
Database Scan Variants on Modern CPUs:
A Performance Study

David Broneske1(B), Sebastian Breß1,2, and Gunter Saake1

1 University of Magdeburg, Magdeburg, Germany
{david.broneske,gunter.saake}@ovgu.de,

sebastian.bress@cs.tu-dortmund.de
2 TU Dortmund University, Dortmund, Germany

Abstract. Main-memory databases rely on highly tuned database opera-
tions to achieve peak performance. Recently, it has been shown that
different code optimizations for database operations favor different proces-
sors. However, it is still not clear how the combination of code optimiza-
tions (e.g., loop unrolling and vectorization) will affect the performance
of database algorithms on different processors.

In this paper, we extend prior studies by an in-depth performance
analysis of different variants of the scan operator. We find that the per-
formance of the scan operator for different processors gets even harder
to predict when multiple code optimizations are combined. Since the
scan is the most simple database operator, we expect the same effects
for more complex operators such as joins. Based on these results, we
identify practical problems for a query processor and discuss how we can
counter these challenges in future work.

1 Introduction

Operators in a main-memory database are heavily tuned to meet performance
needs of tomorrow. In the past, tuning operators for the underlying hardware
has attracted much attention (e.g., implementing different join strategies [1–3]).
Due to ever-increasing capabilities of modern CPUs (e.g., an increasing number
of cores, size of caches, and width of vector registers), the behavior of database
algorithms is hard to predict on a given machine [2].

Code optimizations, such as loop unrolling or vectorization, have different
impacts on the performance depending on the given workload (e.g., selectivity)
and processor [17]. Furthermore, considering the combination of different code
optimizations, algorithm performance will get even more unpredictable, because
of interactions between optimizations. In this paper, we perform a first experi-
mental study on the performance impact of combined optimizations. We restrict
our study to scans, because it is a very simple operator, where it is feasible to
implement a high number of variants.

In our in-depth performance analysis, we analyze the impact of four common
code optimizations – loop unrolling, branch-free code, vectorization, and paral-
lelization – and all of their combinations. Thus, we contribute in this paper:
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1. A performance comparison of scan variants on different processors for varying
workloads (e.g., selectivity and data volume)

2. A description of the relation between hardware characteristics and code opti-
mizations for the scan operator

As a result, we discover that the optimal variant of the scan operator for a given
workload is very likely to change across different processors.

Most importantly, there is no simple dependency between the properties of
the hardware and the optimal scan operator, because a combined set of opti-
mizations interact with each other. The variability in workloads, machines, and
sets of code optimizations leads to a large optimization space for database sys-
tems and is an unused optimization potential that has not yet been considered
to its whole extent. As a consequence, we argue that query execution engines
should exploit these unused potentials.

The remainder of this paper is structured as follows. In the next section, we
introduce four common code optimizations and present how we applied the opti-
mizations on a simple scan operator in Sect. 3. We evaluate our scan variants on
different machines and state important findings in Sect. 4. In Sect. 5, we discuss
the impact of our results. We present related work in Sect. 6 and conclude our
work in Sect. 7.

2 Code Optimizations

In this section, we discuss basics of the four common code optimizations that
we apply on the scan operator, namely branch-free code, loop unrolling, vector-
ization, and parallelization. These code optimizations improve either pipeline or
data parallelism to exploit different capabilities of modern CPUs [6]. Of course,
there are numerous more code optimizations, such as loop fission, or full compu-
tation [7,17], but we limit them to a practically applicable subset in this work.

2.1 Branching vs. No-Branching

The usual way to include conditions in a program is to use if-statements. How-
ever, when the processor is filling its instruction pipeline, it has to decide whether
to include an instruction which depends on the branch or to omit it. For this,
CPUs use branch prediction to estimate the result of the branch condition. How-
ever, if the outcome of a branch is constantly changing (e.g., in a selection with
50 % selectivity), branch prediction often fails and the pipeline has to be flushed
and refilled, which reduces instruction throughput.

