
The DCB-Tree: A Space-Efficient Delta Coded
Cache Conscious B-Tree

Robert Binna(B), Dominic Pacher, Thomas Meindl, and Günther Specht

Databases and Information Systems, Institute of Computer Science,
University of Innsbruck, Innsbruck, Austria

{robert.binna,dominic.pacher,thomas.meindl,gunther.specht}@uibk.ac.at

Abstract. Main-memory index structures have become mainstream for
a large number of problem domains. However, in the case of web-based
datasets, which feature exponential growth, it is an ongoing challenge
to fit those data entirely in main-memory. In this paper, we present
the DCB-Tree, an extremely space efficient main-memory index structure
for the storage of short fixed-size keys. It features a two-stage cache-line
aligned node layout. In comparison to other main-memory index struc-
tures it reduces the amount of memory required by 80 % in the best and
by 30 % in the worst case. Although it is tailored towards space consump-
tion, it features good overall performance characteristics. In particular,
in the case of very large real world datasets it provides performance equal
or superior to state of the art main-memory index structures.

Keywords: Indexing ·Main-memory ·Delta-encoding ·Cache-optimized

1 Introduction

With the amount of main-memory capacities increasing, many databases can be
kept entirely in main-memory. However, this is not the case for all domains. For
example, the exponential growth of web-based datasets results in huge semantic
web data or full-text corpuses. Although data can be sharded and distributed
onto several hosts, it is still desirable to reduce the amount of memory needed
and therefore to reduce the monetary cost as well. In the case of RDF-Stores
[5,18] a common approach to reduce the amount of memory needed for indexing
such kind of data, is to solely store fixed size keys instead of long variable length
values and place the original value in a dictionary. Hence to reduce the amount
of memory required, the dictionary or the fixed length keys can be compressed.

As the main purpose of index structures is to improve the search and query
performance, the space consumption of such indexes is a trade-off between access
performance and compression ratio. Nevertheless, the compression overhead can
be mitigated due to the memory wall effect [22], which states that the improve-
ment in microprocessor speed exceeds the improvement in DRAM performance.
Currently DRAM speed is more than two orders of magnitude slower than CPU
speed. This situation is comparable to the performance disparity between main-
memory and disks. As disk based index structures use compression techniques
c© Springer International Publishing Switzerland 2015
A. Jagatheesan et al. (Eds.): IMDM 2013/2014, LNCS 8921, pp. 126–138, 2015.
DOI: 10.1007/978-3-319-13960-9 10



The DCB-Tree: A Space-Efficient Delta Coded Cache Conscious B-Tree 127

to reduce the required number of disk seeks [8]. According to the famous quote
“memory is the new disk” [10] it can be inferred that “cache is the new RAM”.
Hence, compressing data on a cache-line level can trade instructions required for
compression against CPU cycles gained by reducing the number of cache misses.
The memory wall effect becomes even more significant for index structures con-
sisting of several 100 millions or even billions of elements as the number of ele-
ments residing in CPU caches is limited. Therefore, the performance is mainly
bound by the overall number of memory transfers required.

Hence, we identify three requirements for main-memory index structures,
particularly in the case of large real world datasets. First, the data structure has
to be space efficient. Second, it has to consider cache hierarchies of contemporary
CPUs. Third, it has to support incremental updates as read-only indexes are only
appropriate for a limited number of use cases.

Currently two categories of main-memory indexes, which address some of
these issues, can be identified. On the one hand, read-only index structures like
FAST [13] provide cache-conscious search operations as well as decent space uti-
lization, but do not support update operations. On the other hand, main-memory
index structures like ART [15] or the CSB+-Tree [20] provide cache-conscious
search as well as update operations, but provide only limited capabilities in terms
of space utilization. However, to the best of our knowledge no method satisfying
all three requirements exists, which provides space efficiency, cache-conscious
design and update functionality.

