
Chapter 22
Changepoint Inference for Erdős–Rényi
Random Graphs

Elena Yudovina, Moulinath Banerjee, and George Michailidis

Abstract We formulate a model for the off-line estimation of a changepoint in a
network setting. The framework naturally allows the parameter space (network size)
to grow with the number of observations. We compute the signal-to-noise ratio de-
tectability threshold, and establish the dependence of the rate of convergence and
asymptotic distribution on the network size and parameters. In addition, we show
that inference can be adaptive, i.e. asymptotically correct confidence intervals can
be computed based on the data. We apply the method to the question of whether US
Congress has abruptly become more polarized at some point in recent history.

22.1 Introduction

The problem of estimating the location of a jump discontinuity (changepoint) has
been extensively studied in the statistics literature. There are two versions of the
problem. The on-line version is concerned with the quickest detection of a change-
point in the parameters of a dynamic stochastic system, and is closely related to
classical problems in sequential analysis; for a comprehensive treatment, together
with a discussion of important applications, see the books by Siegmund [18], Bas-
seville and Nikiforov [1], and the review article by Lai [12] and references therein.
In the off-line version, data are available for n covariate-response pairs, and one is
interested in estimating the location of the changepoint as accurately as possible
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(see Ritov [17], Müller [15], Loader [13], Gijbels, Hall and Kneip [6], Hall and
Molchanov [7], Kosorok and Song [11], and the book by Csörgő and Horváth [4]).
The on-line version is also closely related to many developments in statistical pro-
cess control (Hawkins et al. [8]) and associated control charts (e.g. Cumulative Sums
(CUSUM), Exponential Weighted Moving Average (EWMA), etc.). However, both
versions of the problem have dealt primarily with low- (usually one-) dimensional
problems. Although there have been some extensions to multivariate data, they are
usually obtained under an assumption of multivariate normality that gives rise to
Hotelling’s T 2 test.

In this paper, we consider the off-line version in a high-dimensional network set-
ting. Data are indexed by the edges of a graph; in the simplest case, binary data in-
dicate whether the edge is present. We consider edges which evolve independently,
so that at each point in time the network looks like an Erdős–Rényi random graph.
This is a fundamental problem in changepoint analysis on networks, and already
presents technical challenges. As graph size grows, we acquire more data about the
changepoint, but have to deal with a higher-dimensional nuisance parameter space;
this interaction is the main technical focus of the paper. We obtain the limiting dis-
tributions of the maximum likelihood estimates of both the changepoint and the re-
maining model parameters; although the asymptotic distribution for the changepoint
estimate depends on the (unknown) signal-to-noise ratio, we develop an adaptive in-
ference framework that does not require prior information about the limiting regime.
Many of our results generalize those known for finite-dimensional models, although
to our knowledge the focus on adaptive inference is new.

As a motivating application, we consider the question of whether the US
Congress has abruptly become more polarized at some point in recent history. This
question has raised a lot of interest in the political science literature; see for exam-
ple [14, 16]. These works were primarily exploratory in nature, and no attempt was
made to make inferences regarding the polarization process. Within the framework
of our network-based approach, we use roll call vote data to generate a sequence
of graphs, with vertices corresponding to congressmen and edges corresponding to
whether they voted in the same way on a particular issue. We are then able to make
inference about any changepoints in voting pattern.

Due to space constraints, we skip most of the details. A more extensive version
of the paper is in preparation.

