [68].

Visualization has become increasingly important to gain information about the
structure and the dynamics of social networks: since the introduction of sociograms,
it appeared clear that a deep understanding of a social network was not achievable
only through some statistical network characterization [36]. For all these reasons,
a number of different challenges in network visualization have been proposed [54].
The study of network visualization focuses on the solution of the problems related to
clarity and scalability of the methods of automatic representation. The development
of a visualization system exploits various technologies and faces some fundamental
aspects such as: (1) the choice of the layout; (2) the exploration dynamics; and (3)
the interactivity modes introduced to reduce the visual complexity.

Recent studies tried to improve the exploration of networks by adding views, user
interface techniques and modes of interaction more advanced than the conventional
node-link and force-directed [46] layouts. For example, in SocialAction [69] users
are able to classify and filter the nodes of the network according to the values of their
statistical properties. In MatrixExplorer [70] the node-link layout is integrated with
the matrix layout. Nonetheless, these visualization systems have not been explicitly
developed with the aim of the exhaustive comprehension of all properties of the
network. Users need to synthesize the results coming from some views and assemble
metrics with the overall structure of the network.

Therefore, we believe that an efficient method to enhance the comprehension and
the study of social networks, and in particular of criminal networks, is to provide a
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more explicit and effective node-link layout algorithm. This way, important insights
could be obtained from a unique layout rather than from the synthesis derived from
some different layouts.

We recently presented a framework, called LogAnalysis [31, 33], that incor-
porates various features of SNA tools, but explicitly designed to handle criminal
networks reconstructed from phone call interactions. This framework allows to
visualize and analyze the phone traffic of a criminal network by integrating
the node-link layout representation together with the navigation techniques of
zooming and focusing and contextualizing. The reduction of the visual complexity
is obtained by using hierarchical clustering algorithms. In this chapter we discuss
three new network layout methods that have been recently introduced in LogViewer,
namely fisheye, foci, and geo-mapping, and we explain how these methods help
investigators and law enforcement agents in their quest to fight crime.

It’s worth noting that various tools to support network analysis exist. However,
only few of them have been developed specifically for criminal network inves-
tigations. We mention, among others, commercial tools like COPLINK [29, 71],
Analyst’s Notebook,4 Xanalysis Link Explorer,5 and Palantir Government.6 Other
prototypes described in academic papers include Sandbox [72] and POLESTAR
[73]. Some of these tools show similar features to LogViewer, but, to the best
of our knowledge, none of them yields the same effective and scalable network
visualization with support to criminal networks reconstructed from phone call
records.

10.7 Conclusions

In this chapter we presented LogViewer, a next-generation Web-based framework
that provides advanced features for CNA. We first provided a high-level overview
of the workflow that analysts follow to bootstrap a criminal investigation by
using a framework like ours, and then we presented some underlying theory
behind the network measures, clustering methods, and visualization techniques
adopted to uncover criminal behavior in spatio-temporal networks reconstructed
from microscopic human interactions (e.g., mobile phone calls or online social
network data).

LogViewer paves the way for the creation of a general framework for the
identification of criminal activities from digital footprints, however there is a lot to
be done yet. In our vision, this framework will extend at least in three fundamental
directions in the future: (1) infer roles of individuals in the hierarchical structure of
a criminal organization; (2) predict crimes from spatio-temporal patterns of criminal

4http://www.ibm.com/software/products/analysts-notebook/.
5http://www.xanalys.com/products/link-explorer/.
6http://www.palantir.com/solutions/.

http://www.ibm.com/software/products/analysts-notebook/
http://www.xanalys.com/products/link-explorer/
http://www.palantir.com/solutions/


204 E. Ferrara et al.

activity; (3) predict which individuals within a social network are more exposed to
the possibility of turning into criminals in the future, given their social circles and
their interactions with existing criminals.

Concluding, from a technical perspective, we are already working to incorporate
further sources of network interactions at the microscopic level, such as financial
transaction records or face-to-face interactions that might be recorded and tracked
through advanced traditional investigation methods.
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Chapter 11
Modeling Human Conflict and Terrorism
Across Geographic Scales

Neil F. Johnson, Elvira Maria Restrepo, and Daniela E. Johnson

Abstract We discuss the nature and origin of patterns emerging in the timing and
severity of violent events within human conflicts and global terrorism. The underly-
ing data are drawn from across geographical scales from municipalities up to entire
continents, with great diversity in terms of terrain, underlying cause, socioeconomic
and political setting, cultural and technological background. The data sources are
equally diverse, being drawn from all available sources including non-government
organizations, academia, and official government records. Despite these implicit
heterogeneities and the seemingly chaotic nature of human violence, the patterns
that we report are remarkably robust. We argue that this ubiquity of a particular
pattern reflects a common way in which groups of humans fight each other,
particularly in the asymmetric setting in which one weaker but ostensibly more
adaptable opponent confronts a stronger but potentially more sluggish opponent.
We propose a minimal generative model which reproduces these common statistical
patterns while offering a physical explanation as to their cause. We also explain why
our mechanistic approach, which is inspired by non-equilibrium statistical physics,
fits naturally within the framework of recent ideas within the social science literature
concerning analytical sociology, as well as setting our results in the wider context
of real-world and cyber-based collective violence and illicit activity.
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11.1 Introduction

Irrespective of its origin, any given conflict or terrorist campaign will play out
as a highly complex dynamical system driven by interconnected actors whose
actions are driven by a wide variety of evolving information sources, myriad
socioeconomic, cultural, and behavioral cues, and multiple feedback processes.
Furthermore, since conflicts and campaigns have a beginning and eventually an
end, they will by definition exhibit non-steady state, out-of-equilibrium dynamics.
Violent conflict is of course one of humanity’s oldest pursuits. However the new
technologically enabled mixing of social activity in real and cyber space, together
with the fueling of illicit activities by the drug trade and international crime, is
blurring the boundaries between terrorism, insurgency, war, so-called organized
crime, and common delinquency. In addition to the high-profile current cases of
insurgency in Syria and Iraq (e.g., IS Islamic State and its variants), U.S. Secretary
of State Hillary Clinton said that the violence by Drug Trafficking Organizations
in Mexico may be “morphing into, or making common cause with, what we would
call an insurgency” [1]. The United Nations, in its report titled “The Globalization
of crime: A transnational organized crime threat assessment” [2], cites a statement
by the UN Security Council in which they highlight “.. the serious threat posed in
some cases by drug trafficking and transnational organized crime to international
security in different regions of the world.” Interrelated to the situation in Mexico is
that of Colombia, where a thirty-plus year war still awaits a full resolution. Though
Marxist in origin, its character has been mixed up by the narcotraffic industry,
criminal gangs, mafia cartels, paramilitary groups, the presence of at least two major
guerilla organizations, and widespread common delinquency driven by a variety of
socioeconomic factors [3]. As such, the struggle faced by state organizations to
counteradapt to ever-changing guerilla-narco-crime-cartel innovations is immense.
Quoting [3], President Santos outlined new tactics to counteradapt to the guerrillas’
adoption of (i) hit-and-run raids using flexible units, (ii) mixing of rebels and
criminal gangs and their use of joint activities as mutual needs arise, for example
so-called Bacrims which are organized criminal bands, (iii) dressing of insurgents as
civilians to merge into the general population, (iv) carrying out small-scale attacks
for maximum attention but little risk to themselves. These features (i)–(iv) of an
insurgent Red force are not unique to Colombia—they reflect the behaviors likely
to be adopted by any present or future armed group on the Red side that is fighting
to survive, whether it operates in real space or in the cyberworld, or some future
hybrid mix of the two [4–6]. For this reason, these properties (i)–(iv) will play a
core mechanistic role in the generic model presented in this paper.

There is an entirely parallel threat which is evolving on the Internet, in terms of
transnational attacks in the cyber domain from both sovereign state and non-state
actors. This threat is arguably even more urgent than the real-space one, given that
cyber ‘weapons’ (e.g., encounter-network worms or bots) can be assembled very
quickly, and transported in principle at the speed of light (i.e., via communications
links within fiber-optic networks). The advantage for Red (i.e., an insurgent or illicit
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organization) is that these cyber-logistics are much easier, quicker, and naturally
more clandestine than the physical task of having to transport weapons and/or
people from a point of assembly to the place of potential attack. Future predatory
threats in real and/or cyberspace are likely to adapt to, and exploit, the rapid,
ongoing advances in global connectivity, and hence present clear but evolving
dangers to each and every nation state, corporation or legitimate organization.

Irrespective of the precise mix of real-world and cyber terrain, the resulting
arms race involving adaptation-counteradaptation by present and future opposing
actors (Red vs. Blue) will likely lead to rapid innovation of new predation methods.
In addition, the background civilian population, referred to here as Green, cannot
a priori be considered as purely passive. It then becomes a three-way struggle
between Red, Blue, and Green, with the added feature that there may be many
‘shades’ of Red with rapidly changing internal allegiances (e.g., current situation in
Syria and Iraq). Given this complexity, the possibility for rapid escalation of hybrid
real-world attacks, cyber attacks, and cyber-assisted attacks therefore represents an
unprecedented future risk which needs to be understood, quantified, mitigated, and
controlled—or at least delayed or deflated in terms of its potential impact. But there
are many questions that need addressing: How are these national and international
threats likely to evolve going forward? Given their finite resources, how can state
agencies and countries be best prepared to face this challenge? Are there any likely
points of intervention that can be usefully exploited? Without quantitative models
of such situations, solutions must be sought purely on the basis of narratives and
case-studies, assuming any are available. It is clear that such narratives and case
studies could play a crucial role, in particular where very few prior examples are
known, or where strong socioeconomic, cultural, or behavioral factors play a key
role. But as the amount of available data from such attacks increases, is there
anything additional that can be said from a statistical viewpoint? Given that human
conflicts and terror campaigns are examples of a highly complex dynamical system
driven by interconnected issues and actors, we demonstrate in this chapter that a
potentially fruitful approach lies within the framework of the statistical physics of
non-equilibrium open systems. We also believe that this data-driven approach to
conflict may ultimately shed light back on non-equilibrium statistical physics itself.