Therefore, we present the Delta Cache Conscious B-Tree (DCB-Tree)
combining cache-conscious operations with efficient space utilization. It is a
main-memory B-Tree [3] based index structure tailored for the storage of short
fixed-size keys. A hierarchical cache-line aligned node layout reduces the num-
ber of cache-misses and the delta encoding of keys along this hierarchical layout
reduces the amount of space needed for each entry.

Hence, our contributions in this paper are:

– The main-memory Delta Cache Conscious B-Tree (DCB-Tree)-Tree. It is a
space efficient, cache-conscious index for the storage of short fixed size keys.

– Novel algorithms for lookup and insertion, which are specific for the DCB-
Tree.

– An evaluation of the DCB-Tree, which shows that the DCB-Tree provides
superior space utilization, while providing equal or better performance for
large real world datasets.

The remainder of this paper is structured as follows. Section 2 discusses the
related work. Section 3 introduces the DCB-Tree, its structure and the algo-
rithms used. Section 4 presents the evaluation and its results. Section 5 draws a
conclusion and gives a short overview about future work.

2 Related Work

The work presented in this paper is related to the area of index structures and
index compression techniques.



128 R. Binna et al.

In the area of index structures allowing sequential access, comparison-based
tree structures as well as trie-based index structures prevailing. The B-Tree [3,8]
represents the dominating disk based index structure and is the basis of many
relational database systems. While variations of binary search trees like the Red
Black Tree [2,11] or the T-Tree [14] were the dominating main-memory index
structures until the 1990’s, Rao et al. [19] showed that B-Tree based structures
exceed binary tree index structures due to their better cache-line utilization.
Rao et al. further presented the CSB+ tree [20], which optimizes cache-line
utilization by reducing the number of pointers through offset calculation in the
index part. While the CSB+ tree improves memory utilization, no key or pointer
compression was applied. Due to the fact that cache optimized trees provide only
limited performance when used as disc based structures, Chen et al. presented the
Fractal Prefetching B+-Tree [7], which facilitates a hierarchical cache-optimized
layout optimizing disc as well as main memory performance.

Another approach aiming for a cacheline optimization is the BW-Tree [16] by
Levandoski et al. which is optimized for high concurrency by facilitating atomic
compare and swap operations instead of locks. A further direction of research is
to facilitate the data-parallel features of modern hardware to improve the search
operation within the tree nodes. The Fast Architecture Sensitive Tree (FAST)
by Kim et al. [13] and the k-array search based approach by Schlegel et al. [21]
use SIMD operations to speed up search operations. While it was shown that
both trees provide improved search performance, they were designed as read-
only index lacking update operations. Another approach to speed up the search
operation is to use trie-based index structures [9]. However, a major drawback of
tries is the worst-case space consumption. The Adaptive Radix Tree (ART) [15]
by Leis et al. represents a trie variation dedicated to modern hardware, which
mitigates this worst-case space consumption by using adaptive node sizes as well
as a hybrid approach for path compression. Moreover, the authors showed that
the ART tree is able to outperform FAST and under certain conditions also
hashtables. Another approach based on tries is the Masstree [17] by Mao et al.,
which is a trie with fanout 264 where each trie node is represented by a B+-Tree
storing an 8 byte portion of the key. This design results in good performance for
long shared prefixes.

In the domain of index compression techniques several different approaches
to compress the index part as well as the file part of B-Trees were developed.
The reason is that the performance of index structures is heavily bound by the
branching factor. A common compression scheme related to the compression of
the index part is prefix or rear compression. The prefix B-Tree [4] by Bayer and
Unterauer uses prefix compression on a bit level to only store partial keys in the
index part of the tree. Furthermore, they soften the B-Tree properties to select
partial keys with the shortest length. Bohannon et al. extended the concept
of partial keys in their pkT-trees and pkB-trees [6] to improve cache and search
performance. In the index part they use fixed size portions of the prefix to opti-
mistically compare with the search key. If the comparison cannot be performed,
a pointer to the full index key is dereferenced. The authors point out that the



The DCB-Tree: A Space-Efficient Delta Coded Cache Conscious B-Tree 129

partial key is superior in terms of performance for larger keys only. While this
scheme improves the cache-line utilization, it imposes a memory overhead due
to the overhead of the pointer as well as the partial key itself. A more recent
approach for using partial keys was incorporated in FAST [13]. It compresses
the index keys by applying a SIMD based approach to only store those bits that
actually differ.

