
© Springer International Publishing Switzerland 2014 
L.T. De Paolis and A. Mongelli (Eds.): AVR 2014, LNCS 8853, pp. 124–136, 2014. 
DOI: 10.1007/978-3-319-13969-2_10 

Lossless Compression of Multidimensional Medical 
Images for Augmented Reality Applications 

Bruno Carpentieri() and Raffaele Pizzolante 

Dipartimento di Informatica, Università degli Studi di Salerno,  
84084 Fisciano, SA, Italy. 

bc@dia.unisa.it, rpizzolante@unisa.it 

Abstract. Medical digital imaging technologies produce daily a huge amount of 
data (data obtained by magnetic resonance, computed tomography and ultra-
sound examinations, functional resonance magnetic acquisitions, etc.), which is 
generally stored in ad-hoc repositories or it is transmitted to other entities, such 
as research centers, hospital structures, etc.. These data need efficient compres-
sion, in order to optimize memory space and transmission costs. In this work, 
we introduce an efficient lossless algorithm that can be used for the compres-
sion of volumetric multidimensional medical image sequences. This approach 
can be also used, in conjunction with Augmented Reality techniques, to save in 
a database or to transmit on a communication line the outcomes of surgical de-
cisions or medical applications. We experimentally test our approach on a test 
set of 3-D computed tomography (CT), 3-D magnetic resonance (MR) images, 
and of 5-D functional Magnetic Resonance Images (fMRI). The achieved re-
sults outperform the other state-of-the-art approaches. 

Keywords: Multidimensional medical images compression · Multidimensional 
medical images coding · Multidimensional data compression 

1 Introduction 

Digital medical images are widely used in a large range of medical applications, re-
search tasks, medical related studies, etc.. The acquisition technologies are continu-
ously evolving and are becoming always more sophisticated. On the other hand, the 
amount of memory space required for the storing and the time needed for the trans-
mission is growing proportionally to the size of the images. The new expectations in 
medicine that are arising from the application of augmented reality techniques (see 
[6], [7]) will increase the need for memory space or the transmission time for medical 
data. 

It is evident that data compression is essential, in order to minimize the implicit 
transmission costs involved. Since the compression layer is generally transparent or 
semi-transparent to the end-users, it is important to adopt models that can have high-
level profiles (as for instance an higher compression at lower speed profile, or a lower 
compression at higher speed profile, etc.) or that are related to the hardware on which 
the compression process will be performed (as for instance use resources as parsimo-
niously as possible, etc.).  



 Lossless Compression of Multidimensional Medical Images 125 

The design decisions related to the compression techniques need to consider which 
strategy (lossy or lossless) could be used in the delicate medical contexts. Today, 
lossy compression strategies are in a few case used, but lossless compression tech-
niques are generally preferred, since they guarantee that the coded data, once decod-
ed, are identical to the original data and this cheers and satisfies doctors. 

In this paper, we consider lossless techniques that are based on the predictive mod-
el, described in [18]. We focus on multidimensional medical image sequences (such 
as 3-D computed tomography images, functional resonance magnetic images, etc.), 
which have considerable space memory requirements (many hundreds of mega-
bytes/gigabytes per acquisition). These techniques can be also used coupled with 
Augmented Reality applications in medicine and tele-medicine. 

State-of-the-art predictive-based schemes can be subdivided into two distinct and 
independent steps: modeling and coding [4]. The digital file is observed in a prede-
fined order and modeling is aimed at gathering information in the form of a probabil-
istic model that is then used for coding. The modeling step can be carried out via a 
predictive structure, in which a value xt+1 is guessed for the next sample to be coded: 
xt+1, based on a finite subset of the available past data. The prediction residual (or 
prediction error) can then be encoded conditionally on the context of xt+1. The usual 
interpretation of prediction, which is the most important step of this scheme, is that it 
de-correlates the data samples, thus allowing the use of simple models (i.e. entropy 
coders) for the coding of prediction errors. 

The purpose of this paper is to introduce a novel multidimensional, configurable, 
predictive structure that can be used for the compression of multidimensional medical 
images. The predictor we propose is scalable, adjustable, and adaptive. We present 
experimental evidences of its performance on multidimensional medical images: 3-D 
Computed Tomography (CT) images, 3-D Magnetic Resonance (MR) images and 5-D 
functional Magnetic Resonance Images (fMRI).  

