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Abstract. Automatic and accurate prostate segmentation from CT images is
challenging due to low image contrast, uncertain organ motion, and variable
organ appearance in different patient images. To deal with these challenges, we
propose a new prostate boundary detection method with a boundary regression
strategy for prostate deformable segmentation. Different from the previous
regression-based segmentation methods, which train one regression forest for
each specific point (e.g., each point on a shape model), our method learns a
single global regression forest to predict the nearest boundary points from each
voxel for enhancing the entire prostate boundary. The experimental results show
that our proposed boundary regression method outperforms the conventional
prostate classification method. Compared with other state-of-the-art methods,
our method also shows a competitive performance.

1 Introduction

Prostate cancer is the second leading cause of male cancer death in USA [1]. As one of
the major treatments to the prostate cancer, image-guided radiation treatment (IGRT)
aims to deliver a high dose of X-ray to tumors, while limiting the dose exposed to the
surrounding healthy organs. Inaccurate localization of the prostate could result in
wrong dose delivery, and thus incur under-treatment or even serious side-effects (e.g.
rectum bleeding). To ensure the high efficacy of treatment, accurate prostate seg-
mentation from CT images is critical. On the other hand, traditionally, the prostate and
surrounding organs are often manually segmented by physician(s). This process is
time-consuming and also suffers from both intra- and inter-observer variations [2].
Therefore, automatic and accurate prostate segmentation is highly desired in IGRT.

Despite the importance in IGRT, automatic and accurate prostate segmentation
from CT images is still a challenging task due to the following three reasons. First, the
image contrast between the prostate and surrounding structures is low, as shown in
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(a)–(c) of Fig. 1. Second, the motion of the prostate is unpredictable for different
patients. Third, due to the uncertainty in the existence of bowel gas, the prostate
appearance is highly variable, as can be seen by comparing (a) and (c) of Fig. 1.

To address these challenges, many prostate segmentation methods have been pro-
posed for CT images. The methods in [3–5] use patient-specific information to localize
the prostate. For these methods, images from the same patient are exploited to facilitate
prostate segmentation. Feng et al. [3] leveraged the population and patient-specific
image information for deformable segmentation of prostate. Liao et al. [4] collected the
previous segmentations of the same patient to update the training images, under a
hierarchical sparse label propagation framework, for accurate prostate segmentation.
Gao et al. [5] employed the previous prostate segmentations of the same patient as
patient-specific atlases to segment the prostate in CT images. Since no previous images
from the same patient are available in planning stage, the methods in [3–5] cannot be
directly applied to the prostate segmentation in planning CT images. Therefore, it is
critical to develop a population-based segmentation method. Costa et al. [6] presented a
non-overlapping constraint from nearby bladder on a coupled deformable models for
prostate localization. Lu et al. [7] applied information theory to boundary inference
process for pelvic organ segmentation. Chen et al. [8] adopted a Bayesian framework
with anatomical constraints from surrounding bones to segment the prostate.

Recently, motivated by random forest [9], the regression-based voting strategy
achieves promising results in medical image segmentation. For example, Criminisi
et al. [10] employed the regression forest to vote the centers of organs’ bounding boxes.
Lindner et al. [11] adopted the regression forest to predict the optimal positions of
global and local models for accurate proximal femur segmentation. These works all
train one regression forest for each specific point (e.g. center of the bounding box or
point of the deformable model). However, it is difficult to extend this schema to
boundary detection, especially in 3D case, since there might be a large number of
points on the boundary.

In this paper, we present a new voting strategy to detect the weak boundary for
prostate segmentation. Different from the previous methods, our method learns only a
single global regression forest to estimate and vote the nearest boundary points
for enhancing the entire prostate boundary, then guiding the later deformable

(a) (b) (c)

Fig. 1. Typical prostate CT images. The green area in (b) indicates the manual segmentation of
prostate by a physician for the same image in (a). Image in (c) shows the prostate image of
another patient with less bowel gas than both (a) and (b). Here, the red arrows indicate the bowel
gas (Colour figure online).
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segmentation. The advantages of our method include: (1) our method does not require
point-to-point correspondences for learning the regression forest, thus avoiding the
difficulty in capturing the correspondences of the 3D prostate boundary points from
different subjects in the boundary regression; (2) our method does not require the effort
to train one regression forest for each boundary point of 3D object, thus avoiding the
training of a large number of regression forests.

