
Chapter 7
An Exact Formula for the Average Run Length
to False Alarm of the Generalized
Shiryaev–Roberts Procedure for Change-Point
Detection under Exponential Observations

Wenyu Du, Grigory Sokolov, and Aleksey S. Polunchenko

Abstract We derive analytically an exact closed-form formula for the standard
minimax Average Run Length (ARL) to false alarm delivered by the Generalized
Shiryaev–Roberts (GSR) change-point detection procedure devised to detect a shift
in the baseline mean of a sequence of independent exponentially distributed obser-
vations. Specifically, the formula is found through direct solution of the respective
integral (renewal) equation, and is a general result in that the GSR procedure’s non-
negativ headstart is not restricted to a bounded range, nor is there a “ceiling” value
for the detection threshold. Apart from the theoretical significance (in change-point
detection, exact closed-form performance formulae are typically either difficult or
impossible altogether to get, especially for the GSR procedure), the obtained for-
mula is also useful to a practitioner: in cases of practical interest, the formula is a
function linear in both the detection threshold and the headstart, and, therefore, the
ARL to false alarm of the GSR procedure can be easily computed.

7.1 Introduction

Quickest change-point detection is concerned with the design and analysis of re-
liable statistical machinery for rapid detection of changes that may spontaneously
affect a “live” process, continuously monitored via sequentially made observations.
See, e.g., [24] or [33, Part II]. A quickest change-point detection procedure is a
stopping time adapted to the observed data, and is a rule whereby one is to stop and
“sound an alarm” that the characteristics of the observed process may have (been)
changed. A “good” (i.e., optimal or nearly optimal) detection procedure is one that
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minimizes (or nearly minimizes) the desired detection delay penalty, subject to a
constraint on the false alarm risk. For an overview of the major optimality criteria
see, e.g., [18, 23, 32, 38] or [33, Part II].

A problem particularly persistent in applied change-point detection (e.g., in qual-
ity control) is evaluation of detection procedures’ performance. To that end, the
ideal would be to have the needed performance metrics expressed exactly and in a
closed and simple form. However, this is generally quite difficult mathematically,
if at all possible. Part of the reason is that the renewal equations that many popu-
lar performance metrics satisfy are Fredholm integral equations of the second kind
(possibly written as equivalent differential equations), and such equations seldom
allow for an analytical solution. As a result, the standard practice has been to eval-
uate the performance numerically (one particularly popular approach has been to
devise an asymptotic approximation of some sort). Nevertheless, some exact per-
formance formulae have been derived explicitly, although primarily for the “main-
stream” detection methods. For instance, a number of characteristics of the cele-
brated CUSUM “inspection scheme” (due to [13]) have been expressed explicitly,
e.g., in [1, 2, 6, 7, 25, 37],1 although for only a handful of scenarios. Likewise, exact
closed-form formulae for various performance metrics of the famous EWMA chart
(due to [26]) in an exponential scenario have been established, e.g., in [3, 12, 21]
(see footnote 1).

However, the corresponding progress made to date for the classical Shiryaev–
Roberts (SR) procedure (due to [27–29]) is far more modest (except for the
continuous-time case), and especially little has been done for the Generalized SR
(GSR) procedure, which was introduced recently in [11] as a “headstarted” version
of the classical SR procedure. Since the latter is a special case of the GSR pro-
cedure (when the headstart is zero), from now on we will follow [34] and use the
term “GSR procedure” to refer to both procedures. As a matter of fact, to the best
of our knowledge, exact and explicit formulae for a small subset of characteristics
of the GSR procedure have been obtained only in [4, 9, 10, 14, 22, 23, 35, 40].
The purpose of this work is to add on to this list. Specifically, we obtain an ex-
act, closed-form formula for the standard (minimax) Average Run Length (ARL) to
false alarm delivered by the GSR procedure devised to detect a jump in the common
baseline mean of a sequence of independent exponentially distributed observations.
The formula is found analytically, through direct solution of the respective renewal
(integral) equation, and is valid for an arbitrary (nonnegative) headstart, with the
detection threshold not restricted from above. Furthermore, the formula is remark-
ably simple (it is a function linear in the detection threshold and in the headstart)
and, unlike its complicated and cumbersome CUSUM and EWMA counterparts,
can be used to compute the GSR procedure’s ARL to false alarm (in the exponential
scenario) essentially “by hand”. This would clearly be of aid to a practitioner.