3 DCB-Tree

In this section, we present the Delta Cache Conscious B-Tree (DCB-Tree). The
major goal of the DCB-Tree is to store fixed size keys of sizes up to 8 bytes in
the DCB8-Tree and keys of up to 16 bytes in the larger DCB16-Tree. Further
aims of the DCB-Tree are a low memory footprint, update ability and taking
cache hierarchies into account to provide decent performance. The two variations
DCB8-Tree and the DCB16-Tree differ only in the underlying integer type. The
reason that two versions exist, is that the 8 byte integer type is mapped to a
native data type and therefore provides better performance compared to the
custom 16 byte integer type. In the following, we will use the term DCB-Tree
synonymously for both the DCB8-Tree and the DCB16-Tree.

The intended use of the DCB-Tree is to provide a clustered in-memory index
for short fixed-length keys, which occur in triple stores or inverted indexes. Due
to the dataset sizes in those areas, the DCB-Tree focuses primarily on the reduc-
tion of the overall memory footprint to ensure that datasets can be processed
in main-memory only. To reduce the memory footprint, the DCB-Tree exhibits
the circumstance that generally keys are not randomly distributed. Moreover, in
real world scenarios coherence can be found in the datasets. This circumstance
is utilized by the DCB-Tree for the encoding of keys and for the encoding of
pointers. The DCB-Tree is an n-ary search tree incorporating ideas of B-Trees
[3], B+-Trees [8] and CSB+-Trees [20]. Values are only stored at the leaf-level.
Due to the fact that the DCB-Tree is designed as a clustered index structure, no
pointers to the actual record are stored on the leaf node level. In the following we
describe the node and bucket layout, discuss the pointer encoding and memory
layout and explain the algorithms for lookup and insertion.

3.1 Two Stage Node Layout

Each node, index node as well as leaf node, has a two stage layout. The first stage
is the header section and the second stage consists of the buckets containing the
content (keys). Furthermore, each node has an implicit offset which is defined
by its corresponding parent node entry. In the case of the root node, the offset
is defined to be zero. An example node layout is illustrated in Fig. 1.

The header section of each node contains header-entries (H1-Hn), which are
uncompressed keys used as separators between buckets. For instance, header-
entry H1 is larger than any key (Ki) in Bucket1 but smaller or equal to the
smallest key in Bucket2. In this way the header-entries can be used to determine



130 R. Binna et al.

Fig. 1. DCB-tree layout overview

the address of the corresponding bucket address. In Fig. 1 this relationship is
visualized by the intra node pointers. However, these intra node pointers are not
stored but are calculated relative to the node’s base address. Hence, for nodes
with header sections containing at most n header-entries at most n + 1 buckets
are supported. In the case of the DCB-Tree the size of the header section as well
as the size of each bucket is determined to two cache-lines. The reason is that
the hardware prefetchers1 of modern CPUs automatically fetch the adjacent
cache-line in case of a cache miss. As the number of bytes required per header
entry is equal to the maximum key length, headers in a DCB16 -Tree are twice
as large as in a DCB8-Tree. Therefore, to be able to address the same number
of buckets as in a DCB8-Tree’s node the header section of a DCB16 -Tree spans
four cache-lines. As the header-entries are used to address the corresponding
buckets, no more than 16 content buckets can be used without increasing the
header section size. To ensure that each node is page aligned and that no TLB-
miss occurs during the processing of a single node, the node size is fixed to 2kiB.
Furthermore the 2kiB node size is tailored to the address translation covered in
Sect. 3.3. This node design ensures that at most two cache misses occur on each
tree level of a DCB8-Tree. In a DCB16-Tree this depends on the prefetch policy
of the CPU, but tends to three cache misses.

