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Preface

Over the last 30 years, memory prices have been dropping by a factor of 10 every
5 years. The number of I/O operations per second (IOPS) in DRAM is far greater than
other storage media such as hard disks and SSDs. DRAM is readily available in the
market at better price point in comparison to DRAM-alternatives. These trends make
DRAM a better storage media for latency-sensitive data management applications.
For example, mobile applications require low-latency responses to user requests.
The “hot set” of large transactional workloads fit comfortably in memory. Many large-
scale web applications such as Facebook and Amazon manage most of their active data
in main memory. With the emergence of such a diverse pool of latency-sensitive
applications coupled with dropping DRAM prices, it is timely to explore main-memory
optimized data management platforms.

In addition, almost all major database vendors offer (or plan to offer) main-memory
optimized database solutions. Examples include solidDB from IBM, Hekaton from
Microsoft, TimesTen and Exalytics from Oracle, HANA from SAP, and startups such
as MemSQL and VoltDB. Such interest from most major vendors clearly shows the
emerging trend and the need for further research in this direction.

We organized the In-Memory Data Management and Analytics workshop (IMDM)
to bring together researchers and practitioners interested in the proliferation of
in-memory data management and analytics infrastructures. The workshop is a forum
to present research challenges, novel ideas, and methodologies that can improve
in-memory (main memory) data management and analytics. These proceedings contain
papers from both the 2013 and 2014 workshops colocated with VLDB in Trento, Italy
and Hangzhou, China, respectively. Both workshops were well attended and sparked
interesting technical discussions spanning themes from main-memory graph analytics
platforms to main-memory OLTP applications.

All papers in these proceedings were peer reviewed by an expert Program Com-
mittee comprised of experts from both industry and academia. We would like to thank
these committee members as well as the authors for contributing high-quality work.

September 2014 Arun Jagatheesan
Justin Levandoski
Thomas Neumann

Andrew Pavlo
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Massively Parallel NUMA-Aware Hash Joins

Harald Lang, Viktor Leis(B), Martina-Cezara Albutiu,
Thomas Neumann, and Alfons Kemper

Technische Universität München, Munich, Germany
{harald.lang,viktor.leis,martina-cezara.albutiu,

thomas.neumann,alfons.kemper}@in.tum.de

Abstract. Driven by the two main hardware trends increasing main
memory and massively parallel multi-core processing in the past few
years, there has been much research effort in parallelizing well-known
join algorithms. However, the non-uniform memory access (NUMA) of
these architectures to main memory has only gained limited attention
in the design of these algorithms. We study recent proposals of main
memory hash join implementations and identify their major performance
problems on NUMA architectures. We then develop a NUMA-aware
hash join for massively parallel environments, and show how the spe-
cific implementation details affect the performance on a NUMA system.
Our experimental evaluation shows that a carefully engineered hash join
implementation outperforms previous high performance hash joins by a
factor of more than two, resulting in an unprecedented throughput of
3/4 billion join argument quintuples per second.

1 Introduction

The recent developments of hardware providing huge main memory capacities
and a large number of cores led to the emergence of main memory database
systems and a high research effort in the context of parallel database operators.
In particular, the probably most important operator, the equi-join, has been
investigated. Blanas et al. [1] and Kim et al. [2] presented very high performing
implementations of hash join operators.

So far, those algorithms only considered hardware environments with uniform
access latency and bandwidth over the complete main memory. With the advent
of architectures which scale main memory via non-uniform memory access, the
need for NUMA-aware algorithms arises. While in [3] we redesigned the classic
sort/merge join for multi-core NUMA machines, we now concentrate on redesign-
ing the other classic join method, the hash join.

In this paper we present our approach of a NUMA-aware hash join. We opti-
mized parallel hash table construction via a lock-free synchronization mechanism
based on optimistic validation instead of a costly pessimistic locking/latching, as
illustrated in Fig. 1. Also, we devised a NUMA-optimized storage layout for the
hash table in order to effectively utilize the aggregated memory bandwidth of all
NUMA nodes. In addition, we engineered the hash table such that (unavoidable)

c© Springer International Publishing Switzerland 2015
A. Jagatheesan et al. (Eds.): IMDM 2013/2014, LNCS 8921, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-13960-9 1



4 H. Lang et al.

Fig. 1. Pessimistic vs. optimistic write access to a hash table

collisions are locally consolidated, i.e., within the same cache line. These improve-
ments resulted in a performance gain of an order of magnitude compared to the
recently published multi-core hash join of Blanas et al. [1]. Meanwhile Balkesen
et al. [4] also studied the results of [1] and published hardware optimized re-
implementations of those algorithms [5] which also far outperform the previous
ones. Although, they focused their research on multi-core CPU architectures
with uniform memory access, their source code contains rudimentary NUMA
support which improves performance by a factor of 4 on our NUMA machine.

Throughout the paper we refer to the hash join algorithms as described in [1]:

1. No partitioning join: A simple algorithm without a partitioning phase that
creates a single shared hash table during the build phase.

2. Shared partitioning join: Both input relations are partitioned. Thereby, the
target partitions’ write buffers are shared among all threads.

3. Independent partitioning join: All threads perform the partitioning phase
independently from each other. They first locally create parts of the tar-
get partitions which are linked together after all threads have finished their
(independent) work.

4. Radix partitioning join: Both input relations are radix-partitioned in par-
allel. The partitioning is done in multiple passes by applying the algorithm
recursively. The algorithm was originally proposed by Manegold et al. [6] and
further revised in [2].

We started to work with the original code provided by Blanas et al. on a
system with uniform memory access, on which we were able to reproduce the
published results. By contrast, when executing the code on our NUMA system
(which is described in Sect. 4) we noticed a decreased performance with all algo-
rithms. We identified three major problems of the algorithms.

1. Fine-grained locking while building the hash table reduces parallelism,
which is not just NUMA related, but becomes more critical with an increasing
number of concurrently running threads.
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(a) NO (b) Shared (c) Independent (d) Radix

Fig. 2. Performance of the algorithms presented in [1] on a NUMA system, when 8
threads are restricted to 1 memory node, or distributed over 4 nodes

2. Extensive remote memory accesses to shared data structures (e.g., the
shared partitions’ write buffers of the radix partitioning join) which reside
within a single NUMA node. This results in link contention and thus decreased
performance.

3. Accessing multiple memory locations within a tight loop increases
latencies and creates additional overhead by the cache coherence protocol
which is more costly on NUMA systems.

In the following section we examine the effects on the given implementations
that are mostly caused by non-uniform memory accesses. In Sect. 3 we focus on
how to implement a hash join operator in a NUMA-aware way. Here we address
the main challenges for hash join algorithms on modern architectures: Reduce
synchronization costs, reduce random access patterns to memory, and optimize
for limited memory bandwidth. The results of the experimental evaluations are
discussed in Sect. 4.

2 NUMA Effects

To make the NUMA effects visible (and the changes comparable) we re-ran the
original experiments with the uniform data set in two different configurations.
First we employed eight threads on eight physical cores within a single NUMA
node, thereby simulating a uniform-memory-access machine. Then, we distrib-
uted the threads equally over all 4 nodes, i.e., 2 cores per node.

Figure 2 shows the performance1 of the individual hash join implementations.
It gives an overview how the join phases are influenced by NUMA effects. The
performance of all implementations decreases. Only the shared-partitioning and
the independent-partitioning algorithms show a slightly better performance dur-
ing the probe phase. The no-partitioning and shared-partitioning algorithms are
1 Throughout the paper we refer to M as 220 and to the overall performance as (|R|+
|S|)/runtime.
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most affected at the build and the partition phase, respectively. In both phases
they extensively write to shared data structures. The build performance drops
by 85 % and the performance of the partitioning phase by 62 %. The overall
performance decreases by 25 % in average in the given scenario.

In contrast to the original results we can see that the build performance is
always slower than the probe performance, which we provoked by shuffling the
input. However, due to synchronization overhead it is reasonable that building
a hash table is slower than probing it. Therefore, the build phase becomes more
important, especially when the ratio |R|/|S| becomes greater. This is why in the
following section we pay special attention to the build phase.

3 NUMA-Aware Hash Join

3.1 Synchronization

Synchronization in a hash join with a single shared hash table is intensively
needed during the build phase where the build input is read and the tuples are
copied to their corresponding hash buckets. Here it is guaranteed that the hash
table will not be probed until the build phase has been finished. Additionally,
it will no longer be modified after the build phase has been finished. Therefore
no synchronization is necessary during the later probe phase. Another crucial
part are the write buffers which are accessed concurrently. Especially the shared
partitioning algorithm makes heavy use of locks during the partitioning phase
where all threads write concurrently to the same buffers. This causes higher lock
contention with an increasing number of threads. In this paper we only focus on
the synchronization aspects of hash tables.

There are many ways to implement a thread safe hash table. One fundamental
design decision is the synchronization mechanism. The implementation provided
by Blanas et al. [1] uses a very concise spin-lock which only reserves a single
byte in memory. Each lock protects a single hash bucket, whereas each bucket
can store two tuples. In the given implementation, all locks are stored within
an additional contiguous array. Unfortunately, this design decision has some
drawbacks that affect the build phase. For every write access to the hash table,
we have to access (at least) two different cache lines. The one that holds the lock
is accessed twice: Once for acquiring and once for releasing the lock after the
bucket has been modified. This greatly increases memory latencies and has been
identified as one of the three major bottlenecks (listed in Sect. 1). We can reduce
the negative effects by modifying the buckets’ data structure so that each bucket
additionally holds its corresponding lock. Balkesen et al. [4] also identified this
as a bottleneck on systems with uniform memory access. Especially on NUMA
systems, we have to deal with higher latencies and we therefore expect an even
higher impact on the build performance. In the later experimental evaluation
(Sect. 4) we show how lock placement affects the performance of our own hash
table. We also consider the case where a single lock is responsible for multiple
hash buckets.
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For our hash table we use an optimistic, lock-free approach instead of locks.
The design was motivated by the observation that hash tables for a join are
insert-only during the build phase, then lookup-only during the probe phase,
but updates and deletions are not performed. The buckets are implemented as
triples (h, k, v), where h contains the hash value of the key k and v holds the value
(payload). In all our experiments we (realistically for large databases) use 8 bytes
of memory for each component. We use h as a marker which signals whether a
bucket is empty or already in use. During the build phase, the threads first check
if the marker is set. If the corresponding bucket is empty they exchange the value
zero by the hash value within an atomic Compare-and-Swap operation (CAS).
If meanwhile the marker has already been set by another thread, the atomic
operation fails and we linearly probe, i.e., try again on the next write position.
Once the CAS operation succeeds the corresponding thread implicitly has exclu-
sive write access to the corresponding bucket and no further synchronization is
needed for storing the tuple. We only have to establish a barrier between the
two phases to ensure that all key-value pairs have been written before we start
probing the hash table.

3.2 Memory Allocation

In this section we describe the effects of local and remote memory access as well
as what programmers have to consider when allocating and initializing main
memory. On NUMA systems we can directly access all available memory. How-
ever, accessing local memory is cheaper than accessing remote memory. The
costs depend on how the NUMA partitions are connected and therefore this is
hardware dependent. In our system the four nodes are fully connected though
we always need to pass exactly one QPI link (hop) when accessing remote mem-
ory. By default the system allocates memory within the memory node that the
requesting thread is running on. This behavior can be changed by using the
numactl tool. In particular, the command line argument -interleave=all tells
the operating system to interleave memory allocations among all available nodes,
an option which non-NUMA aware programs may benefit from. It might be
an indicator for optimization potential if a program runs faster on interleaved
memory, whereas NUMA-aware programs may suffer due to loss of control over
memory allocations. We show these effects in our experiments.

For data intensive algorithms we have to consider where to place the data the
algorithm operates on. In C++ memory is usually allocated dynamically using the
new operator or the malloc function. This simply reserves memory but as long
as the newly allocated memory has not been initialized (e.g., by using memset)
the memory is not pinned to a specific NUMA-node. The first access places the
destination page within a specific node. If the size of the requested memory
exceeds the page size, the memory will then only be partially pinned and does
not affect the remaining untouched space. A single contiguous memory area can
therefore be distributed among all nodes as long as the number of nodes is less
than or equal to the number of memory pages. This can be exposed to keep
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the implementations simple by just loosing a reasonable amount of control and
granularity with respect to data placement.

For evaluation we started with a naive implementation which we improved
step-by-step. Our goal was to develop a hash join implementation that performs
best when using non-interleaved memory because running a whole DBMS process
in interleaved mode might not be an option in real world scenarios. We also
avoided to add additional parameters to the hash join, and we do not want
to constrain our implementation to a particular hardware layout. We consider
the general case that the input is equally distributed across the nodes and the
corresponding memory location is known to the “nearest” worker thread. We
will show that interleaved memory increases performance of non-NUMA-aware
implementations, but we will also show in the following section that our hash
join performs even better when we take care about the memory allocations by
ourselves than leaving it to the operating system.

3.3 Hash Table Design

Hash tables basically use one of two strategies for collision handling: chaining
or open addressing. With chaining, the hash table itself contains only pointers,
buckets are allocated on demand and linked to the hash table (or previous buck-
ets). With open addressing, collisions are handled within the hash table itself.
That is, when the bucket that a key hashes to is full, more buckets are checked
according to a certain probe sequence (e.g., linear probing, quadratic probing,
etc.). For open addressing we focus on linear probing as this provides higher
cache locality than other probe sequences, because a collision during insert as
well as during probing likely hits the same cache line. Both strategies have their
strengths. While chaining provides better performance during the build phase,
linear probing has higher throughput during the probe phase. For real world
scenarios the build input is typically (much) smaller than the probe input. We
therefore chose to employ linear probing for our hash join implementation.

It is well known that the performance of open addressing degenerates if the
hash table becomes too full. In practice, this can be a problem because the exact
input size is generally not known, and query optimization estimates can be wrong
by orders of magnitude. Therefore, we propose to materialize the build input
before starting the build phase, then the hash table can be constructed with the
correct size. Since the materialization consists of sequential writes whereas hash
table construction has a random access pattern, this only about 10 % overhead
to the build phase. Note that our experiments do not include this materialization
phase.

3.4 Implementation Details

In Listing 1.1 we sketch the insert function of our hash table. In line 2 we compute
the hash value of the given key (more details on hash functions in Sect. 4.3) and
in line 3 the bucket number is computed by masking all bits of the hash value
to zero that would exceed the hash table’s size. The size of the hash table is
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always a power of two and the number of buckets is set to at least twice the
size of the build input. Thus, for n input tuples we get the number of buckets
b = 2�log2(n)�+1 and the mask = b−1. The relatively generous space consumption
for the hash table is more than compensated by the fact that the probe input,
which is often orders of magnitude larger than the build input, can be kept
in-place. The radix join, in contrast, partitions both input relations.

Listing 1.1. Insert function

1 insertAtomic(uint64_t key, uint64_t value) {

2 uint64_t hash = hashFunction(key);

3 uint64_t pos = hash & mask;

4 while (table[pos].h != 0 || (! CAS(&table[pos].h, 0, hash))) {

5 pos = (pos + 1) & mask;

6 }

7 table[pos].k = key;

8 table[pos].v = value;

9 }

Within the condition of the while loop (line 4) we first check, if the bucket
is empty. If this is the case the atomic CAS function is called as described in
Sect. 3.1. If either the hash value does not equal zero2 or the CAS function
returns false, the bucket number (write position) is incremented and we try
again. Once the control flow reaches line 7 the current thread has gained write
access to the bucket at position pos where the key-value pair is stored.

The notable aspect here is that there is no corresponding operation for releas-
ing an acquired lock. Usually a thread acquires a lock, modifies the bucket,
and finally gives up the lock, which establishes a happened-before relationship
between modification and unlocking. In our implementation the CPU is free to
defer the modification or to execute them in an out of order manner because
we do not have any data dependencies until the probe phase starts. Further,
we optimized for sequential memory accesses in case of collisions by applying
the open addressing scheme with a linear probing sequence for collision resolu-
tion. This strategy leads to a well predictable access pattern which the hardware
prefetcher can exploit.

4 Evaluation

We conducted our experiments on a Linux server (kernel 3.5.0) with 1 TB main
memory and 4 Intel Xeon X7560 CPUs clocked at 2.27 GHz with 8 physical
cores (16 hardware contexts) each, resulting in a total of 32 cores and, due
to hyperthreading, 64 hardware contexts. Unless stated otherwise we use all
available hardware contexts.
2 hashFunction sets the most significant bit of the hash value to 1 and thus ensures

no hash value equals 0. This limits the hash domain to 263, but does not increase
the number of collisions, since the least significant bits determine the hash table
position.
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Fig. 3. Build performance using different synchronization mechanisms

Fig. 4. Effects of lock-striping on the build phase

4.1 Synchronization

In our first experiment we measure the effect of different synchronization mecha-
nisms on build performance. To reduce measurement variations we increased the
cardinality of the build input R to 128 M tuples. Again we used a uniform data
set with unique 64 bit join keys. The results are shown in Fig. 3. We compared
the original spin-lock implementation with the POSIX-threads mutex and our
lock-free implementation. While the spin-lock and the pthreads implementation
offer almost the same performance, our lock-free implementation outperforms
them by factor 2.3. We can also see a performance improvement of 1.7 x when
placing the lock within the hash bucket instead of placing all locks in a separate
(contiguous) memory area. The hatched bar (labeled “No Sync”) represents the
theoretical value for the case where synchronization costs would be zero.

In the second experiment we reduce the number of locks that are synchro-
nizing write accesses to the hash buckets. We start with one lock per bucket and
successively halve the number of locks in every run. Therefore a lock becomes
responsible for multiple hash buckets (“lock striping”). The right-hand side of
Fig. 4 shows that too few locks result in bad performance because of too many
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lock conflicts. The best performance is achieved when the number of locks is
such that all locks fit into cache, but collisions are unlikely.

The experiments confirmed that an efficient lock implementation is crucial for
the build phase. It also showed that protecting multiple buckets with a single lock
indeed can have positive effects on the performance but cannot compete with a
lock-free implementation. Especially the first two data points of the “Spin-Lock
in buckets” curve show that on NUMA architectures writing to two different
cache lines within a tight loop can cause crucial performance differences.

4.2 Memory Allocation

For the experimental evaluation of the different memory allocation strategies
we consider the build and the probe phase separately. We focus on how they
are affected by those strategies, but we also plot the overall performance for
completeness. To get good visual results we set the cardinality of both relations
to the same value (128 M). During all experiments we only count and do not
materialize the output tuples. We use the following four setups:

(1) non-NUMA-aware: The input data and the hash table are stored on a
single NUMA node.

(2) interleaved: All memory pages are interleaved round-robin between the
NUMA nodes.

(3) NUMA-aware/dynamic: The input relations are thread-local whereas
the hash tables’ memory pages at initialized dynamically during the build
phase3.

(4) NUMA-aware: The input data is thread-local and the hash table is (man-
ually) interleaved across all NUMA nodes.

Figure 5 shows the results of all four experiments. We measured the perfor-
mance of the build and probe phase as well as the overall performance in M
tuples per second. The distributed memory allocation of the hash table in (4) is
done as follows: We divide the size of the hash table into i equally sized chunks
of size 2 MB and let them be initialized by all threads in parallel where the ith

chunk is “memsetted” by thread i mod #threads.
We can see an improvement by a factor of more than three just by using

interleaved memory, because in the non-NUMA-aware setup the memory band-
width of one NUMA node is saturated and thus becomes the bottleneck. When
comparing setup (3) with (2) a decreased performance during the build phase
can be seen which is caused by the dynamic allocation of the hash tables’ mem-
ory. Finally the 4th setup shows the best performance. Our own implementation,
that simulates an interleaved memory only for the hash tables’ memory achieves
(approximately) the same build performance as in the second setup, but we can
increase the performance of the probe phase by additional 188 mtps, because we
3 When a page is first written to, it is assigned to the memory node of the writing

thread, which usually results in pseudo-random assignment.
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Fig. 5. Experimental results of different data placement/memory allocation strategies

Table 1. Performance comparisons NO vs. Radix (key/foreign-key join)

|R|/|S| our NO Radix [5]

16 M/16 M 503 mtps 147 mtps

16 M/160 M 742 mtps 346 mtps

32 M/32 M 505 mtps 142 mtps

32 M/320 M 740 mtps 280 mtps

1 G/1 G 493 mtps -

1 G/10 G 682 mtps -

can read the probe input from interleaved memory. It is a reasonable assump-
tion that in practice the relations are (equally) distributed across all memory
partitions and we only need to assign the nearest input to each thread.

Table 1 shows comparisons with the Radix join implementation of [5]. Unfor-
tunately, this implementation crashed for extremely large workloads such as
1 G/10 G (176 GB of data). For comparison, the TPC-H record holder Vector-
Wise achieves 50 mtps for such large joins [3].

4.3 Hash Functions

In accordance to previous publications, and in order to obtain comparable per-
formance results, we used the modulo hash function (implemented using a logical
AND, as discussed in Sect. 3.4) in all experiments. In this section we study the
influence of hash functions on join performance. On the one hand, modulo hash-
ing is extremely fast and has good join performance in micro benchmarks. On
the other hand, it is quite easy to construct workloads that cause dramatic per-
formance degradation. For example, instead of using consecutive integers, we left
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gaps between the join keys so that only every tenth value of the key space was
used. As a consequence, we measured a 84 % decrease performance for the NO
implementation of [5]. Whereas our implementation is affected by power-of-two
gaps, and slows down by 63 % when we use a join key distance of 16.

We evaluated a small number of hash functions (Murmur64A, CRC, and
Fibonacci hashing) with our hash join implementation. It turned out that the
Murmur hash always offers (almost) the same performance independent from
the tested workload. At the same time it is the most expensive hash function,
which reduces the overall join performance by 36 % (over modulo hashing with
consecutive keys). The CRC function is available as a hardware instruction on
modern CPUs with the SSE 4.2 instruction set and therefore reduces the perfor-
mance by less than 1 % in most cases. However, it is less robust than Murmur,
for some workloads it caused significantly more collisions than Murmur. The
Fibonacci hash function, which consists of a multiplication with a magic con-
stant, offered almost the same performance as modulo, but unfortunately had
the same weaknesses.

Real-world hashing naturally incurs higher cost, but does not affect all algo-
rithms equally. Employing a costly hash function affects the Radix join more
than the NO join, because the hash function is evaluated multiple times for each
tuple (during each partitioning phase, and in the final probe phase). Finally,
using more realistic hash functions makes the results more comparable to algo-
rithms that do not use hashing like sort/merge joins.

5 Related Work

Parallel join processing has been investigated extensively, in particular since the
advent of main memory databases. Thereby, most approaches are based on the
radix join, which was pioneered by the MonetDB group [6,7]. This join method
improves cache locality by continuously partitioning into ever smaller chunks
that ultimately fit into the cache. Ailamaki et al. [8] improved cache locality
during the probing phase of the hash join using software controlled prefetching.
Our hash join virtually always incurs only one cache miss per lookup or insert,
due open addressing.

An Intel/Oracle team [2] adapted hash join to multi-core CPUs. They also
investigated sort-merge join and hypothesized that due to architectural trends
of wider SIMD, more cores, and smaller memory bandwidth per core sort-merge
join is likely to outperform hash join on upcoming chip multiprocessors. Blanas
et al. [1,9] and Balkesen et al. [4,5] presented even better performance results
for their parallel hash join variants. However, these algorithms are not optimized
for NUMA environments.

Albutiu et al. [3] presented a NUMA-aware design of sort-based join algo-
rithms, which was improved by Li et al. [10] to avoid cross-traffic.
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6 Summary and Conclusions

Modern hardware architectures with huge main memory capacities and increas-
ing number of cores have led to the development of highly parallel in-memory
hash join algorithms [1,2] for main memory database systems. However, prior
work did not yet consider architectures with non-uniform memory access. We
identified the challenges that NUMA poses to hash join algorithms. Based on our
findings we developed our own algorithm which uses optimistic validation instead
of costly pessimistic locking. Our algorithm distributes data carefully in order
to provide balanced bandwidth on the inter-partition links. At the same time,
no architecture-specific knowledge is required, i.e., the algorithm is oblivious to
the specific NUMA topology. Our hash join outperforms previous parallel hash
join implementations on a NUMA system. We further found that our highly par-
allel shared hash table implementation performs better than radix partitioned
variants because these incur a high overhead for partitioning. This is the case
although hash joins inherently do not exhibit cache locality as they are insert-
ing and probing the hash table randomly. But at least we could avoid additional
cache misses due to collisions by employing linear probing. We therefore conclude
that cache effects are less decisive for multi-core hash joins. On large setups we
achieved a join performance of more than 740 M tuples per second, which is
more than 2 x compared to the best known radix join published in [5] and one
order of magnitude faster than the best-in-breed commercial database system
VectorWise.
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Abstract. Commodity hardware is available in configurations with huge
amounts of main memory and it is viable to keep large databases of
enterprises in the RAM of one or a few machines. Additionally, a reuni-
fication of transactional and analytical systems has been proposed to
enable operational reporting on the most recent data. In-memory col-
umn stores appeared in academia and industry as a solution to han-
dle the resulting mixed workload of transactional and analytical queries.
Therein queries are processed by scanning whole columns to evaluate the
predicates on non-key columns. This leads to a waste of memory band-
width and reduced throughput.

In this work we present the Paged Index, an index tailored towards
dictionary-encoded columns. The indexing concept builds upon the avail-
ability of the indexed data at high speeds, a situation that is unique to
in-memory databases. By reducing the search scope we achieve up to
two orders of magnitude of performance increase for the column scan
operation during query runtime.

1 Introduction

Enterprise systems often process a read-mostly workload [5] and consequently
in-memory columns stores tailored towards this workload hold the majority of
table data in a read-optimized partition [9]. To apply predicates, this partition
is scanned in its compressed form through the intensive use of the SIMD units
of modern CPUs. Although this operation is fast when compared to disk-based
systems, its performance can be increased if we decrease the search scope and
thereby the amount of data that needs to be streamed from main memory to the
CPU. The resulting savings of memory bandwidth lead to a better utilization
of this scarce resource, which allows to process more queries with equally sized
machines.

2 Background and Prior Work

In this section we briefly summarize our prototypical database system, the used
compression technique and refer to prior work.

c© Springer International Publishing Switzerland 2015
A. Jagatheesan et al. (Eds.): IMDM 2013/2014, LNCS 8921, pp. 15–27, 2015.
DOI: 10.1007/978-3-319-13960-9 2
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2.1 Column Stores with a Read-Optimized Partition

Column stores are in the focus of research [10–12], because their performance
characteristics enable superior analytical (OLAP) performance, while keeping
the data in-memory still allows a sufficient transactional performance for many
usecases. Consequently, Plattner [6] proposed, that in-memory column stores
can handle a mixed workload of transactional (OLTP) and analytical queries
and become the single source of truth in future enterprise applications.

Dictionary Compressed Column. Our prototypical implementation stores
all table data vertically partitioned in dictionary compressed columns. The val-
ues are represented by bit-packed value-ids, which reference the actual, uncom-
pressed values within a sorted dictionary by their offset. Dictionary compressed
columns can be found in HYRISE [3], SanssouciDB [7] and SAP HANA [9].

Enterprise Data. As shown by Krueger et al. [5], enterprise data consists of
many sparse columns. The domain of values is often limited, because there is
a limited number of underlying options in the business processes. For example,
only a relatively small number of customers, appears in the typically large order
table. Additionally, data within some columns often correlates in regard to its
position. Consider a column storing the promised delivery date in the orders
table. Although the dates will not be ordered, because different products will
have different delivery time spans, the data will follow a general trend. In this
work, we want to focus on columns that exhibit such properties.

Related Work. Important work on main-memory indices has been done by
Rao and Ross [8], but their indexing method applies to the value-id lookup in
sorted dictionaries rather then the position lookup that we will focus on in this
paper. Since they focus on Decision Support Systems (DSS), they claim that an
index rebuild after every bulk-load is viable. In this paper we assume a mixed-
workload system, where the merge-performance must be kept as high as possible,
hence we reuse the old index to build an updated index.

Idreos et al. [4] present indices for in-memory column stores that are build
during query execution, and adapt to changing workloads, however the inte-
gration of the indexing schemes into the frequent merge process of the write-
optimized and read-only store is missing.

Graefe [2] evaluates a related indexing techniques, zone indexes with bit
vector filters, in the context of row-oriented data warehouses.

In previous work, we presented the Group-Key Index, which implements an
inverted index on the basis of the bit-packed value-id and showed that this index
allows very fast lookups while introducing acceptable overhead to the partition-
combining process [1].
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Fig. 1. Example for a strongly clustered column, showing delivery Dates from a pro-
ductive ERP system. The values follow a general trend, but are not strictly ordered.
The range for value 120 is given as an example.

2.2 Paper Structure and Contribution

In the following section we introduce our dictionary-compressed, bit-packed
column storage scheme and the symbols that are used throughout the paper
(Table 1). In Sect. 4 the Paged Index is presented. We explain its structure, give
the memory traffic for a single lookup, and show the index rebuild algorithm.
A size overview for exemplary configurations and the lookup algorithm is given as
well. Afterwards, in Sect. 5, the column merge algorithm is shown, and extended
in Sect. 6 to enable the index maintenance during the column merge process. In
Sect. 7, we present the performance results for two index configurations. Findings
and contributions are summed up in Sect. 9.

3 Bit-Packed Column Scan

We define the attribute vector Vj
M to be a list of value-ids, referencing offsets in

the sorted dictionary Uj
M for column j. Values within Vj

M are bit-packed with
the minimal amount of bits necessary to reference the entries in Uj

M, we refer
to the amount of bits with Ej

C = �log2(|Uj
M|)� bits.

Consequently, to apply a predicate on a single column, the predicate condi-
tions have to be translated into value-ids by performing a binary search on the
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Table 1. Symbol definition. Entities annotated with ′ represent the merged (updated)
entry.

Description Unit Symbol

Number of columns in the table - NC

Number of tuples in the main/delta partition - NM ,ND

Number of tuples in the updated table - N′
M

For a given column j; j ∈ [1 . . .NC ]:

Main/delta partition of the jth column - Mj ,Dj

Merged column - M′j

Attribute vector of the jth column - Vj
M,Vj

D

Updated main attribute vector - V′j
M

Sorted dictionary of Mj/Dj - Uj
M,Uj

D

Updated main dictionary - U′j
M

CSB+ Tree Index on Dj - Tj

Compressed Value-Length bits Ej
C

New Compressed Value-Length bits E′j
C

Length of Address in Main Partition bits Aj

Fraction of unique values in Mj/Dj - λj
M,λj

D

Auxiliary structure for Mj / Dj - Xj
M,Xj

D

Paged Index - IjM

Paged Index Pagesize - Pj

Number of Pages - g

Memory Traffic bytes MT

main dictionary Uj
M and a scan of the main attribute vector Vj

M. Of importance
is here the scanning of Vj

M, which involves the read of MTCS bytes from main
memory, as defined in Eq. 1.

MTCS = NM · E
j
C

8
= NM · �log2(|Uj

M|)�
8

bytes (1)

Inserts and updates to the compressed column are handled by a delta par-
tition, thereby avoiding to re-encode the column for each insert [5]. The delta
partition is stored uncompressed and extended by a CSB+ tree index to allow
for fast lookups. If the delta partition reaches a certain threshold it is merged
with the main partition. This process and the extension to update the Paged
Index will be explained in detail in Sect. 5.
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4 Paged Index

While indices in classic databases are well studied and researched, the increase
of access speed to data for in-memory databases allows to rethink indexing tech-
niques. Now, that the data in columnar in-memory stores can be accessed at
the speed of RAM, it becomes possible to scan the complete column to evalu-
ate queries - an operation that is prohibitively slow on disk for huge datasets
(Fig. 2).

We propose the Paged Index, which benefits from clustered value distribu-
tions and focuses on reducing the memory traffic for the scan operation, while
adding as little overhead as possible to the merge process for index maintenance.
Additionally the index uses only minimal index storage space and is built for a
mixed workload. Figure 1 shows an example of real ERP customer data, outlin-
ing delivery dates from a productive system. Clearly, the data follows a strong
trend and consecutive values are only from a small value domain with a high
spatial locality. Consequently, the idea behind a Paged Index is to partition a
column into pages and to store bitmap indices for each value, reflecting in which
pages the respective value occurs in. Therefore, scan operators only have to con-
sider pages that are actually containing the value, which can drastically reduce
the search space.

