
Chapter 3
Visualizing Association Structure in Bivariate
Copulas Using New Dependence Function

Teresa Ledwina

Abstract Measuring a strength of dependence of random variables is an important
problem in statistical practice. We propose a new function valued measure of de-
pendence of two random variables. It allows one to study and visualize explicit de-
pendence structure, both in some theoretical models and empirically, without prior
model assumptions. This provides a comprehensive view of association structure
and makes possible much detailed inference than based on standard numeric mea-
sures of association. In this contribution, we focus on copula-based variant of the
measure. We present theoretical properties of the new measure of dependence and
discuss estimation of it. Some artificial and real data examples illustrate the behavior
and practical utility of the measure and its estimator.

3.1 Introduction

Measuring a strength of dependence of two random variables has long history and
wide applications. Detailed information can be found in Drouet Mari and Kotz [9]
as well as Balakrishnan and Lai [2], for example. Most of measures of dependence,
introduced in vast literature on the subject, are scalar ones. Such indices are called
global measures of dependence. However, nowadays there is strong evidence that an
attempt to represent complex dependence structure via a single number can be mis-
leading. To overcome this drawback, some local dependence functions have been in-
troduced as well. In particular, Kowalczyk and Pleszczyńska [14] invented function
valued measure of monotonic dependence, based on some conditional expectations
and adjusted to detect dependence weaker than the quadrant one. Next, Bjerve and
Doksum [5], Bairamov et al. [1] and Li et al. [17], among others, introduced local
dependence measures based on regression concepts. See the last mentioned paper
for more information. Holland and Wang [11] defined the local dependence func-
tion, which mimics cross-product ratios for bivariate densities and treats the two
variables in a symmetrical way. This function valued measure has several appealing
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properties and received considerable attention in the literature; cf. Jones and Koch
[13] for discussion and references. However, on the other hand, this measure has
some limitations: it is not normalized, requires existence of densities of the bivari-
ate distribution, and is intimately linked to strong form of dependence, the likelihood
ratio dependence. Recently, Tjøstheim and Hufthammer [21] extensively discussed
the role and history of local dependence measures in finance and econometrics.
They also proposed the new local dependence measure, the local correlation func-
tion, based on approximating of bivariate density locally by a family of Gaussian
densities. Similarly as the measure of Holland and Wang [11], this measure treats
both variables on the same basis. Though the idea behind the construction of this
measure is intuitive one its computation and estimation is a difficult and complex
problem. In Berentsen et al. [3] this theory is applied to describe dependence struc-
ture of different copula models. In particular, this work strongly emphasizes a need
for intuitive and informative diagnostic plots.

In this paper, we propose the new function valued measure of dependence of two
random variables X and Y and present its properties. The measure has simple form
and its definition exploits cumulative distribution functions (cdf’s), only. In particu-
lar, we do not assume existence of a density of the observed vector. We focus here
on copula-based variant of the measure which corresponds to some cdf on [0,1]2

with uniform marginals. General case is presented in Ledwina [15]. The measure
takes values in [−1,1] and treats both variables in a symmetrical way. The mea-
sure preserves the correlation order, or equivalently the concordance order, which
is the quadrant order restricted to the class of distributions with fixed marginals. In
particular, it is non-negative (non-positive) if and only if X and Y are positively
(negatively) quadrant dependent. Quadrant dependence is relatively weak, intuitive
and useful dependence notion, widely used in insurance and economics; see Dhaene
et al. [8] for an evidence and further references. The new measure obeys several
properties formulated in the literature as useful or desirable. It allows for readable
visualization of departures from independence. Simple and natural estimator of the
copula-based measure in the i.i.d. case is proposed and its appealing properties are
discussed. The estimator is simply standardized empirical copula. Due to theoretical
results proved in Ledwina and Wyłupek [16], the estimator can be effectively ex-
ploited to assess graphically underlying bivariate dependence structure and to build
some formal local and global tests. For some details see Sect. 3.3. Two illustrative
examples are given in Sect. 3.3 to support utility of the new solution.

3.2 Copula-based measure of dependence and its estimate

Consider a pair of random variables X and Y with joint cdf H and marginals F

and G. In this paper, to avoid technicalities and to concentrate on the main idea,
we restrict attention to cdf’s H with continuous marginals. Under such a restriction
there exists a unique copula C such that H(x,y) = C(F(x),G(y)). In other words,
C is the restriction to the unit square of the joint cdf of U = F(X) and V = G(Y).
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The copula captures the dependence structure among X and Y , irrespective of their
marginal cdf’s. This is important in many applications. For the related discussion
see Póczos et al. [19]. Below we show that properly standardized copula function
can be seen to be well defined function valued dependence measure.

