
Chapter 48
Detection of Essential Changes
in Spatio-Temporal Processes with Applications
to Camera Based Quality Control

Ewaryst Rafajłowicz

Abstract Our aim in this paper is to propose a simple detector of changes in time
that is well suited for parallel use at a large number of spatial sites, since our main
motivation is change detection in a sequence of images that are dedicated for quality
control of continuously running industrial processes.

48.1 Introduction

Our aim is to propose a new look at change detection tasks that arise when we
observe a large number of parallel processes that may change in time. To motivate
our approach, consider a sequence of images provided by a camera that follows
the quality of a certain production process. Each image contains millions of pixels.
Fixing our attention at a particular pixel we can observe fluctuations of its grey levels
in time as one time series. Applying a change detector (e.g., EWMA, CUSUM etc.)
to all time series arising from observing each pixel, for each instant of time we
obtain a set of YES/NO decisions concerning the presence or absence of a change.
It is clear that the change at one pixel only is rather unimportant from the view point
of the production quality control. We should rather concentrate on more massive
changes that arise in a spatially concentrated area at the same (or approximately the
same) time.

From the statistical point of view quite similar change detection tasks arise when
a bank observes the amount of money collected on accounts of its clients. Even a
sharp change of deposits of one or several clients is usually not important. However,
when we detect essential deposit changes of a larger group of clients approximately
at the same time (and possibly in the same city or region), then it should be an
indicator that something important may happened in the banking market.

One more example of a need for detecting massive changes of parallel processes
comes from following intensity of the traffic in the Internet. The growth of the traffic
intensity approximately at the same time to a group of web pages is well known
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indicator of hackers attack. In this case a geographical closeness may not appear,
but attacked web pages may have similarities of other kind, e.g., the same owner.

In the same vain one can consider:

– a health care system, when the growing number of patients in a certain area should
be detected as a possible indicator of an epidemia,

– a stock market – prices of shears of enterprises can fluctuate, but a rapid reduction
of them at a certain area can be a symptom of certain economic changes.

All the above examples have the following common features:

1. observed processes run in parallel, but not necessarily independently, in time at
different sites (spatial locations),

2. change detection along time axis at one or even a few site(s) (pixels) can be
neglected, unless they have very high or very low values in comparison to typical
(in-control) state,

3. moderate in size changes of observed variables, arising in time and at moderate
area in space are typical cases to be detected,

4. smaller changes of observed variables, but arising at larger areas in the spatial
domain should (or at least could) be considered as an alarm,

5. changes along time axis may arise not necessarily at the same time instant, but
can be spread in a certain time interval.

Additionally, one should distinguish between up and down changes, because at a
certain area the number of up changes may dominate largely the number of down
changes and the former can be neglected.

Clearly, the terms used above like: “high” and “low” changes as well as “close”
time instants and “larger area” are problem dependent and require to be defined
precisely at scales relevant to an application at hand.

The above list of possible changes of interest can be named spatio-temporal
change detection problems. One can try to solve some of them using the classic
control charts and aggregating observations over the spatial domain. However, such
approaches may lead to overlooking changes along time axis when the aggregation
covers larger spatial regions. Furthermore, not all the above sketched problems can
be solved using a spatial aggregation.

For these reasons it seems justified to consider new kinds of spatio-temporal
change detectors. Apparently, it is not possible to propose change detectors for all
the above mentioned problems in one paper.

We propose a simple change detector of changes in time that is well suited for
parallel use at a large number of spatial sites. The idea is based on exponentially
weighted moving average smoothing (EWMAS), but the detector itself is different
than the one that is used in the classic EWMA chart. In particular, it allows to distin-
guish between jumps of a moderate size and those that are large. It keeps the main
advantage of the classic EWMA chart, namely, there is no need to store historical
data, i.e., for the current decision it suffices to have the present smoothed state and
the current observation, which is crucial importance when we have to monitor mil-
lions of sites or pixels. The EWMAS is based on the idea of vertical weighting that
was used for detecting changes in space (edges) in [14].



48 Detection of Essential Changes in Spatio-Temporal Processes 435

Detection of spatio-temporal changes may also include

1. changes along curves at the spatial domain that are observed at the same (or
close) time instant(s) can also be of interest (e.g., as in edge detection tasks in
image sequence processing),

2. changes of the observed variable that “travels” in time along curves at the spatial
domain.

