
CORP: A Browser Policy to Mitigate

Web Infiltration Attacks

Krishna Chaitanya Telikicherla, Venkatesh Choppella,
and Bruhadeshwar Bezawada

Software Engineering Research Center,
International Institute of Information Technology (IIIT),

Hyderabad - 500032, India
KrishnaChaitanya.T@research.iiit.ac.in, Venkatesh.Choppella@iiit.ac.in,

Bezawada@mail.iiit.ac.in

Abstract. Cross origin interactions constitute the core of today’s col-
laborative Word Wide Web. They are, however, also the cause of ma-
licious behaviour like Cross-Site Request Forgery (CSRF), clickjacking,
and cross-site timing attacks, which we collectively refer as Web Infiltra-
tion attacks. These attacks are a rampant source of information stealth
and privacy intrusion on the web. Existing browser security policies like
Same Origin Policy, either ignore this class of attacks or, like Content
Security Policy, insufficiently deal with them.

In this paper, we propose a new declarative browser security policy
— “Cross Origin Request Policy” (CORP) — to mitigate such attacks.
CORP enables a server to have fine-grained control on the way different
sites can access resources on the server. The server declares the policy
using HTTP response headers. The web browser monitors cross origin
HTTP requests targeting the server and blocks those which do not com-
ply with CORP. Based on lessons drawn from examining various types
of cross origin attacks, we formulate CORP and demonstrate its effec-
tiveness and ease of deployment. We formally verify the design of CORP
by modelling it in the Alloy model checker. We also implement CORP as
a browser extension for the Chrome web browser and evaluate it against
real-world cross origin attacks on open source web applications. Our
initial investigation reveals that most of the popular websites already
segregate their resources in a way which makes deployment of CORP
easier.

Keywords: Web Browser, Security, World Wide Web, Cross-site re-
quest forgery, Access control policy.

1 Introduction

When the World Wide Web was invented in 1989 [1], it only had a set of static
pages interconnected via hyperlinks. With the addition of images in 1993[2], a
request to a website could cascade a set of requests to multiple other sites. There
is something unnerving about such cross-origin (or cross-site) HTTP requests
triggered without explicit user interaction. With the advent of forms and scripts

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 277–297, 2014.
c© Springer International Publishing Switzerland 2014

278 K.C. Telikicherla, V. Choppella, and B. Bezawada

in 1995[3], cross-site interactions became a real security threat. For example, as
shown Figure 1, a genuine website, say G.com, could now be compromised by an
attacker who injects malicious content like an image tag pointing to attacker’s
site, say A.com. This is an example of a cross-site scripting (XSS) attack. A
victim requesting the infected page could end up unwittingly participating in
exfiltration, i.e., the leakage of private data to A.com.

Despite several proposals like whitelisting[4], input sanitization[5], static
analysis[6], browser sandboxing[7], XSS vulnerabilities continue to be pervasive
on the web. Browsers as early as 1995[8] introduced the Same Origin Policy
(SOP)[9], which was designed to prevent scripts from accessing DOM, network
and storage data belonging to other web origins. The earlier problem of cross-
origin requests through automatic form submissions or content inclusion was,
however, left unanswered by SOP. Content Security Policy (CSP), introduced
in 2010[10] improves on SOP in mitigating the exfiltration problem by disabling
inline scripts, restricting the sources of external scripts.

Fig. 1. Exfiltration vs. Infiltration attacks

1.1 Proposed Approach

Our work begins by seeking a common thread between CSRF, clickjacking and
cross-site timing attacks with the goal of understanding the limitations of CSP
in addressing these attacks. We label these attacks as Web Infiltration attacks.
The root of web infiltration is a request initiated from an evil page to a genuine

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 279

but unsuspecting server, (Figure 1). In web infiltration attacks, a victim who is
already logged in to a genuine site, G.com, unwittingly visits an attacker’s site,
A.com in a separate browser instance (or tab). The web page obtained from
A.com triggers state-changing requests to G.com either through an automatic
form submission initiated by a script or via an tag, or through other
similar vectors. The request to G.com goes from the victim’s browser and uses
the victim’s credentials. G.com is unable to discriminate between genuine and
forged requests. Web infiltration is complementary to exfiltration. Exfiltration
is caused by XSS and can be controlled by CSP. Infiltration, on the other hand,
can not be controlled by CSP.

We propose a novel approach to prevent web infiltration, based on the follow-
ing observations:

– Observation 1: Irrespective of how a network event (HTTP request) is
initiated, a web server responds with a resource. Therefore, any network
event, e.g., loading an image can infiltrate and potentially change the server’s
state e.g., delete a resource.

– Observation 2:The prevention and detection techniques for web infiltration
attacks that we have investigated are triggered too late. They apply either
after an HTTP request leaves the browser [11,12] or after the browser has
already received the response [13,14].

– Observation 3: Client side state information (cookies) of a website is shared
across all tabs of a browser or multiple instances of the same browser, even
though its access by other websites is restricted by Same Origin Policy.

– Observation 4: Website developers or administrators segregate the paths
of various resources on the server, as a good engineering practice.

From Observation 1, we infer that a policy which monitors the initiator of
web interactions is required. From Observation 2, we infer that every request
must be subjected to the policy before it leaves the browser. From Observation
3, we infer that the policy should be available to and enforced by all tabs of the
browser. From Observation 4, we infer that segregation of resource paths can be
used as an important factor in the design of the policy.

Based on the above inferences, we propose a simple security policy, Cross-
Origin Request Policy (CORP), to prevent web infiltration attacks. The policy
is a 3-way relation defined over the sets browser event types, origins, and the
set of resource paths derived from the server’s origin. CORP may therefore be
seen as a policy that controls who, i.e., which site or origin, can access what, i.e.,
which resource on a cross-origin server, and how, i.e., through which browser
event. CORP is declarative; it can be added as an HTTP response header of the
landing page of a website. To implement the policy, web administrators need to
segregate resources on the server based on the intended semantic effect of the
resource. For example, all public resources could be in the path /public, while
all state changing resources could be sequestered in a different path. Thus the
semantics of resources is mapped to paths. Fortunately, as discussed in Section 5,
most website administrators already segregate resources along the lines proposed
by the policy.

