Chapter 24
Mixture and Non-mixture Cure Rate Model
Considering the Burr XII Distribution

Emilio Augusto Coelho-Barros, Jorge Alberto Achcar, and Josmar Mazucheli

Abstract This paper presents estimates for the parameters included in long-term
mixture and non-mixture lifetime models, applied to analyze survival data when
some individuals may never experience the event of interest. We consider the case
where the lifetime data have a three-parameter Burr XII distribution, which includes
the popular Weibull mixture model as a special case.

24.1 Introduction

A long-term survivor mixture model, also known as standard cure rate model, as-
sumes that the studied population is a mixture of susceptible individuals, who expe-
rience the event of interest and non susceptible individuals that will never experience
it. These individuals are not at risk with respect to the event of interest and are con-
sidered immune, non susceptible or cured [9]. Following Maller and Zhou [9], the
standard cure rate model assumes that a certain fraction p in the population is cured
or never fail with respect to the specific cause of death or failure, while the remain-
ing (1 — p) fraction of the individuals is not cured, leading to the survival function
for the entire population written as:

SH=p+A-p)So®), (24.1)

where p € (0, 1) is the mixing parameter and Sy(#) denotes a proper survival func-
tion for the non cured group in the population. Considering a random sample of
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lifetimes (¢, 8;, i =1, ..., n), under the assumption of right censored lifetime, the
contribution of the ith individual for the likelihood function is:
8i 1-6;
Li=[f@]"[Se] ", (24.2)

where §; is a censoring indicator variable, that is, §; = 1 for an observed lifetime
and §; = O for a censored lifetime.

From the mixture survival function, (24.1), the probability density function is
obtained from f(¢;) = —%S (t;) and given by:

f@) =1 = p)fot), (24.3)

where fo(#;) is the probability density function for the susceptible individuals.

An alternative to a long-term survivor mixture model is the long-term survivor
non-mixture model suggested by [7, 12, 13] which defines an asymptote for the
cumulative hazard and hence for the cure fraction. The survival function for a non-
mixture cure rate model is defined as:

S@t) = p'=H®, (24.4)

where, like in (24.1), p € (0, 1) is the mixing parameter and So(¢) denotes a proper
survival function for the non cured group. Observe that if the probability of cure is
large, then the intrinsic survival function S(¢) is large — So(¢) will be large which
implies in Fp(t) = 1 — So(z) small. Larger values of Fp(¢) at a fixed time ¢ imply
lower values of S(¢). This model was derived under the threshold model for tumor
resistance (cancer research) where, Fy(¢) refers to the distribution of division time
for each cell in a homogeneous clone of cells. The non-mixture model (24.4) or the
promotion time cure fraction has been used by Lambert et al. [7, 8] to estimate the
probability of cure fraction in cancer lifetime data.

From (24.4), the survival and hazard function for the non-mixture cure rate model
can be written, respectively, as:

S(11) = exp[log(p) Fo(1)] (24.5)
and
h(t;) = —log(p) fo(t:). (24.6)
Since f(t) = h(t)S(¢), the contribution of the ith individual for the likelihood
function is given by:
Li =h(t)%S(1) (24.7)

that is:

L; =[~1log(p) fot)]” exp[log(p) Fo(t:)]. (24.8)

A Bayesian formulation of the non-mixture cure rate model is given in Chen et al.
[2]. A model which includes a standard mixture model for cure rate was considered
in Yin and Ibrahim [14]. Rodrigues et al. [10] extended the long-term survival model
proposed by Chen et al. [2].
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In this paper, considering the Burr XII distribution, we compare the performance
of the mixture and non-mixture cure fraction formulation when the scale and shape
parameters are dependent of covariates. The Burr XII distribution provides more
flexibility than the Weibull distribution which could be a special case of the Burr
XII distribution if its parameters are extended to a limiting case. It is also important
to point out that the Burr XII distribution is mathematically tractable with a closed
form for its cumulative distribution function.