4.1 Index Structure

To use the Paged Index, the column is logically split into multiple equally sized
pages. The last page is allowed to be of smaller size. Let the pagesize be Pj , then

Fig. 2. An example of the Paged Index for Pj = 3
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Mj contains g = �NM

Pj � pages. For each of the encoded values in the dictionary
Uj

M now a bitvector Bj
v is created, with v being the value-id of the encoded value,

equal to its offset in Uj
M. The bitvector contains exactly one bit for each page.

Bj
v = (b0, b1...bg) (2)

Each bit in Bj
v marks whether value-id v can be found within the subrange

represented by that page. To determine the actual tuple-id of the matching
values, the according subrange has to be scanned. If bx is set, one or more
occurrences of the value-id can be found in the attribute vector between offset
x∗Pj (inclusive) and (x+1)∗Pj (exclusive) as represented by Eq. 3. The Paged
Index is the set of bitvectors for all value-ids, as defined in Eq. 4.

bx ∈ Bj
v : bx = 1 ⇔ v ∈ Vj

M[x · Pj ...((x + 1) · Pj − 1)] (3)

IM =
[
Bj

0,B
j
1, ...,B

j

|Uj
M|−1

]
(4)

4.2 Index Size Estimate

The Paged Index is stored in one consecutive bitvector. For each distinct value
and each page a bit is stored. The size in bits is given by Eq. 5. In Table 2 we
show the resulting index sizes for some exemplary configurations.

s(IjM ) = |Uj
M| ∗ �NM

Pj
� bits (5)

Table 2. Example sizes of the Paged Index

NM |Uj
M| Pj s(IjM ) s(Vj

M)

100,000 10 4096 32 Byte 49 K

100,000 10 65536 3 Byte 49 K

100,000 100,000 4096 310 K 208 K

100,000 100,000 65536 31 K 208 K

1,000,000,000 10 4096 298 K 477 M

1,000,000,000 10 65536 19 K 477 M

1,000,000,000 100,000 4096 3 G 2 G

1,000,000,000 100,000 65536 182 M 2 G
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4.3 Index Enabled Lookups

If no index is present to determine all tuple-ids for a single value-id, the attribute
vector Vj

M is scanned from the beginning to the end and each compressed value-
id is compared against the requested value-id. The resulting tuple-ids, which
equal to the position in Vj

M, are written to a dynamically allocated results
vector. With the help of the Paged Index the scan costs can be minimized by
evaluating only relevant parts of Vj

M.

Algorithm 1. Scanning the Column with a Paged Index
1: procedure PagedIndexScan (valueid)

2: bitsPerRun =
|Ij

M
|

|Uj
M

|
3: results = vector < uint >
4: for page = 0; page ≤ bitsPerRun; + + page do
5: if IjM [bitsPerRun ∗ valueid + page] == 1 then
6: startOffset = page ∗ Pj

7: endOffset = (page + 1) ∗ Pj

8: for position = startOffset; position < endOffset; + + position do
9: if Vj

M[position] == valueid then
10: results.pushback(position)
11: end if
12: end for
13: end if
14: end for
15: return results
16: end procedure

Our evaluated implementation additionally decompresses multiple bit-packed
values at once for maximum performance. Algorithm 1 shows the simplified
implementation. The minimum memory traffic of an index-assisted partial scan
of the attribute vector for a single value-id is given by Eq. 7.

minPagesPerDistinctV alue =

⌈
NM

Pj ∗ |Uj
M|

⌉
(6)

MTPagedIndex =
⌈

NM

Pj · 8

⌉
+

⌈
NM

Pj · |Uj
M|

⌉
· P

j · Ej
C

8
bytes (7)

4.4 Rebuild of the Index

To extent an existing compressed column with an index, the index has to be
built. Additionally, a straightforward approach to enable index maintenance for
the merge of the main and delta partition is to rebuild the index after a new,
merged main partition has been created. Since all operations are in-memory,
Rao et al. [8] claim that for bulk-operations an index rebuild is a viable choice.
We take the rebuild as a baseline for further improvements.
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5 Column Merge

Our in-memory column store maintains two partitions for each column: a read-
optimized, compressed main partition and a writable delta partition. To allow
for fast queries on the delta partition, it has to be kept small. To achieve this,
the delta partition is merged with the main partition after its size has increased
beyond a certain threshold. As explained in [5], the performance of this merge
process is paramount to the overall sustainable insert performance. The inputs to
the algorithm consists of the compressed main partition and the uncompressed
delta partition with an CSB+ tree index [8]. The output is a new dictionary
encoded main partition.

The algorithm is the basis for our index-aware merge process that will be
presented in the next section.

We perform the merge using the following two steps:

1. Merge Main Dictionary and Delta Index, Create value-ids for Dj.
We simultaneously iterate over Uj

M and the leafs of Tj and create the new
sorted dictionary U′j

M and the auxiliary structure Xj
M. Because Tj contains

a list of all positions for each distinct value in the delta partition of the
column, we can set all positions in the value-id vector Vj

D. This leads to
non-continuous access to Vj

D. Note that the value-ids in Vj
D refer to the new

dictionary U′j
M.

2. Create New Attribute Vector. This step consists of creating the new
main attribute vector V′j

M by concatenating the main and delta partition’s
attribute vectors Vj

M and Vj
D. The compressed values in Vj

M are updated
by a lookup in the auxiliary structure Xj

M as shown in Eq. 8. Values from
Vj

D are copied without translation to V′j
M. The new attribute vector V′j

M will
contain the correct offsets for the corresponding values in U′j

M, by using E′j
C

bits-per-value, calculated as shown in Eq. 9.

V′j
M[i] = Vj

M[i] + Xj
M[Vj

M[i]] ∀i ∈ [0...NM − 1] (8)

Algorithm 2. Rebuild of Paged Index
1: procedure Rebuild Paged Index

2: bitsPerRun = NM+Pj−1

Pj

3: IjM [0...(bitsPerRun ∗ |Uj
M|)] = 0

4: for pos = 0; pos ≤ NM ; + + pos do
5: valueid = Vj

M[pos]
6: run = valueid ∗ bitsPerRun
7: page = pos

Pj

8: IjM [run + page] = 1
9: end for

10: end procedure
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Note that the optimal amount of bits-per-value for the bit-packed V′j
M can

only be evaluated after the cardinality of Uj
M ∪Dj is determined. If we accept a

non-optimal compression, we can set the compressed value length to the sum of
the cardinalities of the dictionary Uj

M and the delta CSB+ tree index Tj . Since
the delta partition is expected to be much smaller than the main partition, the
difference from the optimal compression is low.

E′j
C = �log2(|Uj

M ∪ Dj |)� ≤ �log2(|Uj
M| + |Tj |)� (9)

Step 1’s complexity is determined by the size of the union of the dictionaries
and the size of the delta partition. Its complexity is O(|Uj

M ∪Uj
D|+ |Dj |). Step

2 is dependent on the length of the new attribute vector, O(NM + ND).

6 Index-Aware Column Merge

We now integrate the index rebuild into the column merge process. This allows
us to reduce the memory traffic and create a more efficient algorithm to merge
columns with a Paged Index.

Algorithm 3. Extended Dictionary Merge
1: procedure ExtendedDictionaryMerge
2: d, m, n = 0
3: g = �NM

Pj � (Number of Pages)

4: while d != |Tj | or m != |Uj
M| do

5: processM = (Uj
M[m] <= Tj [d] or d == |Tj |)

6: processD = (Tj [d] <= Uj
M[m] or m == |Uj

M|)
7: if processM then
8: U′j

M[n] ← Uj
M[m]

9: Xj
M[m] ← n − m

10: I ′
M [n ∗ g · · · n ∗ (g + 1)] = IM [m ∗ g · · · m(g + 1)]

11: m ← m + 1
12: end if
13: if processD then
14: U′j

M[n] ← Tj [d]
15: for dpos in Tj [d].positions do
16: V′j

D[dpos] = n

17: Ij′
M [n ∗ (|Vj

M
|+|Vj

D
|)

Pj +
|Vj

M
|+dpos

Pj ] = 1
18: end for
19: d ← d + 1
20: end if
21: n ← n + 1
22: end while
23: end procedure
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We extend Step 1 of the column merge process from Sect. 5 to maintain the
Paged Index. During the dictionary merge we perform additional steps for each
processed dictionary entry. The substeps are extended as follows:

1. For Dictionary Entries from the Main Partition. Calculate the begin
and end offset in IjM and the starting offset in Ij′M . Copy the range from IjM
to Ij′M . The additional bits in the run are left zero, because the value is not
present in the delta partition.

2. For CSB+ Index Entries from the Delta Partition. Calculate the posi-
tion of the run in Ij′M , read all positions from Tj , increase them by NM , and
set the according bits in Ij′M .

3. Entries found in both Partitions. Perform both steps sequentially.

Algorithm 3 shows a modified dictionary merge algorithm to maintain the
paged index during the column merge.

7 Evaluation

We evaluate our Paged Index on a clustered column. In a clustered column equal
data entries are grouped together, but the column is not necessarily sorted by
the value. Our index does perform best, if each value’s occurrences form exactly
one group, however it is not required. Outliers or multiple groups are supported
by the Paged Index.

With the help of the index the column scan is accelerated by scanning only
the pages which are known to have at least one occurrence of the desired value.

The benchmarks were performed on a two socket Intel Xeon X5650 system
with 48 GB of RAM. In Fig. 3 the CPU cycles for the column scan and two
configurations of the Paged Index are shown. We choose pagesizes of 4096 and
16384 entries as an example. The Paged Index enables an performance increase
of two orders of magnitude for columns with a medium to high amount of distinct
values through a drastic reduction of of the search scope. For smaller dictionaries,

Table 3. Example sizes of the evaluated Paged Index

NM |Uj
M| Pj s(IjM ) s(Vj

M)

3,000,000 10 4096 917 byte 1.4 M

3,000,000 10 65536 58 byte 1.4 M

3,000,000 100,000 4096 8.7 M 6.1 M

3,000,000 100,000 65536 571.0 K 6.1 M

3,000,000 1,000,000 4096 87.4 M 7.2 M

3,000,000 1,000,000 65536 5.6 M 7.2 M

3,000,000 3,000,000 4096 262.3 M 7.9 M

3,000,000 3,000,000 65536 16.7 M 7.9 M
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Fig. 3. Scan performance and index sizes in comparison

the benefit is lower. However an order of magnitude is already reached with
λj = 10−5, which corresponds to 30 distinct values in our example. For very
small dictionaries with less than 5 values, the overhead of reading the Paged
Index leads to a performance decrease. In these cases the Paged Index should
not be applied to a column. In Table 3 the index and attribute vector sizes for
some of the measured configurations are given. The Paged Index can deliver
its performance increase for columns with a medium amount of distinct values
for only little storage overhead. For the columns with a very high distinct value
count the Paged Index grows prohibitively large. Note, that the storage footprint
halves by each doubling of the pagesize. For the aforementioned delivery dates
column the Paged Index decreases the scan time for a specific value-id by a
factor 20.

8 Future Work

The current design of a bit-packed attribute vector does not allow a fixed map-
ping of the resulting sub-ranges to memory pages. In future work we want to
compare the performance benefits if a attribute vector is designed, so that the
reading of a sub-range leads to at most one transaction lookaside buffer (TLB)
miss.

Other interesting topics include the automatic determination of the best page
size, index compression and varying page sizes.

9 Conclusion

Shifted access speeds in main memory databases and special domain knowledge
in enterprise systems allow for a reevaluation of indexing concepts. With the
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original data available at the speed of main memory, indices do not need to
narrow down the search scope as far as in disk based databases. Therefore,
relatively small indices can have huge impacts, especially if they are designed
towards a specific data distribution.

In this paper, we proposed the Paged Index, which is tailored towards columns
with clustered data. As our analyses of real customer data showed, such data dis-
tributions are especially common in enterprise systems. By indexing the occur-
rence of values on a block level, the search scope for scan operations can be
reduced drastically with the use of a Paged Index. In our experimental evalua-
tion, we report speed improvements up to two orders of magnitude, while only
adding little overhead for the index maintenance and storage. Finally, we pro-
posed an integration of the index maintenance into the merge process, further
reducing index maintenance costs.
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Abstract. Dissatisfaction with relational databases for large-scale graph
processing has motivated a new class of graph databases that offer fast
graph processing but sacrifice the ability to express basic relational idioms.
However, we hypothesize that the performance benefits amount to imple-
mentation details, not a fundamental limitation of the relational model.
To evaluate this hypothesis, we are exploring code-generation to produce
fast in-memory algorithms and data structures for graph patterns that are
inaccessible to conventional relational optimizers.

In this paper, we present preliminary results for this approach on
path-counting queries, which includes triangle counting as a special case.
We compile Datalog queries into main-memory pipelined hash-join plans
in C++, and show that the resulting programs easily outperform Post-
greSQL on real graphs with different degrees of skew. We then produce
analogous parallel programs for Grappa, a runtime system for distributed
memory architectures. Grappa is a good target for building a parallel
query system as its shared memory programming model and communi-
cation mechanisms provide productivity and performance when build-
ing communication-intensive applications. Our experiments suggest that
Grappa programs using hash joins have competitive performance with
queries executed on a commercial parallel database. We find preliminary
evidence that a code generation approach simplifies the design of a query
engine for graph analysis and improves performance over conventional
relational databases.

1 Introduction

Increased interest in the analysis of large-scale graphs found in social networking,
web analytics, and bioinformatics has led to the development of a number of
graph processing systems [1,23]. These specialized systems have been developed,
in part, because relational DBMSs are perceived as being too slow for graph
algorithms. These systems thus sacrifice full relational algebra support in favor of
improved performance for graph tasks. However, realistic applications typically
involve relations as well as graphs—e.g., Facebook’s content is richer than just
its friend network—suggesting that relational models and languages should not
be completely abandoned.
c© Springer International Publishing Switzerland 2015
A. Jagatheesan et al. (Eds.): IMDM 2013/2014, LNCS 8921, pp. 28–43, 2015.
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As a logical data model, relations arguably subsume graphs. Every graph can
be trivially represented as an edge relation, but even simple relational schemas
must be transformed in non-trivial ways to “shred” them into graphs. Consider
a relation Order(customer,part,supplier). Each tuple in this relation is a
hyper-edge relating a particular customer, a particular part, and a particular
supplier. To represent a tuple (c, p, s) as part of a graph, three edges (c, p),
(p, s), (s, c) must be represented and exposed to the user for manipulation in
queries. As another example, consider two relations Friend(person1, person2)
and Sibling(person1, person2). A natural graph representation would create
one edge for each tuple in Friend and one edge for each tuple in Sibling.
But to distinguish friends from siblings, each edge needs to be labeled. Besides
increasing the space complexity, this extra label must be manipulated by the
user explicitly in queries.

So perhaps the relational model is preferable as a logical interface to the
data, but the value proposition of graph databases is typically performance.
By using specialized data structures and algorithms and operating primarily
in main memory, these systems can outperform relational databases at graph-
oriented tasks. However, we hypothesize that these specializations are essentially
implementation details, and that there is no fundamental reason that a relational
engine could not exploit them when appropriate.

To test this idea, we use code generation to produce fast in-memory query
plans for simple graph pattern queries, in two contexts. First, we generate
pipelined query plans over associative data structures in C++ and show that
these programs significantly outperform tuned and indexed RDBMS implemen-
tations. Second, we show how analogous query plans targeting a parallel com-
putation framework called Grappa can compete with a tuned and indexed MPP
database.

In our experiments, we consider a class of path-counting queries (defined pre-
cisely in Sect. 3), which includes triangle counting [24] as a special case. These
queries arise in both graph and relational contexts, including in credibility algo-
rithms for detecting spam [6] and in probabilistic algorithms [30]. To handle
“hybrid” graph-relational applications, we retain the relational data model and
a relational query language—Datalog.

While only non-recursive queries are explored in this paper, Datalog with
recursion will be targeted in future experiments.

Our approach is inspired by other work in compiling relational algebra expres-
sions and SQL queries [20], but our goal is different. We wish to support a variety
of back-end runtime systems and explore various algorithms for specific graph
patterns, rather than generate the fastest possible machine code for individual
relational operator algorithms.

For parallel evaluation, we are concerned with the competing factors of scal-
ing up: distributing data allows for higher bandwidth access but greater net-
work usage amidst random access. For workloads with irregular memory access,
like that in sequences of hash joins, high throughput can be achieved in mod-
ern processors given sufficient concurrency [18]. With this observation in mind,
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we employ a novel parallel runtime system, Grappa [19], designed for irregular
workloads. Grappa targets commodity clusters but exposes a partitioned global
address space to the programmer. This abstraction allows us to write code that
is structurally similar to that of our serial C++ runtime, while allowing our
algorithms and the Grappa engine to apply optimizations that exploit locality.

The contributions of this paper are:

1. A code generator that translates path-counting queries expressed in Datalog
into fast C++ programs that implement join-based query plans over associa-
tive data structures.

2. In-memory algorithms for parallel path-counting queries in Grappa, along
with generic templates compatible with our code generation framework.

3. Experimental results comparing generated C++ programs against the serial
relational database PostgreSQL, showing the generated plans to be 3.5×–7.5×
faster than tuned and optimized relational query plans.

4. Experimental results comparing path-counting queries in Grappa to the
Greenplum commercial parallel RDBMS.

In the next section, we briefly describe the Grappa parallel framework that
we use as a compilation target for parallel plans. In Sect. 3, we describe our
code generation approach and evaluate the performance of the resulting plans
in Sect. 4.

2 Grappa: Programming for Irregular Applications

Grappa is a C++11 runtime for commodity clusters that is designed to pro-
vide high performance for massively parallel irregular applications, which are
characterized by unpredictable access patterns, poor locality, and data skew. In
these situations, communication costs dominate runtime for two reasons: ran-
dom access to large data does not utilize caches and commodity networks are
not designed for small messages. Interconnects like Ethernet are InfiniBand are
designed to achieve maximum bisection bandwidth for packet sizes of 10 KB–
1 MB, while irregular accesses may be on the order of 64 bytes—the size of a
typical cache line.

– a partitioned global address space (PGAS) to enable programmer pro-
ductivity without hindering the ability to optimize performance for NUMA
shared memory and distributed memory systems

– task and parallel loop constructs for expressing abundant concurrency
– fine-grained synchronization and active messages to allow for asyn-

chronous execution and low cost atomic operations, respectively
– lightweight multithreading to provide fast context switching between tasks
– a buffering communication layer that combines messages with the same

destination to utilize the network better than fine-grained messages
– distributed dynamic load balancing to cope with dynamic task imbalance

in a scalable way
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Grappa provides an appropriate level of abstraction as a target platform for
our query compilation approach. The global address space allows us to generate
relatively simple code, and parallel loop constructs preclude the need to emit
explicitly-multi-threaded routines. However, Grappa is sufficiently expressive to
allow us to optimize for locality, and we can use lower-level communication
abstractions to build distributed algorithms for special situations.

Concurrency can be expressed with a variety of arbitrarily nestable parallel
loop constructs that exploit spatial locality when it exists; these idioms are a
natural fit for pipelined query plans.

3 Code Generation for Path-Counting Queries

Following Seo, Guo, and Lam [26], we adopt a Datalog syntax for expressing
graph queries. In this paper, we show only preliminary results of the efficacy of
the code generation approach rather than a full Datalog implementation.

We focus on path-counting queries, of which triangle counting is a special
case. Each query is of the form

γcount(σc(σ1R1 �� σ2R2 �� . . . �� σNRN )) (1)

where γ is an aggregation operator for counting the final results. The extra
selection operator σc can enforce relationships between non-adjacent vertices in
the path. In particular, this condition can enforce that the path form a cycle,
as in the triangle queries. Each leaf and each internal node in the plan may
be filtered by a select operator. The internal selection conditions allow us to
express, for example, a triangle counting query (see below). The count operation
may optionally remove duplicates before counting, which results in significantly
different performance in all tested systems.

We consider a graph represented as a relation with the schema (src:int,
dst:int). Additional attributes are allowed, but are not considered in these
preliminary experiments. Each tuple (a, b) represents an outgoing edge from
vertex a to vertex b. While a table is not the most memory efficient way of
representing a graph [26], it allows us to easily apply concepts of relational
algebra to the graph problems presented.

Through the lens of relational algebra, paths in a graph are expressed as a
series of joins on the edge relations. For example, the two-hops (or friends of
friends) query is a single join on the edges table [15]. In Datalog, this query is
expressed as

Twohop(s,d) :- edges(s,m), edges(m,d).

A three-hop query would add one additional join to the query above. A popu-
lar case of the three-hop query in large graphs is triangle counting [12,22], where
a triangle must be a cycle. Triangles in a graph represent a three-hop where the
source s and destination d are the same vertex. In Datalog, directed triangles
are expressed as:
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Triangle(x,y,z) :- edges(x,y), edges(y,z),
edges(z,x), x < y, y < z.

The final conditions in the Datalog rule ensure that directed triangles are
only counted once, instead of three times (i.e. 1, 2, 3 is counted, but 3, 1, 2 is
not). These conditions correspond to selects in relational algebra.

3.1 Generating Code from Datalog

To generate implementations of path-counting queries, we constructed a query
compilation framework that can produce pipelined query plans over associative
data structures. The overall structure is similar to a typical relational plan, but
the use of nested data structures admits some algorithmic improvements that
are relatively simple but difficult for typical optimizers to exploit, as we will see.
The input is a graph query written in Datalog, and the output is imperative
source code. The compiler is written in Python using the NetworkX package [10]
for manipulating the query graph. Each rule in the source program1 is converted
to a logical relational algebra expression and then to a physical plan.

In general, a path of k edges through a graph involves k − 1 self-joins on
the edges relation. To avoid the cost of constructing the results of each join in
memory for the next join, we emit pipelined plan consisting of a series of nested
hash-joins: a lookup table (tree-based rather than a hash-based; see Sect. 3.2)
is constructed over the join column for the left relation, and then probed with
tuples from the right relation. Pseudocode plans for the two-hop and triangle
queries appear in Figs. 1 and 2 respectively, along with each query’s relational
plan.

The two-hop query explored in this paper requires duplicate elimination, as
there may be multiple paths from vertex s to vertex d. We perform duplicate
elimination by inserting results into a set data structure. Since the start vertex
is unique for all paths from k, we can optimize the memory usage by logically
grouping by start vertex and iterating through the groups one at a time. This
optimization reduces the worst case size of the set by O(|V |). The improvement in
lookup time yielded a 5× decrease in runtime for two-hop on the datasets in our
experiments. Consequently, whenever a query requires a distinct variable from
the outer relation, we perform a group-by on the outer relation. This technique
is a scheduling optimization, the motivation for which is similar to that of depth-
first search: by exploring all paths from s first, we can reduce memory utilization.
We believe this type of custom optimization is a perfect fit for a code generation
technique; as new patterns are recognized, the known optimal code for that
pattern of query can be automatically generated. This gives our code generation
approach potential to generate algorithms that are traditionally not considered
by relational DBMS optimizers (such as algorithms used by graph databases),
as well as algorithms that are more efficient than those of graph databases.
Pseudocode for the distinct source-destination optimization is shown in Fig. 1.
1 All queries considered in this paper can be expressed with a single Datalog rule.
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Fig. 1. Relational algebra and pseudocode for the distinct two-hop query. In the code
on the right, the map variable maps each vertex x to all edges (x, y). The outer loop
behaves as a relational group-by, and the set for duplicate elimination is moved inside
the group-by (line 8) and cleared after each iteration (line 15). This approach allows
for for better memory-usage.

3.2 C++ Code Generation

The first language targeted by our code generation model is C++. The logic for
generating code described in Sect. 3.1 remains unchanged, but there are some
language specific features. For example, in our C++ code, the “hash” table is an
STL map. Similarly, duplicate elimination is performed by inserting results into
an STL set. Both associative data structures are implemented with a red-black
tree, but in experiments this was never a performance factor.

As tuples are scanned from disk, they are converted to structs and inserted
into an STL vector. Each relation is scanned only once, regardless of how many
times it appears in the query. Query processing then proceeds as described in
Sect. 3.1.

End to end, this compiler allowed us to generate C++ code for path-counting
queries from Datalog. Queries without grouping (such as the triangle query)
generate code similar to the code shown above. Path queries requiring a distinct
source and destination were generated using a “distinct mode”, with a group-
by structure as shown in Sect. 3.1. In Sect. 6, we discuss compiler extensions to
support more general graph queries.

3.3 Queries in Grappa

Recall that Grappa provides a global address space and parallel for loop con-
structs. Each relation is scanned and loaded into an array, which Grappa dis-
tributes by default in a block-cyclic fashion.
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Fig. 2. Relational algebra and pseudocode for the triangle query. The select conditions
for edges2, edges2, and the final edges1.s = edges3.d are shown in lines 5, 10, and 15.
We note that in this example, more efficient code could be generated by pushing the
selection conditions in lines 5 and 10 into the construction of the hash maps used in
the join operations.

To compute a hash join, the build relation is hashed on the join key and used
to populate a distributed hash table. The hash table representation is essen-
tially equivalent to an adjacency list representation used in graph systems, but
general enough to support arbitrary relations. This point is important: it is
not obvious that there is a fundamental difference between a join-based evalua-
tion approach and a graph-traversal approach. To compute a chain of joins, we
use Grappa’s abstractions for shared memory and parallel for-loops to produce
nested, pipelined plans that are analogous to the serial case.

The parallel execution strategy for the nested parallel for-loops of a single
pipeline is handled by the runtime system. Grappa uses recursive decomposition
to spawn tasks for loop iterations and schedules them in depth-first order to
use memory only linear in the number of threads. This approach is inspired by
Cilk [5], but in Grappa the number of “threads” is determined by the number of
concurrent tasks required to tolerate the latency to access distributed memory.
Grappa’s parallel for-loop mechanism supports different levels of granularity—
that is, the number of consecutive loop-body iterations that each task executes.
Currently, the level of granularity is fixed at compile time, but we expect that
dynamic adjustments will be an important defense against unpredictable result
sizes.

To exploit inter-pipeline parallelism, generated code spawns each pipeline as
a separate task. No synchronization is required between independent sub-plans,
but for joins, probes of the hash table block until the build phase is complete.
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The HashMultiMap and HashSet used for joins and duplicate elimination are
designed similarly to typical shared memory implementations, except the data
structures are distributed. The entry point is a single shared array of buckets
distributed block-cyclically across all cores in the cluster.

The critical part of our shared memory lookup structures for Grappa is how
concurrent insert and lookup are implemented efficiently. By ensuring that
a given insert or lookup touches only data localized to a single bucket, we
can implement these operations as active messages. Grappa can mitigate skew
by putting all edge lists in one block-cyclic distributed array as in compressed
sparse row format, but in the experiments for this paper, we use a data structure
that puts each edge list entirely on one machine. All operations on a given bucket
are performed atomically, by the simple fact that each core has exclusive access
to its local memory. This example shows how Grappa’s partitioning of the global
address space admits locality-aware optimizations.

Since Grappa uses multithreading to tolerate random access latency to dis-
tributed memory, execution flow of hash join probes looks similar to the explicit
prefetching schemes by Chen et al. [7]. Specifically, prefetching a collection of
independent hash buckets before performing loads is analogous to how Grappa
switches out a thread on a remote memory operation.

Since the insertion for duplicate elimination is the last operation in the prob-
ing pipeline, the task does not need to block waiting for the insertion to complete,
saving an extra context switch. We found that this optimization reduces the
cost of duplicate elimination in Grappa by roughly 2× relative to using blocking
inserts, which contributes to the particularly good performance of Grappa code
for the two-hop query (see Sect. 4.4). This technique generalizes to continuation
passing optimizations for certain types of queries, which is a subject for future
work.

4 Evaluation

As a first step in studying our approach, we want to answer two questions exper-
imentally. First, does our generated C++ code significantly outperform tradi-
tional DBMSs? Second, is Grappa an effective platform for parallel path query
execution even without clever partitioning and other customizations for this
task?

To answer these questions, we executed path queries to count distinct two-
hop paths and triangles in standard public graph datasets. For the first question,
we compared our generated C++ queries to PostgreSQL, a well-studied DBMS.
Though the PostgreSQL installation was heavily indexed and our C++ code
read non-indexed data from disk, our C++ code generated from Datalog was
3.5×–5× faster on a more skewed data set and 5×–7.5× faster on a less skewed
data set.

For the second question, we compared Grappa with Greenplum, a commercial
parallel DBMS. We evaluated Grappa on clusters comprising 2 to 64 nodes and
an 8-node Greenplum installation. Without making any modifications to Grappa
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Table 1. Salient properties of the graphs studied

Dataset # Vertices (M) # Edges (M) # Distinct 2-hop paths # Triangles

BSN 0.685 7.60 78 350 597 6 935 709

Twitter subset 0.166 4.53 1 056 317 985 14 912 950

com-livejournal 4.00 34.7 735 398 579 —

soc-livejournal 4.85 69.0 — 112 319 229

to support our application, the 8-node Grappa cluster completed queries as fast
or faster than the 8-node Greenplum cluster, and scaled well to 32 nodes. We also
found that Grappa’s good performance extended across datasets and queries.

4.1 Datasets

We used standard, public graph datasets for our evaluations: the Berkeley-
Stanford Network (BSN) graph [14]; a subset of the Twitter follower graph [13];
and two SNAP LiveJournal graphs [4,29]. We summarize salient properties of
these graphs in Table 1. The Twitter subset is notable for its significant skew,
leading to large intermediate results (discussed in Sect. 4.3). We evaluate the
following queries.

4.2 Test Queries

In this paper, we are concerned primarily with relational, in-core execution tech-
niques for graph-based tasks. We thus choose our queries and datasets to exercise
these design points, namely choosing queries that will fit in the system memory
but that are large enough to expose parallelism.

Two-path: count the number of distinct pairs (x, z) such that vertex x has a
path of length two to z through any vertex y.

select count(*) from (select distinct a.src,b.dst from
edges a, edges b where a.dst = b.src) z;

Triangle: count the number of ordered triangles in the graph.

select count(*) from edges a, edges b, edges c where a.src <
a.dst and a.dst = b.src and b.src < b.dst and b.dst = c.
src and c.dst = a.src;

A variant three-path query was also used to test the performance of queries
involving multiple graph relations. For these experiments, the BSN and Twitter
data sets were split into two disjoint relations, the larger of which contains
roughly 90% of the original edges. The first hop is taken in the smaller relation,
then the intermediate results are joined to the larger relation.
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4.3 Single-Node Experiments: C++ vs. PostgreSQL

We compared the generated C++ code against SQL queries in an indexed rela-
tional implementation using PostgreSQL.

All tests were performed on a shared-memory system running Linux ker-
nel 2.6.32. The machine has 0.5 TB of main memory and 4 sockets, each with a
2.0 GHz, 12-core AMD Magny-cours processor. After code generation, the result-
ing C++ code was compiled using GCC 4.7 with -O3 optimization.

PostgreSQL 8.4 was configured to use 64 GB of shared buffer space and 50 GB
of working memory. Indexes were created on both the src and dst variables
of the edges relation, and then edges was clustered on the src variable. These
optimizations were applied in an attempt to minimize the runtime for the queries.
For all three plans, the query optimizer chose to execute a sort-merge join. For
the two path query, the table is already sorted by src, so one instance of the
edges relation is sorted by dst , and a standard sort-merge join was performed.
In the case of triangle and three path, the intermediate result from the first
join was sorted on b.dst , and then a sort-merge join was performed between the
intermediate result and c. For comparison, we reran the PostgreSQL experiments
with sort-merge joins disabled; the resulting plans used a hash-join, like our code,
but were slower than the original plans.

Figures 3 and 4 show the runtime comparison of the two -path, three-path,
and triangle queries for C++ vs. PostgreSQL on the BSN and Twitter graphs.
Our automatically generated C++ code runs 3.5×–5× faster than PostgreSQL
on the twitter data set and 5×–7.5× faster on the BSN data set.