3.2 Bucket Structure

As described in the previous section, the content of each node is stored in its
buckets. To distinguish buckets located in index nodes from buckets located in
leaf nodes, we denote buckets in index nodes as index buckets and buckets in leaf
nodes as leaf buckets. Due to the fact that the bucket structure is similar to the
node structure in B+-Trees we only discuss the properties which are different
from the B+-Tree’s node structure.

Index buckets contain keys and pointers to the corresponding subtree. Each
index bucket contains a header section and a content section. The header section
stores the number of entries in the content section and the encoding information
for keys and pointers. The encoding information for pointers consists of the
number of bytes (Pointer Bytes) used to store the largest pointer in the bucket.

1 http://tinyurl.com/on8ccx3.

http://tinyurl.com/on8ccx3


The DCB-Tree: A Space-Efficient Delta Coded Cache Conscious B-Tree 131

Fig. 2. Index bucket entry

Keys in index buckets are generated in the course of leaf node splits, such
that the lower bytes tend to be zero. Therefore a tail compression is applied
on the bucket’s keys and the minimum number of tail zero bytes (Tail Bytes)
is stored in the bucket’s header section. Furthermore, the keys are delta coded
relative to the bucket’s offset and placed in its content section. The maximum
number of bytes, which is required to store such an encoded keys, is put into
the bucket’s header section (Key Bytes). An example illustrating pointer as well
as key encoding for an index bucket can be seen in Fig. 2. In this figure solid
boxes represent stored values, while dashed boxes represent calculated values.
For instance, the bucket offset is inferred during tree traversal. Dashed boxes
below pointers or keys contain their decoded representations.

Fig. 3. Leaf bucket entry

Leaf buckets store keys only. Hence their section contains the number of keys
in the content section and the information used to encode them. As keys con-
tained within a leaf bucket are highly coherent, the same fixed-length delta based
encoding as used for index buckets can be applied. Therefore, the encoding infor-
mation consists of the maximum number of bytes needed to encode a single key.
This is equal to the number of bytes required to encode the leaf bucket’s largest
key. An example which illustrates the encoding of a leaf bucket can be seen in
Fig. 3. The semantics of the dashed and solid boxes is analogous to Fig. 2.

3.3 Pointer Encoding and Memory Layout

It has previously been shown [19] that a large portion of space within index
nodes is dedicated to pointer information. Since 64-bit architectures have become
mainstream, the space dedicated to pointers has an even higher impact. There-
fore, we try to reduce the amount of space dedicated to pointer information
with a twofold strategy. On the one hand, the number of pointers required is
reduced. This is done by designing the data structure as a clustered index for
short fixed sized keys, which eliminates the need for pointers at the leaf node
level. Furthermore, by facilitating the nested node layout described in Sect. 3.1,
intra-node pointers are eliminated. This approach is similar to the concept of
node groups in CSB+-Trees. On the other hand, the space occupied by each



132 R. Binna et al.

pointer is reduced. This is achieved by using node IDs instead of absolute point-
ers. Even in the case of huge datasets spanning hundreds of billion of entries,
4 bytes for addressing a single node is sufficient. Therefore, a custom memory
allocator is used, which allocates fixed node size chunks from a pool of large
buffers and is able to translate node IDs to absolute addresses. The overhead of
calculating the absolute node address is negligible, as 2n sized buffers are used.

3.4 Algorithms

As a DCB-Trees resembles a special version of a B-Tree, the basic algorithms
for insertion and update are the same. The huge difference in comparison to
standard B-Trees is that each node features a two stage layout, with key and
pointer compression on a per bucket basis. We therefore describe only the parts
of the algorithms and operations that are different compared to B-Trees and B+-
Trees [3,8]. Moreover, only insertion as well as lookup operations are considered.
Nonetheless, algorithms for delete operations can be inferred analogously.

Lookup. In the case of a lookup operation, the two stage node layout results in
the following three steps, which are needed for searching a node.