Our research draws on multiple disciplines, particularly the quantitative mod-
eling approach of non-equilibrium statistical physics [7–18] and complements
recent discussions in the social science literature [19–29]. Our general methodology
comprises four steps: (1) Use spatiotemporal datasets with the highest available
resolution combined with current narratives from the academic literature, online
sources, and the broader national and international media, in order to identify
systematic and anomalous behaviors in the ongoing timelines of daily, weekly,
and monthly events within a given domain of human predation. (2) Quantify the
resulting stylized statistical facts of these multi-component time-series and hence
identify statistically significant deviations or anomalies. (3) Carry out a parallel
procedure for other predation domains (e.g., provinces or countries) identifying
where and when similar stylized facts emerge and, by contrast, where anomalies
arise. (4) Develop a generative model of the underlying multi-actor dynamics for
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the domains of interest (see [30–47] for previous examples of this approach). Our
rationale for seeking such patterns across vastly different conflicts is that there are
likely to be generic ways in which humans ‘do’ covert group activities—just as in
everyday life, both traffic and stock markets exhibit generic statistical features in
cities and countries across the globe [27–29].

11.2 Context and Data

Even the simple representation in Fig. 11.1 demonstrates that at any one timestep,
the complexity of the actors and their interactions can create a formidably compli-
cated dynamical system. For studies of fatalities, the observable output xi.t/ can
be considered a vector whose elements describe the number of fatalities for each
population type (i.e., Red, Blue, Green) at place i at timestep t. More generally, the
output xi.t/ would be a tensor, showing separately the numbers of victims killed
and wounded, and the different weapon types used (e.g., improvised explosive
device (IED), or suicide bomb, or rocket propelled grenade, or small arms fire).
For simplicity, we will tend to refer to the ‘Red’ population as ‘insurgent,’ even
though they may be a heterogeneous collection of traditional armed fighters, cyber-
gangs, drug cartels, idealistic insurgents, rebels or rioters, and we refer to ‘Blue’
as the ‘coalition military’ or ‘official antiterrorist organization’ even though they

Fig. 11.1 Schematic of the complex spatiotemporal dynamics of modern multi-actor conflict in
real and/or cyber space. The result is a complex ecology of interactions and observed events, driven
by some dynamically evolving but hidden network of loosely connected Red cells featuring non-
local interactions aided by electronic communications [31, 46, 47]. At any one time, there may be
multiple types of actor, and these may cross different cultural and behavioral boundaries. There is
empirical evidence that each population is partitioned into loose temporal cells [3–6]. Occupants of
each cell may be geographically separated, but are coordinated through communications channels.
Each cell may sporadically coordinate with other cells, or existing coordination within a cell (and
hence the cell itself) may fragment in some way—for example, as a result of sensing danger
[4–6, 15, 16, 24]. In addition to the traditional Blue (e.g., state military, terrorist group, or
intelligence organization) and Red (e.g., insurgency or hacker group) actors, there is also a
background civilian population which is labelled as Green, but which may not be passive in the
struggle
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may be cyber-defense, police, security forces, etc. Setting aside the issue of whether
the data recorded has an observational bias or not due to the way it was recorded
(e.g., main street bias [44]), there are many other potential complications facing a
data-driven research program such as ours. These include, but are not limited to,
the following: (1) Heterogeneity of the insurgent force strength (i.e., Red) which is
depicted in Fig. 11.1 as various ‘types’ of fighter, or weapons, or assets including
financing. This could also include different cultural, social, and behavioral types
within Red. Even the assumption that there is just one Red force can be misleading,
as evidenced currently in Colombia (ELN, and FARC) and in the Middle East,
particularly Syria with the different rebel factions including ISIS and its variants. In
short, it is not just an ‘us and them’ situation. (2) Heterogeneity of Blue, comprising
warfighters, equipment, and money. (3) Heterogeneity of Green, the background
civilian population, in terms of tribal or ethnic groups. (4) The non-passive nature
of Green due to possible influence, sympathy, or direct recruitment to Red. For
example in Fig. 11.1, active support of Red is indicated by two green figures with
red heads who then get converted in the next timestep to Red. Or it could simply be
that a Green member shows an active failure to support Blue. (5) Changing number
of Red members, or Red cells. (6) Finite lifetime of any given Red cell due to
endogenous or exogenous factors, such as its implicit fragility in the presence of
Blue or when perceiving imminent detection or capture. The grouping dynamics
that occur within and between insurgent and terrorist cells, and other illicit group
activities, are unlikely to be of the form seen in more open social settings. As stated
by Diego Gambetta in his influential book ‘Codes of the Underworld’, on p. 5. , “. . . .
contrary to widespread belief, criminal groups are unstable [4]. In the underworld,
people have a higher rate of mobility (and mortality) than most professions.” This is
also supported in the case of insurgencies by accounts such as by Robb and Kenney
[5, 6]. Such fragmentation under danger is also entirely consistent with observed
antipredator defenses in birds and mammals [16, 24]. (7) Decisions by Red cells
to attack are not made in isolation, nor are they irrespective of the past. Instead
there is a complex, possibly unknowable, mix of past events which affect a given
cell or its members in particular ways—just as it does in the non-violent world of
collective human struggles, e.g. financial market predatory trading [29]. In addition
there is the convoluted effect that current and past exogenous and endogenous
events and news might have, as is also known from the predatory environment of
financial markets [48]. These reactions to past and present events will also likely
depend nonlinearly on social, cultural, and behavioral factors. (8) The nature of
the observable events themselves: Even if they are accurately recorded, complete
information will never be known precisely about who did what and why. For these
reasons, the challenges facing anyone such as ourselves who wishes to analyze
high-resolution spatiotemporal datasets recording the results of collective human
violence, look for common stylized facts, and then finally build minimal mechanistic
models, are highly nontrivial. Indeed, the fact that more detailed spatiotemporal data
is now becoming available, often down to the daily scale within individual provinces
or districts, means that the bar has been raised in terms of what a model needs to
achieve in order to be considered consistent with the data.
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Our data sources are a mix of real-time media databases, official (government
and non-governmental organization) reports, and academic studies [49]. Some of
our data was obtained from Uppsala Conflict Data Program. For Afghanistan, the
dataset integrates data from icasualties.org with data provided by Marc Herold of
the University of New Hampshire and the ITERATE terrorism database. The Iraq
data also amalgamates three separate data sets for violent events in Iraq: Iraq Body
Count, ITERATE, and icasualities.org. Data for the Peruvian conflict derives from
the Truth and Reconciliation Committee. Sierra Leone data comes from Macartan
Humphreys of Columbia University. Malcolm Sutton is the source of the data
for the Northern Ireland conflict which builds on a large number of sources. For
the different Departments within Colombia, the Colombian Conflict Database was
kindly provided by the Conflict Analysis Resource Center (CERAC) in Bogota [50].
The American and Spanish civil war data came from the work of Ron Francisco at
the University of Kansas. Comparative results for suicides, accidents, homicides,
etc. are obtained from analyzing the data of Medicina Legal in Colombia, while
those for sexual violence against women come from [51].

In terms of terminology regarding what to call clusters of insurgents, it is
common knowledge that a small cluster of people are sometimes called a group, a
team or a cell—likewise a larger cluster may also be called a group, a crowd, or even
an organization. Similarly, terrorists and insurgencies are sometimes referred to as
‘groups’ even though this could be the entire entity (e.g., all members of the FARC
and their infrastructure) or just a few members who happened to be together on a
particular attack. In order to avoid a misunderstanding of what constitutes a group, a
cell, and an organization, we adopt the language in which a cell is a cluster of a few
Red agents (e.g., insurgents) which carries out a given attack, and organization is the
entire Red outfit—even though we stress that we do not want to assign any specific
organizational capabilities, or assume that Red is necessarily well organized, or
following a hierarchy. Indeed, as we will show, one of the implications of our work
is that the cells are loose and transient in terms of their operational activity. This is
one of the reasons they are probably so hard to track, in both real and cyber space.

11.3 Theoretical Background

Theoretical attempts to model human conflict mathematically have had a long
history. They tend to resemble predator–prey models which themselves are akin
to chemical reactions. These models’ dynamics are typically evaluated either in
the form of continuous differential equations in order to obtain partially analytic
results, or through computationally intensive cellular automata or individual-based
models on some kind of fixed grid such as a checker-board or static spatial network
[18, 52, 53]. Outside the few-particle limit, mean-field mass action equations
such as Lotka-Volterra can provide a fair qualitative description of the average
behavior, i.e. dtNR.t/ D f .NR.t/; NB.t// and dtNB.t/ D g.NR.t/; NB.t// where
NR.t/ and NB.t/ are the Red and Blue population’s strength at time t. However,
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such population-level descriptions of living systems do not explicitly account for
the well-known phenomenon of intra-population group (e.g., cluster) formation
[24], leading to intense debate concerning the best choice of functional response
terms for f .NR.t/; NB.t// and g.NR.t/; NB.t// in order to partially mimic such
effects. Analogous mass-action equations have been used to model the interesting
non-equilibrium process of attrition (i.e., reduction in population size) as a result
of competition or conflict between two predator populations in colonies of ants,
chimpanzees, birds, Internet worms, commercial companies, and humans in the
absence of replenishment. The term attrition just means that ‘beaten’ objects become
inert (i.e., they stop being involved), not that they are necessarily destroyed.