280 K.C. Telikicherla, V. Choppella, and B. Bezawada

A web browser enforcing CORP would receive the policy and store it in mem-
ory accessible to all tabs or browser instances similar to the cookie storage mech-
anism. Assume that tab tA contains a page pA from a server sA. Along with the
pA, the browser also receives a CORP policy c(sA) from sA. Assume that the
browser now opens a page pB received from sB in tab tB and pB attempts to
make a cascading cross-origin request to sA. The cross-origin request from pB
to sA will be intercepted and allowed only if it complies with the permissions
c(sA).

Threat Model: We follow the threat model classifications proposed by Akhawe
et al. [15], which defines the capabilities of web, network and gadget attackers.
Throughout the paper, we take into consideration only the threats that come
under the capabilities of a web attacker. A web attacker has root access on at
least one web server and can generate HTTP requests against any web server.
However, the attacker has no special network privileges, which means threats
like man-in-the-middle cannot be realized and HTTP headers generated by the
browser or server cannot be tampered.

Contributions: Our contributions in this paper are as follows: (1) We have
identified a class of web infiltration attacks that include CSRF, clickjacking and
cross-site timing attacks and designed a uniform browser policy to mitigate all
of them. (2) We have formalized our proposal in Alloy [16], a finite state model
checker, and verified that it is sound. (3) We have built two websites - one
playing the role of a genuine website and the other a malicious website (a test
suite) triggering malicious calls to the first. We have collected a large number
of attack vectors from literature and incorporated them into the test suite. (4)
We have implemented our proposal as an extension for Google Chrome web
browser. We have evaluated the extension by configuring CORP on the genuine
site and verified that infiltration attacks by the malicious site are blocked by
the extension. (5) We have configured CORP on three popular open source
web applications in our test environment to verify the effectiveness and ease
of deployment on real world websites. (6) We have also analyzed home page
traffic of over 15,000 popular websites and confirmed that the burden on web
administrators to deploy CORP will be minimum.

Organization of the Paper: The rest of the paper is organized as follows:
Section 2 gives an overview of web infiltration attacks. Section 3 gives an overview
of related work done in preventing these attacks. Section 4 explains the design of
CORP. Section 5 describes the implementation of CORP as a Chrome extension
and the experimental methodology to evaluate its effectiveness and Section 6
concludes with a discussion of future work.

2 Web Infiltration Attacks

In this section, we examine three common attacks: CSRF, clickjacking and cross-
site timing. Each of these is an instance of a web infiltration attack.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 281

2.1 Understanding CSRF

CSRF is a highly exploited web based vulnerability and is consistently listed in
the OWASP Top Ten [17]. In a typical CSRF attack, a malicious site instructs
a victim’s browser to send an HTTP request to an honest site. This malicious
request is sent on behalf of the victim, thereby disrupting the integrity of the
victim’s session.

In the example below, it is assumed that a user is logged in at a genuine site
G.com and then opens an attacker’s site A.com in a new browser tab. The page
from the attacker’s site contains the HTML shown in Listing 1.1.

Listing 1.1. Basic CSRF attack via image tag

As soon as the attacker’s page is loaded, the image tag triggers a cascading HTTP
request to G.com, which deletes the user’s profile on the site. Though servers
do not generally accept state changing requests using HTTP GET, generating
HTTP POST requests using HTML forms is trivial. Irrespective of the origin
from which a request has initiated, browsers attach authentication credentials
i.e., cookies to every request made to the destination origin. Due to this, browsers
do not distinguish between a request triggered by a genuine and a malicious web
page1. Also, in most cases servers do not have information about the origin which
triggered the request (see Section 3.1 for details).

2.2 Understanding Clickjacking

Clickjacking was first reported in web browsers in 2008 [18]. It is also known
as UI-redressing and has gained popularity in the modern attacker community.
In this, attackers lure users to visit a malicious page and trick them to click on
invisible targets e.g., buttons, which belong to a cross origin web page. Typically,
attackers embed target cross origin content in iframes, reduce their opacity to
zero and position them above seemingly genuine buttons. End users will not
have any suspicion or indication that their click is hijacked, but the attacker will
be able use their click for malicious purposes. Clickjacking differs from CSRF in
the fact that along with the click, user’s credentials as well as CSRF tokens (if
present) are submitted2. This makes clickjacking more dangerous than CSRF.

There are many online scams/spams, especially on social networks, which use
clickjacking and make money. Facebook recently sued an ad network that used
clickjacking and stole personal information of users, thereby making up to $1.2
million a month [19].

1 This is an instance of the “Confused Deputy Problem”, where the browser is the
confused deputy.

2 This is an instance of the “Confused Deputy Problem”, where the user is the confused
deputy.

282 K.C. Telikicherla, V. Choppella, and B. Bezawada

2.3 Understanding Cross-Site Timing Attacks

Bortz et al. [12] explained that the response time for HTTP requests can expose
private information of a web user e.g., detecting if a user has logged in at a
particular site, finding the number of items in the user’s shopping cart etc.
Though there are several ways to time web applications, as shown by Bortz
et al., we examine a class of timing attacks called cross-site timing attacks,
which rely on cross origin HTTP requests. In these attacks a genuine user is
tricked to open a malicious page, which tries to load resources e.g., images,
html pages etc. from a site being targeted. On measuring the time taken for
the loading of the resources, sensitive information such as the login status of a
user can be extracted. Two recent works by Stone and Kotcher et al., showed
how SVG filters [20] and CSS shaders [21] can be used as vectors for cross-site
timing. Technically, cross-site timing attacks can be classified as CSRF attacks
with the exception that the traditional defenses for CSRF i.e., tokens do not
generally work for these. Typically, attackers target authenticated resources [22],
which do not have CSRF tokens e.g., private profile pictures, script files etc.
This means, majority of websites are vulnerable to cross-site timing attacks.
We have analyzed popular social networks and email providers and found at
least one way of detecting the login status of a user. We found that apart from
authenticated resources, even authenticated URLs can also be used as a vector
for login detection. Listing 1.2 shows the case where the script tag makes a cross
origin HTTP request to a non-existing page on a target site to detect login status
of the user.

