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Abstract. In this paper, a new six degrees of freedom (6-DOF) parallel
manipulator with adjustable actuators is proposed. The kinematic model
is firstly established and the kinematic analysis is performed afterward.
Then the equations of motion are developed based on the concept of link
Jacobian matrices. Finally, the principle of virtual work is applied to an-
alyze the dynamics of this 6-PSS parallel manipulator. This methodology
can be used on other types of parallel manipulators not only for 6-DOF
but also with less than 6-DOF. To solve the inverse dynamics of the ma-
nipulator, a computational algorithm is developed and two trajectories
of the moving platform are simulated.

Keywords: 6-PSS parallel manipulator, Kinematics, Dynamics, Virtual
work.

1 Introduction

In the last decades, although the serial manipulators have been widely used in
the industrial fields, the requirement for more efficient on the robotic operation
is still increasing, which drives the engineers to design some typical parallel
robots, such as Giddings & Lewis, Ingersoll and Hexel or even some micro parallel
manipulators for the high precision application [1]. A parallel manipulator mostly
consists of three parts: a moving platform, a fixed base and several limbs that
connect the platform and the base. Because the actuators can be mounted on
the fixed base of the manipulator, the weights of the moving components (limbs
and moving platform) can be reduced, which will minimize the effect of the
inertia of the limbs on the operation. Therefore, the parallel manipulator has
some inherent advantages than traditional serial manipulator, such as: higher
positioning accuracy, better rigidity and larger load capacity.

It is meaningful to develop the dynamical model of the robot because the
dynamical analysis is essential for the computer simulation, control strategy
development and physical prototype optimization [2]-[3]. Typically, there are two
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problems for the dynamics analysis of parallel manipulator: forward and inverse
dynamics [4]. The forward dynamics is about a situation that the input forces
or the moments are given and we will calculate the position and orientation
of the moving platform. On the other hand, the inverse dynamics is to gain
the input forces or moments of the actuators with respect to the given motion
trajectories of the moving platform. And this model later can be used to design
the dynamic controller. Over the last three decades, several researchers have
made contributions to the dynamic analysis of parallel manipulator. Some typical
approaches that have been proposed include the Newton-Euler formulation [5]-
[7], the Lagrangian formulation [8]-[10] and the principle of virtual work [2], [4],
[11]. Other new approaches also have been studied such as the Kane method
[12]-[14].

Because the kinematic model of the spatial parallel manipulator is complex,
it is very normal to make some assumptions to simplify the expressions of the
kinetic and potential energy when applying the Newton-Euler or Lagrangian
methods [15]-[16]. Therefore, these approaches sometimes are not accurate and
efficient enough for the dynamic analysis of parallel manipulator on some per-
spective. In this paper, we select the principle of virtual work to develop the
dynamic modeling of this 6-PSS parallel manipulator. The method presented in
this paper is similar to that used in Tsai [2] and Gosselin [11]. However, the
process for developing the Jacobian matrices is different from that of [2], which
makes it more easier and normal to form the motion equations. Moreover, this
method is also suitable for other closed-loop structures dynamic analysis, such
as other types of parallel manipulators.

In what follows, the structure of this 6-PSS parallel manipulator is illustrated
with a three dimensional model. Then, the inverse kinematics are analyzed and a
new method to define the link Jacobian is proposed. Thirdly, the dynamic equa-
tions of motion are formulated based on the principle of virtual work. Finally,
a computational algorithm is developed to solve the inverse dynamic equations
by MATLAB software and some simulations are made with respect to two given
trajectories.

2 Kinematic Analysis

2.1 Illustration of the 6-PSS Parallel Manipulator

The architecture of the 6-PSS parallel mechanism is shown in Fig.1 that is com-
posed of a fixed base, a moving platform, three triangle rail trusses and six
identical limbs. The details of this manipulator has been described in [17].