These tasks are much more difficult than those listed above and they are outside the
scope of this paper.

Quality control of continuously running industrial production processes is the
subject of research for many years (see [10] and the bibliography cited therein and
[16, 18] for recently proposed nonparametric control charts). These charts as well
as classic control charts like the Shewhart one, CUSUM, EWMA are well suited for
detecting changes in time. In the stream of research called spatial statistics (see [3]
and the bibliography cited therein) the topic of detecting changes in space domain
is present. Somewhat unexpectedly, detecting changes simultaneously in time and
space has not so rich bibliography as one might expect. The main contributions
in this direction come from applications of image sequences processing and their
applications in geoscience (see [1, 5, 6, 11, 17]). Quickest detection of significant
changes in a sensor net that is based on a non-cooperative stopping game which
is a model of the multivariate disorder detection has been proposed in [19]. The
approach proposed in [12] also covers spatio-temporal changes as a special case of
detecting jumps of time series with values in a Banach space.

In recent years one can observe a rapid development of relatively cheap, high res-
olution and high speed industrial cameras that are well suited for quality monitoring
of such processes (see [7]). Simultaneously, a high speed, running in parallel com-
puters and graphical processing units (GPU) made it possible to process sequences
of high resolution images on-line. As a result, the stream of research on control
charting with image data, which is closely related to this paper, is rapidly growing
(see [9] for a stimulating review and [8, 13] for more recent contributions).

The paper is organized as follows. In the next section we describe our version
of EWMAS temporal change detector and present its elementary properties. Then,
we shall describe how a bank of such change detectors can be used to detect spatio-
temporal changes. Finally, we present an example of application to quality control
of a copper slab using images from a camera.

48.2 EWMA Smoothed Jump Detector

For simplicity, we shall describe our jump detector in 2D spatial case, but the exten-
sion to larger dimensions is immediate. Let x = (x(1), x(2)) ∈ Ω denotes a spatial
position (e.g., of a pixel or site) in a rectangular domain1 (image) Ω . By t = 1,2, . . .

1It is convenient to work with a rectangular domain, but all the considerations convey easily to
other domains, integer lattices or finite sets.
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we denote time instants when observations are made (e.g., images from a camera are
sampled). Observed real-valued random field (e.g., grey-level image) Y(x, t) results
from observing an unknown function m(x, t) with zero mean, finite variance addi-
tive errors ε(x, t), i.e.,

Y(x, t) = m(x, t) + ε(x, t), x ∈ Ω, t = 1,2, . . . . (48.1)

The probability distribution of ε(x, t) is unknown, but – for simplicity of the expo-
sition – we assume that there exists its p.d.f., denoted by fε , which does not depend
on x and t and it is symmetric. We also assume that Y(x, t) and Y(x′, t ′) are un-
correlated for t �= t ′, t, t ′ = 1,2, . . ., x, x′ ∈ Ω , even if x = x′. However, for each t

a spatial correlation is allowed. This assumption will be used only when theoretical
properties of our jump detector are investigated.

Consider a symmetric and unimodal kernel K :R → R+ such that K(0) = 1 and
K(z) → 0 as |z| → ∞. In particular, the gaussian KG(z) = exp(−z2/2) kernel and
the uniform one: KU(z) = 1 for |z| ≤ 1 and KU(z) = 0 for |z| > 1 are of special
interest.

Then, for m(x, t) we have the following nonlinear equation (see [15] for the
proof that can be adopted to the case considered here):

m(x, t) = κ−1E
[
Y(x, t)K

((
Y(x, t) − m(x, t)

)
/H

)]
,

x ∈ Ω, t = 1,2, . . . (48.2)

where κ
def= ∫ ∞

−∞ K(z/H)fε(z)dz. Equation (48.2) can be the source of many em-
pirical versions for estimating m(x, t). We select one of the simplest that can be run
in parallel w.r.t. time for each site (pixel) x ∈ Ω . Namely,

m̂(x, t + 1) = (1 − α)m̂(x, t) + α

κ̂
Y (x, t)K

((
Y(x, t) − m̂(x, t)

)
/H

)
, (48.3)

where t = 1,2, . . ., x ∈ Ω , while 0 < α < 1 is a smoothing parameter. Also K and
H > 0 are selected by the statistician. κ̂ can be estimated from residuals, because
κ = E[K(ε(x, t)/H)]. If the variance of ε(x, t) is small in comparison to H 2, then
κ is close to 1 and later on we take κ̂ = 1.