<script src="http :// example.com/user/nonExistingPage .php"

onload=notLoggedIn () onerror=loggedIn ()>

Listing 1.2. Login detection by fetching cross origin authenticated resources

Once the login status of a user is known, as explained by Bortz et al., spammers
can perform invasive advertising and targeted phishing i.e., phishing a site which
a user frequently uses, rather than phishing randomly.

Apart from these, we have identified an attack scenario that uses login detec-
tion, which we call Stealth mode clickjacking. Developers usually protect sensitive
content using authentication. So in most cases, for a clickjacking attack to be
successful, the victim should be logged in at the target site. Moreover, if the
victim is not logged in and clicks on the framed target, authentication will be
prompted, thereby raising suspicion. Using login detection techniques, an at-
tacker can redesign the attack by ensuring that clickjacking code executes only
if the victim is logged in at the target site, thereby removing any scope of suspi-
cion. We observe that it is easy to compose such attacks with a comprehensive
knowledge of the web.

We observe that CSRF, clickjacking and cross-site timing attacks have a com-
mon root, which is a cross origin HTTP request triggered by a malicious client to
a genuine server without any restrictions. We attempt to mitigate these attacks
by devising a uniform browser security policy explained in detail in Section 4.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 283

3 Related Work

In this section, we briefly describe existing defenses against each of CSRF, click-
jacking and cross-site timing attacks.

3.1 Approaches to Mitigate CSRF

In the case of CSRF, there are several server side (Secret tokens, NoForge, Ori-
gin header etc.) and client side defences (RequestRode, BEAP, CsFire etc.) to
prevent the attack.

Secret Tokens: This is one of the most popular approaches used by developers.
In this, the server generates a unique random secret and embeds it into web
pages in every HTTP response. The server checks if the secret received from
the browser is the same as the one it generated earlier and accepts the request
if the check succeeds. Since the token is not available to the attacker, request
forgery cannot happen. CSRF Guard [11] and CSRFx [23] are a few server side
frameworks which implement this technique. Though this technique is robust,
most websites, including high profile ones, often miss them. Also, using social
engineering techniques tokens can be stolen thereby re-enabling request forgery.

NoForge: NoForge [24] is a server side proxy which inspects and modifies client
requests. It modifies responses such that future requests originating from the web
page will contain a valid secret token. It takes countermeasures against requests
that do not contain a valid token. The downside of this approach is, since it is a
server side proxy, it will not be able to add tokens to dynamic content generated
by JavaScript in the browser.

SOMA: Same Origin Mutual Approval (SOMA) [25] enforcing constraints on
HTTP traffic by mandating mutual approval from both the sites participating in
an interaction. Websites send manifest files that inform a browser which domains
the site can communicate with. The domains whitelisted in the manifest expose a
service which replies with a “yes” or “no” when queried for a domain name. When
both the sites agree for the communication (via the manifest and the service),
a cross origin request is allowed. Though SOMA enforces strict restrictions on
cross origin interactions, it involves an additional network call to verify the
permissions of a request. Moreover, it does not provide fine-grained control such
as restricting only a subset of cross origin requests for a domain.

Origin Header: Barth [26] et al., proposed adding an Origin header to HTTP
request headers, which indicates the origin from which each HTTP request ini-
tiates. It was an improvement over its predecessor - the Referer header, which
includes path or query strings that contain sensitive information. Due to privacy
constraints, the Referer header is stripped by filtering proxies [27]. Since the
Origin header sends only the Origin in the request, it improves over Referer in
terms of privacy. Majority of modern browsers already implemented this header.
Using the origin information, the server can decide whether it should allow a
particular cross origin request or not. However, origin header is not sent (set to

284 K.C. Telikicherla, V. Choppella, and B. Bezawada

null) if the request is initiated by hyperlinks, images, stylesheets and window
navigation (e.g., window.location) since they are not meant to be used for state
changing operations. Developers are forced to use Form GET if they want to
check the origin of a GET request on the server. Such changes in application
code require longer time for adoption by developer community.

Request Rodeo: Request Rodeo [28] is a client side proxy which sits in between
web browser and the server. It intercepts HTTP responses and adds a secret
random value to all URLs in the web page before it reaches the browser. It also
strips authentication information from cross origin HTTP requests which do not
have the correct random value, generated in the previous response. The downside
of this is, it does not differentiate between genuine and malicious cross origin
requests. Also, it fails to handle cases where HTML is generated dynamically
by JavaScript, since this dynamic content has come after passing through the
proxy.

BEAP: Browser Enforced Authenticity Protection [29] is a browser based solu-
tion which attempts to infer the intent of the user. It considers attack scenarios
where a page has hidden iframes (clickjacking scenarios), on which users may
click unintentionally. It strips authorization information from all cross origin
requests by checking referer header on the client side. However, it also strips
several genuine cross origin interactions, which are common on the web.

CsFire: CsFire [30,31] builds on Maes et al. [32] and relies on stripping au-
thentication information from HTTP requests. A client side enforcement policy
is constructed which can autonomously mitigate CSRF attacks. The core idea
behind this approach is - Client-side state is stripped from all cross-origin re-
quests, except for expected requests. A cross-origin request from origin A to B is
expected if B previously delegated to A, by either issues a POST request to A, or
if B redirected to A using a URI that contains parameters. To remove false pos-
itives, the client policy is supplemented with server side policies or user supplied
whitelist. The downside of this approach is that without the server supplied or
user supplied whitelist, CsFire will not be able to handle complex, genuine cross
origin scenarios and the whitelists need to be updated frequently.