In contrast to the situation a few decades ago, however, there are a number
of additional complications in present and future conflicts that challenge such
prior models: First, the classic image of a battle being fought between two well-
regimented armies lining up at dawn on opposite sides of a field or plain does
not describe the fragmented, fluid situation of modern insurgencies [4–6], either
in the real or cyber worlds. Second, broadcasting communications now exist in
which events and images can be portrayed almost instantly to a broad sector of the
global population, thereby possibly influencing the decisions of their elected leaders
and respective security forces. Third, personal media resources such as Twitter and
Facebook, together with texts and emails, mean that fighters (and potential fighters)
who are separated across different streets, or towns, or countries, or continents,
can be connected together within a second—and hence they can coordinate their
actions such that they begin to behave as one quasi-coherent group (or ‘cell’),
even though they may never have met each other and may even be geographically
located on separate continents. It can also happen that the members of such a cell—
who may not be physically connected, but whose actions are somehow coordinated
through the use of technology—suddenly lose their collective coherence (e.g., loss
of communications, or loss of trust) and hence the cell has effectively fragmented.
At the touch of a keystroke or press of a button on a cellphone keyboard, they
instantaneously disappear into the background noise generated by everyday human
activities. Fourth, the distinction between an insurgent or terrorist (i.e., Red) and
the background civilian population (i.e., Green) can be blurred and itself highly
fluid. It is no longer the case that a civilian population can be considered some inert
background which simply soaks up the violent events as they play out.

Our approach to coping with this complexity considers the underlying ecology as
interacting populations of heterogenous agents who operate with covert but dynam-
ically evolving communication networks, and who adapt their strategies in response
to external events and news, as well as counteradaptation by the relevant state
authorities [30, 31, 34–36, 38]. In so doing, we incorporate the combined effects of
intra-population grouping dynamics and inter-population attrition dynamics [7, 24]
thereby generating an intriguing non-equilibrium many body problem. Our overall
vision of the complex global interaction between gangs, cartels, illicit crime groups,
etc. is therefore that of a complex ecology whose dynamics and internal interactions
may change and adapt over time, with heterogeneous actors, interactions over space
and time, adaptation-counteradaptation, feedback, and movement or communication
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via some underlying dynamical network. This view is in accordance with the
state-of-the-art view of modern violent gangs proposed by Felson [54], and the
descriptions of insurgencies by Kilcullen, Robb, and Kenney [4–6]. Our mechanistic
methodology is also remarkably consistent with current thinking in the social
sciences—in particular, analytical sociology as developed by Hedstrom [55]. In
particular, Hedstrom states [55] “The basic idea of a mechanism-based explanation
is quite simple: At its core, it implies that proper explanations should detail the
cogs and wheels of the causal process through which the outcome to be explained
was brought about. Mechanisms consist of entities (with their properties) and the
activities that these entities engage in, either by themselves or in concert with other
entities. These activities bring about change, and the type of change brought about
depends on the properties of the entities and how the entities are organized spatially
and temporally.” Paraphrasing Hedstrom [55], a basic point of the mechanism
perspective is that explanations that simply relate macro-properties to each other
are unsatisfactory. He goes on to state that these explanations do not specify the
causal mechanisms by which macro-properties are related to each other. It seems
that deeper explanatory understanding requires opening up the black box and finding
the causal mechanisms that have generated the macro-level observation [55, 56]. He
gives the example of a car’s engine whose mechanisms and parts are quite visible
when the hood is opened [55]. Hedstrom also states that “when one appeals to
mechanisms to make sense of statistical associations, one is referring to things that
are not visible in the data, but this is different from them being unobservable in
principle.”

11.4 Timing of Fatal Events and a Dynamical Red Queen

We start by analyzing the timing of events in terms of a generic arms-race struggle
of adaptation and counteradaptation between Red and Blue, following [30]. We
consider Red (e.g., insurgents) as continually wishing to damage Blue (e.g., kill
coalition military). All other things being equal, Red would like to complete
successful attacks as quickly as possible so that successive successful attacks
become more frequent. We therefore analyze the times for successive fatal days
for Blue, finding that they follow an approximate power-law ‘progress curve’
	n D 	1n�ˇ [30]. Here 	n is the time between the .n � 1/th and nth fatal day, 	1 is
the time between the first two fatal days, and ˇ describes the subsequent escalation
(or de-escalation). A fatal day is one in which Red activity produces at least one
death. In particular, we calculated the best-fit power-law progress curve parameters
ˇ and 	1 for each geographical region.

Figure 11.2 shows what one would expect if the relationship between ˇ and 	1 for
Red-Blue events followed that of individuals—more specifically, if the dynamics of
events emerging from Red-Blue dyads followed the known patterns of behavior of
individuals as studied in the psychology and management literature. In such studies,
an individual successfully completes a task that is repeated, just as successive Red
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Fig. 11.2 In one-sided
everyday human activities
(i.e., no Blue opponent to
prevent task completion)
there is no clear pattern in the
relationship between the
progress curve parameters
ˇ and 	1 across individuals.
(a) Top: fitting procedure.
Schematic timeline of
successive events (i.e.
successive completions of
task) shown as vertical bars.
(b) Middle: existing empirical
results in the literature for
such tasks. Data from [57].
(c) Bottom: results for
individuals searching Internet
sites. Data from [58]. There is
no systematic relationship
between ˇ and 	1, in stark
contrast to Figs. 11.3 and 11.4
for Red-Blue interacting
systems. Adapted from [49]

attacks imply that Red has managed to carry out a fatal attack against Blue (i.e.
Blue has not managed to stop the attack or prevent fatalities). In the psychology
and organizational literature, individuals repeatedly completed tasks such as proof-
reading, solving a puzzle, or purchasing something online [57, 58]. Such a task does
not change over time, and is hence akin to Blue not counteradapting in any way
to resist the next attack. Panel 2(b) summarizes Crossman’s classic results showing
that for a given type of task (e.g., proof reading), each subject exhibits his/her own
ˇ and 	1. The lack of a generic dependence between ˇ and 	1 is no surprise given
the heterogeneity of individual humans. Figure 11.2c shows that this lack of any
linear dependence also arises for humans completing cyber tasks, specifically the
navigation of different websites.

By complete contrast, Fig. 11.3 shows that for two-sided conflicts, a remarkable
linear relationship emerges between ˇ and log	1 for different geographical regions
within each conflict. A specific example for Afghanistan is shown in more detail in
Fig. 11.4, showing that the linearity extends to a specific weapon type (i.e., fatalities
caused by IEDs)[30].

To explain the suitability of the progress curve 	n D 	1n�ˇ to describe trends
in the timing of fatal events leading to Figs. 11.3 and 11.4, and in particular the
observed range of ˇ values, we have developed a dynamical version of the Red
Queen evolutionary race [30] as shown schematically in Fig. 11.5. We define R to be
the lead of the Red Queen (e.g., local insurgency) over the Blue King (e.g., coalition
military) opponent, i.e. strategic advantage in an arms race. In general it could be a



218 N.F. Johnson et al.

Fig. 11.3 Results from the timing of fatal events across conflicts. For a given symbol (right panel),
each data-point shows .	1; ˇ/ on a semi-log plot, where these .	1; ˇ/ values are obtained from
fitting the trend in inter-event times (upper inset) within a conflict. Several best-fit lines are shown
as a guide. Separate symbols are used to show that results are insensitive to the precise target of
the attacks: while Blue represents the overall society that Red is attacking, C counts fatal days in
terms of Red causing civilian casualties while G counts them in terms of Red causing state security
casualties (e.g., military casualties). Red star shows result for global terrorism attacks. Adapted
from [49] which contains a detailed discussion of the individual data points

high-dimensional vector since strategic advantage may involve multiple factors, e.g.
training, knowledge of local geography, etc. but for simplicity here we represent it as
a scalar and hence will deal with a one-dimensional advantage—though we stress
that the mathematical nature of random walks in multiple dimensions mean that
our analysis and derivation has general validity. The traditional Red Queen story
involves her running as fast as she can in order to stay at the same place. This
implies that Blue instantaneously and perfectly counter-adapts to any Red advance,
such that they are always neck and neck, i.e. R D 0 for all time. However, such
instantaneous and perfect counter-adaptation is not possible in practice. Indeed, the
complex adaptation-counteradaptation dynamics resulting from sporadic changes
in the weaponry, skills or numbers of troops and insurgents, or changes in their
experience and gathered information, or changes in local sentiment, imply that
the temporal evolution of R is likely to be so complex as to appear random. This
suggests that we can mimic the complex, jerky ‘walk’ that R undergoes, by a
stochastic diffusion process. The key advantage is then that our statistical results
do not require knowledge about the precise mechanism causing a given change in
R, nor its precise value.
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Fig. 11.4 Solid blue line shows best linear fit through progress-curve parameter values ˇ and 	1

on a semi-log plot. Results are shown for individual Afghanistan provinces (blue squares) for fatal
attacks by insurgents (Red) on coalition military (Blue). The green dashed line shows value ˇ D
0:5 which is the situation in which there are no correlations in the dynamics of R (see Fig. 11.6).
Also shown are the results for global terrorist attacks (dark diamond is deduced from the best-fit
progress curve for global terrorist group activity when averaged over all attacks while the light
diamond is an alternative estimate where ˇ and 	1 are calculated directly by inserting the time
intervals between initial attacks into the progress curve formula). Blue triangle is suicide bombings
from Hezbollah suicide attacks, and the white triangle is for suicide attacks within Pakistan (data
from cpost.uchicago.edu/ ). These results are based on a slightly smaller dataset than that used in
Ref. [30], hence the plot differs slightly in detail