A really fast version of (48.3) one obtains for the uniform kernel:

m̂(x, t + 1) = (1 − α)m̂(x, t) +
{

0, if |Y(x, t) − m̂(x, t)| > H

αY(x, t) if |Y(x, t) − m̂(x, t)| ≤ H

(48.4)

From (48.4) it is clear that m̂(x, t + 1) is essentially updated only if there is no jump
larger than H > 0.

Spatio-Temporal Change Detector – Basic Version

Step 1 – Detection of changes in time. For current time instant t and for every x ∈
Ω calculate matrix B(x, t) of the same size as Ω in the following way:

B(x, t) =
{

1, if |Y(x, t) − m̂(x, t)| > H

0, if |Y(x, t) − m̂(x, t)| ≤ H
(48.5)
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Step 2 – First decision. If
∑

x∈Ω B(x, t) ≤ θ0, set t = t + 1, calculate (48.4) and go
to Step 1, otherwise, go to Step 3. Here θ0 ≥ 0 is a threshold preselected in
such a way that if we met only a few number of sites with time changes, we
can decide that there were no essential changes in the space–time domain.

Step 3 – Removing small clusters in the space domain. For fixed t one can interpret
B(x, t) as a binary image and apply image processing tools like morphologi-
cal erosion or blob analysis (see [2]) in order to remove single sites or small
clusters of them by setting the corresponding B(x, t) = 0.

Step 4 – Final decision. Select θ1 > θ0 as a threshold for declaring essential spatio-
temporal change. If

∑
x∈Ω B(x, t) ≥ θ1, then declare essential change, set t =

t + 1 and go to Step 1. Otherwise, calculate (48.4) and also set t = t + 1 and
go to Step 1.

Remark Only (48.4) and Step 1 can be run in parallel, but these are the most time
consuming operations, because they are repeated for all x ∈ Ω and all t .

If we skip Step 2 and Step 3 and fix a particular x ∈ Ω , then we can compare
the above algorithm for change detection in time with other control charts. As one
can notice, (48.4) runs as the EWMA chart with two exceptions. Namely, m̂(x, t)

is updated only when new observation is close to it. Thus, m̂(x, t) estimates the
process mean, but only in-control states. In contrary, in EWMA chart m̂(x, t) also
jumps are incorporated into m̂(x, t), if they were not detected. The second difference
is in that in the classic EWMA chart m̂(x, t) is compared to the threshold in order to
detect jumps. Here, the decision is based on the difference Y(x, t) − m̂(x, t), which
resembles the Shewhart control chart, however with important difference that the
smoothed in-control behavior m̂(x, t) is the base for comparisons. One may hope
that the proposed combination of the EWMA smoothing idea and the Shewhart chart
gives a detector that will be useful for spatio-temporal change detection.

By simple modifications one can easily tune the above basic algorithm to a vari-
ety of particular applications.

1. When only jumps above the mean are of interest, i.e., the conditions in (48.4)
and in (48.5) are replaced by Y(x, t) − m̂(x, t) > H (resp. ≤ H ), then in
Step 4 the final decision can take also jump heights into account as follows:∑

x∈Ω(Y (x, t) − m̂(x, t))B(x, t) ≥ θ1.
2. In Step 4 the final decision takes into account changes detected at the same time

instant. When sampling rate in time is high, one can consider also changes that
occurred at several earlier time instants J ≥ 1, i.e.,

∑J
j=0

∑
x∈Ω B(x, t −j) ≥ θ1

at all spatial points. This require to store (J +1)th previous B(x, t − j) matrices.
3. One can replace the conditions in (48.5) by the following:

∣∣∣∣∣
Y(x, t) − z−1

∑

x∈Z(x)

m̂(x, t)

∣∣∣∣∣
> H (≤ H, resp.),

where Z(x) is a neighborhood of x, while z is its cardinality. This version is less
sensitive to false alarms, but not so easy to run on parallel processors as (48.5).
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48.3 Some Properties of the Spatio-Temporal Change Detector

In this section we announce simple properties of the basic version of our spatio-
temporal change detector. By the lack of space, we omit most of the proofs that will
be published elsewhere. For simplicity, we assume that in the basic algorithm Step 3
and Step 4 is omitted.

