
Chapter 1
From Strict Determinism
to Self-organization

Abstract We start from reviewing several ubiquitous approaches to morphogenesis
and argue that for a more adequate presentation of morphogenesis, they should be
replaced by explanatory constructions based upon the self-organization theory
(SOT). The first step on this way will be in describing morphogenetic events in terms
of the symmetry theory, to distinguish the processes driven either toward increase or
toward decrease of the symmetry order and to use Curie principle as a clue. We will
show that the only way to combine this principle with experimental data is to
conclude that morphogenesis passes via a number of instabilities. The latter, in their
turn, point to the domination of nonlinear regimes. Accordingly, we come to the
realm of SOT and give a survey of the dynamic modes which it provides. By
discussing the physical basis of embryonic self-organization, we focus ourselves on
the role of mechanical stresses. We suggest that many (although no all) morpho-
genetic events can be regarded as retarded relaxations of previously accumulated
elastic stresses toward a restricted number of metastable energy wells.

1.1 Deterministic Approaches to Development:
Expectations and Impediments

1.1.1 Lessons from Embryonic Regulations

Please take a look at Fig. 1.1, displaying development of sea urchin embryo from a
non-fertilized egg (Fig. 1.1a) up to a free-swimming larva (Fig. 1.1l, m). This is a
textbook example of embryonic development, known for long ago in great details.
Let us put a naïve question: Why just such a succession is taking place at all and
why it is reproduced for innumerable set of generations? Obviously, our first
suggestion will be that within any stage embryo, a certain set of “causes” is
embedded providing its transition to the next stage. How large should be such a set?
It is easy to see that as the development proceeds, the structure of embryo becomes
ever more complicated: some structures not seen before are emerged. So-called
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arms of free-swimming larvae (Fig. 1.1l, m) are most obvious but not the sole
examples of such a complication. Thus, if being consistent, we should suggest that
any of the newly arisen structures had its own, individual “cause,” settled within an
egg in a definite position even before the start of development.

This is a brief exposition of influential ideology of a so-called preformism which
dominated in embryology for several centuries and is keeping until now (although
in a hidden form) rather strong positions in researchers minds. It is based upon the
principles of a so-called Laplacian, or uniform determinism, ascribed (probably, not

Fig. 1.1 a–m Successive stages of sea urchin development. a An egg within egg membranes;
b–f cleavage; g, h blastula stage, surface view and sagittal section; i–k gastrulation in different
projections; l, m pluteus larva in frontal and sagittal projections, correspondingly
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at all justifiable) to the great French mathematician Pierre Simon Laplace
(1749–1827). By this ideology, the only way for describing and exploring our
world is to split it to such a set of cause–effect links that in each of them, a single
cause cannot produce more than a single effect (the reverse is permitted: A single
effect may require a combination of two or more causes). Until the rise of a
quantum physics in the beginning of twentieth century, this ideology was regarded
as only one compatible with natural sciences. It is worth mentioning, however, that
in physics, it was always more or less shadowed by a law-centered approach (which
puts the “causes” to a category of initial conditions and takes them usually as
granted). However, in biology and the related sciences, the classical deterministic
approach always dominated.

In embryology, it became a basis of one of the most important trends, the so-
called Mechanics of Development (“Entwicklungsmechanik” in German) pro-
claimed by Wilhelm Roux about one and a half century ago (see Moček 1974). By
this view, a developing embryo may be simulated by a clockwork which should be
experimentally split into minor details in order to understand which one of them
“determines” the next part activity; similarly, a task of a researcher would be in
dissecting a developing embryo into single parts in order to see which one of them
contains the “cause” enforcing another to develop further in a regular way.

By evaluating the role played by “Entwicklungsmechanik” in enlarging and
improving our knowledge of development, we come to paradoxical conclusions. On
one hand, by using the recommended analytical tools, we recognized a lot about
interactions of embryo parts of quite different scales, from whole organs to single
cells. But on the other hand—which is often neglected—the conceptual basis of
Roux approach (the idea of a strict cause–effect determination) has been under-
mined already in few years after it was formulated.

This was done by another German embryologist, Hans Driesch, in his experi-
ments on separating from each other two or four blastomeres of sea urchin eggs or
on changing their mutual positions. Although Driesch’s results have been described
virtually in all embryological textbooks, almost never this description was
accompanied by conceptual conclusions, forwarded already by Driesch himself and
elaborated by recent authors.

As it is widely known, the main result of Driesch’s experiments was that fairly
normal (although proportionally diminished) larvae with all of their organs properly
arranged could be obtained from a single embryonic cell (blastomere) containing no
more than ½ (if two first blastomeres were separated) or even ¼ (in the case of four
blastomeres separation) of the entire egg’s material. Rather soon these effects
(defined by Driesch as “embryonic regulations”) were numerously confirmed and
extended to the species belonging to almost all taxonomic groups of metazoans,
from sponges to mammalians. The only noticed difference was the duration of a
period of an egg/embryo capacity to regulations: In some groups, such as mollusks
or ascidians, this period was rather brief (ending soon after egg’s fertilization),
while in others (flatworms), it extended over the entire living cycle (interesting, in
ascidians, a regulatory capacity is lacking during larva development but restores in
adult state). Importantly, after entire embryos lose their regulatory capacities, these

1.1 Deterministic Approaches to Development: Expectations and Impediments 3



latter are still manifested by their parts: For example, whole limbs or eyes of
Vertebrate embryos can be restored from small fragments of these rudiments, or
even from dissociated cells. Embryonic regulations took place not only after
removal, but also after experimental addition of some excessive amount of
embryonic material.

Besides separating blastomeres, Driesch changed their mutual positions by
compressing cleaving eggs for some time period. After being released, the eggs also
developed in a normal way, although each of the blastomeres became surrounded
by abnormal neighbors. Fairly normal embryos, although not in 100 % of cases
have been obtained later from dissociated-reaggregated masses of sea urchin
blastomeres (Spiegel and Spiegel 1975).

What can these experiments tell us about cause–effect relations? If continuing to
apply deterministic approach to embryonic regulations, we have to conclude that
complete sets of “causes” required for further development are contained not only
within whole eggs/embryos but also in their halves, quarters, etc.; on the other
hand, as a rule, the sets are not increased with the addition of embryonic material.
Moreover, each time (depending upon the type of a disturbance performed) this
hypothetical “set of causes” should change its arrangement for producing the
normal pattern. Obviously, under these circumstances, a concept of an individual
“cause” (precursor) for any embryonic structure becomes meaningless.

Driesch fully recognized this critical situation. So far as in his time scientific
knowledge was in fact identified with strict cause–effect determinism, he concluded
that embryonic regulations undermine the very basis of natural sciences. Such a
position put this outstanding thinker outside the scientific mainstream, which
hampered further study of embryonic regulations for several decades. Driesch
formulated his final conclusion from his regulation studies as a law which in
slightly simplified form sounds like this: “The fate of an embryo part is a function
of its position within a whole” (Driesch 1921). Its idea is in the following. Suggest
that both the normal and experimentally disturbed embryos possess a kind of a
coordinate grid (including, for example, a polar axis and a set of latitudes) which is
each time adjusted to embryo dimensions (being diminished in embryos having a
part of their material removed and enlarged in those getting excessive additional
amount of material). Each part of the embryo is endowed by a capacity to “read” its
own coordinates and to develop accordingly, even if this does not coincide with the
normal fate of this part.

Looking at the first glance as an adequate generalization of embryonic regula-
tions and related phenomena, this statement contains nevertheless some hidden
contradictions and leaves a number of questions unsolved. The first of them is about
the reference points of the postulated coordinate grids. Do they correspond to
certain small previously settled structural elements of otherwise homogeneous
embryo, to entire embryo geometry and/or topology or to something else? How
should the reference points be arranged for providing formation of similar adults
out of differently disturbed eggs/embryos?

The second set of questions relates to the notion of “fate.” So far as during
embryo development any of its parts constantly changes, its position in any system
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of coordinates and the notion of “fate” may include developmental periods of quite
a different longevity—we are urged to define how long should be the develop-
mental period determined by a given position. This question is closely connected
with another, even more important one: What is the nature of the postulated con-
nections between a position and a “fate” of embryonic element, whatever being the
latter? Can we point to any universal dynamic component playing a leading role in
all the position-fate dependencies or each of them has nothing in common with the
others?

The most popular concept pretending to answer these questions is that of
“positional information” (PI) (Wolpert 1969, 1996). Appearing after several dec-
ades of almost complete oblivion of Driesch’s ideas, it aimed to modernize them
because the very fact of positional dependencies in embryonic development could
not be further ignored. By doing this, Wolpert started from postulating the existence
of a few (as a rule two) structural elements of embryo acting as reference points for
PI perceived by all the other elements (cells). In more concrete versions of PI
concept, the reference points were identified as the source and the sink of a
chemical substance (called morphogen) which creates concentration gradient
between these points. It is the local morphogen concentration to be “read” and
“interpreted” by any embryonic cell (independently of its neighbors) determining
thus its fate.

If discussing the problem of reference points, the main trouble for PI concept is
lack of robustness to mutual shifts of reference points which inevitably accompany
any of experimental disturbances. Let us trace some examples, starting from the so-
called French Flag (FF) model, a basic one for PI concept.

According to its name, FF model is dealing with 3-stripe axisymmetric pattern. If
putting the “source” and the “sink” to the opposite poles of the main axis and making
removals or additions of tissue pieces precisely axisymmetric, such a reference
system will be formally suitable for preserving the initial pattern (Fig. 1.2a, b).
However, if making tissue removals/additions even slightly asymmetric (which is
almost usually the case), the reference points themselves will be shifted asymmet-
rically, thus distorting the resulting pattern (Fig. 1.2c). Even more important is to
remind that axisymmetric eggs/embryos are rare exceptions among those capable of
regulations: Rather, most of the eggs already soon after fertilization acquire irre-
versible differences [called dorso-ventral (DV)] between opposite sides. In these, any
removals/additions of embryonic material will shift any pair of points into positions
geometrically non-homologous to initial ones (a–a1, b–b1, Fig. 1.2d), thus inevitably
distorting PI pattern. We can see that any formal way to save PI concept is to suggest
that PI is “emanated” from all the material points of a given stage embryo, rather
than from any previously selected ones. This brings us to the fundamental non-
classical idea of non-locality, associated with collective interactions of a large
number of equivalent elements. The both notions, central for a self-organization
theory (SOT), will be discussed further in this and the next chapters. Meanwhile, if
taken alone, the idea of the multiple PI bearers will be able to interpret embryonic
regulations only if the initial shape of the embryo was not significantly changed after
experimental perturbations. It will not work, for example, when pretty normal shapes

1.1 Deterministic Approaches to Development: Expectations and Impediments 5



will emerge de novo out of completely chaotic cell arrangement, like in the above-
mentioned Spiegel and Spiegel (1975) experiments. Such events belong to a “pure”
self-organization and cannot be explained by any concepts demanding a more or less
precise initial PI, whether it comes either from single elements or their collectives.