We now discuss the explicit case of a coin-toss stochastic process for R,
though our final mathematical expressions are generic. With an outcome of Heads
increasing R and Tails reducing it, R will follow a random walk. Given that R is
Red’s lead, and hence its instantaneous advantage over Blue, it makes sense to
use R as a proxy for, and hence set it proportional to, the instantaneous rate of
fatal days inflicted by Red. As R tends toward zero, or becomes negative, the time
interval between subsequent fatal days diverges. Hence provinces in which R is
always positive can have frequent fatal attacks by Red and therefore show up in
Fig. 11.3, while provinces in which R is always negative do not. It is reasonable to
expect that any significant changes in R (which may be positive or negative, large
or small) will occur around days in which Red manages to inflict a fatal attack:
Insurgents have by definition become successful at that moment and so this may
stimulate a further increase in their strategic advantage R, while Blue’s loss may
stimulate an effective counter-adaptation effort and hence reduce R. Hence R is
predominantly a function of n (i.e., R.n/). A well-known mathematical result for
large n is that the typical magnitude of R after n steps is given by its root-mean-
square value jR.n/jrms � nˇ where ˇ D 0:5 for any diffusion process in which the
changes in R.n/ are independent and their distribution has finite variance, even if
the changes in R.n/ do not have the same size. This follows from the well-known
central limit theorem. In the special case that steps in R.n/ have the same size, this
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Fig. 11.5 Dynamical Red Queen model for the Red-Blue struggle. Red (e.g., insurgent) advantage
R is represented as a vector in a multi-dimensional space whose axes may represent techno-
logical, psychological, social, cultural, or behavioral factors. R follows a stochastic walk in this
D-dimensional space. Using known results from statistical physics, exact results can be obtained
for ˇ under different conditions of correlation, etc. within the walk. For the simplest case of an
uncorrelated walk, ˇ D 0:5. Adapted from [49]

result is equivalent to the statement from elementary statistics that the variance of
the sum of uncorrelated variables is equal to the sum of the variances.

It is known from statistical physics that for more general stochastic walks with
implicit correlations between changes in R.n/, Red’s advantage (and hence the
rate of Red attacks) will still vary as jR.n/jrms � nˇ but with ˇ ¤ 0:5. Hence
the time between attacks will vary as jR.n/j�1

rms � n�ˇ. By definition this is 	n,
hence we have derived theoretically the observed empirical result that 	n / n�ˇ and
hence 	n D 	1n�ˇ. Indeed for a wide range of possible correlations within R.n/, it
is known that 0 < ˇ < 1:5 in agreement with Figs. 11.3 and 11.4. For example,
if Blue’s counter-adaptation is completely inadequate or absent, R will persistently
increase at every step n and hence jR.n/jrms � n which means that ˇ � 1. This is
analogous to Red moving steadily forwards at constant velocity while Blue remains
stuck at the starting line. If Red gains momentum, R may even start accelerating
and hence ˇ > 1 as observed for a few points in Figs. 11.3 and 11.4. By contrast,
effective Blue counter-adaptation to each Red advance means that R stays close
to zero, hence jR.n/jrms is of order 1 (i.e., n0) and so ˇ � 0. However it is only
in the idealized—and highly unrealistic—case where Blue’s counter-adaptation is
instantaneous and perfect, that R will always be exactly zero. Likewise it is only if
Blue proactively produces its own advances that R can become permanently negative
and hence that geographical area becomes peaceful.

The unweighted linear least-squares approach that we used to fit the trend in log	n

versus logn for each geographic area (i.e., for each point in Figs. 11.3 and 11.4),
provides an unbiased best estimate in the limit that the residuals approach statistical
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Fig. 11.6 Example of the residuals for the linear fit on the progress curve plot of log	n vs. logn,
typical of the conflicts in Figs. 11.3 and 11.4. Case chosen is Magdalena, Colombia, shown as
black ring in Fig. 11.3. As can be seen, the residuals are approximately Gaussian distributed
(left) and show no serial correlation (right) which is consistent with the assumption that they
are independent and identically distributed variables, and hence the least-square progress curve
fit provides unbiased best estimates for log	1 and ˇ. Adapted from [49]

independence with identical distributions (i.i.d.). This does indeed turn out to be a
good approximation in our study as demonstrated in Fig. 11.6. The reason it works
so well is that the error (i.e., fluctuations) in the underlying 	n values have a crudely
multiplicative form, like a failure process, such that 	n D X	1n�ˇ where X is a
multiplicative noise process of the form X D QM

m .1 C �m/ where f�mg are drawn
from a random distribution with finite variance. Taking the logarithm of both sides,
and using the well-known result that log.1C�m/ � �m when �m � 1 yields a scatter
of points around the line log	n vs. logn with residuals that are sums of f�mg. Hence
the distribution of the residuals should become Gaussian with no serial correlations,
consistent with i.i.d. variables. This in turn suggests that each fatal Red attack can
be seen as a failure process in which a set of M processes need to go ‘wrong’ in
order that Red can create its next fatal attack.

Using this theory, we can therefore interpret and compare the entire spectrum
of observed ˇ values for different provinces, and also different terrorism domains,
in an intuitive and unified way using language concerning the relative advantage
between Red and Blue. Most importantly, this broad-brush Red Queen-Blue King
theory does not require knowledge of specific adaptation or counter-adaptation
mechanisms, and hence bypasses issues such as changes in insurgent membership
(i.e., composition, numbers or numbers of cells), technology, learning or skill-set,
as well as removing any need to know the hearts and minds of local residents.
We also find that a similar picture arises in other situations where an arms-race
struggle is underway—for example, for suicide bombings in individual provinces in
Pakistan. In all these cases, we stress that a change in Red’s lead R might result
from a conscious or unconscious adaptation by Red, or by Blue, or both—for
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example, there may be an increase in Red numbers because of a conscious
recruitment campaign or simply due to bad press involving Blue’s activity. Likewise
R may change due to a surge in Blue’s numbers or strength, or a change in its
tactics or defenses. It does not matter: The precise cause for changes in R does not
affect the validity of our theory. The fact that the relationships in Figs. 11.3 and 11.4
are linear, suggests an intriguing coupling between the way in which Red and Blue
are fighting in each region. If the dynamics were identical within each separate
geographic area in a given conflict, all the corresponding .ˇ; 	1/ points would lie on
top of each other in Fig. 11.4 (and Fig. 11.3); if they were completely independent,
they could in principle lie scattered anywhere in the plane. However the fact that they
follow a linear relationship suggests the existence of a weak coupling between them.
The origin of such a coupling awaits a future detailed explanation and represents
a challenge to existing narratives concerning conflict across different geographic
areas.

11.5 Severity of Events and Group Dynamics

Looking across our datasets for different conflicts, we find no evidence for a strong
systematic correlation between the timing of fatal events and their severity, which
is consistent with reports from other researchers [12]. This lack of correlation
provides an important simplification since it enables us to analyze the timing of fatal
events separately from their severity. In particular, we find that the event severity
distribution is essentially stationary throughout the main portion of each conflict,
while the timing of individual events is a non-stationary process with periods
of initial escalation or de-escalation as discussed in Section 1.4. We therefore
aggregate all events across the main portion of each conflict, checking that the
choice of window does not affect our conclusions. Given the ubiquity of power-
law forms in other complex systems involving human collective activity, we focus
on analyzing the extent to which power-laws provide a good fit to the tail of the
severity distribution.

Figure 11.7 summarizes our findings from applying a state-of-the-art maximum
likelihood fitting procedure [59] for a power-law s�˛ to the tail in the distribution
of the severity of individual events within a given conflict, across geographic scales
ranging from individual departments within a country, to individual countries within
a continent, to conflicts across the globe including global terrorism. Figure 11.7b
inset illustrates this power-law tail distribution; s is the severity of an individual
event which, in the case of violent conflict, is the number killed or injured in an
attack; ˛ is the power-law exponent; M is the normalizing factor; p is the goodness-
of-fit. It can be seen that most severity distributions approximate to a power law and
have a corresponding power-law exponent around 2.5.

Our explanatory model is shown schematically in Fig. 11.8. The most basic
version is solved explicitly in the Appendix using a mean-field approach, yielding
a steady-state Red cell-size distribution with an approximate power-law tail of the
form nx � x�2:5 where nx is the number of cells of strength (size) x. Figure 11.9
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Fig. 11.7 Pattern in distribution of severity per event, shown for multiple conflicts across
geographic scales with each datapoint showing the best-fit values for the power-law tail (see inset
in (b)). (a) shows results for conflict in different spatial regions within a given country (departments
in Colombia). (b) shows results for high-profile modern conflicts across the globe, including Iraq.
(c) shows results for countries across a given continent (Africa). (d) shows results for conventional
wars and other forms of human violence as a comparison. Inset shows Red operational network
for PIRA in South Armagh, obtained from empirical analysis of available data [49]. Theoretical
value of 2.5, shown by dashed horizontal line, emerges from a simple version of our theory (see
Appendix and Fig. 11.9). Green ring is value for entire Africa database. Black triangle shows
value for global terrorism attacks. Purple ring shows value for all interstate wars from 1860–1980.
A goodness-of-fit less than 0.05, meaning that it is unlikely that the data have a power-law tail, is
shown as a red shaded area. Results confirm that one-sided struggles such as suicides and natural
deaths do not show the pattern of a power-law tail. The darker the color of each data-point, the
larger the total number of victims. Adapted from [49]. Details for each datapoint are given online
in the Supplementary Information of [49]

shows that this theoretical result originating from our generative model in Fig. 11.8,
is remarkably robust to model variants which relax various assumptions and
add additional features to more closely mimic the real world. Also, the network
dynamics that it produces are consistent with the most recent and detailed fieldwork
available of a Red group: PIRA (the Provisional IRA) who inflicted attacks against
the stronger British government forces (Blue) in Northern Ireland from 1969
onwards. A snapshot of the network is shown in Fig. 11.7b. The coalescence process
in the model mimics the situation in which two cells (or individuals in these cells)
initiate a communications link between them of arbitrary range (for example, a
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cells join  
together  