This paper is organized as follows: Section 2 focuses on the description of the pro-
posed N–D predictive structure. In Section 3, we report the experimental results 
achieved on the different typologies of N–D data. Finally, we highlight our conclu-
sions and outline future research directions (Section 4). 

2 A Predictive Structure for Multidimensional Data 

Formally, we can define a multidimensional (N-D) dataset as a collection of bi-
dimensional components (such as images, data matrices, etc.) [11]. The dimensions of 
an N-D dataset (N ≥ 3) can be described as <M1, M2, …, MN-2, X, Y>, where X and Y 
are respectively the width and the height of the bi-dimensional components and Mf is 
the size of the f-th dimension (1 ≤ f ≤ N – 2). A specific bi-dimensional component 
can be univocally identified through a vector of N–2 elements: [p1, p2, …, pN-2], where 

},...,2,1{ ii Mp ∈  [11]. 

By considering the formal definition of an N-D dataset, we can describe the dimen-
sions of a three-dimensional (3-D) dataset as <Z, X, Y>. This means that the dataset is 
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composed of Z components (among the third dimension), where each component has 
respectively width X and height Y. 

According to the above definitions of N-D data, let’s suppose that the current sam-
ple has coordinates (m1, m2, …, mN-2, x, y) (where  1 ≤ x ≤ X, 1 ≤ y ≤ Y and 1 ≤ mi ≤ 
Mi, ∀i∈{1,2,…, N–2}). Consequently, the vector [m1, m2, …, mN-2] identifies the 
current component. 

For each of the N–2 dimension, we define a references set, denoted as  

Ri = },...,,{ 21
i

t
ii

i
rrr  (for the i-th dimension, with 1 ≤ i ≤ N–2), where 

},...,2,1{},...,2,1{ ii
i
j MMr −−−∪∈ , ti = |Ri|, 1 ≤ j ≤ ti, and 0

2

1
>−

=
N

i iR .  

Such references sets are univocally set up at the beginning of the algorithm and 
they are used in the prediction step.  

In detail, a generic element ∈i
jr iR  (where 1 ≤ i ≤ N–2) will be used to denote a 

specific bi-dimensional component. In particular, we will use the following notation: 

if 0>i
jr , then the denoted component is the one identified through the vector  

[m1, m2, …, mi-1, 
i
jr , mi+1, …, mN-2], or, if 0<i

jr , then the denoted component is the 

one identified through the vector [m1, m2, …, mi-1, mi
 

i
jr− , mi+1, …, mN-2]. 

The proposed predictive model is based on the least squares optimization tech-
nique. In particular, the prediction is formed by using the current component and all 
the (valid) components of the references sets.  

If we consider N = 3 and suppose that we have a 3-D medical image with  
dimensions: M1 = 48 (Z dimension), X = 256 and Y = 256 (formally denoted as  
<48, 256, 256>). For example, we can set up the references set for the M1 dimension 
(Z dimension) as R1 = {–1, –2} and we suppose that the current sample has (23, 45, 
67) as coordinates (m1 = 23, x = 45 and y = 67). Therefore, in this example, the pre-
diction is formed by using the neighboring samples of the current sample in the cur-
rent component, identified by the vector [23], and in the components identified by the 
vectors [22] ([23 – |–1|]) and [21] ([23 – |–2|]). In detail, these latter vectors, [22] 
and [21], are obtained by considering respectively the element –1 and the element –2 
of R1. 

Let E denotes a 2-D enumeration, which has as objective the relative indexing of 
the samples in a bi-dimensional context, with respect to a specific reference sample. 
The fundamental requisites that the enumeration E needs to satisfy are that the speci-
fied reference sample has 0 as index and that any two samples (with different coordi-
nates) do not have the same index.  