1By no means is this an exhaustive list of available papers on the subject.
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7.2 Preliminaries

The centerpiece of this work is the (minimax) Average Run Length (ARL) to false
alarm of the Generalized Shiryaev–Roberts (GSR) detection procedure (due to [11])
considered in the context of the basic minimax quickest change-point detection
problem (see, e.g., [8, 14]). As a performance metric, the ARL to false alarm was
apparently introduced in [13]; see also, e.g., [8].

Let f∞(x) and f0(x) denote, respectively, the observations’ pdf in the pre- and
post-change regime. Let Λn � f0(Xn)/f∞(Xn) be the “instantaneous” likelihood
ratio (LR) for the n-th data point, Xn. The GSR procedure (due to [11]) is then
formally defined as the stopping time

S r
A � inf

{
n ≥ 1:Rr

n ≥ A
}
, such that inf{∅} = ∞, (7.1)

where A > 0 is a detection threshold used to control the false alarm risk, and

Rr
n+1 = (

1 + Rr
n

)
Λn+1 for n = 0,1, . . . with Rr

0 = r ≥ 0, (7.2)

is the GSR detection statistic. We remark that Rr
0 = r ≥ 0 is a design parameter

referred to as the headstart and, in particular, when Rr
0 = r = 0, the GSR procedure

is equivalent to the classical Shiryaev–Roberts (SR) procedure (due to [27–29]);
a brief account of the SR procedure’s history may be found, e.g., in [16]. Albeit
“young” (the GSR procedure was proposed in 2011), it has already been shown (see,
e.g., [17, 22, 30, 34, 35]) to possess very strong optimality properties, not exhibited
by the CUSUM scheme or the EWMA chart; in fact, in certain scenarios, the latter
two charts have been found experimentally to be inferior to the GSR procedure.

Let P∞ (E∞) be the probability measure (expectation) induced by the observa-
tions in the pre-change regime, i.e., when Xn ∝ f∞(x) for all n ≥ 1. The ARL to
false alarm of the GSR procedure is defined as ARL(S r

A) � E∞[S r
A]. A key prop-

erty of the GSR statistic (7.2) is that the sequence {Rr
n − n − r}n≥0 is a zero-mean

P∞-martingale, i.e., E∞[Rr
n − n − r] = 0 for all n ≥ 0 and all r . This and Doob’s

Optional stopping (sampling) theorem (see, e.g., [33, Theorem 2.3.1, p. 31]) imply
that E∞[RS r

A
− S r

A − r] = 0, so that ARL(S r
A) = E∞[RS r

A
] − r ≥ A − r . As a

result, to ensure that ARL(S r
A) ≥ γ for a desired γ > 1, it suffices to pick A and r

from the solution set of the inequality A − r ≥ γ and such that A > 0 and r ≥ 0.
A more accurate result is the approximation ARL(S r

A) ≈ (A/ξ) − r valid
for sufficiently large A > 0; see, e.g., [15, Theorem 1] or [34]. To define ξ , let
Sn �

∑n
i=1 logΛn for n ≥ 1, and let τa � inf{n ≥ 1:Sn ≥ a} for a > 0 (again, with

the understanding that inf{∅} = ∞). Then κa � Sτa −a is the so-called “overshoot”
(excess over the level a > 0 at stopping), and ξ � lima→∞ E0[e−κa ], and is referred
to as the “limiting average exponential overshoot”; here E0 denotes the expecta-
tion under the probability measure induced by the observations in the post-change
regime, i.e., when Xn ∝ f0(x) for all n ≥ 1. In general, ξ is clearly between 0 and
1, and is a model-dependent constant, which falls within the scope of nonlinear
renewal theory; see, e.g., [39], [38, Section II.C] or [33, Section 2.6].