As a consequence of the pitfalls of branching, a possible optimization is to
write the code in a way that it does not contain any branches. A possible exam-
ple is to use predication for selections [16]. Although omitting branches avoids
branch mispredictions – and, thus, pipeline flushes – we need to execute more
instructions than necessary. Thus, it may only be helpful for if-statements whose
outcome is hard to predict.
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2.2 Loop Unrolling

Loop unrolling is a well-known technique to reduce pipeline stalls in tight for-
loops [9]. If a for-loop consists of a small amount of instructions (e.g., initializing
an array: array[i] = i) the overhead of the instructions of the loop may deteri-
orate its whole performance. Thus, instead of having just one initialization for
loop counter i inside the loop body, we could replicate the body to also initial-
ize the array entries of i + 1, i + 2, and i + 3. With this, we reduce stalls in
the pipeline of the processor [9], but increase the code size, which may lead to
a higher miss-rate in the instruction cache. Notably, modern compilers feature
automatic unrolling of loops. Nevertheless, an adaptive unrolling which depends
on the number of iterations in the loops cannot be achieved, because the number
of iterations is often unknown at compile-time.

2.3 Vectorization

The ability to execute a single instruction on multiple data items (called SIMD)
is an important property of modern CPUs to improve data parallelism. Their
benefit has already been shown for applications such as database operations [22]
and compression techniques in combination with database scans [19,20]. These
SIMD registers offer small load and store latencies [22] and execute one instruc-
tion on several data items, for instance, four 32-bit integer values. Since com-
pilers are sometimes not able to vectorize instructions themselves [22], special
compiler intrinsics (e.g., SSE instructions) are used to explicitly exploit SIMD
functionality.

2.4 Parallelization

Modern CPUs can execute several threads in parallel. Thus, exploiting thread par-
allelism in a database is of high importance for improving its performance [12].
Parallelizing database operations implies that data can be partitioned over sev-
eral threads which work in parallel to achieve lower response times. However, the
results of each thread have to be combined to form the end result making paral-
lelization less beneficial for big result sizes. Furthermore, for small jobs, the over-
head of coordinating the threads may consume the benefit of parallelization [18].

3 Variants for Database Scans

For the implementation of the database scan variants, we chose the database
management system CoGaDB (Column-oriented GPU-accelerated DBMS [5])
which already offers the basic variants of the scan operator. Hence, we only had
to extend this operator set by the combination of optimizations. For simplicity,
we present an excerpt of supported types and predicates of a database scan,
which we limit here to predicates of the form x < c, where c is a constant. Our
implemented scan extracts a position list with the tuple identifiers of matching
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tuples. Of course, this is only one variant of a scan and other approaches of a
scan such as extracting a bitmap from the input are worth to evaluate in future
work.

3.1 Implementation of Single Optimizations

The simple serial implementation of the scan is straightforward; we sketch the
code in Listing 1.1. The main component of the serial scan is the for-loop which
iterates over the input array of size array size.
1 for(int i = 0; i < array size; ++i) {
2 SELECTION BODY(array,comp val,i,result,pos,<);
3 }

Listing 1.1. Serial scan for comparator less than.

Inside the for-loop, we use a macro (cf. Listing 1.2) to be able to switch the
code between branching and branch-free code during compile time. Both macros
evaluate whether the array value is smaller than the comparison value comp val,
and if true, it writes the position pos into the array result.

Using these macros allows to either have a branch in the code that condi-
tionally inserts the positions into the positionlist, or else to have a branch-free
version of the conditional insertion. In fact, the branch-free version has a stable
number of executed instructions and, thus, no branch mispredictions can happen,
which increases instruction throughput. Nevertheless, if the comparison is often
evaluated as false, we incur an overhead compared to the code with branches.

1 #define SELECTION_BODY_BRANCH(array,value,i,result,pos,COMPARATOR) if(array[i]
COMPARATOR value){result[pos++]=i;}

2 #define SELECTION_BODY_NOBRANCH(array,value,i,result,pos,COMPARATOR) result[pos]=i;
pos+=(array[i] COMPARATOR value);

Listing 1.2. Macros for branching or branch-free code.

