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Abstract

Natural and anthropogenic sources of contamination such as plankton 
toxins and hydrocarbons are nearly ubiquitous in the marine environment. 
Specifically, they are a pernicious threat especially at low concentration as 
nonlethal effects on the plankton propagate through the food chain and 
accumulate in the tissues of top predators, ultimately putting human health 
at risk. In this contribution, I first describe how the complexity observed in 
the spatial and temporal patterns of copepod swimming behaviour can be 
objectively quantified using a series of ‘behavioural stress indexes’ based 
on fractal and multifractal analyses of copepod swimming behaviour and 
swimming sequences. These indexes are suggested as a potential tool to 
critically assess behavioural responses to natural and anthropogenic forcing 
in the marine environment.
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1  Introduction

As observed across the whole spectrum of social 
and natural sciences, behavioural data are 
inherently very complex (Seuront 2010a, b), a 
priori lacking of any spatial pattern or temporal 
structure (Fig. 1). This complexity is believed to 
be biologically adaptive as it avoids restricting 

the functional response of an organism to highly 
periodic behaviour (Goldberger et al. 2000) 
and it is error tolerant, allowing organisms to 
cope with stress and unpredictable environments 
(Goldberger et al. 1990). The analysis of behaviour 
hence critically requires approaches explicitly 
dealing with this complexity. This issue is par-
ticularly relevant in welfare assessment as most 
behavioural measures are not sensitive enough to 
detect subtle changes associated with mild or 
acute stress (Rutherford et al. 2004).

The field of behavioural ecology has recently 
begun to use novel analytical tools such as fractal 
analysis (Asher et al. 2009). Specifically, fractal 
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analysis has been introduced in the study of 
human physiology to distinguish between sys-
tems operating in normal vs. pathological states 
(Ivanov et al. 1999; Mishima et al. 1999). Both 
the temporal and structural complexity of a range 
of biological systems hence decrease under 
stressful conditions. For instance, the time series 
of beat intervals in healthy subjects have more 
complex fluctuations than patients with severe 
cardiac disease (Ivanov et al. 1999). Similarly, 
the geometry of the lung terminal airspace 
branching architecture is more complex in nor-
mal subjects than in patients with chronic 
obstructive pulmonary disease (Mishima et al. 
1999). More specifically, stressed (e.g. diseased 
and parasited) animals typically reduce the 
 complexity of their behavioural display (Alados 
et al. 1996). Fractal analysis has hence been 
extensively used as a non-invasive assessment of 
the general health of wild and captive animals 
(Rutherford et al. 2004; Alados et al. 1996), 
including copepods (Seuront 2011).

The quantitative assessment of changes in 
copepod swimming behaviour is critical as  
swimming and feeding are intertwined in most 
copepod species, hence any disruption of cope-
pod swimming is predicted to have detrimental 

consequences to their biology and ecology 
(Seuront 2012), which in turn may affect eco-
system structure and function and geochemical 
fluxes. Behavioural changes have the potential to 
be used as indicators of ecosystem health.  
This issue is particularly relevant for sublethal 
toxicant concentration as behavioural changes 
provide sensitive non-invasive sublethal endpoint 
with short-response time for toxicity bioassays, 
which are more sensitive than mortality responses 
(Garaventa et al. 2010).

Over the last two decades, fractal analysis has 
increasingly been used to describe and provide 
further understanding to zooplankton swimming 
behaviour. This may be related to the fact that 
fractal analysis has the desirable properties to be 
independent of measurement scale and to be very 
sensitive to even subtle behavioural changes that 
may be undetectable to other behavioural vari-
ables (Rutherford et al. 2004; Coughlin et al. 
1992). As early claimed (Coughlin et al. 1992), 
this creates ‘the need for fractal analysis’ in  
zooplankton behavioural ecology in general and 
in zooplankton ecotoxicology in particular.

