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Preface

On September 14, 2014, The Third International Workshop on Clinical Image based
Procedures: Translational Research in Medical Imaging (CLIP 2014) was held in
Boston, MA, USA in conjunction with the International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI 2014). The successful
meeting was a productive and exciting forum for the discussion and dissemination of
clinical applications of medical imaging, state-of-the-art methods for image-based
planning, and development and evaluation of new medical procedures and therapies.
The workshop was co-organized by Childrens National Health System, Fraunhofer
IGD and IDM@NTU, Nara Institute of Science and Technology, and Universitat
Pompeu Fabra.

Over the past few years, there has been a considerable and growing interest in the
development and evaluation of new translational image-based techniques in the modern
hospital. For a decade or more, the outstanding proliferation of medical image appli-
cations has created a need for greater study and scrutiny of the clinical application and
validation of such methods. New strategies are essential to ensure a smooth and
effective translation of computational image-based techniques into the clinic. For these
reasons and to complement other technology focused MICCAI workshops on com-
puter-assisted interventions, CLIP’s major focus was on translational research filling
the gaps between basic science and clinical applications.

A highlight of the workshop was the subject of strategies for personalized medicine
to enhance diagnosis, treatment, and interventions. Members of the medical imaging
community were encouraged to submit work centered on specific clinical applications,
including techniques and procedures based on comprehensive clinical image data or
already in use and evaluated by clinical users. The event brought together over 40
world-class researchers and clinicians who presented ways to strengthen links between
computer scientists and engineers, and surgeons, interventional radiologists, and
radiation oncologists.

In the tradition of our previous workshops, CLIP 2014 was a successful venue for
the dissemination of emerging image-based clinical techniques, the analysis of the
current uptake of advanced computational imaging techniques, and the discussion
of the main hurdles for their clinical translation and how to overcome them. Specific
topics included pre-interventional image segmentation and classification (to support
diagnosis and clinical decision making), shape analysis for anatomical modeling,
interventional and surgical planning and analysis of dynamic images, and evaluation,
visualization, and simulation techniques for image based procedures. Clinical appli-
cations covered brain diseases, cardiac defects, orthopedics, inflammatory diseases,
blood vessels, cochlear defects, and cancer of the head and neck, breast, prostate,



and lung in adults and children. During two keynote sessions, clinical highlights were
presented and discussed by Pedro del Nido, MD, Chairman of the Department of
Cardiovascular Surgery at Boston Children’s Hospital and William E. Ladd Professor
of Child Surgery at Harvard Medical School (minimally invasive robotic surgery on the
beating heart), and Thomas Bortfeld, PhD, Director of the Physics Division at Mas-
sachusetts General Hospital and Professor in the Department of Radiation Oncology at
Harvard Medical School (imaging radiation and proton therapy). We are grateful to our
keynote speakers for their compelling presentations and vibrant participation in
workshop discussions.

In response to the call for papers, 26 original manuscripts were submitted for
presentation at CLIP 2014. Each of the manuscripts underwent a meticulous double-
blind peer review by a minimum of two members of the Program Committee, presti-
gious experts in the field of medical image analysis and clinical translations of tech-
nology. Seventy-three percent or 19 of the manuscripts were accepted for presentation
at the workshop: 12 or 46 % as long oral presentations, and 7 as short oral and poster
contributions. Contributors represented three continents: Europe, North America, and
Asia. The six papers with the highest review score were nominated to be considered as
best papers. From them, the three best papers were chosen by votes cast by workshop
participants who had attended all six presentations of the nominated papers (workshop
organizers excepted). As a result, three awards were presented. The first place went to
Juan Cerrolaza, Sergio Vera, Alexis Bagué, Mario Ceresa, Pablo Migliorelli, Marius
George Linguraru, and Miguel Ángel González Ballester from Children’s National
Health System in Washington, DC, USA, and Alma IT Systems and Universitat
Pompeu Fabra in Barcelona, Spain for their work in shape modeling of the cochlea and
surrounding risk structures for minimally invasive cochlear implant surgery. The
second place was presented to Amit Shah, Oliver Zettinig, Tobias Maurer, Cristina
Precup, Christian Schulte zu Berge, Jakob Weiss, Benjamin Frisch, Nassir Navab from
Technische Universität München in Germany for their advancements on multimodal
image-guided prostate biopsy. The third place was conferred on Nishant Uniyal, Farhad
Imani, Amir Tahmasebi, Peter Choyke, Baris Turkbey, Peter Pinto, Bradford Wood,
Sheng Xu, Jin Tae Kwak, Pingkun Yan, Jochen Kruecker, Shyam Bharat, Harsh
Agarwal, Purang Abolmaesumi, Parvin Mousavi, Mehdi Moradi from University of
British Columbia, Vancouver, BC, Canada, Queen’s University, Kingston, ON,
Canada, Philips Research North America, Briarcliff Manor, NY, USA, and National
Institutes of Health, Bethesda, MD, USA for their contributions to ultrasound-based
predication of prostate cancer in MRI-guided biopsy. We would like to congratulate
warmly all the prize winners for their outstanding work and exciting presentations and
thank our sponsors, EXOCAD and MedCom, and HEAR-EU for their support.

We would also like to acknowledge the invaluable contributions of our entire
Program Committee without whose assistance CLIP 2014 would not have been as
successful and stimulating. Our thanks also go to all the authors in this volume for the
high quality of their work and the commitment of time and effort. Finally, we are
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grateful to the MICCAI 2014 organizers, and particularly Polina Golland, Nobuhiko
Hata, Georg Langs, Mehdi Moradi, Sonia Pujol, and Martin Styner, for supporting the
organization of CLIP 2014.

October 2014 Marius George Linguraru
Cristina Oyarzun Laura

Raj Shekhar
Stefan Wesarg

Miguel Ángel González Ballester
Klaus Drechsler
Yoshinobu Sato

Marius Erdt

Preface VII



Organization

Committees

Organizing Committee

Klaus Drechsler Fraunhofer IGD, Germany
Marius Erdt Fraunhofer IDM@NTU, Singapore
Marius George Linguraru Children’s National Health System, USA
Miguel Ángel González

Ballester
ICREA - Universitat Pompeu Fabra, Spain

Cristina Oyarzun Laura Fraunhofer IGD, Germany
Yoshinobu Sato Nara Institute of Science and Technology, Japan
Raj Shekhar Children’s National Health System, USA
Stefan Wesarg Fraunhofer IGD, Germany

Program Committee

Jorge Bernal Universitat Autonoma de Barcelona, Spain
Mario Ceresa Pompeu Fabra University, Spain
Juan Cerrolaza Children’s National Health System, USA
Xinjian Chen Soochow University, China
Yufei Chen Tongji University, China
Thiago dos Santos SENAI Institute of Innovation in Embedded

Systems, Brazil
Jan Egger TU Graz, Austria
Wissam El Hakimi TU Darmstadt, Germany
Gloria Fernández Esparrach Hospital Clinic Barcelona, Spain
Moti Freimann Harvard Medical School, USA
Debora Gil Universitat Autonoma de Barcelona, Spain
Enrico Grisan University of Padova, Italy
Tobias Heimann Siemens, Germany
Xin Kang Siemens, China
Michael Kelm Siemens, Germany
Jianfei Liu Duke University, USA
Xinyang Liu Children’s National Health System, USA
Yoshitaka Masutani Hiroshima City University, Japan
Diana Nabers German Cancer Research Center, Germany
Danielle Pace Massachussets Institute of Technology, USA
Mauricio Reyes University of Bern, Switzerland
Akinobu Shimizu Tokyo University of Agriculture and Technology,

Japan
Ronald M. Summers National Institutes of Health, USA
Kenji Suzuki University of Chicago, USA
Zeike Taylor University of Sheffield, UK



Shijun Wang National Institutes of Health, USA
Thomas Wittenberg Fraunhofer IIS, Germany
Ziv Yaniv Children’s National Health System, USA
Qian Zhao Children’s National Health System, USA
Stephan Zidowitz Fraunhofer MEVIS, Germany

Sponsoring Institutions

exocad GmbH
HEAR-EU Project
MedCom GmbH

X Organization



Contents

An Open Source Multimodal Image-Guided Prostate Biopsy Framework . . . . 1
Amit Shah, Oliver Zettinig, Tobias Maurer, Cristina Precup,
Christian Schulte zu Berge, Jakob Weiss, Benjamin Frisch, and Nassir Navab

Breast Cancer Detection Using Haralick Features of Images Reconstructed
from Ultra Wideband Microwave Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Blair D. Fleet, Jinyao Yan, David B. Knoester,
Meng Yao, John R. Deller Jr., and Erik D. Goodman

Data-Driven Learning to Detect Characteristic Kinetics in Ultrasound Images
of Arthritis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Gaia Rizzo, Bernd Raffeiner, Alessandro Coran, Roberto Stramare,
and Enrico Grisan

COSMO - Coupled Shape Model for Radiation Therapy Planning of Head
and Neck Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Florian Jung, Sebastian Steger, Oliver Knapp,
Matthias Noll, and Stefan Wesarg

Automated Estimation of Aortic Intima-Media Thickness from Fetal Ultrasound. . . 33
Giacomo Tarroni, Silvia Visentin, Erich Cosmi, and Enrico Grisan

Polyp Segmentation Method in Colonoscopy Videos by Means
of MSA-DOVA Energy Maps Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 41

Jorge Bernal, Joan Manel Núñez, F. Javier Sánchez, and Fernando Vilariño

Generation of Patient-Specific 3D Cardiac Chamber Models for Real-Time
Guidance in Cardiac Ablation Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . 50

Joyeeta Mitra Mukherjee, Amit Mukherjee, Sunil Mathew,
Dave Krum, and Jasbir Sra

Hierarchical Shape Modeling of the Cochlea and Surrounding Risk Structures
for Minimally Invasive Cochlear Implant Surgery . . . . . . . . . . . . . . . . . . . . 59

Juan Cerrolaza, Sergio Vera, Alexis Bagué, Mario Ceresa,
Pablo Migliorelli, Marius George Linguraru, and Miguel Ángel González Ballester

Noninvasive Electrocardiographic Imaging of Cardiac Arrhythmias: Enhance
the Diagnosis of Bundle Branch Block . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Liansheng Wang, Yiping Chen, Huangjing Lin, and Dong Ni

Confidence Weighted Local Phase Features for Robust Bone Surface
Segmentation in Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Niamul Quader, Antony Hodgson, and Rafeef Abugharbieh

http://dx.doi.org/10.1007/978-3-319-13909-8_1
http://dx.doi.org/10.1007/978-3-319-13909-8_2
http://dx.doi.org/10.1007/978-3-319-13909-8_2
http://dx.doi.org/10.1007/978-3-319-13909-8_3
http://dx.doi.org/10.1007/978-3-319-13909-8_3
http://dx.doi.org/10.1007/978-3-319-13909-8_4
http://dx.doi.org/10.1007/978-3-319-13909-8_4
http://dx.doi.org/10.1007/978-3-319-13909-8_5
http://dx.doi.org/10.1007/978-3-319-13909-8_6
http://dx.doi.org/10.1007/978-3-319-13909-8_6
http://dx.doi.org/10.1007/978-3-319-13909-8_7
http://dx.doi.org/10.1007/978-3-319-13909-8_7
http://dx.doi.org/10.1007/978-3-319-13909-8_8
http://dx.doi.org/10.1007/978-3-319-13909-8_8
http://dx.doi.org/10.1007/978-3-319-13909-8_9
http://dx.doi.org/10.1007/978-3-319-13909-8_9
http://dx.doi.org/10.1007/978-3-319-13909-8_10
http://dx.doi.org/10.1007/978-3-319-13909-8_10


Evaluation of Electromagnetic Tracking for Stereoscopic Augmented
Reality Laparoscopic Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Xinyang Liu, Sukryool Kang, Emmanuel Wilson, Craig A. Peters,
Timothy D. Kane, and Raj Shekhar

Automatic Lung Tumor Segmentation with Leaks Removal in Follow-up
CT Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Refael Vivanti, Onur A. Karaaslan, Leo Joskowicz, and Jacob Sosna

Patient Specific Simulation for Planning of Cochlear Implantation Surgery. . . 101
Sergio Vera, Frederic Perez, Clara Balust, Ramon Trueba, Jordi Rubió,
Raul Calvo, Xavier Mazaira, Anandhan Danasingh, Livia Barazzetti,
Mauricio Reyes, Mario Ceresa, Jens Fagertum, Hans Martin Kjer,
Rasmus Paulsen, and Miguel Ángel González Ballester

Weighted Partitioned Active Shape Model for Optic Pathway Segmentation
in MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Xue Yang, Juan Cerrolaza, Chunzhe Duan, Qian Zhao, Jonathan Murnick,
Nabile Safdar, Robert Avery, and Marius George Linguraru

Longitudinal Intensity Normalization in Multiple Sclerosis Patients . . . . . . . . 118
Yogesh Karpate, Olivier Commowick, Christian Barillot, and Gilles Edan

Spatial-Temporal Image-Constrained Lung 4D-CT Reconstruction
for Radiotherapy Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Tiancheng He, Zhong Xue, Nam Yu, Bin S. Teh, and Stephen T. Wong

Simultaneous Multi-phase Coronary CT Angiography Analysis for Coronary
Artery Disease Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Yechiel Lamash, Moti Freiman, and Liran Goshen

Ultrasound-Based Predication of Prostate Cancer in MRI-guided Biopsy . . . . 142
Nishant Uniyal, Farhad Imani, Amir Tahmasebi, Harsh Agarwal,
Shyam Bharat, Pingkun Yan, Jochen Kruecker, Jin Tae Kwak, Sheng Xu,
Bradford Wood, Peter Pinto, Baris Turkbey, Peter Choyke,
Purang Abolmaesumi, Parvin Mousavi, and Mehdi Moradi

Applying an Active Contour Model for Pre-operative Planning of Transapical
Aortic Valve Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Mustafa Bayraktar, Bekir Sahin, Erol Yeniaras, and Kamran Iqbal

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

XII Contents

http://dx.doi.org/10.1007/978-3-319-13909-8_11
http://dx.doi.org/10.1007/978-3-319-13909-8_11
http://dx.doi.org/10.1007/978-3-319-13909-8_12
http://dx.doi.org/10.1007/978-3-319-13909-8_12
http://dx.doi.org/10.1007/978-3-319-13909-8_13
http://dx.doi.org/10.1007/978-3-319-13909-8_14
http://dx.doi.org/10.1007/978-3-319-13909-8_14
http://dx.doi.org/10.1007/978-3-319-13909-8_15
http://dx.doi.org/10.1007/978-3-319-13909-8_16
http://dx.doi.org/10.1007/978-3-319-13909-8_16
http://dx.doi.org/10.1007/978-3-319-13909-8_17
http://dx.doi.org/10.1007/978-3-319-13909-8_17
http://dx.doi.org/10.1007/978-3-319-13909-8_18
http://dx.doi.org/10.1007/978-3-319-13909-8_19
http://dx.doi.org/10.1007/978-3-319-13909-8_19


An Open Source Multimodal Image-Guided
Prostate Biopsy Framework
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Abstract. Although various modalities are used in prostate cancer imag-
ing, transrectal ultrasound (TRUS) guided biopsy remains the gold stan-
dard for diagnosis. However, TRUS suffers from low sensitivity, leading
to an elevated rate of false negative results. Magnetic Resonance Imag-
ing (MRI) on the other hand provides currently the most accurate image-
based evaluation of the prostate. Thus, TRUS/MRI fusion image-guided
biopsy has evolved to be the method of choice to circumvent the limita-
tions of TRUS-only biopsy. Most commercial frameworks that offer such
a solution rely on rigid TRUS/MRI fusion and rarely use additional infor-
mation from other modalities such as Positron Emission Tomography
(PET). Other frameworks require long interaction times and are complex
to integrate with the clinical workflow. Available solutions are not fully
able to meet the clinical requirements of speed and high precision at low
cost simultaneously. We introduce an open source fusion biopsy framework
that is low cost, simple to use and has minimal overhead in clinical work-
flow. Hence, it is ideal as a research platform for the implementation and
rapid bench to bedside translation of new image registration and visual-
ization approaches. We present the current status of the framework that
uses pre-interventional PET and MRI rigidly registered with 3D TRUS
for prostate biopsy guidance and discuss results from first clinical cases.

Keywords: Prostate cancer · Multimodal image-guided biopsy · PET ·
MRI · TRUS · Open source software

1 Introduction

Prostate cancer is one of the most common cancers worldwide [1]. However,
survival rates are high if it is diagnosed early and treated on time. The gold
standard to confirm prostate cancer is transrectal ultrasound (TRUS) guided
systematic 10–12 core biopsy. Although TRUS provides real-time anatomical
guidance, its sensitivity for prostate cancer is rather low. Hence, TRUS guided
c© Springer International Publishing Switzerland 2014
M.G. Linguraru et al. (Eds.): CLIP 2014, LNCS 8680, pp. 1–8, 2014.
DOI: 10.1007/978-3-319-13909-8 1



2 A. Shah et al.

systematic biopsies may miss important cancer sites [12]. On the other hand,
multi-parametric MRI and PET have higher cancer detection rate as reported
in the studies presented in the review paper by Turkbey et al. [12]. Further stud-
ies [3,6,10] have shown that TRUS/MRI fusion image-guided targeted biopsy
might detect significantly more malignant lesions compared to using TRUS alone.

Many urology clinics have access to advanced imaging modalities such as CT,
MRI or nuclear medicine and an increasing number of urologists performs cog-
nitive fusion of these multimodal images while performing TRUS guided biopsy.
However, cognitive fusion is prone to human error and does not improve the
results significantly as presented by Delongchamps et al. [3]. Hence, automatic
fusion of pre-interventional imaging, especially of MRI and PET with TRUS, is
highly desired.

Literature Review. One challenge lies in combining pre-interventional mul-
timodal images with interventional TRUS automatically, with acceptable accu-
racy and without exceeding the permissible time limits of the clinical workflow.
Efforts towards TRUS/MRI registration are summarized by Sperling et al. [10].
While classical approaches mostly rely on either surface based or extracted fidu-
cial driven algorithms, more recent approaches attempt deformable registration
based on prostate surface models using spline basis functions [7] or on proba-
bilistic and statistical shape models [9]. These algorithms rely on the manual
segmentation of prostate surfaces which requires an extended interaction of the
physician, which makes it difficult to integrate into the clinical routine.

A further challenge is the development of a biopsy system that uses such
fusion images for guidance. Commercial solutions come each with their draw-
backs, reducing their acceptance in urological routine. Most systems use 2D
TRUS probes and track their position to compound a 3D TRUS image. Percu-
Nav (Philips, NL) and Hi-RVS (Hitachi, JP) both use electromagnetic tracking,
subject to disturbances of the electromagnetic field and ensuing low tracking
accuracy. Artemis (Eigen, US) requires a mechanical arm to record the posi-
tion of the US probe and does surface based TRUS/MRI elastic registration.
The BioJET (GeoScan, USA) and BiopSee (Medcom, DE) systems both mount
the US probe on a stepper to acquire information about the position of the US
probe. To our knowledge, only the Koelis system (Uronav, France) avoids the
challenges of a tracking system by using a 3D TRUS probe. It uses elastic reg-
istration algorithms but requires TRUS/TRUS registration as an intermediate
step for TRUS/MRI registration.

Until recently, PET/TRUS fusion for prostate biopsy has generated only
moderate interest mainly due to the low specificity of currently available tracers
like 11C-acetate, 11C-choline and 18F-FDG [12]. However, with the introduc-
tion of 68Ga labelled ligands of Prostate Specific Membrane Antigen (PSMA),
PET/TRUS fusion might gain increasing attention [4].

Proposed Solution. In this work, we propose a solution that leverages the
use of open source software to develop a multimodal image-guided system for
transrectal prostate biopsy that combines pre-interventional PET-MRI with
interventional 3D TRUS. This low cost approach aims at providing a research
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platform for the implementation and rapid translation into clinical use of new
image registration and visualisation approaches. We use the PLUS framework [5]
for ultrasound probe calibration, tracked image acquisition and volume recon-
struction. PLUS requires further packages such as ITK for image processing [14],
VTK for visualization [8] and OpenIGTLink [11] for communication with other
systems. Our application is developed using CAMPVis [2], an open source visu-
alization framework from our group, that offers image registration and real-time
slice rendering based on tracking information.

The software components and the targeted biopsy system are explained in
Sect. 2. The outcomes of first clinical cases using rigid landmark-based registra-
tion are presented in Sect. 3. The conclusion and future work are outlined in
Sect. 4.

2 Method

2.1 System Setup

Our system, illustrated in Fig. 1, is lightweight in terms of workflow and resources.
It consists of a conventional ultrasound system, optical tracking and a worksta-
tion. The ultrasound system is a Hitachi AVIUS with a front fire trans-rectal probe
that provides 2D ultrasound images. The ultrasound probe is tracked by an NDI
Polaris� optical tracking system. Since we do not have direct access to RF data
from the ultrasound machine, we use a frame grabber to acquire high resolution
1280× 1024 digital images. The workstation has 2 Intel Xeon� processors running
at 2.13 GHz with 32 GB RAM and a NVIDIA GeForce� 8800 GTS 512 Graphics
card. The 3D TRUS image acquisition and biopsy guidance are based on PLUS
and CAMPVis respectively, both are open source software frameworks for medical
applications.

2.2 Clinical Protocol

The 3D TRUS acquisition and PET-MRI-TRUS registration procedure were
easily integrated into the existing clinical workflow without much overhead in
time or effort. Figure 2 shows the steps in the multimodal image-guided prostate
biopsy. The system has already been used for biopsies of two patients, after
obtaining their informed consent.

3D TRUS Acquisition Using PLUS. The first step in the fusion image-
guided biopsy procedure is to acquire a 3D TRUS volume. This requires the
spatial calibration of the ultrasound probe, a tracked ultrasound acquisition and
reconstruction of the 3D volume from 2D ultrasound slices. All these steps are
performed as per the methods given in Lasso et al. in [5].

Temporal and Spatial Calibration. An optical target, tracked by the optical
tracking system (transformation probeTworld), is mounted on the shaft of the front
fire TRUS probe, opposite of the biopsy needle guide. The ultrasound images are
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Hitachi AVIUS 
ultrasound system 
with live view

Optically tracked 
TRUS probe 
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Fig. 1. Urologist performing prostate biopsy using multimodal image guidance.
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Fig. 2. Overview of the clinical procedure for multimodal image-guided prostate biopsy.

acquired in a high resolution digital format at 30 fps using a frame grabber card.
This maintains compatibility to other ultrasound systems. Temporal calibration
is done to account for any time lag between the tracking and the video frame.
The spatial transformation frameTprobe between the image frame origin and the
optical target is found using fCal application and a 3N-wire phantom provided
in PLUS. It should be noted that this calibration procedure has to be performed
only once as long as the target is fixed to the probe and the ultrasound image
parameters, such as depth and focus, remain constant.

Tracked Ultrasound and Compounding. Another optical target, which acts
as a reference (transformation refTworld), is attached to the biopsy chair where
the patient is positioned in the lithotomy position. Using fCal, tracked ultrasound
frames are continuously recorded while the urologist manually moves the probe
from the prostate base to the apex. Applying a forward warping technique,
the tracked frames are then compounded into a 3D TRUS volume. Hereby, the
transformation refTchair between the reference target and the standard axes of
the chair allows to align the 3D TRUS axes according to the DICOM standard,
in order to preposition the volumes for subsequent registration. Figure 3 shows
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Fig. 3. Schematic setup, illustrating coordinate systems and transformations.

all transformations mentioned in Eq. 1:

frameT3DTRUS =ref Tchair · (refTworld)−1 · probeTworld · frameTprobe (1)

Landmark-Based Image Registration in CAMPVis. In order to align the
MRI and acquired 3D TRUS volumes, a landmark-based image registration is
performed. To that end, axial, coronal or sagittal slices of both images are pre-
sented in CAMPVis next to each other, allowing the urologist to select four
corresponding anatomical landmarks by mouse clicks. Employing the Umeyama
method [13], the rigid transformation MRIT3DTRUS is solved and a fused image
is presented to the physician. As PET and MRI volumes are acquired with a
Siemens integrated wholebody PET-MRI scanner, they are intrinsically regis-
tered to each other, facilitating a transfer of lesions from PET to MRI images
as shown in Fig. 4. As a result, the multimodal image registration is quickly
achieved and can be performed in clinical routine without interrupting the pro-
cedure, during the preparation of local anesthesia.

Tracking and Navigation for Biopsy Guidance. The final step of the pro-
cedure is a targeted biopsy under multimodal image guidance. Apart from the
2D live ultrasound image shown on the screen of the ultrasound scanner, our
framework provides the urologist in real time with corresponding slice views of
one or more pre-operative images such as PET or MRI (cf. Fig. 1). In CAMPVis,
the correct slicing planes are determined by the x- and y-axes of the following
coordinate system:

frameTMRI = (MRIT3DTRUS)−1 · frameT3DTRUS (2)

For the computation of frameT3DTRUS , only the current tracked positions of the
ultrasound probe and the reference target need to be updated, which is achieved
by forwarding tracking information from the PLUS server over the OpenIGTLink
protocol. For navigation, a virtual biopsy guide that indicates an approximate
needle insertion path is provided by the ultrasound machine and shown on the
live ultrasound image. The urologist maneuvers the probe such that the virtual
biopsy guide aligns with the target and biopsies are taken.
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a b
Fig. 4. Transfer of biopsy targets from PET to 3D TRUS via MRI for patient case 1.
(a) PET/MRI with targets in pink, (b) 3D TRUS (green) registered to MRI image
(red) after landmark-based registration (Color figure online).

3 Results

The first prototype of this platform was assessed in two patients, after they gave
their informed consent, by an experienced urologist as per the workflow in Fig. 2.
These patients had a clinical suspicion of prostate cancer but previously negative
biopsy results. Hence, the patients underwent PET-MRI examination before the
biopsy procedure. Figure 1 shows the system setup in our urology clinic during
the fusion biopsy procedure.

System Performance. The time taken for the 3D TRUS acquisition and
TRUS/ MRI registration was less than 10 min in both clinical cases. The tracked
ultrasound acquisition is done during a routine US prostate examination that
precedes every biopsy. The registration is performed in less than 5 min while
the patient is waiting for the local anaesthesia to take effect. Thus, there is not
much overhead in time as compared to conventional TRUS-guided systematic
prostate biopsy. Figure 4(a) shows the PET-MRI image of patient number 1 for
the identification of targets for biopsy. Figure 4(b) shows the TRUS/MRI fusion
image after anatomical landmark-based registration for the same patient.

Clinical Cases. The clinical cases of two patients are summarized in Table 1.
In both cases, the MRI was equivocal and the PET image revealed suspicious
regions.

Table 1. Overview of clinical data and results using proposed targeted biopsy system.

Case PSA value (ng/ml) Targeted biopsy Histology results

1 5.4 2 Prostate carcinoma left apical

2 7.5 2 No malignancy

Case 1 was a 45 year-old patient, status post a previous prostate biopsy one
year ago with no malignancies found. With a rising PSA value of currently
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5.4 ng/ml, the 68Ga PSMA PET-MRI showed a highly suspicious area in the left
apical central zone. For the systematic biopsy (10 cores), histology examination
identified prostate carcinoma with a Gleason score of 6 in the left apical and the
left central region of the prostate. The two targeted biopsy samples were also
tested positive in histology, confirming a prostate carcinoma in the left apical
site. Therefore, our system was able to identify, map and target the suspicious
region for prostate cancer diagnosis.

Case 2 was a 58 year-old patient. Similarly to case 1, no malignancies had been
identified in a previous prostate biopsy. Due to a rising PSA value of currently
7.5 ng/ml, the patient underwent 68Ga PSMA PET-MRI, which showed only a
slight expression of PSMA in the median peripheral zone on both sides and a
moderate suspicion of prostate cancer. Histology results were negative for both
the 10-core systematic biopsy and the 2-core targeted biopsy.

4 Conclusion

We presented a fusion image-guided system for targeted prostate biopsy based on
open source software. We presented preliminary clinical results in two patients.
We used PET-MRI images registered with 3D TRUS to identify, map and guide
the biopsy. The time and resource overhead for the entire procedure compared
to the conventional biopsy routine was minimal.

This open source software solution has many advantages that makes it ideal
as a research platform. It is extremely useful for translational clinical research
and can serve as a test bench to evaluate the medical impact of new develop-
ments. It further offers flexibility to modify or extend the software applications
and community support for the development. The code sharing helps for rapid
development and prevents duplicating research efforts. The overall system cost
is significantly reduced compared to commercially available systems. Translat-
ing this prototype into a fully clinically acceptable solution will require further
efforts.

We will extend the framework with advanced registration and visualisation
algorithms that may further simplify the procedure and increase the precision
in targeted biopsy.
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Abstract. Microwave scanning of the breast would provide a technology
for cancer detection and screening that is significantly safer than current
methods involving radiation. This research focuses on finding the best
way for accurate characterization of cancerous signals and normal signals
using clinical data collected from a previously developed ultra wideband
(UWB) antenna, BRATUMASS (Breast Tumor Microwave Sensor Sys-
tem). BRATUMASS which detects changes in dielectric constants within
the breast. The signals collected from the microwave scanning procedure
are reconstructed into a single, informative representation of the breast
via diffraction tomography. This representation contains the informa-
tion of the breast’s conductivity and the change in dielectric constants.
We illustrate the feasibility of using Haralick features to make distinc-
tions among breasts with a malignant tumor present and breasts with
no malignancy in data collected from Shanghai Sixth People’s Hospital
and Shanghai First People’s Hospital.

Keywords: Microwave near-field imaging · Breast cancer detection ·
Haralick features

1 Introduction

Ultra high frequency (UHF) microwaves in the band 300 MHz–3 GHz are of
increasing interest for their ability to penetrate through obstacles and perform
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precise localization and tracking of objects in indoor environments [5]. More-
over, due to their low cost and minimal radiation, UHF band microwaves are
being researched for medical imaging [11]. In breast cancer detection, UHF band
antennas offer the ability to focus power from the antenna through the breast
tissue to localize malignant tumors. Microwave antennas are able to detect very
low power signals in the presence of noise and interference, which is important
when the target is small and of low-contrast. Microwave breast imaging has the
potential to obviate unnecessary biopsies, increase patient comfort, and increase
the effectiveness with which breast cancer can be detected.

Detection and classification using microwave breasts imaging has concen-
trated on simulation studies [2,16], rather than the use of clinical data. Simu-
lated classification studies have used various approaches including support vector
machines [4,14], and neural networks [9]. Recently, the feasibility of lesion clas-
sification based on contrast-aided UWB breast imaging using simulations was
demonstrated [3]. There has been a movement toward conducting more clinical
experiments [8], but availability of clinical data is limited.

In this paper, a detection algorithm is developed to detect the differences
between cancer subimages (Class 1), and normal subimages within a normal
breast which has no evidence of maligancy present (Class 3) based on Haralick’s
textural features [6]. The uniqueness of this research is the UHF microwave clini-
cal data being used for the detection analysis. The purpose of this detection algo-
rithm is to find the optimal set of features that accurately distinguish between
the two classes. Most classification techniques have been performed using mam-
mograms or MRI data, due to the access to a variety of databases [7,10].

2 Background

2.1 Microwave Technology - BRATUMASS

The BRATUMASS developed by Yao [18] is monostatic, meaning one transmit-
ter and one receiver are co-located; the device emits low power on the order of
6.0 mW, and transmits a chirp signal through an impedance matching medium
that concentrates the signal for transmission into the breast. The measurements
of interest for this system is dielectric constants. The distribution of water con-
tent throughout a cancerous breast will differ from that of a normal breast since
in areas of cancer, the water content will be more highly concentrated [15]. This
will lead to higher dielectric constants in that area. The dielectric constants of
a malignant tumor area (ε ≈ 50) are significantly higher than that of a nor-
mal breast area (ε ≈ 10) at an intermediate frequency of 1.575 GHz [17]. Our
research is novel in the fact that (1) the device transmits an intermediate fre-
quency of only 1.575 GHz, (2) that signal and image processing techniques are
being applied to clinical data and (3) BRATUMASS offers portability and the
safety necessary to allow extensive, longitudinal studies of patients.



Breast Cancer Detection Using Haralick Features of Images Reconstructed 11

2.2 Clinical Data and Data Collection

Clinical data were collected at hospitals in Shanghai under a protocol approved
by East China Normal University in accordance with Chinese regulations. In a
procedure sanctioned by the Michigan State University IRB, the breast scans and
diagnostic data are being used in the U.S. without patient-identifying informa-
tion. The clinical dataset includes 11 diagnosed cancer patients, with quadrant
specific ground truth from the clinician. Figure 1(right) illustrates the transceiver
antenna used for data collection, which spans 50 mm. An example of the BRA-
TUMASS positioned at the 6 o’clock around the breast boundary is illustrated
in Fig. 1(left). As a patient lies on her back, a clinician uses the transceiver
to collect data from 16 different positions. At each antenna position, a pulsed
microwave signal is sent from the transmitter (A) in the direction of the metal
coin slice. The receiver (B) collects information about the changes in dielectric
properties from the reflections and scattering of the microwave pulses within
the breast, and the clipboard (C) connects (A) and (B). The sent and received
signals are passed through a frequency mixer. The output of the mixer is further
processed to map the changes in frequency to time delay distributions. These
16 processed signals are used as the signal data to reconstruct a 2D image of a
patient’s breast.

Fig. 1. Overview of BRATUMASS antenna setup, where the transmitter (A), and the
receiver (B) are joined together by clipboard (C)

2.3 Haralick Features

Haralick features (HF) have been used to successfully capture textural patterns
in images. HF are statistical computations that describe the overall texture of
an image using measures such as entropy and sum of variance. Each feature uses
information from the gray level co-occurence (GLCO) matrix, which is crucial in
computing HF. In this study, the GLCO matrix characterizes the spatial depen-
dence between two neighboring horizontal pixels. In addition to the traditional
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set of HF, two more features were included, trace median and trace mean, due to
the success of using those features for classification of malignant tumors found
in mammograms [1]. This results in a total of 15 features.

3 Methods

3.1 Image Reconstruction and Feature Computation

The breast images are reconstructed using diffraction tomography [12,13]. Each
data point is represented by a series of intersecting arcs at each antenna posi-
tion. Each reconstructed image is mapped to a 160px by 160px space. Refer to
Fig. 2 for the reconstruction of both breasts referring to patient ID 1, (PID 1).
The box in the upper right area indicates the area where the cancer is present
in PID 1. HF are calculated on non-overlapping subimages of the reconstructed
image. Only those subimages that are not the background or center of the breast
are used in this analysis. The background refers to the subimages that repre-
sent the air around the breast, and the center subimages are those near the
center of the breast that represent the nipple area. Each image is divided into
5px × 5px subimages, over which all 15 features are calculated. The subimage
size was chosen after testing a variety of sizes. It was concluded that a tradeoff
between subimage size and the amount of retained information is inevitable. If
the subimage size is too small, the information in the GLCO will not be retained
because the probability of detecting the desired pattern has been limited. If the
subimage size is too big, the background effects near the breast boundary will
dominate the information in those subimages, even if the tumor is present in
that subimage.