Apart from code with or without branching, another possible variant can
be generated by unrolling the loop. In Listing 1.3, we sketch the schema for
unrolling the macro inside the loop. The exact code depends on the number of
unrolled loop bodies k and has to be implemented for every k that has to be
supported in the scan. Notably, each variant of the unrolled scan is also available
with branch-free code, since we can use the same macro as in the simple serial
scan.
1 for(int i = 0; i < array size; i+=k) {
2 SELECTION BODY(array,comp val,i,result,pos,<);
3 ...
4 SELECTION BODY(array,comp val,i+(k−1),result,pos,<);
5 }
6 ... //process remaining tuples in a normal loop

Listing 1.3. k-times loop-unrolled serial scan.

Apart from reducing pipeline stalls by using loop unrolling, our next serial
variant uses SSE intrinsics to implement vectorization. Our algorithm in List-
ing 1.4 is based on the SIMD scan by Zhou and Ross [22]. Since SIMD operations
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work on 16-byte aligned memory, we first have to process tuples that are not
aligned. For this, we use the serial variant, since only a few tuples have to be
processed. The same procedure is executed for the remaining tuples that do
not completely fill one SIMD register. The presented code snippet evaluates
the elements of an SIMD array and retrieves a bit mask for each comparison
(cf. Line 4). After that, the mask is evaluated for the four data items and if
there is a match, the corresponding position is inserted into the position list
(cf. Line 6–10). Notably, similar to the algorithm by Zhou and Ross, we also
use an if statement for evaluating whether there has been a match at all, which
could reduce executed instructions if the selectivity is high.

1 ... // Code for unaligned tuples
2 for(int i=0;i < simd array size;++i)
3 {
4 mask=SIMD COMPARISON(SIMD array[i],

comp val);
5 if(mask){
6 for (int j=0;j < SIMD Length;++j)
7 {
8 if((mask >> j) & 1)
9 result array[pos++]=j+offsets;

10 }
11 }
12 }
13 ... // Code for remaining tuples

Listing 1.4. Vectorized serial scan.

1 //build local result in parallel
2 for(int i=0;i < num of threads;++i) {
3 do parallel: serial selection(...);
4 }
5 //build prefix sum
6 prefix sum[0]=0;
7 for(int i=0;i < num of threads;++i) {
8 prefix sum[i]=prefix sum[i−1]+

result sizes[i−1];
9 }

10 //merge local results in parallel
11 for(int i=0;i < num of threads;++i) {
12 do parallel: write thread result(

prefix sum[i],...);
13 }

Listing 1.5. Simple parallel scan.

The parallel version of the scan forwards the data array to a number of
threads (cf. Listing 1.5, Line 2–4) that build up a local result for the selection on
their chunks of the integer array. To allow parallel writing of the local results into
a global result without locking, we have to compute the prefix sum (cf. Line 6–9).
With this, each thread knows where to copy its local results in the final result
array, which is done in parallel (cf. Line 11–13).

3.2 Possible Scan Variants

By combining our four code optimizations, we are able to build a total of 16 vari-
ants. The implementation concept of most of the combined variants is straight-
forward. For instance, adding parallelization to all variants is implemented by
changing the work that a single thread is doing. E.g., when combining paral-
lelization and SIMD acceleration, each thread is executing its selection using
the SIMD algorithm in Listing 1.4 with some adaptions. Furthermore, imple-
menting branch-free code implies to change the used macro. More challenging
is the combination of SIMD and loop unrolling. Here, we took the for-loop
(cf. Listing 1.4), put it into another macro and unrolled it for several iterations.
To allow reproducibility of our results, we provide our variants as open source
implementation.1

1 http://wwwiti.cs.uni-magdeburg.de/iti db/research/gpu/cogadb/supplemental.
php.

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/supplemental.php
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/supplemental.php
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Table 1. Used evaluation machines.

