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Abstract. Discovering the interactions between proteins mentioned in 
biomedical literature is one of the core topics of text mining in the life sciences. 
In this paper, we propose an interaction pattern generation approach to capture 
frequent PPI patterns in text. We also present an interaction pattern tree kernel 
method that integrates the PPI pattern with convolution tree kernel to extract 
protein-protein interactions. Empirical evaluations on LLL, IEPA, and HPRD50 
corpora demonstrate that our method is effective and outperforms several well-
known PPI extraction methods. 
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1 Introduction 

With a rapidly growing number of research papers, researchers have difficulty finding 
the papers that they are looking for. Relationships between entities, mentioned in 
these papers, can help biomedical researchers find the specific papers they need. 
Among biomedical relation types, protein–protein interaction (PPI) extraction is 
becoming critical in the field of molecular biology due to demands for automatic 
discovery of molecular pathways and interactions in the literature. The goal of PPI 
extraction is to recognize various interactions, such as transcription, translation, post 
translational modification, complex and dissociation between proteins, drugs, or other 
molecules from biomedical literature. 

Most PPI extraction methods can be regarded as supervised learning approaches. 
Given a training corpus containing a set of manually-tagged examples, a supervised 
classification algorithm is employed to train a PPI classifier to recognize whether an 
interaction exists in the text segment (e.g., a sentence). Feature-based approaches and 
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kernel-based approaches are frequently used for PPI extraction. Feature-based 
methods exploit instances of both positive and negative relations in a training corpus 
to identify effective text features for protein-protein interaction extraction. For 
instance, Van et al. [16] propose a rich-feature-based kernel which applies feature 
vectors in combination with automated feature selection for protein-protein 
interaction extraction. In addition, a co-occurrence-based method is introduced by 
Airola et al. [1], which explores co-occurrence features of dependency graphs for 
representing the sentence structure.  

However, feature-based methods often have difficulty finding effective features to 
extract entity relations. In order to address this problem, the kernel-based methods 
have been proposed to implicitly explore various features in a high dimensional space 
by employing a kernel to directly calculate the similarity between two objects. In 
particular, kernel-based methods can be effective in reducing the burden of feature 
engineering for structured objects in Natural Language Processing (NLP) research, 
such as the tree structure in PPI extraction. For instance, Erkan et al. [6] define two 
kernel functions based on the cosine similarity and the edit distance among the shortest 
paths between protein names in a dependency parse tree. Moreover, Satre et al. [19] 
develop a system called AkanePPI, which extracts features using the combination of a 
deep syntactic parser to capture the semantic meaning of the sentences with a shallow 
dependency parser for the tree kernels, in order to automatically create rules to identify 
pairs of interacting proteins from a training corpus. 

Current research attempt to use tree kernel-based methods mainly due to its 
capability to effectively utilize the structured information derived from sentences, 
especially for the constituent dependencies knowledge. Vishwanathan et al. [17] 
propose a subtree (ST) kernel which considers all common subtrees in the tree 
representation of two compared sentences. Here a subtree comprises a node with all 
its descendants in the tree, and two subtrees are identical if labels of the node and 
order of their children are identical for all nodes. Likewise, Collins et al. [3] introduce 
a subset tree (SST) kernel that relaxes the constraint that requires all leaves to be 
included in the substructures at all times. In the meanwhile it preserves the 
grammatical rules. For a given tree node, either none or all of its children have to be 
included in the resulting subset tree. In addtion, Moschitti et al. [13] adopt a partial 
tree kernel (PT) which is more flexible by virtually allowing any tree sub-structures; 
the only constraint is the order of child nodes must be identical. Both SST and PT 
kernels are convolution tree kernels. Kuboyama et al. [9] propose a spectrum tree 
kernel (SpT) which put emphasis on the simplest syntax-tree substructures among 
these four tree kernels. It compares all directed vertex-walks, that is, sequences of 
edge connected syntax tree nodes, of length q as the unit of representation. When 
comparing two protein pairs, the number of shared sub-patterns called tree q-grams 
are measured as similarity score.  