In this context, I first briefly rehearse the very 
basic principles of fractal theory before describing 
a few fractally derived ‘behavioural stress indexes’ 
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Fig. 1 Illustration of the intrinsic complexity perceptible 
in the spatial pattern (a) and temporal structure (b) of  
zooplankton swimming behaviour. (a) Two-dimensional 
projection of the three-dimensional trajectory of an  
adult male Eurytemora affinis. (b) Time series of the 

instantaneous speed of an adult Temora longicornis 
female. Both behaviours were recorded at 25 frames s−1 in 
a cubic (15 × 15 × 15 cm) glass chamber from E. affinis 
and T. longicornis individuals swimming freely in filtered 
estuarine and coastal waters, respectively
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that can be directly applied to various aspects of 
zooplankton behavioural complexity and used to 
infer the stress experienced by these organisms 
under a range of conditions. I subsequently intro-
duce the more elaborated and still seldom used, 
though more general, concept of multifractal that 
may conveniently be used as an objective and 
quantitative tool to thoroughly identify models of 
movement behaviour, such as Brownian motion, 
fractional Brownian motion, ballistic motion, Lévy 
flight/walk and multifractal random walk. I stress 
that fractal and multifractal analyses can detect 
differences in behavioural complexity, where 
traditional measures cannot. As such, I finally 
discuss their relevance as a practical tool to infer 
the nature of both natural and anthropogenic 
forcing.

2  From Fractal Theory to Stress 
Assessment: Behavioural 
Stress Indexes

2.1  A Few Words on Fractals

A fractal is ‘a rough or fragmented geometric 
shape that can be split into parts, each of which is 
(at least approximately) a reduced-size copy of 
the whole’ (13). This property is called scale 
invariance and means that the observed structure 
remains unchanged under magnification or con-
traction. This scale invariance can be observed in 
two distinct, though conceptually similar, forms 
referred to as self-similarity and self-affinity. 

Self-similarity has traditionally been illustrated 
using theoretical fractal objects (Mandelbrot 1982). 
A more realistic construction of a fractal object, a 
fractal tree, is shown in Fig. 2. In contrast, self-
affinity characterises an object that may be written 
as a union of rescaled copies of itself, where the 
rescaling is anisotropic, that is, dependent on the 
direction. A typical example of self-affinity is 
given by the temporal patterns of the successive 
speed of copepods (Fig. 1b); it looks rough, like 
their trajectory (Fig. 1a), but with the two axes 
corresponding to physical quantities that are  
fundamentally different.

A fundamental consequence of scale invari-
ance is, as originally described for the length of 
the coast of Britain (Mandelbrot 1982), that the 
length of, for example, copepod trajectories 
(Fig. 1a) does not converge towards a fixed value, 
but keeps increasing, theoretically without any 
upper limit, but see Rutherford et al. (2004) for a 
detailed discussion on the topic. As a conse-
quence, in contrast to Euclidean lines, they can-
not be differentiated or integrated, hence cannot 
be described by an integer dimension. The com-
plexity of scale invariant patterns and processes 
can, however, be described by a dimension D,  
the so-called fractal dimension. In contrast to 
Euclidean dimensions, a fractal dimension is 
fractional. For instance, the Euclidean dimen-
sions, d, of a line, a circle and a cube are, respec-
tively, 1, 2 and 3. The trajectory of a copepod has, 
in turn, a fractal dimension, D, bounded between 
D = 1 when the copepod swims along a com-
pletely linear path and D = 2 when the movements 
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Fig. 2 Illustration of the first four successive steps of the 
iterative process leading to a self-similar fractal tree. At 
each step n of the process, each terminal branch of the tree 
is replaced by a rescaled version of the original tree. Here 
the scale ratio between two successive steps is 2, i.e. at a 

step n, each branch is replaced by a tree, which is a copy 
of the original tree reduced 2n times. Hence, when n = 4, 
the resulting ramifications are 24 times smaller than the 
original tree
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are so complex that the trajectory fills the whole 
available space. The fractal dimensions reported 
in the literature for zooplankton trajectories 
(essentially cladocerans and copepods) typically 
fall in the range 1.0–1.8, indicating a range of 
behavioural strategies that may be related to the 
nature of the physical, chemical and biological 
cues present in the water (Rutherford et al. 2004; 
Seuront 2012, 2013; Garaventa et al. 2010; 
Shimizu et al. 2002).

