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Abstract Exploration of multifield geoscientific data sets is a complex task
involving the investigation of individual fields and correlations between fields. We
present an approach to analyze the importance of fields and their correlations in
multifield datasets by treating given or derived fields as multidimensional objects
and projecting these objects to a 2D space, and visually investigating the fields
using the projected layout. We demonstrate how our approach supports the analysis
of atmospheric simulation data in two different settings.

Keywords Visualization � Interactive visual data analysis � Multifield � Dimen-
sion projection

1 Introduction

Present technical capabilities enable scientists to produce much more data than can
be carefully analyzed. In addition, the visualization techniques that are commonly
employed in the geoscientific research do not allow to effectively extract features
from more than a few variables: the independent variables are usually visualized
side-by-side, and changes in values of a single variable over time are usually
depicted with animations. Both approaches do not scale well and impose an
excessive cognitive load on the scientist.

We present an approach to analyze relationships between scalar fields, with the
goal of finding and choosing fields, both simulated and derived, that add most
information to each other. When applied to climate data such an approach allows,
among others, for the detection of seasonal changes. For example, temperature
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values in January and February are highly correlated, while temperatures in January
and July are more distinct.

The main contribution of this paper is the design and application of field-based
projection methods to geoscientific multifield datasets.

Our approach is based on two core ideas. First, we derive a number of fields that
could potentially be of interest for the exploration of the data. Second, we define a
global distance measure between pairs of fields, and generate a difference-based
overview of all fields. Here, we interpret fields as high-dimensional data points and
project them to a 2D space, where they are visualized in the form of a scatterplot.

We demonstrate how our approach supports the analysis process of a scientist in
an interactive visual set-up.

2 Related Work

When exploring a multifield dataset, attention is often given to measuring per-point
similarity between fields (Edelsbrunner et al. 2004; Nagaraj and Natarajan 2011; Sa-
uber et al. 2006).Many of these approaches are based on gradients. Gosink et al. (2007)
used the normalized dot product between gradients and visualized it over statistically
important isosurfaces of a third field. Sauber et al. (2006) introduced the gradient
similarity measure (GSIM), which is combined from directional similarity and mag-
nitude similarity. Nagaraj et al. (2011) developed a measure as the norm of the matrix
that comprises the gradient vectors, and showed that it is robust to noise in input fields.

Projection methods are commonly used to describe similarities between spatial
samples of a multifield, by placing points with similar multivariate attributes close
to each other in respective visualizations. There exist various linear (Kandogan
2001) and non-linear (Jänicke et al. 2008; Sammon 1969) projection algorithms.

Our approach, however, depicts global similarities between data fields. Thus, it is
closer to Turkay et al. (2011, 2012), who introduced a dual-space analysis of mul-
tivariate data using linked visualizations of the item space (where objects are entities
represented by their values in different attributes) and dimension space (where
objects are attributes represented by their values for the different entities). In their
approach, the item space represented results of multivariate analyses. The dimension
space was visualized with scatterplots, showing either multidimensional scaling
(MDS) projection results with a correlation-based distance measure, or 2D scatter-
plots of two selected dimension statistics (e.g. mean value vs. standard deviation).

Yuan et al. (2013) introduced a dimension projection matrix, which builds on the
concept of scatterplot matrices by assigning a group of dimensions to each row or
column and using projections instead of simple 2D plots. It leverages symmetric
property of the matrix to create a dual space visualization: the cells in the upper
triangle of the matrix contain projections of items in combined set of respective
dimensions, and the lower triangle contains projections of dimensions themselves.

Neither Turkay et al. (2011, 2012) nor Yuan et al. (2013) were investigating
spatial data stemming from scientific simulations. Thus, our approach is the first to
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apply dimension visualization for the analysis of multifields. Similar to the dual-
space approaches, we apply MDS to dimensions. However, we consider spatial data
visualizations to be more appropriate for this scenario than the data item projections
of other dual-space approaches.

3 Field Similarity Plot

Our approach focuses on the uniform qualitative comparison of the fields present in
a dataset, which requires all fields to be normalized. In the following, we assume
that all fields are normalized to the unit interval.

First, a number of commonly studied and newly derived fields are included in
the analysis. Specifically, we add gradient magnitudes, Hessian determinants, and
fields based on the gradient similarity measure (GSIM) introduced by Sauber et al.
(2006). For two gradients gi and gj, GSIM is defined as

sðgi; gjÞ ¼ ðsdðgi; gjÞ � smðgi; gjÞÞr; ð1Þ

sdðgi; gjÞ ¼ gTi gj
kgik � kgjk

� �2

; ð2Þ

smðgi; gjÞ ¼ 4
kgik � kgjk

ðkgik þ kgjkÞ2
; ð3Þ

where sd is the direction similarity, sm is the magnitude similarity, and r regulates
sensitivity of the measure (set to 1:3 as recommended (Sauber et al. 2006)).