1. A linear search is executed on the node’s header to determine the correspond-
ing bucket and its offset. The bucket offset of the first bucket is equal to the
node offset. In any other case, the bucket offset is equal to the largest header
entry which is smaller or equal to the search key.

2. The search key is encoded. Therefore, the bucket offset is subtracted from the
search key. In the case of an index bucket, the search key is tail encoded to
match the encoding of the bucket to search.

3. A lookup operation is executed on the bucket using the encoded search key.
In the case of an index bucket search, the key preceding the matching pointer
becomes the node offset in the next search step.

Insert. To insert a key into a DCB-Tree, first the target leaf bucket is deter-
mined by the lookup operation explained in the previous paragraph. Second, it
is determined whether sufficient space is available to insert the key and whether
a potential recode operation succeeds. Such a recode operation is required if the
new key is larger than any existing entry in the bucket. If both conditions can
be satisfied, the bucket is encoded and the key inserted. If one of the conditions
fail, the following overflow handling strategies are applied in the given order.

1. In the case of inserting keys in ascending order, buckets tend to be only half
full. To prevent this situation, keys are rotated to the left sibling bucket, if
sufficient space is available. This corresponds to a local rotation.

2. Otherwise a bucket split becomes necessary. Unless the node is full, the bucket
split is executed and the minimum key of the right bucket is inserted as a
new separator in the node’s header section.

3. If a bucket split cannot be performed and the left sibling node can contain
further buckets, buckets are locally rotated to the left sibling node and the



The DCB-Tree: A Space-Efficient Delta Coded Cache Conscious B-Tree 133

insertion is retried. In the case of a bucket rotation the node offset must be
recalculated, which can lead to another bucket split. Furthermore, the new
node offset must be propagated to the parent node.

4. If no bucket rotation can be applied a node split is required. The buckets are
distributed, the node offset for the right node is calculated and the pointer
to the right node together with its offset is inserted into the parent node.

For the generation of the node offset, in case of a leaf-node split, Algorithm 1
is used. It calculates a separator between the left and the right node with as
many trailing zero bytes as possible. Moreover, it does not calculate the shortest
common prefix between the largest left and the lowest right value, as in case of
the prefix B-Tree [4], but the shortest common prefix between the mean value of
both values and the lowest right value. The reason is that it tries to balance the
size of the right node’s first bucket values while still providing a decent prefix.

Algorithm 1. Tail Compressible Mean
1: procedure tailCompressibleMean(lower, upper)
2: mean ← (upper + lower)/2
3: upperMask ← −1l ≫ numberOfLeadingZeros(upper)
4: tailCompressableBits = log2((mean ⊕ upper) ∧ upperMask)
5: return (−1l � tailCompressableBits) ∧ upper
6: end procedure

4 Evaluation

In this section we evaluate the DCB-Tree. Therefore we conduct two benchmarks.
The first compares the memory consumptions with other main-memory data
structures. The second evaluates the runtime performance.

4.1 Benchmark Environment

All benchmarks are executed on the Java Runtime Environment version 1.8.0 05
with the following system properties set: -XX:NewRatio=3 -Xmx90g -Xms40g
-XX:+UseConcMarkSweepGC -XX:MaxDirectMemorySize=90g.

For the evaluation we used a server with an Intel Xeon L5520 running at a
clock speed of 2.27 GHz clock speed, 64 KB L1 cache per core, 256 KB L2 cache
per core and 8MB L3 shared cache. The server has 96 GB of DDR3/1066 RAM
and runs CentOS 6.5 with Linux Kernel 2.6.32.

4.2 Evaluated Data Structures

As the DCB-Tree is implemented in Java, all benchmarks are evaluated on the
Java Platform. The implementation of the DCB-Tree is available online2. We
2 http://dbis-informatik.uibk.ac.at/static/ma/robert/imdm/imdm2014.zip.

http://dbis-informatik.uibk.ac.at/static/ma/robert/imdm/imdm2014.zip


134 R. Binna et al.

evaluated the two variations DCB8-Tree and DCB16-Tree. Due to the lack of
built-in 16 byte wide integers a custom integer data type is used as the underlying
data type for the DCB16-Tree.

