Temporal RBAC Security Analysis
Using Logic Programming in the Presence
of Administrative Policies

Sadhana Jha!, Shamik Sural?, Jaideep Vaidya®, and Vijayalakshmi Atluri®

! Advanced Technology Development Centre
2 School of Information Technology,
Indian Institute of Technology, Kharagpur, India
{sadhanajha, shamik}@sit.iitkgp.ernet.in
3 Management Science and Information Systems Department,
Rutgers University, USA
jsvaidya@business.rutgers.edu, atluri@rutgers.edu

Abstract. Temporal Role Based Access Control (TRBAC) is an ex-
tension of the role based access control (RBAC) model in the temporal
domain. It is used by organizations needing to enforce temporal con-
straints on enabling and disabling of roles. For any chosen access control
model, decentralization of administrative authority necessitates the use
of a separate administrative model. Even with the use of an adminis-
trative model, decentralization often leads to an increased concern for
security. Analysis of security properties of RBAC has been extensively
done using its administrative model (ARBAC97). However, TRBAC se-
curity analysis in the presence of an administrative model so far has
received limited attention. This paper proposes a method for perform-
ing formal security analysis of TRBAC considering a recently proposed
administrative model named AMTRAC, which includes all the relations
of ARBACYT7 as well as an additional set of relations (named REBA) for
administering the role enabling base of a TRBAC system. All the com-
ponents of TRBAC and AMTRAC are specified in Prolog along with the
desired safety and liveness properties. Initially, these properties are ver-
ified considering the non-temporal relations only, followed by handling
of the temporal relations as well. Experimental results show that the
method is both effective as well as scalable.

Keywords: TRBAC, AMTRAC, Prolog, Security Analysis.

1 Introduction

Providing secure and restrictive access to its resources is one of the main con-
cerns for any organization. Role-based access control (RBAC) [14] has emerged
as an effective means for specifying and meeting security goals in organizations
with diverse access control requirements. It is based on the central notion of
roles. Roles are created to perform a job functions and are associated with a set

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 129-148, 2014.
© Springer International Publishing Switzerland 2014

130 S. Jha et al.

of permissions. Users are assigned to roles based on their organizational respon-
sibilities. The Temporal RBAC (TRBAC) model [1] allows temporal constraints
on when the roles can be used. It restricts roles to be either in the enabled or
the disabled state. Transition from the enabled to the disabled state is termed
as enabling of role and the reverse as disabling of role.

Administration of a large RBAC or TRBAC system is a challenging task and
to address this, administrative models such as ARBAC97 [12] for RBAC and
AMTRAC [16] for TRBAC have been proposed. An administrative model brings
decentralization in administration by allowing a chief security officer to delegate
the authority of management to other administrative officers. It incorporates
certain relations that allow administrators to change the state of the system.
The use of administrative models restricts the set of possible states which an
access control system can transit to. However, decentralization also leads to
increased possibility of intentional or unintentional violation of security, resulting
in unauthorized information flow. Hence, it is imperative that a comprehensive
understanding and analysis of these models be done before they are deployed in
practical situations.

Access control models including RBAC and TRBAC provide a multitude of
features. While this enables specifying different kinds of access control policies,
analysis of the level of security provided by the access control model is tedious
and error-prone, if not impossible, when attempted manually. It is more so, when
security administration is distributed and state changes could be made by differ-
ent administrators based on the administrative roles they are allowed to invoke.
Automated security analysis is also complicated and requires appropriate tools
for solving computationally hard problems. Since state transition in an RBAC or
TRBAC system can take place only through the set of administrative relations
defined in its administrative model, consideration of administrative models is
necessary for analyzing the security properties. Till date, there is limited work
on TRBAC security analysis. Additionally, none of the existing approaches con-
sider a comprehensive administrative model.

In this paper, we present a methodology for TRBAC security analysis us-
ing Prolog in the presence of a recently proposed administrative model named
AMTRAC [16]. Essentially, a security analysis problem can be considered as a
searching problem in which the analyzer searches for an instance in which the
desired security property does not hold. We use Prolog for security analysis since
it has been shown to be able to handle such type of problems quite efficiently.
Moreover, the inbuilt capability of handling lists makes it suitable for represent-
ing the temporal elements of a TRBAC system. However, effective modeling of
temporal components and administrative functions so that security analysis can
be done efficiently is a non-trivial task as Prolog does not directly support all
such features.

Security analysis in the current context is primarily concerned with the verifi-
cation of safety and liveness properties. A safety property can be stated as “Does
user u get permission p at time instant t?” while a liveness property could be
“Is there a time instant t, when none of the roles in the system is in the enabled

Security Analysis of Temporal RBAC 131

state?”. Thus, safety property checks for the presence of an enabled user at a
particular point of time and liveness property checks for the presence of an en-
abled role over the entire set of time periods defined by all the periodic events of
the system under consideration. For analysis, both the TRBAC system as well as
the corresponding AMTRAC relations are specified in Prolog. Security proper-
ties are also defined using Prolog syntax. These specifications are given as input
to the SWI interpreter!, which returns true or false depending on whether the
system specifications meet the given security properties. It may be noted that,
for analysis, we do not use temporal logic extension of Prolog, rather first order
form is used along with a representation of the temporal aspects of TRBAC.

The rest of the paper is organized as follows. Section 2 contains preliminaries
about RBAC, TRBAC, AMTRAC and Prolog. In Sections 3 and 4, we explain
how safety and liveness analysis can be done for TRBAC under the AMTRAC
administrative model using Prolog. Section 5 presents the results of experimental
evaluation of the proposed approach. Section 6 discusses some of the previous
work done in this field. Section 7 concludes the paper along with suggestions for
prospective future work.

2 Preliminaries

In this section, we provide a brief introduction of the RBAC and TRBAC ac-
cess control models (Section 2.1), their administrative models (Section 2.2), and
Prolog (Section 2.3). This would help in understanding the key concepts used in
the rest of the paper.