As shown in Fig.1, the 3D prototype of the 6-PSS parallel manipulator, there
are 14 links connected by 6 prismatic joints and 12 spherical joints. Hence, the
number of the degrees of freedom of such mechanism is

F = λ(n− j − 1) +
∑

i

fi = 6(14− 18− 1) + (6 + 3× 12) = 12 (1)

However, there are 6 passive degrees of freedom associated with these six PSS
limbs. Therefore, the moving platform possesses 6 degrees of freedom.
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Fig. 1. A 3D prototype of the 6-PSS parallel manipulator

2.2 Kinematics Model

For the purpose of kinematic analysis, two Cartesian coordinate systemsO(x, y, z)
and B(u, v, w) are attached to the fixed base and the moving platform, respec-
tively. As shown in Fig. 2, the O(x, y, z) frame is attached at the center point O
of the fixed congruent triangle base platform ΔM1M2M3 (M1,M2,M3 are the
cross sectional points of the central lines of the sides.). And the B (u, v, w) frame
is attached on the moving platform at point P that is the center of the hexagon
B1B2B3B4B5B6, which indicates the origin of frameB(u, v, w) coincides with the
center point P . The x-axis is along the direction of vector M2O, and the y-axis is
parallel to vector C5C6. And for the frame B (u, v, w), the u-axis is perpendicular
to the line B5B6, same direction with x-axis and the v-axis is alongside the y-axis
on origin. Both the z-axis and ω-axis are defined by the right-hand rule.

In this study, we assume that OMk = R (k = 1, 2, 3), BBi = r , CiDi = L
and AiBi = l. The angle ϕ between planes C1C2D1 and C1C2C4 is defined
as the angle layout of actuator, and θ is for the angle between PB2 and the
mid-perpendicular line of line segment B1B2.

The coordinates transformation of the moving points Bi from the moving
frame B (u, v, w) to the fixed frame O (x, y, z) can be described by the position

vector p =
[
px py pz

]T
of the centroid P and the rotation matrix ORB in a

[3× 3] matrix. Let u,v and w be the three unit vectors defined along with u, v
and w axes of the frame B (u, v, w), and the ORB can be defined as a rotation
of γ about the fixed x-axis, followed by a rotation of β about the fixed y-axis,
and a rotation of α about the fixed z-axis, thus it yields ORB to
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Fig. 2. Schematic representation of the 6-PSS parallel manipulator

ORB = RX(γ)RY (β)RZ(α)

=

⎡

⎣
cαcβ cαsβsγ − sαcγ cαsβcγ + sαsβ
sαcβ −sαsβsγ + cαcγ −sαsβcγ − cαcγ
−sβ cβsγ cβcγ

⎤

⎦ . (2)

According to the structure of the model in Fig.2, the coordinates of the points
Bi on the moving platform can be obtained with reference to the fixed frame O
by using a closed-loop vector as follows:

OCi + disi + EiAi + lki = p+ bi . (3)

where
di is the displacement of corresponding slider Ei;
ki is the unit vector of limb i with respect to fixed frame O;
bi=

ORB
Bbi and

Bbi are the coordinates of Bi with respect to frame B;
si is the unit vector of the groove of the triangle truss i, respectively.

si =
CiDi

L
. (4)

Then by solving Eq.(3), we will find the vector ki by

ki =
p+ bi −OCi − disi − EiAi

l
. (5)

2.3 Velocity Analysis

Before computing the motion equations of this manipulator, it is necessary to
analyze the kinematic characteristics of each reference limb. According to the
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definition of the position and rotation matrix of the moving platform, we have
the linear and angular velocities of it as follows

Vp = [ ṗx ṗy ṗz ]
T . (6)

ωp =
[
γ̇ β̇ α̇

]T
. (7)

The velocity of the center of a spherical joint Bi can be obtained by taking
the derivative of the right-hand side of Eq.(3) with respect to time.