3.2 Class Label Generation

The subimage can belong to one of the three different classes. A comparison
between (Class 1) ‘cancer,’ (Class 2) ‘normal’ and (Class 3) ‘normaln’ subimages
for the sum variance feature is depicted in Fig. 3. It shows the average and
standard error of the sum variance (SV) feature for each possible class, across
all 11 cancer patients. The sum variance feature is computed using

SV =
2Ng∑

i=2

(i +
2Ng∑

i=2

px+y(i) log px+y(i))2px+y(i) (1)

where Ng is the number of distinct gray levels, px+y(i) is
Ng∑
j=2

Ng∑
k=2

p(j, k), and

p(j, k) corresponds to the probability distribution generated by i, the position
entries in the GLCO matrix. In this experiment, the ground truth is quadrant
specific, which means the diagnosed cancer location is localized to a quadrant.
The key is to detect abnormalities between the normal breast and cancerous
breast. Though there are different stages and types of cancer, we are currently
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Fig. 2. Reconstructed breast images for PID 1, with normal breast pictured left and
breast containing cancer pictured right with a rectangular box indicating the quadrant
of the cancer location
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Fig. 3. Mean and standard error of sum variance feature

interested in depicting whether or not there are general differences between
breasts with cancer and breasts without any cancer present. Though each breast
in its entirety can be labeled as containing ‘cancer’ or ‘normal’ subimages in
those defined quadrants are labeled ‘cancer,’ ‘normal’ or ‘normaln’ based on the
additional quadrant information provided by the clinician. Ultrasound was used
to cross check the clinician’s diagnosis. Since the only accessible ground truth
includes a general area of one quadrant location and tumor size, the difficulty
with defining localized ground truth is clearly evident. Creating accurate ground
truth is an active area of research.
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3.3 Performance Measures

We determined which set of HF best discriminates between ‘cancer’, and ‘nor-
maln’ subimages by generating all possible combinations, 215, of features and
selecting that combination for which linear regression resulted in the highest
classification performance. The performance is based on two criteria: (1) mini-
mizing the error rate, and maximizing the posterior probability between classes
and the (2) Matthew Correlation Coefficient (MCC) [14] score, which serves as a
performance measure that normalizes class sizes, and incorporates true positives
(TP), and false positives (FP) into the score. This score takes on values between
−1 and +1, with +1 indicating perfect prediction. Cost were incorporated by
weighting the false positive rate (FPR) by 0.9 and the false negative rate (FNR)
by 0.1. As for the MCC score, for every one true cost incurred the final FP was
increased by the five to represent a heavier weight. Finally, five-fold cross vali-
dation was performed on the two-class dataset, which includes instances of 200
‘cancer’ subimages, and 748 ‘normaln’ subimages. The best set of features that
yielded the highest classification performance by means of classifier performance
and MCC score was tracked and recorded.

4 Results

Two examples are provided of the current images used in the HF analysis are
shown in Fig. 2. Notice that the distribution of arcs is different between the two
breasts within the same patient. In the cancerous breast, there is less unifor-
mity and more scattering than in the normal breast. The lighter pixels indicate
stronger changes in dielectric constant. Both the normal and cancer breast con-
tain lighter pixels; however, in the cancerous breast, there is a concentration of
lighter pixels surrounded by darker pixels, which is different from other quadrants
within the breast. HF are strongly dependent on the images used, which means
any slight change in the image reconstruction process can drastically effect the
HF numerical measurements, which means extreme care has to be taken with
the images selected for analysis. The best feature set can be represented using
0’s for exclusion and 1’s for inclusion of that feature in the set, which resulted
in 010001111111111. This means that four of the features, ‘energy,’ ‘correlation,’
‘sum of variances’ and ‘inverse difference moment’ were not used in the feature
set. The features included were ‘contrast,’‘sum average,’‘sum variance,’ ‘sum
entropy,’ ‘entropy,’ ‘difference variance,’ ‘difference entropy,’ ‘information mea-
sures of correlation I,’ ‘information measures of correlation II,’ ‘trace mean’ and
‘trace median.’ The inclusion of these features strongly influence the performance
measures. The performance measures for the best linear combination of features
can be found in Table 1. The accuracy is lower than desired because of the low
resolution of ground truth labeling in the subimage domain and the imbalance
in class sizes. The more specific and accurate the ground truth, the better the
classification that would result. In order to address the issues with class imbal-
ance, the MCC score was used which illustrated more favorable results because
of the normalizing capability built inherently in the MCC Score computation.
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Table 1. Performance measures of best feature set

Averaged test performance measures

Classification Accuracy % 71.7

MCC Score .889

Upon further investigation of features for all 11 patients, it can be seen that
for certain patients there are significant differences between classes, as depicted
in Fig. 3. For example, for PIDs 1, 2, 6, 8, and 10, the (Class 2) case is significantly
different from (Class 1) and (Class 2). This suggests the importance of patient-
specific techniques.

5 Conclusions

In this paper, a procedure for selecting discriminating features within clinical
data using a HF detection algorithm was developed. The feasibility of using HF
to make distinctions between ‘cancer’, and ‘normaln’ subimages within a patient
was investigated. Due to the differences among patients, it is more beneficial to
focus on patient-specific techniques versus across all patient techniques. That is,
comparing the two breasts of a given patient to detect possibly cancer-indicating
differences may show more promise than comparing each breast singularly with
a broad reverence standard. Moving toward a more patient-specific approach is
the next area of pursuit.

For future work, extensive studies will be conducted to finalize the most
accurate and informative reconstructed images. Most clinicians would doubtless
rather have images that clearly indicate the presence of cancer than having
to analyze nonintuitive feature representation, so effective image reconstruction
is crucial in making procedures straightforward for clinicians. Experimenting
with other feature sets and feature extraction techniques, as well as increasing
the number and variety of features is another future endeavor. Research is also
being done in the signal domain, where classification and detection can be made
prior to image reconstruction. Performing detection in the signal domain can
inherently reduce the noise introduced in transition from the signal domain to
the image domain. Image reconstruction is still needed to serve as a visual aid
for clinicians who would rather see an image than a set of microwave signals.
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Abstract. Contrast Enhanced Ultrasound (CEUS) is a sensitive imaging tech-
nique to assess synovial vascularization and perfusion, allowing a pixel-wise
perfusion quantification that can be used to distinguish different forms of disease
and help their early detection. However, the high dimensionality of the perfusion
parameter space prevents an easy understanding of the underlying pathological
changes in the synovia. In order extract relevant clinical information, we present
a data-driven method to identify the perfusions patterns characterizing the dif-
ferent types of arthritis, exploiting a sparse representation obtained from a
dictionary of basis signals learned from the data.

For each CEUS examination, a first clustering step was performed to reduce
data redundancy. Then a sparse dictionary was learnt from the centroids. The
perfusion time-curves were represented as a sparse linear combination of the
basis signals, estimating the coefficients via a LASSO algorithm. With this
representation, we were able to characterize each pathology through a small
number of predominant kinetics.

By using sparse representation of CEUS signals and data-driven dictionary
learning techniques we were able to differentiate the specific kinetics patterns in
different type of arthritis, suggesting the possibility of personalizing the
description of each patient’s type of arthritis in terms of relative frequency of the
detected patterns. Interestingly, we also found that rheumatoid and psoriatic
arthritis share some common perfusion behaviors.

Keywords: Contrast enhanced ultrasound � Kinetics analysis � Sparse dictio-
nary learning � Parameter estimation � Rheumatoid arthritis � Psoriatic arthritis

1 Introduction

Arthritis is one of the major causes of disability in industrialized countries: it is esti-
mated that in the US 10 % of the population suffers from limitations attributable to
arthritis and 22 % of US adult populations is diagnosed with some arthritis form [1].

Rheumatoid (RA) and psoriatic arthritis (PSO) affect about 1 % of population [2]
and are characterized by chronic joint inflammation. RA in particular has the worst
outcome and early diagnosis for treatment assessment is crucial [2], but the differential
diagnosis is especially difficult at its onset [3].
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It has been shown that a crucial event in the pathogenesis of arthritis (and RA in
particular) is the formation of new blood vessels in the synovia, which correlates with
the activity and aggressiveness of the rheumatoid pannus [4, 5].

Contrast Enhanced Ultrasound (CEUS) have been recently proven to be a very
sensitive imaging technique to assess synovial vascularization and perfusion. In a
recent study it has been shown as pixel-based analysis of perfusion kinetics can be used
to differentiate forms of arthritis disease (RA and PSO) which did not present signif-
icant different clinical values [6]. However, the high dimensionality of the perfusion
parameter space describing the contrast kinetics in each subject (together with the
possible intra-subject heterogeneity) precludes an easy understanding and interpretation
of the underlying pathological changes in the synovium and in the articular tissues.
Under the hypothesis that different perfusion kinetics reflect different pathologies and
different pathology courses, we aim at providing a more immediate description of the
perfusion kinetics identifying the relevant patterns in each patient and for each type of
arthritis, with a long-term goal of personalizing the description of each patient’s type of
arthritis in terms of relative frequency of the relevant detected patterns.

At variance with the pixel-based approach described in [7, 8], in the present work
we aim to identify the relevant perfusion kinetics patterns in different arthritis forms
(RA, PSO, simil-rheumatoid – simRA, and spondyloarthropathy – SPA) using a dic-
tionary learning technique.

2 Related Works

Data-driven adaptive dictionary and sparse-codes learnt within an optimization
framework have been widely used in recent studies and good results have been reported
in denoising and compression [9], scene categorization and object recognition [10] on
synthetic data and natural images.

Application of sparse dictionary learning approaches on the temporal curves have
already been proposed for the study of electromyographic data [11] and dynamic
contrast-enhanced magnetic resonance imaging (MRI) [12]. In the first case, the
method was applied to one-dimensional motion capture data in order to learn inter-
pretable representations of human motion. In the second work, the method was used to
employ tissue segmentation on MRI data, under the assumption that different tissues
show different enhancement curves and it was applied on synthetic data as well as on
two real datasets (renal dysfunction and juvenile idiopathic arthritis data).

3 Methods

3.1 Data

92 consecutive outclinic patients with finger joints arthritis were recruited, 56 with RA,
19 with PSO, 8 with SPA and 9 with simRA.

The most active joint was chosen for examination for CEUS examination as pre-
viously described [13], using a US device (MyLab25, EsaOte) equipped with Contrast
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tuned Imaging (CnTI, Esaote), and as contrast agent sulfur hexafluoride microbubbles
(SonoVue; Bracco International). All patients gave their informed consent to the
intravenous administration of the contrast agent and to the participation of the study
that was approved by the local ethical committee.

Two rheumatologists performed all the clinical examinations and manually selected
the boundaries of the synovial tissue on the gray-scale US images of each patient.
Subjects with active synovial inflamed areas consisting in less than 20 pixels were
excluded from the analysis (10 subjects), leading to a final dataset of 82 subjects (52
RA, 16 PSO, 5 SPA and 9 simRA).

3.2 CEUS Data Pre-processing

Each examination was composed by a video IðtÞCEUS imaging the kinetics of the contrast
medium and the B-mode image Igs which allows the analysis of the joint anatomy and
of the synovial boundaries, and the drawing of the manual mask IM. In order to correct
for patient movement and to apply the mask to the CEUS data, it was necessary to
register the grey-scale Igs image to each frame of the video. Following the approach
presented in [8], we exploited the high reflectivity in both modalities of the superficial
tissues of the joint and of the bones.

Once each patient’s CEUS data were registered on the corresponding synovial
mask, the perfusion curves from each pixel within the outlined synovia were extracted.
Thus, given the ith pixel (i = 1, …, Nj) in the synovium of the jth patient (j ¼ 1; . . .;M),
the perfusion curve pij(t) was extracted.

As first step, each subject’s perfusion curves were clustered in order to reduce data
redundancy and to extract the principal kinetics to initialize the data dictionary. Both
clustering methods (partitioning k-means and hierarchical clustering) and principal
component analysis were used. The methods were compared in terms of their capacity
to detect the different main components in the data to build the dictionary.

3.3 Data-Driven Sparse Dictionary Learning

Sparse representation and dictionary learning techniques were utilized to detect the
most frequent and representative kinetics in different forms of pathology: from the
components extracted from the clustering of all perfusion curves of each patient’s a
sparse dictionary D was learned [14], by solving the problem:

min
D2C
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where C is the set of all the centroid curves derived from the clustering step, excluding
the ones obtained from the subject under analysis. Different size options for the basis
signals P in the dictionary (P = 20, 40 and 60 elements) were imposed, in order to
evaluate the influence of the increasing sparsity on the representation and perfusion
patterns identification.
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The dictionary was then applied on the single subject data; the amplitudes α of the
dictionary elements for representing each perfusion curve are estimated via a LASSO
algorithm with positivity constraint [15]:

min
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In this way, we obtained a sparse spectrum of the amplitudes for each CEUS
examination, where αji is a vector (P × 1) with P coefficients (one for each element of
the dictionary) for the pixel ith of the jth subject. A positive coefficient in αji. indicates
that the correspondent basis signal is used to describe the perfusion kinetic of pixel i.

3.4 Frequency Analysis on the Kinetics Identified by the Dictionary

From the sparse representation of the perfusion curves, it was possible to determine
which are the most frequent basis signals used to describe the CEUS data, i.e. which are
the most frequent kinetics in the different pathologies.

For each subject j. (j = 1,…M), the relative frequency of each basis signal k (k = 1,..P)

was calculated as: freqk ¼ 1
Nj

PNj

i ai with Nj number of pixels for the jth subject. Then the

basis curves with a frequency higher than a threshold (freqk [#) were selected (i.e. all
the basis kinetics with a non-negative αji in more than ϑ voxels).

By considering each subject separately we were able to account for the different
numerosity of pixels in each examination.

Secondarily, we looked for the more common basis kinetics in each disease type
(RA, PSO, SPA and simRA): we counted the number of occurrences of each basis per
group and we selected as representative kinetics those at the 10th percentile.

4 Results

In order to assess the performance of the proposed method to characterize a patient
perfusion through the learned patterns, we used a leave-one-out validation scheme. At
each round of the validation, the data of the patient under study were set aside as test

Fig. 1. Comparison of clustering methods performance: example on two representative subjects,
where the ability of k-means to extract the relevant pattern is evident.
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set, while the remaining data were used in the dictionary learning procedure. The
learned patterns and the coding of the test data were then recorded.

4.1 Kinetic Reduction Step

Figure 1 reports the comparison of the performance of the methods for the dimen-
sionality reduction. In general hierarchical cluster and PCA identified a limited number
of kinetics which were also poorly representative of the pixel time courses (the line
thickness is proportional to the number of the pixels in each cluster).

In general hierarchical cluster and PCA identified a limited number of kinetics
which were also poorly representative of the pixel time courses. For this reason, the k-
means was considered the method of choice and the centroids derived from k-means
were used to train the dictionary in the following analysis. An exhaustive search
varying the number of cluster from 2 to 10 provided the best trade-off between data
representation and complexity reduction when the number was set to 6. Therefore, the
set C representing all curves derived from the clustering step is composed by the
identified 302 centroids.

4.2 Dictionary Learning Step

The set C is then used to estimate the dictionary D composed by P different patterns.
The application of the dictionary and the derivation of the spectrum of the amplitudes
showed that, as expected, each subject is characterized by only few predominant
patterns (see Fig. 2), as can be noted looking at the small number of coefficients a with
non zero values. This held for all the four pathologies considered.

From the spectra of Fig. 2, freqk was computed for each subject. The threshold ϑ
was set to 10 % in order to balance the number of characteristic kinetics for each
subject and the ability to distinguish different perfusion behaviors.

The kinetics of the most common words (top 10th percentile) in each arthritis form
are reported in Fig. 3. RA and PSO are both characterized by the same most relevant
kinetic (a definite slow rising behavior, probably representing a trapping of the contrast
agent), namely the basis 102. The second most common kinetic in PSO is still also
present in the RA form (even if it is less common). RA is the pathology with the most

Fig. 2. Amplitude of the mixing coefficients α with a dictionary with P = 20 words, divided per
pathology. Black lines indicates different subjects.
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varied patterns of perfusion kinetics, most of them differing in the value of the delay.
SPA and simRA are characterized by a smaller number of kinetics (2 and 3 respec-
tively) but also in this case there is a common perfusion behavior (basis 56).

The results held when considering dictionaries built with a different number of
elements (P = 40 and P = 60 respectively), both in terms of number of characteristic
kinetic patterns identified per pathology and in term of common perfusion behaviors in
RA and PSO, and SPA and simRA respectively (data not shown).

Fig. 3. The most common kinetic per pathology (dictionary P = 20)

Fig. 4. Representative parametric maps showing the presence and abundance of perfusion
patterns linked to different types of arthritis: RA (blue), PSO (cyan), SimilRA (yellow), SPA
(red). In the left panel a finger joint of a patient affected by RA, and on the left the finger joint of a
PSO patient (Color figure online).
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Finally, a parametric map can be obtained showing the presence and prevalence of
the different patterns learned as dictionary words (see Fig. 4).

5 Conclusions

We showed that is possible to detect characteristic kinetics in different arthritis forms
by using sparse representation and data-driven dictionary learning techniques. We
found that, despite the presence of unspecific patterns shared in RA and PSO, and also
between SPA and simRA, there are a few characteristic patterns whose presence or
absence can provide a strong clue on the type of arthritis.

This unsupervised method could represent an important support in the early dif-
ferentiation of arthritis forms.

As next steps, the correlation between the dictionary basis elements will be con-
sidered, in order to effectively reduce the dictionary redundancy and help the definition
of specific perfusion kinetics for each pathology form.
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Abstract. Radiation therapy plays a major role in head and neck cancer
treatment. Segmentation of organs at risk prior to the radiation ther-
apy helps to prevent the radiation beam from damaging healthy tissue,
whereas a concentrated ray can target the cancerous regions. Unfortu-
nately, the manual annotation of all relevant structures in the head and
neck area is very time-consuming and existing atlas-based solutions don’t
provide sufficient segmentation accuracy. Therefore, we propose an cou-
pled shape model (CoSMo) for the segmentation of key structures within
the head and neck area. The model’s adaptation to a test image is done
with respect to the appearance of its items and the trained articulation
space. 40 data sets labeled by clinicians containing 22 structures were
used to build the CoSMo. Even on very challenging data sets with unnat-
ural postures, which occur far more often than expected, the model adap-
tation algorithm succeeds. A first evaluation showed an average directed
Hausdorff distance of 13.22 mm and an average DICE overlap of 0.62.
Furthermore, we review some of the challenges we encountered during
the course of building our model from image data, taken from actual
radiation therapy planing cases.

Keywords: Coupled shape model · Automatic segmentation · Statisti-
cal shape models · Head and neck radiation therapy

1 Introduction

For radiation therapy planning, it is essential to segment vital organs, structures
and lymph nodes. Thereby, organs-at-risk can be spared from radiation and
the radiation beam can be concentrated on the target areas with cancer cells.
Several approaches for automatic delineation of structures in the head and neck
area have been made. Teng et al. [10] propose the usage of image registration
to accomplish an automatic segmentation. The commonly used approach is an
atlas-based model to do the automatic segmentation like done by Han et al. [4],
Gorthi et al. [2] and Commowick et al. [1] or a multi-atlas based approach like
proposed by Ramus et al. [7]. Atlas-based solutions have proven to be suitable
for head and neck segmentation but can result in non-natural deformations when
c© Springer International Publishing Switzerland 2014
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image artifacts occur or posture abnormality is present. Therefore, we developed
an CoSMo, which is capable of performing an automatic segmentation of the
most important structures within the head and neck area in cooperation with two
clinical partners. The approach is based on an articulated atlas [8], that is trained
from a set of manually labeled training samples. Furthermore, we have combined
the initial solution with statistical shape models [6] to represent structures with
high shape variation. After the successful delineation of the key structures, the
segmentation of tumors can be done using a semi-automatic approach like the
one introduced in [9]. Right now, the CoSMo is trained from 40 data sets, which
have been annotated by clinicians. We did a left/right mirroring to increase
the number data sets to 80, which could be done without much risk because the
head and neck area and the involved structures are rather symmetrically. The
CoSMo consists of 22 different structures (bones, muscles, glands, ...), which
are referenced in Table 1.

Fig. 1. Visualisation of our CoSMo, trained from labeled data sets, which were acquired
for radiation therapy planning.

2 Coupled Shape Model

The basis of our algorithm is an articulated atlas consisting of rigid items for
which it already has been proven that it is suitable for delineation of important
structures in CT images [8]. In this work, we enhanced the atlas with additional
bones, muscles, glands and other structures, which play a crucial role in radiation
therapy for the head &neck region, leading to the CoSMo (Fig. 1). The CoSMo
consists of two different kinds of model items, which are created from labeled CT
image data sets, depending on the type of the structure. They are classified as:
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Rigid Model Item Creation: The bones in the head and neck area are rep-
resented as rigid model items. For each rigid model item, the segmentation for
this specific item is extracted from the training samples. These segmentations
are used to calculate a probability image and an average intensity image. Addi-
tionally, a relative transform with respect to the center of the whole articulated
atlas is stored [8].

Deformable Model Item Creation: The more challenging items, which are
items with high shape variation or low contrast, are represented as statistical
shape models [5]. For each of these items, a statistical shape model and an
appearance model is trained. Analog to rigid model items, a relative transform
with respect to the center of the articulated atlas is stored. Additional shape
specific parameters are stored, which are needed for later shape adaptation.

The global location and orientation is saved, for every training instance.
This transformations of the rigid and deformable model items can be set into
relation to the training instance’s global location and orientation leading to
parameter vector pj . The parameter vector for the rigid items consists of 7
degrees of freedom, 3 for translation, 3 for rotation and 1 for isotropic scaling.
The statistical shape models within the atlas consist of 7+n degrees of freedom,
where n is the number of principal components of the statistical shape model
(SSM). The concatenation of all parameter vectors pj leads to a parameter vector
xj for a training instance j and is independent from its global position and
orientation. The combination of these vectors leads to a training articulation
matrix X = (x1, ..,xn), where every parameter vector xj resides in one column.
Using a principal component analysis (PCA) on this matrix returns the space of
all possible poses and deformations, that is the basis for later model adaptation
to an unknown data set. For more details how the articulated atlas is created,
see reference: [8].

Fig. 2. Overview of the adaptation pipeline.

2.1 Model Adaptation

The adaptation process of the CoSMo is divided into multiple levels, because
the adaptation of some model items is more challenging than others (see Fig. 2).
Therefore, the adaptation process starts with the items that can be adapted
most reliably, namely the bone structures. Once the bone structures are adapted,
the next level of the adaptation process is executed. Next, the glands, muscles,
trachea and spinalcord are initialized by using the information gathered during
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the training of the CoSMo, which is used to determine their most likely position.
Once again, the adaptation of newly added deformable items is processed. This
time, not only the 7 degrees of freedom are considered, but the deformation of
the deformable shape models is permitted as well. The energy function for the
adaptation consists of the several terms. There is the distance of the whole model
within and from the learned feature space, which is used to restrain the model to
reasonable poses and deformations. Additionally, there are the energy terms for
the deformable model items. These are evaluated using the trained appearance
models, returning the likelihood of a valid segmentation. The adaptation now
finds the optimal articulation of all items by minimizing the joint energy function.

In the last level of the adaptation process, the remaining model items, which
hardly have any visible image features, are initialized and adapted. Constraining
the articulation of the atlas to reasonable segmentations of those structures, that
hardly have any visible image features. The lymph node levels for example are
some of these structures, which even a clinician can hardly see.

2.2 Challenges Integrating the Clinical Segmentations

During the creation of the coupled shape model some challenges arose from the
annotated image data we received from our clinical partners. The annotated data
originated from actual radiation therapy cases and was not exclusively created
for our scenario. While in radiation therapy there is no need for the annotated
data to be accurate at voxel level, for less radiation sensitive structures like bones
or muscles, in our case the segmentation should delineate the relevant structures
as accurate as possible. Since the segmentations are the direct input for the
creation of the model items from our coupled shape model, every unprecise seg-
mentation can have negative influence on the created model. One explanation,
for the sometimes peculiar shape of single items, may be the fact, that radiol-
ogists do the segmentations for each axial slice independently. They focus on
what they see in the current slice, without considering the slices they already
drew or will draw subsequently. This can result in holes in the segmentation or
small spikes (see Fig. 3), which first become visible when the structure is viewed
as a 3D representation or when it is inspected in the sagittal or coronal plane.

Furthermore, not only can these inaccurate segmentations lead to unnatural
shapes of the involved model items, but it is even more problematic for the
appearance model of trained statistical shape models. The worst case scenario
would be that the trained appearance model represents a boundary, which is
similar to that of another structure and the energy minimization function of the
active shape model leads to completely misplaced landmarks in some parts of
the model.

3 Evaluation

The results of the coupled shape model were evaluated on 80 data sets using a
2-fold cross validation scheme. Each group of 40 data sets was used to train a
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Fig. 3. The images on the left show the differences in segmentation practised by the
two different medical schools. It’s clearly visible how the segmentations vary in shape
and size. The image on the right shows the Mesh representation of a manual parotid
gland segmentation by a clinical expert.

coupled shape model and was then evaluated on the 40 data sets of the other
group. The used CT scans have an average spacing of 1.0 mm, 1.0 mm, 3.0 mm.
The model contains 22 different structures which are segmented all at once dur-
ing the adaptation process. Table 1 shows the results of our first evaluation. The
average DICE overlap for all 22 structures was 0.62 and the average directed
Hausdorff distance was 13.22 mm. The whole adaptation process takes approx-
imatly 3–4 minutes for the segmentation of all 22 structures. In addition, the
CoSMo was able to adapt to very challenging data sets (see Fig. 4) that, accord-
ing to a radiologist, are very difficult to be handled correctly by common seg-
mentation tools.

Another challenge arose in the course of the evaluation of the model. The
trained statistical shape models of the lymph node levels had an enormous vari-
ation in size, shape and even location within the image data (see Fig. 5). After
further investigation we were able to figure out, that there is not one clinical
practice guideline, every clinic sticks to, but several possibilities how the clas-
sification of the lymph node levels can be done. For example, the submental
and submandibular lymph nodes are classified as level 1 lymph nodes or they
can be subdivided into level 1a and level 1b lymph nodes. There are still ongo-
ing discussions if these subdivisons are clinically meaningful [3]. Although, in a
medical sense it may be negligible if the levels are subdivided or not, because
combined the segmented area is still the same, from the perspective of training
the coupled shape model, this leads to fatal consequences. In our case, 20 data
sets from each of these clinical practice guidelines were available. Due to above
mentioned divergence between the data sets, we abandoned the option to evalu-
ate the lymph node levels of the CoSMo from the two different clinics, since the
results would have been completely insignificant.
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Fig. 4. Example data set of a tracheotomised patient with segmentation result. These
patients often suffer from respiratory problems, which require a non-standard posture
during image acquisition, causing standard atlas approaches to fail.

Fig. 5. Variation of the coupled shape model along the first component. The images
represent −2, 0 and 2 σ standard deviation. It is clearly visible that the variation of
the coupled shape model mainly consists of extreme shape variations and translation
of the lymph node levels.

4 Discussion and Conclusion

In this paper we presented a new approach for the segmentation of structures
important for radiation therapy in the head and neck area. To the best of our
knowledge, we are the first to use a hybrid approach combining the clinical
approved solutions of an articulated atlas and a statistical shape model. Common
atlas-based segmentation algorithms already perform good on some head and
neck data sets. Nevertheless, they struggle with images containing noise and
imaging artifacts. Moreover, according to a clinician, a non-neglectable number
of patients suffer from respiratory problems due to the cancer. For this reason, a
wedge pillow is used for the CT image acquisition, leading to a deviant posture,
that renders the segmentation impossible for existing atlas-based approaches.
But with our method we are able to do the segmentation of key structures and
other low contrast structures. Another great benefit of our coupled approach is,
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Table 1. Results of the cross evaluation on 80 data sets. The table contains the average
and median of the directed Hausdorff distance and the DICE overlap for the 22 struc-
tures of the model. Some of the structures, the bones for example, were combined for
a more compact representation.

Structure ∅ DHD Median ∅ DICE Median

DHD DICE

Brainstem 8.16 7.73 0.70 0.71

C1-C7 8.17 6.96 0.68 0.73

Th1 / Th2 12.12 9.37 0.60 0.64

Hyoid 13.60 12.48 0.62 0.23

Larynx 13.38 12.18 0.63 0.46

Mandible 11.81 10.58 0.70 0.72

Parotid Glands (left/right) 17.33 15.84 0.55 0.54

Skull 23.33 18.19 0.85 0.86

SpinalCord 19.48 15.75 0.48 0.50

SternoCleido (left/right) 21.63 20.38 0.37 0.37

Submandibular Gland (left/right) 11.24 11.31 0.45 0.49

Trachea 19.48 18.92 0.53 0.55

that it is really fast. It takes less than 4 min for the segmentation of all involved
structures.

Like mentioned earlier, two major difficulties arose while creating the cou-
pled shape model. The first problem is the insufficient segmentation accuracy,
which nevertheless seems to be sufficient enough for actual radiation therapy.
By remeshing and gaussian smoothing the input data, we were able to diminish
minor segmentation inaccuracies, like small holes or spikes. More severe segmen-
tation inaccuracies lead us to the decision to exclude specific segmentations from
the model creation step to avoid unnatural model items. As a conclusion, it would
be important to explain the radiologists how the algorithm handles the input
image data. In comparison to human beings, the machines are not able to realize
that some neighbouring voxel belong to a specific region, if the segmentation is
not 100 % accurate. Second, the different clinical practice guidelines prevented
us from building a model using all available lymphnode level segmentations.
After thorough evaluation, it was comprehensible, why the trained model was
not suitable for the segmentation of the lymph node levels. Apart from that,
it would have to be decided which clinical practice guideline should be used to
do the evaluation of the segmentations, as each results in completely different
output. In order to overcome this issue, we will build two different models, one
for each clinical practice guideline. Consequently making a separate evaluation
feasible.

Future work will be to build an atlas from more data sets. This will allow
the model to enhance the feature space and cover more possible constellations
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of the atlas’ model items in an unknown medical image. The same applies to
the statistical shape models that are part of the atlas. Generally speaking, the
results of the adaptation should improve by acquiring further information about
the shapes, size and appearance of the used structures. Additionally, more struc-
tures which aren’t part of the CoSMo shall be included to improve the clinical
acceptance of the method. Finally a quantitative analysis has to be done in order
to do a comparison with other segmentation algorithms.
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Abstract. Intima-media thickness (aIMT) of the abdominal aorta has
proven to be an early marker for atherosclerosis and cardiovascular dis-
eases risk assessment in young adults and children. Despite recent stud-
ies have highlighted the potential usefulness of its estimation at the fetal
stage from ultrasound images, this relies on error-prone and tedious man-
ual tracing. In this study, an automated technique for aIMT estimation
from fetal ultrasound images is presented and tested against manual trac-
ing. The proposed technique is based on narrow-band level-set methods
applied to the regions surrounding the aortic lumen in order to seg-
ment the portions between the blood-intima and media-adventitia inter-
faces and thus estimate the aIMT. This approach was tested on images
acquired from 11 subject at a mean gestational age of 29 weeks. Automat-
ically extracted aIMT values were compared to reference values manu-
ally extracted by two interpreters using Pearson’s correlation coefficients,
Bland-Altman and linear regression analyses. The results indicate that
the accuracy of the proposed technique is comparable to that of manual
tracing. As a consequence, this approach could be potentially adopted as
an alternative to manual analysis for the automated estimation of aIMT.

Keywords: Fetal ultrasound · Aortic segmentation · Intima-media
thickness · Intrauterine growth restriction

1 Introduction

According to the Barker’s hypothesis, an adverse intrauterine environment results
in physiological adaptations of the fetus, which maximize its immediate chances of
survival but also increase the risk of diseases occurrence in the adult life [1]. Sup-
porting this hypothesis, several studies have shown that low birth weight, caused
either by preterm birth or intrauterine growth restriction (IUGR), is associated
with increased rates of cardiovascular diseases (e.g. atherosclerosis) and metabolic
disorders (e.g. non-insulin dependent diabetes) in adulthood [2]. It has also been
established that infants who were affected by IUGR during the fetal stage have
thicker aortic walls, suggesting that adverse prenatal conditions might be associ-
ated with structural changes in the main vessels [3,4]. Therefore, the intima-media
thickness of the main vessels (e.g. abdominal aorta and carotid arteries) becomes
c© Springer International Publishing Switzerland 2014
M.G. Linguraru et al. (Eds.): CLIP 2014, LNCS 8680, pp. 33–40, 2014.
DOI: 10.1007/978-3-319-13909-8 5
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an early marker for the quantitative assessment of atherosclerosis risk in children.
Recent studies indicate that abdominal aortic intima-media thickness (aIMT) in
IUGR fetuses was inversely related to estimated fetal weight, suggesting that the
vascular structure alteration could be identified during the fetal stage [5]. As a con-
sequence, the abdominal aIMT from ultrasound (US) images has the potential to
become a powerful instrument for the early assessment of risk of atherosclerosis
and cardiovascular diseases.

While many methods have been published for the automated measurement
of intima-media thickness in the carotid artery (CA-IMT) in adults and chil-
dren [6], the automated measurement of aIMT from prenatal US images has
been rarely addressed [7]. Although the quantification of CA-IMT and that of
aIMT appear as similarly-posed tasks, the latter is hampered by several difficul-
ties and limitations when compared to the former. The position of the carotid
artery in adults and children does not change over time and is relatively close to
the body surface. As a consequence, the US examination of the carotid artery is
relatively easy and yields a relatively high spatial resolution. On the contrary,
in fetal US the position and orientation of the aorta are largely unpredictable,
the vessel lies deep within the maternal womb and its dimensions are smaller
compared to those of the carotid artery in the children. Therefore, spatial res-
olution and SNR are considerably lower, and the correct fetal US examination
strongly depends upon the skills of the operator. As of now, aIMT quantifica-
tion is performed manually on the acquired images. This procedure is tedious,
time-consuming and affected by intra- and inter-operator variability, which hin-
der widespread adoption of this early marker for atherosclerosis risk. In order
to overcome these limitations, we developed and tested a novel automated tech-
nique for aIMT quantification from fetal US images. The proposed technique
aims at segmenting the portions between the blood-intima and media-adventitia
interfaces by means of level-set methods and at quantifying the aIMT through
shape-based measurements.

2 Methods

The proposed technique allows the automated extraction of aIMT from fetal US
images starting from a manual selection of a region-of-interest (ROI) containing
the abdominal aorta. First, the aortic lumen is automatically segmented. Narrow-
band level-set methods are then applied in the regions above and below the aortic
lumen to segment the portions between the blood-intima and media-adventitia
interfaces. Finally, the aIMT is estimated on both walls through shape-based
measurements.