2.1 RBAC and TRBAC

RBAC [14] is an access control model in which role represent job functions
within an organization. Permissions are assigned to roles instead of directly to
users. Users get appropriate permissions by becoming members of corresponding
roles. The basic components of RBAC include a set of users (U), a set of roles
(R), a set of permissions (P), a user-role assignment (UA), a role-permission
assignment (PA) and a role- role relation called role hierarchy (RH). These
components collectively determine whether a particular user has permission to
access a certain resource. RBAC, thus, effectively controls which users have
access to which resource.

However, for many applications, which need to make access control decisions
based on temporal information, RBAC is not adequate. For such applications,
TRBAC, a temporal extension of RBAC, has been proposed. It includes a Role
Enabling Base (REB) for defining periodic enabling and disabling of roles ex-
pressed as periodic events along with temporal dependencies among roles speci-
fied using role triggers. Periodic events (PE) are of the form {I, P, p:E}, where
I represents the interval for which a periodic event is valid, P represents a peri-
odic expression based on the notion of calendars [1] and p:E represents a priori-
tized event expression [1]. For example, ([01/01/2014, 01/01/2020], all.years +

! http://www.swi-prolog.org/

http://www.swi-prolog.org/

132 S. Jha et al.

all.months + all.weeks + {1,2,3,4,5}.days + {10} .hours 1> 8.hours, H: Enable r)
conveys that the role r is enabled with high (H) priority for a duration of eight
hours starting from the tenth hour of the first, second, third, fourth and fifth
day of every week of every month of every year, during the period 01/01/2014
till 01/01/2020. A role trigger (RT) is of the form Ej,Fs,....E,,C1,Cs,...Cp, —
p:E after At where, E;s and Cjs represent event expressions and role status
expressions [1], respectively. p:E and At represent a prioritized event expression
and delay, respectively. For example, (Enable a, Fnabled b — Enable ¢) con-
veys that, enabling of role a triggers enabling of role ¢ provided that role b is
already enabled. Thus, periodic events and role triggers collectively determine
which roles in a system are enabled or disabled at various points in time.

2.2 ARBAC97 and AMTRAC

An administrative model defines the set of valid state transition rules for an ac-
cess control system. ARBACY7 is the first comprehensive administrative model
for RBAC. It has three components, namely, URA97, PRA97 and RRA97.
URA97 includes two relations, namely, can_assign and can_revoke to modify
the UA of an RBAC system. These relations respectively provide authority to
an administrator to assign new users to a role and to revoke existing users from
a role. PRA97 includes two relations, namely, can_assignp and can_revokep to
modify the PA of an RBAC system. These relations respectively provide author-
ity to an administrator to assign new permissions to a role and revoke existing
permissions from a role. RRA97 includes a relation named as can_modify to
modify the RH of an RBAC system. It allows an administrator to insert new
edges into the hierarchy and delete existing edges from the hierarchy. It also
allows them to create new roles as well as delete existing roles within a role
range. The components of ARBAC97, thus, can be used to change the state
of an RBAC system. To change the state of a TRBAC system, along with the
relations defined in ARBAC97, an additional component named as REBA (Role
Enabling Base Assignment) has been introduced in AMTRAC. REBA includes
a set of eighteen relations. These relations are partitioned into four different cat-
egories. While, the first and second categories of relations allow an administrator
to modify an existing periodic event and role triggers, the third and the fourth
category relations allow an administrator to add or delete new periodic events
and role triggers to or from the REB of a TRBAC system. Thus, REBA can be
used to make various possible modifications to the REB of a TRBAC system.

2.3 Introduction to Prolog

A Prolog program describes relations defined by means of clauses. A clause
can be either a fact or a rule. A fact represents a predicate expression that
makes a declarative statement about the problem domain. For example, consider
an authorization system having Alice, Charles and Tom as its users. Each of
the three users is associated with a password through the relation named as
username_ password. The set of facts representing this can be written as follows:

Security Analysis of Temporal RBAC 133

username_ password(Alice, 123456)
username_ password(Charles, 123abc)
username_ password(Tom, a2gh45)

A rule is a predicate expression that uses logical implication (:-) to describe a
relationship among facts. For example, for the authorization system mentioned
above, a rule to check whether the combination of username and password en-
tered by a user is valid or not can be written as follows:

valid_ username_ password_ combination (U, P):- username_password(U, P)
— write(’Valid username password combination’); write(’Invalid username pass-
word combination’)

A program logic expressed in the syntax of Prolog is executed using an inter-
preter. The interpreter is provided with a query to check whether certain condi-
tions hold or not. For instance, for the authorization system specified above, a
query to check whether Alice and 123456 is a valid username-password combi-
nation can be written as:

valid_ username_ password_ combination(Alice, 123456)

The interpreter, when provided with the given query, tries to find whether in
the presence of the provided set of facts and rules, it can derive that Alice and
128456 form a valid username-password combination. If it is able to do so, then
it returns true; else, returns false as output. Thus, we have seen how a Prolog
interpreter can be employed to check for the presence of certain conditions in a
system.

3 System Modeling in Prolog

To check whether a TRBAC state continues to remain in the safe state in pres-
ence of a set of administrative relations, the initial state of a TRBAC system as
well as the set of administrative relations are provided as facts to the interpreter.
Meaning of the security properties is defined in the form of rules.

3.1 Modeling TRBAC Using Prolog

In this section, we show how different components of a TRBAC system can be
modeled in the form of facts of a Prolog program. While modeling a TRBAC
system, the following assumptions are made: i) Initially, all roles are in the
disabled state, ii) If an enabled role needs to be disabled, the corresponding role
trigger is removed from the REB, iii) If a role 7 triggers another role ry, then
disabling of 7 causes automatic disabling of 75, iv) All event expressions are of
the same priority and v) Triggers are fired without any delay.

To represent users, roles and permissions, facts of the form wuser(string),
role(string) and per(string), respectively are used. In these facts, string denotes

134 S. Jha et al.

the name of a user, role or permission. To represent that w; is a user, a fact of
the form wuser(u;) is added to the specification, to represent that r; is a role, a
fact of the form role(r;) is added and to show that p; is a permission, a fact of
the form per(p;) is added to the program. The UA, PA and RH relations of a
TRBAC system are represented by facts of the form wuser_role(string, string),
role_ per(string, string) and role_ per(string, string), respectively.