Another problem associated with PI concept is that of relations between cell
positions (in any reference system) and their “fates.” Actually, PI concept is rather
uncertain on the exact meaning of the “fate.” Is it identical to the final cell dif-
ferentiation (which is highly improbable if PI is assumed to be set at initial stages),
or just to a next small step of development? In any case, the idea of transformation
of cell position (local morphogen concentration) into its fate raises a number of
problems. Some of them have been discussed by Furusawa and Kaneko (2006). The
authors argue that even in most obvious examples of concentration-dependent
action of certain agents (in their case, activin), “the pattern formation… is not
predetermined from spatial information, but rather through intracellular dynamics
and interaction. Spatial patterns and intracellular states mutually stabilize robust
pattern formation…” They present model data showing that PI itself is not enough
for establishing order in the population of heterogeneous cells, so that such notions

a

a1

b1

b

(a) (b)

(d)(c)

Fig. 1.2 Non-robustness of PI model. Small lilac and blue circles depict hypothetical sources of
PI, the latter shown by arrows at the upper left frame. Following PI model embryonic regulations
will become possible only if (as in frames a, b) embryonic body and PI sources are axisymmetric
and removals (a) or additions (b) of embryonic material do not disturb axial symmetry. If,
however, the pieces of removed or added material are asymmetric (c), or such is the initial shape of
the intact embryo (d), no restoration of geometric similarity viewpoint is possible within the
framework of the PI model
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as nonlinear intracellular dynamics and attractors are required for getting realistic
results. All of these belong to the SOT vocabulary.

By discussing these matters, we come to the most troublesome problem of
development—actually going well beyond PI concept—which can be defined as
that of interpretation.

If we have a certain signal (no matter being located inside of outside of
embryonic body) which generates a definite response from the latter, our main
interest is to know why such a relation between the signal and the response is taking
place. As mentioned in Introduction, we have two epistemological models which
can be used for solving this task: Either there is a reason to postulate each time a
unique one-to-one cause–effect (signal–response) relation—in this case, our work
will consist in compiling a comprehensive list of such relations; or we regard each
relation as a particular manifestation of a general law. For example, if we relate
velocity of a thrown stone to its position, we do not suggest that a new “specific”
force is associated with each next position: Rather, we are searching for a common
law embracing all the positions including those never occupied by the stone.

Fig. 1.3 Random mutual arrangement of transplanted inductor’s tissue (light) and host tissue
(dark) in the first Spemann and Mangold (1924) experiment on embryonic induction, abolishing
the inductor’s capacity to be a PI source. a Cross-sectional area of the host embryo with its normal
axial organs to the right and induced organs to the left. b Several cross sections of the chimeric
notochord. From Spemann (1936)
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Considered in this context, PI concept resides a strange intermediate place:
On the one hand, it ascribes that the leading role in development to a largely non-
specific factor of position, which in physical sciences, is always used for con-
structing an embracing law (as a rule, describing certain field); but, on the other
hand, each next position of embryonic elements is claimed to be connected with
quite specific response, having no relations with another one.1 This, by my view,
makes the entire PI concept tautological, adding nothing to a mere descriptive
approach which takes spatial patterns as given. Let us look now for the situation
with interpretation problem in other branches of developmental biology.

1.1.2 Can Embryonic Inductions Be Regarded
as Cause–Effect Relations?

The discovery and further exploration of embryonic inductions by Hans Spemann
and his followers may look at first glance as a triumph of Wilhelm Roux causal
approach: It was shown indeed that one part of embryo can be a crucial factor for
the development of another. Does it mean, however, that the inductors can be
regarded as a kind of blueprints, or as “PI sources” for induced tissues? It is enough
to have a look to the picture from the famous first Spemann and Mangold paper
(Fig. 1.3) for seeing how far this is from reality. We can see that the inductor’s and
host tissues (discerned by their pigmentation as being taken from two different
Triton species) are mixed at random, both in the notochord and the neural tube.
Nevertheless, the entire structure of the complex of axial organs is perfectly
ordered. It means that the inductor tissue cannot serve not only as a spatial template,
but even as a source of a hypothetical PI gradient for the reacting tissue: Formation
of a proper set of axial organs under the influence of an inductor looks more as
embryonic regulation in Driesch sense rather than a kind of a direct causation. Or, if
speaking in terms of a SOT (to be later on accounted in this chapter), it was the
long-range order, independent from the “micropatterns” of the inductors and host
tissues, to be established in the first Spemann and Mangold experiments. At the
intuitive level, this was perfectly apprehended by Spemann himself who considered
the action of inductor as “abstract,” that is, containing no “information” about
spatial details (Spemann 1936). This conclusion was later on specified by Wadd-
ington as following: “Clearly, the problem [of induction] reduces to that of a
complex response to a simple stimulus …somewhere along the line an increase in
complexity occurs” (Waddington 1962).

Usually, the problem of complication during embryonic induction is resolved in
terms of concentration gradients of inductive substances assumed to be set between

1 My friend, American biologist Albert Harris, liked to compare PI with a price politics in non-
marked economies: The prices (equivalent to local morphologies or cell types) are appointed ad
hoc, without being regulated by any mutual feedbacks.
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animal and vegetal embryo poles, or between its dorsal and ventral sides (e.g., De
Robertis 2009). If accepting the presence of such a macroscopic gradient-like
prepattern, the isolated small pieces of embryonic tissue cannot produce more than
small parts of it. However, already in the old Holtfreter’s (1938) experiment, a
miniature copy of entire embryo was obtained from a piece of embryonic tissue
extirpated from so-called marginal zone. As commented by Gerhardt (1998)
“Holtfreter brought to light an individualistic and anti-authoritarian view of the
embryo in which competent responsive cells interact in a self-organizing commu-
nity, in place of conceptions of the embryo as a collection of naïve passive members
dependent for their future on detailed directions from a central organizer.”

A modern concept of so-called default induction, reducing the inductors’ role to
“inhibition of inhibitor” (Hemmati-Brivanloue and Melton 1997) may be regarded
as a next step from the cause–effect ideology toward that of self-organization.
Indeed, the inductors, instead of being the bearers of the positive “information,”
become a kind of releasers (triggers) of the potencies already preexisted in reacting
tissues. As in the cases of embryonic regulations, this situation cannot be ade-
quately described without using such notions belonging to SOT as a nonlinearity,
potential relief (describing a state of embryonic cell), and others. A special question
will be whether such a self-organization can be at least partly based upon morp-
homechanics. Later on, we hope to bring some evidences in favor of such a
suggestion.

1.1.3 Genetic Program of Development: Does It Actually
Exist?

In not so remote past, a claim that the course of development is “genetically
programmed” was accepted as an absolute truth, even in spite of the lack of proper
understanding what the “program of development” actually means. So stunned
were the successes in deciphering the key roles of genes in “controlling” the
development of embryonic rudiments that all the instructions for “making a fly” [a
paraphrase of the title of famous Lawrence (1992) book] looked to be in our hands.
Only closer to our days, it became realized that our believing to govern the
development by switching on or off any genes or signaling pathways is the same as
operating an electronic device by pushing its buttons without having even a slight
idea on how it actually works.

For clarifying the situation, two main groups of evidences have to be mentioned:
one of them related to classical biology and the other recently emerged as a result of
unexpected discoveries in modern molecular genetics.

The first group of evidences claims that the factors determining space–time
schedule of genes expression are non-genetic in their nature and topography. This
statement, which creates the basis of biology for about a century and is supported
by experiments on nuclei transplantations and many others, is on its own enough
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for concluding that genes themselves should obey outside instructions which are
called epigenetic. Meanwhile, recently it was complemented by numerous obser-
vations showing that relations between genes and signaling pathways on the one
hand and their developmental targets on the other hand turned out to be quite far
from being one to one: The products of activity of the same or closely homologous
genes and/or of the same signaling pathways were found to be involved in quite
different developmental events. Modern textbooks are full of such examples. Here
are just a few of them:

• The interactions between msx-1 and msx-2 homeodomain proteins characterize
the formation of teeth in the jaw field, the progress zone in the limb field, and the
neural retina in the eye (Gilbert 2010).

• The transcription factor Pax-6 is expressed at different times and at different
levels in the telencephalon, hindbrain, and spinal cord of the central nervous
system; in the lens, cornea, neural and pigmented retina, lacrimal gland, and
conjunctiva of the eye; and in the pancreas (Alberts et al. 2003).

• In Drosophila embryos, a gene Engrailed is involved in segmentation of a germ
band, development of intestine, nervous system, and wings. In mouse, same
gene participates in brain and somite development. In Echinodermata, it takes
part in skeleton and nervous system development (Alberts et al. 2003).

• Delta–Notch signaling pathway regulates the following: neuro-epithelial dif-
ferentiation in insects, feather formation in birds, fates of blastomeres in
Nematodes, differentiation of T-lymphocytes, etc. (Alberts et al. 2003).

• Hunchback gene is involved at the early stage of Drosophila development as one
of so-called gap genes and at the later stages participates in development of
neural system.

For the similar conclusions, as related to signaling pathways, see Kupiec (2009).
Shrewd remarks on this topic can be found in (Gordon 1999 V. 1, pp. 59–64).

Anyway, our present-day image on genetic regulation of development contains
two great negations: (1) even complete knowledge of genome structure cannot tell
us what gene will be expressed in a given space/time location; (2) even from
exhaustive knowledge of space/temporal schedule of genes expression, one cannot
predict what morphological structures will be formed in these definite locations.

Certainly, this is not to claim that the genes play no role in development at all. On
the contrary, their role is crucial in permitting or abolishing development of the
single structures and their ensembles; in particular, they may affect shapes of entire
embryos or their parts. A proper conclusion from the above said is that their action
should produce a definite morphological results only if being an integral part of quite
extended and ramified regulatory contours, including the feedbacks coming from the
upper-level events, such as cell shapes and mechanical forces. Actually, such a
situation is in generally acknowledged, but the conclusion is in most cases expressed
in an allegoric form, by claiming that genes action is “context-dependent.” The
urgent aim will be in transforming this vague formulation into a concrete research
program.
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1.2 Main Notions and Principles of SOT, Applied
to Developmental Events

Within one or two last decades, the word “self-organization” became among the
most generally used ones, not only in science, but also in politics and every-day life.
Meanwhile, for most of the users, it remains to be nothing more than a mere word,
or a kind of vague metaphor; only few people knows that it is a designation of a
strict theory, being in its essence mathematical but deeply rooted in physics,
biology, economy, and even humanitarian sciences. SOT is treated in a number of
perfect books ranging from very special to popular ones; among the latter, sim-
plicity and strictness are adequately combined in the book by Capra (1996). For the
readers who do not like math, a very qualified and perfectly illustrated account of
the main SOT principles by Ball (2001) can be recommended. The aim of this
section is more limited: It is in outlining only those notions and concepts of SOT
which are necessary for interpreting adequately development of organisms. The first
of them has been formulated and widely used well before the emergence of SOT:
this is the symmetry theory. In certain sense, the term “symmetry” shares the
destiny of a “self-organization”: Both are widely used without apprehending their
deep meanings. Meanwhile, not only for developmental biology but also for other
branches of life sciences, the applications of the main notions of a symmetry theory
are quite useful and adequate.