2.1 Aortic Lumen Segmentation

The user is asked to manually select a ROI containing the abdominal aorta
(Fig. 1, left). Starting from this, a simple thresholding based on Otsu’s method [8]
is applied to the portion of the image contained in the ROI. The result contains a
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coarse segmentation of the aortic lumen as well as of other potential structures.
To identify the former from the latter, area and eccentricity of the best fitting
ellipses are extracted from each segmented structure: the lumen is defined as the
biggest structure among the four with higher eccentricity. Importantly, the aortic
lumen segmentation is only used to initialize the intima-media segmentation step,
and thus it does not require a high level of accuracy (Fig. 1, right).

Fig. 1. A fetal US image showing the abdominal aorta (left). The user is asked to
manually select a ROI containing the vessel. From this, a coarse segmentation of the
lumen is automatically performed (right, red) (Color figure online).

2.2 Intima-Media Segmentation

Abdominal aIMT is defined as the average thickness of the region between the
leading edge of the blood-intima interface and the leading edge of the media-
adventitia interface on the far wall of the vessel [9]. In the proposed approach,
both of these regions - one in the upper portion of the image (defined as upper
wall) and the other one in the lower portion (defined as lower wall) - are seg-
mented by means of a single level-set. The initialization of the level-set function
is performed starting from the previously obtained coarse segmentation of the
aortic lumen: a thresholding process is applied to the two band-like portions of
the image which surround the lumen (Fig. 2, left). The thickness of these portions
is defined by an arbitrary parameter, which allows to consider only the part of
the image where both aortic walls are supposed to be (Fig. 2, left, white). Since
both tunica intima and tunica media appear bright at US examinations, the
thresholding process allows to perform a first identification of these portions of
the aortic walls (Fig. 2, left, orange). The level-set function is initially defined as
signed distance function from these portions, and undergoes an evolution in time
in order to minimize a specific energy functional in a narrow-band approach [10].
More in particular, the energy functional E to be minimized is written as

E(φ) =
∫

Ωx

δ
(
φ(x)

) ∫

Ωy

B(x, y)F
(
I(y), φ(y)

)
dydx (1)
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where φ is the level-set function, Ω is the image domain, δ(φ) is a smoothed
version of the Dirac delta, B is the ball mask function which allows to implement
the narrow-band approach and F is a generic internal energy measure computed
on the image intensity I. B is defined as

B(x, y) =

{
1, ||x − y|| < r

0, otherwise
(2)

and allows to evaluate the value of the functional F only in the vicinity of
each contour point during evolution. The choice for F adopted in the proposed
technique is the Means Separation Energy [11], which reads as

F = −(ux − vx)2 (3)

where ux and vx are respectively the inner and outer mean intensity values, with
respect to the contour, evaluated inside the mask function B. The evolution
is carried out with suitable boundary conditions and is automatically stopped
when the change in area of the segmented regions between consecutive iterations
becomes negligible.

Fig. 2. To initialize the segmentation procedure, two bands of fixed thickness are
defined surrounding the previously identified aortic lumen (left, white), and the por-
tions with high intensity within these bands are selected as initial masks for the level-set
function (left, orange). After segmentation, one region per aortic wall is selected based
on the eccentricity of associated best-fitting ellipses (right, blue region selected for the
upper wall, red region selected for the lower wall, yellow region discarded) (Color figure
online).

At the end of the level-set evolution, there can be potentially more than one
segmented region for each wall (Fig. 2, right). To select only one per wall, ellipses
are fitted into each region, and the one with the highest associated eccentricity
is taken into account for aIMT estimation (Fig. 2, right, blue and red) (Color
figure online).

2.3 Intima-Media Thickness Estimation

Once a single region has been identified for each aortic wall, the aIMT estimation
takes place. This is achieved separately for the upper and lower wall by identi-
fying the central line of the region (through a skeletonization process) and by
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fitting circles in the region itself (with central points taken from each point of the
central line): the aIMT value is then estimated computing the mean diameter of
the fitting circles (Fig. 3).

Fig. 3. Estimation of the aIMT of the upper wall from the previously obtained seg-
mented region. The central line of the region is automatically detected (right, black)
and for each of its points the best-fitting circle is identified (left, red). The aIMT is
finally estimated computing the mean diameter of the circles (Color figure online).

3 Experiments and Results

3.1 Image Acquisition

Image acquisition was performed on eleven subjects undergoing routine US
examinations during pregnancy. The study was approved by the local ethical
committee (IRB 1826P) and all patients gave written informed consent. Fetal US
data was acquired at a mean gestational age of 29 weeks (range 20 to 34 weeks)
using a US machine equipped with a 5 MHz linear array transducer (Voluson E8,
GE, General Electric Company, Fairfield, CT), with a 70◦ FOV, image dimension
720× 960 px and a variable resolution between 0.05 and 0.1 mm. The localiza-
tion of the abdominal aorta was performed in a sagittal view of the fetus at the
dorsal arterial wall of the most distal 15 mm of the abdominal aorta, sampled
below the renal arteries and above the iliac arteries. Gain settings were tuned
to optimize image quality. After localization, the vessel was visualized in a max-
imal longitudinal section (thus containing the vessel diameter) and tilting the
transducer to obtain an angle of insonation as close to 0◦ as possible and always
less than 30◦.

3.2 Performance Evaluation

To evaluate the performance of the proposed technique, the acquired sequences
were manually analyzed by two experienced interpreters (Man1 and Man2). From
each of the 11 acquired image sequences, the first interpreter selected 4 frames
(for a total of 44 images) based on the visibility of the aortic walls. Both inter-
preters manually traced the blood-intima and media-adventitia interfaces on the
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selected images, thus providing aIMT estimation on both the upper and lower
wall separately. The proposed technique was then applied to the same images,
performing an automated quantification of the aIMT. In order to have more
reliable estimates for the aIMT, the obtained measurements (for the automated
analysis, Man1 and Man2, separately) were averaged on the 4 frames belong-
ing to each sequence, allowing a patient-based quantification for each of the
two walls. Pearson’s correlation coefficients, linear regression and Bland-Altman
analyses were performed between the aIMT values obtained by Man1 and by
Man2 to assess inter-operator variability. Finally, the same analyses were per-
formed between the aIMT values extracted by the automated technique and
reference values, defined as the average of the values obtained by Man1 and
Man2 (Mean Man), allowing the quantification of the accuracy of the proposed
approach.

Fig. 4. Comparisons between intima-media regions identified using the proposed auto-
mated technique (red and blue, solid lines), by the interpreter Man1 (red and blue,
dashed lines) and by interpreter Man2 (cyan and yellow, dashed lines) on images
acquired from different subjects (Color figure online).

Time required to perform the automated aIMT estimation for both walls
(starting from the user-defined ROI) was around 25 s on a laptop (code written
in MATLAB R©, no parallelization yet implemented). Figure 4 shows a visual
comparison between the results of the automated and manual delineation of the
blood-intima and media-adventitia interfaces in images acquired from different
subjects: considering that only the thickness of the regions will be taken into
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account for the aIMT estimation, it is possible to appreciate the accuracy of the
proposed automated technique.

Table 1. Results for Bland-Altman analyses. Values are reported in mm.

Auto vs Mean Man Man1 vs Man2

aIMT Bias± Std Bias± Std

Upper wall −0.04 ± 0.06 0.07 ± 0.10

Lower wall −0.03 ± 0.12 0.10 ± 0.13

The obtained quantitative results for Bland-Altman analyses are reported in
Table 1, which shows small biases and narrow limits of agreement (when com-
pared to the mean measured aIMT, which is approximately 0.76 mm for both
walls) between the automatically and manually estimated aIMT values on both
walls. In comparison, biases and limits of agreement between the values extracted
by the two different interpreters are either comparable or worse, indicating that
the proposed technique is at least as accurate as manual tracing.

Fig. 5. Results for Pearson’s correlation coefficients and linear regression analyses for
Auto vs Mean Man (left) and Man1 vs Man2 (right). Blue points and regression lines
are relative to the upper wall, while red ones are relative to the lower wall (Color figure
online).

These findings are confirmed by the results for Pearson’s correlation coeffi-
cients and linear regression analyses, reported in Fig. 5: both correlation coef-
ficients and regression lines are similar between automated analysis vs manual
analysis and manual analysis performed by Man1 vs manual analysis performed
by Man2. Of note, the general agreement between measurements obtained for
the upper wall is considerably higher than that for the lower wall, suggesting
that the delineation of the blood-intima and media-adventitia interfaces is more
difficult in this portion of the image.
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4 Conclusion

In this study, an automated technique for the aIMT estimation from fetal US
images has been presented and compared to manual tracing to assess its accuracy.
The proposed approach is based on the identification of the aortic lumen from a
user-defined ROI and on the segmentation of regions between the blood-intima
and media-adventitia interfaces by means of level-set methods. The results indi-
cate that the presented technique is as accurate as manual tracing, and could
thus be potentially adopted for aIMT estimation in a reliable and robust fashion.
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Jorge Bernal(B), Joan Manel Núñez, F. Javier Sánchez, and Fernando Vilariño

Computer Vision Centre and Computer Science Department, Campus Universitat
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Abstract. In this paper we present a novel polyp region segmentation
method for colonoscopy videos. Our method uses valley information asso-
ciated to polyp boundaries in order to provide an initial segmentation.
This first segmentation is refined to eliminate boundary discontinuities
caused by image artifacts or other elements of the scene. Experimental
results over a publicly annotated database show that our method out-
performs both general and specific segmentation methods by providing
more accurate regions rich in polyp content. We also prove how image
preprocessing is needed to improve final polyp region segmentation.

Keywords: Image segmentation · Polyps · Colonoscopy · Valley infor-
mation · Energy maps

1 Introduction

Colon cancer is nowadays the fourth most common cause of cancer death world-
wide and its survival rate depends on the stage it is detected on, hence the
necessity of an early colon screening [1]. Colonoscopy is currently the gold stan-
dard for colon screening although it has some drawbacks being the most relevant
the miss-rate, which has been reported to be as high as 6% [2].

Combined forces between physicians and computer scientists have been cou-
pled into a field of research referred as intelligent systems [3] which for the case of
colonoscopy may be used for assisting in the diagnosis or by providing automatic
quality assessment metrics [4]. Another possibility could be the development of
follow-up to track a lesion over different explorations over the same patient.

Related with this last potential application, we present in this paper our
Segmentation from Depth of Valley Accumulation (DOVA) Energy Maps Cal-
culation (SDEM) algorithm for polyp segmentation in colonoscopy images. We
work under the assumption that a faithful segmentation of the polyp region along
with a exhaustive description of the polyp region could be potentially used to
characterize polyps and will allow a posterior tracking the lesion.

c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-13909-8 6
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Our method is built on a previously published model of appearance for polyps,
which described polyp boundaries in terms of valley information [5]. This valley
information is used to generate energy maps which guide polyp localization meth-
ods [6]. Our segmentation method has been developed by considering the way the
mentioned energy maps are calculated. We assess the performance of our method
by comparing it with general and specific segmentation methods over a publicly
annotated database.

After this introduction, we present in Sect. 2 related work on image segmen-
tation, including polyp segmentation methods. We explain our segmentation
method in Sect. 3. The experimental setup is introduced in Sect. 4. Experimen-
tal results are exposed in Sect. 5. We close this paper with the conclusions and
future work in Sect. 6.

2 Related Work

Image segmentation in computer vision is defined as the process in which an
image is divided into multiple segments—sets of pixels. Segmentation is per-
formed in order to simplify how an image is represented making it easier to
analyze. The partitioning of the image can be based on different features, such
as intensity, color or texture, and may not be unique.

Polyp segmentation methods in colonoscopy videos have been mainly applied
for CT colonoscopy images [7] or chromoendoscopy [8]. Some simple segmenta-
tion methods have also been applied, although they are prone to be affected by
noise and other image artifacts—specular highlights, image blurring—[9].

In this paper we will compare the performance of our method against other
computer vision methods used in polyp segmentation [5], such as:

– Normalized Cuts (NCuts): The normalized cuts method [10] is a graph theo-
retic approach for solving the perceptual grouping problem in vision in which
every set of points lying in the feature space is represented as a weighted, undi-
rected graph. Segmentation is performed by disconnecting edges with small
weights.

– Turbo pixels (TurPix): this algorithm [11] starts by computing a dense over
segmentation of an image by means of a geometric-flow-based algorithm. This
segmentation respects local image boundaries while limiting under segmenta-
tion by using a compactness constraint. Regions are refined by using criteria
such as size uniformity, connectivity or compactness.

– Watershed with markers (WSM): watershed segmentation [5] considers a gray-
scale image as a topographic surface and achieves the segmentation by a
process of “filling” of catchment basins from local minimums. Providing mark-
ers helps the algorithm to define the catchment basins that must be considered
in the process of segmentation [12].

– Depth of Valleys (DoV)-based Region Merging Segmentation [5] (DV-RMS):
this method assumes polyp boundaries to be described in terms of valley
information. The method starts from a first rough segmentation of the input
image obtained by means of watershed. The segmented regions are merged
using different criteria such as boundary strength and region content.
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Our novel Segmentation from Energy Maps—SDEM—algorithm is based on
the characterization of polyp boundaries in terms of valley information. SDEM
also considers how MSA-DOVA energy maps integrate this valley information o
provide an initial segmentation of the polyp.

3 Methodology

We present here our polyp segmentation method preceded by a summary on
MSA-DOVA energy maps creation which are used by our algorithm.

3.1 Generation of MSA-DOVA Energy Maps

MSA-DOVA energy maps are based on a model of appearance for polyps which
was firstly described in [5]. This model combined information on how colonoscopy
frames are acquired with the appearance of polyps in those colonoscopy frames.
The model of appearance for polyps describes polyp boundaries by means of
valley information. As show in [6], polyps are not the only elements of the endo-
luminal scene which convey valley information; image preprocessing should be
applied to mitigate the contribution of these other elements such as blood vessels
or specular highlights.

The following step in MSA-DOVA energy maps calculation is the obtention
of the necessary valley information. Depth of Valleys image (DV ) is calculated
as a pixel-wise multiplication between the output of a valley detector (V ) and
the morphological gradient (MG):

DV = V (σd, σi) · MG; (1)

where V stands for the output of a valley detector [5] and MG for the morpho-
logical gradient. Morphological gradient is used to add key information about
how deep is the valley in the image.

The final step consists of the calculation of MSA-DOVA energy maps, which
are based on the assumption that a pixel inside a polyp should be surrounded by
valleys in several directions. The calculation of these maps is based on the use
of a ring of radial sectors which accumulate for each sector the maximum of DV
image that falls within it. MSA-DOVA offered an improvement over sum-based
accumulation as presented in [5], using a median operator to calculate the final
accumulation value. MSA-DOVA accumulation value is calculated as follows:

MaxL(x, α) = max
r

{DV (x + r ∗ (cos(α), sin(α)))}, r ∈ [Rmin, Rmax] (2)

Acc(x) = Med
α

(MaxL(x, α)) (3)

where Rmin and Rmax correspond respectively to the minimum and maximum
radius of the ring of sectors and α ∈ [0..2π]. An example of the output of MSA-
DOVA energy maps is shown in Fig. 1(b), where we can observe how high energy
regions of the accumulation map correspond with the polyp.
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3.2 Polyp Segmentation from MSA-DOVA Energy Maps

Our polyp segmentation method—SDEM—uses information from both DV
image and how MSA-DOVA energy maps are calculated. Our method requires
that maximum of MSA-DOVA maps falls within the polyp and in this case we
can obtain a first segmentation of the polyp by joining the position of the pixels
that contributed to this maximum—Fig. 1(b) and (c).

(a) (b) (c) (d)

Fig. 1. Examples of polyp segmentation from the output of an energy map: (a) Original
images; (b) MSA-DOVA energy map; (c) DV image, and (d) Initial segmentation
obtained by joining the position of the pixels that contributed to the maximum of
MSA-DOVA accumulation image. Maximum of MSA-DOVA energy map is marked as
a green square (Color figure online).

This first segmentation may present irregularities due to several reasons such
as having an incomplete boundary in terms of valley information—see Fig. 1(c)—
or presence of spurious valleys from other structures in the scene. These irregu-
larities make positions of maximum of DV image for adjacent sectors being not
close one to another—Fig. 2(a).

Our objective is to eliminate the irregularities in order to have a continuous
and locally circular boundary—typically associated to polyps—as the contour
of the final segmentation. Our method locally explores distances from maxima
under each sector to the maximum of accumulation—cmax—to detect those posi-
tions which are far from the circumference which represents the median of the
distances from each maximum to the accumulation center—Fig. 2(b). We use
the median distance as a way to correct irregular positions in favor to the most
common distance value within a given neighborhood of positions. In this case
the use of other options such as mean value are not suitable as the contribution
of irregular positions is still taken into account for the calculation. The posi-
tions of the pixels source of irregularities are corrected to have similar distances
to—cmax. SDEM consists of the following steps:

1. Calculation of the position of the maximum of MSA-DOVA energy map as
cmax ∈ image | ∀q ∈ image,MSA−DOV A(cmax) ≥ MSA−DOV A(qmax).

2. Definition of a ring of ns radial sectors centred in cmax.
3. Calculation of the position of the maximum of DV image under each sector

Si of the ring as pmax
i ∈ Si | ∀k ∈ Si,DV (cmax

i ) ≥ DV (q), with i ∈ [1, ns].



Polyp Segmentation by Means of MSA-DOVA Energy Maps 45

(a) (b)

Fig. 2. Graphical explanation of SDEM algorithm. We label maximum under each
sector as blue crosses. For the case of the irregularity, we label the original position as
a red cross whereas the corrected position is marked as a green cross. A circumference
showing the median of distances to center is depicted as discontinuous green line (Color
figure online).

4. Conversion of the position of the maximum of DV under each sector pmax
i to

polar domain ρmax
i = [rmax

i , θmax
i ], where r stands for the radial coordinate

and θ for the angular coordinate.
5. Definition of an angular segment of size 2ws centred on Si—Fig. 2(a).
6. Calculation of the new radial coordinate by means of the median of the rj

values of the angular segment rmax
fi = median(rmax

j ), j ∈ [i − ws, i + ws].
7. Definition of the new polar coordinates of as ρmax

fi = [rmax
fi , θmax

i ]
8. Revert the conversion to cartesian coordinates. The final position of maximum

under Si is referred as pmax
fi —Fig. 2(b).

SDEM algorithm has only one proper parameter ws which is the size of the
angular segment. MSA-DOVA parameters—minimum radii—radmin, maximum
radii—radmax and ns—are set to the values published in the original paper

(a) (b) (c) (d)

Fig. 3. Softening of boundaries by median filtering in polar space: (a) Preprocessed
image with initial segmentation; (b) Polar representation of the initial segmentation;
(c) Polar representation of the segmentation after median correction; (d) Preprocessed
image with final segmentation.
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(radmin = 25,radmax = 135 and ns = 180). To close with the explanation, we
present a qualitative example of segmentation refinement in Fig. 3.

4 Experimental Setup

Our segmentation method will be validated on the only public fully annotated
database, (CVC-ColonDB) introduced in [5]. As in the original work, we will
only use a subset of 300 frames from the main database as some sequences were
discarded due to bad image quality or presence of fecal content.

AAC, DICE [9] and F2 score metrics will be used to compare the performance
of the different methods. In this case we compare at pixel-level segmentations
provided by the output of the different methods with the ground truth. The
metrics are defined as follows:

AAC = 100 · TP

TP + FP
DICE = 100 · TP

TP + FN
F2 =

5AAC · DICE

4AAC + DICE
(4)

where TP , FP and FN stand for the number of True Positive, False Positive
and False Negative pixels, respectively.

We compare our method with general segmentation methods—NCuts and
TurPix—and valley information-based methods—WSM and DV-RMS—using
the proposed metrics. All the methods in the comparison are used with the para-
meter configuration described in our previous contribution [5]. We remark that
both NCuts and TurPix need to be provided with a number of target regions nr
to be extracted. After performing several segmentation tests we selected nr = 3
as the most representative result, considering that colonoscopy images present
three main regions which are: (1) lumen; (2) polyp; (3) colon wall. For all the
methods we used the position of maximum of MSA-DOVA to select the final
polyp region. Regarding SDEM, we set ws = 20—corresponding to an angular
segment of ±40◦—after a training state over 30 images not part of the database.

5 Experimental Results

In order to focus on segmentation, results will be analyzed only for those images
in which the polyp localization succeeded. The experiments were performed using
as input both the original and the preprocessed image.

We can observe in Table 1 that our proposal outperforms the rest of appro-
aches, specially in terms of AAC. Our method provides with regions with a
higher amount of polyp content while adding less non-polyp areas. This result
is confirmed by F2-score. Our method provides with a segmentation that covers
almost the 70% of the polyp region—much higher than the other methods—
whereas it still keeps a reasonably high performance in terms of DICE. Our
proposal also improves the results achieved by our most similar competitor—
WSM: segmentation guided by energy maps leads to obtain bigger final regions
closer to the actual polyp region.



Polyp Segmentation by Means of MSA-DOVA Energy Maps 47

Table 1. Segmentation results with—160 images—and without image preprocessing—
203 images.

Without preprocessing With preprocessing

Method AAC [%] DICE [%] F2 AAC [%] DICE [%] F2

NCuts 20.29 80.27 0.50 18.02 83.84 0.48

TurPix 19.40 75.56 0.47 14.75 76.30 0.41

WSM 42.89 68.36 0.61 43.68 74.40 0.65

DoV-RMS 56.87 44.93 0.47 54.13 57.46 0.56

SDEM 69.93 69.32 0.69 65.07 81.22 0.77

Regarding the impact of image preprocessing we can also notice that our
method still outperforms the rest of approaches, being our final regions now
much richer in terms of polyp content—81.22% vs. 69.32%—although slightly
smaller. This can be interpreted as our regions being now more inscribed inside
the polyp mask, removing more non-polyp content. Image preprocessing also
has an impact in the performance of the rest of the methods, being watershed
with MSA-DOVA markers the only one in which there is improvement in both
precision and recall results.

Finally we present some qualitative results on polyp segmentation in Fig. 4
some qualitative examples of polyp segmentation of several images before and
after applying preprocessing operations.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Examples of polyp segmentation results: (a–f) Normalized Cuts; (b–g) Turbo
Pixels; (c–h) Watershed with MSA-DOVA markers; (d–i) PR and (e–j) Our proposal.
Each image shows segmentation output (green) and polyp mask (blue). Top row shows
results without image preprocessing, bottom row with image preprocessing operations
applied (Color figure online).
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6 Conclusions and Future Work

We have presented a novel polyp segmentation method in colonoscopy videos,
which is built on a general model of appearance for polyps which describes
polyp boundaries using valley information. This information is integrated to
generate energy maps linked with polyp presence in the image. Our method
explores the way these maps are created to develop a polyp region segmentation
algorithm, considering which pixels in the image contributed to the localization
of the polyp. Our algorithm is able to improve an initial segmentation by adjust-
ing the shape of the final region discarding some contributions prone to provide
irregularity.

The results show that our method outperforms other general and specific
segmentation methods in terms of AAC, DICE and F2 measure. Our experi-
ments also confirm the necessity of image preprocessing to improve the final
segmentation of the polyp.

Nevertheless our results need to be further improved if our method is to be
used to potentially track polyps over different interventions. Future work should
consist of addressing the impact of elements of the scene not yet covered such as
folds or intestinal content. The algorithm should also be tested on a full sequence
rather than on individual frames to test the validity of our hypothesis.
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Abstract. Cardiac ablation is currently the standard of care for the treatment of
certain types of arrythmias [1]. During this procedure, a cardiac electrophysi-
ologist destroys the substrate needed for initiation or sustainment of the
arrhythmia using a cardiac mapping and ablation catheter which is placed in the
heart transvenously. Electro-anatomical mapping (EAM) tools have enabled
real-time guidance and visualization of the catheter and have additional features
which facilitate the procedure, such as, real-time visualization of the chamber
surface, ability to tag anatomic landmarks and ablation lesions, catheter display,
and activation, voltage (or scar) mapping. Herein, we report on the problem of
surface reconstruction (SR) from 3D points collected by a novel mapping tool
called catheter 3D location system (C3DLS). We highlight the challenges of
translating available SR algorithms into a clinical system prototype and discuss
our validation strategy. Lastly, we compare our SR results on clinical data to an
existing clinical system.

Keywords: Cardiac ablation � Surface reconstruction � Electro-anatomic
mapping

1 Introduction

Catheter ablation for the treatment of cardiac arrhythmias, such as atrial fibrillation
(AF), often involves the targeting of specific anatomic regions. To perform these and
other electrophysiological procedures effectively, the ability to navigate and accurately
locate a catheter in the heart is crucial. Several three dimensional (3D) cardiac
mapping systems are in clinical use [2, 3]. Mapping is the process of selectively
moving a catheter throughout a chamber of the heart to determine the mechanism, or
cause, of an arrhythmia. Recordings are taken to correlate catheter position with
electrical activation at that particular point. Most maps are either activation sequence
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maps, that display when electrical activation occurs at a particular point as shown in
Fig. 1, or voltage maps that delineate normal tissue from less healthy or scar tissue, or
simple anatomical models showing chamber geometry.

This work is part of the development of a novel C3DLS tool with intended use on a
wide variety of catheters, and has a simplified operation protocol & cost benefits
to facilitate wider applicability. A key feature of the tool’s software is the ability to
generate a surface connecting the points collected during the mapping procedure in
real-time. The surface generated must be intuitive and visually appealing, and at least
as accurate as the sampling of the chamber allows. The mapping process is semi-
random due to the difficulty in precise remote manipulation of the catheter, and may
acquire a very sparse set of points, based various factors such as, the patient’s course
of treatment, the need to minimize radiation exposure and the procedure duration. The
generation of this surface and clinical validation is the primary focus of this paper.

Surface reconstruction (SR) is the problem of computing a piecewise linear
approximation of the unknown surface passing through or close to a given set of points.
There are two key approaches to surface reconstruction from 3D points with unknown
topology. In one approach better suited to reconstruction from dense noisy datasets, the
surface is approximated such that not all sample points lie on the surface. In another
approach, a smooth surface is interpolated from sparse data points, in this case all
points are on the surface, noise is assumed to be small or nonexistent. Examples of
interpolating surface reconstruction algorithms are Alpha-shapes [4], Crust and its
variants [5–7]. These algorithms extract a surface (a set of faces) from the Delaunay [8]
or Regular triangulations [7] of points. Examples of approximating algorithms on the
other hand are [9–11] where the point samples are used to derive an implicit function in
3D and the reconstructed surface is extracted as an iso-surface of the function. Inter-
polating algorithms accounting for noise in the data have also been proposed [12].
Some other approaches introduce the notion of flow in surface reconstruction [13–15].

Fig. 1. Example of an electrical activation map of the Right Atrium (RA) created using another
existing clinical system. The electrical activation is color coded with orange being the earliest and
purple the latest activation. The view is in the left posterior oblique orientation. The red and blue
markers depict the location of the ablation lesions (Color figure online).
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Extensive reviews of many algorithms for surface reconstruction used in computer
graphics, industrial design, computational modeling etc. are available in [16]. In the
following section we discuss the applicability of some of these algorithms for cardiac
mapping.

2 Challenges in Surface Reconstruction for Cardiac Mapping

In order to reconstruct a surface from point data, all SR algorithms make certain
assumptions about the data. For example many approximating SR algorithms which
determine an implicit function in 3D, rely on the accurate estimation of point normals.
Some other algorithms assume sufficient sampling density [7]. In the following list we
outline the major challenges in surface reconstruction for the current application:

1. Point normal estimation is a non-trivial task for this application as no assumptions
can be made about the point sampling density and sample distribution. This is
because the current application involves manipulation of a catheter remotely and
manual mapping by an interventional cardiologist with restrictions on the length of
the procedure to control radiation dose and for patient safety & comfort. Basket
catheters are sometimes used to acquire a dense point set in a small amount of time,
but the tool design must not assume that a dense point set is always available. This
limitation rules out direct application of many implicit function based SR algo-
rithms relying on point normal estimation, and may result in artifactual surfaces
when they are used. Figure 2 shows an example surface obtained using an imple-
mentation of [9] in the vtk software library [17]. The number of points available to

Fig. 2. The surface generated by the vtk implementation of [9] as 32 (top left), 108 (top right),
143(bottom left), 206 (bottom right) points are acquired by the EAM tool. The arrows depict
artifacts associated with implicit surface generation and iso-surface extraction. The surface
orientations are not matched in all four figures; each is oriented differently to show the artifacts
(Color figure online).
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build the surface is shown in red. It was observed that the surface topology changed
significantly as points were added to the surface (32, 100, 143 and 206 points as
shown). Even when there were 200 or more points, the surface was sometimes
fragmented (bottom right figure).

2. The lack of sufficient sampling also affects the accuracy of the surface generated
by algorithms such as Power Crust [7]. Figure 3 shows some example surfaces
generated by a vtk implementation of the PowerCrust algorithm [18]. The surface
generated by this method has two primary issues: (1) some points are left out of the
surface, and (2) the surface is sometimes extrapolated non-intuitively beyond
the bounding points. This is mainly the result of the data being too sparse. The
electrophysiologist may sample the surface more in detail when the source of
arrhythmia is close but most of the chamber is sampled sparsely with total number
of points of the order of few hundreds.

3. Non-uniformity of the point sample distribution causes regular-grid based SR
methods to be slower depending upon the resolution of the grid, and computa-
tionally more expensive than combinatorial methods which can work directly with
the irregularly sampled points. Some algorithms such as the FFT-based recon-
struction [19] require binning of the points into a regular grid and have a complexity
that is related to the grid-resolution and not the actual data-size.

4. Visual perception of the generated surface must comply with what the cardiac
electrophysiologist is already acquainted with. To satisfy their visualization need,
the surface generation must be real time, start with only a few set of points (about
3–4), connect or pass close to all points, and must be very smooth to enable easy
interpretation of the mapped electrical activation displayed with colors on the

Fig. 3. (Left) The surface obtained from Power Crust algorithm [18] and (Right) the surface
generated by an existing clinical EAM system. The same set of points are circled in the two
images and illustrate the differences in the surface generated. In the circles on the left of the
figures, the points are left out of the surface whereas in the bottom the Power Crust surface
extrapolates beyong the bounding points. The orientation of the two surfaces are closely matched
but not exactly the same. Slight transparency has been applied to both the rendered images to
show points on inside or on another side of the surfaces. No smoothing has been applied to the
Power Crust Surface. Topological differences are most prominent near the bounding points.
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surface. The regions with earliest activation times must be clearly demarcated to
facilitate localization of the source of arrhythmia.

3 Methods

3.1 Surface Reconstruction

Our surface reconstruction pipeline was designed to handle aforesaid challenges and
requirements of this application. The pipeline was developed using vtk library routines
for Delaunay triangulation and C++ standard template library for all other mesh-related
operations. Figure 4 is a graphical illustration of the primary steps involved.

Process Point Data. The point data are first cleaned to eliminate duplicate points and
nearly coincident ones. In the initial stage of mapping when the points are few or nearly
coplanar, virtual points were strategically added to generate a stable Delaunay
triangulation.

Build Primary Mesh. A piecewise smooth mesh was generated from the points using a
combination of two approaches: (1) Alpha-shapes [4] and (2) convection algorithm
[14]. The complexity of both algorithms is same as the complexity of Delaunay tri-
angulation which did not add significantly to the computational overhead for the
dataset sizes encountered. The alpha-shape algorithm generated a surface by selecting a
subset of the Delaunay triangulation such that all the tetrahedrons had radius less than
alpha. A default value of alpha was used to generate an initial surface. This alpha was
determined empirically to be large enough to produce a closed surface. This initial
surface may enclose some mapping points, as the optimal alpha for every tetra that
would get the mapped points close (<2 mm) to the surface was unknown. Using this
initial surface, a more accurate surface with points closer to the surface was derived
using geometric convection [14]. The points far from the alpha surface were found first.
Starting with the closest off-surface point, the boundary face covering this point was
removed and replaced with the three other faces of the tetrahedron which contained this
face. Then the distances to all points were recomputed and the process of removing and
replacing faces was continued until no more points remained off-surface.

Iterative Mesh Fairing. The last step in surface reconstruction was aimed at making
the mesh smooth and visually appealing. This was achieved using an iterative process
consisting of subdivision and smoothing. Subdivision methods [21–23] are typically
used to produce a dense mesh. A linear subdivision scheme was used wherein each
triangle face was divided into two iteratively until all mesh edges were nearly uniform

Fig. 4. Illustration of the surface reconstruction pipeline
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and below a certain threshold. The scalar value at each new point was calculated using
the distance-weighted average of its four neighbors. As the subdivision proceeded, the
scalar values were repeatedly interpolated from the four neighbors giving a linearly
interpolated scalar surface. The smoothing algorithm was based on curvature flow [24].
The mesh fairing process consisted of alternating subdivision and smoothing at three
resolution levels starting with the coarsest and ending at the finest level.

3.2 Validation

We used simple phantoms such as a randomly sampled digital sphere and a plastic
hexagon phantom to test the surface generation in real-time. As the visual perception of
the user is a major factor in the success of this tool, we adopted task-based assessment
using human observers. Our gold standard was the map generated by another clinical
system currently used by cardiac electrophysiologists. We have thus far assessed our
surface reconstruction methodology on six clinical patient data with the points
obtained from the clinical system using three expert observers, who scored the data
on a scale of 1–5 for visual quality and conformity with the gold standard.

4 Results and Discussion

Figure 5 shows the simple phantom surfaces reconstructed from the point samples. The
surfaces conform to the original shapes which validates our surface reconstruction
pipeline. Scalar values were also correctly mapped to the surface. Figure 6 shows the
surface generated by our SR methodology compared to the “gold standard” clinical
system. There is good agreement in anatomy and activation times represented by the
colors. A small region close to the points with the earliest activation time is demarcated
with white color in the map generated by our system. This difference was intentional.
The agreement in the colors is better close to the mapped points than in the intermediate
regions where colors are interpolated. This is expected by the physician observers who

Fig. 5. Rendering of simple shapes reconstructed from irregularly distributed points. (Left) The
points were digitally generated using randomly sampling from a geometric sphere. (Right)
The points were obtained by mapping a plastic hexagon phantom using C3DLS tool. The colors
on the surface depict interpolated scalar values associated with the points (Color figure online).

Generation of Patient-Specific 3D Cardiac Chamber Models for Real-Time Guidance 55



would usually acquire more points in these interpolated regions to get a more accurate
activation time and color if desired. The scoring of similarity by physician observers is
not sensitive to such differences; rather more attention is paid to the spatial order of
colors which carries information on the direction of conduction of the arrhythmic
electrical discharges. The results of the scoring process for the six patient datasets are
shown in Table 1. Figure 8 shows the activation time color coded and displayed on the
map for two patient datasets. The average score for visual quality and match with gold
standard was 4.14 and 4.11 respectively.