ARLs: Allowed Referrer Lists (ARLs) [33] is a recent browser security policy
proposed to mitigate CSRF. ARLs restrict a browser’s ability to send ambi-
ent authority credentials with HTTP requests. The policy requires developers
identify and decouple credentials they use for authentication and authorization.
Also, a whitelist of allowed referrer URLs has to be specified, to which browsers
are allowed to attach authorization state. The policy is light weight, backward
compatible and aims to eradicate CSRF, provided websites meet the policy’s re-
quirement. However, expecting all legacy, large websites to identify and decouple
their authentication/authorization credentials may be unrealistic, since it could
result in broken applications and also requires extensive regression testing. Our
proposal, CORP, which uses whitelists like CSP and ARLs, does not require
complex/breaking changes on the server. Details of the approach are explained
in Section 4.1.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 285

3.2 Approaches to Mitigate Clickjacking

There are several proposals to detect [34,35], prevent [36,37] Clickjacking and
intelligent tricks [38,39] which bypass some of them. Browser vendors and W3C
have incorporated ideas from these proposals and are working towards robust
defense for clickjacking. Below are two important contributions in this direction:

X-Frame-Options (XFO) Header: The X-Frame-Options HTTP response
header [13], was introduced by Microsoft in Internet Explorer 8, specifically to
combat clickjacking. The value of the header takes two tokens-Deny, which does
not allow content of the frame to render, and SameOrigin, which allows content
of the frame to render only if its origin matches with the origin of the top frame.
XFO was the first browser based solution for clickjacking.

CSP User Interface Security Directives: Content Security Policy (CSP)
added a set of new directives- User Interface Security Directives for Content
Security Policy [14] specifically to focus on User Interface Security. It supersedes
XFO and encompasses the directives in it, along with providing a mechanism to
enable heuristic input protections.

Both XFO and CSP, though promise to prevent clickjacking, leave CSRF wide
open. Also, these solutions get invoked just before the frame is rendered, which
is too late in the request/response life-cycle. Due to this, several bypasses such
as Double Clickjacking [38], Nested Clickjacking [39] and Login detection using
XFO [22] arise.

3.3 Approaches to Mitigate Cross-Site Timing Attacks

Bortz et al. [12] proposed that by ensuring a web server takes constant time to
process a request might help in mitigating cross-site timing attacks. However,
it is unlikely to get wider acceptance in web community as it involves complex
server side changes. A popular recommendation by security researchers is to
disable onload/onerror event handlers for cross origin requests, but this affects
genuine cases. As of date, cross-site timing attacks are still unresolved.

4 Cross Origin Request Policy

In this section, we first explain the core idea behind Cross Origin Request Policy
(CORP) and its importance in mitigating web infiltration attacks. Next, we
explain the model of a browser which receives CORP and enforces it. Finally,
we explain the directives which make the policy, with examples.

4.1 Core Idea Behind CORP

Based on our clear understanding of various types of web infiltration attacks
(Section 2), we realize the need for a mechanism which enables a server to control
cross origin interactions initiated by a browser. Precisely, a server should have

286 K.C. Telikicherla, V. Choppella, and B. Bezawada

fine-grained control on Who can access What resource on the server and How.
By specifying these rules via a policy on the server and sending them to the
browser, requests can be filtered/routed by the browser such that infiltrations
attacks will be mitigated. This is the core idea behind CORP. Formally speaking,
Who refers to the set of origins that can request a resource belonging to a server,
What refers to the set of paths that map to resources on the server, How refers to
the set of event-types that initiate network events (HTTP requests) to the server.
We identify HTML tags such as , <script>, <iframe> etc., and window
events such as redirection, opening popups etc., as event-types (explained in
Section 4.3). Therefore, CORP is a 3-way relation defined over the sets Who,
What and How, as shown in Equation (1).

CORP ⊆ Origin×ResourcePath× EventType (1)

Equation (2) shows an example of a policy which is a subset of the 3-way relation.

Origin = {O1, O2, O3}
ResourcePath = {P1, P2, P3}

EventType = {Img, Script, Form}
CORP,Cp = {(O1, P1, Img), (O2, P2, Form), (O2, P3, Script)} (2)

Let us say a website belonging to the origin O0 sets this policy and a CORP-
enabled browser receives it. Then, only the cross origin requests that satisfy the
tuples in the policy will be allowed by the browser and rest will be blocked. E.g.,
A webpage belonging to the origin O1 will be allowed to request for images only
under the path P1, from a server belonging to the origin O0 (refer to the first
tuple in Equation (2)). Similarly, a webpage belonging to the origin O1 will not
be allowed to submit a form to the server belonging to O0, since it is not defined
in the policy.

4.2 Browser Model with CORP

Figure 2 shows the model of a browser which supports CORP. It shows the differ-
ence between exfiltration and infiltration attacks, thereby explaining how CORP
differs from CSP. The figure shows a genuine serverG, with origin http://G.com,
an attacker’s server A, with origin http://A.com and a browser with two tabs
- t1 and t2. A general browsing scenario, which is also the sufficient condition
for a cross origin attack, where a user logs in at G.com in t1 and (unwittingly)
opens A.com in t2 is depicted in the model.

Setting the Policy: Once a user requests the genuine site G.com by typing
its URL in the address bar of t1, an HTTP request is sent from t1 to G. In
response, along with content, CORP is sent via HTTP response headers by G
(shown by arrows 1 and 2 in the figure). The tab t1 receives the policy and sends

http://G.com
http://A.com

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 287

Fig. 2. Browser model showing exfiltration & infiltration and how they are mitigated
by CSP & CORP

it to a shared policy store Ps where Ps ensures that CORP is available to every
tab or instance (arrows 3 and 4 in the figure) of the browser. Now, when a user
unwittingly visits a malicious page from A in t2 (arrows 5 and 6 in the figure),
every HTTP request initiated by the page in t2 to G will be scrutinized and
restrictions in CORP will be enforced (location 7 in the figure). Requests from
t2 to G will be allowed only if they comply with the configuration in the policy.
As per the guidelines in Section 4.3, web administrators will be able to configure
rules in a way that web infiltration attacks will be prevented. It is sufficient to
configure CORP on the login page/home page of a website. It is not a per-page
policy like CSP and adding CORP on every page only overrides the policy.