1.2.1 Translating Developmental Events into the Language
of Symmetry Theory

A remarkable property of this theory is that it may be regarded as a compact model
of any law-oriented science, aiming to search for invariable basis within a set of
varying events. In other words, it is dealing with the so-called invariable trans-
formations, keeping constant some properties of a body which in other relations is
changing. The transformations used for testing the invariability are the movements
in a broad sense, including so-called isometric transformations keeping the form
and the dimensions of the object constant as well as the different kinds of defor-
mations. The structural elements taken for testing the invariance may also be
qualitatively different, being exemplified either by a macroscopic design (fitting in a
particular case with the overall shape of a body), or by the positions of small (point-
like) elements of a body. The symmetry evaluated by the first criteria is called
geometric, while that using the second criteria is defined as colored (what means
that the selected small elements are assumed to be distinguished by different col-
ors). Although the distinctions between geometric and colored symmetry were
introduced by persons non-familiar with biology, they luckily correspond to the
differences between two main components of development: morphogenesis (overall
shape changes) and cell differentiation (changes on the single-cell level).
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1.2.1.1 Some Designations Related to Isometric Transformations

In elementary symmetry, three categories of isometric movements are considered:
rotations, reflections, and translations (linear shifts). A number of movements of
each category which brings a body into coincidence with itself are defined as a
symmetry order, and the combination of all such movements for a given body is its
symmetry group. Thus, rotational symmetry order of a square is 4 (this is the
number of all the rotations—to 90°, 180°, 270° and 360°—matching a square with
itself). Accordingly, rotation symmetry order for equidistant triangle is 3 (120°,
240° and 360°); any body (assuming that its shape is not changed during rotation)
has at least rotation symmetry of the order 1. The presence of reflection symmetry is
defined by letter m (the first letter of a French word “miroir” or English “mirror”)
(Fig. 1.4a, b). Numbers of reflection planes possessed by a given body are not
included in the formulas of symmetry groups because it has been proved that if the
reflection symmetry takes place at all, its order is equal to that of the rotation
symmetry. Thus, symmetry group for a square which has four reflection planes
(vertical, horizontal and two diagonal) is written as 4 · m, and symmetry group of
an equidistant triangle as 3 · m (reflection planes coincide with three bisectors).

5 · m 1 · m 4

0 ) )

(a) (b) (c)

(e)(d) (f)

Fig. 1.4 Bodies belonging to different symmetry groups. a Rotation symmetry of order 5,
combined with the same order mirror symmetry. b Mirror symmetry only. c A pair of
enantiomorphic bodies with fourth-order rotation symmetry reflected to each other by a mirror
plane (vertical dashed line). d–f Translational symmetries of zero, infinite, and finite orders
correspondingly. Below each frame symmetry orders are shown. a–c and f from Shubnikov and
Kopzik (1972) with the authors permission
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On the other hand, a form depicted in Fig. 1.4c possesses only rotation, but not
reflection symmetry. Accordingly, its symmetry group is 4. Any object lacking
reflection symmetry has arbitrarily defined left and right configurations matching
each other by a reflection. Such objects are called enantiomorphic.

For circles, disks, and cones, the order of rotational symmetry is infinite. So far
as these bodies have also infinite number of reflection planes, their complete
symmetry group is ∞ · m. A sphere possesses rotational symmetry around an
infinite bundle of its central axes oriented at any angles to each other. Its symmetry
group is defined as ∞/∞ · m (a slash means that the angles between rotation axes
take arbitrary values). For comparing infinite symmetries, the notion of symmetry
power is used. Accordingly, symmetry power of a sphere is greater than that of a
disk.

For displaying a reflection plane perpendicular to the axis of rotational sym-
metry, a sign “:” is used. Thus, symmetry of a bi-cone as well as of a disk of finite
thickness is ∞ : m. Symmetry of a cylinder is m · ∞:m.

Translational symmetry is that of linear shifts (transpositions) of a body in
relation to its initial position. This kind of symmetry is evaluated by the length of a
linear transposition matching a given structure with itself. It is defined as (a).
Completely homogeneous bodies or those with a design arranged parallel to the
shifts directions are self-coincided under any shifts and have symmetry order (a0)
(Fig. 1.4d). On the other hand, if the design is not at all repeated, the body has the
infinite-order symmetry (a∞) (Fig. 1.4e). An example of design having finite
translational symmetry order is given in Fig. 1.4f.

In classical biology (both zoology and botany), the notions of symmetry are used
in most cases for comparing static forms belonging to different taxonomic groups.
Moreover, the compared symmetries are related as a rule to higher structural levels
only. Playing an important role in morphology and taxonomic studies, this
approach does not permit to penetrate deeply in developmental problems. Aiming
to do just this, we shall compare now the symmetry orders of the different levels
processes and the changes of symmetry orders at successive stages of development,
using both descriptive and experimental criteria. We hope to show that such an
enterprise will promote to clarify our views upon the driving forces of development.

1.2.1.2 Symmetry Orders on the Different Structural Levels

Whereas in ideal crystal bodies, the symmetry order of the crystal lattice is held on
all macroscopic levels, in non-crystal bodies to which living beings belong, sym-
metry orders of different structural levels may be uncoupled. Even without using
overtly the notions of symmetry, the researchers of a remote past knew this and
believed in its biological importance. One of the most popular generalizations in the
century back embryology was that “a whole is more precise than its parts” (e.g.,
Gurwitsch 1930). In the language of symmetry theory, this means that the sym-
metry order of a whole body or of its large enough areas is higher than that of its
smaller parts (Fig. 1.5a); same are symmetry relations between the induced axial
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organs taken as wholes and the areas occupied by inductor tissue (see Fig. 1.3).
This was considered as a strong argument for holistic regulation of development.
More recently, however, the reverse situations have been described (Petuchov
1981). In these cases, described by the so-called conformal symmetry, the shape
and the symmetry order of small constituent parts remains invariable, while that of
larger areas is extensively distorted (Fig. 1.5b, c).

At the present time, an interest to the symmetry of small body parts, including
single cells, was essentially increased owing to discovery of so-called planar cell
polarity, most overtly expressed in epithelial cells (Vladar et al. 2009; Eaton and
Julicher 2011). This means that in addition to well-known apico-basal polarity

Fig. 1.5 Relations of symmetry orders between different-level structures. a A perfect mirror
symmetry of left and right skull parts of the lizard, Lacerta agilis, taken as a whole (reflection
plane shown by vertical dotted line) is combined with the lack of such symmetry at the level of
bone plates. b, c Conformal symmetry transformations, preserving rectangular shapes of small
parts (symmetry orders 4 m) under substantial deformations taking place at upper levels. b Growth
of a mushroom fruit body. c Comparison of a human and chimpanzee skulls. a from Zacharov
(1987); b, c from Petuchov (1981), with the author’s permissions
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oriented perpendicularly to cell layer plane, a cell possesses also a polarity oriented
in the layer’s plane. Accordingly, symmetry group of a planarly cell should be
reduced from n · m (taking n-edged cell with apico-basal polarity only) to 1 · m (in
case of the cells with mirror symmetry plane), and even to 1 (if a cell exhibits
left–right dissymmetry, as shown by Xu et al. 2007). Although up to now our
knowledge of 3-dimensional cell shapes is still rudimentary, there is no doubt that it
affects cell differentiation (see Chap. 4 for more details).

What are relations between single-cell symmetries and those of higher structural
levels? Does a “whole” dictate symmetry order to its parts? Is true the reverse or
even the both levels’ symmetries are established independently? The question is far
from being solved, but some remarkable examples of a “symmetry orders
exchange” between different levels can be traced and will be discussed in more
details in Chap. 3. Here, it is worth to emphasize that the relations between the
different-level symmetries are closely related to morphomechanics. As argued by
Cademartiri et al. (2012), the direct transposition of the constituent parts symmetry
to the upper structural levels corresponds to equilibrium state of solid bodies. On
the contrary, the increase of a symmetry order at the upper level as compared to
those of its constituent parts is typical for the equilibrium state of the liquids. Thus,
by comparing the symmetry orders of different levels, we may conclude whether a
living body becomes fluidized or instead solidified.

1.2.1.3 Curie Principle and Symmetry Breaks

One of the most important generalizations of symmetry theory is that formulated
more than a century ago by a French physicist Pierre Curie (Curie 1894) for the
crystal bodies and electromagnetic events. Only recently its applicability to a wider
set of events including morphogenesis was acknowledged. Here is the initial for-
mulation of Curie principle (op. cit):

When certain causes produce certain effects, the elements of symmetry of the
causes must be found in the produced effects.
When certain effects show certain asymmetry, this asymmetry must be found in
the causes that gave rise to them.
The reverse of these propositions is not true, at least in practice that is to say that
the produced effects can be more symmetric than the causes.

Thus, Curie principle forbids “spontaneous” (causeless) decrease of symmetry
order of a given system, but permits its spontaneous increase. It is directly related to
the second law of thermodynamics. Indeed, the increase of the symmetry order is
equivalent to homogenization of a body structure and to enhancement of the
freedom degrees of its constituent particles—hence to the entropy increase.
Accordingly, the decrease of the symmetry order means establishment of an ordered
heterogeneity restricting the particles’ degrees of freedom, which corresponds to the
decrease of entropy.
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Let us trace how the symmetry order of developing organism is changed from
the very beginning of egg’s development. In our analysis, we shall ignore left–right
dissymmetry as being strictly determined by certain supramolecular structures
(mictotubules and microfilaments). This issue will be discussed in Chap. 2.