Machine 1 Machine 2 Machine 3 Machine 4

CPU Intel Core 2 Intel Core 2*Intel Xeon 2*Intel

Quad Q9550 i5-2500 E5-2609 v2 Xeon E5-2690

Architecture Yorkfield Sandy Bridge Ivy Bridge - EP Sandy Bridge - EP

#Sockets 1 1 2 2

#Cores per Socket 4 4 4 8

#Threads per Core 1 1 1 2

CPU Frequency 2.83 GHz 3.3 GHz 2.5 GHz 2.9 GHz

L1-Cache per Core 128 Kb 256 Kb 256 Kb 512 Kb

L2-Cache per CPU 12 Mb 4*256 Kb 4*256 Kb 8*256 Kb

L3-Cache per CPU — 6 Mb 10 Mb 20 Mb

4 Performance Comparison

For our performance evaluation, we took four different CPUs to test the hard-
ware’s impact on the performance of the scan variants. Each machine runs
Ubuntu 10.04.3 LTS 64-bit as operating system. We compiled our scan variants
with the GNU C++ compiler 4.6.4 with the same flags as used by Rǎducanu
et al. [17]. Our workload consists of in-memory columns with integer values inter-
nally stored as 32-bit integer arrays containing between 6 million and 60 million
values which is about the cardinality of a column of the Lineorder table in
the Star Schema Benchmark of scale factors 1–10. Generated values are equally
distributed over the range [0, 999]. Another parameter is the selectivity factor
which we vary in steps of 10 % between 0 % and 100 % to evaluate its impact. The
number of used threads for parallelized scans is equal to the number of available
threads on each machine. To reach stable results, we repeated each experiment
100 times and applied a gamma-trimming which omits the slowest and fastest
10 results.

CPU Differences. To provide an overview of the characteristics of the CPUs of
used machines, we summarize necessary information in Table 1. For our evalua-
tion, we choose two commodity CPUs and two server CPUs. While machine 1 has
only the L2 cache as last level cache and a little bit lower clock speed, machine 2
has three cache levels and the highest clock speed. Machine 3 offers four cores
on each of the two sockets, but has the lowest clock frequency per CPU. The
server CPU in machine 4 with an octa core on each of the two sockets allows to
process 32 threads with enabled Hyper-Threading. Thus, machine 4 should have
the best parallelization potential. Furthermore, our chosen CPUs have different
architectures, where the newest architecture is built in on machine 3, being the
Ivy Bridge.
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4.1 Varying Selectivity

In our first experiment, we focus on the performance of our variants for filtering
30 million tuples with different selectivities. For our variants, we implemented
a loop unrolling of depth 8 similar to Rǎducanu et al. [17] and set the number
of used threads to the number of available threads on the machine. To produce
increasing selectivity factors over our equally distributed values, we evaluate the
predicate x < c with increasing comparison constant c. The response times of
our 16 algorithms on the four machines are shown in Fig. 1.

From the performance diagrams, we can see that at a selectivity factor smaller
than 20 %, serial and parallel selections have similar execution times. It is also
visible that serial algorithms can outperform parallel algorithms at a selectivity
factor of 100 %. This performance difference is a result of the overhead produced
by the result combination of parallel algorithms which worsens for increasing
result sizes.

Furthermore, branching code gets high penalties for medium selectivity fac-
tors, making branch-free algorithms superior to them. Nevertheless, the perfor-
mance of branch-free code is steadily getting worse with increasing selectivity
factor till the branching counterpart becomes superior again at a selectivity fac-
tor of 100 %. Considering unrolling, there are only slight differences between
normal loops and unrolled loops. Additionally, the use of SIMD instructions for
serial algorithms does not improve the performance as expected. Especially for
selectivity factors higher than 50 %, the performance of the vectorized scan is
almost the worst. This is probably incurred by the expensive mask evaluation
which worsens when the selectivity factor increases. However, if we apply loop
unrolling and omit branches, we improve the performance significantly, but still,
it is not superior to the serial branch-free version.

In summary, a variant that is performing best under all circumstances cannot
be found. Although the parallel branch-free loop-unrolled vectorized scan is the
best one for machine 3 and 4, it is not for machine 1 at a selectivity factor more
than 50 %. Here, the serial branch-free scan performs best.