2 Method

To accurately segment the prostate from CT images, we first propose a boundary
regression method, based on the regression forest, to estimate and vote the nearest
prostate boundary points from each image point according to its local image appear-
ance. A boundary voting map is thus obtained to enhance the whole prostate boundary
in each CT image (as demonstrated in Fig. 3). Then, to further boost the performance of
our boundary regression method, we combine the regression forest with the auto-
context model [12] to achieve a more accurate boundary voting map. Specifically, in
the training stage (Fig. 2), we train a sequence of regression forests, each of which can
estimate a 3D displacement vector from each image point to its nearest prostate
boundary, using the local appearance (of this image point). Different from the previous
works [10, 11], which often use only the image appearance features, our method further
utilizes the context features from the output displacement map of the previous
regression forest to train next regression forest. Iteratively, our method improves the
estimation of displacement vectors in the whole image, and finally obtains an improved
boundary voting map. In the testing stage, given a testing image, the learned regression
forests could be sequentially applied to estimate the 3D displacement vector for each
point. As more regression forests are applied, the prediction of the 3D displacement
vectors in the whole image can be more accurate, and thus can be used in the regression
voting strategy to generate a better boundary voting map. Finally, a deformable model,

Fig. 2. Training a sequence of regression forests in our proposed method.
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which has been trained in the training stage, can be applied to the obtained boundary
voting map for final prostate segmentation.

2.1 Boundary Regression and Voting

Motivated by [10], we propose to employ the regression forest for voting the prostate
boundary. A regression forest is used to learn a non-linear mapping from the local patch
of each image point to its nearest prostate boundary point, obtaining a 3D displacement.
Note that, for voting prostate boundary, this 3D displacement is defined as a 3D vector
from each image point to its nearest prostate boundary point. Specifically, in the training
stage, from each training image, we can first randomly sample a large number of image
points pi i ¼ 1; 2. . .Nð Þ around the manually-delineated prostate boundary. Each sam-
pled point pi is characterized by the extended Haar features f [13], extracted from its
w� w� w local image patch. Then, the displacement di ¼ ðDxi;Dyi;DziÞ between
point pi and its nearest prostate boundary point is considered as the regression target.
Based on all pairs of Haar features and displacements, \f pið Þ; di [ , from all training
images, we can learn a regression forest R0. For our regression forest, the split node in
each decision tree is determined by the best combination of feature and threshold, which
can achieve the maximum information gain [10] from splitting. Each leaf node in a
decision tree stores the mean displacement of training samples falling into this node. In
the testing stage, given a testing image, we use all image points in a region of interest
(ROI) for boundary regression and voting. Specifically, for each image point bp, its
extended Haar features f ðbpÞ can be first extracted using the same way as described in the

training stage. Then, the respective displacement bd ¼ R0ðf ðbpÞÞ can be predicted by the

trained regression forest R0. Finally, a vote will be accumulated on the position bp þ bd in
the boundary voting map. By visiting all possible points in the testing image, we can get
a boundary voting map for the prostate, with a typical example shown in Fig. 3.

2.2 Refinement of Boundary Voting Map by the Auto-Context Model

To refine the boundary voting map, we adopt the auto-context model [12] to iteratively
train a sequence of regression forests by integrating both image appearance features

(a) (b) (c)

Fig. 3. Demonstration of our boundary regression and voting for prostate. (a) shows the original
image and the manual contour (green). (b) demonstrates our boundary regression by local image
patches (blue cubes). Red arrows indicate the displacement vectors (regression target) from the
centers of local image patches to their corresponding nearest boundary points. (c) shows the
boundary voting map of our method using only image appearance features (Colour figure online).
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and the context features extracted from the intermediate displacement map of the
previous regression forest. Specifically, we can learn a sequence of regression forests
Riði ¼ 0; 1. . .KÞ by using the same technique described in Sect. 2.1. The regression
forest R0 (as detailed in Sect. 2.1) is trained by using only the Haar features extracted
from the training images, while the latter regression forests Riði ¼ 1; 2. . .KÞ are trained
by using both the Haar features extracted from the training images and the context
features extracted from the respective intermediate displacement maps of the previous
regression forest Ri�1. The context features used here are again the extended Haar
features extracted from the local patch of the intermediate displacement map, instead of
the radiation-like features as used in the previous work [12]. This is because the
traditional radiation-like auto-context features are the voxel-wise values in the dis-
placement map, which are sensitive to noises in the displacement map. In contrast, the
extended Haar features are computed based on local patches, thus more robust to the
wrong predictions of displacements produced by the previous regression forest Ri�1.
Moreover, the extended Haar features provide much richer feature representations than
the voxel-wise values for learning the regression forest. Empricially, for the auto-
context model, Haar context features achieve faster convergence rate than the tradi-
tional radiation-like context features.