The following GSIM fields are computed: first-order similarity between gradi-
ents, second-order similarity between eigenvectors of the principal eigenvalue of
the Hessians, and mixed similarity between the first- and the second-order deriv-
atives estimate (i.e. gradients and Hessian eigenvectors, respectively). In the set of
derived fields, the gradients and their similarities carry first-order relationships,
while other fields might indicate more complex relationships. All derived fields are
normalized as well.

Next, for each data field, we interpret the vector of its values at all spatial
locations as a multidimensional data point and compute integrated differences
between pairs of fields. In the following, we use the global Euclidean distance
measure defined on the *-dimensional space, where � ¼ nx � ny � nz, and nx, ny, nz
are respective sizes of the spatial grid in x, y, z dimensions. This distance is
computed as

d�ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
xyz

½vjxyz � vixyz �2
s

; ð4Þ
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where vjxyz denotes the value of the jth field at the spatial position xyz. The distance
value is 0 for two identical fields, and increases proportional to the differences
between the compared fields.

The *-dimensional points are then projected to points in a 2D space while trying
to maintain the computed pairwise distances (Eq. 4) as much as possible. We have
selected Sammon’s mapping (Sammon 1969) as a projection technique. It starts
with random point coordinates in the 2D space and then iteratively moves the points
to minimize the error given by the equation:

E ¼ 1P
i\j d�ij

h iXN
i\j

½d�ij � d2ij�2
d�ij

; ð5Þ

where d2ij are the Euclidean distances of projected 2D points in the 2-dimensional
space, and d�ij are the distances between original points in the multidimensional
space.

Finally, the results of the projection are visualized as a scatterplot. By definition,
this scatterplot has no inherent axes (i.e. it is only unique up to rotation), while the
distances between the 2D points indicate how similar the respective fields are
(Figs. 1, 4 and 5). Colors are used to indicate the types of the fields (original,
derivative or similarity fields).

4 Interactive Visual Analysis

The field similarity plot described above helps the scientist to identify informative
fields. The plot serves as an interaction widget, where individual fields can be
clicked at and investigated using linked views (selected fields are highlighted by
increased point size).

The linked views are (1) slice-based volume visualizations for the spatial
investigation of field value distributions (Figs. 2a, 3a and 6a) and (2) 1D histograms
of the normalized field values for understanding the field value distribution within
its range (Figs. 2b, 3b and 6b). In the individual views, we decided to avoid using
the typically default rainbow colormap because of its misleading perceptual prop-
erties (e.g. it introduces artificial sharp contrasts at the color transitions) (Borland
and Taylor 2007; Rogowitz and Treinish 1998; Silva et al. 2007). The selected
black body radiance colormap represents data without such issues.

The slice-based visualization renders axis-aligned slices through the volumetric
dataset. The position and the orientation of the cutting plane, as well as the ori-
entation and scaling of the 3D view, can be changed interactively. Multiple slice-
based visualizations for different data fields are coordinated: all of them use the
same view on the volume data as well as the same cutting plane.

224 A. Antonov and L. Linsen



5 Use Cases

In this section, we demonstrate two possible geoscientific applications, focusing on
the atmospheric part of a climate simulation output. The data are a sample run of a
climate model setup with a pre-industrial configuration, similar to the pre-industrial
control setup described by Zhang et al. (2013), but with different settings of orbital
parameters. Details of the employed Community Earth System Models COSMOS
(consisting of ECHAM5 for the atmosphere, MPIOM for the ocean, and JSBACH
for the vegetation) are outlined, for example, by Stepanek and Lohmann (2012).1

The analyzed dataset contains monthly means of ECHAM5 output for 13
volumetric climate variables at the spatial grid resolution of 96� 48� 19. The
z-axis is given in terms of hybrid sigma-pressure levels.

Our first scenario addresses the multifield constellation with 13 variables at a
single time step, while our second scenario is concerned with a single field at all
time steps of one year.

Fig. 1 The field similarity plot for the multifield scenario. There is a tendency towards separation
of different types of fields, but large differences exist within the groups of fields of each type. Big
points with labels correspond to the fields which have individual views in Figs. 2 and 3. Derivative
fields refer to gradient magnitudes and Hessian determinants, similarity fields refer to all the fields
computed with GSIM

1 Data courtesy of Christian Stepanek and Gerrit Lohmann from Alfred-Wegener Institute Helm-
holtz Centre for Polar andMarine Research in Bremerhaven, Paleoclimate Dynamics research group.
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5.1 Multifield

The 13 fields of ECHAM5 describe temperature (t), wind velocity components (u,
v, omega), specific and relative humidity (q and rhumidity), cloud water (xl) and
cloud ice (xi), vorticity (svo) and divergence (sd), streamfunction (stream), velocity
potential (velopot) and geopotential height (geopoth). We consider one time step,
namely the monthly means of April of the first year.

