
Atul Prakash
Rudrapatna Shyamasundar (Eds.)

 123

LN
CS

 8
88

0

10th International Conference, ICISS 2014
Hyderabad, India, December 16–20, 2014
Proceedings

Information Systems
Security

Lecture Notes in Computer Science 8880
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Atul Prakash Rudrapatna Shyamasundar (Eds.)

Information Systems
Security

10th International Conference, ICISS 2014
Hyderabad, India, December 16-20, 2014
Proceedings

1 3

Volume Editors

Atul Prakash
University of Michigan
Department of EECS
Ann Arbor, MI, USA
E-mail: aprakash@umich.edu

Rudrapatna Shyamasundar
Tata Institute of Fundamental Research
Faculty of Technology and Computer Science
Mumbai, India
E-mail: shyam@tifr.res.in

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-13840-4 e-ISBN 978-3-319-13841-1
DOI 10.1007/978-3-319-13841-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014955999

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Message from the General Chairs

It has been a truly delightful experience for us to be associated with the orga-
nization of the 10th International Conference on Information Systems Security
(ICISS 2014) hosted by the Institute for Development and Research in Banking
Technology (IDRBT), Hyderabad, India, during December 16–20, 2014. Over
the last 10 years, the ICISS conference has made significant progress to estab-
lish itself as one of the premier conferences in the field of information systems
security. This has been possible in part due to the emphasis on quality of the
selected research papers. The number of submissions as well as the spread of
the participating countries has been steadily growing with record numbers being
achieved this year.

Our special thanks and gratitude are due to Atul Prakash and R.K. Shyama-
sundar, and their Program Committee of 40 international experts in the field,
for ensuring a high-quality technical program. We are grateful to Herbert Bos,
Sushil Jajodia, Zhenkai Liang, and Vyas Sekar for agreeing to deliver keynote
talks, thereby adding luster to the conference proceedings. This has been possible
largely due to the persistent efforts of R. Sekar and N. Raghukishore.

We would like to express our sincere appreciation to N. Subramanian and
V. Ravi for organizing a whole suite of topical tutorials, U.B. Desai and V.N. Sas-
tri for organizing the doctoral symposium, and Pavel Gladyshev and M.V.N.K.
Prasad for organizing the short talks. We duly acknowledge the efforts of G.
Raghuraj, M.V. Sivakumaran, Vijay Belurgikar, Aditya Bagchi, G.R. Gangad-
haran, Ratna Kumar, V. Radha, N.P. Dhavale, and Lalit Mohan in helping out
with the various non-technical aspects of the conference including logistics, pub-
licity and sponsorship.

Finally, we take this opportunity to thank IDRBT management for their
unstinted support and guidance without which this conference would not be the
same.

Venu Govindaraju
B.M. Mehtre

Preface

This volume contains the papers presented at the 10th International Conference
on Information System Security (ICISS 2014), held during December 16–20,
2014, in Hyderabad. The conference initiated in 2005 to cater to cyber security
research in India has successfully entered its tenth edition and has been providing
an attractive international forum on information system security for academics,
industry, business, and government.

This year, the conference attracted 129 submissions from 21 countries. Given
the high quality of the submissions, the Program Committee (PC) accepted 20
full papers and five short papers after a rigorous review process with multiple
reviews for each paper. We thank all the expert reviewers for their invaluable
support. We are grateful to the PC members who put in enormous efforts in
reviewing and selecting the papers. Without the untiring efforts of the PC mem-
bers/reviewers and the contributions of the authors of 129 papers, the conference
would not have been possible.

The entire process of submission, refereeing, e-meetings of the PC for select-
ing the papers, and compiling the proceedings was done through the EasyChair
system. Thanks go to the artchitects of EasyChair for providing a highly config-
urable conference management system.

One of the hallmarks of the ICISS conference series is the high quality of
plenary/invited presentations. This year we were fortunate to have four eminent
speakers give invited presentations: Herbert Bos (Vrije Universiteit Amsterdam),
Sushil Jajodia (George Mason University), Zhenkai Liang (National University
of Singapore), and Vyas Sekar (Carnegie Mellon University). It is indeed a great
pleasure for us to thank the invited speakers who agreed to present at the con-
ference coming from from far off places in mid-December. Three of the invited
speakers have also contributed to the volume by providing their papers/extended
abstracts. We are grateful to them for their time and efforts.

Due to the keen interest in information system security, the conference also
included several tutorials on various topics in cyber security and also short talks
to facilitate discussion on emerging topics.

We thank all the members of the Steering Committee and the Organizing
Committee for making all the arrangements for the conference. We are grateful
to IDRBT for all the support provided for running the conference. In particular,
Dr. Mehtre, Dr. Venu Govindaraju, and Dr. Sushil Jajodia helped us at key
points with the logistics of running the PC.

It is our pleasure to acknowledge Srirangaraj Setlur (SUNY, Buffalo) for all
his untiring efforts in preparing the proceedings. Last but not least thanks go to
Alfred Hofmann from Springer for readily agreeing to publish the proceedings

VIII Preface

in the LNCS series. Thanks go to his team and in particular Anna Kramer in
preparing the proceedings meticulously and in time for the conference.

December 2014 Atul Prakash
Rudrapatna Shyamasundar

Organization

Executive Chairs

B. Sambamurthy IDRBT, Hyderabad, India
A.S. Ramasastri IDRBT, Hyderabad, India

General Chairs

Venu Govindaraju SUNY Buffalo, USA
B.M. Mehtre IDRBT, Hyderabad, India

Program Chairs

Atul Prakash University of Michigan, Ann Arbor, USA
Rudrapatna Shyamasundar Tata Institute of Fundamental Research,

India

Keynote Chairs

R. Sekar SUNY Stonybrook, USA
N. Raghukishore IDRBT, Hyderabad, India

Publication Chairs

Srirangaraj Setlur SUNY Buffalo, USA
Rajarshi Pal IDRBT, Hyderabad, India
S. Rashmi Dev IDRBT, Hyderabad, India

Tutorial Chairs

N. Subramanian C-DAC, India
V. Ravi IDRBT, Hyderabad, India

Doctoral Forum Chairs

Uday B. Desai Indian Institute of Technology, Hyderabad,
India

V.N. Sastry IDRBT, Hyderabad, India

Short Talk Chairs

Pavel Gladyshev University College, Dublin, Ireland
M.V.N.K. Prasad IDRBT, Hyderabad, India

X Organization

Awards Committee

B.L. Deekshatulu IDRBT, Hyderabad, India
D. Manjunath Indian Institute of Technology, Hyderabad,

India
Atul Negi University of Hyderabad, India

Logistics and Finance Committee

G. Raghuraj IDRBT, Hyderabad, India
Vijay Belurgikar IDRBT, Hyderabad, India
M.V. Sivakumaran IDRBT, Hyderabad, India

Publicity Committee

Aditya Bagchi Indian Statistical Institute, Kolkata, India
V. Radha IDRBT, Hyderabad, India
G.R. Gangadharan IDRBT, Hyderabad, India
Ratna Kumar IDRBT, Hyderabad, India

Sponsorship Committee

N.P. Dhavale IDRBT, Hyderabad, India
Patrick Kishore IDRBT, Hyderabad, India
S. Lalit Mohan IDRBT, Hyderabad, India

Steering Committee

Aditya Bagchi Indian Statistical Institute, Kolkata, India
Sushil Jajodia George Mason University, USA
Somesh Jha University of Wisconsin, USA
Arun Kumar Majumdar Indian Institute of Technology, Kharagpur,

India
Anish Mathuria DA-IICT, India
Chandan Mazumdar Jadavpur University, India
Atul Prakash University of Michigan, Ann Arbor, USA
Gulshan Rai DIT, Government of India
Sriram K. Rajamani Microsoft Research, India
A.S. Ramasastri IDRBT, Hyderabad, India
Pierangela Samarati University of Milan, India
Venkat Venkatakrishnan University of Illinois, Chicago, India

Program Committee

Vijay Atluri Rutgers University, USA
Aditya Bagchi Indian Statistical Institute, Kolkata, India

Organization XI

Prithvi Bisht University of Illinois, Chicago, USA
Ranjan Bose Indian Institute of Technology, Delhi, India
Lorenzo Cavallaro Royal Holloway University of London, UK
Rajatsubhra Chakraborty Indian Institute of Technology, Kharagpur,

India
Sanjit Chatterjee Indian Institute of Science, Bangalore,

India
Anupam Datta Carnegie Mellon University, USA
William Enck North Carolina State University, USA
Earlence Fernandes University of Michigan, Ann Arbor, USA
Vinod Ganapathy Rutgers University, USA
Ravishankar Iyer University of Illinois, Urbana-Champaign,

USA
Sushil Jajodia George Mason University, USA
Somesh Jha University of Wisconsin, Madison, USA
Pradeep Khosla University of California, San Diego, USA
Ram Krishnan University of Texas, San Antonio, USA
Yingjiu Li Singapore Management University,

Singapore
Javier Lopez University of Malaga, Spain
Anish Mathuria DA-IICT, India
Chandan Mazumdar Jadavpur University, India
Debdeep Mukhopadhyay Indian Institute of Technology, Kharagpur,

India
Sukumar Nandi Indian Institute of Technology, Guwahati,

India
Phu Phung University of Gothenburg, Sweden
R. Ramanujam Institute of Mathematical Sciences, India
Indrajit Ray Colorado State University, USA
Indrakshi Ray Colorado State University, USA
Bimal Roy Indian Statistical Institute, Kolkata, India
Ravi Sandhu University of Texas, San Antonio, USA
Anirban Sengupta Jadavpur University, India
Sanjit Seshia University of California, Berkeley, USA
Kapil Singh IBM T.J. Watson Research Center, USA
Witawas Srisa-An University of Nebraska, Lincoln, USA
Scott Stoller SUNY, Stonybrook, USA
Shamik Sural IIT Kharagpur, India
Mahesh Tripunitara University of Waterloo, Canada
Vinod Yegneswaran Stanford Research Institute, Menlo Park,

USA
Stefano Zanero Politecnico di Milano, Italy

XII Organization

Additional Reviewers

Ahmed, Ferdous Matsuda, Takahiro
Albanese, Massimiliano Mehta, Anil
Alcaraz, Cristina Monshizadeh, Maliheh
Bhattacharjee, Anup N.P., Narendra
Bhattacharyya, Rishiraj Naskar, Ruchira
Carminati, Michele Nguyen, Hai
Chatterjee, Ayantika Nieto, Ana

Chitukuri, Architha Nuñez, David
Colombo, Edoardo Papini, Davide
Davidson, Drew Paraboschi, Stefano
De Capitani Di Vimercati, Sabrina Peddinti, Sai Teja
De Carli, Lorenzo Phuong Ha, Nguyen
De, Sourya Polino, Mario
Dutta, Ratna Quarta, Davide
Eshete, Birhanu Ruj, Sushmita
Fernandez, Carmen Sarkar, Santanu
Foresti, Sara Sen Gupta, Sourav
Fredrikson, Matt Sinha, Rohit
Fu, Zhang Spagnuolo, Michele
Ghosh, R.K. Tan, Wei Yang
Gokhale, Amruta Tupsamudre, Harshal
Gondi, Kalpana Vadnala, Praveen Kumar
Harris, William Vaidyanathan, Shivaramakrishnan
Jha, Susmit Vora, Poorvi
Kim, Daeyoung Wang, Daibin
Li, Yan Zhang, Lei
Luchaup, Daniel

A Decade of ICISS Conference Series

A Reflection

Manu V.T. and Babu M. Mehtre

Information systems security is an area that deals with protecting data from
intrusions, malwares, frauds and any criminal activities that are surfacing in
systems to maintain non-repudiation, confidentiality and integrity of data. In
the present day world, as the systems are more inter-connected and networked,
information systems security has become a huge challenge due to various vulner-
abilities. This challenge has evoked the interest of the researchers in this area.

Information systems security research continued to gain importance over the
years and gradually India also joined the process. Thus the inception of an inter-
national conference series in the area of information systems security came into
the picture.

The objectives of this conference series were to discuss in depth the cur-
rent state of research and practices in information systems security, provide a
platform for the researchers to share and disseminate the research results.

In the initial stages of the conference series, the country wise participation
was less. But gradually it drew attention from many more interested countries.
From the number of participating countries in the latest edition of the conference,
it is evident that it has achieved global recognition. The acceptance rate of the
conference series has been consistently low. This forces the contributors to ensure
the quality of work and to give upmost focus on quality in the areas concerned.

The acceptance rate has constantly within the range 0.25 to 0.4. There was
only a single occurrence of acceptance rate value reaching 0.4, except this, it has
been around 0.25.

Google Scholar Metrics provide an easy way for authors to quickly gauge the
visibility and influence of recent articles in scholarly publications. It summarizes
recent citations to many publications, to help authors as they consider where to
publish their new research.

The h5-index and h5-median of a publication are, respectively, the h-index
and h-median of only those of its articles that were published in the last five
complete calendar years.

The Google Scholar Metrics results for the ICISS conference series returned
the value of h5-index = 12 and h5-median = 16 which seems promising. The vari-
ous aspects of the conferences including paper contributing countries, acceptance
rate and google metrics were analyzed.

The participation from across the globe gives a picture of the success and
global outreach of the conferences series.

XIV Manu V.T. and B.M. Mehtre

Table 1. Participation from Different Countries

Year Countries

2005

- Italy
- USA
- India

- Korea - France
- Singapore - Japan

- England
- Australia
- China

- Italy - France - Australia - Israel
2006 - USA - Iran - Korea - India

- Germany - Spain - Austria - New Zealand

2007

- USA
- China
- India

- Germany
- France

- Italy
- Korea

- Australia
- Japan

- Iran

2008
- USA
- India
- Germany

- Italy - France
- Poland - United Kingdom

- Australia

- Canada - Singapore - China - Italy
2009 - Mexico - Australia - United Kingdom - USA

- France - Korea - Belgium - India

- Singapore - Iran - Luxembourg - Saudi Arabia

2010 - France - Belgium - USA - Japan
- Italy - China - Sweden - India

2011

- Germany - Saudi Arabia
- USA - India
- France - United Kingdom

- Italy - Sweden
- Iran - Netherlands

2012

- USA
- Estonia
- India

- Jordan - Belgium
- Egypt - Iran

- Spain

2013

- United Kingdom
- Germany
- India

- USA - France
- Japan - Iran

- Belgium

2014

- Australia
- Belgium
- Brazil
- United Kingdom
- UAE

- Saudi Arabia
- Singapore
- South Africa
- USA

- France
- Germany
- Iceland
- China
- Italy

- Spain
- Canada
- Viet Nam
- Japan
- New Zealand
- India

Manu.V.T. and Babu M. Mehtre
Center for Information Assurance & Management,
Institute for Development and Research in Banking Technology, India.

Invited Talks

Adversarial and Uncertain Reasoning for

Adaptive Cyber Defense: Building the Scientific
Foundation�

George Cybenko1, Sushil Jajodia2, Michael P. Wellman3, and Peng Liu4

1 Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
george.cybenko@dartmouth.edu

2 Center for Secure Information Systems, George Mason University, Fairfax,
VA 22030-4422

jajodia@gmu.edu
3 Department of Electrical Engineering and Computer Science,

University of Michigan, Ann Arbor, MI 48109-2122
wellman@umich.edu

4 College of Information Sciences and Technology, Pennsylvania State University,
University Park, PA

pliu@ist.psu.edu

Abstract. Today’s cyber defenses are largely static. They are governed
by slow deliberative processes involving testing, security patch deploy-
ment, and human-in-the-loop monitoring. As a result, adversaries can
systematically probe target networks, pre-plan their attacks, and ulti-
mately persist for long times inside compromised networks and hosts.
A new class of technologies, called Adaptive Cyber Defense (ACD),
is being developed that presents adversaries with optimally changing
attack surfaces and system configurations, forcing adversaries to con-
tinually re-assess and re-plan their cyber operations. Although these ap-
proaches (e.g., moving target defense, dynamic diversity, and bio-inspired
defense) are promising, they assume stationary and stochastic, but non-
adversarial, environments. To realize the full potential, we need to build
the scientific foundations so that system resiliency and robustness in ad-
versarial settings can be rigorously defined, quantified, measured, and
extrapolated in a rigorous and reliable manner.

* This work was supported by the Army Research Office under grant W911NF-13-1-
0421.

SNIPS: A Software-Defined Approach for

Scaling Intrusion Prevention Systems via
Offloading

Victor Heorhiadi1, Seyed Kaveh Fayaz2, Michael K. Reiter1, and Vyas Sekar2

1 UNC Chapel Hill
2 Carnegie Mellon University

Abstract. Growing traffic volumes and the increasing complexity of at-
tacks pose a constant scaling challenge for network intrusion prevention
systems (NIPS). In this respect, offloading NIPS processing to compute
clusters offers an immediately deployable alternative to expensive hard-
ware upgrades. In practice, however, NIPS offloading is challenging on
three fronts in contrast to passive network security functions: (1) NIPS
offloading can impact other traffic engineering objectives; (2) NIPS of-
floading impacts user perceived latency; and (3) NIPS actively change
traffic volumes by dropping unwanted traffic. To address these challenges,
we present the SNIPS system. We design a formal optimization frame-
work that captures tradeoffs across scalability, network load, and latency.
We provide a practical implementation using recent advances in software-
defined networking without requiring modifications to NIPS hardware.
Our evaluations on realistic topologies show that SNIPS can reduce the
maximum load by up to 10× while only increasing the latency by 2%.

Application Architectures for Critical Data

Isolation

Zhenkai Liang

Department of Computer Science
School of Computing

National University of Singapore

Data in applications are not equally important. Certain data, such as pass-
words and credit card numbers, are critical to application security. Protecting
the confidentiality and integrity of this class of critical data is the key require-
ment for security. However, applications usually lack the abstraction to handle
critical data separately. As a result, regardless of their sensitivity, critical data
are mixed with non-critical data, and are unnecessarily exposed to many com-
ponents of an application, such as third-party libraries. To tighten protection
of critical data, the contact surface of such data within applications should be
minimized.

In this talk, we introduce our work on new application architectures for crit-
ical data isolation. We rethink the trust-based, monolithic model of handing
critical data, and advocate to provide critical data protection as first-class ab-
stractions in application security mechanisms. In our design, the notion of data
owners is made explicit in applications, which is associated with critical data.
Based on data ownership, critical data are cryptographically isolated from the
rest of application data. To support rich operations on critical data, we enable
operations on critical data from authenticated parties through dedicated en-
gines. This design offers data-oriented protection using a much smaller trusted
computing base (TCB), which gives strong security guarantees.

We instantiated the new application architecture design on the web platform
and the Android mobile platform. On the web platform, we designed a data ab-
straction and browser primitive, and developed the Webkit-basedCryptonOS [1]
to offer strong isolation of critical data in web applications. On the Android plat-
form, we created DroidVault [2], a data safe based on the TrustZone architecture.
It isolates and processes critical data without relying trust of the Android sys-
tem. We will discuss the design and experience with both systems.

References

1. Dong, X., Chen, Z., Siadati, H., Tople, S., Saxena, P., Liang, Z.: Protecting sensitive
web content from client-side vulnerabilities with cryptons. In: Proceedings of the
14th ACM Conference on Computer and Communications Security, CCS (2013)

2. Li, X., Hu, H., Bai, G., Jia, Y., Liang, Z., Saxena., P.: Droidvault: A trusted data
vault for android devices. In: Proceedings of the 19th International Conference on
Engineering of Complex Computer Systems, ICECCS (2014)

Table of Contents

Invited Talks

Adversarial and Uncertain Reasoning for Adaptive Cyber Defense:
Building the Scientific Foundation . 1

George Cybenko, Sushil Jajodia, Michael P. Wellman, and Peng Liu

SNIPS: A Software-Defined Approach for Scaling Intrusion Prevention
Systems via Offloading . 9

Victor Heorhiadi, Seyed Kaveh Fayaz, Michael K. Reiter,
and Vyas Sekar

Contributed Papers

Security Inferences

Inference-Proof Data Publishing by Minimally Weakening a Database
Instance . 30

Joachim Biskup and Marcel Preuß

Extending Dolev-Yao with Assertions . 50
R. Ramanujam, Vaishnavi Sundararajan, and S.P. Suresh

Inferring Accountability from Trust Perceptions . 69
Koen Decroix, Denis Butin, Joachim Jansen, and Vincent Naessens

Client Side Web Session Integrity as a Non-interference Property 89
Wilayat Khan, Stefano Calzavara, Michele Bugliesi,
Willem De Groef, and Frank Piessens

Security Policies

Impact of Multiple t-t SMER Constraints on Minimum User
Requirement in RBAC . 109

Arindam Roy, Shamik Sural, and Arun Kumar Majumdar

Temporal RBAC Security Analysis Using Logic Programming in the
Presence of Administrative Policies . 129

Sadhana Jha, Shamik Sural, Jaideep Vaidya,
and Vijayalakshmi Atluri

A Formal Methodology for Modeling Threats to Enterprise Assets 149
Jaya Bhattacharjee, Anirban Sengupta, and Chandan Mazumdar

XXII Table of Contents

A Novel Approach for Searchable CP-ABE with Hidden
Ciphertext-Policy . 167

Mukti Padhya and Devesh Jinwala

Security User Interfaces

Towards a More Democratic Mining in Bitcoins . 185
Goutam Paul, Pratik Sarkar, and Sarbajit Mukherjee

Authentication Schemes - Comparison and Effective Password Spaces . . . 204
Peter Mayer, Melanie Volkamer, and Michaela Kauer

A Security Extension Providing User Anonymity and Relaxed Trust
Requirement in Non-3GPP Access to the EPS . 226

Hiten Choudhury, Basav Roychoudhury, and Dilip Kr. Saikia

A Usage-Pattern Perspective for Privacy Ranking of Android Apps
(Short Paper) . 245

Xiaolei Li, Xinshu Dong, and Zhenkai Liang

Security Attacks

Privacy Leakage Attacks in Browsers by Colluding Extensions 257
Anil Saini, Manoj Singh Gaur, Vijay Laxmi, Tushar Singhal,
and Mauro Conti

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 277
Krishna Chaitanya Telikicherla, Venkatesh Choppella,
and Bruhadeshwar Bezawada

An Improved Methodology towards Providing Immunity against Weak
Shoulder Surfing Attack . 298

Nilesh Chakraborty and Samrat Mondal

Catching Classical and Hijack-Based Phishing Attacks 318
Tanmay Thakur and Rakesh Verma

Malware Detection

PMDS: Permission-Based Malware Detection System 338
Paolo Rovelli and Ýmir Vigfússon

Efficient Detection of Multi-step Cross-Site Scripting Vulnerabilities 358
Alexandre Vernotte, Frédéric Dadeau, Franck Lebeau,
Bruno Legeard, Fabien Peureux, and François Piat

Table of Contents XXIII

CliSeAu: Securing Distributed Java Programs by Cooperative Dynamic
Enforcement . 378

Richard Gay, Jinwei Hu, and Heiko Mantel

Automatic Generation of Compact Alphanumeric Shellcodes for x86
(Short Paper) . 399

Aditya Basu, Anish Mathuria, and Nagendra Chowdary

Forensics

Analysis of Fluorescent Paper Pulps for Detecting Counterfeit Indian
Paper Money . 411

Biswajit Halder, Rajkumar Darbar, Utpal Garain,
and Abhoy Ch. Mondal

A Vein Biometric Based Authentication System (Short Paper) 425
Puneet Gupta and Phalguni Gupta

Digital Forensic Technique for Double Compression Based JPEG Image
Forgery Detection (Short Paper) . 437

Pankaj Malviya and Ruchira Naskar

Location Based Security Services

Preserving Privacy in Location-Based Services Using Sudoku
Structures . 448

Sumitra Biswal, Goutam Paul, and Shashwat Raizada

Location Obfuscation Framework for Training-Free Localization
System (Short Paper) . 464

Thong M. Doan, Han N. Dinh, Nam T. Nguyen, and Phuoc T. Tran

Author Index . 477

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 1–8, 2014.
© Springer International Publishing Switzerland 2014

Adversarial and Uncertain Reasoning for Adaptive
Cyber Defense: Building the Scientific Foundation*

George Cybenko1, Sushil Jajodia2, Michael P. Wellman3, and Peng Liu4

1 Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
george.cybenko@dartmouth.edu

2 Center for Secure Information Systems, George Mason University, Fairfax,
VA 22030-4422

jajodia@gmu.edu
3 Department of Electrical Engineering and Computer Science, University of Michigan,

Ann Arbor, MI 48109-2122
wellman@umich.edu

4 College of Information Sciences and Technology, Pennsylvania State University,
University Park, PA 16802
pliu@ist.psu.edu

Abstract. Today’s cyber defenses are largely static. They are governed by slow
deliberative processes involving testing, security patch deployment, and human-
in-the-loop monitoring. As a result, adversaries can systematically probe target
networks, pre-plan their attacks, and ultimately persist for long times inside
compromised networks and hosts. A new class of technologies, called Adap-
tive Cyber Defense (ACD), is being developed that presents adversaries with
optimally changing attack surfaces and system configurations, forcing adversa-
ries to continually re-assess and re-plan their cyber operations. Although these
approaches (e.g., moving target defense, dynamic diversity, and bio-inspired
defense) are promising, they assume stationary and stochastic, but non-
adversarial, environments. To realize the full potential, we need to build the
scientific foundations so that system resiliency and robustness in adversarial
settings can be rigorously defined, quantified, measured, and extrapolated in a
rigorous and reliable manner.

1 Introduction

The computer systems, software applications, and network technologies that we use
today were developed in user and operator contexts that greatly valued standardiza-
tion, predictability, and availability. Performance and cost-effectiveness were the
main market drivers. It is only relatively recently that security and resilience (not to
be confused with fault tolerance) have become equally desirable properties of cyber
systems.

As a result, the first generation of cyber security technologies were largely based
on system hardening through improved software security engineering (to reduce

* This work was supported by the Army Research Office under grant W911NF-13-1-0421.

2 G. Cybenko et al.

vulnerabilities and attack surfaces) and layering security through defense-in-depth (by
adding encryption, access controls, firewalls, intrusion detection systems, and mal-
ware scanners, for example). These security technologies sought to respect the homo-
geneity, standardization, and predictability that have been so valued by the market.
Consequently, most of our cyber defenses are static today. They are governed by slow
and deliberative processes such as testing, episodic penetration exercises, security
patch deployment, and human-in-the-loop monitoring of security events.

Adversaries benefit greatly from this situation because they can continuously and
systematically probe targeted networks with the confidence that those networks will
change slowly if at all. Adversaries can afford the time to engineer reliable exploits
and pre-plan their attacks because their targets are essentially fixed and almost iden-
tical. Moreover, once an attack succeeds, adversaries persist for long times inside
compromised networks and hosts because the hosts, networks, and services—largely
designed for availability and homogeneity—do not reconfigure, adapt or regenerate
except in deterministic ways to support maintenance and uptime requirements.

2 Adaptation Techniques

In response to this situation, researchers in recent years have started to investigate
various methods that make networked information systems less homogeneous and
less predictable. The basic idea of Adaptation Techniques (AT) is to engineer systems
that have homogeneous functionalities but randomized manifestations. By Adaptation
Techniques, we include concepts such as Moving Target Defenses (MTD) [1, 2] as
well as artificial diversity [3, 4] and bio-inspired defenses [5] to the extent that they
involve system adaption for security and resiliency purposes.

Homogeneous functionality allows authorized use of networks and services in pre-
dictable, standardized ways while randomized manifestations make it difficult for
attackers to engineer exploits remotely, let alone parlay one exploit into successful
attacks against a multiplicity of hosts. Ideally, each compromise would require the
same, significant effort by the attacker.

Examples of Adaptation Techniques (AT) include [1, 2]:

• Randomized network addressing and layout;
• Obfuscated OS types and services;
• Randomized instruction set and memory layout;
• Randomized compiling;
• Just-in-time compiling and decryption;
• Dynamic virtualization;
• Workload and service migration;
• System regeneration.

Each of these techniques has a performance and/or maintenance cost associated with
it. For example, randomized instruction set and memory layout clearly limit the extent
to which a single buffer overflow based exploit can be used to compromise a collection

 Adversarial and Uncertain Reasoning for ACD: Building the Scientific Foundation 3

of hosts. However, it also makes it more difficult for system administrators and software
vendors to debug and update hosts because all the binaries are different. Furthermore,
randomized instruction set and memory layout techniques will not make it more difficult
for an attacker to determine a network’s layout and its available services.

Similar analyses are possible for each of the techniques listed above. For exam-
ple, randomizing network addresses makes it more difficult for an adversary to per-
form reconnaissance on a target network remotely but does not make it more difficult
for the attacker to exploit a specific host once it is identified and reachable (bearing in
mind that many exploits are quite small and fit into one packet so the required exploit-
ing sessions are short).

The point is that while a variety of different AT techniques exist, the contexts in
which they are useful and their added costs (in terms of performance and maintaina-
bility) to the defenders can vary significantly. In fact, the majority of AT research
has been focused on developing specific new techniques as opposed to understanding
their overall operational costs, when they are most useful, and what their possible
inter-relationships might be. In fact, while each AT approach might have some engi-
neering rigor, the overall discipline is largely ad hoc when it comes to understanding
the totality of AT methods and their optimized application.

A graphical depiction of the situation is shown in Figure 1 below.

Fig. 1. Attack Phases and Possible Moving Target Techniques

Advanced Persistent Threats (APTs) have the time and

technology to easily exploit our systems now

The

re are

many

possi-

ble

MTD

options

We need to develop a scientific framework for opti-
mizing strategies for deploying adaptation techniques for

different attack types, stages, and underlying missions

4 G. Cybenko et al.

As shown in Figure 1, adaptation techniques are typically aimed at defeating dif-
ferent stages of possible attacks although there is certainly overlap. On the other
hand, different defense missions can have different Confidentiality, Integrity, and
Availability (CIA) requirements.

For example, an Army patrol that escalates into a firefight might increase availabil-
ity requirements (for calling up air, reinforcement, and medical support) at the ex-
pense of confidentiality (because the opposing side knows much about where and
what the patrol is currently doing). Accordingly, if a cyber attack on availability
were determined to be present or imminent, adaptation techniques for maintaining
availability would be prioritized over techniques for enhancing confidentiality or
integrity.

For a different example, a mission such as the generation of a daily Air Tasking
Order (ATO) could prioritize confidentiality and integrity (to protect details of future
sorties) over availability (because the ATO generation may not be time critical) so
that network layout and addressing could be used aggressively to confound possible
attackers, at the expense of network performance.

We note that some AT techniques, such as address space layout randomization
(ASLR) are typically performed offline at application code compile time so that a
decision to deploy ASLR is open-loop in the control sense.

It is clear from these examples and their analyses that there are a variety of possi-
ble tradeoffs when taking into account the underlying mission, the perceived attack
type, and the system adaptations available through AT techniques. Things get more
complex when considering attack scenarios that extend over time, as depicted in Fig-
ure 1.

3 Adversarial Reasoning

The situation described above calls for a decision-making solution. The overall sys-
tem is in some estimated state, there is an objective or utility to optimize, and there
are a variety of possible actions that can be selected. What is the right action to take?

If the environment were stationary and non-adversarial, control theory (or, for ex-
ample, planning in Artificial Intelligence terminology) would provide a classical solu-
tion. Whether discrete or continuous, deterministic or stochastic, control theory and
its variants instruct us how to compute plans (sequences of actions) that are optimal
with respect to maximizing an objective providing the environment is not conspiring
against us.

Such approaches however cannot handle situations in which rational, self-
interested adversaries are operating in and changing the environment at odds with our
own goals. In that case, the underlying environment is not necessarily stationary and
treating adversaries as mere stochastic elements is not adequate.

The difference is profound as we go from control theory (modeling everything in
the environment as stochastic) to game theory (modeling environmental actors as
rational). Solution concepts in control theory are typically defined by optima (max-
ima or minima) whereas in game theory they are defined by equilibria (in the adver-

 Adversarial and Uncertain Reasoning for ACD: Building the Scientific Foundation 5

sarial case, saddle points) because different agents will have competing objectives
that must be optimized with respect to the other agents’ concurrent attempts to optim-
ize their own competing goals.

To illustrate how such a situation can arise in the context of cyber operations, sup-
pose we have implemented an automated system regeneration technology (an AT
technology) that reboots servers when there is a perceived attempt by an adversary to
attack integrity. A secure boot will bring the server back into a known trusted state,
defeating any code corruption that might have occurred (such as the installation of a
rootkit or other Trojan).

Aggressive rebooting of servers in this manner will affect availability because sys-
tems will shut down and the secure boot computes time-consuming hashes to ensure
trust in the re-instantiated software base. An attacker whose goal is to compromise
availability could aggressively feign integrity attack attempts resulting in repeated
regenerations and an effective denial-of-service attack on the servers.

This example illustrates that planning and control in the presence of an intelligent
adversary requires different kinds of analysis. If we know the structure of the
competitive environment (the game’s possible moves and rules), the preferences or
utilities of the various parties, and an appropriate solution concept (such as Nash
Equilibrium or minmax) then game theory provides a framework for formulating the
problem and computing candidate solutions.

Applying the framework, however, requires some knowledge of the opponents,
their objectives, and the game structure including possible moves and game states. In
cyber operations, that kind of information is not given a priori and must be learned or
inferred from historical data (from the kinds of attack behaviors that have been exhi-
bited in the past and by which assumed adversaries) and out-of-band information
about adversary types, capabilities, and objectives (which might include the broader
strategic context of a conflict including kinetic operations and intelligence about train-
ing, tactics, and procedures obtained covertly or through open-source about an adver-
sary).

Another well-known challenge arising in game theory is the computational com-
plexity of solving large games where large can refer to the number of players (e.g.,
network games), the number/depth of possible moves (e.g., chess) and/or the amount
of uncertainty in the game state (e.g., poker). We believe that adversarial models of
cyber operations can potentially involve all of these scalability challenges.

4 The Proposed ACD Framework

In a project funded by the Army Research Office, we have developed an ACD
framework that has several novel features. See Figure 2. It uses adversarial reason-
ing to address several fundamental limitations of traditional game-theoretic analysis
such as empirically defining the game and the players. ACD uses control-theoretic
analysis to bootstrap game analysis and to quantify the robustness of candidate ac-
tions. By integrating game-theoretic and control-theoretic analyses for tradeoff analy-
sis, ACD quantifies resilience and observability in an innovative and powerful way.

6 G. Cybenko et al.

The proposed ACD fram
design and implement a sub
the networked system and;
ambient threat environment
2 partial models of the per
and capabilities (the Advers
set of plans (based on con
Thrust 2 subsystem.

Based on these inputs, T
learning) to induce a game
fense actions (those taken i
plans it received. Since the
nique defense) depends on
classes and considers a spec

Since Thrust 2 analysis d
able to the defense strategy
vative adaptation mechanism

Finally, Thrust 4 seeks t
integrated game-theoretic a
not only consider function
consider robustness, stabili
results, the decision maker
through a feedback loop.
OODA-type loop operating

Fig. 2. A

mework consists of four thrusts. The goal of Thrust 1 i
bsystem that takes two inputs: a) streaming observation
b) external intelligence about possible adversaries and

t and condition. Thrust 1’s subsystem will output to Thr
rceived adversaries, including estimates of their objecti
sary Modeling piece), together with a classically compu

ntrol theory models and analysis) that act as seeds for

Thrust 2 employs empirical methods (simulation, mach
e model from which it derives strategically optimized
in equilibrium, for example) based on the seed actions
e value of a defense strategy (such as an adaptation te
the class of attack, Thrust 2 analysis ranges across att

ctrum of game scenarios.
depends significantly on the adaptation mechanisms av
space, Thrust 3 is focused on identifying and adding in

ms into the defense strategy space.
to perform tradeoff analysis and decision making throu
and control-theoretic analysis. The tradeoff analysis w
nality, performance, usability, and exploitation, but a
ity, observability, and resilience. Based on the analy
may further optimize the strategies generated by Thru
Thrust 4 applies the actions to the environment with

g continuously.

An OODA Loop for Adaptive Cyber Defense

is to
s of
the

rust
ives
uted
the

hine
de-
and

ech-
tack

vail-
nno-

ugh
will
also
ysis
st 2
the

 Adversarial and Uncertain Reasoning for ACD: Building the Scientific Foundation 7

In the first year of the project, the team focused on identifying the key problems to
be addressed, developing a common understanding of the issues, and defining a strat-
egy to collaboratively tackle the challenges at hand. The unifying theme of this initial
effort is represented by the objective to quantify several aspects of cyber defenses,
and understand game-theoretic and control-theoretic aspects of adaptive cyber de-
fenses [6-15]. First, we defined a framework for modeling, evaluating, and counter-
ing an attacker’s reconnaissance effort. The proposed defensive strategy consists of
controlling how the attacker perceives the attack surface of the target system.
Second, we started to develop the quantification of moving target defenses needed for
control and game models. Analysis of such defenses has led to the conclusion that
moving target defenses are the most effective defenses against well designed botnets.
Third, we developed a general (supervisory) control-theoretic formulation of a dy-
namic cyber-security problem, from the perspective of a defender aiming to maximize
its worst-case performance. Fourth, we designed and implemented a simulation
model of the basic adaptive cyber-defense scenario, and commenced game-theoretic
analysis of this model. Fifth, we developed a control theory based framework for
comparing cost-effectiveness of different MTD techniques. Finally, we developed
reinforcement learning algorithms for adaptive cyber defense against Heartbleed at-
tack and a novel probabilistic approach to detect and shield Heartbleed attacks.

5 Conclusion

We believe that we need a new scientific foundation and the corresponding technolo-
gies that can handle truly adaptive and dynamic cyber operations in the presence of
capable adversaries. Without such a foundation, the effectiveness of any cyber de-
fense system adaptation technology cannot be quantified in a rigorous or reliable
manner. Consequently, performance estimates based solely on empirical evaluations
and tests can only claim an adaptation technology’s effectiveness under those very
specific test conditions. In order to confidently extrapolate or generalize to other sce-
narios, a principled scientific foundation as envisioned here is needed.

References

1. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.): Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, Berlin. Springer Advances
in Information Security, vol. 54, 183 p. (2011) ISBN 978-1-4614-0976-2

2. Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., Swarup, V., Wang, C., Wang, X.S. (eds.):
Moving Target Defense II: Application of Game Theory and Adversarial Modeling,
Berlin. Springer Advances in Information Security, vol. 100, 203 p. (2013) ISBN 978-1-
4614-5415-1

3. Birman, K.P., Schneider, F.B.: The monoculture risk put into context. IEEE Security &
Privacy 7(1), 14–17 (2009)

4. Forrest, S., Somayaji, A., Ackley, D.H.: Building diverse computer systems. In: Proc. 6th
Workshop on Hot Topics in Operating Systems, pp. 67–72 (1997)

8 G. Cybenko et al.

5. Meisel, M., Pappas, V., Zhang, L.: A taxonomy of biologically inspired research in
computer networking. Computer Networks 54(6), 901–916 (2010)

6. Albanese, M., Battista, E., Jajodia, S., Casola, V.: Manipulating the Attacker’s View of a
System’s Attack Surface. To Appear in Proc. of the 2nd IEEE Conference on Communica-
tions and Network Security (IEEE CNS 2014), San Francisco, California, USA, October
29-31 (2014)

7. Wang, L., Zhang, M., Jajodia, S., Singhal, A., Albanese, M.: Modeling Network Diversity
for Evaluating the Robustness of Networks against Zero-Day Attacks. In: Kutyłowski, M.,
Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 494–511. Springer, Heidelberg
(2014)

8. Shakarian, P., Paulo, D., Albanese, M., Jajodia, S.: Keeping Intruders at Large: A Graph-
Theoretic Approach to Reducing the Probability of Successful Network Intrusions. In:
Proc. 11th International Conference on Security and Cryptography (SECRYPT 2014),
Vienna, Austria, August 28-30, pp. 19–30 (2014)

9. Hughes, J., Cybenko, G.: Three tenets for secure cyber-physical system design and as-
sessment. In: Proc. SPIE Cyber Sensing 2014 (May 2014)

10. Xu, J., Guo, P., Zhao, M., Erbacher, R.F., Zhu, M., Liu, P.: Comparing Different Moving
Target Defense Techniques. In: Prof. ACM MTD Workshop 2014, in Association with
CCS 2014 (November 2014)

11. Zhu, M., Hu, Z., Liu, P.: Reinforcement learning algorithms for adaptive cyber defense
against Heartbleed. In: Proc. ACM MTD Workshop 2014, in Association with CCS 2014
(November 2014)

12. Vorobeychik, Y., An, B., Tambe, M., Singh, S.: Computing solutions in infinite-horizon
discounted adversarial patrolling games. In: Proc. 24th International Conference on
Automated Planning and Scheduling (ICAPS 2014) (June 2014)

13. Rasouli, M., Miehling, E., Teneketzis, D.: A supervisory control approach to dynamic
cyber-security. In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840,
pp. 99–117. Springer, Heidelberg (2014)

14. Wellman, M.P., Prakash, A.: Empirical game-theoretic analysis of an adaptive cyber-
defense scenario (Preliminary report). In: Poovendran, R., Saad, W. (eds.) GameSec 2014.
LNCS, vol. 8840, pp. 43–58. Springer, Heidelberg (2014)

15. Sun, K., Jajodia, S.: Protecting enterprise networks through attack surface expansion. In:
Scottsdale, A.Z. (ed.) Proc. SafeConfig 2014: Cyber Security Analytics and Automation
(short paper), Scottsdale, AZ (November 3, 2014)

SNIPS: A Software-Defined Approach for Scaling
Intrusion Prevention Systems via Offloading

Victor Heorhiadi1, Seyed Kaveh Fayaz2, Michael K. Reiter1, and Vyas Sekar2

1 UNC Chapel Hill, Chapel Hill, NC, USA
2 Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. Growing traffic volumes and the increasing complexity of attacks pose
a constant scaling challenge for network intrusion prevention systems (NIPS).
In this respect, offloading NIPS processing to compute clusters offers an im-
mediately deployable alternative to expensive hardware upgrades. In practice,
however, NIPS offloading is challenging on three fronts in contrast to passive
network security functions: (1) NIPS offloading can impact other traffic engi-
neering objectives; (2) NIPS offloading impacts user perceived latency; and (3)
NIPS actively change traffic volumes by dropping unwanted traffic. To address
these challenges, we present the SNIPS system. We design a formal optimization
framework that captures tradeoffs across scalability, network load, and latency.
We provide a practical implementation using recent advances in software-defined
networking without requiring modifications to NIPS hardware. Our evaluations
on realistic topologies show that SNIPS can reduce the maximum load by up to
10× while only increasing the latency by 2%.

1 Introduction

Network intrusion prevention systems (NIPS) are an integral part of today’s network
security infrastructure [38]. However, NIPS deployments face a constant battle to han-
dle increasing volumes and processing requirements. Today, network operators have
few options to tackle NIPS overload – overprovisioning, dropping traffic, or reducing
fidelity of the analysis. Unfortunately, none of these options are attractive in practice.
Thus, NIPS scaling has been, and continues to be, an active area of research in the
intrusion detection community with several efforts on developing better hardware and
algorithms (e.g., [32, 34, 36, 39]). While these efforts are valuable, they require signif-
icant capital costs and face deployment delays as networks have 3–5 year hardware
refresh cycles.

A promising alternative to expensive and delayed hardware upgrades is to offload
packet processing to locations with spare compute capacity. Specifically, recent work
has considered two types of offloading opportunities:

• On-path offloading exploits the natural replication of a packet on its route to distribute
processing load [27, 28].

• Off-path offloading utilizes dedicated clusters or cloud providers to exploit the
economies of scale and elastic scaling opportunities [9, 29].
Such offloading opportunities are appealing as they flexibly use existing network

hardware and provide the ability to dynamically scale the deployment. Unfortunately,

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 9–29, 2014.
c© Springer International Publishing Switzerland 2014

10 V. Heorhiadi et al.

current solutions either explicitly focus on passive monitoring applications such as
flow monitors and NIDS [9, 28] and ignore NIPS-induced effects, e.g., on traffic vol-
umes [23,27,29]. Specifically, we observe three new challenges in NIPS offloading that
fall outside the scope of these prior solutions:

• Interaction with traffic engineering: Offloading NIPS to a datacenter means that
we are effectively rerouting the traffic. This may affect network congestion and other
traffic engineering objectives.

• Impact on latency: NIPS lie on the critical forwarding path of traffic. Delays intro-
duced by overloaded NIPS or the additional latency induced by offloading can thus
affect the latency for user applications.

• Traffic volume changes: NIPS actively change the traffic volume routed through the
network. Thus, the load on a NIPS node is dependent on the processing actions of
the upstream nodes along the packet forwarding path.

To address these challenges and deliver the benefits of offloading to NIPS deployments,
we present the SNIPS system. SNIPS takes a first-principles approach to capture the
above effects and balance the tradeoffs across scalability, latency increase, and network
congestion. Perhaps counterintuitively, we show that it is feasible to capture these com-
plex requirements and effects through a linear programming (LP) formulation that is
amenable to fast computation using off-the-shelf solvers. As we show in §7, the com-
putation takes ≤2 seconds, for a variety of real topologies enabling SNIPS to react in
near-real-time to network dynamics. The design of SNIPS is quite general and it can be
used in many deployment settings and the ideas may also be applicable to other network
functions virtualization (NFV) applications [17].

We leverage software-defined networking (SDN) mechanisms to implement the op-
timal strategy derived from the LP formulation. A key benefit of SDN is that it does not
require modifications to the NIPS hardware or software unlike prior work [9,27]. Using
trace-driven simulations and emulations, we show that SNIPS can reduce the maximum
load by up to 10× while only increasing the latency by 2%.

Contributions: In summary, this paper makes four contributions:

• Identifying challenges in applying offloading to NIPS deployments (§3);

• Designing formal models to capture new effects (e.g., rerouting, latency, traffic
changes) (§5);

• Addressing practical challenges in an SDN-based implementation (§6); and

• A detailed evaluation showing that SNIPS imposes low overhead and offers signifi-
cant advantages (§7).

2 Related Work

On-Path Offloading: The key difference between SNIPS and prior work on on-path
offloading [27, 28] is three-fold: (1) they focus only on on-path monitoring; (2) these
assume that the traffic volume does not change inside the network; and (3) they are not
concerned with latency. As a result, the models from these efforts do not apply as we

A Software-Defined Approach for Scaling Intrusion Prevention Systems 11

highlight in the next section. SNIPS considers a generalized model of both on- and off-
path offloading, models the impact of rerouting on latency, and captures effects of NIPS
actively changing the traffic volume. In terms of implementation, these efforts modify
software platforms such as the yaf flow monitor and the Bro IDS [20]. In contrast,
SNIPS leverages software-defined networking (SDN) to provide an in-network offload-
ing solution that does not require access to the NIPS software source or the hardware
platform. Thus, SNIPS can accommodate legacy and proprietary NIPS solutions.

Off-Path Offloading: Recent efforts make the case for virtualizing NIPS-like func-
tions [7] and demonstrate the viability of off-path offloading using public cloud
providers [29]. Our work shares the motivation to exploit elastic scaling and reduce
capital/operating expenses. However, these efforts focus more on the high-level vision
and viability. As such they do not provide formal models like SNIPS to capture trade-
offs across scalability, network bandwidth costs, and user-perceived latency and incor-
porating the effects of active traffic dropping by NIPS. The closest work in off-path
offloading is our prior work [9]. However, the focus there was on NIDS or passive mon-
itoring and thus the traffic is simply replicated to clusters. As such, this prior work does
not model rerouting or the impact on user-perceived latency. Furthermore, this imple-
mentation requires running a Click-based shim layer [12] below the NIDS, and thus
cannot work with legacy NIDS/NIPS hardware. As discussed earlier, SNIPS provides
an in-network solution via SDN that accommodates legacy NIPS.

Traditional NIPS/NIDS Scaling: There are several complementary approaches for
scaling NIPS, including algorithmic improvements [32], using specialized hardware
such as TCAMs (e.g., [15, 39]), FPGAs (e.g., [14]), or GPUs (e.g., [10, 35]). These are
orthogonal to SNIPS as they improve single NIPS throughput, while SNIPS focuses on
network-wide NIPS resource management.

Distributed NIPS: Prior work in distributed NIDS and NIPS [2, 13, 21] focus on cor-
relating events, combining alerts from different vantage points, and extracting useful
information from multiple vantage points. Our framework, in contrast, focuses on dis-
tribution primarily for scalability.

SDN and Security: Recent work has recognized the potential of SDN for security
tasks; e.g., FRESCO uses SDN to simplify botnet or scan detection [31]. SIMPLE [23]
and SoftCell [11] use SDN for steering traffic through a desired sequence of waypoints.
These do not, however, model the impact of altering the traffic volume as in SNIPS.
In addition, there are subtle issues in ensuring stateful processing and load balancing
that these works do not address (see §6). Shin et al. highlight security concerns where
reactive controllers that set up forwarding rules dynamically per-flow can get over-
loaded [30]. SNIPS uses proactive rule installation and is immune to such attacks.

3 Motivation and Challenges

We begin by briefly describing the idea of offloading for scaling passive monitoring
solutions. Then, we highlight the challenges in using this idea for NIPS deployments
that arise as a result of NIPS-specific aspects: NIPS actively modify the traffic volume
and NIPS placement impacts the end-to-end latency.

12 V. Heorhiadi et al.

3.1 Case for Offloading

Avoiding overload is an important part of NIPS management. Some NIPS processing is
computationally intensive, and under high traffic loads, CPU resources become scarce.
Modern NIPS offer two options for reacting to overload: dropping packets or suspend-
ing expensive analysis modules. Neither is an attractive option. For example, Snort by
default drops packets when receiving more traffic than it can process — in tests in our
lab, Snort dropped up to 30% of traffic when subjected to more traffic than it had CPU to
analyze — which can adversely impact end-user performance (especially for TCP traf-
fic). Suspending analysis modules decreases detection coverage. In fact, this behavior
under overload can be used to evade NIPS [19]. As such, network operators today have
few choices but to provision their NIDS/NIPS to handle maximum load. For example,
they can upgrade their NIPS nodes with specialized hardware accelerators (e.g., using
TCAM, GPUs, or custom ASICs). While this is a valid (if expensive) option, practical
management constraints restrict network appliance upgrades to a 3–5 year cycle.

N1

N3

N2

N4

Path1: N1 N4

Path2: N3 N4

ath1: N1 N4

D

Fig. 1. An example to explain the on- and off-path of-
floading opportunities that have been proposed in prior
work for passive monitoring solutions

A practical alternative to avoid
packet drops or loss in detection
coverage is by exploiting oppor-
tunities for offloading the process-
ing. Specifically, prior work has
exploited this idea in the con-
text of passive monitoring in two
ways: (1) on-path offloading to
other monitoring nodes on the
routing path [27, 28] and (2) off-
path offloading by replicating traf-
fic to a remote datacenter [9, 29].

To make these more concrete, consider the example network in Figure 1 with 4 nodes
N1–N4, with traffic flowing on two end-to-end paths P1:N1→N4 and P2:N3→N4.1

In a traditional deployment, each packet is processed at its ingress on each path: N1
monitors traffic on P1 and N3 monitors traffic on P2. An increase in the load on P1 or
P2 can cause drops or detection misses

With on-path offloading, we can balance the processing load across the path (i.e., N1,
N2, and N4 for P1 and N2, N3, and N4 for P2) to use spare capacity at N2 and N4 [27,
28]. This idea can be generalized to use processing capacity at off-path locations; e.g.,
N1 and N2 can offload some of their load to the datacenter; e.g., a NIDS cluster [34] or
cloudbursting via public clouds [29].

3.2 Challenges in Offloading NIPS

Our goal is to extend the benefits of offloading to NIPS deployments. Unlike passive
monitoring solutions, however, NIPS need to be inline on the forwarding path and they
actively drop traffic. This introduces new dimensions for both on-path and off-path
offloading that falls outside the scope of the aforementioned prior work.

1 For brevity, in this section we use an abstract notion of a “node” that includes both the
NIDS/NIPS functionality and the switching/routing function.

A Software-Defined Approach for Scaling Intrusion Prevention Systems 13

Cap = 40 for all nodes

Fig. 2. Need to model the impact of inline traffic
modifications

Path1: N1 N4
200 pkts, 10% bad

N3

LinkCap = 200 LinkCap = 200

LinkCap = 200

N1 N2 N4

D

Fig. 3. Impact of rerouting to remote locations

Suppose we have a network administrator who wants to distribute the processing
load across the different nodes to: (1) operate within the provisioned capacity of each
node; (2) meet traffic engineering objectives w.r.t. link loads (e.g., ensure that no link
is loaded to more than 30%); (3) minimize increased latency due to rerouting; and (4)
ensures that the unwanted traffic is dropped as close to the origin as possible subject
to (1), (2), and (3). We extend the example topology from earlier to highlight the key
challenges that arise in meeting these goals

NIPS Change Traffic Patterns: In Figure 2, each NIPS N1–N4 can process 40 packets
and each link has a capacity to carry 200 packets. Suppose P1 and P2 carry a total of
100 packets and the volume of unwanted traffic on P1 is 40%; i.e., if we had no NIPS
resource constraints, we would drop 40% of the traffic on P1. In order to meet the NIPS
load balancing and traffic engineering objectives, we need to model the effects of the
traffic being dropped by each NIPS node. If we simply use the formulations for passive
monitoring systems and ignore the traffic drop rate, we may incorrectly infer that there
is no feasible solution—the total offered load of 200 packets exceeds the total NIPS
capacity (160). Because P1 drops 40 packets, there is actually a feasible solution.

Fig. 4. Need to carefully select offload locations in
order to account for the latency for user connec-
tions

Rerouting: Next, let us consider the
impact of off-path offloading to a dat-
acenter. Here, we see a key difference
between NIDS and NIPS offloading.
With NIDS, we replicate traffic to the
datacenter D. With NIPS, however, we
need to actively reroute the traffic. In
Figure 3, the traffic on P1 exceeds the
total NIPS capacity even after account-
ing for the drop rate. In this case, we
need to reroute a fraction of the traffic on P1 to the datacenter from N2. If we were
replicating the traffic, then the load on the link N2-N4 would be unaltered. With rerout-
ing, however, we are reducing the load on N2-N4 and introducing additional load on the
links between N2 and D (and also between D and N4). This has implications for traffic
engineering as we need to account for the impact of rerouting on link loads.

Latency Addition Due to Offloading: NIDS do not actively impact user-perceived
performance. By virtue of being on the critical forwarding path, however, NIPS of-
floading to remote locations introduces extra latency to and from the datacenter(s). In
Figure 4, naively offloading traffic from N1 to D1 or from N3 to D1 can add hundreds

14 V. Heorhiadi et al.

of milliseconds of additional latency. Because the latency is critical for interactive and
web applications (e.g., [8]), we need systematic ways to model the impact of rerouting
to minimize the impact on user experience.

Conflict with Early Dropping: Naive offloading may also increase the footprint of
unwanted traffic as traffic that could have been dropped may consume extra network
resources before it is eventually dropped. Naturally, operators would like to minimize
this impact. Let us extend the previous scenario to case where the link loads are low,
and D1 and D2 have significantly higher capacity than the on-path NIPS. From a pure
load perspective, we might want to offload most of the traffic to D1 and D2. However,
this is in conflict with the goal of dropping unwanted traffic early.

Together, these examples motivate the need for a systematic way to capture NIPS-
specific aspects in offloading including: (1) changes to traffic patterns due to NIPS
actions; (2) accounting for the impact of rerouting in network load; (3) modeling the
impact of off-path offloading on latency for users; and (4) balancing the tension between
load balancing and dropping unwanted traffic early.

4 SNIPS System Overview

Fig. 5. Overview of the SNIPS architecture for
NIPS offloading

In order to address the challenges from
the previous section, we present the de-
sign of the SNIPS system. Figure 5
shows a high-level view of the system.
The design of SNIPS is general and
can be applied to several contexts: en-
terprise networks, datacenter networks,
and ISPs, though the most common
use-case (e.g., as considered by past
network security literature) is typically
for enterprise networks.

We envision a logically centralized
controller that manages the NIPS deployment as shown, analogous to many recent
network management efforts (e.g., [3]). Network administrators specify high-level ob-
jectives such as bounds on acceptable link congestion or user-perceived latency. The
controller runs a network-wide optimization and translates these high-level goals into
physical data plane configurations.

This network-wide optimization is run periodically (e.g., every 5 minutes) or trig-
gered by routing or traffic changes to adapt to network dynamics. To this end, it uses in-
formation about the current traffic patterns and routing policies using data feeds that are
routinely collected for other network management tasks [5]. Based on these inputs, the
controller runs the optimization procedures (described later) to assign NIPS processing
responsibilities. We begin by describing the main inputs to this NIPS controller.

• Traffic Classes: Each traffic class is identified by a specific application-level port
(e.g., HTTP, IRC) and network ingress and egress nodes. Each class is associated
with some type of NIPS analysis that the network administrator wants to run. We use
the variable c to identify a specific class. We use c.in and c.out to denote the ingress

A Software-Defined Approach for Scaling Intrusion Prevention Systems 15

and egress nodes for this traffic class; in particular, we assume that a traffic class has
exactly one of each. For example, in Figure 5 we have a class c consisting of HTTP
traffic entering at c.in = N1 and exiting at c.out = N3. Let S (c) and B(c) denote
the (expected) volume of traffic in terms of the number of sessions and bytes, respec-
tively. We use Match(c) to denote the expected rate of unwanted traffic (which, for
simplicity, we assume to be the same in sessions or bytes) on the class c, which can
be estimated from summary statistics exported by the NIPS.

• Topology and Routing: The path traversed by traffic in a given class (before any
rerouting due to offloading) is denoted by c.path . For clarity, we assume that the rout-
ing in the network is symmetric; i.e., the path c.path=Path(c.in , c.out) is identical
to the reverse of the path Path(c.out , c.in). In our example, c.path = 〈N1,N2,N3〉.
Our framework could be generalized to incorporate asymmetric routing as well.
For simplicity, we restrict the presentation of our framework to assume symmetric
routing.

We use the notation Nj ∈ Path(src, dst) to denote that the NIPS node Nj is on
the routing path between the source node src and the destination node dst . In our
example, this means that N1,N2,N3 ∈ Path(N1,N3). Note that some nodes (e.g.,
a dedicated cluster such as D1 in Figure 5) are off-path; i.e., these do not observe
traffic unless we explicitly re-route traffic to them. Similarly, we use the notation
l ∈ Path(src, dst) to denote that the link l is on the path Path(src, dst). We use
|Path(src, dst)| to denote the latency along a path Path(src, dst). While our frame-
work is agnostic to the units in which latency is measured, we choose hop-count for
simplicity.

• Resource Footprints: Each class c may be subject to different types of NIPS anal-
ysis. For example, HTTP sessions may be analyzed by a payload signature engine
and through web firewall rules. We model the cost of running the NIPS for each class
on a specific resource r (e.g., CPU cycles, memory) in terms of the expected per-
session resource footprint F r

c , in units suitable for that resource (F r
c for Footprint on

r). These values can be obtained either via NIPS vendors’ datasheets or estimated
using offline benchmarks [4].

• Hardware Capabilities: Each NIPS hardware device Nj is characterized by its re-
source capacity Capr

j in units suitable for the resource r. In the general case, we
assume that hardware capabilities may be different because of upgraded hardware
running alongside legacy equipment.

We observe that each of these inputs (or the instrumentation required to obtain them) is
already available in most network management systems. For instance, most centralized
network management systems today keep a network information base (NIB) that has
the current topology, traffic patterns, and routing policies [5]. Similarly, the hardware
capabilities and resource footprints of the different traffic classes can be obtained with
simple offline benchmarking tools [4]. Note that our assumption on the availability of
these inputs is in line with existing work in the network management literature. The
only additional input that SNIPS needs is Match(c), which is the expected drop rate
for the NIPS functions. These can be estimated using historical logs reported by the
NIPS; anecdotal evidence from network administrators suggests that the match rates

16 V. Heorhiadi et al.

are typically quite stable [1]. Furthermore, SNIPS can provide significant benefits even
with coarse estimates. In this respect, our guiding principle is to err on the conservative
side; e.g., we prefer to overestimate resource footprints and underestimate the drop
rates.

Note that SNIPS does not compromise the security of the network relative to a tra-
ditional ingress-based NIPS deployment. That is, any malicious traffic that would be
dropped by an ingress NIPS will also be dropped in SNIPS; this drop may simply occur
elsewhere in the network as we will see.

Given this setup, we describe the optimization formulations for balancing the trade-
off between the load on the NIPS nodes and the latency and congestion introduced by
offloading.

5 SNIPS Optimization

Given the inputs from the previous section, our goal is to optimally distribute the NIPS
processing through the network. To this end, we present a linear programming (LP) for-
mulation. While LP-based solutions are commonly used in traffic engineering [6, 28],
NIPS introduce new dimensions that make this model significantly different and more
challenging compared to prior work [9, 28]. Specifically, rerouting and active manipu-
lation make it challenging to systematically capture the effective link and NIPS loads
using the optimization models from prior work, and thus we need a first-principles ap-
proach to model the NIPS-specific aspects.

Path(N,E)

Path(N,D) Path(D,E)

Path(I,N)

dropped dropped dropped

Sessions(c))
0 1

Fig. 6. An example to highlight the key concepts in our
formulation and show modeling of the additional la-
tency due to rerouting

Our formulation introduces de-
cision variables that capture the
notion of processing and offload-
ing fractions. These variables, de-
fined for each node along a rout-
ing path, control the number of
flows processed at each node. Let
pc,j denote the fraction of traffic
on class c that the router Nj pro-
cesses locally and let oc,j ,d denote
the fraction of traffic on class c
that the NIPS node Nj offloads to
the datacenter d. For clarity of pre-
sentation, we assume there is a single datacenter d and thus drop the d subscript; it is
easy to generalize this formulation to multiple datacenters, though we omit the details
here due to space considerations.

Intuitively, we can imagine the set of traffic sessions belonging to class c entering
the network (i.e., before any drops or rerouting) as being divided into non-overlapping
buckets, e.g., either using hashing or dividing the traffic across prefix ranges [28,34,37].
The fractions pc,j and oc,j represent the length of these buckets as shown in Figure 6.

Figure 7 shows the optimization framework we use to systematically balance the
trade-offs involved in NIPS offloading. We illustrate the key aspects of this formulation
using the example topology in Figure 6 with a single class c of traffic flowing between

A Software-Defined Approach for Scaling Intrusion Prevention Systems 17

Minimize: (1−α−β)×NLdCost+α×HopsUnwanted+β×LatencyInc, subject to:

∀c :
∑

Nj∈c.path

pc,j +oc,j =1 (1)

∀r, j :NLd j,r =
∑

c:Nj∈c.path

pc,j ×S(c)×F r
c (2)

∀r, j :NLd j,r ≤Capr
j (3)

∀r :
∑

c

∑

Nj∈c.path

oc,j ×S(c)×F r
c ≤DCapr (4)

∀r, j :NLdCost ≥NLd j,r (5)

∀l :BG l =
∑

c:l∈c.path

B(c) (6)

∀l :LLd l ≤MaxLLd×LCapl (7)

LatencyInc =
∑

c

∑

Nj∈c.path

oc,j ×S(c)×
(|Path(Nj , d)|+ |Path(d, c.out)|

−|Path(Nj , c.out)|
)

(8)

HopsUnwanted =
∑

c

∑

Nj∈c.path

pc,j ×S(c)×Match(c)×|Path(c.in,Nj)|

+
∑

c

∑

Nj∈c.path

oc,j ×S(c)×Match(c)×
(|Path(c.in,Nj)|

+|Path(Nj , d)|
)

(9)

∀l :LLd l =BG l +
∑

c

∑

Nj :Nj∈c.path

∧ l∈Path(Nj ,d)

oc,j ×B(c)

+
∑

c:l∈Path(d,c.out)

∑

Nj∈c.path

oc,j ×B(c)× (1−Match(c))

−
∑

c

∑

Nj≺c l

oc,j ×B(c)−
∑

c

∑

Nj≺c l

pc,j ×B(c)×Match(c) (10)

Fig. 7. Formulation for balancing the scaling, latency, and footprint of unwanted traffic in
network-wide NIPS offloading

the ingress I and egress E. This toy topology has a single data center D and traffic being
offloaded to D from a given node N.
Goals: As discussed earlier, NIPS offloading introduces several new dimensions: (1)
ensure that the NIPS hardware is not overloaded; (2) keep all the links at reasonable
loads to avoid unnecessary network congestion; (3) add minimal amount of extra la-
tency for user applications; and (4) minimize the network footprint of unwanted traffic.
Of these, we model (2) as a constraint and model the remaining factors as a multi-
criterion objective.2

Note that these objectives could possibly be in conflict and thus we need to system-
atically model the trade-offs between these objectives. For instance, if are not worried
about the latency impact, then the optimal solution is to always offload traffic to the
datacenter. To this end, we model our objective function as a weighted combination
of factors (1), (3), and (4). Our goal here is to devise a general framework rather than

2 The choice of modeling some requirement as a strict constraint vs. objective may differ across
deployments; as such, our framework is quite flexible. We use strict bounds on the link loads
to avoid congestion.

18 V. Heorhiadi et al.

mandate specific values of the weights. We discuss some natural guidelines for selecting
these weights in §7.

Coverage (Eqn. 1): Given the process and offload variables, we need to ensure that
every session in each class is processed somewhere in the network. Eqn. 1 captures this
coverage requirement and ensures that for each class c the traffic is analyzed by some
NIPS on that path or offloaded to the datacenter. In our example, this means that pc,I,
pc,N, pc,E, and oc,N should sum up to 1.

Resource Load (Eqn. 2–Eqn. 5): Recall that F r
c is the per-session processing cost of

running the NIPS analysis for traffic on class c. Given these values, we model the load
on a node as the product of the processing fraction pc,j , the traffic volume along these
classes and the resource footprint F r

c . That is, the load on node Nj due to traffic pro-
cessed on c is S (c)×pc,j×F r

c . Since our goal is to have all nodes operating within their
capacity, we add the constraint in Eqn. 3 to ensure that no node exceeds the provisioned
capacity. The load on the datacenter depends on the total traffic offloaded to it, which
is determined by the oc,j values, i.e., oc,N in our example of Figure 6. Again, this must
be less than the capacity of the datacenter, as shown in Eqn. 4. Furthermore, since we
want to minimize resource load, Eqn. 5 captures the maximum resource consumption
across all nodes (except the datacenter).3

Latency Penalty due to Rerouting (Eqn. 8): Offloading means that traffic takes a
detour from its normal path to the datacenter (and then to the egress). Thus, we need to
compute the latency penalty caused by such rerouting. For any given node Nj , the orig-
inal path c.path can be treated as the logical concatenation of the path Path(in ,Nj)
from ingress in to node Nj and the path Path(Nj , out) from Nj to the egress out .
When we offload to the datacenter, the additional cost is the latency from this node
to the datacenter and datacenter to the egress. However, since this traffic does not tra-
verse the path from Nj to the egress, we can subtract out that latency. In Figure 6,
the original latency is |Path(I,N)|+ |Path(N,E)|; the offloaded traffic incurs a latency
of |Path(I,N)|+ |Path(N,D)|+ |Path(D,E)| which results in a latency increase of
|Path(N,D)|+ |Path(D,E)| − |Path(N,E)|. This models the latency increase for a
given class; the accumulated latency across all traffic is simply the sum over all classes
(Eqn. 8).

Unwanted Footprint (Eqn. 9): Ideally, we want to drop unwanted traffic as early
as possible to avoid unnecessarily carrying such traffic. To capture this, we compute
the total “network footprint” occupied by unwanted traffic. Recall that the amount
of unwanted traffic on class c is Match(c)×B(c). If the traffic is processed locally
at router Nj , then the network distance traversed by the unwanted traffic is simply
|Path(c.in ,Nj)|. If the traffic is offloaded to the datacenter by Nj , however, then the
network footprint incurred will be |Path(c.in,Nj)|+ |Path(Nj , d)|. Given a reason-
able bucketing function, we can assume that unwanted traffic will get mapped uni-
formly across the different logical buckets corresponding to the process and offload

3 At first glance, it may appear that this processing load model does not account for reduction in
processing load due to traffic being dropped upstream. Recall, however, that pc,j and oc,j are
defined as fractions of original traffic that enters the network. Thus, traffic dropped upstream
will not impact the processing load model.

A Software-Defined Approach for Scaling Intrusion Prevention Systems 19

variables. In our example, the volume of unwanted traffic dropped at N is simply
Match(c) × B(c) × pc,N. Given this, we can compute the network footprint of the
unwanted traffic as a combination of the locally processed and offloaded fractions as
shown in Eqn. 9.

Due to the processing coverage constraint, we can guarantee that SNIPS provides the
same the security functionality as provided by a traditional ingress NIPS deployment.
That is, any malicious traffic that should be dropped will be dropped somewhere under
SNIPS. (And conversely, no legitimate traffic will be dropped.)

Link Load (Eqn. 6, Eqn. 7, Eqn. 10): Last, we come to the trickiest part of the
formulation — modeling the link loads. To model the link load, we start by considering
the baseline volume that a link will see if there were no traffic being dropped and if
there were no offloading. This is the background traffic that is normally being routed.
Starting with this baseline, we notice that NIPS offloading introduces both positive and
negative components to link loads.

First, rerouting can induce additional load on a given link if it lies on a path between
a router and the datacenter; either on the forward path to the datacenter or the return path
from the data center to the egress. These are the additional positive contributions shown
in Eqn. 10. In our example, any link that lies on the path Path(N,D) will see additional
load proportional to the offload value oc,N. Similarly, any link on the path from the data
center will see additional induced load proportional to oc,N× (1−Match(c)) because
some of the traffic will be dropped.

NIPS actions and offloading can also reduce the load on some links. In our example,
the load on the link N-E is lower because some of the traffic has been offloaded from N;
this is captured by the first negative term in Eqn. 10. There is also some traffic dropped
by the NIPS processing at the upstream nodes. That is, the load on link N-E will be
lowered by an amount proportional to (pc,I+pc,N)×Match(c). We capture this effect
with the second negative term in Eqn. 10 where we use the notation Nj ≺c l to capture
routers that are upstream of l along the path c.path .

Together, we have the link load on each link expressed as a combination of three
factors: (1) baseline background load; (2) new positive contributions if the link lies on
the path to/from the datacenter, and (3) negative contributions due to traffic dropped
upstream and traffic being rerouted to the data center. Our constraint is to ensure that
no link is overloaded beyond a certain fraction of its capacity; this is a typical traffic
engineering goal to ensure that there is only a moderate level of congestion at any time.

Solution: Note that our objective function and all the constraints are linear functions
of the decision variables. Thus, we can leverage commodity linear programming (LP)
solvers such as CPLEX to efficiently solve this constrained optimization problem. In
§6 we discuss how we map the output of the optimization (fractional pc,j and oc,j
assignments) into data plane configurations to load balance and offload the traffic.

We note that this basic formulation can be extended in many ways. For instance,
administrators may want different types of guarantees on NIPS failures: fail-open (i.e.,
allow some bad traffic), fail-safe (i.e., no false negatives but allow some benign traffic
to be dropped), or strictly correct. SNIPS can be extended to support such policies;
e.g., modeling redundant NIPS or setting up forwarding rules to allow traffic to pass
through.

20 V. Heorhiadi et al.

6 Implementation Using SDN

In this section, we describe how we implement SNIPS using software-defined network-
ing (SDN). At a high-level, an SDN architecture consists of a network controller and
SDN-enabled switches [3]. The controller installs rules on the switches using an open
API such as OpenFlow [18] to specify forwarding actions for different flow match pat-
terns. The flow match patterns are exact or wildcard expressions over packet header
fields. This ability to programmatically set up forwarding actions enables a network-
layer solution for NIPS offloading that does not require NIPS modifications and can
thus work with legacy/proprietary NIPS hardware.

SNIPS Using SDN/OpenFlow: We want to set up forwarding rules to steer traffic to
the different NIPSes. That is, given the pc,j and oc,j values, we need to ensure that each
NIPS receives the designated amount of traffic. In order to decouple the formulation
from the implementation, our goal is to translate any configuration into a correct set of
forwarding rules.

As discussed in §4, each traffic class c is identified by application-level ports and net-
work ingress/egress. Enterprise networks typically use structured address assignments;
e.g., each site may be given a dedicated IP subnet. Thus, in our prototype we iden-
tify the class using the IP addresses (and TCP/UDP port numbers). Note that we do
not constrain the addressing structure; the only requirement is that hosts at different
locations are assigned addresses from non-overlapping IP prefix ranges and that these
assignments are known.

For clarity, we assume that each NIPS is connected to a single SDN-enabled switch.
In the context of our formulation, each abstract node Nj can be viewed as consisting of
a SDN switch Sj connected to the NIPS NIPS j .4

6.1 Challenges in Using SDN

While SDN is indeed an enabler, there are three practical challenges that arise in our
context. We do not claim that these are fundamental limitations of SDN. Rather, SNIPS
induces new requirements outside the scope of traditional SDN/OpenFlow applica-
tions [3] and prior SDN use cases [23, 24].

Stateful Processing: NIPS are stateful and must observe both forward and reverse
flows of a TCP/UDP session for correct operation. In order to pin a session to a specific
node, prior solutions for NIDS load balancing use bidirectional hash functions [9, 34].
However, such capabilities do not exist in OpenFlow and we need to explicitly ensure
stateful semantics.