Queries on the Twitter graph were slower because they resulted in many
more results (Table 1). The key insight is that Twitter has both larger average
degree (27 vs 11) and more vertices with both large in-degree and out-degree. The
maximum out-degree in Twitter is 20 383, two orders of magnitude greater than
the BSN graph. These properties of the Twitter graph cause the intermediate
results of self-joins to be orders of magnitude larger than in the BSN graph, and
indeed we see that Twitter has 13× as many two-paths.

The triangle query on a given data set is always faster than distinct two-
hop, despite having larger intermediate join results—the extra join results in an
order of magnitude more results than both two-hop and variant three-hop. The
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Fig. 5. There is a correlation between the sum of map lookups and set inserts and the
runtime of the query generated as C++.

Fig. 6. Two-hop scalability on Grappa Fig. 7. Triangle scalability on Grappa

reason is that the most costly step in the computation is duplicate elimination.
Indeed, when we counted the number of operations used to implement duplicate
elimination (map lookups and set inserts), we found a strong correlation with the
runtime of the program (Fig. 5), reinforcing that duplicate elimination dominates
costs.

4.4 Parallel Experiments: Grappa and Greenplum

We evaluate the scalability of Grappa and compare absolute performance that
of Greenplum [27], a commercial parallel DBMS. To scale to larger systems, we
used the same queries as above and extend to bigger datasets. For each dataset
and query, we compare the runtime as we scale up the number of machines.

As Grappa is a research system for which we are still determining the best
optimization strategies, we did not generate the Grappa code automatically.
Instead, the query was manually coded in a style that is essentially isomorphic
to the serial case.

We run the Grappa queries on allocations of a 144-node cluster of AMD
Interlagos processors. Nodes have 32 cores (16 full datapaths) running at 2.1-
GHz in two sockets, 64 GB of RAM, and 40-Gb Mellanox ConnectX-2 InfiniBand
network cards. Nodes are connected via a QLogic InfiniBand switch.
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Due to time and administration constraints, the Greenplum installation
runs on a different system: an 8-node cluster of 2.0-GHz, 8-core Intel Xeon
processors with 16 GB of RAM. Although setup this does not provide an apples-
to-apples comparison between the two systems, we can still provide some context
for the performance of Grappa queries. Greenplum database was tuned to uti-
lize as much memory as possible and configured to use 2 segments per node.
We show the best results between Greenplum partitions on src, dst , or random
(although all runtimes were within about 10 %).

First, we examine the parallel efficiency of the queries implemented on Grappa.
Figures 6 and 7 illustrate scalability using the metric of number of nodes multi-
plied by the runtime. With perfect scaling, this line would be flat (as doubling the
number of cores would halve the runtime). Increasing values indicate suboptimal
scaling.

On both queries, going from one node to two nodes incurs a performance
penalty, as memory references must now go over the network. Four nodes is
sufficient to gain back performance with parallelism. Two-hop on the Twitter
subset scales well and runs in as little as 6.5s with 64 nodes. Most of the time is
spent on insertions into the distinct set of results. For the other datasets, two-
hop performance does not scale well beyond 32 nodes; in fact, for this query it
degrades. Because 32 nodes utilizes all the data parallelism in these two datasets,
the rising cost of set inserts over the network outweighs having more aggregate
memory bandwidth. On triangles, Grappa scales well up to 32 nodes on com-
livejournal and BSN but less efficiently on Twitter.

Unique among the systems studied, Grappa performs better on two-hop than
on triangles. This improvement is not surprising, because Grappa is designed
for high throughput random access, which occurs in hash insertions. Although
context switches are fast, eliminating them in the inner loop can increase perfor-
mance. Triangles requires more of them: one path through the triangles pipeline
requires a task to do two blocking lookups (joins), while one path through
the two-hop pipeline requires a task to do just one blocking lookup (join) and
one non-blocking insert (distinct). Since set insertions are fire-and-forget and
the inner loop of triangles contains no remote memory operations, setting the
parallel granularity of the inner loop to be large (around 128) gave the best
performance.

In Table 2, we list results for Greenplum and Grappa. These results were
collected on different machines and networks; however, they indicate that graph
path queries compiled to Grappa have the potential to be competitive with a
commercial parallel RDBMS, especially in the case of duplicate elimination. To
get an indication of the parallel performance of a single shared memory node
using our code generation, we also wrote the triangle query by augmenting the
generated C++ code with OpenMP pragmas. Shown is the best result with
16 cores, tuned to use dynamic scheduling on the outer two loops and guided
scheduling with a chunk size of 8 on the inner loop. Due to additional overhead to
share memory between cores in Grappa, for a single node, Grappa’s performance
with 16 cores equals that of 4 cores in OpenMP.
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Table 2. Performance of code manually written for Grappa and OpenMP according
to our generation technique and SQL queries on Greenplum

System # Nodes Query Dataset Runtime

Greenplum 8 two-hop distinct com-livejournal 265.5 s

Grappa 8 two-hop distinct com-livejournal 24.0 s

Grappa 32 two-hop distinct com-livejournal 5.3 s

Greenplum 8 triangle Twitter 84.3 s

Grappa 8 triangle Twitter 91.6 s

Grappa 64 triangle Twitter 24.0 s

OpenMP 1 triangle Twitter 110.8 s

5 Related Work

DBToaster [2] compiles C++ code from SQL queries for fast delta processing
for the view maintenance problem. More generally, Neumann compiles TPC-H
style analytics queries to LLVM bytecode and C [20] using a typical iterator
framework. In contrast, we seek specialized algorithms for specific graph query
patterns.

Vertex-centric programming models including Pregel [17] and GraphLab [9]
have become popular for graph computations. GraphLab supports asynchronous
computation and prioritized scheduling, but offers no declarative query interface
and cannot express simple relational idioms. By making Grappa one of our com-
piler targets, we can also support asynchronous execution.

Neo4j [1] is a graph database, with its own data model and graph query
language. Unlike Grappa, the entire graph is replicated on all compute nodes,
so it cannot scale to large graphs. Recent work has shown that SQL DBMSs can
compete with graph databases for real world network datasets and shortest path
queries [28].

SPARQL is a pattern language for graphs represented as a set of (subject,
predicate, object) triples. A number of systems have focused on executing and
optimizing SPARQL queries [8,21], but we find SPARQL to be neither necessary
nor sufficient for graph manipulation: Datalog is strictly more expressive than
SPARQL without v1.1 path expressions [3], and the semantics of path expres-
sions make query processing intractable [16].

Parallel databases like Greenplum are like conventional relational DBMSs but
parallelize individual queries across shared-nothing architectures. Vertica [11] is
a parallel DBMS designed for analytics and includes just-in-time compilation
techniques. Grappa provides shared memory, as well as active messages, to the
database system programmer. Since we are concerned with in-memory execution,
we are exploring compiling rather than interpreting queries.
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6 Future Work

We have focused on only a narrow class of path-counting queries; we plan to
extend the framework to handle full Datalog. This allows for a much larger scope
of graph queries, such as conjunctive regular path queries. Datalog is sufficient
to express most or all of the queries handled in graph databases.

Our code generation framework will be extended to generate specialized code
for some recognizable patterns (such as the two-hop optimization explored in this
paper) and “canned” best-known algorithms for some specific queries. While
a conventional DBMS can be extended similarly, a code generation approach
suggests richer opportunities for incorporating user code into optimizations and
for library-writing level users to write generators for special classes of queries,
as Rompf et al. [25] demonstrated for domain specific languages.

7 Conclusions

We wish to show that relational query languages are an attractive option for
modern graph queries on complex data. Our experiments demonstrate that gen-
erated C++ code and analogous Grappa code can outperform traditional DBMSs
and parallel DBMSs for non-recursive graph queries. Query execution code for
Grappa is simple, being symmetric in structure to sequential C++. This simplic-
ity, combined with Grappa’s good scalability, makes our code generation an easy
and efficient method for relational queries on real-world graphs in a distributed
setting.
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Abstract. Large numeric matrices and multidimensional data arrays
appear in many science domains, as well as in applications of finan-
cial and business warehousing. Common applications include eigenvalue
determination of large matrices, which decompose into a set of linear
algebra operations. With the rise of in-memory databases it is now fea-
sible to execute these complex analytical queries directly in a relational
database system without the need of transfering data out of the sys-
tem and being restricted by hard disc latencies for random accesses. In
this paper, we present a way to integrate linear algebra operations and
large matrices as first class citizens into an in-memory database following
a two-layered architectural model. The architecture consists of a logical
component receiving manipulation statements and linear algebra expres-
sions, and of a physical layer, which autonomously administrates multiple
matrix storage representations. A cost-based hybrid storage representa-
tion is presented and an experimental implementation is evaluated for
matrix-vector multiplications.

1 Introduction

Within the recent decades, data scientists of all domains are increasingly faced
with a growing data volume produced by historical events, experiments, and sim-
ulations. The era of data deluge and big data has shown the limitation of existing,
often non-scalable and domain-specific persistence and computation solutions,
which brought scalable database systems back into the discussion. Large numeric
data, arranged in vectors and matrices, appear in many science domains, as well
as in business warehouse environments. Examples can be found in theoretical
nuclear science, genetics, engineering and economical correlation analysis. Ana-
lytical algorithms in those fields are often composed of linear algebra opera-
tions, including matrix-matrix, matrix-vector and elementwise multiplications.
Moreover, linear algebra operations form the building blocks of machine learning
algorithms [1] used in data warehousing environments, which is a common domain
for commercial databases.

As conventional database management systems (DBMS) neither provide
appropriate data objects nor an interface for linear algebra primitives, data sci-
entists rely on custom, highly specialized and hand-written solutions instead.
c© Springer International Publishing Switzerland 2015
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However, rather than being responsible for reliable and hardware-dependent
solutions, many scientists would prefer to get rid of implementational details.
A DBMS with integrated scalable linear algebra implementations could serve as
framework that provides basic primitives for their analytical queries, and avoids
redundant data copying into any external algebra system. The drop in RAM
prices over the last years laid the foundation for shifting databases from hard
disc into memory, and analytical queries gained a considerable performance boost
on large data sets [2]. By accessing data directly in memory, this development
permits to bridge the gap between databases and complex analytical algorithms.
Hence, database-integrated linear algebra primitives can now be provided with-
out significant loss of performance, and use cases from the science and business
world benefit from such an architecture in many ways:

• Single source of truth. The data is persisted and kept consistently in the
database, so there is no redundant copying from other data sources to external
libraries needed. Furthermore, the corresponding metadata of data sets can
be updated synchronously and consistently with the numerical data.

• Efficient implementation. Algorithms for linear algebra operations have
been researched thoroughly for decades, so there is no need to re-invent the
wheel. But tuned linear algebra libraries can be exploited as kernels in the
database engine to offer a computational performance that is competitive with
existing numeric libraries.

• Transparency. A DBMS with our architecture handles different physical
storage representations autonomously and provides internally well-partitioned
matrices and vectors as self-contained data objects transparent to the user.

• Manipulation of data. In common analytic workflows, large matrices are
no static objects. As they are manipulated in an iterative process, the data
manipulation capabilities of a database will meet the analytical demands bet-
ter than the tedious maintaining of multiple data files.

This work presents an architectural model for integrating large linear algebra
objects and basic operations into a column-oriented in-memory database sys-
tem. Section 2 provides an overview of recent research about the integration of
array structures into databases and efficient linear algebra algorithms in general.
The two-layered architectural model, a list of conceptual requirements for the
logical data model and its physical mapping to the column store are presented
in Sect. 3. Section 4 proposes a hybrid storage representation for large matrices
and a strategy to cluster a large matrix into dense and sparse subparts. Our
experimental setup and an evaluation of a sparse matrix vector multiplication
are shown in Sect. 5. Finally, Sect. 6 summarizes our findings.

2 Related Work

2.1 Linear Algebra in Databases

The gap between the requirements of scientific computing and what is pro-
vided by relational databases is a well-known topic in the database community.
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Ways to integrate multidimensional array data into the database context have
recently been presented by the SciDB [3] team with ArrayQL1, following the
SQL extension SciQL [4]. The latter provides operators for spatial filters used
for image processing but it lacks support for linear algebra objects as first class
citizens.

A lot of research has been done in the context of data analytics and busi-
ness intelligence, where linear algebra operations are the building blocks of data
mining algorithms. Prior work [5] has shown how vanilla SQL can be used to cal-
culate linear algebra expressions, although they add some user defined functions
and infix operators to make the query look more natural. However, they admit
that SQL terms rather pair up scalar values than treating vectors as “whole-
objects” and does thus not fit the natural way of thinking of a data scientist
with a mathematical background. They also state that expressions based on
SQL require the knowledge of a certain storage representation, for instance the
triple representation for matrices, which is not optimal for many use cases. From
a performance perspective, Stonebraker et al. [6] propose the reuse of carefully
optimized external C++ libraries as user defined functions for linear algebra cal-
culations, but they leave the problem with resource management and suitable
data structures in this “hybrid” world yet unsolved. Another approach based on
Hadoop is SystemML [1], where basic linear algebra primitives are addressable
via a subset of the R language with a MapReduce backend. Few commercial
data warehouse vendors already offer minor support for linear algebra opera-
tions integrated in the database engine, but to the best of our knowledge there
is no solution which integrates transparent optimization based on topological
features of the matrix (e.g., sparsity).

2.2 BLAS and Matrix Multiplications

As we want to provide a solution that is able to compete with hand-tuned
implementations, we have to glimpse outside the database world, where efficient
linear algebra computation has been thoroughly researched for several decades.
It is commonly agreed that a tuned BLAS2 implementation is the best choice
for computing small, dense matrices. Its interface is implemented by specially
tuned libraries utilizing single-instruction multiple-data (SIMD) instructions.
Libraries are provided by the open-source world or directly by hardware ven-
dors, like ATLAS3 or Intel MKL4. Although the current theoretical lower com-
plexity bound for dense matrix multiplication is O(n2.3727), initially presented
by Coppersmith and Winograd [7,8], BLAS implementations still rely on the
naive O(n3) algorithm, since the constant of the Coppersmith-Winograd algo-
rithm is simply too high for being practicable. Nevertheless, for very large matri-
ces a recent paper [9] shows that Strassen’s Algorithm with the complexity of

1 Array Query Language, http://www.xldb.org/arrayql/.
2 Basic Linear Algebra Subprograms, http://www.netlib.org/blas/.
3 Automatically Tuned Linear Algebra Software, http://math-atlas.sourceforge.net/.
4 Intel Math Kernel Library 11.0, http://software.intel.com/en-us/intel-mkl.

http://www.xldb.org/arrayql/
http://www.netlib.org/blas/
http://math-atlas.sourceforge.net/
http://software.intel.com/en-us/intel-mkl
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O(n2.8074) combined with a NUMA-aware hierarchical storage format outper-
forms the ATLAS library.

Research on sparse matrices has been less established as for dense, so there
were some efforts within the last years to reduce the complexity for fast sparse
matrix multiplication from a theoretical perspective [10,11]. Their general idea is
to separate the matrix column/row-wise into a dense and a sparse part where the
split point is determined by minimizing the number of total algebraic operations,
while they admit that their work is only of theoretical value because they rely on
Coppersmith-Winograd complexity for rectangular matrix multiplication. This
at least confirms our conceptual model to cluster the matrix parts according to
their density and treat sparse and dense parts differently. From an algorithmical
perspective, there has been recent work on parallel sparse matrix-matrix multi-
plication [12] and cache-oblivious sparse matrix-vector multiplications [13] using
a hypergraph partitioning method.

2.3 Storage Representation of Sparse Matrices

It is widely known that there are various ways to store a sparse matrix, and each
of them might be best for a certain situation. The efficiency of a certain storage
representation strongly depends on the specific topology of the matrix, since
there are typically recurring shapes, such as diagonal, block diagonal or blocked
matrices. A comprehensive overview over the different types of sparse storage
representation is given in the work of Saad et al. [14]. Storing matrices in hybrid
sparse-dense representations, in the way we will present in the remainder of this
paper, has – to the best of our knowledge – not been presented in literature
so far.

3 Architecture and Requirements

Our architectural model of the linear algebra database engine, sketched in Fig. 1,
can be logically separated into two main components: First, the logical layer
contains the data model and provides methods to parse linear algebra expres-
sions and choose an appropriate algorithm for the operations to execute. Sec-
ond, in the physical layer, the storage agent maps the logical linear algebra
objects (i.e. matrices and vectors) into the column-oriented storage model by
utilizing different internal representations depending on sparsity and shape.
The requirements for the logical component include:

• Linear Algebra Query Language. The common query language of rela-
tional databases is SQL, which was originally designed and established for
expressions of the relational algebra. As a matter of fact, SQL does not com-
prise operations or data types of the linear algebra. In order to provide a
natural interface for a database user with mathematical background it is cru-
cial to provide matrices, vectors and multidimensional arrays in general as
first class citizens. Moreover, for being able to optimize on the logical level, it
is also necessary to pass a complete expression string containing basic linear
algebra operators to the DBMS.
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Fig. 1. Linear algebra engine architecture

• Manipulation Language. In contrast to a broad perception, matrices in
analytical workflows are often dynamic objects that underly steady manipula-
tions (e.g., in [15] several base states, which correspond to rows in the Hamil-
tonean matrix, are truncated before the eigenvalue calculation is repeated).
Typical operations on matrices involve insertions, removals, and updates of
single elements or whole rows or columns. Such in-place modifications are
common in typical database applications, but infeasible with existing linear
algebra libraries. The language should therefore offer a way to manipulate
linear algebra objects element-, row-, column- and blockwise.

• Linear Algebra Expression Optimization. A linear algebra expression
consists of operations on an arbitrary number of matrices or vectors. Opti-
mizing the execution order on this layer can help to reduce the number of
floating point operations significantly. As an example, consider a multiplica-
tion of three matrices A ∈ R

m×k, B ∈ R
k×l, A ∈ R

l×n

expression = “A · B · C ” (1)

Following associations law expression (1) can be evaluated in two ways, either
multiply (A · B) first and then C from the right side or multiply (B · C)
first and A from the left side. Assuming dense algebra, it turns out that with
k � {l,m, n}, the second execution order requires 2

1+ε times the number of
floating point operations than the first order.

It is noteworthy that this holds only for dense operations, i.e., every matrix
element is taken into account, regardless whether it is zero or not. Since
multiplications with zero are as expensive as non-zero multiplications, the
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optimizer should be aware of the sparsity, which might change the optimal
execution order. The number of operations Nop then can be obtained by con-
sidering matrix elements as triple relations {row, col, (A)ij}. It is propor-
tional to the join product of two matrix relations A and B with the condition
A.col = B.row. The multiplication then rather turns into a relational join fol-
lowed by a projection [10] where techniques of join size estimation (e.g., based
on hashing [16]) can be applied to estimate the cost of the sparse algorithm.

Because of the importance of sparsity for optimizing the expression execution,
it is desirable that the logical layer receives information about the physical data
structure. This should be managed by a globally acting optimizer, which forms
the interface between both layers. It combines the physical structure information
with statistical information about prevalent algorithmic patterns performed on
certain objects, as an efficient execution strongly depends on the conformance
between the algorithm and the data representation. This information can in
return be passed as a hint to the physical component, which should be able to
reorganize the storage representation. The requirements of the physical layer are:

• Multiple In-Memory Storage Representations. In order to minimize
the storage consumption of a large matrix, dense and sparse subparts are
stored in separate representations. Each of the storage classes internally
uses the native column-oriented storage of the database. As matrices are
two-dimensional objects, they cannot be stored naturally in the sequentially
addressable columns. Thus, matrices have to be linearized, which is effec-
tively a mapping of matrix elements from the two-dimensional into the one-
dimensional space. This is accomplished by ordering the elements according to
a certain order (i.e., a space filling curve). 2D-arrays in common programming
languages are arranged according to row-major (C++, Python) or column-
major (Fortran, MATLAB) order. Examples for isotropic curves are the
z-curve (or Morten-order) [17] and the Hilbert-curve. The adequacy of
the order may depend on specific algorithmic patterns on the object, and
as the columns are completely held in memory, the jumps caused by an inap-
propriate order will at most result in cache misses. However, most numeric
libraries require a certain order, and to use them as kernels, our architecture
provides a flexible transformation mechanism.

• Leveraging Parallelization and SIMD Instructions. In the context of
distributed memory there has been recent work about parallel (sparse) matrix-
vector and matrix-matrix multiplications [12]. The fundamental trade-off is
communication costs versus computation costs, depending on the level of par-
allelization.

Low-level parallelization and multithreading is already provided by many
numeric libraries, such as ATLAS or Intel MKL. Moreover, most linear algebra
calculations degenerate to numerical operations on vectors, thus they fully
benefit from SIMD instruction sets. Wherever possible, we want to make use
of vendor-provided C++ BLAS kernels that have already been well tuned for
the specific hardware characteristics.
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• Data Load. The common storage format of large scientific data sets that
are produced by simulations and experiments are files. Our model foresees an
initial loading of data from files by using any CSV-parser that connects via a
client driver to the database.

4 Topology-Aware Restructuring Using Clustering
Strategies

Matrices that are initially loaded into the database are first staged in a tempo-
rary sparse structure, for instance in the triple representation. As a consequence,
algorithms on staged matrices will in general perform miserably, especially if the
matrix has a rather dense topology. The database user does generally not know
the topology of the matrix, at least it should not be required to specify the
structure in advance. In our model the linear algebra engine restructures the
staged matrices by clustering subparts into dense and sparse regions. A rea-
sonable approach is to cluster regions density-based [18], hence classify clusters
where the density distribution exceeds a certain threshold as dense and the
remaining parts as sparse. The resulting clusters should have rectangular shapes
with a minimal extent that should be defined according to the hardware spec-
ifications, for example a block should just be large enough to fit into the CPU
cache. Figure 2 shows a 800 × 800 sparse Hamiltonean matrix5 as an example
from nuclear physics research (see Sect. 5.3). For the illustration we used square
blocks of dimensions 100 × 100 and a density-based clustering with the kernel:

K(i, j, i0, j0) =
{

1
C for (i, j) ∈ Block(i0, j0)
0 else (2)

where i is the row coordinate of a matrix, j the column coordinate, C a nor-
mation factor and (i0, j0) are the coordinates of a matrix element inside a fixed
Block(i0,j0). After applying K to the data of Fig. 2 we effectively get a 2D
histogram with 2D block bars of different heights. Figure 3 shows the density
distribution relative to two different block density thresholds ρc. It can be imag-
ined as a rectangular mountain range in the ocean with a variable water surface
level. The higher ρc is, the fewer are the remaining dense parts which “protrude”
from the surface. The actual question is where to place the cut level ρc, which
is in general a nontrivial, multidimensional optimization problem.

A m × n matrix can be clustered into NC rectangular m
(j)
d × n

(j)
d dense

regions and m
(i)
sp × n

(i)
sp sparse regions with density ρi. Assuming costs τsp and

τd for a single element operation in the sparse and dense storage representation,
5 For illustration purposes we regard a relatively small matrix. Depending on the

scenario, the matrices can reach dimensions of up to 1010 × 1010.
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Fig. 2. A 800 × 800 Hamiltonean matrix resembling the quantum mechanical state of
an atomic nucleus in the NCSM model. (Example from theoretical nuclear physics.)

the total cost T of a complete matrix operation6 on a hybrid representation can
be estimated as

T =

⎛
⎝ ∑

j∈{d}
Ad

(
m

(j)
d n

(j)
d

)
⎞
⎠ τd +

⎛
⎝ ∑

i∈{sp}
Asp

(
N (i)

nnz

)
⎞
⎠ τsp + γAC

(
NC

)
(3)

where Nnnz,i = ρim
(i)
sp n

(i)
sp is the absolute number of nonzero elements in the

ith sparse part. The A’s denote the algorithmic complexity of the corresponding
algorithm, for instance Ad(N) = N3/2 for the naive matrix-matrix multiplica-
tion. The last term in (3) refers to the algorithmic overhead, which is connected
with the number of subparts NC . The clustering is ideal if T is minimal. Find-
ing the absolute minimum is generally a nontrivial variational problem in a
high-dimensional space. However, depending on the operation, T can degener-
ate into much simpler expressions, as for the general matrix-vector multiplication
(GEMV). The algorithmic access pattern of the GEMV algorithm on a matrix
is strictly row-major, thus a row-wise clustering keeps the conformance between
algorithm and representation. This effectively means that the m rows of the
matrix are clustered into msp sparse and md dense rows. With AGEMV

d,sp (N) = N ,
nd,sp = n and md = m − msp Eq. (3) can be transformed into

TGEMV = nmτd + n

msp∑
i

(ρiτsp − mspτd) (4)

6 T is proportional to the number of single element operations, according to the RAM
model.
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Fig. 3. Matrix density distributions relative to threshold ρc = 0.5 (left) and ρc = 0.6
(right). Dark blue denote regions with ρi ≥ ρc, light blue means ρi < ρc (Color figure
online).

The right hand side of (4) is minimal if for the row-density in the equation
ρi < τd/τsp holds.

5 Experiments and Evaluation

5.1 Experimental Environment

In the context of the column-oriented SAP HANA database, we implemented
parts of the physical layer in an in-memory column store prototype. Figure 4
shows the internal mapping of matrices of dense and sparse parts, where K :
N

n → N can generally represent an arbitrary space-filling order (here shown with
row-major order). Our sparse matrix-vector multiplication algorithm works with
pure dense, pure sparse or hybrid representations.

5.2 Evaluation

The platform for our prototype implementation is an Intel Xeon X5650 sys-
tem with 12 cores and 48 GB RAM. The performance for the GEMV operation
was evaluated for sparse matrices in a pure dense, pure sparse and in a hybrid
representation, containing subparts according to the density row-based cluster-
ing of (4). Without loss of generality, the relative row density was varied using
generated matrices following a triangle random distribution to enable a row-
based clustering into dense and sparse parts. Moreover we varied the overall
density 0.24 < ρ < 1.00 to illustrate the duality of dense and sparse represen-
tations. Figure 5 shows the graph of the measurements for the multiplication of
a 12800 × 12800 matrix with a vector. As expected, the hybrid storage repre-
sentation is always better than either pure sparse or pure dense. It converges
against the performance for sparse matrices for small values of ρ and against the
performance for dense matrices for high values of ρ.
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Fig. 4. The upper half shows the sparse representation in two columns: The first column
contains the K-coordinate, the second the value of a nonzero element. Below, the dense
representation: A single column contains every matrix element, including zero elements.

5.3 Lanczos Algorithm

The Lanczos algorithm is an iterative converging method, similar to the power
method, to determine the eigenvalues of a real symmetric matrix. It used to
find the energy states of an atomic nucleus, which correspond to the eigenvalues
of the quantum mechanical Hamiltonean matrix [15,19]. Technically, the algo-
rithm is composed of iterative sparse matrix-vector multiplications. According to
the precision of the model, the Hamiltonean matrix can have arbitrarily many
dimensions and can easily consume up to terabytes of storage. In our evalua-
tion we used three matrices of different dimensions. Table 1 shows the speedup

Fig. 5. Speedup in the multiplication of sparse matrices with vectors by using the
hybrid representation. On the left side the speedup is shown relative to a pure sparse
(dashed line) and pure dense (dotted line), and on the right it is compared to the
respective best pure representation.
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Table 1. Performance speedup of the multiplication of the sparse Hamiltonean n × n
matrix with a random vector. The evaluation was performed on three matrices of
different dimension (i.e. C1A, C2A, C2B) in either pure sparse, pure dense or in the
hybrid representation. NC is the number of subparts. The speedup is shown relative
to the pure sparse and to the pure dense representation.

Matrix n Nnz Density NC HybridVsSparse HybridVsDense

C1A 800 309816 0.484 27 52.0 % 0.1 %

C2A 3440 2930834 0.248 15 3.3 % 39.2 %

C1B 17040 42962108 0.148 60 0.7 % 149.7 %

of the hybrid representation compared to pure dense or pure sparse. There is
again a positive speedup for each case, which however becomes less significant
for the 17040 × 17040 matrix. This is substantiated with the complex topology
of the matrixes as in Fig. 2, revealing that the rather simple row-based density
clustering leaves room for optimization.

6 Summary and Conclusions

The problem of combining linear algebra operations with an efficient and scalable
database environment is well-known in the database community as there are var-
ious use cases from science and business domains. We showed that it is feasible
to integrate complex calculations in in-memory DBMS engines. Our architec-
tural model aimes at applying database principles to linear algebra. It enables
dynamic manipulation of matrix data and abstracts the problem of choosing
an appropriate algorithm and storage representation from the user by letting
the database optimize logical and physical execution. We identified sparsity as
the main performance influencing characteristic of large linear algebra objects
and proposed hybrid representations mapped to an in-memory column store. A
cost-model based density clustering has been proposed to optimize sparse storage
structure depending on matrix topology and algorithmic pattern. The evaluation
showed that overall performance can benefit from an architecture that combines
multiple internal storage representations.

Challenges to our architecture involve the exploitation of efficient BLAS ker-
nels, distribution strategies, and the development of a natural query and manip-
ulation language.
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Abstract. In-memory database management systems have the pote-
ntial to reduce the execution time of complex operational analytical
queries to the order of seconds while executing business transactions in
parallel. The main reasons for this increase of performance are massive
intra-query parallelism on many-core CPUs and primary data storage in
main memory instead of disks or SSDs. However, database management
systems in enterprise scenarios typically run a mix of different appli-
cations and users, of varying importance, concurrently. As an example,
interactive applications have a much higher response-time objective com-
pared to periodic jobs producing daily reports and should be run with
priority. In addition to strict prioritization, enforcing a fair share of data-
base resources is desirable, if several users work on applications that share
a database. Solutions for resource management based on priorities have
been proposed for disk-based database management systems. They typi-
cally rely on multiplexing threads on a number of processing units, which
is unfavorable for in-memory databases on multi-cores, as single queries
are executed in parallel and numerous context switches disrupt cache-
conscious algorithms. Consequently, we propose an approach towards
resource management based on a task-based query execution that avoids
thread multiplexing. The basic idea is to calculate the allowed share of
execution time for each user based on the priorities of all users and adjust
priorities of tasks of incoming queries to converge to this share.

1 Introduction

In-memory database management systems (IMDBMS) that leverage column-
oriented storage have been proposed to run analytical queries directly on the
transactional database schema [Pla09]. This enables building analytical capabil-
ities on top of the transactional system, leading to reduced system complexity
and reduced overall operating cost. However, running multiple, potentially dif-
ferent applications on a single database instance that records business events
leads to a mix of heterogeneous queries that may have different response time
objectives.

With TAMEX [WGP13], we have proposed a task-based framework for mul-
tiple query class execution on IMDBMS. TAMEX allows to statically prioritize
c© Springer International Publishing Switzerland 2015
A. Jagatheesan et al. (Eds.): IMDM 2013/2014, LNCS 8921, pp. 56–68, 2015.
DOI: 10.1007/978-3-319-13960-9 5
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Fig. 1. Comparing static and dynamic query priorities for a single priority class

classes of workloads, for example transactional queries over analytical queries to
achieve almost constant response-time of transactions independent of the analyt-
ical workload. However, static prioritization falls short on enforcing a fair share
of database resources among sessions with different query execution times, since
users with similar priorities are scheduled strictly first-in-first-out, independent
of the execution time. Enforcing a fair share is desirable in many scenarios, where
many users work concurrently on a shared database system.

We further illustrate the shortcoming of static priority-based scheduling using
a simple example: Assuming that two concurrent sessions are connected to the
database and simultaneously issue queries. As both sessions are connected as
analytical clients they will be assigned the same static priority for executing their
queries. Now, the first session issues queries that are executed in 100 ms and the
second session issues queries against the database that take on average 300 ms.
If all queries are executed without think time and sequentially, for simplicity we
assume a single processing unit, they will basically interleave. As long as the
difference in query execution time between these two sessions is not too big, this
will not result in any performance degradations. However, in the above case the
average response time of the query will be dominated by the wait latency for the
longer query and quickly approach 400 ms. For the heavier query the additional
latency does not have as big an impact and it will account for close to 75 % of
the consumed resources.

We analyzed this motivating use-case with a scheduling simulator to compare
dynamic and static query priorities. Figure 1 shows the result of this simulation.
As expected, in the case of the static priorities the second longer query con-
sumes the majority of the resources thus violating the fair- share scheduling.
Using dynamic priorities as proposed in detail in this paper, the scheduler will
distribute the available resources equally among the two queries independent of
the actual run-time of the query.