5 Future Work

In future work, we will use points derived from the CT data of patients undergoing
ablation to reconstruct the surface and determine the accuracy of our methodology.
This would also allow us to vary the point density & distribution, and quantify the
differences with the actual surface.

Fig. 6. Local Activation time (LAT) maps for two patient studies, on the left in each pair is the
map generated by our system, and the right image in the pair is the map from the gold standard
clinical system. (Left pair) Left Atrial Flutter (Right pair) Right Atrial Flutter. The region near the
earliest point in our map is demarcated in white.

Table 1. Task-based assessment of six patient datasets by two expert observers. Observers
individually scored the visual quality and conformity with gold standard

Patient
data

Score 1–5 (5-best):
Observer 1

Score 1–5 (5-best):
Observer 2

Score 1–5 (5-best):
Observer 3

Visual
quality

Match w
gold std.

Visual
quality

Match w
gold std.

Visual
quality

Match w
gold std.

1 4 5 5 5 4.5 4.5
2 4 4 4 5 4 4
3 5 4 4 4 4 3.5
4 5 5 3 3 5 4.5
5 4 4 3 3 5 4.5
6 4 3 3 4 4 4
Average 4.33 4.17 3.67 4 4.41 4.17
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Abstract. Knowing the anatomical shape and position of structures sur-
rounding the cochlea is essential in planning minimally invasive cochlear
implant surgery. In this work, a Multiobject Hierarchical Statistical Shape
Model (MO-SSM) based of wavelet decomposition is created from clinical
cone-beam CT datasets of the inner, middle and outer auditory system and
surrounding structures. The methodology incorporates an algorithm that auto-
matically segregates structures as the level of detail is increased, leading to a
global description of the whole surgical site at the lowest resolution and detailed
anatomic models at the highest resolution. This model is the basis for the
automatic segmentation of patient data, allowing to quantify the relative position
of risk structures in planning the intervention.

Keywords: Statistical shape models � Cochlear implants � Auditory system

1 Introduction

According to the World Health Organization [1], hearing loss or impairment is one of
the most common reasons for disability. About one-quarter of men and women over 45
year old suffers from hearing loss of 26 dB and more. Hearing loss is caused by deficits
in any of the links of the hearing chain, either inner, middle or outer ear structures.
When external hearing aids do not sufficiently mitigate hearing loss caused by hearing
deficits in the sensorineural cochlea, which is the auditory organ inside the inner ear,
patients could benefit from cochlear implants (CI). Imaging techniques used in clinical
routine, such as Cone-beam CT (CBCT), provide enough resolution and context to
allow us to capture the structures of interest during the surgical approach to the inner
ear, that is the temporal bone, external auditory canal, facial nerve, chorda tympani,
ossicles, round window membrane, sigmoid sinus and middle fossa dura (Fig. 1).
Knowing the anatomical shape and position of structures surrounding the cochlea is
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needed to plan the best minimally invasive surgical procedure in the mastoid region of
the patient (Fig. 1a). In this sense, surgeons can reduce the co-morbidity in patients
using direct cochlear access through guided drilling to the inner ear. In this procedure,
the most feasible entry path for accurate drill/insertion trajectory is through the facial
recess, as shown in Fig. 1b. Safely preserving these structures surrounding the cochlea
is of paramount importance for the success of the surgery. For example, damage to the
facial nerve would cause temporal or permanent paralysis of half of the face and
braching the external auditory canal could cause ear infection [5].

Since its inception in the early 1990 s, point distribution models (PDMs) have
proven effective for modeling and analyzing the variability of anatomical structures in
medical imaging data, allowing to describe the underlying population statistics from a
set of training cases. Based on PDMs, two statistical model of the cochlea were recently
proposed by Nobel et al. [10], and Poznyakovskiy et al. [11]. However, none of the
surrounding organs from the external and middle ear was included in the models, which
limits their utility for preoperative planning. One of the most recent extensions of
PDMs has been the development of multiobject statistical shape models, where the
characterization of the relations between subparts provide valuable additional infor-
mation compared to the single-object modeling approach (i.e., ignoring the interaction
between adjacent objects). When modeling the cochlea and the surrounding structures,
the accurate modeling of the interactions between objects can help to not only ade-
quately deal with undefined intermediate regions but also extract the relevant anatomic
relationship between inner structures of potential relevance in planning surgery.
However, the classical PDM approach considering a multiobject structure globally (i.e.,
as a single object) becomes inefficient when a large training set is not available, as is
usually the case when working with 3D multiobject structures. This problem is known
as the High Dimension Low Sample Size (HDLSS) reduction problem.

For our purpose, good model instance accuracy is essential, due to the narrow space
between anatomical structures and anatomic shape differences between individuals.
Based on the recent work of Cerrolaza et al. [4, 6], we present a multiresolution
hierarchical PDM as an alternative to the classical PDM. This new framework, named
generalized multiresolution hierarchical PDM (GMRH-PDM) [6], allows to efficiently
characterize the different inter-object relationships, as well as the particular locality of

Fig. 1. The inner ear: (a) CBCT of the temporal bone. External ear canal (1), ossicles (2),
cochlea (3), and temporal bone (4). (b) Example of preoperative planning including direct cochlear
access trajectory through the facial recess (Color figure online).
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each structure separately. In particular, the model presented here includes the cochlea at
the inner ear and three surrounding risk structures: the ear canal at the external ear, the
ossicles at the middle ear, and the facial nerve. Finally, the performance of the new
model is evaluated in terms of its capability to represent real cases form our database,
as well as its potential to generate new valid instances from the underlying population.

2 Materials and Methods

2.1 Dataset and Manual Segmentation

Cone-beam CT (CBCT) images of the temporal bone region, acquired from 7 speci-
mens using ProMax 3D Max System (Planmeca, Finland) were used for this study. The
images have an isotropic voxel size of 0.15 mm, sufficient to capture the details of the
anatomical structures of interest (Fig. 1). The manual delineation of the structures
included in the study is essential for creating a reliable and accurate statistical model.
For this purpose, the surrounding structures of the cochlea were segmented using the
Otoplan software tool [5]. The ossicles (incus and malleus) were segmented as a single
structure, due to their small size, using an intensity-based region growing algorithm
after initial seed selection. The external auditory canal (EAC) wall surface was com-
puted from 3 points in the axial view. These points form a plane which moves radially
from the ear canal axis. Points were labeled as EAC if their intensity values reached the
mastoid bone threshold. For surgical purposes, only the piece of wall located in the
facial recess trajectory is segmented. To segment the facial nerve, 10 points were
manually selected following its centerline. Finally, the cochlea structure was segmented
using the software Seg3D [9]. In particular, a threshold between −300 and +100HU
was found useful to separate the cochlea and background/air from the bone. Connected
components analysis of the resulting binary mask volume allowed to differentiate the
cochlea and labyrinth from the background/air areas of the temporal bone. Once the
structures of interest were segmented, the definition of landmarks was performed by
means of an iterative cubic B-spline non-rigid registration, defining one of the cases as
the initial reference, and using the average shape as reference in subsequent iterations.

2.2 Generalized Multiresolution Hierarchical PDM

The original framework proposed by Cerrolaza et al. [6] integrates multiresolution
shape analysis into the classical PDMs. By decomposing the multiobject structure into
levels with different degree of detail, it is possible to establish different degrees of
association between objects, and thus efficiently model both the statistical inter-object
relationship and the particular local variations of each single object. Unlike the original
framework proposed in [4], where the capability to model variability in subparts of a
single object was limited, as they considered the single objects as the simplest structure
to model at the finest resolution levels, the new GMRH-PDM relaxes this condition
allowing any possible grouping of landmarks. Next, we present a general overview of
the GMRH-PDM. The reader is referred to [4, 6] for a more detailed description of the
framework.
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Let x be the vector form of a 3D shape defined by K 2 N landmarks. In the general
case of a multiobject shape composed of M (M 2 N) single-object structures, xj
(1� j�M), x is defined by the concatenation of the 3 coordinates of the Kj 2 N

landmarks K ¼ P
Kj

� �
that define each object, i.e. x ¼ x1; . . .; xMð ÞT . Using the

matrix notation initially proposed by Lounsbery et al. [7], the multiresolution analysis
of x can be formulated as : xr ¼ Arxr�1 and zr ¼ Brxr�1, where r 2 N indicates the
level of resolution (in particular r ¼ 0 defines the finest level of resolution, and thus,
x0 ¼ x), and Ar and Br represent the analysis filters. The first equation implements the
filtering and downsampling of xr�1, providing a lower resolution version of it (i.e.,
Kr�1 [Kr , where Kr 2 N represents the number of landmarks at the resolution level
r), while zr captures the lost detail between xr and xr�1. An optimal selection of these
analysis filters guarantees that no information is lost during the process, being possible
to reverse the analysis process with the synthesis equation: xr�1 ¼ Frxr þ Grzr. With
this method, it is possible to decompose any multiobject structure into different levels
of resolution. At each level of resolution r, we define a particular division of the Kr

landmarks into Mr separate clusters, ðSr1; . . .; SrMr
Þ, where Srs (s ¼ 1; . . .;Mr) is formed

by the indices of the landmarks contained in this subset, and therefore,
TMr

s¼1S
r
s ¼ ; and

SMr
s¼1S

r
s ¼ ð1; . . .;MÞ. The automatic division of the landmarks into separate clusters at

each resolution is based on the agglomerative hierarchical clustering method proposed
in [6], where the criterion for choosing the pair of clusters to merge at each step is
controlled by the minimum value of the tailored objective function:

J Xð Þ ¼ a1
Z

X

VX � V ij j
V ij j

� �2Lmax
V ij j diþ a2 1�

R

X di
R

S di

� �

þ a3H Xð Þ ð1Þ

where a1; a2 and a3 are real values such that
P

ai ¼ 1. X � S represents a region or
subdomain within the set of landmarks S we want to divide into an optimal set of
clusters. The first component of (1) takes into account the colinearity between defor-
mation vectors, V i, and the predominant vector direction VX in X. Lmax ¼ maxS V ik kf g,
and VX is defined as the highest eigenvalue of the matrix M Xð Þ ¼ R

X V iV t
idi. The

second term in (1) acts as a maximal area constraint, and the third term,H Xð Þ, defined as
the Hausdorff distance between the objects that compose X, promotes the grouping of
objects that are spatially close. Finally, the optimal landmark partition is based on the
following tailored definition of the Silhouette coefficient for each landmark li

si ¼
LF min J Xjþli

� �� JðXjÞ
� �� �� LF J Xið Þ � JðXinliÞ

� �

max min J Xjþli

� �� JðXjÞ
� �

; LF J Xið Þ � JðXinliÞ
� �� � ð2Þ

where Xinli represents the cluster Xi after removing li, and LF �ð Þ is the logistic function.
Since a value of si close to 1 means that li is appropriately clustered in Xi, the optimal
clustering of S will be the one that maximizes the average si. Let now x be the vector
form of the auditory system we are modeling, whose multiresolution decomposition
x ¼ x0; x1; . . .; xR; z1; . . .; zR

� �
, is obtained using the analysis equations. Imposing the
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initial condition that MR ¼ 1 (i.e., a global statistical shape model of the whole set is
built at the coarsest resolution in order to guarantee the coherent disposition of the
elements), a new landmark subdivision scheme is calculated at resolution r−1 for each
of the Mr subsets (Srs; s ¼ 1; . . .;Mr) obtained at r. Finally, the statistical model of the

shape is created building a different PDM for every Srs: xrs;P
r
s; k

r
s;i

n o
, where xrs rep-

resents the mean shape, Pr
s the set of T eigenvectors, and krs;i, the corresponding

eigenvalues (i ¼ 1; . . .; T).
One of the main purposes of the statistical shape model of the auditory system we

are presenting, is to ensure the legitimacy of the segmentation of the inner ear obtained
from a new patient, y (e.g., using Active Shape Models [2]). Suppose that we want to
use the new GMRH-PDM to describe a new case, y, i.e., finding the best approximation
of y in the subspace of allowed shapes described by the statistical model. Starting from
the finest resolution, y0 is divided into the M0 subsets previously defined, each of them
corrected by the corresponding PDM. This process is repeated at each resolution until
r ¼ R. In the transition of each resolution, the high frequency component of the new
constrained shape, bz1 , will be used to recover the original resolution at the end of the
process using the synthesis equation presented above.

An interesting application of a robust statistical shape model is the possibility of
generating new valid instances of the structure under study, providing useful ana-
tomical information of the organs involved, and the interaction between them. In the
classical approaches where a single PDM is created this generative process is relatively
simple since new instances x can be generated by varying the values of the shape
vector, b ¸ within the limits defined by the eigenvalues ð bij j � b

ffiffiffiffi
ki

p Þ : x ¼ xþ P � b ,
where generally b 2 1; 3½ �. Ho wever, despite the higher potential of GMRH-PDM to
generate new instances, the procedure is also more complex. Suppose we are using a
fine-to-coarse approach. Thus, at each resolution, r, we should proceed as follows.
(i) Generate new instances for each cluster: xrs ¼ xrs þ Pr

sb
r
s. (ii) Map xrs to the shape

space defined by xr (i.e., the decomposition of x at resolution r). This can be done by
simple Procrustes analysis between xrs and the set of landmarks from xr included in Srs.
The union of all the mapped clusters defines xr, i.e., the provisional estimation of the
new instance at this resolution. (iii) Obtain zrþ1 from xr. (iv) Rebuild the final version
of the new instance using the synthesis equation.

2.3 Multiresolution Decomposition of the Auditory System

Even when working with a limited number of organs, the auditory system is a very
complex structure, and the typical landmark-based parameterization may be inefficient.
In this work, we use an alternative parameterization for some structures, whose
geometry can be described more efficiently by means of control points. In particular,
the tubular structure of the facial nerve and the three semicircular canals of the cochlea
(i.e., the superior, posterior and horizontal canal), are described as a B-spline curve
with 17 equidistant control points located in the central axis, using B-spline wavelets to
create the multiresolution decomposition. Similarly, the surface described by the
auditory canal is parameterized by means of a 4 × 4 grid of control points. For the
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ossicles, and the cochlea, the multiresolution domain is defined using the octahedron as
the reference mesh, with a 4-to-1 splitting step, and a lifter butterfly scheme for tri-
angular meshes [7], using 258 landmarks at the finest resolution.

Finally, we create a 3-levels multiresolution statistical shape model of the auditory
system (R ¼ 2), using 0.8, 0.1 and 0.1 as configuration parameters in (3), i.e., a1; a2
and a3, respectively. These values were defined empirically, based on the general
guidelines provided by [6]. The resulting automatic configuration is shown in Fig. 2.

To guarantee overall structural coherence of the elements, all objects are modeled
together at the coarsest resolution (x2). As we move towards finer resolutions, the
structure is divided into smaller sets, modeling each anatomical object separately at
r ¼ 1 (x1). At r ¼ 0, smaller clusters of landmarks are defined on each anatomical
object, allowing the model to represent small variances more accurately. At the finest
resolution, it is possible to observe an anatomical correspondence between the clusters
obtained and the different anatomical subregions of the ossicles: malleus (light blue),
handle of malleus (red), long process of incus (light orange); and the cochlea: semi-
circular canals (yellow, green and dark blue), cochlear duct (dark blue), tympanic duct
(light green) (see Fig. 1b).

3 Results and Discussion

The ability of the new statistical shape model to represent new instances of the
underlying population is evaluated in terms of the average landmark-to-landmark
distance (L2L), the landmark-to-surface distance (L2S), and the Dice coefficient (DC),

Fig. 2. (a) Multiresolution hierarchical configuration of the auditory system obtained via
GMRH-PDM. At each level of resolution, each color represents a different cluster of landmarks
modeled jointly via PDM. At resolution x1, the cochlea is in navy, the ossicles in cyan, the facial
nerve in yellow, and the auditory canal in dark red. (b) Detail of the clusterization of the ossicles
and the cochlea obtained at the finest resolution, (x0) (Color figure online).
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using leave-one-out cross-validation. Table 1 shows the results obtained for each one of
the organs included in this study. The average L2L error for each landmark is shown in
Fig. 3(a). As it can be observed in Table 1, a better accuracy is obtained for the cochlea
(including the cochlear canals) and the ossicles, with an error below 0.45 mm (L2L and
L2S), and a DC greater than 0.78. On the other hand, the facial nerve and the auditory
canal have an average L2S error of 1.16 mm and 1.17 mm, respectively. In the context
of surgical planning of cochlear implants, the narrow space between risk structures
results in a need of systems with high accuracy, preferably below 1 mm [8]. The
promising results obtained for the cochlea and ossicles shows the potential of the
statistical model presented here for such demanding applications, though further work
is needed in order to improve the accuracy in the remaining structures, the facial nerve
and the auditory canal. Finally, as Sect. 2.2 indicates, the new statistical model gen-
erated via GMRH-PDM is able to generate a wide variety of new valid instances thanks
to the multiresolution shape decomposition and the creation of small clusters of
landmarks, of great utility in the anatomical study of the auditory system, and the
spatial relationship between the organs. Figure 3(b) shows a set of new cases randomly
generated by the model (b ¼ 2). These instances were evaluated by an expert radiol-
ogist who verified satisfactorily the anatomical validity of the structures.

Table 1. Accuracy Evaluation of the statistical shape model. Landmark-to-landmark (L2L)
distance, landmark-to-surface (L2S) distance, and Dice coefficient (DC) for the seven objects
considered here: cochlea, superior canal (Sup. C.), posterior canal (Pos. C), horizontal canal
(Hor. C), ossicles (Oss.), facial nerve (Facial N.) and auditory canal (Audit. C). The Audit. C is
represented by an open surface, so no DC can be calculated.

Cochlea Sup. C. Pos. C. Hor. C Oss. Facial. N. Audit. C.

L2L (mm) 0.32 ± 0.06 0.64 ± 0.12 0.60 ± 0.12 0.75 ± 0.24 0.45 ± 0.11 1.15 ± 0.19 1.30 ± 0.41
L2S (mm) 0.25 ± 0.04 0.64 ± 0.11 0.55 ± 0.12 0.72 ± 0.20 0.38 ± 0.10 1.16 ± 0.31 1.17 ± 0.35
DC 0.89 ± 0.02 0.75 ± 0.03 0.76 ± 0.07 0.70 ± 0.14 0.78 ± 0.04 0.60 ± 0.10 –

Fig. 3. Performance characterization of the statistical shape model of the auditory system.
(a) Average L2L error for each landmark. (b) Example of the ability of the GMRH-PDM to
generate new valid instances of the auditory system (b ¼ 2).
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4 Conclusion

Cochlear implantation requires accurate planning of the surgical intervention in order to
reduce co-morbidity in patients when using direct cochlear access through guided
drilling to the inner ear. Therefore, knowledge of the anatomical shape and location of
the surrounding structures is essential. Based on the new GMRH-PDM framework, this
paper presents a new statistical shape model of the auditory system consisting of the
cochlea, the ossicles, the facial nerve, and the auditory canal. This new approach allows
to describe efficiently the variability of the structures under study at different levels of
resolution, guaranteeing that only valid instances are generated. In this paper we show
the potential of the new statistical model of the auditory system to model new instances
(average L2S error = 0.70 ± 0.36 mm), even when a limited number of training cases is
available. We plan to continue exploiting the capacity of the multiresolution hierar-
chical modeling to create a more complete anatomical model of the auditory system,
including other important organs like the temporal bone, and the chorda tympani.
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Abstract. Bundle Branch Block (BBB) is a heart disease which is
usually diagnosed by the analysis of the ECG morphology and the dura-
tion of its QRS complex. Although body surface potential mapping
(BSPM) provides more information than 12-lead ECG and is nonin-
vasive, it is still not a visually direct method like in 3D heart model.
In this paper we aim to propose a system in which the 3D transmem-
brane potential is estimated and visualized in the 3D heart model to
improve the diagnosis of BBB. Using patient CT and BSPM data, the
system is able to reconstruct details of the complete electrical activity of
BBB on the 3D heart model. With the quantitative analysis proposed,
BBB patterns can be more easily distinguished in 3D model than by
visual inspection of the standard ECG and BSPM, therefore enhancing
BBB diagnosis for the physicians.

Keywords: CT images ·Bundle branch block ·Noninvasive imaging · 3D

1 Introduction

Bundle branch block (BBB) is a heart disease. It is caused when one of the
branches, or of the fascicles, of the bundle cannot normally transmit the electrical
impulses. These electrical impulses will cause ventricular contraction. Therefore,
in order to work normally, these impulses have to be transmitted by another path
which eventually cause both ventricles do not contract simultaneously. In routine
treatment, diagnosis of BBB is based on recognization of the ECG signal pattern
and on the duration of the QRS complex [1].

Although the 12-lead ECG is the most common used technique in cardiology,
several studies have been conducted in order to determine if the use of more leads
would provide more information [2]. In the BSPM system, there are usually 30
or more electrodes using for collecting the potential information on the torso
c© Springer International Publishing Switzerland 2014
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surface [3]. These body surface potentials collected reflect the activity of heart.
Since BSPM have more electrodes than ECG, BSPM thus provide more infor-
mation about heart [4].

By employing BSPM, the basic information of heart is easily to be recon-
structed. It thus provides the spatiotemporal functional information of the under-
lying cardiac electrical activity [5]. Hence, it is possible to observe the activation
pattern for a specific pacing site and this can be more useful than ECG in the
diagnosis of heart diseases, such as BBB. While great efforts have been paid to
build up BSPM database for diagnosis of heart disease [6], BSPM is not able to
reflect local detailed information of the electrical activity in the 3D heart model,
since each electrode on the torso actually only remotely measures a smoothed
integration of the entire cardiac activity [5].

Although lots of previous works have been done on using BSPM system to
enhance the diagnosis of BBB [7], there has no actual effort to enhance its diag-
nosis more directly using BSPM in the 3D heart model. Previous studies have
no clinical usefulness because they only reported quantitatively different map
patterns in potential maps. Donis et al. studied 64-lead BSPM recordings to
improve the diagnosis of BBB compared with the 12 standard leads of ECG.
But the results are simple and not visually realistic like in 3D myocardium for
physicians [8]. Auricchio et al. used catheter electrical recording to map the elec-
trical events on the hear model. Although their method gave a higher sensitivity
to rapidly changing events in the hear model and is useful for identifying and
locating specific locations, their method is invasive [9].

In this study, the BSPM of patients with BBB were measured and used to
reconstruct the epicardial potential to analyze whether other subjects have BBB
or not in 3D heart model. With BSPM data collected from patients with BBB,
3D dynamic geometry heart model is non-invasively built [6]. The evaluation of
diagnosis of BBB is compared to previous studies and physicians’ interpretation
of the infarct BBB. If the similar activation patterns can be found, corresponding
epicardial potential maps in 3D heart model will be generated and saved. Then
we can automatically classify patients using the representative maps, in which
these patients have the similarity of activity pattern in 3D. Thus the proposed
system helps the physicians to improve the diagnosis of BBB.

2 Method

The whole overview of our system is illustrated in Fig. 1. In the presented study,
we aim to estimate the epicardial potential distribution on the 3D myocardium
from noninvasive measured BSPM, in which the anatomic data for building heart
and torso model obtained from computed tomography (CT) image sequences
and a priori information of cardiac electrophysiology. The epicardial potential
distribution is reconstructed using BSPM with a patient specific heart-torso
geometry model.
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Fig. 1. Overview of the whole proposed system.

2.1 Forward and Inverse Model

Assuming the human torso is homogeneous and isotropic, boundary element
method (BEM) [10] is applied to discretize the torso and the epicardial surfaces
to derive a relationship between torso potentials and epicardial potentials:

ΦT = AΦE (1)

where m-dimensional vector ΦT is the potentials on the torso surface and
n-dimensional vector ΦE is the potentials on the epicardial surface, (m ∗ n)
(n < m) matrix A is a transfer matrix. The transfer matrix A depends entirely
on the boundary integrands of Laplace’s equation, which can be estimated ana-
lytically using BEM from a solution of forward problem. The epicardial surface
(490 nodes and 976 triangles) is obtained from CT scans in human studies,
while the torso surface (coordinates) (771 nodes and 1254 triangles) is from the
position of electrodes on the torso.

Based on the forward solution, we use our previous proposed method [11]
to estimate the epicardial potentials. The method is a L1-norm based inverse
solution which can reduce the computational complexity and make rapid con-
vergence possible.

2.2 Epicardial Potential Estimation and Imaging

The architecture of this noninvasive TMP imaging system is illustrated in Fig. 1.
Priori physiological knowledge and patient data were combined together, in
which their respective uncertainties are considered. Physiologically geometry
heart model and torso model were built from MRI image sequences. FHN model
is employed for the system to generated potential propagation and to compared
with the results of inverse problem. Then the epicardial potential is reconstructed
using the techniques of ECG inverse problem. And the activation maps will be
calculated for evaluation [12].
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3 Experiments and Results

3.1 Data

The ECG recordings were collected using a BSPM system. BSPM system used
in this study is a commercial 73-lead recording system for biopotential mea-
surements (called Active One). The quantization rate was 1 microvolt per bit
and the sampling rate used in the BSPM system was 2048 Hz. Electrodes were
distributed non-uniformly when capture the BSPM, where 19 electrodes were
on the back and 54 on the front. Therefore, we got higher electrode density at
position of the heart (see Fig. 2(a)).

Fig. 2. Input data (a) BSPM; (b) CT data; (c) heart-torso model.

In order to improve the effectivity of signal of BSPM, the BSPM were pre-
processed using filters. Preprocessing of patient BSP data is necessary to coordi-
nate the real data with the physiological system. We select QRS intervals out of
the complete BSPM which will be further interpolated as input for the system.
Table 1 shows the mean value of QRS duration using this preprocessing.

Table 1. Mean value of QRS duration (in ms (milliseconds)) after the preprocessing
for each category of patients.

Category 12-lead ECG 74-lead BSPM

Healthy (n = 9) 114.0 ± 5.1 121.1 ± 12.4

All BBB (n = 18) 173.1 ± 30 185.5 ± 26.7

LBBB (n = 13) 180.4 ± 22.1 193.2 ± 21.5

RBBB (n = 5) 150.0 ± 16.5 171.1 ± 15.1

The geometry heart and torso model were reconstructed using CT image
sequences of a patient (see Fig. 2(b)). The torso surface and epicardial sur-
face were divided into 490 and 976 nodes, and 771, 1254 triangles, respectively.
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The heart surface mesh were achieved manually and there are 2500 points in the
mesh. We also used a mathematical fibrous model [2] to simulate the anisotropic
myocardial conductive. The torso is assumed to have an isotropic and homo-
geneous conduction, which is described by triangulated body surface with 347
apexes and built by matching a reference torso model with patient’s CT data
sequences [13]. Figure 2(c) illustrates the heart-torso model.

3.2 Population Under Study

In order to comprehensively evaluate the system, we collected data from both
normal subjects and patients with BBB. For the ECG BSPM recordings, the
time for capturing is one minute. In all these data, there 18 data were collected
from patients with BBB and 9 data from healthy persons. Diagnosis of subjects
under this study is listed in Table 2.

Table 2. The number of subjects in our experiments.

Diagnosis Number of patients

Total 27

Healthy 9

Complete left BBB (LBBB) 13

Complete right BBB (RBBB) & 5

anterior hemiblock (RBBB AH)

3.3 Results and Discussion

Epicardial potential mapping showed that from the pacing site of earliest LV
activation, activation wavefronts spread naturally with high fidelity or not. For
some patients, the activation wavefronts could not spread directly to the lateral
wall from the anterior region. Instead, this wavefront spreads inferiorly around
the apex and across the inferior wall, then reached the lateral or posterolateral
regions. LV activation finally reach the basal region near the mitral valve annulus.
This pattern of activation was observed in some patients’s data. The accuracy
of TMP estimates is also validated by the closeness between estimates-generated
TMP and the input data (see Figs. 4 and 5).

The wavefront reconstructed visually has better fidelity than the three
patients when compared with the reference epicardial potential. The wavefront
reconstructed by the patient is spread out as a round shape into the right ven-
tricle (RV) when measurement noise increases. Thus, reconstructed potential
mapping by the three patients could not reproduce the propagation shape of the
parallel wave shown in the reference epicardial potential, thus, the conduction
block can be detected in this region (see Fig. 3 up row).

From visual observation, the existence of fragmented, double, or multiphasic
components are observed. The conduction block was shown by the data from 21
patients. The results of the remaining 2 patients show large areas. The potentials
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Fig. 3. Selected 6-lead signals of BSPM. Up row: input BSPM (processed). Bottom
row: final TMP estimates. They are in close accordance with relative root mean squared
error as 0.15.

Fig. 4. Two cases: LBBB (up row) and RBBB (bottom row). For each row, the first
figure is the input BSPM; the second figure is the mapping of BSPM on the thorax
model; the third and fourth figures are the 3D visualization on the heart model from
different angles.

distribution of conduction block spreads paralleled to the region near the car-
diac apex, where the conduction block is terminated at the cardiac apex (Fig. 3
bottom row).
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Fig. 5. The accuracy of our proposed system on the cases of BBB and normal cases.

4 Conclusions

In this chapter, we proposed a system in which the 3D transmembrane potential
is estimated and visualized in the 3D heart model. Through the analysis of the
epicardial potential mapping in this system, patients with BBB are easily and
accurately distinguished instead of from empirically checking ECG. Therefore
the diagnosis of BBB is improved using this system. Three-dimensional map-
ping is effective in the precise characterization of BBB in terms of the global
activation sequence as well as regional duration, velocity, and functional behav-
ior in patients with BBB. Patients with BBB may benefit from this non-invasive
3D epicardial potential mapping system before surgeons plan surgery.

For the future work, we concern that the personalized heart-torso model
can be used instead of using one model for all patients. We can thus build the
patient-specific system through this work.
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Abstract. Ultrasound (US) image guidance in orthopaedic surgery is emerging
as a viable non-invasive alternative to the currently dominant radiation-based
modalities. Though it offers many advantages including reduced imaging costs
and safer operation, the relatively low US image quality complicates data pro-
cessing and visualization. We propose a novel approach for robust bone
localization that integrates multiple US image features including local phase
information, local signal attenuation, and bone shadowing to robustly segment
bone surfaces. We demonstrate the advantages of our approach in different
contexts including improved segmentation quality, increased registration accu-
racy, and decreased sensitivity to parameter setting. We present quantitative and
qualitative validation on a bovine femur phantom and on real-life clinical pelvis
US data from 18 trauma patients using computed tomography (CT) image sets
as ground truth.

Keywords: Ultrasound � Local phase features � Shadowing effect � Confidence
map � Orthopaedic imaging � Segmentation � Bone imaging

1 Introduction

Ultrasound (US) bone imaging is receiving increasing attention in computer assisted
orthopaedic surgery (CAOS) applications. The primary motivation is reducing the use
of ionizing radiation based modalities (X-ray/CT), which would lead to safer real-time
imaging. This trend has the potential to impact a wide range of applications in
orthopaedics. For example, tracked US could improve navigation of pedicle screw
placement [1]. Intraoperative US could also supplement fluoroscopy-based procedures,
such as pelvic fracture fixation [2, 3]. In pediatric orthopaedics, Cheung et al. [4]
demonstrated the potential benefits of US imaging in routine checkups of scoliosis
patients. Furthermore, in spine imaging, US bone surface extraction was shown to be
promising for needle-insertion applications [5].

Bone surface extraction based on the detection of symmetric response features was
recently shown to be a powerful approach [6, 7]. However, local symmetry features
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remain prone to false detection of soft-tissue interfaces that often exhibit features
similar to those of bone. Furthermore, though quite effective on relatively flat (i.e.
sparsely-oriented) structures, raw phase symmetry responses require tedious non-
intuitive parameter tuning procedures to correctly identify complex bone shapes.
Attempts to automate the parameter selection process have been made [7] but persistent
false positives remain, especially at soft tissue interfaces. Apart from approaches based
on local symmetry features, other bone-surface segmentation methods exist that exploit
the bone shadowing effect and local image intensity. Foroughi et al. [8] used dynamic
programming on intensity and local gradient information to segment bone contours in
2D images. The approach has shown adequate clinical accuracy in 2D US images, but
it requires region-of-interest selection to remove soft-tissue interfaces near the skin
surface and the method was only applied to 2D US images. Another bone contour
detection scheme relied on depth weighted adaptive thresholding and subsequent
morphological opening/closing operators to enhance segmented bone surfaces in 2D
images [9]. A recent study used eigen-analysis information from a multi-scale 3D
Hessian matrix to enhance sheet-like surfaces for the purpose of generating 3D seg-
mentations of large bones [10]. However, results from these techniques remain heavily
dependent on quality of the US image, as well as on the depth and complexity of the
imaged bone due to the effects of shadowing and attenuation of local intensities.

Despite their aforementioned limitations, local image phase features were shown to
be effective for bone segmentation in certain subsets of US images. We therefore
hypothesized that identifying and integrating additional features of bone surfaces
would increase robustness and accuracy of the segmentation. The first key feature we
use is local phase symmetry (PS). As widely studied, bone surfaces in US typically
exhibit ridge-like responses that are well captured by local image PS features [6]. To
calculate those, we use a 3D log-Gabor filter as our quadrature filter since it can be
constructed with arbitrary bandwidth. The second key feature of bone material that we
use is its significantly higher US attenuation effect compared to other tissues, which
results in the characteristic shadowing below the bone surface in the US image. To
quantify this shadowing and attenuation feature, we employ Karamalis et al.’s [11]
shadow detection algorithm, which extracts a transmission model for an US image.
Finally, we combine the aforementioned features into a hybrid feature that we call
confidence-in-phase-symmetry (CPS) and that is intended to augment the PS measure
in regions where shadowing and attenuation is large. We limit our presentation to 3D
due to space limitations and since a 2D version is a straight forward simplification that
would instead use a 2D log-Gabor filter bank.

2 Methods

Given a 3D US volume, Ix,y,z, we first extract phase symmetry information, PSx,y,z,
using uniformly oriented filters (Sect. 2.1). To alleviate the challenging and time-
consuming problem of precise tuning of filter parameters to reduce outliers, we sup-
plement the PS measures using an attenuation metric, Ax,y,z, and a shadowing metric,
Sx,y,z (Sect. 2.2). We combine the three measures, PSx,y,z, Ax;y;z and Sx,y,z (Sect. 2.3) to
generate our hybrid feature, CPSx,y,z.
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2.1 Local Phase Symmetry Feature

Similar to [6], we calculate a 3D PS measure from even and odd symmetric log-Gabor
filter responses, denoted erm and orm, respectively, compensated by a noise power
threshold, Tr, over all scales r and all orientations, m, with ɛ being a small number to
prevent division by zero:

PS ¼
P

r

P
m ermj j � ormj j½ �½ � � Tr

P
r

P
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2rm þ o2rm

p þ e
: ð1Þ

In the frequency domain, the 3D log-Gabor filter bank has the transfer function:

3DG ¼ exp½ðlog x=x0ið ÞÞ2
2ðlogðk=x0iÞÞ� � expð�

a uj; hj
� �2

2r2a
Þ; ð2Þ

where subscripts i and j represent a scale and an orientation, respectively, of the filter
bank. k is the standard deviation of the Gabor filter in the radial direction and ω0i is the
central frequency. α(φi, θi) controls the 3D orientation of the filter where φi and θi are
the azimuth and elevation angles, respectively, and σα determines the angular band-
width. The log-Gabor function is scaled with constant ratio filters by keeping the term
k/ω0i constant and using multiples of a minimum wavelength, λmin.