A fact of the form user_role(w;, r;) represents that the user u; is a member
of the role r;. A fact of the form role_per(r;, p;) represents that the permission
p; is assigned to the role r; . A fact of the form role_ H(r;, 1;) represents that
role r; is senior to role r;.

An REB is represented by adding facts corresponding to periodic events as
well as role triggers. To express a periodic event, a fact named periodic_ event is
used and it is of the form:

periodic_ event([Integer;, Integer;], [[Year], [Month], [Week/, [Day/, [Hour],
[Duration]], role)

Integer; and Integer; represent the begin and end of the interval component of
a periodic event. Variables Year, Month, Week, Day and Hour represent compo-
nents of the year, month, week, day and hour calendar of a periodic expression.
The variable Duration represents the component of the duration calendar of a
periodic expression. The variable role is used to represent the role that will get
enabled through a periodic event (assumption has been made that PEs and RTs
are used only for role enabling).

Even though Prolog provides sufficient flexibility to represent every form of
periodic expression, for the sake of brevity, we constrain the different values
that the variables of a periodic_event fact could take. These constraints are as
follows:

— Integer; and Integer; : 4-digit integers such that Integer; < Integer;
YEAR: all _

MONTH: all _ \k, 1 <k <12

WEEK: all

— DAY:all_ \k, 1 <k <7

— HOUR: all_ \k, 1 <k <23

— DURATION: 1 <k <23

Using the above definition of a periodic event, to represent a periodic event of
the form (/2000, 2014], <all.years + all.months + {1, 2, 3}.days + 10. hours >
8. hours >, Enable r1), a tuple of the form periodic_ event([2000, 2012], [[all],
[all], [~], [1, 2, 3, 4, 5], [10], [8]], r1) needs to be added to the Prolog program.

A role trigger is represented by a relation named as trigger. This relation
is of the form trigger(role;,, role;,, role;,, role;,), where each role;, , 1 < k <
4 could be either a valid role name or an anonymous variable represented as
‘_’(without quotes). role;, represents the role present in the event expression
of a role trigger, role;, and role;, represent the roles present in the role status
expression of a role trigger and role;, represents the role present in the head of

Security Analysis of Temporal RBAC 135

a trigger. For example, a role trigger of the form Enable r1, Enabled o, Enabled
r3 — Enable 14 could be represented by adding a fact of the from trigger(ry, 7,
r3, r4) and a role trigger of the form FEnable r1, Enabled ro — Enable r3 could
be represented as trigger(ri, r2, —, r3). It may be noted that, for simplicity, we
restrict the form a role trigger can take, i.e., the body of the trigger can have at-
most one event expression and two role status expressions, the head of a trigger
can have at-most one event expression. However, Prolog itself does not impose
such restrictions and could be efficiently used to represent more complex forms
of role triggers.

3.2 Modeling of AMTRAC in Prolog

This sub-section gives details on modeling of the relations of AMTRAC in Prolog.
We divide AMTRAC relations into three categories. The first category consists of
those relations that add new elements to the components of a TRBAC system.
The second category of relations removes elements from the TRBAC system
components and the third category modifies the existing elements of a TRBAC
system components. We refer to these categories of relations as additive relations,
removal relations and modification relations, respectively.

Modeling of Additive Relations: Under this category of relations, fall
can_ assign, can—_assignp and insert_ Edge of ARBAC97 and also the addRT
and addPFE relations of REBA.

— Modeling of can_ assign
To model can_assign, a fact of the form canassign(arole, role, role) is used,
where arole represents an administrative role and role denotes a regular role.
If a TRBAC system has a canassign relation of the form (ary, r1, r2), then
this can be represented in Prolog by adding a fact of the form canassign(ary,
r1, T2). Now the facts that an interpreter can derive from a canassign fact
are given by the rules:

can—_assign(A, R1, R2) - canassign(A, R1, R2)

can—_assign(A, R1, R2) - canassign(A, R3, R2), can_assign(A, R1, R%)
assigned_user(U, R) - user_role(U, R)

assigned_user(U, R) - member_user_through_hierarchy(U, R)
user_assigned(U, R) :- assigned_user(U, R)

user_assigned(U, R) :- can_assign(A4, R1, R), assigned_user(U, R)

The first two lines help the interpreter to find the set of canassign relations
through which a member of BRI can be assigned to R2. The third and the
fourth lines define that a user U is a member of role R if either there is a
tuple of the form (U, R) in user_role or if U gets membership of the role
through hierarchy. The fourth and the fifth statements convey that a user
U is assigned to role R, either directly through UA or RH, or it may get
assigned due to the presence of a canassign fact that allows A to assign U
to R.

136

S. Jha et al.

Modeling of can_ assignp

To model can_assignp, a fact of the form canassignp(arole, role, role) is
used, where arole represents an administrative role and role denotes a reg-
ular role. If a TRBAC system has a canassignp relation of the form (ar,
11, r2), then this can be represented in Prolog by adding a fact of the form
canassignp(ary, r1, r2). Now the facts that an interpreter can derive from a
canassignp fact are given by the rules:

can_assignp(A, R1, R2) :- canassignp(A, R1, R2)

can_assignp(A, R1, R2) :- canassignp(A, R3, R2), can_assignp(A, R1, R3)
assigned_per(R, P) :- role_H(R, P)

assigned_per(R, P) :- member_per_through_ hierarchy(R, P)
per_assigned (R, P) - assigned_per(R, P)

per_assigned(R, P) - can_assignp(A, R1, R), assigned_per(R, P)

The first two lines help the interpreter to find the set of canassignp relations
through which permissions of R1 can be assigned to R2. The third and the
fourth line define that a permission P is associated with a role R, if, either
there is a tuple of the form (R, P) in role_ per or if P is associated with some
other role R3 such that, R3 is junior to R. The fourth and fifth statements
convey that a role R gets a permission P, either directly through PA or RH,
or it may get it through the execution of some canassignp, which allows A
to assign P to R.