24.2 The Burr XII Distribution Cure Model

Burr [1] suggested a number of cumulative distributions, where the most popular
one is the so-called Burr XII distribution, whose three-parameter probability density
function is given by:

o @7+
potmen =t [T e

where © > 0 is the scale parameter; « > 0 and A > 0 are shape parameters. For
A — +0 we have the Weibull distribution as a particular case. The hazard function

of a Burr XII distribution is decreasing if @ < 1 and is unimodal with the mode at
-1 1/a
1= (;:x—lk)l/a
flexible than the standard two-parameter Weibull distribution.
From (24.9), the survival function is written by:

when o > 1. The three-parameter Burr XII distribution is much more

So(t|u,a,k)=|:1+k<i> ]_x. (24.10)

From (24.10), the Burr XII model in the presence of long-term survivors or im-
munes has a probability density function and a survival function given, respectively,
as follows:

o @70+
fa1o =1 —p)ﬁta_l[l%—k(;) ] , (24.11)
a3
S(t|9):p+(l—p)|:l+)»(£> ] , (24.12)

where 6 = (u, a, A, p), u is the scale parameter, « and A are shape parameters and
p is the proportion of immunes or non susceptible.

Under the non-mixture formulation and using (24.10), the probability density
function and the survival function are given respectively by:

o t\¢ _(1+%) ta*%
f(t|9)=—10g(p)ﬁt°‘_l|:l+)\<;>i| PG (24.13)

1
ocfx}

St 16) = ptt G (24.14)
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In the presence of one covariate x;, i = 1, ..., n, we can assume a link function
for u, a, & and p, that is, log(u;) = Bo + B1xi, log(e;) = ap + a1x;, log(r;) =
o + y1x; and log( lfil,i) = no + n1x;, where x;, for example, taking the value 0 if
individual i is in the treatment group 1 or the value 1 if individual i is in the treat-
ment group 2. In this way, we can have interest in test the following hypothesis:
Hy: 1 =0 (no treatment effect in the susceptible patients), Hy: o1 = 0 (no treat-
ment effect in the shape of the lifetime distribution), Hy: 1 = 0 (no treatment effect
in the shape of the lifetime distribution) or Hp: n1 = 0 (no treatment effect in the
proportion of cured individuals).

24.3 A Bayesian Analysis

For a Bayesian analysis of the mixture and non-mixture models introduced in
Sect. 24.1, we assume an prior uniform distribution defined in the interval (0, 1),
U (0, 1), for the probability of cure p and Gamma(0.001, 0.001) prior distributions
for the scale parameter p and shape parameters o and A, where Gamma(a, b) de-
notes a gamma distribution with mean a/b and variance a/b*. We further assume
prior independence among p, i, o and A. Observe that we are using approximately
non-informative priors for the parameters of the models.

Assuming the mixture and non-mixture models introduced in Sect. 24.1, let us
consider a gamma prior distribution Gamma(0.001, 0.001) for the regression pa-
rameters fBo and oo and a normal prior distribution N (0, 100) for the regression
parameters §; and oy, [ =1, ..., k, where N(u, 02) denotes a normal distribution
with mean y and variance o2, We also assume prior independence among the pa-
rameters.

Posterior summaries of interest are obtained from simulated samples for the joint
posterior distribution using standard Markov Chain Monte Carlo (MCMC) methods
as the Gibbs sampling algorithm [4] or the Metropolis—Hastings algorithm [3].

24.4 An Application

In this section we analyze a leukaemia data set consisting of 90 observations in-
troduced by Kersey et al. [6] and reproduced by Maller and Zhou [9]. In this data
46 patients were treated by allogeneic transplant (Group I) and the other 44 by au-
tologous transplant (Group II). The survival time refers to the number of days to
recurrence of leukaemia for patients after one of the two treatments. The medical
problems of interest include: the existence of “cured” patients (who will never suf-
fer a recurrence of leukaemia) and the estimation of their proportion; the failure
distributions of susceptible patients; and comparison between the effects of the two
treatments.

In Tables 24.1 and 24.2, we have the inference results considering the Bayesian
approach for mixture and non-mixture models, respectively. We also have the Monte
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Table 24.1 Posterior means (standard deviation) for u, o, A and p in each group—mixture model

-~

=

~

Group m a A D DIC

1 170.2 1.3224 1.5235 0.2046 495.3
(15.5727) (0.3386) (1.2280) (0.0984)

11 114.4 3.2585 1.8328 0.2073 457.3
(22.5142) (1.1278) (1.3489) (0.0622)

Table 24.2 Posterior means (standard deviation) for x, a, A and p in each group — non-mixture

model
Group m o x D DIC
I 302.0 1.3200 1.1538 0.2497 494.0
(60.1777) (0.2091) (0.5350) (0.0673)
11 158.4 2.7506 1.3057 0.2141 455.8
(25.4148) (0.5098) (0.4480) (0.0603)
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Table 24.3 Posterior Means (PM) and Standard Deviation (SD) for regression models — mixture
model