22.2 Network Changepoint Model and Estimators

Consider a sequence of random graphs indexed by n. Each graph has m = m(n)

potential edges; we allow m(n) to grow with n. Each edge has a state α ∈ S ; for
simplicity, in this note we take S = {0,1}, but the model readily extends to arbitrary
common finite state space. We assume that the underlying graphs are embedded into
each other, so that it makes sense to speak of “edge 1 of system n”. The edges evolve
in discrete time; each edge evolves as a Markov chain with its own transition kernel,
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independently of all the other edges. Consequently, at each time point the state of the
system is an Erdős–Rényi random graph (with different, time-varying, probabilities
for each edge). We assume that edges transition according to one set of transition
kernels {P ∗

k , 1 ≤ k ≤ m(n)} before a time t∗, the changepoint, and according to
another set of transition kernels {Q∗

k, 1 ≤ k ≤ m(n)} after t∗. The changepoint t∗,
as well as the matrices P ∗

k and Q∗
k , may depend on n; but note that t∗ is the same

for all the edges. We may also have P ∗
k = Q∗

k for some edges, i.e. the changepoint
may only affect a subset of the edges in the graph. For convenience, we will rescale
time so that t∗ ∈ [0,1].

We make n observations of the graph indexed by n, at times { i
n
, i = 1, . . . , n}.

This means that in the nth experiment, t∗ = t∗(n) ∈ { i
n
}, i = 1, . . . , n. We will

assume t∗(n) → t0 as n → ∞, as well as P ∗
k → P 0

k and Q∗
k → Q0

k for each k.
Below, we will frequently omit the dependence on n.

Let 1k,α→β(s) be the indicator of the event that edge k was in state α at time s

and in state β at time s + 1. The log-likelihood function for this model is

lMn (P,Q, t) = n−1

(
m∑

k=1

∑
α,β∈S

(
nt−1∑
s=0

(
1k,α→β(s) log(Pk)αβ

)

+
n−1∑
s=nt

(
1k,α→β(s) log(Qk)αβ

)))
. (22.1)

If the changepoint were at t , we could write down the MLEs P̂ = P̂ (t) and Q̂ =
Q̂(t):

(
P̂k(t)

)
αβ

=
∑nt−1

s=0 1k,α→β(s)∑nt−1
s=0

∑
γ∈S 1k,α→γ (s)

,

(
Q̂k(t)

)
αβ

=
∑n−1

s=nt 1k,α→β(s)∑n−1
s=nt

∑
γ∈S 1k,α→γ (s)

. (22.2)

The MLE t̂ can be obtained by iterating over t ∈ [0,1] (on the grid of discrete
observation times), using the above form for P̂ and Q̂; in case of ties, we take the
smallest maximizer.

Our main results will concern the asymptotic behavior of P̂ , Q̂, and t̂ as n → ∞.
Below, we describe the necessary assumptions on the behavior of the dimension
m(n), the “signal”

∑
k ‖P ∗ − Q∗‖F , and the values of true parameters. Here,

‖A‖F = (
∑

i,j A2
ij )

1/2 is the Frobenius, or Hilbert–Schmidt, norm of the matrix

A; and we write ‖P ∗ − Q∗‖2
F = ∑

k ‖P ∗
k − Q∗

k‖2
F .

Assumption 22.1

1. The underlying parameters converge as follows.

a. m(n) is either constant m(n) = m0 or else monotonically increasing to infin-
ity.
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b. t∗(n) → t0 as n → ∞. (For example, we could have t∗(n) = n−1�nt0	.)
c. P ∗

k (n) → P 0
k and Q∗

k(n) → Q0
k uniformly in k.

2. There exists a constant ε > 0 (which we need not know) such that, for each k,
one of the following holds: either ‖Q0

k − P 0
k ‖F > ε, or else Q0

k = P 0
k .

3. For each n and k, the transition matrices P ∗
k (n) and Q∗

k(n) correspond to irre-
ducible, aperiodic Markov chains with state space S . There exists some known
constant c > 0 such that t∗ ∈ (c,1 − c), and all entries of P ∗

k and Q∗
k belong

to (c,1 − c). (The same is then true of t0, P 0
k , and Q0

k .) We will only consider
estimates of the changepoint that fall within (c,1 − c).

4. The number of edges m satisfies n−1/2 logm(n) → 0.
5. The signal-to-noise ratio satisfies n

m

∑m
k=1 ‖P ∗

k − Q∗
k‖2

F → ∞.