Up to fertilization, the overall shape of oocyte is not changed at all or is changed
in an irregular way. This does not permit to use geometric criteria of symmetry. On
the contrary, the usage of colored symmetry (addressed to small regions of the
body: polar bodies and markers of its future dorsal side) is much more adequate.
Indeed, before the extrusion of polar bodies, the polar (future animal–vegetal) axis
can take potentially any direction; hence, by these criteria, an egg has the highest
possible (spherical) symmetry order (∞/∞ · m) (Fig. 1.6a). [Note that our evalu-
ation is based upon considering an (imaginary) set of bodies, rather than a single
one; same approach will be used in other cases as well]. When after the second
polar body extrusion the position of the polar axis becomes strictly determined, the
symmetry order is reduced to ∞ · m (Fig. 1.6b). Next, after setting up location of
the dorsal side (which is often associated with egg’s fertilization) symmetry order
becomes 1 ⋅ m (Fig. 1.6c). Another routine example of the reduction of circular

Fig. 1.6 Reductions of symmetry order (symmetry breaks) during development. a Non-
germinated egg prior to establishment of animal–vegetal polarity. b Polarized egg. c Egg acquiring
dorsoventrality. d Formation of tentacles ring in the oral region of hydroid polyp illustrating
reduction of rotation symmetry order. e Transformation of infinite-to-finite translational symmetry
in genes expression patterns of Drosophila embryos. Upper line: eve, lower line: fushi tarazu
genes. Frames from left to right correspond to successive periods of development. e is from
Surkova et al. (2013) with the author’s permission, modified
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symmetry order is provided by sectioning an initially homogeneous ring into a
number of similar angular units, for example, tentacles (Fig. 1.6d).

More advanced stages of development are in many cases associated with
acquiring a finite order of translational symmetry. The classical example of such
transformation is segmentation of embryonic mesoderm (see Chap. 4 for more
details). Recently to this one, the phenomena of the metameric genes expression in
Drosophila embryos have been added (Alberts et al. 2003). For properly inter-
preting the finally established symmetries, it is necessary to know the develop-
mental history of the arisen patterns. As shown by Surkova et al. (2013), instead of
a previously expected homogeneity or smooth expression gradients, the regular
segmented patterns have been emerged from quite variable ones (Fig. 1.6e, frames
from the left to the right). This indicates the reduction of the translational symmetry
order from infinite to finite and the corresponding entropy decrease.

So by a broadest survey, the general course of development looks as a suc-
cession of the reductions in symmetry order, defined also as symmetry breaks.
(In no way, this excludes the existence of the periods of symmetry order increases,
located between the breaks and/or on the other structural levels: see below for more
details). Now the urgent question will be whether it would be possible
(as demanded by Curie principle) to find for each symmetry break an external agent
having a similarly broken symmetry which can be directly transmitted to a devel-
oping organism.

To the credit of experimenters almost surely unfamiliar with Curie principle be it
said, they stubbornly looked for the agents which might serve as external “sym-
metry breakers.” To a considerable part, their search was successful: In a number of
species, the animal egg pole (the site of polar bodies extrusion) turned out to be
determined by the position of the oocyte in relation to follicular cells; similarly,
molecular determinants of a future dorsal side of an amphibian egg became located
strictly opposite to sperm entrance point (see Chap. 3 for details). In brown algae,
the egg pole giving rise to rhizoid became oriented oppositely to the source of light
(Jaffe 1969). Thus, Curie principle seemed to be saved at a low price. However,
further investigations of similar objects showed that the situation is not so
straightforward. The rhizoid of algae eggs was growing in a polarized manner even
in the case of isotropic illumination (op. cit); similarly, amphibian eggs underwent
dorsalization in the absence of sperm (during parthenogenesis) or when the sperm
was inserted exactly in the animal pole being thus unable to break symmetry
(Nieuwkoop 1977); moreover, in mammalian eggs, the sperm entrance point is
completely unrelated with embryo polarity. It is even more hopeless to find external
dissymmetrizers for more advanced structures characterized by translational
asymmetry: None of embryonic inductors are able to play this role.

In addition to the observations of intact embryos, the standard experimental
procedures associated with changes of mutual positions of body parts can also be
taken as adequate criteria of a symmetry order inherent for a given stage embryo.
Indeed, if any possible replacements of embryo parts are compatible with its further
normal development, we may say that by the criteria of a developmental fate, the
given stage embryo has the highest possible symmetry order. Accordingly, if any
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single replacement will disturb the entire developmental pathway, the symmetry
order estimated by the same criteria should be reduced to 1. So by experimental
criteria, similarly to morphological ones, the reduction of symmetry order coincides
with the advancement of development.

In some cases, the intermediate steps of such reduction can be traced. One of the
best examples is given by classical works of the American embryologist Ross
Harrison performed almost a century ago (Harrison 1918). The researcher was
interested in tracing the capacity of the limb rudiment to adjust its orientation to the
entire body antero-posterior (AP) polarity at the successive stages of development.
For this purpose, he turned a still flat limb rudiment (limb disk) of urodelean
embryos in such a way that either both AP and DV axes, or only one of them was
rotated to 180° in relation to the AP axis of entire body (To rotate just one axis was
possible by transplanting a limb disk to the opposite side of embryo) (Fig. 1.7).

Dors

Ventr

Dors

Ventr

AP A

(a) (b)

(c) (d)

(e)

Fig. 1.7 Harrison’s experiments on regulations of limb orientation according to body axes.
a, b Ambystoma embryos at two successive stages of development. Shown are dorso-ventral (DV)
and antero-posterior (AP) axes of entire bodies and limb buds. c A normal limb disk orientation
(left frame) and results of its rotations at stage A. Only rotations of DV axis keeping AP axis intact
(right rose frame) are compatible with normal orientation of a limb bud. d Results of limb bud
rotations at stage b. None of these are compatible with normal limb orientation. e Harrison’s
results described in symmetry terms
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The results crucially depended upon the stage when the operation has been
performed. At the earliest stage, the normal limb orientation was restored after
rotation of the both axes of a disk; at the intermediate stage, the restoration could be
achieved after rotation of DV, but not AP disk axis (see frames marked by rose
color), and at the most advanced stage, none of the axes’ rotations were compatible
with restoration of the normal orientation. In addition to demonstrate by experi-
mental criteria the successive symmetry breaks, these results show that determi-
nation of limb polarity is in each stage essentially holistic: At the intermediate
stage, it is AP axis as a whole, rather than any small material element which
specifies its final fate. This property permits to describe the results of Harrison
experiments in the symmetry terms: By a criteria of the developmental fate, at the
initial stage, the limb disk has a rotational symmetry of infinite order (∞ ⋅ m); at the
intermediate stage, it is reduced to 1 ⋅ m (symmetry axis coinciding with DV axis);
and at the final stage the symmetry order becomes 1.

It is important (besides all, for satisfying Popper’s falsification criteria) that it is
possible not only to imagine but to reproduce experimentally some morphogenetic
processes with exactly opposite symmetry dynamics, that is, tending to increase
rather than decrease symmetry order. Among those, most important are the so-
called cell sorting events described by Townes and Holtfreter (1955) and interpreted
in terms of the differential adhesion hypothesis (Steinberg 1978). These experi-
ments start from randomized arrangement of different types of strictly determined
cells which become finally segregated into concentric layers (Fig. 1.8). Initial
configurations, if evaluated by criteria of color symmetry, cannot be matched with
themselves by any kind of movements due to cells heterogeneity: Hence, their
symmetry order is 1. On the contrary, the final arrangement is much more sym-
metric, approaching roughly the symmetry order of a sphere (∞/∞ ⋅ m).

Another instructive example is given by Elsdale (1972) observations on the
behavior of fibroblast monolayers in the presence of collagenase, destructing col-
lagen fibers. Under these conditions, randomly oriented fibroblasts were grouping
into vast domains of parallel oriented cells. Finally, all of the domains have been
fused into a single giant one. To what kind of symmetry transformations should we
attribute these processes?

1 . m

Fig. 1.8 Symmetry transformations under standard cell sorting experiments. For detailed
description, see text
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The key event here is the axiality (2 · m symmetry order) of each individual cell
(lacking in the previous example). If we deliberately neglect it, we have to assume
the initial symmetry order to be very high (∞ ⋅ m for the case of monolayer) so that
the subsequent transformations should be estimated as the reduction of symmetry
order down to 1 ⋅ m. This is not so, however, because the formation and fusion of
the domains is based upon the inherent axiality of individual cells. Taking this into
consideration, the initial symmetry will be of the order 1: a population of the
randomly oriented axially symmetric cells would not coincide with itself under any
shifts or rotations. Similarly to the previous example, the final stage is characterized
by the increase of symmetry order up to 1 ⋅ m. Same is the evolution of the freedom
degrees of the individual cells: Their mutual shifts are mostly hampered under
random arrangement but facilitated under parallel one. In this respect, the behavior
of aligned cells is quite similar to that of the liquid crystals (to be discussed below
in this chapter).

Noteworthy, such a type of behavior is taking place in the absence of long-range inter-
actions, which may be introduced by seeding cells onto elastic substrates or by deposition
of extracellular matrix. As we will show in Chap. 3, under the latter conditions, the initial
symmetry order will be reduced.

Sometimes, the short-and long-range interactions coexist at different scales. By
studying the formation of supramolecular structures (so-called ciliary units) in
unicellular Ciliates, Frankel (1989) established a linear threshold (about 1 μm
length) subdividing a smaller realm into which the symmetry order of the units’
arrangement is “dependent only on the intrinsic properties of the building blocks”
(op. cit) from the larger scale one where the units become oriented according to the
entire body handedness, rather than their own chirality sign. Thus, the “Frankel’s
barrier” delimits the domination zones of the short- and long-range interactions.

It is of interest to note that in the most primitive metazoans, the short-range order
and the corresponding tendencies to symmetry increase seem to dominate: Thus, in
slime molds, the proper mutual positioning of their only two cell types, so-called
prestalk and prespore cells, is achieved by a kind of cell sorting (Nicol et al. 1999)
rather than according to their positions within a whole. On the other hand, in all the
real metazoans developing from macroscopic eggs, the long-range types of order
and the associated successions of symmetry reduction dominate from the earlier
stages.

Now it will be important to address again to the Curie principle. How should we
estimate it after recognizing that most of developmental symmetry breaks look as
being proceeded spontaneously? Is this an argument for rejecting the principle?
Before doing this, let us explore the situation in more details: This will permit us not
only save Curie principle in relation to embryonic development at any price, but make
this in a highly constructive way. The matter is that the Curie principle is not bound in
any way to exact magnitudes of symmetry breaking agents: in fact, they may be
indefinitely small. On the other hand, both whole organisms and their constituent
parts are always exposed to some kinds of “noise,” that is, to small perturbations of
quite different nature coming from somewhere outside. Accordingly, instead of
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rejecting Curie principle, one may suggest that for becoming able to symmetry
breaks, the embryos should acquire a high sensitivity to some kinds of noise, per-
ceiving them as dissymmetrizing agents; on the other hand during other periods, they
should be indifferent to many external disturbances. This idea brings us closely to
fundamental notions of SOT, and first of all to those of instability and stability. Let us
look now how these notions and principles can help us in comprehending the main
property of morphogenesis—regular complication of organic shapes.

