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Abstract. We propose a generic method for automatic multiple-organ
segmentation based on a multilabel Graph Cut optimization approach
which uses location likelihood of organs and prior information of spa-
tial relationships between them. The latter is derived from shortest-path
constraints defined on the adjacency graph of structures and the former
is defined by probabilistic atlases learned from a training dataset. Organ
atlases are mapped to the image by a fast (2+1)D hierarchical regis-
tration method based on SURF keypoints. Registered atlases are fur-
thermore used to derive organ intensity likelihoods. Prior and likelihood
models are then introduced in a joint centroidal Voronoi image clus-
tering and Graph Cut multiobject segmentation framework. Qualitative
and quantitative evaluation has been performed on contrast-enhanced
CT images from the Visceral Benchmark dataset.

1 Introduction and Related Work

Clinical practice today, especially whole-body CT and MRI scanning, often gen-
erates large numbers of high-resolution images, which makes tasks of efficient
data access, transfer, analysis and visualization challenging, especially in distrib-
uted computing environments which have seen growing use of handheld terminals
for interactive data access and visualization of anatomy. Therefore, there is great
interest for efficient and robust medical image segmentation algorithms for the
purposes of creating patient-specific anatomical models, clinical applications,
medical research and education, and visualization of full-body anatomy [2].

Traditionally single-object or pathology oriented, recent image processing
methods [7,9–11,14,16,17] have made the analysis and segmentation of multi-
ple anatomical structures increasingly possible. However, CT and MR images
have intrinsic characteristics that render its automatic segmentation challeng-
ing. They are commonly degraded by various noise sources and artifacts due to
limited acquisition time and resolution, and patient motion which all reduce the
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prominence of intensity edges in images. Regardless of the imaging modality and
related artifacts, many anatomically and functionally distinct structures, espe-
cially those corresponding to soft tissues, have similar intensity levels in images
and, furthermore, blend into surrounding tissues which have intensities close to
their own. It is impossible to identify and segment such structures automatically
on the basis of intensity information only. Hence, most advanced segmentation
methods exploit some form of prior information on structure location [14,18] or
interrelations [7,10,16,17] to achieve greater robustness and precision.

Graph Cut methods, which have been widely applied to single-object seg-
mentation problems [3], rely on a maximum-flow binary optimization scheme
of a discrete cost function on the image graph. For a particular class of cost
functions which frequently arises in segmentation applications [12], these meth-
ods produce provably-good approximate solutions in multiobject [4] and global
optima in single-object segmentation. In addition, simultaneous multiobject seg-
mentation approaches are superior to their sequential counterparts in that they
raise questions neither on the best segmentation sequence to follow nor on how
to avoid the propagation of errors on individual segmentations [7].

We propose a generic method for automatic multiple-organ segmentation
based on multilabel Graph Cut optimization which uses location and intensity
likelihoods of organs and prior information of their spatial configuration. The
spatial prior is derived from shortest-path pairwise constraints defined on the
adjacency graph of structures [10], and the organ location likelihood is defined by
probabilistic atlases learned from the Visceral Benchmark training dataset [8].
We register organ atlases to the image prior to segmentation using a fast (2+1)D
registration method based on SURF keypoints [1]. Registered atlases are also
used to derive organ intensity likelihoods. Prior and likelihood models are then
introduced in a joint centroidal Voronoi image clustering and Graph Cut multi-
object segmentation framework. We present the results of qualitative and quan-
titative evaluation of our method on contrast-enhanced CT images from the
Visceral Benchmark dataset.

2 Methods

2.1 SURF Keypoint-Based Image Registration

We first outline our fast (2+1)D rigid registration method, which is based on
keypoints detection. Features are extracted in 2D volume slices. This has the
advantage of being fast and easily parallelizable. Another advantage is that med-
ical data is usually stored in a Picture Archiving and Communication System
(PACS) as volume slices instead of full volumes. Our method easily fits into such
medical environments. Note that while feature extraction is done in 2D images,
registration is still performed in 3D, hence the (2+1)D notation.