To extract PPI from biomedical literature effectively, we modeled interaction 
extraction as a classification problem. We proposed an interaction pattern generation 
approach to capture frequent PPI patterns. Furthermore, to identify interactions 
between proteins, we developed an interaction pattern tree kernel that integrates the 
shortest path-enclosed tree (SPT) structure with generated PPI patterns to support 
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vector machines (SVM). The results of experiments demonstrate that the iteractive 
pattern tree kernel method is effective in extracting PPI. In addition, the proposed 
interaction pattern generation approach successfully exploits the interaction semantics 
of text by capturing frequent PPI patterns. Consequently, the method outperforms the 
tree kernel-based PPI method [3, 9, 13, 17]; the feature-based PPI method [1, 16]; and 
the shortest path-enclosed tree (SPT) detection method which is widely used to 
identify relations between named entities. 

2 Our System Architecture 

Figure 1 shows the proposed interaction extraction method, which is comprised of two 
key components: interaction pattern generation and interaction pattern tree 
construction. We regard interaction extraction as a classification problem. The 
interaction pattern generation component aims to automatically generate representative 
patterns of mention interactions between proteins. Then, the interaction pattern tree 
construction integrates the syntactic and content information with generated interaction 
patterns for representation of text. Finally, the convolution tree kernel measures 
similarity between interaction pattern tree structures for SVM to classify interactive 
expressions. We discuss each component in detail in the following sections. 
 

 

Fig. 1. The interaction extraction method 

3 Interaction Pattern Generation 

The human perception of a protein-protein interaction is obtained through the 
recognition of important events or semantic contents to rapidly narrow down the 
scope of possible candidates. For example, when an expression contains strongly 
correlated words like "beta-catenin", "alpha-catenin 57-264" and "binding" 
simultaneously, it is natural to conclude that this is a protein-protein interactive 
expression, with a less likelihood of a non-interactive one. This phenomenon can 
explain how humans can skim through an article to quickly capture the interactive 
expression. In light of this rationale, we proposed an interaction pattern generation 
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approach that aims to automatically generate representative patterns from sequences 
of expression of protein-protein interactions. 

We formulate interaction pattern generation as a frequent pattern mining problem. 
First of all, the instances undergo the semantic class labeling process. To illustrate the 
process of semantic class labeling, consider the instance In = "Abolition of the gp130 
binding site in hLIF created antagonists of LIF action", as shown in Fig. 2. First, 
"gp130" and "hLIF" are two given protein names, as tagged PROTEIN1 and 
PROTEIN2 respectively. Then, we stem remaining tokens by using porter stemming 
algorithm [15]. Finally, trigger words "bind" and "antagonist" are labeled with their 
corresponding types by using our compiled trigger word list which extracts from a 
BioNLP corpus [8]. Evidently the SCL can group the synonyms together by the same 
label. This enables us to find distinctive and prominent semantic classes for PPI 
expression in the following stage. 

 

 
Fig. 2. Semantic class labeling process 

After labeling semantic classes, we based on the co-occurrence of semantic classes 
to construct a graph to describe the strength of relations between them. Since 
semantic classes are of an ordered nature, the graph is directed and can be made with 
association rules. In order to avoid the generation of frames with insufficient length, 
we empirically set the minimum support of a semantic class as 20 and minimum 
confidence as 0.5 in our association rules. Thus, an association rule can be 
represented as (1). Fig. 3 is an illustration of a semantic graph. In this graph, vertices 
(SCx) represent semantic classes, and edges represent the co-occurrence of two 
classes, SCi and SCj, where SCi precedes SCj. The number on the edge denotes the 
confidence of two connecting vertices. After constructing all of the semantic graphs, 
we then generate semantic frames by applying the random walk theory [13] in search 
of high frequency and representative classes for each topic. Let a semantic graph G be 
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defined as G=(V,E) (|V|=p, |E|=k), a random walk process consisting of a series of 
random selections on the graph. Every edge (SCn, SCm) has its own weight Mnm, 
which denotes the probability of a semantic class SCn, followed by another class SCm. 
For each class, the sum of weight to all neighboring classes N(SCn) is defined as (2), 
and the whole graph's probability matrix is defined as (3). As a result, a series of a 
random walk process becomes a Markov Chain. According to [4], the cover time of a 
random walk process on a normal graph is 24, kCSC