To see why this is a problem, consider the example in Figure 8 with class c1
(c1.in=S1 and c1.out = S2) with pc1,NIPS1=pc1,NIPS2=0.5. Suppose hosts with gate-
ways S1 and S2 are assigned IP addresses from prefix ranges Prefix 1=10.1/16
and Prefix2=10.2/16 respectively. Then, we set up forwarding rules so that pack-
ets with src = 10.1.0/17, dst=10.2/16 are directed to NIPS NIPS1 and those with

4 For “inline” NIPS deployments, the forwarding rules need to be on the switch immediately
upstream of the NIPS and the NIPS needs to be configured to act in “bypass” mode to allow
the remaining traffic to pass through untouched.

A Software-Defined Approach for Scaling Intrusion Prevention Systems 21

src=10.1.128/17, dst=10.2/16 are directed to NIPS2 as shown in the top half of Fig-
ure 8. Thus, the volume of traffic each NIPS processed matches the SNIPS optimization.
Note that we need two rules, one for each direction of traffic. 5

S1
S2

NIPS1 NIPS2

10.2/16 10.1/16

pc1,N1 fwd

pc1,N1 rev

pc1,N2 fwd

pc 1,N2 rev

c1: Src = 10.1/16, Dst = 10.2/16; pc1,N1 = 0.5 pc1,N2 = 0.5
 c2: Src = 10.2/16, Dst = 10.1/16; pc2,N1 = 0.25 pc2,N2 = 0.75

pc2,N1 fwd
pc2,N1 rev

pc2,N2 fwd

pc2,N2 fwd

pc2,N2 rev

pc 2,N2 rev

S1

NIPS1 N1

S2

NIPS2 N2

Fig. 8. Potentially conflicting rules with bidirectional forwarding
rules for stateful processing. The solution in this case is to logically
merge these conflicting classes.

There is, however,
a subtle problem. Con-
sider a different class
c2 whose c2.in = S2
and c2.out = S1. Sup-
pose pc2,NIPS1 = 0.25
and pc2,NIPS2 = 0.75.
Without loss of gen-
erality, let the split
be src = 10.2.0/18,
dst = 10.1/16 for
NIPS1 and rest to
NIPS2 as shown in
bottom half of Figure 8.
Unfortunately, these new rules will create conflict. Consider a bidirectional session
src = 10.1.0.1, dst = 10.2.0.1. This session will match two sets of rules; e.g., the
forward flow of this session matches rule 1 on S1 while the reverse flow matches rule
4 (a reverse rule for c2) on S2. Such ambiguity could violate the stateful processing
requirement if the forward and reverse directions of a session are directed to different
NIPS.

N1 N2

10.2/16 10.1/16

Naïve:

pc1,N1 = pc1,N2 = 0.5

NIPS1 NIPS2

S1 S2

Fig. 9. NIPS loads could be violated with a non-uniform dis-
tribution of traffic across different prefix subranges. The so-
lution in this case is a weighted volume-aware split

Skewed Volume Distribu-
tion: While class merging
ensures stateful processing,
using prefix-based partitions
may not ensure that the load
on the NIPS matches the
optimization result. To see
why, consider Figure 9 with
a single class and two NIPS,
NIPS1 and NIPS2, with an
equal split. The straw man
solution steers traffic be-
tween 10.1.0/17–10.2/16 to NIPS1 and the remaining (10.1.128/17–10.2/16) to NIPS2.
While this splits the prefix space equally, the actual load may be skewed if the volume
is distributed as shown. The actual load on the NIPS nodes will be 0.3 and 0.7 instead
of the intended 0.5:0.5. This non-uniform distribution could happen for several reasons;
e.g., hotspots of activity or unassigned regions of the address space.

Potential Routing Loops: Finally, there is a corner case if the same switch is on the
path to/from the data center. Consider the route: 〈in , . . ., Soffload , . . ., Si, Sj , . . ., Sd ,
d, Sd , . . ., Si, Sj , . . ., out〉. With flow-based forwarding rules, Sj cannot decide if a

5 For clarity, the example only shows forwarding rules relevant to NIPS; there are other basic
routing rules that are not shown.

22 V. Heorhiadi et al.

packet needs to be sent toward the datacenter d or toward egress out . (Note that this is
not a problem for Sd itself; it can use the input interface on which the packet arrived to
determine the forwarding action.)

We could potentially address some of these issues by modifying the optimization
(e.g., choose a loop-free offload point for (2) or rewrite the optimization w.r.t merged
classes for (1).) Our goal is to decouple the formulation from the implementation path.
That is, we want to provide a correct SDN-based realization of SNIPS without making
assumptions about the structure of the optimization solution or routing strategies.

6.2 Our Approach

Next, we discuss our approaches to address the above challenges. At a high-level, our
solution builds on and extends concurrent ideas in the SDN literature [11,23,24]. How-
ever, to the best of our understanding, these current solutions do not handle conflicts
due to stateful processing or issues of load imbalance across prefixes.

Class Merging for Stateful Processing: Fortunately, there is a simple yet effective so-
lution to avoid such ambiguity. We identify such conflicting classes—i.e., classes c1 and
c2 with c1.in= c2.out and vice versa6—and logically merge them. We create a merged
class c′ whose pc′,j and oc′,j are (weighted) combinations of the original responsibil-
ities so that the load on each NIPS NIPS j matches the intended loads. Specifically, if
the resource footprints F r

c1 and F r
c2 are the same for each resource r, then it suffices to

set pc′,j =
S(c1)×pc1,j+S(c2)×pc2,j

S(c1)+S(c2)
. In Figure 8, if the volumes for c1 and c2 are equal,

the effective fractions are pc′,NIPS1 =
0.5+0.25

2 and pc′,NIPS2 =
0.5+0.75

2 . We can simi-
larly compute the effective offload values as well. If the resource footprints F r

c1 and F r
c2

are not the same for each resource r, however, then an appropriate combination can be
computed using an LP (not shown for brevity).

Volume-Aware Partitioning: A natural solution to this problem is to account for the
volumes contributed by different prefix ranges. While this problem is theoretically hard
(being reducible to knapsack-style problems), we use a simple heuristic described below
that performs well in practice, and is quite efficient.

Let PrefixPair c denote the IP subnet pairs for the (merged) class c. That is, if c.in
is the set Prefix in and c.out is the set Prefix out , then PrefixPairc is the cross prod-
uct of Prefix in and Prefixout . We partition PrefixPair c into non-overlapping blocks
PrefAtomc,1 . . . PrefAtomc,n. For instance, if each block is a /24×/24 subnet and the

original PrefixPair is a /16×/16, then the number of blocks is n= 216×216

28×28 =65536.
Let S (k) be the volume of traffic in the k th block.7 Then, the fractional weight for each
block is wk =

S(k)∑
k′ S(k ′) .

We discretize the weights so that each block has weight either δ or zero, for some
suitable 0<δ< 1. For any given δ, we choose a suitable partitioning granularity so that

6 If the classes correspond to different well-known application ports, then we can use the port
fields to disambiguate the classes. In the worst case, they may share some sets of application
ports and so we could have sessions whose port numbers overlap.

7 These can be generated from flow monitoring reports or statistics exported by the OpenFlow
switches themselves.

A Software-Defined Approach for Scaling Intrusion Prevention Systems 23

the error due to this discretization is minimal. Next, given the pc,j and oc,j assignments,
we run a pre-processing step where we also “round” each fractional value to be an
integral multiple of δ.

Given these rounded fractions, we start from the first assignment variable (some pc,j
or oc,j) and block PrefAtomc,1. We assign the current block to the current fractional
variable until the variable’s demand is satisfied; i.e., if the current variable, say pc,j ,
has the value 2δ, then it is assigned two non-zero blocks. The only requirement for this
procedure to be correct is that each variable value is satisfied by an integral number of
blocks; this is true because each weight is 0 or δ and each variable value is an integral
multiple of δ. With this assignment, the volume of traffic meets the intended pc,j and
oc,j values (modulo rounding errors).

Handling Loops Using Packet Tagging: To handle loops, we use packet tags similar
to prior work [11,23]. Intuitively, we need the switches on the path from the datacenter
to the egress to be able determine that a packet has already been forwarded. Because
switches are stateless, we add tags so that the packet itself carries the relevant “state”
information. To this end, we add an OpenFlow rule at Sd to set a tag bit to packets that
are entering from the datacenter. Downstream switches on the path to out use this bit (in
conjunction with other packet header fields) to determine the correct forwarding action.
In the above path, Sj will forward packets with tag bit 0 toward d and packets with bit
1 toward out .

6.3 Putting it Together

Given these building blocks we translate the LP solution into an SDN configuration in
three steps:

1. Identify conflicting classes and merge them.

2. Use a weighted scheme to partition the prefix space for each (merged) class so that
the volume matches the load intended by the optimization solution.

3. Check for possible routing loops in offloaded paths and add corresponding tag addi-
tion rules on the switches.

We implement these as custom modules in the POX SDN controller [22]. We choose
POX mostly due to our familiarity; these extensions can be easily ported to other plat-
forms. One additional concern is how packets are handled during SNIPS rule updates to
ensure stateful processing. To address this we can borrow known techniques from the
SDN literature [25].

7 Evaluation

In evaluating SNIPS, we focus on two key aspects:

• System benchmarks using our SDN implementation (§7.1).

• Performance benefits over other NIPS architectures (§7.2).

Setup: We use a combination of custom trace-driven simulations, a real system emula-
tion using Mininet [16], and optimization-driven analysis. We use OpenvSwitch as the
SDN switch and use Snort as the NIPS.

24 V. Heorhiadi et al.

asInternet2
asGeant

asEnterprise
as3257

as1221
as1239

as3356
as2914

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
(s

ec
)

Optimizaton Rule Generation Rule Installation

Fig. 10. Overhead of SNIPS: Time to run the
optimization, and generate/install forwarding
rules

1 2 3 4 5 6 7 8 9 10 11 12

Node ID

0
20
40
60
80

100
120

N
IP

S
Lo

ad
(K

B/
se

c)

Expected Observed

Fig. 11. Validating that our SDN implementa-
tion faithfully realizes the SNIPS optimization
on the Internet2 topology

We use realistic network topologies from educational backbones, ISPs [33], and an
enterprise network; these topologies range in size between 11 and 70 nodes. Due to the
absence of public traffic data, we use a gravity model based on location populations [26]
to generate the traffic matrix specifying the volume of traffic between every pair of
network nodes for the AS-level topologies. For the enterprise topology, we obtained the
enterprise’s empirical traffic matrix. For simplicity, we consider only one application-
level class and assume there is a single datacenter located at the node that observes the
largest volume of traffic.

We configure the node and link capacities as follows. We assume a baseline ingress
deployment (without offloading or on-path distribution) where all NIPS processing oc-
curs at the ingress of each end-to-end path. Then, we compute the maximum load across
all ingress NIPS and set the capacity of each NIPS to this value and the datacenter
capacity to be 10× this node capacity. For link capacities, we simulate the effect of
routing traffic without any offloading or NIPS-induced packet drops, and compute the
maximum volume observed on the link. Then, we configure the link capacities such that
the maximum loaded link is at ≈ 35% load.

7.1 System Benchmarks

Computation Overhead: A potential concern with centralized management is the
time to recompute the network configurations, especially in reaction to network dy-
namics. The SNIPS system has three potential overheads: solving the linear program
using CPLEX; translating the LP solution to OpenFlow rules; and rule dissemination.
Figure 10 shows the breakdown of these three components for the different topologies.
Even with the largest topology (AS2914) with 70 nodes, the total time for configura-
tion is only 2.6 seconds. Given that typical network reconfiguration tasks need to be
performed every few minutes, this overhead is quite low [5].

Validation: We validated that our SDN implementation faithfully matches the load
distribution intended by the optimization. Figure 11 shows this validation result in terms
of the normalized NIPS loads (measured in total volume of traffic) for the Internet2
topology. (We have verified this for other topologies but do not show it for brevity.)
Nodes 1–11 are the local NIPS and Node 12 is the data center. We use the LP solution
to generate the expected load using the original traffic matrix. The result shows that

A Software-Defined Approach for Scaling Intrusion Prevention Systems 25

the observed load closely tracks the intended load.8 In this specific configuration, the
volume of traffic offloaded to the datacenter (node 12) is small, but as we will see in the
following sections, in other topologies the datacenter can help significantly.

7.2 Benefits of SNIPS

Next, we evaluate the performance benefits of SNIPS. We start with a baseline result
with a simple configuration before evaluating the sensitivity to different parameters. For
the baseline, we set the SNIPS parameters β=α=0.333; i.e., all three factors (latency,
unwanted hops, load) are weighted equally in the optimization. We fix the fraction of
unwanted traffic to be 10%. For all results, the maximum allowable link load is 40%.

asI
nter

net2

asG
ean

t

asE
nter

pris
e

as3
257

as1
221

as1
239

as3
356

as2
914

0.0
0.2
0.4
0.6
0.8
1.0

Max Load

asI
nter

net2

asG
ean

t

asE
nter

pris
e

as3
257

as1
221

as1
239

as3
356

as2
914

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Latency Increase

asI
nter

net2

asG
ean

t

asE
nter

pris
e

as3
257

as1
221

as1
239

as3
356

as2
914

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Unwanted

Ingress Ingress+DC Path [27] Path+ SNIPS

Fig. 12. Trade-offs between current deployments and SNIPS

Improvement Over Current NIPS Architectures: We compare the performance
of SNIPS against today’s Ingress NIPS deployments. As an intermediary point, we
also consider three other deployments: 1) Ingress+DC deployment, where all process-
ing/offloading happens at the ingress of each path and the datacenter. 2) Path deploy-
ment, modeling the on-path deployment described in [27]; and 3) Path+: identical to
Path except each node has an increased capacity of DCapr/N .

Figure 12 shows three normalized metrics for the topologies: load, added latency,
and unwanted footprint. For ease of presentation, we normalize each metric by the
maximum possible value for a specific topology so that it is between 0 and 1.9 Higher
values indicate less desirable configurations (e.g., higher load or latency).

By definition, the Ingress deployment introduces no additional latency and unwanted
footprint is low10, since all of the processing is at the edge of the network. Such a de-
ployment, however, can suffer overload problems as shown in the result. SNIPS offers a
more flexible trade-off: a small increase in latency and unwanted footprint for a signif-
icant reduction in the maximum compute load. We reiterate that SNIPS does not affect
the security guarantees; it will drop all unwanted traffic, but it may choose to do so after
a few extra hops. In some topologies (e.g., AS3356) SNIPS can reduce the maximum
load by 10× compared to a naive ingress deployment while only increasing the latency

8 The small discrepancies are due to the variability in flow sizes.
9 Hence the values could be different across topologies even for the ingress deployment.

10 It is impossible for this footprint to be 0, since unwanted traffic enters the network and must
be flagged as such.

26 V. Heorhiadi et al.

by 2%. Similarly, SNIPS can provide a 4× reduction in load without increasing latency
over the Ingress+DC deployment (e.g., AS3257). Note that these benefits arise with a
very simple equi-weighted trade-off across the three objective components; the benefits
could be even better with other configurations.

0.0 0.1 0.2 0.3 0.4

Fraction of Malicious Flows

0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42

M
ax

Li
nk

Lo
ad

Without modeling drops Modeling drops

Fig. 13. Link load as a function of fraction of
“unwanted” traffic

0.01 0.02 0.03 0.04 0.05

Drop rate standard deviation (σ)

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007

O
pt

im
al

it
y

G
ap

Compute load Link Load

Fig. 14. Compute and link load optimality gap
as functions of drop rate deviation; estimated
drop rate = distribution mean μ=0.1

0.0 0.2 0.4 0.6 0.8 1.0
β

0.0
0.2
0.4
0.6
0.8
1.0

α

Max Load

0.16 0.37 0.58 0.79 1.00

0.0 0.2 0.4 0.6 0.8 1.0
β

0.0
0.2
0.4
0.6
0.8
1.0

α

Latency Inc

0.00 0.02 0.04 0.06 0.08

0.0 0.2 0.4 0.6 0.8 1.0
β

0.0
0.2
0.4
0.6
0.8
1.0

α

Unwanted

0.14 0.21 0.27 0.34 0.40

Fig. 15. Visualizing trade-offs in choosing different weight factors on Internet2 topology

Impact of Modeling Traffic Drops: SNIPS provides a higher fidelity model compared
to past works in NIDS offloading because it explicitly incorporates the impact of traffic
drops. We explore the impact of modeling these effects. For this result, we choose the
Internet2 topology and use our simulator to vary the fraction of malicious flows in
the network. Figure 13 shows the maximum observed link loads, averaged over 50
simulation runs. In addition to directly using the SNIPS-recommended strategy, we
also consider a naive setup that does not account for such drops.

There are two key observations. First, the max link load is significantly lower with
SNIPS which means that SNIPS can exploit more opportunities to offload under over-
load compared to the naive model. Second, by assuming no drops, “no drop” setup
ignores the HopsUnwanted factor, thus potentially obstructing the link to the datacen-
ter with unwanted traffic that could have been dropped at an earlier point in the network
(this effect is represented in Figure 13).

7.3 Sensitivity Analysis

Sensitivity to Weights: As an illustrative result, we show the result of varying the
weighting factors for the Internet2 topology in Figure 15. (We show only one topology
due to space limitations). In the figure, darker regions depict higher values, which are
less desirable. Administrators can use such visualizations to customize the weights to

A Software-Defined Approach for Scaling Intrusion Prevention Systems 27

suit their network topology and traffic patterns and avoid undesirable regions. In par-
ticular, our equi-weighted configuration is a simple but reasonable choice (e.g., mostly
low shades of gray in this graph).

Sensitivity to Estimation Errors: We also show that the parameter estimation (such
as drop rate) for our framework need not be precise. For this, we choose to run a number
of simulations with imperfect knowledge of the drop rate. In that case, the drop rate is
sampled from a Gaussian distribution with mean of 0.1 (the estimated drop rate) and
changing standard deviation σ. Figure 14 shows the relative gap for compute and link
loads, between values predicted by the optimization with exact drop rate knowledge and
the simulated values. This result shows that even with large noise levels the difference
in load on links and nodes is insignificant.

8 Conclusions

Offloading has recently emerged as an appealing alternative to traditional approaches
for scaling in-network processing. The goal of this paper is to bring the benefits of of-
floading to NIPS deployments. As we discussed, NIPS create new dimensions—active
dropping, rerouting, and user-perceived latency—that fall outside the purvey of prior
offloading systems that apply to passive monitoring solutions. To address these chal-
lenges, we presented the design and implementation of SNIPS. We presented a linear
programming framework to model the new effects and trade-offs and addressed practi-
cal challenges in an SDN-based implementation. We showed that SNIPS offers greater
scalability and flexibility with respect to current NIPS architectures; it imposes low
overhead; and is robust to variations in operating parameters.

Acknowledgments. This work was supported in part by grant number N00014-13-1-
0048 from the Office of Naval Research; NSF awards 1040626, 1330599, 1440056, and
1440065; and an NSF Graduate Research Fellowship.

References

1. Private communication with UNC administrators (2013)
2. Abraham, A., Jain, R., Thomas, J., Han, S.Y.: D-SCIDS: Distributed soft computing intrusion

detection system. Journal of Network and Computer Applications 30 (2007)
3. Casado, M., et al.: Ethane: Taking control of the enterprise. ACM SIGCOMM (2007)
4. Dreger, H., Feldmann, A., Paxson, V., Sommer, R.: Predicting the resource consumption of

network intrusion detection systems. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.)
RAID 2008. LNCS, vol. 5230, pp. 135–154. Springer, Heidelberg (2008)

5. Feldmann, A., et al.: Deriving traffic demands for operational IP networks: methodology and
experience. In: Proc. SIGCOMM (2000)

6. Fortz, B., Rexford, J., Thorup, M.: Traffic engineering with traditional IP routing protocols.
IEEE Communications Magazine 40 (2002)

7. Gibb, G., Zeng, H., McKeown, N.: Outsourcing network functionality. In: ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (2012)

8. Google Research: No Mobile Site = Lost Customers, http://goo.gl/f8lBbR

http://goo.gl/f8lBbR

28 V. Heorhiadi et al.

9. Heorhiadi, V., Reiter, M.K., Sekar, V.: New opportunities for load balancing in network-wide
intrusion detection systems. ACM CoNEXT (2012)

10. Jamshed, M.A., Lee, J., Moon, S., Yun, I., Kim, D., Lee, S., Yi, Y., Park, K.: Kargus: a
highly-scalable software-based intrusion detection system. In: ACM CCS (2012)

11. Jin, X., Li, L.E., Vanbever, L., Rexford, J.: SoftCell: Scalable and Flexible Cellular Core
Network Architecture. In: Proc. CoNext (2013)

12. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The Click modular router.
TOCS 18, 263–297 (2000)

13. Kreibich, C., Sommer, R.: Policy-controlled event management for distributed intrusion de-
tection. In: Distributed Computing Systems Workshops (2005)

14. Lee, J., et al.: A high performance NIDS using FPGA-based regular expression matching.
In: ACM Symposium on Applied Computing (2007)

15. Meiners, C.R., et al.: Fast regular expression matching using small TCAMs for network
intrusion detection and prevention systems. In: USENIX Security Symposium (2010)

16. Mininet, http://www.mininet.org
17. Network functions virtualisation – introductory white paper,

http://portal.etsi.org/NFV/NFV White Paper.pdf
18. Openflow standard, http://www.openflow.org/
19. Papadogiannakis, A., Polychronakis, M., Markatos, E.P.: Tolerating Overload Attacks

Against Packet Capturing Systems. In: USENIX Annual Technical Conference (2012)
20. Paxson, V.: Bro: a system for detecting network intruders in real-time. In: Proc. USENIX

Security (1998)
21. Porras, P.A., Neumann, P.G.: EMERALD: Event monitoring enabling response to anomalous

live disturbances. In: National Information Systems Security Conference (1997)
22. POX Controller, http://www.noxrepo.org/pox/about-pox/
23. Qazi, Z., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., Yu, M.: Simple-fying middlebox policy

enforcement using sdn. In: Proc. SIGCOMM (2013)
24. Wang, R., Butnariu, D., Rexford, J.: Openflow-based server load balancing gone wild. In:

Proc. Hot-ICE (2011)
25. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for network

update. In: ACM SIGCOMM (2012)
26. Roughan, M.: Simplifying the synthesis of internet traffic matrices. ACM CCR, 35 (2005)
27. Sekar, V., Krishnaswamy, R., Gupta, A., Reiter, M.K.: Network-wide deployment of intru-

sion detection and prevention systems. In: ACM CoNEXT (2010)
28. Sekar, V., Reiter, M.K., Willinger, W., Zhang, H., Kompella, R.R., Andersen, D.G.: CSAMP:

a system for network-wide flow monitoring. In: Proc. NSDI (2008)
29. Sherry, J., et al.: Making middleboxes someone else’s problem: Network processing as a

cloud service. In: ACM SIGCOMM (2012)
30. Shin, S., Gu, G.: Attacking Software-Defined Networks: A First Feasibility Study. In: ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking (2013)
31. Shin, S., Porras, P., Yegneswaran, V., Fong, M., Gu, G., Tyson, M.: FRESCO: Modular com-

posable security services for software-defined networks. In: Proc. NDSS (2013)
32. Smith, R., Estan, C., Jha, S.: XFA: Faster signature matching with extended automata. In:

IEEE Symposium on Security and Privacy (2008)
33. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with rocketfuel. In: ACM

SIGCOMM (2002)
34. Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V., Tierney, B.: The NIDS cluster:

Scalable, stateful network intrusion detection on commodity hardware. In: Kruegel, C.,
Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 107–126. Springer,
Heidelberg (2007)

http://www.mininet.org
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.openflow.org/
http://www.noxrepo.org/pox/about-pox/

A Software-Defined Approach for Scaling Intrusion Prevention Systems 29

35. Vasiliadis, G., Polychronakis, M., Antonatos, S., Markatos, E.P., Ioannidis, S.: Regular
expression matching on graphics hardware for intrusion detection. In: Kirda, E., Jha, S.,
Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 265–283. Springer, Heidelberg (2009)

36. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: MIDeA: a multi-parallel intrusion detection
architecture. In: ACM CCS (2011)

37. Wang, R., Butnariu, D., Rexford, J.: Openflow-based server load balancing gone wild. In:
Proc. Hot-ICE (2011)

38. World intrusion detection and prevention markets, http://goo.gl/j3QPX3
39. Yu, F., et al.: SSA: a power and memory efficient scheme to multi-match packet classification.

In: ACM ANCS (2005)

http://goo.gl/j3QPX3

Inference-Proof Data Publishing
by Minimally Weakening a Database Instance�

Joachim Biskup and Marcel Preuß

Technische Universität Dortmund, Dortmund, Germany
{biskup,preuss}@ls6.cs.tu-dortmund.de

Abstract. Publishing of data is usually only permitted when complying
with a confidentiality policy. To this end, this work proposes an approach
to weaken an original database instance: within a logic-oriented model-
ing definite knowledge is replaced by disjunctive knowledge to introduce
uncertainty about confidential information. This provably disables an
adversary to infer this confidential information, even if he employs his
a priori knowledge and his knowledge about the protection mechanism.
As evaluated based on a prototype implementation, this approach can
be made highly efficient. If a heuristic – resulting only in a slight loss of
availability – is employed, it can be even used in interactive scenarios.

Keywords: A Priori Knowledge, Confidentiality Policy, Data Publish-
ing, Disjunctive Knowledge, First-Order Logic, Inference-Proofness, In-
formation Dissemination Control, k-Anonymity, Weakening.

1 Introduction

Nowadays, data publishing is ubiquitous. Governments are often legally obliged
to provide data about matters of public concern, companies release project-
related data to partners and even in most peoples’ private lifes the sharing of data
plays a major role. But usually only certain portions of some data are appropriate
for being shared, as data often contains sensitive information. This applies in
particular to data containing personal information, as surveyed in [11,23].

In the area of relational databases the logic-oriented framework of Controlled
Interaction Execution (CIE) can assist a database owner in ensuring that each
of his interaction partners can only obtain a so-called “inference-proof view” on
the owner’s data [3]. An inference-proof view does not contain information to be
kept confidential from the respective partner, even if this partner is an adversary
trying to deduce confidential information by drawing inferences based on his a
priori knowledge and his general awareness of the protection mechanism.

An example of such a protection mechanism creating inference-proof materi-
alized views – which are suitable for data publishing – by modifying a minimum
number of truth-values of database tuples has been developed in [7]. This ap-
proach is rather versatile as it is based on an expressive fragment of first-order
� This work has been supported by the DFG under grant SFB 876/A5.

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 30–49, 2014.
c© Springer International Publishing Switzerland 2014

Inference-Proof Data Publishing by Minimally Weakening 31

logic, but also suffers from this expressiveness because of its high computational
complexity. Moreover, there might also be some ethical concerns as the modifi-
cation of truth-values means that a user’s view on the database contains lies.

This work introduces a novel approach within the framework of CIE creat-
ing inference-proof materialized views suitable for data publishing and thereby
provably enforcing a confidentiality policy without modifying any truth-values:
instead, harmful database tuples are replaced by weaker knowledge in the form
of disjunctions formed by ground atoms stemming from the policy (each of which
logically represents a database tuple). These disjunctions contain only true in-
formation, but weaken an adversary’s possible gain in information such that the
adversary is provably not able to infer protected sensitive information.

This approach is first developed in a purely generic way in the sense that
non-trivial disjunctions of any length ≥ 2 might be employed. Then a possible
instantiation of this generic approach is presented, which aims at maximizing
availability in the sense that only disjunctions of length 2 are seen to be admis-
sible. For this instantiation an algorithmic treatment based on graph clustering
is given, which fully specifies the approach except for an admissibility criterion
expressing which subsets of potential secrets might possibly form a disjunction.
This criterion should be tailored to the needs of each specific application and
can be easily specified by employing query languages of relational databases.

To be able to fully implement the availability-maximizing flavor to experimen-
tally demonstrate its high efficiency – which can be even raised by employing
a heuristic resulting only in a slight loss of availability – an example for such
an admissibility criterion called interchangeability is provided and evaluated.
Interchangeability admits only disjunctions formed by ground atoms which all
pairwise differ in the same single position and do not differ in any other posi-
tion. This local restriction of distortion preserves definite information about all
but one position of each ground atom and generalizes each distorted value to a
wider set of possible values. Moreover, extensions of the generic approach dealing
with policies (and hence disjunctions) of existentially quantified atoms and also
coping with a basic kind of an adversary’s a priori knowledge are outlined.

As an adversary is aware of which values are weakened by simply consider-
ing the disjunctions, particular attention must be paid to eliminate so-called
meta-inferences (cf. [3,5]). A deduction of sensitive information is called a meta-
inference, if it is obtained by excluding all possible alternative settings, under
which this sensitive information is not valid, by simulating these alternative
settings as inputs for the algorithm generating the inference-proof views and
by being able to distinguish the outputs resulting from each alternative setting
from the published one. In this work meta-inferences are eliminated by imposing
a total order on the sentences of weakened instances.

The generalization of values to a wider set of possible values is similarly used
in the approaches of k-anonymization and �-diversification [10,16,21]. These ap-
proaches aim at preventing the re-identification of individuals based on so-called
quasi-identifiers, which describe some of the individuals’ properties, by generaliz-
ing these quasi-identifiers. We could model k-anonymization and �-diversification

32 J. Biskup and M. Preuß

as a special case within an extensions of our work, which deals with confiden-
tiality policies containing disjunctions of existentially quantified atoms.

As the suppression of a value corresponds to its maximum generalization, this
work is also related to the approach developed in [2], which aims at achieving
confidentiality by replacing certain values of certain database tuples by null-
values. But – in contrast to our work – this approach relies on the assumption
that an adversary is not aware of which values are perturbed.

Moreover, there are other approaches clustering the vertices of a graph into
sets of vertices to be made indistinguishable to achieve privacy [9,12]. But these
approaches aim at preventing structural re-identification of the graph itself, while
the approach presented in our work aims at achieving indistinguishability based
on disjunctions induced from the clustering of the vertices of a graph.

In the remainder of this article, Sect. 2 provides the basic ideas of achiev-
ing inference-proofness by weakening a database instance. Sect. 3 then extends
these ideas to also work with confidentiality policies of an arbitrary number of
ground atoms, thereby balancing availability and confidentiality requirements.
Subsequently, an overall algorithm – which is formally proved to comply with a
declarative definition of inference-proofness – is presented in Sect. 4 and a proto-
type implementation of this algorithm is evaluated with respect to its efficiency
in Sect. 5. Before concluding this work with Sect. 7, the algorithm is again ex-
tended in Sect. 6 to also deal with confidentiality policies containing existentially
quantified atoms and to moreover consider an adversary’s a priori knowledge.

2 Basic Ideas: Inference-Proofness by Weakening

The approach developed in this work is located within the area of relational
databases. For simplicity, all data is supposed to be represented within a single
database instance r over a relational schema 〈R|AR|SCR〉 with relational symbol
R and the set AR = {A1, . . . , An} of attributes. Furthermore, all attributes are
assumed to have the same fixed but infinite domain Dom of constants (cf. [4,15])
and the set SCR contains some semantic (database) constraints (cf. [1]), which
must be satisfied by the relational instance r. For now, these semantic constraints
are neglected (i.e., SCR = ∅), but they will become of interest in Sect. 6.

Each considered (original) instance r is supposed to represent complete in-
formation. Thus, the instance contains only a finite set of valid tuples and each
constant combination c of the infinite set Domn with c /∈ r is assumed to be not
valid by Closed World Assumption (CWA). This is exemplified in Fig. 1(a).

In compliance with CIE (cf. [3,4,7,6,5]), a database instance is modeled logic-
orientedly. Therefore, a language L of first-order logic containing the predicate
symbol R of arity |AR| = n and the binary predicate symbol ≡ for expressing
equality is set up. The fixed but infinite domain Dom is taken as the set of
constant symbols of L and the variables of an infinite set Var can be used to
build sentences (i.e., closed formulas) in the natural fashion [15].

This syntactic specification is complemented with a semantics reflecting the
characteristics of databases by means of so-called DB-Interpretations [4,7,15]:

Inference-Proof Data Publishing by Minimally Weakening 33

r + –
(a, b, c) (a, a, a)

(a, c, c) (a, a, b)

(b, a, c) (a, a, c)
...

(a) Complete instance r

R(a, b, c), R(a, c, c), R(b, a, c)

(∀X)(∀Y)(∀Z) [

(X ≡ a ∧ Y ≡ b ∧ Z ≡ c) ∨
(X ≡ a ∧ Y ≡ c ∧ Z ≡ c) ∨
(X ≡ b ∧ Y ≡ a ∧ Z ≡ c) ∨
¬R(X,Y, Z)]

(b) Logic-oriented modeling of r

Fig. 1. Example of a logic-oriented modeling of a complete database instance

Definition 1 (DB-Interpretation). Given the language L with the set Dom
of constant symbols, an interpretation I is a DB-Interpretation for L iff

(i) Dom is the universe of I and I(v) = v holds for each v ∈ Dom,
(ii) predicate symbol R is interpreted by a finite relation I(R) ⊂ Domn,
(iii) predicate symbol ≡ is interpreted by I(≡) = {(v, v) | v ∈ Dom}.

A DB-Interpretation Ir is induced by a complete database instance r, if its
relation Ir(R) is instantiated by r, i.e., Ir(R) = {c ∈ Domn | c ∈ r}.

The notion of satisfaction/validity of formulas in L by a DB-Interpretation
is the same as in usual first-order logic. A set S ⊆ L of sentences implies/entails
a sentence Φ ∈ L (written as S |=DB Φ) iff each DB-Interpretation I satisfying
S (written as I |=M S) also satisfies Φ (written as I |=M Φ).

A logic-oriented modeling of the complete instance r of Fig. 1(a) is given in
Fig. 1(b). Each valid tuple c ∈ r is modeled as a ground atom R(c) of L and the
infinite set of invalid tuples – which is not explicitly enumerable – is expressed
implicitly by a so-called completeness sentence (cf. [4]) having a universally quan-
tified variable Xj for each attribute Aj ∈ AR. This completeness sentence ex-
presses that every constant combination (c1, . . . , cn) ∈ Domn (substituting the
universally quantified variables X1, . . . , Xn) is either explicitly excluded from
being invalid or satisfies the sentence ¬R(c1, . . . , cn). By construction, this com-
pleteness sentence is satisfied by the DB-Interpretation Ir induced by r.

To achieve confidentiality, a confidentiality policy containing so-called poten-
tial secrets [3] is set up. This policy is supposed to be known by an adversary
trying to recover an original instance r unknown to him based on his knowledge
about a weakened variant of r and his further (a priori) knowledge.

Definition 2 (Confidentiality Policy). A potential secret Ψ is a sentence of
L and a confidentiality policy psec is a finite set of potential secrets. A complete
database instance r obeys a potential secret Ψ ∈ psec, if Ir
|=M Ψ . Moreover,
this instance r obeys the confidentiality policy psec, if r obeys each Ψ ∈ psec.

For now – until Sect. 6 – only potential secrets in the form of ground atoms
are considered. To enforce a given confidentiality policy psec, an incomplete
weakened variant weak (r, psec) of a complete original instance r over 〈R|AR| ∅ 〉
is constructed by a weakening algorithm such that

34 J. Biskup and M. Preuß

R(b, a, c)

R(a, b, c) ∨R(a, c, c)

(∀X)(∀Y)(∀Z) [

(X ≡ a ∧ Y ≡ b ∧ Z ≡ c) ∨
(X ≡ a ∧ Y ≡ c ∧ Z ≡ c) ∨
(X ≡ b ∧ Y ≡ a ∧ Z ≡ c) ∨
¬R(X,Y, Z)]

(a) Weakening weak (r,psec) obeying
the policy psec = {R(a, b, c), R(a, c, c)}

R(a, c, c), R(b, a, c)

R(a, b, c) ∨R(a, b, d)

(∀X)(∀Y)(∀Z) [

(X ≡ a ∧ Y ≡ b ∧ Z ≡ c) ∨
(X ≡ a ∧ Y ≡ b ∧ Z ≡ d) ∨
(X ≡ a ∧ Y ≡ c ∧ Z ≡ c) ∨
(X ≡ b ∧ Y ≡ a ∧ Z ≡ c) ∨
¬R(X,Y, Z)]

(b) Weakening weak (r,psec ′) obeying
the policy psec′ = {R(a, b, c), R(a, b, d)}

Fig. 2. Possible inference-proof weakenings of the example instance of Fig. 1

– weak (r, psec) contains only true information, i.e., Ir |=M weak (r, psec), and
– for each potential secret Ψ ∈ psec the existence of a complete alternative

instance rΨ over 〈R|AR| ∅ 〉 is guaranteed such that
– this instance rΨ obeys Ψ , i.e., IrΨ
|=M Ψ , and the weakening of rΨ is indis-

tinguishable from the weakening of r, i.e., weak (rΨ , psec) = weak (r, psec).

Given an original instance r and a simple policy psec = {Ψ1, Ψ2}, such a
weakening weak (r, psec) can be easily computed: provided that Ψ1 is not obeyed
by r or (and, respectively) Ψ2 is not obeyed by r, each knowledge about the
constant combinations of Ψ1 and Ψ2 is removed from instance r and replaced by
the weaker disjunctive knowledge that Ψ1 or Ψ2 is valid.

In contrast to the original instance r, a total order is supposed to be defined
on the sentences that might occur in a weakened instance weak (r, psec) (cf. [4]).
This guarantees that an alternative instance rΨ with IrΨ |=M weak (r, psec) is
not distinguishable from r based on a different arrangement of the sentences of
its weakened instance weak (rΨ , psec) compared to weak (r, psec). Otherwise, an
adversary might be able to draw the meta-inference (cf. Sect. 1) that rΨ is not
the original instance of his interest because of weak (rΨ , psec)
= weak (r, psec).

To exemplify the simple case, consider the potential secrets Ψ1 = R(a, b, c)
and Ψ2 = R(a, c, c) both not obeyed by instance r of Fig. 1. Both Ψ1 and Ψ2

can be protected by weakening r as depicted in Fig. 2(a). From an adversary’s
point of view both alternative instances r(1) = {(a, c, c), (b, a, c)} obeying Ψ1 and
r(2) = {(a, b, c), (b, a, c)} obeying Ψ2 are indistinguishable from the “real” original
instance because of weak (r, psec) = weak (r(1), psec) = weak (r(2), psec).

Similarly, the potential secrets Ψ ′
1 = R(a, b, c) not obeyed by r and Ψ ′

2 =
R(a, b, d) obeyed by r can be protected by weakening r as depicted in Fig. 2(b).
In this case the completeness sentence known from Fig. 1(b) is extended by the
disjunct (X ≡ a ∧ Y ≡ b ∧ Z ≡ d) to ensure Ir(1)′ |=M weak (r, psec′) for
the alternative instance r(1)

′
= {(a, b, d), (b, a, c)} obeying Ψ ′

1 as the constant
combination (a, b, d) is not excluded from being invalid in r. The alternative
instance obeying Ψ ′

2 is simply r itself.

Inference-Proof Data Publishing by Minimally Weakening 35

As a last and easy case, consider a confidentiality policy psec′′ = {Ψ ′′
1 , Ψ

′′
2 }

obeyed by r. Here no weakening of r is required, i.e., weak (r, psec ′′) = r.

3 Treating Non-simple Sets of Potential Secrets

In Sect. 2 the basic ideas to create inference-proof weakenings protecting simple
confidentiality policies have been introduced. Now, these basic ideas are extended
to be able to deal with non-simple policies containing an arbitrary number of
ground atoms. So, given a non-simple policy psec, the challenge is to construct
a set of disjunctions consisting of potential secrets of psec such that availability
and confidentiality requirements are suitably balanced.

3.1 A First Generic Approach

A first generic approach is to partition the policy psec into disjoint subsets called
clusters. Then, for each cluster C a disjunction

∨
Ψ∈C Ψ is constructed, provided

that at least one potential secret of C is not obeyed by the original instance.
Note that a disjunction of length k is satisfied by 2k − 1 DB-Interpretations.

Consequently, if C is the set of clusters, there are up to
∏

C∈C (2
|C| − 1) different

(alternative) database instances, whose induced DB-Interpretations satisfy the
weakened instance. From the point of view of an adversary only knowing the
weakened instance, each of these instances is indistinguishable from the original
one. Therefore, in terms of confidentiality it is desirable to construct large clus-
ters to maximize the number of these instances, while in terms of availability
small clusters are favored to minimize the number of these instances.

To also achieve a meaningful clustering of a policy psec regarding a specific
application, an additional notion of admissible indistinguishabilities specifying all
admissible clusters – i.e., all acceptable possibilities of making potential secrets
of psec indistinguishable by disjunctions – should be provided. These admissible
clusters need not be pairwise disjoint: the construction of a disjoint clustering
C, each of whose clusters is admissible, is the task of a clustering algorithm.

In some cases it might not be possible to construct such a clustering C and to
moreover guarantee that each of its clusters has a certain minimum size k∗. As
clusters of a suitable minimum size are inevitable to guarantee a wanted degree
of confidentiality, one obvious approach is to extend each too small cluster C ∈ C
of size |C| < k∗ by k∗ − |C| additional (i.e., artificial) potential secrets, thereby
constructing an extended clustering C∗ based on C. But as each additional po-
tential secret ΨA reduces availability, the goal is to find a clustering C for whose
extension only a minimum number of additional potential secrets is needed.

For the quality of a weakening it is of crucial importance that the employed
notion of admissible indistinguishabilities fits to the specific application consid-
ered: in terms of confidentiality all alternatives provided by a disjunction should
be equally probable from an adversary’s point of view and in terms of availability
each disjunction should still provide as much useful information as possible.

Obviously, no generally valid approach to find such a notion for each possible
specific application can be given. But as it is not desirable – and for policies

36 J. Biskup and M. Preuß

of realistic size usually even impossible – to let a security officer manually de-
sign sets of admissible disjunctions, a generic method to construct admissible
disjunctions based on a high level specification language is needed.

As a confidentiality policy should be usually managed by a database system,
one possible approach to construct admissible clusters of size k (with k ≥ k∗) is to
compute a series of k−1 self-joins on the policy table – resulting in combinations
each of which contains k pairwise different potential secrets. In this case well-
known query languages such as SQL or relational algebra [19] let a security officer
implement his concrete notion of admissible indistinguishabilities with the help
of a corresponding join condition.

To allow the extension of too small clusters of size k < k∗, a notion of ad-
missible indistinguishabilities might require that for some potential secrets of a
confidentiality policy up to k∗−1 additional potential secrets can be constructed
with a deterministic (and preferably efficient) algorithm. Such a construction
only uses a finite subset of the domain Dom of constant symbols. So although
favoring an infinite domain in theory (cf. Sect. 2) to avoid combinatorial effects
possibly leading to harmful inferences, a “sufficiently large” finite domain is ad-
equate in practice.

Definition 3 (Well-Defined Indistinguishability). Given a confidentiality
policy psec, the domain Dom of L and a minimum size k∗ of clusters, a notion
of admissible indistinguishabilities is well-defined, if there is a set C∗ such that

(i) for each Ψ ∈ psec the set C∗ contains a cluster CΨ = {Ψ, ΨI1, . . . , ΨIk∗−1
}

(possibly extended) such that Ψ
= ΨIi for 1 ≤ i ≤ k∗ − 1 and ΨIi
= ΨIj for
1 ≤ i < j ≤ k∗ − 1 and

∨
Ψ̄∈CΨ

Ψ̄ is an admissible indistinguishability,
(ii) CΨ ∩CΨ ′ = ∅ holds for all clusters CΨ , CΨ ′ ∈ C∗ with CΨ
= CΨ ′ ,
(iii) there is a deterministic algorithm creating each (additional) ΨA of C∗ with

ΨA /∈ psec, thereby (finitely) augmenting the active domain of psec and
(iv) the active domain of C∗ is contained in Dom.

Note that an extension of clusters is generated independently of any database
instance. As an adversary is moreover supposed to know the confidentiality policy
as well as the deterministic algorithms employed, he is able to determine all
additional potential secrets himself by simulating the corresponding algorithms.

3.2 Algorithmic Treatment of an Availability-Maximizing Flavor

In this subsection a possible instantiation of the generic approach aiming at
maximizing availability – and hence keeping the size of clusters as small as
possible – is developed. To be able to enforce confidentiality, for each potential
secret Ψ the existence of at least one alternative instance obeying Ψ must be
ensured (cf. Sect. 2 and Theorem 1 below). As clusters of size 2 – which are
the smallest clusters complying with this requirement – correspond to binary
relations, all admissible indistinguishabilities can be represented by a so-called
indistinguishability-graph, whose edges represent all admissible clusters.

Inference-Proof Data Publishing by Minimally Weakening 37

R(a, b, c)

R(a, b, b)

R(a, b, d)

R(b, b, b)

R(b, b, f)

R(b, b, e)

R(b, b, d)

R(a, c, b) R(c, a, a)

3

3

3 3

3

3 3

3

3

12

1

(a) Indistinguishability-graph with (bold) matching edges

R(c, a, a)

R(c, a, b)A

3

(b) Matching extension

Fig. 3. Graph with a clustering of potential secrets and a matching extension

Definition 4 (Indistinguishability-Graph). Given a confidentiality policy
psec and a well-defined notion of admissible indistinguishabilities, an indistin-
guishability-graph is an undirected graph G = (V,E) such that

(i) V := psec is the set of vertices of G, and the set of edges of G is
(ii) E := { {Ψ1, Ψ2} ∈ V × V | Ψ1 ∨ Ψ2 is an admissible indistinguishability }.

An example of an indistinguishability-graph for a non-simple policy is given
in Fig. 3(a). Note that for now the edge labelings are not of importance. On
such a graph a maximum set of pairwise (vertex-)disjoint clusters of size 2 (i.e.,
edges) can then be computed efficiently with well-known maximum matching
algorithms for general (i.e., not necessarily bipartite) graphs [14,17].

Definition 5 (Maximum Matching). Let G = (V,E) be an undirected graph
(without loops). A subset M ⊆ E is a matching on G, if {Ψ1, Ψ2}∩{Ψ̄1, Ψ̄2} = ∅
for each pair of different matching edges {Ψ1, Ψ2}, {Ψ̄1, Ψ̄2} ∈ M . A matching
M on G is a maximum matching, if |M ′| ≤ |M | for each matching M ′ ⊆ E on
G. A maximum matching M on G is a perfect matching, if each vertex Ψ ∈ V
is covered by M , i.e., there is exactly one {Ψ1, Ψ2} ∈ M with Ψ ∈ {Ψ1, Ψ2}.

In Fig. 3(a) the subset of bold edges constitutes a maximum matching. As
demonstrated, a maximum matching is not necessarily a perfect matching. Even
given a connected graph with an even number of vertices, several vertices might
remain uncovered by a maximum matching. To ensure that each potential secret
is assigned to a cluster of size 2, additional potential secrets are created.

Definition 6 (Matching Extension). Let psec be a confidentiality policy and
let M be a maximum matching on the indistinguishability-graph of psec. A
matching extension M∗ of M and psec initially contains each matching edge
{Ψ1, Ψ2} ∈ M and subsequently, one after another, for each Ψ ∈ psec uncovered
by M an edge {Ψ, ΨA} is added to M∗. Thereby ΨA is an additional potential
secret, i.e., a deterministically created sentence ΨA /∈ psec of L such that Ψ∨ΨA

is an admissible indistinguishability and ΨA /∈ {Ψ1, Ψ2} for each {Ψ1, Ψ2} ∈ M∗.

38 J. Biskup and M. Preuß

In Fig. 3(b) such a matching extension in terms of the running example is
given. Note that a matching extension M∗ is always a valid matching: initially
M∗ = M holds and then {Ψ, ΨA}∩{Ψ1, Ψ2} = ∅ is guaranteed in any subsequent
iteration for each {Ψ1, Ψ2} ∈ M∗ before adding {Ψ, ΨA} to M∗.

As each matching extension M∗ is a perfect matching on the indistinguisha-
bility-graph for the set psec∗ of all potential secrets of M∗, each potential secret is
in exactly one cluster of size 2. Moreover, in terms of availability, only a minimum
number of additional potential secrets are created as a maximum matching M
already covers as many potential secrets of the original policy psec as possible.

3.3 Admissible Indistinguishabilities Based on Local Distortion

Until now, the clustering of policy elements is based on a purely abstract no-
tion of admissible indistinguishabilities – which must be tailored to the needs of
each specific application as argued in Sect. 3.1. An example for an easy to im-
plement and moreover well-defined indistinguishability property, which locally
restricts distortion within a disjunction, is the so-called interchangeability, which
is applicable for each confidentiality policy consisting of ground atoms.

Definition 7 (Interchangeability). The ground atoms Ψ1 = R(c1, . . . , cn)
and Ψ2 = R(d1, . . . , dn) are interchangeable, if there is a single differing po-
sition m ∈ {1, . . . , n} with cm
= dm and ci = di for each i ∈ {1, . . . , n} \ {m}. A
set C of ground atoms over R is interchangeable, if all Ψi, Ψj ∈ C with Ψi
= Ψj

are pairwise interchangeable (and thus all differ at the same single position m).

The indistinguishability-graph given in Fig. 3(a) is constructed based on the
property of interchangeability and each of its edges is labeled with the single dif-
fering position of its incident potential secrets. Note that all indistinguishability-
graphs resulting from this property have the structure known from a graph in-
troduced by Knuth in [13] and further analyzed in [20], whose vertices are words
of fixed length, which are neighbored if they differ in exactly one position.

A disjunction
∨

i∈{1,...,k} R(c1, . . . , cm−1, c̃
(i)
m , cm+1, . . . , cn) only consisting of

pairwise interchangeable potential secrets has the advantage that the constant
combinations of each of its disjuncts all only differ at the same single position m.
Hence, it locally restricts distortion within this disjunction – and thus captures
another aspect of maximizing availability – by providing definite information
about all but the m-th columns in the sense that the original instance contains
at least one tuple of the form (c1, . . . , cm−1,�, cm+1, . . . , cn) and by only hiding
with which of the values c̃

(1)
m , . . . , c̃

(k)
m this tuple is combined.

If a total order with a successor function succ(·) is supposed to exist on the set
Dom of constant symbols, the creation of an additional potential secret ΨA for an
arbitrary potential secret R(c1, . . . , cn) is easy to define for the interchangeability
property. Choose a differing position m ∈ {1, . . . , n} arbitrarily and initially set
ΨA := R(c1, . . . , c̃m, . . . , cn) with c̃m := succ(cm). As long as ΨA is in psec or
ΨA is equal to an already constructed additional potential secret, iteratively set
c̃m := succ(c̃m). Note that – demanding clusters of a minimum size of k∗ – in

Inference-Proof Data Publishing by Minimally Weakening 39

a worst case scenario at most (k∗ − 1) · |psec| additional constants are needed
to create k∗ − 1 additional potential secrets for each of the |psec| many policy
elements. Hence, this indistinguishability property is well-defined.

A disadvantage of this kind of indistinguishability clearly is that it only pro-
vides a suitable number of possible disjunctions if the majority of policy elements
consist of constant combinations not differing much from each other. If this is
not the case, a large number of additional potential secrets is needed and hence
employing this kind of indistinguishability may result in a loss of availability.
This is exemplified in Sect. 5 and demonstrates that the task of suitably defining
admissible disjunctions crucially depends on the specific application considered.

4 Creation of Inference-Proof Weakenings

Before the overall algorithm creating an inference-proof weakening weak (r, psec)
of a complete database instance r and a confidentiality policy psec can be devel-
oped, the construction of such a weakened instance must be defined. As moti-
vated in Sect. 2, a weakened instance is a totally ordered sequence of sentences.

Definition 8 (Weakened Instance). Suppose that r is a complete database
instance over schema 〈R|AR| ∅ 〉 and C∗

r is an (extended) clustering of a confi-
dentiality policy psec such that for each cluster C ∈ C∗

r there is a potential secret
Ψ ∈ C with Ir |=M Ψ . Then the incomplete weakened instance weak (r, psec) is
constructed as the following three totally ordered sequences of sentences of L :

(i) Positive knowledge weak (r, psec)+: Each tuple c ∈ r with R(c)
|=DB Ψ for
each Ψ ∈ ⋃

C∈C∗
r
C is modeled as a ground atom R(c). All of these ground

atoms are sorted lexicographically according to the order on Dom.
(ii) Disjunctive knowledge weak (r, psec)∨: For each cluster C ∈ C∗

r the dis-
junction

∨
Ψ∈C Ψ is constructed. First, for each of these disjunctions its

disjuncts are sorted lexicographically according to the order on Dom and
then all of these disjunctions are sorted in the same way.

(iii) Negative knowledge weak (r, psec)−: A completeness sentence (cf. Sect. 2)
having a universally quantified variable Xj for each attribute Aj ∈ AR

is constructed. It has a disjunct (
∧

i∈{1,...,n} with ti∈Dom Xi ≡ ti) for each
ground atom R(t1, . . . , tn) of weak (r, psec)+ and for each (existentially
quantified) atom1 (∃X)R(t1, . . . , tn) of a disjunction of weak (r, psec)∨.
The above mentioned disjuncts are sorted in the same way as the disjunc-
tions of weak (r, psec)∨. As a last disjunct ¬R(X1, . . . , Xn) is added.

An example of such a weakened instance is given in Fig. 4(c). Each weakened
instance weak (r, psec) contains only true information, i.e., Ir |=M weak (r, psec),
as for each ground atom R(c) of weak (r, psec)+ the tuple c is valid in r; each

1 This definition is generalized to be compatible to Sect. 6. If a potential secret is a
ground atom, “(∃X)” is dropped and each ti is a constant symbol of Dom.

40 J. Biskup and M. Preuß

r + –
(a, b, a) (a, a, a)

(a, b, b) (a, a, b)

(a, c, b)
...

(c, a, b)

(a) Original instance r

{R(a, b, b), R(a, c, b) },
{R(c, a, a), R(c, a, b)A}

(b) Clusters of a set C∗
r with a

potential secret satisfied by Ir

R(a, b, a)

R(a, b, b) ∨R(a, c, b)

R(c, a, a) ∨R(c, a, b)

(∀X)(∀Y)(∀Z) [

(X ≡ a ∧ Y ≡ b ∧ Z ≡ a) ∨
(X ≡ a ∧ Y ≡ b ∧ Z ≡ b) ∨
(X ≡ a ∧ Y ≡ c ∧ Z ≡ b) ∨
(X ≡ c ∧ Y ≡ a ∧ Z ≡ a) ∨
(X ≡ c ∧ Y ≡ a ∧ Z ≡ b) ∨
¬R(X,Y, Z)]

(c) Weakening weak (r,psec) based
on C∗

r obeying the policy of Fig. 3(a)

Fig. 4. Example of an inference-proof weakening obeying the policy of Fig. 3

disjunction of weak (r, psec)∨ contains a disjunct Ψi with Ir |=M Ψi by construc-
tion of C∗

r ; and for each constant combination c ∈ Domn, for which ¬R(c) holds
by the completeness sentence of weak (r, psec)−, the tuple c is invalid in r.

Now that all basic operations are known, the overall algorithm generating an
inference-proof weakened instance is presented.

Algorithm 1 (Inference-Proof Weakening). Given a complete database in-
stance r over 〈R|AR| ∅ 〉, a confidentiality policy psec of ground atoms of L ,
a minimum size k∗ of clusters and a well-defined notion of admissible indistin-
guishabilities, a weakened instance weak (r, psec) is created as follows:

– Stage 1 (independent of r): Disjoint clustering of potential secrets
(i) Generate all admissible clusters with a minimum size of k∗

(e.g., an indistinguishability-graph G = (V,E) of psec (Def. 4))
(ii) Compute a disjoint clustering C based on the admissible clusters

(e.g., a maximum matching M ⊆ E on G (Def. 5))
(iii) Create C∗ from C by extending each too small cluster of C to size k∗

(e.g., by a matching extension M∗ of M and psec (Def. 6))
– Stage 2 (dependent on r): Creation of weakened instance

(iv) Create the subset C∗
r := {C ∈ C∗ | Ir |=M

∨
Ψ∈C Ψ }

of (extended) clusters containing a potential secret not obeyed by Ir
(v) Create the weakened instance weak (r, psec) based on r and C∗

r (Def. 8)

An example of a weakened instance created by the availability-maximizing fla-
vor of Algorithm 1 for the original instance of Fig. 4(a) is depicted in Fig. 4(c).
The confidentiality policy, the corresponding indistinguishability-graph – con-
structed based on the interchangeability property – and the extended matching
on which the set C∗

r of clusters given in Fig. 4(b) is based on is known from Fig. 3.
To understand the importance of disjoint clusters, consider the instance r =

{c1} and the non-disjoint clusters C1 = {R(c1), R(c2)} and C2 = {R(c2), R(c3)}

Inference-Proof Data Publishing by Minimally Weakening 41

with c1, c2, c3 ∈ Domn. Then, weak (r, psec) consists of weak (r, psec)+ = ∅
and weak (r, psec)∨ = {R(c1) ∨ R(c2)}. Moreover, because of R(c2) ∨ R(c3) /∈
weak (r, psec)∨ and by construction of the completeness sentence, an adversary
knows Ir
|=M R(c2). Hence, he can infer that Ir |=M weak (r, psec)∨ can only
hold, if Ir |=M R(c1), thereby violating the potential secret R(c1) of C1.

Theorem 1 (Inference-Proofness of Weakenings). Given the inputs of Al-
gorithm 1 (i.e., r over 〈R|AR| ∅ 〉, psec, k∗, and well defined indistinguishabili-
ties), this algorithm generates an inference-proof weakened instance weak (r, psec)
such that for each potential secret Ψ ∈ psec the existence of a complete alterna-
tive instance rΨ over 〈R|AR|∅〉 is guaranteed. This alternative instance rΨ obeys
Ψ , i.e., IrΨ
|=M Ψ , and the weakening weak (rΨ , psec) generated by Algorithm 1
is indistinguishable from weak (r, psec), i.e., weak (rΨ , psec) = weak (r, psec).

Proof. Consider an arbitrary potential secret Ψ̃ ∈ psec and suppose that Stage 1
generated a (possibly extended) disjoint clustering C∗ with clusters of a minimum
size of k∗ ≥ 2. Assume that Ψ̃ is in the cluster C̃ = {Ψ̃ , Ψ̃I1 , . . . , Ψ̃Ik−1

} ∈ C∗.
If Ir
|=M

∨
Ψ∈C̃ Ψ , the complete alternative instance rΨ̃ is r itself, i.e., rΨ̃ := r.

This implies IrΨ̃
|=M
∨

Ψ∈C̃ Ψ and consequently rΨ̃ obeys Ψ̃ , i.e., IrΨ̃
|=M Ψ̃ ,
because of IrΨ̃ |=M ¬(∨Ψ∈C̃ Ψ) =

∧
Ψ∈C̃ (¬Ψ). As a direct consequence of rΨ̃ = r

the property of indistinguishability holds, i.e., weak (rΨ̃ , psec) = weak (r, psec).
If Ir |=M

∨
Ψ∈C̃ Ψ with Ψ̃ = R(cΨ̃) ∈ C̃ and a Ψ̃Im = R(cΨ̃Im

) ∈ C̃, the

complete alternative instance is rΨ̃ := (r \ {cΨ̃}) ∪ {cΨ̃Im
}. Hence, rΨ̃ obeys Ψ̃ ,

i.e., IrΨ̃
|=M Ψ̃ , and IrΨ̃ |=M
∨

Ψ∈C̃ Ψ because of IrΨ̃ |=M Ψ̃Im . For each other
cluster C ∈ M∗ with C
= C̃ the corresponding disjunction

∨
Ψ∈C Ψ is satisfied by

IrΨ̃ if and only if it is satisfied by Ir because of rΨ̃ \ {cΨ̃ , cΨ̃Im
} = r \ {cΨ̃ , cΨ̃Im

}
and because of Ψ̃
∈ C and Ψ̃Im
∈ C by the disjoint clustering.

This implies C∗
rΨ̃

= C∗
r and hence also weak (rΨ̃ , psec)∨ = weak (r, psec)∨. As rΨ̃

and r only differ in cΨ̃ and cΨ̃Im
and as C̃ with R(cΨ̃), R(cΨ̃Im

) ∈ C̃ is a cluster of

both C∗
rΨ̃

and C∗
r , also weak (rΨ̃ , psec)+ = weak (r, psec)+ holds. By construction

of the completeness sentence, weak (rΨ̃ , psec)− = weak (r, psec)− directly follows
and so the property of indistinguishability, i.e., weak (rΨ̃ , psec) = weak (r, psec),
holds, provided that the sentences of both of these sequences are arranged in the
same order. ��

5 Efficiency of the Approach

After developing Algorithm 1, a prototype implementation of the availability-
maximizing instantiation of this algorithm (cf. Sect. 3.2) is now sketched and
evaluated theoretically as well as experimentally. Thereby interchangeability (cf.
Def. 7) is employed as a well-defined indistinguishability property.

42 J. Biskup and M. Preuß

Within Stage 1 of Algorithm 1 the indistinguishability-graph is constructed
efficiently with a flavor of the merge-join algorithm (cf. Sect. 3.1), which is well-
known from relational databases [19]. In typical scenarios the runtime of this
algorithm is significantly better than its worst-case complexity O(|psec|2) [19].

To next compute a maximum matching (cf. [14,17]), the prototype benefits
from the “Boost”-library [8]. Although a maximum matching on a general graph
G = (V,E) can be computed in O(

√|V |·|E|) (cf. [22]), common implementations
as provided by “LEDA” [18] or “Boost” [8] prefer an algorithm performing in
O(|V | · |E| · α(|E|, |V |)) with α(|E|, |V |) ≤ 4 for any feasible input.

Stage 1 finally computes a matching extension M∗ and in a worst-case sce-
nario |psec| different additional potential secrets – whose creation in the case
of interchangeability is sketched in Sect. 3.3 – are needed. Provided that binary
search is employed to check collisions of tentatively constructed additional po-
tential secrets, M∗ is constructed in O(|psec|2 · log(|psec|)). But note that this
upper bound is purely theoretic and usually not even approached.

Stage 2 of Algorithm 1 first creates the subset C∗
r of clusters based on M∗ in

O(|psec| · log(|r|)) by employing binary search to check which potential secrets
in the form of ground atoms are satisfied by the original instance. Finally, the
weakened instance is constructed. Again using binary search, weak (r, psec)+ is
constructed in O(|r| · log(|psec|)) and sorted in O(|r| · log(|r|)); weak (r, psec)∨ is
constructed in O(|psec|) and sorted in O(|psec| · log(|psec|)); and weak (r, psec)−
is constructed in O(|r|+ |psec|) and sorted in O((|r|+ |psec|) · log(|r|+ |psec|)).

The prototype is implemented in Java 7, except for the C++ implementa-
tion of the matching algorithm (see above). All experiments were run under
Ubuntu 14.04 on an “Intel Core i7-4770” machine with 32 GB of main memory
and each published result is based on the average results of 100 experiments.

To generate the input data for a first test setup, for each experiment a partic-
ular finite set D ⊆ Dom of constant symbols is available for the construction of
the constant combinations of all database tuples and potential secrets, which are
all supposed to be of arity 4. As the cardinality of D varies over the experiments
from |D| = 10 to |D| = 20, the cardinality of the set constComb(D) := Dn of all
possible constant combinations varies from 104 = 10 000 to 204 = 160 000.

To evaluate Stage 1 of Algorithm 1, for each of the possible cardinalities of
D a randomly chosen subset of constComb(D) is selected to construct a random
confidentiality policy psec as input data for an experiment. Thereby, the fraction
of tuples of constComb(D) contained in the policy is stepwise increased from 10%
to 70% of all tuples of constComb(D). Hence, the average vertex degree of the
corresponding indistinguishability-graphs is also stepwise increased.

As depicted in Fig. 5(a), even for large policies Stage 1 of Algorithm 1 performs
very well in constructing clusterings of the policies. If an even faster computation
is needed, the matching heuristic presented in [17] – which performs in time linear
to the size of the graph – can be employed. As depicted in Fig. 5(b), the usage
of this heuristic significantly improves the runtime of Stage 1 and usually looses
only a negligible fraction of matching edges in relation to a optimum solution,
as demonstrated in Fig. 5(c). Hence, using this heuristic results only in a slight

Inference-Proof Data Publishing by Minimally Weakening 43

50 000 100 000 150 000
0

20

40

60

Maximum policy size

T
im

e
in

se
co

nd
s

10%
25%
40%
55%
70%

(a) Stage 1 with exact matching solving

50 000 100 000 150 000

0.5

1

1.5

Maximum policy size

T
im

e
in

se
co

nd
s

(b) Stage 1 with matching heuristic

50 000 100 000 150 000

0.1

Maximum policy size

P
er

ce
nt

ag
e

of
m

is
se

d
ed

ge
s

(c) Quality of matching heuristic

50 000 100 000 150 000

0.1

Maximum available tuples

T
im

e
in

se
co

nd
s

(d) Runtime of Stage 2 of Algorithm 1

Fig. 5. Experimental evaluation of Algorithm 1 for the first test setup

loss of availability, as an additional potential secret is needed for each vertex
uncovered by the matching.

To evaluate Stage 2 of Algorithm 1, for each of the possible cardinalities of
D two randomly chosen subsets of constComb(D) are selected to construct a
random database instance r as well as a random confidentiality policy psec. The
fraction of tuples of constComb(D) contained in r is stepwise increased from 10%
to 70% of all tuples of constComb(D) while the fraction of tuples contained in
psec is fixed to 40%. According to Fig. 5(d), the runtime of Stage 2 needed to
construct a weakening based on a given clustering is negligible.

At first glance, input instances constructed based on 20 or even just 10 available
constants might look like “toy examples”, but note that for a clustering of fully
random potential secrets based on the interchangeability property these instances
are the expensive inputs: the relatively small number of available constants leads

44 J. Biskup and M. Preuß

20 40 60 80
0

20

40

Number of constants

D
eg

re
e
♦

/
P
ot

Se
cs

©
/

T
im

e
�

(a) Average vertex degree of graph, num-
ber of additional potential secrets in thou-
sands, and runtime of Stage 1 in seconds
for 100 000 random tuples of arity 4 con-
structed for a varying number of constants

30 000 60 000 90 000

10

20

30

40

Number of tuples

D
eg

re
e
♦

/
T

im
e
�

(b) Average vertex degree of graph, and
runtime of Stage 1 in seconds for a fixed
number of 25 constants and for a number
of tuples of arity 4 varying from 10 000 to
100 000

Fig. 6. Evaluation of the interchangeability property within the first test setup

to constant combinations which are likely not to differ much from each other and
hence the corresponding indistinguishability-graphs have a large number of edges
making the computation of a maximum matching expensive.

This is demonstrated by experiments always constructing 100 000 fully ran-
dom tuples for a number of available constants varying from 20 to 80. As shown
in Fig. 6(a), increasing the number of available constants leads to a decreasing
of the average vertex degree of the indistinguishability-graphs. In the end the
graphs decompose into a large number of small connected components and as
hence the clustering becomes trivial the runtime of Stage 1 also declines. These
results are also verified by a second experiment fixing the number of constants
to 25 and linearly increasing the number of constructed potential secrets from
10 000 to 100 000. As shown in Fig. 6(b), this leads to an also linearly increasing
average vertex degree while the runtime of Stage 1 increases much stronger.

As very low average vertex degrees moreover lead to a large number of addi-
tional potential secrets (plotted in thousands in Fig. 6(a)), the interchangeability
property only provides suitably high availability, if the majority of policy ele-
ments consist of constant combinations not differing much from each other. This
demonstrates that the task of finding a suitable notion of admissible indistin-
guishabilities crucially depends on the specific application considered.

Next, a second test setup is initiated, which is supposed to be more practi-
cal than the fully random setup. This second setup – only considering Stage 1
as the runtime of Stage 2 is now known to be negligible – is based on a set
of objects, each of which has two attributes: the first attribute has a domain,
whose cardinality k is stepwise increased from 2 to 32, and the second attribute
has a domain of cardinality 100. Considering binary relations between some of

Inference-Proof Data Publishing by Minimally Weakening 45

50 000 100 000 150 000
0

20

40

Maximum policy size

T
im

e
in

se
co

nd
s

10%
25%
40%
55%
70%

(a) Stage 1 with exact matching solving

50 000 100 000 150 000
0

0.1

0.2

Maximum policy size

P
er

ce
nt

ag
e

of
m

is
se

d
ed

ge
s

(b) Quality of matching heuristic

Fig. 7. Experimental evaluation of Algorithm 1 for the second test setup

these objects, each constructible object is paired with 50 randomly chosen other
constructible objects – resulting in k ·100 ·50 tuples of arity 4, i.e., the number of
available constant combinations again varies from 10 000 (for k = 2) to 160 000
(for k = 32). Similarly to the first test setup, for each value of k the confiden-
tiality policy is created as a randomly chosen subset of all available constant
combinations, whose cardinality is stepwise increased from 10% to 70%.

For this second test setup the exact computation of Stage 1 performs better
than using the first test setup (cf. Fig. 7(a)) as the resulting graphs have a lower
but non-trivial average vertex degree. The runtime of the heuristic computation
is as good as known from the fully random setup, but the number of lost matching
edges is slightly higher compared to the first test setup (cf. Fig. 7(b)) as the
graphs resulting from the second test setup often have a lower but non-trivial
average vertex degree leading to slightly weaker but still very decent results.

6 Extending the Approach

So far, only potential secrets in the form of ground atoms have been considered.
To improve the expressiveness of confidentiality policies, potential secrets are
from now on so-called existentially quantified atoms known from [5]. Intuitively,
an existentially quantified potential secret Ψ = (∃Z)R(a, b, Z) states that an
adversary must not get to know that a tuple (a, b, c̃) with an arbitrary constant
symbol c̃ ∈ Dom is valid in the original instance r considered.

Definition 9 (Existentially Quantified Atom). A sentence of L is an ex-
istentially quantified atom if it is of the form (∃X)R(t1, . . . , tn) and

(i) each term ti is either a constant symbol of Dom or a variable of X,
(ii) the set X of existentially quantified variables is X = {t1, . . . , tn} \Dom,
(iii) each variable can only occur once, i.e., ti
= tj for all ti, tj ∈ X with i
= j.

46 J. Biskup and M. Preuß

Though implication is generally hard (if not even impossible) to decide within
first-order logic [4], under DB-Semantics (cf. Def. 1) it is easy to decide for exis-
tentially quantified atoms [5]: (∃X)R(t1, . . . , tn) |=DB (∃Y)R(t̄1, . . . , t̄n) iff for
each term t̄i, which is a constant symbol of Dom, the term ti is also a constant
symbol of Dom such that ti = t̄i.

Now, suppose that an instance r = {R(a, b, c)} and a confidentiality policy
psec = {(∃Z)R(a, b, Z), (∃Z)R(b, b, Z), R(a, b, c), R(a, b, d)} are inputs for a fla-
vor of Algorithm 1 creating the clusters C1 = {(∃Z)R(a, b, Z), (∃Z)R(b, b, Z)}
and C2 = {R(a, b, c), R(a, b, d)}. The weakened instance weak (r, psec) then con-
tains the disjunction R(a, b, c)∨R(a, b, d) and hence directly implies the knowl-
edge (∃Z)R(a, b, Z) which itself is protected by a potential secret of psec.

The preceding example indicates that this flavor of Algorithm 1 could create
a weakened instance which contains disjunctions implying knowledge protected
by potential secrets. So, this implied (and hence weaker) knowledge is still too
strong. To avoid the construction of too strong disjunctions, the algorithm must
clean the given confidentiality policy in a preprocessing step, i.e., the policy is
reduced to its weakest sentences. Moreover, adding the constructed additional
potential secrets to this set must not violate the properties of a cleaned set.

Definition 10 (Cleaned Set). Let S be a set of sentences of L . Its cleaned set
Ŝ is a maximum subset of weakest sentences of S such that no pair of different
sentences of Ŝ is semantically equivalent. Ψ ∈ S is a weakest sentence of S, if
for each sentence Ψ ′ ∈ S either Ψ ′ |=DB Ψ or both Ψ ′
|=DB Ψ and Ψ
|=DB Ψ ′.

Reconsidering the example, p̂sec = {(∃Z)R(a, b, Z), (∃Z)R(b, b, Z)} is the
cleaned policy. Assuming that {p̂sec} is the created clustering, the weakening
weak (r, p̂sec) only contains the disjunction (∃Z)R(a, b, Z) ∨ (∃Z)R(b, b, Z) not
implying any (weaker) knowledge which itself is protected.

In particular, even the potential secrets R(a, b, c) and R(a, b, d) only contained
in the original policy psec are protected by weak (r, p̂sec): from an adversary’s
point of view an alternative instance r′ with Ir′ |=M weak (r, p̂sec) and Ir′
|=M
(∃Z)R(a, b, Z) is possible and for this instance also Ir′
|=M R(a, b, c) and Ir′
|=M
R(a, b, d) holds. This implicit protection of all removed policy elements psec\p̂sec
by the cleaned policy p̂sec can be generalized as follows.

Lemma 1 (Implicit Protection). Let ΨS and ΨW be sentences of L such
that ΨW is weaker than ΨS, i.e., ΨS |=DB ΨW , and let Ir be a DB-Interpretation
with Ir
|=M ΨW . Then ΨS is not satisfied by Ir either, i.e., Ir
|=M ΨS.

In many real-world scenarios an adversary is supposed to also have some a pri-
ori knowledge in addition to the knowledge provided by the database (cf. [3]). A
priori knowledge is then modeled as a finite set prior of sentences of L and usu-
ally includes the set SCR of semantic constraints (cf. Sect. 2), i.e., SCR ⊆ prior .
All sentences of prior are supposed to be satisfied by the original instance r, i.e.,
Ir |=M prior , and furthermore do not directly compromise the confidentiality
policy psec, i.e., prior
|=DB Ψ for each potential secret Ψ ∈ psec. To make a first
step towards the handling of a priori knowledge, an adversary is now supposed
to be also aware of such a set prior of ground atoms of L .