cells  
fragment 

Population could be a real world insurgency, terrorist group, criminal gang, Internet/
multimedia driven delinquency or rebellion, cyber-insurgency, cyber-terrorism group, online 
criminal gang or informal collection of hackers 

people may be
recruited or 
converted at 
each timestep 

people may leave or 
be captured/killed 
at each timestep 

N(t) : total strength at timestep t 

Ng(t) :  total number of cells at timestep t 

where1 Ng(t) N(t)
Both Ng(t) and N(t) may have  

complex time-variation

Fig. 11.8 Schematic of dynamical grouping within Red. See Appendix for mathematical details of
our theory and Fig. 11.9 for its generalizations. Red has an overall strength N.t/ which is distributed
into dynamically evolving cells with time-varying size, number and composition. Hence cells can
have a wide range of strengths at each time-step t. The total number of cells Ng.t/ at time t varies
with time, as can the total number of composite objects (i.e., insurgent members, equipment,
information) N.t/. Since Ng.t/ is the number of cells, and N.t/ is the total number of objects
(e.g., insurgents) these two quantities are fairly independent with the only constraint being that
Ng.t/ � 1 (i.e., the smallest number of cells is when every object belongs to this same cell) and
Ng.t/ � N.t/ (i.e., the largest number of cells is when every object is isolated). In this example
shown, the number of cells of a given size s at this timestep t, prior to fragmentation of the cell of
size 3 into 3 cells of size 1, is nsD1.t/ D 0, nsD2.t/ D 1, nsD3.t/ D 2, nsD4.t/ D 0, nsD5.t/ D 1,
ns�6.t/ D 0. The total number of insurgents is N.t/ D P

s ns.t/ D 1 � 2 C 2 � 3 C 1 � 5 D 13.
The number of cells Ng.t/ D 4. After fragmentation, N.t/ D 13 still, but now Ng.t/ D 6

mobile phone call), and hence the two cells tend to coordinate their actions from then
on—albeit maybe loosely. Indeed, the individual agents need not know each other,
or be physically present in the same place. The long-range nature of the coupling
makes it a reasonable description for physical insurgencies and crime groups using
modern communications in real space, as well as cells acting in cyberspace—or
any mix of the two [6]. Indeed, the language of what is a cell and what is a
group, and what is crime and what is insurgency, becomes somewhat irrelevant
since the mechanistic operational details are now very similar. The fragmentation
process may arise for a number of social or situational reasons, from breakdown in
trust within the cell [4] through to detection of imminent danger [6, 24]. It is well
documented that groups of objects (e.g., animals, people) may suddenly scatter in
all directions (i.e., complete fragmentation) when its members sense danger, simply
out of fear [24] or in order to confuse a predator [24]. Or they may fragment
following a clash in which the cell perceives that it is losing. As confirmed in



11 Modeling Human Conflict and Terrorism Across Geographic Scales 225

Fig. 11.9 Effect of generalizations of our simple one-population coalescence-fragmentation
model shown schematically in Fig. 11.8, which describes Red dynamics (see Appendix). Adapted
from [49]

Fig. 11.9, the precise details of these mechanisms do not matter since they tend
to give similar empirical distributions. Interactions are distance-independent in our
model as in [9] since we are interested in systems where messages can be transmitted
over arbitrary distances (e.g., modern human communications). Bird calls and
chimpanzee interactions in complex tree canope structures can also mimic this
setup, as may the increasingly longer-range awareness that arises in larger animal,
fish, bird, and insect groups [24]. These mechanisms are consistent with observed
animal anti-predator behaviors [16, 24] and also criminal gangs [4, 6, 54]. Indeed
such fragile dynamical clustering makes sense within an insurgent population, just
as schools of fish or animals will go through cycles of build up and then rapid
dispersal when a predator approaches [4–6, 16, 24]. The coalescence-fragmentation
process is also consistent with current notions of other modern insurgencies as
fragmented, transient, and evolving [3, 5, 19]. We recall the phrase of Gambetta
[4] “. . . . contrary to widespread belief, criminal groups are unstable.” Further
support is again provided by Kenney [6] in From Pablo to Osama: Trafficking
and Terrorist Networks, Government Bureaucracies, and Competitive Adaptation:
“To protect themselves from the police, trafficking enterprises often compartment
their participants into loosely coupled networks and limit communication between
nodes”; “Trafficking networks . . . . are light on their feet. They are smaller and
organizationally flatter”; “In progressive-era New York, according to historian
Alan Block, cocaine trafficking was organized by different networks of criminal
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entrepreneurs who formed, reformed, split, and came together again as opportunity
arose and when they were able”; “loose collection of ‘cells’ containing relatively
small number of cell workers”; “Abu Sayyaf . . operates as a decentralized network
of loosely coupled groups that conduct bombings, kidnappings, assassinations,
and other acts of political violence in pursuit of a common goal . . ”. Kenney
also highlights the close connection of traffickers to terrorists: “Al Qaeda share
numerous similarities with drug-trafficking enterprises” [6]. The inset in Fig. 11.7d
shows a similarly decentralized, clustered structure which is also consistent with
jihadist operational networks and other covert networks, e.g. online gold farmers
[49]. In both the empirical PIRA network and our model, a link simply denotes
some coordinated activity, but is not necessarily related to spatial proximity or
acquaintance.

Following recent empirical findings linking size to lethality [60], our model then
takes a cell’s strength (size) x as proportional to the severity of an event s in which
it participates. We then assume that the probability that a given cell is involved
in a given event is set by exogenous factors (i.e., in the right place at the right
time). Hence the shape of the distribution of event severities can be mimicked
by randomly picking cells and setting the severity equal to the cell strength x.
As a result, the tail distributions for the event severities and the cell strength will
be approximately the same. Our simple model is therefore able to reproduce the
observation in Fig. 11.7 that the distribution of severities has an approximate power-
law tail s�˛ with ˛ � 2:5. This result is robust to many generalizations (see
Fig. 11.9), including the picking of cells for events [31]. One might wonder if
our coalescence-fragmentation model falls down on the basis that an approximate
power-law severity distribution exists from the outset of their empirical dataset for
each terrorist organization [12] and yet the coalescence-fragmentation process may
need time to converge to its steady-state power-law distribution. However this is not
the case. First, the N.t/ initial members can be coalescing and fragmenting before
any violent event is undertaken—indeed, there are many examples of underground
organizations and US-based militia who spend many years evolving without any
noticeable violent activity. No external event may be observed, but there is still
a dynamical network of groups evolving in the background. Most importantly,
any such organization will undoubtedly already have several existing clusters of
contacts, hence it is not the case that the distribution has to build up from all isolated
agents. A nascent insurgent, criminal, or cyber group could be created effectively
instantly from such an existing structure. Second, numerical simulations show that
the fat-tailed distribution develops very quickly, even if we start with isolated
agents. Third, it is not the case that starting from day 1 of a given organization, all
fatal events are recorded in the database. An alternative candidate model proposed
in [11] is simply a combination of phenomenological broad-brush factors which
happen to give a power-law, but without any specific justification for yielding the
observed exponent value of 2.5. Instead, the parameters of this model [11] need
to be picked in order to obtain the observed power-law exponent value of 2.5. In
reality, a continuum of values—including values well away from 2.5—are just as
likely within that model [11]. Nor is there any quantitative evidence to support this
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alternate mechanism, e.g. studies of PIRA show that variations in the number of
actors can be largely unrelated to variations in the lethality of the organization.

11.6 Outlook

Our modeling approach was characterized by two stages: First, our broad-brush
dynamical Red Queen theory describes the timing of fatal events [30]. This theory
and analysis does not depend on the precise mechanism which changes Red’s lead at
any one time. Second, we provide a plausible mechanistic model of Red’s internal
dynamics comprising dynamically evolving cells in some loose and sporadically
changing structure. This model describes the severity of fatal events. The simplicity
of our approach allows a range of analytic mathematical analysis to be performed
for both the severity [35] and timing of fatal events [29]. Finally we comment on
the comparison to cyber-gangs and street gangs. We found that when we analyzed
the empirical distributions for Long Beach street gang sizes and online guild sizes
for World of Warcraft [37], the empirical distributions were not power-law like. This
can be explained by the fact that our data comprised the actual membership of online
guilds and gangs, as well as street gangs, as opposed to the number of objects who
happen to be coordinated (e.g., online, or on the street) at any one time. The latter is
likely to vary rapidly and spontaneously every day as members come online or onto
the street, however the underlying membership would be expected to change more
slowly over timescales of months. In addition, when individuals leave a street gang
or an online guild, it is unlikely that this happens because the entire gang or guild is
disbanding—hence the fragmentation process in our model would be less realistic.
Indeed, it is known that fission processes involving the partial dismantling of a large
cell into just a few randomly chosen splinter-cells tend to generate non-power-law
distributions, as observed for street gangs and online guilds [37].
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Appendix

Here we consider the basic version of our model, stripped down to a simple form
with no decision-making, and only one population—the Red insurgency. Instead
of having cells fragment when interacting with Blue, or when sensing imminent
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danger, we simply assign a probability for them to fragment. The resulting model
yields an exponentially cutoff 2.5-exponent power-law for the distribution of cell
sizes. We note that generalizations of this model have appeared in the literature—in
particular, [35] contains a number of relevant generalizations, including a variable
number of agents in time N.t/. A later paper [61] reached similar conclusions to our
earlier publication [35] concerning the remarkable robustness of the 2.5 exponent
to variations in the model mechanisms. Analysis of a simple version of this model
was completed earlier by d’Hulst and Rodgers [8], and real-world applications have
focused on financial markets—however the derivation below features general values
�frag and �coal.