nSCn ≤∀ . We select frequent 

semantic classes and their neighborhoods as start nodes of a random walk process. 
We can conclude that using random walk to find frequent patterns on the interactive 
graph would help us capture even the low probability combinations and shorten the 
processing time. 
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Fig. 3. An interactive graph for pattern generation 

Although the random walk process can help us generate frames from frequent 
patterns in semantic graphs, it can also create some redundancy. Hence, a merging 
procedure is required to eliminate the redundant results by retaining the patterns, with 
long length and high coverage, and dispose of bigram patterns that are completely 
covered by another pattern. For example, the pattern [PROTEIN1]->[Binding] is 
completely covered by the pattern [PROTEIN1]->[Binding]->[Regulation]-
>[Transcription]->[PROTEIN2]. Thus, the former pattern is incorporated. Otherwise, 
if a bigram pattern partially overlaps with another, the overlapping part is 
concatenated to form a longer pattern. For instance, the pattern [Positive_regulation]-
>[Regulation] partially overlaps with [Regulation]->[Gene_expression]-
>[PROTEIN1], thus the two patterns are merged into another single pattern 
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[Positive_regulation]->[Regulation]-> [Gene_expression]->[PROTEIN1]. Moreover, 
the reduction of the semantic classes space provided by pattern selection is critical. It 
allows the execution of more sophisticated text classification algorithms, which lead 
to improved results. Those algorithms cannot be executed on the original semantic 
classes space because their execution time would be excessively high, making them 
impractical [1]. Therefore, to select patterns closely associated with an interaction 
would improve the performance of PPI extraction. We use the pointwise mutual 
information (PMI) [1], a popular statistical approach used in feature selection, to 
discriminate semantic classes for PPI instances. Given a training dataset comprised of 
positive instances, the PMI calculates the likelihood of the occurrence of a semantic 
class in the expressions of PPI. A semantic class with a large PMI value is thought to 
be closely associated with the interaction. Lastly, we rank the interaction patterns in 
the training dataset based on a sum of semantic classes PMI values and retain the top 
20 for representing protein-protein interactions. 

4 Interaction Pattern Tree Construction 

A PPI instance is represented by the interaction pattern tree (IPT) structure, which is the 
shortest path-enclosed tree (SPT) of the instance enhanced by following steps. To 
facilitate comprehension of the construction process, the positive instance shown in Fig. 
4(a), which mentions the interaction between "AVP" and "PKC", serves as an example. 

 
(a). Full Parse Tree (FPT) 

   
(b). Shortest Path-enclosed Tree (SPT) (c). IPT Pruning (d). IPT Ornamenting 

 