For simplicity we assume that random errors are commonly bounded, i.e., there
exists E such that with probability 1, |ε(x, t)| ≤ E . H is selected such that H ≥ 2E ,
which means that there are no guarantees of detecting jumps smaller than 2E .

In Control Behavior Let us assume for a while that there are no spatio-temporal
jumps, i.e., Y(x, t) = M(x) + ε(x, t), x ∈ Ω , t = 1,2, . . ., where M(x) is a station-
ary proper background process. If our algorithm starts from m̂(x,0) = Y(x,0), then
the following properties can be proved.

InC1 E[m̂(x, t)] = M(x), x ∈ Ω , t = 1,2, . . . .

InC2 The false alarm probability is zero for all x ∈ Ω and t > 1. Notice that this is
the consequence of the assumptions: |ε(x, t)| ≤ E and H ≥ 2E .

InC3 For x ∈ Ω and t = 1,2, . . . , define ε̂(x, t) = M(x) − m̂(x, t). Then, for ε̂ the
following recurrent relationships hold:

ε̂(x, t) = (1 − α)ε̂(x, t − 1) + αε(x, t), t = 1,2, . . . (48.6)

with the initial condition ε̂(x,0) = ε(x,0). Furthermore, (48.6) implies
|ε̂(x, t)| ≤ E .

InC4 For x ∈ Ω and t = 1,2, . . . we have |Y(x, t) − m̂(x, t)| ≤ 2E .

Change Detection We firstly consider change detection in time for arbitrary but
fixed spatial site x ∈ Ω . To this end we assume that at a certain time instant t0 > 1
for the first time

Y(x, t0) = M(x) + r(x, t0) + ε(x, t0), x ∈ Ω (48.7)

where r(x, t0) is a jump to be detected, which is assumed to be persistent ((48.7)
holds also for t > t0) and bounded away from 0, i.e., there exists R > 0 such that
r(x, t0) > R, x ∈ Ω .

We shall assume that R is known and R > 3E , because it defines the smallest
jump that we are able to detect immediately, as we shall see below. Select H > 0
such that

E ≤ H < R − 2E . (48.8)

Let us note that m̂(x, t0) = M(x) + ε̂(x, t0), according to (48.6), which can be in-
voked here, because there was no jump before t0. Hence, using this equality and
(48.7) we obtain

∣∣Y(x, t0) − m̂(x, t0)
∣∣ = ∣∣r(x, t0) + ε(x, t0) − ε̂(x, t0)

∣∣ ≥ R − 2E . (48.9)
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Fig. 48.1 Defects detected on the copper slab – two subsequent frames (the left image was taken
first)

The last inequality follows from the following facts: r(x, t0) > R, |ε(x, t0)| ≤ E ,
which also implies |ε̂(x, t0)| ≤ E with probability one. In the worst case r(x, t0) +
ε(x, t0) − ε̂(x, t0) = R − E − E , which finishes the proof of (48.9). According to
(48.8) this implies |Y(x, t0) − m̂(x, t0)| > H .

Corollary 48.1 Under the above assumptions the jump is detected immediately
after its occurrence at each site x ∈ Ω where it appears.

The above corollary was obtained under idealized assumptions. In practice, E is
not known and should be estimated from previous runs. If the errors have a distri-
bution with infinite support, then one can select E so as with probability 0 < β < 1
errors are contained in the interval [−E ,E ]. Then, repeating the above reasoning,
we can say that with probability at least β jumps will be detected at time t0 at all
sites where they happened. Hence, if jumps appeared at K > θ1 sites, then the prob-
ability that less than θ1 of them will be detected at t0 can easily be calculated from
the binomial distribution, since the events of detecting or not detecting a jump at
each site at t0 are independent. If a jump in a certain site is not detected at t0 it will
be detected later with a high probability, but evaluating it is not so easy, because
heights of the undetected jumps enter into m̂(x, t0 + j), j = 1,2, . . . .

Example The above approach to spatio-temporal change detection can be used for
quality control of continuously running processes like production of plain fabrics,
paper, steel sheets, wires, slabs, uniformly painted surfaces etc. The idea is based on
a simple constatation that it is very difficult to detect a motion of a uniformly painted
or produced surface. In contrary, any defects, having different grey levels than the
proper surface, are easier to detect as moving objects, because they are frequently
visible at several subsequent images. Additional feature of our approach is its ability
to follow slow changes of a background, caused, e.g., by changes of its temperature
(see also [4]).