Based on the trained regression forests, displacement maps can be sequentially
estimated for a testing image. Specifically, the regression forest R0 is first employed to
predict the 3D displacement vectors of the first displacement map, using only the local
appearance features from the testing image. Then, by combining the local appearance
features (from the testing image) with the context information (from the displacement
map of previous regression forest), the latter regression forests Riði ¼ 1; 2. . .KÞ could
iteratively refine the prediction of the 3D displacement vector for each point in the
testing image, and obtain more and more accurate boundary voting maps, as shown
in Fig. 4.

transverse
view

sagittal 
view

coronal 
view

(a) (b) (c)

Fig. 4. Boundary voting maps of a patient generated by the auto-context model at the 1st, 3rd and
5th iterations (a-c), respectively. The green curves indicate the manual segmentations (Colour
figure online).
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2.3 Deformable Segmentation Based on the Boundary Voting Map

Up to this stage, the boundary voting map for prostate is achieved by the regression-
based voting with the auto-context model. Based on the boundary voting map, the
prostate can be readily segmented by a deformable model [14]. Specifically, to apply
the deformable model, we need to build a shape model, often with thousands of vertices
on the surface. To accomplish that, in the training stage, we first use the marching
cubes to extract surfaces from all manually-segmented prostates in the training images.
Then, a template surface is selected and warped to all other surfaces to establish voxel
correspondences [14]. With the established correspondences, each training prostate
surface can be affine aligned onto a template surface space. PCA is then used to build a
prostate shape subspace by capturing the major shape variations from all aligned training
prostate surfaces. In the testing stage, the mean prostate shape is first transformed onto the
testing image as the initial shape for the deformable model, by a similarity transform.
Here, the similarity transform is evaluated by minimizing the least square distance
between six detected landmarks (superior, inferior, left, right, anterior, posterior) and their
counterparts on the mean shape. Note that those six landmarks are automatically detected
using the landmark detector described in [10], which is learned on six manually-annotated
landmarks in all training images. Based on this shape initialization, each vertex in the
shape model can be independently deformed on the boundary voting map, along its
respective normal direction, to a position with the maximum boundary votes. By adopting
the landmark-guided initialization, we can achieve a robust initialization (the DSC
between initial shape and the manual segmentation is about 0.78 for our dataset), which
largely decreases the chances of falling into bad local minima for deformable model
segmentation. In the meanwhile, the deformed shape is also constrained by the learned
PCA shape model. By alternating the model deformation and the shape refinement, the
shape model can be gradually driven onto the prostate boundary under the guidance of
both boundary voting map and the PCA shape subspace.

3 Experiments

To evaluate the performance of our proposed method, we conduct experiments on a
prostate dataset with 70 planning CT images from 70 different patients with prostate
cancer. Each image has voxel size 0:938� 0:938� 3:0 mm3 which was isotropically
resampled to 2:0� 2:0� 2:0 mm3 for the experiment. A clinical expert manually
delineated the prostates in all 70 images, which we use as the ground truth in our
experiment.

In the experiments, we use four-fold cross-validation to evaluate the performance of
our method. The parameters adopted in our method are as follows: the number of trees
in each regression forest is set as 10; the maximum depth of each tree is 15; the number
of candidate features for node split is 1000; the minimum number of samples in each
leaf is 5; the patch size w for extracting Haar features is 30; the number of samples
drawn around the prostate boundary in each training image is N ¼ 10000; the number
of iterations in the auto-context model is 5 (i.e., K ¼ 4); the PCA shape subspace
captures 98 % shape variation, regarding about 18 eigen-modes; and the number of
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iterations used for deformable model is 20. The ROI for boundary regression and
voting is determined by the tightest bounding box that covers the initial shape of the
deformable model.