We currently use the SURF image descriptor [1], but our approach is generic
and would work with others. To reduce computation time, we first downsample
the input volume to a user-specified dimension. As a rule of thumb, we isotrop-
ically resample each volume so that its second longest dimension is equal to the



Automatic 3D Multiorgan Segmentation 203

desired resolution R. For example, when R = 80, the POPI CT volume [19]
of dimensions 482 × 360 × 141 and spacing 0.97 mm × 0.97 mm × 2 mm is
resampled to a 107 × 80 × 64 volume with an isotropic spacing of 4.39 mm.

(a) (b) (c) (d)

Fig. 1. Matching two slices of POPI (a) and P1 (b) volumes. (a) and (b) show all
features found in both slices (a feature is represented by a circle and its orientation by
its radius). (c) and (d) show the three matching features between the two slices.

Next, we extract 2D SURF features from each slice. As these operations are
completely independent, this step is carried out in a parallel manner. Figure 1
shows feature extraction on POPI and P1 CT images [15]. The number of
extracted features is 1154 and 1079, respectively. Figures 1c and d show the
three matching couples found in both images. Once 2D matches are found, we
are able to perform volume registration. For robustness purposes, we use a simple
scale + translation transformation model:
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We estimate the 4 parameters s, tx, ty and tz in similar spirit to the RANSAC
method [6], which is an iterative parametric model estimation method known
to be very efficient in the presence of outliers. One RANSAC iteration usually
consists in randomly picking a small number of samples to estimate the model
parameters, and then counting the number of data samples consistent with the
model, rejecting outliers. After performing all iterations, the model providing
the highest number of consistent data samples is kept as the solution.

2.2 Organ Atlas Construction

Using 20 contrast-enhanced CT images and ground-truth annotations thereof
from the Visceral Benchmark dataset [8], we construct a probabilistic atlas for
each of the following 20 structures: thyroid; trachea; sternum; liver; spleen; pan-
creas; gallbladder; first lumbar vertebra; aorta; urinary bladder; right and left
lungs, kidneys, adrenal glands, psoas major and rectus abdominis muscle bodies.
In addition, we create atlases for three additional image and body regions: back-
ground (BKG), thorax and abdomen (THAB) and a body envelope (ENV) from
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(a) (b)

Fig. 2. An image-adaptive CVT clustering and its dual graph for a circle image.

annotations generated automatically as follows. BKG is created by thresholding
the CT image followed by morphological processing in order to isolate the body
region. THAB is created as the dilated union of the aforementioned 20 structures
and their bounding 3D ellipse, from which the structures are subtracted after
dilation. Finally, ENV is defined as the image minus BKG and THAB. Note
that ENV is a crude body envelope that comprises skin, fat, muscle and bone
structures. Refer to Fig. 4c for an illustration.

To create atlases, we use a representative image from the dataset as a refer-
ence and register remaining images to it via the method described in Sect. 2.1.
We register each structure separately in a bounding cube of a given margin in the
intensity image, defined according to the corresponding annotation image, and
apply the obtained transform subsequently to the annotation image. We accumu-
late annotations thus registered in a 3D histogram of reference image dimensions
which is normalized to produce the corresponding probability map.

2.3 Image Clustering

The full-resolution voxel representation is often redundant because objects usu-
ally comprise many similar pixels that could be grouped. Therefore, we simplify
the image prior to segmentation by an image-adaptive centroidal Voronoi tes-
sellation (CVT) which strikes a good balance between cluster compactness and
object boundary adherence, and helps to place subsequent segmentation bound-
aries precisely. We have shown that the clustering step improves the overall
runtime and memory footprint of the segmentation process up to an order of
magnitude without compromising the quality of the result [10].