We now state the main equation that we shall deal with (and, in fact, solve
analytically) in the next section in a certain exponential scenario. Let P Λ∞(t) �
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P∞(Λ1 ≤ t), t ≥ 0, be the cdf of the LR under probability measure P∞. Let
Rr=x

0 = r = x ≥ 0 be fixed and define

K∞(x, y) � ∂

∂y
P∞

(
Rr

n+1 ≤ y
∣∣Rr

n = x
) = ∂

∂y
P Λ∞

(
y

1 + x

)
, for x, y ≥ 0, (7.3)

i.e., the transition probability density kernel for the homogeneous Markov process
{Rr

n}n≥0 under probability measure P∞.
From now on, let �(x,A) � ARL(S r=x

A ). It is shown, e.g., in [11], that �(x,A)

is governed by the renewal equation

�(x,A) = 1 +
∫ A

0
K∞(x, y)�(y,A)dy, (7.4)

where x ≥ 0 and A > 0. The question of existence and uniqueness of solution for
this equation has been answered in the affirmative, e.g., in [11]. It is this equation,
viz. the exact solution thereof in a specific exponential scenario, that is the center-
piece of this work.

Equation (7.4) is a Fredholm (linear) integral equation of the second kind. Since
for such equations an analytical solution is rarely a possibility, they are usually
solved numerically. Numerical schemes specifically for Eq. (7.4) have been devel-
oped and applied, e.g., in [11, 20, 36]. However, it turns out that in a certain expo-
nential scenario it is possible to solve (7.4) analytically, and, more importantly, the
solution is a simple linear function of x and A, just as one would expect from the
approximation ARL(S r

A) ≈ (A/ξ) − r mentioned earlier. This is the main result
of this paper, it generalizes [5, Proposition 1], and the details are given in the next
section.

7.3 The Main Result

We are now in a position to establish the main result of this work, i.e., derive analyti-
cally an exact closed-form formula for the ARL to false alarm exhibited by the GSR
procedure (7.1)–(7.2) “tasked” to detect a change in the baseline (common) mean
of a series of independent exponentially distributed observations. More concretely,
suppose the observations’ pre- and post-change pdf’s are

f∞(x) = e−x1{x≥0} and f0(x) = 1

1 + θ
e−x/(1+θ)1{x≥0}, (7.5)

respectively, where θ > 0, a known parameter with an obvious interpretation: it
is the magnitude of the shift in the mean of the exponential distribution, so that
the higher (lower) the value of θ , the more (less) contrast the mean shift is, and
the easier (harder) it is to detect. We shall from now on refer to this scenario as
the E (1)-to-E (1 + θ) model, to reflect not only the throughout “exponentiality” of
the data, but also that their mean is 1 pre-change and 1 + θ > 1 post-change. For a
motivation to consider this model, see, e.g., [4, 31], or [33, Section 3.1.6].
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To “tailor” the general equation (7.4) on the ARL to false alarm to the E (1)-to-
E (1 + θ) model, the first step is to find Λn � f0(Xn)/f∞(Xn). To that end, it is
easy to see from (7.5) that

Λn = 1

1 + θ
exp

{
θ

1 + θ
Xn

}
, n ≥ 1, (7.6)

and we note that since Xn ≥ 0 w.p. 1 for all n ≥ 1 under any probability measure, it
can be deduced that Λn ≥ 1/(1 + θ) w.p. 1 for all n ≥ 1, also under any probabil-
ity measure. The latter inequality is a circumstance with consequences, which are
illustrated in the following two results.