Inference-Proof Data Publishing by Minimally Weakening 47

Similar to Def. 3, a notion of admissible indistinguishabilities might require
that for some potential secrets of the cleaned policy p̂sec up to k∗ − 1 addi-
tional potential secrets can be constructed. To moreover ensure that all non-
implications provided by cleaning the policy are not affected by combinatorial
effects, the domain Dom must contain at least one “fresh” constant symbol not
occurring in a potential secret of psec or a constructed additional potential se-
cret. In terms of the credibility of these non-implications from an adversary’s
point of view, a much larger supply of these “fresh” constant symbols is of course
highly desirable.

Definition 11 (Well-Defined Indistinguishability Ext.). Given a cleaned
confidentiality policy p̂sec, an adversary’s a priori knowledge prior , the domain
Dom of L and a minimum size k∗ of clusters, a notion of admissible indistin-
guishabilities is well-defined, if there is a set C∗ such that

(i) for each Ψ ∈ p̂sec the set C∗ contains a cluster CΨ = {Ψ, ΨI1, . . . , ΨIk∗−1
}

(possibly extended) such that Ψ
= ΨIi for 1 ≤ i ≤ k∗ − 1 and ΨIi
= ΨIj for
1 ≤ i < j ≤ k∗ − 1 and

∨
Ψ̄∈CΨ

Ψ̄ is an admissible indistinguishability,
(ii) CΨ ∩CΨ ′ = ∅ holds for all clusters CΨ , CΨ ′ ∈ C∗ with CΨ
= CΨ ′ ,
(iii)

⋃
C∈C∗ C is a cleaned set,

(iv) prior
|=DB ΨA for each (additional) ΨA of C∗ with ΨA /∈ p̂sec,
(v) there is a deterministic algorithm creating each (additional) ΨA of C∗ with

ΨA /∈ p̂sec, thereby (finitely) augmenting the active domain of psec,
(vi) the active domain of C∗ is contained in Dom and
(vii) Dom contains at least one constant not in the active domain of C∗.

As a direct consequence of this extension of Def. 3, no well-defined notion of
indistinguishability can be found, if the policy psec contains a potential secret
ΨW which is semantically equivalent to the weakest possible potential secret
(∃X)R(X) without any constant symbols. In this case the cleaned policy p̂sec
only contains ΨW and no additional potential secret ΨA

W can be found for ΨW as
{ΨW , ΨA

W } cannot be a cleaned set because of ΨA
W |=DB ΨW .

Based on the thoughts presented so far, Algorithm 1 can be extended. Its
inference-proofness can be basically proved as known from Theorem 1, but each
“secure” alternative instance must furthermore satisfy an adversary’s a priori
knowledge to be credible from this adversary’s point of view [3].

Theorem 2 (Inference-Proofness of Weakenings). Let r be a complete in-
stance over 〈R|AR|SCR〉; psec be a policy of existentially quantified atoms; k∗ be
the minimum size of clusters; and assume that a well-defined notion of indistin-
guishabilities is given. Moreover, prior (with SCR ⊆ prior) is a priori knowledge
of ground atoms such that Ir |=M prior and prior
|=DB Ψ for each Ψ ∈ psec.

The extended algorithm then creates an inference-proof weakened instance2
weak (r, psec) such that for each potential secret Ψ ∈ psec the existence of a com-
plete alternative instance rΨ over 〈R|AR|SCR〉 is guaranteed. This alternative
2 Though the weakening of an instance now also depends on prior , for convenience the

weakening-operator weak (· , ·) is not extended to explicitly reflect this third input.

48 J. Biskup and M. Preuß

instance rΨ obeys Ψ , i.e., IrΨ
|=M Ψ , satisfies the a priori knowledge prior ,
i.e., IrΨ |=M prior , and the weakening weak (rΨ , psec) is indistinguishable from
weak (r, psec), i.e., weak (rΨ , psec) = weak (r, psec).

The detailed proof of Theorem 2 is omitted for lack of space.

7 Conclusion and Future Work

We developed a generic approach provably protecting sensitive information spec-
ified by a confidentiality policy consisting of ground atoms – even if an adversary
employs inferences. This is achieved by weakening a database instance by means
of disjunctions. Furthermore, an algorithm for an availability-maximizing flavor
of this approach has been proposed and an implementation of this algorithm
based on interchangeability has been shown to be highly efficient. Moreover, the
generic approach has also been extended to protect more expressive confiden-
tiality policies while also considering an adversary’s a priori knowledge.

But a priori knowledge restricted to ground atoms does not allow for modeling
commonly used semantic database constraints such as the well-known classes of
Equality Generating and Tuple Generating Dependencies (cf. [1]). Examples
for achieving inference-proofness under versatile subclasses of these semantic
constraints are given in [6,7] and should be transferred to the current approach.

Moreover, the definition of inference-proofness underlying this work only guar-
antees the existence of at least one “secure” alternative instance from an adver-
sary’s point of view (cf. Theorem 1 and Theorem 2). But in terms of enhancing
confidentiality it might be desirable to strengthen this definition to always guar-
antee a certain number k of different “secure” alternative instances. As discussed
for the generic approach, this can be achieved by increasing the length of dis-
junctions (cf. Sect. 3.1). Hence, algorithms constructing availability-maximizing
clusters of size ≥ 3 should be developed on the operational level.

As known from Sect. 3.3, each disjunction of pairwise interchangeable dis-
juncts preserves definite information about all but one position of each ground
atom and generalizes each distorted value to a wider set of possible values.
This idea of generalizing values is similarly used for k-anonymization and �-
diversification [10,16,21]. So, it might be worthwhile to extend our approach
to deal with confidentiality policies already containing disjunctions and to then
model k-anonymization and �-diversification within such an extension.

References
1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,

Reading (1995)
2. Bertossi, L.E., Li, L.: Achieving data privacy through secrecy views and null-based

virtual updates. IEEE Transactions on Knowledge and Data Engineering 25(5),
987–1000 (2013)

3. Biskup, J.: Inference-usability confinement by maintaining inference-proof views
of an information system. International Journal of Computational Science and
Engineering 7(1), 17–37 (2012)

Inference-Proof Data Publishing by Minimally Weakening 49

4. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a decid-
able relational submodel. Annals of Mathematics and Artificial Intelligence 50(1-2),
39–77 (2007)

5. Biskup, J., Hartmann, S., Link, S., Lochner, J.-H., Schlotmann, T.: Signature-
based inference-usability confinement for relational databases under functional and
join dependencies. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J. (eds.)
DBSec 2012. LNCS, vol. 7371, pp. 56–73. Springer, Heidelberg (2012)

6. Biskup, J., Preuß, M.: Database fragmentation with encryption: Underwhich seman-
tic constraints and a priori knowledge can two keep a secret? In: Wang, L., Shafiq, B.
(eds.) DBSec 2013. LNCS, vol. 7964, pp. 17–32. Springer, Heidelberg (2013)

7. Biskup, J., Wiese, L.: A sound and complete model-generation procedure for
consistent and confidentiality-preserving databases. Theoretical Computer Sci-
ence 412(31), 4044–4072 (2011)

8. Boost Graph Library: Maximum cardinality matching (2014),
http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/maximum_
matching.html

9. Campan, A., Truta, T.M.: Data and structural k-anonymity in social networks. In:
Bonchi, F., Ferrari, E., Jiang, W., Malin, B. (eds.) PinKDD 2008. LNCS, vol. 5456,
pp. 33–54. Springer, Heidelberg (2009)

10. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: k-Anonymity.
In: Yu, T., Jajodia, S. (eds.) Secure Data Management in Decentralized Systems.
Advances in Information Security, vol. 33, pp. 323–353. Springer, New York (2007)

11. Fung, B.C., Wang, K., Fu, A.W.C., Yu, P.S.: Introduction to Privacy-Preserving
Data Publishing: Concepts and Techniques. Data Mining and Knowledge Discov-
ery. CRC Press, Boca Raton (2011)

12. Hay, M., Miklau, G., Jensen, D., Towsley, D.F., Li, C.: Resisting structural re-
identification in anonymized social networks. VLDB Journal 19(6), 797–823 (2010)

13. Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing.
ACM Press, New York (1993)

14. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 5th
edn. Algorithms and Combinatorics. Springer, Heidelberg (2012)

15. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. The MIT Press,
Cambridge (2000)

16. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: �-diversity:
Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from
Data 1(1) (2007)

17. Magun, J.: Greedy matching algorithms: An experimental study. ACM Journal of
Experimental Algorithmics 3(6) (1998)

18. Mehlhorn, K., Näher, S.: LEDA: A platform for combinatorial and geometric
computing. Cambridge University Press, Cambridge (1999)

19. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-
Hill, Boston (2003)

20. Stiege, G.: Playing with Knuth’s words.dat. Tech. Rep. 1/12, Department of
Computer Science, University of Oldenburg, Germany (May 2012)

21. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)

22. Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness
of the O(

√|V | · |E|) general graph maximum matching algorithm. Combinatorica
14(1), 71–109 (1994)

23. Wong, R.C.W., Fu, A.W.C.: Privacy-Preserving Data Publishing – An Overview.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San
Rafael (2010)

http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/maximum_matching.html
http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/maximum_matching.html

Extending Dolev-Yao with Assertions�

R. Ramanujam1, Vaishnavi Sundararajan2, and S.P. Suresh2

1 Institute of Mathematical Sciences Chennai, India
jam@imsc.res.in

2 Chennai Mathematical Institute, Chennai, India
{vaishnavi,spsuresh}@cmi.ac.in

Abstract. Cryptographic protocols often require principals to send certifications
asserting partial knowledge of terms (for instance, that an encrypted secret is 0
or 1). Such certificates are themselves modelled by cryptographic primitives or
sequences of communications. For logical analysis of such protocols based on the
Dolev-Yao model [12], we suggest that it is useful to separate terms and asser-
tions about them in communications. We propose a perfect assertion assumption
by which the underlying model ensures the correctness of the assertion when it
is generated. The recipient may then rely on the certificate but may only forward
it as second-hand information. We use a simple propositional modal assertion
language involving disjunction (for partial knowledge) and formulas of the form
A says α (for delegation). We study the complexity of the term derivability prob-
lem and safety checking in the presence of an active intruder (for bounded pro-
tocols). We show that assertions add complexity to verification, but when they
involve only boundedly many disjunctions, the complexity is the same as that of
the standard Dolev-Yao model.

1 Motivation

1.1 Assertions as Certification

Formal verification of cryptographic protocols requires an abstract model of agents’
capabilities and communications, and the Dolev-Yao model [12] has been the bulwark
of such modelling. Its central elements are a message abstraction that views the message
space as a term algebra and term derivation rules that specify how an agent derives new
terms from old.

This model and its various extensions have been the object of study for the last 30
years. Typical extensions cater to more complex cryptographic operations like homo-
morphic encryption, blind signatures etc., that are useful in applications like e-voting
and contract signing [15,6,11]. The interaction between the operators can have sig-
nificant impact on term derivability, and forms an important line of theoretical re-
search [9,15,10].

An important feature of the Dolev-Yao model is that it treats terms as tokens that can
be copied and passed along. A recipient of a term “owns” it and can send it to others

� We thank A. Baskar for discussions and comments on many ideas in the paper. We also thank
the reviewers for many suggestions that improved the paper.

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 50–68, 2014.
c© Springer International Publishing Switzerland 2014

Extending Dolev-Yao with Assertions 51

in its own name. On the other hand, cryptographic protocols often use certificates that
can be verified but not “owned”, i.e., an agent B which receives a certificate from A
cannot later send the same certificate to C in its own name. Zero-knowledge protocols,
for example, often involve agents certifying (via zero-knowledge proofs) that the terms
they send to other agents possess certain properties, without revealing the entire terms.
The recipient, if malicious, might try to forward this term to some other agent in its own
name – however, the fact that the agent is required to have access to the entire term in
order to construct the requisite certificate disallows it from being forwarded. Here are a
few scenarios that illustrate the use of such certification, or assertions.

– A server S generates a session key k for A and B, and also certifies that the key is
“good” for use by them.

– An agent A sends a vote v (encrypted) to B, along with a certificate that the vote
is valid, i.e. v takes on only a few (pre-specified) values. It is not possible for B to
forward this encrypted vote to someone else, and convince the receiver of its being
valid, since a proof of validity might – and almost always will – require B to have
access to the vote v. (Refer to [17] for more examples of this kind.)

– A passes on to B an assertion α made by S about a key k, but stating explicitly that
S says α. (Assertions of this kind are used in [7].)

Such certification is expressed in the Dolev-Yao model in a variety of ways.

– In some cases, one relies on conventions and features of the framework, and does
not explicitly model assertions in the protocol at all. Examples would be assertions
about the goodness of keys, freshness of nonces etc.

– In other cases, one uses cryptographic devices like zero knowledge proofs, bit-
commitment schemes etc. to make partial secrecy assertions. For example, a voter
V might post an encrypted vote v along with a zero knowledge proof that v is either
0 or 1. This allows an authority to check that the voter and the vote are legitimate,
without knowing the value of the vote.

– Sometimes one uses ad hoc conventions specific to a protocol to model some asser-
tions. For instance, a term that models an assertion α might be paired (or tagged)
with the agent name S to signify S says α.

In this paper, we propose an extension to the Dolev-Yao model in which agents
have the ability to communicate assertions explicitly, rather than via an encoding. The
fact that the above examples can be expressed in the Dolev-Yao model via various
methods of translation seems to suggest that this ability does not add any expressive
power. However, communicating both data and assertions gives significant flexibility
for formal specification and reasoning about such protocols. In fact, the need for formal
methods in security protocols goes beyond verification and includes ways of structuring
protocols [1,2], and a syntactic separation of the term algebra and an associated logical
language of assertions should be seen in this light.

A natural question would be: how are such assertions to be verified? Should the agent
generating the assertion construct a proof and pass it along as well? This is the approach
followed in protocols using zero-knowledge proofs [4]. In which case, should the proof
thus sent be verified by the recipient?

52 R. Ramanujam, V. Sundararajan, and S.P. Suresh

While such an approach is adopted in models that view assertions as terms, in this
work, the syntactic separation of terms and assertions allows us an abstraction similar
to the perfect encryption assumption in the Dolev-Yao model. We call it the perfect
assertion assumption: the model ensures the correctness of assertions at the point of
generation, and honest principals assume such correctness and proceed. Thus the onus
of verification shifts from the receiver of the assertion to the underlying system. This can
be realized as a trusted third party (TTP) model, which verifies any proof that is sent out
by any agent into the system. Note that since the adversary monitors the network, it can
also see the proof sent by any agent to the TTP and replay assertions in agents’ names,
and therefore, adversary capabilities are not restricted much. Also note that the TTP is
not a principal but an operational realisation of the network’s capability to verify every
proof that is sent out by agents. Thus we model assertions as signed by the sender, but
not encrypted with any key (including that of the TTP). This will be explained further
after we define the operational semantics of protocols, in Section 2.4.

How are assertions in our model contrasted with those with zero-knowledge primi-
tives as in [3] or with those in which terms encode zero-knowledge proofs? Consider
a simple example of an encrypted vote {v}k, where v is either 0 or 1, and the recipient
does not know k (or its inverse). In order to assert this using terms, one would present
a one-out-of-2-encryption proof for v belonging to {0, 1}, as presented in [17]. In the
model in [3], this would be coded up as zk2,1,β1=enc(α1 ,α2)∧(α1=0∨α1=1)(v, k; {v}k). In our
model, it is simply represented by the assertion {0 ≺ {v}k ∨ 1 ≺ {v}k}.

1.2 Assertions in Protocols, and Possible Attacks

We now present a few example protocols illustrating how our model can be used. We
also present some attacks where the malicious intruder targets the fact that assertions
are transmitted, and tries to gain more information than she is entitled to. This motivates
the need for studying the verification problem for protocols with assertions.

Example 1. An agent A sends two encrypted votes to a tallier T , one choice for each
of two ‘positions’, and accompanies each vote with a disjunctive assertion about it. The
disjunction may be thought of as expressing that the vote is for one of two possible can-
didates interested in the position. The tallier checks these assertions, and on confirming
that they are indeed true, sends a confirmation cA to A. Otherwise it sends a 0.

– A→ T : {v1}kA , {(a occurs in {v1}k) ∨ (b occurs in {v1}k)}
– A→ T : {v2}kA , {(c occurs in {v2}k) ∨ (d occurs in {v2}k)}
– If T confirms these two assertions, T → A : cA. Otherwise, T → A : 0.

Now consider the situation where a particular candidate, say candidate a, is interested
in both positions, i.e., c = a in the above protocol. Now, if agent A votes for candidate
a (i.e. v1 = v2 = a) for both positions, he/she sends the same term {a}kA twice, with two
disjunctive assertions about it. The intruder can now perform disjunction elimination
on these assertions to know the fact that A’s vote is for candidate a.

Example 2. An agent B sends an assertion as a response to a communication by another
agent A.

Extending Dolev-Yao with Assertions 53

– A→ B : {m}pk(B)

– B→ C : {m}pk(B),
{
(a occurs in {m}pk(B)) ∨ (b occurs in {m}pk(B))

}

A sends B a term which is an encrypted nonce, about which B generates an assertion,
and then passes on both the term and the assertion to agent C. B, while generating this
disjunction, takes the actual assertion (say a occurs in {m}pk(B)), and adds a disjunct of
the form r occurs in {m}pk(B), where r � a is chosen at random from the constants of
the protocol. This allows the intruder an attack, whereby she begins a new session with
B by replaying the same term {m}pk(B) from the session of A with B. Now B sends to
C the same term with a new assertion

{
(a occurs in {m}pk(B)) ∨ (r′ occurs in {m}pk(B))

}
,

where r′ is another random constant of the protocol. In the earlier session, B sent C{
(a occurs in {m}pk(B)) ∨ (r occurs in {m}pk(B))

}
. By disjunction elimination, the intruder

(and C) can infer that a occurs in {m}pk(B).

Example 3. Here is a scenario that might occur in contract signing protocols. Agents
A and S are interested in buying and selling an object, respectively. A commits to a
value a, by sending S a term {va}k(A,S) and an accompanying assertion of the form
a occurs in {va}k(A,S), where a is his bid for the object. S , however, is not interested in
honouring A’s commitment, and, without responding to A, sends agent B the assertion
A says {a occurs in {va}k(A,S)}. B, who is interested in buying this object at any cost,
now quotes a price higher than what A quotes, and the seller S thereby gets an unfair
advantage.

1.3 Logicization and Challenges

The above examples motivate the formal study of Dolev-Yao with assertions. But there
are several questions that need to be addressed in building a formal model, and several
consequences of the choices we make. We discuss some of them here.

Much as the Dolev-Yao model is a minimal term algebra with its derivation rules,
we consider the extension with assertions also as a minimal logic with its associated
derivation rules. We suggest a propositional modal language, with highly restricted use
of negation and modalities, inspired by infon logic [14,5] (which reasons about access
control). A priori, certification in cryptographic protocols reveals partial information
about hidden (encrypted) terms, and hence we need assertions that achieve this. We use
atomic assertions about term structure and disjunctions to make the revelations partial.
For instance, (0 occurs in t) ∨ (1 occurs in t) can be seen as a partial secrecy assertion.
Note that background knowledge of the Dolev-Yao model offers implicit atomic nega-
tion: 0 occurs in {m}k where m is atomic may exclude the assertion 1 occurs in {m}k.
With conjunctions to bundle assertions together, we have a restricted propositional lan-
guage.

The modality we study is one that refers to agents passing assertions along, and
has the flavour of delegation: A sending α to B allows B to send A says α to other
agents, without requiring B to be able to derive α. Many papers which view assertions
as terms work with assertions similar to the ones used here. For instance, [8] presents a
new cryptographic primitive for partial information transmission, while [13] deals with

54 R. Ramanujam, V. Sundararajan, and S.P. Suresh

delegation and signatures, although there the focus is more on anonymity and group
signatures.

We conduct a proof theoretic investigation of passive intruder capabilities, and we
also illustrate the use of these assertions for exploring active intruder attacks. The pas-
sive intruder deduction problem (or the term derivability problem) is co-NP-hard even
for the simple language that we work with, and has a PSPACE upper bound. The high
complexity is mainly due to the presence of disjunctions, but we rarely need an un-
bounded number of disjunctions. When we bound the number of disjunctions, the term
derivability problem is in polynomial time. We also explore the complexity of security
verification for the active intruder case, and provide a PSPACE upper bound for pro-
tocols with boundedly many sessions, with an NP upper bound when the number of
disjunctions is bounded as well.

2 Model

2.1 The Term Model

Fix countable sets Ag, N and K , denoting the set of agents, nonces and keys, respec-
tively. The set of basic terms is B = Ag ∪N ∪K . For each A, B ∈ Ag, assume that
sk(A), pk(A) and k(A, B) are keys. Further, each k ∈ K has an inverse defined as fol-
lows: inv(pk(A)) = sk(A), inv(sk(A)) = pk(A) and inv(k) = k for the other keys. The set
T of Dolev-Yao terms is given by the following syntax (where m ∈B and k ∈K):

t := m | (t1, t2) | {t}k
For X ⊆fin T , we define X, the closure of X, to be the smallest Y ⊆ T such that
(i) X ⊆ Y, (ii) (t, t′) ∈ Y iff {t, t′} ⊆ Y, (iii) if {t, k} ⊆ Y then {t}k ∈ Y, and (iv) if
{{t}k, inv(k)} ⊆ Y then t ∈ Y. We use the notation X �dy t to denote that t ∈ X, and
X �dy T to denote that T ⊆ X, for a set of terms T .

We use st(t) to denote the set of subterms of t and st(X) =
⋃

t∈X st(t) in Proposition 4,
which is a well-known fact about the basic Dolev-Yao model [18].

Proposition 4. Given X ⊆ T and t ∈ T , it can be decided whether X �dy t in time
linear in |st(X ∪ {t})|.

2.2 The Assertion Language

The set of assertions, A , is given by the following syntax:

α := m ≺ t | t = t′ | α1 ∨ α2 | α1 ∧ α2

where m ∈ B and t, t′ ∈ T . The assertion m ≺ t is to be read as m occurs in t. The set
of subformulas of a formula α is denoted sf(α).

The proof rules for assertions are presented as sequents of the form X, Φ � α, where
X and Φ are finite sets of terms and assertions respectively, and α is an assertion. For
ease of presentation, we present the rules in two parts. Figure 1 gives the rules pertain-
ing to propositional reasoning with assertions. The rules capture basic reasoning with
conjunction and disjunction, and ⊥ is a restricted contradiction rule.

Extending Dolev-Yao with Assertions 55

ax1
X, Φ ∪ {α} � α

X, Φ � m ≺ {b}k X,Φ � n ≺ {b}k ⊥ (m � n; b ∈ B)
X, Φ � α

X, Φ � α1 X, Φ � α2 ∧i
X, Φ � α1 ∧ α2

X, Φ � α1 ∧ α2 ∧e
X, Φ � αi

X, Φ � αi ∨i
X, Φ � α1 ∨ α2

X, Φ � α1 ∨ α2 X, Φ ∪ {α1} � β X, Φ ∪ {α2} � β ∨e
X, Φ � β

Fig. 1. The rules for deriving assertions: propositional fragment

We next present the rules for atomic assertions of the form m ≺ t and t = t in
Figure 2. Note that all these rules require X to be nonempty, and some of the rules refer
to derivations in the Dolev-Yao theory. For an agent to derive an assertion about a term
t, it should know the entire structure of t, which is modelled by saying that from X one
can learn (in the Dolev-Yao theory) all basic terms occurring in t. For example, in the
split rule, suppose the agent can derive from X all of st(ti)∩B, and that m is not a basic
term in t. The agent can now derive m ≺ t1−i from m ≺ (t0, t1).

X �dy m
ax2

X, Φ � m ≺ m

X �dy st(t) ∩B
eq

X, Φ � t = t

X �dy {t}k X �dy k X, Φ � m ≺ t
enc

X, Φ � m ≺ {t}k
X �dy inv(k) X, Φ � m ≺ {t}k

dec
X, Φ � m ≺ t

X �dy (t0, t1) X, Φ � m ≺ ti X �dy st(t1−i) ∩B
pair

X, Φ � m ≺ (t0, t1)

X, Φ � m ≺ (t0, t1) X �dy st(ti) ∩B m � st(ti)
split

X, Φ � m ≺ t1−i

Fig. 2. The rules for atomic assertions

We denote by X, Φ �alp α (resp. X, Φ �alat α; X, Φ �al α) the fact that there is a
derivation of X, Φ � α using the rules in Figure 1 (resp. ax1 and the rules in Figure 2;
the rules in Figures 1 and 2).

2.3 The Protocol Model

Protocols are typically specified as sequences of communications, but in formal anal-
ysis, it is convenient to consider a protocol Pr as a pair (const,R) where const ⊆ B
is a set of constants of Pr and R is a finite set of roles. For an agent A, an A-role is a

56 R. Ramanujam, V. Sundararajan, and S.P. Suresh

sequence of A-actions. A-actions include send actions of the form A!B : [(M)t, {α}sd(A)],
and receive actions of the form A?B : [t, {α}sd(B)]. Here B ∈ Ag, t ∈ T , M ⊆ N , α ∈ A ,
and {α}sd(A) denotes the assertion α signed by A. In the send action above, B is merely
the intended recipient, and in the receive action, B is merely the purported sender, since
we assume the presence of an intruder who can block or forge messages, and can see ev-
ery communication on the network. For simplicity, we assume that all send and receive
actions deal with one term and one assertion. (M)t denotes that the set M contains the
nonces used in t, in the context of a protocol run, which are fresh, i.e., not used till that
point in the run. An additional detail is that assertions in sends are always signed by the
actual sender, and assertions in receives are signed by the purported sender. Thus, when
the intruder I sends an assertion {α}sd(A) to someone, it is either replaying an earlier
communication from A, or A = I and it can construct α.

We admit two other types of actions in our model, confirm and deny, to capture
conditional branching in protocol specifications. An agent A might, at some stage in a
protocol, perform action a1 if a condition is verified to be true, and a2 otherwise. For
simplicity, we let any assertion be a condition. The behaviour of A in a protocol, in
the presence of a branch on condition α, is represented by two sequences of actions,
one in which A confirms α and one in which it denies α. These actions are denoted by
A : confirm α and A : deny α.

A knowledge state ks is of the form ((XA)A∈Ag, Φ, SD). Here, XA ⊆ T is the set of
terms accumulated by A in the course of a protocol run till the point under consideration.
Φ ⊆ A is the set of assertions that have been communicated by any agent (and stored by
the intruder). Similarly, SD ⊆ {{α}sd(B) | B ∈ Ag, α ∈ A } is the set of signed assertions
communicated by any agent and stored by the intruder.

The initial knowledge state of a protocol Pr is ((XA)A∈Ag,∅,∅) where, for each A,
XA = const(Pr) ∪ Ag ∪ {sk(A)} ∪ {pk(B), k(A, B) | B ∈ Ag}.

Let ks = ((XA)A∈Ag, Φ, SD) and ks′ = ((X′A)A∈Ag, Φ
′, SD′) be two knowledge states

and a be a send or a receive action. We now describe the conditions under which the
execution of a changes ks to ks′, denoted ks

a−→ ks′.

– a = A!B : [(M)t, {α}sd(A)]
• a is enabled at ks iff
∗ M ∩ XC = ∅ for all C,
∗ XA ∪ M �dy t, and
∗ XA ∪ M,∅ �al α.

• ks
a−→ ks′ iff
∗ X′A = XA ∪ M, X′I = XI ∪ {t},
∗ Φ′ = Φ ∪ {α}, and
∗ SD′ = SD ∪ {{α}sd(A)}.

– a = A?B : [t, {α}sd(B)]
• a is enabled at ks iff
∗ {α}sd(B) is verified as signed by B,
∗ XI �dy t, and
∗ either B = I and XI , Φ �al α, or {α}sd(B) ∈ SD.

• ks
a−→ ks′ iff
∗ X′A = XA ∪ {t}.

Extending Dolev-Yao with Assertions 57

– a = A : confirm α is enabled at ks iff XA,∅ �al α, and ks
a−→ ks′ iff ks = ks′.

– a = A : deny α is enabled at ks iff XA,∅ �al α, and ks
a−→ ks′ iff ks = ks′.

We see that when an agent A sends an assertion α, the intruder stores α in its set of
assertions, as well as storing {α}sd(A) for possible replay, but honest agents only get to
send assertions that they themselves generate from scratch.

A substitution σ is a homomorphism on T such that σ(Ag) ⊆ Ag, σ(N) ⊆ N and
σ(K) ⊆ K . σ is said to be suitable for a protocol Pr = (const,R) if σ(m) = m for all
m ∈ const.

A role instance of a protocol Pr is a tuple ri = (η, σ, lp), where η is a role of Pr, σ
is a substitution suitable for Pr, and 0 ≤ lp ≤ |η|. ri = (η, σ, 0) is said to be an initial
role instance. The set of role instances of Pr is denoted by RI(Pr). IRI(Pr) is the set of
initial role instances of Pr. For ri = (η, σ, lp), ri + 1 = (η, σ, lp + 1). If ri = (η, σ, lp),
lp ≥ 1 and η = a1 · · · a�, act(ri) = σ(alp). For S , S ′ ⊆ RI(Pr) and ri ∈ RI(Pr), we say

that S
ri−→ S ′ iff ri ∈ S , ri + 1 ∈ RI(Pr) and S ′ = (S \ {ri}) ∪ {ri + 1}.

A protocol state of Pr is a pair s = (ks, S) where ks is a knowledge state of Pr and
S ⊆ RI(Pr). s = (ks, S) is an initial protocol state if ks is initial and S ⊆ IRI(Pr). For two

protocol states s = (ks, S) and s′ = (ks′, S ′), and an action a, we say that s
a−→ s′ iff there

is ri ∈ S such that act(ri+1) = a and S
ri−→ S ′, and ks

a−→ ks′. The states, initial states, and
transitions defined above induce a transition system on protocol states, denoted TS(Pr).
A run of a protocol Pr is any run of TS(Pr).

2.4 Comments on the Transition Rules

The rules for transitioning from a knowledge state, ks, to another, ks′, on an action a,
deserve some explanation. The change pertaining to the XA is easily justified by an
operational model in which the intruder can snoop on the entire network, but agents
are allowed to send only messages they generate. We have extended the same logic
to assertions as well, but there is the extra complication of signing the assertions. The
intruder typically has access only to its own signature. Thus we posit that the intruder
can replay assertions signed by another agent A (in case it is passing something in A’s
name), or that it can generate assertions and sign them in its own name.

As an operational justification for why the honest agents cannot use assertions sent
by other agents, we can imagine the following concrete model. There is a trusted third
party verifier (TTP) that allows assertions to be transmitted at large only after the sender
provides a justification to the TTP. This means that an honest agent B who receives
an assertion α from A cannot pass it on to others, because the TTP will demand a
justification for this, which B cannot provide. The intruder, though, can snoop on the
network, so it has the bits that A sent as justification for α to the TTP, and can thus
produce it whenever demanded. Thus the intruder gets to store α in its local database.

2.5 Example Protocol

Recall Example 2 and the attack on it from Section 1.2, reproduced below. We formalize
the attack using the transition rules given in Section 2.3.

58 R. Ramanujam, V. Sundararajan, and S.P. Suresh

– A→ B : {m}pk(B)

– B→ C : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (b ≺ {m}pk(B))}sd(B)

The attack is informally presented below and is formalized in Figure 3.

1. A→ B : {m}pk(B)

2. B→ C : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r ≺ {m}pk(B))}sd(B)

3. I → B : {m}pk(B)

4. B→ C : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r′ ≺ {m}pk(B))}sd(B)

η1 : A-role, σ1(m) = 1
a11 : A!B : {m}pk(B)

η2 : B-role, σ2(m) = 1, σ2(a) = 1, σ2(r) = 3
a21 : B?A : {m}pk(B)

a22 : B!C : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r ≺ {m}pk(B))}sd(B)

η3 : C-role, σ3(m) = 1, σ3(a) = 1, σ3(r) = 3
a31 : C?B : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r ≺ {m}pk(B))}sd(B)

η4 : A-role, σ4(m) = 1, σ4(A) = I
a41 : A!B : {m}pk(B)

η5 : B-role, σ5(m) = 1, σ5(a) = 1, σ5(r) = 2, σ5(A) = I
a51 : B?A : {m}pk(B)

a52 : B!C : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r ≺ {m}pk(B))}sd(B)

η6 : C-role, σ6(m) = 1, σ6(a) = 1, σ6(r) = 2
a61 : C?B : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r ≺ {m}pk(B))}sd(B)

Fig. 3. The attack, formalized

In the formalized attack, note that only the actions a22 and a52 send assertions. It can
be seen by applying the given substitutions to these actions, and using the appropriate
update actions from the criteria for the change of the knowledge states (as stated earlier),
that at the end of this sequence of actions, Φ = {α ∨ β, α ∨ γ}, where α = 1 ≺ {1}pk(B),
β = 2 ≺ {1}pk(B) and γ = 3 ≺ {1}pk(B).

The intruder can now use these assertions in Φ to perform disjunction elimination,
as illustrated in the following proof, and thereby gain the information that the term
sent by A is actually {1}pk(B), which was supposed to be ‘secret’. Thus we see that this
protocol admits a run in which there is a reachable state where the intruder is able to
learn a secret. This can be thought of as a violation of safety. We elaborate on this idea
of safety checking in Section 4.

ax1

Φ � α ∨ β
ax1

Φ, α � α

ax1

Φ, β � α ∨ γ
ax1

Φ, β, α � α

ax1

Φ, β, , γ � β
ax1

Φ, β, γ � γ
⊥

Φ, β, γ � α
∨e

Φ, β � α
∨e

Φ � α

Extending Dolev-Yao with Assertions 59

3 The Derivability Problem and Its Complexity

The derivability problem (or the passive intruder deduction problem) is the follow-
ing: given X ⊆ T , Φ ⊆ A and α ∈ A , determine if X, Φ �al α. In this section, we
provide a lower bound and an upper bound for this problem, and also some optimiza-
tions to the derivability algorithm.

3.1 Properties of the Proof System

The following is a useful property that will be crucially used in the lower bound proof.
The proof can be found in [16].

Proposition 5. X, Φ ∪ {α ∨ β} �al δ iff X, Φ ∪ {α} �al δ and X, Φ ∪ {β} �al δ.

Among the rules, split, dec, ∧e and ∨e are the elimination rules. The rules ax1, ax2,
eq, split, dec and ∧e are the safe rules, and the rest are the unsafe rules. A normal
derivation is one where no elimination rule has as its major premise the conclusion of
an unsafe rule. The following fundamental theorem is on standard lines, and is provided
in [16].

Theorem 6. If there is a derivation of X, Φ � α then there is a normal derivation of
X, Φ � α.

The following corollaries easily follow by a simple case analysis on derivations.

Corollary 7. If π is a normal derivation of X, Φ � α and if the formula β occurs in π,
then β ∈ sf(Φ ∪ {α}).
Corollary 8. If ∅, Φ �al α and Φ consists only of atomic assertions, then there is a
derivation of the sequent ∅, Φ � α consisting of only the ax, ∧i, ∨i and ⊥ rules.

A set of atomic assertions Φ is said to be contradictory if there exist distinct nonces
m, n, and a nonce b and key k such that both m ≺ {b}k and n ≺ {b}k are in Φ. Otherwise
Φ is non-contradictory.

Corollary 9. If ∅, Φ �al α and Φ is a non-contradictory set of atomic assertions, then
there is a derivation of ∅, Φ � α consisting of only the ax, ∧i and ∨i rules.

Definition 10 (Derivability Problem). Given X ⊆fin T , Φ ⊆fin A , α ∈ A , is it the
case that X, Φ �al α?

We first show that the problem is co-NP-hard, and then go on to provide a PSPACE
decision procedure. In fact, the hardness result holds even for the propositional fragment
of the proof system (consisting of the rules in Figure 1).

3.2 Lower Bound

The hardness result is obtained by reducing the validity problem for propositional logic
to the derivability problem. In fact, it suffices to consider the validity problem for propo-
sitional formulas in disjunctive normal form for our reduction. We show how to define

60 R. Ramanujam, V. Sundararajan, and S.P. Suresh

for each formula ϕ in disjunctive normal form a set of assertions S ϕ and an assertion ϕ
such that ∅, S ϕ � ϕ iff ϕ is a tautology.

Let {p1, p2, . . .} be the set of all propositional variables. Fix infinitely many nonces
n1, n2, . . . and a key k. We define ϕ as follows, by induction.

– pi = (1 ≺ {ni}k)
– ¬pi = (0 ≺ {ni}k)
– ϕ ∨ ψ = ϕ ∨ ψ
– ϕ ∧ ψ = ϕ ∧ ψ
Suppose {p1, . . . , pn} is the set of all propositional variables occurring in ϕ. Then

S ϕ = {p1 ∨ ¬p1, . . . , pn ∨ ¬pn}.
Lemma 11. ∅, S ϕ �al ϕ iff ϕ is a tautology.

Proof. For v ⊆ {p1, . . . , pn}, define S v = {pi | pi ∈ v} ∪ {¬pi | pi � v}. Note that S v is
a non-contradictory set of atomic assertions.

By repeated appeal to Proposition 5, it is easy to see that ∅, S ϕ �al ϕ iff for all
valuations v over {p1, . . . , pn}, ∅, S v �al ϕ. We now show that ∅, S v �al ϕ iff v |= ϕ. The
statement of the lemma follows immediately from this.

– We first show by induction on ψ ∈ sf(ϕ) that ∅, S v �al ψ whenever v |= ψ.
• If ψ = pi or ψ = ¬pi, then ∅, S v �al ψ follows from the ax1 rule.
• If ψ = ψ1∧ψ2, then it is the case that v |= ψ1 and v |= ψ2. But then, by induction

hypothesis, ∅, S v �al ψ1 and ∅, S v �al ψ2. Hence, by using ∧i, it follows that
∅, S v �al ψ1 ∧ ψ2.
• If ψ = ψ1 ∨ ψ2, then it is the case that either v |= ψ1 or v |= ψ2. But then, by

induction hypothesis, ∅, S v �al ψ1 or ∅, S v �al ψ2. In either case, by using ∨i,
it follows that ∅, S v �al ψ1 ∨ ψ2.

– We now show that if ∅, S v �al ϕ, then v |= ϕ. Suppose ∅, S v �al ϕ. Since S v is a
non-contradictory set of atomic assertions, by Corollary 8, there is a derivation π of
∅, S v � ϕ that consists of only the ax, ∧i and ∨i rules. We now show by induction
that for all subproofs π′ of π with conclusion ∅, S v � ψ that v |= ψ.
• Suppose the last rule of π′ is ax1. Then ψ ∈ S v, and for some i ≤ n, ψ = pi or
ψ = ¬pi. It can be easily seen by definition of S v that v |= ψ.
• Suppose the last rule of π′ is ∧i. Then ψ = ψ1 ∧ ψ2, and ∅, S v �al ψ1 and
∅, S v �al ψ2. Thus, by induction hypothesis, v |= ψ1 and v |= ψ2. Therefore
v |= ψ.
• Suppose the last rule of π′ is ∨i. Then ψ = ψ1 ∨ ψ2, and either ∅, S v �al ψ1 or
∅, S v �al ψ2. Thus, by induction hypothesis, either v |= ψ1 or v |= ψ2. Therefore
v |= ψ. �

Theorem 12. The derivability problem is co-NP-hard.

Extending Dolev-Yao with Assertions 61

3.3 Upper Bound

Fix X0, Φ0 and α0. Let sf = sf(Φ0 ∪ {α0}), |sf| = N, and st be the set of all terms
occurring in all assertions in sf. To check whether X0, Φ0 � α0, we check whether α0 is
in the set deriv(X0, Φ0) = {α ∈ sf | X0, Φ0 � α}. Below we describe a general procedure
to compute deriv(X, Φ) for any X ⊆ st and Φ ⊆ sf.

For X ⊆ st and Φ ⊆ sf, define

deriv′(X, Φ) = {α ∈ sf | X, Φ � α has a derivation which does not use the ∨ e rule }
Lemma 13. deriv′(X, Φ) is computable in time polynomial in N.

Proof. Let Y = {t ∈ st | X �dy t}. Start with S = Φ and repeatedly add α ∈ sf to S
whenever α is the conclusion of a rule other than ∨e all of whose premises are in S ∪Y.
Since there are at most N formulas to add to S , and at each step it takes at most N2 time
to check to add a formula, the procedure runs in time polynomial in N. �

We now present the algorithm to compute deriv(X, Φ). It is presented as two mutually
recursive functions f and g, where g(X, Φ) captures the effect of one application of ∨e
for each formula α1 ∨ α2 ∈ Φ, and f iterates g appropriately.

1: function f (X, Φ)
2: S ← Φ
3: while S � g(X, S) do
4: S ← g(X, S)
5: end while
6: return S
7: end function

1: function g(X, Φ)
2: S ← Φ
3: for all α1 ∨ α2 ∈ S do
4: if α1 � S and α2 � S then
5: T ← {β ∈ f (X, S ∪ {α1})}
6: U ← {β ∈ f (X, S ∪ {α2})}
7: S ← S ∪ (T ∩ U)
8: end if
9: end for

10: return deriv′(X, S)
11: end function

The following theorem asserts the correctness of the algorithm, and its proof follows
from Propositions 20 (Soundness) and 21 (Completeness), presented in Appendix A.

Theorem 14. For X ⊆ st and Φ ⊆ sf, f (X, Φ) = deriv(X, Φ).

3.4 Analysis of the Algorithm

The nesting depth of recursion in the function f is at most 2N. We can therefore show
that f (X, Φ) can be computed in O(N2) space; the proof idea is presented below.

Modify the algorithm for deriv(X, Φ) using 3N global variables S i, Ti,Ui (i ranging
from 0 to N − 1), each a bit vector of length N. The procedures f and g take a third
argument i, representing the depth of the call in the call tree of f (X, Φ, 0). f (·, ·, i) and
g(·, ·, i) use the variables S i, Ti,Ui. Further, f (·, ·, i) makes calls to g(·, ·, i) and g(·, ·, i)
makes calls to f (·, ·, i + 1). Since the nesting depth is at most 2N, the implicit variables
on the call stack for arguments and return values are also O(N) in number, so the overall
space used is O(N2).

Theorem 15. The derivability problem is in PSPACE.

62 R. Ramanujam, V. Sundararajan, and S.P. Suresh

3.5 Optimization: Bounded Number of Disjunctions

Since the complexity in the algorithm resides mainly in handling ∨e, it is worth con-
sidering the problem restricted to p disjunctions (independent of N). In this case, the
height of the call tree is bounded by 2p, and since each f (·, ·, i) makes at most N calls
to g(·, ·, i) and each g(·, ·, i) makes at most N calls to f (·, ·, i+ 1), it follows that the total
number of calls to f and g is at most N2p. Since deriv′ (used by g) can be computed in
polynomial time, we have the following theorem.

Theorem 16. The derivability problem with bounded number of disjunctions is solv-
able in PTIME.

As a finer optimization, deriv′(X, Φ) can be computed in time O(N) by a graph mark-
ing algorithm of the kind presented in [14]. This gives an even better running time for
the derivability problem in general.

4 Safety Checking

The previous section concentrated on the derivability problem, which pertains to a pas-
sive intruder that only derives new terms and assertions from its store of terms and
assertions, without engaging with other agents actively. But the important verification
problem to study is to determine the presence of attacks in a protocol. An attack is
typically a sequence of actions conforming to a protocol, with the intruder actively or-
chestrating communications of the other principals. Formally, an attack on Pr is a run
of TS(Pr) that leads to an undesirable system state. The concept is formalized below.

Definition 17 (Safety checking and bounded safety checking). Let Safe be an arbi-
trary, but fixed safety predicate (i.e. a set of protocol states).

Safety Checking: Given a protocol Pr, is some protocol state s � Safe reachable in
TS(Pr) from an initial protocol state?

k-bounded safety checking: Given Pr, is some protocol state s � Safe with at most
k-role instances reachable in TS(Pr) from an initial protocol state?

Theorem 18. 1. If membership in Safe is decidable in PSPACE, the k-bounded safety
checking w.r.t. Safe is solved in PSPACE.

2. If membership in Safe is decidable in NP, the k-bounded safety checking w.r.t. Safe
is in NP if we restrict our attention to protocols with at most p disjunctions, for a
fixed p.

Proof.

1. A run of Pr starting from an initial state with at most k role instances is of length
linear in the sum of the lengths of all roles in Pr. A PSPACE algorithm can go
through all such runs to see if an unsafe protocol state is reachable. To check that
each action is enabled at the appropriate protocol state along a run, we need to solve
linearly many instances of the derivability problem, which runs in PSPACE. Thus
the problem is in PSPACE.

Extending Dolev-Yao with Assertions 63

2. One can guess a sequence of protocol states and actions of length linear in the size
of Pr and verify that all the actions are enabled at the appropriate states. Since we
are considering a protocol with at most p disjunctions for a fixed p, along each run
we consider, there will be at most k ∗ p disjunctions, which is still independent of
the size of the input. To check that actions are enabled at the appropriate states, we
need to solve linearly many instances of the derivability problem (with bounded
number of disjunctions this time) which can be done in polynomial time. Thus the
problem is in NP. �

5 Extending the Assertion Language

The assertion language presented in 2.2 used disjunction to achieve transmission of
partial knowledge. It should be noted that the assertion language used is not constrained
to be the same as that one, and various operators and modalities may be added to achieve
other desirable properties. In this section, we demonstrate one such addition, namely the
says modality.

5.1 Assertion Language with says

The set of assertions, A , is now given by the following syntax:

α := m ≺ t | t = t′ | α1 ∨ α2 | α1 ∧ α2 | A says α

The says modality captures the flavour of delegation. An agent B, upon sending agent
C the assertion A says α, conveys to C that he has obtained this assertion α from the
agent A, and that while he himself has no proof of α, A does. A has, in essence, allowed
him to transmit this assertion to other agents.

X, Φ � σ : (m ≺ {b}k) X,Φ � σ : (n ≺ {b}k) ⊥ (m � n)
X, Φ � σ : α

X, Φ � σ : α1 X, Φ � σ : α2 ∧i
X, Φ � σ : (α1 ∧ α2)

X, Φ � σ : (α1 ∧ α2)
∧e

X, Φ � σ : αi

X, Φ � σ : αi ∨i
X, Φ � σ : (α1 ∨ α2)

X,Φ � σ : (α1 ∨ α2) X, Φ ∪ {σ : α1} � σ : β X, Φ ∪ {σ : α2} � σ : β
∨e

X, Φ � σ : β

Fig. 4. The rules for says assertions

Figure 4 gives rules for assertions of the form A says α. For σ = A1A2 · · · An, σ : α
denotes A1 says (A2 says · · · (An says α) · · ·), and σ : Φ = {σ : α | α ∈ Φ}. These rules
are direct generalizations of the propositional rules in Figure 1, and permit propositional
reasoning in a modal context.

Like earlier, we denote by X, Φ �als α the fact that there is a derivation of X, Φ � α
using ax1 and the rules in Figure 4. We now amend the notation X, Φ �al α to denote
the fact that there is a derivation of X, Φ � α using the rules in Figures 1, 2 and 4).

64 R. Ramanujam, V. Sundararajan, and S.P. Suresh

5.2 Protocol Model

We now outline the modifications to the protocol model occasioned by the says modal-
ity. The definitions of actions is extended to accommodate the new assertions. However,
only non-modal assertions are allowed as testable conditions in the confirm and deny
actions.

As regards the transition rules, the addition of the says modality allows us one major
departure from the definitions specified earlier in 2.3 – agents can reason nontrivially
using received assertions. An agent B, on receiving an assertion α from A, can store
A says α in its state, and use it in further derivations. Thus a knowledge state ks is now
a tuple of the form ((XA, ΦA)A∈Ag, SD).

Let ks = ((XA, ΦA)A∈Ag, SD) and ks′ = ((X′A, Φ
′
A)A∈Ag, SD′) be two knowledge states

and a be a send or a receive action. We now describe the conditions under which the
execution of a changes ks to ks′, denoted ks

a−→ ks′. (These are minor modifications of
the rules presented earlier, but presented in full for the convenience of the reader).

– a = A!B : [(M)t, {α}sd(A)]
• a is enabled at ks iff
∗ M ∩ XC = ∅ for all C,
∗ XA ∪ M �dy t, and
∗ XA ∪ M, ΦA �al α.

• ks
a−→ ks′ iff
∗ X′A = XA ∪ M, X′I = XI ∪ {t},
∗ Φ′I = ΦI ∪ {α, A says α}, and
∗ SD′ = SD ∪ {{α}sd(A)}.

– a = A?B : [t, {α}sd(B)]
• a is enabled at ks iff
∗ {α}sd(B) is verified as signed by B,
∗ XI �dy t, and
∗ either B = I and XI , ΦI �al α, or {α}sd(B) ∈ SD.

• ks
a−→ ks′ iff
∗ X′A = XA ∪ {t}, and
∗ Φ′A = ΦA ∪ {B says α}.

– a = A : confirm α is enabled at ks iff XA,∅ �al α, and ks
a−→ ks′ iff ks = ks′.

– a = A : deny α is enabled at ks iff XA,∅ �al α, and ks
a−→ ks′ iff ks = ks′.

We see that on receipt of an assertion α, honest agents always store A says α in their
state, whereas the intruder is allowed to store α itself (along with A says α).

The rest of the definitions extend without any modification.

5.3 Example Protocol

A generates a vote, which it wants principals B and C to agree to, and then send to
the trusted third party T . However, A does not want B and C to know exactly what the
vote is. If a principal agrees to this vote, it prepends its identifier to the term sent to it,
encrypts the whole term with the key it shares with T , and sends it to the next agent.
Otherwise it merely sends the original term to the next agent. We show the specification
where everyone agrees to the vote. B : A : α denotes B says A says α, and t = {vT }k.

Extending Dolev-Yao with Assertions 65

– A→ B : t, {(a ≺ t) ∨ (b ≺ t)}sd(A)

– B→ C : {(B, t)}k(B,T), {A : {(a ≺ t) ∨ (b ≺ t)}}sd(B)

– C → T : {(C, {(B, t)}k(B,T)}k(C,T), {B : A : {(a ≺ t) ∨ (b ≺ t)}}sd(C)

– If the nested term is signed by both B and C, and vT = a or vT = b, T → A : ack.
Otherwise, T → A : 0.

We now demonstrate an attack. Suppose there is a session S 1 where a and b take
values a1 and b1, where B agrees to the vote. Suppose now there is a later session S 2

with a taking value a1 (or b taking value b1) again. The intruder can now replay the
term from B’s message to C in S 2 from S 1, although B might not wish to agree in S 2.

5.4 Derivability Problem

The basic properties of derivability, including normalization and subformula property,
still holds for the expanded language. The lower bound result also carried over without
modification, since the formulas featuring in the proof do not involve the says modality
at all. As regards the upper bound, the procedure g needs to be modified slightly. The
modified version is presented below. The proof of correctness is in the appendix.

1: function g(X, Φ)
2: S ← Φ
3: for all σ : (α1 ∨ α2) ∈ S do
4: if σ : α1 � S and σ : α2 � S then
5: T ← {σ : β ∈ f (X, S ∪ {σ : α1})}
6: U ← {σ : β ∈ f (X, S ∪ {σ : α2})}
7: S ← S ∪ (T ∩U)
8: end if
9: end for

10: return deriv′(X, S)
11: end function

An optimization can also be considered, where the functions f and g are modified to
take another argument, σ, which provides the modal context. Since an application of
∨e on an assertion σ : (α1∨α2) yields only formulas of the formσ : β in the conclusion,
the function g(σ, ·, ·, i) need only make recursive calls to f (σ, ·, ·, i + 1), concentrating
only on assertions with prefix σ. Also f (σ, ·, ·, i) need only make recursive calls to
g(σ, ·, ·, i) whenever σ � ε. This has the advantage that the recursion depth is linearly
bounded by the maximum number of disjunctions with the same prefix. In summary, it
is possible to solve the derivability problem efficiently in practical cases.

6 Conclusions

We have argued that it is worthwhile to extend the Dolev-Yao model of security proto-
cols so that agents have the capability to communicate assertions about terms in addition

66 R. Ramanujam, V. Sundararajan, and S.P. Suresh

to terms. These assertions play the same role as certificates that may be verified but can-
not be generated by the recipient. We have suggested that such an abstraction allows us
to model a variety of such certificate mechanisms. As a contribution to the theory of
security protocols, we delineate the complexity of the derivability problem and provide
a decision procedure. We study the safety checking problem (which involves the active
intruder).

We would like to emphasize here that the main thrust of the paper is the overall
framework, rather than a specific assertion language. We use a minimal logic for asser-
tions, and many extensions by way of connectives or modalities are possible; however,
it is best to drive extensions by applications that require them.

What we would like to see is to arrive at a ‘programming methodology’ for the struc-
tured use of assertions in protocol specifications. As an instance, consider the fact that
in our model terms and assertions are bundled together: we communicate (t, α) where
binding them requires the same term t to be used in α. Better structuring would use
a quantifier this in assertions so that references to terms in assertions are contextually
bound to communications. This would ensure that in different instantiations (sessions),
the assertion would refer to different concrete terms. A more general approach would
involve variables in assertions and scoping rules for their instantiations. This raises in-
teresting technical issues and offers further scope for investigation.

References

1. Abadi, M., Needham, R.M.: Prudent engineering practices for cryptographic protocols. IEEE
Transactions on Software Engineering 22, 6–15 (1996)

2. Anderson, R., Needham, R.: Robustness principles for public key protocols. In: Coppersmith,
D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 236–247. Springer, Heidelberg (1995)

3. Backes, M., Hriţcu, C., Maffei, M.: Type-checking zero-knowledge. In: ACM Conference on
Computer and Communications Security, pp. 357–370 (2008)

4. Backes, M., Maffei, M., Unruh, D.: Zero-Knowledge in the Applied Pi-calculus and Auto-
mated Verification of the Direct Anonymous Attestation Protocol. In: IEEE Symposium on
Security and Privacy, pp. 202–215 (2008)

5. Baskar, A., Naldurg, P., Raghavendra, K.R., Suresh, S.P.: Primal Infon Logic: Derivability in
Polynomial Time. In: Proceedings of FSTTCS 2013. LIPIcs, vol. 24, pp. 163–174 (2013)

6. Baskar, A., Ramanujam, R., Suresh, S.P.: A dexptime-complete dolev-yao theory with dis-
tributive encryption. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 102–113. Springer, Heidelberg (2010)

7. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Transactions on
Computer Systems 8(1), 18–36 (1990)

8. Benaloh, J.: Cryptographic capsules: A disjunctive primitive for interactive protocols. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 213–222. Springer, Heidelberg
(1987)

9. Comon, H., Shmatikov, V.: Intruder Deductions, Constraint Solving and Insecurity Decisions
in Presence of Exclusive or. In: Proceedings of LICS 2003, pp. 271–280 (June 2003)

10. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in crypto-
graphic protocols. Journal of Computer Security 14(1), 1–43 (2006)

11. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security 17(4), 435–487 (2009)

Extending Dolev-Yao with Assertions 67

12. Dolev, D., Yao, A.: On the Security of public-key protocols. IEEE Transactions on Informa-
tion Theory 29, 198–208 (1983)

13. Fuchsbauer, G., Pointcheval, D.: Anonymous consecutive delegation of signing rights: Uni-
fying group and proxy signatures. In: Cortier, V., Kirchner, C., Okada, M., Sakurada, H. (eds.)
Formal to Practical Security. LNCS, vol. 5458, pp. 95–115. Springer, Heidelberg (2009)

14. Gurevich, Y., Neeman, I.: Infon logic: the propositional case. ACM Transactions on Compu-
tational Logic 12(2), 9:1–9:28 (2011)

15. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for the equational theory of
abelian groups with distributive encryption. Information and Computation 205(4), 581–623
(2007)

16. Ramanujam, R., Sundararajan, V., Suresh, S.P.: Extending Dolev-Yao with assertions.
Technical Report (2014), http://www.cmi.ac.in/˜spsuresh/dyassert.pdf

17. Rjaskova, Z.: Electronic voting schemes. Master’s Thesis, Comenius University (2002)
18. Rusinowitch, M., Turuani, M.: Protocol Insecurity with Finite Number of Sessions and

Composed Keys is NP-complete. Theoretical Computer Science 299, 451–475 (2003)

Appendix

A Algorithm for Derivability: Correctness Proof

For a fixed X, define fX : ℘(sf) → ℘(sf) to be the function that maps Φ to f (X, Φ).
Similarly, gX(Φ) is defined to be g(X, Φ).

Lemma 19. 1. Φ ⊆ deriv′(X, Φ) ⊆ deriv(X, Φ).
2. deriv′(X, deriv(X, Φ)) = deriv(X, deriv(X, Φ)) = deriv(X, Φ).
3. If Φ ⊆ Ψ then gX(Φ) ⊆ gX(Ψ) and fX (Φ) ⊆ fX(Ψ).
4. Φ ⊆ gX(Φ) ⊆ g2

X(Φ) ⊆ · · · ⊆ sf.
5. fX(Φ) = gm

X (Φ) for some m ≤ N.

The last fact is true because |sf| = N and the gi
X(Φ)s form a non-decreasing sequence.

Proposition 20 (Soundness). For X ⊆ st, Φ ⊆ sf and m ≥ 0, gm
X (Φ) ⊆ deriv(X, Φ).

Proof. We shall assume that

gn
X(Ψ) ⊆ deriv(X, Ψ) for all Ψ ⊆ sf, n ≥ 0 s.t. (N − |Ψ |, n) <lex (N − |Φ|,m)

and prove that

gm
X (Φ) ⊆ deriv(X, Φ).

Now if m = 0, then gm
X (Φ) = Φ ⊆ deriv(X, Φ). Suppose m > 0, Let Z = gm−1

X (Φ) and let
S ⊆ sf be such that α ∈ S iff one of the following conditions hold:

– α ∈ Z
– α is of the form σ : β and there is some σ : (α1 ∨ α2) ∈ Z such that σ : αi � Z and
α ∈ fX(Z ∪ {σ : α1}) ∩ fX(Z ∪ {σ : α2}).

http://www.cmi.ac.in/~spsuresh/dyassert.pdf

68 R. Ramanujam, V. Sundararajan, and S.P. Suresh

Observe that since (N − |Φ|,m − 1) <lex (N − |Φ|,m), by induction hypothesis, Z =
gm−1

X (Φ) ⊆ deriv(X, Φ). To conclude that gm
X (Φ) ⊆ deriv(X, Φ), it suffices to prove that

S ⊆ deriv(X, Φ), since then we have

gm
X (Φ) = deriv′(X, S) ⊆ deriv′(X, deriv(X, Φ)) = deriv(X, Φ).

Now if α ∈ S , then there are two cases:

– α ∈ Z. But Z ⊆ deriv(X, Φ), and so α ∈ deriv(X, Φ).
– α is of the form σ : β and α ∈ fX(Z ∪ {σ : α1}) ∩ fX(Z ∪ {σ : α2}) for some
σ : (α1 ∨ α2) ∈ Z. For any Ψ , fX(Ψ) = gn

X(Ψ) for some n ≤ N, and for any n,
(N − |Z ∪ {σ : αi}|, n) <lex (N − |Φ|,m). Thus, by induction hypothesis, fX(Z ∪ {σ :
αi}) ⊆ deriv(X, Z ∪ {σ : αi}). In other words, X, Z ∪ {σ : α1} �al σ : β and
X, Z ∪ {σ : α2} �al σ : β and X, Z �al σ : (α1 ∨ α2). By an application of the ∨e
rule, we conclude that X, Z �al σ : β. Thus

α ∈ deriv(X, Z) ⊆ deriv(X, deriv(X, Φ)) = deriv(X, Φ).

This proves that S ⊆ deriv(X, Φ), and we are done. �

Proposition 21 (Completeness). For X ⊆ st , Φ ⊆ sf and α ∈ deriv(X, Φ), there is
m ≥ 0 such that α ∈ gm

X (Φ).

Proof. Suppose α ∈ deriv(X, Φ). Then there is a normal derivation π of X, Φ � α. We
now prove the desired claim by induction on the structure of π.

– Suppose the last rule r of π is not ∨e. If r is ax1, α ∈ Φ = g0
X(Φ). If not, let

S = {β | X, Φ � β is a premise of r}. Since each β ∈ S is the conclusion of
a subproof of π, by induction hypothesis, there is an m such that β ∈ gm

X (Φ). It
follows that there is n such that S ⊆ gn

X(Φ). Since for any Ψ , deriv′(X, Ψ) ⊆ gX(Ψ),
it follows that α ∈ deriv′(X, S) ⊆ deriv′(X, gn

X(Φ)) ⊆ gn+1
X (Φ).

– Suppose the last rule of π is ∨e. Then α is of the form σ : β (where σ could
also be ε) and there are subproofs of π with conclusions X, Φ � σ : (α1 ∨ α2),
X, Φ ∪ {σ : α1} � σ : β and X, Φ ∪ {σ : α2} � σ : β. By induction hypothesis,
there are m, n, p such that σ : (α1 ∨ α2) ∈ gm

X (Φ), σ : β ∈ gn
X(Φ ∪ {α1}) and

σ : β ∈ gp
X(Φ ∪ {α2}). Since gq

X(Ψ) ⊆ fX(Ψ) for any Ψ and q ≥ 0, it follows that
σ : β ∈ fX (Φ ∪ α1}) ∩ fX(Φ ∪ α2}). Thus σ : β ∈ gm+1

X (Φ). �

Inferring Accountability from Trust Perceptions

Koen Decroix1, Denis Butin2, Joachim Jansen3, and Vincent Naessens1

1 KU Leuven, Technology Campus Ghent, Department of Computer Science
Gebroeders Desmetstraat 1, 9000 Ghent, Belgium

{koen.decroix,vincent.naessens}@cs.kuleuven.be
2 Inria, Université de Lyon, France

denis.butin@inria.fr
3 Department of Computer Science, KU Leuven, Belgium

joachim.jansen@cs.kuleuven.be

Abstract. Opaque communications between groups of data processors
leave individuals out of touch with the circulation and use of their per-
sonal information. Empowering individuals in this regard requires sup-
plying them — or auditors on their behalf — with clear data handling
guarantees. We introduce an inference model providing individuals with
global (organization-wide) accountability guarantees which take into ac-
count user expectations and varying levels of usage evidence, such as
data handling logs. Our model is implemented in the IDP knowledge
base system and demonstrated with the scenario of a surveillance infras-
tructure used by a railroad company. We show that it is flexible enough
to be adapted to any use case involving communicating stakeholders for
which a trust hierarchy is defined. Via auditors acting for them, individ-
uals can obtain global accountability guarantees, providing them with a
trust-dependent synthesis of declared and proven data handling practices
for an entire organization.

Keywords: Accountability, IDP, Trust, Privacy, Surveillance.

1 Context and Motivation

Contemporary situations involving the exchange of personal data for services
often leave individuals oblivious as to the actual processing of their data. While
privacy policies are widely used by organizations across the world, they often con-
stitute mere declarations of intent. Individuals generally cannot check whether
actual processing is in line with such ex ante statements. Furthermore, privacy
policies often remain purposely vague while users demand concrete promises
about the retention of their data, the purposes for which it is used, obligations
in terms of third party forwarding and so on.

The rise of individuals’ expectations about data handling transparency, com-
bined with the growing imbalance of power between them and data processing
organizations, has made the principle of accountability a key component of the
discourse over privacy protection. While the concept of accountability was al-
ready mentioned in this context in the eighties [24], it appears more prominently

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 69–88, 2014.
c© Springer International Publishing Switzerland 2014

70 K. Decroix et al.

these days. In particular, the upcoming European General Data Protection Reg-
ulation [12] cites accountability explicitly. Organizations will therefore increas-
ingly be legally required to be accountable for their data handling practices to
data subjects.

A downside of this concept’s popularity is that its meaning has been diluted
due to frequent use in different contexts. Lawyers often focus on procedural as-
pects of accountability [7, 25]. Computer scientists often tackle specific security
properties — such as non-repudiation [2] — or specific technical contexts like
cloud environments [15]. Because of these varied interpretations, no universal
definition of accountability can be given. However, it normally refers to the ne-
cessity of surpassing mere compliance to achieve demonstration of compliance.
By putting the burden of proof of good behavior on the data controller, account-
ability measures increase pressure on organizations to be transparent and fair in
their data handling practices.

In real-world situations, data shared by an individual does often not remain
within the realm of a single entity but it disseminated among communicating
subsystems that may even be geographically distant. Since subcontractors may
belong to different corporations than the organization that collected personal
data in the first place, different data handling policies may apply. The initial
data controller may fulfill its promises as long as data remains in its initial
location, but offer no guarantees about processing by other stakeholders. Such
situations leave individuals blind to the whereabouts of their data.

Even if all involved entities publish clear data handling policies, the end result
is opaque to individuals. Technical privacy policies may be very detailed and
the number of entities may be large. It is useful for individuals to understand
the resulting global (organization- or system-wide) guarantees that apply to
their personal data. If individuals have defined personal privacy preferences for
themselves once and for all, they would also like to know whether the overall
processing of their data by an organization and its subcontractors is in conflict
with those preferences.

This paper introduces a model capable of inferring global accountability guar-
antees from the point of view of a trusted auditor. This auditor acts on be-
half of the user and represents his interests. In practice, the auditor could be
a member of a Data Protection Authority or a third-party, accredited auditing
organization. The framework allows the hierarchical representation of entities in
an organization, thereby modeling trust relationships: an individual may only
trust a given component in an organization, or may trust an entity higher in the
hierarchy, thereby trusting all components operating by that entity. These trust
assumptions (i.e. user expectations) influence the computation of the global ac-
countability guarantees. We distinguish between three levels of users: a naive
user, a regular one and a privacy-aware one. The level of privacy-awareness of a
user influences the kind of evidence this user assumes to be trustworthy.

In addition to these different types of users, data handling statements carry
different levels of evidence. Each entity subcontracting for an organization has
its own data handling statements. At the lowest level, statements are merely

Inferring Accountability from Trust Perceptions 71

declarations of intent with no additional evidence. This level of evidence is akin
to a detailed, technical privacy policy. Other statements are provided together
with system traces of data handling operations, i.e. logs. These logs are assumed
to be trustworthy, but they have not been inspected. Therefore, it may not
be obvious at first glance that a data processor has misbehaved, even though
a trace of misbehavior is assumed to exist in the logs. The situation where
logs cannot be checked easily is realistic because logs are not standardized in
general, many organizations use very specific formats and because semantics
are often unavailable. The highest level of evidence features statements that
are accompanied by logs that have been verified and found to be compliant.
Here, it is again assumed that the logs are trustworthy, i.e. reflect actual system
execution, and that the log analysis software is sound and accurate.

The three levels of user privacy-awareness and three levels of statement ev-
idence are combined to compute fine-grained global accountability guarantees.
The auditor, on behalf of the user, can both inspect those global guarantees or
detect potential conflicts by providing the privacy preferences of the individual.

Our framework is implemented in IDP, a knowledge base system [11]. We
demonstrate it through the scenario of a surveillance infrastructure managed by
a railroad company and involving a third-party security service company, op-
erators such as a surveillance guard and an image processor, and components
used by these operators. This kind of scenario demonstrates the typical situation
where an individual shares his data with only one entity initially, after which the
entity processes and disseminates the data among several subcontractors. Assum-
ing individuals are monitored via cameras, one can distinguish between several
categories of personal data which can be collected, processed and distributed.
Depending on image quality and on pan-tilt-zoom functionality, cameras may
record full body pictures with insufficient quality to distinguish faces, full body
pictures with blurred faces, faces only or even record behavior patterns while
discarding body images.

As mentioned above, we assume logs (when they exist) to be trustworthy: they
are accurate and cannot be forged by entities. In practice, this requires techniques
such as forward integrity [3] to guarantee the security of logs, and partial formal
modeling or trusted computing to ensure unforgeability. While these criteria are
important, they are outside of the scope of this work: here, we suppose that
logs reflect actual system execution and therefore embody meaningful evidence.
Furthermore, we presume that personal data is categorized in a standardized way,
so that individuals and organizations use the same terminology for categories of
personal data.

We continue with some technical background on the IDP system, a knowledge
base system based on an extension of typed first-order logic (§2). The approach
is illustrated by the running example of a railroad surveillance infrastructure,
presented informally at first (§3). We then introduce the building blocks of the
accountability inference framework and apply it to this scenario (§4). After eval-
uating the results of this implementation of the model (§5), we discuss related
work on formalizations of accountability and privacy (§6), including existing

72 K. Decroix et al.

models for privacy reasoning realized with IDP. The paper concludes with a
discussion of the potential, limitations and future of the framework (§7).

2 IDP

IDP [16, 29] is a state-of-the-art knowledge base system [8] developed by the
Knowledge Representation and Reasoning (KRR) group at KU Leuven. We
briefly introduce IDP and how it can be used as a tool to manage an account-
ability framework, focusing on the parts of the system relevant for this paper.
More interested readers can find IDP documentation and source code here [16],
and some examples here [17]. In this text we use IDP to refer to IDP3, the
current version of the IDP system. One of the main focuses of IDP is knowledge
representation: allowing users to formulate their knowledge in a intuitive manner.
To this end the FO(·) language framework, an extension of First Order Logic
(FO), was developed. Using this language, users can model their data (in this
case, which organizations or data categories to analyze), as well their knowledge
(here, accountability across organizations) in a formal way using logical formu-
las (constraints) and definitions. This model can be used to solve problems by
applying one of the many inferences IDP provides. For this paper we will need
(optimal) model expansion: given a partial assignment for data, find a complete
(optimal) assignment such that all expressed constraints and definitions hold.
The initial, partial assignment corresponds to the setting of our framework: a hi-
erarchical network of organizations and the accountability guarantees they offer.
The outcome of the model expansion inference then corresponds to a complete
assignment: a listing of which information is used in what places and what kinds
of accountability guarantees it offers. This will later be called the Global Ac-
countability Profile (GAP).

There exists a variety of declarative modeling systems, such as Alloy [19,20] or
ASP solvers [13, 22]. We chose to use IDP as our modeling tool for two reasons.
First, the language it uses is expressive and intuitive: it supports extended first
order constraints as well as definitions under well-founded semantics [26]. Second,
it is implemented as an extension in Lua [18], which means there is support for
procedural integration. This allows us to determine the way in which we want
to use our declarative model in a flexible way.

3 A Railway Station Surveillance Scenario

To illustrate the model, we consider the scenario of video camera surveillance
in a railway station. Since individuals are filmed by cameras, the collected cat-
egories of personal data are related to images (we assume the cameras do not
record sound). Several categories of personal data can be inferred from camera
recordings, such as identification through face detection [27], gait recognition [21],
behavioral tracking [23] and many others. Signs inform passersby that the Rail-
way Company installed Cameras for video surveillance. The cameras provide
the railway’s Monitors in the control room with real-time video feeds containing

Inferring Accountability from Trust Perceptions 73

Blurred Faces and Gaits of travelers. Furthermore, detailed images of individuals’
Full Body and Gait are stored in the railway’s Image Database serving as Evi-
dence in legal investigations. Only authorized Image Processors employed by the
railway company have access to it. Additionally, surveillance Guards employed
by a third-party Security Company patrol in the station. They are authorized to
view real-time images on the monitors, and carry a Mobile Device for registering
Contextual Data (e.g. time and location) in case of incidents. These devices are
connected with the Status Database, property of the security company. It is only
accessible for the security company’s Status Processors upon request of legal
institutions for collecting Evidence.

The trusted auditor (acting on behalf of a filmed individual) is external to
the model and we focus on data handling statements from the entities collecting
personal data, listed in Tab. 1.

4 Components of the Accountability Inference Model

Having set the stage for both our model and the tool that will be used to eval-
uate it, we now describe the framework’s building blocks (depicted in Fig. 1) in
detail. Entities, all related to a core organization, provide individual statements
about their data handling practices. These statements can be provided together
with unverified logs, verified logs, or exist on their own without companion evi-
dence. Different categories of personal data can be modeled. As a consequence,
statements are fine-grained enough to express different guarantees about various
types of personal data. The data subject is represented by a trusted auditor. This
auditor takes into account the subject’s trust perceptions. Global accountability
guarantees are automatically computed using the computation rules in the Sys-
tem Independent Part of the framework. These guarantees are represented by
the Global Accountability Profile (GAP) that is automatically inferred, using a
Knowledge Base System (IDP), from the System Model and the User Model, both
part of the framework’s Input Model. The former models the individual state-
ments, the relations between the entities expressing the statements, and the level
of evidence characterizing the statements. The latter includes the level of trust
of the user. As a consequence, the global accountability guarantees take into ac-
count both factual evidence and subjective appreciations of privacy risks. This
combination reflects the fact that different data subjects demand different levels
of proof to be satisfied. The model provides data subjects with an overview of the
accountability guarantees resulting from a set of interacting entities. In addition,
it allows them (or the auditor, on their behalf) to check whether their personal
privacy preferences are compatible with this global accountability panorama.
The remainder of this section further details the framework’s elements.

4.1 Personal Data

Organizations collect personal data of data subjects that interact with systems
owned by these organizations. Being accountable to data subjects involves clari-
fying which types of their personal data are harvested and used. These categories

74 K. Decroix et al.

Table 1. Camera surveillance data handling statements. Entity statements are
(D)eclarative, (L)ogged-unverified or Logged-and-(V)erified.

(R)ailway Company, (C)amera, (M)onitor, (I)mage Database Statements

Stat R.1 (L) Full body pictures with blurred or clear faces, gaits, heights, and
behavior are recorded for incident detection.

Stat R.2 (D) Collected pictures containing evidence of incidents can be forwarded
to legal authorities upon their request.