Modeling of insert_ Edge

RRA97 allows an administrator to insert new edges into the role hierarchy
and also to delete existing edges from the hierarchy. To model insertion of
edge, the InsertEdge relation is used. It is of the form insertEdge(arole, role,
role), where arole represents an administrative role and role denotes a reg-
ular role. If a TRBAC system has an insertEdge relation of the form (ary,
1, r2), then this can be represented in Prolog by adding a fact of the form
insertEdge(ary, 11, r2). Now the facts that an interpreter can derive from a
insertEdge fact are given by the rules:

direct_senior(R1, R2):- role_H(R1, R2)

direct_senior(R1, R2):- role_H(R1, R3), direct_senior(R3, R2)
new_senior(R1, R2):- insertEdge(R1, R2)

new_senior(R1, R2):- insertEdge(R1, R3), new_senior(R3, R2)
senior(R1, R2) :- direct_senior(R1, R2)

senior(R1, R2) :- new_senior(R1, R2)

The first two lines help the interpreter to find the set of roles senior to a
role R2 due to initial role hierarchy. The third and the fourth lines help the
interpreter to find the set of roles senior to a role R due to the hierarchy in-
troduced by the insertEdge relation. The fourth and fifth statements convey
that the role R1 is senior to the role R2 if either R2 is senior due to initial
hierarchical structure or due to the modified hierarchical structure.

Security Analysis of Temporal RBAC 137

— Modeling of addPE (Ri6)
The relation Rig adds a new periodic event to an REB. The fact used to
model Ry is of the form addPE(perodic— event), where periodic_ event is a
new periodic event such that its format satisfies all the constraints speci-
fied in Section 3.1. To add a new periodic event of the form (/2000, 2014],
all.years + 1, 2, 3.days 1> 2.days, Enable r), a fact of the form addPE([2000,
2014, [lall], [-], [=], [1, 2, 3], [-], [2]],) is added to the prolog specifica-
tion. The new facts that an interpreter can derive due to the presence of an
addPFE fact are given by:

~

effective_ periodic_ event(

P, R) :- periodic_ event(I, P, R)
effective_ periodic_ event (I, P, R

, P, R) :- addPE(I, P, R)

~

The above statements convey to the interpreter that the set of effective
periodic events in a system is the set of periodic events present in the initial
state of a TRBAC system along with the set of periodic events added through
addPE.
— Modeling of addRT (R17)

The relation Ry7 adds new role trigger to a system. The fact used to model
Ri7 is of the form addRT (trigger), where trigger is a new role trigger such
that its format satisfies all the constraints specified in Section 3.1. To add
a new role trigger of the form Enable v, Enabled s — Enabled t, a fact of
the form addRT(r, s, —, t) is added to the Prolog specification. The new
facts that an interpreter can derive due to the presence of an addRT fact
are given by:

effective_trigger(R1, R2, R3, R4) :- trigger(R1, R2, R3, R})
effective_trigger(R1, R2, R3, R4). :- addRT(R1, R2, R3, R4)

Through these statements, the interpreter is asked to consider the facts writ-
ten as trigger or addRT as the set of effective triggers in the system.

Modeling of Removal Relations: Under this category of relations, come
can—_revoke, can_revokep and delete_ Edge of ARBAC97 and also the removeRT
relation of REBA.

— Modeling of can_revoke, can_revokep and delete_ Edge of ARBAC97 and
removeRT (Ris) of REBA. These relations are specified as rules and are
respectively of the form:
can_revoke(A, R) - retractall(user_ assigned(U, R))
can_revokep(A, R) - retractall(per_ assigned(R, P))
deleteEdge(A, R1, R2):- retarctall(role_ H(R1, R2))
removeRT (trigger) :- retract(trigger)

The can_revoke(A, R) rule asks the interpreter to remove all the assigned
users U from the role R. The can_revokep(A, R) asks the interpreter to

138 S. Jha et al.

remove all the permissions assigned to the role R. A deleteEdge(A, R1, R2)
relation asks the interpreter to remove the hierarchy edge between the roles
R1 and R2, and the rule removeRT (trigger) asks the interpreter to remove
the role trigger trigger from the REB of a system.

Modeling of Modification Relations of REBA: We finally show model-
ing of those relations that modify an existing element of the REB. Under this
category of relations, come Ry to Ri5 of REBA. To model these relations, two
rules are used: one for modifying the periodic events and the other for modifying
the role triggers. Modification in a periodic event can be essentially achieved by
first removing the obsolete periodic event and then adding the modified periodic
event to the REB. Similar is the case for modification in a role trigger. To modify
a periodic event, a rule of the following form is used.

modify_ periodic_ event(new_ periodic_ event, old_ periodic_ event) :-
retract(old_ periodic_ event), assertz(new_ periodic_ event)

Here, new_ periodic_ event is the required new periodic event and the old_ per
todic_ event represents the periodic event that will get removed from the REB.

The above definition conveys to the interpreter to remove the old periodic
event from the set of facts and to add new_ periodic_ event to the set of facts.
Consider a periodic event of the form ([2000, 2012], <all.years + all.months t>
2.days>, Enable r). If an administrator needs to modify the periodic expression
to <all.years + all.months + all.weeks > 2.days>, then the modify_ periodic
_event will be of the form:

modify_ periodic_ event(periodic_ event([2000, 2012], <all.years + all.months
> 2.days>, Enable r), periodic_ event([2000, 2012], <all.years + all. months +
all.weeks > 2.days>, Enable).

To modify a component of a role trigger, a rule of the following form is used:

modify_ trigger(old_trigger, new_trigger) :-
retract(old_trigger), assertz(new_trigger)

This definition conveys to the interpreter to remove the old_trigger from the
set of facts and to add new_trigger into the REB. Consider a trigger of the form
Enable r1 — Enable r2. Suppose, an administrator wants to modify it to the
form Enable r1 — Enable r3. To model this requirement, modify_ trigger will be
of the form:

modify_ trigger([r1, —, —, r2], [r1, -, —, 73])
4 Analysis of Security Properties

In the previous section, we showed how the different relations of AMTRAC can
be modeled using Prolog syntax. In this section, we show how these relations
affect the security properties of a TRBAC system. We consider both safety as
well as liveness analysis in this paper.