Remark 22.1 Assumption 22.1.3 implies that the Markov chains with transition
kernels P ∗

k and Q∗
k have uniformly bounded mixing times; in particular, observa-

tions 1k,α→β(·) form a mixing sequence, with mixing coefficients bounded uni-
formly in k. For discussion of variants of the changepoint problem where the
changepoint is very close to the edge of the interval, see for example [4, Theo-
rem 1.5.3].

Assumption 22.1.4 implies that with high probability, all estimates P̂k(t) and
Q̂k(t) will satisfy Assumption 22.1.3; and together with Assumption 22.1.2, it
means that we will correctly identify which of the edges experienced a change at
t∗. The requirement n−1/2 logm(n) → 0 still allows quite large graphs, e.g. we may
have m(n) = exp(n1/4).

Assumption 22.1.5 asserts that the “average” per-edge signal ‖P ∗
k − Q∗

k‖2
F 


n−1. With finitely many edges (m(n) = m0), this is necessary for detectability; when
m(n) → ∞, the necessary condition is very slightly weaker.

22.3 Results

We now present our main results. Theorem 22.1 addresses the rates of convergence
of the estimators and their asymptotic distributions. Finally, Theorem 22.2 addresses
the question of adaptive inference, that is, inferring the parameters of the asymptotic
distribution from the data.

Because the exact formulae below get somewhat involved, we state only the qual-
itative form of the limiting processes and distributions. Full expressions for the pa-
rameters will be found in our forthcoming longer paper on the subject. The form
of the result is qualitatively similar to finite-dimensional models, cf. [4, Chap. 1],
although our model is considerably more general.

Theorem 22.1 (Rates of convergence and asymptotic distribution.) Under Assump-
tions 22.1.1 through 22.1.5, n‖Q∗ − P ∗‖2

F |t̂ − t∗| = OP (1).
For any finite set of edges K and simultaneously for all k ∈ K , n‖P̂k − P ∗

k ‖2
F =

OP (1) and n‖Q̂k − Q∗
k‖2

F = OP (1).
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Define the local parameters hP
k = √

n(Pk − P ∗
k ), h

Q
k = √

n(Qk − Q∗
k). For each

k, hP
k and h

Q
k are asymptotically normal:(
hP

k

) �⇒ N
(
0,

(
t0)−1

V P
k

)
, h

Q
k �⇒ N

(
0,

(
t0)−1

V
Q
k

)
,

where the S2 ×S2 covariance matrices V P
k , V Q

k depend on P 0
k , respectively Q0

k . For

any fixed finite set K of edges, the estimates {ĥP
k , ĥ

Q
k , t̂ : k ∈ K} are asymptotically

independent.
For the limiting distribution of (t̂ − t∗), we distinguish three cases, one of which

is further subdivided:

1. If ‖P ∗ − Q∗‖2
F → ∞, then n(t̂ − t∗) → 0 in probability. That is, asymptotically

we precisely identify the index of the transition where the transition probability
matrix changed.

2. If ‖P ∗ − Q∗‖2
F → 0, then

n

m∑
k=1

∑
α,β∈S

(π0
k )α

(P 0
k )αβ

((
P ∗

k − Q∗
k

)
αβ

)2(
t̂ − t∗

) → σ−1 arg max
h∈R

(
B(h) − 1

2
|h|

)
,

where B(h) is a standard Brownian motion, and σ 2 comes from the Markov chain
central limit theorem (cf. [10, Case 1 of Theorem 5]).

3. If ‖P ∗ − Q∗‖2 → C ∈ (0,∞), then n(t̂ − t∗) converges to the (smallest) maxi-
mizer of a limiting jump process supported on Z: n(t̂ − t∗) → arg maxh∈Z[M(h)+
G(h) − D(h)]. Here, D is a deterministic triangular drift, G is a random walk
with correlated Gaussian step sizes, and M is a functional of the Markov chain
trajectories of some of the edges. Let I+ = {k: P 0

k �= Q0
k} (necessarily finite);

M(·) depends only on the edges in I+, and D(·) and G(·) depend only on the
remaining edges.