Stat R.3 (L) Pictures are never collected for commercial purposes.
Stat R.4 (L) The maximal retention time for any category of collected personal

data is 60 days.
Stat C.1 (L) Cameras in the station record full body pictures with blurred or

clear faces, gaits, heights, and behaviors of travelers for incident
detection purposes.

Stat M.1 (L) Guards monitor in real-time full body pictures with blurred faces,
gaits, heights, and behaviors of travelers in the station for incident
detection purposes.

Stat I.1 (L) Full body pictures with clear faces are stored as evidence of possible
incidents.

Stat I.2 (V) Access to stored full body pictures with clear faces is only granted
to the image processor upon request of the legal authorities.

Stat I.3 (V) Full body pictures with clear faces, gaits, heights, and behavior are
never processed for the purpose of identification.

Stat I.4 (D) Stored images are deleted after 30 days, unless they are being used
as evidence in legal cases.

(S)ecurity Company, M(O)bile Device, Status (D)atabase Statements

Stat S.1 (D) Time and location of incidents are collected as evidence.
Stat S.2 (L) Time and location of incidents are only forwarded to legal authori-

ties upon request.
Stat O.1 (V) Surveillance guards collect time and location as evidence in case of

incidents.
Stat D.1 (V) Time and location of incidents are collected as evidence.
Stat D.2 (V) Access to stored time and location of incidents is granted to status

processors for gathering evidence.
Stat D.3 (V) The time and location of incidents are deleted after 90 days unless

they are being used as legal evidence.

are represented by the DataCategory type. All categories of collected personal
data involved in a given scenario must be spelled out in the input model as the
contents of DataCategory.

One can define hierarchies of personal data categories. This models the fact
that categories of personal data can be subsets of other categories, e.g. the age
of an individual gives strictly more information than a predicate on whether
the individual is over 18. The data category hierarchy is represented using Data-
CategoryOf(DataCategory,DataCategory), which deduces hierarchical knowledge

Inferring Accountability from Trust Perceptions 75

(Naive,Regular,Privacy-Aware)

User Type

Trusted Organizations
Prohibitions

Duties

Retention Limits

Notification Guarantees

Organizations Components Operators

In
pu

tM
od

el

K
no

w
le

dg
e

B
as

e
Sy

st
em

(I
D
P

)

G
lo

ba
lA

cc
ou

nt
ab

ili
ty

Pr
ofi

le
(G

A
P)

Entity Statements

Entities

System ModelUser Model

Vocabulary
Global Accountability Computation RulesAccountability Concepts

System-independent Core

Fig. 1. Structure of the global accountability inference model

from the initial specifications. Listing 1 depicts the IDP input model for the per-
sonal data and their hierarchy of the camera surveillance scenario.

type DataCategory = { PersData;Face;BlurredFace;Gait;Height;Behavior ;
Location;Time,PictureIncident }

DataCategoryOf (DataCategory,DataCategory) = {
Face,PictureIncident;BlurredFace,PictureIncident;Gait,
PictureIncident;Height,PictureIncident;Behavior ,PictureIncident }

IDP Listing 1. Partial user model representing personal data categories and
hierarchies in the video surveillance scenario.

4.2 Entities

Data subjects and the auditors that act on their behalf are not explicitly mod-
eled since their point of view is external. An arbitrary number of active entities
can be modeled in the framework’s system model. Active entities are those that
handle personal data of the subjects and provide some degree of accountability,
i.e. declarations (with or without proof) about the data processing they perform.
A distinction is made between Stakeholders and Components. A stakeholder is
either an Organization, or an Operator acting on behalf of exactly one organi-
zation. An organization can employ more than one operator. Components are
constituents of data processing systems. A component belongs to exactly one
organization, but can be used by multiple operators.

Components process personal data under the responsibility of the organiza-
tions that own them. Organizations or authorities may restrict access to the data
categories that a given component is capable of collecting. Authorized categories

76 K. Decroix et al.

for a given component are specified using ComponentCanCollect(Component,
DataCategory). Listing 2 depicts the IDP specification of the entities involved
in the camera surveillance scenario.

type Entity = { RailwayCompany;SecurityCompany;LegalAuthority ;Camera;
Monitor ;MobileDevice;SurveilanceGuard ; ImageProcessor ;
StatusProcessor ; ImageDB;StatusDB }

type Stakeholder isa Entity = { RailwayCompany;SecurityCompany ;
LegalAuthority ;SurveilanceGuard ; ImageProcessor ;StatusProcessor }

type Component isa Entity = { Camera;Monitor ;MobileDevice; ImageDB;
StatusDB }

type Organization isa Stakeholder = { RailwayCompany;SecurityCompany ;
LegalAuthority }

type Operator isa Stakeholder = { SurveilanceGuard ; ImageProcessor ;
StatusProcessor }

ComponentOf(Component) : Organization = { Camera → RailwayCompany;
Monitor → RailwayCompany; ImageDB → RailwayCompany;
StatusDB → SecurityCompany ;MobileDevice → SecurityCompany

EmployeeOf(Operator) : Organization = {
SurveilanceGuard → SecurityCompany;
StatusProcessor → SecurityCompany ;
ImageProcessor → RailwayCompany }

OperatorOf (Operator,Component) = { SurveilanceGuard ,Monitor ;
SurveilanceGuard ,MobileDevice; ImageProcessor , ImageDB;
StatusProcessor ,StatusDB }

ComponentCanCollect(Component,DataCategory) = { Camera,Face;
Camera,BlurredFace;Camera,PictureIncident;Camera,Gait;
Camera,Height;Camera,Behavior ;Monitor ,Face;Monitor ,
BlurredFace;Monitor ,PictureIncident;Monitor ,Gait;Monitor ,Height;
Monitor ,Behavior ; ImageDB,Face; ImageDB,BlurredFace;
ImageDB,PictureIncident; ImageDB,Gait; ImageDB,Height;
ImageDB,Behavior ; ImageDB,Time; ImageDB,Location;StatusDB,
Time;StatusDB,Location;MobileDevice,Time;MobileDevice,
Location }

IDP Listing 2. Partial system model representing the entities and their rela-
tionships in the video surveillance scenario.

4.3 Statements and Local Accountability Statements

All entities involved in data handling relevant to a given data subject are assumed
to exhibit some level of accountability of practice, i.e. they publish precise decla-
rations about their intended personal data handling practices. In general, each
entity publishes a different data handling statement. A one-to-one mapping be-
tween entities and data handling statements is assumed, and is modeled using
function StatementFrom(Statement) : Entity. Listing 3 shows the part of the

Inferring Accountability from Trust Perceptions 77

system model that defines a subset of the statements of the railway company
listed in Tab. 1 1. Those statements include the following aspects:

– Purposes of use, i.e. the list of finalities for which the collected personal
data may be used (for instance statistics or direct marketing) — this is
modeled using StatementPurpose(Statement, Purpose). Multiple purposes
can be defined for a statement.

– The category of personal data that is used, i.e. the collection of personal
identifiable information. Possibly, multiple subject data categories exist for
a statement — this is modeled using predicate StatementSubject(Statement,
DataCategory).

– Global retention limits, i.e. the period of time after which the personal data
will be deleted by the entity (e.g. 30 days) — this limit is expressed us-
ing a partial function (i.e. not every statement expresses a retention limit)
StatementRetentionLimit(Statement) : Duration.

– Obligations built from a Condition and an Action. These are modeled using
partial functions StatementCondtion(Statement) : Condition and Statemen-
tAction(Statement) : Action). Both are partial functions because not all
statements are linked to actions (e.g. retention limits), and unconditional
obligations are modeled by only modeling the actions of statements.

– Personal data may be forwarded to organizations. In the model, this is ex-
pressed using StatementDestination(Statement, Organization). Possibly, a
statement has multiple destinations.

Obligations are flexible and can be used to express a variety of constraints.
Conditions are events that trigger a reaction, e.g. the personal data is accessed
or the data subject has requested an update. Actions are the resulting events,
for instance the update of his personal data or its forwarding.

Statements guaranteeing the sending of a notification (to a user) when a
specific event occurs (e.g. when a specific category of personal data is accessed
by the entity) are expressed using StatementNotificationGuarantee(Statement).

Accountability occurs at different levels. Some entities may merely declare
their intended practices, without providing any companion evidence. Other en-
tities provide data handling logs. In the model this is denoted using function
StatementProof(Statement) : StatementEvidence. It may not always be possible
to check the compliance of data handling logs with obligations. Logs can be in a
format which is not standardized, or semantics may not be provided by the entity.
We therefore distinguish between three levels of assurance (StatementEvidence)
for data handling statements:

1. A statement is (purely) Declarative if data handling logs relevant to the
statement are not made available by the entity publishing the statement.

2. If data handling logs are provided together with the statement but cannot
be checked straight away, the statement obtains the status LoggedUnverified.

1 For the complete model of the statements, see
https://code.google.com/p/inferring-accountability/.

https://code.google.com/p/inferring-accountability/

78 K. Decroix et al.

3. If a statement is provided together with logs that have been checked for
compliance (e.g. through a trusted log analysis software), the statement is
said to be LoggedVerified. This is the highest level of accountability for a
data handling statement, since actual behavior has both been recorded and
shown to be compliant with the statement.

type Statement = { StatR1 ;StatR2 ;StatR3 ;StatR4 ; . . . }
type Purpose = { Evidence;DetectIncident ;Commerce; Identification }
type Condition = { RequestLegalAuthority ;NoLegalInvestigation }
type Action = { Collecting;Monitoring;Storing;Forwarding;Accessing }
type Duration isa int = { 30; 60; 90 }
type Permission constructed from { Always;Never }
type StatementEvidence constructed from { Declarative;

LoggedUnverified ;LoggedVerified }
StatementFrom(Statement) : Entity = { StatR1 → RailwayCompany;

StatR2 → RailwayCompany;StatR3 → RailwayCompany;
StatR4 → RailwayCompany; . . . }

StatementSubject(Statement,DataCategory) = { StatR1 ,Face;
StatR1 ,BlurredFace;StatR1 ,Gait;StatR1 ,Height;StatR1 ,Behavior ;
StatR2 ,PictureIncident;StatR3 ,PictureIncident;StatR4 ,PersData;
. . . }

StatementPurpose(Statement,Purpose) = { StatR1 ,DetectIncident ;StatR2 ,
Evidence;StatR3 ,Commerce; . . . }

partial StatementCondtion(Statement) : Condition = {
StatR2 → RequestLegalAuthority ; . . . }

StatementPermission(Statement) : Permission = { StatR1 → Always;
StatR2 → Always;StatR3 → Never ;StatR4 → Always; . . . }

partial StatementAction(Statement) : Action = { StatR1 → Collecting;
StatR2 → Forwarding;StatR3 → Collecting; . . . }

StatementDestination(Statement,Organization) = {
StatR2 ,LegalAuthority; . . . }

partial StatementRetentionLimit(Statement) : Duration = {
StatR4 → 60; . . . }

StatementNotificationGuarantee(Statement) = { }
StatementProof (Statement) : StatementEvidence = {

StatR1 → LoggedUnverified ;StatR2 → Declarative;
StatR3 → LoggedUnverified ;StatR4 → LoggedUnverified ; . . . }

IDP Listing 3. Partial system model representing the statements of the entities
involved in the video surveillance scenario.

4.4 Trust Perception and Global Accountability Inference

While organizations may feature complex hierarchies with heterogeneous data
handling practices, individuals care about what happens to their personal data
globally. A panoramic overview of the worst-case scenario in terms of data pro-
cessing (i.e. what are the weakest global guarantees?) is relevant to individuals,

Inferring Accountability from Trust Perceptions 79

since they must often decide whether to interact with an entire organization.
Most of the time, they cannot cherry-pick with which subcontractors to share
their data with.

Global accountability inference is a central feature of this framework that
builds such a synthetic statement for data subjects. It deduces global guarantees
from the local accountability statements of all entities involved in the system.
These (subjective) guarantees depend on trust perceptions of data subjects.

Individuals display different levels of trust in the entities that handle their
personal data. The framework’s user model reflects this socio-technical aspect by
modeling three levels of trust, corresponding to three typical types of individuals:
– Naive individuals always trust data handling statements, even if statements

are purely declarative (i.e. no evidence in the form of a log is provided);
– Regular individuals only trust statements co-occurring with relevant data

handling logs;
– Privacy-aware individuals are most skeptical and trust only statements for

which verified logs have been provided by issuing entities.
Furthermore, the user model includes UserTrust(Organization), the user’s

high-level trust perception towards organizations. It represents his trust in de-
clared data handling practices of related organizations. This also implies that
all operators they employ and components they own are trusted by him. The
modeled video surveillance scenario features the aforementioned three user mod-
els: naive (U1), regular (U2) and privacy-aware (U3). It also assumes that no
organization is trusted, i.e. UserTrust(Organization) is the empty set.

This impact of these user trust models on the perception of global account-
ability guarantees is shown in Tab. 2. For instance, a naive user considers he is
guaranteed that merely declared statements of an entity E, owned or employed
by organization O, correspond with actual data handling practices. By contrast,
a regular user only considers merely declared statements to be guaranteed if he
trusts O (i.e. UserTrust(O)), and assumes statements provided together with
logs to be guaranteed, whether these logs are checked for compliance or not.

Table 2. Global statement evidence deduction rules — the global evidence for the state-
ment S by the entity E owned by the organization O is (U)ncertain or (G)uaranteed
for the modeled user

StatementProof(S)= Declared Logged-unverified Logged-and-verified

Naive user G G G
Regular user F (E) : {G, U}� G G

Privacy-aware user F(E) : {G, U}� F(E) : {G, U}� G

�F (E) =′ G′ ⇔ UserTrust(O) ∧ (ComponentOf (E) = O ∨ EmployeeOf (E) = O)
�F (E) =′ U ′ ⇔ ¬UserTrust(O) ∧ (ComponentOf (E) = O ∨ EmployeeOf (E) = O)

Global statement computations are performed differently for duties (i.e. state-
ments featuring Always) and for prohibitions (i.e. statements featuring Never).

80 K. Decroix et al.

Beside these categories, models also include statements expressing notification
guarantees and global retention limits. Comparable with duties, these also feature
Always. Nevertheless, these are treated differently in computations.

Global statements are expressed in terms of global data categories (i.e. users
are concerned what happens to their personal data). Let S be an individual
statement of entity E, CanCollect(E,DC) a data category DC that can be col-
lected by an entity E, and Sub(S,DC) representing that data category DC is a
subject of S. Tab. 3 summarizes the worst-case deduction rules that depend on
the global statement evidence for the computation of GlobalDataCategory(S,DC),
the global data categories derived from S.

Table 3. Worst-case computation rules for deducing GlobalDataCategory(S,DC), the
global data categories DC deduced from the individual statement S of entity E, with
Sub(S,DC) the subject DC of statement S, and CanCollect(E,DC) the data categories
collectable by E

Global statement evidence of S: Uncertain Guaranteed

Duty(S) CanCollect(E,DC) ψ(S, E,DC)�

Prohibition(S) ψ(S, E,DC)� Sub(S,DC)
NotificationGuarantee(S) Sub(S,DC) ψ(S, E,DC)�

RetentionLimit(S) Sub(S,DC) ψ(S, E,DC)�

�ψ(S, E,DC) ≡ CanCollect(E,DC) ∧ Sub(S, DC)

Duties. Global statements using Always are built as follows:

– The global purposes of use for a global data category are constructed from
the union of all purposes of (individual) duties S, with GlobalDataCate-
gory(S,DC). These represent worst-case global purposes which are conjunc-
tive. For instance, personal data is collected for commercial and statistical
reasons. If no purpose is explicitly specified, then all purposes are assumed
to be permitted globally.

– The global conditions of use for a data category are constructed from the
disjunction of all conditions of duties S, with GlobalDataCategory(S,DC). If
at least one unconditional statement exists, no overall conditional statement
is generated.

– The global actions for a data category are built from the union of all actions
of individual duties S, with GlobalDataCategory(S,DC).

– The global level of assurance (i.e. global evidence) for a data category is
Uncertain if at least one uncertain statement (in the sense of Tab. 3) exists
for this data category. Else, the global statement is considered Guaranteed.

– The global notification guarantee for events relative to a data category is built
from the conjunction of all individual notification guarantees S relative to
that data category, with GlobalDataCategory(S,DC).

Inferring Accountability from Trust Perceptions 81

– The global retention limit for a data category is the maximum of all retention
limts S existing for the data category, with GlobalDataCategory(S,DC).

Prohibitions. Global statements using Never are built as follows:

– The global purposes of use for a global data category are constructed from
the union of all purposes of individual prohibitions S, with GlobalDataCat-
egory(S,DC). These represent worst-case global purposes which are disjunc-
tive. For instance, personal data is never collected for commercial or statis-
tical reasons. Individual prohibitions without explicit purpose are omitted
during the deduction of global purposes (i.e. worst-case).

– The global conditions of use for a data category are constructed from the con-
junction of all conditions of prohibitions S, with GlobalDataCategory(S,DC).
Unconditional statements are omitted.

– The global actions for a data category is computed as for duties, mutatis
mutandis.

– The global level of assurance for a data category is computed as for duties,
mutatis mutandis.

In global statements, trust is expressed in a binary way (i.e. GAPEvidence):
statements are, from the point of view of the data subject, either Uncertain
or Guaranteed. Both global notification guarantees and global retention limits,
part of the GAP, are expressed as duties. Global statements present guarantees
as a function of categories of personal data. Once global statements have been
computed, they are represented as in Listing 4. They are categorized as follows:

– Global duties about collecting personal data — declaring actions about the
use, collection, or storage of personal data.

– Global duties about distributing personal data — declaring actions that for-
ward data to external organizations.

– Global prohibitions for collecting personal data — expressing that the use,
collection, or storage of personal data is forbidden.

– Global prohibitions for distributing personal data — forbidding the forward-
ing of personal data to an organization.

– Global notification guarantees — declaring the sending of a notification upon
the occurrence of a specific event.

– Global retention limits — expressing the time limit after which all categories
of personal data must be deleted.

5 Computation and Evaluation

We illustrate a possible use of the framework with an IDP realization 2. Our
realization infers the GAPs of the user models U1 , U2 , and U3 described earlier,
2 A detailed IDP realization — together with the output containing the GAPs

for the three user models — can be found at https://code.google.com/p/
inferring-accountability/

https://code.google.com/p/inferring-accountability/
https://code.google.com/p/inferring-accountability/

82 K. Decroix et al.

type GAPEvidence constructed from { Uncertain;Guaranteed }

GAPCollectData(DataCategory)
GAPCollectDataAction(DataCategory,Action)
GAPCollectDataForPurposeOf (DataCategory,Purpose)
GAPCollectDataCondition(DataCategory,Condition)
GAPCollectDataProof (DataCategory,GAPEvidence)

GAPForwardDataTo(DataCategory,Organization)
GAPForwardDataAction(DataCategory,Action)
GAPForwardDataForPurposeOf (DataCategory,Purpose)
GAPForwardDataCondition(DataCategory,Condition)
GAPForwardDataProof (DataCategory,GAPEvidence)

GAPNeverCollectData(DataCategory)
GAPNeverCollectDataForPurposeOf(DataCategory,Purpose)
GAPNeverCollectDataCondition(DataCategory,Condition)
GAPNeverCollectDataProof(DataCategory,GAPEvidence)

GAPNeverForwardDataTo(DataCategory,Organization)
GAPNeverForwardDataForPurposeOf (DataCategory,Purpose)
GAPNeverForwardDataCondition(DataCategory,Condition)
GAPNeverForwardDataProof (DataCategory,GAPEvidence)

GAPNotificationGuarantee(DataCategory)
GAPNotificationGuaranteeCondition(DataCategory,Condition)
GAPNotificationGuaranteeProof (DataCategory,GAPEvidence)

GAPRetentionLimit(DataCategory,Duration)
GAPRetentionLimitCondition(DataCategory,Condition)
GAPRetentionLimitProof (DataCategory,GAPEvidence)

IDP Listing 4. Modeling concepts representing the GAP

representing individuals under video surveillance in a railway station. The model
was generated in less than a second on a personal computer. We first compare
the resulting profiles for naive, regular, and privacy-aware data subjects. Next,
we discuss how the statements of entities and users are modeled.

5.1 Trust-Dependent GAP Inference

First, given the type of user and his trust perception toward organizations, we
deduce for each entity the user’s global statement evidence using the rules of
Tab. 2. For instance, U2 (i.e. regular user) is sufficiently guaranteed that data
practices comply with declared ones if they are merely logged. Instead, U3 is
satisfied when statements are logged and verified by an auditor or just logged in

Inferring Accountability from Trust Perceptions 83

case organizations are trusted by him. This global evidence is then used for the
deduction of the GAP using the rules of Tab. 3. The inferred GAPs are summa-
rized in Tab. 4. None of these contain global prohibitions. However, individual
statements of entities include two prohibitions (i.e. R.3 and I.3). The reason for
this is that worst-case computation rules give priority to global duties containing
data categories that are subject of both duties and prohibitions. Semantically,
this corresponds to a user who is more concerned about the categories of data
used rather than about the unused ones.

Global duties for collecting data are perceived differently by U1 , U2 , and
U3 . Since U1 is satisfied with statements that are purely declarative, he be-
lieves that data collection duties are respected by the organizations. Having
the same guarantees U2 is only partially convinced, since he requires at least
data handling logs while the security company’s duty S.1 is purely declarative.
Therefore, Time and Location, subjects of S.1, are considered as global duty
data categories that are uncertain. U3 needs the strongest guarantees. He is not
convinced for any of the data categories part of the GAP. He expects for all data
collection duties that logs exist and that they are verified by an auditor. For
instance, because duty R.1 is logged-unverified, the duty subjects, such as Face
and BlurredFace, are not sufficiently guaranteed for U3 . Furthermore, due to R.1
an additional data category PictureIncident is deduced in U3 ’s GAP. This fol-
lows from the computation rule in Tab. 3 for duties with global evidence that is
uncertain for U3 , and the given railway station’s camera capability Component-
CanCollect(Camera,PictureIncident). Also, comparing the GAP of U3 with the
others, more purposes for collecting data are deduced. In particular, besides that
BlurredFace and Gait are collected for incident detection (i.e. DetectIncident),
these are used as Evidence of incidents as well.

Global data forward duties are computed from the declarative duty R.2 and
the merely logged duty S.2. Both duties declare to forward data to other stake-
holders in the system. The results show that U1 is satisfied with the guaran-
tees provided that the system respects data forwarding declarations. The same
guarantees are too weak to convince U2 and U3 . Both doubt that actual data
practices correspond with declared ones. At first glance, one could expect that
U2 assumes that Time and Location, part of the GAP, are used as declared
by S.2. However, S.2 is redundant with the purely declared duty R.2 because
Time and Location are subjects of R.2 as well. This can be deduced using the
computation rules of Tab. 3 and from the railway company’s image database ca-
pabilities, namely ComponentCanCollect(ImageDB,Time) and ComponentCan-
Collect(ImageDB,Location).

Global retention limits are computed from R.4, I.4, and D.3. Results show that
retention limits are conditional (i.e. NoLegalInvestigation) for all data categories
in the GAP of U1 and U2 . The GAP of U3 shows an additional unconditional
retention limit for data category PersData (i.e. personal data). This is deduced
from R.4, which provided evidence not fulfilling U3 ’s expectations. Indeed, R.4
is just logged, and not verified. Furthermore, U2 only has partial guarantees for
Time and Location since evidence of R.3 sufficiently guarantees him. In case of

84 K. Decroix et al.

Table 4. Inferred GAP synthesizing global accountability in the camera surveillance
system for user models U1 (1), U2 (2), and U3 (3). The numbers in the table indicate
the user models for which the statements in the left column, represented relatively to
the different data categories, are valid.

PictureIncident Face BlurredFace Gait Height Behavior Time Location PersData

Global Collection duties
Actions
Collecting 3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3
Accessing 1,2,3 1,2,3 1,2,3
Storing 3 1,2,3 3 3 3 3 1,2,3 1,2,3
Monitoring 3 3 1,2,3 1,2,3 1,2,3 1,2,3 3 3

Purposes
All 1,2,3
DetectIncident 3 1,2,3 1,2,3 1,2,3 1,2,3 3 3
Evidence 3 3 3 3 3 1,2,3 1,2,3

Conditions
Unconditional 3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Guaranteed 1,2 1,2 1,2 1,2 1,2 1 1

Global Forward duties
Actions
Forwarding

to LegalAuthority 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3
Purposes
Evidence 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Conditions
RequestLegalAuthority 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Guaranteed 1 1 1 1 1 1 1 1

Global Retention Limits
Duration (days)

60 days 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 3
90 days 1,2 1,2

Conditions
UnConditional 3
NoLegalInvestigation 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Guaranteed 1 1 1 1 1 1 1,2 1,2

U3 , R.3 provides insufficient evidence. Hence, usage of Time and Location are
not sufficiently guaranteed according to U3 ’s GAP.

5.2 Statements Modeling and User Models

The statements presented in the scenario are atomic declarations, i.e. they con-
sist of single actions on subject data categories. Concepts in the framework were
defined for modeling atomic statements. However, statements may contain mul-
tiple declarations. The concepts defined lack expressiveness for modeling these.
These statements must be represented by the atomic parts from which they
are composed. For instance, the image database is associated with a declarative
statement announcing the storage of personal data of categories blurred face and
gait for a maximum of 30 days and for the purpose of statistics and marketing.
This is modeled as (a) a duty declaring that data categories blurred face and
gait are stored, and (b) a retention limit specifying that data is kept for a maxi-
mum of 30 days. In the model, these items correspond to separate elements of the

Inferring Accountability from Trust Perceptions 85

Statement domain. Though both statements have the same purposes, these must
be expressed separately. In particular, StatementPurpose(Statement,Purpose) re-
lates the purposes statistics and marketing to the duty and retention limit with
2 statements × 2 purposes relations. Decomposing combined statements may
imply that statement relations grow combinatorially. Similarly, each Statement
element must be related to the Entity “ImageDatabase”, the Permission “Al-
ways”, and to the StatementEvidence “Declarative”. Furthermore, each duty is
related to the Action “Store”.

Users model. The coarse-grained user categorization we use facilitates user mod-
eling since modelers only need to specify user types via a single constant, for
instance TypeOfUser = NaiveUser . The model’s user types intuitively represent
typical real-world users, determining how data subjects appreciate statements
and evidence from organizations. They reflect the fact that skeptical users are
more difficult to convince of the compliance of actual data handling with de-
clared practices. The user model also addresses the high-level trust perception
of users. Namely, UserTrust(O) expresses that a user trusts the organization O.

Reusing framework components. The framework consists of modular compo-
nents, making possible isolated changes to one part while leaving the others
intact. A given system model (e.g. the railway station camera surveillance sce-
nario) is unaffected when new types of users are introduced. Similarly, if an
auditor collects different samples of statement evidence, only changes to the
evidence in the statement model are required.

Detecting conflicts. The user model could be extended with user privacy prefer-
ences containing prohibitions. This aspect could be used by auditors wanting to
verify e.g. whether a system, run by a commercial organization, is not collecting
sensitive health information. The individual statements of system entities are
another flexible facet. Typically, these statements form a large set of opaque
and potentially inconsistent declarations. Automated verification can be added
to the system-independent part of the framework for easy conflict detection.

6 Related Work

A privacy evaluation framework based on trust assumptions is introduced in
[9]. Like our model, it involves multiple stakeholders. This framework was later
implemented in IDP [10]. A distinction is made between storage-trusted and
distribution-trusted organizations. The privacy analysis focuses on which data
is needed for access to services, and how personal data is distributed between
interacting services. By contrast, this paper’s model targets interactions between
organizations, not services, and investigates how statements about personal data
handling, backed with varying levels of evidence, combine with trust perceptions
to yield assumptions about the processing of personal data.

86 K. Decroix et al.

The approach of using standardized privacy policies to enable accountability
by clarifying obligations is widespread. In particular, the idea of combining pri-
vacy policies with data handling logs to automatically check compliance ex post
appears in [28]. The question of the gap between system event logs and logs at the
level of abstraction of privacy policies is addressed in [5]. The consequences of log
design choices for log analysis and accountability are addressed in [4]. Adequate
log design for compliance checking is tricky because of the numerous possible
semantic ambiguities. Both papers presume a single data controller rather than
the setting of this paper — a constellation of interacting data processors with
different, potentially incompatible privacy policies.

Beyond computer science, the scope of application of accountability is a vividly
debated issue in the privacy regulation debate [14]. A key question related to our
work is how far data controllers should be required to go to demonstrate com-
pliance. Distinctions are sometimes [6] made between different levels of account-
ability, ranging from public declarations of intent to full technical transparency,
such as the one that we advocate here. The adequacy of procedures, i.e. orga-
nizational measures, is often discussed. Privacy Impact Assessments are often
advocated [30] and can be seen as a bridge between accountability of procedures
and accountability of practice if the assessment is conducted in sufficient detail.
The question of privacy-preserving surveillance infrastructures is addressed in
particular in the PARIS project [1], with an interdisciplinary angle.

7 Conclusions

We described an accountability inference model and its realization in the IDP
knowledge base system. Trust perceptions are taken into account to compute
global accountability statements from the individual statements made by inter-
acting entities. We distinguish between different levels of proof for the individual
statements, again influencing the resulting global accountability statements. Our
approach is illustrated with a scenario involving stakeholders in a railway surveil-
lance infrastructure. The framework is not tied to any particular scenario and
can be extended easily. Our representation of data handling evidence is only
implicit, and therefore coarse-grained. A more refined approach would model
the semantics of log compliance explicitly. This level of detail seems difficult to
implement within a first-order logic-based framework. In the current version of
the framework, the auditor acting on behalf of an individual is not notified of
privacy policy conflicts automatically. Including this aspect would remove the
need for manual compatibility checking.

Acknowledgement. This work was funded by the Flemish agency for Inno-
vation by Science and Technology (IWT), the European project PARIS / FP7-
SEC-2012-1 and the Inria Project Lab CAPPRIS.

Inferring Accountability from Trust Perceptions 87

References

1. PrivAcy pReserving Infrastructure for Surveillance (PARIS),
http://www.paris-project.org

2. Bella, G., Paulson, L.C.: Accountability Protocols: Formalized and Verified. ACM
Trans. Inf. Syst. Secur. 9(2), 138–161 (2006)

3. Bellare, M., Yee, B.S.: Forward Integrity for Secure Audit Logs. Tech. rep.,
University of California at San Diego (1997)

4. Butin, D., Chicote, M., Le Métayer, D.: Log Design for Accountability. In: 2013
IEEE Security & Privacy Workshop on Data Usage Management, pp. 1–7. IEEE
Computer Society (2013)

5. Butin, D., Le Métayer, D.: Log Analysis for Data Protection Accountability. In:
Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 163–178.
Springer, Heidelberg (2014)

6. Bennett, C.J.: Implementing Privacy Codes of Practice. Canadian Standards
Association (1995)

7. De Hert, P.: Accountability and System Responsibility: New Concepts in Data Pro-
tection Law and Human Rights Law. In: Managing Privacy through Accountability,
pp. 193–232. Palgrave Macmillan (2012)

8. De Pooter, S., Wittocx, J., Denecker, M.: A Prototype of a Knowledge-based
Programming Environment. In: Proceedings of the 19th International Conference
on Applications of Declarative Programming and Knowledge Management (INAP
2011), pp. 191–196 (2011)

9. Decroix, K., Lapon, J., De Decker, B., Naessens, V.: A Formal Approach for Inspect-
ing Privacy and Trust in Advanced Electronic Services. In: Jürjens, J., Livshits,
B., Scandariato, R. (eds.) ESSoS 2013. LNCS, vol. 7781, pp. 155–170. Springer,
Heidelberg (2013)

10. Decroix, K., Lapon, J., De Decker, B., Naessens, V.: A Framework for Formal
Reasoning about Privacy Properties Based on Trust Relationships in Complex
Electronic Services. In: Bagchi, A., Ray, I. (eds.) ICISS 2013. LNCS, vol. 8303, pp.
106–120. Springer, Heidelberg (2013)

11. Denecker, M.: A Knowledge Base System Project for FO(.). In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, p. 22. Springer, Heidelberg (2009)

12. European Commission: Regulation of the European Parliament and of the Council
on the protection of individuals with regard to the processing of personal data and
on the free movement of such data (General Data Protection Regulation), inofficial
consolidated version after LIBE committee vote (2013)

13. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-Driven Answer Set Solving: From
Theory to Practice. Artif. Intell. 187, 52–89 (2012)

14. Guagnin, D., Hempel, L., Ilten, C.: Managing Privacy Through Accountability.
Palgrave Macmillan (2012)

15. Haeberlen, A.: A Case for the Accountable Cloud. Operating Systems Review 44(2),
52–57 (2010)

16. The IDP system (2014), http://dtai.cs.kuleuven.be/krr/idp
17. KRR Software: IDP examples (2014),

http://dtai.cs.kuleuven.be/krr/software/idp-examples
18. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua – an extensible extension

language. Software: Practice and Experience 26(6), 635–652 (1996)
19. Jackson, D.: Alloy: A Lightweight Object Modelling Notation. ACM Transactions

on Software Engineering and Methodology (TOSEM 2002) 11(2), 256–290 (2002)

http://www.paris-project.org
http://dtai.cs.kuleuven.be/krr/idp
http://dtai.cs.kuleuven.be/krr/software/idp-examples

88 K. Decroix et al.

20. Jackson, D.: Alloy: a language & tool for relational models (2012),
http://alloy.mit.edu/alloy/

21. Lee, L., Grimson, W.E.L.: Gait Analysis for Recognition and Classification. In:
IEEE International Conference on Automatic Face and Gesture Recognition,
pp. 148–155 (2002)

22. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

23. Mecocci, A., Pannozzo, M., Fumarola, A.: Automatic detection of anomalous be-
havioural events for advanced real-time video surveillance. In: IEEE International
Symposium on Computational Intelligence for Measurement Systems and Applica-
tions (CIMSA 2003), pp. 187–192 (2003)

24. Organisation for Economic Co-operation and Development: OECD Guidelines on
the Protection of Privacy and Transborder Flows of Personal Data (1980)

25. Raab, C.: The Meaning of ‘Accountability’ in the Information Privacy Context. In:
Managing Privacy through Accountability, pp. 15–32. Palgrave Macmillan (2012)

26. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General
Logic Programs. Journal of the ACM 38(3), 620–650 (1991)

27. Viola, P., Jones, M.: Robust Real-Time Face Detection. International Journal of
Computer Vision 57(2), 137–154 (2004)

28. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Sussman,
G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008)

29. Wittocx, J., Mariën, M., Denecker, M.: The IDP system: A model expansion system
for an extension of classical logic. In: Denecker, M. (ed.) Proceedings of the 2nd
Workshop on Logic and Search, Logic and Search, pp. 153–165. ACCO (2008)

30. Wright, D., de Hert, P.: Introduction to Privacy Impact Assessment. In: Wright,
D., Hert, P. (eds.) Privacy Impact Assessment, pp. 3–32. Springer (2012)

http://alloy.mit.edu/alloy/

Client Side Web Session Integrity

as a Non-interference Property

Wilayat Khan1, Stefano Calzavara1, Michele Bugliesi1,
Willem De Groef2, and Frank Piessens2

1 Ca’ Foscari University of Venice, Italy
2 iMinds-DistriNet, KU Leuven, Belgium

Abstract. Sessions on the web are fragile. They have been attacked suc-
cessfully in many ways, by network-level attacks, by direct attacks on ses-
sion cookies (the main mechanism for implementing the session concept)
and by application-level attacks where the integrity of sessions is violated
by means of cross-site request forgery or malicious script inclusion. This
paper defines a variant of non-interference – the classical security notion
from information flow security – that can be used to formally define the
notion of client-side application-level web session integrity. The paper
also develops and proves correct an enforcement mechanism. Combined
with state-of-the-art countermeasures for network-level and cookie-level
attacks, this enforcement mechanism gives very strong assurance about
the client-side preservation of session integrity for authenticated sessions.

Keywords: web security, information flow control.

1 Introduction

Because of the stateless nature of the HTTP protocol, web applications that need
to maintain state over multiple interactions with a client have to implement some
form of session management: the server needs to know to which ongoing session
(if any) incoming HTTP requests belong. Sessions are usually implemented by
means of session cookies. The server generates an unpredictable random identifier
at the start of a session, and sends it to the browser as a cookie. All subsequent
requests from the same client will carry this cookie, and this tells the server which
session incoming requests belong to. Session management is an important but
vulnerable part of the modern web, in particular because client authentication
is usually tied to sessions: the client is authenticated using either a password,
a single-sign-on system or some multi-factor scheme, and if authentication is
successful, the server marks the session as authenticated. Hence, attacks against
session management can be used to impersonate clients to the server.

Sessions can be attacked at many layers. First, at the network layer, network
sniffing or man-in-the-middle attacks can break the confidentiality or integrity of
web sessions. This is a well-understood problem with well-understood solutions:
by appropriate use of transport level security techniques such as SSL/TLS, these

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 89–108, 2014.
© Springer International Publishing Switzerland 2014

90 W. Khan et al.

attacks can be stopped. Second, at the session implementation layer, script in-
jection or again network level attacks can be used to steal a session cookie and
hijack the session, or to impose a session cookie on a client (a so-called session
fixation attack [19,15]). Again, this is a well-understood problem: ensuring that
sessions only run over SSL/TLS, prohibiting script access to session cookies (by
setting the HttpOnly and Secure attributes on session cookies), and enforcing
renewal of a session on authentication, are appropriate countermeasures to such
attacks. Third, sessions can be attacked at the application layer: since cookies
are attached to HTTP requests by the browser automatically – without any web
application involvement – any page in the browser can send malicious requests
to any of the servers that the browser currently has a session with, and that
request will automatically get the session cookie attached and hence will be con-
sidered as part of a (possibly authenticated) session by the server. If the page
sending the malicious request is from a different origin, such attacks are called
CSRF (cross-site request forgery) attacks [4]. But malicious requests can also be
sent by scripts included in – or injected by an attacker into – a page from the
same origin. Since both inclusions of third-party scripts [23] and script injection
vulnerabilities are common [18], these are important attack vectors.

The focus of this paper is on client-side protection against application-level
attacks against sessions. We assume that state-of-the-art countermeasures are in
place for network-level and session management-level attacks, and our objective
is to formally define the notion of client-side session integrity and to develop
provably secure countermeasures for application-level attacks. While point so-
lutions exist to protect against various forms of CSRF and script injection, the
problem of application-level session integrity is not yet well-understood. There
are two existing formalizations of the notion of web session integrity: Akhawe et
al. [2] develop an Alloy model of the web platform and define session integrity
as the property that no attacker is in the causal chain of any HTTP request be-
longing to the session. This is an excellent definition for the purpose of studying
CSRF attacks and countermeasures, but the underlying model does not have
a sufficiently detailed representation of scripts to study other application-level
session integrity issues. In a very recent paper, Bugliesi et al. [10] are the first
to provide a formal definition of session integrity that is browser-centric and
amenable for client-side enforcement. They define how an attacker can influence
execution traces of the browser, and then define session integrity as the property
that the attacker has no effective way of interfering with an authenticated session.
Based on this definition, they also design an access control/tainting mechanism
that enforces session integrity at the client side.

The main objectives of this paper are (1) to refine the definition of Bugliesi
et al. to a classical non-interference property [25], under the assumption that
appropriate defenses against both network-level and cookie-level attacks are put
in place, and (2) to design an information flow control technique that can enforce
session integrity in a more permissive and fine-grained way than access control
mechanisms can. This is crucial to foster the usability of the client-side protection
mechanism and support collaborative web scenarios, like e-payment.

Client Side Web Session Integrity as a Non-interference Property 91

In summary, the main contributions of this paper are:

– the development of login history dependent non-interference for reactive sys-
tems, a variant of non-interference where the security labeling function is
execution history dependent.

– the application of login history dependent non-interference to web session
integrity: we show how this notion of non-interference captures the peculiar-
ities and complexities of web session integrity.

– the development of a mechanism for enforcing login history dependent non-
interference by means of secure multi-execution, with a formal proof of se-
curity.

– the design of additional improvements to this mechanism for the web context.
– a prototype implementation of the mechanism as an extension of the FlowFox

information flow secure web browser.

The remainder of this paper is structured as follows. First, in Section 2, we give
an informal overview of the problem of application-level session integrity and
the idea of login history dependent non-interference. We formalize this in Sec-
tion 3, where we define an enforcement mechanism and prove it secure. Then, in
Section 4 we show how this applies to web session integrity, and in Section 5 we
describe a few extensions to the formal model to make the enforcement mech-
anism more compatible with the web. In Section 6 we describe our prototype
implementation. Sections 7 and 8 discuss related work and conclude.

2 Informal Overview

Consider a user using his web browser to interact with a number of web sites.
With some of these web sites, the user has an ongoing authenticated session (for
instance with his web mail provider M and with a social networking site S).
Other sites have been opened in the browser by casually surfing the web, and
the user has no authenticated session with them. Both pages from more trusted
sites (like M or S) and less trusted sites (e.g., a web site O) might themselves
consist of content retrieved from a variety of origins. A page served by M might
include scripts, images and other resources from anywhere on the web.

The problem we consider in this paper is the following one: how can we make
sure that the browser protects the integrity of the authenticated sessions that
it has, for instance, with M , in the sense that no other web site than M itself
can influence authenticated HTTP requests from the browser to M . Even if we
assume (as we do in this paper) that network communication and session cookies
are adequately protected, the following example attacks are still possible:

– CSRF: Pages from O can send HTTP requests to M or S, for instance by
including an image or a script from these sites, or (in some cases) by sending
an XHR request. The browser will automatically attach cookies to these
requests, including the session cookie, and hence such requests are treated
by the server as belonging to the authenticated session.

92 W. Khan et al.

– Malicious resource inclusions: ifM includes a script from some script provider
(e.g. an advertisement network, a JavaScript library provider, or a web an-
alytics company) then that script can send arbitrary authenticated HTTP
requests to M .

– Client-side or reflected XSS: Pages from O can load pages from M and use a
mal-formed fragment identifier or URL parameter that trigger a client-side
(DOM-based) or reflected XSS vulnerability. The injected script can then
send arbitrary authenticated requests to M .

A common way to formalize integrity properties such as the one above is based
on concepts from information flow security. One defines a partially ordered set
of security labels that represent integrity levels (in the simplest case, two labels
� and ⊥ for high, respectively low, integrity). All inputs and outputs from the
program under consideration (in our case, the browser) are labeled. Inputs are
labeled � if they come from a trustworthy source, and ⊥ otherwise. Outputs
are labeled � if their integrity is important and ⊥ otherwise. A program is
information flow secure (non-interferent) if low integrity inputs do not influence
high integrity outputs (i.e. no information flows from low integrity sources to
high integrity targets).

A complication in the case of web session integrity is that both the set of
integrity labels, as well as the labeling function, evolve over time as the user
logs into more sites. The same message sent by site O to site M (for instance
if the page from O sends a request to load a resource from M) will be of low
integrity level if the browser is currently not logged into M , and it will be of a
higher integrity level if the browser is logged into M . This kind of login history
dependent non-interference is exactly what we will formalize and then instantiate
to the web context in the following sections.

3 Login History Dependent Non-interference: Definition
and Enforcement

Following Bohannon et al. [9,8,7], we model a browser as a reactive system. Then
we introduce the property of login history dependent reactive non-interference
and an enforcement mechanism for it.

3.1 Reactive System

A reactive system is a constrained labeled transition system that transforms
input events into sequences of output events.

Definition 1 (Reactive System). A reactive system is a tuple (C,P , I,O,−→),
where C and P are disjoint sets of consumer and producer states respectively, I and
O are disjoint sets of input and output events respectively. The last component,
−→, is a labeled transition relation over the set of states S � C ∪ P and the set of
labels A � I ∪ O, subject to the following constraints:

Client Side Web Session Integrity as a Non-interference Property 93

1. C ∈ C and C
α−→ Q imply α ∈ I and Q ∈ P;

2. P ∈ P, Q ∈ S and P
α−→ Q imply α ∈ O;

3. C ∈ C and i ∈ I imply ∃P ∈ P : C
i−→ P ;

4. P ∈ P implies ∃o ∈ O, ∃Q ∈ S : P
o−→ Q.

We limit our attention in this paper to deterministic reactive systems.
We assume given a set of web domains D, and we stipulate that the set of

input events I contains an event login(d) for all d ∈ D. This event models a
successful login of the browser into domain d. We assume the set of output
events O contains an event · that represents a silent output, i.e. an internal
computation step of the reactive system. A stream is defined by the coinductive
interpretation of the grammar S ::= [] | s :: S′, where s ranges over individual
stream elements. Bohannon et al. define the behaviour of a reactive system in a
state Q as a relation between input and output streams. To handle login history
dependence, we instead define it as a relation between input streams and event
streams that contain both input and output events, appropriately interleaved:

Definition 2 (Reactive Behaviour). A reactive system state Q generates the
event stream S from the input stream I if the judgment Q(I) � S holds, where
this judgment is coinductively defined by:

C([]) � []

C
i−→ P P (I) � S

C(i :: I) � i :: S

P
o−→ Q Q(I) � S

P (I) � o :: S

3.2 Login History Dependent Non-interference

The lattice of possible integrity levels L has elements � (highest integrity), ⊥
(lowest integrity), and d for all d ∈ D (integrity level of authenticated commu-
nication with domain d). Since higher integrity information can flow to lower
integrity levels but not vice-versa, we define the ordering relation on L as
� ≤ d ≤ ⊥, and for different d and d′, d and d′ are incomparable.

The key idea of login history dependent non-interference (LHDNI) is to make
the labeling function that assigns integrity levels to events dependent on the lo-
gin events that have occurred. Initially, all network events are low integrity (⊥),
but after a login(d) event, network communication with d will have level d. This
models the behaviour of a web browser: because of the automatic attaching of
cookies (including the session cookie), the integrity of network communication to
domain d becomes more important after a login to d. It also models our assump-
tion that the server will be more careful with HTTP responses for authenticated
sessions (integrity level of these responses is higher).

The login history is represented as a finite sub-lattice L of L, where L is
initially {�,⊥}, and L evolves with inputs processed as follows (where we write
L⊕ d for extending L with element d):

(τ -LOGIN)

i = login(d)

L
i−→ L⊕ d

(τ -NIL)

i
= login(d)

L
i−→ L

94 W. Khan et al.

In words, whenever the user logs into a domain d, label d is added to the set
of integrity labels L.

The function lblL(e) : I �O → L that labels events depends on the login his-
tory L. The intuition is that interactions that belong to a session with a domain d
will get label d iff d ∈ L, otherwise they get label ⊥, i.e. once logged in to d, we
care about the integrity of messages to d. We stipulate that lblL(login(d)) = d
for any d.

We use the notation L|l for the list of labels l′ ∈ L such that l ≤ l′ and L|l for
the list of labels l′ ∈ L such that l′ ≤ l. For an input i, for simplicity, we write
L|lblL(i) as just L|i.

LHDNI is defined in terms of the relation LHD-similarity, which defines when
two streams look the same to an observer at level l while taking the login history
into consideration.

Definition 3 (LHD-similarity). Under login history L, two streams S and
S′ are LHD-similar at level l if the judgment L � S ≈l S′ holds, where this
judgment is coinductively defined by:

(ID-NIL)

L � [] ≈l []

(ID-LOGIN)

s = login(d) d ≤ l L⊕ d � S ≈l S
′

L � s :: S ≈l s :: S
′

(ID-SIM)

s
= login(d) lblL(s) ≤ l L � S ≈l S
′

L � s :: S ≈l s :: S
′

(ID-L)

lblL(s)
≤ l L � S ≈l S
′

L � s :: S ≈l S
′

(ID-R)

lblL(s)
≤ l L � S ≈l S
′

L � S ≈l s :: S
′

Now, a state is LHDNI if l-similar inputs lead to l-similar outputs:

Definition 4 (LHDNI). A state Q of a reactive system is LHDNI if Q(I) � S
and Q(I ′) � S′ imply that ∀l ∈ L, ∅ � I ≈l I

′ ⇒ ∅ � S ≈l S
′.

Notice that it is important that we compare S and S′, the event streams that
contain interleaved input and output events, because of the history dependence of
the definition of LHD-similarity. If we would only consider the output events, as
classic non-interference definitions do, then there would be no login event present
in the output streams; but we have to keep the login events there, because they
influence the labeling function.

3.3 Enforcement

We now build an enforcement mechanism based on secure multi-execution
(SME) [16,6,24]. The basic idea is to construct a new reactive system that is

Client Side Web Session Integrity as a Non-interference Property 95

a wrapper around multiple copies (sub-executions) of the original reactive sys-
tem, one for each level in the login history L. When the wrapper consumes an
input event, it is passed to the copies at or higher than the level of the input.
When a sub-execution produces an output, if its level matches the level of the
execution, the output is produced by the wrapper, otherwise it is suppressed.

A state of the wrapper is a triple (L,R,Lq), where

– L is the login history,
– R is a function mapping security labels in L to states, i.e. R(l) is the sub-

execution at level l, and
– Lq is a waiting queue of levels that still need to process the last input con-

sumed. It is initially empty and when an input is consumed it is set to all
levels that should process this input. We order these from low integrity to
high integrity such that the sub-execution at level ⊥ is always executed first.

States (L,R, []) are consumer states, and states (L,R,Lq) with Lq
= [] are
producer states. The initial state of the wrapper is a state ({�,⊥}, R, []) with
R(�) and R(⊥) being the initial state of the original reactive system.

(LOGIN)

i = login(d) d �∈ L L′ = L⊕ d Lq = L′|d

R(l)
i−→ Pl R′(d) = P� R′(l) = Pl for l ∈ Lq \ {d} R′(l) = R(l) for l �∈ Lq

(L,R, [])
i−→ (L′, R′, Lq)

(LOAD)

i �= login(d) ∨ (i = login(d) with d ∈ L)

R(l)
i−→ Pl Lq = L|i R′(l) = Pl for l ∈ Lq R′(l) = R(l) for l �∈ Lq

(L,R, [])
i−→ (L,R′, Lq)

(OUT-P)

R(l)
o−→ P lblL(o) = l

(L,R, l :: Lq)
o−→ (L,R[l �→ P], l :: Lq)

(OUT-C)

R(l)
o−→ C lblL(o) = l

(L,R, l :: Lq)
o−→ (L,R[l �→ C], Lq)

(DROP-P)

R(l)
o−→ P lblL(o) �= l

(L,R, l :: Lq)
.−→ (L,R[l �→ P], l :: Lq)

(DROP-C)

R(l)
o−→ C lblL(o) �= l

(L,R, l :: Lq)
.−→ (L,R[l �→ C], Lq)

Fig. 1. Basic semantics for secure multi-execution of a reactive system

The semantics is shown in Figure 1. The main extension with respect to
standard SME for reactive systems [6] is the way in which login events are
handled: these update the login history L, and hence also the number of sub-
executions in the wrapper, and (implicitly) the labeling function lblL. Note how
the newly created sub-execution at level d is initialized: P� is the resulting state

96 W. Khan et al.

after giving i to R(�), i.e. we essentially clone the sub-execution at level �
and feed it i. This is the right thing to do, as we want the newly created sub-
execution to have seen all the events of higher integrity than d. The (LOAD)
rule handles other input events than initial login events. It essentially feeds the
input to all sub-executions with a level ≤ lblL(i), by updating the appropriate
sub-executions in R to a state where they have received i, and by setting the
waiting queue to contain all levels that have to process this input event. The
other four rules implement the SME output rules, making sure that output of
level l is only performed by the execution at level l. They also make sure that, as
sub-executions return to a producer state, the next sub-execution in the waiting
queue gets a chance to run.

These rules effectively block all cross-origin requests to authenticated do-
mains. For instance, if a page received from an unauthenticated domain (a ⊥
event) loads an image from an authenticated domain d, the corresponding HTTP
request (a d-level event) will be suppressed.

We can do substantially better: instead of dropping such requests, we can
strip the session cookie from the request as in other client-side CSRF protection
systems [10,14]. We assume the existence of a function stripL(o) that for any o
with lblL(o) = d (for some d) strips the session cookies from o, and for all other o
returns o.

We define the projection functions πL
l as follows:

πL
l (o) =

{
stripL(o) if l = ⊥
o otherwise

We assume that the event labeling function lblL checks for the presence of an
authentication cookie to deem a network output as a high integrity event. Hence
lblL(strip

L(o)) is always ⊥.

(OUT-P)

R(l)
o−→ P releaseL,l,Lq

(o)

(L,R, l :: Lq)
πL
l (o)−→ (L,R[l �→ P], l :: Lq)

(OUT-C)

R(l)
o−→ C releaseL,l,Lq

(o)

(L,R, l :: Lq)
πL
l (o)−→ (L,R[l �→ C], Lq)

(DROP-P)

R(l)
o−→ P ¬releaseL,l,Lq

(o)

(L,R, l :: Lq)
.−→ (L,R[l �→ P], l :: Lq)

(DROP-C)

R(l)
o−→ C ¬releaseL,l,Lq

(o)

(L,R, l :: Lq)
.−→ (L,R[l �→ C], Lq)

Fig. 2. Semantics for secure multi-execution of a reactive system (updated)

The basic semantics (Figure 1) released an output o from a sub-execution at
level l only if lblL(o) = l. We can now generalize this: a sub-execution at level l
can release πL

l (o) if the following predicate holds:

Client Side Web Session Integrity as a Non-interference Property 97

releaseL,l,Lq(o) = lblL(o) = l ∨ (l = ⊥ ∧ lblL(o)
∈ Lq)

That is, an output is released from a sub-execution if its label matches the
label l of the sub-execution, or when l = ⊥ and there is no sub-execution at
the level of the output in the waiting queue. Since we process sub-executions
in the order from low integrity to high integrity, this means that this output is
being sent in response to an input that was not of level lblL(o), and hence is a
cross-domain request to an authenticated domain. We show the updated rules
in Figure 2.

3.4 Security

We now show that the enforcement mechanism defined above guarantees LHDNI.
All the proofs of lemmas and theorems are given in the full version [21].

Theorem 1 (Security). All the initial states of the wrapper are LHDNI.

We prove the theorem using Bohannon’s ID-bisimulation proof technique [9].
It suffices to prove that there exists an ID-bisimulation ≈l such that for every
state of the wrapper (L,R,Lq), we have (L,R,Lq) ≈l (L,R,Lq). The proof
of security consists of two steps: first we have to define the relation ≈l and
then we need to show that it is indeed an ID-bisimulation relation. Note the
overloading of the ≈l notation. When used between streams, it is interpreted
as LHD-similarity (Definition 3), when used between reactive system states, it
refers to the definition below.

Definition 5 (l-similarity relation ≈l). The state (L1, R1, Lq1) is l-similar
to the state (L2, R2, Lq2) (written (L1, R1, Lq1) ≈l (L2, R2, Lq2)) iff:

– L1|l = L2|l, and
– R1 ≈l R2, meaning ∀l′ ≤ l: R1(l

′) = R2(l
′), and

– Lq1|l = Lq2|l.

Lemma 1. The l-similarity relation is an ID-bisimulation relation.

4 Instantiation to Web Session Integrity

In this section, we show by example how LHDNI protects browsers from typical
attacks on session integrity. Recall that we assume that best practices for ses-
sion security (i.e. the use of SSL/TLS and the use of the Secure and HttpOnly
attributes on session cookies) are in place. We assume that login events are rec-
ognizable by the browser; they are triggered for instance by a bookmarklet or
password manager, and the response page of the site that one is logging into is
shown in a separate top-level frame (tab) in the browser. The browser should
enforce that logins to these known and trusted domains must happen through
these bookmarklets, to avoid attacks such as login CSRF [4].

98 W. Khan et al.

We show by example how remaining attacks such as classic CSRF and ma-
licious script inclusion are countered by our enforcement mechanism. A similar
example can be constructed for client-side or reflected XSS.

Applying the enforcement mechanism described by the semantics in Figure 2
to web browsers requires us to define the sets of input and output events for
a browser. We limit our attention to a simple set of events that can model the
attacks we care about. These events are described in Table 1 (the first 4 events
are input events, the last 4 are output events). The table also shows the value
of the lblL function.

All these events are standard browser events and easy to recognize by the
browser (for the login(d) event because of the assumptions we made above).

Table 1. User actions, input/output events and their labels

User actions I/O events lblL
d ∈ L d �∈ L

typing URL to domain d in the address bar ui load(d) � �
network response from domain d with header h net resp(d, h) d ⊥
clicking link on the page from domain d ui link click(d) d ⊥
entering password on the page from domain d login(d) d d

network request to domain d (incl. cookie) net req(d) d ⊥
network request to domain d (no cookie) net req(d) ⊥ ⊥
loading a page at the screen ui page loaded ⊥ ⊥
dummy · ⊥ ⊥

CSRF. Figure 3 gives a schematic overview of a classic CSRF attack. The user
signs into web site A (messages 1-4) and opens a page in another tab from
malicious web site E (messages 5-8), which implicitly sends a cross-origin request
to load remote content (e.g. an image) from A (message 9). As the browser will
attach all the cookies with this request to A, it will lead to a CSRF attack on A.

Figure 4 shows an encoding of this attack in our browser model, and shows
how our enforcement mechanism stops the attack. Each line of the encoding is
of the form (E, [Rule]) : (L,R, [])

n−→ (L′, R′, Lq), where E is the input or output
event, Rule is the semantics rule (Figure 2), (L,R,Lq) represents the state of the
wrapper and n is the message number in the corresponding interaction diagram
figure. Outputs are shown slightly indented, so that it is easy to see by which
input event they are caused. We write L0 for the set {⊥,�}, and LA for the set
{⊥, A,�}. For simplicity, the finite list l1 :: l2 :: [] is denoted with l1 :: l2. If we
do not care about a specific component of the browser state, we write .

Events and semantics rules corresponding to each event in Figure 3 are shown
in Figure 4. In this scenario, using a standard web browser, the attack would
happen in message 9, where the request to A (initiated in response from E)
would include cookies. However, under the wrapper, the attack is prevented.
Specifically, the basic semantics in Figure 1 would drop the request, since a low
integrity sub-execution is not allowed to send A-labeled requests; the updated

Client Side Web Session Integrity as a Non-interference Property 99

Origin A

User

Browser Origin E

10: hidden response

9: hidden request

7: page

6: open page

3: success

2: login

8: page

4: success

5: open page

1: login

Fig. 3. Classic CSRF

semantics in Figure 2, instead, would strip the cookies from the request for the
very same reason. Both options are secure, but the second option will break less
existing web sites.

Malicious script inclusion. Figure 5 gives a schematic overview of a script in-
clusion attack. The user signs into web site A (messages 1-4) and then opens
a page (messages 5-6). This page includes a script tag that will include a third
party script from E. When the page from A is being rendered (messages 7-8),
the remote script is loaded from the web site E (message 9-10). The script can
then for instance install an event handler that will trigger an (authenticated)
request to A at a later time.

This example is encoded in Figure 6. The response input from E (message
10) gets a ⊥ label, hence is fed only into the low integrity sub-execution. All
the requests to A initiated by the user (in the context of A) or directly by input
from A are released from the sub-execution at level A, and hence are not affected
by the script injected to the sub-execution at ⊥. Requests released from the ⊥
sub-execution may be affected but as those outputs do not include cookies, they
are safe. In the example, the request to A (message 12) as the result of the user
input (message 11) is released from the execution at ⊥ (release line 12 in Figure
6). The sub-execution at A label never received the script from E, so it will not
react to the link click, and just output a silent event (·).

100 W. Khan et al.

1. (login(A), [LOGIN]): (L0, , [])
1−→ (LA, ,⊥ :: A)

2. suppress (net req(A), [DROP-C]): (LA, ,⊥ :: A)
·−→ (LA, , A)

2. release (net req(A), [OUT-C]): (LA, , A)
2−→ (LA, , [])

3. (net resp(A,h), [LOAD]): (LA, , [])
3−→ (LA, ,⊥ :: A)

4. release (ui page loaded, [OUT-C]): (LA, ,⊥ :: A)
4−→ (LA, , A)

4. suppress (ui page loaded, [DROP-C]): (LA, , A)
·−→ (LA, , [])

5. (ui load(uE), [LOAD]): (LA, , [])
5−→ (LA, ,⊥ :: A :: �)

6. release (net req(E), [OUT-C]): (LA, ,⊥ :: A :: �)
6−→ (LA, , A :: �)

6. suppress (net req(E), [DROP-C]): (LA, , A :: �)
·−→ (LA, ,�)

6. suppress (net req(E), [DROP-C]): (LA, ,�)
·−→ (LA, , [])

7. (net resp(E,h), [LOAD]): (LA, , [])
7−→ (LA, ,⊥)

8. release (ui page loaded, [OUT-P]): (LA, ,⊥)
8−→ (LA, ,⊥)

9. release w/o cookies (net req(A), [OUT-C]): (LA, ,⊥)
9−→ (LA, , [])

Fig. 4. Classic CSRF attack encoding and prevention

5 Extensions

The enforcement mechanism described by the formal semantics in Figure 2 en-
forces security policies to protect against attacks on session integrity, but by
doing so it does break some common web scenarios that technically violate ses-
sion integrity, but do so without malicious purposes. These scenarios can be
handled in our approach by means of endorsement (the integrity variant of de-
classification [24,28]).

Endorsements will typically have to be declared by the web site that the
browser has an authenticated session with. In the two approaches below, these
declarations are done by means of request headers, similar to how Content Se-
curity Policy (CSP) [27] policies are communicated to the browser.

Endorsing script inclusions. A first, simple and common kind of endorsement is
for script inclusion. The script inclusion example in Figure 5 is commonly not
an attack: web site A includes the script from E intentionally and trusts it to
influence the session. While some scripts can be usefully included without having
the possibility to influence the session (e.g. analytics scripts), inclusion of other
scripts is only useful when these scripts have the right to influence the session
(e.g. the jQuery library).

Fortunately, endorsing script inclusions is straightforward. The server A de-
clares in a HTTP header which origins can provide trusted scripts, and the
browser uses this information to label outgoing and incoming requests to these
white-listed origins from A’s pages as being of level A. One could even argue
that this should be the default interpretation of the CSP policy directives that
allow script inclusions (e.g. the script-src directive).

Endorsements for collaborating applications. Endorsements are also required for
collaborating web applications such as e-payment systems (e.g. Paypal). Con-

Client Side Web Session Integrity as a Non-interference Property 101

Fig. 5. Script inclusion attack

sider, for example, a user who wants to buy an airline ticket at web site A and
pay via paypal.com (Figure 7).

The user opens a page from web site A where he clicks the buy button and
then the user confirms the payment on the paypal.com web site. Messages 3-4
and 15-17 of Figure 7 are encoded in our model in Figure 8. We assume the user
is logged into both A and P (Paypal), i.e. L contains both A and P .

The message 17 (GET: confirmed) is a cross-origin request to A and hence
the wrapper will release it from the execution at ⊥. As all the session cookies
are erased, the payment operation will fail.

To support such collaborating web applications, endorsement is needed. For
these cases, we propose the use of a response header, used by the web site
to specify allowed entry points from different origins. A web site s (source of
white-list) sends a list of URLs url pointing to s specifying that another site
w (white-listed site) is allowed to send cross-origin requests to these URLs, by
setting a connect-destination (cd) header <cd: {W:w,U:url}> in the response.

The wrapper will keep track of these headers by updating a set ω of key-
value pairs of the form (w, url), where w is the white-listed web site (the who
part) and url is the list of URLs (the how part) specified as the allowed entry
points white-listed for the w. The list of URLs url can also include URLs with
wildcard character ∗ such as s.com/∗, where the web site w can send cross-origin
(authenticated) requests to any URL of the site s.com.

As a simple example, assume two web sites A and B send the endorsement
headers <cd: {W:P, U:[a.com/∗]}> and <cd: {W:P, U:[b.com/u1, b.com/u2]}>

102 W. Khan et al.

1. (login(A), [LOGIN]): (L0, , [])
1−→ (LA, ,⊥ :: A)

2. suppress (net req(A), [DROP-C]): (LA, ,⊥ :: A)
·−→ (LA, , A)

2. release (net req(A), [OUT-C]): (LA, , A)
2−→ (LA, , [])

3. (net resp(A,h), [LOAD]): (LA, , [])
3−→ (LA, ,⊥ :: A)

4. release (ui page loaded, [OUT-C]): (LA, ,⊥ :: A)
4−→ (LA, , A)

4. suppress (ui page loaded, [DROP-C]): (LA, , A)
·−→ (LA, , [])

5. (ui link click(A), [LOAD]): (LA, , [])
5−→ (LA, ,⊥ :: A)

6. suppress (net req(A), [DROP-C]): (LA, ,⊥ :: A)
·−→ (LA, , A)

6. release (net req(A), [OUT-C]): (LA, , A)
6−→ (LA, , [])

7. (net resp(A,h), [LOAD]): (LA, , [])
7−→ (LA, ,⊥ :: A)

8. release (ui page loaded, [OUT-P]): (LA, ,⊥ :: A)
8−→ (LA, ,⊥ :: A)

9. release (net req(E), [OUT-C]): (LA, ,⊥ :: A)
9−→ (LA, , A)

8. suppress (ui page loaded, [DROP-P]): (LA, , A)
·−→ (LA, , A)

9. suppress (net req(E), [DROP-C]): (LA, , A)
·−→ (LA, , [])

10. (net resp(E, h), [LOAD]): (LA, , [])
10−→ (LA, ,⊥)

release (·, [DROP-C]): (LA, ,⊥)
.−→ (LA, , [])

11. (ui link click(A), [LOAD]): (LA, , [])
11−→ (LA, ,⊥ :: A)

12. suppress (net req(A), [DROP-C]): (LA, ,⊥ :: A)
·−→ (LA, , A)

12. release (·, [OUT-C]): (LA, , A)
·−→ (LA, , [])

Fig. 6. Script inclusion attack encoding and prevention

in their responses. Initially, when the response from A is received, the wrapper
will store in ω an entry (P, [a.com/∗]) and when the other response from B is
received, it will add the two URLs to the value bound to P , hence ω will become
(P, [a.com/∗, b.com/u1, b.com/u2]). The URL a.com/∗ represents all the URLs
of web site A.

Now we have the required information to decide if a cross-origin request should
be endorsed. After receiving the example headers above, an output from P to
any URL of A or to any of the two URLs b.com/u1 and b.com/u2 of web site B
should include cookies. On receipt of an input event i with label d, the wrapper
will compute the set of URLs that d is allowed to send cross-origin requests to
by looking it up in ω. Let us call the resulting set Ui.

We generalize the release predicate so that it takes Ui into account. An output
is released from a state if (1) its label matches the label l of the current sub-
execution or, (2) when l = ⊥ and there is no sub-execution at the level of the
output and the request URL is not white-listed, or (3) when l
= ⊥, and the
request URL is white-listed. The predicate releaseL,l,Lq

(o, u, Ui) is defined as
follows:

l = lblL(o) ∨ (l = ⊥ ∧ lblL(o)
∈ Lq ∧ u
∈ Ui) ∨ (l
= ⊥ ∧ u ∈ Ui).

We can now show that the Paypal example (Figure 7) works. We show an
encoding in our model in Figure 9. (We show ω and Ui as the third and fourth
component of the tuple representing the extended browser state.)

Client Side Web Session Integrity as a Non-interference Property 103

PayPalOrigin ABrowser

User

15: dispatch page

13: redirect

9: payment page

7: redirect

14: GET: dispatch

12: POST: confirm

8: GET: payment page

6: POST: clicked button

17: GET: confirmed

16: dispatch page

10: payment page

4: render page

2: GET request

11: confirm

5: click "buy now"

3: GET response

1: load page

Fig. 7. E-payment scenario

Assume the site A sends the header <cd: {W:P, U:[a.com/∗]}> in the re-
sponse input (message 3, Figure 7) and the wrapper creates the entry ω =
(P, [a.com/∗]). Later on, when the input in message 15 is received from P , the
corresponding list of URLs for P is retrieved, that is, Ui = [a.com/∗]. The en-
coding in Figure 8 will now change as shown in Figure 9. The GET: confirmed
cross-origin (legitimate) request to web site A is now sent from the sub-execution
at label P with its authentication cookie.

6 Implementation

Our prototype implementation is constructed as a modification of the FlowFox
browser [12,13]. Crucial for our implementation is the ability to keep track of all
sites a user is logged into and to make sure that the labelling of JavaScript API
calls can be dependent on this login history.

The biggest modification to FlowFox’s core is the addition of a shared state
variable, shared between all browser windows. This variable contains the login
history log of the browser. This history log is a list of strings and contains all
domain names for which the browser has established an authenticated session. In
our prototype, authentication to a web site has to happen by means of a book-
marklet that interacts with this login history log to add authenticated domains.

The second modification is in the policy library that comes with FlowFox. This
library now offers an API to query the login history log so that the labelling of

104 W. Khan et al.

3. (net resp(A,h), [LOAD]): (L, , [])
3−→ (L, ,⊥ :: A)

4. release (ui page loaded, [OUT-C]): (L, ,⊥ :: A)
4−→ (L, , A)

4. suppress (ui page loaded, [DROP-C]): (L, ,A)
·−→ (L, , [])

...
(user clicks ”buy” button, and confirms payment)

...

15. (net resp(P, h), [LOAD]): (L,R, [])
15−→ (L, ,⊥ :: P)

16. release (ui page loaded, [OUT-P]): (L, ,⊥ :: P)
16−→ (L,R,⊥ :: P)

17. release w/o cookies (net req(uA), [OUT-C]): (L, ,⊥ :: P)
17−→ (L,R, P)

16. suppress (ui page loaded, [DROP-P]): (L, , P)
·−→ (L, , P)

17. suppress (net req(uA), [DROP-C]): (L, , P)
·−→ (L, , [])

Fig. 8. E-payment application encoding

. . .

15. (net resp(P, h), [LOAD]): (L, , ω, [], [])
15−→ (L, , ω, [a.com/∗],⊥ :: P)

16. release (ui page loaded, [OUT-P]):

(L, , ω, [a.com/∗],⊥ :: P)
16−→ (L, , ω, [a.com/∗],⊥ :: P)

17. suppress (net req(uA), [DROP-C]):

(L, , ω, [a.com/∗],⊥ :: P)
·−→ (L, , ω, [a.com/∗], P)

16. suppress (ui page loaded, [OUT-P]):
(L, , ω, [a.com/∗], P)

.−→ (L, , ω, [a.com/∗], P)
17. release (net req(uA), [OUT-C]):

(L, , ω, [a.com/∗], P)
17−→ (L, , ω, [a.com/∗], [])

Fig. 9. E-payment application encoding (updated)

JavaScript API calls can depend on this information. We illustrate in a small
example how the extended FlowFox can be used.

New top level windows exist only in the low integrity copy of the browser,
unless the new window is created by a login bookmarklet. In that case, the new
window will exist in two levels of the browser: the ⊥ level, and the level of the
authenticated origin.

Consider again the classic CSRF scenario from Figure 3. This executes in
our prototype as follows. First, the user starts an authenticated session with
mail.com by selecting the appropriate bookmarklet. This bookmarklet posts the
correct login credentials (stored in the bookmarklet) over HTTPS to mail.com.
The bookmarklet also interacts with FlowFox’s core to store mail.com in the
login history log. Next, the user loads a page from the attacker.com site, and
a script on this page tries to influence the current session with mail.com by
crafting an XMLHttpRequest.

For this example, we configure FlowFox with the policy that makes calls to
XMLHttpRequest of d integrity if they go to a domain d in the login history log,
and low integrity (⊥) otherwise.

Client Side Web Session Integrity as a Non-interference Property 105

When the user visits attacker.com, and the script performs an XHR request
to mail.com, the window containing attacker.com exists only in the ⊥ level of
the browser, and the policy above causes the request to be suppressed. Hence,
this policy effectively prevents the classic CSRF attack as described in Fig. 3.
Requests that go to other sites (with no open authenticated session) would be
left untouched. Blocking a request is done by making sure that the skipCall

primitive used internally by FlowFox (it is hidden from the policy writer by
the policy library, which is in fact a domain specific language on top of those
primitives) returns the appropriate value.

The current protoype is just a proof-of-concept, and has important limita-
tions. The most important one is that FlowFox only performs multi-execution of
JavaScript code, and hence no policies can be enforced on network requests that
are not triggered by scripts. If attacker.com tries to influence the session with
mail.com via other means, e.g., an embedded image tag, thereby not relying on
any JavaScript code, we have no way to intercept this in FlowFox. Removing
this limitation is possible by multi-executing the entire browser, as proposed
by Bielova et al. [6], but that would require a major overhaul of FlowFox and
hence a substantial implementation effort. Despite this limitation, we believe
the prototype is evidence of the feasibility of our proposed mechanism in real
browsers.

Our prototype implementation is available online at http://distrinet.cs.
kuleuven.be/software/FlowFox/ .

7 Related Work

There has been a wide variety of work on web session integrity over the past
decade. The lines of work most closely related to our contributions are: (1)
formal models of web session integrity, (2) countermeasures against CSRF, and
(3) information flow control for the web.

7.1 Formal Models of Web Session Integrity

Bohannon et al. [9] propose reactive non-interference, a non-interference property
for reactive programs such as web scripts that is proposed to replace the Same
Origin Policy in browsers. This was a direct inspiration for our notion of login
history dependent non-interference. Later, Bohannon and Pierce [8] developed
Featherweight Firefox, a formal model of a simple browser, with the purpose of
formally studying confidentiality and integrity policies for browsers, including
reactive non-interference policies. This browser model did not yet model session
management, and very recently Bugliesi et al. [10] developed Flyweight Firefox, a
variant of Featherweight Firefox, and provided a formal definition of web session
integrity as well as a provably sound enforcement mechanism. The advantage
of our approach is that, by providing information flow control instead of access
control, we can more precisely enforce session integrity.

http://distrinet.cs.kuleuven.be/software/FlowFox/
http://distrinet.cs.kuleuven.be/software/FlowFox/

106 W. Khan et al.

An alternative approach to formally model session integrity was taken by
Akhawe et al. [2]. They develop a coarse grained model of the entire web plat-
form in Alloy, and use bounded model checking to find flaws in proposed web
security techniques. They model the entire web platform, whereas in our ap-
proach we focus on modeling the browser only. Hence, their model is better
suited to evaluate security techniques that span client and server, whereas our
model is more suitable for pure client-side enforcement techniques.