To summarize the above simulation, we can derive that traditional queue-
based scheduling for fair-share scheduling works only well for such scenarios,
where the independent time quanta that are executed, are roughly equal or
the tasks can be preempted. Both properties do not hold true for task-based
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scheduling in in-memory databases as tasks can have varying sizes and can be
typically not be preempted.

In this paper, we propose an extension of TAMEX that enforces a fair share
of database execution time by dynamically adjusting priorities of queries. The
remainder of the paper is structured as follows: In the next section, we give
a brief overview of the assumed system model and in Sect. 2.2 the task-based
query execution with TAMEX. Section 3 describes our model for dynamic query
prioritization and Sect. 4 the architecture of our extension to TAMEX. In Sect. 5,
we evaluate our proposed solution with an enterprise typical query workload.
The next section discusses related work and the last section closes with some
concluding remarks and directions for future work.

2 System Model and Task-Based Query Execution

This section gives a brief overview of the underlying system model of an IMDBMS,
as well as the task-based query execution framework TAMEX [WGP13], which
we use for implementing dynamic query prioritization.

2.1 System Model

We assume an IMDBMS following the system model described in [Pla11], where
data is physically stored decomposed in a column-oriented structure. To achieve
high read and write performance, an insert-only approach is applied and the
data store is split in two parts, a read optimized main partition and a write
optimized differential store [KKG+11]. We apply a multi version concurrency
control (MVCC) based on transaction IDs (TID) to determine which records are
visible to each transaction when multiple transactions run in parallel. See [Pla11]
for more details. As our proposed approach for dynamic query prioritization is
largely agnostic to specific architectural details of the database. it can be easily
generalized and applied to other architecture. However, our approach assumes
that the execution of queries can be split in small atomic tasks, which can be
executed in parallel, as we will explain in the next section.

2.2 Task-Based Query Execution with TAMEX

This section gives an overview of the task-based query execution framework
TAMEX, which is implemented based on HYRISE [GKP+10].

We understand task-based query execution as the transformation of the log-
ical query plan into a set of atomic tasks that represent this plan. These tasks
may have data dependencies, but otherwise can be executed independently. We
consider such an atomic task as the unit for scheduling. Compared to scheduling
whole queries, a task-based approach provides two main advantages: better load
balancing on a multiprocessor system, as well as more control over progress of
query execution based on priorities. The second advantage is achieved as splitting
queries into small units of work introduces natural scheduling intervals during
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query execution, where lower priority queries can be paused to run higher prior-
ity queries without the need of canceling or preempting the low priority query.
Assuming a sufficiently small task size, processing units can be freed quickly to
execute incoming high priority queries. With the advent of modern many-core
processors, the efficient splitting of monolithic queries becomes more and more
important as for example stated in [BTAs13].

TAMEX adopts this concept by transforming incoming queries into a directed
acyclic graph of tasks and schedules these tasks based on priorities. For TAMEX,
we extended HYRISE to support parallel execution of queries, as well as intra-
query parallelism, based on multi-threading. Figure 2 provides an overview of the
main components of TAMEX and the extensions for dynamic query execution,
which are explained later in Sect. 4.2; a more detailed description of TAMEX
is provided in [WGP13]. An incoming query is compiled and transformed into
a task graph. The task scheduler assigns all ready tasks to a priority queue;
all tasks with unmet dependencies are placed into a wait set until they become
ready. Worker threads of a threadpool take the tasks from the queue and execute
them. Each thread is assigned to a physical processing unit and executes one
and only one task. That way, incoming high priority tasks can start immediately
executing on all processing units, once the currently running tasks have finished.
While this static scheduling approach can effectively prioritize a query class
over another, it cannot enforce a fair share of resources if queries with similar
priorities are issued. In this paper, we build on TAMEX by setting these priorities
dynamically to enforce a given resource share for query classes.

3 Dynamic Shared Query Execution

As motivated in the Introduction, fair resource sharing is of great importance
in systems with heterogeneous workloads. In this section, we will introduce the
concept of Dynamic Shared Query Execution with the goal to approximate a fair
resource usage between database sessions on a single system.

In the following, we will describe a new dynamic shared query scheduler
with the objective of scheduling queries from independent session on a fair dis-
tribution of the available computing hardware. We achieve a good scheduling
performance by dynamically re-calculating priorities of the different queries of
independent sessions so that resources consumption is better distributed. Since
scheduling of queries is a time-critical operation we take special care in opti-
mizing these operations to minimize the impact of dynamically adjusting the
priorities. In addition, it is possible to manually decide whether or not dynamic
priority adjustments should be made available for the different priority classes.
As a result, we maintain high throughput for transactional queries without addi-
tional scheduling overhead, but achieve a better flexibility for medium and long
running queries.
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3.1 Work-Share Definition

We consider a database management system running on a server with N process-
ing units and S open database sessions during an interval T . Each session si ∈ S
has an assigned priority pi and a set of executed queries Qi(t) at any point in
time t during T . Each time a query s finished, it is added to Qi. We consider
online arrival of queries, meaning that the database has no knowledge about the
future arrival of queries. Each query qi,j ∈ Qi is defined by a set of tasks Oi,j

and an arrival time ti,j . Each task oi,j,n is executed sequentially on one process-
ing unit ni ∈ N and has an assigned amount of work wi,j,n processed by the
database. In our model, a task has exclusive access to a single processing unit
and cannot be preempted.

For each session si we determine the work wi that the database has executed
on behalf of this session at a time t, by

wi(t) =
∑

qi,j∈Qi(t)

∑
oi,j,n∈Oi,j

wi,j,n (1)

and the total work W processed by the database by

W (t) =
∑
si∈S

wi(t) (2)

The share of work wsi of a session si at time t is calculated by

wsi(t) =
wi(t)
W (t)

(3)

Based on the provided priorities pi for each session, each query has a target share
tsi, defined by

tsi =
pi∑

sj∈S pj
(4)

We define the relative share deviation of wsi from tsi as

Δsi(t) =
tsi − wsi(t)

tsi
(5)

Based on the provided definition, we can formulate the problem of shared query
execution as:

Definition 1. Let S = {s1, ..., sn} be the set of active sessions in an interval
T with priorities pi and queries Qi, executed on a database with N processing
nodes. The problem to solve is to provide an assignment of processing units to
tasks oi,j,n during T that minimizes the overall deviation of the work share from
the target share over an interval T:

ΔS =
∫ T

0

∑
si∈S

|tsi − wsi(t)| (6)
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Due to the online arrival of queries, a scheduling algorithm that assigns process-
ing nodes to tasks of queries cannot guarantee optimal schedules. As we assume
non-preemptiveness of tasks, it is possible to find examples for which an online
algorithm produces results far from optimal [LKA04]. A competitive-analysis
or worst-case analysis will produce largely meaningless results. Therefore, we
provide a heuristic approach and experimentally validate its effectiveness.

4 Architecture

This section introduces our heuristic approach for approximating the problem
described in Sect. 3 and a brief overview of the implementation.

4.1 Approximation of Shared Query Scheduling

The basic idea of our approach is to measure the actual work spent on of query
processing for each session and calculate the relative share deviation Δsi(t) for
each session si(t) between certain points in time t. Based on the ranking of
the relative share deviation, we assign priorities to queries with the objective of
minimizing the relative share deviation.

To approximate the overall work share deviation for each user, we have imple-
mented moving average and exponential smoothing [Bro04], both first and sec-
ond order, as heuristics. As we found it hard to justify the choice of parameters
for exponential smoothing and as we obtained more predictable results with the
moving average, we limit our discussion here on the moving average. To calculate
the work shares, we accumulate the work processed for each user, after a task
has been completed. In fixed time intervals, we calculate the work share defined
in Eq. 3. For the moving average, we take the average work share over the last
n intervals to calculate the average work share deviation of Eq. 5:

wsi(t) =
1
n

∑
{t−n,...,t}

wi(t)
W (t)

(7)

In Eq. 7, wi(t) defines the accumulated work of session i over the last observed
period. To assign the dynamic priorities to the session, we use the work share
deviation to sort the sessions and map the priorities accordingly. This approach
introduces two parameters that can be modified to adjust the scheduler to the
current workload. The first parameter is the window size n of the moving average,
as it defines the impact of the currently observed workload compared to the past,
and the second parameter is the interval that is used to evaluate a possible change
in priorities.

4.2 Architecture for Shared Query Scheduling

We have implemented our approach to approximatively solve the dynamic
shared query execution problem described in Sect. 3 based on our database
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Fig. 2. Dynamic query prioritization based on TAMEX

storage engine HYRISE [GKP+10] and our task-based execution framework
TAMEX [WGP13], introduced in Sect. 2.2.

Figure 2 shows an overview of the extension to TAMEX. For each session,
we keep track of the target share calculated by Eq. 4, the work processed for
each session in the current time interval (indicated as Accumulated Work), the
average work share and the dynamic priorities. After a task is completed, the
execution time of this task is added to the accumulated work for the correspond-
ing session. At the end of an interval, an update process calculates the relative
work share deviation and assigns the dynamic priorities accordingly to minimize
the deviation in the next interval.

The update process consists of the following steps: we calculate the work
share as defined in Eq. 3 by dividing the accumulated work for a session by
the total work of all sessions during the considered interval. Once read, the
accumulated work is reset. Next, we incrementally calculate the average work
share using Eq. 7 and determine the relative work share deviation for each user
using Eq. 5. As a last step, we sort all sessions in descending order by this
deviation and assign dynamic priorities accordingly, giving the highest priority
to the session with the highest relative work share deviation. It is important
to mention, that the worker threads executing tasks are not disrupted by the
update process. Figure 2 illustrates the recorded data and the resulting dynamic
priorities. Session s3 gets the highest priority as it has the largest work share
deviation. If the task scheduler places a new task, or one from the Wait Set that
becomes ready, in the ReadyQueue, it updates the priority of the task according
to the dynamic priority of the session.

To achieve the highest possible accuracy the task scheduler would have to
provide global state information about the actual work of each session that is
then updated by the individual execution threads as soon as a single task is fin-
ished. A drawback of this global work share calculation is the global dependency
to accumulate the total work. To alleviate this dependency, we use an atomic
hash-map that maps the individual sessions to a local counter value. Now, this
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state is not shared among all execution threads, but only the threads working
on tasks of the same session access a unique storage location.

This situation can be additionally improved by keeping a copy of this session
map in the thread-local storage of each execution thread that is only lazily
collected from the scheduler once it detects a recalculation of the priorities for
the tasks. Using the thread-local approach basically avoids contention for the
session based work share completely as all manipulations are performed thread-
local and only a single consumer will retrieve the individual items.

The adjustment of the dynamic priorities is triggered by the worker threads
notifying the task scheduler when a task is finished. If the time interval for calcu-
lating an average work share has been passed, the update process, as described
above, is initiated. As we need to sort the list of sessions by relative share devia-
tion, the complexity is O(nlogn), with n being the number of sessions. In practice
we have compared the performance of TAMEX with and without our extension
and could not determine significant performance penalty for up to a 1000 con-
current users.

Since user sessions can be inactive during a period of time when we reevaluate
priorities, we only consider those sessions that have issued work over this period
of time. As long as the session is inactive, it will not bias the priority calculation;
when the session is reactivated, we start the calculation of the moving average
again, without considering the share prior to the inactivity.

5 Evaluation

This section provides an experimental evaluation of our approach towards
dynamic query prioritization, which we described in Sect. 4. Our test machine is
equipped with 2 Intel(R) 5670 CPUs with 6 cores each and 144 GB RAM. The
first two experiments demonstrate the effectiveness of our approach to dynami-
cally adjust priorities to converge to a desired target share. In the third exper-
iment, we evaluate parameters for calculating the moving average and derive
recommendations for choosing them appropriately.

Motivated by the introductory experiment illustrated in Fig. 1, we have set
up an experiment with two sessions, each consisting of a number of equivalent
users that issue a stream of queries to the database without think time. Each
query consists of two table scans and a join, whereas each operator runs in
parallel up to a degree of intra-operator parallelism of 12, corresponding to the
number of threads running in parallel. Due to a different size of input tables,
the query issued by the users of session 1 (S = 1) takes 40 ms processing time
in the database kernel and the query of session 2 (S = 2) 160 ms. Each query has
154 tasks, with a maximum task runtime of about 50 ms for the longer query. We
ran the experiment with these two sessions using a round robin scheduler, as well
as our fair share scheduler that enforces an equal resource share for both sessions.
Each time, the experiment ran for 60 s, whereas the second session started after
10 s and ended after 50 s. We have chosen the window size n of Eq. 7 to be 50
and the interval for updating priorities to 0.2 s.
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Fig. 3. Two sessions issuing queries with different execution times

Figure 3(a) shows the result for the round robin scheduler. For each second,
we have plotted the resource share of the last second. As we take the point of
view of a user outside of the database, we count work processed for a session at
the point of time when an entire query is finished, as opposed to single tasks. In
line with our expectations from the simulation, applying a round robin scheduler
leads to a share equal to the ratio of the runtime of both queries. In Fig. 3(b),
we see that the dynamic prioritization of queries leads to a varying resource
share of each queries averaging to a fair share over the interval between 10 and
50 s. While the round robin fails to distribute the resources equally among the
two sessions, it becomes possible to efficiently schedule queries with different
runtimes and to distribute the resources equally when applying dynamic query
prioritization.

Figure 4 demonstrates the applicability of our approach to a larger number of
sessions and different priorities. This time, all sessions S consist of a single user
issuing a stream of the query described above with 160ms processing time when
executed as a single query on the system. When scheduling all incoming tasks
with a round robin scheduler, each query gets approximately the same share
of the system resources (Fig. 4(a)). In Fig. 4(b), we assigned User 1 a priority of
4 (P = 4) and the remaining users a priority of 1 (P = 1) with the objective of
enforcing a share of 50 % of the total resources for User 1 and 12.5 % for each
of the other users during the interval when all users issue queries in parallel.
In this experiment, our dynamic query prioritization is able to schedule the
queries of all the different sessions according to the assigned priorities.

Choosing the window size for the moving average and the interval length of
updating priories is a trade-off between overall accuracy and adaptation time to
react on changes in the workload. To illustrate this, we have tested five sessions
with equal priorities, issuing a constant stream of queries. One session issues a
query with 160 ms runtime, the other users a query with 40 ms run time. We
start all users at the same time and measure the cumulated work share since
the start for 60 s. Figure 5 shows the results for the calculation of the relative
share deviation with moving average for different window sizes (w) and interval
lengths (i) for one of the five sessions with query length 160 ms.
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Fig. 4. Five sessions issuing queries (160 ms) with different priorities

In Fig. 5(a), we have changed the window size for the moving average and
kept the size of the observation interval constant at 1s. As expected, a larger
window size leads to a smoother curve that converges to the target share of 20 %
without major deviations. A smaller window size shows more spikes, as intervals
with above or below average have a larger impact on calculated work share, but
also adapts faster to workload changes. However, if the window size is chosen too
small, as it is here the case for size 5, the scheduler cannot enforce the overall
target share anymore, as the sample size is too small.

In Fig. 5(b), we changed the interval lengths for the moving average and kept
the window size constantly at 20. For small interval lengths of 0.1 s, the total
time interval of window size multiplied with interval lengths that is considered
becomes so small, that the scheduler cannot systematically decrease the perfor-
mance of the user with the long running query to enforce the target share. The
share of this user is closer now to the share of the round robin scheduler. A large

Fig. 5. Comparing parameters for calculating work share deviation with moving
average
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window size leads to less adjustments of priority and therefor takes longer to
converge, but is more robust to changes in the workload.

Choosing the parameters depends on the number of concurrent connections
and task sizes and is thus workload dependent. To adapt to changing workloads
the scheduler has to observe these parameters and adjust accordingly. The goal
for the scheduler is then to chose the interval to be large enough to include a
significant number of tasks from each active session, allowing to determine a
trend of the work share applying the current set of priorities. It is important
to mention, that it does not dependent on the entire runtime of the issued
queries. The window size has to be chosen based on the average number of
tasks a session executes per interval and the average execution time per task.
For shorter sessions, e.g. occurring in interactive applications, a smaller window
size helps to quickly balance the load and avoid that one session gets too many
resources.

6 Related Work

Workload management for heterogeneous queries has been frequently in the con-
text of web requests [BSUK07,MSAHb03,SHBI+06] and business intelligence
applications [BCD+92,KDW+10]. In contrast to our research, most work on
workload management was specific to disk-based DBMS and considered a query
as the level for scheduling. In general, we can divide the proposed approaches
for managing workloads of different query classes into two classes: external and
internal. The general idea of external workload management is to control the
number of queries that access the database (admission control). Internal work-
load management systems typically control available resources, such as CPU
or main memory, and assign them to queries. Niu et al. [NMP09] give a more
detailed overview of workload management systems for DBMS.

Early work on internal workload management has been published by Carey
et al. [BCD+92,CJL89]. The simulation studies are specific to disk-based DBMS,
as they extensively model disk-based DBMS characteristics such as disk rotation
time or buffer management. A more recent work by McWherter et al. [MSAHb03]
shows the effectiveness of scheduling bottleneck resources using priority-based
algorithms in a disk-based DBMS. Narayanan et al. [NW11] propose a system
for dynamic prioritization of queries to meet given priorities for query classes. In
contrast to our work these approaches rely on multiplexing threads on a number
of processing units and achieve a targeted resource share either centrally, by
prioritizing threads on OS-level or collaboratively, by letting each thread check
its consumed resources regularly and sleeping if a certain quota has been met.
These strategies are unfavorable for in-memory databases on multi-cores, as
execution time is largely dominated by cache locality which is disrupted by
context switches.

More recent work has proposed solutions for adaptive admission control based
on query response time. Schroeder et al. [SHb06,SHBI+06] propose an external
queue management system that schedules queries based on defined service-levels
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per query-class and a number of allowed queries in the database, the so-called
multiprogramming level. Niu et al. [NMP09] propose a solution that manages a
mixed workload of OLTP and OLAP queries by controlling the resources assigned
to OLAP queries depending on the response times of OLTP queries. Krompass
et al. [KKW+10] extended this approach for multiple objectives. The work of
Kuno et al. [KDW+10] and Gupta et al. [GMWD09] propose mixed workload
schedulers with admission control based on query run-time prediction. Although
external workload management systems are applicable to in-memory databases,
they fall short in our scenario, as queries need to get access to a large number
of processing units quickly, e.g. to answer complex interactive queries.

Until recently, scheduling in operating systems and query scheduling in data-
base management systems were working very differently since queries in DBMS
cannot be as easily preempted and were typically very monolithic. With mod-
ern many-core systems, task-based decomposition gives the scheduler in DBMS
more flexibility and we are able to adapt concepts like [XWY+12] to allow fair
scheduling of tasks in IMDBMS.

7 Conclusion and Future Work

In this paper, we have shown that a dynamic priority-based query scheduling can
be effectively applied for IMDBMS to fairly schedule mixed enterprise workloads.
We are planning to further evaluate the performance of our scheduling approach
and extend TAMEX to leverage further information about task characteristics
in scheduling decisions. We are further planning to take resource requirements
besides CPU, such as cache and memory bandwidth into account to place tasks
in a way that will minimize resource conflicts.
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Abstract. The mixed database workloads found in enterprise applica-
tions are comprised of short-running transactional as well as analytical
queries with resource-intensive data aggregations. In this context, caching
the query results of long-running queries is desirable as it increases the
overall performance. However, traditional caching approaches are ineffi-
cient in a way that changes in the base data result in invalidation or recal-
culation of cached results.

Columnar in-memory databases with a main-delta architecture are
well-suited for a novel caching mechanism for aggregate queries that
is the main contribution of this paper. With the separation into read-
optimized main storage and write-optimized delta storage, we do not
invalidate cached query results when new data is inserted to the delta
storage. Instead, we use the cached query result and combine it with
the newly added records in the delta storage. We evaluate this caching
mechanism with mixed database workloads and show how it compares
to existing work in this area.

1 Introduction

The classic distinction between online transactional processing (OLTP) and
online analytical processing (OLAP) is no longer applicable in the context of
modern enterprise applications [1,2]. Instead of associating transactional or ana-
lytical queries with separate applications, a single modern enterprise application
executes both – transactional and analytical – queries. Within the available-to-
promise (ATP) application, for example, the OLTP-style queries represent prod-
uct stock movements whereas the OLAP-style queries aggregate over the product
movements to determine the earliest possible delivery date for requested goods
by a customer [3]. Similarly, in financial accounting, every financial accounting
document is created with OLTP-style queries, while a profit and loss statement
needs to aggregate over all relevant documents with OLAP-style queries that
are potentially very expensive [1].

To speed-up the execution of long-running queries, techniques such as query
caching and the introduction of materialized views have been proposed [4]. How-
ever, the inherent problem with query caching and materialized views is that
whenever the base data is modified, these changes have to be propagated to
ensure consistency. While a database query cache can simply flush or invalidate
the cache, a process known as materialized view maintenance, is well established
c© Springer International Publishing Switzerland 2015
A. Jagatheesan et al. (Eds.): IMDM 2013/2014, LNCS 8921, pp. 69–81, 2015.
DOI: 10.1007/978-3-319-13960-9 6



70 S. Müller and H. Plattner

in academia [4–6] and industry [7,8] but with focus on traditional database
architectures and data warehousing [6,9,10]. For purely analytical applications,
a maintenance downtime may be acceptable, but this is not the case in a mixed
workload environment as transactional throughput must always be guaranteed.
Also, the recent trend towards columnar in-memory databases (IMDBs) that are
able to handle transactional as well as analytical workloads on a single system
[11–13] has not been considered.

A columnar IMDB for transactional and analytical workloads has some
unique features and preferred modes of operating [1,2]. To organize the attributes
of a table in columns and to encode the attribute values via a dictionary into
integers, known as dictionary encoding [14], has many advantages such as high
data compression rates and fast attribute scans. But this organization comes at a
certain price. In transactional workloads we have to cope with high insert rates.
A permanent reorganization of the attribute vectors (columns) would not allow
for a decent transactional performance, because new values appear and have to
be included in the encoding process which complicates the request to keep the
attribute dictionaries sorted. A way out of this dilemma is to split the attribute
vectors of a table into a read-optimized main storage and a write-optimized delta
storage. All new inserts, updates, and deletes are appended to the delta storage
with separate unsorted dictionaries. At certain times the attribute vectors are
merged with the ones in the main storage and a new dictionary (per attribute)
is established [15]. Since the main storage is significantly larger than the delta,
the insert performance becomes acceptable and the analytic performance is still
outstanding [16].

The fact that we can handle transactional and analytical workloads in one
system has tremendous benefits to the users of the system. Not only the freedom
of choice what and how to aggregate data on demand but the instant availabil-
ity of analytical responses on even large operational data sets will change how
business will be run. A consequence of this desirable development will be a signif-
icant increase in the analytical workload with aggregate queries on the combined
system.

To cope with the increase of analytical queries on transactional data, we
propose an aggregate query caching mechanism that leverages the main-delta
architecture of columnar in-memory databases. Because of the separation into
main and delta storage, we do not invalidate cached aggregate queries when new
records are inserted to the delta storage. Instead, we use the cached results of
the aggregate queries in the main storage and combine them with the newly
inserted records in the delta storage.

After discussing related work in Sect. 2, we outline the algorithm and archi-
tecture of our implementation in Sect. 3. In Sect. 4 we evaluate our caching mech-
anism and conclude with an outlook on future work in Sect. 5.

2 Related Work

The caching of aggregate queries is closely related to the introduction of material-
ized views to answer queries more efficiently. To be more precise, a cached query
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result is a relation itself and can be regarded as a materialized view. Gupta gives
a good overview of materialized views and related problems in [4]. Especially, the
problem of materialized view maintenance has received significant attention in
academia [5,6,17]. Database vendors have also investigated this problem thor-
oughly [7,8] but to the best of our knowledge, there is no work that evaluates
materialized view maintenance strategies in columnar in-memory databases with
mixed workloads. Instead, most of the existing research is focused on data ware-
housing environments [6,9,10] where maintenance downtimes may be acceptable.

The summary-delta tables concept to efficiently update materialized views
with aggregates comes close to our approach as the algorithm to recalculate the
materialized view is based on the old view and the newly inserted, updated,
or deleted values [18]. However, this approach updates the materialized views
during a maintenance downtime in a warehousing environment and does not
consider the newly inserted operational data during query processing time which
is necessary in a transactional environment. Further, it does not take the main-
delta architecture and the resulting merge process into account.

3 Aggregates Caching

In this section, we describe the basic architecture of our aggregate query caching
mechanism and the involved algorithms. The cache is implemented in a way that
is transparent to the application. Consequently, the caching engine has to ensure
data consistency by employing an appropriate maintenance strategy.

While aggregate functions can be categorized into distributive, algebraic and
holistic functions [19] we limit our implementation to distributive functions with-
out the distinct keyword, such as sum, min, max, or count as they are most com-
monly found in analytical queries [16] and because they are self-maintainable with
respect to insertions [18]. Updates and deletes require an extension of our algo-
rithm as explained in Sect. 3.5. Since algebraic functions can be computed by com-
bining a constant number of distributive functions, e.g., avg = sum / count, they
can also be supported given the assumption that a cached aggregate query with
an avg function is rewritten to include both the sum and count functions.

3.1 Architecture and Algorithm

The basic architecture of our aggregates caching mechanism is illustrated in
Fig. 1. With the columnar IMDB being divided into main and delta storage,
the aggregates caching manager component can distinguish between these and
read the delta storage explicitly and combine this result with the cached query
result. The relations of cached aggregate queries are each stored in a separate
database table. Further, a global cache management table (CMT) stores the
meta data for each cached aggregate query including access statistics. Also, it
maps the hash of the normalized SQL string to the database table that holds
the cached results of the aggregate query.

Every parsed query with supported aggregate functions, is handled through
the aggregates caching manager. To check if the query already exists in the cache,
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Fig. 1. Aggregates query caching architecture

the hash value of the normalized SQL string is computed and looked up in the
CMT. If the aggregates caching manager does not find an existing cache entry for
the corresponding SQL query, it conveys the query without any changes to the
underlying main and delta storage. After query execution, it is checked whether
the query is suitable for being cached depending on the cache admission policy
(cf. Sect. 3.6). If this is the case, the query result from the main storage is cached
for further reuse. This is done by creating a separate table that only contains the
results of the specific query. The name of the table equals the generated hash
value of the SQL string and is referenced by the CMT.

Listing 1.1. A simple aggregate query

SELECT month , account , SUM(amount ) FROM sa l e s
WHERE year=2013 GROUP BY month , account

In case, the query is already cached, the original aggregate query (an exam-
ple is shown in Listing 1.1) is executed on the delta storage. Listing 1.2 shows
how the result from the delta storage is combined with the cached query result
as persisted in the table agg08f15e (assuming that agg08f15e is the hash of
the example query sql string) and returned to the query processor. We use a
UNION ALL query to not eliminate duplicates, but aggregate them by applying
the original aggregate query on the combined results.

Listing 1.2. Combining the cached aggregate query with results from the delta storage

SELECT month , account , SUM(amount ) FROM
(SELECT ∗ FROM agg08f15e
UNION ALL
SELECT month , account , SUM(amount )
FROM s a l e s d e l t a
WHERE year=2013 GROUP BY month , account )

WHERE year=2013 GROUP BY month , account
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3.2 Aggregates Maintenance Strategies

To ensure consistency, cached aggregate queries have to be maintained accord-
ingly. The timing of existing materialized view maintenance strategies can be
distinguished between eager and lazy. While eager strategies immediately prop-
agate each change of base tables to the affected materialized views [5], lazy
(or deferred) strategies maintain materialized views no later than the time the
materialized view is queried [8]. Independently of the timing, one can divide
maintenance strategies into full and incremental ones. Full strategies maintain
the aggregate by complete recalculation using its base tables. Incremental strate-
gies store recent modifications of base tables and explicitly use them to main-
tain the views. Based on the fact that an incremental calculation of aggregates
is always more efficient than a full recalculation [6], we focus on incremental
strategies, despite the fact that some aggregate functions cannot be maintained
incrementally [18].

The proposed aggregate query caching mechanism does neither maintain the
cached aggregate at insert time nor at query time. Instead, it is done incre-
mentally during the delta merge process. Since it is possible to predict the query
execution time of in-memory databases very accurately [20], we create cost mod-
els for each maintenance strategy. The costs are based on a simplified workload
model that consists of a number of records Nw written into the base table and
a number of read aggregates Nr of the cached aggregate queries.

Eager Incremental Update (EIU). Since the cached aggregate query is
maintained after each insert, the cost for accessing the aggregate query is just
a single read. The maintenance costs are tied to a write into the base table. As
it is an incremental strategy, the costs consist of the read time TRA to retrieve
the old value and the write time TW for the new value into the cached aggregate
table.

Lazy Incremental Update (LIU). All maintenance is done on the first read
accessing the cached aggregate query. The maintenance costs Nwk

· (TRA + TW )
and cost to read the requested aggregate TRA are combined into one function.
The maintenance costs depend on the number of writes with distinct grouping
attribute values per read Nwk

which is influenced by the order of the queries in
a workload and the distribution of the distinct grouping attributes.

Merge Update (MU). The costs of a read Trk is the sum of an access to
the cached aggregate query TRA and an on-the-fly aggregation on the delta table
whereas TRDk

defines the costs for the aggregation for the kth read. The merge
update strategy updates its materialized aggregate table during a merge process.
Therefore, the tuples in delta storage have to be considered. The merge time Tm

for the number of cached aggregates NA is the sum of a complete read of the
cached aggregate query tables NA ·TRA, a read of the delta TRDk

, and the write
of the new aggregate (NA + NnewWD) · TW . Equation 1 shows the calculation of
the total execution time based on the time for reads and the merge.

Ttotal = Nm · Tm + Nr · Trk (1)
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3.3 Optimal Merge Interval

The costs of our aggregates caching mechanism and the MU maintenance strat-
egy mainly depend on the aggregation performance on the delta storage which
decreases linearly with an increasing number of records [21]. However, the merge
operation also generates costs that have to be considered. In the following, we
propose a cost model which takes the costs for the merge operation and the costs
for the aggregation on the delta storage into account. Similarly to the cost model
for the merge operation introduced by Krüger et al. [15], our model is based on
the number of accessed records to determine the optimal merge interval for one
base table of a materialized view.

Equation 2 calculates the number of records Coststotal that are accessed dur-
ing the execution of a given workload. A workload consists of a number of reads
Nr and a number of writes Nw. The number of merge operations is represented
by Nm. The first summand represents the accesses that occur during the merge
operations. Firstly, each merge operation has to access all records of the initial
main storage |CM |. Secondly, previously merged records and new delta entries
are accessed as well [15]. This number depends on the number of writes Nw in
the given workload divided by two (since the number of records in the delta
increases linearly). The second summand determines the number of accesses for
all reads Nr on the delta. As before, the delta grows linearly and is speed-up by
the number of merge operations Nm.

Coststotal = Nm · (|CM | +
Nw

2
) + Nr ·

Nw

2

Nm + 1
(2)

Costs′
total = |CM | +

Nw

2
− Nr · Nw

2 · N2
m + 4 · Nm + 2

(3)

Nm =

√
2 · |CM | · Nw · Nr + N2

w · Nr − 2 · |CM | − Nw

2 · |CM | + Nw
(4)

The minimum is calculated by creating the derivation (Eq. 3) of our cost
model and by obtaining is root (Eq. 4). Nm represents the number of merge
operations. Dividing the total number of queries by Nm returns the optimal
merge interval.

3.4 Join Operations

When processing aggregate queries with join operations, the complexity of the
caching mechanism and the involved MU maintenance strategy increases. Instead
of combining the cached result with the query result on the delta storage, the join
of every permutation has to be computed before these results can be combined.
In Fig. 2, we have illustrated the involved tables in the main and delta partition
of a simple aggregate query including a join of two tables. While the cached
query result is based on a join of the header and line items table in the main
partition, we have to compute the joins of header’ and line items’ tables in
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Fig. 2. Aggregate queries with join operations

the delta partition, and additionally the joins between header’ and line items
as well as line items’ and header. When the cached aggregate query consists
of three or more joined tables, the necessary join operations between delta and
main storage increase exponentially. The number of necessary joins based on the
number of tables t in the aggregate query can be derived as JoinOps = 2t − 1.