Let )()( j
s

e
j rx  (where j

j
s Rr ∈ ) denotes the e-th sample in the bi-dimensional con-

text according to the enumeration E, with respect to the sample with coordinates  

(m1, m2, …, mj-1, 
j

sr , mj+1, …, mN-2, x, y) when 0>j
sr , or (m1, m2, …, mj-1, 

j
sj rm − , mj+1, …, mN-2, x, y) when 0<j

sr . 
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Fig. 1.  (a) An example of an enumeration; Examples of the bi-dimensional prediction contexts 
for: (b) the 21-th, (c) the 22-th and (d) the 23-th slice 

Finally, let 
)(ex  denotes the e-th sample in the current component, according to the 

enumeration E, with respect to the current sample. Notice that 
)0(x denotes precisely 

the current sample.  
By taking into consideration the previous example, we consider, for instance, the 

enumeration E graphically defined in Figure 1(a). Figures 1(b), 1(c) and 1(d) show the 
bi-dimensional prediction contexts, obtained by using the enumeration of Figure 1(a), 
respectively for the 21-th, 22-th and 23-th slices (formally identified respectively 
through the vectors [21], [22] and [23]) and highlight how the samples are addressed 
according to our notations. 
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minimize the energy of the prediction error:  
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In detail, H indicates the number of samples used, for the current and for each one of 
the components specified in the references sets. Thus, H · (T + 1) + T samples are 
used for the prediction. 

The coefficients 0α  are obtained by using the optimal linear prediction  

method, as in [17]. In detail, we can rewrite the equation (2) in the form  
P = (Cα  – X)t ⋅ (Cα  – X), by using matrix notation, where: 
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The linear system of the equation (3) is obtained, as in [17], by taking the derivate 
of the equation (2), in matrix notation, with respect to α , and by setting it to zero.  

         (C tC) =0α (C tX). (3) 

Thus, by computing the coefficients 0α , which solve the linear system (3), it is pos-

sible to determinate the prediction of the current sample, x̂ (0), by using the equation 
(1). 

In particular, the prediction error is computed by means of the equation (4). This 
latter can then be sent to an entropy encoder. 

           )0()0( x̂xe −= . (4) 

The proposed predictive model is easily scalable through an adequate configuration of 
the references sets. By selecting the wideness of the multidimensional prediction con-
text, which depends on H, it is possible to configure the predictive model in order to 
prefer the parsimonious use of the computational resources, so to make the model 
suitable for low-complexity applications, or it is possible to reward the accurateness 
of the prediction. It is important to note, that if we use only past information there is 
no need to send any side information to the decompression algorithm during the pre-
diction step. 

If the linear system of the equation (3) has no solutions or if it has infinitely, many 
solutions [9], our approach cannot perform the prediction. We called these scenarios 
exceptions and the exceptions can be managed through another predictive model (for 
example DPCM, Median Predictor, etc.). 

3 Experimental Results 

We have tested our predictive model by implementing a predictive-based compres-
sion scheme, and then we have experimented this algorithm on different types of N-D 
data: 3-D computed tomography and 3-D magnetic resonance images (Sec. 3.1), and 
5-D fMRI medical images (Sec. 3.2).  

The algorithm takes as input the N-D images and predicts the current sample, by 
using the previously coded samples. In this way, it is possible to have a consistent 
prediction for both compression and decompression algorithm. 

After the prediction step, the prediction error is obtained as the difference between 
the current sample and its prediction. Finally, the prediction error can be encoded by 
using an entropy or a statistical coder.  

In our experiments, we have used as error encoder the PAQ8 algorithm, which is a 
state-of-the-art lossless compression algorithm [10]. In particular, the PAQ8 method 
belongs to the PAQ family, which is an Open Source compression family. As dis-
cussed in [10], such family of encoders is strictly related to the well-established Pre-
diction by Partial Matching scheme (PPM), which is described in [18].  
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Fig. 2. Example of the resulting enumeration E of the first 32 samples, based on the function 
defined in (5) 

From the design point of view, some architectural aspects could vary depending on 
the particular version of PAQ8. In detail, we used the paq8l version (released by Matt 
Mahoney) that uses 552 predictive structures. Such predictive structures are modeled 
in a single prediction through a Model Mixer. Once the prediction is computed, the 
result of such step is passed to an Adaptive Probability Map (APM). After this, the 
obtained prediction error is used by the arithmetic encoder scheme [18]. The main 
objective of an APM is to reduce the prediction error of 1% [10]. Furthermore, in 
order to improve the accuracy, the values composing an APM are adjusted according 
to the prediction error, after the encoding of each bit of the input data [10]. Generally, 
all the versions of the PAQ8 algorithm achieve a high degree of compression perfor-
mances. On the other hand, the complexity is over the average of other lossless ap-
proaches. 