2.2 Attenuation and Shadowing Feature

Similar to Karamalis et al. [11] we calculate a confidence map to quantify both the
attenuation and shadowing properties in US images. We run a random walk [12] to
calculate virtual signal strengths at every pixel in each ultrasound slice, given a signal
being transmitted from virtual transducer locations at the top of the image slice.
Essentially, the virtual signal strength of a pixel is the probability of a random walk
(starting from the pixel itself), to reach the virtual transducers, and is computed from
the graph Laplacian matrix. For different combinations of two nodes, vi and vj, the
graph Laplacian matrix is defined as:

Lij ¼
di if i ¼ j

� wij if vi adjacent to vj
0 otherwise

8
><

>:
; ð3Þ

where wij represent the edge weights and di = ∑jwij [12]. This Laplacian matrix, L, is
reformulated and decomposed into blocks of marked nodes, M, and blocks of
unmarked nodes, with B being an incident matrix:

L ¼ LM B
BT LU

� �

: ð4Þ
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The solution for the desired unknown probabilities of unmarked nodes XU can be
found using LUXU = −BTXM, where XM represents the known unit probabilities at the
seed-points [11]. The edge-weights, wij, are then assigned in the horizontal, vertical
and diagonal direction: wH

ij ¼ expð�bð ci � cj
�
�

�
�þ cÞÞ, wV

ij ¼ expð�bð ci � cj
�
�

�
�ÞÞ, wD

ij ¼
expð�bð ci � cj

�
�

�
�ÞÞ. The term, ci = giexp(−αli), is the depth-based intensity gradient

controlled by parameter α, and c represents the penalty of a horizontal and diagonal
walk compared to a vertical walk. β controls robustness of the overall result of random
walk. However, β barely affects the resulting confidence maps between the range
β = 90 to β = 120 [11].

In a 2D ultrasound image Ix,y, the confidence map, mx,y, resulting from the
abovementioned probability map, ranges between 0 and 1. The values can be inter-
preted as relative signal strengths at different image locations. We calculate a local
attenuation measure, Ax,y, which has a value between 0 and 1:

Ax;y ¼
P

w mx;y � mmin
� �

maxðPw mx;y � mmin
� �Þ ; ð5Þ

where w refers to 2D windows at multiple scales around mx,y of dimensions λmin/2, λmin/
4 and λmin/6, where λmin is the lowest scale used in the PS calculation, and mmin is the
corresponding minimum node values in the windows. Ax,y tends to highlight bone
surfaces due to the stronger reduction of signal strength, Δm, at the bone surface.
Similarly, we measure a shadowing feature, Sx,y, which has a value between 0 and 1:

Sx;y ¼
P

w mx;y= mminð Þ
max½Pw mx;y= mminð Þ� ; ð6Þ

which quantifies the shadowing effect at location (x, y). This feature is strong at points
characterized by a relative deficiency in signal strength. Although Ax,y and Sx,y seem
related, both are needed to better highlight bone surfaces. Ax,y alone will tend to fail for
deeper bone surfaces, whereas Sx,y alone will tend to erroneously highlight US artifacts
and noise below the actual bone surface.

Finally, we concatenate the responses measured in each 2D slice into 3D response
images designated as Ax,y,z and Sx,y,z. It is worth mentioning that a random walk in 3D
may be more appropriate if the US transducer directly acquired 3D images. However,
since our US transducer (Ultrasonix, 4DL14-5/38 Linear 4D) acquires a set of 2D
images, separated spatially and temporarily, we opted to initially use a 2D random walk
for our experiments.

2.3 Combined Feature for Bone Surface Localization

To combine the features, we define the bone membership probability:

Px;y;z ¼ a1 � Ax;y;z þ a2 � Sx;y;z þ a3 � PSx;y;z if PS[ 0
0 if PS ¼ 0

�

; ð7Þ
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where a1, a2 and a3 are weights. In our experimentation, we initially set each weight to
1/3. We defer the optimization of weights, a1, a2, a3, for future work.

Along each column y in the metric, Px,y,z, we identify the maximum value, and
extract the corresponding voxel location, (xm, ym, zm). These locations correspond to the
highest bone surface membership confidence and thus can provide a more reliable bone
segmentation mask. We evaluate the mean, μ, and the standard deviation, σ, of the
confidence map values, m(xm, ym, zm), and formulate our final CPS feature as:

CPSx;y;z ¼
Px;y;z � PSx;y;z if mx;y;z � l

�
�

�
�\r

0 otherwise

(

ð8Þ

Here, μ characterizes the statistical mean of the confidence map (or relative signal
strength) values at the bone surface. We denote μ ± σ to be the boundaries of the
aforementioned mask. This formulation is based on the notion that the shadow just
below the bone surface and the region just above the bone surface should ideally have
similar patterns of confidence values, mx,y,z.

3 Results and Discussion

To assess the performance of the CPS feature, we evaluated it on US image sets with
corresponding CT data from an ex-vivo bovine femur phantom as well as from in-vivo
pelvic data collected from 18 trauma patients (obtained as part of routine clinical care
under appropriate institutional review board approval). We compare our proposed CPS
method against a previously-reported version of PS [6]. The PS surface for both
methods was based on empirical filter parameters set to values similar to those
described in [6]: scale = 1, k/ω0i = 0.25, λmin = 25, σα = 15∘, and number of orienta-
tions = 6. Also, similar to what was described in [11], we used α = 2, β = 90, and
γ = 0.2, for generating the confidence map. Throughout our study, these selected
parameters were not changed.

The ex-vivo bovine femur (Fig. 1(a)) was placed in a polyvinyl chloride-filled
cylindrical tube, with fiducials added to enable a direct comparison between the US and
CT-derived surfaces. The bovine phantom represents a cylindrical (multi-directional)
structure. Using the CT-derived surface (Fig. 1(b)) as the ground truth, we observed
that the CPS-based surface (Fig. 1(e)) was able to remove considerably more soft-tissue
outliers compared to PS alone (Fig. 1(d)).

To quantify the accuracy of segmentation, we registered the two surfaces (US-
derived and CT-derived) using the fiducial locations. We then calculated a surface
registration error (SRE) as the Euclidean root mean square distance between the seg-
mented bone surfaces from the registered US and CT datasets [13]. The CPS algorithm
produced a SRE of 0.236 mm, vs 0.538 mm for PS alone (Fig. 2(a)).

For the in-vivo pelvic data, where we do not have access to fiducial markers, we
used automatic Gaussian mixture model (GMM)-based registration [13] to align the
CT- and US-derived bone surfaces and computed the corresponding surface registra-
tion error (SRE) or surface fitting error (SFE), therefore avoiding any biases related to
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any landmark selection. The final bone surfaces that were used during the registration
algorithm were determined from the maximum of feature responses along the direction
of US probe. Results are summarized in Fig. 2(b).

Figure 3 shows qualitative results of the CPS algorithm compared with two ver-
sions of the PS method, one using the empirical parameters described above and the
other using optimized parameters determined as described in [7]. The optimization of
parameters in [7, 13] relies on the assumption that bone surfaces will have the most
significant ridge-like features in the ultrasound image, and performs a subsequent
simplification of filter bank. Though successful in reducing soft-tissue outliers com-
pared to empirical parameter-based PS, over-simplification may cause loss of true
positives, as can be seen in the first example of Fig. 3. Also, note that some soft-tissue

(a) (b) (c)

(d) (e) (f)

Fig. 1. Qualitative result on ex-vivo bovine femur data. (a) Bovine phantom setup, (b) CT
volume showing segmented upper bone surface, (c) corresponding US volume, (d) PS,
(e) proposed CPS, (f) overlay of segmented CT bone surface (orange) and extracted CPS based
US bone surface (green) (Color figure in online).

(a) (b)

Fig. 2. Quantitative results. (a) Bovine phantom. Note that our proposed CPS based
segmentation resulted in a 0.302 mm reduction in error compared to PS. (b) In-vivo pelvic
data across all subjects (C#1 to C#18). Note that our proposed CPS resulted in a reduction in
error which is significant at (p < 0.0002) based on Wilcoxon signed rank test compared to PS.
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interfaces remain after optimized PS segmentation, since their response to the opti-
mized filter bank is similar to that of bone surface. For both examples, the proposed
CPS method appears to have improved bone surface segmentation, as illustrated in
Fig. 3.

In terms of computational cost, for a 152 × 158 × 112 US volume, CPS required a
small increase in run time with an average of 0.263 s per US slice, compared to 0.216 s
for PS only. All tests were run on a Xeon(R) 3.40 GHz CPU computer with 8 GB RAM
with MATLAB code.

4 Conclusions

We proposed a novel US bone enhancement algorithm that builds on PS-based bone
segmentation by augmenting PS with certainty cues generated by a random walk. We
demonstrated that this new feature enables better bone surface segmentation with
minimal need for parameter tuning and can be computed with relatively little additional
time. This method is simple to implement and provides an intuitive combination of
complementary bone surface features and robustness to soft-tissue outliers. We vali-
dated the algorithm on a bovine phantom and on in-vivo clinical pelvic data, and both
qualitative and quantitative results suggest promising robustness across a number of
bone surface geometries; in contrast, phase symmetry seems to be primarily effective
on relatively flat surfaces. In future work, we plan to evaluate the sensitivity of this
metric to the choice of weights for the different features and to apply the CPS metric to
additional scenarios of clinical interest.

(a)                      (b)                            (c)                           (d)                          (e) 

Fig. 3. Qualitative results: segmented bone surfaces around in-vivo pelvis, with two different US
transducer locations and orientations. (a) Segmented CT with box representing approximate
location of US transducer, (b) corresponding B-mode US volume, (c) PS based on empirical
parameters, (d) PS based on optimized parameters [13], (e) proposed CPS feature based on
augmented features with (b). Green arrows point to actual bone surfaces, red arrows point to soft-
tissue interfaces, and the yellow arrow in the first example points to missing bone surface points.
Our proposed CPS method appears to demonstrate qualitatively improved bone surface
extraction and improved soft-tissue artifact reduction compared to both prior PS methods (Color
figure in online).
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Abstract. Without the requirement of line-of-sight, electromagnetic
(EM) tracking is increasingly studied and used in clinical applications.
We designed experiments to evaluate a commercial EM tracking sys-
tem in three situations: using the EM sensor by itself; fixing the sensor
onto the handle of a stereoscopic (i.e., 3D) laparoscope; and placing the
sensor on the outside surface of the head of a laparoscopic ultrasound
(LUS) transducer. The 3D laparoscope and the LUS transducer are core
elements in our stereoscopic laparoscopic augmented reality visualization
system, which overlays real-time LUS image on real-time 3D laparoscopic
video for minimally invasive laparoscopic surgery. Jitter error, positional
static and dynamic accuracies were assessed with the use of LEGO�

basic bricks and building plates. The results show that the EM tracking
system being tested yields satisfactory accuracy results and the attach-
ment of the sensor to the planned positions on the probes is possible.

Keywords: Electromagnetic (EM) tracking · Augmented reality ·
Lapaoroscopic visualization

1 Introduction

Laparoscopic surgery is a minimally invasive alternative to conventional open
surgery and has advantages that include improved outcomes, less scarring, and
faster patient recovery. It has become the standard of care for certain surgical
procedures such as cholecystectomy. Real-time video of the surgical field obtained
using a laparoscopic camera is the primary imaging technique that guides laparo-
scopic surgeries currently. Despite the increasing application of laparoscopy to
treat various pathologic conditions, visualization of the surgical field remains
challenging. The majority of laparoscopes used in operating rooms (ORs) are
two-dimensional (2D) and can provide only a relatively flat representation of
three-dimensional (3D) anatomy and thus lack important depth cues. Moreover,
although the current technology is able to provide intraoperative video with rich
surface detail of the surgical anatomy, structures beneath the exposed organ
c© Springer International Publishing Switzerland 2014
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(a) (b) (c)

Fig. 1. (a): our current AR system based on optical tracking. (b): planned positions
for embedding EM sensors (c): an example of the bending of the head of the LUS
transducer.

surfaces, such as blood vessels and solid lesions, cannot be visualized in the
video and might not be fully recognized by the operating surgeon during the
surgery, causing avoidable medical complications.

Several groups [1–3] have reported augmented reality (AR) methods with the
goal of enhancing intraoperative visualization of minimally invasive laparoscopic
procedures. For laparoscopic surgeries, these methods overlay tomographic imag-
ing data on intraoperative video to reveal internal anatomical structures not vis-
ible in the video images. Our group has built an AR system using a laparoscopic
ultrasound (LUS) scanner (flex Focus 700, BK Medical, Herlev, Denmark), which
is capable of seeing beneath the surface of organs in real time, for visualizing hid-
den structures [4,5]. To cope with inherent limitations of 2D cameras, our team
has adopted stereoscopic (i.e., 3D) visualization (VSII, Visionsense Corp., New
York, NY, USA), which is emerging now as a visualization option for laparo-
scopic surgeries. With the use of a commercial optical tracking system (Polaris,
Northern Digital Inc., Waterloo, ON, Canada), we have further developed the
capability to overlay real-time LUS data on real-time stereoscopic video accu-
rately to provide 3D AR visualization without the prevailing problem of depth
ambiguity. Figure 1(a) shows our current AR system based on optical tracking.
Through successful demonstration of our AR system in animal and human stud-
ies, we have been gathering feedback from collaborating laparoscopic surgeons
regarding the clinical feasibility and usefulness of the AR system. The feedback
has focused on the use of optical tracking in a surgical setting. For our appli-
cation, one limitation of using optical tracking is that the optical markers have
to be placed outside the patient’s body because of the line-of-sight requirement.
For this, we designed a fixture to mount the optical markers on the handle of the
LUS transducer (Fig. 1(b)). To maintain a rigid relationship between the marker
and the LUS image, our current AR system does not allow four-way articulation
(bending) of the imaging tip of the LUS transducer (Fig. 1(c)), which is a very
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desirable feature of the imaging device. In fact, a metallic cover is placed over
the LUS transducer to prevent its tip from bending (Fig. 1(b)).

To incorporate this feedback of clinicians, we intend to replace optical track-
ing in our current AR system with electromagnetic (EM) tracking - a widely
used real-time tracking technology without the line-of-sight restriction. We plan
to embed an EM sensor on the tip of the LUS transducer (Fig. 1(b)) such that it
can be allowed to bend freely and tracked. As with optical tracking, we intend to
place an EM sensor on the handle of the 3D laparoscope, since it does not have
a flexible tip and cannot be bent during surgery. The purpose of this study was
to evaluate the tracking accuracy of a commercial EM tracking system made for
OR-based applications. The result from this study will guide us in appropriately
embedding EM sensors into the two imaging devices in the future.

In a typical EM tracking system, a field generator (FG) is used to create a
local magnetic field of known geometry to localize positions and orientations of
small sensors (diameter around 1 mm) inside the magnetic field. A thin wire is
often required to connect the sensor to the control unit of the tracking system.
In spite of many advantages over optical tracking, EM tracking is generally con-
sidered less accurate and less stable, especially when applied to clinical settings.
This is mainly due to the fact that its magnetic field can be easily distorted by
surrounding ferrous metals or conductive materials in the OR. These distortions
affect the sensor position and orientation readings. Many investigations have
focused on evaluating the accuracy of EM tracking systems in various environ-
ments. One common approach is to use a board phantom with drilled holes [6].
The distances among the holes are known (5 cm) and serve as the ground truth.
Another popular method is the “scribbling” approach [7], in which sensor posi-
tion data are collected by moving freely on a plane board with various elevations.
A 180 mm3 cube phantom with 225 holes of known geometry is introduced by
Wilson et al. to measure position errors of EM tracking [8]. It is worth noting
that several studies used inexpensive and easily available LEGO� basic bricks
and building plate to design their experiments [7,9]. Moore et al.’s study [10]
assessed EM tracking accuracy with the sensors embedded in a transesophageal
echocardiography (TEE) probe. However, they did not take dynamic effects into
account.

In general, errors of an EM tracking system can be classified into: (1) static
errors - errors generated when the sensor is stationary for a certain period of time
within the working volume of the FG - and (2) dynamic errors - errors generated
when the sensor is moving or the environment is changing. For static errors,
common measurements include precision, which measures jitter error (random
noise); and accuracy, which measures exactness of relative positions. For each
source of error, both positional and orientational errors can be measured. We
designed our experiments to evaluate precision and both static and dynamic
accuracies in three different situations: sensor by itself, and when the sensor
is attached to the planned positions on the two imaging devices (Fig. 1(b)).
Measurements in this study were restricted to positional errors.
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2 Experimental Setup

A commercial EM tracking system with a 3.4 cm thick tabletop FG (Aurora,
Northern Digital Inc., Waterloo, ON, Canada) was used in this study. Tabletop
FG is specially designed for OR applications, and is supposed to be placed
between the patient and the surgical table. The FG suppresses distortions caused
by conductive or ferromagnetic materials located under it. Compatible 6 degrees
of freedom (DoF) sensors (Aurora Catheter, Type 2; 1.3 mm diameter) were used
for all experiments. In order to simulate a clinical setting, the tabletop FG was
placed on a standard surgical table (Fig. 2(a)). In addition, the LUS machine
and 3D laparoscopic visualization system were placed near the table.

A fixture to be fixed onto the handle of the 3D laparoscope was designed for
our experiments (Fig. 2(b)). It is comprised of a cylindrical mount and a long
straight bar with slots at 1 cm interval for placing the sensors. The diameter of
the slot matched exactly the diameter of the sensor such that the sensor could
be firmly fixed in the slot. Two sensors were placed, using tape, into the first

(a) (b) (c)

(d) (e) (f)

Fig. 2. Experiments for assessing the EM tracking system. (a): setup of the EM tracking
system. (b): specially designed fixture with two EM sensors fixed on the handle of the
3D laparoscope. (c): setup to measure the static error with the 3D laparoscope turned
on. (d): setup to measure the static error with the LUS transducer turned on. (e): EM
sensor taped to the tip of the LUS transducer. (f): setup to measure the dynamic error
with the 3D laparoscope turned on.
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(i.e., the slot closest to the scope handle, and is referred to as the “First Sensor”)
and the fifth slot (referred to as the “Second Sensor”), respectively. The tips of
the two sensors were exactly aligned with the edge of the fixture (Fig. 2(b)). Since
the tracking system reports positions of the sensor tip, this sensor placement
yielded a 5 cm distance between the two sensor tips, which was used as the
ground truth for accuracy measurement.

If we denote a Cartesian coordinate system centered at the centroid of the
surface of the tabletop FG (i.e., the centroid has coordinates (0, 0, 0)), the
working volume of the FG can be expressed as (in mm) x ∈ [−210, 210] (i.e.,
the width range of the FG), y ∈ [−300, 300] (i.e., the length range of the
FG), and z ∈ [120, 600] (i.e., the height range above the FG). Note that the
working volume of the FG we tested is in fact an ellipsoid-shaped volume,
and thus, the sizes we refer to here are the maximum lengths in each dimen-
sion. We sampled the working volume with a total of 15 test points: 3 heights
at z = 25 cm, 35 cm, and 45 cm; at each height, five points at coordinates
(0, 0), (0,−185), (0, 185), (−130, 0), (130, 0). It was less interesting for us to study
positions with height below 25 cm, since in practice, our AR system is supposed
to work with the patient lying on the tabletop FG.

We assessed the performance of EM tracking system in three situations: using
the fixture (with two sensors) alone; fixing the fixture onto the handle of the 3D
laparoscope (Fig. 2(b)); and stick the First Sensor to the surface of the head of
the LUS transducer. For each situation, we measured jitter error, static accuracy
and dynamic accuracy. Jitter error applies to single sensor, and in this case
the one referred to as the First Sensor. Accuracy was obtained by comparing
recorded distances between the two sensor tips to the 5 cm ground truth. To
have consistent measurement of static errors, we aimed to position the tip of the
First Sensor close to the target test point. This was achieved by utilizing LEGO�

basic bricks and building plates. Six 10 inch by 10 inch plates were connected
and taped on the surface of the FG. The fixture and the handles of the two
probes were attached to LEGO�-made mounts using double-sided tapes. These
mounts were elevated and positioned to the designated locations in a way such
that the distance between the actual location of the tip of the First Sensor and
the target test point was less than 5 mm. The Second Sensor maintained a fixed
relative position to the First Sensor due to the rigid body of the fixture phantom.
Figure 2(c) and (d) show the setup for measuring static errors when the fixture
is attached to the working 3D laparoscope and LUS transducer, respectively. For
easier positioning of the probes, two orientations of the probes (i.e., in Fig. 2(c)
and (d), respectively) were used and kept (or held) consistently among different
testing situations. As shown in Fig. 2(e), the First Sensor was stuck to the head
of the LUS transducer using double-sided tape. The attachment location was
selected to be the farthest location from the tip of the transducer, which could
still yield bending of the transducer head.

Precision/jitter is defined, as the deviation of measured positions while one
sensor is stationary for a certain period of time. At location x, it is calculated
as the Root Mean Square (RMS) [11]
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2
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where p1 and p2 were recorded positions with regard to the First and the Second
Sensor, respectively, and dtruth = 5 cm. For experiments of measuring static
error, we recorded tracking for 20 s with a sampling interval of 1 s.

To measure dynamic errors, the fixture was moved freely with the operator’s
hand on a glass plate (Fig. 2(f)). The fixture was kept on the plate while moving.
We tried to maintain a uniform speed of about 10 cm/s. Experiments were carried
out for three situations same as above, and at three different heights (i.e., z =
25 cm, 35 cm, 45 cm). Tracking of the sensors were recorded for 30 s with a
sampling interval of 1 s, and the accuracy was calculated using Eq. 2.

3 Result

The mean and maximum errors for three measurements in three situations are
given in Table 1. The mean precision was calculated as the average of jitter errors
(which was calculated using Eq. 1) at 15 locations. Similarly, the mean static
accuracy is the mean of accuracies (calculated using Eq. 2) at 15 locations. The
mean dynamic accuracy was the average accuracy over three heights. It should
be noted that the maximum value in each case is not the maximum of instant
values, but rather the maximum value (averaged according to Eq. 1 or Eq. 2)
of 15 positions (for static) or 3 heights (for dynamic). For positions generating
extreme values, e.g., 2.08 mm as the maximum static accuracy error for the case
without the probe, we repeated the same experiments several times and took
the mean value as the result. In a similar manner, errors grouped according to
different heights are summarized in Table 2.

Table 1. Mean (maximum) errors for three different situations.

Situations Jitter (mm) Static Dynamic

accuracy (mm) accuracy (mm)

Sensor by itself 0.18 (0.49) 0.56 (2.08) 1.00 (1.43)

Attached to 3D probe 0.23 (0.69) 0.68 (1.12) 1.53 (2.12)

Attached to LUS probe 0.18 (0.57) 0.79 (1.72) 1.11 (1.61)
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Table 2. Mean (maximum) errors at three different heights.

Height Jitter (mm) Static Dynamic

accuracy (mm) accuracy (mm)

25 cm 0.04 (0.05) 0.32 (0.70) 0.89 (1.10)

35 cm 0.13 (0.16) 0.80 (1.72) 1.03 (1.37)

45 cm 0.43 (0.69) 0.90 (2.08) 1.72 (2.12)

4 Discussion

The results we obtained in this study are consistent with results reported previ-
ously by other groups. Maier-Hein et al. [12] evaluated the same tracking system,
i.e., NDI Aurora Tabletop FG, using standardized board phantom [6] with 5 cm
distance as the ground truth. Our 0.56 mm static accuracy (without probe) lies
between their reported laboratory accuracy (0.30 mm) and accuracy in a CT
suite (0.90 mm), which is reasonable due to our simulated OR setting. In addi-
tion, Nafis et al. [7] assessed dynamic errors for a tabletop FG, i.e., 3D Guidance
medSAFETM Flat Transmitter (Ascension Technology, Shelburne, VT, USA),
and they reported greater error with increased height from the FG, which is
similar to what we have found. Besides these comparisons, we further noticed
that the dynamic error is generally greater than the static error, which is as
expected. Furthermore, the 0.23 mm jitter error when the sensor is attached to
the 3D laparoscope is higher than the 0.18 mm error found in the other two
situations.

Regarding incorporating EM tracking into our laparoscopic AR system, NDI
Aurora Tabletop FG delivers satisfactory tracking accuracy according to our
results, and is suitable for clinical applications due to its tabletop design.
Although all three error measurements increase when the EM sensors are
attached to either of the probes, the increased error is still acceptable. The
evaluation results give us valuable insights for further embedding the EM sen-
sors into the two probes. For 3D laparoscope, we could design a fixture similar as
the one we used in this study but without the long straight bar, so that a sensor
could be fixed at a location close to the handle of the probe. For LUS transducer,
we intend to embed the sensor within the transducer head, approximately the
same position as where we stuck the sensor in this work. The results from this
study also suggest that the tracking system works better at lower heights, and
this information is helpful to us in further design of our experiments for 3D
camera and LUS calibration, as well as evaluation of the complete EM-tracked
AR visualization system.

In conclusion, we have evaluated positional precision and accuracy, both sta-
tically and dynamically, for a commercial EM tracking system. The assessment
experiments account for situations when just using the sensors alone and when
they are attached to one of the two probes used in our stereoscopic laparoscopic
AR visualization system. The results suggest that the tracking system has high
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accuracy and the attachment of the sensor to the planned positions on the probes
is promising. These results will serve as the basis and benchmark and guide us in
appropriately embedding the sensors into both imaging devices in our continued
development of a superior laparoscopic visualization technology.
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Abstract. We present a novel automatic algorithm for lung tumors segmen-
tation in follow-up CT studies. The inputs are a baseline CT scan and a
delineation of the tumors in it; the output is the tumor delineations in the follow-
up scan. The algorithm consists of four steps: (1) deformable registration of the
baseline and follow-up scans; (2) segmentation of the tumors in the follow-up
scan; (3) geometry-based segmentation leaks correction; and (4) tumor boundary
regularization. The key advantage of our method is that it automatically builds a
patient-specific prior that increases segmentation accuracy and robustness and
reduces observer variability. Our experimental results on 80 pairs of CT scans
from 40 patients with ground-truth segmentations by a radiologist yield an
average overlap error of 14.5 % (std = 5.6), a significant improvement from the
30 % (std = 13.3) result of stand-alone fast marching segmentation.

1 Introduction

Radiological follow-up of tumors is the cornerstone of modern oncology. Disease
progression and response to treatment are routinely evaluated by measuring the tumor
volume in a series of volumetric scans. Today, most radiologists rely on standards such
as RECIST to estimate the tumor mass. It is well known that this estimate can be off by
as much as 50 %. Previous research shows that true volumetric measurements are the
most accurate information for tumor monitoring [1].

Tumor delineation is the main bottleneck of tumor volume computation. Manual
delineation is time-consuming, is user-dependent, and requires expert knowledge.
Semi-automatic segmentation methods, e.g., live wire and region growing, also require
user interaction and may lead to large intra- and inter- observer variability. Automatic
tumor segmentation poses significant challenges and is used in the clinic for only a
handful of tumor types. Model-based methods are also limited, as they require a generic
tumor prior. Moreover, most methods process each scan independently without con-
sidering that it is the same patient. Recent works show that using the baseline delin-
eation as a patient-specific prior may improve robustness and accuracy [2].

In this paper we present a new, fully automatic algorithm for lung tumor seg-
mentation in follow-up CT studies. The inputs are the baseline scan, the tumor’s
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delineations, and the follow-up CT scan; the outputs are the tumor’s delineations in the
follow-up CT scan. The baseline delineation can be obtained by semi-automatic seg-
mentation methods. The algorithm consists of four steps: (1) deformable registration of
the baseline and follow-up scans; (2) segmentation of the tumors in the follow-up CT
scan using statistical intensity models; (3) detection and removal of tumors segmen-
tation leaks using geometry-based methods for both the tumor and the adjacent anat-
omy and; (4) tumor boundary regularization to correct the partial volume effects.

The three most relevant research areas to our work are: (1) lung follow-up studies;
(2) lung tumor segmentation, and (3) lung scans registration. We briefly discuss each
next.

Hollensen et al. [3] address the task of follow-up studies of lung tumors. Their
method starts with manual rough positioning followed by rigid registration. The
baseline delineation is then used as the initialization of the follow-up segmentation by
electric flow lines and min graph-cut. Their method, which is the closest to ours, is
demonstrated on a small database of 10 cases and does not handle segmentation leaks.

Lung nodules segmentation and follow-up has received significant attention. It is
usually easier than lung tumors due to known diameter and spherical shape. The
VOLCANO’09 lung nodules follow-up challenge [4] comprises 13 groups and 50
datasets. Among the participating groups, Kostis et al. [5] present a method based on
thresholding. Segmentation leaks to vessels are corrected with morphological opening
adjusted by the user. Pleural surface attachments are removed with a separating plane,
which is not adequate for larger tumors. Jirapatnakul et al. [6] model the pleural surface
with a parabola for leaks removal. While this leak removal method is similar to ours,
their nodule-specific heuristics may not always work for lung tumors.

Methods for individual stand-alone pulmonary tumors segmentation include
thresholding, region growing, and level-sets. For PET/CT scans, Gribben et al. [7]
propose to use the PET scan for tumor detection, followed by unsupervised Maximum
A Posterior Markov Random Field on the registered CT scan values. Kanakatte et al.
[8] also use the PET scan for tumor detection, but combine thresholding and compo-
nents analysis to produce the final segmentation. Plajer et al. [9] classify lung tumors in
standalone CT scans into five categories and apply mixed internal/external force seg-
mentation and clustering. Awad et al. [10] use multi-parameter level-set with a sphere
shape prior. Their validation on 21 tumors yields a volume overlap error of 30 %,
which is excessive for disease progression evaluation.

Lungs CT scans registration is challenging because the lungs deformations are non-
rigid. The EMPIRE10 lungs registration challenge [11] comprises 24 groups and 30
datasets. The highest scoring method by Song et al. [12] uses topology-preserving
diffeomorphic transformations. Lung registration methods usually produce good results
for the lungs, but may incur in large errors when used for tumor registration.

Our method has the following advantages over existing ones: (1) it is fully auto-
matic; (2) it builds a strong patient-specific prior from the baseline tumor delineation
that improves segmentation robustness and accuracy; (3) it performs local deformable
registration to model more accurately the tumor transformation; (4) it corrects for tumor
segmentation leaks with a new method based on the pulmonary surface geometry, and;
(5) it accounts for segmentation errors resulting from the partial volume effect. Our
experimental results on CT scans from 40 patients with ground-truth segmentations
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generated by a radiologist yields an average overlap error of 14.5 % (std = 4.1), a
significant improvement of the 30 % (std = 13.3) of stand-alone level-set segmentation.

2 Method

The basic premise of our method is that the tumor delineation in the baseline scan is a
high-quality prior for the follow-up scans. The algorithm consists of four steps.

2.1 Deformable Registration of the Baseline and the Follow-up Scans

The initial step is to register the baseline CT scan with the follow-up scan. This
transformation defines the approximate location of the tumor mass in the follow-up and
is used to build intensity priors to delineate the tumor in the follow-up scan.

We start by performing a deformable registration between the baseline and follow-
up scans in the automatically detected lungs Region of Interest (ROI). This global lung
ROI deformable registration consists of a rigid affine registration followed by a
deformable registration with B-Splines. This stage usually registers the lungs properly,
although the tumor itself may be poorly registered.

To overcome this challenge, we perform a separate local deformable registration for
each tumor. The baseline tumor delineation is enclosed in a bounding ROI. The follow-
up ROI is determined from the baseline tumor by projecting it to the follow-up scan
using the global transformation and with an added margin. This local registration has
three stages: (1) a pure translation registration to account for large changes in the tumor
volume; (2) a rigid affine registration, and; (3) a deformable registration.

2.2 Initial Follow-up Tumor Segmentation

The segmentation is performed using a statistical model of the foreground (tumor) and
the background (other structures). The foreground voxels are from the prior in the
follow-up scan; the background voxels are from the prior neighborhood. Since the
registration is not accurate, the foreground voxels may include background voxels and
vice versa. To remove them, we classify the voxels into the two classes with the k-
means algorithm and remove the class representing the registration error. For the
foreground, we remove the class with the lower mean and vice versa. Next, we estimate
Gaussians parameters to compute the initial tumor segmentation by Maximum Like-
lihood Estimation. Finally, we use morphological closing to remove small holes.

2.3 Segmentation Leaks Removal

Since the tumors may be attached to neighboring structures with similar intensities, any
intensity-based segmentation method will include parts of these structures in the result.
Our goal is to automatically detect these segmentation leaks [13], and correct them. For
this, we use geometric models for the tumor and background structures.
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We handle segmentation leaks to neighboring vessels, to the pleural wall, and/or to
the diaphragm. Note that we cannot use the baseline shape as a prior, as it can change
dramatically during the tumor growth/shrinkage. We automatically detect and correct
the segmentation leaks in two stages. The first stage handles bottleneck-shaped leaks;
the second stage handles leaks caused by missing boundaries.

In the first stage, we model the tumor as a star-shaped structure; i.e. structures for
which there is a point from which the entire tumor boundary is visible. Empirically, we
observe that the majority of lung tumors are star-shaped. We use our previous method
for the detection and removal of bottleneck-shaped leaks [14]. The input to this step is
the initial tumor segmentation with leaks and a point c in the segmented tumor kernel.
We choose this point as the closest point to the center-of-mass in the segmentation
prior. We perform dense ray casting to find the boundary of the tumor that is visible
from c. We project a ray from c in all 3D directions, and record the voxel just before the
ray leaves the segmentation volume as part of the segmentation boundary. The result is
the segmentation boundary as seen from c.