Namely, set

q(u, v) = qC(u, v) = C(u, v) − uv√
uv(1 − u)(1 − v)

, (u, v) ∈ (0,1)2, (3.1)

and define additionally w(u,v) = 1/
√

uv(1 − u)(1 − v).
Following Ledwina and Wyłupek [16], notice that the value of q at (u, v) can be

interpreted as correlation coefficient of two specific functions of U and V . Namely,
for u ∈ (0,1) and s ∈ [0,1] consider

φu(s) = −√
(1 − u)/u1[0,u](s) + √

u/(1 − u)1(u,1](s).
Then

q(u, v) = EC

[
φu(U) · φv(V )

] = CovC

(
φu(U),φv(V )

) = CorrC

(
φu(U),φv(V )

)
.

(3.2)

Remark 3.1 The last expression in (3.2) shows indeed that the function q is based
on aggregated local correlations. Moreover, the second expression in (3.2) implies
that q(u, v) can be interpreted as Fourier coefficient of C pertaining to the quasi-
monotone function φu(s) · φv(t), (s, t) ∈ [0,1]2.

The measure q fulfills natural postulates, motivated by the axioms formulated in
Schweizer and Wolff [20] and updated in Embrechts et al. [10].

Proposition 3.1 The copula based measure of dependence q , given by (3.1), has
the following properties.

1. −1 ≤ q(u, v) ≤ 1 for all (u, v) ∈ (0,1)2.
2. By Fréchet–Hoeffding bounds for copulas, the property 1 can be further sharp-

ened to B∗(u, v) ≤ q(u, v) ≤ B∗(u, v), (u, v) ∈ (0,1)2, where B∗(u, v) =
w(u,v) × [max{u + v − 1,0} − uv] and B∗(u, v) = w(u,v)[min{u,v} − uv].

3. q is maximal (minimal) if and only if Y = f (X) and f is strictly increasing
(decreasing) a.s. on the range of X.

4. q(u, v) ≡ 0 if and only if X and Y are independent.
5. The equation q(u, v) ≡ c, c a constant, can hold true if and only if c = 0.
6. q is non-negative (non-positive) if and only if (X,Y ) are positively (negatively)

quadrant dependent.
7. q is invariant to strictly increasing a.s. on ranges of X and Y , respectively,

transformations.
8. If X and Y are transformed by strictly decreasing a.s. functions then q(u, v)

transforms to q(1 − u,1 − v).
9. If f and g are strictly decreasing a.s. on ranges of X and Y , respectively, then

q’s for the pairs (f (X),Y ) and (X,g(Y )) take the forms −q(1 − u,v) and
−q(u,1 − v), accordingly.
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10. q respects concordance ordering, i.e. for cdf’s H1 and H2 with the same
marginals and pertaining copulas C1 and C2, H1(x, y) ≤ H2(x, y) for all
(x, y) ∈R

2 implies qC1(u, v) ≤ qC2(u, v) for all (u, v) ∈ (0,1)2.
11. If (X,Y ) and (Xn,Yn), n = 1,2, . . ., are pairs of random variables with

joint cdf’s H and Hn, and the pertaining copulas C and Cn, respectively,
then weak convergence of {Hn} to H implies qCn(u, v) → qC(u, v) for each
(u, v) ∈ (0,1)2.

Proof The property 1 follows from (3.2), 3 is a consequence of 2. To jus-
tify 5 observe that the equation is equivalent to C(u, v) = Cc(u, v) = uv +
c
√

uv(1 − u)(1 − v). Since C is quasi-monotone, then Cc(u, v) should also possess
such a property. Since Cc(u, v) is absolutely continuous then quasi-monotonicity

is equivalent to ∂2

∂u∂v
Cc(u, v) ≥ 0 for almost all (u, v) ∈ [0,1]2 (in the Lebesgue

measure); cf. Cambanis et al. [7]. However, ∂2

∂u∂v
Cc(u, v) = 1 + c[u − 1/2][v −

1/2]w(u,v) and for c 	= 0 this expression can be negative on the set of positive
Lebesgue measure. Properties 7–9 follow from Theorem 3 in Schweizer and Wolff
[20]. The convergence in 11 is due to continuity of C. The remaining properties are
immediate. �

Remark 3.2 The properties 4 and 7–9 provide some compromise to too demanding
postulates P4 and P5 discussed in Embrechts et al. [10]. The property 5 is very
different from respective property of the local dependence function of Holland and
Wang [11] which is constant for the bivariate normal distribution and some other
models; cf. Jones [12] for details.