Three types of behavioural data can be used in 
fractal analysis: (1) two- or three-dimensional 
movement pathways, (2) the temporal patterns of 
successive displacements (or equivalently speed) 
and (3) observation of the presence or absence of 
a behavioural state scored on a binary scale, i.e. 
whether an animal is active or inactive, or fluctu-
ations between two behavioural states. In the next 
section, I provide a set of fractal techniques to 
analyse these behavioural data and briefly review 
how they were used to assess the stress experi-
enced by zooplanktonic organisms.

2.2  Fractals as a Stress 
Assessment Tool 
in Zooplankton Behavioural 
Ecology

2.2.1  The Fractal Nature of Copepod 
Spatial Patterns

I describe hereafter three conceptually similar 
methods—the box-counting, the dividers and the 
mass dimension methods—that can be easily 
implemented to quantify the geometric complexity 
of copepod trajectories (Rutherford et al. 2004). 
Note that whilst these methods are discussed  
in the general framework of three- dimensional 
trajectories, they can be equivalently implemented 
in two dimensions.

The box-counting method relies on the δ cover 
of a trajectory, i.e. the number of boxes of length 
δ required to cover the trajectory. Practically, this 
procedure consists in superimposing a regular 
grid of boxes of length δ on the trajectory and 
counting the number of boxes that intersect the 

trajectory. This procedure is repeated using  
different values of δ. The volume occupied by a 
trajectory is then estimated using a series of 
boxes spanning a range of volumes down to some 
small fraction of the entire volume. The number 
of occupied boxes increases with decreasing  
box size, leading to the following power-law 
relationship:

 
N Dbδ δ( ) ∝ −

 
(1)

where δ is the box size, N(δ) is the number of 
boxes intersecting the trajectory and Db is the 
box fractal dimension; Db is estimated from the 
slope of the linear trend of the log-log plot of 
N(δ) vs. δ.

The divider dimension Dd (also referred to as 
the compass dimension) is estimated by measur-
ing the length of a trajectory at various scales δ. 
The procedure is analogous to moving a set of 
dividers (like a drawing compass) of fixed length 
δ along the trajectory. The estimated length of  
a trajectory L(δ) increases with decreasing δ as 
L Dδ δ( ) ∝ −1 d . As the estimated length L(δ)  
is also the product of N(δ) (the number of com-
pass dividers required to cover the trajectory)  
and δ (i.e. L(δ) = N(δ)δ), this can equivalently be 
written as

 
N Dδ δ( ) ∝ − d

 
(2)

The divider dimension Dd is then estimated from 
the slope of the linear trend of the log-log plot of 
N(δ) vs. δ.

The mass dimension method counts the num-
ber of pixels occupied by a trajectory in sampling 
cubes (δ  × δ  × δ). The mass m(δ) of occupied pixels 
is subsequently defined as m(δ) = NO(δ)/NT(δ), 
where NO(δ) and NT(δ) are, respectively, the num-
ber of occupied pixels and the total number of 
pixels within an observation window of  
size δ. These computations are repeated for  
various values of δ, and the mass dimension Dm is 
defined as

 
m Dδ δ( ) ∝ m

 
(3)
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where the fractal dimension Dm is estimated 
from the slope of the linear trend of the log-log 
plot of m(δ) vs. δ.1

The results of studies based on a geometric 
assessment of zooplankton behavioural 
 complexity under various conditions of water 
contaminations—i.e. short-term exposure to cop-
per, organophosphorus and carbamate (Shimizu 
et al. 2002), the water-soluble fraction of diesel 
oil (Seuront 2010a, b, 2012), nonylphenol, cad-
mium and a mixture of polycyclic aromatic 
hydrocarbons (Michalec et al. 2013a, b)—lead a 
variety of a priori conflicting conclusions, includ-
ing no change (Michalec et al. 2013a, b), a 
decrease (Seuront 2010a, b, 2012; Fig. 3a) and an 
increase (Seuront 2010a, b) in the geometric 
complexity of swimming behaviour.

1 Note that it is readily seen from Eqs. (1) and (2) that 
Db = Dd, whilst more convoluted developments show that 
Db = Dm; hence Db = Dd = Dm; see (Seuront 2010a) for 
details. Statistically inferring the absence of significant 
differences between fractal dimensions returned by differ-
ent methods of analysis hence constitutes an additional 
guarantee of the trustworthiness of the fractal dimension 
estimates.