The small segmentation leaks are detected as follows. When casting rays from the
tumor center outwards, the rays will stop at a sharp boundary segments but will
continue for the fuzzy/missing boundary segments, causing a segmentation leak.
Consequently, the boundary of leak will not be connected to the tumor boundary,
resulting in a discontinuity. In 3D, the actual tumor boundary will form a single
connected component regardless of the number of leaks. To remove these leaks, we
perform a connected components analysis on B and select the largest connected
component that surrounds c to be the segmentation known boundary. The missing
boundaries (holes) in this known boundary are the leaks. They are then removed by
filling the boundary holes. To fill the holes, we first compute the voxels Euclidean

Fig. 1. Illustration of the segmentation process stages: (a) the baseline tumor delineation (red)
overlaid on the corresponding follow-scan CT slice after registration; (b) maximum likelihood
follow-up tumor segmentation (red) with leaks; (c) segmentation boundary B (red) as seen from
the center point; (d) 3D view of the ray casting result; (e) follow-up tumor boundary (red) after
leaks removal; (f) distance map from follow-up tumor boundary (red); (g) watershed regions,
and; (h) final follow-up tumor segmentation (Color figure online).
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distance map from the known boundary. Next, we identify the watershed regions in this
distance map. Finally, we choose regions whose intersection with the known seg-
mentation is greater than a predefined threshold. A voxel belongs to the known
segmentation if it is on a ray connecting the center point c and a point in the known
boundary (Fig. 1).

In the second stage we treat missing tumor boundaries. we use a parabolic surface
as a local geometric model of the adjacent structures to determine it. This boundary
shape is similar to the way a human delineator would complete the missing boundary,
and it holds for the pleural surface, the diaphragm, and parts of the heart walls. We
empirically found that this is better than using shape prior, e.g. as described in [10].

To create this model, we use the tumor segmentation of the previous stage and find
its boundary points. These boundary points can be inliers from the adjacent structures
borders or outliers from the tumor or vessels. We apply the RANSAC outlier detection
framework with a parabolic surface model to simultaneously find the parabolic surface
parameters and the outliers. We require the cloud of points to be monotonic in the
z axis direction. To achieve this, we first rotate the cloud of points so that its axis of
smallest variance, obtained from Principal Component Analysis (PCA), is aligned with
the z axis. Next we fit a parabolic model to the resulting points cloud.

In RANSAC, we repeatedly choose six random points. We estimate the parabolic
surface parameters from the points and use it to find which points are inliers. Finally,
we choose the parabolic surface with the largest set of inliers. The final refinement step
iteratively estimates the parabolic surface parameter using the inliers points. The
iterations stop when inliers set size remains the same. Finally, we remove the part of the
tumor that is separated from the center c by the parabolic surface (Fig. 2).

Fig. 2. Illustration of the background geometric modeling stages: (a) background and
foreground boundary points (red) on a slice; (b) 3D model of the boundary points; (c) RANSAC
result: green, parabolic surface, blue, inliers, red, outliers; (d) one slice with parabolic surface; (e)
segmentation results: red, tumor, yellow, parabolic surface, green, leak; (f) 3D visualization
(Color figure online).
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2.4 Tumor Boundary Refinement

The last step addresses the partial volume effect (PVE). The PVE results in blurred
tumors boundaries that may cause variability in the tumor delineation by different
radiologists and segmentation algorithms. To reduce this variability, we generate
several possible segmentations and choose the best one. First, we compute the variance
map of the image from the variance of a small window around each voxel. Then,
we compute several segmentations by incrementally dilating or eroding by one voxel
the tumor segmentation. We then compute for each such alternative segmentation the
mean variance of its boundary voxels using the variance map and choose the one with
the highest mean variance. This reduces the variability between different segmentations
of the same tumor in different scans and/or different observers.

3 Experimental Results

We have evaluated our method on a database of CT scans from 40 patients. The scans
were acquired on a 64-row CT scanner (Phillips Brilliance 64) and are of size
512 × 512 × 350–500 voxels, with spatial resolution of 0.6–1.0 × 0.6–1.0 × 0.7–3 mm,
with contrast agent administration. The cases were carefully chosen from the hospital
archive by the radiologist co-author to represent the variety of patient ages, conditions,
and pathologies. The mean time between the baseline and the follow-up scans is
4.9 months with Standard Deviation (std) of 2.4 months. The mean tumor volume is
43.8 ml with STD of 49.9 ml, and the mean volumetric change is 17.8 ml with STD of
29.7 ml. Of the 40 scans, 32 scans include tumors adhered to the lung wall and 8 have
isolated tumors. An expert radiologist produced ground-truth delineations of the tumors
in both the baseline and follow-up CT scans.

For the evaluation, we use each pair of scans twice: forward (from baseline to
follow-up) and backwards (from follow-up to baseline). Although the backwards
direction is not a real clinical case and is correlated to the pair in the forward direction,
it provides additional data and attests the robustness and accuracy of our method. We
present the results for the forward and backwards pairs separately to prevent bias.

We compare the results of our method with the ground-truth by computing the
standard DICE volumetric overlap error (VOE) and the average symmetric surface

Table 1. Experimental results of 40 forward cases and 40 backwards cases. VOE: Volume
Overlap Error, in %. ASSD: Average Symmetric Surface Distance in mm. Ours: our method;
FM: Fast Marching method.

Forward VOE Forward
ASSD

Backwards VOE Reversed
ASSD

Ours FM Ours FM Ours FM Ours FM

Mean 14.47 26.84 1.03 2.73 15.37 33.28 1.03 4.32
Std 4.14 7.63 0.55 1.56 6.79 16.54 0.62 3.57
Min 6.32 14.86 0.17 0.69 6.35 12.72 0.33 0.65
Max 23.25 44.20 2.46 8.54 38.37 82.10 3.07 16.09
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distance (ASSD). For the B-spline, we chose a grid spacing of 12 mm. For the
watershed region selection, we set the threshold to 10 %. We set the RANSAC iter-
ations bound to 10,000, with a threshold of 3 voxels. We use 9 segmentations for VOE
regularization with a 5 × 5 × 5 window around each voxel.

We compare the results of our method to the fast marching segmentation method
[14]. Fast marching requires a seed that serves as the center of the ground truth tumor
segmentation. For the propagation speed function, we chose the inverted (minus)
gradients map values. Since each iteration may yield a different segmentation, we stop
the propagation when 90 % of the ground true was segmented. Note that although we
use the fast marching method without a shape prior, we obtain similar or better results
than other state-of-the-art methods that use fast marching or level sets with shape prior.
For example, Awad et al. [10] report similar error measures to those we obtained with
the generic fast marching method. Note that we “help” the fast marching method by
using the ground truth for both seeding and for the termination criterion: without them,
the results of the fast marching algorithm would probably be worse.

Table 1 summarizes the results. Our method reduced the VOE and standard
deviation from 30 % (std = 13.3) for the level set method to 14.9 % (std = 5.6), an
improvement of 50.4 % (std 57.5 %). It reduced the ASSD and standard deviation from
3.5 mm (std = 2.88) for the level-set method to 1 mm (std = 0.59), an improvement of
71.4 % (std 79.5 %). The minimum and maximum values were significantly improved.
The minimum VOE was reduced from 14.86 % to 6.32 %, an improvement of 57 %.
The minimum ASSD was reduced from 0.69 mm to 0.17 mm, an improvement
of 75 %. The maximum VOE was reduced from 44.2 % to 23.25 %, an improvement of
47 %. The maximum ASSD was reduced from 8.54 mm to 2.46 mm, an improvement
of 71 %. When we manually selected the best stopping threshold for each case, the fast
marching method results were VOE of 26.2 % (std = 8.4) and ASSD of 1.4 mm
(std = 1.6).

To quantify the contribution of the segmentation step, we compute the accuracy of
the patient-specific prior, which can also be interpreted as the registration error in terms
of the Volume Overlap Error. The VOE and ASSD after step 1 are 35.8 % (std = 17.6)
and 4.3 mm (std = 6.6) respectively. This can be considered as a good registration
result, but cannot serve as the final segmentation result since it is more than twice the
final segmentation.

To quantify the contribution of the patient-specific prior, we left out the baseline
scan and tumor’s delineations and performed segmentation alone with the prior as a
sphere of radius 30 voxels centered at the center of mass of the tumor ground truth. The
segmentation failed in 8 out of 80 cases, and yielded VOE and ASSD errors of 18.6 %
(std = 7.3) and 1.27 mm (std = 0.9) respectively for the other 72 cases. We conclude
that both the patient-specific baseline prior and the local deformable baseline tumor
registration are key to achieving accuracy and robustness.

4 Conclusion

We have presented a new automatic lung tumor segmentation method for follow-up CT
studies. The inputs to the method are baseline CT scan of the lungs with delineation of
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the tumor, and a follow-up scan. A cascade of registration methods are used to
transform the delineation into the follow-up scan. A statistical method then uses this
prior to produce initial segmentation. A two-stage automatic segmentation leaks
detection and removal use geometrical models of the foreground and background. The
final step reduces the tumor boundaries variability caused by the partial volume effect
by variation analysis.

The novelty of our work is in the use of patient specific model for the segmentation
prior. This improves robustness by creating patient-specific statistical models of the
tumors and the background. This observation is supported by an experiment in which
the segmentation step was used with a weak sphere shape prior. The failure rate was
10 % instead of 0 % and the error rate was 25 % higher. Our registration method
includes an additional tumor-specific local deformable registration step which refines
the model prior. The segmentation leaks removal step relies on anatomic geometric
constraints on the tumor and the adjacent structures. This geometric knowledge cannot
be integrated in classic active contours methods, which may fail on large leaks. The
modeling of the adjacent structures as a parabolic surface simulates the way a human
would complete the missing boundary between the structures. The final step addresses
the delineation variability caused by the PVE. Our results on 40 pairs of CT scans, each
used forward and backwards, show a significant improvement over the fast marching
method and may provide relevant clinical measurements for lung tumors. We plan to
apply the proposed method to other organ segmentations from various imaging
modalities.
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Abstract. Cochlear implantation is a surgical procedure that can restore
the hearing capabilities to patients with severe or complete functional loss.
However, the level of restoration varies highly between subjects and
depends on patient-specific factors. This paper presents a software appli-
cation for planning cochlear implantation procedures that includes
patient-specific anatomy estimation using high resolution models, implant
optimization for patient-specific implant selection, simulation of mechan-
ical and electrical properties of the implant as well as clinical reporting.

Keywords: Cochlear implant · Patient specific · Simulation · Planning

1 Introduction

A Cochlear Implant (CI) is a sound-to-electrical transducer device that can
restore hearing to patients suffering hearing impairment, a condition affecting
over 24 % of the population worldwide [12]. Cochlear Implants consist of a speech
processor which performs filtering of the audio signal to improve the hearing of
specific frequencies, and a sub-cutaneous transductor and an Electrode Array
(EA) that is inserted into the cochlea and can stimulate the auditory nerve
fibers, bypassing the damaged hair cells (Fig. 1).

Cochlear implantation surgery requires to gain access to the inner ear, to
make the cochlea accessible, by drilling the temporal bone behind the ear. The
target structure is small and the access through the middle ear is close to delicate
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Fig. 1. (Left: Sub-cutaneal part of the cochlear implant with the transductor and
electrode array. Right: Segmentation of structures of the middle and inner ear: Cochlea
and semicircular canals (red) ossicles (purple), external auditory canal (blue), facial
nerve (yellow) and chorda timpany (orange) (Color figure online).

structures such as the ossicles, chorda tympani and facial nerve. Careful plan-
ning of the access path considering the risk areas, is the element that decides
if the electrode insertion will be performed through the membrane that cov-
ers the round window of the cochlea or through a hole drilled into the cochlea
(cochleostomy). In this complex scenario, a planning software can help the sur-
geon to estimate the risks of the intervention and choose the best approach.
Extreme care has to be taken during the insertion of the electrode array inside
the cochlea. The depth and angle of insertion has to be the adequate to pro-
vide improved hearing without jeopardizing residual hearing capabilities. This is
because the cochlear inner structures are delicate, and can be damaged easily by
an incorrect insertion procedure. It follows that the specific anatomical variabil-
ity of the cochlea of the patient plays an important role in the optimal insertion
angle and depth. But the traditional Computerized Tomography (CT) or Cone
Beam CT (CBCT) acquired prior to the surgery procedure cannot provide the
surgeon with sufficient shape information given that the resolution of the current
devices is not high enough to capture the small structures of the cochlea.

In this paper we present a software for planning electrode array insertion,
that enriches conventional imaging based planning with data coming from high
resolution models adapted to the patient specific anatomy. The rest of the paper
is organized as follows: Sect. 2 describes the overall infrastructure of the software.
Section 3 describes the modules and methods used by the application. Section 4
includes final remarks and future work.

2 Software Description

The outcome of the surgical procedure depends among other factors on the
correct position of the CI’s electrode array inside the cochlea and the depth of
the insertion. However, conventional preoperative CT does not provide enough
resolution to perform detailed analysis or simulations. High resolution models
are needed to better evaluate the outcome of the procedure. The application
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presented herein is designed to provide surgeons with insight of what happens
inside the cochlea when the electrode is inserted.

By combining high resolution models with patient-specific information, we
can use several analysis tools that would be difficult to use with the low resolu-
tion pre-clinical data. Out application closes the gap between the clinical plan-
ning stage and advanced high resolution tools applied to the electrode insertion
stage. This is achieved following a workflow (Fig. 2) of tasks that starts with the
patient’s pre-clinical images and ends with cochlea response simulations after
the implantation procedure.

Fig. 2. Workflow of the software. From left to right: segmented structures and high
resolution Statistical Shape Model as input. Patient-specific high resolution fitting.
Cochlea Characterization, virtual insertion, electrical simulation, and finally, surgery
and reporting.

The software runs on top of solid proven open source technologies as shown in
Fig. 3. It is designed to be agnostic of operating system so it is compatible with
the most popular operating systems. The Visualization Toolkit (VTK) is used as
main graphical library. Qt and the Common Toolkit (CTK) are the basis of the
User Interface. The communication with the clinical planning software [5] is per-
formed using XML files defining the CT/CBCT and the segmented structures,
as well as the planned path, safety volumes and any other patient relevant data.

3 Modular Structure

The software is comprised of different modules (Fig. 3) that provide individual
information: patient specific high resolution anatomy model, cochlear character-
ization, virtual electrode insertion, electrical simulation and reporting.

3.1 Patient Specific Anatomy Model

To improve visualization and allow a more detailed modeling, a Statistical Shape
Model (SSM) has been built using 17 microCT (µCT) samples of cadaveric tem-
poral bone [7] obtained with Scanco Medical AG microCT-100 at 24 micron
resolution. The inner ear structures were segmented semi-automatically using
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Fig. 3. Overview of the application structure, showing its modular structure as well as
its software elements.

ITK-SNAP [13] and Seg3D2 [2]. The mesh resulting of the segmentations were
post-processed using Markov Random Field Surface Reconstruction [10]. The
datasets were registered (using Elastix [8]) to a image chosen as a reference. The
transformation was applied to the reference segmentation so obtain the individ-
ual datasets with point correspondence. The SSM was built using the Statismo [9]
software package. An Active Shape Model (ASM) is used to fit the high resolu-
tion model to the pre-clinical CT. The software allows inspection and generation
of the SSM space through generation of specific samples (Fig. 4).

Fig. 4. Cochlear SSM loaded in the software. The mean shape of the SSM is displayed
in white. Patient specific models can be generated according to the low resolution
anatomy.
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3.2 Cochlear Characterization

Measuring the cochlear size and shape is the first step to a correct electrode
implant. The length of the cochlear duct, and the patient specific hearing impair-
ment are key information to select the best fitting EA. The length of the unrolled
cochlea has been extensively studied, and literature reports a 40 % variability
with cochlear length ranging from 25 to 36 mm [6]. The final maximum insertion
depth of the cochlear implant EA correlates with the diameter of the cochlea
in the basal turn plane measured from the round window to the distal lateral
wall [3]. This, in turn, enables the selection of the ideal electrode array from the
portfolio of electrode array types that are integrated in the application (Fig. 5).

Fig. 5. Using the measurement from the diameter of the cochlea at the basal turn,
the application estimates the unrolled length of the cochlea, and the different insertion
depths of the electrode array.

3.3 Virtual Insertion

Once we have the patient’s specific shape and a suitable electrode array has
been selected, we can simulate the expected activation patterns of the implant.
The last element needed for the simulation is to set the (virtual) position of the
electrode array inside of the scala tympani, the chamber of the cochlea where
the electrode is placed. An iterative method is used to compute the trajectory
of a free-fitting electrode array, given the insertion point and direction. At each
iteration the position and direction of the electrode tip with respect to the scala
tympani is evaluated, ensuring that the tip proceeds tangentially and its distance
from the wall is at least equal to the array radius. At each step the angle of impact
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to the wall and the margin between the cochlear implant array and the cochlear
walls are evaluated too, providing an indirect measure of pressure against the
wall. The iteration can stop prematurely if the electrode does not fit in the scala
tympani dimensions or if it is subjected to excessive bending (Fig. 6).

Fig. 6. Virtual insertion. Left: At each step of the insertion simulation, the tip position
respect to the wall is evaluated and the direction is adjusted in order to lie tangentially
to the wall. Right: Simulated electrode insertion. The final trajectory of the electrode
is tangential to the scala tympani wall.

3.4 Electrical Simulations

The placed electrode is the last required step to perform the electrode simu-
lations [1]. The simulation is performed using the multiphysics Finite Element
Method (FEM) open source solver software ELMER [11]. In its current stage,
the software can simulate bipolar simulation protocols (Fig. 7, left), where one
electrode emits electrical current and the other is set to ground. Simulations also
include modelizations of the electrical properties of nerve the fibers that start at
the organ of Corti in the basilar membrane and form the auditory nerve, using
the Generalized Schwarz-Eikhof-Frijns (GSEF) model [4] (Fig. 7, right).

3.5 Reporting

During the planning process, the operator has the option to save screenshots,
possibly annotated with relevant information. After the process, the commented
screenshots, along with the patient’s clinical data, a Portable Document Format
(PDF) report is generated for clinicians to review. The generation of the report
employs the open source LibreOffice engine and POD (Python Open Document)1

library to generate the report. For the generation of the reports with these
technologies, a series of document templates are created that include embedded
1 http://appyframework.org/pod.html.

http://appyframework.org/pod.html
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Fig. 7. Visualization of the simulation results. The basilar membrane has been rendered
semitransparent for ease of visualization. Left: bipolar stimulation protocol of first two
electrodes. Right: Nerve fiber stimulation after electrode activation pattern

Python code inserted into the document structure. The templates are post-
processed using a Python script that can execute the embedded Python code
and perform the adequate substitution of the variables. These variables include
patient information and user generated screenshots and captions (Fig. 8).

Fig. 8. Report generation interface.

4 Conclusions and Future Work

We have presented a software for the estimation of the patient specific inner ear
and intra-cochlear anatomy, the planning and simulation of both the electrode
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insertion procedure, and the outcome of the surgery to the hearing capabilities
for the patient. The software represents also a tool for the selection of the best
electrode array for the patient and the reporting of the surgical procedure, mak-
ing it a helping tool in the clinical practice. While the software is still evolving,
it represents a collaborative effort in integrating many medical imaging tools,
bringing the pre-surgery planning to a new level of information analysis.

Future work includes additional integration with more electrode models and
tools from the electrode manufacturer, improvements on the virtual insertion
phase using real-time simulation, and validation of the electrical simulations
using audiometric tests are some of the future tasks planned for the software.
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Abstract. Active shape models (ASMs) have been established as robust model-
based segmentation approaches and have been particularly relevant for objects ill-
defined in image data. For example, the automatic segmentation of the optic
pathway is almost impossible without shape models due to low contrast in MRI
and local anatomical variability. However, traditional ASM is not optimal for
complex or variable shapes segmentation due to its strong constraints. Herein, we
introduce a weighted partitioned active shape model to improve the shape flexi-
bility and robustness of ASMs and apply it to optic pathway (including the nerve,
chiasm, and tract) segmentation. The strong constraints of ASM are relaxed
by partitioning the whole shape into several subparts. In this way, the local shape
variability can be captured and the number of training data can be reduced.
Our novel weighted matching approach assigns a weight to each landmark point
according to its appearance confidence, thus deforming the shape to reliable
positions. In the application of optic pathway segmentation, the mean of root mean
squared symmetric surface distance is 0.59 mm, which is about one voxel size.

Keywords: Optic pathway segmentation � Active shape model � Partitioned
ASM � Weighted ASM � MRI

1 Introduction

Statistical shape models (SSMs) have been widely applied in medical image seg-
mentations and been established as robust model-based segmentation approaches [1].
Active shape models (ASMs) [2] are some of the best-known SSMs gathering the
information about mean shape and common variations through statistical training.
However, traditional ASMs are often over-constrained and insufficient training data can
lead to considerable errors [3]. In recent years, many efforts have been contributed to
increase shape model flexibility. De Bruijne et al. [4] proposed a flexible shape model
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for tubular structure segmentation by modeling axis and cross-sectional shape defor-
mation separately. This approach was demonstrated to increase the flexibility of the
shape model and work well in abdominal aortic aneurysms segmentation, but it
requires the image slices to be approximately perpendicular to the object axis which is
hard to ensure in many other applications. Zhao et al. [5] proposed a partitioned ASM
for brain MRI segmentation by automatically partitioning the faces of a mesh into a
group of tiles. They proved their model outperformed traditional ASM and Hierarchical
ASM [6] in some brain structure segmentations. However, their partitioning method
randomly selected a face in each tile growing may miss some anatomic structural
information and the partitioned results may vary on each run.

Morphological assessments of the optic pathway and its lesions are important in the
assessment, diagnosis and monitoring of many vision-threatening conditions. These
conditions may be demonstrated on imaging by a decrease in the size of the optic
nerve, chiasm and tracts. On the other hand, optic pathway gliomas (OPGs), the most
frequently identified brain tumor in children with neurofibromatosis type 1 (NF1) [7],
may increase the size of these structures and require an accurate quantitative mea-
surement of tumor growth to provide effective management and assessment of thera-
peutic response. However, traditional measurements of structures, like bi-dimensional
diameter product are often imprecise and irreproducible [8]. To allow accurate mor-
phological analysis, we propose an automatic method to segment the optic pathway.

Automatic segmentation of optic pathway is challenging because of the thin and
long structure and low contrast in MRI; little work has been previously proposed in this
area. Bekes et al. [9] proposed a geometrical model for eyeballs, lenses, and optic
nerves segmentation, but the reproducibility of optic nerves and chiasms may below
50 %. Noble [10] proposed a medial axis and deformable model with level-set method
to segment optic nerves and chiasm using MR and CT images. They reported good
performance on optic nerves and chiasm, but they did not include optic tracts, which
are the most challenging to segment.

The optic pathway has globally well-defined shape, but locally variable. To address
its automatic segmentation, we introduce a weighted partitioned active shape model
(WP-ASM). Our main contributions are: (1) proposal of a new hierarchical partitioned
ASM; (2) definition of an appearance-based weight matrix with application of weighted
matching in the partitioned model framework; (3) adaptation of an automatic landmark
clustering in the use of partitioned ASM; (4) combination of intensity and tubular
structure features in the appearance model; (5) application of our WP-ASM to whole
optic pathway (including nerves, chiasm and tracts) segmentation in T1 weighted MRI.
The partitioned model provides flexible shape modeling and the weighted matching
method improves the robustness of deformable shapes. Our methodology is general and
its robustness to the segmentation of the optic pathway shows its applicability to the
analysis of objects with complex and variable shapes in image data.

2 Methods

In traditional ASMs [2], landmark points are used to describe object shape and shape
variations using point distribution model (PDM). The landmark points on each training
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example are represented by a shape vector and aligned to a common coordinate system.
Principle Component Analysis (PCA) is applied to the aligned shape vectors to gen-
erate the shape model.

x ¼ �xþ Ub ð1Þ

where x represents an aligned training shape vector, �x is the mean shape vector, Φ
consists eigenvectors corresponding to selected largest eigenvalues, and b is a vector of
shape parameters for each mode. For a given shape vector x, the shape parameter vector
b is calculated as

b ¼ U> x� �xð Þ ð2Þ

To constrain the generated shape similar to the learning shape during training, b is
limited to a certain interval.

2.1 Partitioned ASM

To capture local variations during shape learning, we automatically partition the whole
surface into subparts based on a clustering process, which captures the anatomical
variability of single shape via principal component or factor analysis [11]. Here we use
a more general approach based on the agglomerative hierarchical clustering method
presented by Ward [12]. In this automatic partition method, the user can define the
number of partitions. Optic pathway is a tubular structure and it is desirable to maintain
this tubular property in subparts. We performed experiments for different numbers of
partitions and chose the configuration producing almost small tube-like structures.
Experimentally, we chose 16 partitions.

To ensure that adjacent partitions are connected during model fitting, we introduce
overlapping areas between partitions. After automatic partition, the landmark points are
divided into disconnect partitions (i.e., one landmark point can only be in one parti-
tion). Thus, some faces of the whole surface are removed. To get overlapping
partitions, we add landmark points connected by these removed faces to each partition.
Then some points, which are referred to as joint points, will appear in more than one
partition. During model fitting, we calculate the shape parameters for each partition
separately, and then the shape parameters of the joint points are computed as the mean
shape parameters from their partitions. By introducing joint points, the connections of
partitions are maintained. The results of 16 overlapping partitions are shown in Fig. 1
with the first mode of variation for five example partitions.

In traditional ASM, after applying PCA, each training example is represented by
the shape parameters in a hyperspace defined by eigenvectors. In partitioned ASM, if
we combine the partitioned H hyperspaces to one hyperspace, each training example
can be represented by a curve in the new hyperspace as proposed by Zhao [5]. Zhao
el al. aligned the test model curve to its closest training curve during model fitting to
keep the shape plausible. However, it is possible that the curve of a plausible shape is
not similar to any training curve. To relax this assumption, we propose a hierarchical
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shape model by fitting a second level PCA to the curve in the new hyperspace.
Compared to Eq. (1), we have

xh ¼ xh þ Uhbh; ð3Þ

z ¼ �zþ Pb; ð4Þ

where h indicates the index of the partition, xh is a shape vector for partition h,
z ¼ b1 b2 � � � bH½ �> is a vector combining all shape parameters representing the
corresponding curve in the hyperspace, and P consists eigenvectors of the curve in the
hyperspace. The value of b can be constrained to ensure that the deformable shape will
not be far from the training shape. During model fitting, the value of the landmark
position xh is updated in every iteration using Eq. (3) to exclude noise, while the value
of z is updated only if it falls out of the constrained range.

2.2 Appearance Model

The optic pathway is a thin and long structure surrounded by a variety of types of tissues
with variable appearance. When the optic pathway is closed to brain structures the
contrast to noise level is low and makes the segmentation difficult. Therefore, the
traditional local appearance model using normalized derivatives along a profile [13] is
not robust. To adapt the local appearance model to thin structure segmentation, we
define a sub-voxel step size between voxels in a profile. We apply a three-class fuzzy
c-means filter and use the second class probability as the tissue intensity probability to
distinguish the optic pathway from the surrounding darker or brighter structures.
Besides, the tubular structure of the optic pathway is enhanced using the spherical flux
[14] as another feature in the appearance model.

Fig. 1. Automatic Partition Results. (A) is the colored surface of the optic pathway showing the
results of the automatic 16 partitions where different colors represent different partitions. (B)
shows the first mode of variation for five partitions color-matched with (A). The first two columns
are two partitions in left and right optic nerves, the middle column is a partition in optic chiasm,
and the last two columns are two partitions in left and right optic tracts (Colour figure online).
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Finally, the normalized derivatives, the tissue intensity probabilities, and the tubular
structure probabilities are used together to train the local structure for each landmark
point. For each landmark profile, the interpolations of these three feature images are put
in a single vector, and the mean value and covariance of this vector are calculated
across training examples. This combination is designed to increase the robustness of
the appearance model to variable image environment. The optimal position for each
landmark point is computed by minimizing the Mahalanobis distance [13].

2.3 Weighted Shape Matching

The optic pathway can be easily distinguished from surrounding tissues in some places
(in fatty areas) while harder in others (inside the gray matter). Thus, in finding the best
nearby point based on the appearance cost function, we have different confidence levels
for different landmark points. Using this confidence value, we can estimate weighted
shape parameters that attract the points to reliable positions. As proposed in [15], the
weighted shape parameter for each partition is computed as

bh ¼ U>
h WhUh

� ��1
U>

h Wh xh � xhð Þ; ð5Þ

where Wh is a diagonal weight matrix for partition h with corresponding weight value
for each landmark.

We assume that if the variance of the appearance profile is low, the confidence we
have on this landmark point is high. Thus, the weight of a landmark is proportional to
the inverse value of the profile variance. We define the weight for landmark point i as

wi ¼ 1
1þ tr Sið Þð Þ ; ð6Þ

where Si is the covariance matrix of the appearance model for landmark point i, and
tr(Si) represents the trace of the matrix, which is the total variance of the profile.

3 Experiments and Results

Seventeen MRIs of children with healthy optic pathways were acquired for this study.
The children were aged from 1 year old to 17 years old. The MRIs were T1 weighted
cube with contrast enhancement (Gd) with resolutions from 0.39 × 0.60 × 0.39 mm3 to
0.47 × 0.60 × 0.47 mm3. The optic pathways in MR images were manually segmented by
either an expert neuro-radiologist or an expert neuro-ophthalmologist for gold standard.

One dataset was selected as the reference set, the left datasets were divided into
training set and testing set; we used a leave-one-out cross-validation to evaluate our
model performance. During training, all the training images were registered to the
reference set using affine registration implemented in NiftyReg [16]. The twelve reg-
istration parameters were first optimized for the whole brain, and then further optimized
over the region of interest containing the optic pathway, which was manually
identified.
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After registration, the surfaces for each training example were calculated using
methods proposed in [17]. The landmark points were defined by non-linearly regis-
tering the reference surface to every other training surface using point set registration
[18] and IRTK toolbox [19]. The shape model was learned for each partition after
removing the translations, rotations and scales of the whole optic pathway. The
appearance model for each landmark was learned by sampling along the landmark
normal direction 5 voxels on each side with 0.25 voxel distance. The normalized
derivative, the tissue intensity probability, and the tubular structure probability from the
spherical flux response were used together to learn appearance model, which resulted in
33 elements in each appearance vector.

During testing, the test set was registered to the reference set using affine regis-
tration. Then the WP-ASM was performed on the affine registered image. The mean
shape of the training set was used as the initial surface for ASM segmentation. The
landmark points were optimized from a rough to fine image scale (0.25, 0.5 and 1).

To evaluate the segmentation performance, the Dice similarity coefficient (DSC),
the symmetric mean surface distance (MSD), the symmetric root mean squared points-
to-surface error (RMSE), and the relative volume error (RVE) were calculated for each
leave-one-out test. The symmetric MSD and RMSE were computed as the mean of
both directions of distance from the expert labels to the estimated segmentations and
vice versa. The relative volume error was computed as the volume error proportional to
the volume of the ground truth. Quantitative results are shown in Fig. 2 and Table 1.
Qualitative results of the worst case (maximum RMSE) and the best case (minimum
RMSE) are displayed in Fig. 3. The results of our proposed method were compared
with traditional ASM. The traditional ASM used the whole shape for shape model
training and the normalized derivative for appearance model while other parameters
were the same. The difference between our WP-ASM and traditional ASM were tested
using Wilcoxon signed rank test. WP-ASM performed significantly better than ASM
on all metrics. On average, WP-ASM estimated the size of the long and thin optic
pathway with 10 % RVE versus 77 % RVE for ASM.

4 Discussion

ASMs struggle to segment complex, irregular objects in image data. In this paper, we
introduced a new WP-ASM approach and applied it to the segmentation of the optic

Fig. 2. Quantitative results comparing our proposed weighted partitioned ASM (WP-ASM) with
original ASM.
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pathway (including the nerve, chiasm, and tract). The partitioned shape model provides
more flexibility for shape evolution, and the weighted matching method makes the
deformable shape more reliable. We used an automatic partitioning of the model based
on clustering, and overlaying areas between partitions to ensure connectivity. An
appearance model adaptable to variable image environment was also embedded to
increase the robustness of the segmentation.

The general segmentation method that we proposed was applied to the automatic
optic pathway segmentation in T1 MRI image. The mean of the RMSE across 16 test
sets was 0.59 mm, which is about 1 voxel size. The DSC is smaller than the method
proposed in [10], but their method required matched CT and MRI images, which is not
part of the pediatric clinical protocol and involves radiation. Besides, we segmented the
whole optic pathway (including the tract) while other segmentation approaches only
work on optic nerves and chiasm segmentation.

Since the optic pathway is a very thin structure the average DSC is unsurprisingly
not high. From Fig. 2 we can see that the hardest part of the optic pathway segmen-
tation is the optic tract. To more accurately evaluate our results we will compare the
performance to inter-rater similarity in future work. At this stage, we do not have data
for inter-rater evaluation, but this will be address in the future.

Table 1. Sumary of segmentation results.

DSC RMSE (mm) MSD (mm) RVE

ASM 0.31 ± 0.19 3.66 ± 2.89 2.82 ± 2.35 0.77 ± 0.91
WP-ASM 0.73 ± 0.04 0.59 ± 0.17 0.44 ± 0.14 0.10 ± 0.10
Wilcoxon test p = 4.4e−4 p = 4.4e−4 p = 4.4e−4 p = 0.001

Fig. 3. Automatic Segmentation Results. The first row shows the worst case of automatic
segmentation results (RMSE = 1.14 mm) and the second row shows the best case
(RMSE = 0.43 mm). In green we show the manual label and in red is the automatic segmentation.
The left column shows and axial image of the optic nerves, the middle column shows the optic
tracts, and the right column displays the overlaid manual and automatic segmentation surfaces
(Colour figure online).
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Our automatic segmentation outperforms most previously presented work for
localizing these structures [9]. An additional advantage is that our WP-ASM lowers the
degrees of freedom in shape training and requires less training examples to build an
accurate shape model. Automated segmentation of the optic pathways using these
methods could serve a useful function in the more precise evaluation of conditions
affecting these structures like optic nerve glioma. Because of the local flexibility, our
proposed WP-ASM may be adapted to segment optic path gliomas and other complex
and irregular structures in image data.
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Abstract. In recent years, there have been many Multiple Sclerosis
(MS) studies using longitudinal MR images to study and characterize
the MS lesion patterns. The intensity of similar anatomical tissues in
MR images is often different because of the variability of the acquisition
process and different scanners. This paper proposes a novel methodol-
ogy for a longitudinal lesion analysis based on intensity standardization
to minimize the inter-scan intensity difference. The intensity normaliza-
tion maps parameters obtained using a robust Gaussian Mixture Model
(GMM) estimation not affected by the presence of MS lesions. Experi-
mental results demonstrate that our technique accurately performs the
task of intensity standardization. We show consequently how the same
technique can improve the results of longitudinal MS lesion detection.

1 Introduction

Multiple Sclerosis (MS) is an acquired inflammatory, demyelinating disease
which causes disabilities in young adults and it is very common in the northern
hemisphere. Quantitative analysis of longitudinal Magnetic Resonance Images
(MRI) of subject taken at different time points provides a time varying analysis
of the brain tissues which may lead to the discovery of new biomarkers of disease
evolution. In MS, White Matter (WM) lesions are also present in addition to
healthy brain tissues. Lesions can remain stationary, change volume, or disappear
in later time points depending upon the state of MS. Due to protocol variations
in the scanners, following the evolution of tissue intensities in a patient, e.g.
changing appearance of lesions, makes quantitative evaluation of lesions diffi-
cult. In order to alleviate this problem, intensity normalization is necessary.