Differences Between Machines. In contrast to the other machines, machine 1
shows that for selectivity factors above 50 % the serial branch-free and the serial
unrolled branch-free selection execute up to 32 % faster than parallel algorithms.
Additionally, at a selectivity factor of 100 %, even the branching selection and
unrolled selection outperform the best parallel algorithm by 39 % while the per-
formance of the two branch-free versions deteriorate.

The deterioration of the branch-free serial version for a selectivity factor of
100 % is only visible for machine 1, 2, 4. In contrast, machine 3 is not affected,
although at this point, the branch-free serial versions are beat by the branching
versions. This effect is probably due to the new next-page prefetcher (NPP) in
the Ivy Bridge architecture in this machine [10]. The NPP prefetches the next
cache line if in a sequential access the end of the current cache line is almost
reached.
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Fig. 2. Response time for different amount of data items for selectivity factor 10 %
(BF = branch-free, LU8 = 8-times loop-unrolled, P = parallelized, V= vectorized).

Additionally, while the performance of the branching parallel versions is
mostly visibly worse than for the branch-free counterparts (cf. machine 2 & 3),
these differences disappear for machine 4. Furthermore, the best performance
for serial selections is achieved on machine 2 and for parallel algorithms with
machine 4. In addition, on machine 3 & 4 all parallel algorithms perform con-
stantly better than the serial ones.

4.2 Varying Data Size

We analyzed the impact of different data sizes from 6 to 60 million rows for selec-
tivity factors from 0 % to 100 %. Regardless of the selectivity factor, the optimal
algorithm does not change with an increasing amount of data. Therefore, we
exemplary show our result for selectivity factor 10 % in Fig. 2 for machine 2 and 4.

All variants show increasing response times for increasing data sizes. Fur-
thermore, with increasing data sizes, the performance advantage of parallel algo-
rithms increases compared to serial algorithms. From this, we can conclude that
the main impact factor for the optimality of scan-algorithm variants is the selec-
tivity factor; data size has only a minor impact.

Differences Between Machines. Comparing the results from machine 2 with
those for machine 4, a big gap between the serial and parallel algorithms is visible
on machine 4 that is more severe than on the other machines. The reason for
that is that machine 4 has the highest amount of cores and available threads.
Thus, machine 4 has the best parallelization capability.

4.3 Different Unrolling Depths

In the overall performance evaluation, we decided to use a common unrolling
depth of 8 for the loops [9,17]. However, the number of unrolled executions can
be varied, which opens another tuning dimension. In this section, we repeated
the evaluation of the serial scan variant and compared it to 2–8 times unrolled
serial scans.
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Fig. 3. Response time of branch-free scans with different unrolling depths for varying
selectivities for 30 million data items (LUn = n-times loop-unrolled).

Branch-Free Unrolled Scans. The benefit of unrolling depends on the num-
ber of executed instructions inside a loop. Thus, we first evaluated the branch-
free version of the serial scan for different unrolling depths, because the number of
instructions inside the loop does not depend on branching. With this, we assure
that we will find the best unrolling depth for a specific machine independent
from the selectivity.

In Fig. 3, we visualize the response times for our serial branch-free scans
with different unrolling depths on 30 million data items with selectivity factors
between 0 % and 90 % for machine 2 and 3. Here, we skipped the selectivity
factor 100 %, since the response time behaves the same as for lower selectivity
factors, but its overall value is often double as much. Thus, it would deteriorate
values in the diagram.