1.2.2 Parametric and Dynamic Regulations: Several Basic
Models

1.2.2.1 Stratification of Variables According to Characteristic Times

As mentioned in the Introduction, among the main properties of our world is its
stratification to a number of more or less discrete levels distinguished from each
other not only by characteristic dimensions (Lch) but also by “characteristic times,”
or Tch (reversed rates) of the events. Although in biology a scale of structural levels
has been used for long ago, its real importance could be apprehended only within
SOT framework. This is because there are differences in Tch which permit to
distinguish two main categories of the variables: the dynamic ones characterized by
small Tch and the parameters, whose Tch should be at least in an order greater.

In the following table, the dimensional and temporal ranges of Lch and Tch
belonging to several levels most important for developmental processes are given:

Description of the level Lch, meters Tch, seconds

1. Macromolecules transducing chemi-
cal energy into mechanical

≈10−8 10−3 − 100 (relaxation time)

2. Supramolecular non-covalently
bound structures

10−7 − 10−5 ≈100 (assembly−disassembly
time)

3. Single cells 10−5 ≈102 (average time for changing
neighbors)

4. Embryonic territories capable of
regulations (morphogenetic fields)

10−4 − 10−3 102 − 103 (time from formation to
next step of segregation)

5. Whole organisms 10−3 − 101 105 − 108 (duration of life cycle)

1.2.2.2 Linear and Nonlinear Feedbacks: Links to Embryology

Self-organization is impossible if the variable whose changes are a matter of our
interest does not act back upon itself, whether positively or negatively. The simplest
(but quite far from being the only one) way to explore feedbacks is to take as
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examples autocatalytic or autoinhibitory chemical reactions. The first of them
display positive and the second negative feedbacks between the amount of syn-
thesized substance and the rate of its synthesis. The both can be described, in the
first approximation, by linear differential equations: dx/dt = kx − C for autocatalytic
and dx/dt = −kx + C for autoinhibitory reactions. Here, x is a dynamic variable
while k and C are the parameters, their Tch being, ex definitio, at least an order
greater than Tch for x. Even such simple feedbacks, as depending upon the sign of
the parameter, can reproduce two main states of any self-organizing system: a
dynamic (Lyapunov’s) stability or instability. Indeed, at k < 0, a dynamic variable
comes to a single stable state, while under k > 0, it becomes unstable and diverges
toward ±∞; in practice, that means that it does not exist at all.

The feedback loops can be complicated in different ways: by including positive
and negative ones in the same equation, by increasing the number of variables or by
passing toward nonlinearity. Let us start from exploring the latter way.

While in the context of linear differential equations, instabilities lead to nothing
except destructing the system, if introducing the second (and better a third)-order
nonlinearity, they become to play a constructive role by increasing the system’s
complexity (reducing its symmetry order). In this way, nonlinearities cooperate
with Curie principle. Let us also take into mind that nonlinearity (the existence of
more than one solution for a given argument value) directly contradicts the classical
determinism (“one cause–one effect” paradigm). Endowing the system with the
elements of randomness (non-predictability), the nonlinearity provides at the same
time its capacity to produce novelties, that is, something beforehand non-existed
and even non-predictable. As claimed by Prigogine and Stengers (1984): “A
novelty is a measure of a causal independence (indefiniteness) of successive states
of a developing subject in relation to preceded ones.” Neither individual, nor
evolutionary development can take place without acquiring novelties, and hence
without nonlinearity.

A simplest model illustrating the acquiring of novelties and reduction of sym-
metry order is described by the following third-order differential equation:

dx=dt ¼ kx� k1x
3 k1 [ 0ð Þ ð1:1Þ

It combines a first-order positive feedback with a third-order negative one. As
can be checked by simple algebraic calculations, at k < 0 the equation has only one
solution (x = 0) which is stable, while at k > 0, it has three solutions (x1 = 0;
x2,3 = ± √k/k1) among which x1 becomes unstable and new ones (x2,3) are stable
(Fig. 1.9a). While passing from k < 0 to k > 0, the variable x moves toward one of
two new stable solutions from any point of the phase space,2 leaving x1 under any
negligibly small perturbation along the x axis (this is so-called soft regime). At the
same time, the indefinite-order translational symmetry characterizing k < 0 area is

2 A phase space is a space in which all possible states of a system are represented, with each
possible state of the system corresponding to one unique point in the phase space.
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completely lost. Let us note that variations of the parameter k values (with another
parameter, k1, being constant throughout) and those of the variable x play quite
different roles in determining the system’s behavior, namely a shift of the
k parameter value from negative to positive endows a system by a possibility to
select any one of the newly emerged stable states (x2 or x3), while the result of
selection will depend upon whether the perturbation of a dynamic variable is shifted
toward positive or negative x values. Hence, the first decision is regulated para-
metrically, that is by relatively slow and spatially smoothed evolution, while the
second is regulated dynamically, due to faster and more local events. Such a strict
separation between acquiring the ability to select one of the developmental path-
ways, and the selection itself is one of the most essential properties of organic
development, being noticed by embryologists well before SOT was outlined. In
embryological terms, the first (parametrically regulated) property is called compe-
tence, while the second (dynamically regulated) is defined as determination of a
given part of embryonic tissue. A possibility to describe these properties in SOT
language means that embryonic development obeys universal laws of nonlinear
systems behavior.

Let us emphasize that at k > 0, initial values of the dynamic variable required for
reaching a definite stable state do not need to be set up precisely: It is enough to
limit their range either by a positive or by a negative semi-infinity. In mathematical
terms, this means that dynamic regulation can be (and as a rule is) highly degen-
erative. This is in opposition to a widespread opinion that biological systems
require very precise regulation. Actually, it is not so: in fact, their extreme reliability
is based upon the capacity to produce precise responses to non-precise impulses.
This again may take place only in nonlinear regimes.

Fig. 1.9 a, b Soft and hard bifurcation regimes. In the both cases, parameters (k and α,
respectively) are plotted along the horizontal and the dynamic variable (x) along the vertical axes.
X1 is non-differentiated state (marked by light blue) split into alternative differentiation states x2
and x3 (dark and light lilac) either by infinitesimal perturbations (soft regime: a, k > 0, B, α < 0) or
by finite perturbations (hard regime: b, 0 < α < β2/4γ)
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Even more adequate for representing the universal properties of developing
systems is a somewhat complicated version of Eq. (1.1) with an additional quadratic
term, describing a new second-order feedback:

dx=dt ¼ ax� bx2 � cx3 ð1:2Þ

This equation (Fig. 1.9b) always has one solution (x = 0) which is stable at positive
and unstable at negative α values. Meanwhile, under α < ß2/4γ two other solutions
appear in a peculiar and biologically relevant asymmetric manner, namely both of
them are emerged in a single point P of a phase space as a kind of jump [rather
being smoothly branched from a previously existed solution as it took place in
Eq. (1.1)]. Among them, the middle one (x2) is unstable under positive and stable
under negative α values while x1 solution behaves in a reverse manner. The solution
x3 is always stable.

These properties, associated with the appearance of a new feedback very much
enrich the developmental potencies and regulatory properties of the imaged system.
While that one described by Eq. (1.1) should pass toward new stable states under
any infinitesimal perturbations (in a so called soft regime), the transition from x1 to
x3 at α > 0 will go now only under finite perturbations, because in this area of α
values the two stable states are separated from each other with the instability
barriers. The latter’s existence opens new ways for the dynamic regulation of the
system’s behavior making it more reliable. At the same time, Eq. (1.2) learn us that
the state of a competence (which depends upon the parameters values) may itself
undergo a qualitative evolution from the area α > 0 characterized by requirement of
a finite perturbation for reaching x3 to α < 0 when the same transition can be
reached in a soft regime.

1.2.2.3 Periodic Regimes and Creation of New Levels

Let us consider now a system of differential equations with two dynamic variables,
x and y, having drastically different Tch: y evolving much faster than x. Accord-
ingly, x is defined as a slow variable and y as a fast one. For equalizing the right
parts rates, the term dy/dt is multiplied by so-called small parameter ε. A simplest
system of this kind to be of interest is called Van der Pol equations. It looks like

dx=dt ¼ y ð1:3aÞ

e � dy=dt ¼ � y3 þ ayþ x
� � ð1:3bÞ

As one can see, the both variables are linked by “+, −” feedback loop: The
variable y acts positively to the variable x, while x acts negatively to y. Another new
property of the system is its three-level structure (if including the parameter a,
assumed to be constant). The system’s behavior is characterized by the presence of

24 1 From Strict Determinism to Self-organization



a so-called attractor toward which the dynamic variables trajectories are rapidly
(with dy/dt rate) approaching from all the points of a phase space. In its turn, the
attractor’s configuration crucially depends upon the sign of the parameter a. At
a > 0, it is a cubic parabola after falling to which the variables are slowly (with dx/
dt rate) moving toward a stationary point O which is called the stable nodule
(Fig. 1.10a). Much more interesting is the system’s behavior under a < 0: Now the
attractor takes the shape of the so-called limit cycle consisting of two periods of
slow movement (along the branches PQ and SR) and two fast “jumps” (QR and SP)
(Fig. 1.10b). At the same time, point O becomes unstable. As a result, an entirely
new temporal level is born, characterized by a non-damped oscillation period;
remarkably, this temporal value depends upon those having no temporal dimen-
sions at all: to these belong a constant parameter a and the entire structure of x, y
feedbacks described by Eqs. (1.3a, 1.3b). This is a clear example of generation of a
new quality.

The limit cycle is very robust in the sense that that the “phase point” (describing
a system’s state in the phase space) gets onto it without a possibility to escape from
any point of a phase space (e.g., from points L or M, Fig. 1.10b). On the other hand,
it principally differs from classical mechanical oscillations driven by external forces
(that is, by perturbations alien to the oscillating body itself). Rather, in the case
considered, the oscillations are supported by the kinetic properties of the oscillating
system itself. Accordingly, such events are defined as auto-oscillations, taking place
in the active media.

Auto-oscillations can be regulated and essentially transformed by including new
parameters [mostly in Eq. (1.3a)], e.g., by adding a constant parameter b

dx=dt ¼ y�b

The movement of the imaging point along the upper branch of the limit cycle is
now slowed down compared to the lower branch; under large enough b values a new

Fig. 1.10 a–d Phase portraits of auto-oscillations and related regimes. a Attraction toward a single
stationary point under a > 0. In b–d a < 0. b Auto-oscillations. c Relay regime. d Trigger regime.
x-zero isoclines are shown in red and y-zero isoclines in blue. In a and b, x-zero isoclines coincide
with y = 0 axis, while in c and d, they deviate from this axis are inclined and slightly curved
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stable point T is emerged (Fig. 1.10c) transforming non-damped auto-oscillations to
the so-called waiting, or relay regime. Even more extensively, the system will be
transformed by sloping x-zero isocline:

dx=dt ¼ ky�b

If the slope is great enough, x-zero isocline intersects, in addition to the unstable
branch QS, also PQ and RS sections of the stable branches (Fig. 1.10d). Under
these conditions, two stable nodules, Q and R, are created. A switching from one to
another is possible only under finite perturbations of x-variable, shifting it toward
the verges of fast jumps. This model exemplifies the so-called trigger regime
characterized by the existence of two alternative metastable states. As argued in
Chap. 4, this regime plays a first-range role in regulating morphogenesis.