Deleting the Policy: As users visit multiple websites, their browsers keep ac-
cumulating CORP policies and therefore, a mechanism to delete the policies is
required. In CSP and HTML5 CORS, policies will be stored in the browser only
till the participating websites remain open in browsers. The same mechanism
cannot be used in CORP, because if a CORP-enabled website is closed acci-
dentally by a user while being logged in and the policy is destroyed, malicious
websites will be able to trigger infiltration attacks. To prevent this, it is impor-

288 K.C. Telikicherla, V. Choppella, and B. Bezawada

tant for the policy to be persistent in the browser. At the same time, its life-time
in the browser should be under the control of the server. To meet both these
objectives we follow the expiry mechanism of HTTP Strict Transport Security
(HSTS) policy [40] and mandate the server to send a max-age attribute along
with CORP directives. This attribute sets the amount of time (in seconds) for
which CORP should be active in the browser. For example, a max-age value of
2592000 seconds ensures that the policy is active for 30 days, while a max-age of
0 deletes the policy immediately. If a user visits the website before the expiration
time, the timer will be reset to the new time configured in max-age.

It is important to note that policy’s set, get and delete operations are sub-
jected to same origin checks on the browser, to prevent websites overwriting each
other’s policies. Also, since CORP aims to filter cross origin interactions, adding
it to a website does not break the site’s existing same origin HTTP transactions.

CORP and CSP - How They Differ: CORP and CSP together complement
SOP and help in fixing exfiltration and Infiltration. CSP was designed to enforce
restrictions on HTTP traffic leaving a genuine webpage, as shown by location 8
in Figure 2. CORP was designed to enforce restrictions on HTTP traffic sent by
a malicious web page to a genuine server (location 7 in the figure). Also, CSP
expects origins as directive values as they are sufficient to control exfiltration.
CORP specifies a 3-way relation defined over the sets event-types, paths and
origins. In a nutshell, CORP configured on a website A.com defines who (i.e.,
which origins) can probe what (i.e., which resource) on A.com and how (i.e.,
which event).

4.3 Abstract Syntax of CORP

Listing 1.3 shows the abstract syntax of CORP.

policy ::= rule *...

rule ::= pattern permission

pattern ::= origin -list eventType -list path -list

permission ::= ALLOW | DENY

origin -list ::= origin +... | ANY

eventType -list ::= eventType +... | ANY

path -list ::= path +... | ANY

origin ::= RFC 6454

eventType ::= img | media | style

| font | script | iframe

| form -action | xhr | hyperlink

| window | object

path ::= RFC 2396

Listing 1.3. Abstract syntax of CORP

For path, an additional pattern “resourcePath/*” is allowed to simplify the
configuration of CORP. The wild card ‘*’ in the pattern provides a way to refer
to any resource under a specific resource path. E.g., Access to all paths under
“admin” directory can be controlled using the pattern “/admin/*”.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 289

Order of Precedence for CORP Rules: CORP rules are processed from
top to bottom, till the default rule is reached. When a cross origin request is
made by a website against a CORP-enabled site, the request is scrutinized by
the first rule in the policy. If a match is found, the first rule is executed and rest
of the rules are not evaluated. Else, the request is scrutinized by the next rule
and the process continues till the last rule.

The last (default) rule is set to “* * * Allow”, which means “Allow everything”.
If a server sends an empty policy, it is the same as not configuring CORP at
all. In such cases, the default rule is evaluated and all cross origin requests are
allowed. This approach ensures that CORP does not break existing cross origin
interactions on a website. Also, it enables web administrators to incrementally
build stricter rules and tighten the security of their servers. We demonstrate a
few example policies in the following discussion.

Example Policies

– Deny All: A banking site may want to completely block all cross origin
requests to its site. It may achieve this by setting the simple policy shown
in Listing 1.4.

* * * DENY

Listing 1.4. Block all cross origin requests

– Selective Content: A photo sharing site may want to respond only to
authenticated cross origin requests involving scripts, images (from any site)
and block any other authenticated cross origin request. It may set the policy
shown in Listing 1.5.

* img /img ALLOW

* script /scripts ALLOW

* * * DENY

Listing 1.5. Allow access to selective content

– Partners Only: An e-commerce website might expose state-changing web
services and expects only its partner sites, say P1.com, P2.com, to do a form
submission to its services. It can set the policy shown in Listing 1.6.

{P1.com , P2.com} form {/update , /delete}

ALLOW

* *

*

DENY

Listing 1.6. Allow selective access to selective origins

290 K.C. Telikicherla, V. Choppella, and B. Bezawada

4.4 Security Guarantees Provided by CORP

CORP helps website administrators use browser’s capabilities in adding addi-
tional security to their sites. The following are the security guarantees provided
by CORP:

Fine Grained Access Control. Through CORP, websites can decide who
(i.e., which set of origins) can trigger cross origin requests to their sites and more
importantly how (i.e., through which mechanism). Having such a fine grained
access control helps web administrators selectively allow/deny cross origin re-
quests, thereby enhancing the security of their site.

Combating CSRF. By binding various event types e.g., to paths serv-
ing their corresponding resources e.g., http:// A. com/ images/ via CORP, the
semantics of request initiators is maintained. The implication of this binding is
that active HTML elements can no longer be used as vectors for cross origin
attacks. Also, by whitelisting sensitive paths and defining which origins can re-
quest them, automated requests triggered by scripts through various techniques
can be blocked. If CORP is properly configured, CSRF attacks can be eliminated
completely.

Early Enforcement of Clickjacking Defense. As discussed in Section 3.2,
XFO and CSP-UI-Security directives are two important proposals to mitigate
clickjacking. Figure 3 explains how enforcement of clickjacking defense takes
place in XFO/CSP and CORP. The workflow in the figure is similar to the
workflow depicted Figure 2. As explained in Section 4.2, consider the normal
browsing scenario where a user (victim) opens a genuine site G.com in tab t1
and unwittingly opens an attacker’s site A.com in tab t2. In this case, the evil
page (belonging to A.com) embeds an iframe and points its src to a page belong-
ing to G.com, with an intention to hijack the victim’s click. The iframe makes an
HTTP request to the genuine server (G) and gets the HTML response along with
HTTP headers. If the page is configured with either X-Frame-Options header or
CSP clickjacking directive, browsers enforce XFO/CSP and do not render the
HTML response (location 7 in the figure), thereby preventing clickjacking. How-
ever, since the request triggered by the iframe has already reached the server
G, CSRF attack has already taken place. Also, due to this delayed enforcement,
Clickjacking bypasses such as Double Clickjacking [38], Nested Clickjacking [39]
and Login detection using XFO [22] arise. CORP mitigates these problems by
ensuring that clickjacking enforcement take place even before a cross origin re-
quest is triggered. If the genuine site G.com in t1 is configured with CORP,
the policy will be stored in a shared policy store Ps, which is accessible to all
instances of the browser. As soon as the iframe in the evil page (loaded in t2)
triggers an HTTP request to G.com, CORP’s enforcement triggers (location 5 in
the figure), thereby blocking the request altogether. Since the request is blocked
at the browser itself, CSRF is mitigated. The same logic applies to other by-
passes for clickjacking. Hence, CORP is the right way to eliminate clickjacking
completely. Listing 1.7 shows CORP configuration to mitigate clickjacking.