7.2 Countermeasures against CSRF

CSRF is the most important session integrity attack that is not handled by
just protecting the session implementation layer. Server-side countermeasures
against CSRF are well-understood. The most widely deployed countermeasure
is the use of anti-CSRF tokens. We limit our attention to related work on client-
side enforcement. Client-side enforcement of CSRF protection was pioneered by
RequestRodeo [20]. This system interposed a proxy between client and server,
and stripped authentication information from suspicious requests. Many variants
of RequestRodeo have been proposed [14,26,1], differing in (1) how suspicious
requests are detected, (2) how suspicious requests are handled (either dropping
them or stripping session cookies, or just detecting the attack), and (3) the im-
plementation technique (as a proxy or as a browser extension). All these variants
are useful but heuristic solutions, that provide no formal assurance. The only
system that provides some formal guarantees is CsFire [14]: it was formally val-
idated through bounded model checking to defend against CSRF in the formal
model of the web developed by Akhawe et al. [2].

Our approach for endorsements, where the server tunes or sets a browser
policy, is closely related to existing server-driven policies on the web, like Content
Security Policies [27], or Allowed Referrer Lists [11].

7.3 Information Flow Control for the Web

Information flow control in web scripts is usually proposed by means of dy-
namic mechanisms [22] due to the dynamic nature of the JavaScript language,
the de facto programming language on the client side web applications. Our
work is directly based on existing information flow secure browsers that use
the mechanism of secure multi-execution [16] for information flow control. The
theoretical development is based on Bielova et al. [6], whereas the implementa-
tion extends the FlowFox browser [12,13]. Alternative dynamic information flow
control mechanisms for browser scripts are usually monitors. Austin and Flana-
gan [3] and Hedin and Sabelfeld [17] study runtime monitors for non-interference
in JavaScript-like languages. Bichhawat et al. [5] formalize and develop an infor-
mation flow monitor at the level of JavaScript bytecode in the WebKit engine.

8 Conclusions

Web session security is a key cornerstone of web security. We have shown how
client-side application-level web session integrity can be understood as a non-

Client Side Web Session Integrity as a Non-interference Property 107

interference property. To make this possible, we introduce LHDNI, login-history-
dependent non-interference, and show how this notion captures client-side web
session integrity. We also developed and proved correct an enforcement mecha-
nism based on secure multi-execution. A prototype implementation in the Flow-
Fox browser is available online.

There are many avenues for future work. While we have formally proven secu-
rity of our enforcement mechanism, we believe the mechanism has several other
interesting properties that deserve a formal study. In particular we believe it
to be precise in the sense that it does not impact the observable behaviour of
the browser as long as the browser is only visiting secure sites. In other words,
security is not overapproximating: the enforcement mechanism only does some-
thing observable if the browser is definitely behaving insecurely. We also believe
that we can prove compatibility results saying that – under some conditions –
behaviour of existing sites is preserved, even if they do something insecure; our
approach of stripping session cookies instead of blocking requests could allow us
to show that such sites behave as if the browser was not logged into other sites.

Acknowledgments. This research is partially funded by the Research Fund
KU Leuven, by the IWT project SPION, and by the MIUR projects ADAPT
and CINA. Willem De Groef holds a PhD grant from the Agency for Innovation
by Science and Technology in Flanders (IWT).

References

1. https://www.requestpolicy.com/security.html

2. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-
dation of web security. In: CSF (2010)

3. Austin, T.H., Flanagan, C.: Multiple Facets for Dynamic Information Flow. In:
Proc. of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 165–178 (2012)

4. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, pp. 75–88 (2008)

5. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow control in
webKit’s javaScript bytecode. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS
2014). LNCS, vol. 8414, pp. 159–178. Springer, Heidelberg (2014)

6. Bielova, N., Devriese, D., Massacci, F., Piessens, F.: Reactive non-interference for
a browser model. In: Proc. of the International Conference on Network and System
Security, pp. 97–104 (2011)

7. Bohannon, A.: Foundations of web script security. Ph.D. thesis, University of Penn-
sylvania (2012)

8. Bohannon, A., Pierce, B.C.: Featherweight firefox: Formalizing the core of a web
browser. In: Proceedings of the 2010 USENIX Conference on Web Application
Development, WebApps 2010, pp. 11–11. USENIX Association, Berkeley (2010)

9. Bohannon, A., Pierce, B.C., Sjöberg, V., Weirich, S., Zdancewic, S.: Reactive
Noninterference. In: Proceedings of the ACM Conference on Computer and Com-
munications Security, pp. 79–90 (2009)

https://www.requestpolicy.com/security.html

108 W. Khan et al.

10. Bugliesi, M., Calzavara, S., Focardi, R., Khan, W., Tempesta, M.: Provably sound
browser-based enforcement of web session integrity. In: CSF 2014 (2014)

11. Czeskis, A., Moshchuk, A., Kohno, T., Wang, H.J.: Lightweight server support for
browser-based csrf protection. In: Proceedings of the 22nd International Conference
on World Wide Web, pp. 273–284 (2013)

12. De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: FlowFox: a Web Browser
with Flexible and Precise Information Flow Control. In: Proc. of the ACM Con-
ference on Computer and Communications Security, pp. 748–759 (2012)

13. De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: Secure multi-execution
of web scripts: Theory and practice. Journal of Computer Security (2014)

14. De Ryck, P., Desmet, L., Joosen, W., Piessens, F.: Automatic and precise client-
side protection against CSRF attacks. In: Atluri, V., Diaz, C. (eds.) ESORICS
2011. LNCS, vol. 6879, pp. 100–116. Springer, Heidelberg (2011)

15. De Ryck, P., Nikiforakis, N., Desmet, L., Piessens, F., Joosen, W.: serene: Self-
reliant client-side protection against session fixation. In: Göschka, K.M., Haridi, S.
(eds.) DAIS 2012. LNCS, vol. 7272, pp. 59–72. Springer, Heidelberg (2012)

16. Devriese, D., Piessens, F.: Noninterference Through Secure Multi-Execution. In:
Proc. of the IEEE Symposium on Security and Privacy, pp. 109–124 (2010)

17. Hedin, D., Sabelfeld, A.: Information-Flow Security for a Core of JavaScript. In:
Proc. of the IEEE Computer Security Foundations Symposium, pp. 3–18 (2012)

18. Johns, M.: On JavaScript Malware and Related Threats - Web Page Based Attacks
Revisited. Journal in Computer Virology 4(3), 161–178 (2008)

19. Johns, M., Braun, B., Schrank, M., Posegga, J.: Reliable protection against ses-
sion fixation attacks. In: Proceedings of the 2011 ACM Symposium on Applied
Computing, pp. 1531–1537 (2011)

20. Johns, M., Winter, J.: Proceedings of the OWASP Europe 2006 Conference, pp.
5–17 (2006)

21. Khan, W., Calzavara, S., Bugliesi, M., De Groef, W., Piessens, F.: Client side
web session integrity as a non-interference property: Extended version with proofs,
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW674.abs.html

22. Le Guernic, G.: Confidentiality Enforcement Using Dynamic Information Flow
Analyses. Ph.D. thesis, Kansas State University (2007)

23. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,
C., Piessens, F., Vigna, G.: You Are What You Include: Large-scale Evaluation of
Remote JavaScript Inclusions. In: Proc. of the ACM Conference on Computer and
Communications Security, pp. 736–747 (2012)

24. Rafnsson, W., Sabelfeld, A.: Secure multi-execution: Fine-grained, declassification-
aware, and transparent. In: CSF (2013)

25. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE Jour-
nal on Selected Areas of Communications 21(1), 5–19 (2003)

26. Shahriar, H., Zulkernine, M.: Client-side detection of cross-site request forgery
attacks. In: 2010 IEEE 21st International Symposium on Software Reliability En-
gineering (ISSRE), pp. 358–367 (November 2010)

27. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security
policy. In: Proceedings of the 19th International Conference on World Wide Web,
pp. 921–930. ACM (2010)

28. Vanhoef, M., De Groef, W., Devriese, D., Piessens, F., Rezk, T.: Stateful declassi-
fication policies for event-driven programs. In: CSF (2014)

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW674.abs.html

Impact of Multiple t-t SMER Constraints

on Minimum User Requirement in RBAC

Arindam Roy1, Shamik Sural2, and Arun Kumar Majumdar3

1 Advanced Technology Development Centre,
2 School of Information Technology,

3 Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India

{arindam.roy,shamik}@sit.iitkgp.ernet.in, akmj@cse.iitkgp.ernet.in

Abstract. Separation of Duty (SoD) constraints are widely used to
specify Role Based Access Control (RBAC) policies in commercial ap-
plications. It has been shown previously that efficient implementation of
SoD policies in RBAC can be done using t-t Statically Mutually Exclu-
sive Roles (SMER) constraints. In this paper, we present a method for
finding the minimum number of users required under multiple t-t SMER
constraints. The problem is shown to be NP-complete. We model the
general problem using graphs, and present a two-step method for solv-
ing it. In the first step, a greedy algorithm is proposed that selects a
graph which is likely to have the minimum chromatic number out of a
set of graphs. The second step uses a known chromatic number finding
algorithm for determining the chromatic number of the graph selected
in the first step. Results for different values of the number of roles and
the number of constraints as well as for different values of t have been
reported.

Keywords: Statically Mutually Exclusive Roles (SMER) constraint,
Role Based Access Control (RBAC), Graph, Chromatic number, Greedy
algorithm.

1 Introduction

Access control models can be broadly classified as Discretionary Access Control
(DAC) [11], Mandatory Access Control (MAC) [1], Role Based Access Control
(RBAC) [17] and Attribute Based Access Control [12]. In recent years, RBAC
has emerged as the de facto standard for access control and has been adopted
by many operating systems, database management systems and commercial ap-
plications. Separation of Duty (SoD), introduced by Clark and Wilson [4], is
accepted as a fundamental principle for security in commercial information sys-
tems. If a sensitive task takes n steps to complete, according to the principle of
separation of duty, it must require the cooperation of at least k distinct users.

Kuhn first identified how an SoD constraint can be enforced in an RBAC sys-
tem in terms of mutual exclusion of roles [13]. Furthermore, it has been shown

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 109–128, 2014.
c© Springer International Publishing Switzerland 2014

110 A. Roy, S. Sural, and A.K. Majumdar

that while directly enforcing SoD policies in RBAC is intractable, their im-
plementation can be done efficiently using Statically Mutually Exclusive Roles
(SMER) constraints [14]. Each SMER constraint specifies the maximum num-
ber of roles to which a user can belong out of a given set of roles. Static SoDs
(SSoDs) are pre-specified constraints that do not change with RBAC sessions.
In this paper, we consider only static SoD constraints and refer to them simply
as SoD constraints.

Given that a system is currently using direct user-permission assignment, tools
like role mining are used to determine the set of roles, so that the system’s ac-
cess control policies can be migrated to RBAC. Extensive work has been done on
developing efficient role mining algorithms [8,10,20]. On the other hand, for orga-
nizations setting up RBAC from scratch and also for start-ups, the requirement
is different. They have a pre-defined set of roles. The applicable constraints in the
system are also known, so that the problem is to determine the minimum num-
ber of users needed to fully realize the system without violating the constraints
along with the corresponding user-role assignments. Another important applica-
tion of this work is in estimating the number of administrative users required and
their assignment to administrative roles [16] in large RBAC deployments. Such
types of organizations can have thousands of roles [18] geographically distributed
over multiple locations requiring complex SoD constraints among administrative
roles.

Thus, we consider an RBAC system in which the Separation of Duty policy
is represented in the form of SMER constraints. The problem addressed in this
paper is to find a user-role assignment (UA relation) that enforces these con-
straints (and hence, the given SoD policy) using the minimum number of users.
The permission-role assignment (PA) relation is implicitly included in the SMER
constraint specification. It may be noted that, if there are more number of users
than roles in a system, the user-role assignment obtained as a solution to the
current problem can also be used to guide user assignment resulting in better
utilization. Thus, a solution to the problem of finding optimal user assignment
to roles in the presence of SMER constraints can both supplement as well as
complement efforts in developing role mining techniques.

While we informally introduced the problem in [15] and provided a genetic
algorithm based solution, no formal analysis was done. The main contributions
of the current paper are as follows

– We formally define the minimum user requirement problem under multiple
t-t SMER constraints (called t-t SMER-MIN-USER problem) and show that
the problem is NP complete.

– We model the general t-t SMER-MIN-USER problem using graphs and pro-
vide a greedy algorithm toward obtaining its solution.

The rest of this paper is organized as follows. In Section 2, we give an overview
of RBAC and SMER constraints. We formally define the minimum user finding
problem in Section 3. In Section 4, we identify the complexity class of the de-
fined problem. The problem is modeled using graphs in Section 5. We present
algorithms based on this modeling to solve the problem and analyze them in

Impact of Multiple t-t SMER Constraints 111

Section 6. Experimental results are presented in Section 7. Finally, we draw
conclusions and provide directions for future research in Section 9.

2 Preliminaries

The Role Based Access Control (RBAC) model has the following components
[17].

Definition 1. RBAC is an access control model comprising of the following
components:

– U , R, OPS, OBJ respectively the set of users, roles, operations and objects
– P (the set of permissions) ⊆ {(ops, obj)|ops ∈ OPS ∧ obj ∈ OBJ}
– PA ⊆ P ×R, a many-to-many permission-to-role assignment relation
– UA ⊆ U ×R, a many-to-many user-to-role assignment relation
– RH ⊆ R ×R is a partial order on R called the role hierarchy or role domi-

nance relation, also written as �
– assignedusers(r) = {u ∈ U |(u, r) ∈ UA}, the mapping of role r onto a set

of users
– assignedpermissions(r) = {p ∈ P |(p, r) ∈ PA}, the mapping of role r onto

a set of permissions
– A set of constraints CO

Since we consider separation of duty constraints that do not change with
sessions, we have not included the notion of sessions in the above definition. Be-
sides SoD, other types of constraints like cardinality constraints and prerequisite
constraints [3] are also supported in RBAC. However, in this paper, we assume
that the set CO consists only of SoD constraints specified in the form of SMER
constraints [14].

In an RBAC system, the SMER constraints are used to conveniently express
an SoD policy. A tuple of the form 〈RS, t〉 represents a t-m SMER constraint
where RS = {r1, ..., rm} is a set of roles while m and t are integers satisfying
1 < t ≤ m. If no user is a member of t or more roles in {r1, ..., rm}, a t-m
SMER constraint 〈{r1, ..., rm}, t〉 is said to be satisfied. A canonical form (of
cardinality t) of an SMER constraint is a form where m = t. It is written as t-t
SMER constraint. Li et al. [14] have previously shown that a set of t-t SMER
constraints can be used to represent a t-m SMER constraint. Hence, we consider
CO to be a collection of t-t SMER constraints only.

3 Problem Definition

In this section, we define the problem of finding the minimum number of users
in an RBAC system under multiple t-t SMER constraints.

Definition 2. t-t SMER-MIN-USER problem (t-t SMUP). Given a set R of
roles and a set CO of SMER constraints, find the minimum number of users
m such that, for a set of users U where |U | = m and a user role assignment
relation UA, ∀r ∈ R, ∃u ∈ U , where (u, r) ∈ UA, satisfying all the t-t SMER
constraints.

112 A. Roy, S. Sural, and A.K. Majumdar

It may be noted that the value of t need not be the same for all the constraints
in CO. An example is given below to explain the problem defined above.

Example 1. Let there be an RBAC system with R = {r1, r2, r3, r4, r5} and
CO = {co1, co2, co3, co4, co5}, where co1 = 〈{r1, r3}, 2〉, co2 = 〈{r1, r2}, 2〉,
co3 = 〈{r1, r4}, 2〉, co4 = 〈{r2, r3, r4}, 3〉, co5 = 〈{r2, r3, r5}, 3〉. The problem
is to determine the minimum number of users such that each role is assigned to
at least one user while satisfying all the 7 SMER constraints. A minimal set of
users U with |U | = m = 3 is U = {u1, u2, u3}. The corresponding UA matrix
gives the optimal user assignment. One possible UA matrix with this minimal
set of users is shown in Table 1.

Table 1. UA matrix for an instance of t-t SMUP

r1 r2 r3 r4 r5
u1 1 0 0 0 1

u2 0 1 0 1 0

u3 0 0 1 0 0

4 Complexity Class of t-t SMUP

In this section, an analysis of the complexity class of the problem is presented.
Since t-t SMUP is an optimization problem, we first define a decision version of
the problem.

Definition 3. Decision t-t SMUP (t-t D-SMUP). Given a set CO of SMER
constraints, a set R of roles, and an integer m ≥ 0, does there exist a set of
users U and a user-role assignment relation UA such that, ∀r ∈ R, ∃u ∈ U ,
where, (u, r) ∈ UA, satisfying the constraints in the set CO, where |U | ≤ m ?

We show that t-t D-SMUP is an NP-complete problem. Proving that a prob-
lem is NP-complete consists of the following three steps [9].

– show that the given problem α is in NP.
– select a known NP-complete problem β.
– construct a polynomial time algorithm γ to reduce β to α.

The known NP-complete problem β used here is the “chromatic number prob-
lem” defined below [6]:

Definition 4. Chromatic number problem (CNP). The chromatic number of a
graph G with set V (G) of vertices and set E(G) of edges, is the smallest number
of colors χ(G) needed to color the vertices of G so that no two adjacent vertices
have the same color.

A coloring in which no two adjacent vertices have the same color is called
proper coloring and the graph is said to be properly colored. An optimal proper
coloring of a graph G is a proper coloring with χ(G) number of colors.

Impact of Multiple t-t SMER Constraints 113

Definition 5. Chromatic number decision problem (CNDP). Given a graph G
and a positive integer q, is G q-colorable?

We first establish the following lemma.

Lemma 1. CNDP ≤P t-t D-SMUP.

Proof. The reduction algorithm takes an instance of CNDP and produces an
instance of t-t D-SMUP in polynomial time as follows:

– R = V (G),
– for an edge (ri, rj) ∈ E(G), there will be an entry 〈{ri, rj}, 2〉 in the set CO

of constraints,
– U = C, where C is the set of colors assigned,
– UA = CA, where CA is the color-to-node assignment relation,
– m = q

For a given instance of t-t D-SMUP which is reduced from an instance of
CNDP, next we prove that the following two cases will always hold:

– if the given instance of t-t D-SMUP is a “Yes”-instance, the corresponding
CNDP instance is also a “Yes”-instance.

– if the given instance of t-t D-SMUP is a “No”-instance, the corresponding
CNDP instance is also a “No”-instance.

We prove the first case by contradiction. Assume that for a “Yes”-instance of
reduced t-t D-SMUP the answer to the associated instance of CNDP is “No”.
That is, while R and CO can be realized using m users, the graph G is not
q-colorable. Given CA is the color-to-node assignment relation, there is an edge
between at least two nodes of the same color, which implies that for the corre-
sponding UA relation with m users, ∃ri, rj ∈ R, such that assignedusers(ri) ∩
assignedusers(rj) = φ and 〈{ri, rj}, 2〉 ∈ CO. Thus, the constraint is violated.
But, the instance of t-t D-SMUP is a “Yes”-instance, which contradicts.

Next, we prove the second case. We assume that for a reduced “No”-instance
of t-t D-SMUP the answer to the associated instance of CNDP is “Yes”. This
implies that, there exists a coloring CA using q number of colors such that, no
two adjacent nodes are assigned to the same color. This corresponds to the fact
that for the reduced instance of t-t D-SMUP, ∀ri, rj ∈ R if 〈{ri, rj}, 2〉 ∈ CO,
assignedusers(ri) ∩ assignedusers(rj) = φ. But, the mentioned t-t D-SMUP
instance is a “No”-instance, which contradicts. Hence, the corresponding CNDP
instance which was reduced to the given instance of t-t D-SMUP is also a “No”-
instance. �

Given a user-to-role assignment relation UA and a set CO of SMER con-
straints, the Satisfaction Checking problem [14] is defined as the problem to
determine whether UA satisfies CO.

114 A. Roy, S. Sural, and A.K. Majumdar

Theorem 1. Decision t-t SMUP is NP-complete.

Proof. The theorem is proved in 3 steps:

– The algorithm to solve satisfaction checking problem for SMER constraints,
which is proved to be in P by Li et al. [14], can act as a certificate of the
result of t-t SMUP being correct. Hence, the decision t-t SMUP is in NP.

– Let us select the known NP-complete problem β as the chromatic number
problem.

– From Lemma 1, t-t D-SMUP is NP-hard. �

5 Modeling t-t SMUP Using Graphs

In this section, we formalize the modeling of t-t SMUP using graphs. We observe
that any UA relation with minimum number of users will have just one user
assigned to a particular role, i.e., ∀r ∈ R, |assignedusers(r)| = 1. This is
because, a second user assigned to the role r will never contribute to a reduction
in the total number of users in the UA relation. Hence, we are only concerned
with such types of UA relations in the rest of the section.

Firstly, we introduce a graph based representation of the user-to-role assign-
ment relation UA with a single user assigned to a particular role. Given a set
of roles R, a user-to-role assignment relation UA and a set CO = {co1, ..., con}
of n SMER constraints where, co1 = 〈{r1, ..., rt1}, t1〉, ..., con = 〈{r1, ..., rtn}, tn〉
with t1, ..., tn ≥ 2, the graph representation of UA is as follows.

If RPDU denotes the set of all possible pairs of roles having distinct users
assigned and RPCO denotes the set of all possible pairs of roles (ri, rj), where
ri, rj ∈ {r1, ..., rtk} and i = j for 1 ≤ k ≤ n for each cok ∈ CO, a UA relation
satisfying CO can be represented using a properly colored [6] undirected graph
G with the set of vertices V (G) = R, the set of edges E(G) = RPCO ∩RPDU ,
the set of colors C = U and the color-to-vertex assignment relation CV = UA.
Thus, the graph G is constructed with roles of the system as nodes and a pair
of roles is connected using an edge if the pair is present in any of the constraints
in CO and has different users assigned to them in UA.

We take an example to illustrate this representation. The UAmatrix in Table 1
of Example 1 can be represented using the graph in Figure 1. It should also be
noted that the number of SMER constraints possible for a set R of roles is
|R|∑

i=2

(|R|
i

)
.

Definition 6. UA graph. Given a set R of roles, set CO of SMER constraints
and a graph G, we call G a UA graph if a proper coloring of G with V (G) = R
and E(G) ⊆ RPCO, where each constraint cok in CO has a pair of roles in
E(G), represents a possible UA relation with U = C, where U is the set of users
and C is the set of colors used to color G, and UA = CV , where CV is the
color-to-vertex assignment relation.

Impact of Multiple t-t SMER Constraints 115

Fig. 1. Graph representation of the UA relation in Example 1

For example, Figure 1 is a UA graph with its optimal proper coloring repre-
senting the UA relation of Example 1.

Before going into further details, we redefine the graph construction process
from a set of t-t SMER constraints CO. The construction is named as the Graph-
ical UA Construction.

Definition 7. (Graphical UA Construction (GUAC)). Given a set of roles R
and a set of n t-t SMER constraints CO = {co1, ..., con} where co1 = 〈{r1, ..., rt1}
, t1〉, ..., con = 〈{r1, ..., rtn}, tn〉 with t1, ..., tn ≥ 2, GUAC is defined as the con-
struction of a graph from the set CO of SMER constraints. The construction
consists of the following steps.

1: Represent roles ri ∈ R as the vertices V (G) of the graph G.
2: Select an arbitrary pair of roles ri and rj from {r1, ..., rtk} of each cok, where

1 ≤ k ≤ n.
3: Represent each selected pair of Step 2 as an edge in E(G) of the graph G.

It must be noted that, the same pair of nodes can be selected from more than
one constraints. This implies that the number of edges in a graph constructed
using the above definition will have |E(G)| ≤ n.

We clarify this construction with an example. The graph in Figure 2 is an in-
stance of properly colored GUAC construction of the setR and CO of Example 1.
The edges (r1, r3), (r1, r2), (r1, r4), (r3, r4), (r3, r5) are the edges representing
presence of the constraints co1, co2, co3, co4, co5. It should be noted that the
graph in Figure 1 represents a valid UA matrix but is not a valid GUAC graph,
because, the number of edges in the graph is greater than the number of con-
straints in the instance. Hence, graphs constructed using GUAC will not cover
each and every possible UA relation of the instance.

It is obvious that,
n∏

i=1

(
ti
2

)
possible graphs can be constructed using GUAC.

The set of all possible graphs constructed using this construction is denoted by
SG. Our claim is that, every graph from the set SG is a valid UA graph. A proof
using mathematical induction for its correctness is formalized next.

116 A. Roy, S. Sural, and A.K. Majumdar

Fig. 2. GUAC construction for the set of roles R and the set of constraints CO of
Example 1

Theorem 2. Optimal proper coloring of a graph constructed using GUAC on a
set R of roles and set CO of constraints is a valid UA graph.

Proof. Let P (k) be the proposition that an GUAC construction on R and CO
with |CO| = k is a valid UA graph. The basis step is to prove P (1) is true.
Given a t-t SMER constraint 〈{r1, ..., rt}, t〉, we can assign a single user u1 to
at-most t− 1 roles among {r1, ..., rt}. The remaining 1 role can be assigned with
another user u2. Hence, the system with |CO| = 1 can be fully realized with 2
users. The graph G1 constructed using GUAC in this case will contain only one
edge between any two of the roles mentioned in the constraint. Hence, χ(G) = 2
(which represents m), which implies that the basis step is true.

For the inductive hypothesis, we assume that P (k) holds for a positive integer

k ≤
|R|∑

i=1

(|R|
i

)
. That is, we assume that optimal proper coloring of a graph Gk

constructed using GUAC on R and CO with |CO| = k is a valid UA graph.
Under this assumption, it is to be shown that P (k + 1) is true, i.e., the graph
Gk+1 constructed using GUAC on R and CO with |CO| = k + 1 is a valid UA
graph. Given Gk, constructing Gk+1 consists of only one step, which is, selecting
an edge (uk+1, vk+1) from the k+1th constraint cok+1 and adding it to Gk. That
is, V (Gk+1) = V (Gk) and E(Gk+1) = E(Gk)∪ek+1, where ek+1 = (uk+1, vk+1).
The edge ek+1 can be chosen in the following ways.

– The edge inserted in Gk is a new edge, i.e., ek+1 /∈ E(Gk).

– The vertex uk+1 has an edge connected to it and the vertex vk+1 is isolated
in Gk, i.e., uk+1 ∈ e1 ∪ e2 ∪ ... ∪ ek and vk+1 /∈ e1 ∪ e2 ∪ ... ∪ ek.

– The vertex vk+1 has an edge connected to it and the vertex uk+1 is isolated
in Gk, i.e., vk+1 ∈ e1 ∪ e2 ∪ ... ∪ ek and uk+1 /∈ e1 ∪ e2 ∪ ... ∪ ek.

– The edge ek+1 is already present in Gk, i.e., ek+1 ∈ E(Gk).

– Both uk+1 and vk+1 have an edge connected to it but the edge ek+1 is not
present in Gk, i.e., uk+1, vk+1 ∈ e1 ∪ e2 ∪ ... ∪ ek and ek+1 /∈ E(Gk).

Impact of Multiple t-t SMER Constraints 117

As the edges from Gk are kept intact, Gk+1 is a super-graph of Gk. Gk+1 keeps
satisfying all the k constraints, and the newly inserted edge ek+1 ensures that
at least one role among the roles mentioned in cok+1 will have a distinct user
assigned to it, satisfying the k + 1th constraint. Thus, P (k + 1) is proved to be
true. �

It is implied from the above theorem that the proper coloring of the undi-
rected graphs constructed using the GUAC construction method is a valid UA
representation. For a given R and CO, a number of UA graphs are possible, and
for each such graph, there can be a number of possible proper colorings. Our
goal is to find a valid UA graph which requires the minimum number of colors
(each color corresponds to one user) to color, i.e., we are in search of a UA graph
with the lowest chromatic number. So, next, we proceed to prove that at least
one graph with the lowest chromatic number exists in the set SG of graphs con-
structed using GUAC. To do so, we prove that a graph representing an optimal
UA relation will contain only one edge from each constraint. However, the edges
representing the constraints may overlap, i.e., an edge may represent the pres-
ence of more than one constraints. We formalize the notion and prove it in the
next theorem.

Theorem 3. At least one UA graph G with the lowest chromatic number exists
in the set SG.

Proof. To prove the stated theorem, we show that a UA graph Gl with the
lowest chromatic number will have only one edge representing the presence of
one constraint. And, we know from Definition 7 of GUAC graphs that the set SG
contains all such possible graphs. Hence, we would proof that Gl ∈ SG. Let G be
a graph constructed using GUAC, i.e., it contains only one edge corresponding
to each constraint. Let G′ be a graph such that E(G′) = E(G) ∪ (ri, rj) and
V (G′) = V (G), i.e., G′ contains one edge more than the graph G. Let the edge
(ri, rj) be the second edge representing the presence of the constraint cok ∈ CO.
This means that there are two edges from the constraint cok in G′. Now, due to
insertion of a new edge in the properly colored graphG resulting in the formation
of the graph G′, an optimal proper coloring of G′ may differ with an optimal
proper coloring of G in the following ways.

– ri and rj may have different colors assigned to them in G. In this case, there
will not be any change in the coloring of G′. Hence, χ(G′) = χ(G).

– ri and rj may have the same color assigned to them in G. In this case, color
assignment of ri or rj or of both have to be changed depending on the other
nodes connected to it. Furthermore, there can be two cases.
• The assigned color after the change is an existing color, i.e., the color
is already used for some other node or nodes. In this case, the optimal
coloring of G′ will differ from that of G. But, the chromatic number will
remain the same. That is, χ(G′) = χ(G).

• The assigned color after the change is a new color. In this case, the
chromatic number of G′ will increase. That is, χ(G′) > χ(G).

118 A. Roy, S. Sural, and A.K. Majumdar

It can be seen that in all the cases, χ(G′) will never be less than χ(G), which im-
plies that a second edge (ri, rj) from any constraint cok will not help in reducing
the number of users in the optimal UA relation. Hence, it can be claimed that
all the UA graphs outside the set SG will have chromatic numbers greater than
or equal to that of the graphs in SG. Therefore, it can be concluded that a UA
graph G with the lowest number of colors, which corresponds to the minimum
number of users, is indeed an element of the set SG. �

Fig. 3. Approximated optimal GUAC graph constructed for Example 1 using the
greedy algorithm

Table 2. CON matrix for the set of SMER constraints in Example 1

r1r2r1r3r1r4r1r5r2r3r2r4r2r5r3r4r3r5r4r5
co1 0 1 0 0 0 0 0 0 0 0

co2 1 0 0 0 0 0 0 0 0 0

co3 0 0 1 0 0 0 0 0 0 0

co4 0 0 0 0 1 1 0 1 0 0

co5 0 0 0 0 1 0 1 0 1 0

6 Solving t-t SMUP

In this section, we present and analyze algorithms to solve t-t SMUP using the
modeling described in Section 5. It can be inferred from Theorems 2 and 3 that
identifying the graph with minimum chromatic number from the set SG of all
possible GUAC graphs will solve t-t SMUP. The solution, thus, consists of two
steps, first is to construct GUAC graph(s) and second is to find the chromatic
numbers of the constructed graph(s) and choose the graph G with minimum
χ(G). The second step can be resolved using any known “efficient” (approximate)
algorithm [9] for finding chromatic number with acceptable error bounds. For
the first step, we first present a recursive brute force algorithm (Algorithm 1)
to construct all possible GUAC graphs. We then provide a heuristic algorithm
(Algorithm 2) for constructing a single GUAC graph having potentially the least
value of chromatic number out of all possible GUAC graphs. The corresponding
coloring represents the optimal user assignment under t-t SMER constraints.

Impact of Multiple t-t SMER Constraints 119

Algorithm 1. Recursive brute force algorithm to construct all possible GUAC
graphs.

1: procedure bfGUAC(CON, i, incompGraph)
2: k ← no. of rows in CON
3: e ← no. of columns in CON
4: if i < k then
5: for l ← 1, e do
6: if CON(i+ 1, l) = 1 then
7: reconGraph ← incompGraph
8: reconGraph(l) ← 1
9: allGraphs ←
10: bfGUAC(CON, i+ 1, reconGraph)
11: end if
12: end for
13: else
14: allGraphs ← allGraphs ∪ incompGraph
15: return allGraphs
16: end if
17: end procedure

The procedure bfGUAC of Algorithm 1 takes 3 inputs as parameters. The
input variable CON is a matrix of ’0’ and ’1’, each row of which is the edge
representation of an SMER constraint. It represents such a constraint using a

binary string of length n×(n−1)
2 , where n is the number of roles in the system,

i.e., n = |R|. Each bit represents one of the possible edges of the combined graph
G (as described in the last section), in the order, (r1r2), ..., (r1rn), ..., (rn−2rn−1)
, ...(rn−2rn), ..., (rn−1rn). The j

th bit of a constraint coi is 1 if the jth edge of the
above order can be chosen from the SMER constraint to construct the GUAC
graph G, and 0 otherwise. Each column represents a possible edge of an GUAC
graph. Therefore, CON(x, y) = 1 if for the xth constraint cox = 〈{r1, ..., rtx}, tx〉,
ri, rj ∈ {r1, ..., rtx} where ri, rj are the roles in the yth edge of the sequence and
CON(x, y) = 0 otherwise. The parameter i is an integer variable which denotes
that currently the ith constraint is under process. Parameter incompGraph is
an array of binary strings where each bit denotes a possible edge of a graph in
the sequence of the edge representation. The bit is 1 if the edge is present in
the graph and 0 otherwise. The procedure has to be called initially with the
parameters i set to 0 and incompGraph set to an array of zeros of size of the
number of possible edges in the instance. The procedure returns a set allGraphs
of arrays where each array represents a possible GUAC graph. We observe that
the worst case time complexity of the algorithm is O(ek), where e is the number
of possible edges and k is the number of constraints.

Other than the time complexity of the brute force algorithm in generating the
GUAC graphs, there is another disadvantage. The number of graphs generated
using GUAC is very high and is upper bounded by O(ek). In the second step,
we have to compute the chromatic numbers of all these graphs and find the

120 A. Roy, S. Sural, and A.K. Majumdar

Algorithm 2 . Greedy algorithm to construct the graph with approximately
minimum chromatic number.
1: procedure ChooseBestGUACgraph(CON)
2: k ← no. of rows in CON
3: e ← no. of columns in CON
4: CoveredCon ← 0
5: while coveredCon < k do
6: maxOnes ← 0
7: maxEdge ← 0
8: for i ← 1, e do
9: ones ← 0
10: for j ← 1, k do
11: if CON(i, j) = 1 then
12: ones ← ones+ 1
13: end if
14: end for
15: if maxOnes < ones then
16: maxOnes ← ones
17: maxEdge ← i
18: end if
19: end for
20: graphEdges(maxEdge)← 1
21: CoveredCon ← CoveredCon+maxOnes
22: for i ← 1, k do
23: if CON(i,maxEdge) = 1 then
24: for j ← 1, e do
25: CON(i, j) ← ×
26: end for
27: end if
28: end for
29: end while
30: return graphEdges
31: end procedure

minimum among them. The chromatic number problem itself is a hard problem,
and hence, computing chromatic numbers for such exponential number of graphs
becomes a difficult task. Therefore, we propose a greedy heuristic to construct
only one GUAC graph - the one which is likely to have the least chromatic
number out of all possible GUAC graphs. Finding chromatic number of one
single graph would than give a solution to t-t SMUP.

It is known that the inequality χ(G) ≤
⌊
1+

√
1+8e
2

⌋
[6] holds, where e is the

number of edges in a graph G and χ(G) is the chromatic number of the graph.
It implies that, for a graph G, the upper bound for χ(G) increases with the the
number of edges e in it. It should be noted that decreasing the upper bound
increases the possibility that the value of χ(G) will reduce.

Impact of Multiple t-t SMER Constraints 121

Keeping the above observations in mind, we design a heuristic which will
approximate the optimal graph G by reducing the number of edges in it. To
construct an GUAC graph we need to cover each constraint by selecting an edge
from it. Hence, we select the edge in each iteration which covers the maximum
number of uncovered constraints. The iterations continue until each constraint is
covered. We present the procedure ChooseBestGUACgraph using this heuristic
in Algorithm 2. The procedure takes a matrix of SMER constraints CON as pa-
rameter. Representation of CON is the same as that in the procedure bfGUAC.
The procedure ChooseBestGUACgraph returns an array graphEdges represent-
ing the graph with minimum chromatic number. The graph representation in
graph- Edges is the same as that in the arrays incompGraph and allGraphs.

We assume that a minimal set of SMER constraints would be given as input.
If the role set of any constraint c is a subset of the role set of another constraint
c′, the constraint c′ will not be included in the given set of constraints CO, since
any UA relation satisfying c will automatically satisfy c′. However, if the set CO
of constraints is not minimal, a preprocessing step can be introduced that will
remove all the constraints whose role sets are supersets of some other constraint
in CO. This processing can be done in polynomial time.

Next, we demonstrate the steps of the presented greedy algorithm for the in-
stance in Example 1. The elements of the set of all possible edges of the graph
written in a sequence for this system are (r1r2), ..., (r1r5), ..., (r3r4), (r3r5), (r4r5).
The input matrix CON where each column corresponds to an edge in the above
sequence and each row corresponds to a constraint is shown in Table 2. The
while loop in the procedure ChooseBestGUACgraph will run for the following 4
iterations.

1: The edge (r2r3) covers the maximum number (two) of constraints, so,
graphEdges ← [0000100000].

2: Next, the edge (r1r2) covers constraint co2, so now,
graphEdges ← [1000100000].

3: The edge (r1r3) covers co1, so now, graphEdges ← [1100100000].
4: The last uncovered constraint co3 is covered by the edge (r1r4), so finally,

graphEdges ← [1110100000].

Hence, the graph formed will consist of 4 edges as shown in Figure 3. Chromatic
number of this graph is 3.

In the procedure ChooseBestGUACgraph, counting the number of constraints
covered by a particular edge cover takes k iterations. There are e such edges in
the worst case, hence, finding the edge which covers the maximum number of
uncovered constraints is in O(ek). Marking the constraints as covered is also in
O(ek). The above steps continue for k iterations in the worst case, hence, the
worst case overall time complexity is O(ek2).

2-2 SMUPs are the instances of t-t SMUP where the set CO contains only 2-2
SMER constraints. It is an important special case of t-t SMUP since, it has been
shown in [14] that, although more restrictive than necessary, 2-2 SMER con-
straints are sufficient to enforce any SoD constraint. For 2-2 SMER constraints,
there will be only one possible GUAC graph, which the greedy algorithm will

122 A. Roy, S. Sural, and A.K. Majumdar

also identify. Hence, going through the first step mentioned above is not required.
Instead, minimum user requirement for 2-2 SMER constraints can be computed
by directly using the solution for the chromatic number problem [7] or that for
any other equivalent problem for which solutions are known to exist within a
constant factor.

Next, we present an upper bound on the approximated value of m using the
proposed greedy algorithm. The presented bounds are based on some of the
known upper bounds for chromatic number [6]. If mgreedy is the value of m ap-
proximated using the algorithm ChooseBestGUACgraph and κ is the maximum
number of constraints which can be covered by a single edge, the following upper
bound for mgreedy can be derived.

Theorem 4. For an RBAC system with a set of SMER constraints CO and

k = |CO|, mgreedy ≤ 1
2+

√
2(k − κ) + 1

4 .

Proof. Let e be the number of edges in the approximated optimal properly col-
ored graph Gopt. Then, |E(Gopt)| ≤ k− κ+1, where |E(Gopt)| is the number of
edges in the graph Gopt, because the greedy algorithm will surely select the edge
which is covering κ number of constraints. There is at least one edge between
two colors in Gopt, otherwise the same color could be used for both the classes.
As, χ(Gopt) = mgreedy and k − κ ≥ |E(Gopt)| ≥ 1

2mgreedy(mgreedy − 1), solving
this equation for mgreedy we obtain the claimed inequality. �

Table 3. Minimum user count (mean|mode) for different number of roles having only
3− 3 SMER constraints

Number of constraints
Roles 5 10 20 30 40 50 100 150 200 250 300 350 400

5 2.05|2 3|3 NA NA NA NA NA NA NA NA NA NA NA
10 2|2 2.25|2 2.5|2 3|3 3.05|3 3.15|3 4.4|4 NA NA NA NA NA NA
15 2|2 2.4|2 2.5|2 3.1|3 2.9|3 3.1|3 3.8|4 4.2|4 4.8|5 5.2|5 5.4|5 6.2|6 7.4|8
20 2|2 2|2 2.6|3 2.8|3 3.1|3 3.12|3 4|4 4|4 4.2|4 4.6|5 4.8|5 5|5 5.4|5

Table 4. Minimum user count (mean|mode) for different number of roles having only
5− 5 SMER constraints

Number of constraints
Roles 5 10 20 30 40 50 100 150 200 250 300 350 400

5 NA NA NA NA NA NA NA NA NA NA NA NA NA
10 2.05|2 2|2 2|2 2.05|2 2.05|2 2.05|2 2|2 2.6|3 3|3 3.8|4 NA NA NA
15 2|2 2|2 2|2 2.1|2 2.1|2 2.4|2 2.8|3 2.8|3 3|3 3|3 3|3 3|3 3.2|3
20 2|2 2|2 2.1|2 2|2 2.2|2 2|2 2.8|3 3|3 3|3 3|3 3|3 3.2|3 3|3

7 Implementation and Experimental Results

The procedure ChooseBestGUACgraph has been implemented in Matlab envi-
ronment on an Intel Core 2 Duo (processor speed of 3GHz) machine with 2GB

Impact of Multiple t-t SMER Constraints 123

of RAM running Linux. Matgraph toolbox [19] is used to compute chromatic
number. Experiments were initially carried out with random data sets compris-
ing of 3-3 and 5-5 SMER constraints. Finally, random data sets having mixed
t-t SMER constraints were used. Twenty different runs were carried out for each
combination of parameters and the overall result is reported in this section. Both
mean and mode of the twenty values so obtained are included in the result.

Tables 3 and 4 show the minimum user requirement for 3-3 and 5-5 SMER
constraints, respectively. While the number of constraints is varied from 5 to 400,
the number of roles is varied from 5 to 20 . The results show that the minimum
user count for a given number of roles increases with increase in the number of
constraints. It may be noted that, the GUAC graph G tends to become more
sparse when the number of roles increases, keeping the number of constraints
constant. This is because, the maximum number of possible edges of the GUAC
graph G (which equals the number of constraints) remains the same. As a result,
the minimum user count decreases as the number of roles increases, keeping the
number of constraints fixed.

It can also be observed from the tables that, the minimum user count decreases
when the value of t is changed from 3 to 5 keeping the number of roles and the
number of constraints fixed. This is due to an increase in the overlap among the
edges selected from the constraints to form the GUAC graph G, with increase
in the value of t. It may be noted that for n number of roles, there can be at
most

(
n
t

)
possible t-t SMER constraints. Hence, the cells in the tables which are

’Not Applicable’ are marked as NA.

Table 5. Execution time (in seconds) required to compute the minimum user count
for different number of roles having only 3− 3 SMER constraints

Number of constraints
Roles 5 10 20 30 40 50 100 150 200 250 300 350 400

5 0.05 0.08 NA NA NA NA NA NA NA NA NA NA NA
10 0.20 0.39 0.81 1.30 2.04 2.78 7.30 NA NA NA NA NA NA
15 0.58 1.02 2.22 4.68 5.97 9.68 24.65 44.45 61.28 82.38 112.26 151.22 239.93
20 1.04 2.39 6.00 9.58 40.30 19.42 60.95 105.50 141.56 215.76 262.31 312.23 441.52

Table 5 and Figure 4 present the variations in the time required to compute
the minimum user count for different number of roles and different number of 3-3
and 5-5 SMER constraints, respectively. It is observed that the execution time
increases with the number of users and constraints. This is because, the number
of columns (representing the number of possible edges of an GUAC graph) of
the matrix CON increases with the number of roles. Furthermore, the number
of rows of the matrix also increases with the number of constraints, which causes
the procedure ChooseBestGUACgraph to run for more number of iterations. It
is also observed that the execution time required generally decreases with an
increase in the value of t. This is due to the fact that the number of possible
edges that can be chosen for each constraint increases, which leads to more
overlap in the chosen edges and causes the procedure to run for less number of
iterations.

124 A. Roy, S. Sural, and A.K. Majumdar

Fig. 4. Variation of the execution time (in seconds) required to find the minimum user
count for different number of roles having only 5− 5 SMER constraints

Table 6. Minimum user count (mean|mode) for different number of roles having mixed
t-t SMER constraints

Number of constraints
Roles 10 20 50 100 200 300 400 500 600 700 800
10 2|2 2.2|2 2.4|2 3.05|3 3.35|3 3.8|4 4.55|4 4.6|5 5.15|5 5.7|5 6.7|6
20 2|2 2|2 2|2 2|2 2|2 2.2|2 2.2|2 2.25|2 2.35|2 2.65|3 2.6|3
30 2|2 2|2 2|2 2|2 2|2 2|2 2|2 2|2 2|2 2.2|2 2|2

Fig. 5. Variation of the execution time (in seconds) with the number of mixed t-t
SMER constraints for 10, 20 and 30 roles

Impact of Multiple t-t SMER Constraints 125

Table 6 and Figure 5 respectively show the overall variations of minimum user
requirement and execution time for 10, 20 and 30 roles with mixed t-t SMER
constraints. The minimum user count is seen to decrease with an increase in the
number of roles. The results also show that, the minimum user count increases
as the number of constraints is increased, keeping the number of roles fixed. The
execution time slowly increases with an increase in the number of constraints,
keeping the number of roles fixed. Further, there is an increase in execution time
when the number of roles increases, keeping the number of constraints fixed.

We also compared the current approach with the method proposed in [15].
While the minimum user count value is almost the same in the two approaches,
there is a significant improvement in execution time. It has been observed that
for mixed set of t-t SMER constraints, instances with 10 roles and 10 SMER
constraints took the least time to execute for both the approaches. However,
the approach proposed in [15] took 16.64 seconds to execute and the current
approach took less than one second. For the data set containing 20 roles and
100 SMER constraints, the current approach took less than six seconds as com-
pared to 58.5 minutes by the approach proposed in [15]. Similar improvements
in execution time has also been observed for other instances used in [15].

8 Related Work

Since long, the concept of separation of duty (SoD) has existed in physical sys-
tems. The term “two-man rule” was often used to refer to this policy. In computer
systems, this principle is adopted to achieve a high level of security especially
for critical operations. The concept of SoD was first introduced by Clark and
Wilson [4] as a procedure to control fraud and error in commercial systems. It
was stated that, in a computer system, external consistency can be ensured by
separation of all operations into subparts and imposing a requirement that each
subpart should be executed by a different individual. Mutual exclusion of roles
for efficiently handling SoD constraints in RBAC was first introduced by Kuhn
[13]. It has been proved by Li et al. in [14] that a set of Statically Mutually
Exclusive Roles (SMER) constraints can be used to equivalently represented a
given SoD constraint. Furthermore, they have shown that verifying whether a
given RBAC state satisfies a set of SoD constraints is intractable, however, it re-
quires polynomial time to verify if an RBAC state satisfies a given set of SMER
constraints.

While in [14] an approach to convert a set of SoD policies into a set of SMER
constraints has been proposed, in this work we study the impact of SMER con-
straints on the minimum user requirement in an RBAC system.

It has also been recognized in the literature that mutually exclusive roles are
most commonly used constraints in RBAC [17]. Hence, using SMER constraints
to enforce SoD policies in RBAC system has been recognized as an efficient
method.

126 A. Roy, S. Sural, and A.K. Majumdar

Substantial work has been done in workflow management where the problem
of assigning users to roles and roles to tasks is considered [2], [21]. A language
to express workflow authorization constraints as clauses in a logic programming
language was introduced by Bertino et al. [2]. Algorithms to plan users for a
workflow were also proposed in [2]. However, planning of users using minimum
number of users was not considered. Also, the SMER constraints, which have
been shown to be effective in imposing SSoD constraints [14], are not supported
by that framework.

A model (R2BAC) to support workflow and the “workflow satisfiability prob-
lem” (WSP) was proposed by Wang and Li [21]. For a particular workflow, WSP
checks whether a valid plan is possible for a given access control state [5]. How-
ever, R2BAC neither supports the general SSoD constraints mentioned in [14]
nor the SMER constraints. It is to be noted that, there are considerable differ-
ences between the problem of user planning with minimum number of users and
the WSP problem.

The work presented in the current paper has been shown to be effective in
deciding the minimum number of users required to enforce a given set of t-t
SMER constraints while designing an RBAC system. We have also shown how it
can be extended for handling other constraints and can be adapted for workflow
problems.

9 Conclusion and Future work

We have considered the problem of finding minimum number of users required
and corresponding user-role assignment to deploy an RBAC system with a set
of t-t SMER constraints. The problem is shown to be NP-complete. A solution
to this problem is to find the minimum chromatic number from a set of graphs
constructed by choosing a possible pair of roles as an edge from each constraints
for each graph. We have proposed a greedy algorithm to identify the graph with
minimum chromatic number. We have discussed a possible application of the
current work in planning users for workflows. Possible approaches to solve the
current problem along with a few other constraints have also been presented.

A workflow system is planned in two phases of which the first phase involves
planning or deployment of users in the system. There has been some work on user
planning in this context in the presence of various separation of duty constraints.
However, user planning using minimum number of users is not considered. In
future, we plan to design algorithms for the same. We also intend to derive
tighter bounds for the problem considered in the current paper and come up
with algorithms with tight approximation ratios. Furthermore, we would like
to study other variants of this problem, considering various other constraints
considered in an RBAC system.

Impact of Multiple t-t SMER Constraints 127

References

1. Bell, D.E., Lapadula, L.J.: Secure computer system: Unified exposition and mul-
tics interpretation. Electronic Systems Division, Air Force Systems Command,
Hanscom Field, Bedford, MA 01731 (1976)

2. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authoriza-
tion constraints in workflow management systems. ACM Transactions on Informa-
tion and System Security 2(1), 65–104 (1999)

3. Chen, F., Sandhu, R.S.: Constraints for role-based access control. In: Proceedings
of the 1st ACM Workshop on Role-Based Access Control, pp. 39–46 (1996)

4. Clark, D.D., Wilson, D.R.: A comparison of commercial and military computer
security policies. In: Proceedings of the 1987 IEEE Symposium on Security and
Privacy, pp. 184–194 (1987)

5. Crampton, J., Gutin, G., Yeo, A.: On the parameterized complexity and kerneliza-
tion of the workflow satisfiability problem. ACM Transactions on Information and
System Security, 16(1), 4:1–4:31 (2013)

6. Diestel, R.: Graph Theory. Springer (2005)
7. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control. Artech

House (2007)
8. Frank, M., Buhman, J.M., Basin, D.: Role mining with probabilistic models. ACM

Transactions on Information and System Security, 15(4), 15:1–15:28 (2013)
9. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory

of np-completeness. W. H. Freeman (1979)
10. Harika, P., Nagajyothi, M., John, J.C., Sural, S., Vaidya, J., Atluri, V.: Meet-

ing cardinality constraints in role mining. IEEE Transactions on Dependable and
Secure Computing (to appear, 2014)

11. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Com-
munications of the ACM 19(8), 461–471 (1976)

12. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012)

13. Kuhn, D.R.: Mutual exclusion of roles as a means of implementing separation of
duty in role-based access control systems. In: Proceedings of the Second ACM
Workshop on Role-based Access Control, pp. 23–30 (1997)

14. Li, N., Tripunitara, M.V., Bizri, Z.: On mutually exclusive roles and separation-of-
duty. ACM Transactions on Information and System Security 10(2), 1–36 (2007)

15. Roy, A., Sural, S., Majumdar, A.K.: Minimum user requirement in role based access
control with separation of duty constraints. In: 12th International Conference on
Intelligent Systems Design and Applications, pp. 386–391 (2012)

16. Sandhu, R.S., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM Transactions on Information and System Security
(TISSEC) 2(1), 105–135 (1999)

17. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

18. Schaad, A., Moffett, J., Jacob, J.: The role-based access control system of a Euro-
pean bank: a case study and discussion. In: Proceedings of the sixth ACM Sym-
posium on Access Control Models and Technologies, pp. 3–9 (2001)

128 A. Roy, S. Sural, and A.K. Majumdar

19. Scheinerman, E.R.: Matgraph: A MATLAB Toolbox for Graph Theory (2012),
http://www.ams.jhu.edu/~ers/matgraph

20. Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: finding a minimal descrip-
tive set of roles. In: Proceedings of the 12th ACM Symposium on Access Control
Models and Technologies (SACMAT), pp. 175–184 (2007)

21. Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorization systems.
ACM Transactions on Information and System Security 13(4), 40:1–40:35 (2010)

http://www.ams.jhu.edu/~ers/matgraph

Temporal RBAC Security Analysis

Using Logic Programming in the Presence
of Administrative Policies

Sadhana Jha1, Shamik Sural2, Jaideep Vaidya3, and Vijayalakshmi Atluri3

1 Advanced Technology Development Centre
2 School of Information Technology,

Indian Institute of Technology, Kharagpur, India
{sadhanajha,shamik}@sit.iitkgp.ernet.in

3 Management Science and Information Systems Department,
Rutgers University, USA

jsvaidya@business.rutgers.edu, atluri@rutgers.edu

Abstract. Temporal Role Based Access Control (TRBAC) is an ex-
tension of the role based access control (RBAC) model in the temporal
domain. It is used by organizations needing to enforce temporal con-
straints on enabling and disabling of roles. For any chosen access control
model, decentralization of administrative authority necessitates the use
of a separate administrative model. Even with the use of an adminis-
trative model, decentralization often leads to an increased concern for
security. Analysis of security properties of RBAC has been extensively
done using its administrative model (ARBAC97). However, TRBAC se-
curity analysis in the presence of an administrative model so far has
received limited attention. This paper proposes a method for perform-
ing formal security analysis of TRBAC considering a recently proposed
administrative model named AMTRAC, which includes all the relations
of ARBAC97 as well as an additional set of relations (named REBA) for
administering the role enabling base of a TRBAC system. All the com-
ponents of TRBAC and AMTRAC are specified in Prolog along with the
desired safety and liveness properties. Initially, these properties are ver-
ified considering the non-temporal relations only, followed by handling
of the temporal relations as well. Experimental results show that the
method is both effective as well as scalable.

Keywords: TRBAC, AMTRAC, Prolog, Security Analysis.

1 Introduction

Providing secure and restrictive access to its resources is one of the main con-
cerns for any organization. Role-based access control (RBAC) [14] has emerged
as an effective means for specifying and meeting security goals in organizations
with diverse access control requirements. It is based on the central notion of
roles. Roles are created to perform a job functions and are associated with a set

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 129–148, 2014.
© Springer International Publishing Switzerland 2014

130 S. Jha et al.

of permissions. Users are assigned to roles based on their organizational respon-
sibilities. The Temporal RBAC (TRBAC) model [1] allows temporal constraints
on when the roles can be used. It restricts roles to be either in the enabled or
the disabled state. Transition from the enabled to the disabled state is termed
as enabling of role and the reverse as disabling of role.

Administration of a large RBAC or TRBAC system is a challenging task and
to address this, administrative models such as ARBAC97 [12] for RBAC and
AMTRAC [16] for TRBAC have been proposed. An administrative model brings
decentralization in administration by allowing a chief security officer to delegate
the authority of management to other administrative officers. It incorporates
certain relations that allow administrators to change the state of the system.
The use of administrative models restricts the set of possible states which an
access control system can transit to. However, decentralization also leads to
increased possibility of intentional or unintentional violation of security, resulting
in unauthorized information flow. Hence, it is imperative that a comprehensive
understanding and analysis of these models be done before they are deployed in
practical situations.

Access control models including RBAC and TRBAC provide a multitude of
features. While this enables specifying different kinds of access control policies,
analysis of the level of security provided by the access control model is tedious
and error-prone, if not impossible, when attempted manually. It is more so, when
security administration is distributed and state changes could be made by differ-
ent administrators based on the administrative roles they are allowed to invoke.
Automated security analysis is also complicated and requires appropriate tools
for solving computationally hard problems. Since state transition in an RBAC or
TRBAC system can take place only through the set of administrative relations
defined in its administrative model, consideration of administrative models is
necessary for analyzing the security properties. Till date, there is limited work
on TRBAC security analysis. Additionally, none of the existing approaches con-
sider a comprehensive administrative model.

In this paper, we present a methodology for TRBAC security analysis us-
ing Prolog in the presence of a recently proposed administrative model named
AMTRAC [16]. Essentially, a security analysis problem can be considered as a
searching problem in which the analyzer searches for an instance in which the
desired security property does not hold. We use Prolog for security analysis since
it has been shown to be able to handle such type of problems quite efficiently.
Moreover, the inbuilt capability of handling lists makes it suitable for represent-
ing the temporal elements of a TRBAC system. However, effective modeling of
temporal components and administrative functions so that security analysis can
be done efficiently is a non-trivial task as Prolog does not directly support all
such features.

Security analysis in the current context is primarily concerned with the verifi-
cation of safety and liveness properties. A safety property can be stated as “Does
user u get permission p at time instant t?” while a liveness property could be
“Is there a time instant t, when none of the roles in the system is in the enabled

Security Analysis of Temporal RBAC 131

state?”. Thus, safety property checks for the presence of an enabled user at a
particular point of time and liveness property checks for the presence of an en-
abled role over the entire set of time periods defined by all the periodic events of
the system under consideration. For analysis, both the TRBAC system as well as
the corresponding AMTRAC relations are specified in Prolog. Security proper-
ties are also defined using Prolog syntax. These specifications are given as input
to the SWI interpreter1, which returns true or false depending on whether the
system specifications meet the given security properties. It may be noted that,
for analysis, we do not use temporal logic extension of Prolog, rather first order
form is used along with a representation of the temporal aspects of TRBAC.

The rest of the paper is organized as follows. Section 2 contains preliminaries
about RBAC, TRBAC, AMTRAC and Prolog. In Sections 3 and 4, we explain
how safety and liveness analysis can be done for TRBAC under the AMTRAC
administrative model using Prolog. Section 5 presents the results of experimental
evaluation of the proposed approach. Section 6 discusses some of the previous
work done in this field. Section 7 concludes the paper along with suggestions for
prospective future work.

2 Preliminaries

In this section, we provide a brief introduction of the RBAC and TRBAC ac-
cess control models (Section 2.1), their administrative models (Section 2.2), and
Prolog (Section 2.3). This would help in understanding the key concepts used in
the rest of the paper.

2.1 RBAC and TRBAC

RBAC [14] is an access control model in which role represent job functions
within an organization. Permissions are assigned to roles instead of directly to
users. Users get appropriate permissions by becoming members of corresponding
roles. The basic components of RBAC include a set of users (U), a set of roles
(R), a set of permissions (P), a user-role assignment (UA), a role-permission
assignment (PA) and a role- role relation called role hierarchy (RH). These
components collectively determine whether a particular user has permission to
access a certain resource. RBAC, thus, effectively controls which users have
access to which resource.

However, for many applications, which need to make access control decisions
based on temporal information, RBAC is not adequate. For such applications,
TRBAC, a temporal extension of RBAC, has been proposed. It includes a Role
Enabling Base (REB) for defining periodic enabling and disabling of roles ex-
pressed as periodic events along with temporal dependencies among roles speci-
fied using role triggers. Periodic events (PE) are of the form {I, P, p:E}, where
I represents the interval for which a periodic event is valid, P represents a peri-
odic expression based on the notion of calendars [1] and p:E represents a priori-
tized event expression [1]. For example, ([01/01/2014, 01/01/2020], all.years +

1 http://www.swi-prolog.org/

http://www.swi-prolog.org/

132 S. Jha et al.

all.months + all.weeks + {1,2,3,4,5}.days + {10}.hours � 8.hours, H: Enable r)
conveys that the role r is enabled with high (H) priority for a duration of eight
hours starting from the tenth hour of the first, second, third, fourth and fifth
day of every week of every month of every year, during the period 01/01/2014
till 01/01/2020. A role trigger (RT) is of the form E1,E2,....En,C1,C2,...Cm −→
p:E after �t where, Eis and Cjs represent event expressions and role status
expressions [1], respectively. p:E and �t represent a prioritized event expression
and delay, respectively. For example, (Enable a, Enabled b → Enable c) con-
veys that, enabling of role a triggers enabling of role c provided that role b is
already enabled. Thus, periodic events and role triggers collectively determine
which roles in a system are enabled or disabled at various points in time.

2.2 ARBAC97 and AMTRAC

An administrative model defines the set of valid state transition rules for an ac-
cess control system. ARBAC97 is the first comprehensive administrative model
for RBAC. It has three components, namely, URA97, PRA97 and RRA97.
URA97 includes two relations, namely, can−assign and can−revoke to modify
the UA of an RBAC system. These relations respectively provide authority to
an administrator to assign new users to a role and to revoke existing users from
a role. PRA97 includes two relations, namely, can−assignp and can−revokep to
modify the PA of an RBAC system. These relations respectively provide author-
ity to an administrator to assign new permissions to a role and revoke existing
permissions from a role. RRA97 includes a relation named as can−modify to
modify the RH of an RBAC system. It allows an administrator to insert new
edges into the hierarchy and delete existing edges from the hierarchy. It also
allows them to create new roles as well as delete existing roles within a role
range. The components of ARBAC97, thus, can be used to change the state
of an RBAC system. To change the state of a TRBAC system, along with the
relations defined in ARBAC97, an additional component named as REBA (Role
Enabling Base Assignment) has been introduced in AMTRAC. REBA includes
a set of eighteen relations. These relations are partitioned into four different cat-
egories. While, the first and second categories of relations allow an administrator
to modify an existing periodic event and role triggers, the third and the fourth
category relations allow an administrator to add or delete new periodic events
and role triggers to or from the REB of a TRBAC system. Thus, REBA can be
used to make various possible modifications to the REB of a TRBAC system.

2.3 Introduction to Prolog

A Prolog program describes relations defined by means of clauses. A clause
can be either a fact or a rule. A fact represents a predicate expression that
makes a declarative statement about the problem domain. For example, consider
an authorization system having Alice, Charles and Tom as its users. Each of
the three users is associated with a password through the relation named as
username−password. The set of facts representing this can be written as follows:

Security Analysis of Temporal RBAC 133

username−password(Alice, 123456)
username−password(Charles, 123abc)
username−password(Tom, a2gh45)

A rule is a predicate expression that uses logical implication (:-) to describe a
relationship among facts. For example, for the authorization system mentioned
above, a rule to check whether the combination of username and password en-
tered by a user is valid or not can be written as follows:

valid−username−password−combination (U, P):- username−password(U, P)
→ write(’Valid username password combination’); write(’Invalid username pass-
word combination’)

A program logic expressed in the syntax of Prolog is executed using an inter-
preter. The interpreter is provided with a query to check whether certain condi-
tions hold or not. For instance, for the authorization system specified above, a
query to check whether Alice and 123456 is a valid username-password combi-
nation can be written as:

valid−username−password−combination(Alice, 123456)

The interpreter, when provided with the given query, tries to find whether in
the presence of the provided set of facts and rules, it can derive that Alice and
123456 form a valid username-password combination. If it is able to do so, then
it returns true; else, returns false as output. Thus, we have seen how a Prolog
interpreter can be employed to check for the presence of certain conditions in a
system.

3 System Modeling in Prolog

To check whether a TRBAC state continues to remain in the safe state in pres-
ence of a set of administrative relations, the initial state of a TRBAC system as
well as the set of administrative relations are provided as facts to the interpreter.
Meaning of the security properties is defined in the form of rules.

3.1 Modeling TRBAC Using Prolog

In this section, we show how different components of a TRBAC system can be
modeled in the form of facts of a Prolog program. While modeling a TRBAC
system, the following assumptions are made: i) Initially, all roles are in the
disabled state, ii) If an enabled role needs to be disabled, the corresponding role
trigger is removed from the REB, iii) If a role r1 triggers another role r2, then
disabling of r1 causes automatic disabling of r2, iv) All event expressions are of
the same priority and v) Triggers are fired without any delay.

To represent users, roles and permissions, facts of the form user(string),
role(string) and per(string), respectively are used. In these facts, string denotes

134 S. Jha et al.

the name of a user, role or permission. To represent that ui is a user, a fact of
the form user(ui) is added to the specification, to represent that ri is a role, a
fact of the form role(ri) is added and to show that pi is a permission, a fact of
the form per(pi) is added to the program. The UA, PA and RH relations of a
TRBAC system are represented by facts of the form user−role(string, string),
role−per(string, string) and role−per(string, string), respectively.

A fact of the form user−role(ui, rj) represents that the user ui is a member
of the role rj . A fact of the form role−per(ri, pj) represents that the permission
pj is assigned to the role ri . A fact of the form role−H (ri, rj) represents that
role ri is senior to role rj .

An REB is represented by adding facts corresponding to periodic events as
well as role triggers. To express a periodic event, a fact named periodic−event is
used and it is of the form:

periodic−event([Integeri, Integerj], [[Year], [Month], [Week], [Day], [Hour],
[Duration]], role)

Integeri and Integerj represent the begin and end of the interval component of
a periodic event. Variables Year, Month, Week, Day and Hour represent compo-
nents of the year, month, week, day and hour calendar of a periodic expression.
The variable Duration represents the component of the duration calendar of a
periodic expression. The variable role is used to represent the role that will get
enabled through a periodic event (assumption has been made that PEs and RTs
are used only for role enabling).

Even though Prolog provides sufficient flexibility to represent every form of
periodic expression, for the sake of brevity, we constrain the different values
that the variables of a periodic−event fact could take. These constraints are as
follows:

– Integeri and Integerj : 4-digit integers such that Integeri ≤ Integerj
– YEAR: all \−
– MONTH: all \− \k, 1 ≤ k ≤ 12
– WEEK: all
– DAY: all \− \k, 1 ≤ k ≤ 7
– HOUR: all\− \k, 1 ≤ k ≤ 23
– DURATION: 1 ≤ k ≤ 23

Using the above definition of a periodic event, to represent a periodic event of
the form ([2000, 2014], <all.years + all.months + {1, 2, 3}.days + 10. hours �
8. hours >, Enable r1), a tuple of the form periodic−event([2000, 2012], [[all],
[all], [−], [1, 2, 3, 4, 5], [10], [8]], r1) needs to be added to the Prolog program.

A role trigger is represented by a relation named as trigger. This relation
is of the form trigger(rolei1 , rolei2 , rolei3 , rolei4), where each roleik , 1 ≤ k ≤
4 could be either a valid role name or an anonymous variable represented as
‘−’(without quotes). rolei1 represents the role present in the event expression
of a role trigger, rolei2 and rolei3 represent the roles present in the role status
expression of a role trigger and rolei4 represents the role present in the head of

Security Analysis of Temporal RBAC 135

a trigger. For example, a role trigger of the form Enable r1, Enabled r2, Enabled
r3 → Enable r4 could be represented by adding a fact of the from trigger(r1, r2,
r3, r4) and a role trigger of the form Enable r1, Enabled r2 → Enable r3 could
be represented as trigger(r1, r2, −, r3). It may be noted that, for simplicity, we
restrict the form a role trigger can take, i.e., the body of the trigger can have at-
most one event expression and two role status expressions, the head of a trigger
can have at-most one event expression. However, Prolog itself does not impose
such restrictions and could be efficiently used to represent more complex forms
of role triggers.

3.2 Modeling of AMTRAC in Prolog

This sub-section gives details on modeling of the relations of AMTRAC in Prolog.
We divide AMTRAC relations into three categories. The first category consists of
those relations that add new elements to the components of a TRBAC system.
The second category of relations removes elements from the TRBAC system
components and the third category modifies the existing elements of a TRBAC
system components. We refer to these categories of relations as additive relations,
removal relations and modification relations, respectively.

Modeling of Additive Relations: Under this category of relations, fall
can−assign, can−assignp and insert−Edge of ARBAC97 and also the addRT
and addPE relations of REBA.

– Modeling of can−assign
To model can−assign, a fact of the form canassign(arole, role, role) is used,
where arole represents an administrative role and role denotes a regular role.
If a TRBAC system has a canassign relation of the form (ar1, r1, r2), then
this can be represented in Prolog by adding a fact of the form canassign(ar1,
r1, r2). Now the facts that an interpreter can derive from a canassign fact
are given by the rules:

can−assign(A, R1, R2) :- canassign(A, R1, R2)
can−assign(A, R1, R2) :- canassign(A, R3, R2), can−assign(A, R1, R3)
assigned−user(U, R) :- user−role(U, R)
assigned−user(U, R) :- member−user−through−hierarchy(U, R)
user−assigned(U, R) :- assigned−user(U, R)
user−assigned(U, R) :- can−assign(A, R1, R), assigned−user(U, R)

The first two lines help the interpreter to find the set of canassign relations
through which a member of R1 can be assigned to R2. The third and the
fourth lines define that a user U is a member of role R if either there is a
tuple of the form (U, R) in user−role or if U gets membership of the role
through hierarchy. The fourth and the fifth statements convey that a user
U is assigned to role R, either directly through UA or RH, or it may get
assigned due to the presence of a canassign fact that allows A to assign U
to R.

136 S. Jha et al.

– Modeling of can−assignp
To model can−assignp, a fact of the form canassignp(arole, role, role) is
used, where arole represents an administrative role and role denotes a reg-
ular role. If a TRBAC system has a canassignp relation of the form (ar1,
r1, r2), then this can be represented in Prolog by adding a fact of the form
canassignp(ar1, r1, r2). Now the facts that an interpreter can derive from a
canassignp fact are given by the rules:

can−assignp(A, R1, R2) :- canassignp(A, R1, R2)
can−assignp(A, R1, R2) :- canassignp(A, R3, R2), can−assignp(A, R1, R3)
assigned−per(R, P) :- role−H (R, P)
assigned−per(R, P) :- member−per−through−hierarchy(R, P)
per−assigned(R, P) :- assigned−per(R, P)
per−assigned(R, P) :- can−assignp(A, R1, R), assigned−per(R, P)

The first two lines help the interpreter to find the set of canassignp relations
through which permissions of R1 can be assigned to R2. The third and the
fourth line define that a permission P is associated with a role R, if, either
there is a tuple of the form (R, P) in role−per or if P is associated with some
other role R3 such that, R3 is junior to R. The fourth and fifth statements
convey that a role R gets a permission P, either directly through PA or RH,
or it may get it through the execution of some canassignp, which allows A
to assign P to R.

– Modeling of insert−Edge
RRA97 allows an administrator to insert new edges into the role hierarchy
and also to delete existing edges from the hierarchy. To model insertion of
edge, the InsertEdge relation is used. It is of the form insertEdge(arole, role,
role), where arole represents an administrative role and role denotes a reg-
ular role. If a TRBAC system has an insertEdge relation of the form (ar1,
r1, r2), then this can be represented in Prolog by adding a fact of the form
insertEdge(ar1, r1, r2). Now the facts that an interpreter can derive from a
insertEdge fact are given by the rules:

direct−senior(R1, R2):- role−H (R1, R2)
direct−senior(R1, R2):- role−H (R1, R3), direct−senior(R3, R2)
new−senior(R1, R2):- insertEdge(R1, R2)
new−senior(R1, R2):- insertEdge(R1, R3), new−senior(R3, R2)
senior(R1, R2) :- direct−senior(R1, R2)
senior(R1, R2) :- new−senior(R1, R2)

The first two lines help the interpreter to find the set of roles senior to a
role R2 due to initial role hierarchy. The third and the fourth lines help the
interpreter to find the set of roles senior to a role R due to the hierarchy in-
troduced by the insertEdge relation. The fourth and fifth statements convey
that the role R1 is senior to the role R2 if either R2 is senior due to initial
hierarchical structure or due to the modified hierarchical structure.

Security Analysis of Temporal RBAC 137

– Modeling of addPE (R16)
The relation R16 adds a new periodic event to an REB. The fact used to
model R16 is of the form addPE (perodic−event), where periodic−event is a
new periodic event such that its format satisfies all the constraints speci-
fied in Section 3.1. To add a new periodic event of the form ([2000, 2014],
all.years + 1, 2, 3.days � 2.days, Enable r), a fact of the form addPE ([2000,
2014], [[all], [−], [−], [1, 2, 3], [−], [2]], r) is added to the prolog specifica-
tion. The new facts that an interpreter can derive due to the presence of an
addPE fact are given by:

effective−periodic−event(I, P, R) :- periodic−event(I, P, R)
effective−periodic−event(I, P, R) :- addPE (I, P, R)

The above statements convey to the interpreter that the set of effective
periodic events in a system is the set of periodic events present in the initial
state of a TRBAC system along with the set of periodic events added through
addPE.

– Modeling of addRT (R17)
The relation R17 adds new role trigger to a system. The fact used to model
R17 is of the form addRT (trigger), where trigger is a new role trigger such
that its format satisfies all the constraints specified in Section 3.1. To add
a new role trigger of the form Enable r, Enabled s → Enabled t, a fact of
the form addRT (r, s, −, t) is added to the Prolog specification. The new
facts that an interpreter can derive due to the presence of an addRT fact
are given by:

effective−trigger(R1, R2, R3, R4) :- trigger(R1, R2, R3, R4)
effective−trigger(R1, R2, R3, R4). :- addRT (R1, R2, R3, R4)

Through these statements, the interpreter is asked to consider the facts writ-
ten as trigger or addRT as the set of effective triggers in the system.