Exactly such circumstances appear when we want to detect defects (darker
places) on a proper (bright) surface of a hot copper slab continuously moving be-
fore a camera. Slow changes of the proper surface temperature make the task more
difficult. Applying the proposed approach with the uniform kernel K , α = 0.5 and
H = 6 grey levels (scale [0,255]) provides the results shown in Fig. 48.1, where
matrices B(x, t) and B(x, t + 1) are displayed as images. As one can notice, the
results are quite satisfactory – the same configuration of two cluster of defects was
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detected in two subsequent images (enclosed by ellipse) and in the next two, which
are not displayed.

Acknowledgements The paper was supported by the National Council for Research of Polish
Government under grant 2012/07/B/ST7/01216, internal code 350914 of Wrocław University of
Technology.

The author would like to express his thanks to anonymous referees for comments clarifying the
presentation.

References

1. Bhamare SM, Agone V (2011) Change detection of surface temperature and its consequence
using multi-temporal remote sensing data and GIS application to Tapi Basin of India. In:
Proceedings of the global conference on global warming, Lisbon, Portugal, 11–14 July, 2011

2. Davies ER (2005) Machine vision: theory, algorithms, practicalities. Morgan Kaufmann, San
Mateo

3. Gaetan C, Guyon X (2010) Spatial statistics and modeling. Springer, Berlin
4. Garcial Rube DF, et al (2002) Shape inspection system for variable-luminance steel plates

with real-time adaptation capabilities to luminance variations. Real-Time Imaging 8:303–315
5. Hima EP (2013) Video objects detection using spatial and temporal segmentation. Int J Sci

Res, India Online 2(7):255
6. Ji M, Jensen JR (1999) Effectiveness of subpixel analysis in detecting and quantifying urban

imperviousness from landsat thematic mapper imagery. Geocarto Int 14(4):33–41
7. Malamasa EN, et al (2003) A survey on industrial vision systems, applications and tools.

Image Vis Comput 21:171–188
8. Megahed FM, Wells J, Camelio JA, Woodall WH (2012) A spatiotemporal method for the

monitoring of image data. Qual Reliab Eng Int 28(8):967–980
9. Megahed FM, Woodall WH, Camelio JA (2011) A review and perspective on control charting

with image data. J Qual Technol 43(2):83–98
10. Montgomery DC (1996) Introduction to statistical quality control. Wiley, New York
11. Panigrahi N, Mohan BK, Athithan G (2011) Differential geometric approach to change detec-

tion using remotely sensed images. J Adv Inf Technol 2(3):134–138
12. Pawlak M, Rafajłowicz E, Steland A (2004) On detecting jumps in time series: nonparametric

setting. J Nonparametr Stat 16(3/4):329–347
13. Prause A, Steland A (2015) Detecting changes in spatial-temporal image data based on

quadratic forms In: Stochastic models, statistics and their applications, Chapter 16
14. Rafajłowicz E (2007) SUSAN edge detector reinterpreted, simplified and modified. In: Inter-

national workshop on multidimensional (nD) systems, Aveiro, Portugal, pp 69–74
15. Rafajłowicz E, Pawlak M, Steland A (2008) Nonlinear image processing and filtering: a uni-

fied approach based on vertically weighted regression. Int J Appl Math Comput Sci 18(1):49–
61

16. Rafajłowicz E, Pawlak M, Steland A (2010) Nonparametric sequential change-point detection
by a vertically trimmed box method. IEEE Trans Inf Theory 56(7):3621–3634

17. Ristivojevic M, Konrad J (2006) Space–time image sequence analysis: object tunnels and
occlusion volumes. IEEE Trans Image Proc 15(2):364–376

18. Steland A, Rafajlowicz E (2014) Decoupling change-point detection based on characteris-
tic functions: methodology, asymptotics, subsampling and application. J Stat Plan Inference
145:49–73

19. Szajowski K (2011) Multi-variate quickest detection of significant change process. In: Baras
JS, Katz J, Altman E (eds) Decision and game theory for security. Lecture notes in computer
science, vol 7037. Second international conference, GameSec 2011 College Park, MD, Mary-
land, USA, November 14–15, 2011, pp 56–66


	Chapter 48: Detection of Essential Changes in Spatio-Temporal Processes with Applications to Camera Based Quality Control
	48.1 Introduction
	48.2 EWMA Smoothed Jump Detector
	48.3 Some Properties of the Spatio-Temporal Change Detector
	References