Security Analysis of Temporal RBAC 139

4.1 Safety Analysis

As mentioned in Section 1, a safety property for a TRBAC system could be
defined as “whether a user u gets a permission p at some time instant t.” In
Prolog, to define this property, we use a rule named as safety. The safety rule
can be defined as follows:

safety(U, P, T) :- user—_assigned(U, R), per— assigned(R, P), enabled_role(R, T)

In the above rule, the predicate user—_ assigned(U, R) and per_ assigned(R, P)
respectively return the set of users and the set of permissions assigned to a role
R. The predicate enabled_role is used to check whether the role R is enabled at
some time instance T or not. A formal definition of this predicate can be written
as:

enabled_role(R, T):- pe_enabled_role(R, T); trigger— enabled_role(R, T')

The above defined predicate returns true if a role R is enabled at time T either
through a periodic event or due to a role trigger. To check whether there is
some periodic event which causes enabling of a role R at time T, the predicate
pe_enabled_role is used. It is of the form:

pe_enabled_role(R, T) :- valid_ periodic_ event(X, Y, R),
element_at(IBEGIN, X ,1), element_at(EBEGIN, X ,2),
element_at(DAYLIST, Y ,4), element_at(HOURCALLIST, Y ,5),
element_at(DURCALLIST, Y ,6), element_at(HOURCAL, HOURCALLIST,1),
element_at(DURCAL, DURCALLIST ,1), element_at(QUERYYEAR, T ,1),
element_at (QUERYDAY, T ,3), element_at(QUERYTIME, T ,4),

Z = HOURCAL + DURCAL, write(’Z is ’), write(Z), nl,
number_in_range(IBEGIN, QUERYYEAR, EBEGIN)— (member(QUERYDAY,
DAYLIST)— (number_in_range(HOURCAL,QUERYTIME, Z) — (write('Role
enabled’)); (write(’Not enabled’),nl));

(write(’query day not in daylist’)));(write(’query year not in range’))

In the above definition, the predicate valid_ periodic_ event refers to the peri-
odic events initially present in the REB as well as the new periodic events that
can be added to the REB through the execution of addPFE relations.

To check whether a role is enabled through some role trigger or not, the pred-
icate trigger_ enabled_role is used. It is of the form:

trigger— enabled(R, T) :- enabled(R), pe_enabled_role(R, T)

The above predicate conveys that a role R is enabled if both the predi-
cates, i.e., enabled(R) and pe_enabled_role(R, T) return true. The predicate
enabled(R) checks whether all the role status expressions and event expressions
specified in the role trigger expression of R are satisfied or not. It is of the form:

140 S. Jha et al.

enabled(R):- valid_trigger(X, Y, Z, R), nl, periodic_ event(I, P, X),
periodic_ event(First_I, First_ P, Y), periodic_ event(Second_I, Second_P, Z),
element_at(Ibegin_ PE_Event ,I, 1), element_at (IEnd_ PE_ Event,I, 2),
element_ at(DayListPE_ Event,P, 4), element_at(HourCal_ PE_ Fvent, P, 5),
element_ at(DurCal_ PE_ Event, P, 6), element _at(Ibegin_ First_ Enabled,
First_1I, 1), element_at(IEnd_ First_ Enabled,First_1, 2),
element_ at(Day ListPE_ FirstEnabled,First_ P, 4), element_ at(HourCal_ First_
Enabled, First_P, 5), element_at(DurCal_ First_ Enabled, First_P, 6),
element_ at(Ibegin _Second_ Enabled, Second_1I, 1),
element_ at(IEnd_ Second_ Enabled,Second_1I, 2),
element_ at(DayListPE _ SecondEnabled,Second_ P, /),
element_ at(HourCal_ Second_ En- abled, Second_P, 5),
element_ at(DurCal_ Second_ Enabled, Second_ P, 6),
intersection (DayListPE_ Event, DayListPE_ FirstEnabled, L),
intersection(L, DayListPE_ Second- Enabled, W),
find_ largest(HourCal_ PE_ Fvent, HourCal_ First_ Enabled, HourCal_

Second_ Enabled, Max1, Max2),

find_smallest(DurCal_ PE_ Event, DurCal_ First_ Enabled, DurCal_Second_
Enabled, Min1, Min2), nl,

find_largest(Ibegin_ PE_ Event, Ibegin_ First_ Enabled, Ibegin_ Second_ Enabled,
Max_Ibeginl, Maz_1Ibegin2), find_smallest(IEnd_ PE_ Event, IEnd_First_
Enabled, IEnd_ Second _ Enabled, Min_Iend1, Min_Iend2),

assertz(periodic_ event ([Max_ Ibegin2, Min_Iend2],[[all], [all], [all], W, Max2,
Min2/, R))

Assume there is a role trigger of the form Enable ry, Enabled ro, Enabled 13
— Enable 14, and a query is made whether r4 is enabled at some time instance
t or not. Then, enabled(rsy) checks whether both the roles r, and r4 are enabled
at time t or not.

After defining the safety rule, we next describe how analysis of a TRBAC
system can be done in presence of the different administrative policies. To show
the effect, we use the TRBAC system whose user policies are shown in Figure 1
and administrative policies are shown in Figure 2.

To perform safety analysis, we define certain desired safety properties for the
system as shown in Table 1. To check whether a condition defined in Table
1 holds or not, individual safety queries for each of them are provided to the
interpreter. The set of queries provided to the interpreter is shown in Table 2.

There are certain constraints associated with the values of T' that can be used
in the safety queries defined in Table 2. For the first query, the value of T should
be selected in such a way that it lies in the time duration defined by the periodic
expression of any periodic event. For the second query, the value of T can be
any time instance between morning 0000 hrs to 1600 hrs and for the last query,
the value of T should be a time instance when, out of the two roles Manager
and TeamLeader, only one is enabled.