From the performance diagram in Fig. 3, it can be seen that for each machine,
there is an optimal unrolling depth. On machine 2, there is in general a huge
difference between the serial scan and the unrolled variants. Here, the generally
best unrolling depth is five. In contrast, machine 3 benefits from larger unrolling,
having its optimum at 8 times unrolling for the considered depths. This circum-
stance is probably caused by the new Ivy Bridge architecture, because it offers
the possibility to combine the micro-op queue of two cores for a single-threaded
task in order to process bigger loops more efficiently [10].
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Fig. 4. Response time of branching scans with different unrolling depths for varying
selectivities for 30 million data items (LUn = n-times loop-unrolled).
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Branching Unrolled Scans. When including branches in our code, the num-
ber of executed instructions inside a loop varies depending on the selectivity.
Thus, changing behaviors for machine 2 and 3 can be seen in the performance
diagrams in Fig. 4. For instance, on machine 2, for selectivity factors from 0 %
to 50 % the serial version behaves worse than an unrolling of depth four and for
a selectivity factor higher than 50 %, an unrolling of depth three behaves best.
Machine 3 shows good performance for 8 times unrolled loops to a selectivity
factor of 30 %, where two-times unrolled code gets best till 90 %.

5 Discussion

In the last sections, we presented the evaluation of our scan variants on different
machines. We have shown that there are convincing performance differences with
respect to varying selectivities and different machines. In this section, we discuss
our findings and their impact on a broader view.

5.1 Variant Performance

Our evaluation revealed that there is no optimal scan variant for different CPUs,
and for each CPU, it is not trivial to select the optimal variant. Additionally,
the optimal variant may change depending on the scan’s selectivity.

Branch-Free Code. From the evaluation, we can conclude that performance
benefits of branch-free code strongly depends on the selectivity. Nevertheless,
we can observe, that branch-free code may degrade performance for the serial
or unrolled scan on some machines (cf. Fig. 1; machine 1, 2, 4: selectivity factor
100 %). Instead, for loop unrolling, branch-free code assures that there is an
optimal unrolling depth independent of the selectivity.

Loop Unrolling. Loop unrolling offers performance improvements, if (1) the
unrolling depth is adjusted to the used processor, and (2) the number of exe-
cuted instructions in the loop is stable. If the executed instructions in the loop
is unstable, the perfect unrolling depth has to be chosen during runtime, for
instance, by the hybrid query processing engine HyPE [4]. Nevertheless, loop
unrolling does not severely worsen the performance and, thus, it is a valuable
optimization that should be considered in every application.

Parallelization. Our results indicate that, in general, parallelization offers a
good opportunity for accelerating the scan if the CPU offers enough cores (e.g.,
on machine 3 or 4). Nevertheless, when parallelized, the scan employs the whole
processing capacity of the CPU. With this, response times are maximized, but
throughput may be insufficient. Consequently, it has to be carefully weighed
whether a parallel scan should be preferred to a serial scan.
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Vectorization. Our vectorized scan is most of the times not competitive to
other scan variants. However, at low selectivity factors the vectorized scan is
the best serial scan, because the probability of excluding several data items in
one step is high and beneficial for performance. Its performance loss at higher
selectivity factors is caused by the bad result extraction from the bit mask.
Hence, instead of expecting a position list as a result, we should rather use a
bitmap to represent the result for efficient vectorization.

Concluding, different code optimizations have a varying impact on the per-
formance of a simple scan. Therefore, it is even more challenging to choose an
optimal algorithm for more complex operators.

5.2 Threats to Validity

To assure internal validity, we cautiously implemented each variant and equally
optimized the code of all variants for performance. We used plain C arrays
instead of containers and ensured that the compiler does not perform loop
unrolling or auto-vectorization. Our evaluation setup assures that array sizes
exceed available cache sizes. Thus, higher sizes should not change the behav-
ior of the variants. However, we executed our tests on machine 3 another time
with data sizes of 500 million values without any impact on the general variant
performance behaviors.

To reach a high external validity, we extensively show our implementation
concepts in Sect. 2, our evaluation environment in Sect. 4 and provide the code to
allow for reproducing of our results. However, CoGaDB operates in an operator-
at-a-time fashion, which means the whole input is consumed by the operator
and the result is then pushed to the next operator. Thus, our results apply to
systems that follow this processing paradigm and we expect similar results for
vectorized execution.