Fig. 2 Individual views for closely located points in Fig. 1: cloud water field xl, gradient
magnitude of divergence field jgr sdj and Hessian determinant of streamfunction field jh streamj.
a Slice views, mlev is the interpolated layer index of the slice (1—top layer, 19—surface layer).
b 1D histograms
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In the field similarity plot after adding all the discussed derived fields (Fig. 1)
one can observe a wide spread of the original fields. However, we can also see a
very dense group of points including all Hessian determinant fields. A few gradient
magnitude field points as well as the two original fields of cloud water xl and cloud
ice xi (occluded by xl in Fig. 1) are placed very closely to this group. The plot
indicates high similarity between the aforementioned fields with respect to
Euclidean distance. By looking at the linked views of slice-based volume visual-
izations and 1D histograms for a few fields from this area (Fig. 2), we see that,
while the fields exhibit different patterns, the distribution of the data values are very
much in the lower range. Using the Euclidean distance for the projection, the fields
are closer to each other than to other fields with values in the upper range.

When observing outliers among the original fields, we can see that each of them
has strong unique features (Fig. 3). The overall distribution of the values of the
temperature field t and the relative humidity field rhumidity are more similar than of
the values of the specific humidity field q. The latter field is more similar to the
group described above.

5.2 Time-Varying Field

In the second scenario, we investigate the change of the temperature field
throughout the first year by treating each month as a separate, independent field.

The projection of only the original fields arranges the points in a loop (Fig. 4)
that corresponds to the annual cycle, which documents, again, the feasibility of the
overall approach.

The loop has a pendular behavior with the winter months on one side and the
summer months on the other. The spring and fall months are close together (there is
even a crossing) and form transitional phases. Moreover, we can conclude that
changes over months are gradual.

The full projection of original and derived fields (Fig. 5) clearly separates the
five types of derived fields as well as the original dataset fields. Thus, we can
conclude that each of the chosen types of derived fields conveys distinctly different
information from the original data and from each other, i.e. differences within a
group are much smaller than between the groups. It can easily be confirmed by
looking at the individual views (Fig. 6).

6 Discussion

The presented approach describes a conceptual workflow, where a design choice
among many alternatives is made at each step. In this paper, we followed some of
the common decisions. In the following, we discuss other possibilities. A thorough
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Fig. 4 The field similarity
plot for twelve months of the
temperature field. Yearly
cycle is clearly visible,
separating months in three
groups: winter, summer, and
transitional seasons

Fig. 3 Individual views for outliers among original fields in Fig. 1: temperature t, specific
humidity q, and relative humidity rhumidity. a Slice views, mlev is the interpolated layer index of
the slice (1—top layer, 19—surface layer). b 1D histograms
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analysis on which alternatives work best for which application is beyond the scope
of this conceptual paper and left for future work.

In this paper, we normalized the range of each field to the [0, 1] interval. In case
of noisy data, a distribution-based normalization method can be employed. It puts
the mean value of the distribution to 0 and standard deviations to ±1. The latter
method is more robust against outliers.

Sammon’s mapping is a generally applicable projection method that produces
suitable results for many applications. However, our approach is not tied to this
particular technique, and other distance-based projection methods (Minghim et al.
2006; Paulovich and Minghim 2006; Paulovich et al. 2008) can be used.

The field similarity plots in Sect. 5 were computed with the Euclidean distance
measure. In our experiments, we also employed a correlation-based distance
measure. In the multifield case, the correlation measure produced quite different
results. Here, the denser groups of original and derivative fields shown in Fig. 1
were widely spread, while the fields chosen for Fig. 3 were placed closer to each
other. The reason is that the correlation measure is less sensitive to the scaling of
fields. Thus, fields with similar histograms but different spatial patterns are judged
to be more different. For the case of a single time-varying field, the results produced
by the correlation-based measure were similar to those with the Euclidean distance,
only that the groups were overlapping and not so clearly separated.

From the purely information-based point of view, the common recommendation
to analyze the general behavior of the data is to take fields that are spread in the
projected space and cover it well. However, it is clear that specific targeted ques-
tions require inclusion of certain fields that capture the respective information.

Fig. 5 The field similarity
plot in the case of a single
time-varying field. Different
types of fields are clearly
separated. Individual views
for the highlighted points are
shown in Fig. 6
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Depending on the needs of an application, instead of slicing views and 1D
histograms, other visualizations can be used for the exploration of the overview,
e.g. direct visualization as volume rendering of individual selected fields (Abellán
and Tost 2008; Drebin et al. 1988), multimodal volume rendering (Woodring and
Shen 2006), plotting correlations or other statistics in scatterplots or parallel

Fig. 6 Individual views for different types of fields, corresponding to the highlighted points in
Fig. 5. a Slice views at the surface layer. b 1D histograms. It is clearly visible that different types
of derived fields convey distinctly different information
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coordinates (Inselberg 1985), side-to-side volumetric visualizations, as well as
commonly used scatterplot matrices.

7 Conclusion

In this paper, we described a two-step approach to support the analysis process by
providing overview of the correlation between scalar fields in the data. At the first
step, a number of predefined fields is derived from a given dataset. At the second
step, a similarity-based overview of all fields is presented to the user, by employing
a multidimensional projection technique.

The described approach allows for the interactive analysis of relationships
between multiple fields, including simulated and derived fields. It provides an
overview over all fields in the projection view, allows the user to investigate
individual fields with coordinated views using slice-based volume visualization and
1D histograms, and provides means to choose fields for further investigation.
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