In detail, the implementation of the proposed method uses the 2-D Linearized Me-
dian Predictor (2D-LMP) [15], for all the components which have no component ref-
erences (for instance, the first slice of a 3-D medical image), and our N-D predictive 
structure, for all the other components. 

As enumeration E, similarly to [17], we have used the one that is based on the dis-
tance function d, defined as:  

22
2121 )()()),,,...,(),,,,...,(( zvwuzwmmvummd NN −+−=−− . 

Figure 2 shows an example of the resulting enumeration E for the first 32 samples, 
by using as reference sample the sample that has 0 as index (highlighted in parenthe-
sis in Fig. 2).  

In order to improve the readability, we use the mnemonic name of the dimension 
instead of its index for the references sets. For example, RZ indicates the reference set 
for the Z dimension. 

3.1 3-D Medical Images 

We have performed experiments on the test set described in Table 1, which is com-
posed by four 3-D CT images and four 3-D MR images. It is important to outline that 
each slice has 256 columns, 256 lines and each sample is stored by using 8 bits. 



130 B. Carpentieri and R. Pizzolante 

Table 1. Description of the used test set 

3-D Computed Tomography Images 
Description – Age – Gender Image Name Number of slices 
Tripod fracture – 16 – M CT_skull 192 

Healing scaphoid dissection – 20 – M CT_wrist 176 
Internal carotid dissection – 41 – F CT_carotid 64 

Apert’s syndrome – 2 – M CT_Aperts 96 
3-D Magnetic Resonance Images 

Description – Age – Gender Image Name Number of slices 
Normal – 38 – F MR_liver_t1 48 
Normal – 38 – F MR_liver_t2e1 48 

Left exophthalmos – 42 – M MR_sag_head 48 
Congenital heart disease – 1 – M MR_ped_chest 64 

 
In the next two sub-sections, we report the experimental results achieved respec-

tively for the 3-D CT and 3-D MR images. 
In both cases, as in [12], we have mapped the prediction error before coding 

through the PAQ8 scheme. Furthermore, we have managed the exceptions with the  
3-D Differences-based Linearized Median Predictor (3D-DLMP) [15]. 

 
3-D Computed Tomography Images. Computed Tomography (also known as TC, 
CT, TAC and CAT) uses X-rays to obtain many radiological images. During this 
process is used a computer, in order to produce different cross-sectional views. It is 
also possible to obtain three-dimensional views of internal organs of the body.  

One of the most common medical application is generally related to identify nor-
mal or abnormal structures of the human body. Generally, an X-ray scanner generates 
many different X-ray images at various angles around the body. All of these images 
are processed through the dedicated computer, which outputs cross-sectional images, 
generally referred as slices.  

Thus, each slice is a graphical representation of a cross-section of the part of the 
human body that is undergoing analysis. 

We have experimented our approach on the four 3-D CT images of the test set. In 
particular, in Table 2 we report the experimental results we have achieved, in terms of 
bits-per-sample (BPS), and we compare our results with other state-of-the-art tech-
niques (first column), and we do this for each one of the four 3-D CT images (from 
the second to the fifth columns). Finally, the sixth column reports the average results 
for each method. It is important to remark that we have tested our approach by using 
different configurations for the H parameter and the references sets. 

Figure 3 summarizes the results of Table 2. On the Y-axis we have the average bits-
per-sample obtained on the 3-D CT images and on the X-axis we have the methods we 
are comparing. The configuration shown for our approach is: H=8, RZ={-1, -2}. 

As it is clear in Figure 3, our approach outperforms, all the other state-of-the-art 
techniques. 
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Table 2. Comparison of different compression methods on the CT data set. The results are 
reported in bits-per-sample (BPS). 