As contestants, the TreeSet3 representing the Java Platform’s standard
implementation of a Red-Black Tree [11] and a port of the ART Tree [15] were
used. As the ART tree is originally available as C++ implementation4 we cre-
ated a port for the Java Language, which is available online. Due to the lack of
SIMD operations on the Java Platform, the lookup in the nodes containing up to
16 keys of the ART Tree had to be implemented by linear search. Although it is
expected that the ART port is slower than the C++ implementation due to the
overhead incurred by the Java Virtual Machine, the same overhead is applied to
all contestants. For keys up to the length of 8 bytes the key is encoded inside
the pointer as it is the case in the original implementation. The reason is that 8
bytes are already reserved for the pointer. In the case of keys larger than 8 bytes
the ART Tree is used as a secondary index structure as the 16 byte key cannot
be encoded in an 8 byte pointer.

It is important to note, that in the case of the ART Tree as well as the DCB-
Tree, pointers represent relative offsets in a direct ByteBuffer5. This is similar
to an offset for an array in C.

4.3 Datasets

In the scenario of keys up to 8 bytes length we use three different datasets.
The first dataset contains dense values ranging from 0 to n. The second dataset
contains random values. Finally, two real world dataset are used. On the one
hand side triples of the Yago2 dataset [12] are encoded as 8 byte sized keys in
the following way: The lowest 26 bits are used for the object id. Bits 27 to 37
store the predicate information and the bits ranging from 38 to 63 are used for
the subject information. On the other hand triples from the DBpedia [1] dataset
version 3.9 are encoded as 16 byte sized key. Each triple is encoded in a single
16 byte integer, such that the lowest 4 bytes represent the object id, the next 4
bytes the predicate id and the next 4 bytes the subject id.

For the sake of simplicity we subsequently denote these four datasets as
Dense, Random, Yago and DBpedia.

4.4 Memory Consumption

To evaluate the memory consumption we insert 10 K, 100 K, 1 M, 10 M and
100 M keys of each dataset into the index structures and measure the space
consumption for each structure. For DBpedia, we use dataset sizes ranging from
100 K up to 1 B keys. The space consumption is summarized in Table 1, with
the best values written in bold. This table presents the bytes used per entry
3 http://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html.
4 http://www-db.in.tum.de/∼leis/index/ART.tgz?lang=de.
5 http://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html.

http://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
http://www-db.in.tum.de/~leis/index/ART.tgz?lang=de
http://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html


The DCB-Tree: A Space-Efficient Delta Coded Cache Conscious B-Tree 135

Fig. 4. Memory consumption

for 100 million randomly inserted keys of each data set. Moreover the Baseline
value used in Table 1 represents the bytes needed per key, given all keys are delta
coded relative to their direct predecessor and encoded with a byte-level fixed-
prefix encoding. Furthermore the memory consumption is exemplarily visualized
for Dense in Fig. 4a and for Yago in Fig. 4b.

As it can be seen in both Figures, as well as in Table 1, the overhead in terms
of memory consumption between DCB8 and DCB16 is negligible and can be
explained by the additional cache-lines used in the header section of DCB16.
Hence, in the rest of this subsection we will use DCB synonymously for DCB8
and DCB16.

The results of all experiments show that the DCB -Tree has the best space
utilization of the evaluated data structures. In the best case (Dense) it uses
30% more space than the Baseline. Even in the worst case it uses only three
times more space compared to the Baseline. The DCB-Tree uses between two
third of the memory of the second best index structure (ART-Tree) in the case
of Random, and up to five times less space in the case of DBpedia. In the case
of DBpedia it has to be considered that the keys cannot be stored inside ART.
Therefore 16 bytes of the 60 bytes per entry are dedicated to the storage of the
keys itself. Considering only the space required for the index part, the DCB -Tree
uses only one third of the space. It can be seen in Table 1 that this ratio is equal
for Yago, which represents a scale-free network as well. In all experiments it can
be seen that the TreeSet performs worst. For each dataset it consumes about an