5.3 Toward Adaptive Variant Selection

As a consequence of the performance differences depending on the used machine
and the workload, we need to solve two challenges. First, code optimizations
have hardly predictable impacts between machines, which does not allow us to
build a simple cost model for an operator. Consequently, we can choose the opti-
mal variant at run-time only by executing and measuring the performance of
variants. Second, the number of possible variants is to high to keep them all
available during run-time. In fact, for each additional independent optimization,
the number of produced variants increases by factor two. Furthermore, possi-
ble points where code optimizations make sense will increase with increasing
complexity of the optimized operator.

As a solution, we argue to keep a pool of variants for each operator during
run-time (cf. Fig. 5). The system generates new variants using optimizations
that are likely to be beneficial on the current machine. Variants that perform
poor w.r.t. the other variants are deleted and replaced by new variants. As a
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Fig. 5. Adaptive query processing engine

consequence, we also have to think of a suitable approach to generate the variants
instead of implementing them by hand.

To select the variant to be executed from the pool, we propose to use a
learning-based query execution engine, such as HyPE [4], which learns cost-
models for each variant depending on the given machine and workload. With
this, we achieve optimized performance due to the usage of best-performing
variants from the variant pool for the used machine and also for the current
workload. The variant pool itself has to be limited, because learning cost models
for many variants introduces too much overhead. Thus, we propose to let the
query execution engine decide which algorithm has to be deleted and which one
has to be generated, in case it is beneficial for the current or future workload.
With this, we achieve a run-time adaptability of our system with respect to the
workload and used machine.

Limitations. Our proposed approach relies on good selectivity estimations to
choose the optimal variant of the scan and query plan for the given workload.
However, we argue that approaches such as kernel-density estimation by Heimel
and Markl [8], or work of Markl et al. [14,15] should make it possible to overcome
these challenges.

6 Related Work

Rǎducanu et al. tested different variants of database operations in Vectorwise [17].
Because of the vectorized execution model in Vectorwise, they are able to execute
different variants of one database operation during the processing of one column,
arguing that different code optimizations are favored by different machines and
workloads. Nevertheless, their findings do not reveal the impact of the combination
of code optimizations, which we expose for the scan operator. In fact, they did not
consider different unrolling depths as we do. Furthermore, although we come to
the same conclusion as they do, we want to tackle the problem by learning cost
models instead of only the execution time of a variant, because we find it more
appropriate for our use case.
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Related work in the area of code optimizations for stencil computation can
be found in the work of Datta et al. [7] and improving scans is topic of the work
of Li and Patel [13]. Furthermore, there is much work on applying vectorization
on database operations, such as SIMD-accelerated scans for compressed data
by Willhalm et al. [19,20], using SIMD instructions for database operations by
Zhou and Ross [22], and also using SIMD for accelerating index search by Kim
et al. [11] or Zeuch et al. [21]. Their ideas help implementing vectorized database
operations, but they compare their implementations only to the serial variant
and do not include other code optimizations or machines as we do.

7 Conclusion and Future Work

With the growing heterogeneity of modern processors, it becomes increasingly
difficult to exploit their capabilities. Thus, we need an understanding on which
hardware characteristics favor which set of code optimizations to achieve the best
performance of database operators. Due to interactions between optimizations,
this is a non trivial problem.

In this work, we investigated the impact of four different code optimizations
and their combinations on the scan operator. We evaluated the performance
of the resulting 16 database scan variants on different machines for different
workloads. Our results indicate that the performance of most of the algorithms
is depending on the selectivity of the scan and also on the used machine. How-
ever, when combining code optimizations (e.g. branch-free code and varying loop
unrolling depths), simply changing the used machine favors a different algorithm
variant. As a consequence, we have to include these variants in the optimization
space of our query engine. However, because there are numerous code optimiza-
tions and because of their exponential amount of combinations, we run into
several problems: building a cost model including each variant is hardly pos-
sible, and providing executable code for each variant during run-time is not
feasible because of the large number of variants and their respected memory
consumption.

Thus, future work includes to learn execution behaviors of the variants by a
suitable query engine (e.g., HyPE) that choses the best-performing variant from
an algorithm pool and schedules a rejuvenation of the pool which exchanges
variants that perform badly for the current workload.

Acknowledgments. We thank Jens Teubner from TU Dortmund and Max Heimel
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