Let us define a grayscale image as a set of voxels I = {v | v = (x, y, z)} and
associate to each voxel v ∈ I a gray-level Iv from some range I ⊂ R. Given a
grayscale image I and n sites ci ∈ I, a CVT partitions I into n disjoint clusters
Ci associated with each centroid ci and minimizes the following energy:

F (v; ci) =
n∑

i=1

( ∑
v∈Ci

ρ(v)
(‖v − ci‖2 + α‖Iv − Ii‖2

)
)

. (2)
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In (2), ρ(v) is a density function defined according to the intensity-gradient mag-
nitude at voxel v, ρ(v) = |∇Iv|, α is a positive scalar and Ii is the gray-level of
the cluster Ci defined as the mean intensity of its voxels. Refer to Fig. 2 for an
illustration in 2D. To minimize (2), we apply a variant of the clustering algo-
rithm in [5] which approximates a CVT in a computationally-efficient manner,
involving only local queries on voxels located on boundaries of pairs of clusters.

For referral in later sections, we shall define the graph of a CVT, illustrated
in Fig. 2b. Denote the surface of a cluster Ci by ∂Ci. Given a CVT clustering
C, let the set S index its clusters, and let G = 〈S, E〉 be an undirected graph
on cluster centroids where pairs of clusters having nonzero-area common surface
define the set of edges E =

{{i, j} | i, j ∈ S, |∂Ci ∩ ∂Cj | 	= 0
}
. Consequently,

the neighborhood of a node i ∈ S is defined as Ni =
{
j | j ∈ S, ∃ {i, j} ∈ E}

.

2.4 Multi-Organ Image Segmentation

We formulate image segmentation as a labeling problem, defined as the assign-
ment of a label from a set of 23 labels L representing the structures to be
segmented to each of the variables in a set of n variables, indexed by S, corre-
sponding to the clusters of a CVT-clustered image. Assume that each variable
i ∈ S is associated with the corresponding node in the graph G of the CVT
defined in Sect. 2.3. An assignment of labels to all variables is called a configu-
ration, and is denoted by � ∈ L. An assignment of a label to a single variable is
denoted by �i. We cast the labeling problem in a maximum a posteriori estima-
tion framework and solve it by minimizing the following energy function of label
configurations via the Expansion Moves multilabel Graph Cut algorithm [4]:

E(�) = t1
∑
i∈S

Di(�i) + t2
∑
i∈S

Pi(�i) +
1
2

∑
i∈S

∑
j∈Ni

Vi,j(�i, �j) . (3)

In (3), t1 and t2 are temperature hyperparameters, Ni is the neighborhood of the
variable i ∈ S. The first and second sums in (3) correspond respectively to organ
intensity and location (atlas) likelihood energies, and the third is the energy of
a prior distribution of label configurations expressed as a Markov random field
w.r.t. the graph G. We shall define these terms in detail.

Spatial Configuration Prior. Pairwise terms of (3) encode prior information
on interactions between labels assigned to pairs of neighboring variables encour-
aging the spatial consistency of labeling with respect to a reference model. We
define these terms according to our piecewise-constant vicinity prior model pro-
posed in [10], which, unlike the standard Potts model, incurs multiple levels
of penalization capturing the spatial configuration of structures in multiobject
segmentation. It is defined as follows. Let R be the set of symmetric adjacency
relations on pairs of distinct labels, R = {r | a r b, a, b ∈ L, a 	= b}. R can be
represented by a weighted undirected graph on L, A = 〈L,W 〉, with the set of
edges W =

{{a, b} | ∃r ∈ R, a r b, a 	= b
}

where edge weights are defined by
w ({a, b}) = 1, such that w ({a, b}) = ∞ if 	 ∃r ∈ R, a r b.
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(a) (b)

Fig. 3. (a) An illustration of our hierarchical registration procedure, and (b) an exam-
ple of registered organ atlases overlaid on the image.

Given the graph A, we define the pairwise term in (3) as:

Vi,j

(
�i, �j

)
= |∂Ci ∩ ∂Cj |�

(
a, b

)
, �i = a, �j = b . (4)

where �
(
a, b

)
is the shortest-path weight from a to b in A. The area of the

common surface of adjacent clusters |∂Ci ∩ ∂Cj | is introduced so that the sum
of pairwise energies in (3) ∀a, b ∈ L is equal to the area of the common surface
between the corresponding pair of objects multiplied by the shortest-path weight.