Vbi = Vp + ωp × bi . (8)

Next, taking the derivative of the left-hand side of Eq.(3) with respect to time,
we have another expression as follows:

Vbi = ḋisi + lωi × ki . (9)

Dot multiplying both sides of Eq.(9) with ki yields

ḋi =
kT
i · Vbi

kT
i · si . (10)

Cross multiplying both sides of Eq.(9) with ki yields to

ωi =
1

l

[
ki × Vbi − ḋki × si

]
. (11)

In this paper, we suppose that the center of mass of limb i is at the geometry
center, then we have

Cmi = OCi + disi + EiAi +
l

2
ki . (12)

Taking derivative of Eq.(12) with respect to time, we have the velocity of the
center of mass of limb i as follows

Vli = ḋisi +
l

2
ωi × ki . (13)

2.4 Acceleration Analysis

The acceleration items of the moving platform can be obtained by taking the
secondary derivative of the corresponding items as follows

V̇p = [ p̈x p̈y p̈z ]
T . (14)

ω̇p =
[
γ̈ β̈ α̈

]T
. (15)

The acceleration of points Bi is obtained by taking the time derivative of
Eq.(8).
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V̇bi = V̇p + ω̇p × bi + ωp × (ωp × bi) . (16)

By taking the derivative of Eq.(9) with respect to time, it yields another
expression of the acceleration of point Bi as follows

V̇bi = d̈isi + lω̇i × ki + lωi × (ωi × ki) . (17)

Dot multiplying both sides of Eq.(17) with ki yields to

d̈i =
1

kT
i · si

(
kT
i · V̇bi + lωT

i · ωi

)
. (18)

To find the angular acceleration of limb i, we can cross multiply both sides of
Eq.(17) with ki.

ω̇i =
1

l

[
ki × V̇bi − ki × si

kT
i · si

(
kT

i
· V̇bi + lωT

i · ωi

)]
. (19)

The acceleration of the centre of mass of limb i can be obtained by taking
derivative of Eq.(13) with respect to time.

V̇li = d̈isi +
l

2
[ω̇i × ki + ωi × (ωi × ki)] . (20)

3 Jacobian Matrices

3.1 Jacobian Matrix of the Moving Platform

The Jacobian matrices are necessary for formulating the equations of motion,
while the derivatives of the components are essential for formulating the corre-
sponding Jacobian matrices. Writing Eq.(8) in matrix form yields to

Vbi = JbiẊp . (21)

where Ẋp= [Vp , ωp] is a [6 × 1] matrix representing the linear and angular
velocities of the moving platform, and the Jacobian matrix Jbi is a [3×6] matrix.

Jbi =

⎡

⎣
1 0 0 0 biz −biy
0 1 0 −biz 0 bix
0 0 1 biy −bix 0

⎤

⎦ . (22)

The Eq.(10) can be expressed in the form of y = ax as follows:

ḋi = J ′
inv i

Vbi . (23)

where

J ′
inv i

=
ki

T

kT
i
· si . (24)

Substituting Eq.(21) (22) into Eq.(23) yields to
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ḋi = Jinv iẊp , Jinv i = J ′
inv i

Jbi . (25)

Rewriting the Eq.(25) for six times, we will find the inverse Jacobian matrix
of the six actuators as follows

ḋ = JinvẊp . (26)

where

Jinv =
[
Jinv 1 · · · Jinv 6

]T
1×6

. (27)

3.2 Jacobian Matrix of the Sliders

According to the definition of ḋi, it can be seen that the value of the velocity of
slider i is equal to ḋi.

Vsi = ḋisi . (28)

Substituting Eq. (25) into Eq.(28), we have

Vsi = JsV iẊp . (29)

where

JsV i =
[
sixJinv i siyJinv i sizJinv i

]T
1×3

. (30)

Since the slider is constrained in the groove of the triangle truss, there is no
rotation of the slider, i.e. ωsi = 0. Therefore, we can deduct the Jacobian matrix
of the slider i as follows:

Ẋsi = JsiẊp , Jsi =

[
JsV i

03×6

]
. (31)

3.3 Jacobian Matrix of the Limbs

To find the Jacobian matrix of the limb i, we have to do some transformations
on Eq. (13). Substituting Eq. (8), (10) and (11) into Eq.(13) yields to

Vli = Ei · Vbi · Fi +
1

2
ki × Vbi × ki . (32)

where

Ei = J ′
inv i

,Fi = si − 1

2
ki × si × ki . (33)