Security Analysis of Temporal RBAC 141

users = {Alice, Bob, Charles, John, Tom }
roles = { Manager, Engineer, HR, TeamLeader}
permissions = { Access, Read, Edit}

UA = {(Alice, Manager), (Bob, Engineer), (Charles, Engineer), (John, HR), (Tom,
TeamLeader)}

PA = {(Manager, Access), (Engineer, Read), (HR, Edit), (TeamLeader, Access)}
RH = {(Manager = Engineer)}

PEL : ([2000,2020], all. years + all. months +all weeks + {1, 2, 3, 4 5} days
+ 10.hours P 8 hours , Enable Manager)

PE2: ([2000, 2020], all months +all weeks + {5, 6} days + 10 hours
P & hours, Enable Engineer)

PE3: ([2000, 2012], all months +all weeks + {1, 2, 3, 4, 51 days + 16.hours
P 8 hours. Enable TeamILeader)

RT1: Enable Manager, Enabled TeamIeader — Enable HR

Fig. 1. User policies for the example TRBAC system
Table 1. Safety conditions for the example TRBAC system

1. Tom should never get Edit

2. Tom must not get Access between 0000 hrs to 1600 hrs

3. John should be able to use Edit only if both the roles Manager and
TeamLeader are enabled

For all the behavior defined in Table 1, a safety query is posed to the in-
terpreter. If the condition holds, then the interpreter returns true; else, returns
false. For all the defined conditions, the expected answer is false, and if the in-
terpreter returns true for any of the queries, then the system is said to be in
unsafe state. To show the effect of the administrative relations, initially, queries
are posed in absence of the administrative relations, and then, in the presence of
the administrative relations. As mentioned earlier, for the first query, any value
of T representing a valid periodic time can be used. So we use the periodic time
[2012, 1, 3, 10] for executing the first query. Similarly, for the second query, we
can use any periodic time not lying in the range 1600 hrs to 0000 hrs. W con-
sider the periodic time [2010, 4, 3, 13] as the value of T. For the third query, we
use the periodic time [2010, 2, 3, 18], since during this periodic time, only the
Manager role is enabled. It may be noted that, all the periodic times satisfying
the constraints specified earlier could also be used as the value of T.

142 S. Jha et al.
arolezs= {CSO, SSO, SO}
can_assign= {(CSO, TeamLeader, Manager), (CSO, Manager, HR)}

modify_role trigger=(trigger(Enable Manager, Enabled TeamLeader — Enable
HR), trigger(Enable Manager — Enable HR))

addRT(Enable Engineer — Enable HR)

Fig. 2. Administrative roles and Administrative relations of AMTRAC which affects
safety property of a TRBAC system

Table 2. Safety conditions of the example TRBAC system

1. safety(Tom, Edit, T).
2. safety(Tom, Access, T).
3. safety(John, Edit, T).

When the interpreter is posed with all the three queries, it returns false for
each of them, signifying that the system is in safe state. Next, the same set
of queries is posed to the interpreter in the presence of the administrative re-
lations defined in Figure 2. Now, the interpreter returns true for all the three
queries. Consecutive execution of the can_assign relations assigns Tom to the
roles Manager and HR, making FEdit permission available to him. Execution
of the administrative relation addRT causes enabling of the role TeamLeader
whenever the role FEngineer gets enabled. This causes Tom to get the Access
permission between 1000 hrs to 1800 hrs on Saturdays and Sundays. Execution
of the modify_role_trigger relation causes enabling of the role HR whenever the
role Manager gets enabled, making permission Edit available to John even when
the role TeamLeader is not enabled. Thus, it is seen how execution of the dif-
ferent administrative relations can result in undesired transition of the state of
a TRBAC system and how a Prolog interpreter can be suitably used to identify
such unsafe conditions.

4.2 Liveness Analysis

Liveness analysis checks for the presence of a dead state, i.e., it searches for a

time instance when none of the roles is enabled. In Prolog, to check for the

liveness of a system, we use the predicate liveness(t). It is of the form:
liveness(T) :- enabled_role(R, T)

When a query is made for a certain time instance T, the interpreter tries
to find a role R for which enable_role(R, T') returns true. If the interpreter is
able to find such a role, then it returns true conveying that system is not dead
at the given time instance. A liveness query for a system gets affected only if

Security Analysis of Temporal RBAC 143

modification is done in the periodic event. Modification in the role triggers will
never bring a system to a dead state. This is because a trigger enables a role at ¢
only if some other role gets enabled at ¢ by a periodic event. So, even if removal
of the trigger prevents enabling of the triggered role, it cannot prevent enabling
of the role which triggers it. So, we consider only those administrative relations
which modify the periodic event of a TRBAC system.

Effect of Modifying Periodic Event on Liveness. Modification in any of
the components of a periodic event could result in a dead state for the system.
Consider the REB shown in Figure 1. If a modify_ periodic_ event relation that
modifies the periodic time of PEI to {[2000, 2015], <all.years + all.months
+ allweeks + 1, 2, 8, 4, 5.days + 10.hours 1> 8.hours>} is added, then this
will bring the system to the dead state from the start of the year 2016. If a
liveness query of the form liveness([2016, 1, 1, 1]) (the time represented is the
1st hour of the 1st day of the 1st month of 2016), then the system returns
false for this query, conveying that, the system is in a dead state at the given
time. Similarly, it can be shown that if a modify_ periodic_ event relation of
the form (periodic_ event([2000, 2020], all.years + all.months + all. weeks + 1,
2, 3, 4, 5.days + 10.hours 1> 8.hours, Enable Manager), periodic_ event([2000,
2020], all.years + all. months + allweeks + 1, 2, 3, 4, 5.days + 13.hours >
8.hours, Enable Manager)) is executed, then on weekdays, the system will go
to a dead state from 1000 hrs to 1300 hrs. Similarly, it can be observed that
if a modify_ periodic_ event relation of the form (periodic_ event([2000, 2020,
all.years + all. months + all.weeks + 5, 6.days + 10.hours > 8.hours, Enable
Engineer), periodic_ event([2000, 2020], all.years + all.months + all. weeks + 5,
6.days + 10.hours > 8.hours, Disable Engineer)) is executed, then the system
will come to a dead state on the sixth day of every week of every month between
the years 2000 to 2020.