Intensity and Location Likelihoods. Unary terms of (3) measure the cost of
assigning labels to variables. They are defined as negative log-likelihood functions
derived from organ observed intensity and location probabilities:

Di(�i) = − ln
∏
v∈Ci

Pr(Iv | �i) , (5a)

Pi(�i) = − ln
∏
v∈Ci

Pr(Xv | �i) . (5b)

In (5b), Xv denotes the object-space coordinates of the voxel v. Conditional
probabilities in (5a) and (5b) correspond respectively to those of voxel inten-
sity and location given the structure �i. To estimate the conditional probability
distribution Pr(I | l) for a given label l ∈ L, we first register the correspond-
ing organ atlas to the image, then estimate the conditional probability as a
Gauss-smoothed and normalized intensity histogram derived from voxels in high-
probability regions of the registered atlas. Conditional probability distributions
Pr(X | L) are defined directly from registered atlases. The next section details
our hierarchical registration approach which maps organ atlases to the image.

Hierarchical Registration of Organ Atlases. We register probabilistic
organ atlases, constructed as described in Sect. 2.2, to the image in a 3-step
hierarchical fashion starting at the full image, then on an intermediate level
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Fig. 4. A segmentation of 12 structures from the Visceral Benchmark dataset image
10000109 1 CTce ThAb. The coronal sections correspond to (a) the image, (b) its seg-
mentation and (c) the associated ground-truth with additional labels for BKG, ENV
and THAB. (d) illustrates the adjacency graph used to define the spatial prior model.

Table 1. Mean Dice figures for select organs calculated on 10 segmentations per organ.

Structures Dice Structures Dice Structures Dice

Lung (R) 0.95 Kidney (R) 0.81 Urinary bladder 0.77

Lung (L) 0.96 Kidney (L) 0.86 Trachea 0.62

Liver 0.93 Psoas major (R) 0.71 Sternum 0.63

Spleen 0.84 Psoas major (L) 0.79 Aorta 0.57

corresponding to the THAB region, and finally on individual organs. After per-
forming registration on each level, we apply the obtained transform to the corre-
sponding atlas as well as to those of organs contained in the registered region. As
in Sect. 2.2, we register each structure separately in a bounding cube of a given
margin in the intensity image, defined according to the corresponding atlas.
Figure 3 illustrates the hierarchical registration procedure and gives an exam-
ple of registered organ atlases overlaid on the image to which they have been
registered.

3 Results and Conclusions

We have carried out qualitative evaluation on several contrast-enhanced CT
images from the Visceral Benchmark training dataset [8]. An example is given
in Fig. 4. The number of CVT clusters is equal to 3% of image voxel count.
Temperature parameters t1 and t2 are set such that intensity and location
likelihood-based unary terms contribute equally to (3). The spatial prior is
defined according to the adjacency graph given in Fig. 4d. Table 1 presents the
results of quantitative evaluation of our method on contrast-enhanced CT images
during the Visceral Anatomy 2 Benchmark. We report results corresponding to
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the best setting of temperature parameters out of 5 tested settings. In addition,
we give mean Dice figures only for organs for which our method successfully
produced segmentations on all 10 test images.

We conclude on two remarks. (1) Even though our hierarchical approach to
mapping atlases to the image relies on a rigid registration method, unlike many
hierarchical methods which use non-rigid deformable registration [13], it helps
localizing segmented structure boundaries quite well, because location informa-
tion roughly registered atlases contribute is complemented by intensity similar-
ity and spatial consistency criteria. (2) Full-body modeling by the introduction
of annotations BKG, ENV and THAB, not only complements location informa-
tion and allows for hierarchical registration, but also increases the discriminative
power of the spatial prior by higher penalization of inconsistent configurations.
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