Table 1. Memory consumption per key for TreeSet, ArtTree and DCB in datasets of
100 million values

Dataset Baseline TreeSet δTree ArtTree δArt DCB8 δDCB8 DCB16 δDCB16

Dense 1.5 88 58.67 8.1 5.4 1.89 1.26 2.03 1.35

Yago 3.2 88 27.5 29.4 9.19 8.73 2.73 9.36 2.92

Randomt 5.45 88 16.15 18.67 3.43 11.23 2.06 12.04 2.21

DBPedia 3.78 96 25.4 60.01 15.88 NA NA 12.66 3.35



136 R. Binna et al.

order of magnitude more space per key than the DCB -Tree. The reason is that
it uses no compression and has a poor payload-to-pointer ratio.

4.5 Runtime Performance

To evaluate the runtime behavior, the same datasets and sizes as in the memory
benchmark are used. For each configuration, 100,000,000 lookup operations are
issued in a random order and the number of operations performed per second are
measured. The results for Dense is shown in Fig. 5a, for Random in Fig. 5c, for
Yago in Fig. 5b and for DBpedia in Fig. 5d. It can be observed that regarding the
artificial datasets Dense and Random, the ART Tree processes about 50% more
lookups per second than the DCB8 tree. Although the Red Black Tree has very
good performance for datasets having less than 10,000 entries, for larger datasets
the performance drops significantly and is surpassed by both the DCB -Tree as
well as the ART-Tree.

Fig. 5. Lookup performance

In case of the large real world datasets Yago and DBpedia the DCB-Tree
is on the same level or superior to the ART Tree. For Yago, depending on the
dataset size, DCB8 processes between 7% and 30% more operations per second



The DCB-Tree: A Space-Efficient Delta Coded Cache Conscious B-Tree 137

than ART. For DBpedia, DCB-16 has an equivalent runtime performance as
ART for more than 10,000,000 entries. The reason that DCB-16 performs up to
50% worse than ART for dataset sizes smaller than 10,000,000, is the overhead
of the custom 16 byte integer implementation, as no native 16 byte integer
datatype is available on the Java Platform. ART is not affected by this, because
it performs a byte wise comparison. Nevertheless, due to its tree height and the
increased number of cache misses, the performance of ART drops significantly
for datasets larger than 10,000,000 entries.

The reason that the TreeSet is only evaluated for dataset sizes of up to
100,000,000 entries is that the amount of memory required exceeds the amount
of RAM available in our benchmark environment (more than 96 GB).

5 Conclusion and Future Work

In this paper we presented the DCB-Tree, a cache-conscious index structure for
the storage of short fixed size keys. The DCB-Tree combines a hierarchical cache
aligned node layout with delta encoding and pointer compression. The evaluation
results show the best memory utilization among the contestants, while providing
equal or better performance for large real world datasets.

We presented algorithms for insertion and search operations and described the
influence of the two-stage node layout on B-Tree operations. Furthermore, the
DCB-Tree was evaluated against two other index structures, namely the ART
Tree and a Red Black Tree on artificial as well as on real world datasets. We show
that for dense as well as for large real world dataset the DCB-Tree requires only
20 % of memory compared to other state of the art index structures. Moreover,
our evaluation shows that the DCB-Tree provides decent performance using arti-
ficial datasets. In the case of large real world datasets it is equivalent or superior to
state of the art in-memory index structure ART, while providing a more efficient
space consumption. In future work, we will investigate other encoding strategies
to further reduce the amount of memory required. Furthermore, we plan to inte-
grate the DCB-Tree into RDF-Stores as well as to use it as a basis for full text
indexes.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

2. Bayer, R.: Symmetric binary B-Trees: data structure and maintenance algorithms.
Acta Informatica 1(4), 290–306 (1972)

3. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices.
In: Proceedings of the SIGFIDET (now SIGMOD) 1970, p. 107. ACM Press,
New York (1970)