Modeling of Removal Relations: Under this category of relations, come
can−revoke, can−revokep and delete−Edge of ARBAC97 and also the removeRT
relation of REBA.

– Modeling of can−revoke, can−revokep and delete−Edge of ARBAC97 and
removeRT (R18) of REBA. These relations are specified as rules and are
respectively of the form:
can−revoke(A, R) :- retractall(user−assigned(U, R))
can−revokep(A, R) :- retractall(per−assigned(R, P))
deleteEdge(A, R1, R2):- retarctall(role−H (R1, R2))
removeRT (trigger) :- retract(trigger)

The can−revoke(A, R) rule asks the interpreter to remove all the assigned
users U from the role R. The can−revokep(A, R) asks the interpreter to

138 S. Jha et al.

remove all the permissions assigned to the role R. A deleteEdge(A, R1, R2)
relation asks the interpreter to remove the hierarchy edge between the roles
R1 and R2, and the rule removeRT (trigger) asks the interpreter to remove
the role trigger trigger from the REB of a system.

Modeling of Modification Relations of REBA: We finally show model-
ing of those relations that modify an existing element of the REB. Under this
category of relations, come R1 to R15 of REBA. To model these relations, two
rules are used: one for modifying the periodic events and the other for modifying
the role triggers. Modification in a periodic event can be essentially achieved by
first removing the obsolete periodic event and then adding the modified periodic
event to the REB. Similar is the case for modification in a role trigger. To modify
a periodic event, a rule of the following form is used.

modify−periodic−event(new−periodic−event, old−periodic−event) :-
retract(old−periodic−event), assertz (new−periodic−event)

Here, new−periodic−event is the required new periodic event and the old−per
iodic−event represents the periodic event that will get removed from the REB.

The above definition conveys to the interpreter to remove the old periodic
event from the set of facts and to add new−periodic−event to the set of facts.
Consider a periodic event of the form ([2000, 2012], <all.years + all.months �
2.days>, Enable r). If an administrator needs to modify the periodic expression
to <all.years + all.months + all.weeks � 2.days>, then the modify−periodic
−event will be of the form:

modify−periodic−event(periodic−event([2000, 2012], <all.years + all.months
� 2.days>, Enable r), periodic−event([2000, 2012], <all.years + all.months +
all.weeks � 2.days>, Enable r).

To modify a component of a role trigger, a rule of the following form is used:

modify−trigger(old−trigger, new−trigger) :-
retract(old−trigger), assertz (new−trigger)

This definition conveys to the interpreter to remove the old−trigger from the
set of facts and to add new−trigger into the REB. Consider a trigger of the form
Enable r1 → Enable r2. Suppose, an administrator wants to modify it to the
form Enable r1 → Enable r3. To model this requirement, modify−trigger will be
of the form:

modify−trigger([r1, −, −, r2], [r1, −, −, r3])

4 Analysis of Security Properties

In the previous section, we showed how the different relations of AMTRAC can
be modeled using Prolog syntax. In this section, we show how these relations
affect the security properties of a TRBAC system. We consider both safety as
well as liveness analysis in this paper.

Security Analysis of Temporal RBAC 139

4.1 Safety Analysis

As mentioned in Section 1, a safety property for a TRBAC system could be
defined as “whether a user u gets a permission p at some time instant t.” In
Prolog, to define this property, we use a rule named as safety. The safety rule
can be defined as follows:

safety(U, P, T) :- user−assigned(U, R), per−assigned(R, P), enabled−role(R, T)

In the above rule, the predicate user−assigned(U, R) and per−assigned(R, P)
respectively return the set of users and the set of permissions assigned to a role
R. The predicate enabled−role is used to check whether the role R is enabled at
some time instance T or not. A formal definition of this predicate can be written
as:

enabled−role(R, T):- pe−enabled−role(R, T); trigger−enabled−role(R, T)

The above defined predicate returns true if a role R is enabled at time T either
through a periodic event or due to a role trigger. To check whether there is
some periodic event which causes enabling of a role R at time T, the predicate
pe−enabled−role is used. It is of the form:

pe−enabled−role(R, T) :- valid−periodic−event(X, Y, R),
element−at(IBEGIN, X ,1), element−at(EBEGIN, X ,2),
element−at(DAYLIST, Y ,4), element−at(HOURCALLIST, Y ,5),
element−at(DURCALLIST,Y ,6), element−at(HOURCAL,HOURCALLIST ,1),
element−at(DURCAL, DURCALLIST ,1), element−at(QUERYYEAR, T ,1),
element−at (QUERYDAY, T ,3), element−at(QUERYTIME, T ,4),
Z = HOURCAL + DURCAL, write(’Z is ’), write(Z), nl,
number−in−range(IBEGIN, QUERYYEAR,EBEGIN)→ (member(QUERYDAY,
DAYLIST)→ (number−in−range(HOURCAL,QUERYTIME,Z)→ (write(’Role
enabled’));(write(’Not enabled’),nl));
(write(’query day not in daylist’)));(write(’query year not in range’))

In the above definition, the predicate valid−periodic−event refers to the peri-
odic events initially present in the REB as well as the new periodic events that
can be added to the REB through the execution of addPE relations.

To check whether a role is enabled through some role trigger or not, the pred-
icate trigger−enabled−role is used. It is of the form:

trigger−enabled(R, T) :- enabled(R), pe−enabled−role(R, T)

The above predicate conveys that a role R is enabled if both the predi-
cates, i.e., enabled(R) and pe−enabled−role(R, T) return true. The predicate
enabled(R) checks whether all the role status expressions and event expressions
specified in the role trigger expression of R are satisfied or not. It is of the form:

140 S. Jha et al.

enabled(R):- valid−trigger(X, Y, Z, R), nl, periodic−event(I, P, X),
periodic−event(First−I, First−P, Y), periodic−event(Second−I, Second−P, Z),
element−at(Ibegin− PE−Event ,I, 1), element−at (IEnd−PE−Event,I, 2),
element−at(DayListPE−Event,P, 4), element−at(HourCal−PE−Event, P, 5),
element−at(DurCal−PE−Event, P, 6), element −at(Ibegin− First− Enabled,
First−I, 1), element−at(IEnd−First−Enabled,First−I, 2),
element−at(Day ListPE− FirstEnabled,First−P, 4), element−at(HourCal−First−
Enabled, First−P, 5), element−at(DurCal−First−Enabled, First−P, 6),
element−at(Ibegin −Second−Enabled, Second−I, 1),
element−at(IEnd−Second−Enabled,Second−I, 2),
element−at(DayListPE −SecondEnabled,Second−P, 4),
element−at(HourCal−Second−En- abled, Second−P, 5),
element−at(DurCal−Second−Enabled, Second−P, 6),
intersection (DayListPE−Event, DayListPE−FirstEnabled, L),
intersection(L, DayListPE−Second- Enabled, W),
find− largest(HourCal−PE−Event, HourCal−First−Enabled, HourCal−
Second−Enabled, Max1, Max2),
find−smallest(DurCal−PE−Event, DurCal−First−Enabled, DurCal−Second−
Enabled, Min1, Min2), nl,
find−largest(Ibegin−PE−Event, Ibegin−First−Enabled, Ibegin− Second−Enabled,
Max−Ibegin1, Max−Ibegin2), find−smallest(IEnd−PE−Event, IEnd−First−
Enabled, IEnd−Second −Enabled, Min−Iend1, Min−Iend2),
assertz(periodic−event ([Max−Ibegin2, Min−Iend2],[[all], [all], [all], W, Max2,
Min2], R))

Assume there is a role trigger of the form Enable r1, Enabled r2, Enabled r3
→ Enable r4, and a query is made whether r4 is enabled at some time instance
t or not. Then, enabled(r4) checks whether both the roles r2 and r4 are enabled
at time t or not.

After defining the safety rule, we next describe how analysis of a TRBAC
system can be done in presence of the different administrative policies. To show
the effect, we use the TRBAC system whose user policies are shown in Figure 1
and administrative policies are shown in Figure 2.

To perform safety analysis, we define certain desired safety properties for the
system as shown in Table 1. To check whether a condition defined in Table
1 holds or not, individual safety queries for each of them are provided to the
interpreter. The set of queries provided to the interpreter is shown in Table 2.

There are certain constraints associated with the values of T that can be used
in the safety queries defined in Table 2. For the first query, the value of T should
be selected in such a way that it lies in the time duration defined by the periodic
expression of any periodic event. For the second query, the value of T can be
any time instance between morning 0000 hrs to 1600 hrs and for the last query,
the value of T should be a time instance when, out of the two roles Manager
and TeamLeader, only one is enabled.

Security Analysis of Temporal RBAC 141

Fig. 1. User policies for the example TRBAC system

Table 1. Safety conditions for the example TRBAC system

1. Tom should never get Edit
2. Tom must not get Access between 0000 hrs to 1600 hrs
3. John should be able to use Edit only if both the roles Manager and
TeamLeader are enabled

For all the behavior defined in Table 1, a safety query is posed to the in-
terpreter. If the condition holds, then the interpreter returns true; else, returns
false. For all the defined conditions, the expected answer is false, and if the in-
terpreter returns true for any of the queries, then the system is said to be in
unsafe state. To show the effect of the administrative relations, initially, queries
are posed in absence of the administrative relations, and then, in the presence of
the administrative relations. As mentioned earlier, for the first query, any value
of T representing a valid periodic time can be used. So we use the periodic time
[2012, 1, 3, 10] for executing the first query. Similarly, for the second query, we
can use any periodic time not lying in the range 1600 hrs to 0000 hrs. W con-
sider the periodic time [2010, 4, 3, 13] as the value of T. For the third query, we
use the periodic time [2010, 2, 3, 13], since during this periodic time, only the
Manager role is enabled. It may be noted that, all the periodic times satisfying
the constraints specified earlier could also be used as the value of T.

142 S. Jha et al.

Fig. 2. Administrative roles and Administrative relations of AMTRAC which affects
safety property of a TRBAC system

Table 2. Safety conditions of the example TRBAC system

1. safety(Tom, Edit, T).
2. safety(Tom, Access, T).
3. safety(John, Edit, T).

When the interpreter is posed with all the three queries, it returns false for
each of them, signifying that the system is in safe state. Next, the same set
of queries is posed to the interpreter in the presence of the administrative re-
lations defined in Figure 2. Now, the interpreter returns true for all the three
queries. Consecutive execution of the can−assign relations assigns Tom to the
roles Manager and HR, making Edit permission available to him. Execution
of the administrative relation addRT causes enabling of the role TeamLeader
whenever the role Engineer gets enabled. This causes Tom to get the Access
permission between 1000 hrs to 1800 hrs on Saturdays and Sundays. Execution
of the modify−role−trigger relation causes enabling of the role HR whenever the
role Manager gets enabled, making permission Edit available to John even when
the role TeamLeader is not enabled. Thus, it is seen how execution of the dif-
ferent administrative relations can result in undesired transition of the state of
a TRBAC system and how a Prolog interpreter can be suitably used to identify
such unsafe conditions.

4.2 Liveness Analysis

Liveness analysis checks for the presence of a dead state, i.e., it searches for a
time instance when none of the roles is enabled. In Prolog, to check for the
liveness of a system, we use the predicate liveness(t). It is of the form:

liveness(T) :- enabled−role(R, T)
When a query is made for a certain time instance T, the interpreter tries

to find a role R for which enable−role(R, T) returns true. If the interpreter is
able to find such a role, then it returns true conveying that system is not dead
at the given time instance. A liveness query for a system gets affected only if

Security Analysis of Temporal RBAC 143

modification is done in the periodic event. Modification in the role triggers will
never bring a system to a dead state. This is because a trigger enables a role at t
only if some other role gets enabled at t by a periodic event. So, even if removal
of the trigger prevents enabling of the triggered role, it cannot prevent enabling
of the role which triggers it. So, we consider only those administrative relations
which modify the periodic event of a TRBAC system.

Effect of Modifying Periodic Event on Liveness. Modification in any of
the components of a periodic event could result in a dead state for the system.
Consider the REB shown in Figure 1. If a modify−periodic−event relation that
modifies the periodic time of PE1 to {[2000, 2015], <all.years + all.months
+ all.weeks + 1, 2, 3, 4, 5.days + 10.hours � 8.hours>} is added, then this
will bring the system to the dead state from the start of the year 2016. If a
liveness query of the form liveness([2016, 1, 1, 1]) (the time represented is the
1st hour of the 1st day of the 1st month of 2016), then the system returns
false for this query, conveying that, the system is in a dead state at the given
time. Similarly, it can be shown that if a modify−periodic−event relation of
the form (periodic−event([2000, 2020], all.years + all.months + all.weeks + 1,
2, 3, 4, 5.days + 10.hours � 8.hours, Enable Manager), periodic−event([2000,
2020], all.years + all.months + all.weeks + 1, 2, 3, 4, 5.days + 13.hours �
8.hours, Enable Manager)) is executed, then on weekdays, the system will go
to a dead state from 1000 hrs to 1300 hrs. Similarly, it can be observed that
if a modify−periodic−event relation of the form (periodic−event([2000, 2020],
all.years + all.months + all.weeks + 5, 6.days + 10.hours � 8.hours, Enable
Engineer), periodic−event([2000, 2020], all.years + all.months + all.weeks + 5,
6.days + 10.hours � 8.hours, Disable Engineer)) is executed, then the system
will come to a dead state on the sixth day of every week of every month between
the years 2000 to 2020.

5 Experimental Results

To study the performance of the proposed modeling methodology, we have im-
plemented a simulator that takes the number of roles, users, permissions, ad-
ministrative roles, time intervals, periodic events and role triggers as input and
generates a TRBAC system satisfying the input. The number of user-role assign-
ments and also the number of permission-role assignments are kept at 20% of
the sizes of the respective cartesian products. A uniform distribution is used to
determine the user-role assignment and permission-role assignment entries that
are included in the relations. A second script is written to translate the output
generated by the simulator program into its corresponding Prolog specifications.
For implementation, Java(7.0.1-17), on a Windows 7 system with 64-bit i5 pro-
cessor @ 2.50GHz and 4GB RAM is used. SWI interpreter 6.6.1 is used for
analysis.

Effect of the number of roles on the analysis time is shown in Figure 3. The
data set used for the analysis consists of 2000 users, 300 permissions, 4 adminis-
trative roles, 10 time expressions, 50 periodic events and 30 role triggers. From

144 S. Jha et al.

the figure, it can be seen that a linear increase in the number of roles causes a
close to linear growth in analysis time. This is due to the fact that, a Prolog
interpreter works based on the principle of backtracking. A linear increase in the
number of roles causes a linear increase in the set of facts having role as one of
its parameters.

Fig. 3. Effect on analysis time due to variation in number of roles

Figure 4 shows the effect of number of users on the analysis time. The data set
used for analysis consists of 300 roles, 300 permissions, 15 time expressions, 50
periodic events, 30 role triggers and 4 administrative roles. It can be observed
that, even though the rate of increase in analysis time is linear with increase
in the number of users, the rate of growth of time is quite low as compared to
the rate of growth of time with number of roles as shown in Figure 3. This is
because, when a safety query is specified, the interpreter needs to check only for
the user specified in the query, thus making the result of the query independent
of other users.

Fig. 4. Effect on analysis time due to variation in number of users

Effect of the number of periodic events and role triggers is shown in Figure 5
and Figure 6, respectively. The rate of growth is quite close to linear for these
components of TRBAC as well. However, it can be observed that the analysis
time itself is slightly higher as compared to the analysis time needed for the other

Security Analysis of Temporal RBAC 145

Fig. 5. Effect on analysis time due to variation in number of periodic events

Fig. 6. Effect on analysis time due to variation in number of role triggers

components. This is due to the complex nature of the definitions of periodic
events and role triggers.

We also analyzed the effect of each individual administrative relation on the
analysis time. It was observed that all the relations have similar effect on the
analysis time. This is due to the similarity in format of the relations. The data
set used for the analysis consists of 500 users, 200 roles, 300 permissions, 2
administrative roles, 70 periodic events and 20 role triggers. For this data set, it
took approximately 0.2 secs to execute a safety query. The combined effect of all
the relations of AMTRAC was also studied. For a data set comprising of 1500
users, 300 roles, 300 permissions, 15 time expressions, 120 periodic events, 30 role
triggers and 4 administrative roles, the interpreter took 0.232 secs in presence
of the AMTRAC relations and 0.141 secs when the AMTRAC relations were
not there, to answer a safety query. This is due to the increased number of facts
and rules in the presence of the AMTRAC. Even then the total time required
is quite encouraging and shows that our modeling and analysis methodology is
quite efficient.

6 Related Work

The role-based access control (RBAC) model [14] was proposed to cater to the
basic access control needs of commercial organizations. Subsequently, several ex-

146 S. Jha et al.

tensions have been developed that incorporate context related information into
the basic RBAC model. In [1], a model named TRBAC (Temporal RBAC) has
been introduced for handling temporal constraint on enabling and disabling of
RBAC roles. To put additional temporal restrictions on users getting a permis-
sion, GTRBAC (Generalized Temporal Role Based Access Control) model has
been proposed in [4]. For considering the user location before giving access to
resources, the LRBAC (Location-Aware Role Based Access control) model has
been proposed in [10]. Other notable work that incorporate temporal as well as
spatial information into RBAC include [2], [11].

The need for decentralization in administration has led to the development
of administrative models for various access control models. In [12], ARBAC97 is
proposed which includes appropriate relations for modifying user-role assignment
(URA97), role-permission assignment (PRA97) and role hierarchy (RRA97).
Other administrative models for RBAC are presented in [13] and [9]. While
a limited number of administrative rules for making modifications to TRBAC
is proposed in [18], very recently, a complete administrative model for TRBAC,
named as AMTRAC has been proposed [16] . It includes REBA (Role Enabling
Base Assignment), which comprises of the relations used for making changes to
the role enabling base (REB) assignment of TRBAC, along with all the relations
defined in ARBAC97. REBA has a set of eighteen relations for modifying the
various components of REB.

Several attempts have been made to develop methods for verifying the security
provided by the policies of RBAC and its variants. In [15], petri-net based mod-
eling for the verification of RBAC policies is proposed. It first represents RBAC
using a petri-net based framework and then uses it to verify the correctness of
a set of underlying security policies. In [17], formal analysis of STRBAC is done
using Alloy, which is a formal language based on first-order logic. In [7], security
analysis of TRBAC using timed automata is proposed. Roles are represented
using a user timed automata, while administrative commands are captured in a
controller automata. Security properties are specified using Computation Tree
Logic (CTL) and verified with the help of a model checking tool named Uppaal.
In [8], a method for GTRBAC security analysis is proposed where CTL is used
to specify a set of safety and liveness properties, which are then verified using
the model checking approach.

Apart from performing simple security analysis of RBAC and its variants,
various contributions have been made in the field of security analysis using ad-
ministrative models. In [6], security analysis of RBAC in the presence of AR-
BAC97 has been done by reducing the security analysis instance of RBAC into
a corresponding security analysis instance of RT[�,

⋂
] [5] and then further re-

ducing the instance so obtained into Datalog clauses. In [3], security analysis of
user-role assignment of RBAC using URA97 of ARBAC97 is performed and both
model checking and logic programming approaches are compared. It has been
shown that the logic programming approach outperforms the model checking
approach when the number of roles increases significantly. In [18], security anal-
ysis of TRBAC is done by using certain administrative rules. However, no formal

Security Analysis of Temporal RBAC 147

administrative model has been considered. While security analysis of RBAC has
been done based on the administrative models, use of formal administrative
models for TRBAC security analysis is yet to be addressed. This is one of the
factors for non-deployment of TRBAC at enterprise level even though it has the
ability to support a much richer set of features than the RBAC model.

7 Conclusions and Future Work

In this work, we have introduced a methodology for performing security analysis
of TRBAC using Prolog. Initially, the components of a TRBAC system and the
relations of AMTRAC are modeled using Prolog syntax. To represent the initial
content of the TRBAC components, facts are added and the desired security
properties, i.e., safety and liveness are defined in the form of rules. Next, the
effect of different components of TRBAC and AMTRAC on the analysis time
is studied. It has been shown that a linear increase in the number of any of the
TRBAC components causes a linear increase in the analysis time. Although each
component asserts linear effect on the analysis time, impact of periodic events
and role triggers is the most due to their complex nature.

Further work remains to be done to build an even more comprehensive under-
standing of the security properties of a TRBAC system. In this work, we have
made certain simplifying assumptions for representing the administrative rela-
tions. However, in practice, some of these might not be feasible. In the future, we
plan to perform analysis in the presence of unconstrained forms of administra-
tive relations. A similar problem exists with representing temporal information.
Therefore, we plan to provide a more realistic representation of time. This, in
turn, will necessitate the use of alternative tools for analyzing problems with
access control specifications.

References

1. Bertino, E., Bonatti, P.A., Ferrari, E.: Trbac: A temporal role-based access control
model. ACM Transactions on Information and System Security, 191–233 (2001)

2. Bertino, E., Catania, B., Damiani, M.L., Perlasca, P.: Geo-rbac: A spatially aware
rbac. In: Proc. of the 10th ACM Symposium on Access Control Models and Tech-
nologies, pp. 29–37. ACM (2005)

3. Jha, S., Li, N., Tripunitara, M., Wang, Q., Winsborough, W.: Towards formal
verification of role-based access control policies. IEEE Transactions on Dependable
and Secure Computing, 242–255 (2008)

4. Joshi, J.B., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based
access control model. IEEE Transactions on Knowledge and Data Engineering,
4–23 (2005)

5. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust man-
agement framework. In: Proc. of the IEEE Symposium on Security and Privacy,
pp. 114–130. IEEE (2002)

6. Li, N., Tripunitara, M.V.: Security analysis in role-based access control. ACM
Transactions on Information and System Security, 391–420 (2006)

148 S. Jha et al.

7. Mondal, S., Sural, S.: Security analysis of temporal-rbac using timed automata. In:
Proc. of the 4th International Conference on Information Assurance and Security,
pp. 37–40. IEEE (2008)

8. Mondal, S., Sural, S., Atluri, V.: Towards formal security analysis of gtrbac using
timed automata. In: Symposium on Access Control Models and Technologies, pp.
33–42. ACM (2009)

9. Oh, S., Sandhu, R.: A model for role administration using organization structure.
In: Proc. of the 7th ACM Symposium on Access Control Models and Technologies,
pp. 155–162. ACM (2002)

10. Ray, I., Kumar, M., Yu, L.: LRBAC: A location-aware role-based access control
model. In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 147–161.
Springer, Heidelberg (2006)

11. Ray, I., Toahchoodee, M.: A spatio-temporal role-based access control model. In:
Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602,
pp. 211–226. Springer, Heidelberg (2007)

12. Sandhu, R., Bhamidipati, V., Munawer, Q.: The arbac97 model for role-based
administration of roles. ACM Transactions on Information and System Security,
105–135 (1999)

13. Sandhu, R., Munawer, Q.: The arbac99 model for administration of roles. In: Proc.
of the 15th Annual Conference on Computer Security Applications, pp. 229–238.
IEEE (1999)

14. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access
control models. IEEE Computer, 38–47 (1996)

15. Shafiq, B., Masood, A., Joshi, J., Ghafoor, A.: A role-based access control pol-
icy verification framework for real-time systems. In: 10th International Workshop
Object-Oriented Real-Time Dependable Systems, pp. 13–20. IEEE (2005)

16. Sharma, M., Sural, S., Vaidya, J., Atluri, V.: Amtrac: An administrative model for
temporal role-based access control. Computers & Security (2013)

17. Toahchoodee, M., Ray, I.: Using alloy to analyze a spatio-temporal access control
model supporting delegation. IET Information Security, 75–113 (2009)

18. Uzun, E., Atluri, V., Sural, S., Vaidya, J., Parlato, G., Ferrara, A.L., Parthasarathy,
M.: Analyzing temporal role-based access control models. In: Proc. of the 17th
ACM Symposium on Access Control Models and Technologies, pp. 177–186. ACM
(2012)

A Formal Methodology for Modeling Threats

to Enterprise Assets

Jaya Bhattacharjee, Anirban Sengupta, and Chandan Mazumdar

Centre for Distributed Computing
Dept. of Computer Science and Engineering, Jadavpur University, Kolkata, India

{jaya.bhattacharjee31,anirban.sg,chandan.mazumdar}@gmail.com

Abstract. Enterprises usually execute business processes with the help
of Information Technology (IT) services which, in turn, are realized by IT
assets. Enterprise IT assets contain vulnerabilities that can be exploited
by threats to cause harm to business processes and breach security of
information assets. Hence, detection of threats is crucial for ensuring
business continuity and protection of enterprise information security. Ex-
isting threat detection mechanisms are limited in scope owing to absence
of methodologies for modeling different categories of threats uniformly.
This paper presents a formal methodology that can model diverse types
of threats to enterprise assets. The methodology provides sufficient flex-
ibility to enterprises for defining threshold values of threat parameters
that suit their specific needs and help them to compute probability of
occurrence of threats.

Keywords: Asset, Formal Model, Impact, Likelihood of Occurrence,
Threat.

1 Introduction

The primary components of an enterprise are business processes and information
assets [1]. An information asset, which is generated by a business process, may
be used as input by another business process. Today’s enterprises frequently uti-
lize Information Technology (IT) services for executing business processes, for
example online telephone bill payment, ATM service, etc. IT services are real-
ized with the help of IT assets like Hardware, Software, and Network devices,
and human beings who operate them. However, assets usually contain inherent
weaknesses, or vulnerabilities, that can be exploited by threats to cause dis-
ruption to IT services. This, in turn, may hamper the business processes of an
enterprise and result in security breaches of critical/private information assets
of enterprises and/or their customers. The increase in interconnectivity between
assets of an enterprise further complicate matters and it has been reported that
rising incidents of security breaches are a serious cause for concern [2,3].

Information security threat can be defined as a cause of destruction, modifica-
tion and/or disclosure of assets [4]. Threats can be classified as: Natural (volcanic
eruption, earthquake, etc.), Environmental (chemical contamination, power dis-
ruption, etc.) and Human-induced threats (malware, eavesdropping, sabotage,

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 149–166, 2014.
c© Springer International Publishing Switzerland 2014

150 J. Bhattacharjee, A. Sengupta, and C. Mazumdar

etc.) [1,5]. Assets of an enterprise may be exposed to a wide range of threats.
For example, computers in a building can be destroyed by fire that may originate
from a coffee vending machine kept within the enterprise premises. Again, the
same computers can be subjected to virus attack that spreads via an infected
USB device. Hence, it is essential to detect the various types of threats that may
harm enterprise assets in order to design and implement appropriate protective
measures. As is obvious from the discussion in the next section, existing threat
detection methodologies usually identify limited types of threats. While some
of them concentrate on malware detection, others may try to predict cyclone
patterns. Such specialized methodologies are not suited to the needs of a general
purpose enterprise. On one hand, implementation of several specialized methods
is a costly affair which is also difficult to maintain. On the other, use of different
techniques by each of the implemented methods (graphical approach, filtering
technique, pattern-matching system, etc.) renders them extremely difficult to
be integrated into a single framework. Moreover, integration may give rise to
conflicts that are difficult to resolve and produce incorrect results.

The reason for this anomaly in the domain of threat detection lies in the ab-
sence of a methodology that can model different categories of threats uniformly.
This paper attempts to address this research gap by proposing a formal model
that can be used to specify different classes of threats to enterprise assets. This
model can be used to develop generic threat detection methodologies which will
prove to be beneficial for general purpose enterprises.

Rest of this paper is organized as follows. Section 2 presents a survey of
related work. Section 3 classifies threats and defines their components. Section 4
describes a formal methodology for modeling threats to enterprise assets. While,
Section 5 discusses the utility of the proposed methodology, Section 6 illustrates
the same with the help of a case study. Finally, Section 7 concludes the paper.

2 Related Work

Different threat detection methodologies have been developed in recent years.
In [6] threat is formally modeled using Predicate / Transition (PrT) nets which
are highlevel Petri nets. The model addresses system functions, security threats,
and security features using PrT nets. Existence of threats is verified against the
functions before (and after) the security features are applied. The model uses
STRIDE [7] threat classification system to generate threat-nets that represent
interrelated threats to system functions.

STRIDE approach has been followed by several other methodologies [8,9].
Beckers et. al. [8] proposed a semi-automated technique for identifying privacy
threats during the requirements analysis of software systems. The relations be-
tween stakeholders, technology, and personal information in the system-to-be
are identified, along with the insiders who can breach privacy of stakeholders.

Schaad and Borozdin [9] presented a threat modeling approach for analyzing
initial software architecture. They developed a tool for automated threat analysis
of software architecture diagrams using STRIDE approach [7].

A Formal Methodology for Modeling Threats to Enterprise Assets 151

In [10], a quantitative technique has been proposed to systematically identify
privacy requirements, by iteratively analyzing the risks associated with identified
threats and attacks. Attack trees are constructed which can be used to identify
critical privacy threats to enterprise resources.

The methodology proposed in [11] uses threat trees for performing risk assess-
ment of Internet voting systems. Attacks to hardware and network are decom-
posed hierarchically into sub-actions. Threat trees are constructed by considering
the dependencies among these sub-actions.

Ayed et. al. [12] presented a threat monitoring technique based on filtering
and pattern-detection of various events associated with SOA (Service Oriented
Architecture). Their approach is to extract threat descriptions from a pre-defined
repository and apply appropriate detection techniques at run-time in order to
identify potential problems.

In [13], threats to power-sector organizations have been categorized as natural,
accidental, malicious, and emerging threats, and their possible impacts have been
identified. Using this classification scheme, quantitative trend analyses of a set of
representative power blackouts have been performed to figure out the principal
threats and the changing trend of threats over time.

Yeh and Chang [14] used empirical data from Taiwanese enterprises to identify
the gaps between manager perceptions of information security threats and the
security countermeasures adopted by them. They presented a methodology for
identifying security baseline depending on the severity values of threats.

Alhabeeb et. al. [15] proposed a dynamic scheme for classifying deliberate
threats to enterprise information systems. The scheme considers the following
factors: attackers prior knowledge about the information systems, loss of security
information, and the criticality of the information systems that might be affected
by a threat.

Wu and Ye [16] proposed an information security threat assessment model
based on Bayesian Network (BN) and Ordered Weighted Averaging (OWA) ag-
gregation operators. Expert knowledge is integrated to define the conditional
probability matrix of reasoning rules in BN; this is used as a basis for the es-
tablishment of the threat assessment model. The subjective opinions of experts,
regarding the threat level of target information systems, are integrated using
the group-decision method of OWA operators; this is considered as the prior
information of the threat level of target information systems. Finally, subjective
and objective security threat levels are integrated to derive threat assessment
results.

As is obvious from the above discussion, none of the existing methods can
model diverse kinds of threats to enterprise assets. They either cater to the
needs of specific industry sectors, or attempt to model individual threat param-
eters. Hence, it is difficult for general purpose enterprises, with varying secu-
rity needs, to implement existing threat models. The problem gets compounded
during acquisitions and mergers of enterprises with distinct, sometimes conflict-
ing, security requirements. This paper tries to address these shortcomings by

152 J. Bhattacharjee, A. Sengupta, and C. Mazumdar

proposing a formal methodology that models threat components uniformly, and
addresses information security needs of various types of enterprises.

3 Threat Categories

As stated in Section 1, security standards [1,5] usually classify threats as: Nat-
ural, Environmental and Human-induced threats. Disasters caused by nature,
which may occur within the vicinity of an enterprise or its assets (human re-
sources, backup media stored in a remote location, etc.), are referred to as nat-
ural threats. This includes earthquake, flood, tsunami, thunderstorm, cyclones,
volcanic eruptions, etc. Natural threats may cause the following types of impact:

(i) Destruction of IT assets and enterprise premises;
(ii) Financial loss to enterprise business; and
(iii) Death or injury to employees and third party staff of an enterprise.

Environmental threats may occur due to accidents or unexpected changes in
environment. Forest fires, chemical contamination, power fluctuations, etc. are
examples of environmental threats. Impacts of such kind of threats include:

(i) Destruction or modification of IT assets and enterprise premises;
(ii) Financial loss to enterprise business;
(iii) Loss of reputation, or image, of an enterprise caused by disruption of busi-

ness processes; and
(iv) Death or injury to employees and third party staff of an enterprise.

Human-induced threats are those that are caused directly or indirectly by hu-
man beings. This includes both employees of an enterprise as well as third party
staff. Such threats can be attributed either to human errors or purposeful mali-
cious intent. Examples include sabotage, unauthorized system access, spoofing,
eavesdropping, malware infection, etc. Human-induced threats may have one or
more of the following impacts:

(i) Destruction of enterprise premises;
(ii) Destruction or modification of IT assets;
(iii) Disclosure of sensitive information;
(iv) Financial Loss to enterprise and/or its customers; and
(v) Death or injury to employees and third party staff of an enterprise.

Each of the categories of threats described above comprise of the following
attributes: (i) Agent; (ii) Motive; (iii) Resource; and (iv) Result. Agent refers to
the instrument that causes the threat, namely nature, environment, or human
beings. Motive is the intent that causes an agent to give rise to a threat. It is
obvious that nature and environment do not have any motive behind causing
threats. It is only deliberate threats caused by human beings that have malicious
intent behind them. Some of these motives are [1]:

A Formal Methodology for Modeling Threats to Enterprise Assets 153

(i) challenge, ego, rebellion, status, and monetary gain in case of hackers ;
(ii) destruction of information, illegal information disclosure, monetary gain,

and unauthorized data alteration for computer criminals ;
(iii) blackmail, destruction, exploitation, revenge, political gain, and media cov-

erage for terrorists ;
(iv) competitive advantage and economic espionage in case of state players and

intelligence companies; and
(v) curiosity, ego, intelligence, monetary gain, and revenge for enterprise in-

siders (disgruntled, malicious, dishonest, or terminated employees).

Threat agents usually require resources to commence an unwanted activity.
Types of resources [17] are: (i) financial resource; (ii) manpower; (iii) knowledge
or expertise; (iv) tools, techniques, and infrastructure; and (v) time. Human-
induced threats can usually be initiated only when one or more of these re-
sources are available. However, in case of natural and environmental threats,
only ”time” may play an important role. For example, duration of floods can
determine the extent of damage caused; similarly, the eruption of a volcano may
be time-dependent and occur only after prolonged intervals. It may be noted
that availability of resources may vary with the type of human agent. For ex-
ample, a state player will generally have greater resources at its disposal than a
disgruntled employee.

The result of realization of threat (or occurrence of attack) is physical and/or
logical harm to enterprise assets and business processes. This has been enumer-
ated above as impact of different categories of threats.

In the next section, these threat attributes have been combined to define a
formal model of threats to enterprise IT assets.

4 Threat Model

The threat attributes detailed in Section 3 can be combined to derive a formal
model of threat t as

t ≡ {Agt, LOC, Imp} (1)

where, Agt is the threat agent, LOC defines the likelihood of occurrence of
threat t, and Imp refers to the impact that will occur in case threat t is realized.
The methodology for computing these parameters are described in the following
subsections.

4.1 Likelihood of Occurrence of Threat

Probability of threat realization is measured with the help of Likelihood of Oc-
currence (LOC) of threat [17]. LOC of threat t is derived as a function of five
parameters, namely

(i) past occurrences of threat t;
(ii) proximity of assets to areas that are exposed to threat t;

154 J. Bhattacharjee, A. Sengupta, and C. Mazumdar

(iii) existence of motive of agent causing threat t;
(iv) resource availability for threat agent; and
(v) efficacy of controls implemented (if any) to mitigate threat t.

Thus,
LOC(t) = f(pt, at,mvnt, rest, ec) (2)

where, pt denotes past occurrences of threat t, at denotes proximity of assets
to threat-prone areas, mvnt denotes the existence of motive of corresponding
threat agent, rest denotes resource availability for threat agent, and ec denotes
control efficacy.

pt represents previous incidents that have occurred due to threat t. This
includes incidents both in the recent past as well as distant past. It is computed
based on

(i) no. of occurrences of threat t; and
(ii) time (year) when t occurred.

For example, if a 5-year period is considered, and if t has occurred twice
during the previous year, 3 times during the year before, and so on, then

pt = 2 ∗ 5 + 3 ∗ 4 + ...,

with greater weight having been assigned to incidents that have occurred more
recently. A ceiling value may be fixed for no. of incidents and this may vary
from one incident to another. For example, if no. of incidents during a period
is 5 or more, a value of 5 may be assigned, for 4 incidents the value may be
4, etc., with a value 0 for 0 occurrences of the incident. Similarly, the period
of measurement may also be assigned weights. For example, weight for current
year is 5, weight for the previous year is 4, and so on, with a value of 1 being
assigned for a period greater than 4 years. The period may be taken as ”month”
instead of ”year” depending on the specific type of threat. Thus,

pt = ceil(
∑

(count(t) ∗ weight(period))/
∑

weight(period)) (3)

It can be seen that
max(pt) = ceil((5 * 5 + 5 * 4 + 5 * 3 + 5 * 2 + 5 * 1) / (5 + 4 + 3 + 2 +

1)) = ceil(75/15) = 5.

A value of 1 is assigned to pt for zero occurrences of incidents. So,
min(pt)= 1.

Hence,
ptε{1, 2, 3, 4, 5} (4)

Proximity of assets to threat-prone areas (at) is determined on a 3-point scale.
The areas where natural and environmental threats exist can be categorized into
”danger zone” (most threat-prone), ”striking zone” (less prone to threats), and
”safe zone”. If asset ”a” is within the ”danger” zone, then a value of 3 is to be
assigned to at; if it is within ”striking” zone, a value of 2 is assigned; anything
beyond has value 1.

A Formal Methodology for Modeling Threats to Enterprise Assets 155

In case of human-induced threats that are logical in nature (theft of docu-
ments, tampering with software, illegal processing of data, malware infection,
etc.), reachability and access are used as the basis for computation of at. While
reachability determines whether the threat agent can physically reach the asset
being considered [18], access signifies the authorization (read, write, execute,
modify, append, delete) of the threat agent over the asset. In order to cause
harm to an asset, an agent must have both reachability as well as access to that
asset. Hence, at can be determined as follows:

a value of 3 is assigned to at if threat agent has both reachability and access
to asset ”a”;

at has value 2 if threat agent has either reachability or access to asset ”a”;
and

at has value 1 if threat agent has neither reachability nor access to asset ”a”.
The minimum value of at is kept at 1, and not 0, to make provision for cases

where, owing to some alternate routes (covert channel, etc.), reachability or ac-
cess of threat agent to the asset might exist, but remain undetected.

In case of human-induced physical threats (destruction of equipment, theft of
media, sabotage, etc.), the value of at is determined based on the physical reach-
ability of threat agent to the asset being considered. Hence,

at has value 3 if threat agent can physically reach the asset location;
at has value 2 if threat agent can physically reach the building housing the

asset, but not the asset location; and
at has value 1 if threat agent does not have physical reachability to the building

housing the asset.

It may be noted that if ”proximity to threat-prone area” is not applicable for a
particular threat, then a value of 1 is assigned to at (the reason being the same
as stated above).

Hence,
atε{1, 2, 3} (5)

As stated in Section 3, motive is related to human threat agents; it indicates
the purpose or intent of the agent for causing threat. Malicious intent may exist
in case of disgruntled employees, state enemies, or hackers. Since it is difficult
to measure the amount of malice that exists in a threat agent, this can be best
modeled as a binary variable as follows:

mvnt =

{
1 , when motive for realization of threat t is present
0 , when motive for realization of threat t is absent

(6)

Resources may be required for the realization of a threat. It was stated earlier
that while, human-induced threats may need different types of resources, in case
of natural and environmental threats, the only resource that may be required is
time. Like motive, it is difficult to estimate the exact amount of resources that
are available to an adversary at any particular moment. A feasible solution is to
model rest as a binary variable. Thus,

156 J. Bhattacharjee, A. Sengupta, and C. Mazumdar

rest =

{
1 , when sufficient resources for realizing threat t are present
0 , when sufficient resources for realizing threat t are not present

(7)

Usually, security controls are implemented by enterprises to mitigate threats.
Thus, LOC of a threat may decrease if relevant and effective security controls
are present in an enterprise. For example, installation and continuous update of
anti-virus software in computers can diminish the probability of virus infections.
There are several wellknown control repositories like ISO/IEC 27002:2013 [4],
NIST SP 80-53 [19], and COBIT5 [20] standards. Analysis of these standards
show that security controls can be classified as managerial, technical, and legal
controls. Managerial controls are those that rely on the definition and enforce-
ment of security policies and procedures (access control policy, acceptable use
policy, information handling procedure, etc.). Since, policies and procedures are
vetted and approved by the top management of an enterprise, these are termed
managerial controls. Technical controls comprise of security tools, techniques,
and infrastructure (firewall, anti-virus software, intrusion detection system, etc.).
Legal controls refer to the laws, regulations and statutes (IT Act, Privacy Law,
Data Protection Law, Cryptographic regulations, etc.) that are enforced by au-
thorities to maintain security in enterprises. It is mandatory for an enterprise to
identify applicable laws and regulations and ensure compliance with the same.

Implementation of Information Security Management System (ISMS) in an
enterprise entails establishment (Plan phase), implementation (Do phase), main-
tenance (Check phase), and continual improvement (Act phase) of security con-
trols [21]. Thorough study of security standards reveal the sets of activities that
need to be performed in order to ensure efficacy of different classes of controls
during Plan, Do, Check, and Act phases of ISMS; these are listed in Table 1.
The efficacy of controls depends on these four categories of ISMS activities.

Control efficacy for a single control ci is given by

eci = Est+ Imt+Mnt+ CIm (8)

where, efficacy eci is computed as summation of establishment (Est), implemen-
tation (Imt), maintenance (Mnt), and continual improvement (CIm) of control
ci.

Since, establishment and implementation of a control are of utmost impor-
tance, and the question of maintenance or improvement does not arise without
the former phases, it is suggested that maximum values of Est and Imt may be
taken as 0.3, while those for Mnt and CIm can be 0.2; minimum value for each
of the parameters is 0.Thus,

max(eci) = max(Est) + max(Imt) + max(Mnt) + max(CIm) = 0.3 + 0.3 +
0.2 + 0.2 = 1;

min(eci) = min(Est) + min(Imt) + min(Mnt) + min(CIm) = 0;

Hence,
0 ≤ eci ≤ 1 (9)

A Formal Methodology for Modeling Threats to Enterprise Assets 157

Table 1. Control activities during Plan, Do, Check, Act phases of ISMS

Managerial Technical Legal

Establish(Plan) Identify require-
ments and define
relevant policy and
procedure

Identify require-
ments and select
relevant tools,
techniques, and
infrastructure

Identify relevant
legal, statutory, and
regulatory require-
ments

Implement(Do) Document, Approve,
and Communicate
policy and procedure

Procure, install, and
configure tools and
infrastructure

Document, Approve,
and Communicate
policies and proce-
dures pertaining to
laws and regulations

Maintain(Check) Review policy and
procedure

Review configura-
tion, effectiveness,
and relevance of tools
and infrastructure

Review relevance and
implementation of
laws and regulations

Continually Improve(Act) Update, Approve,
and Communicate
policy and procedure

Update configuration
/ version of tools and
infrastructure

Update, Approve,
and Communicate
policies and proce-
dures pertaining to
laws and regulations

Assignment of exact values to each of the components of eci depends on the
judgment of the security administrator or threat assessor. This subjectivity has
been introduced considering the fact that perception regarding threats and con-
trol efficacy vary between enterprises and hence, some scope for customization
is desirable. However, Table 1 may serve as a guideline on which assignment of
values of Est, Imt, Mnt, CIm may be based. For example, if all activities pertain-
ing to ”Plan” phase have been performed for a technical control, then a value
of 0.3 can be assigned to parameter ”Est”; similarly, during ”Act” phase, if a
managerial control has been updated and improved, but this has not been com-
municated to relevant stakeholders, then a value less than 0.2 (say 0.1) should
be assigned to parameter ”CIm”. It is important to note that if ”Imt” value for
a particular control is 0 (that is, the control has not been implemented), then
values for ”Mnt” and ”CIm” will automatically be 0 (since there is nothing to
”maintain” or ”continually improve” in this case).

Often multiple controls are needed to mitigate a threat. The value of ec,
pertaining to all controls corresponding to a threat, is obtained as follows:

ec =
∑

wieci (10)

where, wi is the relative weight of control ci such that
∑

wi = 1, and i =
1, ..., n for ”n” controls.

Hence, from Equations 9 and 10,

0 ≤ ec ≤ 1 (11)

158 J. Bhattacharjee, A. Sengupta, and C. Mazumdar

It is important to assign proper relative weights (wi) to security controls. The
following guidelines can be followed for assigning relative weights:

(i) If the implemented controls corresponding to a threat belong to different cat-
egories, then legal controls should be assigned the maximum weight followed
by managerial and technical controls. The relative weights of managerial and
technical controls can be equal;

(ii) If the implemented controls corresponding to a threat belong to the same
category, then it is advisable to assign equal relative weights to the controls.

In case of natural and environmental threats, LOC(t) is computed as follows:

LOC(t) =

{
ceil((RoundOff(log3(pt + at + rest)))/(2 ∗ ec)), when ec > 0
ceil((RoundOff(log3(pt + at + rest)))/(2 ∗ 0.2)), when ec = 0

(12)

It may be noted that 0.2 is taken as denominator in the second equation of
(12) as this is marginally less than the minimum perceivable positive value of
ec which is 0.3 (ec has value 0.3 when a single control has been established or
implemented only; since, maintenance, or continual improvement, cannot exist
without implementation of a control). Divisor 2 is used in Equation 12 to scale
down the value of LOC. By Equations 4, 5, 6, 7 and 12, the maximum and
minimum values of LOC(t) for natural and environmental threats are as follows:

LOC(t)max = ceil((RoundOff(log3(5 + 3 + 1))) / 2 ∗ 0.2) = 5(when ec = 0)
LOC(t)min = ceil((RoundOff(log3(1 + 1 + 0))) / 2 ∗ 1) = 1

LOC(t) for human-induced threats is computed as:

LOC(t) =

{
ceil((RoundOff(log3(pt + at +mvnt + rest)))/(2 ∗ ec)), when ec > 0
ceil((RoundOff(log3(pt + at +mvnt + rest)))/(2 ∗ 0.2)), when ec = 0

(13)

By Equations 4, 5, 6, 7 and 13, the maximum and minimum values of LOC(t)
for human-induced threats are:

LOC(t)max = ceil((RoundOff(log3(5 + 3 + 1 + 1))) / 2 ∗ 0.2) = 5(when ec = 0)
LOC(t)min = ceil((RoundOff(log3(1 + 1 + 0 + 0))) / 2 ∗ 1) = 1

Thus,
LOC(t)ε{1, 2, 3, 4, 5} (14)

5 Threat Impact

The impacts (Imp) caused by the realization of different categories of threats
have been detailed in Section 3. Those can be summarized as follows:

(i) Destruction, including physical loss of assets, logical (availability) loss, and
impact on legal and contractual aspects of enterprises;

(ii) Modification, including integrity loss of assets, availability loss, and impact
on legal and contractual aspects;

A Formal Methodology for Modeling Threats to Enterprise Assets 159

(iii) Disclosure (Exposure), consisting of loss of confidentiality of assets, and
legal and contractual impact;

(iv) Financial loss; and

(v) Death, comprising of loss of lives of human beings, animals, and/or plants.

It is not prudent to pre-assign specific values to impacts of threats. Differ-
ent enterprises may perceive criticality of impacts differently, depending on the
significance of those impacts on their business processes. For example, while
defence-sector organizations may consider disclosure of information to be a seri-
ous concern, the entire business of an e-commerce organization may revolve on
maximizing information dissemination. In case of the latter, loss of availability
of product information may be a serious concern.

Keeping this anomaly in mind, it is sensible to model threat impact subjec-
tively, considering the five impact categories stated above.

Thus, it follows that by Equation 1, a threat, say Eavesdropping, whose LOC
value is 4, and which results in disclosure of information, can be modeled as:

Eavesdropping ≡ {Human− being, 4, Disclosureofinformation}

This methodology can be used for modeling diverse kinds of threats to enterprise
assets.

6 Utility of Proposed Methodology

The methodology proposed in Section 4 can be used to formally model threats
to enterprise assets. Its uniqueness lies in the fact that, unlike existing models,
it can address different kinds of threats uniformly. The function ”Likelihood of
Occurrence” of threats (LOC) has been defined to cover all such factors that can
contribute to the realization of threats. Besides, the methodology is not overtly
prescriptive and allows enough flexibility for enterprises to define specific means
by which control efficacy can be determined. The numbers in parentheses in
Table 2 represent a sample assignment of (maximum) values to the components
of security controls that adheres to the restrictions imposed by Equations 8 and
9. An enterprise can define values that suit its needs and address its security
requirements.

Another utility of the proposed methodology is that it can be used to compute
values of likelihood of occurrence of threats, past occurrence of threats, proximity
of assets to threat agents, and control efficacy over different periods of time.
These data can then be used to analyze trends of the parameters and correlate
them with one another. This will help an enterprise to understand the impact
of various parameters on likelihood of occurrence of threats, and design and
implement protective measures accordingly. This is illustrated by an example in
the following section.

160 J. Bhattacharjee, A. Sengupta, and C. Mazumdar

Table 2. Example illustrating assignment of maximum efficacy values to components
of security controls

Managerial Technical Legal

Establish(Plan) Identify requirements (0.2);
define relevant policy and
procedure (0.1)

Identify require-
ments (0.2); select
relevant tools,
techniques, and
infrastructure (0.1)

Identify legal re-
quirements (0.1);
identify statutory
requirements (0.1);
identify regulatory
requirements (0.1)

Implement(Do) Document policy and pro-
cedure (0.1); approve policy
and procedure (0.1); com-
municate policy and proce-
dure (0.1)

Procure tools and in-
frastructure (0.1); in-
stall tools and infras-
tructure (0.1); config-
ure tools and infras-
tructure (0.1)

Document policies
and procedures per-
taining to laws and
regulations (0.1);
approve policies
and procedures (0.1);
communicate policies
and procedures (0.1)

Maintain(Check) Review policy and proce-
dure (0.2)

Review configura-
tion, effectiveness
(0.1); review rele-
vance of tools and
infrastructure (0.1)

Review relevance of
laws and regulations
(0.1); review imple-
mentation of laws
and regulations (0.1)

Continually Im-
prove(Act)

Update policy and proce-
dure (0.1);Approve policy
and procedure (0.05); Com-
municate policy and proce-
dure (0.05)

Update configuration
/ version of tools and
infrastructure (0.2)

Update policies and
procedures pertain-
ing to laws and regu-
lations (0.1); approve
policies and proce-
dures (0.05); commu-
nicate policies and
procedures (0.05)

7 Case Study

A case study is presented in this section that applies the proposed methodol-
ogy to model natural, environmental and human-induced threats to assets of a
sample enterprise (say ABC Ltd.). Trends in LOC of sample threats and actual
occurrence of incidents in ABC Ltd. are also analyzed with respect to changes
in efficacy of security controls.

Table 3 shows the occurrences of incidents in ABC Ltd. and their impacts,
corresponding to specific threats, from 2007 to 2014.

Applying Equation 3 to values of Table 3, past occurrences of threats are
obtained as follows:

pt1 = (1 * 5 + 1 * 2 + 1 * 1) / 18 = 1
pt2 = (1 * 4 + 1 *1) / 16 = 1
pt3= (1 * 4 + 2 * 3 + 2 * 2 + 1* 1 + 3 * 1 + 2 * 1 + 1 * 1) / 18 = 2
pt4 = (2 * 5 + 4 * 2) / 14 = 2
pt5 = (1 * 5) / 5 = 1

A Formal Methodology for Modeling Threats to Enterprise Assets 161

Table 3. Natural, environmental and human-induced threats in ABC Ltd

ThreatID Threat Threat Type Number of
Occurrences

Year Impact

t1 Flood Natural 1 2007 Destruction

t1 Flood Natural 1 2011 Destruction

t1 Flood Natural 1 2014 Destruction

t2 Fire Environmental 1 2009 Financial
Loss and
Death

t2 Fire Environmental 1 2013 Financial
Loss

t3 Unauthorized
Access to
Server Sv1

Human-induced 1 2007 Disclosure of
information

t3 Unauthorized
Access to
Server Sv1

Human-induced 2 2008 Disclosure of
information

t3 Unauthorized
Access to
Server Sv1

Human-induced 3 2009 Disclosure of
information

t3 Unauthorized
Access to
Server Sv1

Human-induced 1 2010 Disclosure of
information

t3 Unauthorized
Access to
Server Sv1

Human-induced 2 2011 Disclosure of
information

t3 Unauthorized
Access to
Server Sv1

Human-induced 2 2012 Disclosure of
information

t3 Unauthorized
Access to
Server Sv1

Human-induced 1 2013 Disclosure of
information

t4 Corruption
of human
resource file

Human-induced 4 2011 Modification

t4 Corruption
of human
resource file

Human-induced 2 2014 Modification

t5 Unauthorized
manipulation
of business
application
software Sw1

Human-induced 1 2013 Modification

162 J. Bhattacharjee, A. Sengupta, and C. Mazumdar

Table 4. Proximity of assets to threat agents, resource availability and motive of threat
agents

Threat ID Threat Agent Asset proxim-
ity to threat
agent

at rest mvnt

t1 Nature Striking zone 2 1 Not applica-
ble

t2 Environment Danger zone 3 1 Not applica-
ble

t3 User u1 Reachable
from u1

2 0 0

t4 Internal
employee u2

Reachable
from u2;u2
has execute,
read, write
permission

3 1 1

t5 Internal
employee u3

Reachable
from u3;u3
has execute
permission

3 1 1

Table 4 lists the proximity of assets of ABC Ltd. to threat agents, availability
of resources and presence (or absence) of motives for threats shown in Table 3.

Control efficacies of relevant security controls implemented in ABC Ltd. are
shown in Table 5.

By Equation 10, efficacy of controls corresponding to threat t1 is ec(t1) =
0.5 ∗ 0.25 + 0.2 ∗ 0.25 + 0.8 ∗ 0.25 + 0.3 ∗ 0.25 = 0.5 (Assuming equal weightage
for implemented controls).

By Equation 12, LOC of threat t1 is
LOC(t1) = ceil((RoundOff(/log3(1 + 2 + 1))/2 ∗ 0.5) = 1 Similarly,
ec(t2) = 0.7 ∗ 0.25 + 0.2 ∗ 0.25 + 0.8 ∗ 0.25 + 0.3 ∗ 0.25 = 0.5
LOC(t2) = ceil((RoundOff(/log3(1 + 3 + 1))/2 ∗ 0.5) = 2

ec(t3) = 0.8 ∗ 0.5 + 0.4 ∗ 0.5 = 0.6
LOC(t3) = ceil((RoundOff(/log3(2 + 2 + 0 + 0))/2 ∗ 0.6) = 1

ec(t4) = 0.4 ∗ 0.33 + 0.2 ∗ 0.33 + 0.6 ∗ 0.33 = 0.4
LOC(t4) = ceil((RoundOff(/log3(2 + 3 + 1 + 1))/2 ∗ 0.4) = 3

ec(t5) = 0.4 ∗ 0.33 + 0.3 ∗ 0.33 + 0.6 ∗ 0.33 = 0.4
LOC(t5) = ceil((RoundOff(/log3(1 + 3 + 1 + 1))/2 ∗ 0.4) = 3

A Formal Methodology for Modeling Threats to Enterprise Assets 163

Table 5. Security controls and their efficacies

Threat ID Security Control Control Efficacy

t1 Physical protection against
flood

0.5

t1 Information backup 0.2

t1 Incidents reporting 0.8

t1 Business continuity manage-
ment and disaster recovery

0.3

t2 Protection against fire (fire
detector and extinguisher)

0.7

t2 Information backup 0.2

t2 Incidents reporting 0.8

t2 Business continuity manage-
ment and disaster recovery

0.3

t3 Firewall 0.8

t3 Access control 0.4

t4 Access control 0.4

t4 Information security aware-
ness and training

0.2

t4 Application and operator
log maintainance

0.6

t5 Access control 0.4

t5 Segregation of duites 0.3

t5 Application and operator
log maintainance

0.6

Hence, threats to assets of ABC Ltd. can be modeled as follows:

Flood ≡ {Nature, 1, Destruction}

Fire ≡ {Environment, 2, F inancialLoss/Death}

UnauthorizedAccess to Server Sv1 ≡ {Human− being, 1,
Disclosureofinformation}

Corruption of human resource file ≡ {Human− being, 3,Modification}

Unauthorizedmanipulation of business application software Sw1≡{Human−
being, 3,Modification}

Now, LOC and pt values for threat t3 (Unauthorized Access to Server Sv1)
are calculated for the periods 2007 - 2011, 2008 - 2012, 2009 - 2013, and 2010
- 2014 using the values listed in Tables 3 and 4. It is assumed that values
of at3, rest3, and mvnt3 have remained unchanged during these periods. Also,
control efficacy ec(t3) has gradually improved over the years. These are detailed
in Table 6 below.

164 J. Bhattacharjee, A. Sengupta, and C. Mazumdar

Table 6. pt, at, rest, mvnt, ec and LOC values for threat t3 from 2007 to 2014

pt3 at3 rest3 mvnt3 ec(t3) LOC(t3)

2007-2011 2 3 1 1 0.2 5

2008- 2012 2 3 1 1 0.3 4

2009-2013 2 2 0 0 0.3 2

2010- 2014 1 2 0 0 0.6 1

Fig. 1. Likelihood of occurrence of threat t3 vs. efficacy of corresponding controls
(2007-2014)

Fig. 2. Actual occurrences of threat t3 vs. efficacy of corresponding controls (2007-
2014)

A Formal Methodology for Modeling Threats to Enterprise Assets 165

Analysis of trends in LOC and actual occurrence of incidents corresponding to
threat t3 in ABC Ltd., with respect to changes in efficacy of security controls, are
shown in Fig. 1 and Fig. 2, respectively. It can be observed that both LOC(t3)
and pt3 have gradually decreased over the years as ec(t3) has increased. This
is a positive result for the enterprise with respect to its security investment. If,
on the other hand, LOC(t3) showed an increase despite an increase in ec(t3), it
would mean that the controls have not been able to mitigate threat t3, and this
would be a cause for concern for ABC Ltd.

8 Conclusion and Future Work

This paper presents a formal methodology for modeling threats to enterprises
and their assets. It has been shown that the proposed methodology is generic
enough to cover different kinds of threats. It also provides sufficient flexibility
wherein enterprises can define threshold values for various parameters and cus-
tomize the methodology to suit their specific needs. This allows an enterprise to
implement a single uniform technique that can cater to its security needs and
identify the probability of occurrence of threats. Additionally, an enterprise can
use the values of threat parameters to assess risks [1,17] that can breach security
of its assets.

Future work is geared towards development of algorithms for the detection
of threats based on the methodology proposed in this paper. The algorithms
will enable implementation of the methodology and integration of the same with
existing risk assessment methods. Authors also intend to develop a tool that
will utilize the proposed methodology to model threats, predict probability of
occurrence of threats, and perform trend analyses of threat parameters.

Acknowledgment. This research was partially supported by grants allocated
by the Department of Electronics and Information Technology, Govt. of India.

References

1. ISO/IEC: ISO/IEC 27005:2011 Information technology - Security techniques - In-
formation security risk management. 2 edn., Switzerland (2011)

2. Deloitte: Irish information security and cybercrime survey (2014),
https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/Risk/

cybercrime survey risk 2013 deloitte ireland.pdf

3. Government, U.K.: 2013 information security breaches survey (2013),
https://www.gov.uk/government/uploads/system/uploads/attachment data/

file/191671/bis 13 p184es 2013 information security breaches survey

executive summary.pdf

4. ISO/IEC: ISO/IEC 27002:2013, Information technology - Security techniques -
Code of practice for information security management. 2 edn., Switzerland (2013)

5. BSI: Threats Catalogue - Elementary Threats (2008),
www.bsi.bund.de/grundschutz

https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/Risk/cybercrime_survey_risk_2013_deloitte_ireland.pdf
https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/Risk/cybercrime_survey_risk_2013_deloitte_ireland.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/191671/bis13p184es2013informationsecuritybreachessurveyexecutive%-summary.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/191671/bis13p184es2013informationsecuritybreachessurveyexecutive%-summary.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/191671/bis13p184es2013informationsecuritybreachessurveyexecutive%-summary.pdf
www.bsi.bund.de/grundschutz

166 J. Bhattacharjee, A. Sengupta, and C. Mazumdar

6. Tu, M., Sanford, M., Thomas, L., Woodraska, D., Xu, W.: Automated security
test generation with formal threat model. IEEE Transactions on Dependable and
Secure Computing 9(4), 526–540 (2012)

7. Swiderski, F., Snyder, W.: Threat modeling. Microsoft Press, US (2004)
8. Beckers, K., Faßbender, S., Heisel, M., Meis, R.: A problem-based approach for

computer-aided privacy threat identification. In: Preneel, B., Ikonomou, D. (eds.)
APF 2012. LNCS, vol. 8319, pp. 1–16. Springer, Heidelberg (2014)

9. Schaad, A., Borozdin, M.: TAM:automated threat analysis. In: Proc. 27th Annual
ACM Symposium on Applied Computing, pp. 1103–1108. ACM, New York (2012)

10. Luna, J., Suri, N., Krontiris, I.: Privacy-by-design based on quantitative threat
modeling. In: Proc. 7th International Conference on Risks and Security of Internet
and Systems (CRiSIS), pp. 1–8. IEEE Press, New York (2012)

11. Pardue, H., Yasinsac, A., Landry, J.: Towards internet voting security: A threat tree
for risk assessment. In: Proc. 5th International Conference on Risks and Security
of Internet and Systems (CRiSIS), pp. 1–7. IEEE Press, New York (2010)

12. Ayed, D., Asim, M., Jones, D.L.: An event processing approach for threats mon-
itoring of service compositions. In: Proc. 8th International Conference on Risks
and Security of Internet and Systems (CRiSIS), pp. 1–10. IEEE Press, New York
(2013)

13. Bompard, E., Huang, T., Wub, Y., Cremenescu, M.: Classification and trend anal-
ysis of threats origins to the security of power systems. International Journal of
Electrical Power and Energy Systems 50, 50–64 (2013)

14. Yeh, Q.J., Chang, J.T.: Threats and countermeasures for information system se-
curity. Information and Management 44(5), 480–491 (2007)

15. Alhabeeb, M., Almuhaideb, A., Le, P.D., Srinivasan, B.: Information security
threats classification pyramid. In: Proc. IEEE 24th International Conference on Ad-
vanced Information Networking and Applications Workshops, pp. 208–213. IEEE
Press, New York (2010)

16. Wu, K., Ye, S.: An information security threat assessment model based on bayesian
network and owa operator. Appl. Math. Inf. Sci 8(2), 833–838 (2014)

17. Bhattacharjee, J., Sengupta, A., Mazumdar, C.: A formal methodology for enter-
prise information security risk assessment. In: Proc. 8th International Conference
on Risks and Security of Internet and Systems (CRiSIS), pp. 1–9. IEEE Press, New
York (2013)

18. Sengupta, A., Mazumdar, C., Bagchi, A.: Formal methodology for detection of
vulnerabilities in an enterprise information system. In: Proc. 4th International
Conference on Risks and Security of Internet and Systems (CRiSIS), pp. 74–81.
IEEE Press, New York (2009)

19. Ross, R., Katzke, S., Johnson, A., Swanson, M., Stoneburner, G., Rogers, G.:
Recommended Security Controls for Federal Information Systems, NIST Special
Publication 800-53. 3 edn., Maryland (2009)

20. ISACA: COBIT5 A Business Framework for the Governance and Management of
Enterprise IT, Illinois (2012)

21. ISO/IEC: ISO/IEC 27001:2013, Information technology - Security techniques -
Information security management systems - Requirements. 2 edn., Switzerland
(2013)

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 167–184, 2014.
© Springer International Publishing Switzerland 2014

A Novel Approach for Searchable CP-ABE
with Hidden Ciphertext-Policy

Mukti Padhya and Devesh Jinwala

mukti.padhya@yahoo.in, dcjinwala@gmail.com

Abstract. Ciphertext policy attribute based encryption (CP-ABE) is a technique
in which a user with secret key containing attributes is only able to decrypt the
message if the attributes in the policy match with the attributes in secret key.
Therefore, CP-ABE is suitable for some interesting applications such as cloud
computing which requires both security assurances and access control over
encrypted data simultaneously. However, we observed that all existing CP-ABE
schemes entail a limitation that, if an authorized user wants to search for an
encrypted file having particular keywords, then he has to first download and
then decrypt the file before searching for particular keywords. When applied to
an application involving a cloud, because the number of files on the cloud is
likely to be huge, all these process results in large overhead for user.

Therefore, to overcome this limitation, we proposed a new searchable CP-
ABE scheme in this paper, that allows the authorized user to check whether the
ciphertext contains specific set of keywords or not, using his own token without
decrypting the message. The label and keywords attached with ciphertext and
secret key respectively, do not reveal any information about the data unless
given the authorized token. In addition, our proposed scheme provides receiver
anonymity also. The security analysis shows that privacy in this new solution is
achieved with an overwhelmingly large probability. Equipping CP-ABE
scheme with keyword-searching capability reduces the searching time of
ciphertext having particular keywords. To the best of our knowledge ours is the
first efficient collusion resistant searchable CP-ABE scheme with hidden
ciphertext policy which uses few and fixed number of pairing operation in key
word search as well as decryption algorithm.

Keywords: Public-Key Encryption with Fine-grained Keyword Search,
Ciphertext Retrieval, CP-ABE, Bilinear Pairings, Hidden Access Structure,
Recipient Anonymity.

1 Introduction

The traditional PKC suffers from the complexity in key assignment and certificate
management issues, therefore PKC is not efficient in a multicast setup as also for bulk
encryption/decryption [1]. In short, the traditional PKC schemes cannot establish a
specific access control policy on to restrict who should be allowed to decrypt this
data, which is required characteristic for new emerging applications, such as cloud
computing etc.

168 M. Padhya and D. Jinwala

To overcome these limitations, Shamir introduced the concept of identity based
encryption (IBE)[2] which uses user’s identity such as an email-id or his designation
as the public key, thereby eliminating the need for certificate storage, its distribution
and revocation. The interest in IBE was further piqued when Boneh and Franklin [3]
proposed a practical implementation of IBE. Since then several recent works aimed at
constructing different types of fine grained encryption schemes. Other works by Sahai
and Waters led to further investigation in the field of Fuzzy IBE and ABE[4].

ABE was further classified as: Key Policy Attribute Based Encryption (KP-ABE)
introduced by Goyal et. al. [5] and Ciphertext-Policy Attribute-based Encryption
(CP-ABE) given by Bethencourt et. al [6].

In KP-ABE, a ciphertext is associated with a set of attributes S and a user's key is
described by monotonic tree access structure T. A user could decrypt a message if the
access structure T has the set of attributes S’ common to S. In KP-ABE, the encryptor
exerts no control over who has access to the data he encrypts, except by his choice of
descriptive attributes for the data. Rather, the encryptor must trust that the key-issuer
issues the appropriate keys to grant or deny access to the appropriate users [6].

On the other hand, in CP-ABE, ciphertext is associated with tree access structure T
and secret key is associated with set of attributes S. Any user who satisfies the access
structure T can access the information. Thus, data owner can define access policy for
ciphertext to control which ciphertext can be decrypted by whom.

There have been various attempts published in the literature to improve the basic
CP-ABE scheme too [7-15]. However, these [7-15] approaches do not provide
receiver anonymity. This means that after encryption, a user is required to send the
access tree along with ciphertext, which is then used to match the attributes defined in
the secret key. In addition to protecting the privacy of plaintexts using CP-ABE in
multicast scenario, privacy of ciphertext-policy and privacy of credentials is also
required in situations where requests for service, credentials, access policies and
resources are extremely sensitive. In addition, in some situations encryptor’s policy
may reveal private information about himself, in which case he would like to protect
his privacy against both intended and non-intended recipients of the message. Ideally,
an authorized user also should not learn anything about the structure of the policy or
which of his credentials were necessary for decryption. To overcome the lack of
receiver anonymity, various authors propose different approaches in [16-26].

However, we observed that all existing CP-ABE schemes to improve ciphertext
access control, basically just can guarantee the data security, policy and credential
security or processing efficiency, but did not take into account how users can safely
search and retrieved the encrypted data or file containing specific keywords which
stored in cloud storage. To the best of our knowledge, there is no reported searchable
CP-ABE scheme. Searchable encryption (SE) is a cryptographic primitive that allows
user to store his encrypted data on an untrusted server, while giving the authorized
user, ability to search for an encrypted file having particular keywords without
revealing any information about the data. Equipping CP-ABE scheme with keyword-
searching capability makes authorized user’s task more easier in such a way that
authorized user can efficiently search for an encrypted file having particular keywords
by just checking whether label attached with ciphertext and keywords associated with

 A Novel Approach for Searchable CP-ABE with Hidden Ciphertext-Policy 169

user’s token are matched or not. If both keyword and label are matched then user will
retrieve and decrypt that particular file only, instead of downloading and decrypting
number of files available on cloud before searching file for particular keywords.

To solve this problem we propose a new searchable CP-ABE access control
scheme so that one can check whether ciphertext contain specific set of keywords or
not, using his own token without decrypting message. In previous searchable
encryption schemes [28-33] server only can test whether one keyword was present in
the ciphertext, in contrast to that our proposed scheme can test whether multiple
keywords were present in the ciphertext or not. Our proposed scheme is collusion
resistant and also provides receiver anonymity by hiding access policy. In policy
hiding CP-ABE schemes, the encryptor conceals access policy and hence the
decryption will be carried out without knowledge of ciphertext policy. In turn, an
intermediate adversary cannot obtain any information about the ciphertext policy.
Hence, neither authorized user nor un-authorized can try to “gaming” the system i.e.,
changing their behavior to gain access to a message, or inferring which messages are
important based on their policies.

1.1 Our Contributions

1) We extend the notion of ciphertext policy attribute based encryption to
searchable CP-ABE with hidden ciphertext policy. We proposed a novel collusion
resistant searchable CP-ABE scheme with hidden ciphertext policy. Our proposed
scheme allows the user to check whether a particular set of keywords are labeled to
ciphertext or not, without revealing anything about data itself. A user can not test for
keyword W for which he does not have a token. In addition, a user gains no
knowledge about plaintext by observing the label and keyword attached with
ciphertext and token respectively.

2) Delegation of search ability is also possible in our scheme, which makes it
attractive towards some interesting applications as mentioned in [27]. For example, an
email user may want the server to deliver his/her emails according to some keywords
attached on the emails. The user generates some tokens for the keywords and sends
them to the server. The server may test whether there are these keywords in the
emails. If the test outputs true, the mail will be sent to the user according to the rule.

3) Requiring (a) that the client should not learn information about which of her
credentials or the server’s credentials are usable, and (b) the server should not learn
information about which of the client’s credentials are usable, preserve the privacy of
the other party’s credential set and makes our proposed scheme secure against
probing attacks.

In our scheme access policy can be expressed using AND gate with negative
attributes and wildcard, so that it is possible to express the access policy effectively.
Each attribute in the access policy can take multiple values. In addition, the proposed
approach uses a fixed number of pairing operations during the decryption as well as
keyword search. Hence, our construction achieves constant computation cost.

170 M. Padhya and D. Jinwala

4) Furthermore, in our proposed scheme, the secret key and token consists of 4
group elements, irrespective of the number of attributes. Therefore, authorized user
cannot try to decrypt the message with different subsets of his credentials. Even the
user cannot extract the individual secret attribute keys from this single secret key
component. Hence, different users cannot pool their secret keys in order to decrypt a
ciphertext. In addition, for the clauses that authorized user satisfy, he gains no
knowledge of which of his attributes were used to satisfy those clauses

5) We prove that our proposed searchable CP-ABE scheme with hidden policy is
secure against adaptive chosen keyword attack and also satisfies the
indistinguishability of messages under the DBDH assumption.

1.2 Organization of the Rest of the Paper

 The rest of the paper is structured as follows. In section 2, we discuss the related
work in the area. In section 3, we describe the preliminaries and the notations that we
use throughout the rest of the paper. In section 4, we describe our proposed approach.
The security games used to prove the security of our proposed scheme is described in
section 5. In section 6, we give construction of our proposed scheme. Security
analysis and complexity analysis of our proposed scheme are given in section 7 and
section 8 respectively. Last section concludes the paper and references are at the end.

2 Related Work

Boneh et al. [27] proposed the concept of Public key Encryption with Keyword
Search (PEKS) to address the problem of searching on encrypted data. Although
PEKS schemes provide some approaches to search over the encrypted data by
keyword, they cannot support flexible access control policies on encrypted data. Early
works mostly only support single-keyword search [28-33]. To grant multiple users the
search capabilities and access privileges, user authorization should be enforced.

Therefore, the authors of [34] proposed a searchable CP-ABE scheme. In their
scheme data owner encrypts the sensitive data under an access policy before
outsourcing sensitive data in the public cloud and builds a corresponding secure index
for keywords. Only authorized users whose credentials satisfy the access policy can
retrieve this encrypted data through keyword search and decrypt the ciphertext.