1.2.2.4 From Determinism to Stochasticity

The above-presented models are called deterministic in the sense that they generate
predictable and as a rule uniform patterns of behavior even if starting from quite
variable (noisy) initial conditions. Certainly, this designation does not mean that
they obey the classical “one cause–one effect” determinism: Rather, the latter would
always produce different results under different initial conditions which as we could
see is not the case. The dynamic stability of the above models is provided by
parametric regulation which is quite far from being precisely addressed but is
instead essentially smoothed both in time and in space, bearing thus holistic
properties.

A similar rise of precision in the course of development (which in a number of
cases starts from rather variable initial stages and comes to more uniform results)
was known to embryologists for a long time and was called equifinality. One of the
greatest embryologists of a remote past, Carl Ernst von Baer, after tracing equifi-
nality in a great set (more than 2,000 samples) of chicken embryos concluded: “it is
not any stage by itself which, owing to its own properties, determines the next, but
instead, more general and higher relations regulate all of this…” (Baer 1828).
Today we may identify these relations with parametric regulation.

Remarkably, the parametric regulation can also bring to opposite results, namely
to make a chaos out of order. One of the simplest scenarios of such transformation
is based upon so-called logistic equation

dx=dt ¼ kx 1�xð Þ ð1:4Þ

widely employed for describing the so-called restricted, or S-shaped growth, with
its rate firstly increasing and then decreasing in a symmetric fashion. We shall use
this expression as a discrete reflection written as

26 1 From Strict Determinism to Self-organization

http://dx.doi.org/10.1007/978-3-319-13990-6_4


xnþ1 ¼ kxnð1�xnÞ ð1:4aÞ

where xn and xn+1 are x values at discrete time points n and n + 1. The plot of (4a) is
bell-shaped, its maximal height proportional to λ value (Fig. 1.11a–d). We have to
explore what points at the reflection plot will be immobile and which ones among
them will be stable under not too large variations of λ values. Obviously, a con-
dition of immobility is xn+1 = xn: The immobile points are always situated at the
bisector of the coordinate angle (dashed lines in Fig. 1.11a–d). Also, it can be
proved that the condition of stability is [df(ximmobile)/dx] < 1. It is possible to derive

Fig. 1.11 From order to chaos. a–d Increase of parameter λ values (shown) transforms single
stable point to an increased set of alternated states. e Splitting into increased number of alternated
states as a function of λ values
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from these results that under the smallest λ values (λ < 1), there is only one stable
point at x = 0 (Fig. 1.11a). With λ increase, this point at first shifts to non-zero
x values still keeping its stability (Fig. 1.11b), but later on (when the bell-shaped
graph becomes steep enough for intersecting the bisector by its descendant branch),
the stability is lost. Most important is that in this case, contrary to the above-
considered instabilities, the point is not moved toward infinity; rather, it starts to
oscillate at first between two discrete points (Fig. 1.11c) and then (with further λ
increase) between 4, 8, 16, 32… such points (Fig. 1.11d). In other words, a quasi-
stable periodic solution will run through increased numbers of different x values
until each next value will become practically unpredictable: a system will come to a
state which we shall qualify as chaotic (Fig. 1.11e). Being plotted in the time
coordinates, these regimes correspond to chaotic oscillations; if unfolded in space,
they give rise to so-called fractal structures, remaining self-similar at quite different
scales. A living matter is full of such examples.

The very existence of such structures is fatal for the classical determinism: It
would be meaningless to search an individual cause for any single fractal structure—
an entire set of these is generated at once by shifting just a single parameter λ. What
might be its biological meaning? We can see that λ value determines the interval
between two successive x values: If the interval is small, the system behaves in
deterministic manner, while at larger intervals, it approaches a chaotic state. On the
other hand, the interval between neighboring x values can be regarded as the gap
(most probably temporal) between the action and the response or, in other words, as
a measure of the feedback rate. Below (see Chap. 4), we shall see that modulations of
the feedbacks rates may be among the main tools for regulating morphogenesis. In
addition, as being non-spatial, such modulations are easily opened for being directly
affected by genetic factors. All of this makes plausible that “playing”with λ values, a
biological system employs one of the most effective ways to regulate development,
sometimes approaching and sometimes leaving the verge of chaos.

1.2.2.5 Self-organized Criticality

As it was shown during the last few decades, first by theoretists and then by
experimenters, the state maintained at the verge of chaos turned out to be, in some
sense, rather stable. Consider a sand dune: being from time to time flattened by
unpredicted avalanches of various sizes, it restores each time its typical inclination
even if moving to some extent from one location to another. This peculiar state is
defined as a “self-organized criticality” (see Ball 2001). Being non-equilibrial (a
sand dune is created and supported by the energy of the wind), such a system
exhibits from time to time large-scale perturbations (avalanches) for which only
statistical probability rather than deterministic schedule can be estimated. In double-
logarithmic coordinates, the frequency of different size avalanches versus their size
obeys a linear slope: small avalanches appear more often than large ones. Events
obeying this law are called the scale-free ones: being in a self-criticality state, a
system looks as erasing the differences between characteristic times and/or spatial
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scales typical for hierarchical systems in the “normal” conditions: Looking again on
a sand dune, we can see that it possesses neither characteristic size nor characteristic
frequency of the avalanches taking place from time to time. In a sense, this is an
ideal case of a holistic, absolutely undivided system.

Many biological systems, from respiration of yeast cultures to electrical records of
neural activity, reveal the state of self-criticality. In the next chapter, we shall discuss
some similar events related to so-called glassy state of actin networks. However, quite
few studies of this kindwere performed on the developing organisms. One of themost
relevant is that by Gamba et al. (2012) performed on fresh water hydra embryos. By
studying the size distribution of gene ks1 expression spots, the authors found that it is
close to scale-free patterns just at the time of determination of the main body axis. It
would be of a great interest to know whether scale-free dynamics is a universal
property of developing systems during their transition to a determined state.

1.2.2.6 Spatial Unfolding of Self-organized Regimes

Although nothing in principle forbids to unfold the parameters of the above models
not only in time, but also in space, such a possibility is rarely used: To do this
would be to consider the space a priori heterogeneous, which contradicts the main
SOT demands. A usual way for providing a spatial unfolding by preserving the
space homogeneity is to use a notion of diffusion in its broadest sense. It means that
if within the active medium (endowed by a proper nonlinear dynamics) the con-
centration of a certain substance (or the amount of some measurable physical state)
X is, due to a perturbation, locally increased, X will be propagated with the rate
linearly proportional to the second derivative of X to space coordinate. The basic
equation for the diffusion-mediated propagation along one-dimensional reactor is

dx=dt ¼ f xð Þ þ Dx d2x=dr2
� � ð1:5Þ

where f(x) describes the kinetics in any point of the active medium (the so-called
point kinetics), Dx is the diffusion coefficient and r is the sole spatial coordinate of
the reactor. If the point kinetics produces auto-oscillations, its spatial unfolding will
look as the so-called autowave of a definite length, moving from the point of initial
perturbation to the opposite edge of the reactor. Autowaves are the most remarkable
examples of spatial structures created “out of nothing,” that is, without any template
(the above-described auto-oscillations exemplify temporal structures of similar
origin). As claimed by Krinsky and Zhabotinsky (1981), “autowaves exemplify a
new type of dynamical processes generating macroscopic linear scale due to local
interactions, each of them possessing no linear scale at all.” This definition captures
the very essence of self-organization and is more precise than qualifying it as
emergence of order out of fluctuations: the matter is that the notion of “order” itself
requires further explication.

From thermodynamic point of view, autowaves belong to so-called dissipative
structures, maintained only under a continuous flow of reagents and energy.
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Meanwhile, dissipative structures can well be stationary. Such structures were
firstly observed by a French physicist Benard in thin layers of a viscous liquid
heated from below: These are so-called Benard cells separated from each other by
coherent upward-directed convection flows of the liquid. The importance of these
formations has been realized much later, when a British mathematician Alan Turing
gave a model of formation of stationary waves of a given length out of a “noise,”
the latter containing the waves of any lengths (Turing 1952). Although Turing’s
model had no direct biological parallels, it became extremely influential as
revealing some unique and most probably universal properties of spatial self-
organization. They are the following.

The 1-dimensional reactor (either tubular or toroidal), if non-perturbed locally,
should always contain an integer number of half-waves. Thus, if the reactor’s length
is gradually changed, it will always contain an integer number of half-waves:
Accordingly, the half-wave numbers will be changed abruptly, after passing a
certain threshold. Locations of the thresholds depend upon the direction of the
length changing: If the length is increased, the thresholds are shifted toward greater
values as compared to their positions under reverse movement. In other words, a
system possesses a kind of primitive “memory” of its immediate past.

Under progressive shortening of the reactor, we reach the length threshold after
crossing which only one half-wave (lacking mirror symmetry) can be formed from
the random noise; formation of a complete (mirror symmetric) wave within the
same length range is possible only by applying precisely located directed pertur-
bations. The structures of the first class (those formed spontaneously, without
requiring special perturbations) are called senior modes, while those of the second
class (molded by perturbations) are called the junior modes. Under further short-
ening, the next threshold is reached marking a “homogeneity border”: No structures
can be now generated, whatever great would be the initial perturbations. These
results belonging to pure mathematics have interesting parallels in the development
of organisms. Spontaneous formation of asymmetric structures may explain the
absolute domination of unipolar configurations over bipolar ones almost at any
structural level of the living matter. The lack of differentiation in very small pieces
of embryonic tissue is also a firmly established phenomenon. Thus, the Turing’s
model, being unrealistic in concrete details, captures several fundamental features
of self-organizing systems.

Interestingly, in spite of calling his paper “On the chemical basis of morpho-
genesis,” Turing in no way neglected a possible role of mechanical factors in
providing self-organization (see Howard et al. 2011): The main reason for prefer-
ring chemokinetic models to mechanical ones was that the first ones were much
easier to calculate. However, as we shall see later such a seeming easiness, when
applied to morphogenesis has its own shortcomings.

During several decades following publication of a seminal Turing’s paper, a
great number of models based upon similar ideas appeared mostly known as che-
mokinetic models of morphogenesis (Meinhardt 1982). Common for all of them is
the assumption of “chemical prepatterns,” that is, local inequalities in the con-
centrations of certain substances (morphogenes) serving as precise templates for
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morphological structures or/and certain differentiation pathways. Actually, this
concept is quite similar to that of PI and is confronted with the same difficulties. Let
us look in more details what this model means if being applied to the formation of
serial evaginations, such as scales, appendages, and buds. For deriving specific
shapes of these rudiments from chemical prepatterns, we have to assume a precise
one-to-one dependence of the local curvatures upon the local concentrations of
morphogenes. Same dependence should take place within an entire course of
development. Thus, we have to accept that the postulated concentration gradients
should evolve during development in a regular way, which will be another for any
next rudiment: All of these demand separate explanations. Instead of simplifying
the entire picture, we come to what is known as an increased multiplication of
essences.