At each timestep, the internal coherence of a Red population of N entities
(which we refer to as an ‘agents’ to acknowledge application to human and/or cyber
systems) comprises a heterogenous soup of cells. Within each cell, the component
entities have a strong intra-cell coherence. Between cells, the inter-cell coherence
is weak. An agent i is then picked at random—or equivalently, a cell is randomly
selected with probability proportional to size. Let si be the size of the cell to which
this agent belongs. With probability �frag, the coherence of a given cell fragments
completely into si cells of size one. If it doesn’t fragment, a second cell is randomly
selected with probability again proportional to size—or equivalently, another agent
j is picked at random. With probability �coal, the two cells then coalesce (or develop
a common ‘coherence’ in terms of their thinking or activities). As discussed in
the main text, Kenney provides a wealth of case-study support for thinking of an
insurgency as a loose soup of fragile cells [6], as do Gambetta [4] and Robb [5].

The Master Equations are as follows: The equation for the number of cells (i.e.,
clusters) of strength (i.e., size) s for s 
 2 and s D 1 are, respectively:

@ns

@t
D �coal

N2

s�1
X

kD1

knk.s � k/ns�k � �fragsns

N
� 2�coalsns

N2

1
X

kD1

knk ; (11.1)

@n1

@t
D �frag

N

1
X

kD2

k2nk � 2�coaln1

N2

1
X

kD1

knk: (11.2)

Here �coal and �frag are the probabilities per timestep (i.e., rates) of coalescence of
two cells, or fragmentation of a cell, respectively. To simplify the limits of the sums,
we extend the upper limit to infinity, which is a good approximation for large N.
Terms on the right-hand side of Eq. (11.1) represent all the ways in which ns can
change. In the steady state:

sns D �coal

.�frag C 2�coal/N

s�1
X

kD1

knk.s � k/ns�k ; s 
 2 ; (11.3)

n1 D �frag

2�coal

1
X

kD2

k2nk : (11.4)
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Consider

GŒy� D
1
X

kD0

knkyk D n1y C
1
X

kD2

knkyk � n1y C gŒy� ; (11.5)

where y is a parameter and g[y] governs the cell size distribution nk for k 
 2.
Multiplying Eq. (11.3) by ys and then summing over s from 2 to 1, yields:

gŒy� D �coal

.�frag C 2�coal/N
GŒy�2 ; (11.6)

i.e.

gŒy�2 �
�

�frag � 2�coal

�coal
N � 2n1y

�

gŒy� C n2
1y2 D 0 : (11.7)

From Eq. (11.5), gŒ1� D GŒ1��n1. Substituting this into Eq. (11.7) and setting y D 1,
we solve for gŒ1�

gŒ1� D �coal

�frag C 2�coal
N : (11.8)

Hence

n1 D N � gŒ1� D �frag C �coal

�frag C 2�coal
N : (11.9)

Substituting this into Eq. (11.7) yields

gŒy�2 �
�

�frag C 2�coal

�coal
N � 2N.�frag C �coal/

�frag C 2�coal
y

�

gŒy� C .N.�frag C �coal//
2

.�frag C 2�coal/2
y2 D 0 :

(11.10)

We then solve this quadratic for gŒy�

gŒy� D .�frag C 2�coal/N

4�coal

 

2 � 4.�frag C �coal/�coal

.�frag C 2�coal/2
y � 2

s

1 � 4.�frag C �coal/�coal

.�frag C 2�frag/2
y

!

;

(11.11)
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which can be easily expanded

gŒy� D .�frag C 2�coal/N

2�coal

1
X

kD2

.2k � 3/ŠŠ

.2k/ŠŠ

�
4.�frag C �coal/�coal

.�frag C 2�coal/2
y

�k

: (11.12)

Comparing with the definition of gŒy� in Eq. (11.5) shows that

ns D �frag C 2�coal

2�coal

.2s � 3/ŠŠ

s.2s/ŠŠ

�
4.�frag C �coal/�coal

.�frag C 2�coal/2

�s

N : (11.13)

We now employ Stirling’s series

lnŒsŠ� D 1

2
lnŒ2�� C

�

s C 1

2

�

lnŒs� � s C 1

12s
� : : : : (11.14)

Hence for s 
 2:

ns �
�

.�frag C 2�coal/e2

23=2
p

2��coal

��
4.�frag C �coal/�coal

.�frag C 2�coal/2

�s
.s � 1/2s�3=2

s2sC1
N ; (11.15)

which implies that

ns �
�

�s�1
coal .�frag C �coal/

s

.�frag C 2�coal/2s�1

�

s�5=2 : (11.16)

In the limit s � 1, this is formally equivalent to saying that

ns � exp.�s=s0/s�5=2 (11.17)

where

s0 D �
	

ln

�
4.�frag C �coal/�coal

.�frag C 2�coal/2

�
�1

(11.18)

characterizes the exponential cut-off which appears at very high s. For large cell
sizes (i.e., large s such that s � O.N/) the power law behavior is masked by the
exponential function. The equilibrium state for the distribution of cell sizes can
therefore be considered a power-law with exponent ˛ � 5=2 D 2:5, together
with an exponential cut-off. In the human context, the fact that the interactions are
effectively distance-independent as far as Eq. (11.1) is concerned, captures the fact
that we wish to model systems where messages can be transmitted over arbitrary
distances (e.g., modern human communications). A justification for choosing a cell
with a probability which is proportional to its size, is as follows: a cell with more
members has more chances of initiating an event. It will also be more likely to find
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members of another cell more frequently, and hence be able to synchronize with
them—thereby synchronizing the two cells. It is well documented that cells of living
objects (e.g., animals, people) may suddenly scatter in all directions (i.e., complete
fragmentation) when its members sense danger, simply out of fear or in order to
confuse a predator [62]. This model also offers an explanation for Richardson’s
finding [17] that the distribution of approximately 103 gangs in Chicago, and in
Manchoukuo in 1935, separately followed a truncated power-law with ˛ � 2:3.
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Chapter 12
Event-Related Crowd Activities
on Social Media

Yu-Ru Lin

Abstract Social media like Twitter has been prevalently used for observing the
behaviors of a large number of people. The availability of such behavioral trace
data leads to an emergent interest in studying “crowds” in many contexts related
to real-world events ranging from emergencies to ceremonies. There is, however,
a lack of understanding about how different questions regarding crowd activities
were asked and approached. This chapter provides a lens into event-related crowd
activities within the social media domain by classifying literature into three themes:
(1) crowds as event sensors, (2) crowds as event predictors, and (3) crowd charac-
terization around events. Using the classification, it can be revealed that there is a
gap between understanding and harnessing crowd activities. Several theoretical and
methodological questions and implications are discussed. This chapter concludes
with suggested future directions toward better gaining insights from social media
crowds.

12.1 Introduction

In recent years, the quantity of human behavior that is being recorded and potentially
made available for research has soared—everything we do, from sending emails to
spending our money, leaves digital traces in some database [1]. The content gen-
erated by hundreds of millions of users on social media such as Twitter, Facebook,
Foursquare, and other online platforms presents a vast source of continuous data
streams of human activities, offering an unprecedented opportunity to observe the
behaviors of a large number of people in a variety of situations.

Recent research along this line has used the term crowd in many contexts related
to real-world events, ranging from emergencies [2], political events [3], sports
events [4], ceremonies, and local festivals [5]. In spite of the emergent interest in
studying crowds on social media, there is a lack of understanding of how current
studies contribute to different aspects of crowd activities. What types of questions
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regarding social media crowd activities were asked? How were these questions
approached? Hence, this chapter aims to provide a new lens into event-related crowd
activities within the social media domain. With a focus on crowd activities, existing
research can be classified into three themes:

(1) Crowds as event sensors: utilizing Twitter crowds’ messages to detect the
occurrence of an event or summarize the content of an event.

(2) Crowds as event predictors: utilizing Twitter crowds’ activities or opinions to
predict the outcome of an event that is expected to happen in the near future.

(3) Crowd characterization around events: understanding Twitter crowds’ activities
and their changes during or after an event.

As will be discussed, based on this classification, it can be revealed that there is
a gap between understanding and harnessing crowd activities on social media. In
this chapter, a background on crowd activities is provided (Sect. 12.2), followed by
detailed discussions for each research theme (Sects. 12.3–12.5). Several theoretical
and methodological questions and implications are also discussed (Sect. 12.6). This
chapter concludes with suggested future directions toward better gaining insights
from social media crowds.

12.2 Background

Notions of Crowd The term crowd has been used in various contexts. In the
sociology literature, crowd was studied in the context of how collective behavior
differs from normal social behavior [6]. Early sociologists, including Gustave
Lebon [7], referred to collective behavior as “spontaneous social behavior directed
by aroused emotion that distorts people’s normal critical abilities”. In this view,
crowds and collective behavior are characterized by aroused emotions as a response
to new and ambiguous conditions [6]. Other scholars, however, suggested that there
might be no qualitative difference between collective behavior and other forms of
social behavior. For example, Blumer [8] referred to a broad sense of collective
behavior as “the behavior of two or more people who are acting together.” Milgram
and Toch [9] defined the crowd as “people in sufficiently close proximity that the
fact of aggregation comes to influence behavior” without mentioning emotion. This
broad definition covers the adaptive aspects of people’s behavior, which allows
considering collective behavior as an emergent social behavior that is “an adaptive
response to new or ambiguous condition” [10].

Over the past century, theories to explain crowds and collective behavior have
been developed. These theories cover a spectrum of perspectives, ranging from
viewing crowds as irrational people resulting from a hypnotic influence [7] to
viewing crowds as rational beings who act based on a shared interest [11]. It is
important to note that the latter perspective shifts focus from collective behavior
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to collective action. In the literature, collective action refers to politically oriented
social movements where actions are purposeful and directed toward reasonable
ends [6].

In this chapter, crowd broadly refers to “a large number of people who gather
together in the same space at the same time,” where the space is an online social
media platform. This chapter uses the term crowd activity instead of collective
behavior or collective action to avoid confusion with the use of these terms in
sociological literature.