Model Parameter PM SD Credible Interval
Model 1 m 122.6 28.7453 (77.2546; 194.9)
o 2.1934 0.5451 (1.2602; 3.4459)
N 2.2280 1.3879 (0.3819; 5.9824)
D 0.2009 0.0632 (0.0646; 0.3176)
Model 2 o 1.8272 0.4815 (1.0778; 2.9824)
x 1.3434 1.1575 (0.0332; 4.5494)
D 0.2173 0.0593 (0.0851;0.3261)
B\o 174.9 52.0182 (81.5222;277.9)
Bi —0.3018 0.2916 (—0.8292;0.3199)
Model 3 x 1.7100 1.0094 (0.3734;4.1672)
D 0.2005 0.0528 (0.0997; 0.3093)
Eo 175.8 52.2661 (88.4162;298.2)
El —0.4070 0.2806 (—0.9384; 0.1674)
o 1.4214 0.3461 (0.8879; 2.2550)
a 0.8004 0.2449 (0.3295; 1.2986)

Carlo estimates of DIC (Deviance Information Criterion) used as a discrimination
criterion for different models. Smaller values of DIC indicates better models.

To obtain the Bayesian estimates we have used MCMC (Markov Chain Monte
Carlo) methods available in SAS software 9.2, SAS/MCMC [11]. A single chain has
been used in the simulation of samples for each parameter of both models consider-
ing a “burn-in-sample” of size 15,000 to eliminate the possible effect of the initial
values. After this “burn-in” period, we simulated other 200,000 Gibbs samples tak-
ing every 100th sample, to get approximated uncorrelated values which result in a
final chain of size 2,000. Usual existing convergence diagnostics available in the
literature for a single chain using the SAS/MCMC procedure indicated convergence
for all parameters.

In Fig. 24.1, we have the plots of the estimated survival functions considering
mixture and non-mixture models in presence of cure fraction and the plot of the
non-parametric Kaplan—Meier estimate for the survival function [5]. We also have
in Fig. 24.1, the plot of the estimated survival function based on the Weibull and
Burr XII distributions not considering the cure fraction modeling.

From the fitted survival models (see Fig. 24.1), we conclude that the survival
times are very well fitted by the mixture and non mixture cure fraction models.
From the results of Tables 24.1 and 24.2, the obtained DIC discrimination values
from both models also give similar results.

We can also consider a binary variable related to the different groups where
x1; = 1 for Group II and O for the Group 1. Then we consider three cases: model
without covariates (Model 1), regression model for  (Model 2) and regression
model for u and o (Model 3).
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Table 24.4 Posterior Means (PM) and Standard Deviation (SD) for regression models — non-
mixture model

Model Parameter PM SD Credible Interval
Model 1 m 191.3 47.1324 (118.4;309.2)
o 2.0741 0.4720 (1.2757; 3.0983)
N 3.4496 3.0633 (0.2589; 12.2087)
D 0.1879 0.0668 (0.0432; 0.3062)
Model 2 o 1.6350 0.2545 (1.1474;2.1417)
N 1.3797 1.8359 (0.00255; 7.8565)
D 0.2170 0.0674 (0.0482; 0.3320)
B\O 295.4 9.5409 (276.6;313.4)
Bi —0.3886 0.1929 (—0.7404;0.0111)
Model 3 x 1.6695 1.1204 (0.1919; 4.6356)
D 0.2044 0.0499 (0.1049; 0.3055)
E) 338.9 15.2548 (308.1; 356.9)
B} —0.7833 0.1830 (—1.1088; —0.4185)
) 1.2762 0.2040 (0.9006; 1.7011)
ay 0.7752 0.2432 (0.2887; 1.2575)
Table 2’4,‘5 D C_Via,nce Model Mixture model Non-mixture model
Information Criterion (DIC)
Model 1 959.5 958.2
Model 2 959.8 958.7
Model 3 949.5 948.7

In Tables 24.3 and 24.4, we have the inference results considering the Bayesian
approach for regression models considering mixture and non-mixture models, re-
spectively.

In Bayesian context using MCMC methods, we have used the DIC given auto-
matically by the SAS software (see, Table 24.5).

From the results of Table 24.5, we conclude that Model 3 (regression model for
w and «) is better fitted by the data. Since DIC is a little bit smaller considering the
non-mixture Model 3 when compared to the other models, we use this model to get
our final inferences of interest. From Table 24.4 and using the non-mixture Model 3,
we conclude that the parameters 81 and «; have significative treatment effect in the
ratio of susceptible patients.
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