Fig. 4. The interaction pattern tree construction procedure for a PPI instance “The inhibitory 
action of AVP involves both the activation of PKC and the transcription of iNOS mRNA in 
cultured rat GMC” 
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In [15], the authors show that the SPT is effective in identifying the relation 
between two entities mentioned in a segment of text. Given an instance, therefore we 
first construct the smallest common sub-tree including the two proteins. In other 
words, the sub-tree is enclosed by the shortest path linking the two proteins pi and pj 
in the parse tree, which as shown in Fig. 4(b). Next, in order to make the IPT concise 
and clear, we remove indiscriminative IPT elements. Frequent words are not useful 
for expressing interactions between proteins. For instance, the word “both” in Fig. 
4(c) is a common word and cannot discriminate interactive expressions. To remove 
stop words and the corresponding syntactic elements from the IPT, we sort words 
according to their frequency in the text corpus. Then, the most frequent words are 
used to compile a stop word list. Moreover, to refine the list, protein names and verbs 
are excluded from it because they are key constructs of protein-protein interactions. 
Finally, the generated interaction patterns can help us capture the most prominent and 
representative patterns for expressing PPI. Highlighting interaction patterns closely 
associated with PPIs in an IPT would improve the interaction extraction performance. 
For each IPT that matched an interaction pattern, we add an IP tag as a child of the 
tree root to incorporate the interactive semantics into the IPT structure (as shown in 
Fig. 4(d)). 

A convolution kernel aims to capture structured information in terms of 
substructures. Generally, we can represent a parse tree T by a vector of integer counts 
of each sub-tree type (regardless of its ancestors): 

))(#),...,(#),...,((#)( 1 TsubtreeTsubtreeTsubtreeT ni=φ ,        (4) 

where #subtreei(T) is the occurrence number of the ith sub-tree type (subtreei) in T. 
Since the number of different sub-trees is exponential with the parse tree size, it is 
computationally infeasible to directly use the feature vector ψ(T). To solve this 
computational issue, we leverage the convolution tree kernel [3] to capture the 
syntactic similarity between the above high dimensional vectors implicitly. 
Specifically, the convolution tree kernel KCTK counts the number of common sub-trees 
as the syntactic similarity between two rich interactive trees IPT1 and IPT2 as follows: 
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where N1 and N2 are the sets of nodes in IPT1 and IPT2 respectively. In addition ∆(n1, 
n2) evaluates the common sub-trees rooted at n1 and n2 and is computed recursively as 
follows: 
(1) if the productions (i.e. the nodes with their direct children)at n1 and n2 are 

different, ∆(n1, n2) = 0; 
(2) else if both n1 and n2 are pre-terminals (POS tags), ∆(n1, n2)=1×λ; 
(3) else calculate ∆(n1, n2) recursively as: 
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where #ch(n1) is the number of children of node n1; ch(n, k) is the kth child of node n; 
and λ(0<λ<1) is the decay factor used to make the kernel value less variable with 
respect to different sized sub-trees. The parse tree kernel counts the number of 
common sub-trees as the syntactic similarity measure between two relation instances. 

The time complexity for computing this kernel is )( 21 NNO ⋅ . 

5 Experiments 

5.1 Experimental Setting 

We evaluated our method with three publicly available corpora that contain PPI 
annotations: LLL [13], IEPA [4] and HPRD50 [6] (the distribution of corpora are 
shown as the Fig.5). All the corpora are parsed using Stanford parser 
(http://nlp.stanford.edu/software/lex-parser.shtml) to generate the output of parse tree 
and part-of-speech tagging. In our implementation, we use Moschitti’s tree kernel 
toolkit [1] to develop the convolution kernel of an IPT. To derive credible evaluation 
results, we utilize the 10-fold cross validation method [1] on all of the corpora. This 
guarantees the maximal use of the available data and allows comparison to the earlier 
relevant work. The evaluation metrics are the precision rate, recall rate, and F1-
measure [1]. The F1 value is used to determine relative effectiveness of the compared 
methods. We exploit the macro-averaged score to indicate the overall performance 
across three different corpora for each evaluation metric. 
 