Lemma 7.1 For the E (1)-to-E (1 + θ) model (7.5), the pre-change transition prob-
ability density kernel, K∞(x, y), defined by (7.3), is given by the formula:

K∞(x, y) = θ−1(1 + θ)−1/θ y−2−1/θ (1 + x)1+1/θ1{y≥(1+x)/(1+θ)}, (7.7)

where it is understood that x ≥ 0.

Proof The desired result can be established directly from (7.3), i.e., the defini-
tion of the pre-change transition probability density kernel, K∞(x, y), combined
with (7.6), i.e., the formula for the LR specific to the E (1)-to-E (1 + θ) model (7.5).
The presence of the indicator function in the right-hand side of (7.7) is an implica-
tion of the aforementioned inequality Λn ≥ 1/(1 + θ) valid w.p. 1 for all n ≥ 1 and
under any probability measure. �

Now, with (7.7) put in place of K∞(x, y) in the general equation (7.4) the latter
takes on the form

�(x,A) = 1 + θ−1(1 + θ)−1/θ (1 + x)1+1/θ

∫ A

(1+x)/(1+θ)

y−2−1/θ �(y,A)dy, (7.8)

where x ≥ 0 and A > 0, and we recall that �(x,A) � E∞[S r=x
A ]. It is this equation

that we shall now attempt solve explicitly. To that end, a natural point of departure
here would be the aforementioned approximation ARL(S r

A) ≈ (A/ξ) − r , where
ξ is the limiting average exponential overshoot formally defined in the preceding
section. It is known (see, e.g., [31]) that ξ = 1/(1 + θ) ∈ (0,1) for the E (1)-to-
E (1 + θ) model (7.5). Hence, at least for large enough A’s, the solution to (7.8)
should behave roughly as �(x,A) ≈ A(1 + θ) − x. As will be shown shortly, this
is, in fact, precisely the behavior of the solution, without A having to be large.
However, the aforementioned fact that Λn ≥ 1/(1 + θ) w.p. 1 under any measure
makes things a bit complicated.

Lemma 7.2 For the E (1)-to-E (1 + θ) model (7.5), at each epoch n ≥ 0 and under
any probability measure, the GSR statistic Rr

n has a deterministic lower bound, i.e.,



62 W. Du et al.

Rr
n ≥ Br

n w.p. 1, for each n ≥ 0 and under any probability measure, where

Br
n �

1

θ

[
1 − 1

(1 + θ)n

]
+ r

(1 + θ)n
, n ≥ 0, (7.9)

and r is the GSR statistic’s headstart, i.e., Rr
0 = r ≥ 0.

Proof It is merely a matter of “unfolding” the recursion Rr
n = (1+Rr

n−1)Λn, n ≥ 1,
one term at a time, and applying, at each step, the inequality Λn ≥ 1/(1 + θ) valid
w.p. 1 under any probability measure. �

At this point note that since 1 + θ > 1, the lower bound sequence {Br
n}n≥0 given

by (7.9) is such that (a) for r ≤ 1/θ , it increases monotonically with n, i.e., r ≡
Br

0 ≤ Br
1 ≤ Br

2 ≤ . . ., when r ≤ 1/θ , and (b) limn→∞ Br
n = 1/θ , irrespective of

Rr
0 = r ≥ 0. Hence, when A < 1/θ , the GSR statistic, {Rr

n}n≥0, is guaranteed to
either hit or exceed the level A > 0 within at most m steps, where m ≡ m(r,A, θ) is
found from the inequality Br

m ≥ A, i.e.,

m ≡ m(r,A, θ) �
{⌈(

log 1−θr
1−θA

)
/ log(1 + θ)

⌉
, for r < A(< 1/θ);

1, for r ≥ A,

with 
x� denoting the usual “ceiling” function. Therefore, the general solution
to (7.8) is dependent upon whether A < 1/θ or A ≥ 1/θ . In the latter case, the
(exact) solution is given by the following theorem, which is the main result of this
paper.