Studying Crowds on Social Media The sociological studies of collective behavior
and collective action have relied on information gathered from historical material,
surveys, and official statistics (e.g., riot or burglary reports from the bail agency),
experiments, participant observation, and computer simulation [6]. In the last
decade, the increasing use of social media in people’s everyday social lives has
offered researchers an unprecedented opportunity to examine the behavior of a
large number of people. Twitter in particular has emerged as a powerful channel for
communication during political and social protests; examples include the 2011 Arab
Spring protests [12, 13] and the Occupy movement [14, 15]. The communication
data on Twitter are a sequence of short (140-character) text messages, which are
easy to process and gather through Twitter APIs [16, 17]. Compared to other
social media platforms that have complex privacy settings, the publicly available
Twitter has been a predominant choice for researchers to collect research datasets.
Recent work [18, 19] classified this ever-growing body of academic work on
Twitter in terms of domains, analysis methods, data size, and ethical concerns [18].
Instead of providing a general classification scheme, this chapter focuses on crowd-
related studies using Twitter data. The studies discussed below are not meant to
be comprehensive, but rather representative of the types of research questions and
approaches regarding crowd activities on Twitter.

12.3 Crowds as Event Sensors

In the first research theme, Twitter is primarily utilized as part of early detection
systems for detecting real-world events. The occurrence of a real-world event may
be planned [20] (e.g., conferences and sports events [4, 21]) or unexpected (e.g.,
emergencies [22]). Much effort has been devoted to detecting unexpected events
such as earthquakes and public health problems. The effectiveness of these systems
relies on capturing distinct behavioral signatures at the individual level associated
with the emergency event under examination. For example, people tweet with
specific words after experiencing an earthquake—most obviously, the use of the
word “earthquake,” but likely also phrases like “was that an earthquake?” [23].
When people feel sick, they are likely to express their travails to others. A
sudden increase in the volume of certain terms or phrases that exceeds their usual
fluctuations can be used as an indicator for detecting events. Thus, this body of
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work considers Twitter users as diffuse or casual crowds acting like a large set of
sensors distributed at different places and their continuously producing words as
sensor readings which can be analyzed and aggregated to determine the occurrence
of an event. A few studies were selected as examples for different types of events.

Earthquakes Tremendous effort has been made toward utilizing Twitter’s
geocoded tweets for real-time earthquake detection [24–26]. Sakaki et al. [24]
proposed an algorithm to monitor users’ tweets for detecting earthquakes (as well as
typhoons in Japan). Researchers from the U.S. Geological Survey (USGS) [25, 26]
developed an earthquake detection system based on tweet-frequency time series.
The detections are faster than seismographic detections, with 75 % occurring
within 2 min. These studies indicate that a Twitter-based earthquake detection
and characterization system is worth investigation, but limitations exist, such as
heterogeneous population density and coverage and various sources of noise [27].

Public Health Twitter has also been extensively used for early detection of
emerging public health problems [28–34]. Quincey and Kostkova [32] collected
tweets that contained instances of the keyword “flu” in a week during the swine flu
pandemic. Their study suggested that the co-presence of other words in tweets can
be used by public health authorities to gather information regarding disease activity,
early warning, and infectious disease outbreak. Culotta [30] reported a correlation
of 0.78 of these messages with the CDC statistics. Gomide et al. [31] were able to
predict the number of dengue cases by leveraging tweet content and spatiotemporal
information. Signorini et al.[34] tracked time-evolving public sentiments about
H1N1 or swine flu, and studied the probability of using the Twitter stream for
real-time estimation of weekly influenza-like illness (ILI) statistics generated by
the CDC.

Other Events For general event understanding, Becker et al. [35] used an online
clustering technique to identify real-world event content on Twitter. Other work
attempted to use Twitter messages to build automatic summarization of an
event [36, 37], including monitoring people’s feedback to an event [3, 38–40].
A special line of research focuses on sports events, aiming to generate a journalistic
summary by monitoring people who tweeted about the events while watching the
sports games [21, 36, 41]. Another branch of work investigates the use of Twitter
during emergency events for better crisis management [42–45].

The capacity of detecting exogenous events often relies on how well the patterns
of normal activities can be captured. Studies have revealed a regularity of patterns
using large-scale Twitter data and geocoded information. For example, Dodds et al.
[46–48] have observed temporal and spatial variations in individuals’ happiness.
Golder and Macy [49] found that the mood of Twitter users has diurnal and seasonal
patterns. Grinberg et al. [50] combined Foursquare and Twitter data to extract
diurnal patterns, such as eating, shopping, etc., in NYC. Hasan et al. [51] identified
different activity categories in NYC using check-in tweets, which can be used to
detect local events [5].



12 Event-Related Crowd Activities on Social Media 239

Characteristics and Challenges in Sensing Events from Twitter Crowds The
signals produced by social media crowds, i.e., their messages, tend to be influenced
by other happenings relevant or irrelevant to the event of interest. An early detection
system based on distinctive linguistic features alone, however, would likely result in
many spurious inferences that an event was occurring. Prominent news may trigger
an avalanche of tweets about the event from different places. A key additional
element for event detection is that the underlying phenomenon has a distinctive
spatiotemporal signature. For instance, earthquakes originate at a point and spread,
as a wave, outwards. A spike in the occurrence of the word “earthquake” that
did not spread in this fashion would not be indicative of an earthquake. Such
spatiotemporal information can be effectively incorporated to improve the accuracy
of event sensing [24, 31].

Caution should be exercised when collecting data on Twitter. Twitter provides
different types of APIs that allow anyone to collect large amounts of data easily;
however, one may not be aware of the systematic bias in their data collection bias.
The “Streaming API” [16] allows for retrieving up to 1 % sample of data with given
parameters. However, when the data matching the given parameters exceed 1 %,
the retrieving result may no longer represent the overall activity on Twitter [52].
For example, Morstatter et al. found that a filtering process in Twitter’s Streaming
API can cause a misrepresentation of top hashtags in the data [52]. Twitter’s “Rest
API” [17], on the other hand, allows users to query subsets of data under the rate
and data limit conditions. This requires researchers to provide criteria for obtaining
a sub-sample. It is thus important to understand how different sampling strategies
may affect the analysis results [53, 54]. De Choudhury et al. [53] discussed how
sampling based on topology and attributes leads to different analysis results in
discovering information diffusion.

Identifying credible information sources to accurately detect or better summarize
events poses another challenge [55–58]. Morstatter et al. [57] studied features
that help differentiate tweets originating within a crisis region (i.e., the eyewitness
tweets) and tweets originating outside the region, aimed at supporting first respon-
ders to understand crisis situations. Diakopoulos et al. [58] proposed methods for
assessing information sources from the Twitter stream to generate better journalistic
summaries.

12.4 Crowds as Event Predictors

The second set of work aims to utilize Twitter to predict the outcome of an event that
is expected to happen at a certain time in the future. One such kind of event whose
outcome will have a significant impact on a society is a political election, making
the electoral prediction from Twitter data the central interest of this research theme.
The logic behind the prediction can be analogous to taking the pulse of the society
where the society is represented by the crowds on Twitter. By sampling the political
opinions from the crowds’ tweets, researchers have attempted to predict election
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outcomes. Thus, this body of work considers a relevant set of Twitter users as a
diffuse crowd who unknowingly take part in a virtual opinion poll. Studies can also
be clustered into work focusing on election outcome prediction and work concerning
opinion poll extraction.

Electoral Prediction A recent article by Gayo-Avello [59] provides a review
on state-of-the-art electoral prediction work using Twitter data. It covers several
important research aspects ranging from data collection and analysis to performance
evaluation. One of the earliest works on this subject [60] utilized the tweet related
to different parties running for the German 2009 Federal election. While users’
sentiments were extracted and analyzed, the authors concluded that the count of
tweets mentioning a party alone reflected the election results. Although the results
were later rebutted [61], this work demonstrated a way to evaluate the effectiveness
of using Twitter data for electoral prediction based on an actual election outcome
(in terms of MAE measure). Gayo-Avello [62] examined how different prediction
methods failed to predict the 2008 US presidential election and suggested a number
of issues in prior work, including the “file-drawer” effect, biased samples, and
quality of sentiment analysis.

Opinion Polls The work by O’Connor et al. [63] started to investigate how Twitter
data may be used to substitute for traditional polls. The authors calculated daily
sentiment scores with respect to consumer confidence and political opinion. They
observed high correlation between the sentiment trends and these indicators. Bollen
et al. [64] show the relations of the stock market with the sentiment of the tweets.
Kunegis et al. [65] show that tweets with positive arousal, i.e., exciting and intense
tweets, are more likely to be retweeted, suggesting a potential source of bias for
deriving measures from social media data. Relating to event outcome prediction,
Ciulla et al. [66] showed that Twitter activity related to a popular TV show can be
used to predict the elimination of contestants, and geolocalized data are crucial for
the correct prediction.

Characteristics and Challenges in Taking the Pulse from Twitter Crowds
As discussed in [59], reducing noise and improving the sentiment analysis [67]
are crucial for better predictions and correlations. It is important to note that the
actual election outcome depends on voters who will eventually cast votes; hence,
it is critical to identify Twitter crowds that can unbiasedly represent the voters or
relevant populations.