The another approach for searchable CP-ABE scheme is proposed by authors of
[35].In their scheme the data owner encrypts the index of each file with an access
policy created by him/her, which defines what type of users can search this index. The
authors of [36], combine the traditional CP-ABE algorithm and a homomorphic
encryption algorithm to achieve a searchable ciphertext CP-ABE access control
scheme. In their scheme, message is encrypted under homomorphic encryption
methods and the key of homomorphic encryption is encrypted using CP-ABE. Then,
they combined the both cipher to produce the final ciphertext document. Thus, the
ciphertext of homomorphic key is used to realize the CP-ABE access control, the
ciphertext of message is used to realize the search operation in the ciphertext data.

 A Novel Approach for Searchable CP-ABE with Hidden Ciphertext-Policy 171

In the scheme proposed in [37], a keyword is encrypted with an attribute-based
access policy, which can be searched when the users’ attributes satisfy the policy. The
authors of [38] give Public-Key Encryption with Fine-grained Keyword Search using
predicate encryption which can test whether multiple keywords or
disjunction/conjunction of keywords were present in the ciphertext or not.

However, all the existing searchable CPABE schemes either encrypt keyword or
key of homomorphic encryption under an access policy using CP-ABE encryption
function. Therefore, to search any data or file labeled with particular “keyword”,
authorized user has to first decrypt the ciphertext of keyword or homomorphic key.
Thus, all existing searchable encryption schemes does not give the authorized user,
ability to search for an encrypted file having particular keywords without revealing
any information about the data.

By analyzing the above literature improvement ideas, we propose a searchable
encryption of CP-ABE access control scheme with hidden ciphertext policy; which
provides the authorized users ability to search for an encrypted file having particular
keywords by just checking whether label attached with ciphertext and keywords
associated with user’s token are matched or not. If both keyword and label are
matched then user will retrieve and decrypt that particular file only, instead of
downloading and decrypting number of files available on cloud before searching file
for particular keywords. In addition, in our proposed scheme label attached with
ciphertext and keywords associated with user’s token do not reveal any information
about data.

3 Preliminaries

In this section, we first give background information on bilinear maps and definitions
of computational hardness assumptions. Next we define an access structure and use it
in our security definitions. However, in these definitions the attributes will describe
the users and the access structures will be used to label different sets of encrypted
data.

3.1 Ciphertext-Policy Attribute Based Encryption

Definition I. (Bilinear map). The security of the CP-ABE system is based on the
algebraic group called bilinear groups, which are group with bilinear map. Assume
G1,G2 and G3 are three multiplicative cyclic group of some prime order p. A bilinear
map e: G1 × G2 → G3 is a deterministic function, which takes as input one element
from G1, one element from G2, and output an element in group G3, which satisfies
the following criteria

 a) Bilinearity : For all x ∈ G1, y ∈ G2, a,b ∈ Zp , e (xa,yb)=e (x,y)ab.
 b) Non degeneracy: e (g1, g2) ≠ 1 where g1 and g2 are generator of G1 and

 G2 respectively.
 c) e must be computed efficiently.

172 M. Padhya and D. Jinwala

Definition II. (Discrete Logarithm Problem). Given two group elements g and h, find
an integer a ∈ Zp such that h= ga whenever such integer exist.

Definition III. (DBDH assumption). The Decision Bilinear Diffie-Hellman (DBDH)
problem in group G of prime order p (according to the security parameter) is a
problem, for input of a tuple (g,ga,gb,gc,R) where, a,b,c ∈ ZP be chosen at random and
g is a generator of G then to decide R= e(g,g)abc or not. An algorithm A has advantage
Є in solving DBDH problem in G if AdvDBDH(A):=|Pr[A(g,ga,gb,gc,e(g,g)abc)=0]−
Pr[A(g,ga,gb,gc,e(g,g)R)=0]| ≥ Є (κ), where e(g,g)z ∈ GT \{e(g,g)abc}. We say that the
DBDH assumption holds in G if no PPT algorithm has an advantage of at least ∈ in
solving the DBDH problem in G.

Definition IV. (Access Structure). Let U ={ att1,att2,..,attn} be a set of attributes. For
atti ∈ U, Si = { vi,1, vi,2,⁄, vi,ni } is a set of possible values, where ni is the number of
possible values for atti . Let L = [L1, L2,..,Ln] Li ∈ Si be an attribute list for a user, and
W = [W1,W2,..,Wn] Wi∈Si be an access policy. The notation L|= W express that an
attribute list L satisfies an access policy W, namely Li = Wi (i=1,2..,n). The notation
L|≠W implies L not satisfying the access structure W.

4 Proposed Approach

Proposed CP-ABE scheme consists of different polynomial algorithms as follows.

1. Setup(λ): The setup algorithm will take implicit security parameter λ and output
public parameter MPK and master key MSK.

2. KeyGen(MSK, L): The key generation algorithm run by TA, takes as input the
master secret key of TA, the set of attributes L for user and then generates the secret
key SKL.

3. GenToken(MSK,K): The gentoken algorithm takes as input a master secret key
MSK ,the set of keywords K to be searched and give output a token TK for the set of
keywords K.

4.Delegate(SKL,K): The delegate algorithm takes as input an authorized user’s secret
key SKL for some set of atributes L and a set of keywords K to be searched . It output
a token TK for the set of keywords K.

5. Encrypt(MPK, M, W): The encryption algorithm takes as input the message M,
public parameter MPK and access policy W over the universe of attributes. Generate
the output CT such that only those users who had valid set of attributes which satisfy
the access policy can only able to decrypt. Assume that the CT implicitly contains
access policy W.

6. Encrypt_KS(MPK, CT, KW): for a public key MPK, set of key words KW,
Encrypt_KS() algorithm produces a searchable encryption of given set of keywords

 A Novel Approach for Searchable CP-ABE with Hidden Ciphertext-Policy 173

KW and attached it with ciphertext CT = Encrypt(MPK, M, W) to produce final
ciphertext CTTW.

7.KS(CTTW, TK): given a ciphertext labeled with set of keywords KW i.e. CTTW =
Encrypt_KS(MPK, CT, KW) and a token TK= GenToken(MSK,K), the key word
search algorithm KS() outputs ‘yes’ if KW=K and ‘no’ otherwise.

8. Decrypt(CT,SKL) : The decrypt algorithm run by user takes input the ciphertext
CT contains access policy W and the secret key SKL containing attribute set L. If L
satisfies the access policy then algorithm decrypt the CT and give M otherwise gives
“ϕ”.

5 Security Game

Formally, we define security against an active attacker A using the following games
between a challenger and the attacker (the security parameter λ is given to both
players as input).

5.1 CPA (Chosen Plaintext Attack) Security Game

The game proceeds as follows:

Init. The adversary sends the two different challenge access structures W0 and W1 to
the challenger.

Setup. The challenger runs Setup(1k) to obtain a public key MPK and a master secret
key MSK. It gives the public key MPK to the adversary A and keeps MSK to itself.

Phase 1. The adversary A adaptively queries the challenger for secret keys
corresponding to an attribute list L, where (L|≠ W0 and L |≠ W1) or (L |= W0 and L |=
W1) .The challenger answers with a secret key SKL for these attributes.

Challenge. The adversary submits two equal length messages M0 and M1. Note that if
the adversary has obtained SKL where (L |= W0 and L |= W1) then M0 = M1. The
challenger chooses β randomly from {0,1} and runs Encrypt(MPK, Mβ,Wβ). The
challenger gives the ciphertext CT*= Encrypt(MPK,Mβ,Wβ) to the adversary.

Phase 2. Same as Phase 1.If M0≠ M1 then adversary can not submit L such that L |=
W0 and L |= W1

Guess. The adversary A outputs its guess β’∈ {0, 1} for β and wins the game if β = β’.

The advantage of the adversary in this game is defined as |Pr[β = β’]− 1/2| where the
probability is taken over the random bits used by the challenger and the adversary.

Definition: A ciphertext-policy attribute-based encryption scheme is ciphertext policy
hiding (or secure) if all polynomial time adversaries have at most a negligible
advantage in this security game.

174 M. Padhya and D. Jinwala

5.2 CKA (Chosen Keyword Attack) Security Game

We need to ensure that an KS(CTTW, TK) does not reveal any information about
keywords KW labeled with ciphertext CTTW unless token TK is available. We define
security against an active attacker who is able to obtain token TK for any set of
keywords K of his choice. Even under such attack the attacker should not be able to
distinguish an encryption of a keyword KW0 from an encryption of a keyword KW1

for which he did not obtain the token. The game proceeds as follows:

Setup. The challenger runs Setup(1λ) to obtain a public key MPK and a master secret
key MSK. It gives the public key MPK to the adversary A and keeps MSK to itself.

Phase 1. The adversary A adaptively queries the trusted authority to generate token
corresponding to set of keywords K of his choice. The authorized party answers with a
token TK for this key-word set.

Challenge. At some point, the attacker A sends the challenger two words KW0; KW1
on which it wishes to be challenged. The only restriction is that the attacker did not
previously ask for the token corresponding to a keyword KW0 or KW1. The
challenger chooses β randomly from {0,1} and runs Encrypt_KS(MPK, CT, KWβ)
The challenger attached CT*= Encrypt_KS(MPK, CT, KWβ) with ciphertext CT =
Encrypt(MPK, M, W) to produce final ciphertext CTTW and gives it to the adversary.

Phase 2. Same as Phase 1 but adversary cannot ask for the token corresponding to a
keyword KW0 or KW1.

Guess. The adversary A outputs its guess β’∈ {0, 1} for β and wins the game if β = β’.

The advantage of the adversary in this game is defined as |Pr[β = β’]− 1/2| where

the probability is taken over the random bits used by the challenger and the adversary.

Definition: A ciphertext-policy attribute-based encryption with keyword search is
semantically secure against an adaptive chosen keyword attack if all polynomial time
adversaries have at most a negligible advantage in this security game.

6 Construction : Searchable CP-ABE

In this section, we propose a searchable CP-ABE scheme. Here = group of large
prime order p. Group G and G1 are cyclic multiplicative group of prime order p.
Without loss of generality, we assume that there are n categories of attributes
U={att1,att2,…,attn} in universe. Every user has n attributes with each attribute
belonging to a different category. Assume Si={vi,1,vi,2,…,vi,ni} be the set of all
possible values for atti where ni=l . Assume L=[L1,L2,…,Ln] be a set of attributes for
user, where Li ∈ Si and W=[W1,W2,..,Wk] is an access structure, where Wi ⊆ Si. The
set of attributes L =[L1,L2,…,Ln]= (v1,j1, v2,j2, . . . , vi,ji , . . . , vn,jn), where ji ∈ {1, . . . ,
l}satisfies the ciphertext policy W if and only if vi,ji ∈ Wi for 1 ≤ i ≤ n. In addition, we
also assume that there are m categories of keywords UKW = {y1,y2,…..,ym} in universe.

 A Novel Approach for Searchable CP-ABE with Hidden Ciphertext-Policy 175

Assume kvi={kv1,kv2,…,kvm} for 1<i<m, be the set of all possible values for keyword
{y1,y2,…..,ym}. Let K be the set of keywords attached with user’s token and KW be
the set of keywords labeled with ciphertext. The set of keywords K
=[K1,K2,…,Kp]={y1,y2,….,yp}, attached with the token, matches with set of keywords
KW=[KW1,KW2,…,KWq] labeled with ciphertext if and only if p=q and yi ∈ KWi for
1 ≤ i ≤ q,where p,q ∈ m. The searchable CP-ABE scheme consists of the following
algorithms:

Setup(1λ): This algorithm run by trusted authority (TA) and based on the implicit
security parameter λ, the setup algorithm will choose a bilinear group (G,G1) of
prime order p and generator g∈ G.

 Step 1: A trusted authority generates a tuple G=[p,G,G1,g ∈ G, e] Gen(1λ) .
 Step 2: For each attribute vi where 1 ≤ i ≤n, the authority generates random value

{vi,t ∈R Zp} 1 ≤t ≤ni and computes {Ti,t = gvi,t } 1 ≤t ≤ni.

Step 3: For each keyword yi where 1 ≤ i ≤m, the authority generates random
value {kvi ∈R Zp} and computes {T’i = gkvi }

Step 4: Compute Y = e(g,g)α where α ∈R Zp
Step 5: The public key MPK consists of <Y,g,G,G1 ,e ,{{Ti,t } 1 ≤t ≤ni }1 ≤i ≤n ,

 { T’i } 1 ≤i ≤m >

The master key MSK is < α,{{vi,t ∈R Zp } 1 ≤t ≤ni} 1 ≤i ≤n, { kvi ∈R Zp } 1 ≤i ≤

m >Add/delete/update of attributes and keywords possible after setup by updating the
corresponding secret values of that attributes.

KeyGen(MSK, L) : The key generation algorithms takes as input the master secret
key MSK, a set L of attributes and do the following.

Let L=[L1,L2,…,Ln]={ v1,j1, v2,j2, . . . , vi,ji , . . . , vn,jn } ,where ji ∈ {1, . . . , l} be the
attribute list for the user who obtain the corresponding secret key.

Step 1: The trusted authority picks up random value r ∈R Zp and computes D0 = gr,
D1= g r + α.

Step2: The trusted authority picks up random values µi ∈R Zp for 1 ≤i ≤n and
computes

D2 , D3 = [Π (g vi,ji + µi)r , Π (gµi)r] for 1 ≤i ≤n

The secret key is SKL = <D0 , D1, D2 , D3 >
In each invocation of KeyGen algorithm to generate private key, new random

numbers r and µi will be used. Thus, collusion resistance in our scheme is achieved
by two layers of random masking in generation of private key. Random numbers r and
µi tie each component of private key of single user together so no two users can
combine their secret keys to decrypt the secret message. Similarly, randomness is
used in GetToken() algorithm also while generating token for keyword search. Thus
no two users can combine their token to search for any particular keyword.

176 M. Padhya and D. Jinwala

GetToken(MSK,K): The GetToken algorithms takes as input the master secret key, a
set K of keywords to be searched and do the following.

Let K =[K1,K2,…,Kp]= {y1,y2,….,yp}, be the set of keywords for the user who
obtain the corresponding token.

Step 1: The trusted authority picks up random value rt ∈R Zp and computes T0= grt,
T1= g rt + α.

Step 2: The trusted authority picks up random values µi ∈R Zp for 1 ≤i ≤p and
computes

T2 , T3 = [Π (g kvi+ µi)rt , Π (gµi)rt] for 1 ≤i ≤p

The token is TKK= <T0 , T1, T2 , T3 >

Delegate(SKL,K): The delegation algorithm takes in a secret key SKL of authorized
user and set of keywords K. The secret key is of the form SKL= <D0 , D1, D2 , D3 >.
The algorithm chooses random rt ∈R Zp and µi ∈R Zp for 1 ≤i ≤n . Then it creates a
delegated token as

Step 1: The authorized user who have secret key SKL , computesT0= D0, T1=D1.
Step 2: Then authorized user computes

T2 , T3 = [Π(g kvi + µi)rt , Π (gµi)rt] for 1 ≤i ≤n

TKK= <T0 , T1, T2 , T3 >
The resulting token TKK is a token for the set of keywords K. Since the algorithm

re-randomizes the key, a delegated token is equivalent to one received directly from
the authority.

Encrypt(MPK,M,W) :This algorithm is run by sender. Based on MPK, message M
and access policy W=[W1,W2,..,Wk] where Wi ⊆ Si. It selects s∈R Zp and calculates
ciphertext CT as follows.

C1=M Ys

C2=gs

The encryptor picks up random values βi,j ∈R Zp for 1 ≤ i ≤ n and 1 ≤ j ≤ l, and it
also computes

Ci,j=(g vi,j + βi,j)s , C4= Π (g βi,j)s

where βi,j ∈R Zp

Here, vi,j = vi,j (if vi,j is positive attribute in W)
 = 1 (if vi,j is negative attribute in W)
 = vi,j (if vi,j is wild-card attribute in W)

If vi is wild-card attribute then βi,j= βi,1 for 1 ≤ j ≤ l

CT= < C1, C2, {{Ci,j}1≤ j≤ l}1≤i ≤n,C4>.

 A Novel Approach for Searchable CP-ABE with Hidden Ciphertext-Policy 177

Encrypt_KS(MPK, CT, KW): This algorithm is run by sender. Based on public key
MPK and set of key words KW=[KW1,KW2,…KWn], Encrypt_KS() algorithm
produces a searchable encryption of given set of keywords KW as follows
It selects sd ∈R ZP and calculates CTW1= Ysd , CTW2=gsd

The encryptor picks up random values βi ∈R ZP for 1 ≤ i ≤ n , and it computes

CTW3= Π (g kvi + βi)sd CTW4= Π (g βi)sd

Then sender attached < CTW1, CTW2, CTW3,CTW4> with ciphertext CT =
Encrypt(MPK, M, W) to produce final ciphertext CTTW.

KeyWord_Search(CTTW,TKK): The recipient tries to search keyword using his token
TKK associated with the set of keywords K and ciphertext CTTW labeled with set of
keywords KW as follows

 = CTW1 e(CTW2, T0 T3) e(CTW3, T0)

 e(CTW2, T1 T2) e(CTW4,T0)

Correctness. Let TKK and CTTW be as above. If the set of keywords
K=[K1,K2,…,Kp]= {y1,y2,….,yp} matches with the label KW=[KW1,KW2,…KWn]
attached with the ciphertext, then

 CTW1 e(CTW2, T0 T3) e(CTW3, T0) =
 e(CTW2, T1 T2) e(CTW4,T0)

= Ysd e(gsd ,grt Π(gµi)rt) e(Π(gkvi + βi)sd,grt)

 e(gsd, gα+rt Π (gkvi + µi)rt) e(Π (g βi)sd ,grt)

= e(g,g)αsd e(gsd, grt) e(gsd, Π (gµi)rt) e(Π(gkvi + βi)sd, grt)

 e(gsd,gα+rt) e(gsd, Π (gkvi + µi)rt) e(Π (gβi)sd, grt)

= e(g,g) αsd e(g,g)rt sd e(g, g)rt sd∑kvi + βi e(g,g)rt sd∑µi

 e(g,g)rt sd e(g,g) αsd e(g,g)rt sd∑ kvi + µi e(g,g)rt sd ∑βi

= e(g, g)rt sd ∑kvi e(g, g)rt sd ∑βi e(g,g)r sd∑µi

 e(g,g)rt sd∑kvi e(g,g)rt sd∑ µi e(g,g)rt sd ∑βi

=1

If output of KeyWord_Search() is 1 then K=KW that means set of keyword

attached with user’s token is matched with set of keywords labeled with ciphertext.

178 M. Padhya and D. Jinwala

Decrypt(CT, SKL): The recipient tries to decrypt CT, without knowing the access
policy W by using his SKL associated with the attribute list L as follows

Step 1: C’= Π Ci,ji = Π(g vi,ji + βi,j)s,for 1 ≤ i ≤ n

Step 2: The decryption algorithm outputs

 C1 e(D0, C’ C2) e(C2, D3)
 e(C2, D2 D1) e(D0, C4)

If the user attribute set L satisfies the hidden access policy W of the ciphertext, the

user can recover the message M correctly.

6.1 Recipient Anonymity

We now show how the proposed CP-ABE scheme provides recipient anonymity by
employing prime order bilinear groups. Suppose the adversary is given an arbitrary
access policy W’= [W’1,W’2,..,W’k] where W’i ⊆ Si and a ciphertext CT = < C1, C2,
{Ci,j}1≤i ≤n,1≤ j≤ l,C4> which is an output of the encryption algorithm Encrypt. Let
CT is encrypted under an access policy W=[W1,W2,..,Wk] .The adversary then
performs the DDH-test as follows

 C1 e(g, C2 C’) = M (g,g)αs e(g, gs Π (g vi,ji + βi,j)s)
 e(C2, gα Π Ti,ji’) e(g,C4) e(gs, gα Π (g vi,ji’)) e(g, Π (g βi,j)s)

There are two possible cases.

If W’ = W, for all i, 1 ≤ i ≤ n, W’i = Wi and hence vi,ji’= vi,ji Therefore,
 C1 e(g, C2 C’) = M (g,g)αs e(g, Π(g vi,ji + βi,j)s) e(g, gs)
 e(C2, gα Π Ti,ji’) e(g, C4) e(gs, gα) e(gs,Π(g vi,ji’)) e(g, Π (g βi,j)s)

 = M(g,g)αs e(g, g)s∑ vi,ji e(g,g) s∑βi,j e(g, gs)
 (g,g)αs e(g, g)s∑ vi,ji’ e(g,g) s∑βi,j

= M e(g, gs) (1)

Suppose W’ ≠ W. Then, there exists at least one k, 1 ≤ k ≤ n such that W’i ≠ Wi.

Without loss of generality, we can assume that W’i = Wi, for all i, 1 ≤ i ≤ n except i =
k. Then vi,ji’= vi,ji, for all i, 1 ≤ i ≤ n, except i = k. Therefore,

 C1 e(g, C2 C’) = M (g,g)αs e(g, Π (g vi,ji + βi,j)s) e(g, gs)
 e(C2, gα Π Ti,ji’) e(g, C4) e(gs, gα Πg vi,ji’) e(g, Π(gβi,j)s)

 = M(g,g)αs e(g, g)s∑ vi,ji e(g,g) s∑βi,j e(g, gs)
 (g,g)αs e(g, g)s∑ vi,ji’ e(g,g) s∑βi,j

 A Novel Approach for Searchable CP-ABE with Hidden Ciphertext-Policy 179

 = M e(g,g)s vk,jk e(g, gs) (2)
 e(g,g)s vk,jk’

In both the cases (1) and (2) the DDH-test gives a random element of G1 so that

the adversary cannot determine whether the ciphertext CT is encrypted under the
access policy W’ or not. Thus, our scheme preserves recipient anonymity.

7 Security Analysis

In this section we discuss the security analysis for the proposed CP-ABE scheme with
single authority approach. We give the proof in generic group model using the DBDH
hardness assumption.

7.1 Security Analysis : CPA Security Game

Theorem: The anonymous CP-ABE construction satisfies the indistinguishability of
messages under the DBDH assumption.

Proof: We assume that the adversary A has non-negligible advantage Є to break the
privacy of our scheme.

Then we can construct an algorithm B that breaks that DBDH assumption with the
probability Є

Let (g, ga, gb, gc, Z) ∈ G X G1 be a DBDH instance a,b,c,z ∈R Zp and g is the
generator for group G.

Init. The adversary A gives B the challenge access structure W0 and W1. B chooses d
randomly from the set {0, 1} and set Wd=[Wd,1,Wd,2,……,Wd,n] .

Setup. To provide a public key MPK to A , B sets Y=e(g,g)ab, implies α= ab. B
selects random value {vi,t ∈R ZP } for 1 ≤i ≤n, 1 ≤t ≤ni and computes {T i,t = g vi,t } 1
≤t ≤ni for each attribute vi.
The simulator, B sends the public parameters M P K = <Y,g,G,G1 ,e ,{{Ti,t } 1 ≤t ≤ni
}1 ≤i ≤n , { T’i } 1 ≤i ≤m > to A.

Phase 1. A submits an attribute list L = [L1, L2, …, Ln] in a secret key query. We
consider only the case where L |≠ W0 ∧ L |≠ W1. The reason for this is if L |= W0 ∧
L |= W1, then the challenge messages M0=M1. Therefore, B simply aborts and takes a
random guess.
For KeyGen query L, B choose u∈Zp and set r = u and computes the secret keys as
follows

D0= gr = gu
D1= g r + α = gab+u

D2 , D3 = [Π (g vi,ji + λi)u , Π (g λi)u] for 1 ≤i ≤n
SK = <D0, D1, D2, D3 >

180 M. Padhya and D. Jinwala

For another secret key query by attacker with attribute list L’, the calculated r and λi is
different and therefore collusion attack is not possible.

Challenge. A submits two messages M0, M1 ∈ G1 if M0 = M1, B simply aborts and
takes a random guess. The simulator flips a fair binary coin d, and returns the
encryption of Md. The encryption of Md can be done as follows:

C1= Md (e(g,g)ab)c = Md Z, C2= gc

B generates, for Wd, the ciphertext components {{Ci,j} 1 ≤j ≤l } 1 ≤i ≤n and C4 as
follows

Ci,j=(g vi,j + βi,j)c C4= Π (gβi,j)c

and then attached it with output ciphertext of Encrypt_ks() algorithm and sends
resultant ciphertext CTTW to A.

Phase 2. Same as Phase 1.

Guess. From the above considerations, the adversary can decide that Z = e(g,g)abc
when d = d’ and can decide that Z ∈R G1 otherwise. Therefore, A breaks the DBDH
problem with the probability Є.

7.2 Security Analysis : CKA Security Game

Theorem: The searchable CP-ABE secure against an adaptive chosen keyword attack
under the DBDH assumption.

Proof: We assume that the adversary A has non-negligible advantage Є to break the
privacy of our scheme.

Then we can construct an algorithm B that breaks that DBDH assumption with the
probability Є

Let (g, ga, gb, gc, Z) ∈ G X G1 be a DBDH instance a,b,c,z ∈R Zp and g is the
generator for group G.

Setup. To provide a public key MPK to A , B sets Y=e(g,g)ab, implies α= ab. B
selects random value {kvi ∈R Zp} for 1 ≤i ≤m and computes {T’i = g kvi } for each
keyword kvi.

The simulator, B sends the public parameters
 MPK=<Y,g,G,G1 ,e ,{{Ti,t } 1 ≤t ≤ni }1 ≤i ≤n , { T’i } 1 ≤i ≤m > to A.

 Phase 1. A submits set of keywords K in a token query. For Gen Token query K, B
choose u ∈R Zp , µi ∈R Zp and set r = u and computes the token as follows

T0= gr = gu
T1= g r + α = gab+u

T2 , T3 = [Π (g kvi + µi)u , Π (g µi)u] for 1 ≤i ≤n
 TK = <T0 , T1, T2 , T3 >

For another token query by attacker with set of keywords K’, the calculated r and µi is
different and therefore collusion attack is not possible.

 A Novel Approach for Searchable CP-ABE with Hidden Ciphertext-Policy 181

Challenge. A submits two words KW0; KW1 on which it wishes to be challenged. We

consider only the case where K |≠ KW0 ∧ K |≠ KW1. The reason for this is if KW0 =

KW1 OR (K |= KW0 ∧ K |= KW1), then B simply aborts and takes a random guess.
The simulator flips a fair binary coin d, and returns the encryption of KWd. Based on
public key MPK and set of key words KWd=[KWd,1,KWd,2,…KWd,n], Encrypt_KS()
algorithm produces a searchable encryption of given set of keywords KWd as follows

CTW1= (e(g,g)ab)c = Z, CTW2= gc

The encryptor picks up random values βi ∈R Zp for 1 ≤ i ≤ n , and it also computes

CTW3= Π (g kvi + βi)c CTW4= Π (g βi)c

Where βi is random number.
Then attached < CTW1, CTW2, CTW3,CTW4> with ciphertext CT = Encrypt(MPK, M,
W) to produce final ciphertext CTTW and sends it to A.

Phase 2. Same as Phase 1.

Guess. From the above considerations, the adversary can decide that Z = e(g,g)abc
when d = d’ and can decide that Z ∈R G1 otherwise. Therefore A breaks the DBDH
problem with the probability Є.

8 Complexity Analysis

Let n be the number of all attributes in universe, m be the number of all possible
values for each attribute and N’ = mn represent the number of all possible
combinational values for all attributes. The notation |G| is the bit length of the element
which belongs to G. Let the notation kG and kCe (where k ∈ Z>0) be k-times
calculations over the group G and pairing, respectively. N is the order of bilinear
group. In our scheme it is a big prime number. G1 and GT are bilinear groups. Size of
public key (MPK), Master key (MSK), secret key of user (SK) and ciphertext (CT) in
our proposed CP-ABE scheme is

MPK MSK SK Token

(N’+M’+1)|G1| + |GT | (N’+M’+1)| N| 4 |G1| 4 |G1|

The expected computational time based on the input parameters for our proposed

scheme is

Enc. Enc. With Keyword
search

Keyword
search

Dec.

(N’ + 2)G1 + GT (N’ + 5)G1 + 2GT 4 Ce + 4 GT 4 Ce + 4 GT

The figures in the table show the maximum value. The results given in above

tables clearly indicate that size of the secret key, size of the token and number of
pairing operation in key word search and decryption algorithm will remain constant

182 M. Padhya and D. Jinwala

irrespective of number of attributes in ciphertext policy. Thus, our scheme is efficient
in terms of computational overhead.

In addition, if we compare our scheme with existing CPABE schemes then only
[21],[26] schemes offers recipient anonymity, constant secret key size as well as
constant pairing operation same as ours scheme. However, [21],[26] schemes did not
provide keyword search capability as ours scheme. Similarly, [7-15] schemes did not
provide recipient anonymity as well as keyword search capability. To the best of our
knowledge, ours is the first scheme providing all properties viz. collusion resistance,
recipient anonymity, keyword search capability, constant secret key size and constant
pairing operation simultaneously.

9 Conclusion

In this paper, we propose the first efficient collusion resistant searchable CP-ABE
scheme with hidden ciphertext policy and present a concrete construction from
bilinear pairings. The proposed scheme allows user to search and retrieve the needed
data/file having particular keywords without revealing any information about the data.
Our proposed keyword search scheme simultaneously supports fine-grained access
control over encrypted data, provides recipient anonymity and also allows delegation
of search ability. Our approach can test whether multiple keywords were present in
the ciphertext or not and one can express ciphertext policy using AND gate with
positive, negative and wildcard attributes. Our proposed scheme is secure against
CPA and CKA security game. We had given security proof in generic model using
DBDH assumption, one can extend the given scheme for full security model.

References

1. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

2. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

3. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM Journal
on Computing 32(3), 586–615 (2003)

4. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

5. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute Based Encryption for Fine-Grained
Access Control of Encrypted Data. In: ACM Conference on Computer and
Communications Security –ACM CCS, pp. 89–98. ACM (2006)

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In:
Proceedings of IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Society
Press, Los Alamitos (2007)

7. Cheung, L., Newport, C.: Provably secure Ciphertext police ABE. In: Proceedings of the
14th ACM Conference on Computer and Communications Security –CCS, pp. 456–465.
ACM Press, New York (2007)

 A Novel Approach for Searchable CP-ABE with Hidden Ciphertext-Policy 183

8. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant Size Ciphertexts in Threshold Attribute-
Based Encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 19–34. Springer, Heidelberg (2010)

9. Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General Relations
from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

10. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional
Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg
(2010)

11. Daza, V., Herranz, J., Morillo, P., Ràfols, C.: Extended access structures and their
cryptographic applications. Applicable Algebra in Engineering, Communication and
Computing 21(4), 257–284 (2010)

12. Zhou, Z., Huang, D.: On Efficient Ciphertext-Policy Attribute Based Encryption and
Broadcast Encryption. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, pp. 753-755. ACM (2010)

13. Attrapadung, N., Libert, B.: Functional Encryption for Inner Product: Achieving Constant-
Size Ciphertexts with Adaptive Security or Support for Negation. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402. Springer, Heidelberg
(2010)

14. Chen, C., Zhang, Z., Feng, D.: Efficient Ciphertext Policy Attribute-Based Encryption
with Constant-Size Ciphertext and Constant Computation-Cost. In: Boyen, X., Chen, X.
(eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer, Heidelberg (2011)

15. Doshi, N., Jinwala, D.: Constant Ciphertext Length in CP-ABE. IACR Cryptology ePrint
Archive (2012)

16. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and
Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

17. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial
Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

18. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-Based Encryption with Partially Hidden
Encryptor-Specified Access Structures. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129. Springer, Heidelberg (2008)

19. Balu, A., Kuppusamy, K.: Privacy Preserving Ciphertext Policy Attribute Based
Encryption. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA
2010. CCIS, vol. 89, pp. 402–409. Springer, Heidelberg (2010)

20. Yu, S., Ren, R., Lou, W.: Attribute-Based Content Distribution with Hidden Policy. In: 4th
Workshop on Secure Network Protocols – NPSec, pp. 39–44 (2008)

21. Doshi, N., Jinwala, D.: Hidden Access Structure Ciphertext Policy Attribute Based
Encryption with Constant Length Ciphertext. In: Thilagam, P.S., Pais, A.R.,
Chandrasekaran, K., Balakrishnan, N. (eds.) ADCONS 2011. LNCS, vol. 7135, pp. 515–
523. Springer, Heidelberg (2012)

22. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: Ciphertext- Policy Attribute-
Based Encryption Scheme with Constant Ciphertext Length. In: Bao, F., Li, H., Wang, G.
(eds.) International Journal of Applied Cryptography – IJACT, vol. 2(1), pp. 46–59 (2010)

23. Müller, S., Katzenbeisser, S.: Hiding the Policy in Cryptographic Access Control. In:
Meadows, C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 90–105.
Springer, Heidelberg (2012)

184 M. Padhya and D. Jinwala

24. Hsiao, H., Lei, C.: A Hidden Access Control Scheme Allowing Negative Constraints.
Master Thesis, Electrical Engineering Department, National Taiwan University (2008)

25. Balu, A., Kuppusamy, K.: Ciphertext policy Attribute based Encryption with anonymous
access policy. CoRR abs/1011.0527 (2010)

26. Rao, Y.S., Dutta, R.: Recipient Anonymous Ciphertext-Policy Attribute Based Encryption.
In: Bagchi, A., Ray, I. (eds.) ICISS 2013. LNCS, vol. 8303, pp. 329–344. Springer,
Heidelberg (2013)

27. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with
keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

28. Chang, Y.C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

29. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
improved definitions and efficient constructions. In: Proceedings of the 13th ACM
Conference on Computer and Communications Security, pp. 79–88. ACM (2006)

30. Goh, E.: Secure Indexes. In: IACR Cryptology ePrint Archive 2003/216 (2003), doi
10.1.1.2.5433

31. Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving queries on encrypted data.
In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 479–495. Springer, Heidelberg (2006)

32. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and its
extension to a multi-user system. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T.
(eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg (2007)

33. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
Improved definitions and efficient constructions. Journal of Computer Security 19(5),
895–934 (2011)

34. Wang, C., Li, W., Li, Y., Xu, X.: A Ciphertext-Policy Attribute-Based Encryption Scheme
Supporting Keyword Search Function. In: Wang, G., Ray, I., Feng, D., Rajarajan, M.
(eds.) CSS 2013. LNCS, vol. 8300, pp. 377–386. Springer, Heidelberg (2013)

35. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting Your Right: Attribute-based
Keyword Search with Fine-grained Owner-enforced Search Authorization in the Cloud. In:
IEEE INFOCOM. IEEE (2014)

36. Xiong, A., Gan, Q., He, X., Zhao, Q.: A Searchable Encryption Of Cp-Abe Scheme In
Cloud Storage. In: 10th International Computer Conference on Wavelet Active Media
Technology and Information Processing –ICCWAMTIP, pp. 345–349. IEEE (2013)

37. Liao, Z., Wang, J., Lang, B.: Ciphertext-policy Hidden Vector Encryption for Multi-User
Keyword Search. In: 3rd International Conference on Internet & Cloud Computing
Technology – ICICCT (2013)

38. Zhang, M., Wang, X., Yang, X., Cai, W.: Efficient Predicate Encryption Supporting
Construction of Fine-Grained Searchable Encryption. In: 5th International Conference on
Intelligent Networking and Collaborative Systems–INCoS, pp. 438–442. IEEE (2013)

Towards a More Democratic Mining in Bitcoins

Goutam Paul1, Pratik Sarkar2, and Sarbajit Mukherjee3

1 Cryptology and Security Research Unit,
R. C. Bose Centre for Cryptology & Security,

Indian Statistical Institute, Kolkata 700 108, India
goutam.paul@isical.ac.in

2 Department of Computer Science and Technology,
Indian Institute of Engineering Science and Technology,

Shibpur, Howrah 711 103, India
iampratiksarkar@gmail.com

3 Department of Computer Science,
Utah State University, Logan, UT, 84322

sab.mukh90@gmail.com

Abstract. Bitcoin is a peer-to-peer electronic cash system that uses a
decentralized architecture. It has enjoyed superiority compared to other
cyptocurrencies but it has also attracted attackers to take advantage of
the possible operational insecurity. All the Bitcoin miners independently
try to find the winning block by finding a hash lower than a particular
target. On 14th June 2014, a particular mining pool was able to take
control of 51% of Bitcoins processing power, thus extracting the maxi-
mum amount of profit for their work. In this paper, we introduce a new
defense against this 51% attack. We modify the present block header
by introducing some extra bytes and utilize the Timestamp more effec-
tively in the hash generation and suggest an alternative to the existing
Proof-of-Work scheme. The proposed approach does not rely on finding
a hash value lower than the target, rather it awards the miner involved
in generating the minimum hash value across the entire distributed net-
work. Fraudulent activities easily get caught due to effective use of the
Timestamp. The new scheme thus introduces fair competition among
the miners. Moreover, it facilitates the generation of Bitcoins at a fixed
rate. Finally, we calculate and show how the new scheme can lead to an
energy-efficient Bitcoin.

Keywords: Bitcoins, Electronic Cash System, Miners, Proof-of-Work.

1 Introduction

In Bitcoin, electronic payments are performed by generating transactions that
transfer Bitcoin coins (BTCs) among Bitcoin users. Users are referenced in each
transaction by means of virtual pseudonyms referred to as Bitcoin addresses.
Each address corresponds to a unique public/private key pair. These keys are
used to transfer the ownership of BTCs among addresses [1]. Users transfer
coins to each other by issuing a transaction [17]. Two types of information are

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 185–203, 2014.
c© Springer International Publishing Switzerland 2014

186 G. Paul, P. Sarkar, and S. Mukherjee

processed in the Bitcoin system: transactions and blocks [14]. Transfer of value
across the system is referred to as transactions, whereas blocks are used to
store these transactions and maintain a synchronization among all nodes in the
network. A transaction is formed by digitally signing a hash of the previous
transaction where the coin was last spent along with the public key of the future
owner and finally incorporating the signature in the transaction.

The transactions need to be verified. Any peer can verify the authenticity of a
BTC transaction by checking the chain of signatures. Rather than depending on
a centralized authority, for this purpose, the Bitcoin system relies on a network
of miners who collectively work towards implementing a replicated ledger for
keeping track of all the accounts in the system. Each node in the Bitcoin network
maintains a replica of this ledger. The replica is constantly updated with time
so that the validity of the transactions can be verified against them.

All valid transactions, included in a block, are forwarded to all users in the
network to check the correctness of the block by verifying the hash computation.
If the block is deemed to be valid, the users append it to their previously accepted
blocks. Since each block links to the previously generated block, the Bitcoin
block chain grows upon the generation of a new block in the network. Bitcoin
relies on this mechanism to resist double-spending attacks. For malicious users
to double-spend a BTC, they would not only have to redo all the work required
to compute the block where that BTC was spent, but also recompute all the
subsequent blocks in the chain [2].

2 Proof-of-Work and Its Weaknesses

In this section, we present a brief description of the Proof-of-Work [8], abbrevi-
ated as PoW, and then discuss the various weaknesses associated with the PoW
protocol along with some practical examples. In the absence of any centralized
payment system, Proof-of-Work is a protocol used to artificially impose trans-
action costs. The main goal is to “charge” the requester of a service with the
efforts to provide a solution to a puzzle, which would be much harder to do than
to be verified.

Nakamoto [25] proposed an innovative use of this principle by utilizing it as a
core component in the design of a fully decentralized peer-to-peer cryptocurrency
called Bitcoin. To prevent double-spending of the same BTC, Bitcoin relies on a
hash-based Proof-of-Work (PoW) scheme to generate blocks containing the valid
transactions. The goal here is to generate a hash value which must be lesser than
a specified target, which is adjusted with time (see Figure 3). The hash basically
contains the Merkle hash of all valid and received transactions which the user
wants to include in a block, the hash of the previous block, a Timestamp and
a nonce value chosen by the user. If such a nonce is found, users then include
it along with other entities, that were needed to generate the hash, in a new
block and distribute it publicly in the network. Thus the PoW can be publicly
verified by other users knows as miners. Upon successful generation of a block,
a miner is granted a fixed amount of BTCs, known as coin-based transaction,

Towards a More Democratic Mining in Bitcoins 187

plus the transaction fees from all the transactions that have been included in the
block. This provides an incentive for users to continuously mine Bitcoins. But
still there are some important weaknesses associated with the PoW scheme in
Bitcoins.

2.1 Rich Gets Richer, Poor Gets Poorer

Here we identify, how due to the existing protocol, there is an unfair competition
among the miners. Bitcoin network purely relies on trustless consensus. Thus if a
situation arises when a mining pool controls majority of the voting power, then
it could cause havoc.

Fig. 1. GHash.io mining pool controlling about 51% of the total processing power
(from [18])

A group of miners having ‘rich’ computational resource may set up a mining
pool in such a way that it may control more than 50% of the network’s com-
puting power. In such a case that mining pool has the liberty to either modify
the ordering or exclude the occurrence of transactions by launching a 51% at-
tack [24]. With the combined mining power, the pool may indulge in double
spending by simply reversing transactions that they send. Thus having the re-
quired computational power, the pool may be able to validate series of blocks in
the block chain by just unscrambling the encrypted series of numbers attached
to every Bitcoin transaction. It may also prevent other valid transactions from

188 G. Paul, P. Sarkar, and S. Mukherjee

being confirmed or reject every block found by competing miners. They cannot
directly affect the BTCs stored in the user wallets but they would have the power
to make certain addresses unusable. And that allows them to impose any mining
fee they like. The mining pool keeps on earning maximum profit and thus the
use of the term ‘Rich gets richer’ sounds appropriate.

On 14th June, 2014, a particular mining pool, namely GHash.io [12,18], was
able to take control of 51% of Bitcoins processing power, thus extracting the
maximum amount of profit for their work. Figure 1 shows the amount of Bit-
coin processing power held by each major mining pool on 14th June, 2014. The
‘Unknown’ group represents the individual users who are not associated with
any mining pools, while others, for example, BitMinter, Eligius etc, are different
mining pools associated with solving the PoW puzzle. Thus, it can be easily seen
that the pools dominate the process of mining.

2.2 Block Races and Selfish Mining

Another problem that may be associated with the PoW protocol is that of ‘race
attack’. It can be viewed as an attack originated due to double–spending. Such
problems arise from transactions that occur within a short interval of time.
Thus it becomes tougher to confirm their verification. On the other hand the
the PoW protocol requires time (on an average 10 minutes) to verify a block [22].
So within the verification time a Bitcoin exchange might be completed. In this
type of attack, an attacker simultaneously sends an illicit transaction log to the
seller and another log to the rest of the peers in the Bitcoin network, where the
original owner gets back his currency. But by the time the seller realizes that
he has received a fraudulent amount, the transaction may have already been
carried out.

‘Selfish Mining’ can also be another possible attack. It was first introduced
by Ittay Eyal and Emin Gun Sirer in [20] In this attack, when a miner solves
the PoW puzzle and verifies a new block, he keeps it with himself. Thus by
not distributing it over the network, he doesn’t allow others to work on the
next block. Instead, the miner starts working on the next puzzle that would
verify the block which would follow his unreleased block. Thus if a mining pool
is set up, they might use their overall computational power to keep verifying
blocks. Finally when other miners find a new fair-mined block, the selfish miners
releases their verified chain of blocks, which might be of several blocks. Their
blocks would automatically be added to the main Bitcoin chain and the selfish
miners would always gain, since the longer chain always wins. The rest of the
miners didn’t have the notion of those hidden blocks and that resulted in wastage
of hashing power.

2.3 Illegal Usage of Machines for Mining

In Bitcoin mining, an algorithm or a puzzle is needed to be solved, that has
increasing complexity related to the number of Bitcoins in circulation. Attack-
ers try to exploit this mechanism of mining by illegally using computational

Towards a More Democratic Mining in Bitcoins 189

resources, for example, by infecting a huge number of machines [21] in the net-
work with malware, thus building a malicious botnet, that would be able to
mine Bitcoins. The attack may be executed by a fake and infected version of
legitimate software, packaged with malware or it may happen while clicking on
malicious shortened URLs spammed through Email or social Media platforms.
Once infected, the computational resources of the victim are used in the mining
process.

Another form of attack which recently occurred was the illegal use of su-
percomputers of research groups for mining Bitcoins. It was first reported in
Harvard [28], where a mining operation had been set up on the Odyssey cluster
of the Harvard research network. Similar incidents occurred in Imperial College
of London [27] and in the research labs of USA [10].

2.4 Wastage of Computing Power

The PoW problem is generally solved using ASIC machines which have been
specially designed for this purpose.

Each PoW problem generally requires 108 GH/s (Gigahashes/second) to be
solved, which can be seen from the chart in Figure 2. Such enormous requirement
of computing power attracts illegal use of supercomputers and large computing
power machines for Bitcoin mining.

Fig. 2. Chart showing the hash-rate required in solving the PoW puzzle (from [16])

190 G. Paul, P. Sarkar, and S. Mukherjee

Fig. 3. Graph showing the variation of difficulty in the system (from [15])

According to “Bitcoin Watch” [23], the whole Bitcoin network hit a record-
breaking high of 1 exaFLOPS a year earlier. FLOPS would basically mean the
number of Floating-point Operations a computer can do Per Second, or how fast
it can solve math problems. An exaFLOPS is 1018 math problems per second.
The most powerful supercomputer in the world, Sequoia, can manage a mere
16 petaFLOPS, or just 1.6 percent of the power geeks around the world have
brought to bear on mining Bitcoin. The world’s top 10 supercomputers can
muster 5 percent of that total, and even the top 500 can only muster a mere 12.8
percent. The new ASIC machines used by the miners are built from scratch and
are only used to mine Bitcoins. Thus they can’t serve any other purpose. So the
total power spent on Bitcoin mining could theoretically be spent on something
else, like real world problems that exist naturally. From Figure 2 and Figure 3,
we see that the Hash-rate and Difficulty level is exponentially increasing. This
would require more computation power for solving the PoW puzzle and in turn
would waste more computing power in the future.

2.5 No Guarantee of Coin Generation at a Fixed Rate

The most important aspect of this discussion is the rate at which the Bitcoins
are generated. The graph in [13] shows that the time required for confirmation
of a transaction usually takes around 5-20 minutes, which is against the policy

Towards a More Democratic Mining in Bitcoins 191

where each transaction verification should take on an average 10 minutes. If more
miners join in the race to find the puzzle for verifying the block, more hashes
would be generated and tested within the same time-span. But according to the
Bitcoin protocol, the network self-regulates the speed of generation of Bitcoins
after a certain time-span (after every 2016 blocks) by checking the number of
days required to generate x many hashes. If the time-span is found out to be
too short, then the difficulty level of PoW puzzle is increased. and so it becomes
harder to find out the required hash in the next round. Thus if a mining pool
is set up which could control more than 50% of the computational power, then
such rules can be broken.

The problem lies in the self–regulation of the network. If the network members
detect that the last hash generation took too much time, then the difficulty level
will be adjusted down, and in the next round, the hashes will be easier to be
found out. This actually means that if all peers in the network agree on only
using 1% of their available computing power, thus also only 1% of electricity and
1% of the electricity bill they have right now, the entire Bitcoin system would still
continue to work exactly as before. Everybody would still get the same payout
in amount of Bitcoins received, and the self-regulating nature of the network
means that exactly the same total amount of Bitcoins would be generated as
before. But the fees involved in mining has increased the greed of the miners
and they are wasting more and more computing power for mining which results
in the exponential rise of the target difficulty. The graph in Figure 3 shows how
the target difficulty is managed by the system.

3 Existing Alternative Proposals and Their Disadvantages

In this section, we provide a brief discussion of the alternative strategies that
have been proposed to tackle the weakness associated with the PoW protocol.
We also point out some weaknesses associated with those schemes.

3.1 Proof-of-Burn

The idea of proof-of-burn [7] is that the miner should show that they have burned
some coins in order to generate new coins. Coins can be burnt by sending them
to verifiable unspendable addresses. Only those users who have burnt coins in
the past can generate new coins in future and gain the transaction and block
generation fees. The metric for mining coins is the burning of coins. This system
successfully reduces the computing power for mining but it also wastes Bitcoins
in the process.

3.2 Proof-of-Stake

The proof-of-stake concept was first introduced by an user QuantumMechanic
in [11]. Each active user can show his stake in the system by proving the number
of Bitcoins held by him in his addresses. The larger the number of Bitcoins held

192 G. Paul, P. Sarkar, and S. Mukherjee

by an user, the larger will be his stake. Each user holding y% of stake can mine
only y% of the proof-of-stake coin. Proof-of-stake has been used in Peercoin [29].
As this concept is based on the amount of stake held by an user, it poses a threat
of centralization. If an user gains more than 50% of the system Bitcoins then he
can monopolize the system and perform double spending or deny service to rest
of the users. Thus, the number of Bitcoins held by an user cannot be used as a
metric for the Bitcoin security system.

4 Our Proposal

In this section, we describe our proposed scheme. We first describe in short
the various resources needed to present our algorithm. Section 4.2 provides an
in-depth description of our proposed algorithm.

4.1 Resources Needed

Peer-to-Peer Network. The Bitcoin users are connected in a peer to peer net-
work [6]. They broadcast the details of transactions and blocks over the network
using TCP communication.

Timestamp Server. The original Bitcoin paper [25] proposed the idea of a
Timestamp server. After that the Bitcoin blockchain contains Timestamped
transactions and blocks. This Timestamp helps to prove the existence of the
data.

Bitcoin Address. A Bitcoin user has an account, where each account is associ-
ated with one or more Bitcoin addresses [1]. A Bitcoin address is an 27-43 length
alphanumeric string that represents an address for payments of Bitcoins. Each
address has a corresponding private key which is required in order to spend the
coins at that address. The address and the private key is a pair of ECDSA [4]
keys, where the address is the public key and the private key of the address is
the private ECDSA key.

4.2 Description of Our Algorithm

Each user generates a hash, based on which the miner of the next block is
decided. The user whose hash is of minimum value amongst all the users in
the system, will generate the next block. He will receive the transaction fees
for all the transactions that are verified in his block and it will be added to
the blockchain as the next block. He will also initiate a coinbase transaction to
his public address and award himself with a specified amount of Bitcoins. This
award to himself is an additional incentive for verifying the blocks. This scheme
deals with the algorithm for generation, broadcast and verification of the hash.
It is divided into 3 phases, hash generation phase, hash broadcast phase and hash
verification stage. These 3 phases together run for 10 minutes and give the true

Towards a More Democratic Mining in Bitcoins 193

minimum hash of the system. We call this duration as the time frame which is
maintained by the Bitcoin system time. By true minimum, we mean the actual
minimum hash amongst all the hashes that has been generated by the miners,
and broadcasted in the system. At the end of the algorithm, the miner who has
generated the true minimum hash will form the block.

Phase 1: Hash Generation Phase. In this phase the user/miner verifies
the transactions and forms a Merkle root tree [5] from those transactions. He
generates a block from those transactions with a block header as described in
Table 2. He computes the minimum possible hash from the block header by
changing the value of the Nonce. This phase continues for 2 minutes and this time
is maintained by the Timestamp T (refer to section 4.1) in the hash message.
Any message that has been generated after this 2 minutes will be discarded.

Table 1. Present Block Header used in
the Bitcoin network. (from [3])

Name Byte
Size

Description

Version 4 Block Version Num-
ber.

Previous
Hash

32 This is the hash of
the previous block
header.

Merkle
Root

32 The hash based on
all the transactions
present in the current
block.

Time 4 Current Timestamp
in seconds (unix for-
mat).

Target
Bits

4 Target value in com-
pact form.

Nonce 4 User adjusted value
starting from 0.

Table 2. Proposed Block Header in
our design

Name Byte
Size

Description

Version 4 Block Version Number.

Previous
Hash

32 This is the hash of the
previous block header.

Merkle
Root

32 The hash based on all
the transactions present
in the current block.

Time 4 Current Timestamp in
seconds (unix format).

Bitcoin
Ad-
dress

20 Hash of the Public key of
the receiving address.

Nonce 4 User adjusted value
starting from 0.

Block Header: We recommend to modify the present 80 bytes block header
(Table 1) of the Bitcoin block structure and replace it with the newly proposed
block header of 96 bytes (Table 2). The user uses 5 fields similar to the previous
block header and includes an additional field (Table 3), i.e. his own public address
that is currently being used. The 4 bytes ‘Target Bits’ field in the header is not
required, since in the newly proposed design there is no specific target for the
miner to fulfill. The public address of the user which is used during the hash
generation, is required to compute the hash. The scheme inserts a new 20 bytes
of Bitcoin address Up field to the block header.

The hash (H) is generated from the 7 fields mentioned in Table 3.

194 G. Paul, P. Sarkar, and S. Mukherjee

Table 3. Items used by the User to generate the Hash

Version
(V)

Previous
Block Hash
(Hp)

Timestamp
(T)

Bitcoin
Address
(Up)

Hash of Merkle Tree
of verified transactions
(Ht)

Nonce
(R)

Padding
(P)

1. Version (V) - The first 4-bytes of the block header describes the block version
number V used by the miner. It is the Block version information, based upon
the software version creating this block. In our scheme, we use the similar
idea of Version number as given in [3] and [9].

2. Previous Block Hash (Hp) - In the Bitcoin system, the blocks in the
blockchain are chained to each other where each block contains the hash
of the previous block. In the proposed scheme, the chaining system has been
retained in order to track the previous block. The previous block hash is
denoted by Hp and is of 32 bytes size. In our scheme, Previous Block Hash
is used in the same sense as given in [3] and [9].

3. Timestamp (T) - It denotes the 4-bytes Timestamp of the starting of hash
generation by the user. It is updated after every second and is denoted by T .
It is used to check whether a user has broadcasted any hash that has been
generated before the hash generation period started or after it has expired.
If such fraud has occurred, then the hash can be discarded, if its T field value
does not lie within the 2 minutes of the generation phase. The timestamp
for the start of the hash generation phase is updated every 10 minutes by
the system and is available publicly in the Bitcoin network. So fraudulent
activity concerning the starting timestamp for the hash generation phase is
not taken into account.

4. Bitcoin Address (Up) - The Bitcoin address Up is the 160-bit (20 bytes) hash
of the public portion of a public/private ECDSA key-pair. In our scheme,
we use the similar Bitcoin Address as originally proposed by Nakamoto [25].
A key-pair is generated for each address which will be used by the user for
mining and transaction purposes. The address helps to track the user, who
has the minimum hash value and grants him the right to form and append
the next block in the block chain. A more detailed description of this address
can be found in ‘Address’ page of Bitcoin Wiki [1].

5. Hash of Merkle Tree of verified transactions (Ht) - The user verifies all the
transactions, that occurred in the last 10 mins and are available in his pool.
He forms a Merkle tree [5] from the transactions that have been verified.
The 32 bytes root (Ht) of the Merkle tree is used for hash generation, since
the broadcasted hash (Ht) of the root of Merkle Tree is a proof that the user
has not changed any of the transactions that he verified during the hash
generation phase.

6. Nonce (R) - The user chooses a 4 bytes nonce R which will help him to
generate the hash. In the hash calculation, the 4 fields - Hp, T , Up and Ht

are fixed for a particular user at any time during hash generation, and hence
cannot be modified by the user to manipulate and generate different hashes.

Towards a More Democratic Mining in Bitcoins 195

So the user can only alter the value of R to generate various hashes, within
the hash generation period. He keeps a record of the hashes that he has
generated within this time period. He then broadcasts the minimum among
the generated hashes to the network after the hash generation period expires
and hopes his generated hash turns out to be the minimum among all the
hashes submitted by the active users in the Bitcoin network. Thus in this
proposed scheme, the minimum hash generation is purely based on luck .

7. Padding (P) - It involves addition of some extra bits at the end of the input
concatenated string, in order to make it 128 bytes and then it can be divided
into two blocks of 64 bytes each.
The total length TL of concatenation fields is given by:

TL = 4 (V) + 32 (Hp) + 32 (T) + 4 (Up) + 20 (Ht) + 4 (R) = 96 bytes. (1)

Thus, the number of bytes required for padding is:

P = 128− 96 = 32 bytes. (2)

The hash H is a 32 bytes SHA-256 hash of the 128 bytes string containing the
concatenation of the above fields. In our scheme, we use the similar hash function
as originally proposed by Nakamoto [25] [3]. The equation can be stated as:

H = SHA(SHA(V ||Hp||T ||Up||Ht||R||P)). (3)

Hash Message: Each individual miner will generate a hash message M which
will contain two parts - block header and hashH . The hash will be compared and
the block header can be used for the verification of the hash. Each miner/node
will generate his own message during the generation phase and broadcast it to
the network.

For completeness and ease of reference, we provide the algorithm [26] here in
our notation. Let, Ni denotes a variable which represents the ith node in the
network. The value of i varies from 1 to the total number of nodes connected
in the network. E.g. N1 denotes the first node and so on. Ni contains two fields
Mmin and STATE. Mmin contains the message with the minimum hash value.
Mmin may be generated by the current node Ni or it may have been received
by the node from its neighbors. STATE field shows the current state of the
node. The state can vary between AVAILABLE, ACTIVE, PROCESSING or
SATURATED. Initially all the nodes are AVAILABLE. They become ACTIVE
when they successfully generate a hash at the end of the hash generation phase,
and storing that hash in their Mmin field by calling the ‘Initialize(M)’ function,
where M denotes the hash message generated by the node. All the nodes simul-
taneously call the Initialize() function with their own hash messages as shown in
Algorithm 1. Hence, at the end of the generation phase, each node is in ACTIVE
state and its Mmin field contains the hash message generated by it.

Once the Hash Generation phase is over and each node is ready with its
message M , the next 8 minutes is used for

196 G. Paul, P. Sarkar, and S. Mukherjee

Procedure Initialize (Hash Message M);
for all Nodes in the network do

Ni.Mmin = M, where Mmin is the minimum hash message at each node;
Ni.STATE = ACTIVE;

end for

Algorithm 1. Hash Message Generation Phase at each node in the network

– broadcasting the messages containing the hashes,
– finding the minimum hash amongst all,
– verifying the minimum hash selected,
– detecting dishonest behaviors in the system which involves checking the

Timestamp (T) value of the generated hashes.
– granting the mining rights of the next block to the rightful user, who gener-

ated the minimum hash.

Phase 2: Hash Broadcast Phase. After the hash has been generated, it is
broadcasted to all the active nodes in the network. Now among those hashes,
the minimum needs to be found out in the distributed environment. We propose
to use a modified version of the distributed algorithm [26] for finding out the
minimum.

In the hash broadcast phase, the hash value at each node would be broadcasted
out and the minimum hash message value would be found out in the system.
Each active leaf starts the broadcasting stage by calling LeafSending() function
and sending its Mmin value to its only neighbor, referred now as its ‘parent’, and
becomes PROCESSING (Note: messages will start arriving within finite time to
the internal nodes). The internal node calls the Receiving Active(M) function
on receiving a message M from its neighbors. It calls Process Message(M) to
compute the minimum among the current minimum hash value it is holding
and the one that it has received and stored it in Mmin. It waits until it has
received a message M from all its neighbors but one, and then sends its Mmin

message to that neighbor that will now be considered as its ‘parent’ and becomes
PROCESSING. If a PROCESSING node receives a message from its parent, it
calls Receiving Processing(M) function and becomes SATURATED. Algorithm
2 describes the above procedure.

The algorithm implies that (Lemma 2.6.1 in [26]) exactly two PROCESSING
nodes will become SATURATED; furthermore, these two nodes are neighbors
and are each others’ parent. All the other nodes will be in the PROCESSING
state. They will start the hash verification stage by making their minimum hash
message public. If there has been any discrepancy in hash broadcasting by dis-
honest nodes, then it will be resolved in hash verification stage. Other nodes will
understand that the hash verification stage has started when they will see that
one message has been publicly broadcasted. We present the hash comparison
method that has been used in this phase.

Towards a More Democratic Mining in Bitcoins 197

——————ACTIVE———————-

Procedure LeafSending()
for all Active Leaf Nodes in the network do

parent ⇐ Neighbors;
send Ni.Mmin to parent;
Ni.STATE = PROCESSING;

end for

Procedure Receiving Active(M)
for all Active Internal Nodes in the network do

Ni.Mmin = Process Message(M);
Neighbors:= Neighbors - sender;
if number of Neighbors = 1 then

parent ⇐ Neighbors;
send Ni.Mmin to parent;
Ni.STATE = PROCESSING;

end if
end for

——————PROCESSING———————-

Procedure Receiving Processing(M)
for all Processing Nodes in the network do

Ni.STATE = SATURATED;
Ni.Mmin = Process Message(M);
Announce M ;
Start Verification stage;

end for

————————————————–

Procedure Process Message(M)
for all Nodes in the network do

if Ni.Mmin.H < M .H then
return Ni.Mmin;

else
return M ;

end if
end for

Algorithm 2. Distributed Algorithm for computing minimum hash value

198 G. Paul, P. Sarkar, and S. Mukherjee

Hash Comparison: Two hashes are compared from the most significant bit
(MSB) to the least significant bit (LSB). They are compared from left to right
until one bit differs among them. The one with the lower changed bit is the
smaller hash. If two hashes are of same value then the header message containing
the lower Timestamp will be considered the minimum one. Let us consider an
example. Here we have two 32-bytes hashes H1 and H2 in hexadecimal format.
H1 : 1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64,
H2 : 1312afaf42fc31103f1fdc0151fa7471187349a4714df7cc11ea464e12dcd4e9.

The first 3 bytes (underlined) of both the hashes are same. But the 4th bytes
are different. The 4th byte (bold) of H2 is bigger in hexadecimal format, so H1

is considered as the smaller hash.
H1 : 1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64,
H2 : 1312afaf42fc31103f1fdc0151fa7471187349a4714df7cc11ea464e12dcd4e9.
We have H1 < H2, since 17 < af .

Phase 3: Hash Verification Phase. It is possible that the true minimum
hash might not have been broadcasted properly by dishonest nodes and hence a
hash value, bigger than the true minimum value is chosen at the end of the hash
broadcast phase. Thus, the hash verification stage is required to verify, and if
necessary, find the true minimum hash of the system. The message that has been
publicly broadcasted by the two saturated nodes will be verified by the others
nodes. If any node has a hash value lesser than the hash of that broadcasted
message, then he can claim for his hash. His message will also be verified by the
other nodes. If the new minimum hash value message is found to be legitimate,
then its corresponding user will be the winner of the block. If the hash broadcast
and verification stage is completed in less than 8 minutes then the miner will
form the block and the system will wait for the 8 minutes period to expire until
it can again allow the mining of a new block. The T value will check that miners
cannot mine during this extra period, to prevent any unnecessary advantage.

Block formation: The user who has been identified as the generator of
the minimum hash will form the block. He will incorporate the transactions
in the block and the block header into the block chain. The user being the miner
of the block will also initiate a coinbase transaction in the block in order to
generate new Bitcoins and award himself with those coins as well as with the
transaction fees from each verified transaction.

4.3 Message Complexity

The total number of active nodes that are participating in the mining process
is denoted by n. We utilized the saturation stage broadcasting [26] for our min-
imum hash finding. During the hash broadcast phase, exactly one message is
transmitted on each edge, except the two saturated nodes (from equation 2.24
of [26]). The two saturated nodes exchange two messages. So the total number
of messages transmitted are:

n− 1 + 1 = n. (4)

Towards a More Democratic Mining in Bitcoins 199

Thus, the message complexity of the scheme is O(n). The time frame of 8 minutes
of hash broadcasting can be easily increased by allowing the Bitcoin system to
change the time frame. Increasing the time frame will accommodate more users
to join in the mining process in the future and still allow generation of Bitcoins
at a fixed rate.

4.4 Security Issues

In this section, we discuss salient security features of our scheme.
The node with the highest computing power in the system does not gain any

advantage on other nodes for generating the lowest hash of the system. Each node
is unaware of the hash generated by the other active nodes in the system. The
value of the timestamp changes every second, so the nodes cannot manipulate
the result of the hash after 2 minutes by only manipulating the nonce. If two
nodes generate the same lowest hash, then the node whose timestamp value is
less will win, i.e., the node who generated the lowest hash first will win. Thus,
nodes with larger computing power can generate more hashes in those 2 minutes
but it does not guarantee their win.

The verification of the hashes is performed using the original Bitcoin proce-
dure of verifying newly mined blocks. Even if the true minimum hash of the
system may not be transmitted by the dishonest nodes during broadcasting, it
can be claimed and then verified by the peer nodes during the hash verification
stage. The dishonest nodes may dominate the system, but during verification,
the hash and the block header is made public. A hash will be discarded only if
the hash value does not match with the hash of the header fields or it is bigger
than some other hash, which has been verified. So evil nodes cannot affect the
verification stage.

5 Comparison with Proof-of-Work Protocol and Its
Existing Alternatives

In this section, we try to draw a comparison between the original PoW scheme
and our proposed scheme on the basis of certain factors:

– Message Complexity of the scheme,
– Primary Concern of the scheme,
– Possibility of the 51% Majority Attack,
– Hash Rate (per miner),
– Competition among miners to generate a new block,
– Time to generate.

We also try to compare our existing scheme with proof-of-stake protocol that
has been implemented in new type of Cryptocurrency known as PeerCoin [29].
The comparison has been shown in Table 4.

From the comparison shown in the table, the superiority of our scheme lies
in the fact that it defends well against the 51% Majority Attack, which is cur-
rently the primary concern among the Bitcoin community. It also provides a fair

200 G. Paul, P. Sarkar, and S. Mukherjee

Table 4. Comparison between Proof-of-Work, Proof-of-Stake and Our Scheme

Message Com-
plexity

Main Con-
cern

51%
Attack
Pos-
sible
?

Hash
Rate
(per
miner)

CompetitionTime
to gen-
erate

Proof
of
Work

Only one miner is
chosen as winner.
So low message
complexity

Large Com-
putations
required

Yes Very
Large

Unfair compe-
tition among
miners

Variable
time

Proof
of
Stake

Every miner in-
volved (having
stakes) in exchang-
ing messages. High
message complexity

Initial dis-
tribution of
stakes

Yes Large Unfair compe-
tition among
stake holders

Variable
time

Our
Scheme

Every miner in-
volved in exchang-
ing messages. High
message complexity

Flooding of
messages in
system

No Small Fair, compe-
tition purely
based on luck

10 mins

competition among the miners, since the generation of block in this scheme is
purely based on luck. It will not matter if some miner or some mining pool has
machines with very high computation power capable of solving large problems
within a few seconds. All that matters, is the generation of the minimum hash
in the network among all miners. No miner would know what hash value other
miners are generating. Even if they try to modify their generated hash value by
observing the hash values broadcasted in the network, they would eventually get
caught due to the presence of the Timestamp field in the block header. Since
they would be considered to be fraud by generating a hash value beyond the
Hash generation phase. Thus this scheme is purely based on luck and proves its
effectiveness against the primary weakness of PoW protocol.

6 Towards Greener Bitcoins

The PoW protocol uses ASIC machines for mining and hence consumes a lot
of energy during the process. Here we show that our scheme reduces the energy
consumption by at least 5 times than that of the PoW protocol, using the same
ASIC machines. Table 5 from Bitcoin Wiki [2] shows the hash power and energy
usage of the machines. The PoW protocol requires these machines to meet the
target, else generation would require more than 10 minutes. Also we have shown
earlier in Figure 3 that the difficulty level is rising gradually, thus increasing the
hashing power requirement.

Let us give an approximate calculation of the energy usage by these ASIC ma-
chines. We are stating an example of the average energy usage by these machines
from one of the reputed sources of Bitcoin news [19]. The Bitcoin network has an

Towards a More Democratic Mining in Bitcoins 201

Table 5. Bitcoin Mining Hardware Comparison (from [2])

ASIC Unit Hash Power
(GH/s)

Energy Us-
age (kW)

W / GH Unit
Price

Cointerra TerraMiner
IV

2000 2200 1.10000 $5,999

KnC Neptune 3000 2200 0.73333 $9,995

Hashcoins Zeus 3500 2400 0.68571 $10,999

Extolabs EX1 3600 1900 0.52778 $9,499

Minerscube 15000 2475 0.16500 $9,225

average hash-rate of 110 million GH/s. The average energy efficiency has been
assumed to be 0.7333 W/GH. The network needs 0.7333 x 110 million Watts =
80,666 kW per hour. This equates to 80,666 kW x 24 hrs/day x 365.25 days/year
= 707,120,500 kWh/year.

Thus the PoW protocol requires, on an average, 2.54 million GJ/year. Our pro-
tocol generates hashes for 2 minutes in an interval of 10 minutes. So only one-fifth
of the total time is required for hashing. Assuming the same network hash-rate
of 110 million, the network needs 80,666/5 = 16,133 kW. Our scheme consumes
energy of the order of 16,133 kW x 24hrs/day x 365.25 days/year = 141,423,631
kWh/year= 0.508 million GJ/year. Since the scheme is totally uniform for differ-
ent miners and does not require to meet any computation-intensive target, it can
use lower hash rate machines for coin generation which will further reduce energy
consumption. Thus, it is a greener approach than PoW.

7 Conclusion

In this paper, we have analyzed the major weaknesses of the existing Proof-
of-Work protocol of Bitcoins and proposed an alternative solution. Thus in the
proposed scheme, having a large computing power doesn’t essentially mean that
the user has an upper hand in generating the next block. The block generation
is now purely based on luck, where the miner having the minimum hash value
in the system during a span of 10 minutes, would be declared as winner. The
effective use of Timestamp during the hash generation phase, where only a couple
of minutes are allowed for hash generation, is shown to eliminate the chances
of any fraudulent activities in the system. It has removed the difficulty target
which will allow the miners to generate new Bitcoins using less computing power
thus mining in a more environment friendly way. This new scheme generates the
coins at a fixed rate, which has not been addressed by any other methods, even
though it is one of the fundamental requirements for the Bitcoin system.

Acknowledgments. We thank the anonymous reviewers whose feedback helped
in improvement of the technical as well as the editorial quality of our paper. We
are also grateful to the Project CoEC (Centre of Excellence in Cryptology),
Indian Statistical Institute, Kolkata, funded by the Government of India, for
partial support towards this project.