By developing the vector Ei =
[
Eix Eiy Eiz

]T
, Fi =

[
Fix Fiy Fiz

]T
,ki =

[
kix kiy kiz

]T
, we can obtain the Jabobian matrix of linear velocity of limb i as

follows

Vli = JlV iVbi . (34)
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where
JlV i = JlV 1 i + JlV 2 i . (35)

JlV 1 i =

⎡

⎣
EixFix EiyFix EizFix

EixFiy EiyFiy EizFiy

EixFiz EiyFiz EizFiz

⎤

⎦ . (36)

JlV 2 i =

⎡

⎣
k2iy + k2iz −kixkiy −kixkiz
−kixkiy k2ix + k2iz −kiykiz
−kixkiz −kiykiz k2ix + k2iy

⎤

⎦ . (37)

Similarly, we can find the Jacobian matrix of angular velocity of limb i based
on Eq. (10) and (11).

ωi =
1

l

[
ki × Vbi − ki × si

kT
i · si

(
kT
i · Vbi

)]
=

1

l

[
ki × Vbi −Qi

(
kT
i · Vbi

)]
. (38)

where

Qi =
ki × si

kT
i · si =

[
Qix Qiy Qiz

]T
. (39)

The two terms of Eq.(38) are as follows:

ki × Vbi =

⎡

⎣
kiyVbiz − kizVbiy

kizVbix − kixVbiz

kixVbiy − kiyVbix

⎤

⎦ . (40)

kT
i · Vbi = kixVbix + kiyVbiy + kizVbiz . (41)

Substitute Eq.(39-41) into Eq.(38), it yields the angular velocity Jacobian
matrix as follows

ωi = JlωiVbi . (42)

where

Jlωi =
1

l

⎡

⎣
−kixQix −kiz − kiyQix kiy − kizQix

kiz − kixQiy −kiyQix −kix − kizQiy

−kiy − kixQiz kix − kiyQiz −kizQiz

⎤

⎦ . (43)

Therefore, the equation of motion of the limb i can be expressed as

Ẋli =

[
Vli

ωli

]
. (44)

By substituting Eq.(21), (34), (42) into Eq.(44), we get the Jacobian matrix
of the limb i as follows

Ẋli = JliẊp , Jli =

[
Jlvi
Jlωi

]
Jbi . (45)
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4 Virtual Work

4.1 Applied and Inertia Wrenches

The resultant of the applied and inertia forces exerted at the center of mass of
the moving platform is

Fp =

[
f̂p

n̂p

]
=

[
fe +mpg −mpV̇p

ne−OIpω̇p − ωp × (
OIpωp

)
]
. (46)

where fe and ne are the external force and moment exerted at the center of
mass, and in this paper, we assume they are equal to zero. And OIp is the inertia
tensor of the moving platform taken about the center of mass and expressed in
the fixed frame O.

In this paper, we assume that the external force exerted at the sliders and the
limbs is only the gravitational force, and since there is no rotation for the slider
i, i.e. ωsi = 0, ω̇si = 0, then the resultants of applied and inertia forces exerted
at the center of mass of the slider i can be expressed as following equation.

Fsi =

[
f̂si

n̂si

]
=

[
msg −msV̇si

0

]
. (47)

In the Section 2 and 3, we have deducted the necessary items of the limbs, so
it is straigtforward to find the force and moment of limb i.

Fli =

[
f̂li

n̂li

]
=

[
mlg −mlV̇li

−OIliω̇li − ωli ×
(
OIliωli

)
]
. (48)

4.2 Equations of Motion

In this section, the procedure for solving the inverse dynamics of this 6-PSS par-
allel manipulator is proposed. The principle of virtual work for implementation
on this manipulator can be expressed as

δqs
Tτ + δXT

p
Fp +

6∑

1

(
δXsi

TFsi + δXT
liFli

)
= 0 . (49)