2.2.2  The Fractal Nature of Copepod 
Temporal Patterns

One of the most extensively used techniques to 
detect temporal self-affine patterns is power 
spectral analysis. Formally, a power spectrum is 
defined as the square of the amplitude of the 
Fourier transform of a time series of a descriptor; 
it is hence an expression of the variance of the 
descriptor at different temporal scales. In prac-
tice, the power spectral density E(f) is given by 
E f f( ) ∝ −β , where f is the frequency (s−1; f = 1/t, 
where t is time). The spectral exponent β is esti-
mated as the slope of a log-log plot of E(f) vs. f. 
Specifically, the value of the exponent β provides 
an efficient way to classify the type of motion 
behaviour exhibited by zooplankton organisms.2

Spectral analysis has still barely been used in 
zooplankton behavioural ecology (Uttieri et al. 
2008; Dur et al. 2010) but nevertheless suggests 

2 Brownian motion (i.e. normal diffusion) is characterised 
by β = 2. Anti-persistent and persistent fractional Brownian 
motions are characterised by β < 2 and β > 2, respectively. 
Specifically, a motion is persistent in the sense that an 
organism moving in some direction at time t will tend to 
move in the same direction at the next time step.

Fig. 3 The fractal dimension D (a) and stress index ϕ (b) 
estimated from the swimming behaviour of Eurytemora 
affinis adult males (black) and non-ovigerous females 
(grey) in control uncontaminated estuarine water and in 
estuarine water contaminated with the water-soluble frac-
tion of diesel oil at 0.01, 0.1 and 1 % (Modified from 

Seuront 2010a, b). (c) The multifractal function ζ(q) 
allows to identify a range of movement behaviour (see 
text for details) such as ballistic motion (dotted blue line), 
Brownian motion (red dashed line), optimal Lévy flight 
(black dots) and multifractal random walk (continuous 
green curve) (Modified from Seuront and Stanley 2014)
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that zooplankton organisms exhibit a range of 
behaviour including fractional Gaussian motion, 
fractional Gaussian noise and pure random noise.3

2.2.3  The Fractal Nature 
of Behavioural States

Self-affine techniques based on the analysis of 
frequency distributions of behavioural states 
were used to infer the response of zooplankton to 
a range of stressors. They include considerations 
of the scaling properties of the probability distri-
bution functions (PDFs) of either the time tx 
spent in a specific behavioural state x (i.e. 
p t tx x

c( ) ∝ − )  (Schmitt et al. 2006) or the velocity 
vx used to define different behavioural states x 
(i.e. p v vx x

c( ) ∝ − )  (Michalec et al. 2010). A few 
studies investigated the scaling properties of the 
cumulative probability distribution functions 
(CDFs) of move duration greater than a deter-
mined duration t ( P t T t≤( ) ∝ −f1 )  (Seuront and 
Leterme 2007) and move lengths L greater than a 
determined length l ( N l L l≤( ) ∝ −f2 )  (Seuront 
2010a, b, 2011). These studies consistently found 
a decrease in the exponents ϕ1 and ϕ2, hence in 
behavioural complexity, for a range of copepod 
species exposed to sublethal concentrations of 
naphthalene (Seuront and Leterme 2007) and the 
water-soluble fraction of diesel oil (Seuront 
2010a, b; Fig. 3b). In contrast, the exponent c was 
shown to increase in Eurytemora affinis following 
a short-term exposure to sublethal concentrations 
of nonylphenols (Michalec et al. 2013a, b).

Note that the behaviour of an organism alter-
nating between two behavioural states can also 
be assessed through the construction of a binary 
sequence zt(i) for each behavioural activity taken 
from continuous observations. When a specific 
activity is observed, zt(i) = 1, and zt(i) = 0 otherwise. 
The resulting time series of binary sequences can 

further be integrated as w t z ii
i

N

t( ) = ( )
=
∑

1

, where N 

3 For instance, the velocity components of Clausocalanus 
furcatus were both characterised by β  ≈ 0 (Uttieri et al. 
2008), indicative of a random process without internal 
serial correlation. In contrast, β ranged from 0.30 to 
0.75 in Temora longicornis (Moison et al. 2012) and 1.4 to 
1.5 in Pseudodiaptomus annandalei (Dur et al. 2010).

is the number of behavioural observations. 
The temporal pattern of the integrated variable 
wi(t) can then be analysed with self-affine 
techniques such as spectral analysis.