After analyzing enterprise workloads, we found out that aggregates for
accounting, sales, purchasing, stocks etc. always need a join of the transaction
header and the corresponding line items. Interestingly, new business objects such
as sales orders or accounting documents are always inserted as a whole, therefore
the new header and the new line items are persisted in the delta storage. Using
these semantics of the business objects can reduce the number of necessary join
operations from three to just one (a join of header and line items in the delta). In
case a business object can be extended after the initial insert, the header entry
could already be merged into the main storage. Consequently, we would need an
additional join of the line items’ table in the delta with the header table in
the main.

3.5 Updates and Deletes

The presented algorithm is valid for an insert-only approach which handles logi-
cal updates or deletes by inserting differential values to the delta storage. When
updating a tuple, and only inserting the new, updated value to the delta storage,
the algorithm needs to be extended. We have identified two possible solutions:
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We can either retrieve the old value from main storage, calculate the differential
value and insert this value in the delta storage and flag it accordingly, so that
the merge process does not consider this tuple. Or, to avoid an adaption of the
merge process, we could also maintain a separate data structure that holds the
differential values for all updates or deletes and include these values in the delta
aggregate query.

Min and max functions are not self-maintainable and therefore, for every
update or delete, we have to perform additional checks. For deletes, we have
to check if the deleted tuple is a min or max tuple. For updates, we have to
check if the updated value is higher than a cached max aggregate or lower than
a cached min aggregate. If that is the case, the cached min or max aggregate has
to be invalidated and recalculated from the main and delta storage.

Despite the inherent overhead, we believe that this process is viable, because
the percentage of updates and deletes is very low in enterprise applications [15].

3.6 Cache Management Strategies

In order to limit the needed memory space and reduce the inherent compu-
tational overhead of the caching algorithm, we only want to admit the most
profitable aggregate queries to the cache. The query cache management takes
place at query execution time for cache admission and replacement, and dur-
ing the merge process to determine which aggregate queries to incrementally
maintain or to evict from the cache.

We have identified two approaches to determine whether to cache an aggre-
gate query after it has been executed: The first way is to measure the execution
time of the aggregate query and only cache queries that are above a system-
defined threshold. Another way is to calculate the profit of using a cached query
over an on-the-fly aggregation. The definition of the profit for query Qi can
be described with the execution time for the aggregation on the main storage
AggMaini and delta storage AggDeltai divided by the time to access a cached
aggregate query AggCachedi and the execution time of the aggregation on the
delta storage AggDeltai.

profit(Qi) =
AggMaini + AggDeltai

AggCachedi + AggDeltai
(5)

This profit metric will change when the delta storage grows, but it is a good
initial indicator to decide which queries to admit to the cache. When the cache
size reaches a system-defined size limit, we can replace queries with lower profits
or execution times by incomings queries with higher profits or execution times.

During the merge process, it has to be decided which cached aggregate query
to incrementally update or evict from the cache. For this process, we can use
another metric that includes the average frequency of execution λi of query Qi

which is calculated based on the Kith last reference and the difference between
the current time t and the time of the last reference tK :

λi =
Ki

t − tK
(6)
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The profit of a query Qi can then be extended as follows:

profit(Qi) =
λi · (AggMaini + AggDeltai)

AggCachedi + AggDeltai
(7)

4 Evaluation

We implemented the concepts of the presented aggregates caching mechanism in
SanssouciDB [16] but believe that an implementation in other columnar IMDBs
with a main-delta architecture such as SAP HANA [11] or Hyrise [13] will lead
to similar results. Instead of relying on a mixed workload benchmark such as
the CH-benchmark [22], we chose an enterprise application that generates a
mixed workload to the database with real customer data. The identified financial
accounting application covers OLTP-style inserts for the creation of accounting
documents as well as OLAP-style queries to generate reports such as a profit
and loss statement. The inserts were generated based on the original customer
data set covering 330 million records in a denormalized single table. We then
extracted 1,000 OLAP-style aggregate queries from the application and validated
these with domain experts. The query pattern of the aggregate queries contain
at least one aggregate function with optional group by clauses and predicates.
Further, nested subqueries are supported. Mingling both query types according
to the creation times (inserts) and typical execution times (aggregate queries)
yielded a mixed workload which our evaluations are based upon.

4.1 Aggregates Caching

The strength of a caching mechanism is to answer recurring queries. To compare
our approach to a standard query cache that gets invalidated whenever the
base data changes, we have created a benchmark based on a mixed workload of
10,000 queries with 90 % analytical queries and 10 % transactional insert queries.
The 9,000 analytical aggregate queries were randomly generated from the 1,000
distinct queries. The average execution time on a 40 core server with 4 Intel
Xeon E7-4870 CPU each having 10 physical cores and 1 TB of main memory
when using no cache was 591 ms which dropped down to 414 ms with a standard
query cache. The average execution time of the aggregates cache was at 74 ms,
outperforming the standard query cache by nearly a factor of six.

With an increasing number of distinct aggregate queries, the performance of
the proposed aggregates caching mechanisms decreases linearly. With a workload
of 100 % distinct aggregate queries, where no cache reuse takes place, we mea-
sured the overhead of the aggregates caching mechanism. When caching every
incoming aggregate query, this overhead was at 7 % compared to not using the
cache, mainly due to the execution time of creating the table that holds the
results of the cached aggregate query.
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Fig. 3. Measuring the total time of a workload with a varying ratio of inserts.

4.2 Aggregates Maintenance Strategies Under Varying Workloads

To compare the aggregates caching mechanisms and the involved maintenance
strategy to the strategies described in Sect. 3.2, we have changed the benchmark
to varying read/write ratios and a workload of 1,000 queries. A read represents
an analytical query with an aggregation and a write represents an insert to
the base table which contains one million records. The results as depicted in
Fig. 3 reveal that when using no materialization (NoMat), the time to execute
the workload decreases with an increasing ratio of inserts because an on-the-
fly aggregation is more expensive than inserting new values. The EIU and LIU
strategies use materialized aggregates to answer selects and perform much better
with high select ratios than no materialization. EIU and LIU have almost the
same execution time for read-intensive (less than 50 % inserts) workloads. Reads
do not change the base table and the materialized aggregates stay consistent.
Hence, maintenance costs do not dominate the execution time of the workload
and the mentioned strategies perform similarly. With an increasing number of
inserts, the performance of EIU decreases nearly linearly while LIU can con-
dense multiple inserts within a single maintenance step. The MU maintenance
strategy, which the proposed aggregates query caching mechanism is based on,
outperforms all other strategies when the workload has more than 40 % insert
queries. The low performance for read-intensive workloads is based on the fact,
that both, the cached aggregate and the delta storage have to be queried and
even an empty or small delta implies a small overhead with the current imple-
mentation.

4.3 Merge Interval

To validate the cost model for the optimal merge interval, introduced in Sect. 3.3,
we have created a benchmark and compared it to our cost model. The benchmark
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executed a workload of 200,000 queries with 20 % selects and a varying base table
size of 10 M, 20 M, and 30 M records. We have used different merge intervals with
a step size of 3,000 queries starting with 1,000 and compared the best performing
merge interval to the one predicted by our cost model. The results reveal that
the values predicted by our cost model have a mean absolute error of 10.6 %
with the remark that our approximation is limited by the chosen step size.

4.4 Object-Aware Join Operations

To evaluate the overhead of joining two tables when using the aggregates caching
mechanism, we have split the single, denormalized table into a table that con-
tains 30 M header records and a table with 311 item records. The workload as
presented in Sect. 4.1 was adjusted accordingly so that the queries contain a join
operation of the header and items table. With the aggregates caching mecha-
nism, the time needed to join these two tables, divided in main and delta parti-
tions, increases with a growing number of records in the delta storage, as shown
in Table 1. Leveraging the business semantics of the chosen financial applica-
tion which states that header and belonging item records are always inserted
together, we can employ the object-aware join which reduces the number of nec-
essary joins from three to one (cf. Sect. 3.4). This reduces the execution times
significantly by a factor of up to 15.

Table 1. Aggregate cache execution times with join queries

Records in delta Execution times in ms Speedup factor

No join Join Object-aware join

0 2.69 4.01 2.95 1.36

1,000 3.24 61.87 4.39 14.10

10,000 5.32 112.89 7.81 14.46

25,000 8.79 247.29 15.65 15.80

50,000 14.58 362.40 23.85 15.20

5 Conclusions

In this paper, we have proposed a novel aggregate query caching strategy that
utilizes the main-delta architecture of a columnar IMDB for efficient materialized
view maintenance. Instead of invalidating or recalculating the cached query when
the base data changes, we combine the cached result of the main storage with
newly added records that are persisted in the delta storage. We have compared
and evaluated the involved materialized view maintenance strategy to existing
ones under varying workloads. Also, we have created a cost model to determine
the optimal merge frequency of records in the delta storage with the main stor-
age. To optimize the caching mechanism, we have discussed cache admission and
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replacement strategies, and an object-aware join mechanism. Further, we have
outlined how physical updates and deletes can be handled efficiently. For evalu-
ation, we have modeled a mixed database workload based on real customer data
and the financial accounting application, revealing that our aggregates cache
outperforms a simple query cache by a factor of six.

One direction of future work is the investigation of transactional properties
when handling updates and deletes. Also, we plan to examine ways to persist the
business semantics for object-aware join operations and to evaluate additional
enterprise applications.

Acknowledgements. The authors would like to thank the SAP HANA team for the
cooperation including many fruitful discussions.
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Abstract. With the fundamental change of hardware technology, main-
memory database systems have emerged as the next generation of DBMS.
Thus, new methods to execute transactions in a serial, lock-free mode
have been investigated and successfully employed, for instance in H-Store
or HyPer. Although these techniques allow for unprecedentedly high
throughput for suitable workloads, their throughput quickly diminishes
once unsuitable transactions, for instance those crossing partition bor-
ders, are encountered. Still, little research concentrates on the overdue
re-evaluation of traditional techniques, that do not rely on partitioning.

This paper studies strict timestamp ordering (STO), a “good old”
technique, in the context of modern main-memory database systems
built on commodity hardware with high memory capacities. We show
that its traditional main drawback – slowing down reads – has a much
lower impact in a main-memory setting than in traditional disk-based
DBMS. As a result, STO is a competitive concurrency control method
which outperforms the partitioned execution approach, for example in
the TPC-C benchmark, as soon as a certain percentage of the workload
crosses partition boundaries.

1 Introduction

In recent years, hardware with large capacities of main memory has become avail-
able, leading to a renewed interest in main-memory database systems. Here, page
faults no longer need to be compensated by executing parallel transactions, which
allows for removing many synchronization components that are indispensable in
traditional, disk-based database systems. Harizopoulos et al. [HAMS08] found,
that most time spent executing a transaction is actually used by components
like buffer manager, lock manager and latching.

Without the need for hiding I/O latencies, other execution paradigms like
partitioned serial execution, as first investigated by Kallman et al. [KKN+08] in
their H-Store prototype, become viable alternatives to traditional locking. Here,
transactions are executed sequentially on each partition of the data without the
need for any concurrency control at all.

Even though a sequential execution approach leads to outstanding perfor-
mance when the data and workload allow for partitioning in a suitable way
c© Springer International Publishing Switzerland 2015
A. Jagatheesan et al. (Eds.): IMDM 2013/2014, LNCS 8921, pp. 82–93, 2015.
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Fig. 1. Throughput decrease related to the ratio of part partition-crossing transactions.

[KKN+08,KN11], partition crossing transactions quickly lead to a deteriora-
tion in throughput, even on a single node without additional network delays
(see Fig. 1). One reason is that current implementations often rely on coarse
granularity synchronization mechanisms, like the full database lock used in the
HyPer DBMS prototype [KN11].

In this paper, we reinvestigate the “good old” timestamp-based concurrency
control as suggested in [BHG87,Car83] decades ago. Major drawbacks of the
timestamp approach – like having to write a timestamp for every read – have to
be re-evaluated when data resides in main-memory.

The remainder of this paper is structured as follows: In Sect. 2, we will intro-
duce both partitioned serial execution, as well as the strict timestamp ordering
approach (STO) evaluated in this work. Section 3 describes our implementation
of STO inside the HyPer database system prototype and highlights the most
severe adjustments required when using timestamp-based concurrency control
mechanisms. We offer a thorough evaluation of STO, as well as a comparison of
STO with partitioned serial execution in Sect. 4. Section 5 concludes this paper.

2 Formal Background

Before discussing the implementation of strict timestamp ordering in HyPer,
we will provide the theoretical background of the algorithm. Additionally, we
outline serial execution and partitioned execution, which we will compare to
strict timestamp ordering.

2.1 Serial Execution

Traditional disk-based database systems frequently rely on locking to achieve
serializability among concurrent transactions. When reading or writing data to
disk, this is essential since I/O latency need to be masked. In main-memory
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database systems, however, the need for masking I/O misses no longer exists
allowing for the efficient serial execution of suitable workloads without tradi-
tional concurrency control.

H-Store [KKN+08] pioneered the idea of removing buffer management, as
well as locking and latching from main-memory database systems, allowing
for the efficient execution of partitionable workloads with minimal overhead.
This concept, which we refer to as serial execution, has since been picked up
by other main-memory database systems, for instance the commercialized ver-
sion of H-Store named VoltDB [Vol10] as well as our HyPer research prototype
DBMS [KN11].

Unlike VoltDB, HyPer also supports mixed OLTP/OLAP applications by
separating the two disparate workloads using virtual memory snapshotting
[MKN11]. Here, we concentrate only on the OLTP synchronization.

2.2 Partitioned Execution

Scaling the transactional throughput when using serial execution is possible by
running multiple serial execution threads in parallel for disjoint partitions of the
data. As shown by Curino et al. [CZJM10], some workloads can be partitioned
such that cases where a transaction has to access multiple partitions are rare.
For the TPC-C benchmark1, for instance, only 12.5 % of all transactions access
more than one partition of the data.

Other main memory database systems, which rely on partitioning, disallow
the execution of transactions which might access more than one partition of the
data. In contrast, HyPer executes transactions assuming that they will operate
on only one data partition. If a transaction accesses data outside its own par-
tition, a database lock is acquired causing transactional processing to fall back
into serial execution mode without concurrency on separate partitions. After
the transaction has finished, the database lock is released and concurrent exe-
cution on all partitions of the database is resumed. We call this execution mode
partitioned execution or PE for short.

2.3 Strict Timestamp Ordering (STO)

Timestamp-based concurrency control uses timestamps for synchronization
instead of locks. From the outside it seems that the transactions are executed
sequentially according to their starting time. In other words, the scheduler gen-
erates serializable schedules that are equal to the serial execution of the trans-
actions ordered by their starting time.

To achieve this, the transaction manager assigns a timestamp TS(Ti) to
each transaction Ti at its start and guarantees that the timestamp of trans-
actions that started later is always higher than the timestamps of all earlier
transactions. These timestamps are used to guarantee the Timestamp Ordering
(TO) rule: if two operations pi(x) and qj(x) are in conflict, i.e. they access the

1 See http://www.tpc.org/tpcc/.

http://www.tpc.org/tpcc/


An Evaluation of Strict Timestamp Ordering Concurrency Control 85

same tuple x and at least one operation is a write operation, then the operation
of the transaction with the lower timestamp is always executed first. Thereby,
the resulting schedule is equal to the serial execution of the transactions ordered
by their timestamp and, as a consequence, it is serializable.

In order to enforce the TO rule, the database system has to save the time-
stamp of the transaction which has last read tuple x, and the timestamp of the
transaction which has last changed tuple x. In the following, these timestamps
are denoted as readTS(x) and writeTS(x).

With these meta data, the transaction manager is able to perform the fol-
lowing test, which enforces the TO rule:

1. ri(x): Ti wants to read x:
(a) If TS(Ti) < writeTS(x), the TO rule would be violated. Thus, the trans-

action Ti has to be aborted.
(b) Otherwise, allow access and set

readTS(x) := max(TS(Ti), readTS(x)).
2. wi(x): Ti wants to write x:

(a) If TS(Ti) < readTS(x) or TS(Ti) < writeTS(x),
the TO rule would be violated. Thus, the transaction Ti has to be aborted.

(b) Otherwise, allow access and set writeTS(A) := TS(Ti).

It is required that write operations on the same data tuple are executed
atomically and write and read operations are mutually excluded.

According to [BHG87] and [CS84], this algorithm is called Basic Timestamp
Ordering (BTO). It generates serializable schedules, but does not guarantee
recoverability. In fact, aborted transactions can cause inconsistency, as another
transaction which accessed dirty data could already be committed.

As recoverability is essential for database systems, we employ an extension of
Basic Timestamp Ordering called Strict Timestamp Ordering (STO) [BHG87].
STO does not only provide recoverable schedules, but also strict schedules. That
means, that no uncommitted changes of a running transaction are overwritten
or read by another transaction. This is prevented by the use of a dirty bit. Each
transaction marks tuples with uncommitted changes by setting the dirty bit and
other transactions accessing such a tuple have to wait until the dirty bit is unset,
which happens when the previous transaction commits or is rolled back. In order
to avoid deadlocks, the transaction manager has to ensure that a transaction
never waits for younger transactions. Thereby, cyclic waiting is prevented, which
is one of the necessary Coffman conditions for a deadlock [CES71].

3 Implementation of STO

In order to evaluate the performance of STO, we used the database system
HyPer [KN11] to implement the described algorithm. HyPer is an in-memory,
high-performance hybrid OLTP and OLAP DBMS that originally relies on
sequential execution for transaction processing. To further improve transac-
tion processing throughput, transactions are not interpreted but are compiled to
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machine code using the LLVM compiler back-end. This removes interpretation
overhead at runtime and improves hardware optimizations, for example branch
prediction [Neu11].

The implementation of STO in HyPer required not only a new transaction
manager, but also architectural modifications because of concurrency inside par-
titions. These impacts of STO on the architecture will be described in Sect. 3.2.
Before that, the basic data structures needed by the STO implementation are
presented to provide a better understanding of the implementation.

3.1 Data Structures

Besides the read and write timestamps, further data structures were necessary.
To avoid that dirty data is read or overwritten, a dirty bit is needed. Furthermore,
because of reasons presented in Sect. 3.2.1, our implementation requires a delete
flag. And last but not least, a dirty bit inventory was needed, which is responsible
for unsetting the dirty bits after a transaction has aborted or committed.

3.1.1 Timestamp Codes
We used 32-bit values for the read and write timestamps and encoded the dirty
bit and delete flag into the write timestamp. The highest bit is reserved for the
dirty bit and the delete flag is set when all other 31 bits of the write timestamp
are set. This design has two advantages compared to a separate delete flag and
dirty bit:

• As the write timestamp has to be checked anyway, the check for the dirty bit
does not require an additional memory operation. Furthermore, checking if the
dirty bit is not set and the write timestamp is lower than the transaction’s
timestamp requires only one arithmetic operation.

• The delete flag design is beneficial, as it makes a separate check for tuple
deletion unnecessary. When the delete flag is set, the write timestamp is equal
to the highest possible timestamp. So, all transactions accessing the deleted
tuple will abort without an additional check of the delete flag.

As the transactions’ timestamps have to be assigned in strictly increasing
order, the size of the timestamp variables determines when the timestamp arrays
have to be reset. If a database processes 250 000 transactions per second in a lab
setting (in almost every real-world scenario, this throughput is not required),
the timestamps would have to be reset only after approximately 2 h.

This can be done as follows: When a new transaction is started and acquires
a new timestamp, it is checked if the value range is exceeded. If this is the case,
all running transactions are rolled back, all timestamp fields are reset, and the
aborted transactions are restarted. The impact of aborting running transactions
is negligible, as the length of OLTP transactions is short. For domains, where
a short and rare delay during transaction processing is not tolerable, 64-bit
timestamps can be used.
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3.1.2 Dirty Bit Inventory
The dirty bit inventory is necessary for resetting the dirty bits and is maintained
for each running transaction. Whenever a transaction sets the dirty bit of a tuple
which was not set before, the tuple identifier is inserted into the transaction’s
dirty bit inventory. After a transaction aborts or commits, the dirty bit inventory
is processed and the transaction’s dirty bits are unset. As a tuple identifier is
only ever inserted once into the dirty bit inventory and as each tuple identifier
cannot be in two dirty bit inventories of different transactions at the same time,
it need not be checked whether the dirty bit is set and originates from the current
transaction, which simplifies resetting the dirty bit.

3.2 Architectural Details

By contrast to partitioned execution, strict timestamp ordering allows multiple
concurrent transactions inside partitions. We will briefly discuss the necessary
architectural adaption in this section.

3.2.1 Undoing Deletes
One problem is that concurrency on partition level could violate recoverability.
When a transaction aborts, all its effects have to be undone. If the transaction
has deleted tuples, they have to be reinserted. However, this could fail in a naive
implementation because of violations of unique keys, if a concurrent transaction
has inserted a tuple with the same key in the meantime.

We solved this problem by deferring the removal of tuples to the commit
phase of a transaction. Deleted tuples are marked with the delete flag and the
dirty bit is set, so that other transactions trying to access this tuple will wait.
The deleting transaction skips this tuple the next time it tries to access it.

3.2.2 Index Structures and Synchronization
Index structures need to be refitted to support concurrent access. Optimizing
index structures for concurrency is an active and complex topic of research. Trans-
actional memory implementations [DFGG11,DGK09], as well as relativistic pro-
gramming [TMW10,HW10] provide promising results on modern hardware.

In our implementation, we use full index latching to synchronize access
to index structures. This is reasonable, as each partition has its own index
structures. However, when done naively, this solution can constitute a major
performance bottleneck as shown by [HAMS08], who analyzed the overhead of
traditional locking in the context of main-memory database systems. We evaded
this issue by optimizing the lock implementation. Concretely, we used an adapted
version of the MCS lock [MCS91], which uses spinning on thread-local variables
for waiting and allows reader and writer synchronization. That boost the per-
formance of our STO implementation by a factor of two compared to traditional
latching using the lock implementation from the pthreads library. Furthermore,
we avoid locking the index structures for each tuple. Instead, if we subsequently
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access tuples from the same partition, we keep the lock until we switch to the
next partition.

3.2.3 Synchronization of Admissibility Check
Besides the index structures, we also have to ensure that the check for admissi-
bility of a transaction’s operation is thread-safe. As we have to mutually exclude
access to the index structures, we avoiding the necessity of additional locking,
by extending this critical section to also contain the check of admissibility. Con-
cretely, when accessing a tuple from one partition, we lock its index structures,
lookup the tuple, perform the admissibility check and access the tuple. Before
switching to the next partition, we release the lock, so that other transactions
can proceed working on that partition. Access to the dirty bit inventory does
not need to be synchronized, as each transaction has its own inventory.

4 Evaluation

In this Section, we will evaluate the strict timestamp ordering approach and
compare its performance to partitioned serial execution. All benchmarks were
conducted on a Dell PowerEdge R910 server with 4x Intel Xeon X7560 proces-
sors each containing eight cores clocked at 2.26 GHz. The server is equipped with
1 TB of main-memory split into 64×16 GB RDIMMs connected to four separate
memory controllers interconnected by Intel’s Quick Path Interconnect technol-
ogy. For our evaluation, redo logging was disabled for all approaches, to ensure
that the results are not distorted by effects resulting from the logging technique
we use.

4.1 Read versus Write Performance

One reason, why STO performed poorly on disk-resident database systems, is that
it significantly slowed down read operations: Updating the read timestamp caused
additional disk latency. In memory resident database systems, I/O latency is not
dominating the performance any more. Therefore, we re-evaluated the read per-
formance of STO.

For this, we designed a microbenchmark. It consists of one large table with
10 million tuples. Each tuple consists of two attributes: a 64-bit integer key and a
64-bit integer value. A hash map is used as primary index. The table is divided into
128 partitions by using Fibonacci hashing on the primary key. To avoid conflicts,
each thread has its own set of tuples, which we call the threadsworkset. Concretely,
the first thread accesses only the first �10 million/(number of threads)� tuples, the
second thread the following �10 million/(number of threads)� tuples, etc.

The benchmark offers two modes: read or write. In both modes, there is only
one type of transaction that is provided with an array of 50 primary keys taken
from the threads workset. In write mode, the transactions increment the value
attribute of the corresponding tuples and in read mode, the transactions fetch
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Fig. 2. The read and write performance of STO Fig. 3. Cycles distribution

the value attribute of each tuple and check a condition, that is always false, to
avoid that the query optimizer removes the fetch query, as the value is not used.

As the partitions are arranged by the Fibonacci hash of the primary key,
the workset of each thread is uniformly distributed over all partitions. This
has two implications: First, all transactions are partition-crossing. Second, the
transactions interfere with each other by latching the partitions’ index structures.
But they do not conflict, as the data sets are disjoint.

Figure 2 shows the results from the micro benchmark subject to the number of
threads. The duration of processing 1 million transactions was measured and the
transactions per second (tps) throughput determined. Three runs were executed
for each measurement and the mean was taken.

STO’s read and write curve both start nearly with the same throughput. The
slope exhibits linear growth up to 16 threads. Each additional thread constantly
increases the throughput by about 20 000 tps. Starting from 16 threads, the
system uses hyper-threading to execute the software threads. As a result, the
gradient slowly declines and the throughput increase gained by adding a new
thread declines with each additional thread. Still the throughput increases at a
slower rate of about 10 000 tps on average.

Looking at write performance, STO can outperform serial execution when
using at least 2 threads. Furthermore, by using 32 threads, we can increase the
throughput by one order of magnitude compared to the serial execution.

In read mode, STO achieves about 25 % higher peak throughput than in write
mode. In contrast, serial execution achieves a difference of a factor of 2.5. This
shows that the traditional problem of STO – slowing down read operations – still
persists in main-memory database systems but its impact is reduced: While in
disk-resident database systems the difference between read and write operations
was about one order of magnitude because of disk latency, in main-memory
database systems, the difference is about a factor of 2 to 3.
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4.2 Overhead Analysis

As it was shown by Harizopoulos et al. [HAMS08] that latching in traditional
database systems produces severe overhead, we employed a lock implementation
that is optimized for highly parallel systems, called the MCS lock. Still, we should
differentiate between the overhead produced by the STO logic and the overhead
produced by latching, as STO does not rely on latching index structures. For
example, lock-free index structures or index structures which rely on relativistic
programming [HW10,TMW10] could be used.

We analyzed how much time is needed for each component of the concurrency
control approach: Latching, STO logic and execution of the transaction itself
using the previous benchmark in both modes. For determining the time difference
between two evaluation points, we used the CPU cycles counter. Concretely, we
defined measure points before and after each latching operation as well as each
STO operation. At these points, the difference between the current cycles count
and the cycles count at the previous measure point is computed and the result
is added to a thread-local summation variable for each phase.

Figure 3 shows the resulting distribution taken from one run with 32 threads.
Similar results were obtained when using a different number of threads and are
therefore omitted here. It can be observed that the total cycles count of the write
transactions is about 25% higher than of the read transaction, which matches
the result from the write and read comparison.

Furthermore, in both cases, the basic transaction instructions such as updat-
ing tuples, fetching tuples, etc., cover about half of the time of a transaction.
In read mode, this does not seem to fit to the previous benchmark, where serial
execution was about 4 times faster than STO run with a single thread. Con-
cretely, the time needed for the basic transaction instructions should be about
one quarter of the cycles total. The reason for this difference can be explained
by cache effects. When, for example, a timestamp is updated, the changes will
be written into the processor’s cache. As a result, the expensive propagation of
the change to the main-memory will happen, when the cache line is replaced,
which is usually caused by a read operation. As the basic transaction instruc-
tions are read intensive – looking up primary keys in the hash map, fetching
tuples – they are likely to replace cache lines and cause costly propagation to
main-memory. As a consequence, the expensive write operations caused by latch-
ing or timestamp maintenance slow down the basic transaction instructions, as
these are read intensive. Therefore, half of the overhead of the basic transaction
instructions seems to be also caused by locking and latching. In write mode,
this effect is not significant. Here, the analysis reflects the results of the previous
benchmark: When using one thread STO achieves about half of the performance
of serial execution.

The overhead caused by concurrency control is distributed similarly in read
and write mode. Although the STO overhead in write mode is higher than in read
mode – the dirty bit inventory has to be processed and the dirty bits have to be
reset – it can be observed that in both cases index latching causes more overhead
than the STO logic itself. Nevertheless the optimized MCS lock could decrease
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Fig. 4. TPC-C benchmark with varying the number of partition-crossing transactions

the overhead of latching by about a factor of 4 compared to the results of running
a disk-resident database in main-memory [HAMS08]. Still, index latching pro-
duces significant overhead and we will investigate the performance improvements
achievable with lock free index structures in future research.

4.3 Strict Timestamp Ordering versus Partitioned Execution

Finally, we compare strict timestamp ordering to partitioned execution while
varying the number of partition crossing transactions. For the analysis, we used
the well-known TPC-C benchmark (See Footnote 1) as it is easily partitionable
by using the warehouse id and widely used as a benchmark for main-memory
database systems comparable to HyPer, for instance in [KKN+08,Vol10].

In the TPC-C benchmark there are two types of transactions that cross par-
tition borders – 25% of the payment transactions and 10% of the new order
transactions. Regarding their ratio in the total workload, this leads to a total
of about 12.5% partition-crossing transactions. For this benchmark, we equally
adjusted the percentage of partition-crossing payment and new order transac-
tions from 0% to 100%, resulting in a total ratio of 0% to 87.5%.

In Fig. 4, we show the average sustainable throughput of serial execution,
partitioned execution and strict timestamp ordering while varying the percent-
age of transactions which cross partition boundaries. In order to provide a fair
comparison, we counted only the number of committed transactions per sec-
ond, as STO solves conflicts by aborting the conflicting transaction. We set the
number of warehouses to 128, which resulted in about 17 GB of data, and used
20 threads.

When no partition crossing transactions are included in the workload, PE
performs significantly better than STO. Here, conditions are optimal for PE as
every transaction is restricted to one partition of the data and no locking is
necessary at all. STO, on the other hand, requires atomic operations for locking
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and needs to update read/write timestamps. Therefore, the throughput achieved
by STO is about 33% lower than the throughput of PE.

For an increased number of partition crossing transactions, PE’s throughput
declines significantly. At 12.5% partition crossing transactions – the percentage
in the original TPC-C – the throughput achieved by PE has already dropped
below the throughput achieved with STO. As the number of partition crossing
transactions increases further, the throughput curve converges to the throughput
achieved by serial execution. This was to be expected, since PE uses serial execu-
tion without parallelism for partition crossing transactions causing it to behave
like serial execution for high percentages of partition crossing transactions.

STO exhibits constant throughput regardless of how many transactions cross
partition borders. This is due to its reliance on per-tuple timestamps which
(a) constitutes a fine-granularity concurrency control method and (b) does not
require a centralized locking infrastructure. Thus, it is perfectly suited for work-
loads that can not be completely partitioned.

5 Conclusion

In this paper, we re-evaluated the traditional strict timestamp ordering concur-
rency control algorithm in a main-memory database system on modern hardware,
while most modern main-memory DBMS omit explicit concurrency control in
favor of partitioning and serial execution.

We found that the traditional drawback of STO – slowing down read opera-
tions as if they were write operations – is less significant in main-memory than
in disk-based database systems. Here, the performance of read and write oper-
ations differs by about a factor of 2, whereas in disk-resident database systems
the difference was at least one order of magnitude because of disk latency.

As a result, STO is a competitive alternative to partitioned execution: While
partitioned execution is – by design – ideal for a perfectly partitionable workload,
STO allows the efficient execution of workloads regardless of the quality of the
underlying partitioning. Even a low number of partition-crossing transactions,
for example the default ratio of 12.5% partition crossing transactions in the
TPC-C benchmark, suffice that STO outperforms PE. Therefore, STO is suitable
for environments where transactions can not be easily restricted to work on only
one partition of the data.

Additionally, we found that traditional bottlenecks like latching need to be
re-evaluated from an implementation standpoint: We could improve the perfor-
mance of STO by a factor of 2 by using an optimized latch implementation which
uses thread-local spinning. Still, the overhead of latching stays a significant fac-
tor and it should be evaluated if technologies like lock-free index structures,
transactional memory or relativistic programming can further reduce it.