4. Bayer, R., Unterauer, K.: Prefix B-Trees. ACM Trans. Database Syst. 2(1), 11–26
(1977)



138 R. Binna et al.

5. Binna, R., Gassler, W., Zangerle, E., Pacher, D., Specht, G.: SpiderStore: exploiting
main memory for efficient RDF graph representation and fast querying. In: Pro-
ceedings of Workshop on Semantic Data Management (SemData) at VLDB (2010)

6. Bohannon, P., Mcllroy, P., Rastogi, R.: Main-memory index structures with fixed-
size partial keys. In: Proceedings of SIGMOD 2001, vol. 30, pp. 163–174. ACM
Press, New York, June 2001

7. Chen, S., Gibbons, P.B., Mowry, T.C., Valentin, G.: Fractal prefetching B+-Trees.
In: Proceedings of SIGMOD 2002, p. 157. ACM Press, New York (2002)

8. Comer, D.: Ubiquitous B-Tree. ACM Comput. Surv. 11(2), 121–137 (1979)
9. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)

10. Gray, J.: Tape is dead, disk is tape, flash is disk, RAM locality is king, Gong Show
Presentation at CIDR (2007)

11. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: 19th
Annual Symposium on Foundations of Computer Science (SCFS 1978), pp. 8–21.
IEEE, October 1978

12. Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E., de Melo, G.,
Weikum, G.: YAGO2: exploring and querying world knowledge in time, space,
context, and many languages. In: Proceedings of WWW 2011, p. 229. ACM Press,
New York (2011)

13. Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A.D., Kaldewey, T., Lee,
V.W., Brandt, S.A., Dubey, P.: FAST: fast architecture sensitive tree search on
Modern CPUs and GPUs. In: Proceedings of SIGMOD 2010, p. 339 (2010)

14. Lehman, T.J., Careay, M.J.: A study of index structures for main memory database
management systems. In: Proceedings of VLDB 1986, pp. 294–303 (1986)

15. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ARTful indexing for
main-memory databases. In: Proceedings of ICDE 2013, pp. 38–49. IEEE, April
2013

16. Levandoski, J.J., Lomet, D.B., Sengupta, S.: The Bw-tree: A B-tree for new hard-
ware platforms. In: Proceedings of ICDE 2013, pp. 302–313 (2013)

17. Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value
storage. In: Proceedings of the 7th ACM European Conference on Computer Sys-
tems - EuroSys 2012, p. 183 (2012)

18. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. In: Proceedings
of VLDB Endowment, vol. 1, pp. 647–659, August 2008

19. Rao, J., Ross, K.A.: Cache Conscious Indexing for Decision-Support in Main
Memory. In: Proceedings of VLDB 1999, pp. 475–486. Morgan Kaufmann Pub-
lishers Inc. (1999)

20. Rao, J., Ross, K.A.: Making B+-Trees cache conscious in main memory. ACM
SIGMOD Rec. 29(2), 475–486 (2000)

21. Schlegel, B., Gemulla, R., Lehner, W.: k-ary search on modern processors.
In: Proceedings of the Fifth International Workshop on Data Management on New
Hardware - DaMoN 2009, p. 52. ACM Press, New York (2009)

22. Wulf, W.A., McKee, S.A.: Hitting the memory wall. ACM SIGARCH Comput.
Archit. News 23(1), 20–24 (1995)


	The DCB-Tree: A Space-Efficient Delta Coded Cache Conscious B-Tree
	1 Introduction
	2 Related Work
	3 DCB-Tree
	3.1 Two Stage Node Layout
	3.2 Bucket Structure
	3.3 Pointer Encoding and Memory Layout
	3.4 Algorithms

	4 Evaluation
	4.1 Benchmark Environment
	4.2 Evaluated Data Structures
	4.3 Datasets
	4.4 Memory Consumption
	4.5 Runtime Performance

	5 Conclusion and Future Work
	References