http://A.com/images/

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 291

Fig. 3. Browser model showing the enforcement of Clickjacking defense in CSP/XFO
and CORP

* iframe * DENY

Listing 1.7. Defeating clickjacking with CORP

Controlling Social Engineering Attacks. Attackers attempt several social
engineering tricks on end users by leveraging popups [41], iframes [42,43] and hy-
perlinks. Spam emails having hyperlinks that point to sensitive web pages (e.g.,
delete.php) continue to be a common menace. Today, there are no standard de-
fenses against these attacks as there is no mechanism for a server to instruct how
a cross origin request should originate to itself. By configuring CORP, website
administrators can block requests initiated by frames, popup windows, hyper-
links for all or specific paths. This ensures that end users do not succumb to
most of the common social engineering tricks.

* href /non -sensitive

ALLOW

* {href , window , iframe} * DENY

Listing 1.8. Controlling social engineering attacks

Listing 1.8 shows a sample CORP configuration, which blocks vectors for so-
cial engineering. The configuration allows hyperlinks to navigate only to non-
sensitive pages, denies requests which open popups or navigate to any location
via window object and denies framing.

292 K.C. Telikicherla, V. Choppella, and B. Bezawada

Defeating Cross-Site Timing Attacks. The vectors for cross-site timing
attacks are same as that of CSRF, as discussed in Section 2.3. They use the
onload and onerror event handlers of HTML elements for measuring the time
taken for a resource to load under various conditions, thereby leaking sensitive
information such as login status. One of the suggested defenses is to disable
these event handlers for cross origin requests. This not only stops the attack but
also breaks genuine scenarios. Website administrators who are cautious about
cross-site timing attacks can configure CORP such that cross origin requests are
allowed only to public resources i.e., resources which do not need authentication.
CORP blocks requests to authenticated resources such as private pictures and
URLs before they leave the browser, thereby defeating cross-site timing attacks.
Listing 1.9 shows a sample CORP configuration for the same.

* img /public/images/* ALLOW

* * *

DENY

Listing 1.9. Defeating cross-site timing with CORP

5 Experimentation and Analysis

In this section, we explain about the implementation of CORP as a Chrome
extension, its evaluation and the results of our analysis.

5.1 Implementation

We have developed an extension for Google Chrome web browser to imple-
ment a prototype of CORP. When a user installs the extension and loads a
CORP-enabled website, the extension receives the CORP header, parses it and
stores it in browser’s memory using HTML5 localstorage API. The storage is
accessible across tabs of the browser and policies set by multiple websites are
stored and retrieved using the origin of the site as the key. When a genuine,
CORP-enabled site (G) is opened in one tab and an attacker’s site (A) makes a
cross origin request to G, the extension intercepts every outgoing request from
A if it is made to the origin of G and checks the policy associated with it.
Only if the request complies with the policy set by G, the extension will al-
low the request, else it will block it. The chrome.webRequest.onHeadersReceived
event of Chrome extension API helps in receiving HTTP response headers. The
chrome.webRequest.onBeforeRequest [44] event helps in the interception process.
It is fired before any TCP connection is made and can be used to cancel requests.

5.2 Experiments

We have conducted several experiments to evaluate the soundness of CORP, its
ease of deployment and effectiveness.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 293

Validating the Soundness of CORP: We have used Alloy [16], a finite state
model finder, to formalize and verify the soundness of our proposal, CORP. We
have modelled cross origin web interactions and came up with predicates which
show instances of web infiltration attacks. We verified that on configuring CORP,
Alloy fails to produce attack instances. Details about the formal model of CORP
shall be provided at a different venue.

Evaluating CORP against a Corpus of Attacks: We have built a web
application which is vulnerable to web infiltration attacks and a malicious web
application which can launch attacks on the vulnerable application. We have
referred to the test suite created by De Ryck et al. [31] and added their CSRF
attack vectors to the malicious web application. We have also added vectors for
clickjacking and timing to the application. As in the general browsing scenario,
if a genuine user logs in at the vulnerable application in one tab, opens the mali-
cious application in another tab and interacts with it, malicious requests (GET
and POST) will be triggered which affect the vulnerable application adversely.
On configuring CORP headers on the vulnerable web application and enabling
the extension, all malicious cross origin calls will be blocked.

The chrome extension, vulnerable and malicious web applications can be ac-
cessed online and the attacks discussed in the paper can be replayed before and
after installing the extension. Source code is available on Github [45].

Configuring CORP on Open Source Web Applications: To understand
how CORP performs on real world websites, we have deployed three popular
open source web applications (Table 1) and CORP-enabled them. Instead of
deploying vulnerable versions of these applications and fixing them with CORP,
we chose to deploy latest versions. Our idea is to verify that CORP is at least
as good as the previous defenses and additionally conforms to the security guar-
antees promised in Section 4.4. We first confirmed that these applications im-
plement at least one of the popular defenses against each of the web infiltration
attacks (Section 3). As we have seen that these defenses insufficiently deal with
infiltration attacks, we started afresh by completely disabling them. Then we
started enabling CORP on each of these applications and verified that they
are resilient to infiltration attacks. Our analysis shows that the effort required
to CORP-enable large applications greatly depends on how resources are orga-
nized on the server e.g., all images placed under a single“/images” directory as
against being scattered along multiple directories. Table 1 shows the number of
rules needed to enable CORP on each of the applications, without reorganizing
resources on the server. With proper segregation of resources, the number of
rules can be brought down to less than 10 per application.