In summary, re-investigating the suitability of traditional works in concur-
rency control for their performance in a fundamentally changed hardware envi-
ronment has allowed us to find a more robust concurrency control method for
main memory DBMS that is competitive to current approaches.
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Abstract. Main-memory databases rely on highly tuned database opera-
tions to achieve peak performance. Recently, it has been shown that
different code optimizations for database operations favor different proces-
sors. However, it is still not clear how the combination of code optimiza-
tions (e.g., loop unrolling and vectorization) will affect the performance
of database algorithms on different processors.

In this paper, we extend prior studies by an in-depth performance
analysis of different variants of the scan operator. We find that the per-
formance of the scan operator for different processors gets even harder
to predict when multiple code optimizations are combined. Since the
scan is the most simple database operator, we expect the same effects
for more complex operators such as joins. Based on these results, we
identify practical problems for a query processor and discuss how we can
counter these challenges in future work.

1 Introduction

Operators in a main-memory database are heavily tuned to meet performance
needs of tomorrow. In the past, tuning operators for the underlying hardware
has attracted much attention (e.g., implementing different join strategies [1–3]).
Due to ever-increasing capabilities of modern CPUs (e.g., an increasing number
of cores, size of caches, and width of vector registers), the behavior of database
algorithms is hard to predict on a given machine [2].

Code optimizations, such as loop unrolling or vectorization, have different
impacts on the performance depending on the given workload (e.g., selectivity)
and processor [17]. Furthermore, considering the combination of different code
optimizations, algorithm performance will get even more unpredictable, because
of interactions between optimizations. In this paper, we perform a first experi-
mental study on the performance impact of combined optimizations. We restrict
our study to scans, because it is a very simple operator, where it is feasible to
implement a high number of variants.

In our in-depth performance analysis, we analyze the impact of four common
code optimizations – loop unrolling, branch-free code, vectorization, and paral-
lelization – and all of their combinations. Thus, we contribute in this paper:
c© Springer International Publishing Switzerland 2015
A. Jagatheesan et al. (Eds.): IMDM 2013/2014, LNCS 8921, pp. 97–111, 2015.
DOI: 10.1007/978-3-319-13960-9 8



98 D. Broneske et al.

1. A performance comparison of scan variants on different processors for varying
workloads (e.g., selectivity and data volume)

2. A description of the relation between hardware characteristics and code opti-
mizations for the scan operator

As a result, we discover that the optimal variant of the scan operator for a given
workload is very likely to change across different processors.

Most importantly, there is no simple dependency between the properties of
the hardware and the optimal scan operator, because a combined set of opti-
mizations interact with each other. The variability in workloads, machines, and
sets of code optimizations leads to a large optimization space for database sys-
tems and is an unused optimization potential that has not yet been considered
to its whole extent. As a consequence, we argue that query execution engines
should exploit these unused potentials.

The remainder of this paper is structured as follows. In the next section, we
introduce four common code optimizations and present how we applied the opti-
mizations on a simple scan operator in Sect. 3. We evaluate our scan variants on
different machines and state important findings in Sect. 4. In Sect. 5, we discuss
the impact of our results. We present related work in Sect. 6 and conclude our
work in Sect. 7.

2 Code Optimizations

In this section, we discuss basics of the four common code optimizations that
we apply on the scan operator, namely branch-free code, loop unrolling, vector-
ization, and parallelization. These code optimizations improve either pipeline or
data parallelism to exploit different capabilities of modern CPUs [6]. Of course,
there are numerous more code optimizations, such as loop fission, or full compu-
tation [7,17], but we limit them to a practically applicable subset in this work.

2.1 Branching vs. No-Branching

The usual way to include conditions in a program is to use if-statements. How-
ever, when the processor is filling its instruction pipeline, it has to decide whether
to include an instruction which depends on the branch or to omit it. For this,
CPUs use branch prediction to estimate the result of the branch condition. How-
ever, if the outcome of a branch is constantly changing (e.g., in a selection with
50 % selectivity), branch prediction often fails and the pipeline has to be flushed
and refilled, which reduces instruction throughput.

As a consequence of the pitfalls of branching, a possible optimization is to
write the code in a way that it does not contain any branches. A possible exam-
ple is to use predication for selections [16]. Although omitting branches avoids
branch mispredictions – and, thus, pipeline flushes – we need to execute more
instructions than necessary. Thus, it may only be helpful for if-statements whose
outcome is hard to predict.
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2.2 Loop Unrolling

Loop unrolling is a well-known technique to reduce pipeline stalls in tight for-
loops [9]. If a for-loop consists of a small amount of instructions (e.g., initializing
an array: array[i] = i) the overhead of the instructions of the loop may deteri-
orate its whole performance. Thus, instead of having just one initialization for
loop counter i inside the loop body, we could replicate the body to also initial-
ize the array entries of i + 1, i + 2, and i + 3. With this, we reduce stalls in
the pipeline of the processor [9], but increase the code size, which may lead to
a higher miss-rate in the instruction cache. Notably, modern compilers feature
automatic unrolling of loops. Nevertheless, an adaptive unrolling which depends
on the number of iterations in the loops cannot be achieved, because the number
of iterations is often unknown at compile-time.

2.3 Vectorization

The ability to execute a single instruction on multiple data items (called SIMD)
is an important property of modern CPUs to improve data parallelism. Their
benefit has already been shown for applications such as database operations [22]
and compression techniques in combination with database scans [19,20]. These
SIMD registers offer small load and store latencies [22] and execute one instruc-
tion on several data items, for instance, four 32-bit integer values. Since com-
pilers are sometimes not able to vectorize instructions themselves [22], special
compiler intrinsics (e.g., SSE instructions) are used to explicitly exploit SIMD
functionality.

2.4 Parallelization

Modern CPUs can execute several threads in parallel. Thus, exploiting thread par-
allelism in a database is of high importance for improving its performance [12].
Parallelizing database operations implies that data can be partitioned over sev-
eral threads which work in parallel to achieve lower response times. However, the
results of each thread have to be combined to form the end result making paral-
lelization less beneficial for big result sizes. Furthermore, for small jobs, the over-
head of coordinating the threads may consume the benefit of parallelization [18].

3 Variants for Database Scans

For the implementation of the database scan variants, we chose the database
management system CoGaDB (Column-oriented GPU-accelerated DBMS [5])
which already offers the basic variants of the scan operator. Hence, we only had
to extend this operator set by the combination of optimizations. For simplicity,
we present an excerpt of supported types and predicates of a database scan,
which we limit here to predicates of the form x < c, where c is a constant. Our
implemented scan extracts a position list with the tuple identifiers of matching
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tuples. Of course, this is only one variant of a scan and other approaches of a
scan such as extracting a bitmap from the input are worth to evaluate in future
work.

3.1 Implementation of Single Optimizations

The simple serial implementation of the scan is straightforward; we sketch the
code in Listing 1.1. The main component of the serial scan is the for-loop which
iterates over the input array of size array size.
1 for(int i = 0; i < array size; ++i) {
2 SELECTION BODY(array,comp val,i,result,pos,<);
3 }

Listing 1.1. Serial scan for comparator less than.

Inside the for-loop, we use a macro (cf. Listing 1.2) to be able to switch the
code between branching and branch-free code during compile time. Both macros
evaluate whether the array value is smaller than the comparison value comp val,
and if true, it writes the position pos into the array result.

Using these macros allows to either have a branch in the code that condi-
tionally inserts the positions into the positionlist, or else to have a branch-free
version of the conditional insertion. In fact, the branch-free version has a stable
number of executed instructions and, thus, no branch mispredictions can happen,
which increases instruction throughput. Nevertheless, if the comparison is often
evaluated as false, we incur an overhead compared to the code with branches.

1 #define SELECTION_BODY_BRANCH(array,value,i,result,pos,COMPARATOR) if(array[i]
COMPARATOR value){result[pos++]=i;}

2 #define SELECTION_BODY_NOBRANCH(array,value,i,result,pos,COMPARATOR) result[pos]=i;
pos+=(array[i] COMPARATOR value);

Listing 1.2. Macros for branching or branch-free code.

Apart from code with or without branching, another possible variant can
be generated by unrolling the loop. In Listing 1.3, we sketch the schema for
unrolling the macro inside the loop. The exact code depends on the number of
unrolled loop bodies k and has to be implemented for every k that has to be
supported in the scan. Notably, each variant of the unrolled scan is also available
with branch-free code, since we can use the same macro as in the simple serial
scan.
1 for(int i = 0; i < array size; i+=k) {
2 SELECTION BODY(array,comp val,i,result,pos,<);
3 ...
4 SELECTION BODY(array,comp val,i+(k−1),result,pos,<);
5 }
6 ... //process remaining tuples in a normal loop

Listing 1.3. k-times loop-unrolled serial scan.

Apart from reducing pipeline stalls by using loop unrolling, our next serial
variant uses SSE intrinsics to implement vectorization. Our algorithm in List-
ing 1.4 is based on the SIMD scan by Zhou and Ross [22]. Since SIMD operations
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work on 16-byte aligned memory, we first have to process tuples that are not
aligned. For this, we use the serial variant, since only a few tuples have to be
processed. The same procedure is executed for the remaining tuples that do
not completely fill one SIMD register. The presented code snippet evaluates
the elements of an SIMD array and retrieves a bit mask for each comparison
(cf. Line 4). After that, the mask is evaluated for the four data items and if
there is a match, the corresponding position is inserted into the position list
(cf. Line 6–10). Notably, similar to the algorithm by Zhou and Ross, we also
use an if statement for evaluating whether there has been a match at all, which
could reduce executed instructions if the selectivity is high.

1 ... // Code for unaligned tuples
2 for(int i=0;i < simd array size;++i)
3 {
4 mask=SIMD COMPARISON(SIMD array[i],

comp val);
5 if(mask){
6 for (int j=0;j < SIMD Length;++j)
7 {
8 if((mask >> j) & 1)
9 result array[pos++]=j+offsets;

10 }
11 }
12 }
13 ... // Code for remaining tuples

Listing 1.4. Vectorized serial scan.

1 //build local result in parallel
2 for(int i=0;i < num of threads;++i) {
3 do parallel: serial selection(...);
4 }
5 //build prefix sum
6 prefix sum[0]=0;
7 for(int i=0;i < num of threads;++i) {
8 prefix sum[i]=prefix sum[i−1]+

result sizes[i−1];
9 }

10 //merge local results in parallel
11 for(int i=0;i < num of threads;++i) {
12 do parallel: write thread result(

prefix sum[i],...);
13 }

Listing 1.5. Simple parallel scan.

The parallel version of the scan forwards the data array to a number of
threads (cf. Listing 1.5, Line 2–4) that build up a local result for the selection on
their chunks of the integer array. To allow parallel writing of the local results into
a global result without locking, we have to compute the prefix sum (cf. Line 6–9).
With this, each thread knows where to copy its local results in the final result
array, which is done in parallel (cf. Line 11–13).

3.2 Possible Scan Variants

By combining our four code optimizations, we are able to build a total of 16 vari-
ants. The implementation concept of most of the combined variants is straight-
forward. For instance, adding parallelization to all variants is implemented by
changing the work that a single thread is doing. E.g., when combining paral-
lelization and SIMD acceleration, each thread is executing its selection using
the SIMD algorithm in Listing 1.4 with some adaptions. Furthermore, imple-
menting branch-free code implies to change the used macro. More challenging
is the combination of SIMD and loop unrolling. Here, we took the for-loop
(cf. Listing 1.4), put it into another macro and unrolled it for several iterations.
To allow reproducibility of our results, we provide our variants as open source
implementation.1

1 http://wwwiti.cs.uni-magdeburg.de/iti db/research/gpu/cogadb/supplemental.
php.

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/supplemental.php
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/supplemental.php
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Table 1. Used evaluation machines.

Machine 1 Machine 2 Machine 3 Machine 4

CPU Intel Core 2 Intel Core 2*Intel Xeon 2*Intel

Quad Q9550 i5-2500 E5-2609 v2 Xeon E5-2690

Architecture Yorkfield Sandy Bridge Ivy Bridge - EP Sandy Bridge - EP

#Sockets 1 1 2 2

#Cores per Socket 4 4 4 8

#Threads per Core 1 1 1 2

CPU Frequency 2.83 GHz 3.3 GHz 2.5 GHz 2.9 GHz

L1-Cache per Core 128 Kb 256 Kb 256 Kb 512 Kb

L2-Cache per CPU 12 Mb 4*256 Kb 4*256 Kb 8*256 Kb

L3-Cache per CPU — 6 Mb 10 Mb 20 Mb

4 Performance Comparison

For our performance evaluation, we took four different CPUs to test the hard-
ware’s impact on the performance of the scan variants. Each machine runs
Ubuntu 10.04.3 LTS 64-bit as operating system. We compiled our scan variants
with the GNU C++ compiler 4.6.4 with the same flags as used by Rǎducanu
et al. [17]. Our workload consists of in-memory columns with integer values inter-
nally stored as 32-bit integer arrays containing between 6 million and 60 million
values which is about the cardinality of a column of the Lineorder table in
the Star Schema Benchmark of scale factors 1–10. Generated values are equally
distributed over the range [0, 999]. Another parameter is the selectivity factor
which we vary in steps of 10 % between 0 % and 100 % to evaluate its impact. The
number of used threads for parallelized scans is equal to the number of available
threads on each machine. To reach stable results, we repeated each experiment
100 times and applied a gamma-trimming which omits the slowest and fastest
10 results.

CPU Differences. To provide an overview of the characteristics of the CPUs of
used machines, we summarize necessary information in Table 1. For our evalua-
tion, we choose two commodity CPUs and two server CPUs. While machine 1 has
only the L2 cache as last level cache and a little bit lower clock speed, machine 2
has three cache levels and the highest clock speed. Machine 3 offers four cores
on each of the two sockets, but has the lowest clock frequency per CPU. The
server CPU in machine 4 with an octa core on each of the two sockets allows to
process 32 threads with enabled Hyper-Threading. Thus, machine 4 should have
the best parallelization potential. Furthermore, our chosen CPUs have different
architectures, where the newest architecture is built in on machine 3, being the
Ivy Bridge.
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4.1 Varying Selectivity

In our first experiment, we focus on the performance of our variants for filtering
30 million tuples with different selectivities. For our variants, we implemented
a loop unrolling of depth 8 similar to Rǎducanu et al. [17] and set the number
of used threads to the number of available threads on the machine. To produce
increasing selectivity factors over our equally distributed values, we evaluate the
predicate x < c with increasing comparison constant c. The response times of
our 16 algorithms on the four machines are shown in Fig. 1.

From the performance diagrams, we can see that at a selectivity factor smaller
than 20 %, serial and parallel selections have similar execution times. It is also
visible that serial algorithms can outperform parallel algorithms at a selectivity
factor of 100 %. This performance difference is a result of the overhead produced
by the result combination of parallel algorithms which worsens for increasing
result sizes.

Furthermore, branching code gets high penalties for medium selectivity fac-
tors, making branch-free algorithms superior to them. Nevertheless, the perfor-
mance of branch-free code is steadily getting worse with increasing selectivity
factor till the branching counterpart becomes superior again at a selectivity fac-
tor of 100 %. Considering unrolling, there are only slight differences between
normal loops and unrolled loops. Additionally, the use of SIMD instructions for
serial algorithms does not improve the performance as expected. Especially for
selectivity factors higher than 50 %, the performance of the vectorized scan is
almost the worst. This is probably incurred by the expensive mask evaluation
which worsens when the selectivity factor increases. However, if we apply loop
unrolling and omit branches, we improve the performance significantly, but still,
it is not superior to the serial branch-free version.

In summary, a variant that is performing best under all circumstances cannot
be found. Although the parallel branch-free loop-unrolled vectorized scan is the
best one for machine 3 and 4, it is not for machine 1 at a selectivity factor more
than 50 %. Here, the serial branch-free scan performs best.

Differences Between Machines. In contrast to the other machines, machine 1
shows that for selectivity factors above 50 % the serial branch-free and the serial
unrolled branch-free selection execute up to 32 % faster than parallel algorithms.
Additionally, at a selectivity factor of 100 %, even the branching selection and
unrolled selection outperform the best parallel algorithm by 39 % while the per-
formance of the two branch-free versions deteriorate.

The deterioration of the branch-free serial version for a selectivity factor of
100 % is only visible for machine 1, 2, 4. In contrast, machine 3 is not affected,
although at this point, the branch-free serial versions are beat by the branching
versions. This effect is probably due to the new next-page prefetcher (NPP) in
the Ivy Bridge architecture in this machine [10]. The NPP prefetches the next
cache line if in a sequential access the end of the current cache line is almost
reached.
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Fig. 2. Response time for different amount of data items for selectivity factor 10 %
(BF = branch-free, LU8 = 8-times loop-unrolled, P = parallelized, V= vectorized).

Additionally, while the performance of the branching parallel versions is
mostly visibly worse than for the branch-free counterparts (cf. machine 2 & 3),
these differences disappear for machine 4. Furthermore, the best performance
for serial selections is achieved on machine 2 and for parallel algorithms with
machine 4. In addition, on machine 3 & 4 all parallel algorithms perform con-
stantly better than the serial ones.

4.2 Varying Data Size

We analyzed the impact of different data sizes from 6 to 60 million rows for selec-
tivity factors from 0 % to 100 %. Regardless of the selectivity factor, the optimal
algorithm does not change with an increasing amount of data. Therefore, we
exemplary show our result for selectivity factor 10 % in Fig. 2 for machine 2 and 4.

All variants show increasing response times for increasing data sizes. Fur-
thermore, with increasing data sizes, the performance advantage of parallel algo-
rithms increases compared to serial algorithms. From this, we can conclude that
the main impact factor for the optimality of scan-algorithm variants is the selec-
tivity factor; data size has only a minor impact.

Differences Between Machines. Comparing the results from machine 2 with
those for machine 4, a big gap between the serial and parallel algorithms is visible
on machine 4 that is more severe than on the other machines. The reason for
that is that machine 4 has the highest amount of cores and available threads.
Thus, machine 4 has the best parallelization capability.

4.3 Different Unrolling Depths

In the overall performance evaluation, we decided to use a common unrolling
depth of 8 for the loops [9,17]. However, the number of unrolled executions can
be varied, which opens another tuning dimension. In this section, we repeated
the evaluation of the serial scan variant and compared it to 2–8 times unrolled
serial scans.
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Fig. 3. Response time of branch-free scans with different unrolling depths for varying
selectivities for 30 million data items (LUn = n-times loop-unrolled).

Branch-Free Unrolled Scans. The benefit of unrolling depends on the num-
ber of executed instructions inside a loop. Thus, we first evaluated the branch-
free version of the serial scan for different unrolling depths, because the number of
instructions inside the loop does not depend on branching. With this, we assure
that we will find the best unrolling depth for a specific machine independent
from the selectivity.

In Fig. 3, we visualize the response times for our serial branch-free scans
with different unrolling depths on 30 million data items with selectivity factors
between 0 % and 90 % for machine 2 and 3. Here, we skipped the selectivity
factor 100 %, since the response time behaves the same as for lower selectivity
factors, but its overall value is often double as much. Thus, it would deteriorate
values in the diagram.

From the performance diagram in Fig. 3, it can be seen that for each machine,
there is an optimal unrolling depth. On machine 2, there is in general a huge
difference between the serial scan and the unrolled variants. Here, the generally
best unrolling depth is five. In contrast, machine 3 benefits from larger unrolling,
having its optimum at 8 times unrolling for the considered depths. This circum-
stance is probably caused by the new Ivy Bridge architecture, because it offers
the possibility to combine the micro-op queue of two cores for a single-threaded
task in order to process bigger loops more efficiently [10].
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selectivities for 30 million data items (LUn = n-times loop-unrolled).
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Branching Unrolled Scans. When including branches in our code, the num-
ber of executed instructions inside a loop varies depending on the selectivity.
Thus, changing behaviors for machine 2 and 3 can be seen in the performance
diagrams in Fig. 4. For instance, on machine 2, for selectivity factors from 0 %
to 50 % the serial version behaves worse than an unrolling of depth four and for
a selectivity factor higher than 50 %, an unrolling of depth three behaves best.
Machine 3 shows good performance for 8 times unrolled loops to a selectivity
factor of 30 %, where two-times unrolled code gets best till 90 %.

5 Discussion

In the last sections, we presented the evaluation of our scan variants on different
machines. We have shown that there are convincing performance differences with
respect to varying selectivities and different machines. In this section, we discuss
our findings and their impact on a broader view.

5.1 Variant Performance

Our evaluation revealed that there is no optimal scan variant for different CPUs,
and for each CPU, it is not trivial to select the optimal variant. Additionally,
the optimal variant may change depending on the scan’s selectivity.

Branch-Free Code. From the evaluation, we can conclude that performance
benefits of branch-free code strongly depends on the selectivity. Nevertheless,
we can observe, that branch-free code may degrade performance for the serial
or unrolled scan on some machines (cf. Fig. 1; machine 1, 2, 4: selectivity factor
100 %). Instead, for loop unrolling, branch-free code assures that there is an
optimal unrolling depth independent of the selectivity.

Loop Unrolling. Loop unrolling offers performance improvements, if (1) the
unrolling depth is adjusted to the used processor, and (2) the number of exe-
cuted instructions in the loop is stable. If the executed instructions in the loop
is unstable, the perfect unrolling depth has to be chosen during runtime, for
instance, by the hybrid query processing engine HyPE [4]. Nevertheless, loop
unrolling does not severely worsen the performance and, thus, it is a valuable
optimization that should be considered in every application.

Parallelization. Our results indicate that, in general, parallelization offers a
good opportunity for accelerating the scan if the CPU offers enough cores (e.g.,
on machine 3 or 4). Nevertheless, when parallelized, the scan employs the whole
processing capacity of the CPU. With this, response times are maximized, but
throughput may be insufficient. Consequently, it has to be carefully weighed
whether a parallel scan should be preferred to a serial scan.
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Vectorization. Our vectorized scan is most of the times not competitive to
other scan variants. However, at low selectivity factors the vectorized scan is
the best serial scan, because the probability of excluding several data items in
one step is high and beneficial for performance. Its performance loss at higher
selectivity factors is caused by the bad result extraction from the bit mask.
Hence, instead of expecting a position list as a result, we should rather use a
bitmap to represent the result for efficient vectorization.

Concluding, different code optimizations have a varying impact on the per-
formance of a simple scan. Therefore, it is even more challenging to choose an
optimal algorithm for more complex operators.

5.2 Threats to Validity

To assure internal validity, we cautiously implemented each variant and equally
optimized the code of all variants for performance. We used plain C arrays
instead of containers and ensured that the compiler does not perform loop
unrolling or auto-vectorization. Our evaluation setup assures that array sizes
exceed available cache sizes. Thus, higher sizes should not change the behav-
ior of the variants. However, we executed our tests on machine 3 another time
with data sizes of 500 million values without any impact on the general variant
performance behaviors.

To reach a high external validity, we extensively show our implementation
concepts in Sect. 2, our evaluation environment in Sect. 4 and provide the code to
allow for reproducing of our results. However, CoGaDB operates in an operator-
at-a-time fashion, which means the whole input is consumed by the operator
and the result is then pushed to the next operator. Thus, our results apply to
systems that follow this processing paradigm and we expect similar results for
vectorized execution.

5.3 Toward Adaptive Variant Selection

As a consequence of the performance differences depending on the used machine
and the workload, we need to solve two challenges. First, code optimizations
have hardly predictable impacts between machines, which does not allow us to
build a simple cost model for an operator. Consequently, we can choose the opti-
mal variant at run-time only by executing and measuring the performance of
variants. Second, the number of possible variants is to high to keep them all
available during run-time. In fact, for each additional independent optimization,
the number of produced variants increases by factor two. Furthermore, possi-
ble points where code optimizations make sense will increase with increasing
complexity of the optimized operator.

As a solution, we argue to keep a pool of variants for each operator during
run-time (cf. Fig. 5). The system generates new variants using optimizations
that are likely to be beneficial on the current machine. Variants that perform
poor w.r.t. the other variants are deleted and replaced by new variants. As a
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Fig. 5. Adaptive query processing engine

consequence, we also have to think of a suitable approach to generate the variants
instead of implementing them by hand.

To select the variant to be executed from the pool, we propose to use a
learning-based query execution engine, such as HyPE [4], which learns cost-
models for each variant depending on the given machine and workload. With
this, we achieve optimized performance due to the usage of best-performing
variants from the variant pool for the used machine and also for the current
workload. The variant pool itself has to be limited, because learning cost models
for many variants introduces too much overhead. Thus, we propose to let the
query execution engine decide which algorithm has to be deleted and which one
has to be generated, in case it is beneficial for the current or future workload.
With this, we achieve a run-time adaptability of our system with respect to the
workload and used machine.

Limitations. Our proposed approach relies on good selectivity estimations to
choose the optimal variant of the scan and query plan for the given workload.
However, we argue that approaches such as kernel-density estimation by Heimel
and Markl [8], or work of Markl et al. [14,15] should make it possible to overcome
these challenges.

6 Related Work

Rǎducanu et al. tested different variants of database operations in Vectorwise [17].
Because of the vectorized execution model in Vectorwise, they are able to execute
different variants of one database operation during the processing of one column,
arguing that different code optimizations are favored by different machines and
workloads. Nevertheless, their findings do not reveal the impact of the combination
of code optimizations, which we expose for the scan operator. In fact, they did not
consider different unrolling depths as we do. Furthermore, although we come to
the same conclusion as they do, we want to tackle the problem by learning cost
models instead of only the execution time of a variant, because we find it more
appropriate for our use case.
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Related work in the area of code optimizations for stencil computation can
be found in the work of Datta et al. [7] and improving scans is topic of the work
of Li and Patel [13]. Furthermore, there is much work on applying vectorization
on database operations, such as SIMD-accelerated scans for compressed data
by Willhalm et al. [19,20], using SIMD instructions for database operations by
Zhou and Ross [22], and also using SIMD for accelerating index search by Kim
et al. [11] or Zeuch et al. [21]. Their ideas help implementing vectorized database
operations, but they compare their implementations only to the serial variant
and do not include other code optimizations or machines as we do.

7 Conclusion and Future Work

With the growing heterogeneity of modern processors, it becomes increasingly
difficult to exploit their capabilities. Thus, we need an understanding on which
hardware characteristics favor which set of code optimizations to achieve the best
performance of database operators. Due to interactions between optimizations,
this is a non trivial problem.

In this work, we investigated the impact of four different code optimizations
and their combinations on the scan operator. We evaluated the performance
of the resulting 16 database scan variants on different machines for different
workloads. Our results indicate that the performance of most of the algorithms
is depending on the selectivity of the scan and also on the used machine. How-
ever, when combining code optimizations (e.g. branch-free code and varying loop
unrolling depths), simply changing the used machine favors a different algorithm
variant. As a consequence, we have to include these variants in the optimization
space of our query engine. However, because there are numerous code optimiza-
tions and because of their exponential amount of combinations, we run into
several problems: building a cost model including each variant is hardly pos-
sible, and providing executable code for each variant during run-time is not
feasible because of the large number of variants and their respected memory
consumption.

Thus, future work includes to learn execution behaviors of the variants by a
suitable query engine (e.g., HyPE) that choses the best-performing variant from
an algorithm pool and schedules a rejuvenation of the pool which exchanges
variants that perform badly for the current workload.

Acknowledgments. We thank Jens Teubner from TU Dortmund and Max Heimel
from TU Berlin for helpful feedback and discussions.
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Abstract. Hyrise is an in-memory storage engine designed for mixed
enterprise workloads that originally started as a research prototype for
hybrid table layouts and basic transaction processing capabilities. This
paper presents our incremental improvements and learnings to better
support transactional consistency in mixed workloads.

In particular, the paper addresses a multi-version concurrency control
mechanism with lock-free commit steps, tree-based multi-column indices,
in-memory optimized logging and recovery mechanisms. Additionally, a
mixed workload scheduling mechanism is presented, addressing partition-
able transactional workloads in combination with analytical queries.

1 Introduction

Currently, we are observing three different trends in the database community.
First, traditional general purpose database systems are evolving and incorporate
new technologies [2,12,19]. Second, the separation between transactional process-
ing (OLTP) and analytical processing (OLAP) systems continues. Extremely spe-
cialized systems leverage the partition-ability of some transactional workloads and
completely serialize the execution on partitions to eliminate the overhead of con-
currency control [7,17,23]. However, support for cross-partition queries or ana-
lytical queries is poor [24]. Third and in contrast to second, we see a unification
of both system types, taking on the challenge of executing a mixed workload of
transactional and analytical queries in one system [5,9,15,16,18,20,21]. This uni-
fication is based on the characteristics of enterprise databases and builds on the
set-based processing of typical business economics applications and the low num-
ber of updates allowing an insert only approach. The unification provides real time
insights on the transactional data and eliminates redundancies.

The in-memory storage engine Hyrise targets a unified transactional and ana-
lytical system and is designed to support vertical partitioning of tables to allow
for the optimal storage layout for mixed enterprise workloads [5]. It builds on
a main-delta-concept leveraging light-weight compression techniques like dictio-
nary encoding and bit-packing. It supports an efficient merge process [10] as well
as a balanced execution of mixed enterprise workloads [27].
c© Springer International Publishing Switzerland 2015
A. Jagatheesan et al. (Eds.): IMDM 2013/2014, LNCS 8921, pp. 112–125, 2015.
DOI: 10.1007/978-3-319-13960-9 9
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Contribution. In this paper, we provide an overview of implementation aspects
of Hyrise and describe optimizations to better support transactional workloads.
In particular, we describe (a) a multi-version concurrency control mechanism
with a lock-free commit step in Sect. 3, (b) a tree-based multi-column index
structure in Sect. 4, (c) a persistency mechanism optimized for in-memory data-
bases and parallel recovery in Sect. 5 and (d) an optimized scheduling mechanism
for the scheduling of mixed workloads while still leveraging the partition-ability
of transactional workloads in Sect. 6.

2 Architecture

Hyrise is an in-memory storage engine1 specifically targeted to mixed workload
scenarios [5] and the balanced execution of both analytical and transactional
workloads at the same time [27]. In this section, we describe the basic architecture
of the system.

Although Hyrise supports flexible hybrid storage layouts, we assume a colum-
nar storage of tables. The table data consists of attribute vectors and dictionar-
ies for each column in the table as well as three additional columns used for
concurrency control. Hyrise uses multi-version concurrency control to manage
transactions, providing snapshot isolation as a default isolation level and allow-
ing for higher isolation levels on request, as described in more detail in Sect. 3.
Additionally, the transaction manager handles a transaction context for each
running transaction.

Based on analyses of workloads of productive enterprise applications, Hyrise
is optimized for read-only queries in order to optimally support the dominant
query types based on the set processing nature of business applications [10]. Data
modifications follow the insert-only approach and updates are always modeled as
new inserts and deletes. Deletes only invalidate rows. We keep the insertion order
of tuples and only the lastly inserted version is valid. The insert-only approach
in combination with multi-versioning allows Hryise to process writers without
stalling readers. Additionally, keeping the history of tables provides the ability of
time-travel queries [8] or to keep the full history due to legal requirements [18].
Furthermore, tables are always stored physically as collections of attributes and
meta-data and each attribute consists of two partitions: main and delta partition.

The main partition is typically dictionary compressed using an ordered dic-
tionary, replacing values in the tuples with encoded values from the dictionary. In
order to minimize the overhead of maintaining the sort order, incoming updates
are accumulated in the write-optimized delta partition as described in [10,22].
In contrast to the main partition, data in the write-optimized delta partition is
stored using an unsorted dictionary. In addition, a tree-based index with all the
unique uncompressed values of the delta partition is maintained per column. The
index on top of the dictionary allows for fast value searches on the dictionary and
also speeds up value insert into the column, as inserting a value into a dictionary
encoded column requires to search the dictionary [20]. The attribute vectors of
1 Source code available at https://github.com/hyrise/hyrise.

https://github.com/hyrise/hyrise
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Fig. 1. Internal Hyrise transaction states. Once a transaction entered phase (f) no more
logical transaction aborts are possible. Validation phase (d) is optional depending on
additional validation steps for serializability.

both partitions, storing the dictionary encoded values, are further compressed
using bit-packing mechanisms [3,25].

To ensure a constantly small size of the delta partition, Hyrise executes a
periodic merge process. A merge process combines all data from the main par-
tition as well as the delta partition to create a new main partition that then
serves as the primary data store [10].