5 Experimental Results

To study the performance of the proposed modeling methodology, we have im-
plemented a simulator that takes the number of roles, users, permissions, ad-
ministrative roles, time intervals, periodic events and role triggers as input and
generates a TRBAC system satisfying the input. The number of user-role assign-
ments and also the number of permission-role assignments are kept at 20% of
the sizes of the respective cartesian products. A uniform distribution is used to
determine the user-role assignment and permission-role assignment entries that
are included in the relations. A second script is written to translate the output
generated by the simulator program into its corresponding Prolog specifications.
For implementation, Java(7.0.1-17), on a Windows 7 system with 64-bit i5 pro-
cessor @ 2.50GHz and 4GB RAM is used. SWI interpreter 6.6.1 is used for
analysis.

Effect of the number of roles on the analysis time is shown in Figure 3. The
data set used for the analysis consists of 2000 users, 300 permissions, 4 adminis-
trative roles, 10 time expressions, 50 periodic events and 30 role triggers. From

144 S. Jha et al.

the figure, it can be seen that a linear increase in the number of roles causes a
close to linear growth in analysis time. This is due to the fact that, a Prolog
interpreter works based on the principle of backtracking. A linear increase in the
number of roles causes a linear increase in the set of facts having role as one of
its parameters.

= = = =
(3] (3] (VS [¥8)
B

Time (in secs)

=
(]
Lh

=
(]
(N]

200 400 600 800 1000 1200 1400 1600
Number of roles

Fig. 3. Effect on analysis time due to variation in number of roles

Figure 4 shows the effect of number of users on the analysis time. The data set
used for analysis consists of 300 roles, 300 permissions, 15 time expressions, 50
periodic events, 30 role triggers and 4 administrative roles. It can be observed
that, even though the rate of increase in analysis time is linear with increase
in the number of users, the rate of growth of time is quite low as compared to
the rate of growth of time with number of roles as shown in Figure 3. This is
because, when a safety query is specified, the interpreter needs to check only for
the user specified in the query, thus making the result of the query independent
of other users.

=
w

o

Time(in secs)

o
=]

=
1=}
73

600 1200 1800 2400
Number of users

Fig. 4. Effect on analysis time due to variation in number of users

Effect of the number of periodic events and role triggers is shown in Figure 5
and Figure 6, respectively. The rate of growth is quite close to linear for these
components of TRBAC as well. However, it can be observed that the analysis
time itself is slightly higher as compared to the analysis time needed for the other

Security Analysis of Temporal RBAC 145

0.20
0.18
0.16
0.14

=
=

Time (in secs)

0.10
0.08

0.06

50 100 150 200
Number of periodic events

Fig. 5. Effect on analysis time due to variation in number of periodic events

Time (in secs)
(=]
=

30 60 90 120
Number of role triggers

Fig. 6. Effect on analysis time due to variation in number of role triggers

components. This is due to the complex nature of the definitions of periodic
events and role triggers.

We also analyzed the effect of each individual administrative relation on the
analysis time. It was observed that all the relations have similar effect on the
analysis time. This is due to the similarity in format of the relations. The data
set used for the analysis consists of 500 users, 200 roles, 300 permissions, 2
administrative roles, 70 periodic events and 20 role triggers. For this data set, it
took approximately 0.2 secs to execute a safety query. The combined effect of all
the relations of AMTRAC was also studied. For a data set comprising of 1500
users, 300 roles, 300 permissions, 15 time expressions, 120 periodic events, 30 role
triggers and 4 administrative roles, the interpreter took 0.232 secs in presence
of the AMTRAC relations and 0.141 secs when the AMTRAC relations were
not there, to answer a safety query. This is due to the increased number of facts
and rules in the presence of the AMTRAC. Even then the total time required
is quite encouraging and shows that our modeling and analysis methodology is
quite efficient.

6 Related Work

The role-based access control (RBAC) model [14] was proposed to cater to the
basic access control needs of commercial organizations. Subsequently, several ex-

146 S. Jha et al.

tensions have been developed that incorporate context related information into
the basic RBAC model. In [1], a model named TRBAC (Temporal RBAC) has
been introduced for handling temporal constraint on enabling and disabling of
RBAC roles. To put additional temporal restrictions on users getting a permis-
sion, GTRBAC (Generalized Temporal Role Based Access Control) model has
been proposed in [4]. For considering the user location before giving access to
resources, the LRBAC (Location-Aware Role Based Access control) model has
been proposed in [10]. Other notable work that incorporate temporal as well as
spatial information into RBAC include [2], [11].

The need for decentralization in administration has led to the development
of administrative models for various access control models. In [12], ARBACYT7 is
proposed which includes appropriate relations for modifying user-role assignment
(URA97), role-permission assignment (PRA97) and role hierarchy (RRA97).
Other administrative models for RBAC are presented in [13] and [9]. While
a limited number of administrative rules for making modifications to TRBAC
is proposed in [18], very recently, a complete administrative model for TRBAC,
named as AMTRAC has been proposed [16] . It includes REBA (Role Enabling
Base Assignment), which comprises of the relations used for making changes to
the role enabling base (REB) assignment of TRBAC, along with all the relations
defined in ARBAC97. REBA has a set of eighteen relations for modifying the
various components of REB.

Several attempts have been made to develop methods for verifying the security
provided by the policies of RBAC and its variants. In [15], petri-net based mod-
eling for the verification of RBAC policies is proposed. It first represents RBAC
using a petri-net based framework and then uses it to verify the correctness of
a set of underlying security policies. In [17], formal analysis of STRBAC is done
using Alloy, which is a formal language based on first-order logic. In [7], security
analysis of TRBAC using timed automata is proposed. Roles are represented
using a user timed automata, while administrative commands are captured in a
controller automata. Security properties are specified using Computation Tree
Logic (CTL) and verified with the help of a model checking tool named Uppaal.
In [8], a method for GTRBAC security analysis is proposed where CTL is used
to specify a set of safety and liveness properties, which are then verified using
the model checking approach.