3  From Fractals 
to Multifractals: A Step 
Further in Zooplankton 
Stress Assessment

3.1  From Fractals to Multifractals

A measure (i.e. a physical quantity such as mass, 
energy, a number of individuals or more  
specifically the distance displaced by a copepod; 
Fig. 1b) has to be distinguished from its geomet-
ric support, which might or might not have a 
fractal geometry (Rutherford et al. 2004). Then, 
if a measure has different fractal dimensions on 
different parts of the support, the measure is a 
multifractal. Multifractals are hence a generalisa-
tion of fractal geometry initially introduced to 
describe the relationship between a given quan-
tity and the scale at which it is measured. Whilst 
fractal geometry describes the complexity of a 
given pattern with the help of only one parameter 
(the fractal dimension), multifractals characterise 
its detailed variability by an eventually infinite 
number of sets, each with its own fractal 
dimensions.

An intuitive interpretation of multifractals is 
based on the spatial structure of modern cities 
(Rutherford et al. 2004). Consider a city viewed 
strictly from above, it can be considered as a 
succession of built (buildings) and unbuilt (streets 
and parks) areas. The only available information 
is hence the distribution of the built and the 
unbuilt areas. This is the geometric support of the 
city. Now, change the angle of vision by taking a 
position not directly above the city, but from the 
side. The city initially made of built and unbuilt 
areas is now a set of buildings with different 
heights. This is the measure we are now interested 
in. It is now possible to estimate the distribution 
of a wide range of building heights. Each height 
will (eventually) be characterised by a fractal 
dimension, hence the concept of multifractals.

L. Seuront



135

3.2  Multifractals as a Diagnostic 
Tool to Assess a Family 
of Swimming Behaviours

The strongly non-Gaussian fluctuations percepti-
ble in zooplankton successive displacements 
that range from very likely slow steps to rare and 
extremely rapid displacements (Fig. 1b) are 
inherently incompatible with classical self-affine 
approaches based, e.g., on the scaling behaviour 
of the power spectral density described above 
that are fundamentally limited to second-order 
moments. A more general approach is based on 
the analysis of qth order long-range correlations 
in displacements. Specifically, the norm  
‖ΔXτ‖ of the three-dimensional displacements 
of a zooplanktonic organism is defined as 

∆ τ τ τ τX x x y y z zt t t t t t= −( ) + −( ) + −( )+ + +
2 2 2

, 

where τ is the temporal increment and (xt, yt, zt) 
and x y zt t t+ + +( )τ τ τ,, ,,  are respectively the posi-
tions of the organism at time t and t + τ . ‖ΔXτ‖ is 
a nonstationary process with stationary incre-
ments; its statistics do not depend on time, t, but 
on the temporal increment τ (Rutherford et al. 
2004; Seuront and Stanley 2014). The moments 
of order q (q > 0) of the norm of three- dimensional 
displacements ‖ΔXτ‖ depend on the temporal 
increment τ as

 ∆ ττ
ζX q q∝ ( )

 (4)

The exponents ζ(q) are estimated as the slope of 
the linear trend of < >∆ τX

q  vs. τ in log-log 
plots. The function ζ(q) characterises the statis-
tics of the random walk ‖ΔXτ‖ of the organism 
regardless of the scale and intensity (Rutherford 
et al. 2004; Seuront and Stanley 2014). Low and 
high orders of moment, q, characterise, respec-
tively, smaller and more frequent displacements 
and larger and less frequent displacements.4

The shape of the function ζ(q) can be used as 
a direct, objective and quantitative diagnostic 

4 Note the one-to-one correspondence between the function 
ζ(q) and the spectral exponent β for q = 2, i.e. β = 1 + ζ(2) 
(Seuront 2010a).