Table 1. Summary of open source web applications we experimented with

Application Type Version # of source files Lines of code # of CORP rules
Wordpress Blog/CMS 3.9.1 2288 23.9K 14
Moodle LMS 2.5.6 11950 92.9K 84

Mediawiki Wiki software 1.15.5-7 1338 99K 11

294 K.C. Telikicherla, V. Choppella, and B. Bezawada

Analyzing Adherence of Top Websites to CORP: We have analyzed the
home page traffic of Alexa [46] Top 15,000 websites, to find if they adhere to
CORP by segregating their content based on types. The following content types
were considered for analysis - images, css, scripts, html and flash. Figure 4 shows
the results of the analysis. We find that more than 70% of sites already have
an adherence greater than 60%. This is a positive indicator for the deployment
of CORP, showing that website administrators can immediately use CORP on
their existing sites and control their susceptibility to infiltration attacks.

Fig. 4. Bar chart showing adherence of Alexa Top 15,000 websites to CORP

6 Conclusion and Future Work

HTTP works at a level of abstraction that cannot anticipate the semantics of
the transaction or of the resource sought by a client. Declarative policies like
CSP and CORP fill this semantic gap by conveying to the browser who (origins)
can access what (resources) and how (events) as a result of a transaction. We
believe that CSP and CORP together solve a large majority of exfiltration and
infiltration attacks. The truth of this conjecture will, however, depend on the
acceptance of CORP by browser vendors and its widespread adherence by web
administrators.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 295

As new web standards emerge, declarative policies like CSP and CORP will
need to carry richer semantic intent. Such information could, for example, be
used to control other types of browser events like user interactions e.g., “no copy-
paste” while visiting Bank.com or force the browser to a canonical configuration
e.g., disable browser extensions while visiting Bank.com. As future work, we plan
to explore and expand the class of browser event types specifiable by declarative
policies and study their impact on usability and security. Browsers for other form
factors like mobiles and tablets present other challenges. We plan to experiment
the implementation of declarative policies on these platforms.

Acknowledgements. We thank Kaushik Srinivasan and Akshat Khandelwal
for their assistance in analyzing the traffic of 15,000 websites; Amulya Sri for
her assistance in implementing CORP on open source web applications.

References

1. W3C: History of the World Wide Web. Technical report (1989),
http://www.w3.org/Consortium/facts#history

2. Pilgrim, M.: Dive into HTML5. Technical report,
http://diveintohtml5.info/past.html#history-of-the-img-element

3. Berners-Lee, T., Connolly, D.: Hypertext Markup Language – 2.0. Technical Report
RFC1866, W3C (1995), http://tools.ietf.org/html/rfc1866

4. Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-
enforced embedded policies. In: Proceedings of the 16th International Conference
on World Wide Web, pp. 601–610. ACM (2007)

5. OWASP: XSS Prevention Cheat Sheet,
https://www.owasp.org/index.php/XSS (Cross Site Scripting)

Prevention Cheat Sheet

6. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross Site
Scripting Prevention with Dynamic Data Tainting and Static Analysis. In: NDSS
(2007)

7. Jayaraman, K., Du, W., Rajagopalan, B., Chapin, S.J.: Escudo: A fine-grained
protection model for web browsers. In: 2010 IEEE 30th International Conference
on Distributed Computing Systems (ICDCS), pp. 231–240. IEEE (2010)

8. Wikipedia: Netscape navigator 2 (1995),
http://en.wikipedia.org/wiki/Netscape_Navigator_2

9. Zalewski, M.: Browser Security Handbook. Technical report (2011),
https://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy

10. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security
policy. In: Proceedings of the 19th International Conference on World Wide Web,
pp. 921–930. ACM (2010)

11. OWASP: CSRF Guard (2007), https://www.owasp.org/index.php/CSRF_Guard
12. Bortz, A., Boneh, D.: Exposing private information by timing web applications.

In: Proceedings of the 16th International Conference on World Wide Web, pp.
621–628. ACM (2007)

13. Microsoft: Combating ClickJacking With X-Frame-Options. Blog (March 2010),
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/

combating-clickjacking-with-x-frame-options.aspx

http://www.w3.org/Consortium/facts#history
http://diveintohtml5.info/past.html#history-of-the-img-element
http://tools.ietf.org/html/rfc1866
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://en.wikipedia.org/wiki/Netscape_Navigator_2
https://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
https://www.owasp.org/index.php/CSRF_Guard
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx

296 K.C. Telikicherla, V. Choppella, and B. Bezawada

14. Maone, G., Huang, D.L.S., Gondrom, T., Hill, B.: User Interface Security Direc-
tives for Content Security Policy (September 2013),
https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/

user-interface-safety.html

15. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-
dation of web security. In: 2010 23rd IEEE Computer Security Foundations Sym-
posium (CSF), pp. 290–304. IEEE (2010)

16. Jackson, D.: Software Abstractions: Logic. Language, and Analysis. The MIT Press
(2006)

17. OWASP: OWASP Top Ten Project,
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

18. Hansen, R., Grossman, J.: Clickjacking. Blog (December 2008),
http://www.sectheory.com/clickjacking.htm

19. Facebook: Facebook, Washington State AG target clickjackers. Blog
(January 2012), https://www.facebook.com/notes/facebook-security/

facebook-washington-state-ag-target-clickjackers/10150494427000766

20. Stone, P.: Pixel perfect timing attacks with html5 (2013),
http://contextis.com/files/Browser_Timing_Attacks.pdf

21. Kotcher, R., Pei, Y., Jumde, P.: Stealing cross-origin pixels: Timing attacks on css
filters and shaders (2013),
http://www.robertkotcher.com/pdf/TimingAttacks.pdf

22. Jeremiah, G.: Introducing the ‘I Know...’ series. Blog (October 2012),
https://blog.whitehatsec.com/introducing-the-i-know-series/

23. Heiderich, M.: CSRFx (2007), https://code.google.com/p/csrfx/
24. Jovanovic, N., Kirda, E., Kruegel, C.: Preventing cross site request forgery attacks.