Methods / Images CT_skull CT_wrist CT_carotid CT_Aperts Average 

H=32, RZ={-1, -2, -3} 1.4836 0.8979 1.2783 0.7283 1.0970 

H=16, RZ={-1, -2, -3} 1.5309 0.9290 1.2976 0.7350 1.1231 

H=8, RZ={-1, -2, -3} 1.6258 1.0042 1.3421 0.7587 1.1827 

H=32, RZ={-1, -2} 1.5393 0.9527 1.3363 0.7265 1.1387 

H=16, RZ={-1, -2} 1.5688 0.9737 1.3448 0.7271 1.1536 

H=8, RZ={-1, -2} 1.6196 1.0110 1.3496 0.7349 1.1788 

3D-ESCOT [19] 1.8350 1.0570 1.3470 0.8580 1.2743 

MILC [15] 2.0306 1.0666 1.3584 0.8190 1.3187 

AT-SPIHT [5]  1.9180 1.1150 1.4790 0.9090 1.3553 

3D-CB-EZW [3] 2.0095 1.1393 1.3930 0.8923 1.3585 

   DPCM+PPMd [1]          2.1190 1.0290 1.4710 0.8670  1.3715 

3D-SPIHT [19] 1.9750 1.1720 1.4340 0.9980 1.3948 

3D-EZW [3] 2.2251 1.2828 1.5069 1.0024 1.5043 

JPEG-LS [4] 2.8460 1.6531 1.7388 1.0637 1.8254 

Pr
op

os
ed

 

 
 
In details, only for “CT_carotid”, by using H=8 and RZ={-1, -2}, our approach 

achieves a slightly worse results with respect to 3-D ESCOT, which is he most per-
forming competitor.  

 
3-D Magnetic Resonance Images. Magnetic Resonance Imaging (MRI) techniques 
are widely used for the investigation of the anatomy and the function of the body. In 
particular, the MRI scanners are able to produce three-dimensional images of the 
body, by using magnetic fields.  
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Fig. 3. Graphical comparison of different compression methods on the CT data 

Table 3. Comparison of different compression methods on the MR data set. The results are 
reported in bits-per-sample (BPS). 

Methods / Images MR_liver_t1 MR_liver_t2e1 MR_sag_head MR_ped_chest Average 

H=32, RZ={-1, -2, -3} 1.8511 1.2539 1.4890 1.2920 1.4715 

H=16, RZ={-1, -2, -3} 1.8850 1.2783 1.5311 1.3498 1.5111 

H=8, RZ={-1, -2, -3} 1.9894 1.3360 1.6020 1.4669 1.5986 

H=32, RZ={-1, -2} 1.8996 1.3101 1.5477 1.3740 1.5329 

H=16, RZ={-1, -2} 1.9089 1.3232 1.5737 1.4053 1.5528 

H=8, RZ={-1, -2} 1.9471 1.3482 1.6094 1.4694 1.5935 

3D-ESCOT 2.0760 1.5100 1.9370 1.6180 1.7853 

MILC 2.1968 1.7590 2.0975 1.6556 1.9272 

3D-SPIHT 2.2480 1.6700 2.0710 1.7420 1.9328 

3D-CB-EZW 2.2076 1.6591 2.2846 1.8705 2.0055 

DPCM+PPMd 2.3900 2.0250 2.1270 1.6890  2.0578 

3D-EZW 2.3743 1.8085 2.3883 2.0499 2.1553 

JPEG-LS 3.1582 2.3692 2.5567 2.9282 2.7531 

Pr
op

os
ed
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There are many medical and medical-related fields, in which MRI techniques are 
involved. In particular, their most common use is related to medical diagnosis and 
treatments. 

Table 3 reports the experimental results, in terms of bits-per-sample (BPS), 
achieved by our approach on the four 3-D MR images of our test set, by using differ-
ent configurations for both the H parameter and the references set. We compared 
these results with the other state-of-the-art techniques.  

Figure 4 summarizes the results of Table 3 and demonstrates that our approach 
outperforms all the other state-of the-art methods. 

 

 

Fig. 4. Graphical comparison of different compression methods on the MR data 

3.2 5-D Functional Magnetic Resonance Images 

Functional Magnetic Resonance Imaging (functional-MRI or fMRI) is a technology 
used in different medical and research fields. fMRI permits, for example, the meas-
urement of the brain activity through the measure of the changes of the cerebral blood 
flow [8], which is strongly coupled with the neuronal activation. An fMRI dataset 
consists in a collection of 3-D data volumes (T dimension). Each of them can be 
viewed as a collection (on the Z dimension) of bi-dimensional images (X and Y di-
mensions). Analyzing these data it is possible to determinate the regions of the brain 
that are activated by a particular task. Generally, multiple trials of experiments are 
performed (R dimension) to improve the accuracy of the examination. Therefore, 
these are 5-D data. 