Now, we discuss briefly estimation of q . Let (X1, Y1), . . . , (Xn,Yn) be a random
sample from cdf H . Furthermore, let Ri be the rank of Xi , i = 1, . . . , n, in the
sample X1, . . . ,Xn and Si the rank of Yi , i = 1, . . . , n, within Y1, . . . , Yn. Simple
estimate of C has the form

Cn(u, v) = 1

n

n∑

i=1

1

(
Ri

n + 1
≤ u,

Si

n + 1
≤ v

)
, (u, v) ∈ [0,1]2. (3.3)

We shall consider the following estimator of q .

Qn(u, v) = w(u,v)
[
Cn(u, v) − uv

] = Cn(u, v) − uv√
uv(1 − u)(1 − v)

, (u, v) ∈ (0,1)2.

(3.4)

Moreover, we set

Ln(u, v) = √
nQn(u, v) (3.5)

for the standardized version of this estimate. So, Ln is the standardized empirical
copula. Simple algebra yields that for any (u, v) ∈ (0,1)2 it holds

Ln(u, v) = 1√
n

n∑

i=1

φu

(
Ri

n + 1

)
φv

(
Si

n + 1

)
+ O

(
1√
n

)
. (3.6)
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Table 3.1 Simulated critical values of the test rejecting independence for large values of |Ln(u, v)|
for two selected (u, v), versus n and α

(u, v) α = 0.01 α = 0.05

n n

200 300 400 500 600 200 300 400 500 600

( 1
2 , 1

2 ) 2.546 2.540 2.600 2.504 2.613 1.980 1.848 2.000 1.968 1.960

( 1
16 , 1

16 ) 2.753 2.879 2.933 2.349 2.591 1.546 1.894 2.080 1.586 1.894

Therefore, up to deterministic term of the order O(1/
√

n), the standardized esti-
mator Ln(u, v) is a linear rank statistic with the quasi-monotone score generating
function φu · φv . Moreover, the definition of Ln and Proposition 1 in Ledwina and
Wyłupek [16] yield that

PC1

(
Ln(u, v) ≥ c

) ≥ PC2

(
Ln(u, v) ≥ c

)
(3.7)

for any (u, v) ∈ (0,1)2, any c, any n, and any two copulas C1 and C2 such that C1

has larger quadrant dependence than C2. Summarizing the above mentioned results,
let us note that under independence Ln(u, v) is distribution free. So, given n, under
independence, the significance of the obtained values of this statistic can be eas-
ily assessed on a basis of simple simulation experiment. For large n one can rely
on asymptotic N(0,1) law of Ln(u, v). Due to (3.7), similar conclusions follow if
one likes to verify hypothesis asserting that qC(u, v) ≥ 0. In particular, given n, we
are able to control the significance level over the whole set of positively quadrant
dependent distributions. Moreover, (3.7) implies that different levels of strength of
quadrant dependence of the underlying H ’s shall be adequately quantified by order
preserving Ln(u, v)’s. These results make the values of Ln(u, v), (u, v) ∈ (0,1)2,
a useful diagnostic tool allowing for easy graphical presentation and precise evalua-
tion of significance of different types of departures from independence. Heat map of
Ln(u, v)’s helps also to recognize regions in (0,1)2 in which independence, positive
quadrant dependence and, in consequence, some stronger forms of positive depen-
dence, etc are invalidated. This is obviously not the case when ones relies on graphs
of Cn(u, v) or Cn(u, v)−uv, solely. Moreover, without using the ‘magnifying glass’
w(u,v) departures from independence can be hardly seen in some cases.