In: Securecomm and Workshops, pp. 1–10. IEEE (2006)
25. Oda, T., Wurster, G., van Oorschot, P., Somayaji, A.: SOMA: Mutual approval

for included content in web pages. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security, pp. 89–98. ACM (2008)

26. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, pp. 75–88. ACM (2008)

27. AdBlockPlus: HTTP Referer (2008),
http://adblockplus.org/blog/http-referer-header-wont-help-

you-with-csrf

28. Johns, M., Winter, J.: RequestRodeo: Client side protection against session riding.
In: Proceedings of the OWASP Europe 2006 Conference (2006)

29. Mao, Z., Li, N., Molloy, I.: Defeating cross-site request forgery attacks with browser-
enforced authenticity protection. In: Dingledine, R., Golle, P. (eds.) FC 2009.
LNCS, vol. 5628, pp. 238–255. Springer, Heidelberg (2009)

30. De Ryck, P., Desmet, L., Heyman, T., Piessens, F., Joosen, W.: CsFire: Trans-
parent client-side mitigation of malicious cross-domain requests. In: Massacci, F.,
Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 18–34. Springer,
Heidelberg (2010)

31. De Ryck, P., Desmet, L., Joosen, W., Piessens, F.: Automatic and precise client-
side protection against CSRF attacks. In: Atluri, V., Diaz, C. (eds.) ESORICS
2011. LNCS, vol. 6879, pp. 100–116. Springer, Heidelberg (2011)

32. Maes, W., Heyman, T., Desmet, L., Joosen, W.: Browser protection against cross-
site request forgery. In: Proceedings of the First ACM Workshop on Secure Exe-
cution of Untrusted Code, pp. 3–10. ACM (2009)

https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.sectheory.com/clickjacking.htm
https://www.facebook.com/notes/facebook-security/facebook-washington-state-ag-target-clickjackers/10150494427000766
https://www.facebook.com/notes/facebook-security/facebook-washington-state-ag-target-clickjackers/10150494427000766
http://contextis.com/files/Browser_Timing_Attacks.pdf
http://www.robertkotcher.com/pdf/TimingAttacks.pdf
https://blog.whitehatsec.com/introducing-the-i-know-series/
https://code.google.com/p/csrfx/
http://adblockplus.org/blog/http-referer-header-wont-help-you-with-csrf
http://adblockplus.org/blog/http-referer-header-wont-help-you-with-csrf

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 297

33. Czeskis, A., Moshchuk, A., Kohno, T., Wang, H.J.: Lightweight server support for
browser-based CSRF protection. In: Proceedings of the 22nd International Confer-
ence on World Wide Web, pp. 273–284 (2013)

34. Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D., Kruegel, C.: A solution for
the automated detection of clickjacking attacks. In: ASIACCS 2010, pp. 135–144.
ACM, New York (2010)

35. Maone, G.: Hello ClearClick, goodbye clickjacking! Blog (October 2008),
http://hackademix.net/2008/10/08/hello-clearclick-

goodbye-clickjacking/

36. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a study
of clickjacking vulnerabilities at popular sites. In: IEEE Oakland Web 2.0 Security
and Privacy (W2SP 2010) (2010)

37. Huang, L.S., Moshchuk, A., Wang, H.J., Schechter, S., Jackson, C.: Clickjacking:
Attacks and Defenses. In: USENIX Security Symposium (2012)

38. Huang, L., Jackson, C.: Clickjacking attacks unresolved. White paper, CyLab
(2011), http://mayscript.com/blog/david/clickjacking-attacks-unresolved

39. Lekies, S., Heiderich, M., Appelt, D., Holz, T., Johns, M.: On the fragility and
limitations of current browser-provided clickjacking protection schemes. In: Woot
2012, USENIX Security Symposium. USENIX (2012)

40. Hodges: RFC 6797, HTTP Strict Transport Security (HSTS) (November 2012),
http://tools.ietf.org/html/rfc6797

41. Telikicherla, K.C.: Analyzing the new social engineering spam on facebook - lady
with an axe. Blog post (June 2013), http://bit.ly/FBSpamAxe

42. Nafeez, A.: Stealing Facebook Graph API Access Token: Yet Another UI Redress-
ing Vector (September 2011),
http://blog.skepticfx.com/2011/09/facebook-graph-api-access-token.html

43. Kotowicz, K.: Cross domain content extraction with fake captcha,
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-

with.html

44. Google: Life cycle of requests in Chrome.webRequest API (2013),
http://developer.chrome.com/extensions/webRequest.html

45. Telikicherla, K.C.: CORP repository (October 2013),
http://iiithyd-websec.github.io/corp/

46. Alexa: Alexa top sites (October 2013), http://www.alexa.com/topsites

http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
http://mayscript.com/blog/david/clickjacking-attacks-unresolved
http://tools.ietf.org/html/rfc6797
http://bit.ly/FBSpamAxe
http://blog.skepticfx.com/2011/09/facebook-graph-api-access-token.html
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-with.html
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-with.html
http://developer.chrome.com/extensions/webRequest.html
http://iiithyd-websec.github.io/corp/
http://www.alexa.com/topsites

	CORP: A Browser Policy to Mitigate
Web Infiltration Attacks

	1 Introduction
	1.1 Proposed Approach

	2 Web Infiltration Attacks
	2.1 Understanding CSRF
	2.2 Understanding Clickjacking
	2.3 Understanding Cross-Site Timing Attacks

	3 Related Work
	3.1 Approaches to Mitigate CSRF
	3.2 Approaches to Mitigate Clickjacking
	3.3 Approaches to Mitigate Cross-Site Timing Attacks

	4 Cross Origin Request Policy
	4.1 Core Idea Behind CORP
	4.2 Browser Model with CORP
	4.3 Abstract Syntax of CORP
	4.4 Security Guarantees Provided by CORP

	5 Experimentation and Analysis
	5.1 Implementation
	5.2 Experiments

	6 Conclusion and Future Work
	References