 

Fig. 5. Distribution of 3 corpora used for performance evaluation of PPI extraction 

5.2 Results and Discussion 

The proposed interaction pattern tree kernel uses the PPI patterns to enhance the SPT. 
In the following, we compare it with several feature-based and kernel-based PPI 
extraction methods reported by [17] to demonstrate the effectiveness. As shown in 
Table 1, the proposed method significantly outperforms SPT and AkanePPI. 
Furthermore, the syntax tree-based kernel methods (ST, SST, PT, and SpT) only 
examine the syntactic structures of text and cannot sense the semantics of protein 
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interactions. By contrast, our method analyzes the semantics and content (i.e., PPI 
patterns) of text to identify protein-protein interactions. Hence, our performance is 
superior to that of them. It is noteworthy that syntax tree-based kernel methods 
oftentimes are just on par with the co-occurrence approach in terms of F1-measure. 
On the very small LLL, their results practically coincide with co-occurrence. The 
rich-feature-based and Cosine also outperform SPT, AkanePPI and syntax tree-based 
kernel methods as it incorporates dependency features to distinguish protein-protein 
interactions. Although Cosine can accomplish higher performance by further 
considering term weighting, it is difficult to represent word relations. By contrast, our 
method can extract word semantics, and generate PPI patterns that can capture long 
distance relations among them. Consequently, we can achieve a better outcome than 
other methods. 

To summarize, the proposed interaction pattern tree kernel approach successfully 
integrates the syntactic and semantic information in text to identify protein-protein 
interactions. Hence, it achieves the best performance among the compared methods, 
as shown in Table 1. 

Table 1. The interaction extraction performance of the compared methods 

System LLL IEPA HPRD50 Macro-
average 

Precision, Recall, F1-measure (%) 
SPT 56.4 / 96.1 / 69.6 55.5 / 28.8 / 37.1 46.2 / 13.4 / 20.8 52.7 / 46.1 / 42.5 
AkanePPI [19] 76.7 / 40.2 / 52.8 66.2 / 51.3 / 57.8 52.0 / 55.8 / 53.8 65.0 / 49.1 / 54.8 
co-occ. [1] 55.9 / 100. / 70.3 40.8 / 100. / 57.6 38.9 / 100. / 55.4 45.2 / 100. / 61.1 
PT [13] 56.2 / 97.3 / 69.3 63.1 / 66.3 / 63.8 54.9 / 56.7 / 52.4 58.1 / 73.4 / 61.8 
SST [3] 55.9 / 100. / 70.3 54.8 / 76.9 / 63.4 48.1 / 63.8 / 52.2 52.9 / 80.2 / 62.0 
ST [17] 55.9 / 100. / 70.3 59.4 / 75.6 / 65.9 49.7 / 67.8 / 54.5 55.0 / 81.1 / 63.6 
SpT [9] 55.9 / 100. / 70.3 54.5 / 81.8 / 64.7 49.3 / 71.7 / 56.4 53.2 / 84.5 / 63.8 
rich-feature-based [16] 72.0 / 73.0 / 73.0 64.0 / 70.0 / 67.0 60.0 / 51.0 / 55.0 65.3 / 64.7 / 65.0 
Cosine [6] 70.2 / 81.7 / 73.8 61.3 / 68.4 / 64.1 59.0 / 67.2 / 61.2 63.5 / 72.4 / 66.4 
Our method 59.9 / 94.4 / 71.6 52.2 / 88.1 / 65.2 59.3 / 83.0 / 67.3 57.1 / 88.5 / 68.0 

6 Concluding Remarks 

Automated extraction of protein-protein interactions is an important and widely 
studied task in biomedical text mining. To this end, we proposed an interaction 
pattern generation approach for acquiring PPI patterns. We also developed a method 
that combines the shortest path-enclosed tree structure with the generated PPI patterns 
to analyze the syntactic, semantic, and content information in text. It then exploits the 
derived information to identify protein-protein interactions in biomedical literatures. 
Our experiment results demonstrate that the proposed method is effective and also 
outperforms well-known PPI extraction methods. 

In the future, we will investigate the syntactic dependency tree in text to 
incorporate further syntactic and semantic information into the interactive pattern tree 
structures. We will also utilize information extraction algorithms to extract interaction 
tuples from positive instances and construct an interaction network of proteins. 
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