3 Concurrency Control

The choice between an optimistic or pessimistic concurrency control approach
highly depends on the expected workload [1,11]. Hyrise uses a multi-version
concurrency control (MVCC) mechanism to provide snapshot isolation. This
optimistic approach fits well with the targeted mixed workload enterprise envi-
ronment, as the number of expected conflicts is low and long running analyti-
cal queries can run on a consistent snapshot of the database [18]. This section
describes our concurrency control implementation that is based on known MVCC
mechanisms and focuses on the parallel commit of transactions.

In Hyrise, the transaction manager is responsible for tracking a monotonically
increasing next transaction id ntid and the last visible commit id lcid, as well as
maintaining a commit context list ccl. Each transaction keeps local information
in a transaction context containing a local last visible commit id lcidT , its own
transaction id tidT and two lists referencing inserted and deleted rows plus a
reference to a commit context in case the transaction is in the commit phase.
Each table maintains three additional vectors: a transaction id vector vtid used
to lock rows for deletion and two commit id vectors vbeg and vend indicating
the validity of rows.

Transactions can be in 8 different phases: (a) transaction start, (b) active
processing, (c) transaction aborted, (d) validating, (e) preparing commit, (f) trans-
action committing, (g) pending commit and (h) transaction committed. Figure 1
shows the actual states and how transactions can change between them.

3.1 Start Transaction Phase

When a new transaction is started, it enters the start phase and is assigned a
unique transaction id tidT by the transaction manager. Additionally, the trans-
action copies the global last visible transaction id lcid to the local transaction
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Table 1. Evaluation rules determining the visibility of rows for a transaction T . Not
yet committed inserts and deletes are listed as ‘dirty’. *Impossible combination as rows
are always activated before they are invalidated.

context as lcidT . After the transaction context is successfully prepared, the
transaction enters the active state. During processing and validation, write-
write conflicts might occur leaving the transaction in the aborted state. Once a
transaction enters the commit phase, the transaction is guaranteed to commit
successfully and to reach the committed state.

3.2 Active Processing Phase

During active processing, a transaction T might read or write rows and needs
to guarantee the required isolation level. Whenever a set of rows is retrieved
from a table through either a table scan operation or an index lookup, the set of
rows is validated based on the respective vbeg, vend and vtid values of a row in
combination with lcidT and tidT . Table 1 outlines the different combinations and
if T sees them as visible. Some combinations are impossible based on the design
of the commit mechanism but listed for completeness. Not yet committed inserts
and deletes are listed as dirty. In case transactions need a higher isolation level,
serializability can be requested to enforce read stability and phantom avoidance
through additional checks before the commit step [11].

Inserts are straight forward, appending a new row to the delta partition of
a table with vtid = tidT . As vbeg and vend are initialized to 8, the new row is
only visible to T and no other transaction can read the in-flight row before T
successfully commits. Deletes only invalidate rows by setting vend. However, as
a transaction does not have a commit id in the active phase, it only deletes the
row locally in the transaction context and marking the row by setting vtid to
tidT with an atomic compare-and-swap operation. This blocks any subsequent
transaction from deleting the same row, resulting in the detection of write-write
conflicts. Updates are realized as an insert of the new version with an invalidation
of the old version.
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Algorithm 3.1. finishCommit(c)

c.pending ← True
while c and c.pending

do

⎧
⎨
⎩
if atomic cas(lcid, c.cid − 1, c.cid)

{
send response(c)
c ← c.next

else
{
return (0)

3.3 Lock-Free Commit Phase

Multiple transactions can enter the commit phase in parallel and synchroniza-
tion is handled by the following lock-free mechanism. Although transactions
can process their commit step in parallel, cascading commits realized by using
commit dependencies guarantee the correct ordering of the final step of incre-
menting lcid.

Once a transaction T is ready to commit, it enters the prepare commit phase
and is assigned a commit context c. Through an atomic insertion of c into the
global commit context list ccl, a unique commit id cidT is implicitly assigned
to the committing transaction by incrementing the id of the predecessor. Each
commit context contains the transaction’s commit id cidT , connection informa-
tion to send a response to the client and a next pointer to the next commit
context in the list. The insertion into ccl is performed by executing a compare
and swap operation on the next pointer of the last commit context lcx to c.
Although this mechanism is not wait-free, it provides a lock-free way of creating
a linked list of commit contexts with sequentially increasing commit ids. T is
guaranteed to proceed to the actual commit phase after successfully inserting c
and can not enter the abort state anymore. During the commit phase, T tra-
verses all its changes by iterating through the list of inserted and deleted rows
and writing the commit id. Inserted rows are committed by setting vbeg to cidT
and all deleted rows are committed by setting vend to cidT .

Finally, T determines if it can directly enter the committed state or if it
needs to enter the pending commit state. As multiple transactions can enter the
commit phase concurrently, it is possible that transactions T1 and T2 commit
concurrently and cidT2 > cidT1. If T2 enters the committed state first, it would
set the global lcid to cidT2. However, due to the implemented visibility mecha-
nism through one single last visible commit id, this would allow newly starting
transaction to see the in-flight changes of T1, which is still not fully committed.
A pessimistic approach might serialize the commit phases of transactions and
avoid this problem. However, if a large number of rows is touched leading to
longer commit phases, this quickly turns into a bottleneck. Therefore, Hyrise
supports parallel commits that allow transactions to commit in any order except
for the last step of incrementing the global lcid. Instead, commit dependencies
take care of incrementing lcid at the correct point in time and only then the
respective transactions are returned as committed to the client. This allows par-
allel and lock-free commit phases and although the final commit step might be
deferred, worker threads are already freed and can process other queries.
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Fig. 2. Example outlining the implemented multi-version concurrency algorithm.

Algorithm 3.1 outlines the process of the final commit step that allows work-
ers to finish processing of a transaction by adding a commit dependency although
the final last step of incrementing lcid might not yet be possible. First, a com-
mitting transaction T1 with commit context c sets its commit context status
to pending and indicates that it is trying to increment the lcid. Then, T1 tries
to atomically increment the lcid. In case the increment failed, T1 depends on
another currently committing transaction T2 with cidT2 < cidT1 to commit T1.
The processing worker thread is then freed and can process new queries. The
atomic incrementation of lcid ensures that only one thread succeeds even if mul-
tiple threads are concurrently incrementing lcid. When T2 finally commits, it
checks if pending transactions exist by following the list of commit contexts. As
long as there are pending commits, T2 proceeds and increments the lcid.

The fact that the lcid is only updated after all commit ids for vbeg and vend
have been written, ensures that all changes during the commit phase appear to
other transactions as future operations, leaving the affected records untouched
from the viewpoint of other transactions. Until the global lcid is set to cidT of a
committing transaction and makes all changes visible for subsequent transactions
in one atomic step.

3.4 Aborts

Transactions can only abort before they enter the commit phase. Therefore,
aborting transactions do not yet have an assigned commit id and have only
inserted new rows which are still invisible or have marked a row locally for
deletion. This means that an aborting transaction only has to clear potentially
locked rows by removing their id from vtid using the lists of inserted and deleted
rows from the transaction context.

3.5 Example

Figure 2 shows an example of an update query with tidT = 17 setting the price of
a product A from 17 to 30. The image shows a logical view of a table separated
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into main and delta partitions. (1) Row 0 is locked by setting vtid = 17, (2) the
new version of the row is inserted into the delta and added to the local list of
inserted rows, (3) the commit phase starts, assigning T the commit id cidT = 89,
(4) vbeg of the newly inserted row is set to 89 though it is still invisible to other
running transactions as the lcid is still 88, (5) the old row gets invalidated by
setting vend = 89 and added to the local list of deleted rows, (6) the lcid gets
incremented making all changes visible to other transactions.

4 Index Structures

Hyrise allows the definition of indices to efficiently support transactional queries
which select only a few tuples. Index data structures are maintained separately
for the main and delta partition of columns to account for their different char-
acteristics. The following describes a read-only Group-Key Index for the main
partition of a single column [4], a tree-based index structure for the delta parti-
tion and index structures on multiple columns.

4.1 Single Column Indices

A single-column index on the main partition leverages the read-only nature of
the main partition to reduce the storage footprint by creating an immutable
structure for the mapping of values to positions during the merge process. The
main index consists of two bit-packed vectors that map dictionary entries to
position lists.

It consists of an offset vector O and a position vector P . O is parallel to the
dictionary D of a column and contains the start of the list of values in P for each
value in D, in other words the offset which is used to jump into P . P is parallel
to the attribute vector AV and contains all row positions sorted by their value.
Thereby all rows for a distinct value can be retrieved with only two direct reads
at the respective position in the two vectors O and P .

In contrast to the main index, the delta index needs to efficiently handle
newly inserted values and is implemented as a multi-map of actual values and
positions using a tree-based data structure. Entries are kept in ascending order
so that the list of positions for a single value is always sorted. Figure 3(b) shows
a schematic overview of the used index structures.

4.2 Multi Column Indices

Hyrise supports the indexing of multiple columns through the usage of Composite
Group-Keys on the main partition and tuple-indexing on the delta partition.
The challenge for our column-oriented in-memory store is to efficiently obtain a
unique identifier from the composite key, as the parts of the key are encoded and
not co-located. In Hyrise, Composite Group-Key Indices store the concatenation
of a key’s value- ids in a key-identifier list K, as shown in Fig. 3(a).
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Fig. 3. Overview of index data structures on single columns and multiple columns for
main and delta partitions. Main: Value lookup in dictionary D, jumping from offset
vector O into positions vector P , referencing values in attribute vector AV . Delta:
Tree-based index on values referencing attribute vector.

This leads to an additional dictionary lookup for each part of the key before
the index lookup, since all values of the predicate have to be transformed into
value-ids prior to a binary search on K. The offset of the found key-identifier
can be used to directly obtain the row-id from the position list P . In the delta
partition, where the storage footprint is not as important as in the main par-
tition, we concatenate the actual values in the index. We use transformations
similar to Leis et al. [13] to obtain binary-comparable keys.

Internally, Hyrise uses different strongly-typed data types. To allow the flex-
ible definition and querying of multi-column indices at runtime, the system pro-
vides key-builder objects that accept any internal data type. Multiple calls to
a key builder object can be executed with different data types, which allows to
conveniently and efficiently support composite keys with mixed data types.

Indices are unaware of the visibility of records. Hence, the delta index is used
in an append-only manner and retrieved records need to be validated using the
defined visibility mechanism. In case of primary key lookups, the index is tra-
versed backwards to find the first valid version of a key. While this increases the
lookup overhead moderately, it allows to maintain the visibility information at
one single location and to have transaction-agnostic index structures.

5 Persistency: Logging, Recovery and Checkpointing

Although in-memory databases keep their primary copy of the data in main mem-
ory, they still require logging mechanisms to achieve durability. The persistency
mechanisms applied in Hyrise differ from traditional disk-based mechanisms due
to the lack of a paging mechanism and the used multi-version concurrency control.
In this section, we describe the implemented logging, checkpointing and recovery
mechanisms.
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Fig. 4. Delta Log Format. Last flush marks entries already flushed to disk. Padding
is used to align log-file for parallel recovery, log entries are fixed sized based on their
type, only dictionary entries have a variable length.

The main partition of a table is always stored as a binary dump on disk
after a merge process. Therefore, only changes to the delta are written to a log
file, which uses group commits to hide the latency of disks or SSDs. Checkpoints
create a consistent snapshot of the database by also dumping the delta partitions
as binary dumps. In a recovery case, existing dumps for main and delta are
restored from a checkpoint and an eventually existing delta log is replayed to
restore the latest consistent state of tables. Binary dumps are a snapshot of a
table persisted onto disk in the form of binary files directly storing the respective
data structures. Separate files for the table meta-data containing the number and
name of columns, attribute vectors, dictionaries and indexes are created. Using
this information, the system is able to recreate the complete table by loading
the respective files.

5.1 Delta Log

In contrast to ARIES style logging techniques [14], logging in Hyrise leverages
the applied dictionary compression [26] and only writes redo information to the
log. This to reduce the overall log size by writing dictionary-compressed values
and parallel recovery as log entries can be replayed in any order.

The actual log entries that are written to the log-file are of the following
8 types: (1) dictionary entries indicate a newly inserted value with its value
id, (2) value entries indicate a newly inserted row in a table, (3) invalidations
invalidate an existing row, (4) commit entries indicate a successfully committed
transaction, (5) rollback entries indicate that a transaction performed a rollback
and aborted, (6) skip entries are padding entries used for alignment, (7) check-
point start entries indicate the start of a checkpoint, (8) checkpoint end entries
indicate the end of a checkpoint. Dictionary Entries do not include the inserting
transaction’s TID, as this information is irrelevant to the recovery process. Even
if a transaction that inserted a value into the dictionary needs to be rolled back,



Efficient Transaction Processing for Hyrise in Mixed Workload Environments 121

the value can stay in the dictionary without compromising functionality. If a
log entry is to be written and its size would overlap into another block, the
remaining space is filled with a Skip Entry and the log entry is written to the
beginning of the next block in order to align the log-file to a specified block-size.
Thereby, it is guaranteed that log entries to not span across block boundaries
which allows easy parallel recovery as thread can start reading the log entries at
block boundaries. Skip entries consist only out of bytes set to 0xFF and intro-
duce only a minimal overhead as block sizes for the alignment are typically in
the range of multiple megabytes.

Figure 4 outlines the used format for writing the log file. New log entries
are buffered in a ring-buffer before they are flushed to the log-file. Similarly to
recent work, buffer fill operations are only synchronized while acquiring buffer
regions and threads can fill their regions in parallel [6]. Each entry in the buffer
starts with a character specifying the size of the entry, followed by its data and
closed by the type of the entry. This design allows to forward iterate through
the list of entries by skipping the respective sizes of entries and to read the
log entries backwards in case of recovery by processing each entry based on its
type. Entries do have a fixed length based on their type, except variable length
dictionary entries which contain a dedicated value length in the log entry.

5.2 Checkpointing

Checkpoints create a consistent snapshot of the database as a binary dump on
disk in order to speed up recovery. They are periodically initiated by a checkpoint
daemon running in the background. In a recovery case, only the binary dumps
from the last checkpoint need to be loaded and only the part starting at the
last checkpoint time from the delta log needs to be replayed. In contrast to disk
based database systems where a buffer manager only needs to flush all dirty
pages in order to create a snapshot, Hyrise needs to persist the complete delta
partition of all tables including vbeg and vend.

A checkpoint is created in three steps: (1) prepare checkpoint, (2) write
checkpoint and (3) finish checkpoint. In the first step, the checkpoint is assigned
a unique id and the global log file is switched from the current file A to a new
empty log file B, redirecting all subsequent log entries into the new file. The first
entry in the new log file is the checkpoint start entry. Additionally, the necessary
folder structure is created with a file indicating that the checkpoint is in progress.
The transaction manager then waits for all currently running transactions to
finish before the checkpoint enters the next phase. This guarantees that log file
B contains all relevant information to roll forward to the latest consistent state
during recovery. This mechanism adds a delay to the checkpoint process, but
does not block any transactions from executing. In the second phase, the actual
checkpoint is written and all delta tables are written in a binary format to disk,
including eventually existing index structures. Additionally, the vbeg and vend of
all tables are persisted to disk, as the delta potentially contains updated versions
of rows from the main. In the third and final checkpoint phase, a checkpoint end
entry is written to the log and a file is created indicating that the checkpoint as
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Fig. 5. Task queues for partitionable transactions

finished successfully. This makes the checkpoint the latest available checkpoint in
the system so that it will be used in case of a recovery. Due to the applied insert
only approach, the checkpoint mechanism can operate concurrently as writing
transactions are executed.

5.3 Recovery Process

The recovery process is executed in two steps: (1) load checkpoint and (2) replay
delta log. The checkpoint contains binary dumps of the main and delta partition
and is loaded in parallel. The delta replay step can be easily distributed across
multiple threads based on the layout of the log-file in blocks.

Each thread reads its assigned blocks from the back and replays all success-
fully committed transactions which are identified by a commit entry as their
first log entry. This can be executed in parallel without any synchronization as
the log entry replay is independent of the replay order. The only requirement
is some upfront meta-data about table sizes, dictionary sizes and transaction
numbers in order to preallocate the data structures. In case a thread does not
read a commit entry for one transaction, it needs to make sure that no other
thread has processed the respective commit entry before ultimately discarding
the changes of this transaction. This synchronization between threads is han-
dled by setting a field in a global bit- vector based on the transaction id for each
processed commit entry and parking all log entries that are not preceded by a
commit entry for later evaluation. After the processing of all blocks, the threads
are synchronized through a barrier and reevaluate all discarded transactions by
checking if another thread read a commit entry by looking up the transaction id
in the bit-vector and replaying the changes if necessary.

Both steps are reasonably optimized and implemented distributing the work
across all available cores to fully leverage the available parallelism and bandwidth
on modern systems to provide the fastest possible delta log replay.

6 Scheduling

To execute mixed database workloads, Hyrise leverages a task-based query execu-
tion model. The main advantages of this execution model are (1) almost perfect
load balancing on multi-core CPUs, (2) efficient workload management based on
a non-preemptive priority task scheduling policy.
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The general idea of this execution model is to partition a query into smaller,
non-preemptive units of work, so called tasks, and map these tasks dynamically
to a pool of worker threads by a user-level scheduler. Short running OLTP queries
are executed as a single task, complex OLAP style queries are transformed into
a graph of fine granular tasks by applying data parallelism on operator level.
The granularity of tasks is controlled by a system parameter for the maximum
task size. Each partitionable operator is split dynamically at runtime into tasks,
based on the size of the input data and the maximum task size [27].

The task-based execution model achieves almost perfect load balancing, as
the actual degree of parallelism for executing complex queries can vary dynam-
ically throughout execution depending on the current workload. Assuming a
complex query is executed as the only query on a multi-core machine, it can
leverage all worker threads for execution. Once another query enters the system,
tasks of both queries are distributed over the available worker threads taking
query priorities or predefined resource shares into account [28,29].

To optimize scheduling for transactional throughput, we extend the task-
based execution model by introducing specific queues for partitionable transac-
tions. Note that we still apply the concurrency control mechanism described in
Sect. 3 to enable transaction safe read access for analytical queries based on snap-
shot isolation. Figure 5 gives an overview of the concept of transaction specific
queues. Queries that modify data of a particular data partition n are placed in
one of the corresponding queues shown as QPn in Fig. 5. Analytical queries are
placed in the general queue GQ. Each worker thread tries to pull tasks from the
partitionable queues with priority and only takes tasks from the general queue,
if no tasks from transactional query is available. Tasks of one partition are serial-
ized through a token mechanism to ensure that only one transactional query per
partition is executed at a time. This mechanism avoids the execution of multiple
tasks of one partition and therefore eliminates possible write conflicts.

7 Conclusion

In this paper, we presented implementation specific design choices for the in-
memory storage engine Hyrise to optimize transaction processing in a mixed
enterprise workload setting. We outlined the main architectural design choices
and addressed the following parts in particular: (1) a multi-version concurrency
control mechanism with lock-free commit steps, (2) tree-based multi-column
indices, (3) in-memory optimized logging and recovery mechanisms and (4) a
mixed workload scheduling mechanism addressing partition-able transactional
workloads in combination with analytical queries.
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10. Krüger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Plattner,
H., Dubey, P., Zeier, A.: Fast updates on read-optimized databases using multi-core
CPUs. In: VLDB (2011)

11. Larson, P.-A., Blanas, S., Diaconu, C., Freedman, C., Patel, J.M., Zwilling, M.:
High-performance concurrency control mechanisms for main-memory databases.
In: VLDB (2011)

12. Larson, P.-A., Clinciu, C., Hanson, E.N., Oks, A., Price, S.L., Rangarajan, S.,
Surna, A., Zhou, Q.: SQL server column store indexes. In: SIGMOD (2011)

13. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ARTful indexing for
main-memory databases. In: ICDE (2013)

14. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. In: TODS (1998)
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Abstract. Main-memory index structures have become mainstream for
a large number of problem domains. However, in the case of web-based
datasets, which feature exponential growth, it is an ongoing challenge
to fit those data entirely in main-memory. In this paper, we present
the DCB-Tree, an extremely space efficient main-memory index structure
for the storage of short fixed-size keys. It features a two-stage cache-line
aligned node layout. In comparison to other main-memory index struc-
tures it reduces the amount of memory required by 80 % in the best and
by 30 % in the worst case. Although it is tailored towards space consump-
tion, it features good overall performance characteristics. In particular,
in the case of very large real world datasets it provides performance equal
or superior to state of the art main-memory index structures.

Keywords: Indexing ·Main-memory ·Delta-encoding ·Cache-optimized

1 Introduction

With the amount of main-memory capacities increasing, many databases can be
kept entirely in main-memory. However, this is not the case for all domains. For
example, the exponential growth of web-based datasets results in huge semantic
web data or full-text corpuses. Although data can be sharded and distributed
onto several hosts, it is still desirable to reduce the amount of memory needed
and therefore to reduce the monetary cost as well. In the case of RDF-Stores
[5,18] a common approach to reduce the amount of memory needed for indexing
such kind of data, is to solely store fixed size keys instead of long variable length
values and place the original value in a dictionary. Hence to reduce the amount
of memory required, the dictionary or the fixed length keys can be compressed.

As the main purpose of index structures is to improve the search and query
performance, the space consumption of such indexes is a trade-off between access
performance and compression ratio. Nevertheless, the compression overhead can
be mitigated due to the memory wall effect [22], which states that the improve-
ment in microprocessor speed exceeds the improvement in DRAM performance.
Currently DRAM speed is more than two orders of magnitude slower than CPU
speed. This situation is comparable to the performance disparity between main-
memory and disks. As disk based index structures use compression techniques
c© Springer International Publishing Switzerland 2015
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to reduce the required number of disk seeks [8]. According to the famous quote
“memory is the new disk” [10] it can be inferred that “cache is the new RAM”.
Hence, compressing data on a cache-line level can trade instructions required for
compression against CPU cycles gained by reducing the number of cache misses.
The memory wall effect becomes even more significant for index structures con-
sisting of several 100 millions or even billions of elements as the number of ele-
ments residing in CPU caches is limited. Therefore, the performance is mainly
bound by the overall number of memory transfers required.

Hence, we identify three requirements for main-memory index structures,
particularly in the case of large real world datasets. First, the data structure has
to be space efficient. Second, it has to consider cache hierarchies of contemporary
CPUs. Third, it has to support incremental updates as read-only indexes are only
appropriate for a limited number of use cases.

Currently two categories of main-memory indexes, which address some of
these issues, can be identified. On the one hand, read-only index structures like
FAST [13] provide cache-conscious search operations as well as decent space uti-
lization, but do not support update operations. On the other hand, main-memory
index structures like ART [15] or the CSB+-Tree [20] provide cache-conscious
search as well as update operations, but provide only limited capabilities in terms
of space utilization. However, to the best of our knowledge no method satisfying
all three requirements exists, which provides space efficiency, cache-conscious
design and update functionality.

Therefore, we present the Delta Cache Conscious B-Tree (DCB-Tree)
combining cache-conscious operations with efficient space utilization. It is a
main-memory B-Tree [3] based index structure tailored for the storage of short
fixed-size keys. A hierarchical cache-line aligned node layout reduces the num-
ber of cache-misses and the delta encoding of keys along this hierarchical layout
reduces the amount of space needed for each entry.

Hence, our contributions in this paper are:

– The main-memory Delta Cache Conscious B-Tree (DCB-Tree)-Tree. It is a
space efficient, cache-conscious index for the storage of short fixed size keys.

– Novel algorithms for lookup and insertion, which are specific for the DCB-
Tree.

– An evaluation of the DCB-Tree, which shows that the DCB-Tree provides
superior space utilization, while providing equal or better performance for
large real world datasets.

The remainder of this paper is structured as follows. Section 2 discusses the
related work. Section 3 introduces the DCB-Tree, its structure and the algo-
rithms used. Section 4 presents the evaluation and its results. Section 5 draws a
conclusion and gives a short overview about future work.

2 Related Work

The work presented in this paper is related to the area of index structures and
index compression techniques.
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In the area of index structures allowing sequential access, comparison-based
tree structures as well as trie-based index structures prevailing. The B-Tree [3,8]
represents the dominating disk based index structure and is the basis of many
relational database systems. While variations of binary search trees like the Red
Black Tree [2,11] or the T-Tree [14] were the dominating main-memory index
structures until the 1990’s, Rao et al. [19] showed that B-Tree based structures
exceed binary tree index structures due to their better cache-line utilization.
Rao et al. further presented the CSB+ tree [20], which optimizes cache-line
utilization by reducing the number of pointers through offset calculation in the
index part. While the CSB+ tree improves memory utilization, no key or pointer
compression was applied. Due to the fact that cache optimized trees provide only
limited performance when used as disc based structures, Chen et al. presented the
Fractal Prefetching B+-Tree [7], which facilitates a hierarchical cache-optimized
layout optimizing disc as well as main memory performance.

Another approach aiming for a cacheline optimization is the BW-Tree [16] by
Levandoski et al. which is optimized for high concurrency by facilitating atomic
compare and swap operations instead of locks. A further direction of research is
to facilitate the data-parallel features of modern hardware to improve the search
operation within the tree nodes. The Fast Architecture Sensitive Tree (FAST)
by Kim et al. [13] and the k-array search based approach by Schlegel et al. [21]
use SIMD operations to speed up search operations. While it was shown that
both trees provide improved search performance, they were designed as read-
only index lacking update operations. Another approach to speed up the search
operation is to use trie-based index structures [9]. However, a major drawback of
tries is the worst-case space consumption. The Adaptive Radix Tree (ART) [15]
by Leis et al. represents a trie variation dedicated to modern hardware, which
mitigates this worst-case space consumption by using adaptive node sizes as well
as a hybrid approach for path compression. Moreover, the authors showed that
the ART tree is able to outperform FAST and under certain conditions also
hashtables. Another approach based on tries is the Masstree [17] by Mao et al.,
which is a trie with fanout 264 where each trie node is represented by a B+-Tree
storing an 8 byte portion of the key. This design results in good performance for
long shared prefixes.

In the domain of index compression techniques several different approaches
to compress the index part as well as the file part of B-Trees were developed.
The reason is that the performance of index structures is heavily bound by the
branching factor. A common compression scheme related to the compression of
the index part is prefix or rear compression. The prefix B-Tree [4] by Bayer and
Unterauer uses prefix compression on a bit level to only store partial keys in the
index part of the tree. Furthermore, they soften the B-Tree properties to select
partial keys with the shortest length. Bohannon et al. extended the concept
of partial keys in their pkT-trees and pkB-trees [6] to improve cache and search
performance. In the index part they use fixed size portions of the prefix to opti-
mistically compare with the search key. If the comparison cannot be performed,
a pointer to the full index key is dereferenced. The authors point out that the
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partial key is superior in terms of performance for larger keys only. While this
scheme improves the cache-line utilization, it imposes a memory overhead due
to the overhead of the pointer as well as the partial key itself. A more recent
approach for using partial keys was incorporated in FAST [13]. It compresses
the index keys by applying a SIMD based approach to only store those bits that
actually differ.

3 DCB-Tree

In this section, we present the Delta Cache Conscious B-Tree (DCB-Tree). The
major goal of the DCB-Tree is to store fixed size keys of sizes up to 8 bytes in
the DCB8-Tree and keys of up to 16 bytes in the larger DCB16-Tree. Further
aims of the DCB-Tree are a low memory footprint, update ability and taking
cache hierarchies into account to provide decent performance. The two variations
DCB8-Tree and the DCB16-Tree differ only in the underlying integer type. The
reason that two versions exist, is that the 8 byte integer type is mapped to a
native data type and therefore provides better performance compared to the
custom 16 byte integer type. In the following, we will use the term DCB-Tree
synonymously for both the DCB8-Tree and the DCB16-Tree.

The intended use of the DCB-Tree is to provide a clustered in-memory index
for short fixed-length keys, which occur in triple stores or inverted indexes. Due
to the dataset sizes in those areas, the DCB-Tree focuses primarily on the reduc-
tion of the overall memory footprint to ensure that datasets can be processed
in main-memory only. To reduce the memory footprint, the DCB-Tree exhibits
the circumstance that generally keys are not randomly distributed. Moreover, in
real world scenarios coherence can be found in the datasets. This circumstance
is utilized by the DCB-Tree for the encoding of keys and for the encoding of
pointers. The DCB-Tree is an n-ary search tree incorporating ideas of B-Trees
[3], B+-Trees [8] and CSB+-Trees [20]. Values are only stored at the leaf-level.
Due to the fact that the DCB-Tree is designed as a clustered index structure, no
pointers to the actual record are stored on the leaf node level. In the following we
describe the node and bucket layout, discuss the pointer encoding and memory
layout and explain the algorithms for lookup and insertion.

3.1 Two Stage Node Layout

Each node, index node as well as leaf node, has a two stage layout. The first stage
is the header section and the second stage consists of the buckets containing the
content (keys). Furthermore, each node has an implicit offset which is defined
by its corresponding parent node entry. In the case of the root node, the offset
is defined to be zero. An example node layout is illustrated in Fig. 1.

The header section of each node contains header-entries (H1-Hn), which are
uncompressed keys used as separators between buckets. For instance, header-
entry H1 is larger than any key (Ki) in Bucket1 but smaller or equal to the
smallest key in Bucket2. In this way the header-entries can be used to determine
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Fig. 1. DCB-tree layout overview

the address of the corresponding bucket address. In Fig. 1 this relationship is
visualized by the intra node pointers. However, these intra node pointers are not
stored but are calculated relative to the node’s base address. Hence, for nodes
with header sections containing at most n header-entries at most n + 1 buckets
are supported. In the case of the DCB-Tree the size of the header section as well
as the size of each bucket is determined to two cache-lines. The reason is that
the hardware prefetchers1 of modern CPUs automatically fetch the adjacent
cache-line in case of a cache miss. As the number of bytes required per header
entry is equal to the maximum key length, headers in a DCB16 -Tree are twice
as large as in a DCB8-Tree. Therefore, to be able to address the same number
of buckets as in a DCB8-Tree’s node the header section of a DCB16 -Tree spans
four cache-lines. As the header-entries are used to address the corresponding
buckets, no more than 16 content buckets can be used without increasing the
header section size. To ensure that each node is page aligned and that no TLB-
miss occurs during the processing of a single node, the node size is fixed to 2kiB.
Furthermore the 2kiB node size is tailored to the address translation covered in
Sect. 3.3. This node design ensures that at most two cache misses occur on each
tree level of a DCB8-Tree. In a DCB16-Tree this depends on the prefetch policy
of the CPU, but tends to three cache misses.

3.2 Bucket Structure

As described in the previous section, the content of each node is stored in its
buckets. To distinguish buckets located in index nodes from buckets located in
leaf nodes, we denote buckets in index nodes as index buckets and buckets in leaf
nodes as leaf buckets. Due to the fact that the bucket structure is similar to the
node structure in B+-Trees we only discuss the properties which are different
from the B+-Tree’s node structure.

Index buckets contain keys and pointers to the corresponding subtree. Each
index bucket contains a header section and a content section. The header section
stores the number of entries in the content section and the encoding information
for keys and pointers. The encoding information for pointers consists of the
number of bytes (Pointer Bytes) used to store the largest pointer in the bucket.

1 http://tinyurl.com/on8ccx3.

http://tinyurl.com/on8ccx3
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Fig. 2. Index bucket entry

Keys in index buckets are generated in the course of leaf node splits, such
that the lower bytes tend to be zero. Therefore a tail compression is applied
on the bucket’s keys and the minimum number of tail zero bytes (Tail Bytes)
is stored in the bucket’s header section. Furthermore, the keys are delta coded
relative to the bucket’s offset and placed in its content section. The maximum
number of bytes, which is required to store such an encoded keys, is put into
the bucket’s header section (Key Bytes). An example illustrating pointer as well
as key encoding for an index bucket can be seen in Fig. 2. In this figure solid
boxes represent stored values, while dashed boxes represent calculated values.
For instance, the bucket offset is inferred during tree traversal. Dashed boxes
below pointers or keys contain their decoded representations.