To close, note that, given u and v, the score generating function φu ·φv , appearing
in (3.6), is not smooth one and takes on at most four possible values, only. This
causes that, under independence, the convergence of Ln(u, v) to the limiting N(0,1)

law is not very fast. Moreover, the rate of convergence is expected to depend on u

and v, with the least favorable situation when (u, v) is close to the vertices of the
unit square. We illustrate these aspects in Table 3.1, where simulated critical values
of the test rejecting independence for large values of |Ln(u, v)| are given under
two choices of (u, v)’s, five different sample sizes, and two selected significance
levels α.
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Fig. 3.1 (a): dependence function q(u, v) for the Mai–Scherer copula; (b): scatter plot of
(Ri/(n + 1), Si/(n + 1)), i = 1, . . . , n, n = 500, of simulated observations from the copula;
(c): standardized estimator Ln(u, v) of q(u, v) on the grid G16. L∗ = 1.5, L∗ = 16.1

3.3 Illustration

3.3.1 Example 1: Extreme Value Copula

We start with simulated data set of size n = 500 from Mai–Scherer copula given
by C(u, v) = Ca,b(u, v) = min{ua, vb}min{u1−a, v1−b}, a = 0.9, b = 0.5; cf. Mai
and Scherer [18], p. 313. The copula possesses a singular part. In Fig. 3.1 we show
dependence functions q(u, v) for this model. The function is accompanied by scat-
ter plots of pseudo-observations (Ri/(n + 1), Si/(n + 1)), i = 1, . . . ,500, from the
simulated sample. The scatter plot nicely exhibits the singularity. Panel (c) in this
figure displays respective heat map of standardized correlations Ln(u, v)’s calcu-
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Fig. 3.2 (a): scatter plot of (Ri/(n + 1), Si/(n + 1)), i = 1, . . . , n, n = 230, for air-
craft data; (b): estimator Qn(u, v) of q(u, v) on the grid G16; (c): standardized estimator
Ln(u, v) = √

nQn(u, v) on the grid G16. L∗ = −6.5, L∗ = 4.6

lated on the grid G16 = {(u, v) : u = i/16, v = j/16, i, j = 1, . . . ,15}. Each of 225
squares of size 0.0625 × 0.0625 represents the respective value of Ln in its upper-
right corner. To simplify reading, the heat map is accompanied with two numbers

L∗ = min
1≤i,j≤15

Ln(i/16, j/16) and L∗ = max
1≤i,j≤15

Ln(i/16, j/16).

The copula represents positively quadrant dependent distribution. Under such de-
pendence large values of U tend to associate large values of V and similar pattern
applies to small values. This tendency is nicely seen in the figure. The points of the
grid G16 in which the estimated correlations Qn are significant on the levels 0.05
and 0.01 can be easily identified; cf. Table 3.1 and related comments. Some possibil-
ity of testing for positive local and/or global dependence is sketched in Sect. 3.3.2.
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Next example follows similar pattern. It concerns real data set considered earlier
by Jones and Koch [13] and Berentsen and Tjøstheim [4]. However, in contrast to
our approach based on scatter plots, they investigated the original bivariate observa-
tions. Below we use the same scale of intensity of colors in the heat map as above.
This allows one to compare how different degrees of association are reflected by our
estimators.

3.3.2 Example 2: Aircraft Data

Consider n = 230 aircraft span and speed data, on log scales, from years 1956–
1984, reported and analyzed in Bowman and Azzalini [6]. We summarize the data
in Fig. 3.2. Since in this example both negative and positive correlations appear,
we added respective signs to the colors in the heat map. The figure exhibits that
small and moderately large values of log speed are positively associated with log
span, while for the remaining cases the relation is reversed. Two, approximately
symmetrically located, regions of relatively strong dependence are seen. In general,
in this example, the strength of dependence is weaker than in the previous case.

Bowman and Azzalini [6], p. 42, used these data to discuss some drawbacks
of standard correlation measures when applied to invalidate independence. Indeed,
for these data classical Pearson’s, Spearman’s and Blomqvist’s rank statistics for
assessing lack of association yield simulated p-values 0.81, 0.74, and 0.79, re-
spectively. Kendall’s rank correlation gives simulated p-value 0.31, which also
seems to be too high, when one is looking at the magnitude of standardized lo-
cal correlations in Fig. 3.2. Combining the local correlations into global statistic
Lo = max1≤i,j≤15 |Ln(i/16, j/16)|, with large values being significant, basing on
10 000 Monte Carlo runs, we get p-value 0 for such global independence test. This
shows that local correlations prove to be more informative than each of the above
mentioned single classical global indices of association. Moreover, statistics L∗ and
L∗ can be successfully applied to detect positive and negative quadrant dependence;
cf. Ledwina and Wyłupek [16] for details on a very similar solution to L∗.

For further examples and more detailed discussion see Ledwina [15].
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