3.1 Boundary Regression Vs Prostate Classification

Since the image contrast between prostate and the surrounding structures is low,
prostate boundary is not clear and even ambiguous in the CT images, which renders
difficulty for accurate prostate segmentation. In the literature [5], to address this tough
problem, classification-based method has been proposed to distinguish prostate from
the background by assigning each image point (voxel) a prostate likelihood value.
Specifically, a classifier is trained by using the positive samples from prostate and the
negative samples from background. In the testing stage, the learned classifier can be
used to voxel-wisely classify the new testing image for producing a classification
response map, which is then utilized by the deformable model to finally segment the
prostate. To evaluate the effectiveness of our proposed boundary regression method, we
conduct a comparative experiment between the prostate classification method and our
proposed boundary regression method. Specifically, in the prostate classification
method, we use classification forest as the classifier with the same setting (e.g., number
of trees, number of features and thresholds, splitting stop criterion) as boundary
regression to estimate the posterior probability of each voxel belonging to the prostate.
Then, the generated classification response map is used to guide the deformable seg-
mentation by finding the voxel along the normal with the maximum gradient. In
contrast, our boundary regression method uses the obtained boundary voting map to
guide the deformable segmentation by searching the voxel along the normal with the
maximum boundary votes. Note that both methods use the same sampling strategy,
features and shape models, as well as the same auto-context model. Table 1 shows the
quantitative segmentation results for the two methods, where Dice Similarity Coeffi-
cient (DSC) measures the overlap between automated and manual segmentations. ASD
denotes Average Surface Distance between automated and manual segmentations.

From Table 1, we can see that our boundary regression method allows for better
segmentations, in terms of higher DSC and lower ASD, than the prostate classification
method. Also, the performance improvement of our method regarding DSC and ASD is
statistically significant (p\0:05). This result proves that our proposed method is more
effective to produce a guidance map for steering the deformable segmentation.

Table 1. Quantitative comparison between classification and boundary regression.

Method DSC ASD

Classification 0.82 ± 0.07 2.47 ± 1.06
Boundary regression 0.85 ± 0.06 2.01 ± 0.81
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3.2 Effectiveness of Using the Auto-Context Model

To show the effectiveness of using the auto-context model for iteratively refining the
boundary voting map, in Fig. 4, we have shown three prostate boundary voting maps
estimated at the 1st, 3rd and 5th iterations with the auto-context model. As we can see,
with the increase of iteration, the prostate boundary becomes clearer and closer to the
manual ground-truth. For quantitative evaluation on the final segmentation results, we
perform deformable segmentation based on each intermediate boundary voting map,
which is generated at each iteration in the auto-context model. As shown in Fig. 5, the
accuracy of prostate segmentation increases with iterations (the DSC increases and the
ASD decreases). This result shows the effectiveness of the auto-context model in both
enhancing the boundary voting map and facilitating the final prostate segmentation.

3.3 Comparison with Other State-of-the-Art Methods

Due to the unavailability of either source codes or the datasets used by other prostate
segmentation methods, it is difficult to directly compare them with the proposed
method quantitatively. In order to get a rough understanding of the status in CT
prostate segmentation, we list the segmentation accuracies reported by other works in
Table 2. To quantitatively evaluate the methods, except the aforementioned DSC and
ASD, we also employ other three metrics: sensitivity (SEN), positive predictive value
(PPV), and false positive ratio (FPR).

SEN ¼ TP
TPþ FN

1ð Þ PPV ¼ TP
TPþ FP

2ð Þ FPR ¼ FP
TPþ FP

3ð Þ

where TP is the number of correctly labeled prostate voxels, FP is the number of falsely
labeled organ voxels (i.e., labeling background voxels as prostate voxels), and FN is
the number of falsely labeled background voxels (i.e., labeling prostate voxels as
background voxels).

As can be seen in Table 2, our method achieves competitive segmentation accuracy
to the state-of-the-art methods under comparison, although we utilize only one organ
(prostate), without incorporating the constraints from the nearby structures as Costa
et al. [6] and Chen et al. [8] do.
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Fig. 5. Iterative improvement of segmentation accuracy with the auto-context model. The left
panel shows DSC and the right shows ASD.
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4 Conclusion and Discussion

We have presented a new boundary voting method for CT prostate segmentation.
Compared with the previous point regression methods that train one regression forest
for each specific point, we learn a single global regression forest for the detection of the
entire prostate boundary. To boost the boundary regression performance, we further
combine the regression forest with the auto-context model for iteratively refining the
boundary voting map of the prostate. Finally, the deformable model is also adopted to
segment the prostate under the guidance of both the boundary voting map and the
learned prostate shape subspace. Validated on 70 CT images from 70 different patients,
our proposed method achieves better segmentation accuracy than the traditional
prostate classification method, as well as competitive performance to several state-of-
the-art methods under comparison. In this study, due to the relatively stable shapes of
the prostates, we use PCA for shape modeling. However, for other organs with com-
plex shape variations (e.g., rectum), a recently proposed shape modeling technique [15,
16], namely sparse shape composition, might be better. This will be our future work.
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