In certain cases, the chemical prepatterns, configured like more or less smooth
gradients, can play a role of initial conditions, canalyzing somehow the course of
morphogenesis, but to consider them as one-to-one morphogenetic templates seems
unrealistic. Leaving for the future further elaboration of this important problem, let
us ask ourselves, whether morphological structures can be created without any
chemical prepatterns. In this chapter, we explore this possibility using in most cases
the model examples.

1.2.3 Shaping Without Prepatterns

In this section, we come closer to the realm of mechanics. The reader unfamiliar
with its main notions is asked to look for the Sect. 1.2.4, which includes, in
addition, the list of recommended readings.

We start from considering a rod to which a compressing axisymmetric force is
applied either from one side (the opposite one fixed) or from both sides equally. If
the rod consists of a soft (easily deformable, plastic) matter, it will be shortened
while remaining rectilinear. However, if it has some elastic resistance, when the
compressing force exceeds a certain threshold, the rectilinear shape loses its sta-
bility and the rod will be bent to one of the sides. This is the case of the well-known
Eulerian instability, described by a great eighteenth-century mathematician Leonard
Euler. It obeys Eq. (1.1) and is the simplest case of mechanical instability, leading
to the reduction of the symmetry order. On the other hand, it provides the basic
model for a large group of morphogenetic processes, driven by increase of internal
pressure in cell layers (see Chap. 3 for more details). By furnishing the rod with
cross-beams which are also elastic, we may bring the model even closer to bio-
logical realities, imitating its cellular structure (Fig. 1.12a). Now, under even
infinitesimal deviation of compressing force from the central axis of the rod, the
cross-beams will be stretched in asymmetric manner (Fig. 1.12a, hatched lines),
increasing elastic energy of transversal surfaces. Being driven toward the minimal
elastic energy value, each “cell” tends to return toward rectangular shape which,
under continuous action of the pressure force, is possible only by bending the entire
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rod. It is easy to show that the bending will be directed to the side of the force
deviation from the central axis. In this way, we get a two-leveled image of the rod’s
bending (“cells” first, the whole rod next) which closely imitates some basic epi-
thelial morphogenesis (see Chap. 3 for more details).

As the next example, we take a deformable beam connected with a bundle of
elastic springs firmly fixed from the opposite side (Fig. 1.12b). In this case, under
the action of lateral pressure the beam will be bent as a rule in several points,
always producing an integer number of half-waves. With the beam elongation, the
number of half-waves is increased in a threshold manner, imitating thus Turing’s
behavior without any morphogens! Worth mentioning, in no way the wave pattern
fits that of the springs’ attachments. If the beam is circular, has finite thickness, and
is compressed by its own internal forces (the most natural morphogenetic situation),
the resulted half wavelength λn can be calculated by the formula

kn ¼ 2p D=kð Þexp 1=4ð Þ ð1:6Þ

where D is the bending rigidity and k is the coefficient of the spring elasticity
(Green et al. 1996). Interestingly, if the beam is thick enough, the “conflicts” may
arise between its outer and inner perimeters, each one tending to arrange an integer
number of half-waves; as a consequence, some irregularities of the resulted pattern
will take place.

Now let us address to some examples of shape formation in balloon-like and
vesicular bodies, covered with thin elastic shells. We start from considering a
flattened puck-like balloon with radius a and height b, inflated through a central
pore. As shown by Martynov (1982) if and only if a > b/√2, the inflation will stretch
the lateral walls of ellipsoid in meridional (vertical) direction and compress it in the
equatorial (horizontal) direction (Fig. 1.13a). If the shell is not too thick and rigid
the inflation will produce N vertical folds which will be exchanged by the same
amount of horizontal folds during deflation. In the both cases, N ≈ 4√a/S where S is
the thickness of the shell. We can see that the uniformly applied forces within a

Fig. 1.12 Shape formation via Eulerian instabilities. a Bending of a rod split to “cells” with elastic
walls (hatched) under the action of a slightly eccentric pressure force (arrow). The final
deformation (dotted) is the result of the drift of the bent cell walls toward more relaxed symmetric
state. b Some examples of bending patterns of laterally compressed elastic rods connected with a
number of firmly fixed springs. In each case, the resulted pattern corresponds to the minimal elastic
energy state of the entire two-components system and to the maximally homogeneous spread of its
energy. Note that in no case, the bending wavelength fits the spring arrangement [From Green
et al. (1996), with the authors permission, modified]
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restricted but not too small range of initial geometric conditions can produce
extensive rotational asymmetry.

A set of the different deformations, each of them decreasing symmetry order,
have been obtained in small lipid vesicles (Wintz et al. 1996). The osmotically
driven shrinkage of initially spherical vesicles led to formation of peculiar figures
with rotational (n · m) and mirror-like (1 · m) symmetry, some of them called by the
authors “star-fish vesicles” (Fig. 1.13b).

So we can see that rather complicated deformations, associated with decrease of
the symmetry order, and in some cases biomorphic, can be produced without any
outside imposed patterning, including chemical gradients of any origin. What are
the basic principles of these events?

The general answer will be quite simple: In full accordance to the second law of
thermodynamics, all of the above-described transformations are driven by the
tendency of a given body to reach the minimum of its free mechanical energy
(which was pumped initially by an external force). Why, however, this tendency
brings the bodies toward regular shapes with decreased symmetry order instead of
increasing their randomness and homogenization? The response is: those are the
geometrical and structural constraints which prevent the described bodies from
reaching the “absolute” energy minimum, setting them instead for quite different
(up to indefinitely long) time periods into the metastable energy wells.

In general terms, this can be achieved, if the system possesses a set of stable
states to which it is relaxed with a greater rate than to the homogeneous state, and

2·m

1·m

(a) (b) (c)

Fig. 1.13 Morphogenesis (symmetry breaks) without chemical prepatterns, driven by energy
minimization. a Formation of folds under inflation/deflation of a flattened balloon. b Formation of
“starfish vesicles” from a deflated baloon instead of its uniform shrinkage. c Svetina and Zeks (1991)
model. Upper frame: a plot of the relative membrane bending energy (vertical axis) as a function of
the average membrane curvature (horizontal axis). The curve denoted S is for shapes with 2 · m
symmetry and the curve denoted P for shapes with 1 · m symmetry. Lower frame: numerically
obtained axisymmetric shapes with minimum membrane bending energy. After exceeding a certain
average curvature threshold, there are 1 · m rather than 2 · m symmetry figures which exhibit local
energy minimae. a FromMartynov (1982), with the author’s permission; b fromWintz et al. (1996),
with the publisher’s permission. c from Svetina and Zeks (1991), with the authors’ permission
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which are far enough removed from the latter. Obviously, the first condition making
this possible is nonlinearity, providing the multiplicity of stable states. Accordingly,
the linear systems possessing only one stable state are incapable of morphogenesis.
Next, for enough rapid relaxation to specific stable states, the system should possess
a restricted number of selected degrees of freedom. The physical mechanisms
associated with these tendencies will be discussed in the next chapter.

At the moment let us look how these conditions are fulfilled in the above-
described shape-forming systems. First, all of them are nonlinear; the nonlinearity
of the laterally compressed beams is expressed by Eq. (1.1). Our next question will
be what are the pathways toward metastable states, permitting to avoid thermo-
dynamic averaging?

In case of the compressed beam (Fig. 1.12a), the thermodynamic pathway is that
directed toward its continuous rectilinear flattening, accompanied by heat emission.
It is quite obvious, that this way is unstable, while just those directed away from it
(toward bending which exemplifies elementary morphogenetic events) are stable.

In the second example (Fig. 1.12b), the system has the same fundamental
properties although if aggravated by the presence of vertical elastic bonds. Mor-
phogenetic stable states will be now determined by a compromise between the
beam resistance to bending and the bonds resistance to stretching: in all the cases,
the mechanical energy tends to be maximally equalized throughout the system’s
components. Under these conditions, the number of bending half-waves produced
by the lateral compression will be more than one due to the tendency to equalize the
elastic energy between all of the system components (including the beam itself and
all the springs). Obviously, at the single half-wave bending, most of the energy will
be concentrated in the beam itself and in central springs, contradicting the tendency
to overall equalization of mechanical energy.

On the other hand, if the number of half-waves will be too great, the main beam
would accumulate too much bending energy. By these ways, the system is working
as integrated whole.

In the next two examples (Fig. 1.13a, b), there are not only mechanical, but also
geometric constraints which canalize the drive toward free energy minimum along
morphogenetic (rather than thermodynamic) pathways. In case of the flattened
balloon, the constraints are exemplified by the radius/heights ratio, acting in a
threshold-like fashion. Meanwhile, in case of the “star-fish vesicles,” the situation is
somehow more complicated. Here, the bending energy, which is proportional to the
local curvature, plays the main role. Being unable, due to the shell’s continuity, to
reach the absolute minimum (that is, to flatten all the vesicle’s surfaces), the
maximal curvatures become concentrated in few small regions connected by tubular
bridges (flattened in one dimension at least). Later (Chap. 4), we shall see that a
similar tendency although if driven by other mechanisms takes place in real
embryos. On the other hand, a great multiplicity of the shapes observed in Wintz
et al. models indicates the existence of many metastable states which are not so
numerous in biological samples. In any case, however, the thermodynamic mini-
mum (which would correspond to a dense wrinkling of the shrunk shell) is avoided.
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Svetina and Zeks (1991) modeled a similar situation imitating the increase of a
vesicle’s surface with its volume kept constant. They showed that after exceeding a
certain threshold of the average curvature, there are 1 · m symmetry structures
(ovoid vesicle with a small bud) rather than 2 · m ones (symmetric ellipsoid) which
correspond to the minimal bending energy (Fig. 1.13c). This is another example of
inherent drive toward the reduction of the symmetry order.

The second law of thermodynamics tells us that a drive toward the free energy
minimum can be realized either by a decrease of enthalpy (which is a measure of
the total energy of the system) and/or by an increase of entropy (which is defined as
a measure of the number of specific ways in which a system may be arranged, often
taken to be a measure of disorder). Which of these two members’ contribution is the
greatest for the systems we are interested in? According to experts’ opinion
(Cademarini et al. 2011), “free energy… for hard systems [to which the living
matter belongs—LB] is dominated by entropic contributions. This leads to the
somewhat surprising observation that ordered, close-packed structures are often
more probable (i.e., they have higher entropy) than similar amorphous structures, in
which “jamming” limits the mobility of the assembling components.”