Histogram matching is a widely used technique in intensity standardization.
In their seminal work, Nyul et al. [7] proposed landmark based methods. It
consists of matching the input image histogram landmarks onto standard his-
togram landmarks, obtained in a training phase, performing a linear interpo-
lation of intensities between the positions. The technique in [7] uses percentile
landmarks, which is simple yet powerful. Jager et al. [5] extended this principle to
two or more jointly used MRI sequences (e.g., T1-w and T2-w), matching mul-
tidimensional joint histograms with nonlinear registration. With this method,
no prior registration of the reference and normalized MR images is required.
c© Springer International Publishing Switzerland 2014
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An algorithm proposed by Wang et al. [12] expands or shrinks a windowed part
of the input image histogram with a multiplicative factor, found by minimizing
the bin-count difference between the source and moving images histograms. The
window is used to include only voxels of interest and exclude the background.
This makes the technique linear in the intensity range of interest. Other tech-
niques use parametric models, such as the technique proposed by Hellier [4].
It models histogram of a reference image and of the standardized image with
two GMMs and aligns their means through a polynomial correction function.
Weisenfeld et.al. [13] have proposed to estimate a multiplicative correction field
that alters the intensity statistics of an image or set of images to best match
those of a model. In that paper, the Kullback-Leibler divergence between the
source and moving images is minimized iteratively to estimate the parameters
of a model, thus histograms are equalized. All these methods may be affected
by the presence of white matter lesions.

We propose a longitudinal intensity normalization algorithm for multichannel
MRI in the presence of MS lesions, which provides consistent and reliable lon-
gitudinal detections. The tissue intensities from multichannel MRI are modeled
with parametric transform using a robust GMM estimation based on γ diver-
gence, thereby keeping the lesions unaffected. The proposed technique is built
on ideas similar to Hellier [4] but taking into account the presence of pathologi-
cal tissues in the intensity transformation function. It provides a technique that
(1) uses tissue-specific intensity information by modeling them using a robust
GMM; (2) provides a consistent intensity normalization between longitudinal
images. Subsequently, we demonstrate its crucial role for further lesion analysis.

This paper is organized as follows. The modeling and parameter estimation
of multi-sequence MRI with γ divergence followed by intensity normalization are
reviewed in Sect. 2. The details of experiments and their results on longitudinal
MS patients are discussed in Sect. 3.

2 Methodology

Given two MR images of a single MS patient at time instant t1 and t2, we seek
to estimate a correction factor such that corresponding anatomical tissues adopt
the same intensity profile. We model the image intensities of a healthy brain with
a 3-class GMM, where each Gaussian represents one of the brain tissues White
Matter (WM), Gray Matter(GM) and Cerebrospinal fluid (CSF). We consider
the m MR sequences as a multidimensional image with n voxels. Each voxel i is
represented as xi = [xi1...xim]. The probability of intensity xi is calculated as
follows:

f(xi|θ) =
3∑

k=1

πkN (μk, Σk) (1)

where the mean μk and covariance Σk define the parameters N (μk, Σk) of each
Gaussian of the model along with their mixing proportions πk merged into
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parameter θ. If the proportions were known, θ could be estimated through the
Maximum Likelihood Estimator (MLE):

θ̂ = argmax
θ

L(θ) = argmax
θ

n∏

i=1

f(xi|θ) (2)

Where xi are considered as i.i.d. samples. However, as πk are unknown, an Expec-
tation Maximization (EM) algorithm [3] is used to estimate the parameters.

2.1 γ-loss Function for the Normal Distribution

The parameter estimation with classic MLE for GMM can deviate from its true
estimation in presence of outliers. In MS patients, such outliers may be of crucial
importance as they may denote appearing or disappearing lesions. Notsu et al. [6]
proposed a modification of the MLE in order to make it more robust to outliers.
The basic idea is to maximize (2) in the form of γ divergence. We consider the
γ-loss function for the Normal distribution with mean vector μ and covariance
matrix Σ.

Lγ(μ,Σ) =
∣∣Σ− γ

2(1+γ)
∣∣

n∑

i=1

exp
( − γ

2
(xi − μ)T Σ−1(xi − μ)

)
(3)

Where |.| indicates the determinant. The bounded influence function of an esti-
mator is an indicator of robustness to outliers. The influence function for GMM
with γ loss function is bounded whereas the one for regular GMM is unbounded.
As γ grows larger, bounds become tighter. For a sufficiently large γ, (γ ≥ 0.1),
the estimating equation has little impact from outliers contaminated in the data
set. Equation (3) can be casted to yield an EM style algorithm as follows.

Expectation Step. In the case of a GMM, the latent variables are the point-to-
cluster assignments ki, i = 1, ..., n, one for each of n data points. The auxiliary
distribution q(ki|xi) = qik is a matrix with n × K entries. Each row of qi can be
thought of as a vector of soft assignments of the data points xi to each of the
Gaussian modes.

qik =
πkexp

( − γ
2 (xi − μk)T Σ−1

k (xi − μk)
)

K∑
l=1

πl exp
( − γ

2 (xi − μl)T Σ−1
l (xi − μl)

) (4)

Maximization Step. The maximization step estimates the parameters of the
Gaussian mixture components and the mixing proportions πk, given the auxiliary
distribution on the point-to-cluster assignments computed in the expectation
step. The mean μk of a Gaussian mode is obtained as the mean of the data
points assigned to it (accounting for the strength of the soft assignments). The
other quantities are obtained in a similar manner, yielding to:
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μk =
∑n

i=1 qikxi∑n
i=1 qik

(5)

Σk = (1 + γ)
∑n

i=1 qik(xi − μk)(xi − μk)T

∑n
i=1 qik

(6)

πk =
∑n

i=1 qik∑n
i=1

∑K
l=1 qil

(7)

2.2 Selection of Parameter γ

The estimation of power index γ plays a critical role in our approach, since γ
affects the estimated parameters in presence of outliers. Notsu et al. [6] suggested
the selection of γ as a model selection problem based on Akaike information
criterion (AIC). Let K be the number of clusters, p be the total numbers of
parameters of a model and (μk, Σk), k = 1, ..,K be the means and the covariance
matrices of the clusters respectively. From (1), the AIC is defined as follows:

AICγ = −2
n∑

i=1

log fγ(xi|θ) + 2
{

K
p(p + 3)

2
+ K − 1

}
(8)

The value of γ which minimizes AIC is used as the optimal γ. For various values
of γ, Eq. (8) is evaluated in cross validation manner and the γ which results in
minimum value is chosen for the experiment.

2.3 Intensity Correction

We obtain the means and covariances of tissues for the source and target images
using the procedure mentioned above. We chose a linear correction function such
that g(x) = Σiβixi. The coefficients βi are estimated to minimize the following
cost function: Σl=n

l=1 (g(μsource,k) − μtarget,k)2. This function can be solved by
linear regression. Using the results of the linear regression, the intensity profiles
of the two images are normalized by mapping the intensity of the source image
to the target image. The resulting correction function is smooth and interpolates
the intensity correction.

3 Experiments and Results

3.1 Dataset and Preprocessing

Whole-brain MR images were acquired on 18 MS patients. T1-w MPRAGE, T2-
w and FLAIR modalities were chosen for the experiment. Expert annotations
of lesions were carried out by an expert radiologist on all MS patients. The
volume size for T1-w MPRAGE and FLAIR is 256 × 256 × 160 and voxel size
is 1 × 1 × 1mm3. For T2-w, the volume size is 256 × 256 × 44 and voxel size
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is 1 × 1 × 3mm3. All imaging experiments for this study were performed on
a 3T Siemens Verio (VB17) scanner with a 32-channel head coil. MR images
from each patient are de-noised [2], bias field corrected [11] and registered with
respect to T1-MPRAGE volume [1,9]. All the images are processed to extract
intra-cranial region using BET (Brain Extraction Tool) [10].

We show the effect of longitudinal intensity normalization followed by detec-
tion on both normal tissues and lesions for 18 MS subjects, having 4 time-points
each, approximately separated by a period of three to six months. The first
time point is considered as the reference point to which the subsequent time
points (moving ones) are aligned using intensity normalization. First, the para-
meters of reference and moving images are estimated using γ likelihood estima-
tor as described in Sect. 2.1. Secondly, voxels of moving image are aligned with
respect to reference image using the procedure in Sect. 2.3. Each patient and
each time point t = 2, ..., tn, are rigidly registered to the T1-w MPRAGE of first
time instance. The obtained difference image is processed further to obtain a soft
detection by using heuristic thresholding iteratively (1) by Otsu’s threshold [8];
(2) erosion of image by one voxel. The detections from this difference image are
compared with difference image of ground truth at corresponding time points.

3.2 Intensity Correction Evaluation

To evaluate the quality of intensity normalization, we compare the histograms
of reference, moving and intensity normalized moving image using chi-squared
distance given by χ2

x,y = 1
2

∑ (xi−yi)
2

xi+yi
. Lower values of this distance indicate bet-

ter alignment of intensities. Table 1 reports the chi-squared distance for various
imaging sequences. Different methods are compared against the proposed one.
We report the mean χ2 distance for our method as 0.18(±0.045), 0.28(±0.037)
0.32(±0.038) for T1-w MPRAGE, T2-w and FLAIR respectively, outperforming
other state of the art methods.

Table 1. Chi-squared distance analysis for histogram matching

Before Normalization After Normalization

Modality Proposed Hellier Nyul

T1-w 0.56 (±0.03) 0.18 (±0.045) 0.35 (±0.029) 0.3 (±0.019)

T2-w 0.62 (±0.029) 0.28 (±0.037) 0.414 (±0.03) 0.315 (±0.042)

FLAIR 0.56 (±0.027) 0.32 (±0.038) 0.45 (±0.051) 0.39 (±0.045)

Figure 1 shows the intensity correction results for T1-w MPRAGE, T2-w
and FLAIR images. Three time points and their corresponding MR modalities
of a subject are shown before and after normalization. Each row represents the
imaging modality and each column depicts the first time point, second time
point, the absolute difference image without and with intensity normalization
respectively. This figure demonstrates visually the ability of our approach to
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Fig. 1. Intensity correction

normalize intensities. As seen from the difference image of the first and second
time points, intensity alignment reduces significantly the difference in intensities
without affecting the lesion appearance. It will be easier to automatically detect
evolving lesions on the images in the last column.

3.3 Longitudinal Lesion Detection

To show the quantitative improvement for identification of lesions, we report
in Table 2 the precision (Positive Predicted Value) and recall (Sensitivity) of
lesion detection averaged across the 18 patients for various overlap thresholds.
The lesion is said to be detected if Rc∩RGT

RGT
≥ ϕ where Rc, RGT and ϕ are

respectively the candidate region in the image, the ground truth and a threshold.
Table 2 reports values of precision and recall for various thresholds. As from the
figures, our approach outperforms other methods. We have a very high recall of
0.90 at ϕ = 0.2 and 0.82 even at ϕ = 0.4.
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Table 2. Performance analysis for lesion detection.

ϕ = 0.2 ϕ = 0.3 ϕ = 0.4

Method Precision Recall Precision Recall Precision Recall

Nyul 0.63±0.01 0.60±0.02 0.61±0.04 0.67±0.02 0.58±0.03 0.64±0.03
Proposed 0.73±0.04 0.90±0.05 0.68±0.03 0.85±0.04 0.63±0.03 0.82±0.01

Hellier 0.65±0.02 0.74±0.03 0.64±0.06 0.68±0.04 0.62±0.03 0.59±0.05

Figure 2 depicts the detected lesions for a representative image. The green
label shows new lesions at t3, orange shows stationary lesions which are also a
part of t1; blue shows false positive detections. We are able to accurately detect
appearing and disappearing lesions thanks to the proposed method.

Fig. 2. Lesion detection examples. For top and bottom, from left to right: Slice of
FLAIR for t0, t3, |t0 − t3(Normalized)|, ground truth and lesions detected by our algo-
rithm (Color figure online).



Longitudinal Intensity Normalization in Multiple Sclerosis Patients 125

4 Discussion and Conclusion

We proposed a new intensity normalization technique based on a robust GMM
estimation with γ divergence. The efficacy of our method was evaluated through
histogram matching distance method and longitudinal lesion detection.
Compared to Nyul and Hellier method, our methodology is more suitable for
longitudinal MS lesion analysis because of its ability to preserve the intensity
variations caused by pathological changes. Our system relies heavily on a robust
parametric modeling of tissue intensities based on γ divergence. The resulting
system is both efficient and accurate, outperforming the state of the art methods.
This performance suggests that it can provide valuable assistance in detecting
the longitudinal MS lesions in clinical routine with high reliability. Our models
are already capable of detecting highly variable lesion patterns, but we would
like to move towards richer models. The framework described here allows for
exploration of additional MR sequences with or without contrast agents. For
example, one can consider infusing T1-w Gadolinium and DTI.
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Abstract. Thoracic radiotherapy planning is increasingly dependent on 4D
computed tomography (CT), which acquires axial images in multiple respirator
phases and reconstructs them into 3D CT images based on respiratory signals.
However, large reconstruction errors or artifacts may be observed due to poor
reproducibility of breathing cycles. In this paper, 4D-CT reconstruction of
helical mode CT scanning is achieved by incorporating spatial continuity and
longitudinal smoothness of anatomical structures, such as chest surface, bone,
vessel, and lung fields. The objective is to optimize the assignment of each axial
image into different respiratory phases so that the artifacts or spatial disconti-
nuity of anatomical structures are minimized, and the anatomical structures
maintain their longitudinal consistency. In experiments, we compared our results
visually and quantitatively with the current surrogate-based, image-matching-
based, and chest surface-constrained methods. The results showed that the
proposed algorithm yields better helical mode 4D-CT than other proposed
methods.

Keywords: 4D-CT reconstruction � Respiratory motion � Registration �
Bayesian model

1 Introduction

Radiotherapy is a traditional approach to treat lung cancer, and 4D-CT plays an important
role on defining precise tumor margins. During planning, the clinical target volume (CTV)
and planning target volume (PTV) are defined form 4D-CT to guarantee that PTV covers
CTV, and normal tissues near the target are minimally damaged by the radiation dose.
During radiotherapy, the planning 4D-CT images, the segmentation data, and radiation
planning data are transformed automatically to the patient’s onsite CT for treatment. 4D-
CT acquisition obtains a large number of axial images in multiple respiratory phases and
reconstructs a series of 3D-CT images to provide dynamic information of the lung and
tumor. The efficient way to capture 4D-CT is either using cine mode or helical mode. In
the cine mode, the axial images of different breathing cycles are captured at each table
position, while the table is moving slowly and continuously when the scanning is being
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performed in helical mode. Precisely reconstructing 4D-CT images is the key step to make
sure that there is no topology artifacts both spatially and temporally in the image series.

In the literature, two categories of reconstruction methods have been studied. The
first is using respiratory sensors, such as surrogate signals, spirometer, optical tracking,
to record detailed breathing patterns [1]. All axial images with same breathing phase
are sorted to reconstruct the 3D-CT images. The drawback is that some anatomical
structures may be discontinued in the images [2–4] because the recorded signals are not
always exactly periodical, and some axial images may be mis-grouped. The second
category of methods tries to correct the reconstruction using image computing
approaches, most of which are for 4D-CT reconstruction in the cine mode [5–8]. They
could cause discontinuity of reconstructed images in helical mode because the different
table position of each axial image is not considered. Recently, a Bayesian framework
was proposed to reconstruct the helical 4D-CT using spatial and temporal smoothness
constraints of the chest surfaces [9]. But the internal anatomical structures are not
considered. In this paper, we extend the method [9] by considering the internal ana-
tomical structures. The basic hypothesis is that anatomical structures such as lung field,
vessels, and bones should have minimal spatial artifacts and have maximal temporal
topology consistency.

The proposed Bayesian framework preserves the anatomical structures at each
breathing phase by applying spatial continuity and temporal smoothness constraints,
including chest surface, vessels, lung surface, and bones. An energy function is opti-
mized by iteratively rearranging the axial images and optimizing the ideal anatomical
structure constraints. After sorting, a non-uniform cubic B-Spline interpolation [10] is
used for generating the final reconstructed images to deal with the unequal inter-slice
distances.

In experiments, forty lung cancer patients undergoing radiotherapy planning were
used to validate the proposed algorithm. The reconstructed results were compared with:
(1) the external surrogate-based method, the default output from the Philips Pinnacle;
(2) the slice-by-slice image matching-based method [7]; (3) the chest surface-con-
strained reconstruction [9]. For visual comparison, the final reconstructed images were
assessed by radiologists to count the mis-placed slices (artifacts). For quantitative
comparison, the normalized spatial Boundary Shift Integral (BSI) [11] of anatomical
structures from all the results was compared. Both results illustrated that our method
outperformed other three methods, i.e., fewer artifacts form visual inspection, espe-
cially at the region close to the diaphragm, and less sudden bumps of anatomical
structures.

2 Method

When the axial images are captured in helical mode, the table of CT machine is set to
move under a slow constant speed. This speed is determined by: (1) the setting of slice
thickness, (2) respiratory cycle frequency, and (3) the number of simultaneously
captured slices if the CT scanner has multiple row detectors. The goal is to cover the
entire breathing cycle within a small table movement range. A synchronized surrogate
signal is recorded during the scan. Using this signal, the axial images from each table
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position can be sorted to different breathing phases. The initial 3D images are formed
from the sorted axial images. However, as mentioned previously, there are artifacts for
the reconstructed images. Our proposed algorithm assesses such image assignment and
corrects the mis-grouped ones based on the anatomical structure constraints. Given the
current reconstructed serial 3D images, structures like lung field surface, chest surface,
lung vessels, and bones are segmented, and longitudinal correspondences are calculated
first by using deformable image registration. Then, spatial continuity and temporal
smoothness of these anatomical structures will be applied in the optimization procedure
to re-assess the assignment of each axial image.

Denoting the initial reconstructed serial images as D ¼ D1;D2; . . .;DKf g, we can
segment each image and obtain the serial segmented images S ¼ S1; S2; . . .; SKf g. Each
segmented image consists of a lung field surface L, a chest surface C, vessel structures
V , and bone structure B, and Si ¼ Li;Ci;Vi;Bif g. K is the number of breathing phases.
The objective for reconstruction is to assess the assignment of each axial image to form
a new image sequence I ¼ I1; I2; . . .; IKf g, and at the same time, the spatial continuity
and temporal respiratory smoothness of the segmentation is guaranteed. To implement
this idea, we use the formulation in [9] to jointly estimate the new serial images and a
new ideal segmentation, denoted as Ri ¼ L0i;C

0
i;V

0
i ;B
0
i

� �
; i ¼ 1; 2; . . .K. The ideal

segmentation represents how the anatomical structures should be. Using the Bayesian
framework, I and R can be estimated by maximizing the following posteriori
probability,

P I; RjDð Þ ¼ P DjIð ÞP I; Rð Þ=P Dð Þ ¼ P DjIð ÞP IjRð ÞP Rð Þ; ð1Þ

where the initial images D is known, so P Dð Þ ¼ 1, and it is assumed that the ideal
segmentation is independent form D. Using the Gibbs distribution for estimating the
probabilities, we can use the following energy function to solve I and R:

E I;Rð Þ ¼ E DjIð Þ þ aE IjRð Þ þ bEðRÞ: ð2Þ

a and b are the weighting factors. E DjIð Þ denotes the degree of matching between the
new serial image I and the initial data D, and it can be calculated by the normalized
cross correlation-based similarity. E IjRð Þ stands for the degree of matching between I
and the ideal segmentation of anatomical structures R. Notice that S is the segmentation
of I, so E IjRð Þ is defined by a sum of distance between S and R,

E IjRð Þ ¼ dist S;Rð Þ ¼
X

i¼1;...;K d Li; L
0
i

� �
þ d Ci;C

0
i

� �
þ d Vi;V

0
i

� �
þ d Bi;B

0
i

� �
;

ð3Þ

where dðÞ is the distance between the segmentations calculated according to [12]. For
segmentation we use adaptive region growing extract the chest surfaces and bones, and
used the segmentation method [13] to extract lung field surfaces and lung vessels.

The last term of Eq. (2), EðRÞ, represents the prior shape constraints of anatomical
structures. Here, the spatial continuity and temporal smoothness constraints on R is
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applied. For spatial constraints, we only consider the continuity in z-direction because
no in-plane axial image is altered. For temporal constraints, we make sure the temporal
deformations applied on the segmented structures are smooth for neighboring respi-
ratory phases. Thus, EðRÞ is composed by two parts:

E Rð Þ ¼ 1
K

XK

k¼1
1
Xj j

X
x

@L
0
k xð Þ
@z

� �2

þ
X

x

@C
0
k xð Þ
@z

 !2

þ
X

x

@V
0
k xð Þ
@z
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þ
X

x

@B
0
k xð Þ
@z
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2
4

3
5

þ k
1

K� 1

XK�1
k¼1

1
Xj j
X

x
fkþ1ðxþ fkðxÞÞ � fk xð Þ2�� ��;

ð4Þ

where k is the tradeoff between spatial and temporal constraints, and X is the point set
of R in phase k. The temporal deformation fields fk; k ¼ 1; . . .;K � 1 are calculated by
surface registration of R.

To minimize energy function in Eq. (2), we can alternatively calculate I and R.
Given a series N axial images, we first sort them into K (typically 10) breathing phases
according to collected surrogate signals, resulting image series D. Initially, we set
I ¼ D, and the minimization can be iteratively performed by (1) optimizing the ideal
anatomical structures R ¼ fL0 ;C0 ;V0 ;B0 g by fixing I, and (2) optimizing the image
sequences I by fixing R. First, we segment image series I to get the segmentation result
S, and R is initialized as S. Then, we apply registration to obtain the deformations
fk; k ¼ 1; . . .;K � 1. Finally, the ideal segmentation R can be updated using the finite
gradient descent method:

R R� n
aE IjRð Þ þ bEðRÞ

@R
ð5Þ

where n is the updating step. After calculating R, we can calculate the updated 4D-CT
image I. Basically, we iterate through all the axial images and re-assign each to the i th
phase according to:

i ¼ argmink E DjIð Þ þ aE IjRð Þð Þ: ð6Þ

The optimization algorithm stops until the number of phase re-assignment is
smaller than a prescribed number (5 in our case), and the algorithm generally stops after
3–4 iterations. It is worth noting that the major improvement of our algorithm over the
chest surface-based reconstruction method is that all the major anatomical structures are
considered during the image reconstruction. Our rationale is that the anatomical
structures should maintain boundary continuity in the spatial domain, and their lon-
gitudinal motion (deformations) should also be smooth. Finally, after each axial image
is assigned into their phase, the slices of each phase are arranged according to their
table positions. For equaling the slice distances, we applied the non-uniform cubic B-
Spline-based interpolation method [10] to resample them and reconstruct the 3D image
sequences.
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3 Results

In the experiments, we used datasets from forty patients undergoing radiation therapy
of lung cancer by using Philips Pinnacle3 machine in helical mode. Each scan contains
around 1400 slices. The thickness of each slice is 3.0 mm, and the resolution is
1.17 mm × 1.17 mm. According to the standard helical mode scanning procedure, the
respiratory belt was used to monitor the breathing signals. The Pinnacle3 machine can
perform initial 4D-CT reconstruction by using respiratory gating method. We used its
reconstructed results as the initial input. Using the workstation with Microsoft Win-
dows 7 professional, Intel i7 CPU (2.30 GHz), and 8.00 GB of RAM, our proposed
algorithm was applied to refine the results, where a and b were selected as 0.5. We
selected k so that the weight of spatial smoothness is two folds to the weight of
temporal smoothness.

Three other methods were performed for comparisons. The first is surrogate-based
method the Pinnacle machine. After scanning, the Pinnacle3 machine will reconstruct
the images according to the respiratory belt gating results. The second is the slice-by-
slice image matching-based algorithm proposed by Carnes et al. [7]. In Carnes algo-
rithm, the initial axial images are assigned into different respiratory phases manually.
Then the slice-by-slice match method is used to sort the rest axial images. The image
similarity measure for matching is normalized cross correlation. In our comparison, the
sorting results of the first 20 axial images from the Pinnacle machine were used as the
initialization for the Carnes algorithm. The third algorithm compared is the chest
surface-based reconstruction method [9]. This method only uses the smoothness of
chest surface as the constraints. For both the proposed method and the method in [9],
we used the same initialization, i.e., the results of Pinnacle3 machine.

Fig. 1. Visual comparison of 4D-CT reconstruction results. First row: surrogate-based method;
second row: Carnes algorithm; third row: chest surface-constrained method; and forth row: the
proposed Bayesian 4D-CT reconstruction.
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All results were visually assessed after reconstruction. Figure 1 illustrates the
results from two different subjects. It can be seen that the artifacts from the results of
surrogate-based method and Carnes algorithm are noticeable. The results on the third
and the fourth rows are similar, although we can still notice some artifacts as pointed by
the arrows. Overall, the proposed Bayesian 4D-CT reconstruction corrected the arti-
facts presented in other methods, and the anatomical structures in each 3D CT image
look continuous.

For quantitative validation, the normalized spatial Boundary Shift Integral (BSI)
[11] of the transition between the consequent reconstructed image slices was calcu-
lated. The BSI between two image slices for image Ik, Ik;i and Ik;iþ1, is defined as:

bk;i ¼
1

ðaH � aLÞ Rj j
X

x2R clip Ik;i xð Þ; aL; aH
	 
� clipðIk;iþ1ðxÞ; aL; aHÞ

� �
; ð7Þ

where R is the set of voxels in the boundary regions of the segmentation R obtained
using morphological operations. Rj j is the number of voxels in R. aL and aH (aH [ aL)
are the intensity range under consideration. In our experiment, we set aH ¼ 2500; aL ¼
0 to cover CT values of all structures. The threshold function clip(�Þ is defined as:

clip I; aL; aHð Þ ¼
aL; I xð Þ\aL
I xð Þ; aH � I xð Þ� aH
aH; I xð Þ[ aH

8<
: : ð8Þ

Figure 2 shows the boxplots of the BSI values for all the 40 subjects. It is worth
noting that lower BSI value means fewer artifacts in the image stacks of each 3D image
for the subjects. Notice that the average BSI for an ideal 3D image without artifacts is
not zero because the natural boundary shift exists in the image. In order to compare the
quantitative results, we also calculated the average BSI from the breath-holding 3D CT
images of the subjects. This allows for comparing the average BSI of 4D-CT recon-
struction with the benchmark of real 3D CT images. From Fig. 2 it can be seen that the
BSI values for the benchmark 3D CT images are the lowest among all the results, and
the ones calculated from the reconstructed 4D-CT images using the proposed algorithm
are very close to the benchmark values, reflecting much less artifacts generated from
the serial 3D images.
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Fig. 2. Comparison of normalized spatial BSI.
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To further evaluate the results, we plot the bone segmentation results of the recon-
structed images. Figure 3 shows one example of the segmentation results, including the
results using surrogate-based, image-matching-based, chest surface-based, and the pro-
posed methods. Notice that the proposed method did not generate any obvious bone
structure artifacts in the reconstructed image. On the other hand, some of the artifacts from
other methods are visible and pointed out by red arrows. From visual and quantitative
comparison, it can be concluded that less sudden jumps of anatomical structures were
found using our method as compared to other methods based on the clinical datasets.

Further, two radiologists visually evaluated all the reconstructed results by counting
the number of slices with artifacts, i.e., the slice with noticeable sudden jumps at
anatomical structure. Figure 4 illustrates the box plots of such numbers of slices with
artifacts. The results also confirmed the superiority of the proposed method as com-
pared to others. Since it is difficult to give a further precise quantitative metrics due to
the lack of ground truth, we will validate the quality using simulated 4D-CT images in
the future.

4 Conclusion

We presented a Bayesian 4D-CT reconstruction algorithm for 4D CT reconstruction.
Our rationale is that anatomical structures such as lung field, chest surface, bone, and

(a) (b) (c) (d)

Fig. 3. Visualization of bones after image reconstruction. (a) Surrogate-based method;
(b) Carnes algorithm; (c) chest surface-based reconstruction; (d) the proposed algorithm.
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Fig. 4. Average numbers of evaluated artifact slices of 40 subjects.
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lung vessels in the reconstructed images should preserve boundary continuity property
either spatially or longitudinally. Using 40 clinical datasets for patients undergoing
radiotherapy planning, the algorithm was compared with surrogate-based, image-
matching-based, and chest surface-based algorithms. Both quantitative and qualitative
comparison confirmed that the proposed algorithm outperformed the methods com-
pared and yielded much less artifacts.
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Abstract. Multi-Detector Computed Tomography (MDCT) is becom-
ing increasingly important in the diagnosis of Coronary Artery Dis-
ease (CAD). Cardiac MDCT scan generally allows for reconstruction
of several frames/phases in the cardiac cycle. The reconstructed images
are then used to create curved multi-planar reformation (MPR) views
wherein coronary lesions are best diagnosed. However, the generation
of such MPR views for all potentially reconstructed phases is tedious
and time consuming. Therefore, only a single phase is commonly used
for diagnosis which may reduce the overall diagnostic accuracy. In the
current work, we propose a new method that enable diagnosis of lesions
from all reconstructed phases on a common MPR view simultaneously.
Our method extracts the coronary centerline in one phase only. Next,
it performs a fast registration of a region of interest between the mul-
tiple phases. Finally, the multiple phases are aligned to the MPR view
and the clinician is able to review the multiple phases simultaneously.
Our experiments indicate that the analysis time of multi-phase coronary
CTA data can be reduced to less than 30 % of the currently required
time using our method.

Keywords: Coronary CT angiography · Coronary artery disease ·
Multi-detector computed tomography · Registration

1 Introduction

Coronary artery disease (CAD), is one of the major causes for morbidity and mor-
tality in the western world. Multi-Detector Computed Tomography (MDCT) is
becoming increasingly important in the diagnosis of CAD. The diagnostic accu-
racy of cardiac CT data in assessing CAD is a major interest in the medical com-
munity since it may reduce the cost and risk of invasive coronary angiography [6].

One of the major challenges in cardiac CT imaging is handling the cardiac
motion during the scan. The ECG signal is used to synchronize between the time
domain and the heart’s cyclic domain allowing the location of scan and recon-
struction windows of a required heart phase. In general, cardiac scan is performed
using two optional acquisition protocols: retrospective scan and prospective scan.
c© Springer International Publishing Switzerland 2014
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In retrospective scan, the reconstruction can be done in multiple phases all over
the heart’s cycle. In prospective scan, a prediction of the optimal mid-diastolic
time point (phase 78 %) is performed slightly before the scan. The timing of
the motion-free phase cannot be accurately predicted. Therefore, an over scan
(phase tolerance) that allows the reconstruction of several phases is generally
performed for the section of the optimal one. Commonly, the clinician reviews
the axial slices to select the optimal phase.

However, lesions are best viewed in curved multi-planar reconstruction (MPR)
images. The selection of a single optimal phase from several optional ones based
on the review of axial slices has several limitations as follows:

– Since the lesions may appear in different spatial locations in the different
phases due to its motion, the comparison of the phases’ quality is sub-optimal.

– Phases’ quality evaluated on the less effective axial slices rather than on MPR
views which can provide more accurate visualization of the lesions.

– Generally the final diagnosis is performed on the selected phase rather than
using all available phases.

These limitations may lead to sub-optimal diagnosis of CAD, especially in
the case of soft-plaques which may appear as an artifact in a single phase.

Simultaneous multi-phase diagnosis holds the promise to straighten the cer-
tainty of clinical findings and to improve overall diagnostic accuracy of CAD
using MDCT. However, the selection of the optimal phase by delineating or
editing the coronaries’ centerlines at each phase independently can be tedious
and therefore impractical.

Several methods have been proposed for intra-phase alignment of the coro-
nary arteries using landmarks [6], deformable model [8] and non-rigid registration
[1,3]. However, these methods are not sufficiently robust and heavy in terms of
computation time which prevents their utilization in the clinic. Recently Zuluaga
et al. [9] proposed a local lesion registration method. While their method reduces
the time required for navigation among different cardiac phases during the diag-
nosis process, it does not provide simultaneous multi-phase view for optimal
diagnosis in the MPR view.

In this work we propose a new method and clinical workflow for simultane-
ous multi-phase MPR evaluation. First, the method generates the coronaries’
centerlines on one phase using an automatic graph-based centerline extraction
algorithm [5]. Next, the clinician indicates the region of interest to evaluate
in multi-phase view. Next, the method performs a locally affine spatial re-
synchronization across the multiple phases and projects the other phases’ images
onto the previously generated MPR view. Finally, the clinician can simultane-
ously evaluate the lesion in a spatially synchronized multi-phase view.

We demonstrated the benefit of the proposed method and workflow by com-
paring the time required to generate a simultaneous multi-phase view using our
method to the time required with current workflow.

Our experiments show that the proposed workflow and method required less
than 30 % of the time required by the current workflow.
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2 Method

2.1 A Fast Simultaneous Multi-phase Coronary Analysis Workflow

The workflow stages are as follows:

1. The clinician uploads a single phase to cardiac application (for example phase
78 %).

2. The clinician runs coronary segmentation and centerline extraction to gener-
ate centerlines and MPR views of the coronary vessels in the current phase.

3. The user marks the suspected regions in the current phase MPR view.
4. The method spatially synchronized the regions of interest in the different

phases to the current phase and projects thee data from the different phases
onto the MRP view.

5. The clinician evaluates the lesions of interest in the different phases simulta-
neously.

We describe each computational step in detail next.

2.2 Coronary Centerline Extraction

We used the weighted shortest path methodology proposed by Freiman et al. [5]
to compute the coronary centerline. The coronary centerline is defined as the
shortest path between two graph nodes s and t corresponding to the coronary
seed points. The CT image is described as a graph with edges connected adjunct
voxels. The shortest path is the sequence of edges connecting s to t for which
the sum of edge weights is minimized.

We defined the edge weighting function as a weighted sum of (1) the local
intensity difference; (2) the seed deviation intensity difference; (3) the image
gradient smoothness along the path; and (4) the path length:

W (x, y) =α (I(x) − I(y))2

+ β
(
(I(x) − I(s))2 + (I(x) − I(t))2

)

+ γ| cos−1 (∇I(x) · ∇I(y)) | + k (1)

The first term is the squared difference between voxel x, y intensity values.
This term penalizes for intensity differences along the path and prevents the
path from leaving the vessel region. The second term is the sum of the relative
squared differences of the seeds and edge-end voxel (y) intensity values. This term
prevents the edges in the path from diverging from the intensity values of the
user-defined seed points, and prevents the path from moving along locally smooth
tissues with low edge weights instead of inside the noisy vessel. The third term
is the angle between the intensity gradients along the path. This term ensures
the smoothness of the image gradients along the path. The constant k is used
to penalize long paths. The weighting constants α, β, γ are used to normalize
the terms and to control the effect of each term on the overall path weight.
Their values were determined experimentally and set once for all datasets. The
shortest path is then computed using Dijkstra’s algorithm [4].
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Fig. 1. Optimal phase selection workflow for multi-phase analysis. (a) current workflow,
(b) proposed workflow.