Interestingly, the network size m does not appear in the scaling of t̂ − t∗; however,
Assumption 22.1.5 places a lower bound on ‖Q∗ − P ∗‖2

F that scales with m.
The proofs follow the approach of [20, Theorem 3.4.1], making extensive use of

Doob’s martingale maximal inequality (the use for Markov chains is somewhat un-
usual). The continuity of the argmax functional in Case 22.1.3 is non-standard. The
high-dimensional nuisance parameter space makes it hard to apply many classical
changepoint techniques, such as those in [4].

Lastly, we present a result which allows adaptive inference of the limiting distri-
bution from the data, irrespective of the limiting regime that applies. This means that
we can provide asymptotically correct quantile estimation of the distribution based
only on the data, without knowledge of the true parameters. The adaptive process is
essentially the one that appears in case 3 of Theorem 22.1 when |I+| = m.

Theorem 22.2 (Adaptive inference.) Define the process M̃(h) as follows. Let
X̃k(h),h ≥ 0 be the reversed Markov chain with initial distribution π̂k and tran-

sition kernel P̂k , (P̂k)αβ = (π̂k)β
(π̂k)α

(P̂k)βα . Here, (π̂k)α := ∑nt̂−1
s=0

∑
β∈S 1k,α→β(s)
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is the empirical proportion of time that edge k spends in state α up to time t̂ . Let
Ỹk(h),h ≥ 0 be the (ordinary) Markov chain with initial distribution π̂k and tran-
sition kernel Q̂k . For different values of k, let the Markov chains be independent;
moreover, let Xk(0) = Yk(0) and let their transitions be independent otherwise. De-
fine

M̃(h + 1) − M̃(h) =

⎧⎪⎨
⎪⎩

∑m
k=1

∑
α,β∈S 1

Ỹk,α→β
(h) log (P̂k)αβ

(Q̂k)αβ
, h ≥ 0,∑m

k=1
∑

α,β∈S 1
X̃k,β→α

(|h| − 1) log (P̂k)αβ

(Q̂k)αβ
, h < 0.

Let h̃ be the smallest maximizer of M̃(·). Then h̃ has the same asymptotic distri-
bution as n(t̂ − t∗), in the following sense:

1. If ‖Q∗ − P ∗‖2
F → ∞, then both h̃ → 0 and n(t̂ − t∗) in probability.

2. If ‖Q∗ − P ∗‖2
F → 0, then we have convergence in distribution for the renormal-

ized estimate:
m∑

k=1

∑
α,β∈S

(π0
k )α

(P 0
k )αβ

((
P ∗

k − Q∗
k

)
αβ

)2
h̃ → σ−1 arg max

h∈R
B(h) − 1

2
|h|,

where B(h) is a standard Brownian motion, and σ 2 is as in Theorem 22.1.
3. If ‖Q∗ − P ∗‖2

F → C ∈ (0,∞), then h̃ → arg maxh∈Z[M(h) + G(h) − 1
2D(h)],

where M(·), G(·), and D(·) are as in Theorem 22.1.

22.4 Application: Polarization in US Congress

We consider the question of whether the dynamics of discussion in the US Senate
have experienced a changepoint in recent past. To construct the sequence of graphs
as above, we identify the senators with senate seats (two per state, e.g. Michigan 1
and Michigan 2). We then consider 7949 roll call votes on bills during the years
1979–2012. The state of the edges of the (complete) graph on 100 vertices is then
1 if the corresponding senators voted in the same way on the issue, and 0 if they
voted differently. The Markovian structure is, of course, an approximation of this
data, but represents the fact that a particular pair of senators will tend to either agree
or disagree on most issues. We note that while the occupants of a particular seat
can change, this does not occur very often in practice, so the assumption that the
parameters of the model are time-independent aside from the changepoint is not
unreasonable.