tool to unambiguously identify the type of motion 
exhibited by zooplankton organisms and ultimately 
any swimming organisms (Fig. 3c). Briefly, for 
Brownian motion, ζ(q) = q/2, and fractional 
Brownian motion is defined as ζ(q) = qH, where 
H = ζ(1) and the limits ζ(q) = 0 and ζ(q) = q corre-
sponding, respectively, to confinement and local-
isation, and ballistic motion. Anomalous diffusion 
occurs when H ≠ 1/2. Specifically, super-diffu-
sion occurs when H > 1/2 and sub- diffusion when 
H < 1/2. For finite-length Lévy flights, the func-
tion ζ(q) is bilinear with ζ(q) = q/(μ−1) for q < μ−1 
and ζ(q) = 1 for q ≥ μ−1; the exponent μ (1 < μ ≤ 3) 
characterises the power-law tail of the probability 
distribution of the move- step length l as P(l) ≈ l−μ, 
where 1 < μ ≤ 3. For μ ≥ 3, the mean and the 
variance of the move-step lengths are both finite; 
hence, as a consequence of the central-limit theo-
rem, their distribution is Gaussian. For 1 < μ < 3, 
the scaling is super- diffusive; the value μ = 2 
corresponds to a Lévy flight (i.e. the swimming 
behaviour is tailored to minimise the distance 
travelled whilst locating prey). Finally, a function 
ζ(q) that is nonlinear and convex is indicative of 
a multifractal random walk (Rutherford et al. 
2004; Seuront and Stanley 2014).

The only study that used multifractals to 
assess the behavioural response of zooplankton 
to water contamination led towards an increase in 
Pseudodiaptomus annandalei behavioural com-
plexity under conditions of stress induced by the 
presence of a diatom toxin (Michalec et al. 
2013a, b). Specifically, P. annandalei swimming 
behaviour is very close to a (monofractal) ballistic 
motion in control water and progressively 
diverges towards an increasingly multifractal 
behaviour with increasing toxin concentrations.

4  Conclusions

The behavioural approach discussed in this 
contribution to assess zooplankton stress from 
the geometric and stochastic properties of their 
motion behaviour has the potential to become an 
efficient tool in zooplankton ecotoxicology as a 
sensitive, non-invasive and robust behavioural 
sublethal endpoint with short-response times 
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for toxicity bioassays, in particular as it is very 
sensitive to subtle behavioural changes that may 
be undetectable to other behavioural variables 
(Rutherford et al. 2004; Coughlin et al. 1992).

Zooplankton behavioural complexity typically 
decreases under stress (Seuront 2010a, b, 2012; 
Seuront and Leterme 2007; Michalec et al. 
2013a, b). Increases in complexity have, how-
ever, also been observed under certain stress 
conditions (Shimizu et al. 2002; Michalec et al. 
2013a, b),5 although such results seem to occur in 
response to acute or stimulatory challenges, quite 
apart from the chronic or inhibitory stressors 
that are associated to reduction in complexity 
(Alados et al. 1996; Seuront 2010a, b, 2012). 
As shown for several fractal and multifractal 
measures of environmental complexity (Seuront 
2010a), regardless of the direction, it is ulti-
mately the relative differences between the fractal 
and multifractal exponents observed for a given 
species under stressful and non-stressful condi-
tions that may be more informative on the related 
behavioural changes.

Note that the approach described in this 
contribution is not limited to behavioural ecotoxi-
cology but can be generalised to assess relative 
changes in the behavioural complexity of marine 
invertebrates in a wide range of ecologically 
relevant situation related to, e.g., the quality and 
the quantity or food and the presence of mates or 
predators (Seuront 2010a, b; Schmitt et al. 2006). 
It is finally stressed that the application of fractals 
to zooplankton behavioural ecology in general 
(Rutherford et al. 2004; Seuront 2011) and to 
zooplankton ecotoxicology in particular (Seuront 
2010a, b, 2012; Shimizu et al. 2002; Michalec 
et al. 2013a, b; Seuront and Leterme 2007) is, 
however, still in its infancy. Further work is 
needed to entangle the fractal complexity of 
behavioural properties and to generalise the use 
of fractal and multifractal approaches to stress 
assessment in marine invertebrates.

5 It is worth noting that the increase in the complexity of 
Daphnia magna trajectories in contaminated waters  must 
be treated with caution as some of the fractal dimensions 
reported fall outside the theoretical range 1 ≤ D ≤ 2, i.e. 
D > 2 (Shimizu et al. 2002).
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