There are different sources of bias. First, the Twitter user base has been known
to have demographic bias, where certain demographic groups (e.g., young, male)
are over-represented. Mislove et al. [68] analyzed a sample of Twitter users in
the United States in terms of their geography, gender, and race/ethnicity, and
suggested that post hoc corrections based on the over- and under-representation
of different groups could be applied to remove demographic bias and improve
electoral predictions. The second type of bias is self-selection bias—people tweet on
a voluntary basis, and hence most of the data are produced by politically active users.
This also includes a so-called “spiral of silence” effect, which states that people are
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Fig. 12.1 Lin et al. [70] proposed a “computational focus group” framework to track crowds’
opinion shifts during events. They developed a real-time system that utilizes prior user behaviors
to detect users’ biases and then aggregates users’ responses with similar biases together. They
tracked the behavior streams from these like-minded sub-groups called focus groups and presented
time-dependent collective measures of their opinions with respect to the 2012 U.S. presidential
election debates. These measures control for the response rate and base attitudes of the users,
making shifts in opinion both easier to detect and easier to interpret. The figure shows cumulative
winning indices in the first and the last presidential debates in 2012. The comparison between focus
groups (a, b) and elite groups (c, d) revealed that elites tended to favor the ticket of their preferred
candidate while focus groups did respond to the debate content. In each panel, the debate started
at 01:00 and concluded at 02:30 UTC. Figure reprinted with permission, Copyright 2013 by ACM

more likely to express opinions when they believe others share their views [69].
To overcome the self-selection bias, Lin et al. proposed a novel “computational
focus group” framework that utilizes prior user behaviors to detect users’ biases and
then aggregates users’ responses with similar biases together (Fig. 12.1).

An additional challenge of predicting the future event outcome is that people also
try to shape expectations via social media. For example, it was observed that most of
the Twitter followers of Gingrich in the election of 2012 were in fact manufactured,
presumably to create the illusion of enthusiasm for Gingrich’s candidacy [71]. Such
spoofing is an enormous challenge for making an objective prediction of the election
outcomes. If a significant signal regarding the election from Twitter were gleaned,
it would create an enormous incentive to manufacture signals, thus negating their
signal value in the long run.
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12.5 Crowd Characterization Around Events

Unlike the previous themes, where Twitter crowds are utilized either for capturing
events or for predicting the event outcomes, the research in the third theme views
crowd activities around events as the main subject. This not only concerns what
people do and feel before, during, and after an event, but also how people’s behavior
and feelings change over the event period. In this sense, Twitter users are studied as
an expressive crowd who gather on social media to cheer, comfort, or show support
to each other, and to express other emotions or opinions in response to an event
happening in the real world. Some studies focus on online activities corresponding
to an offline social or political movement.

Behavioral Response and Change Compared to the abundant results in event
detection and prediction, research focusing on characterizing behavioral change in
response to external events is relatively sparse. Lin et al. [72] presented the first
empirical findings about how individual and collective patterns of Twitter users’
behavior changed during the 2012 U.S. presidential debates. The authors introduced
a new analytical methodology—rather than relying upon samples from Twitter’s
APIs, it tracked the behavior across a large but defined population of Twitter users
who are known to be extremely engaged in political issues. This method allows
meaningful comparisons of collective behavior across distinct political events. As
shown in Fig. 12.2, their results exhibited evidence of the “rising stars” dynamic as
users’ production of information increases without a change in concentration, but
users’ consumption of information becomes much more concentrated.

A particular branch of work has utilized hashtags for tracking content relevant to
an external event. Twitter hashtags have been used by users as a label for identifying
topically relevant streams of messages or a prompt for commenting and sharing [73].
Analyses of how users adopt a particular hashtag have characterized the differences
between “peaky” but ephemeral topics primarily driven by exogenous events
versus “persistent conversations” [74, 75]. Lin et al. [76] examined the ecology of
multiple hashtags competing for attention following exogenous events (the 2012
U.S. presidential debates). The results showed how the attention of the Twitter
crowd triggered by an external shock built up, lasted, and faded away and also
discussed factors explaining the variation of dynamics (Fig. 12.3).

Social and Political Movements Owing to Twitter’s outreach and immediacy
in propagating messages, during the “Arab Spring” and other protests, activists
frequently used Twitter along with hashtags to coordinate their actions and garner
support [13, 77]. This makes Twitter an ideal place for collecting research data about
movements, including the 2008–2009 Iranian protests [78], the 2011 Arab Spring
protests [12, 79], and the Occupy movement [14, 15, 77, 80–82]. For example,
Conover et al. [14] reported interesting study results based on tweets related to
the Occupy Wall Street movement. They found that the geographical patterns
exhibited both highly local and inter-state communications where the inter-state
communications tended to carry framing languages such as “We are the 99 %.”
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Fig. 12.2 Lin et al. [72] studied crowd activities during “media events” such as political debates
that generate conditions of shared attention as many users simultaneously tune in with the dual
screens of broadcast and social media to view and participate. (a) and (b) show that the behavior of
users during media events (CONV and DEB) differs significantly from that of news events (NEWS)
and baseline (PRE). These differences in the intensity of activity correspond to significant increases
in the centralization of activity in the networks as measured by Lorenz curves in (c) and (d). The
findings suggest that while users across the system become more active during media events, this
additional activity reflects concentrated attention to a handful of users, hashtags, and tweets

Characteristics and Challenges in Characterizing Crowd Behavior As the core
interest is in the evolution or dynamics of crowd activities around a real-world
event, it is essential that the analyses capture the behavioral change of a consistent
population rather than the shift of populations. The analyses in [72] suggested
how to track the same relevant population to achieve a before-after comparison
for assessing the change effect. Another issue is that the activity corpus may be
unevenly contributed to by individuals within the crowd [72], so it is important that
the behavioral statistics reflect any possible skew distribution.
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Fig. 12.3 Lin et al. [76] examined crowd response to exogenous events by studying the growth,
survival, and context of hundreds of novel hashtags created during political events (the 2012
U.S. presidential debates). (a) and (b) show cumulative tweet volume of top hashtags in the
first debate, over the first 6 and 48 h. Their study revealed an interesting short-term and long-
term hashtag dynamics. During the first presidential debate, while the hashtag “#bigbird” was
created and rapidly adopted at around 21:30 (1:30 UTC), the hashtag “#supportbigbird” which
was created 15 min after took over in about 10 min. As shown in (a), after 6 h from the start
of the debate, the adoption of “#supportbigbird” was still on top of “#bigbird.” However, in a
larger time scale as in (b), “bigbird” got to the top in the 12th h after the debate. The study further
showed that retweets always contribute to faster hashtag adoption; replies extend the life of bursting
hashtags while having no effect on other slowly adopted hashtags. This is the first study on the
lifecycle of hashtag adoption and use in response to purely exogenous shocks. Figure reprinted
with permission, Copyright 2013 by AAAI

12.6 Discussion and Future Directions

Table 12.1 summarizes the three research themes concerning event-related crowd
activities on Twitter. The first theme focuses on crowds’ messages and the events of
interest are the research outcome. The second theme focuses on crowds’ activities
and opinions; the goal is to capture how an offline population (voters or the public)
think or feel. In the third theme, understanding the crowds’ activities is the research
end. Hence, the first two themes focus on harnessing while the third theme focuses
on understanding the crowd activities on social media. The analytical characteristics
reflect how these different research questions lead to different research tasks and
technical or analytical issues to be dealt with.

Compared to harnessing the crowds, studies in understanding the social media
crowds are relatively few. As harnessing the crowds has led to exciting results,
understanding the crowds can provide insights into how collective groups and
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Table 12.1 Summary of research on event-related crowd activities

Theme Research questions Analytical characteristics

Crowds as event
sensors

• How can Twitter users’ messages
be used to identify events of
interest quickly and accurately?

• How can Twitter users’ messages
be used to summarize events?

• Gather relevant event signals
through proper tweet collection and
sampling, denoising, preselected
event lexicon

• Detect event occurrences using
temporal analysis, spatiotemporal
modeling, outlier detection (over
trends and regularity)

• Generate event summary using
sentiment analysis, topic modeling,
and assessment of credible sources

Crowds as event
predictors

• How can Twitter users’ activities
or opinions be used to predict
event outcome accurately?

• How can Twitter users’ opinions
be used to reflect public or a
community’s opinion?

• Gather relevant messages using
preselected concept lexicon

• Sample users to represent offline
actors based on (collected or
inferred) user attributes

• Measure user opinions using
sentiment analysis, temporal
analysis

• Generate prediction by predictive
modeling with respect to outcome
types (binary, multi-class, or
numeric)

Crowd
characterization
around events

• How do Twitter users act and
interact during the events of
interest?

• How do Twitter users’ behavior
change during or after the
events?

• Identify or sample users
participating in the events

• Measure user behavior using
sentiment analysis, social network
analysis

• Develop or test theories using
temporal analysis, hypothesis testing

society function, especially under stress or emergent situations. This will contribute
to better support of crowd management and policy making around planned or
unexpected events. Potential directions in the future include:

Connect with Existing Crowd Theories In the sociology literature, many crowd
theories, such as contagion, convergence, and emergent norm, have been devel-
oped [6, 7, 11]. The behavioral trace data available on Twitter and other social media
make it possible to test existing theories empirically. However, it is important that
issues in observed data are addressed properly in order to produce valid empirical
study results. Experimental methods including natural experimental design, and
participant matching can be used to eliminate self-selected samples and create
appropriate comparison groups [83].
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Explore and Develop New Hypotheses Unlike early sociologists who relied on
limited-size datasets, researchers now can gather abundant information from users’
behavioral traces left on social media or other digital devices. This provides new
opportunities to develop a new and deeper understanding of crowd behavior in
various event contexts. One of the challenges lies in how to identify interesting
patterns from a huge amount of data. Exploratory and visual analytic tools that
leverage data mining techniques to support exploring patterns in user behavioral
streams have become a potential solution. For example, a real-time visualization that
maps multiple key aspects of information through visual narratives such as “when,
where, and how the information diffused during an emergency” can be useful for
generating hypotheses [84].

This chapter has reviewed and discussed recent work on event-related crowd
activities within the social media domain. A key observation is a gap existing
between understanding and harnessing crowd activities in literature. To bridge
the gap, more research attention should be directed to theory development and
methodological challenges.
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