In Fig. 22.1, we present the (profile) log-likelihood function for the location of
the changepoint. We see broadly that the log-likelihood function reaches its maxi-
mum somewhere between the 104th and 107th Congresses, i.e. 1995–2003. (2003
corresponds to the Iraq war.) Within this interval, there are several local maxima; as
the table to the right of Fig. 22.1 shows, which changepoint is dominant depends in
particular on when data analysis starts. We can also examine the nature of the change
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Year Estimate CI
1995 4025 (3995, 4152)
1999 5100 (5000, 5225)
2001 5850 (5775, 5875)

Fig. 22.1 Log-likelihood function for the senate roll call data. The horizontal axis is labelled with
the index of the roll call vote; vertical bands identify the Congress, i.e. the two-year inter-election
period. The table to the right presents the dominant changepoint as a function of the year when
data collection begins

by examining the estimated transition parameters before and after the changepoint
(in this case, before the 104th and after the 107th Congress). We do not show the
graphs due to space constraints, but the average probability of changing the status of
an edge decreases by almost a factor of 2, from approximately 0.2 to approximately
0.1, leading to longer negotiation times until a compromise is reached.

22.5 Discussion and Simulation Issues

We have presented a model which can address questions of changepoint inference
in a networked setting. We begin by discussing several extensions of the model
assumptions, and then discuss the computational complexity of the estimation.

Vertex Labels and Dependent Edges A natural extension to community struc-
tures is to add labels to the vertices (e.g. political party affiliation for the US
Congress), and allow dependence among the edges. There are many possibilities
for such extensions; some are the subject of future work.

Multiple Changepoints Although our research is only directly applicable under
the assumption of exactly one changepoint, we may use techniques similar to the
binary segmentation method of [3, 21] to find multiple changepoints. The basic idea
is to locate the dominant changepoint, and keep looking in the two smaller subin-
tervals around it; an extra elimination step may reduce the probability of finding too
many changepoints. In general, estimating multiple changepoints is a challenging
issue; we refer to the survey article [9] for a discussion of current approaches.
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Computational Complexity When the signal-to-noise ratio is either quite large
or quite small (Cases 22.1 and 22.2 of Theorem 22.1), computing t̂ is the main
computational challenge; the distribution of the maximizer of a Brownian motion
with triangular drift, which appears in Case 22.2, can be computed precisely [2, 19].
In Case 22.3, which corresponds to the adaptive regime, the limiting process is easily
simulated if P 0 = Q0; see also Fotopoulos et al. [5] for computing the maximizer.
However, even in the case of Gaussian jumps, there is not a universal scaling that
can relate different examples to each other, in part due to the non-stationarity of the
process. For the generalized binomial component of the limiting random process,
it seems necessary to simulate the trajectories of all m Markov chains in order to
estimate the maximizer; the computation is, however, parallelizable, and can scale
up to fairly large networks.

Acknowledgements E.Y.’s research was partially supported by US NSF grant DMS-1204311.
M.B.’s research was partially supported by US NSF DMS-1007751, US NSA H98230-11-1-0166,
and a Sokol Faculty Award, University of Michigan. G.M.’s research was partially supported by US
NSF DMS-1228164 and US NSA H98230-13-1-0241. The authors thank the referees for helpful
comments.

References

1. Basseville M, Nikiforov IV (1993) Detection of abrupt changes: theory and application. Pren-
tice Hall, Englewood Cliffs

2. Bhattacharya PK, Brockwell PJ (1976) The minimum of an additive process with applications
to signal estimation and storage theory. Probab Theory Relat Fields 37(1):51–75

3. Cho H, Fryzlewicz P (2012) Multiple change-point detection for high-dimensional time series
via sparsified binary segmentation. Preprint
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