Theorem 7.1 For the E (1)-to-E (1 + θ) model (7.5), if the detection threshold,
A > 0, is set so that A ≥ 1/θ , then the ARL to false alarm of the GSR procedure is
given by the formula:

�(x,A) = 1 + (1 + θ)

(
A − 1 + x

1 + θ

)
1{(1+x)/(1+θ)≤A}, (7.10)

and it is understood that x ≥ 0.

Proof It is sufficient to insert (7.10) into Eq. (7.8) and directly verify that the lat-
ter does, in fact, “check out”. The condition that A ≥ 1/θ “protects” against the
situation described in Lemma 7.2 and in the discussion following it. �

The special case of Theorem 7.1 when Rr=x
0 = r = x ≥ 0 (i.e., when there is no

headstart) was previously established in [4, Proposition 1] using the memorylessness
of the exponential distribution. It is also noteworthy that formula (7.10) as well as
Eq. (7.8) are actually valid for x ≥ −1; the same can also be said about the general
equation (7.4).

We conclude this section with a brief analysis of the case when A < 1/θ . Recall
that the integral in the right-hand side of (7.8) plays no role, unless (1 + x)/(1 +
θ) < A. For this condition to hold when A < 1/θ , it must be the case that (1 +
x)/(1 + θ) < 1/θ , i.e., that x < 1/θ . Hence, if A < 1/θ , then �(x,A) ≡ 1 for all
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x ≥ 1/θ . To obtain �(x,A) explicitly for x < 1/θ , note that if x < 1/θ , the function
h(x) � (1 + x)/(1 + θ), i.e., the lower limit of integration in the integral in the
right-hand side of (7.8), is such that h(x) ≥ x. As a result, the nature of the integral
equation becomes such that the unknown function, �(x,A), is dependent solely upon
the values it assumes for higher x’s, and since �(x,A) ≡ 1 for x ≥ 1/θ , one can
iteratively work out backwards the solution for any x ≥ 0. However, this process
involves formidable integrals, and only the first few steps seem to be feasible to
actually carry out.

While an explicit formula for the ARL to false alarm of the GSR procedure when
A < 1/θ turned out to be problematic to get, from a practical standpoint it might not
be worthwhile altogether, for the formula for A ≥ 1/θ alone, i.e., Theorem 7.1,
is sufficient. Specifically, since ARL(S r

A) ≥ A − r , the formula for the ARL to
false alarm when A > 1/θ , i.e., formula (7.10), will never yield ARL’s lower than
(1/θ) − r . However, the size of this “blind spot” is not necessarily large, unless θ

is very small, which is to say that the change in the mean in the E (1)-to-E (1 + θ)

model (7.5) is faint and not worthy of detection to begin with. As an illustration of
this point, consider the original SR procedure (r = 0) and suppose that θ is 0.01,
which, from a practical standpoint, can hardly be considered a “change” in the first
place. Yet, since 1/θ in this case is 100, the linear formula for the ARL to false
alarm will never yield a value of 100 or less. However, this is unlikely to be of
inconvenience to a practitioner, as in most applications the ARL to false alarm is set
to be at least in the hundreds, and, when θ = 0.01, these levels of the ARL to false
alarms would be obtainable through formula (7.10).

7.4 Concluding Remarks

This contribution is part of the authors’ ongoing effort (manifested, e.g., in [19, 20],
and, with other collaborators, e.g., in [11, 22, 34, 35]) to “pave the way” for fur-
ther research on the theory and application of the GSR procedure. To that end, case
studies involving “stress-testing” the GSR procedure on real data are still an “un-
charted territory” and would be of particular interest. Hopefully, the result obtained
in this work, the data-analytic advantages pointed out in [5], and the strong optimal-
ity properties established, e.g., in [17, 22, 30, 34, 35], will help the GSR procedure
rightly stand out as the top tool for change-point detection.
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