Apart from performing simple security analysis of RBAC and its variants,
various contributions have been made in the field of security analysis using ad-
ministrative models. In [6], security analysis of RBAC in the presence of AR-
BAC97 has been done by reducing the security analysis instance of RBAC into
a corresponding security analysis instance of RT[«,(1] [5] and then further re-
ducing the instance so obtained into Datalog clauses. In [3], security analysis of
user-role assignment of RBAC using URA97 of ARBAC97 is performed and both
model checking and logic programming approaches are compared. It has been
shown that the logic programming approach outperforms the model checking
approach when the number of roles increases significantly. In [18], security anal-
ysis of TRBAC is done by using certain administrative rules. However, no formal

Security Analysis of Temporal RBAC 147

administrative model has been considered. While security analysis of RBAC has
been done based on the administrative models, use of formal administrative
models for TRBAC security analysis is yet to be addressed. This is one of the
factors for non-deployment of TRBAC at enterprise level even though it has the
ability to support a much richer set of features than the RBAC model.

7 Conclusions and Future Work

In this work, we have introduced a methodology for performing security analysis
of TRBAC using Prolog. Initially, the components of a TRBAC system and the
relations of AMTRAC are modeled using Prolog syntax. To represent the initial
content of the TRBAC components, facts are added and the desired security
properties, i.e., safety and liveness are defined in the form of rules. Next, the
effect of different components of TRBAC and AMTRAC on the analysis time
is studied. It has been shown that a linear increase in the number of any of the
TRBAC components causes a linear increase in the analysis time. Although each
component asserts linear effect on the analysis time, impact of periodic events
and role triggers is the most due to their complex nature.

Further work remains to be done to build an even more comprehensive under-
standing of the security properties of a TRBAC system. In this work, we have
made certain simplifying assumptions for representing the administrative rela-
tions. However, in practice, some of these might not be feasible. In the future, we
plan to perform analysis in the presence of unconstrained forms of administra-
tive relations. A similar problem exists with representing temporal information.
Therefore, we plan to provide a more realistic representation of time. This, in
turn, will necessitate the use of alternative tools for analyzing problems with
access control specifications.

References

1. Bertino, E., Bonatti, P.A., Ferrari, E.: Trbac: A temporal role-based access control
model. ACM Transactions on Information and System Security, 191-233 (2001)

2. Bertino, E., Catania, B., Damiani, M.L., Perlasca, P.: Geo-rbac: A spatially aware
rbac. In: Proc. of the 10th ACM Symposium on Access Control Models and Tech-
nologies, pp. 29-37. ACM (2005)

3. Jha, S.; Li, N., Tripunitara, M., Wang, Q., Winsborough, W.: Towards formal
verification of role-based access control policies. IEEE Transactions on Dependable
and Secure Computing, 242-255 (2008)

4. Joshi, J.B., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based
access control model. IEEE Transactions on Knowledge and Data Engineering,
4-23 (2005)

5. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust man-
agement framework. In: Proc. of the IEEE Symposium on Security and Privacy,
pp. 114-130. IEEE (2002)

6. Li, N., Tripunitara, M.V.: Security analysis in role-based access control. ACM
Transactions on Information and System Security, 391-420 (2006)

148

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Jha et al.

Mondal, S., Sural, S.: Security analysis of temporal-rbac using timed automata. In:
Proc. of the 4th International Conference on Information Assurance and Security,
pp. 37-40. IEEE (2008)

Mondal, S., Sural, S., Atluri, V.: Towards formal security analysis of gtrbac using
timed automata. In: Symposium on Access Control Models and Technologies, pp.
33-42. ACM (2009)

Oh, S., Sandhu, R.: A model for role administration using organization structure.
In: Proc. of the 7th ACM Symposium on Access Control Models and Technologies,
pp. 155-162. ACM (2002)

Ray, 1., Kumar, M., Yu, L.: LRBAC: A location-aware role-based access control
model. In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 147-161.
Springer, Heidelberg (2006)

Ray, 1., Toahchoodee, M.: A spatio-temporal role-based access control model. In:
Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602,
pp. 211-226. Springer, Heidelberg (2007)

Sandhu, R., Bhamidipati, V., Munawer, Q.: The arbac97 model for role-based
administration of roles. ACM Transactions on Information and System Security,
105-135 (1999)

Sandhu, R., Munawer, Q.: The arbac99 model for administration of roles. In: Proc.
of the 15th Annual Conference on Computer Security Applications, pp. 229-238.
IEEE (1999)

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access
control models. IEEE Computer, 38-47 (1996)

Shafiq, B., Masood, A., Joshi, J., Ghafoor, A.: A role-based access control pol-
icy verification framework for real-time systems. In: 10th International Workshop
Object-Oriented Real-Time Dependable Systems, pp. 13-20. IEEE (2005)
Sharma, M., Sural, S., Vaidya, J., Atluri, V.: Amtrac: An administrative model for
temporal role-based access control. Computers & Security (2013)

Toahchoodee, M., Ray, I.: Using alloy to analyze a spatio-temporal access control
model supporting delegation. IET Information Security, 75-113 (2009)

Uzun, E., Atluri, V., Sural, S., Vaidya, J., Parlato, G., Ferrara, A.L., Parthasarathy,
M.: Analyzing temporal role-based access control models. In: Proc. of the 17th
ACM Symposium on Access Control Models and Technologies, pp. 177-186. ACM
(2012)

	Temporal RBAC Security Analysis
Using Logic Programming in the Presence
of Administrative Policies

	1 Introduction
	2 Preliminaries
	2.1 RBAC and TRBAC
	2.2 ARBAC97 and AMTRAC
	2.3 Introduction to Prolog

	3 System Modeling in Prolog
	3.1 Modeling TRBAC Using Prolog
	3.2 Modeling of AMTRAC in Prolog

	4 Analysis of Security Properties
	4.1 Safety Analysis
	4.2 Liveness Analysis

	5 Experimental Results
	6 Related Work
	7 Conclusions and Future Work
	References