We have tested our approach on a test set, named “Stop-signal task with uncondi-
tional and conditional stopping” [2], that is currently available from the OpenfMRI 
project site [14]. The test set is composed of thirty 5-D fMRI images and has the fol-
lowing organization: there are two 5-D fMRI images (task001 and task002) for each 
one of the fifteen studied subjects. task001 and task002 have respectively the follow-
ing dimensions R=3, T=182, Z=30, X=64, and Y=64 and R=3, T=176, Z=30, X=64 and 
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Y=64; except for few exceptions where R can be different (i.e. R=1 or R=2). Each 
sample is stored by using 16 bits. Table 4 reports the experimental results we have 
achieved in terms of bits-per-sample (BPS). We have tested our approach with differ-
ent parameters for the references sets. H is equal to 32. The exceptions are managed 
by DPCM [1] on the Z dimension.  

Table 4. The 5-D fMRI data test set results are reported in bits-per-sample (BPS) 

Dataset/  
Proposed  

(Parameters) 

3-D (Z) 3-D (T) 4-D 5-D  

RZ ={ -1 } RT ={ -1 } 
RZ={ -1 } 

RT ={ -1 } 

RR ={ -1 }, RT ={ -1 },  
RZ ={ -1 } 

task001 task002 task001 task002 task001 task002 task001 task002 

sub001 6.5155 6.5095 5.3550 5.3513 5.3459 5.3421 5.3104 5.2983 

sub002 6.8036 6.7873 5.4296 5.4266 5.4277 5.4238 5.3687 5.3844 

sub003 6.5791 6.5641 5.3857 5.3469 5.3761 5.3385 5.3338 5.3032 

sub004 7.0789 7.0860 5.7552 5.7686 5.7523 5.7662 5.7064 5.7046 

sub005 6.6956 6.6908 5.4645 5.4463 5.4574 5.4395 5.4384 5.3989 

sub006 6.6714 6.6638 5.5046 5.5081 5.4928 5.4960 5.4601 5.4779 

sub007 6.9816 6.9473 5.4636 5.4745 5.4642 5.4761 5.4315 5.4434 

sub008 6.6152 6.6119 5.3296 5.3266 5.3239 5.3211 5.3239 5.2853 

sub009 6.8820 N.P.1 5.4410 N.P.1 5.4437 N.P.1 5.4265 N.P.1 

sub010 6.7509 6.7450 5.4445 5.4342 5.4385 5.4281 5.4171 5.4176 

sub011 6.6081 6.5977 5.3399 5.3252 5.3312 5.3162 5.3158 5.3184 

sub012 6.8235 6.8583 5.4756 5.5145 5.4763 5.5150 5.4440 5.4990 

sub013 6.6585 6.6492 5.4835 5.4825 5.4722 5.4705 5.4303 5.4403 

sub014 6.7979 6.8154 5.5139 5.5319 5.5070 5.5259 5.4711 5.5150 

sub015 6.6019 6.5900 5.4626 5.4543 5.4505 5.4426 5.4234 5.4248 

 
1N.P.: Such data is not present into the test set. 
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The experimental results show that our approach achieves better results when our 
predictive model uses all the five dimensions: X, Y, Z, T and R (fifth column). When 
the predictive model uses X, Y, Z and T (fourth column), the results are generally 
slightly better with respect to the results achieved by using X, Y, T (third column) and 
they are significantly better with respect to when we have used X, Y, Z (second col-
umn). For such test set, to the best of our knowledge, there are no published results 
for other compression methods. 

4 Conclusions and Future Work 

In this paper, we have proposed an N-D predictive model that can be used for efficient 
lossless compression of multidimensional medical image. We have experimentally 
tested our method on 3-D computed tomography images, 3-D magnetic resonance 
images and 5-D functional Magnetic Resonance Imaging (fMRI) data. 

Future work will include further testing of our approach, both for lossy and lossless 
compression, on other multidimensional data (eg. 4-D medical ultrasound images, 
etc.). We will also focus on the execution performances. In particular, we will outline 
a parallel implementation of our proposed approach, that can be executed on hetero-
geneous devices, such as Graphics Processing Units (GPUs), Central Processing Units 
(CPUs), Field Programmable Gate Arrays (FPGAs), etc.. We will finally design a 
multidimensional component or volume reordering algorithm, that will improve the 
compression performances [13, 16] without altering the complexity of the decoder. 
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