2.3 Local Affine Registration

Since the relative motion of coronary vessels in adjacent phases is mainly trans-
lation with minor rotation and directional expansion, we assume that local affine
registration [7] would be sufficient. Moreover, we would like the algorithm to run
in real-time upon selection of object of interest (Fig. 1).
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The registration functional is given by:

J =
∑

Ω

(I (W (x, p)) − T )2 (2)

I, T are the reference and template 3D images. To find a solution using
the Gauss-Newton minimization scheme, we first develop the first-order Taylor
expansion around p:

J(p + �p) ≈
∑

Ω

(
I (W (x, p)) + ∇I · ∂W

∂p
�p − T

)2

(3)

where ∇I is the image gradient warped to template coordinates, and ∂W
∂p is the

Jacobian of the warp.

∂J

∂�p
= 2

∑

Ω

[
∇I · ∂W

∂p

]T [
I(W (x, p)) + ∇I · ∂W

∂p
�p − T

]
(4)

Setting the expression to zero and solving yields the updated scheme:

�p = −H−1 ·
(

∑

Ω

[
∇I · ∂W

∂p

]T

[I(W (x, p)) − T ]

)
(5)

where H is the Gauss-Newton approximation to the Hessian:

H =
∑

Ω

[
∇I

∂W

∂p

]T [
∇I

∂W

∂p

]
(6)

To improve the optimization runtime we used the inverse compositional
update [2]:

�p = H−1 ·
(

∑

Ω

[
∇T · ∂W

∂p

]T

[I(W (x, p)) − T ]

)
(7)

where H is the Gauss-Newton approximation to the Hessian:

H =
∑

Ω

[
∇T

∂W

∂p

]T [
∇T

∂W

∂p

]
(8)

The inverse compositional update scheme:

W (x; p) ← W (x; p) ◦ W (x;�p)−1 (9)

The local affine registration algorithm is run in three course-to fine sub
resolutions.
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(a) Manual simultaneous multi-phase MPR view

(b) Our simultaneous multi-phase MPR view

Fig. 2. (a) Three phases of the same coronary artery in MPR views. Each phase has a
different centerline. Each phase image requires the overburden process of data upload-
ing, segmentation and centerline editing or delineation. (b) The proposed approach:
MPR views of coronary artery of phase 75 %. The blue marked region contains data of
two other phases brought by image registration (Color figure online).

3 Experimental Results

We evaluated the reduction in time required to generate simultaneous multi-
phase MPR view for CAD analysis by comparing existing workflow and our
method. We took cardiac CT scans of seven patients from which four had retro-
spective scan and three had prospective scan. From the retrospective scans we
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Fig. 3. Average and STD centerline editing times for the LAD, LCx, RCA and study’s
total time using the current workflow for optimal phase selection and using the proposed
approach.

reconstructed two end-systolic phases and two mid-diastolic phases and from the
prospective case we selected 3 mid-diastolic phases.

We generated simultaneous multi-phase MPR views for each patient by edit-
ing coronary centerlines for the Left Anterior Descending artery (LAD), Left
Circumflex artery (LCx), and Right Coronary Artery (RCA) of each of the
reconstructed phases independently using existing workflow. Next, we generated
simultaneous multi-phase MPR views for each patient by delineating centerlines
of the LAD, LCx and RCA on a single phase of the reconstructed phases and
our method. Finally we compared the time required to generate the simultaneous
multi-phase MPR views between the two methods.

Figure 2 presents representative example of the curved multi-planar images
generated using the current workflow compared to the curved multi-planar images
generated using the proposed workflow. We found that our proposed workflow and
method reduced the time required to generate simultaneous multi-phase MPR
views to less than 30 % of the currently required time. A detailed description of
the required times depicted in Fig. 3.

4 Discussion and Conclusion

Improving the diagnostic accuracy of Coronary Artery Disease (CAD) using
multi-detector cardiac CT data is a major interest for cardiologists and radiol-
ogists. The improved diagnostic accuracy of MDCT in assessing CAD has the
potential to reduce the cost and risk of invasive angiography imaging. How-
ever, current workflow for cardiac CT evaluation is suboptimal and inefficient.
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Coronary lesions such as plaque and calcifications are best seen in curved MPR
views and in multiple phases. However, the time-consuming and tedious process
required from the clinician to generate these views limited the current evalua-
tion to a single phase which influenced the least by motion artifacts. The single
view evaluation may yield to sub-optimal diagnosis. In the current study we
reduces the time required to generate simultaneous multi-phase curved MPR
views of the coronaries to less than 30 % of the time currently required to gener-
ate these multi-phase views. Our method and workflow first generate centerlines
and curved MPR view on a single phase. Next, the user identifies lesions of
interest and the algorithm register the rest of the phases to the current phase.
Finally the other phases projected onto the curved MPR view to allow simulta-
neous evaluation of multi-phase data. This method hold the promise to improve
overall coronary CT diagnostic accuracy by enabling simultaneous multi-phase
evaluation of coronary CT in a clinically feasible time.
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Abstract. In this paper, we report an in vivo clinical feasibility study
for ultrasound-based detection of prostate cancer in MRI selected biopsy
targets. Methods: Spectral analysis of a temporal sequence of ultrasound
RF data reflected from a fixed location in the tissue results in features
that can be used for separating cancerous from benign biopsies. Data
from 18 biopsy cores and their respective histopathology are used in
an innovative computational framework, consisting of unsupervised and
supervised learning, to identify and verify cancer in regions as small as
1 mm× 1 mm. Results: In leave-one-subject-out cross validation experi-
ments, an area under ROC of 0.91 is obtained for cancer detection in the
biopsy cores. Cancer probability maps that highlight the predicted dis-
tribution of cancer along the biopsy core, also closely match histopathol-
ogy. Our results demonstrate the potential of the RF time series to assist
patient-specific targeting during prostate biopsy.

1 Introduction

Prostate cancer (PCa) is the most common type of solid tumor, and the sec-
ond leading cause of cancer-related deaths in North American and European
men. Early stage PCa, which represents the majority of cases diagnosed today,
has many therapy options, including surgery, radiation therapy, brachytherapy,
thermal ablation, and active surveillance. Selection of the optimal therapy and
therapeutic dosage are chiefly determined by diagnosis and staging. Definitive
diagnosis of PCa requires core needle biopsy, typically guided by transrectal
ultrasound (TRUS). Current biopsy regimens involve systematic sampling of
the prostate from eight or more predefined anatomical locations, followed by
histopathological evaluation of these samples. The biopsy regimen is scaled to the
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prostate gland based on its size and using nomograms but otherwise not tailored
to the individual. TRUS-guided biopsy has rather poor sensitivity, with positive
predictive values between 40–60 % [1]. Improved cancer yield can be achieved if
patient-specific targeting is combined with systematic sampling. However, this
is not feasible using TRUS alone.

In order to enable patient-specific targeting, other modes of ultrasound imag-
ing such as radio frequency (RF) data analysis [2] and elastography [3] have been
explored. These technologies, individually, have not entirely succeeded in accu-
rate identification of high grade cancer.

Magnetic Resonance Imaging (MRI) has been used as an alternative modal-
ity to improve high grade PCa yield [4]. Guidelines for structured reporting of
prostate cancer assessments based on multi-parametric MRI have been developed,
involving simultaneous examination of T2-weighted, Dynamic Contrast Enhanced
(DCE) T1-weighted, and Diffusion Weighted Imaging (DWI) sequences [5]. MRI-
guided biopsy is, however, difficult, costly, time-consuming and not widespread.
Fusion of ultrasound and MRI has been used to improve PCa detection by enabling
targeting of the cancer foci pre-determined in MRI during TRUS-guided. Biopsy
core locations determined in MRI are translated to patient coordinates using pre-
procedure 3D TRUS and its registration to MRI [6]. 3D TRUS to MRI registration
requires either sophisticated mechanical systems [7] to guide the biopsy needles
or, if performed by software only [8], does not fully account for patient motion or
organ deformation occurring during biopsy.

Recently, ultrasound RF time series, comprising a sequence of ultrasound
RF frames captured in time from a stationary tissue location, has been used
to effectively detect PCa in ex vivo and in vivo data [9]. In this paper, we
propose to use ultrasound RF time series to complement MR-targeted biopsy
procedures by providing cancer probability maps around MRI targets during
biopsy. We envision that this solution should increase positive cancer yield in
both MR-targeted and/or TRUS-guided biopsy procedures. It will also provide
an opportunity to correct for mis-registrations of MR and TRUS images prior
to sampling the tissue.

In the proposed solution, RF time series features have been used within
an innovative computational framework that combines unsupervised clustering
of the data with supervised classification. We use the histopathology of the
biopsy cores for evaluation of cancer detection. Cancer probability maps are
also shown, highlighting the distribution and the likelihood of cancerous tissue
within the biopsy cores. In a single centre feasibility trial with data obtained
from 14 subjects at 18 biopsy targets, we are able to predict the pathology of
MRI-identified targets with high specificity and sensitivity.

2 Materials and Methods

2.1 Data Acquisition

Ultrasound RF time-series data is acquired on a Philips iU22 US scanner during
MRI-guided targeted TRUS biopsies performed at National Institutes of Health



144 N. Uniyal et al.

Clinical Center (NIH-CC), Bethesda, MD using the Philips UroNav platform.
For targeted biopsy, pre-acquired T2-weighted MRI images are automatically
fused with real-time TRUS images of the prostate [10]. Initially, the desired tar-
gets are delineated on the T2-weighted MRI image by a clinician based on the
examination of four multi-parametric MR images: T2-weighted, DWI, DCE, and
MR spectroscopy. At the beginning of the biopsy procedure, a series of electro-
magnetically (EM) tracked 2D TRUS images of the prostate are acquired from
base to apex. Next, a 3D US volume is reconstructed based on EM tracking
data and registered to the MRI scan in the UroNav software. Following the
registration of US and MR volumes, the targeted locations for biopsy are trans-
formed to the EM coordinate frame. During the biopsy, the clinician navigates
through the prostate volume to reach the desired target location for acquiring
a core. Immediately prior to taking the biopsy, the clinician holds the TRUS
transducer steady for 4–5 s to acquire RF time series data. Typically, 100 frames
of RF time series data are acquired from each biopsy core. RF data is obtained
prior to one, and in some cases, two biopsies of the MR-identified targets.

Ultrasound RF time series data is used from 18 biopsy cores of 14 subjects.
Although RF time series data is collected in the axial plane, two biopsies are
taken from axial and sagittal planes for each subject from the same location.
The recording of the RF data and acquisition of the biopsy core are performed
in sequence, not simultaneously, to avoid the appearance of the needle in the
images. As a result, hand motion maybe present in some cases, between data
and biopsy acquisition as well as during RF data recording. A quality control
step is necessary to obtain a dataset with reliable reference label. In this step,
we only choose to include subjects for which the histopathology of the axial
and sagittal biopsies agree, and no excessive motion is present during RF time
series acquisition. In our data, 10 biopsy cores are cancerous with Gleason scores
above 6 and tumor areas >40 %. Eight biopsy cores are benign with consistent
histopathological information.

2.2 Feature Extraction

Regions of Interest (ROIs): For each registered biopsy target, we analyze an
area of 2 mm× 10 mm in the lateral and axial directions, respectively, along the
projected needle path in the RF data, and centered on the target. The width of
this area is close to the width of the biopsy core. The length of the biopsy core
is typically larger than the 10 mm considered here; however, to account for mis-
registration errors and possible hand-motions, we use a conservative estimate in
this study. The selected 2× 10 mm area is divided into 20 ROIs of size 1× 1 mm
resulting a total of 360 ROIs from all biopsy cores. For each ROI, we calculate
the features described below.

Features: Nine tissue typing parameters are extracted using the spectral, fractal,
and wavelet analysis of the RF time series data. Each RF time series contains
96 sequentially acquired frames of each RF sample of the imaging plane. We
compute the spectrum of the zero-mean, hamming windowed, time series of an
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RF sample and average the values over an ROI. Summation of the spectrum in
four equally-spaced frequency bands constitute features 1–4 [11]. The intercept
and slope of the fitted line to the spectrum in the entire frequency range are
features 5 and 6. Fractal dimension of the time series is computed using Higuchi’s
method and averaged over an ROI as feature 7 [12]. We also calculate the central
frequency (CF) of the spectrum as the mean of the spectrum bandwidth of the
time series of an RF sample. The mean of the CF values (MCF) over an ROI
is used as feature 8 [13]. Finally, we apply the discrete wavelet transform to
the ultrasound RF time series of each RF sample using Daubechies 4 filter bank,
where the signal is decomposed into approximation and detail coefficients at each
decomposition level. The first approximation coefficient is computed for each RF
sample in the imaging plane at the coarsest level (n = 3) of decomposition and
averaged over each ROI as feature 9 [13].

2.3 The Proposed Classification Framework

Feature selection: Feature selection is performed using Recursive Feature Elimi-
nation (RFE), prior to classification to identify the optimal combination of the
nine features described above for cancer detection. In this method, features are
eliminated recursively based on their corresponding weight in a linear SVM clas-
sifier. Initially, the model is trained on all the features and their weights are
calculated. Then, the feature with the smallest absolute weight value is elim-
inated. This process is repeated recursively; the number and combination of
features resulting in the highest classification accuracy are used as the stopping
criteria. In our case, the combination of two features resulted in the highest
classification accuracy.

Classification: Even though our biopsy cores are assigned to cancer or benign
pathologies, the selected tissue types are heterogeneous within these classes and
could potentially be differentiated based on other structural differences. One
approach to overcome “within class” differences is to first cluster the ROIs in an
unsupervised manner. This could result in identifying the outliers of each class
from the main distribution of the class. A cluster-specific classifier can then be
used to differentiate cancerous and benign tissue in a supervised manner.

Experiments: We follow a leave-one-subject-out cross-validation strategy. Here,
we train a classifier using the features extracted from the cancerous and benign
ROIs of biopsy cores from 13 subjects and test on the features extracted from
the ROIs of an unseen subject. In the first step of the process, ROIs from all 13
training subjects are clustered into two groups using k-means algorithm. Within
each cluster, we train a Support Vector Machine (SVM) classifier to separate
cancerous from benign ROIs. The next step constitutes testing, where we first
assign the ROIs of the unseen subject to one of the clusters based on their
Euclidean distances from the centroids of the clusters. The ROIs of the test
subject are then classified using the classifier corresponding to their respective
clusters. This process is repeated 14 times where every subject is left out for
testing once. If in any of these leave-one-subject-out trials, a resulting cluster



146 N. Uniyal et al.

after the k-means step is over 90 % imbalanced (over 90 % benign or cancer),
we do not train a classifier for that cluster and the label of test samples are
determined based on majority voting in that cluster. In order to ensure that our
process is not tailored to one type of classifier, we also use a Random Forests
classifier and report our results using the two classification methods.

K-means clustering, SVM and Random Forests algorithms are implemented
in the Scikit-learn machine learning package [14]. In addition to the binary class
labels, we also generate the a posteriori class probability estimates for the biopsy
core of each subject. The hyperparameters that need to be determined for the
classifiers included the Radial Basis Function (RBF) exponent and the soft mar-
gin penalty coefficient for SVM, and the number and depth of the trees in the
Random Forests. These are tuned using a grid search approach.

3 Results

The RFE feature selection process was repeated for every leave-one-subject-
out experiment. It consistently isolated features 3 and 4 as the combination
of features that result in the highest classification accuracy between cancerous
versus benign tissue. These are both spectral parameters of the RF time series.
Henceforth, we only use these two features in clustering and classification of the
biopsy cores. Figure 1 shows the two clusters that are created by k-means for
ROIs from all subjects. 190 out of 200 malignant ROIs are assigned to cluster 1
and 125 out of 160 benign ROIs are assigned to cluster 2. In other words, 95 %
of all cancerous samples and 78 % of all benign samples are grouped in clusters
1 and 2, respectively. Based on this observation, and in order to maximize the
number of training data per cluster, we limit the number of clusters to two.

Fig. 1. Clustering performed on all 360 training samples.

The ROC curves are found in Fig. 2. The area under the curve is 0.91 and
0.90 for SVM and Random Forests methods, respectively. Colormaps that depict
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Fig. 2. ROC curves for SVM and Random Forests (each performed after clustering).

Fig. 3. Cancer probability colormaps of the 18 biopsy cores from 14 subjects with leave-
one-subject-out cross validation using the best two RF time series features. Clustering
and SVM classification is used.

the a posteriori cancer probabilities of ROIs in each of the 18 biopsy cores
are illustrated in Fig. 3. The probability threshold to label an ROI cancerous
in the cancer probability maps is chosen to be 0.6. It is noteworthy that if we
eliminate the clustering step and perform classification with all training samples,
we obtain an area under the curve of 0.88 and 0.89 for SVM and Random Forests
methods, respectively.

Table 1 shows the percentage of the number of ROIs predicted as cancerous
in each core, found in test samples in the leave-one-subject-out classification.
The two different columns report the outcome for our method using SVM and
Random Forests as classifiers. Using the SVM classifier, the percentage of cancer
found in all benign cores is 45 % or smaller and in five out of eight benign subjects
this number is zero. In the positive biopsy cores, we notice that the predicted
percentage of cancer is above 60 % using the SVM classifier.

4 Discussion and Conclusion

We present a machine learning framework, consisting of supervised and unsuper-
vised learning approaches, that uses RF time series analysis for the prediction
of the histopathology of MR-guided targeted prostate biopsies. In a leave-one-
subject-out study with data obtained from 18 biopsy cores in 14 subjects, we
are able to accurately predict the pathology of MRI-identified targets with high
specificity and sensitivity. In ROIs as small as 1 mm× 1 mm, and using only two
spectral features of RF time series, an area under ROC curve of 0.91 is achieved.
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Table 1. SVM and Random Forests cancer probabilities.

Subject Biopsy Core Biopsy Result Gleason Score Percentage of Cancer

SVM Random Forests

1 Core 1 Adenocarcinoma 7 100 % 75 %

2 Core 2 Adenocarcinoma 8 90 % 85 %

Core 3 Adenocarcinoma 8 70 % 70 %

3 Core 4 Adenocarcinoma 6 85 % 70 %

4 Core 5 Adenocarcinoma 9 95 % 95 %

Core 6 Benign 0 45 % 25 %

5 Core 7 Adenocarcinoma 8 75 % 90 %

Core 8 Adenocarcinoma 8 95 % 100 %

6 Core 9 Adenocarcinoma 7 75 % 70 %

7 Core 10 Adenocarcinoma 7 100 % 100 %

8 Core 11 Adenocarcinoma 7 60 % 70 %

9 Core 12 Benign 0 0 % 60 %

10 Core 13 Benign 0 0 % 0 %

11 Core 14 Benign 0 0 % 0 %

Core 15 Benign 0 30 % 10 %

12 Core 16 Benign 0 0 % 0 %

13 Core 17 Benign 0 15 % 10 %

14 Core 18 Benign 0 0 % 0 %

Using k-means clustering, we show that these two features are able to separate
cancerous and benign biopsy cores. Following classification, we calculate similar
area under the ROC curve independently with SVM and Random Forests; this
points to the stability of the proposed framework for tissue classification. We
also present colormaps that depict the a posteriori cancer probabilities of ROIs
in biopsy cores. These maps closely match the histopathology results of each
biopsy core. As Table 1 shows, we report low cancer probabilities for all benign
cores; specifically we predict zero probability for five out of eight benign cores.
In other words, 63 % of the negative biopsies could have been avoided had we
known the a posteriori cancer probability of that area using RF time series dur-
ing biopsy. In terms of sensitivity, as is observed in Table 1, we report at least
60 % (mainly 70 % and up) cancer probability for all positive cores.

Our results demonstrate that RF time series can be used to complement MR-
targeted biopsy procedures, by providing cancer probability maps around MRI
targets during biopsy. Our proposed method could potentially increase positive
cancer yield in both MR-targeted and/or TRUS-guided biopsy procedures. It
could also be used to compensate for mis-registrations of MR and TRUS images
prior to sampling the tissue for MRI guided prostate biopsies.
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A limitation of our study is the size of the dataset. This is partly due to our
conservative quality control step where we drop data from targets with conflict-
ing pathology results in axial and sagittal planes. In addition, to minimize the
impact of registration and targeting error on our analysis, we only choose ROIs
in 10 mm length of the RF data centred around the target along the needle
trajectory. A typical biopsy core could be as long as 18 mm. Data acquisition
for a large clinical study is ongoing; the aim is to also incorporate a detailed
histopathology reporting scheme where the direction of the cancer in a core is
marked and results are reported in quarters along the biopsy core. We expect a
larger dataset and more accurate mapping of histopathology to RF time series
would further improve the results.
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Abstract. Pre-operative plans for cardiac surgeries are required for
providing precious information of the target area and assessing the suit-
ability of offered interventional technique. This paper proposes a new
approach to obtain the safest corridor along the left ventricle during
pre-operative phase in order to register it onto intracardiac phase for
transapical access. Method provides accurate spatial information of
dynamic left ventricle borders by utilizing a modified active contour
model during systole and diastole cycle of heart, and as a result of this,
extracts the safest path through left ventricle based on magnetic reso-
nance imaging (MRI) with promising volumetric capability and
no-radiation effect.

Keywords: Pre-operative planning · Transapical access · Active con-
tour model · Left ventricle border tracking

1 Introduction

Various operational techniques have been applied in heart valve surgeries since
1960s. Cardiopulmonary Bypass (CBP), which is the most conventional surgical
technique, has been used for decades with adequate patient outcome [1]. In the
early days, surgical access was gained via lateral thoracotomies; later median ster-
notomy was used as gateway to the heart. Throughout the world, this technique is
widely used and performed even for patients from 80 to 90 years old [2]. Low ejec-
tion fraction, respiratory failure, cerebrovascular disease, pulmonary hypertension
may develop at octogenarians and pose a risk for open heart surgeries. Regarding
these constraints, search for a new technique has become a major issue in cardiac
surgery. In mid 1990s, minimally invasive techniques started to emerge for cardiac
surgeries. Compared to former, these techniques are more advantageous in terms
of reducing skin, tissue and muscle damage [1]. For instance, Transapical Aortic
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Valve Implantation (TA-AVI) is a new method for high risk patients with aor-
tic valvular malfunctions, such as aortic stenosis or ejection insufficiency [3]. This
technique has been performed on more than 30000 cases, showing that it will be an
viable alternative to convenient surgeries [4]. One of the main functional advan-
tages of TA-AVI is its ability to be applied on the beating heart, whereby CBP
techniques as the name suggests take over the functionality of the heart and the
lungs during surgery by a machine which sustains the oxygen and blood circula-
tion. Regarding the risks of running body with the help of heart-lung machine,
beating heart procedure technique is a revolutionary innovation. TA-AVI enables
the placement of a stented bio-prosthetic valve through a left-lateral mini-invasion
and the apex of the beating heart. When the delivery module reaches the correct
position, the prosthesis is deployed by an inflatable balloon to pose in its final loca-
tion [2,4]. In TA-AVI, once prosthesis is delivered, it cannot be repositioned again.
This constraint increases the importance of appropriate positioning. Proper orien-
tation avoids the coronary arteries that feed the heart muscles from obstruction,
and mitral valve leaflets from damages.

– Pre-operative planning is a must for providing precious information about the
target area in a procedure and means for evaluating stability and feasibility
of the of-fered therapy technique. In TA-AVI, ejection fraction, cavity volume
calculation, and safe path concepts are the basic elements of pre-operative
planning. In this paper, we validated feasibility of Perona-Malik filtering aided
active contours with-out edges based left ventricle border segmentation over
determining the safest path for valve delivery module along left ventricle. Safe
path determination is required from two aspects [5]. To reduce the surgery
duration,

– To orient the delivery module safely along the left ventricular corridor without
damaging the heart walls, mitral valve leaflets, and prevent potential adverse
events during transapical access.

So far, a small number of approaches have been proposed to achieve preop-
erative planning for TA-AVI. Yeniaras et al. evaluated a method based on com-
bining pre-operative multi-slice dynamic MRI with single-slice real-time MRI to
update an access corridor from the apex to the aortic annulus [5]. Zhou et al.
offered a Bayesian based algorithm to track landmarks of heart such as apex,
medium, valve and centroid in long axis (LAX) and short axis (SAX) images [8].
However, both of them require user interaction and neglected volumetric assess-
ment of left ventricle while contracting and expansion. These two works utilized
MRI images, but did not take the papillary muscles into account, that drives the
pre-operative planner trace the landmarks of left ventricle not accurately unless
a robust segmentation method is used.

Addressing the challenges and weakness in the current approaches, we devel-
oped an approach that incorporates the novelties below:

– We propose to utilize Perona-Malik method as image filtering process before
left ventricle border tracking has been initialized. Perona-Malik is a diffusion
based method that helps us eliminate artifacts of papillary muscles on SAX
MR images, while strictly keeping the edge information of left ventricle.
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– Left ventricle border tracking step is based on a hybrid model which is combina-
tion of making a local region-based frame-work with the guidance of active
con-tours without edges.

– In the last step, we calculated the means of x and y coordinate values of
cropped segments and constructed 3D corridor by ordering each cropped con-
tour on the z axis with 6 mm distance. Here, we should remark that 6 mm
distance information is slice thickness and obtained from DICOM header of
used MR images.

– The proposed algorithm can be run by single initialization, that is, localization
of left ventricle by user, and the algorithm is propagated automatically to the
other image slices acquired from their file location.

2 Imaging Session

A typical Cardiac Magnetic Resonance (CMR) examination consists of acquir-
ing hundreds of SAX and LAX slices covering the whole cardiac-cycle. Manual
segmentation of cardiac MR images is tedious and time-consuming; therefore
automation and decreasing user interaction has become a necessity [2,9,10]. In
our method, re-initialization for localization of left ventricle is not required, and
the algorithm propagated over 325 SAX MR Images to build 3D model of the
left ventricle. We validated the outcomes by comparing them to manual segmen-
tation results, obtained by an experienced interpreter, which is considered as
gold standard. Due to the low contrast structure and inhomogeneity of images
examined, hybrid method is preferred to delineate the target area. The basic
principle of the initiative is to divide local masks into two regions according to
local intensity mean [5–7] (Fig. 1).

Fig. 1. (a) DICOM cardiac image; red circle represents the initial mask and the black
color circle represents the local neighborhood. (b) Due to papillary muscles, segmenta-
tion cannot be achieved accurately. (c) Perona-Malik Anisotropic Diffusion eliminates
papillary muscles artifact affects while keeping the edges (Color figure online)

Assume the black color circle at each point along the red color template. This
circle is divided by the template (contour) into exterior and interior regions.
The point is shown by the white dot. Black color circle represents the V (x, y)
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neighborhood. Firstly, assume is a given image, C and is a closed contour as
the zero level set of signed distance function and C = x(x) = 0. Interior of the
contour C is shown by approximation of Heaviside function below.

⎧
⎪⎨

⎪⎩

1 (x) < −ε

0 (x) > −ε
1
2{1 + ε + 1

π sin(π(x)
ε )} otherwise.

(1)

A y point should be defined in addition to x, which is a planar variable
and both represent a single point in the image domain (not the contour). A
mask function V (x, y) can be obtained from the distance between x and y with
the respect to r, which is radius of the circle centered at x. Accordingly, if the
distance between x and y(x − y) is bigger than radius; function of V (x, y) is
equal to 0, otherwise is equal to 1 [7].

Per the information given above, the energy formula can be set as in Eq. 2.

Eϑ =
∫

Ωx

δϑ(x)
∫

Ωy

V (x, y)F (I(y), ϑ(y))dxdy. (2)

In Eq. (2), F is a generic function that denotes local features at each point
along the contour. On the other hand, energy function is obtained by the mul-
tiplication of a distance based function V (x, y) and a force function.

Dirac function (x) forces the curve not to shift topology by evolving new
contours randomly, while it lets the curve to split and merge. More explicitly, x
points masked with V (x, y) should be under (x) to confirm that F does not work
on global statistics which are irrelevant to x [7]. After formulizing the energy
outline, localization process is initialized by implanting local intensity means
into energy outline. Local mean intensities can be calculated by multiplying
mask function with global mean intensity. Approximations for global intensity
mean can be represented as below;

j =

∫
Ωy

Hϑ(y).I(y)dy
∫

Ωy
Hϑ(y)dy

=

∫
Ωy

(
1 − Hϑ(y)

)
.I(y)dy

∫
Ωy

(
1 − Hϑ(y)

)
dy

. (3)

In Eq. (3) j and k denote interior and exterior regions, respectively. As
expressed in [7], localized counterparts of j and k are computed by making
use of V (x, y) function, and are given in the following representation.

j =

∫
Ωy

V (x, y)Hϑ(y).I(y)dy
∫

Ωy
V (x, y)Hϑ(y)dy

=

∫
Ωy

V (x, y)
(
1 − Hϑ(y)

)
.I(y)dy

∫
Ωy

V (x, y)
(
1 − Hϑ(y)

)
dy

(4)

Local energies at each point along the contour can be calculated by jl and
kl at each point along the contour. Hence, region-based energy term is given by
the following equation [6,7];

EL =
∫

Ω

Hϑ(y)(I(y) − j1)2 + (1 − (1 − Hϕ(y)))(I(y) − j1)2dy. (5)
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Finally, a contour curvature term is added, given as, in order to keep the
curve smooth. Thus, total energy formula can be defined as;

E(C) = EL(C) + λη. (6)

where, weighting parameter is used for penalization of the arc lenght of the
contour. Euler-Lagrange equations are used for minimizing energy equations
with the purpose of obtaining contour evolution equations.

∂ϕ

∂t
= ∂ϑ − (λη − (l − jl)2 + (l − k1)2). (7)

The curvature smoother η can be computed as;

η = div

( �ϑ

| � ϑ|
)

. (8)

jl and kl are kept updated until curve evolving ends. Simply, minimization can
be performed if each point along the active contour has moved so that local
statistics is best converged by local means jl and kl [7].

LV segmentation, which propagates the MR stacks, consists of these steps;
1. The initial contour is introduced, as a circle centered on the image with a
reasonable radius. 2. Initialization of energy in terms of signed distance functions
of. 3. Computing value by iteration process using the discrete form of curve
evolution formula in (7). 4. Check, whether the solution is stable. If not, run
f=f+1 again.

The discrete form of (6) can be approximated as (f+1) = ϕf + tU where U
is the discrete form of energy minimization formula, which contains a weighting
parameter λ that is generically set to 0.3. t is the time step-value used for
enforcing stability and speed of curve evolution. The Courant-Freidrich-Lewy
(CFL) condition which states that the numerical wave speed must be greater
than the physical wave speed [6,7] is used for arranging mentioned constraints.
The CFL condition can be represented as;

� <
�

max|U | . (9)

and CFL number usually lies between 0 and 1 to ensure stability [6]. It is a
remarkable point that in order to increase the efficiency and speed up compu-
tation, initial value is updated in a narrow band around the zero level set but
not on the whole image. Typically for MRI images ventricle cavity frontiers are
measured to be 1.2 pixels wide for the narrow band width.

3 Experiments and Results

The utilized segmentation method has been applied 325 SAX MR Images acquired
2 health patients, who gave written informed consent. For each patient, a total
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of 25 images available at two time points; 13 slices at End Diastole and 12 slices
are at End Systole. The comparison of the manual and automatic segmentation
results over the left ventricle area and volume can give us idea regarding accu-
racy of our segmentation method. Table 1 displays the comparison of automati-
cally computed left ventricle areas and volumes.

As can be seen in Fig. 2, cavity area decreases in the end-systolic frame.
As mentioned in introduction chapter, aortic valve deformation causes aortic
stenosis and aortic insufficiency (regurgitation), which are affections about blood
ejection from LV to aorta. In the light of this clinical information, if the volume of
transferred blood to aorta and remained blood in LV is assessed, i.e. to monitor
the EF, the performance of the heart valve can be compared according to the
standard value. In this work, LV volume information has been obtained and used
for testing the accuracy of segmentation method.

Fig. 2. (a)–(c): Diastolic to End-Systolic Left Ventricular Image Sequence. Contraction
of left ventricle can be seen on the image sequence given in Fig. 2(a) through (c). The
utilized segmentation algorithm propagates over slices and can track LV during heart
cycles.

The cropped contours are concatenated in the three dimensional pixels coor-
dinate system, xData and yData values are reachable in workspace menu of
our software that uses pixel values in operations so that obtained result should
be converted in actual values. Actual values of a DICOM MRI slice pixel can
be retrieved by utilizing the software program‘s. Pixel Spacing values for x, y
and Slice thickness for z value (for voxel). In addition to the slice thickness an
inter-slice-gap that is %25–%50 of slice thickness has been added to z axis while
volume calculation. For used images, these values are 1.25 mm, 1.25 mm, 6 mm,
and 1.5 mm, respectively. Simpson rule is an accepted formula for left ventricular
viable assessments. Simpson rule is represented as;

t∑

i=0

1 . . . As.St. (10)
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In Eq. (10), t is the slice number, A is the area of slice and S is slice thickness
or plus the slice gap. Simpson rule is based on classical volume calculation such
as multiplication of the height with the area of a 3D object. According to the
Simpson rule, summation of all elements of left ventricle surface area should be
calculated, and multiplied with 1.25 ∗ 1.25 ∗ 7.5, and divided by 1000 in order to
convert the unit of result into centimeter cube.

Table 1. Area Comparison over the Left Ventricles (LV) of data sets between automatic
and manual segmentation of cardiac MRI. Numbers represent ratio of automatic over
manual segmentation results

End Diastole End Systole

LV Area Ratios 0.78 0.80

LV Volume Ratios 0.77 0.80

Safe path calculation is based on finding the center points of the segmented
curves that represent the left ventricle boundaries. This can be done by consid-
ering the curve as a polygon and taking the center points of the values on x and
y. In Fig. 3, safe path is visualized with a green color, and different thickness that
implies the structure of the delivery module should be designed in the frame of
information comes from the pre-operative planning, imaging part.

Fig. 3. Dynamic Safe Path Representation. Dynamic path is subject to change accord-
ing to systole and diastole periods; (a) Represents End-Diastole Period (b) Represents
End-Systole Period (c) Represents Transient Period between ED and ES Period

4 Conclusions

We introduced a novel computational pre-operative planning methodology for
per-forming real-time TA-AVI in beating heart. Our study was dependent on
generating a dynamic safe path and updating it on the fly, and the assessment
of the anatomical structure of left ventricle. This work can be broadened with
the process of registering the SAX segmented contours into LAX images to
serve intraoperative cardiac procedures, and monitoring robotic module delivery
application on the safest path.
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