This suggestion can be adequately illustrated by the behavior of so-called liquid
crystals, the highly ordered aggregations of rod-like particles. Usually, three main
types of liquid crystals are distinguished: nematic, smectic, and cholesteric. While
in cholesteric crystals, the particles, due to their intrinsic geometry, are arranged in
spiral fashion, the first two types are characterized by parallel arrangement. Among
them, in smectic crystals, the particles create parallel rows, while in nematic
crystals, no such alignment is taking place although the parallel arrangement is
kept. In the both cases, the particles have more freedom that under disordered
arrangement because in nematic crystals, any parallel shifts of the particles are
allowed, while in smectic crystals, the particles, although if unable to disturb the
row, can incline cooperatively at any angle. Accordingly, the entropy of the liquid
crystals in spite of their orderiness is higher than that of a dense population of
disordered particles and after passing the density threshold the transition toward
crystal state is spontaneous (entropy-driven). These arguments are of a direct
interest for biologists because multicellular structures with parallel cells arrange-
ment are widely presented in developing organisms (see Chap. 3).

According to the cited authors, from the thermodynamic view, all the structures
arisen due to collective interactions of their components can be divided into three
categories:

• equilibrial, that is those corresponding to the absolute (under given conditions)
free energy minimum;

• non-equilibrial, trapped in long-living metastable states depending upon the
history of the system and non-coinciding with the absolute energy minimum;

• dynamic (dissipative) ones which emerge and persist only under continuous
presence of thermodynamic gradients and flows, preventing relaxation even
toward metastable energy wells.
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The above-described shape-forming systems best of all fit the second category.
On the one hand, at the start of their formation, they should be pumped by
mechanical energy, and on the other hand, they do not require its continuous flow
for being maintained within prolonged time periods. At the first glance, this may be
not true for compressed beams which seem to require permanent lateral forces for
remaining bent; however, since their elementary structural units will be deformed,
the mechanical energy becomes internalized within the system itself and what we
qualify as the subsequent bending is an autonomous (independent from any outside
forces) relaxation toward the mechanical energy minimum predetermined by the
units deformations.

This is not to say that dynamic (dissipative) structures in sensu stricto play no
role in morphogenesis. Indeed, their role may be very important, but in relation to
morphological structures which we see under the microscope or even by a naked
eye, it is mainly preparatory. Dissipative structures are visualized mostly as
oscillations, flows, or vortices at supramolecular and sometimes cellular level (see
next chapters) which are prerequisites of more stable higher level structures.

In general, the morphogenetic interest of the above-described models is in
demonstrating that the relaxation of mechanical stresses established by a single
force or by a manifold of symmetrically arranged force(s) can produce less sym-
metric and in many cases biomorphic macroscopic structures. Obviously, this can
take place only if a substantial amount of mechanical energy which deforms a body
is not immediately dissipated into heat but is instead stored in the form of elastic
stresses to be later slowly relaxed to few metastable states. In the next chapters, we
will demonstrate that the elastic stresses are taking place in quite different structural
levels and are ultimately indispensable for coordinated morphogenesis.

On the other hand, it is to be emphasized that the relaxations are just single parts
of the morphogenetic loops: another parts are associated with generation of new
forces required for achieving the next mechanically stressed state. In each of the
above-discussed models, the initial force was taken as given: this makes these
models incomplete (non-closed). One of the main goals of our further account (see
Chaps. 3 and 4) will be to search the ways for creating really closed morphogenetic
models in which the both branches—generative and relaxatory—will be included in
the common feedback contours.

1.2.4 Brief Biologically Oriented Exposure of Some Notions
and Principles of Mechanics

1.2.4.1 Main Definitions

Mechanical stress (MS) p is defined as the average force per unit area S that some
particle of a given body exerts on adjacent particle across an imaginary surface that
separates them. p is a vector. More precisely, p is a limit of the ratio Δp /ΔS under
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ΔS → 0. By another definition, MS is a measure of internal forces arisen in the
deformed body under the action of external forces. This expression fits our purposes
due to emphasizing that the internal forces may be quite different by their values,
directions, and spatial arrangement from the external ones.

When dealing with a single surface passing through a given material point of a
body, one should distinguish MS oriented perpendicularly (normally) to the surface
from those oriented in-plane. Normal MS can be either tensile (exemplified by
pulling forces) or compressive (pushing forces). On MS plots, the first ones are
taken as positive, while the second as negative. In-plane-oriented MS produce the
so-called shear stresses. In our subsequent account, we shall be dealing almost
always with normal MS.

Meanwhile, for getting a complete description of a stressed state of a material
point belonging to 3-dimensional continuum (which is what we just want to obtain)
to consider a single plane is not enough, in general, we have to introduce an
indefinite number (a bundle) of such planes passing through the point and calculate
MS within each of them. Usually, such a task is reduced toward evaluation of three
mutually perpendicular MS components. In combination, they create a mathemat-
ical value called the tensor, which gives a full description of the stressed state of a
material point. Its basic distinction from vector is a lack of unidirectionality: the
simplest tensors are bidirectional. This property is of fundamental importance for
biological morphogenesis.

Now we pass to deformations which in the case of linear ones are usually
exchanged by the notion of strain—ratio of deformation over initial length of a
sample. From the physical point of view, the deformations are divided into elastic
and inelastic ones. Elastic deformations are those most closely linked with MS
which they produce and vice versa: in the ideal case, the elastic strain/stress relation
is linear (Hooke law): Real cases are more or less perfect approximations to
Hookean ones. During elastic deformations, the mechanical energy is assumed to be
preserved exactly in those inter-particles bonds to which it was directly applied by
external force, rather than being dissipated over larger areas. Accordingly, elastic
deformations are abolished “immediately” (in fact, with a sound wave speed) after
cessation of the force action. Although the concept of elasticity in its strict sense is a
kind of idealization (because any natural process is accompanied by energy dissi-
pation), it is of an ultimate importance as a referent state.

Inelastic deformations are those characterized by the dissipation (transformation
into a heat) of a considerable part of the pumped mechanical energy. The dissi-
pation is accompanied by various and quite complicated rearrangements of the
constituent body particles, driven toward thermodynamic equilibrium. Due to
irreversibility of these transformations, at least a part of imposed deformation
becomes preserved. In many cases, elastic deformations are transformed to inelastic
ones under increase of the amount or of the duration of the force action.

For measuring a resistance of an elastic material to deformation (its stiffness), the
so-called Young’s modulus is used which is the ratio of the stress along an axis of
deformation over the strain along that axis in the range of stress in which Hooke’s
law holds. Young’s modulus is expressed in Pascals (Pa) or N/m2.
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Most of the living tissues, being stretched in one direction tend to contract in the
directions, transverse to the direction of stretching. This is well-known Poisson
effect which is measured by a Poisson’s ratio υ: the fraction (or percent) of
expansion divided by the fraction (or percent) of compression (for small values of
these changes). The Poisson’s ratio of a stable, isotropic, linear elastic material
cannot be less than −1.0 or greater than 0.5.

A number of morphogenetically important deformations and MS are associated
with the events phenomenologically quite similar (although never identical) to those
taking place in the interphase borders and usually defined as a surface tension. So
far as a free energy of the surface layer molecules are greater of those located inside
a staff, the surface (interphase border) tends to contract up to a minimal (spherical)
area enveloping a given volume. Correspondingly, to deviate a surface layer from a
spherical shape (for extending the surface), a certain force should be applied (e.g., a
pressure force within the surrounded volume). Similarly to inelastic deformations,
those driven by surface tension are always directed toward minimum of free energy
under the given initial/border conditions.

The main characteristic of a shape is a curvature that is deviation of a line from
being straight or of a plane from being flat. A curvature k of an arch of a circle is
inversely proportional to the circle’s radius: k = 1/R. For most of our purposes, it
will be enough to dissect in our images the contours of embryonic objects to a
number of 1-dimensional circular arches (which in general case will have different
radii) and to compare qualitatively their curvatures; the latter are called the local.
However, for properly use the Laplace law (see below), a flat (1-dimensional)
curvature of a line should be replaced by a 2-dimensional curvature of a surface

k ¼ 1=Rx þ 1=Ry

where Rx and Ry are the local curvature radii, oriented in mutually perpendicular
planes. Their sum defines what is called the principal curvature in the intersection
point of these two planes.

It is easy to see that the surface tension and local curvatures are inversely related
to each other: Increase of surface tension tends to smooth the surface that is to
diminish the local curvatures and vice versa. This is expressed by Laplace law
describing the dependence of the hydrostatic pressure overfall Δp = p1 − p2 (where
p1 and p2 are the pressures exerted to the surface from its concave and convex sides
correspondingly) upon the interfacial tension σ and the local 2-dimensional
curvature ε = 1/R1 + 1/R2:

Dp ¼ er

what means that the surface pressure is directly proportional and the surface tension
is inversely proportional to the local 2-dimensional curvature.
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1.2.4.2 Biological Reservations

For good or for bad when applied to biology, strict notions of mechanics to a great
extent lose their preciseness, becoming to some extent vague and arbitrary. Prob-
ably the main reason for such a transformation is the appearance of the “activ-
ity–passivity” alternative almost unknown in classical mechanics but unavoidable
in biological applications. To know whether the given MS (e.g., those demon-
strating Poisson’s effect) are born by external force or generated inside a given
tissue piece is for a biologist in many times more important than to measure them
accurately. Another principal difference between inorganic and biological samples
is the latter’s hierarchic structure leaving far behind that taking place, for example,
in crystal bodies. In addition, a number of more particular uncertainties are taking
place. For example, determinations of the absolute MS values and of the Young’s
moduli are largely aggravated by a lack of precise understanding what is the real
square to which a given normal force is applied. Suggest that we make such
estimations for a stretched bulk of biological tissue. As a first approximation, we
can take the square of the entire transverse section through the bulk. Under more
precise consideration, we have to conclude that the real square to which the force is
applied is a total area of cell contact plaques oriented normally to the force. But this
is also far from being the end of the story: Individual cell contact plaques also have
complicated structure, and their areas are changed during force application, etc.

This is not to say that mechanics is incompatible with biological realities: our
viewpoint is just the opposite. The main thing is to make clear the biological
meaning of any mechanical measurement. In many cases, qualitative data will be of
a greater importance than precise quantitative ones. Although in no way the latter
should be rejected, they will make sense only if becoming the members of
homologous sets of data permitting the direct comparison: It should be never for-
gotten that in biology, the relations are much more important than the absolute
values.

1.3 Recommended Readings

For the full papers’ titles, see reference list:

Schwarz and Gardel (2012) Defining the main notions of mechanics

Blanchard and Adams (2011) Describing techniques for measuring mechanical forces at the
different structural levels

Diz-Muñoz et al. (2013) Describes and explains techniques to measure and manipulate
membrane tension

Ladoux and Nicolas (2012) Gives a list of the cell-generated forces and the external
forces used for studying the living cells’ mechanics
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