Fig. 3. Leaf bucket entry

Leaf buckets store keys only. Hence their section contains the number of keys
in the content section and the information used to encode them. As keys con-
tained within a leaf bucket are highly coherent, the same fixed-length delta based
encoding as used for index buckets can be applied. Therefore, the encoding infor-
mation consists of the maximum number of bytes needed to encode a single key.
This is equal to the number of bytes required to encode the leaf bucket’s largest
key. An example which illustrates the encoding of a leaf bucket can be seen in
Fig. 3. The semantics of the dashed and solid boxes is analogous to Fig. 2.

3.3 Pointer Encoding and Memory Layout

It has previously been shown [19] that a large portion of space within index
nodes is dedicated to pointer information. Since 64-bit architectures have become
mainstream, the space dedicated to pointers has an even higher impact. There-
fore, we try to reduce the amount of space dedicated to pointer information
with a twofold strategy. On the one hand, the number of pointers required is
reduced. This is done by designing the data structure as a clustered index for
short fixed sized keys, which eliminates the need for pointers at the leaf node
level. Furthermore, by facilitating the nested node layout described in Sect. 3.1,
intra-node pointers are eliminated. This approach is similar to the concept of
node groups in CSB+-Trees. On the other hand, the space occupied by each
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pointer is reduced. This is achieved by using node IDs instead of absolute point-
ers. Even in the case of huge datasets spanning hundreds of billion of entries,
4 bytes for addressing a single node is sufficient. Therefore, a custom memory
allocator is used, which allocates fixed node size chunks from a pool of large
buffers and is able to translate node IDs to absolute addresses. The overhead of
calculating the absolute node address is negligible, as 2n sized buffers are used.

3.4 Algorithms

As a DCB-Trees resembles a special version of a B-Tree, the basic algorithms
for insertion and update are the same. The huge difference in comparison to
standard B-Trees is that each node features a two stage layout, with key and
pointer compression on a per bucket basis. We therefore describe only the parts
of the algorithms and operations that are different compared to B-Trees and B+-
Trees [3,8]. Moreover, only insertion as well as lookup operations are considered.
Nonetheless, algorithms for delete operations can be inferred analogously.

Lookup. In the case of a lookup operation, the two stage node layout results in
the following three steps, which are needed for searching a node.

1. A linear search is executed on the node’s header to determine the correspond-
ing bucket and its offset. The bucket offset of the first bucket is equal to the
node offset. In any other case, the bucket offset is equal to the largest header
entry which is smaller or equal to the search key.

2. The search key is encoded. Therefore, the bucket offset is subtracted from the
search key. In the case of an index bucket, the search key is tail encoded to
match the encoding of the bucket to search.

3. A lookup operation is executed on the bucket using the encoded search key.
In the case of an index bucket search, the key preceding the matching pointer
becomes the node offset in the next search step.

Insert. To insert a key into a DCB-Tree, first the target leaf bucket is deter-
mined by the lookup operation explained in the previous paragraph. Second, it
is determined whether sufficient space is available to insert the key and whether
a potential recode operation succeeds. Such a recode operation is required if the
new key is larger than any existing entry in the bucket. If both conditions can
be satisfied, the bucket is encoded and the key inserted. If one of the conditions
fail, the following overflow handling strategies are applied in the given order.

1. In the case of inserting keys in ascending order, buckets tend to be only half
full. To prevent this situation, keys are rotated to the left sibling bucket, if
sufficient space is available. This corresponds to a local rotation.

2. Otherwise a bucket split becomes necessary. Unless the node is full, the bucket
split is executed and the minimum key of the right bucket is inserted as a
new separator in the node’s header section.

3. If a bucket split cannot be performed and the left sibling node can contain
further buckets, buckets are locally rotated to the left sibling node and the
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insertion is retried. In the case of a bucket rotation the node offset must be
recalculated, which can lead to another bucket split. Furthermore, the new
node offset must be propagated to the parent node.

4. If no bucket rotation can be applied a node split is required. The buckets are
distributed, the node offset for the right node is calculated and the pointer
to the right node together with its offset is inserted into the parent node.

For the generation of the node offset, in case of a leaf-node split, Algorithm 1
is used. It calculates a separator between the left and the right node with as
many trailing zero bytes as possible. Moreover, it does not calculate the shortest
common prefix between the largest left and the lowest right value, as in case of
the prefix B-Tree [4], but the shortest common prefix between the mean value of
both values and the lowest right value. The reason is that it tries to balance the
size of the right node’s first bucket values while still providing a decent prefix.

Algorithm 1. Tail Compressible Mean
1: procedure tailCompressibleMean(lower, upper)
2: mean ← (upper + lower)/2
3: upperMask ← −1l ≫ numberOfLeadingZeros(upper)
4: tailCompressableBits = log2((mean ⊕ upper) ∧ upperMask)
5: return (−1l � tailCompressableBits) ∧ upper
6: end procedure

4 Evaluation

In this section we evaluate the DCB-Tree. Therefore we conduct two benchmarks.
The first compares the memory consumptions with other main-memory data
structures. The second evaluates the runtime performance.

4.1 Benchmark Environment

All benchmarks are executed on the Java Runtime Environment version 1.8.0 05
with the following system properties set: -XX:NewRatio=3 -Xmx90g -Xms40g
-XX:+UseConcMarkSweepGC -XX:MaxDirectMemorySize=90g.

For the evaluation we used a server with an Intel Xeon L5520 running at a
clock speed of 2.27 GHz clock speed, 64 KB L1 cache per core, 256 KB L2 cache
per core and 8MB L3 shared cache. The server has 96 GB of DDR3/1066 RAM
and runs CentOS 6.5 with Linux Kernel 2.6.32.

4.2 Evaluated Data Structures

As the DCB-Tree is implemented in Java, all benchmarks are evaluated on the
Java Platform. The implementation of the DCB-Tree is available online2. We
2 http://dbis-informatik.uibk.ac.at/static/ma/robert/imdm/imdm2014.zip.

http://dbis-informatik.uibk.ac.at/static/ma/robert/imdm/imdm2014.zip
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evaluated the two variations DCB8-Tree and DCB16-Tree. Due to the lack of
built-in 16 byte wide integers a custom integer data type is used as the underlying
data type for the DCB16-Tree.

As contestants, the TreeSet3 representing the Java Platform’s standard
implementation of a Red-Black Tree [11] and a port of the ART Tree [15] were
used. As the ART tree is originally available as C++ implementation4 we cre-
ated a port for the Java Language, which is available online. Due to the lack of
SIMD operations on the Java Platform, the lookup in the nodes containing up to
16 keys of the ART Tree had to be implemented by linear search. Although it is
expected that the ART port is slower than the C++ implementation due to the
overhead incurred by the Java Virtual Machine, the same overhead is applied to
all contestants. For keys up to the length of 8 bytes the key is encoded inside
the pointer as it is the case in the original implementation. The reason is that 8
bytes are already reserved for the pointer. In the case of keys larger than 8 bytes
the ART Tree is used as a secondary index structure as the 16 byte key cannot
be encoded in an 8 byte pointer.

It is important to note, that in the case of the ART Tree as well as the DCB-
Tree, pointers represent relative offsets in a direct ByteBuffer5. This is similar
to an offset for an array in C.

4.3 Datasets

In the scenario of keys up to 8 bytes length we use three different datasets.
The first dataset contains dense values ranging from 0 to n. The second dataset
contains random values. Finally, two real world dataset are used. On the one
hand side triples of the Yago2 dataset [12] are encoded as 8 byte sized keys in
the following way: The lowest 26 bits are used for the object id. Bits 27 to 37
store the predicate information and the bits ranging from 38 to 63 are used for
the subject information. On the other hand triples from the DBpedia [1] dataset
version 3.9 are encoded as 16 byte sized key. Each triple is encoded in a single
16 byte integer, such that the lowest 4 bytes represent the object id, the next 4
bytes the predicate id and the next 4 bytes the subject id.

For the sake of simplicity we subsequently denote these four datasets as
Dense, Random, Yago and DBpedia.

4.4 Memory Consumption

To evaluate the memory consumption we insert 10 K, 100 K, 1 M, 10 M and
100 M keys of each dataset into the index structures and measure the space
consumption for each structure. For DBpedia, we use dataset sizes ranging from
100 K up to 1 B keys. The space consumption is summarized in Table 1, with
the best values written in bold. This table presents the bytes used per entry
3 http://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html.
4 http://www-db.in.tum.de/∼leis/index/ART.tgz?lang=de.
5 http://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html.

http://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
http://www-db.in.tum.de/~leis/index/ART.tgz?lang=de
http://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html
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Fig. 4. Memory consumption

for 100 million randomly inserted keys of each data set. Moreover the Baseline
value used in Table 1 represents the bytes needed per key, given all keys are delta
coded relative to their direct predecessor and encoded with a byte-level fixed-
prefix encoding. Furthermore the memory consumption is exemplarily visualized
for Dense in Fig. 4a and for Yago in Fig. 4b.

As it can be seen in both Figures, as well as in Table 1, the overhead in terms
of memory consumption between DCB8 and DCB16 is negligible and can be
explained by the additional cache-lines used in the header section of DCB16.
Hence, in the rest of this subsection we will use DCB synonymously for DCB8
and DCB16.

The results of all experiments show that the DCB -Tree has the best space
utilization of the evaluated data structures. In the best case (Dense) it uses
30% more space than the Baseline. Even in the worst case it uses only three
times more space compared to the Baseline. The DCB-Tree uses between two
third of the memory of the second best index structure (ART-Tree) in the case
of Random, and up to five times less space in the case of DBpedia. In the case
of DBpedia it has to be considered that the keys cannot be stored inside ART.
Therefore 16 bytes of the 60 bytes per entry are dedicated to the storage of the
keys itself. Considering only the space required for the index part, the DCB -Tree
uses only one third of the space. It can be seen in Table 1 that this ratio is equal
for Yago, which represents a scale-free network as well. In all experiments it can
be seen that the TreeSet performs worst. For each dataset it consumes about an

Table 1. Memory consumption per key for TreeSet, ArtTree and DCB in datasets of
100 million values

Dataset Baseline TreeSet δTree ArtTree δArt DCB8 δDCB8 DCB16 δDCB16

Dense 1.5 88 58.67 8.1 5.4 1.89 1.26 2.03 1.35

Yago 3.2 88 27.5 29.4 9.19 8.73 2.73 9.36 2.92

Randomt 5.45 88 16.15 18.67 3.43 11.23 2.06 12.04 2.21

DBPedia 3.78 96 25.4 60.01 15.88 NA NA 12.66 3.35
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order of magnitude more space per key than the DCB -Tree. The reason is that
it uses no compression and has a poor payload-to-pointer ratio.

4.5 Runtime Performance

To evaluate the runtime behavior, the same datasets and sizes as in the memory
benchmark are used. For each configuration, 100,000,000 lookup operations are
issued in a random order and the number of operations performed per second are
measured. The results for Dense is shown in Fig. 5a, for Random in Fig. 5c, for
Yago in Fig. 5b and for DBpedia in Fig. 5d. It can be observed that regarding the
artificial datasets Dense and Random, the ART Tree processes about 50% more
lookups per second than the DCB8 tree. Although the Red Black Tree has very
good performance for datasets having less than 10,000 entries, for larger datasets
the performance drops significantly and is surpassed by both the DCB -Tree as
well as the ART-Tree.

Fig. 5. Lookup performance

In case of the large real world datasets Yago and DBpedia the DCB-Tree
is on the same level or superior to the ART Tree. For Yago, depending on the
dataset size, DCB8 processes between 7% and 30% more operations per second
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than ART. For DBpedia, DCB-16 has an equivalent runtime performance as
ART for more than 10,000,000 entries. The reason that DCB-16 performs up to
50% worse than ART for dataset sizes smaller than 10,000,000, is the overhead
of the custom 16 byte integer implementation, as no native 16 byte integer
datatype is available on the Java Platform. ART is not affected by this, because
it performs a byte wise comparison. Nevertheless, due to its tree height and the
increased number of cache misses, the performance of ART drops significantly
for datasets larger than 10,000,000 entries.

The reason that the TreeSet is only evaluated for dataset sizes of up to
100,000,000 entries is that the amount of memory required exceeds the amount
of RAM available in our benchmark environment (more than 96 GB).

5 Conclusion and Future Work

In this paper we presented the DCB-Tree, a cache-conscious index structure for
the storage of short fixed size keys. The DCB-Tree combines a hierarchical cache
aligned node layout with delta encoding and pointer compression. The evaluation
results show the best memory utilization among the contestants, while providing
equal or better performance for large real world datasets.

We presented algorithms for insertion and search operations and described the
influence of the two-stage node layout on B-Tree operations. Furthermore, the
DCB-Tree was evaluated against two other index structures, namely the ART
Tree and a Red Black Tree on artificial as well as on real world datasets. We show
that for dense as well as for large real world dataset the DCB-Tree requires only
20 % of memory compared to other state of the art index structures. Moreover,
our evaluation shows that the DCB-Tree provides decent performance using arti-
ficial datasets. In the case of large real world datasets it is equivalent or superior to
state of the art in-memory index structure ART, while providing a more efficient
space consumption. In future work, we will investigate other encoding strategies
to further reduce the amount of memory required. Furthermore, we plan to inte-
grate the DCB-Tree into RDF-Stores as well as to use it as a basis for full text
indexes.
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Abstract. Real world applications make heavy use of composite keys to
reference entities. Indices over multiple columns are therefore mandatory
to achieve response time goals of applications. We describe and evalu-
ate the Composite Group-Key Index for fast tuple retrieval via compos-
ite keys from the compressed partition of in-memory column-stores with
a main/delta architecture. Composite Group-Keys work directly on the
dictionary-encoded columns. Multiple values are encoded in a native inte-
ger and extended by an inverted index. The proposed index offers similar
lookup performance as alternative approaches, but reduces the storage
requirements significantly. For our analyzed dataset of an enterprise appli-
cation the index can reduce the storage footprint compared to B+Trees
by 70 percent. We give a detailed study of the lookup performance for
a variable number of attributes and show that the index can be created
efficiently by working directly on the dictionary-compressed data.

1 Introduction

Today’s hardware is available in configurations and at price points that make
in-memory database systems a viable choice for many applications in enterprise
computing. We focus on columnar in-memory storage with a write-optimized
delta partition and a larger read-optimized main partition. This architecture
supports high performance analytical queries [2,12], while still allowing for suf-
ficient transactional performance [5]. The results from an analysis of all primary
keys of a large enterprise resource planning (ERP) system installation provide
the input for the evaluation of different indexing techniques. The Composite
Group-Key index is built on top of multiple dictionary-encoded columns by stor-
ing compact key-identifiers derived from the encoded representation of the key’s
fields. The key-identifiers maintain the sort order of the tuples and therefore,
the index supports range lookups, which have a significant share in enterprise
workloads [5].

Applications use composite keys to model entities according to their real
world counterpart and the relationships between them. Redesigning database
schemata to avoid the usage of composite keys is cumbersome and often contrary
c© Springer International Publishing Switzerland 2015
A. Jagatheesan et al. (Eds.): IMDM 2013/2014, LNCS 8921, pp. 139–150, 2015.
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to the goal of achieving a good abstraction of entities. To avoid the high costs
of composite keys, database designs might use surrogate keys. However, the
introduction of surrogate keys brings new problems, such as a disassociation of
the key and the actual data and problems of uniquely referencing entities, among
others. This is also visible in industry benchmarks like the TPC-C: of the nine
tables in the TPC-C schema, seven have a composite key, two thereof have
additional, secondary composite indices. TPC-H’s largest table lineitems has a
composite key as well. Consequently, nearly all row-based relational database
systems support composite indices. Looking at the internal record based storage
scheme of row stores, the support for composite indices is a straightforward
extension of the single attribute index. The primary key is often automatically
set as the cluster key of the table, e.g. it establishes the sort order of a table
on disk.

In-memory column stores with a main/delta architecture like Hyrise [4] and
SAP HANA [12] keep the majority of the data in highly compressed, read-
only partitions. Therefore, an additional index on record-level on such partitions
can impose a significant part of the overall storage consumption of a table. To
maintain a high query performance, the main and delta partition is combined
into a new compressed main partition whenever the delta partition grows too
large. To keep this merge process simple and fast and the compression scheme
flexible, we do not consider the tables to be kept in the sort order of the primary
key [5]. Consequently, a separate index structure is needed to enforce uniqueness
constraints and fast single tuple access.

In the following sections, we describe the Composite Group-Key Index and
benchmark it against alternative indexing schemes for the dictionary-compressed
main partition of in-memory column stores with regard to their storage con-
sumption and applicability in a real world enterprise application. We show
that the lookup performance of Composite Group-Keys can keep up with alter-
native implementations while imposing a significantly smaller space overhead.
A detailed analysis of a large enterprise application with several thousand tables
and billions of records shows its applicability and limitations.

2 Real World Enterprise Application: SAP ERP

An Enterprise Resource Planning (ERP) application is the central planning soft-
ware for large companies. It typically stores all invoices, sales orders, deliveries,
and general ledger documents, and the connections between them, among other
relevant data. We had the opportunity to obtain a complete system copy from
a large, productive installation of the SAP ERP application from a Fortune
500 company. Although the analysis of a single instance of the product does
not cover the entire ERP market, we believe that the findings are valuable and
applicable to a larger scope of enterprise applications. The SAP ERP software
has about 25 percent market share in the global ERP market and is used by more
than half of the Fortune 500 companies. We verified the results from selected
tables in a second instance of the application that is used in a different industry.
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Fig. 1. Analysis of the data in a ERP system from a Fortune 500 company.

Fig. 2. Number of attributes in primary keys of large tables.

The analyzed ERP system’s size is about 5 TB in uncompressed format, it stores
10 billion records in 23886 tables. Each table has a primary key, which is usu-
ally a composite key. As an example, the general ledger accounting header’s key
is composed of the tenant-id, a company code, the document number and the
fiscal year. Figure 1 shows number of tables in our database system grouped
by the number of attributes in their key, in Fig. 2 a detailed view of the tables
with more than 100,000 records is presented. Only 2350 of the 23886 non-empty
tables have a primary key of only one attribute, 6789 with two attributes and
14747 have composite keys of three or more attributes. If only the tables with
more than 100,000 records are taken into account, 96 percent have a composite
key, 81 percent with three or more fields.

Since the application is designed as a multi-tenant system with the tenant-
id as the first key in all transactional tables, two keys are the norm. However,
even if multi tenancy is implemented on a different layer, there are many more
composite keys of higher order. The important finding of the analysis is, that
more than 90 percent of the tables have a composite primary key.



142 M. Faust et al.

Table 1. Symbols

Symbol Symbol

Table Length n Position List P

Key-Identifier List K Concatenated Key c

Attribute Vector of Column x AVx Dictionary of Column x Dx

Column x Cx Key-identifier kid

3 Composite Group-Key

The Composite Group-Key is our proposal for indexing the main partition of
in-memory column stores with dictionary compression. Table 1 summarizes the
used symbols.

The dictionary compression on the main partition uses sorted dictionaries
(D) and bit-packed attribute vectors (AV). We refer to the compressed represen-
tation of a value, its bit-packed index into the dictionary, as value-id. Because
all dictionaries of the main partition are sorted, the value-ids follow the same
sort order as the original values and the value-ids of one column can be directly
compared to evaluate the order between values. Therefore, range queries can also
be evaluated directly on the compressed format.

The composite Group-Key contains two data structures: a key-identifier list
K and a position list P . The key-identifier list contains integer keys kid which are
composed of the concatenated value-ids of the respective composite key’s values.
The bit-wise representation of kid equals the concatenation of the value-ids of
the keys fields, as illustrated in Fig. 3(b). The creation of key-identifiers can be
implemented efficiently through bit shifts.

The key-identifiers are similar to BLINK’s data banks, but as they are com-
posed of fixed-length values, they are binary-comparable across the complete
main partition [9]. In the successor, DB2 BLU [8] indices are only used to enforce
uniqueness constraints. Best practice guides advice to disable constraint check-
ing, as the B+Tree organized indices consume space and introduce processing
overhead1.

Storage Requirements. The Composite Group-Key maintains two data struc-
tures, the key-identifier list K with either 8, 16, 32 or 64 bits per indexed key and
a bit-packed position list P . K is always composed of native integer datatypes,
to avoid costly bit un-packing during the binary search. P is only accessed to
retrieve the respective row-id, hence it is stored with �log2 n� bits to save memory
space.
1 Rockwood et al.: Best practices: Optimizing analytic workloads using DB2 10.5 with
BLU Acceleration May 2014 on IBM.com.



Composite Group-Keys 143

Fig. 3. Composite Group-Key creation: (a) schematic overview, (b) kid creation.

Kx = n ∗ x

8
bytes | x in {8, 16, 32, 64} (1)

P =
�log2(n)� ∗ n

8
bytes (2)

MemoryComp.GK = Kx ∗ n + P (3)

Key Lookups. The first step of the lookup with the Composite Group-Key
Index consists of the translation of all key attributes of the predicate to their
respective value-id, using binary search on each key attribute’s dictionary. The
complexity of each dictionary lookup is O((log |Dict|) ∗ ki), with ki being the
length of the respective key attribute. Afterwards the key-identifier is created
by concatenating the value-ids through bit shifts. The search key is used for a
binary search on the key-identifier list, which is within O(log n). The results, the
matching row-id, can be read directly from the offset in P .

Index Creation. The process of creating the index is shown schematically in
Fig. 3 and by example in Fig. 4.

In the first step, value-ids from all columns of the composite key are com-
bined to a vector of key-identifiers (Ku). This intermediate data structure is
extended by an ascending list of row-ids (Pu). Afterwards both structures are
sorted according to the key-identifiers to obtain K and P .

The appropriate native integer type for the key-identifier list is calculated
by adding up the length of the value-ids of all indexed attributes and rounding
up to the next power of two.

4 Alternative Index Implementations

This section briefly introduces two alternatives for secondary indexing of multi-
ple columns. Both allow the efficient execution of single key and range queries.
However, they index the full composite key, instead of a shorter integer rep-
resentation. Our goal is to show, that it is viable to transform the key into
its compressed representation, although a binary search on each dictionary is
necessary before searching for the actual key-identifier.
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Fig. 4. Composite Group-Key creation: Example with 8 bit integer key-identifier.

4.1 Tuple-Based B+tree

A classic implementation of an index stores pairs of the actual composite key
and a row-id in a tree structure. Since the tree stores the uncompressed keys,
no additional dictionary lookups have to be performed upfront, and the search
takes place directly on the tree. The drawback of this approach is the need for
expensive comparisons of the actual composite key while traversing the tree and
its higher storage requirements (roughly 2x the data [11]) for internal pointers.
Newer trie-based structures, such as the Generalized Prefix Trees proposed by
Böhm et al. [1] and further developed in the Adaptive Radix Tree (ART) by
Leis et al. [6] address some of the problems that classic B+Trees have. However,
also tries require the replication of keys in the index and additional space for
auxiliary structures.

For a basic performance comparison, we use the STX B+Tree library2, a
drop in STL map replacement, which is optimized for modern CPUs and more
storage efficient than the GNU STL red-black trees. C++ tuples of char-arrays
are used to store the key. The number of attributes in the key is a template
parameter, i.e. there is no additional runtime overhead to determine the number
of keys.

Storage Requirements. For our comparison we ignore the internal overhead of
the B+Tree’s structures, and only assume that the indexed keys are replicated
once into the tree structure, and an additional 8 bytes for the row-id pointer
are stored. The resulting value is a lower-bound for any indexing scheme that
replicates the keys into the index structure without further compression of the
keys or row-id pointers.

MemoryB+Tree = (c + 8) ∗ n bytes (4)

Key Lookups. To find the corresponding row-ids for a predicate on the com-
posite key, the key’s attributes are concatenated to a single search key. In our
implementation a fixed-length byte-array is indexed. To search the index for
2 http://panthema.net/2007/stx-btree/.

http://panthema.net/2007/stx-btree/
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matches, the byte-array has to be created from the query predicates. Then, a
search on the tree is performed and the row-id is read from the leaf. Let k be
the length of the composite key, e.g. the sum of the length of all attributes that
form the key. The complexity of building the key is within O(k) and the actual
search on the index within O(log(n) ∗ k), since the key comparison is in itself a
O(k) operation.

4.2 Concatenated Attribute with Inverted Index

An alternative implementation to index composite primary keys adds an addi-
tional column to the table. The additional column holds concatenated values of
all key attributes. It is extended by an inverted index to allow for fast tuple
retrieval through the concatenated key. This essentially creates a clustered in-
memory row store for the vertical partition of the composite key, and allows
other database operations, like joins and aggregations, to work on the single
concatenated column instead of handling multiple columns. Its integration into
existing analytical column store engines without indices promises to be feasible
with less effort than the introduction of new data structures and operators. If
the key is composed of fixed length fields, the concatenated values follow the
same sort order as the original values, otherwise a specialized encoding scheme
has to be employed to support range queries. If a primary key is indexed, the
resulting column has 100 percent distinct values and the dictionary is essentially
an uncompressed representation of the Composite Group-Keys key-identifier list.

Storage Requirements. The concatenated key column consists of a sorted
dictionary of string-keys (D), the attribute vector (AV) and a bit-packed posi-
tion list (P). For primary keys the resulting key column has 100 percent distinct
values, therefore we avoid adding a level of indirection [3] to cope with differently
sized position lists, and instead store the positions directly in P. The differences
to the B+Tree lower-bound stem from the bit-packed row-ids, an optimization
that is only possible, if row-ids are stored consecutively. The resulting size is
dominated by the dictionary, which is further compressed in practice. Müller
et al. [7] inspect the compression of the dictionary, and report compression fac-
tors between two and eight [7]. We show the results of the uncompressed column,
as well as with a dictionary compression factor four.

AVConcat =
�log2(n)� ∗ n

8bit
bytes (5)

DConcat = n ∗ sizeof(c) (6)

P =
�log2(n)� ∗ n

8
bytes (7)

MemoryConcat = AVConcat + DConcat + P (8)
MemoryCompressedConcat = AVConcat + 0.25 ∗ DConcat + P (9)
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Fig. 5. Large tables from the ERP system by their respective Composite Group-Key
class.

Key Lookups. A predicate on the key columns is translated to the concate-
nated version of the composite key by the query processor, similar to query
processing with B+Trees. Next, a binary search for the concatenated key is
performed on the concatenated column’s dictionary. The respective row-id is
obtained from the inverted index through a direct offset lookup in constant
time. The lookup complexity is equal to the B+Tree lookup.

5 Evaluation

We compare the different indices with regard to the storage requirements, lookup
performance, and index rebuild costs.

5.1 Storage Requirements of ERP Primary Keys

We use the insights from the ERP dataset analysis to compare the expected
storage footprints of the Composite Group-Key Index and the presented alter-
natives.

To evaluate the applicability of our proposed Composite Group-Key index
we calculate the size of the key-identifier for all tables: Fig. 5(a) shows the aggre-
gated counts of the tables that are found in the system and have more than one
million rows, and Fig. 5(b) the indexed tuples within these tables. It highlights
the importance of the 32 bit and 64 bit index cases, however, 86 tables of the
analyzed dataset would need a 128 or 256 bit key-identifier, if the Composite
Group-Key is applied. We focus on the configurations in which an native integer
type is sufficient and leave the other cases for future work. Nevertheless, tables
that use the Composite Group-Key can still grow at runtime, without leading
to problems: as the size of the key-identifier is known at merge-time, the deci-
sion to use the Composite Group-Key can be safely made for each table. The
limitations cannot be hit during normal query processing, i.e. during insertions
or updates, but only when a re-encode of the main partition occurs during the
merge process.
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Fig. 6. Calculated index sizes grouped by attributes in key for the 23800 tables of the
analyzed ERP system where the Composite Group-Key is applicable.

The total memory footprint of all primary keys in the ERP dataset is 287 GB
for the calculated B+Tree lower-bound, 278 GB for the concatenated attribute,
108 GB for the estimate of compressed concatenated column, and 79 GB for
the Composite Group-Key Index. The Composite Group-Key has a memory
footprint advantage of about 70 percent less than the lower-bound of B+Trees
and the uncompressed concatenated attribute. Even with an assumed compres-
sion factor of 4 for the dictionary of the concatenated attribute, the Composite
Group-Key still leads to a 30 percent reduction. The storage footprint of the
concatenated column and the Composite Group-Key are equal at an assumed
compression factor of eight for all concatenated dictionaries.

In Fig. 6, we compare the resulting index sizes of the Composite Group-
Key Index and the other indexing schemes grouped by the number of fields in
the composite key. It shows the storage savings of the Composite Group-Key
compared to the presented alternatives. It highlights that most savings in the
ERP system can be made in keys with 4 and 5 attributes.

5.2 Lookup Performance

We benchmark the performance of key selects via the index. For each of the
introduced indices we randomly pick 100 keys and report the average access
time in CPU cycles. The benchmarks include the complete predicate-to-result
translation, e.g. in case of the concatenated attribute the predicates are copied
to create the char-array search key. For the Group-Key Index a binary search
on each dictionary is performed. All measurements were performed on an Intel
Core i5-3470 3.2 GHz CPU with 8 GB RAM running Ubuntu 13.10 and using the
GCC 4.8.1 compiler. The results are plotted for three to five attributes in the key
in Figs. 7 and 8. In Fig. 7, the lookup performance of a single, uncached access
to the index is reported. The three index types show a similar performance,
with a minimal penalty for the B+Tree. Figure 8 reports the results for 100
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Fig. 7. Uncached Performance of Lookups. The CPU cache has been cleared between
each access.

Fig. 8. Cached Performance of Lookups. Same experiment as in Fig. 7 but without
invalidation of the CPU cache between runs.

consecutive index accesses to different values without any forced CPU cache
invalidation. Here, the smaller size of the Composite Group-Key is beneficial
for cache locality, and it outperforms the alternatives consistently. We conclude
that the Composite Group-Key’s performance is on-par with other established
indexing schemes.

5.3 Index Creation and Maintenance

To keep the delta partition small and fast, its contents are merged from time to
time into the main partition [5]. Only at merge time, the main partition index
has to be maintained, as all other write operations during runtime are handled
by the delta partition and a special invalidation vector of the main partition.

During the merge process, the delta and main partition are combined to a
new main partition, thereby potentially changing the value-ids of every value in
the former main store [5]. Additionally, the merge process handles a column at a
time, making in difficult to handle composite keys, as multiple columns have to
be considered. The merge process runs concurrently to transactions, hence, the
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Fig. 9. Index creation performance for different main partition sizes

current index cannot be modified in-place. Therefore, after the merge process
created a new main partition, a new index is built from scratch.

This works for all index types, but as Fig. 9 shows, the costs vary. The high
costs for the concatenated attribute are due to the expensive byte-wise operations
on all values, especially the sorting to create the inverted index. The B+Tree
shows better performance due to the better cache locality during the sort. The
Composite Group-Key outperforms the two alternative, since it does not work
on byte-arrays, but native integers. Since K is a vector of integers, the sorting
operation is much faster than the respective sorting of char-arrays.

6 Conclusion and Future Work

We showed the importance of composite keys and proposed a novel index struc-
ture tailored towards dictionary encoded column-stores with a main/delta archi-
tecture. The Composite Group-Key’s lookup performance is on par with other
established indexing schemes while significantly reducing the storage footprint
for a variety of real world tables. Its implementation leverages the encoding of
the primary data by encoding value-ids instead of values. It can therefore avoid
costly byte-wise comparisons and perform the comparison of multiple parts of
the key in a single integer comparison. Although the Composite Group-Key’s
lookup complexity suggests that a lookup operation is more costly than in the
other cases, its actual performance on modern CPUs keeps up with the alter-
natives. It is a viable choice to use the compressed representation of a key to
perform fast single-tuple lookups in in-memory column-stores with a main/delta
architecture.

In future work we plan to evaluate how additional optimizations, such as
storing the key-identifier list as a CSS tree [10] or trie compare in this setting.
Bit-packing row-ids in tree leaf nodes is another option to reduce the memory
footprint of tree structures. Additionally, clustered indices can be applied to our
columnar in-memory storage engine. The binary search on the sorted compressed
columns is similar to the Composite Group-Key lookup, since the predicate needs
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to be translated to the compressed representation as well, before the search on
the partition can be performed. Nevertheless, additional index structures could
improve search performance on the sorted table.
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