The virtual displacements δqs , δXsi, δXli in Eq.(49) should be compatible
with the kinematic constraints imposed by the structure. Therefore, it is nec-
essary to relate the above virtual displacements to a set of independent virtual
displacements δXp. Based on the d’Alembert’s principle, the virtual displace-
ment is equal to the derivative of the displacement with respect to time, hence
we have

δqs = JinvδXp , δXsi = JsiδXp , δXli = JliδXp . (50)
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Substituting Eq.(50) into Eq.(49) yields to

δXT
p

[
JT
invτ + Fp +

6∑

i=1

(
Jsi

TFsi + JT
liFli

)
]
= 0 . (51)

Since Eq.(51) is valid for any values of δXT
p , the condition to satisfy it is

JT
invτ + Fp +

6∑

i=1

(
Jsi

TFsi + JT
liFli

)
= 0 . (52)

Equation (52) describes the dynamics of this 6-PSS parallel manipulator.
Therefore, if Jinv is not singular, the input force of the six actuators can be
determined by the solution of Eq.(52).

τ = −J−T
inv

[
Fp +

6∑

i=1

(
Jsi

TFsi + JT
liFli

)
]
. (53)

Because this analysis is based on the assumption of the inverse of the transpose
of the manipulator Jacobian matrix, when the moving platform approaches a
singular configuration, the computation of input forces may become numerically
unstable.

5 Numerical Simulation

In this section, a simulation is preformed by the computer algorithm to verify this
method. From the previous assumption, the external force acting on the items
of the structure is only the gravitational force, and here, the gravity accelera-
tion vector is g = [0 0 −9.807 ]T m/s2. Some values of the relevant parameters
of this program are listed as: R = 400mm, r = 120mm, L = 450mm, ϕ =
65◦, θ = 24.13◦, and the others can be found in [16]. The mass properties of
the relevant components are obtained by the Solidworks simulation function:
mp = 829.3 g, ml = 300.85g, ms = 73.93g. Based on the dimensions of the
components, the inertia tensors can be developed as follows:

BIp =

⎡

⎣
3.29 0 0
0 6.56 0
0 0 3.29

⎤

⎦ · 10−3kg ·m2 , Il =

⎡

⎣
0 0 0
0 2.04 0
0 0 2.04

⎤

⎦ · 10−2kg ·m2

For the simulation, there are two scenarios to perform it. The first scenario is
that the orientation of the moving platform remains constant while the center
of mass of it moves along with a given trajectory. Specifically, the trajectory of

the moving platform is given as γ=β=α=0, p =
[
0 0 −500 + 50 sin t

]T
mm.

The input forces τ for the six linear actuators are calculated as functions of time
t. The simulation result is plotted in Fig.3 (a), which shows that the six input forces
coincide into a curve, i.e. they are equal to each other. This significance verifies the
theoretical results due to the symmetrical arrangement of the six actuators.
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(a) Constant orientation and variable po-
sition
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(b) Constant position and variable orien-
tation

Fig. 3. Simulation results of the specific trajectories

For the second scenario, the trajectory of the moving platform is given as
follows: the orientation of the moving platform varies by the rotation about the z-
axis with a sinusoidal trajectory while the position remains constant. Specifically,

the trajectory is specified as γ=β=0 , α = sin t, p =
[
0 0 −400

]T
mm.

The results are plotted in Fig.3 (b) and similar to the first scenario, due to
the symmetrical geometry, the input forces at actuators 1, 3 and 5 are equal to
each other, and those at actuators 2, 4 and 6 are also equal to one another.

6 Conclusion

In this paper, a new 6-PSS parallel manipulator is investigated in 3D virtual
environment and the kinematic model is built up. The inverse dynamic analysis
for this parallel manipulator is performed based on the principle of virtual work.
Based on the simulation results, the control strategies will be conducted for this
parallel manipulator in our future research.

The implementation of the principle of virtual work leads to eliminating the
constrained force at the outset. This makes it become more efficient than the
conventional Newton-Euler approach on the dynamic analysis on this parallel
manipulator. And the methodology of the link Jacobian matrices deduction is
easy to understand, which can be also applied to the other types of parallel
manipulators.
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