202 G. Paul, P. Sarkar, and S. Mukherjee

References

1. Bitcoin–Wiki. Address, https://en.bitcoin.it/wiki/Address
2. Bitcoin–Wiki. Bitcoin Wikipedia, https://en.bitcoin.it/wiki/Main_Page
3. Bitcoin–Wiki. Block hashing algorithm,

https://en.bitcoin.it/wiki/Block_hashing_algorithm

4. Bitcoin–Wiki. ECDSA,
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm

5. Bitcoin–Wiki. Merkle Tree,
https://en.bitcoin.it/wiki/Protocol_specification#Merkle_Trees

6. Bitcoin–Wiki. Network, https://en.bitcoin.it/wiki/Network
7. Bitcoin–Wiki. Proof of Burn, https://en.bitcoin.it/wiki/Proof_of_burn
8. Bitcoin–Wiki. Proof of Work Protocol,

https://en.bitcoin.it/wiki/Proof_of_work

9. Bitcoin–Wiki. Protocol specification,
https://en.bitcoin.it/wiki/Protocol_specification

10. Bitcoin Magazine. Government bans Professor mining bitcoin supercomputer,
http://bitcoinmagazine.com/13774/government-bans-professor-

mining-bitcoin-supercomputer/

11. Bitcoin Talk. Proof of stake instead of proof of work,
https://bitcointalk.org/index.php?topic=27787.0

12. Bitcoinx. Mining pool giant GHash.io reaches 50% of bitcoin hashing power,
http://www.bitcoinx.com/mining-pool-giant-ghash-io-reaches-

50-of-bitcoin-hashing-power/

13. Blockchain. Average Transaction Confirmation Time,
http://blockchain.info/charts/avg-confirmation-time?timespan=

2year&showDataPoints=false&daysAverageString=1&show header=

true&scale=0&address=

14. Blockchain. Blocks, https://en.bitcoin.it/wiki/Block
15. Blockchain. Difficulty,

http://blockchain.info/charts/difficulty?timespan=1year&showDataPoints

=false&daysAverageString=1&show header=true&scale=0&address=

16. Blockchain. Hash Rate,
http://blockchain.info/charts/hash-rate?timespan=1year&showDataPoints=

false&daysAverageString=1&show header=true&scale=0&address=

17. Blockchain. Transactions, https://en.bitcoin.it/wiki/Transaction
18. Business Insider. Today, Bitcoin’s Doomsday Scenario Arrived,

http://www.businessinsider.in/Today-Bitcoins-Doomsday-Scenario-

Arrived/articleshow/36516972.cms#ixzz34amw9VI2

19. CoinDesk. Under the Microscope: Economic and Environmental Costs of Bitcoin
Mining,
http://www.coindesk.com/microscope-economic-environmental-costs-

bitcoin-mining/

20. Eyal, Ittay and Sirer, Emin Gün Sirer. Majority is not enough: Bitcoin mining is
vulnerable. CoRR, abs/1311.0243 (2013)

21. Forbes. Brilliant But Evil: Gaming Company Fined $1 Million For Secretly Using
Players’ Computers To Mine Bitcoin.
http://www.forbes.com/sites/kashmirhill/2013/11/19/brilliant-but-evil-

gaming-company-turned-players-computers-into-unwitting-bitcoin-

mining-slaves/

https://en.bitcoin.it/wiki/Address
https://en.bitcoin.it/wiki/Main_Page
https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Protocol_specification#Merkle_Trees
https://en.bitcoin.it/wiki/Network
https://en.bitcoin.it/wiki/Proof_of_burn
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Protocol_specification
http://bitcoinmagazine.com/13774/government-bans-professor-mining-bitcoin-supercomputer/
http://bitcoinmagazine.com/13774/government-bans-professor-mining-bitcoin-supercomputer/
https://bitcointalk.org/index.php?topic=27787.0
http://www.bitcoinx.com/mining-pool-giant-ghash-io-reaches-50-of-bitcoin-hashing-power/
http://www.bitcoinx.com/mining-pool-giant-ghash-io-reaches-50-of-bitcoin-hashing-power/
http://blockchain.info/charts/avg-confirmation-time?timespan=2year&showDataPoints=false&daysAverageString=1&show_header=true&scale=0&address=
http://blockchain.info/charts/avg-confirmation-time?timespan=2year&showDataPoints=false&daysAverageString=1&show_header=true&scale=0&address=
http://blockchain.info/charts/avg-confirmation-time?timespan=2year&showDataPoints=false&daysAverageString=1&show_header=true&scale=0&address=
https://en.bitcoin.it/wiki/Block
http://blockchain.info/charts/difficulty?timespan=1year&showDataPoints=false&daysAverageString=1&show_header=true&scale=0&address=
http://blockchain.info/charts/difficulty?timespan=1year&showDataPoints=false&daysAverageString=1&show_header=true&scale=0&address=
http://blockchain.info/charts/hash-rate?timespan=1year&showDataPoints=false&daysAverageString=1&show_header=true&scale=0&address=
http://blockchain.info/charts/hash-rate?timespan=1year&showDataPoints=false&daysAverageString=1&show_header=true&scale=0&address=
https://en.bitcoin.it/wiki/Transaction
http://www.businessinsider.in/Today-Bitcoins-Doomsday-Scenario-Arrived/articleshow/36516972.cms#ixzz34amw9VI2
http://www.businessinsider.in/Today-Bitcoins-Doomsday-Scenario-Arrived/articleshow/36516972.cms#ixzz34amw9VI2
http://www.coindesk.com/microscope-economic-environmental-costs-bitcoin-mining/
http://www.coindesk.com/microscope-economic-environmental-costs-bitcoin-mining/
http://www.forbes.com/sites/kashmirhill/2013/11/19/brilliant-but-evil-gaming-company-turned-players-computers-into-unwitting-bitcoin-mining-slaves/
http://www.forbes.com/sites/kashmirhill/2013/11/19/brilliant-but-evil-gaming-company-turned-players-computers-into-unwitting-bitcoin-mining-slaves/
http://www.forbes.com/sites/kashmirhill/2013/11/19/brilliant-but-evil-gaming-company-turned-players-computers-into-unwitting-bitcoin-mining-slaves/

Towards a More Democratic Mining in Bitcoins 203

22. Frequently Asked Questions. Transactions,
https://bitcoin.org/en/faq#why-do-i-have-to-wait-10-minutes.

23. Gizmodo. The World’s Most Powerful Computer Network Is Being Wasted on
Bitcoin, http://gizmodo.com/the-worlds-most-powerful-computer-network-

is-being-was-504503726

24. Learn Cryptography. 51% Attack, http://learncryptography.com/51-attack/
25. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (May 2009)
26. Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley Series on Par-

allel and Distributed Computing, pp. 71–76. Wiley Interscience (2006)
27. The Guardian. Student uses university computers to mine Dogecoin,

http://www.theguardian.com/technology/2014/mar/04/dogecoin-bitcoin-

imperial-college-student-mine

28. The Harvard Crimson. Harvard Research Computing Resources Misused for Do-
gecoin Mining Operation,
http://www.thecrimson.com/article/2014/2/20/harvard-odyssey-dogecoin/

29. Wikipedia. Proof-of-stake — Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Proof-of-stake&

oldid=615023202

https://bitcoin.org/en/faq#why-do-i-have-to-wait-10-minutes
http://gizmodo.com/the-worlds-most-powerful-computer-network-is-being-was-504503726
http://gizmodo.com/the-worlds-most-powerful-computer-network-is-being-was-504503726
http://learncryptography.com/51-attack/
http://www.theguardian.com/technology/2014/mar/04/dogecoin-bitcoin-imperial-college-student-mine
http://www.theguardian.com/technology/2014/mar/04/dogecoin-bitcoin-imperial-college-student-mine
http://www.thecrimson.com/article/2014/2/20/harvard-odyssey-dogecoin/
http://en.wikipedia.org/w/index.php?title=Proof-of-stake&oldid=615023202
http://en.wikipedia.org/w/index.php?title=Proof-of-stake&oldid=615023202

Authentication Schemes - Comparison

and Effective Password Spaces

Peter Mayer1, Melanie Volkamer1, and Michaela Kauer2

1 Center for Advanced Security Research Darmstadt,
Technische Universität Darmstadt, Germany

2 Institute of Ergonomics, Technische Universität Darmstadt, Germany

Abstract. Text passwords are ubiquitous in authentication. Despite
this ubiquity, they have been the target of much criticism. One al-
ternative to the pure recall text passwords are graphical authentica-
tion schemes. The different proposed schemes harness the vast visual
memory of the human brain and exploit cued-recall as well as recogni-
tion in addition to pure recall. While graphical authentication in gen-
eral is promising, basic research is required to better understand which
schemes are most appropriate for which scenario (incl. security model
and frequency of usage). This paper presents a comparative study in
which all schemes are configured to the same effective password space
(as used by large Internet companies). The experiment includes both,
cued-recall-based and recognition-based schemes. The results demon-
strate that recognition-based schemes have the upper hand in terms of
effectiveness and cued-recall-based schemes in terms of efficiency. Thus,
depending on the scenario one or the other approach is more appropri-
ate. Both types of schemes have lower reset rates than text passwords
which might be of interest in scenarios with limited support capacities.

Keywords: Usable Security, Authentication, Graphical Passwords.

1 Introduction

Text passwords are the most common means of authentication. Despite this
ubiquity, they have been the target of much criticism. User-created passwords
are highly predictable. Most users compose their passwords solely of lower case
characters, use simple dictionary words or put numbers and special characters at
easy foreseeable places [16,28]. Furthermore, users have on average 25 accounts,
but only seven passwords [16,19]. This password reuse raises serious concerns
when considering that many websites transmit and store passwords in the clear
instead of encrypted and cryptographically hashed [3]. Password managers are
in many cases also no solution: They introduce a single point of failure; the
security of password managers depends on the strength of the master password;
and there are portability issues.

These deficits of text passwords motivated many researches to find alterna-
tives. One alternative is graphical authentication. Like text passwords, graphical

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 204–225, 2014.
c© Springer International Publishing Switzerland 2014

Authentication Schemes - Comparison and Effective Password Spaces 205

authentication schemes are knowledge-based. Their primary goal is to exploit the
vast visual memory of the human brain. Visual memory is superior to memory
of abstract information such as text [23]. Many different graphical authentica-
tion schemes have been proposed and studies have been conducted to assess
their security and usability (e.g. [6,8,35]). While graphical authentication is in
general promising there are also drawbacks like efficiency when authenticating.
Therefore, it is important to understand how different schemes perform wrt. to
usability (including efficiency, effectiveness, satisfaction but also memorability)
and security in comparison to each other. Most past studies only provide in-
formation in comparison to text passwords; and as the experimental settings
differ from study to study, this data cannot be used to compare the different
schemes and approaches to each other. The authors of prior comparative stud-
ies either studied only cued-recall-based or recognition base schemes. Also, to
our knowledge, most studies base their configurations of the graphical authen-
tication schemes on the theoretical password space. This is a severe limitation
of such studies and renders a comparison an impossible task, because alterna-
tive schemes that force or persuade users to choose more secure (and therefore
potentially less memorable) passwords are compared side by side with schemes
that let the users choose their passwords freely (and therefore potentially very
insecurely).

Therefore, more basic research is necessary to enable the comparison and to
support decision makers in selecting the most appropriate authentication scheme
for their scenario. In this paper we present the first usability study of multiple
graphical authentication schemes and text passwords that uses the most recent
literature available on the effective password space of the tested schemes as
baseline for the security configuration. Furthermore, this study is among the first
to compare schemes based on recognition and schemes based on cued-recall in
the same experimental setting. The selected graphical schemes are: PassPoints,
PCCP, Faces and Things. Participants were asked to login five times over a
period of 42 days. 337 participants took part. The evaluated usability measures
are derived from the measures used in prior literature and therefore allow a
comparison to existing research. The results of the experiment are:

– Usability-wise: The results demonstrate that recognition-based schemes have
the upper hand in terms of effectiveness and cued-recall-based schemes in
terms of efficiency. We also show that with only one exception the graphical
schemes in our study have significantly lower reset rates than text passwords.
In addition, we found evidence that male participants like the graphical
schemes better after longer times of usage, while female participants find
text passwords easier to use. Yet, female participants are more willing to use
graphical password schemes than male participants.

– Security-wise: The analysis of the actual password space shows how difficult
the prediction of effective password spaces is and that further research is
necessary to better judge on the security level of some schemes. The estimates
from our study can serve as baseline for configurations in future studies.

206 P. Mayer, M. Volkamer, and M. Kauer

– Comparison to prior studies: Our study provides evidence that no significant
quantitative difference between the performance of male and female partici-
pants exist, as the results of prior studies could not be replicated. However,
significant differences in the attitude towards the schemes exist.

2 The Password Space

The password space of an authentication scheme is the set of all passwords and
therefore closely related to the guessing resistance of the scheme. The larger the
password space, the more guesses (on average) are necessary to find the right
password. However, it is important to distinguish between the theoretical and
the effective password space. While the theoretical password space includes all
possibly selectable passwords for a scheme, the effective password space com-
prises only the subset of passwords which are likely to be actually chosen. Often
the effective and theoretical password spaces are different. The only definitive
exception in this regard are system assigned random passwords. Yet, these are
not applicable in many scenarios as such passwords are usually more difficult
to remember. Assessing the effective password space can be difficult, because a
sufficiently large sample of passwords is needed to derive any meaningful infor-
mation on frequently appearing values [21].

Multiple metrics have been proposed to compare and predict the password
spaces of different schemes. The measure most often used to assess the size of
the effective password space is the Shannon entropy of recorded password sam-
ples [28]. It is also the basis for the recommendations in the NIST Electronic
Authentication Guideline and has been used in research of text passwords (e.g.
[22,28]) as well as graphical passwords (e.g. [9]). However, it has been found,
that neither the NIST estimates nor Shannon entropy provide truely reliable
estimates and represent more a “rule of thumb” than an accurate metric, espe-
cially since sample sizes in typical usability studies are far smaller than what
would be desirable [21,33]. Kelley et al. [21] proposed guess-number calculator
and Bonneau [2] proposed α-guesswork as more robust and reliable metrics, but
for none of these two empirical values for graphical passwords are available. Thus,
in the the absence of viable alternatives, Shannon entropy is used as measure to
configure the schemes in this study.

3 Graphical Passwords

Like text passwords, graphical passwords are knowledge-based authentication.
Today’s research distinguishes between three types of graphical password
schemes, named after the way they strain the users’ memory: purely recall-based
schemes, cued-recall-based schemes, and recognition-based schemes. We decided
against including purely recall-based schemes like Draw-A-Secret (DAS) [20] in
our study, since such schemes have been shown to be insecure [24]. In the fol-
lowing we briefly describe the cued-recall-based and recognition-based schemes
we included in the study.

Authentication Schemes - Comparison and Effective Password Spaces 207

(a) PassPoints and PCCP (b) Faces (c) Things

Fig. 1. The interfaces of PassPoints and PCCP (marker of the click point not visible
during normal operation), Faces, and Things

3.1 Cued-Recall-Based Schemes

Graphical authentication schemes based on cued-recall use the graphical ele-
ments as cues to support the users’ recall. Wiedenbeck et al. proposed PassPoints
[35] whose basic working principle is the definition of click-points on an image.
The image only serves as a cue for the user, the actual password is composed
of the coordinates of the click-points. During authentication, the same image as
during enrollment is displayed and the user has to select her/his click-points in
the right order. Even with the image as cue, perfect cursor positioning cannot be
expected from the user. Therefore, a tolerance margin around each click-point
compensates small imprecisions by the user.

To avoid click-point patterns in PassPoints, Chiasson et al. proposed an im-
provement called Cued Click-Points (CCP) [4]. Instead of multiple click-points
on one image, in CCP users create multiple click-points, each on a different im-
age. During authentication one image is shown after the other and depending on
where on the image the user clicks, either the correct next image of her/his pass-
word is shown (when the right click-point was selected) or an image for which
s/he has not created a click-point before (when the input was incorrect). In the
latter case, authentication has to be finished regardless, but the legitimate user
can detect her/his error. To counter so called hot-spots (points that have been
noticed to be chosen significantly more often than other click-points), Chiasson
et al. proposed Persuasive Cued Click-Points (PCCP) [4]. In the authentication
phase, they employ persuasive technology by means of an additional viewport
during enrollment. While the system offers the possibility to shuffle the viewport,
the authors found that the number of hot-spots is significantly reduced and the
distribution of click-points in PCCP does not significantly differ from a random
distribution [4]. PassPoints and PCCP have an extensive coverage in research
literature enabling estimates for the effective password space. Therefore, the two
schemes were selected for the usability study. Figure 1(a) shows the interface of
the two schemes.

208 P. Mayer, M. Volkamer, and M. Kauer

3.2 Recognition-Based Schemes

In recognition-based authentication schemes users need only to recognize their
password among a variety of choices, which substantially decreases the required
mental effort. Passfaces is the most popular recognition-based scheme [26] and is
commercially available. During enrollment, the system assigns the users several
facial images as their passwords. During authentication, as many grids of facial
images as there are faces in the user’s password are displayed one after another.
In each grid, the user has to identify the image belonging to her/his password.
Thus the whole authentication consists of multiple rounds, one for each face in
the password.

The same technique as used in Faces was also attempted with objects other
than faces [11,18]. Due to its strong coverage in the literature we included a
Passfaces-like scheme in the study, which is subsequently referred to as Faces
(see Fig. 1(b)); as well as a scheme using objects, which is subsequently referred
to as Things (see Fig. 1(c)).

4 Related Work

In the following we briefly discuss selected related work. Chiasson et al. present in
[4] a comparison of the three graphical cued-recall-based authentication schemes
PCCP, CCP and PassPoints. They cover usability and security aspects with
results from eight user studies. Their results indicate no significant differences
in success rates between the three schemes. The timings they recorded are 6-8
seconds for PassPoints and 8-15 seconds for PCCP. The configurations in all
studies are based on the theoretical password space.

Hlywa et al. present a comparison of multiple Passfaces-like recognition-based
graphical authentication schemes in two web-studies [18] in which recognition-
based schemes are configured to password-level security. The schemes used in the
study of Hlywa et al. differ only in the type of images. One scheme used faces
(similarly to Faces), one scheme used everyday objects (similarly to Things) and
one scheme used houses. Both of their studies used configurations similar, but
not identical, to those in our experiment. One study used 4 by 4 grids, but
instead of a password length of 7 rounds Hlywa et al. used 5. Their other study
used a different approach to the grid size, but was configured to use the same
password space, namely 228. In both studies system-assigned passwords were
used. They report significantly faster login times for their objects participants
than for their faces participants in both studies.

Stobert and Biddle compared in [29] the performance of text passwords as
well as recall-based and recognition-based graphical passwords. Their results
indicate, that recognition-based passwords had a higher memorability, but their
usability was limited by longer login times. Our methodology differs from the one
employed by Stobert and Biddle in two key aspects. Firstly, we consider already
proposed schemes (some of them used in the wild), while Stobert and Biddle
specifically designed a new scheme to compare the different types of memory

Authentication Schemes - Comparison and Effective Password Spaces 209

Table 1. Configurations (Hexp = expected Shannon entropy in bits)

Scheme Configuration Hexp

Text 8 characters length, policy based on basic8survey [22] ∼ 27.19
PassPoints 4 click-points, 600x400 px resolution of image, 9x9 px tolerance

margin [9]
� 26

PCCP 3 click-points, 570x380 px resolution of images, 19x19 px toler-
ance margin

∼ 27.7

Faces 7 grids of 16 images each, facial images ∼28
Things 7 grids of 16 images each, object images, semantically grouped ∼28

retrieval. Secondly, we base the security configurations of the schemes we use on
the effective password space, rather than the theoretical password space.

Schaub et al. analysed and described the design space for graphical pass-
words on smartphones [27]. To test their design metric, they conducted a non-
longitudinal lab-based user study with five different graphical password schemes
and PINs. Their schemes’ configurations are based on the theoretical password
space rather than the effective password space. Also, their usability metrics use
different definitions. Therefore, the comparability to this study is very limited.

5 Configuration of the Schemes

For the configuration of the schemes we decided to focus solely on the effec-
tive password space. Other attacks such as spyware, shoulder surfing and social
engineering, (e.g. mentioned by [31]) were not considered in our study.

Most major websites use password policies resulting in a minimum of about
20 to 28 bits of entropy (or password spaces of 220 to 228 respectively) [17]. Thus,
configuring the authentication schemes’ effective password spaces to lie within
these two values is a close approximation to a lower bound to what would actually
be seen in the wild. However, we wanted to narrow down the range for our study.
To do so, we analysed Komanduri et al. research on password policies for text
passwords and their resulting effective password spaces [22]. They present only
one policy whose effective password space lies between 20 and 28 bits of entropy,
namely their basic8survey policy, for which they report an entropy of 27.19 bits.
Therefore, we decided to use this value as baseline and configure the password
spaces of all schemes to lie between 227 and 228 or as closely to that target as
possible. Table 1 lists all schemes with their configurations. A justification for
each scheme is given below in the respective subsections.

5.1 Text Password

The basic8survey policy of Komanduri et al. only states “Password must have at
least 8 characters” and does not offer any scenario to the participants [22]. For
this policy they reported 27.19 bits of entropy. We used this policy as starting

210 P. Mayer, M. Volkamer, and M. Kauer

point. We slightly modified it due to some design considerations: Most impor-
tantly we made the policy look more like as if it could be from one of the major
websites investigated in [17] and additionally enforced a fixed length of 8 charac-
ters. Our password policy was included in the introductory text for the scheme
and stated the following rules:

1. The passwords are case sensitive. For instance, ”EXAMPLE” and ”Exam-
ple” are two different passwords. When choosing a password, remember the
capitalization you use.

2. The password must be exactly 8 characters long.
3. Try to not use passwords that are easy to guess, for example ”password”.
4. Even though it is not a requirement, try to add a number or special character

to your password.
5. Choose a new password, that you are not using for any other service.

The first statement is merely a further explanation of the scheme and not a
policy rule, it is often found in policies on the Internet. The first actual policy
rule regards the password length and is taken from Komanduri et al. [22], but
was changed to a fixed length of eight characters. This was done as all graphical
schemes can only be configured in such a restricted way. Rules 3 and 4 were
added as incentive for the participants to not create ”just study passwords”
whose main purpose was to be not forgotten. This decision was made in con-
junction with the decision to include priming in the study methodology. The
last rule was intended to motivate the participants to deal with a new password
throughout the study, just as the participants of the other groups would have
to. Additionally, the system enforced to choose passwords not mentioned in the
policy (e.g. ”password” as mentioned in the third rule could not be chosen).

5.2 Cued-Recall-Based Schemes

The alphabet A of the cued-recall-based schemes is the number of distinct click-
points on the image. This number is determined by the size of the image divided
by the tolerance margin. The theoretical password space P can be calculated
from the number of click-points c required by the system: P = |A|c.
PassPoints. The empirical entropy estimates of Dirik et al. in [9] seem to be
the only findings for PassPoints passwords allowing an estimation of the effective
password space. Therefore, we decided to adopt their PassPoints configuration
and use an image with a resolution of 400x600 px. However, we follow prior
studies, which argue to use 9 px for the tolerance margin instead of 10 px as
an uneven number can be centered around one pixel while it is is unclear how
this should be done for an even margin [4]. Regarding the image, we decided to
use the people image used by Dirik et al. as the sole image for our PassPoints
implementation, as it scored best in their evaluation. They report an observed
entropy of 6.5 bits for a click-point on that image. The authors remark that
these values are only valid for multiple click-points if independence between
the click-points in the password is assumed and that the actual entropy should

Authentication Schemes - Comparison and Effective Password Spaces 211

be assumed to be lower. Seemingly no data on the magnitude of dependence
between click-points in PassPoints passwords is available in published literature.
Therefore, we decided to use four click-points, as the resulting entropy value of
26 bits (password space of 226 respectively) is closer to the target than any other
number of click-points.

PCCP. According to Chiasson et al. the distribution of click-points in PCCP
does not significantly differ from a random distribution [5]. Therefore, it can be
assumed that the theoretical and the effective password space are approximately
identical. We decided to use three click-points on 570x380 px images with a 19
px tolerance margin for the PCCP implementation, which results in an expected
entropy of 27.7 bits and thus meets the entropy target. The tolerance margin
of 19 px was chosen, as this value achieved better usability ratings than viable
alternatives [34]. The image size was chosen as a multiple of the tolerance mar-
gin and determined in conjunction with the number of click-points to model the
target entropy values of 27 to 28 bits as good as possible. Priority was given to
image size, as it was shown that larger images lead to less clustering in PCCP
[30]. As the images used in previous studies by Chiasson et al. could not be made
available for our study due to copyright concerns, all images for the implementa-
tion were taken from the same source as the image for PassPoints. The viewport
size of 75 px was adopted from [5]. We decided to restrict user choice by omitting
the possibility to shuffle the viewport for the following reason: Chiasson et al.
report that most participants either do not shuffle at all or they shuffle a lot
in order to circumvent the persuasion mechanism. The latter case negates the
security advantage of PCCP over PassPoints.

5.3 Recognition-Based Schemes

Recognition-based schemes suffer from predictability issues if users are allowed
to choose their passwords themselves [7]. Consequently, commercial implementa-
tions assign random passwords to the users. Furthermore, to our knowledge, no
entropy estimates for the configurations of Things and Faces are available. Thus,
we decided to assign random passwords to the participants for both recognition-
based schemes as recommended by [10,13,18]. Then, the theoretical and effective
password space P from the alphabet A (comprised of the images in one grid)
and the number of required authentication rounds r is: P = |A|r . To reach the
entropy target of 27 to 28 bits, we decided to use a 4x4 grid and 7 rounds, i.e.
a password space of 167 = 228.

Faces. All images used were taken from the Face of Tomorrow project which
were also used by other studies regarding facial recognition in authentication
[13,18]. We ensured that all grids had images with similar backgrounds and that
faces used in one grid were of people from the same ethnicity.

Things. The Things scheme used semantically grouped images, following the
work of Weinshall and Kirkpatrick [32]. They found that pictures should not be
too similar to one another or users would start confusing them and consequently

212 P. Mayer, M. Volkamer, and M. Kauer

advise to select “pictures with a clear central subject or action and [. . .] differ-
ences within the group” [32]. Therefore, this criteria was applied to all images
gathered for the Things scheme. All images were informally reviewed to fulfill
this criteria by colleagues uninvolved in the selection.

6 User Study Methodology

Due to the high relevancy of web-authentication, it was decided to conduct an
online web-based study. Each participant had to complete five sessions over a
period of about 42 days. The intervals between the sessions prolonged, namely
they were: 1 day, 3 days, 7 days, 30 days. The first part of each session comprised
the interaction of the participants with their assigned authentication scheme: ei-
ther creation or authentication. Creation was divided into five phases: (1) the
participants entered their user name, (2) an introductory text was shown, (3)
the participants created their passwords or the system-assigned passwords were
generated, (4) participants could review their new passwords, and (5) a short
training to familiarize the participants with their new scheme and to confirm
the password. Authentication had two phases: first the participants entered their
user name, then they entered their password. A short questionnaire, investigat-
ing the participants’ impressions regarding the usability and security of their
assigned scheme, concluded each session. The participants had a 24 hour win-
dow to complete each session. Participants were informed of their sessions by
email and reminders were sent out if they had only 5 hours left in their 24 hour
window. If at any point during authentication or creation a participant could not
remember her/his password, s/he could reset it via an automated procedure on
the website. To motivate participation throughout the whole study, a raffle was
held for all participants who completed all five sessions. The study was available
in English and German. The methodology of this usability study conforms to
all requirements of our university’s ethics committee. Only the data relevant to
our analysis was recorded and participants could request deletion of their data
at any time. No additional scenario was presented to the participants, they were
fully primed in terms of the password schemes. Fahl et al. have shown that this
procedure is scientifically sound [14]. Additionally, Bonneau found that security
motivations such as registered payment information has no greater impact than
demographic factors [2].

6.1 Participants

Participants were assigned to their schemes using stratified sampling of three fac-
tors: the participants sex, the language the participant enrolled in and a 5-point
Likert value of the participant’s self-assessed experience in password security.
The participant’s sex was chosen as factor due to previous literature suggesting
differences in performance between male and female users [6]. The language the
participant enrolled in was chosen as a factor to prevent bias originating from
the translation of the questionnaires as well as the instructions explaining the

Authentication Schemes - Comparison and Effective Password Spaces 213

study’s procedure and the operation of the authentication schemes to the partic-
ipants. The self-assessed experience in password security was chosen as a factor
due to an evaluation of questions regarding the participants’ real life passwords,
which is not part of this paper.

Participants were recruited internationally in various ways, including, but not
limited to, flyers and posters on campus, mailing lists, forums and social net-
works. All participants had to enroll on the study’s website using a registration
form. No paid services such as Amazon’s Mechanical Turk or CrowdFlower were
used. Overall 337 participants registered for our study and confirmed their email
address. Of those 250 were male and 87 female. Participants registered in both
languages available in the study, namely 262 participants used German texts
and 75 used English texts. The age range was 14 to 67 years (mean = 27.6,
median = 25). Almost half the participants (46.5%) reported to have experience
in the field of password security (scores of 4 or 5 on a 5-point Likert scale).

6.2 Recorded Measures

The recorded usability measures are aligned along the ISO 9241-11 criteria ef-
fectiveness, efficiency and satisfaction.

Effectiveness. The first measure regarding effectiveness is the success rate. To
retain the highest degree of comparability to past research, we follow the best
practices of Biddle et al. in [1] and report success rates after the first and af-
ter the third attempt. Additionally, this study includes overall success rates (no
limit on the attempts), as this is the most frequently reported measure in the
literature. In this study success rates are defined as follows: the rate of partici-
pants having successfully authenticated after a certain amount of attempts (one,
three, no limit) to the total number of participants using the scheme. The second
effectiveness measure is the password reset rate. It describes the average number
of resets per participant which is a more comparable measure than absolute val-
ues due to different numbers of participants assigned to the different schemes.
We also report dropout rates, which is the number of participants dropped out
in relation to the total number of participants assigned to a scheme. Note that
the dropout is a rather unreliable measure of effectiveness, especially considering
the narrow 24 hours time frame participants had to complete each session.

Efficiency. The first efficiency measure recorded during our study is the interac-
tion time in seconds. It only counts the time for the actual interaction with the
system and not the time the participants’ browsers need to load the images. This
prevents unpredictable bias due to different Internet connection speeds. The sec-
ond measure of efficiency is the number of attempts needed, which represents the
efficiency measure for each session. This measure complements the interaction
times, which are the efficiency measure for each attempt. In order to assess the
overall efficiency of the schemes, the two aforementioned measures (interaction
times and number of attempts) are combined to calculate expected average total
authentication times. This measure is what comes closest to traditional authen-
tication timings which measure the time for the overall login procedure (from

214 P. Mayer, M. Volkamer, and M. Kauer

login request to completed login). However, it has to be stressed that this is
an approximation of what is to be expected for the average participant. Yet, it
offers a much better comparability between the schemes than the traditionally
reported timings, which often depend on the schemes’ implementations (i.e. load-
ing times, etc.). The time needed to read the instructions is the total time across
all sessions to account for participants who had to reset their password and read
through the instructions again. These times are also reported in seconds. This
measure serves as an indicator regarding the learnability of the schemes. In or-
der to spot implementation issues and gather information on possibly necessary
improvements of the schemes’ implementations, the analysis also examines sys-
tem times. These predominantly include the time the system needs to load the
necessary contents (in particular the images) from the study server. The system
times complement the interaction times to detect usability issues caused by the
technical side of our implementations.

Satisfaction. Questionnaires at the end of each session captured the partici-
pants’ satisfaction with their assigned scheme. The questions concerned the par-
ticipants’ attitude and impressions regarding the usability and security of their
scheme. The majority is implemented using a 5-point Likert scale (5 represents
strong agreement and 1 represents strong disagreement).

7 Results

In the following we describe the results of our usability study. The first section
concerns itself with the validity of the security assumption (i.e. whether the
target entropy values were reached). Then we present the usability results along
the lines of the criteria effectiveness, efficiency and satisfaction of ISO 9241-11.

7.1 Validity of the Security Assumptions

In order to check the validity of our assumptions regarding the effective password
spaces, we calculated empirical entropy values for all schemes. As we already
explained in section 2, due to the small password samples the estimates reported
below should only be seen as approximations of the actual differences in the
effective password spaces of the schemes. The values of the recognition-based
schemes, whose passwords were randomly assigned to the participants, can serve
as an indication regarding this deviation. Table 2 shows for each scheme the
expected entropy values derived from published research and the empirical values
calculated for the passwords of our study.

Text Passwords. Table 2 shows the entropy estimates calculated from the
study text passwords according to [28] and the value reported by Komanduri et
al. for their basic8survey policy. With an entropy of 27.41 bits the text passwords
created by the participants of our study are very close to the target of 27.19 bits.

PassPoints. Table 2 lists the entropy values calculated from the PassPoints
passwords according to Dirik et al. in [9] as well. Entropy values are calculated

Authentication Schemes - Comparison and Effective Password Spaces 215

Table 2. Target and empirical entropy values in bits

Target Calculated

Text 27.19 27.41
PassPoints (upper bound) 26.00 24.17
PCCP 27.69 17.35
Faces 28.00 26.52
Things 28.00 26.79

for each click-point position in the password (analogously to the character po-
sitioning in text passwords). These values come very close to those of Dirik et
al. but undercut them. Also, the value is calculated under the assumption that
the choice of all click-points is independent from the other click-points chosen in
the same password. This is not a reasonable assumption [9], but still the target
entropy is not reached.

PCCP. The calculated empirical entropy of the PCCP passwords in our study
is 17.35 bits and thus far below the target value of 27.69 bits. This result deviates
considerably from what was expected.

7.2 Usability Evaluation

The following three sections present the results of the usability evaluation. Most
of our data is not normally distributed and/or has heterogenous variances. There-
fore, we use robust alternatives to standard tests as suggested by Field [15],
Erceg-Hurn and Mirosevich [12] and Wilcox [36] in favor of data transforma-
tions. In detail, the used tests were Fisher’s Exact Test (FET), the ANOVA-
type statistic tests (ATS) developed by Brunner et al. and implemented in the
R packages WRS by Wilcox and nparLD by Noguchi et al. [25] as well as Cliff’s
test (Cliff) as described by Wilcox in [36]. All multiple comparisons use Holm-
Bonferroni corrected α-levels. Also, in order to cope with the outliers in the
timing data (where participants would leave the session open and return after
some time to continue the session), we used robust measures of location in fa-
vor of the mean. The standard errors are also calculated with regards to these
robust measures of location. Readers unfamiliar with these statistical methods
can find further information in appendix A if desired. All factors and their in-
teractions not mentioned in the results were analyzed, but left out since they
did not show significant results. Figure 2 shows all effectiveness measures and all
efficiency measures. These aspects are discussed in more detail in the following
paragraphs.

Effectiveness. The effect of the assigned scheme on the success rates is sig-
nificant after the first attempt (FET: p < .001). Significant differences occur
for the pairs Text-PassPoints (FET: p = .006), Text-PCCP (FET: p. = 001),
PassPoints-Faces (FET: p < .001), PassPoints-Things (FET: p < .001), PCCP-
Faces (FET: p < .001) and PCCP-Things (FET: p < .001). From the results

216 P. Mayer, M. Volkamer, and M. Kauer

0.0

0.2

0.4

0.6

0.8

1.0

Text PassPoints PCCP Faces Things
Assigned Scheme

R
at

e

Effectiveness measures

dropout rate

reset rate

success rate (1st)

success rate (3rd)

success rate (overall)

(a) Effectiveness measures

0

5

10

15

20

25

30

35

Text PassPoints PCCP Faces Things
Assigned Scheme

T
im

e
(s

)
/ A

tte
m

pt
s Efficiency measures

expected total times

interaction times

number of attempts

system times

(b) Efficiency measures

Fig. 2. Measured Results

of follow-up Fisher’s tests, a bipartition after the first attempt becomes appar-
ent: PassPoints and PCCP (lower group) display both significantly worse success
rates than Text, Faces and Things (upper group). After three attempts the effect
of the assigned scheme on the success rates is again significant (FET: p < .001).
The bipartition mostly remains, only the Text group moves somewhat between
the upper and the lower group. In detail, significant differences are found for
the following pairs: Text-Faces (FET: p < .001), Text-Things (FET: p < .001),
PassPoints-Faces (FET: p < .001), PassPoints-Things (FET: p < .001), PCCP-
Faces (FET: p < .001) and PCCP-Things (FET: p < .001). For the overall
success rates (no limit on the attempts considered), the effect of the assigned
scheme on the success rates is also significant (FET: p < .001). However, the
bipartition is lost. PassPoints scores lowest with significant differences to all
schemes except Text. The Text group also shows significant differences to the
recognition-based schemes: Text-Faces (FET: p < .001) and Text-Things (FET:
p < .001). In the overall scores, the recognition-based schemes show the best
scores. PCCP scores only non-significantly worse. The Text scheme shows sig-
nificant differences to the recognition-based-schemes, but not to PCCP. Detailed
success rates for each session after one attempt, three attempts and overall can
be found in appendix B for closer inspection.

As becomes apparent from the reset rates depicted in Fig. 2(a), the variation
in the number of password resets is very large: the reset rates vary from 0.3 to 0.
A Fisher’s test shows that the effect of the assigned scheme is highly significant
(FET: p < .001). Upon examining the scores of the schemes, a partitioning in
three groups becomes apparent. Text and PassPoints show the highest reset rates
(0.25 and 0.30). PCCP displays a rate of 0.11 and the recognition-based schemes
show the best rates with 0.00 (Faces) and 0.04 (Things).

Figure 2(a) also shows dropout rates for the schemes. The scheme with the
highest dropout rate is PassPoints (60%), the one with the lowest is Things
(39%). The differences in dropout between the schemes are however not signifi-
cant. The most important reason for dropout is the 24 hours time frame partic-
ipants had to return to the study website and complete their session. 53.7% of
all dropout can be attributed to this time frame.

Authentication Schemes - Comparison and Effective Password Spaces 217

Efficiency. From the interaction times plotted in Fig. 2(b) it becomes clear,
that for recognition-based schemes it takes much longer to enter the password.
A three-way ATS test shows significant main effects for the assigned scheme
(H(4.32, 43.24) = 55.59, p < .001) and the session (H(2.82) = 5.05,p < .001).
For the assigned scheme, the only non-significant difference is between Faces and
Things. The Text group shows the lowest interaction times. The second lowest
score is the one of the PCCP group, then follows PassPoints and last are the two
recognition based schemes, whose interaction times were twice to three times as
high. Regarding the sessions, the only significant differences are between session
2 and 4 and between session 4 and 5. Participants needed longer in the second
session, than in the third and fourth, but need the most time in the fifth session.
A table with a more detailed breakdown of the interaction times of each session
can be found in appendix B.

The second efficiency indicator beside the interaction times is the number of
attempts needed. The main effects of the assigned scheme (H(3.90, 29.27) = 4.98,
p = .003) and the sessions (H(2.35) = 5.34, p = .002) are significant in an
ATS test. The values for the different schemes are depicted in Fig. 2(b). For the
assigned scheme, the significant differences occur for the pairs Text-PCCP (Cliff:
p = .004) and Text-Faces (Cliff: p = .002). Concerning the sessions, participants
needed more login attempts in the later sessions (4 and 5) than in the earlier
sessions. The significant differences for the sessions occur between sessions 2 and
5 (H(1) = 12.25, p < .001), between sessions 3 and 5 (H(1) = 14.19, p < .001)
and between sessions 4 and 5 (H(1) = 14.27, p < .001).

While no total authentication times were recorded, expected average total
authentication times can be approximated from the average number of authen-
tication attempts and the average interaction times. The two factors “assigned
scheme” and “session” are considered in this calculation. As in neither of the
two relevant analyses the participants’ sex shows a significant effect, its influence
can be neglected. The resulting times are depicted in Fig. 2(b) alongside the in-
teraction times. A table with all the values in detail can be found in appendix
B. The advantages and disadvantages of some schemes in both analyses more
or less annihilate. It is still expected for users of the recognition-based schemes
to take twice as long as users of other schemes. However, e.g. the advantage of
the Text group over PCCP in the interaction times is eaten up by the higher
number of attempts needed in the later sessions. However, this measure should
only be seen as an approximation and therefore be treated with caution.

Female participants took on average significantly more time to read the in-
structions (123.27 sec) than males (97.22 sec) did (H = 968.71, p = .029). This
is the only measure for which the participants’ sex had a significant main effect.
The effect of the assigned scheme is non-significant, as is the interaction. This
indicates no significant difference in the learnability between all schemes.

Even if interaction times are low, participants might discard a scheme as
unusable, if the system itself takes too long to respond. Figure 2(b) shows the
system times for all schemes. An ATS test shows a significant result for the

218 P. Mayer, M. Volkamer, and M. Kauer

assigned scheme. In fact, all differences except the one between Faces and Things
are significant.

Satisfaction. The participants’ attitude towards the system was investigated
using questionnaires. Figure 3 shows a summary of the average answers to the
following 5-point Likert questions: (Q1) The password scheme is easy to use,
(Q2) I could remember my password easily, (Q3) Entering my password was
fast, (Q4) The creation of my password was easy, (Q5) I think I can remember
my password easily, (Q6) I think I can remember my password more easily than
passwords I normally use, (Q7) I prefer this new password scheme to my previous
passwords, and (Q8) I would recommend this password scheme to others.

Fig. 3. The average answers to a variety of 5-point Likert questions

Participants generally found their assigned authentication scheme easy to use
(Q1) and easy to remember (Q2,Q5), but not easier to remember than their
current passwords (Q6). PCCP was perceived significantly more difficult to re-
member (H(4.68, 97.25) = 3.21, p = .012). Perception of how fast password entry
is differs depending on the assigned scheme (Q3). PassPoints scores lowest. The
Text group perceives its scheme as being the fastest. Faces, Things and PCCP
are rated equally. Despite the low efficiency apparent from the interaction times,
the recognition-based schemes are still perceived to be faster than PassPoints.
These differences are significant (H(3.47, 20.45) = 3.43, p = .031). Overall, only
Things scores favorably in terms of a change towards it, though none of the
differences are significant (Q7). While the perceived gain in usability does not
seem to be large enough for the participants to happily adopt the new systems,
they would generally recommend them to others (Q8).

The analysis of question Q2 also revealed a significant interaction of all three
factors (assigned scheme, participants’ sex and session). While text passwords
always score lowest with the male participants, its rating from the female par-
ticipants steadily increases up to the point where it scores highest in the last
session. Faces preserves its ratings from the male participants over the course
of the sessions and scores the highest rating in the fifth session, but is rated
lowest by the female participants in all sessions except the fourth where it scores
second to last. Thus, the scheme female participants perceive to have the highest
memorability in the final session is rated lowest by the male participants and
the scheme rated highest by male participants is rated lowest by female partici-
pants. These differences seem however to to be purely subjective as they are not
mirrored by the actual performance of the participants.

Authentication Schemes - Comparison and Effective Password Spaces 219

8 Discussion

Configuring the different authentication schemes to the same effective password
space is an important aspect of this study’s methodology. This goal could only
be partially attained. Table 2 shows the target entropy values and the entropy
values calculated for the study passwords. For the Text scheme the target has
been reached with only a negligible discrepancy. The entropy for the cued-recall-
based schemes is lower than expected. The PassPoints entropy estimates for
each position in the password (6.15, 6.04, 5.74 and 6.28 bits) are lower than the
6.5 bits found by Dirik et al. in [9]. The individual estimates for PCCP (5.70,
5.85 and 5.80 bits) are even lower than those for PassPoints. The difference in
image resolution and tolerance margin size are crucial in this regard. However,
such entropy estimates have, to our knowledge, never been reported for PCCP
in published literature. Thus, a precise prediction of this loss in entropy was
hard if not impossible, especially when considering that user choice was further
restricted by omitting the shuffle mechanism. Chiasson et al. stated that there
are “no significant differences between PCCP and what is expected to occur by
chance” [30]. More research has to be conducted in order to find the relation
between their finding and the difference between effective password space and
theoretical password space discovered in this study.

The security analysis shows how difficult reliable estimation of the effective
password space is. However, empirical determination is the only way to gather
reliable data in this regard. The Shannon entropy values reported in this study
can provide estimates for future studies. Yet, whenever possible improved metrics
such as Bonneau’s α-guesswork should be used in favor of Shannon entropy.

The implications of the differences regarding the entropy among the schemes
are unclear. At best the differences are small enough to have no effect, although
this seems unlikely. At worst, the differences are the same as in other studies, re-
lying on the theoretical password space without any regard to the actual entropy.
It is important to keep these findings in mind when interpreting the usability
results. Though it has to be mentioned that due to the very small samples we
had, all empirically calculated metrics should only be seen as an approxima-
tion. This becomes especially clear when regarding the entropy estimates of the
recognition-based schemes, which should converge towards 28 bits of entropy in
larger samples, due to their random nature.

In the usability evaluation, no scheme emerges as the sole victor of our com-
parison. The recognition-based schemes have higher effectiveness ratings than all
other schemes. This advantage is interesting, as participants of Faces and Things
were assigned random passwords and the entropy of the passwords was higher
than for the cued-recall-based passwords. The cued-recall-based schemes have
better efficiency ratings, where the conceptually more complex scheme PCCP
scores even better than its predecessor PassPoints, especially in the later sessions.
The interaction times are the only measure in which the Text group scores best.
Text passwords scored worse than PCCP in terms of expected average timings
when intervals between logins were long, but this might be attributed to the
higher entropy in the text passwords.

220 P. Mayer, M. Volkamer, and M. Kauer

The satisfaction ratings are mostly similar for all schemes, with two excep-
tions. Firstly, PassPoints is perceived to be slower than the recognition-based
schemes, despite its better efficiency scores. This emphasizes the usability prob-
lems participants had with the scheme. Secondly, when participants were asked
whether they preferred their new scheme, all schemes except Things score on av-
erage below 3 on a 5-point Likert scale. This notably includes the Text scheme.
It seems that participants are not very fond of their current text passwords, but
the alternative schemes offered to them in this study also do not represent their
first choice. Thus, further alternatives need to be evaluated in order to identify
the most suitable candidate.

One scheme clearly performs worst in basically all aspects: PassPoints. The
adjustment of the security-level according to the findings of Dirik et al. results
in low usability ratings overall. Consequently, it is safe to say that PassPoints
is unsuitable to function as password scheme on a relevant security-level and
can be excluded from future studies. For a meaningful comparison between the
remaining schemes and especially when considering one of the schemes for ac-
tual implementation in a production environment, the requirements of such an
environment play the most important role in judging the scheme’s suitability.

The password reset rate of the graphical schemes is significantly lower. There-
fore, in situations where recovery of lost passwords is expensive in time or effort,
graphical passwords seem to be the better choice. If the user tries to authenti-
cate using her/his text password at least once, then decides to reset the password
and the reset procedure takes only about 20 seconds (twice the time of a nor-
mal login), even recognition-based graphical schemes have the potential to be
more efficient than text passwords due to their superior memorability. However,
more research is needed to provide conclusive evidence in this regard, since no
reset timings were recorded in this study. For the recognition-based schemes only
two resets occurred in the course of this study and success rates are generally
higher, coming close to 100% even after longer periods of inactivity. Therefore,
they are best suited for applications in which logins are infrequent with long in-
tervals between them. In situations with more frequent logins, PCCP might be
the better choice. Success rates are equal to those of traditional text passwords,
interaction times are only somewhat elevated and the advantage in password re-
sets remains. The aspect of increased memorability becomes ever more relevant
when considering the login policies motivated by the online tracking efforts of
companies such as Google or Facebook. The expiration dates in the session cook-
ies of these popular services are usually set years into the future, so users will
remain logged in as long as possible. Therefore, the logins of users potentially
occur very infrequently on the same device.

Throughout the whole analysis we found no evidence for quantitative differ-
ences in the performance of male and female participants. Thus, the results of
earlier studies by Chiasson et al. [6] could not be replicated. The only aspect
where differences between male and female performance could be found is pass-
word creation. Male participants need fewer rounds in the training while spend-
ing less time to read the scheme instructions and find creation easier. However,

Authentication Schemes - Comparison and Effective Password Spaces 221

in opposition to what is stated by Chiasson et al., this difference in performance
seems not to be dependent on the type of mental work (visual-spatial tasks vs
linguistic tasks) as for none of these measures a significant interaction between
the assigned scheme and the participants’ sex can be found. Yet, the subjec-
tive differences in user satisfaction are present and might hinder adoption of
graphical passwords especially by male users.

Despite the overall success of this study, it has some limitations that need
to be addressed. To configure the effective password space we only considered
Shannon entropy. This is one of the most severe limitations of this study. Yet,
we argue that it is a necessary compromise we had to make in our first step
away from user studies regarding only the theoretical password space. While
not optimal, it was the only viable option to approximate the effective password
space. For future studies more reliable metrics such as α-guesswork have been
proposed in recent literature and should be used instead of Shannon entropy,
whenever empirical values allowing estimation of the effective password space
are available. Reporting these metrics was unfeasible due to the (for password
research) still small sample sizes in this study, but is planned for future work.

A restriction we imposed due to basic design decisions is the fixed length of
the passwords for all schemes. For the graphical password schemes this decision
was necessary in order to control the theoretical password space. For the text
passwords we added the same limitation in order to negate any discrepancies in
the usage of the different schemes. However, participants perceive this restriction
as unnatural and many wanted more flexibility. However, such flexibility can only
be incorporated in a methodology aiming at the same effective password space
if studies such as those conducted by Komanduri et al. [22] are available for all
schemes in a comparative study. This is obviously not the case for this study,
but is an important field for future work.

Also, the decision of comparing schemes with system-assigned passwords to
schemes which allow user choice might be considered a limitation of this study.
For all the schemes we tried to use implementations, as they might be used
for real-world applications. We followed the canonical implementations used in
recent studies and distributed as commercial products (user-choice in cued-recall-
based schemes and system-assigned passwords in recognition-based schemes).

Last but not least, it has to be noted that the methodology of this study
neglects one usability aspect, namely interference of multiple passwords. While
it has been shown that its influence is significant, it has been excluded in this
study, mainly due to time and recruitment constraints. Future studies should
optimally include this aspect.

9 Conclusion

This study compares four graphical authentication schemes and text passwords in
a user web-study. It is the first study of its kind to base the security configuration
of the tested schemes on the effective password space. An analysis of the security
assumptions once again shows how difficult the prediction of effective password

222 P. Mayer, M. Volkamer, and M. Kauer

spaces is. The estimates reported in this work can serve as baseline for configura-
tions in future studies and represent an individual research contribution.

The results of the usability evaluation show that no scheme emerges as the sole
victor of this evaluation, but that all have strengths and weaknesses. Yet, both
types of graphical authentication schemes show fewer password resets than the
text passwords and in situations were these are costly graphical authentication
seems to be the better choice. This is the first time such findings are reported not
only inside one category of graphical passwords, but across the cued-recall-based
and the recognition-based categories.

The results of Chiasson et al. indicating differences between male and female
performance in the usage of graphical password schemes could not be replicated
in this study. However, this study found significant differences in the attitude
of male and female participants. Additional research is needed in order to find
more evidence regarding this issue.

References

1. Biddle, R., Chiasson, S., van Oorschot, P.C.: Graphical passwords: Learning from
the first twelve years. CSUR 44(4) (August 2012)

2. Bonneau, J.: The Science of Guessing: Analyzing an Anonymized Corpus of 70
Million Passwords. In: Proc. IEEE S&P, pp. 538–552 (2012)

3. Bonneau, J., Preibusch, S.: The password thicket: technical and market failures in
human authentication on the web. In: Proc. WEIS 2010 (June 2010)

4. Chiasson, S., Stobert, E., Forget, A., Biddle, R., vanOorschot, P.C.: Persuasive Cued
Click-Points: Design, Implementation, and Evaluation of a Knowledge-Based Au-
thentication Mechanism. IEEE Trans. on Dep. and Sec. Comp. 9(2), 222–235 (2012)

5. Chiasson, S., Forget, A., Biddle, R., van Oorschot, P.C.: Influencing users towards
better passwords: persuasive cued click-points. In: Proc. BCS-HCI 2008 (September
2008)

6. Chiasson, S., Forget, A., Stobert, E., van Oorschot, P.C., Biddle, R.: Multiple
password interference in text passwords and click-based graphical passwords. In:
Proc. CCS 2009, pp. 500–511. ACM (November 2009)

7. Davis, D., Monrose, F., Reiter, M.K.: On user choice in graphical password schemes.
In: Proc. USENIX 2004, pp. 151–164 (2004)

8. Dhamija, R., Perrig, A.: Deja Vu: A user study using images for authentication.
In: Proc. SSYM 2000, pp. 45–58 (2000)

9. Dirik, A.E., Memon, N., Birget, J.C.: Modeling user choice in the PassPoints graph-
ical password scheme. In: Proc. SOUPS 2007, pp. 20–28 (2007)

10. Dunphy, P., Yan, J.: Is FacePIN secure and usable? In: Proc. SOUPS 2007 (July
2007)

11. Ellis, H.D.: Recognizing Faces. Brit. J. of Psychology 66(4), 409–426 (2011)
12. Erceg-Hurn, D.M., Mirosevich, V.M.: Modern robust statistical methods: An easy

way to maximize the accuracy and power of your research. American Psycholo-
gist 63(7), 591–601 (2008)

13. Everitt, K.M., Bragin, T., Fogarty, J., Kohno, T.: A comprehensive study of fre-
quency, interference, and training of multiple graphical passwords. In: Proc. CHI
2009, pp. 889–898 (2009)

14. Fahl, S., Harbach, M., Acar, Y., Smith, M.: On the ecological validity of a password
study. In: Proc. SOUPS 2013, pp. 13:1–13:13 (2013)

Authentication Schemes - Comparison and Effective Password Spaces 223

15. Field, A., Miles, J., Field, Z.: Discovering Statistics Using R. SAGE Publications
Limited (March 2012)

16. Florêncio, D., Herley, C.: A large-scale study of web password habits. In: Proc.
WWW 2007, pp. 657–666 (2007)

17. Florêncio, D., Herley, C.: Where do security policies come from? In: Proc. SOUPS
2010 (2010)

18. Hlywa, M., Biddle, R., Patrick, A.S.: Facing the facts about image type in
recognition-based graphical passwords. In: Proc. ACSAC 2011, pp. 149–158 (2011)

19. Ives, B., Walsh, K.R., Schneider, H.: The domino effect of password reuse. Comm.
of the ACM 47(4), 75–78 (2004)

20. Jermyn, I., Mayer, A., Monrose, F., Reiter, M.K., Rubin, A.D.: The design and
analysis of graphical passwords. In: Proc. SSYM 1999 (1999)

21. Kelley, P.G., Komanduri, S., Mazurek,M.L., Shay, R., Vidas, T., Bauer, L., Christin,
N., Cranor, L.F., Lopez, J.: Guess again (and again and again): Measuring pass-
word strength by simulating password-cracking algorithms. In: Proc. IEEE S&P,
pp. 523–537 (2012)

22. Komanduri, S., Shay, R., Kelley, P.G., Mazurek, M.L., Bauer, L., Christin, N.,
Cranor, L.F., Egelman, S.: Of Passwords and People: Measuring the Effect of
Password-Composition Policies. In: Proc. CHI 2011, pp. 2595–2604 (2011)

23. Mulhall, E.F.: Experimental Studies in Recall and Recognition. Am. J. of
Psych. 26(2), 217–228 (1915)

24. Nali, D., Thorpe, J.: Analyzing user choice in graphical passwords. School of Comp.
Sci. (2004)

25. Noguchi, K., Gel, Y.R., Brunner, E.: nparLD: An R Software Package for the Non-
parametric Analysis of Longitudinal Data in Factorial Experiments. J. of Statistical
Software 50(12) (September 2012)

26. Real User Corporation: The Science Behind Passfaces (July 2004)
27. Schaub, F., Walch, M., Könings, B., Weber, M.: Exploring The Design Space of

Graphical Passwords on Smartphones. In: Proc. SOUPS 2013. ACM (July 2013)
28. Shay, R., Komanduri, S., Kelley, P.G., Leon, P.G., Mazurek, M.L., Bauer, L.,

Christin, N., Cranor, L.F.: Encountering Stronger Password Requirements: User
Attitudes and Behaviors. In: Proc. SOUPS 2010 (July 2010)

29. Stobert, E., Biddle, R.: Memory retrieval and graphical passwords. In: Proc.
SOUPS 2013. ACM Press, New York (2013)

30. Stobert, E., Forget, A., Chiasson, S., van Oorschot, P.C., Biddle, R.: Exploring
Usability Effects of Increasing Security in Click-based Graphical Passwords. In:
Proc. ACSAC 2010, pp. 79–88 (2010)

31. Suo, X., Zhu, Y., Owen, G.S.: Graphical Passwords: A Survey. In: Proc. ACSAC
2005 (2005)

32. Weinshall, D., Kirkpatrick, S.: Passwords you’ll never forget, but can’t recall. In:
CHI EA 2004, pp. 1399–1402 (2004)

33. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing Metrics for Password Cre-
ation Policies by Attacking Large Sets of Revealed Passwords. In: Proc. CCS 2010,
pp. 162–175 (2010)

34. Wiedenbeck, S., Waters, J., Birget, J.C., Brodskiy, A., Memon, N.: Authentica-
tion Using Graphical Passwords: Effects of Tolerance and Image Choice. In: Proc.
SOUPS 2005, pp. 1–12. ACM (2005)

35. Wiedenbeck, S., Waters, J., Birget, J.C., Brodskiy, A., Memon, N.: PassPoints:
Design and longitudinal evaluation of a graphical password system. Int. J. of Hum.-
Comp. Studies 63(1-2), 102–127 (2005)

36. Wilcox, R.R.: Introduction to Robust Estimation & Hypothesis Testing, 3rd edn.
Elsevier Academic Press (February 2012)

224 P. Mayer, M. Volkamer, and M. Kauer

A Statistical Methods

The web-based nature of the study imposes some limitations on the data analysis.
Some timing values were highly elevated due to participants probably starting
the session and then being distracted by other tasks. Therefore, all timings are
analysed using medians, modified one-step M estimators (MOM) or trimmed
means instead of means. The modified one-step M estimator of location is a
measure of central tendency. It accounts for outliers which are determined using
the median absolute deviation. A detailed description of the modified one-step
M estimator is beyond the scope of this work, but Wilcox and Keselman wrote
an excellent introduction to measures of central tendency1.

All data collected throughout the study turned out to be non-normally dis-
tributed. Consequently, traditional parametric statistical procedures could not
be applied as even small deviations can cause a severe drop in power of F-statistic
tests [36]. The widely used non-parametric Mann-Whitney and Kruskal-Wallis
tests were not sufficient for the three-factor design of this study (assigned scheme,
sex of the participant and session). Furthermore, even for lower factor analyses
they can prove unsatisfactory. The Mann-Whitney test can only control the Type
I error rate under the assumption, that the groups have identical distributions
[36]. The Kruskal-Wallis test performs only well, if its null hypothesis is true.
Otherwise its statistical power is uncertain2.

Following the advice of Erceg-Hurn and Mirosevich [12] and Wilcox [36], the
following statistical methods are applied to scale data. In two-way designs, where
the data has no longitudinal factor (e.g. time taken to read instructions), Wilcox
advises a two-way ANOVA using modified one-step M estimators and a percentile
bootstrap. He provides the R procedure m2way to conduct the analysis. Using a
similar method is also suggested by Field [15]. Any follow-up tests are conducted
using a similar method with a percentile bootstrap and the MOM for two groups
(pbMOM). For all three-factor analyses the rank-based ATS described below is
used.

All ordinal data is analysed using rank-based methods. This type of data com-
prises all Likert-scale questions. As outlined above classical rank-based methods
are unsatisfactory. Therefore, instead of the Mann-Whitney test Cliff’s test is
used for the analysis. It performs well with small samples, can handle tied val-
ues and has a slight advantage over alternatives if many tied values appear [36].
Wilcox provides the R procedure cidv2 to conduct this test. Following the rec-
ommendations of Erceg-Hurn and Mirosevich in [12], the Kruskal-Wallis test
is substituted by the rank-based ANOVA-type statistic (ATS), which allows for
heteroscedastic data and tied values [36]. Wilcox provides the R procedure bdm to
conduct such a test. The non-longitudinal data with two independent variables is
analysed using the R procedure bdm2way provided by Wilcox, analogously to the

1 Wilcox, R.R., Keselman, H.J.: Modern Robust Data Analysis Methods: Measures of
Central Tendency. Psychological Methods 8(3), 254274 (2003)

2 Wilcox, R.R.: Modern Statistics for the Social and Behavioral Sciences: A Practical
Introduction. CRC Press (Jul 2011)

Authentication Schemes - Comparison and Effective Password Spaces 225

procedure bdm. Follow-up analyses are conducted using Cliff’s test. Wilcox pro-
vides no ATS procedures for longitudinal data. However, Noguchi et al. adapted
the ATS method and published their nparLD package for R in 2012 [25]. All
longitudinal data is analysed using their procedures.

All tests for independence were conducted using Fisher’s exact test due to the
robustness in cases with small contingency values. All multiple comparisons use
Bonferroni-Holm corrected α-levels. The p-values are given to the third decimal
place, if a p-value would be rounded to a value not representable with three
decimal places the term p < .001 is used.

B Detailed Effectiveness and Efficiency Values

Table 3 gives a more detailed breakdown of the success rates for each scheme over
the course of the five sessions. The influence of the sessions become apparent.
The most obvious example are the values for PCCP in the fifth session, where
the success rate after the first attempt is about half of the overall success rate.

Table 3. The authentication success rates for each session after the first attempt (1st),
after the third attempt (3rd) and overall (∞); sessions S2-S5

S 2 S 3 S 4 S 5
1st 3rd ∞ 1st 3rd ∞ 1st 3rd ∞ 1st 3rd ∞

Text 0.74 0.86 0.86 0.85 0.92 0.95 0.86 0.94 0.97 0.65 0.71 0.81
PassPoints 0.55 0.82 0.86 0.73 0.83 0.88 0.71 0.87 0.95 0.53 0.63 0.66
PCCP 0.59 0.76 0.93 0.65 0.85 1.00 0.65 0.82 0.93 0.47 0.70 0.90
Faces 0.86 0.98 0.98 0.84 0.97 1.00 0.86 1.00 1.00 0.83 0.97 1.00
Things 0.93 0.98 1.00 0.83 1.00 1.00 0.87 1.00 1.00 0.73 0.91 0.94
Male 0.76 0.90 0.94 0.80 0.94 0.97 0.80 0.93 0.98 0.65 0.79 0.86
Female 0.70 0.88 0.92 0.79 0.88 0.96 0.78 0.92 0.98 0.61 0.80 0.91

Table 4 lists all the interaction times and expected average total authentica-
tion times. The advantage of the Text group over PCCP in the interaction times
is eaten up by the higher number of attempts needed in the later sessions.

Table 4. Interaction times and average total authentication times in seconds

Interaction times Expected average
S 2 S 3 S 4 S 5 S 2 S 3 S 4 S 5 Overall

Text 9.7 7.6 7.1 8.0 11.7 7.6 8.6 14.7 8.9
PassPoints 13.7 14.1 13.3 15.3 13.7 14.1 13.9 19.3 14.3
PCCP 11.7 12.7 11.5 12.9 11.7 12.7 11.5 12.9 11.8
Faces 37.3 26.4 24.4 31.7 37.3 26.4 24.4 34.7 31.7
Things 29.5 24.7 26.2 32.4 31.2 24.7 26.2 43.2 28.0

A Security Extension Providing User Anonymity

and Relaxed Trust Requirement
in Non-3GPP Access to the EPS

Hiten Choudhury1, Basav Roychoudhury2, and Dilip Kr. Saikia3

1 Dept. of Computer Science, St. Edmund’s College, Shillong, India
hiten.choudhury@gmail.com

2 Indian Institute of Management, Shillong, India
brc@iimshillong.in

3 National Institute of Technology Meghalaya, Shillong, India
dks@nitm.ac.in

Abstract. Third Generation Partnership Project (3GPP) has standard-
ized the Evolved Packet System (EPS) as a part of their Long Term Evo-
lution System Architecture Evolution (LTE/SAE) initiative. In order to
provide ubiquitous services to the subscribers and to facilitate interoper-
ability, EPS supports multiple access technologies where both 3GPP and
Non-3GPP defined access networks are allowed to connect to a common
All-IP core network called the Evolved Packet Core (EPC). However, a
factor that continues to limit this endeavor is the trust requirement with
respect to the subscriber’s identity privacy. There are occasions during
Non-3GPP access to the EPS when intermediary network elements like
the access networks that may even belong to third party operators have
to be confided with the subscriber’s permanent identity. In this paper, we
propose a security extension that relaxes this requirement. Contrary to
several other solutions proposed recently in this area, our solution can be
adopted as an extension to the existing security mechanism. Moreover,
it has to be implemented only at the operators level without imposing
any change in the intermediary network elements. We also show that the
extension meets its security goals through a formal analysis carried out
using AUTLOG.

1 Introduction

The Third Generation Partnership Project (3GPP) has standardized the Evolved
Packet System (EPS) as part of its Long Term Evolution/System Architecture
Evolution (LTE/SAE) initiative. EPS supports the use of multiple access tech-
nologies though a common all-IP core network - the Evolved Packet Core (EPC)
[5]. This opens up the potential to have a truly ubiquitous network, where com-
munication can be possible among and across 3GPP access networks and non-
3GPP access networks. Thus, one can move between 3GPP access networks
and non-3GPP networks, like Worldwide Interoperability for Microwave Access
(WiMAX), Wireless Local Area Network (WLAN), etc., and still be communi-
cating using EPS.

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 226–244, 2014.
c© Springer International Publishing Switzerland 2014

User Anonymity and Relaxed Trust Requirement 227

In 3GPP systems, each User Equipment (UE) is assigned with a unique and
a permanent identity by the service provider called the International Mobile
Subscriber Identity (IMSI) for identification. Knowledge of IMSI of a subscriber
may allow an adversary to track and amass comprehensive profiles about the
subscriber, thereby exposing him to various risks and overall, compromising his
privacy. Thus, this identity is a precious information to be restricted to as few
entities as possible to ensure user anonymity. In case of communication involving
3GPP and non-3GPP networks, like in any other case, this restriction needs to
be ensured.

Non-3GPP access to EPS is classified into two categories, viz., trusted and
untrusted. 3GPP does not specify as to which non-3GPP technologies be con-
sidered as trusted and which as untrusted; this decision is left to the operator.
While using trusted non-3GPP access networks (non-3GPP AN), the UE con-
nects directly with the EPC using the access network. For untrusted non-3GPP
AN, an Internet Protocol Security (IPSec) tunnel is established between the UE
and the EPC [4]. This tunnel provides end-to-end secure channel between the UE
and EPC, thereby relaxing the need for trusting the (untrusted) access network
with signaling/user data exchanged over it. The idea behind such relaxation in
trust requirement is to enhance the reach of 3GPP system beyond 3GPP ac-
cess networks, as it will simplify the requirement for agreements/pacts between
3GPP and non-3GPP operators.

While the non-3GPP access in EPS is aimed at enhanced 3GPP access across
varied access networks, this also opens up certain vulnerability regarding assur-
ance of anonymity. The Authentication and Key Agreement (AKA) protocol,
used to provide access security to non-3GPP access to EPS, has occasions where
the intermediary network elements like the non-3GPP AN (trusted or untrusted)
has to be confided with the IMSI of the subscriber, and that too, by transmit-
ting the IMSI over insecure radio link. Sharing of IMSI with an intermediary
implies implicit trust on the latter, and would thus require trust relationships
amongst the 3GPP and non-3GPP service providers, something that provisions
of non-3GPP access envisaged to relax. Such trust relationship requirements re-
strict the wider premise of cross network accessibility, limiting the access only
amongst the ones sharing such relationships. In addition, the transmission of
IMSI over insecure radio link enhances the vulnerability, even in cases where the
non-3GPP network is a trusted one.

In this paper, we propose a security extension to the AKA protocol using an
end-to-end approach, whereby the knowledge of IMSI is restricted only to the UE
and its Home Network (HN), the latter being the one assigning the same; i.e., the
knowledge of IMSI is restricted to only the assigned and the assigner. This truly
federates the requirement of trusting the intermediary network elements like the
non-3GPP AN with the IMSI. The main contributions of the security extension
proposed in this paper are: it enhances user anonymity as he moves across the
network, and it allows setting up of a conducive platform for flexible on-demand
use of access network resources without worrying about the trust relationships.
It can be implemented with certain changes at the level of the operator and does

228 H. Choudhury, B. Roychoudhury, and D. Kr. Saikia

not need any intervention in the intermediary networks which might belong to
other network providers; this will ease deployment of the extension as it can be
implemented over existing system. To the best of our knowledge, there are no
other proposal for enhancement of EPS-AKA which talks about restricting the
knowledge of IMSI only to the UE and HN, thereby relaxing the requirement to
trust the intermediary Serving Network (SN).

This paper is organized into seven sections: Section 2 provides a brief overview
of access security for non-3GPP Access to the EPS, Section 3 highlights the
vulnerability to identity privacy which can compromise user anonymity, Section
4 reviews some indicative work done in this area from the literature, Section
5 presents our proposed extension and its details, Section 6 provides a brief
description of the results that we have obtained from a formal analysis of our
proposal, and Section 7 concludes this paper.

Operators IP
Services

(e.g. IMS, etc.)

HSS

3GPP AAA
Server

3GPP Access
(GSM, EDGE, UMTS, etc.)

PDN

Proxy
3GPP AAA

Serving
Gateway ePDG

Gateway

UE

Trusted Untrusted
Non−3GPP ANNon−3GPP AN

VPLMN

HPLMN

Non−3GPP Access

Fig. 1. Security architecture for non-3GPP access to the EPS

2 Access Security for Non-3GPP Access to the EPS

Fig. 1, depicts a simplified view of the security architecture for Non-3GPP access
to the EPS. The 3GPP Authentication Authorization Accounting Server (3GPP

User Anonymity and Relaxed Trust Requirement 229

AAA Server) is located at the Home Public Land Mobile Network (HPLMN)
- the home network of the UE. Its primary responsibility is to authenticate
the subscriber, based on authentication information retrieved from the Home
Subscription Server (HSS). The authentication signaling may pass via several
AAA Proxies. The AAA Proxies, used to relay AAA information, may reside
in any network between the Non-3GPP AN and the 3GPP AAA Server. The
Packet Data Network Gateway (PDN GW) provides the UE with connectivity
to the external packet data networks by being the point of exit and entry of
traffic for the UE. The Serving Gateway (SGW), located at the Visitor Public
Land Mobile Network (VPLMN) - the serving network, routes and forwards user
data packets to and from that network. As mentioned earlier, a tunnel is set up
between the UE and EPC for untrusted non-3GPP access; this IPSec tunnel
is established between the Evolved Packet Data Gateway (ePDG) and the UE
when the latter resides in an untrusted non-3GPP network.

The AKA protocol adopted to provide access security for trusted/untrusted
Non-3GPP access to EPS is Extensible Authentication Protocol for Authenti-
cation and Key Agreement (EAP-AKA) [4]. The EAP server for EAP-AKA is
the 3GPP AAA Server residing in the EPC. We provide an overview of the
use of EAP-AKA for trusted and untrusted Non-3GPP access in the following
sub-sections:

Verifies AUTN and MAC,

UE Runs AKA algorithm,

Stores Temporary Identities
Derives RES, Session Keys and MSK,

UE Non−3GPP AN
3GPP AAA Server

HSS

WiredWired
Link Link

Wireless
Link

(Contains Temporary Identity or

IMSI in NAI format) (3GPP AAA Server is identified

1. EAP Request / Identity

2. EAP Response / Identity
4. AV Request, IMSI3. EAP Response / Identity

via realm part of NAI)
(If Response/Identity contained

a Temporary Identity the
corresponnding IMSI is extracted

at the 3GPP−AAA Server)

Procedure for Establishing Connection

5. AV(RAND, AUTN,
XRES, IK, CK)6. EAP Request/AKA Challenge

(Contains RAND, AUTN, MAC,
Temporary Identities)

7. EAP Request/AKA Challenge

(Contains MAC, RES)

for the received IMSI
HSS generates AV

9. EAP Response/AKA Challenge
8. EAP Response/AKA Challenge

3GPP AAA Server checks MAC,
Matches RES with XRES10. EAP Success

11. EAP Success
(Contains MSK)

Non 3GPP AN stores MSK

Non 3GPP Techonology Specific

Fig. 2. Message flow during authentication in trusted non-3GPP access to the EPC

230 H. Choudhury, B. Roychoudhury, and D. Kr. Saikia

2.1 Trusted Non-3GPP Access

In trusted Non-3GPP access, the UE connects with the EPC directly through
the Non-3GPP AN. For access security, the UE and the 3GPP AAA Server
executes EAP-AKA protocol between them. At the end of a successful EAP-
AKA, necessary key materials for secured communication between the UE and
the non-3GPP AN are established. The message flows involved in the process is
shown in Fig. 2.

At first, the UE establishes a connection with the Non-3GPP AN using a
Non-3GPP AN technology specific procedure. The non-3GPP AN initiates the
EAP-AKA procedure by sending an EAP Request/Identity message to the UE
(Fig 2, Message 1). The UE responds with an EAP Response/Identity message
back to the non-3GPP AN that contains the identity of the UE in Network
Access Identifier (NAI) format [2] (Fig 2, Message 2). The transmitted identity
may either be a temporary identity allocated to the UE in the previous authen-
tication or, in case of the first authentication, the IMSI. This message is then
routed towards the proper 3GPP-AAA Server through one or more AAA prox-
ies identified with the help of the realm part of the NAI (Fig 2, Message 3). In
case the NAI received from UE contains a temporary identity, the 3GPP AAA
Server extracts the corresponding IMSI using a procedure explained in Section
2.3. The 3GPP-AAA server provides the IMSI to the HSS (Fig 2, Message 4)
to procure authentication data for mutual authentication between the UE and
the 3GPP-AAA server. The authentication data comprises of an Authentication
Vector (AV) and contains a random part RAND, an authenticator token AUTN
used for authenticating the network to the UE, an expected response XRES, a
128-bit Integrity Key IK, and a 128-bit Cipher Key CK.

AV = (RAND;AUTN ;XRES; IK;CK) (1)

The AUTN includes a sequence number SQN, which is used to indicate freshness
of the AV. On receiving the AV from HSS (Fig 2, Message 5), the 3GPP-AAA
Server derives new keying materials, viz. Master Session Key (MSK) and Ex-
tended Master Session Key (EMSK) using the IK and CK contained in the AV.
Fresh temporary identities (fast re-authentication identity, pseudonym) may also
be generated at this stage, using the mechanism explained in Section 2.3. The
temporary identities are then encrypted and integrity protected with the keying
material. The 3GPP-AAA server sends the RAND and AUTN contained in AV, a
Message Authentication Code (MAC) generated using the freshly generated key-
ing materials, and the encrypted temporary identities to the non-3GPP AN via
an EAP Request/AKA-Challenge message (Fig 2, Message 6). The non-3GPP
AN forwards these to the UE (Fig 2, Message 7). The UE runs UMTS algorithm
[3] to verify the correctness of AUTN so as to authenticate the access network.
If the verification fails, the authentication is rejected. If it is successful, the UE
computes RES, IK and CK and derives the keying materials MSK and EMSK
using these keys, and thereafter checks the received MAC with these keying ma-
terials. If encrypted temporary identities are received, the same are stored for
future authentications. The UE then computes a new MAC value covering the

User Anonymity and Relaxed Trust Requirement 231

EAP message with the new keying material. This newly computed MAC value
is sent via EAP Response/AKA-Challenge message to the Non-3GPP AN (Fig
2, Message 8), which in turn, forwards this message to 3GPP-AAA Server (Fig
2, Message 9).

The 3GPP-AAA Server checks the received MAC and compares XRES (re-
ceived earlier from the HSS as part of AV) to the received RES. If all checks are
successful, the 3GPP-AAA Server sends an EAP Success message to Non-3GPP
AN through a trusted link (Fig 2, Message 10). The keying material MSK is also
send with this message to the Non-3GPP AN; the latter stores this to set up se-
cure communication with the authenticated UE. The Non-3GPP AN informs the
UE about the successful authentication by forwarding the EAP Success message
(Fig 2, Message 11). This completes the EAP-AKA procedure that is required
to register the UE with the Non-3GPP AN, at the end of which the UE and the
non-3GPP AN share keying material derived during the exchange.

3GPP AAA Server

HSS

Wired
Link

3. AV Request, IMSI

(If AAA Message contained
a Temporary Identity the

corresponnding IMSI is extracted
at the 3GPP−AAA Server)

4. AV(RAND, AUTN,
XRES, IK, CK)

for the received IMSI
HSS generates AV

UE

Wireless
Link

Non−3GPP AN

Link
Wired

ePDG

1. IKE−AUTH Request

2. AAA Message

6. IKE−AUTH Response

7. IKE−AUTH Request
8. AAA Message

ePDG stores MSK

10. IKE−AUTH Response

(EAP Success)

(Negotiate cryptographic algorithm,
Exchange nonces, Perform Deffie
Hellman exchange)

IKE−SA−INIT

(Contains IMSI/Temporary Identity)

(Contains IMSI/Temporary Identity)

5. AAA Message

(EAP Request/AKA Challenge,

Contains RAND, AUTN, MAC,

Temporary Identities)

(EAP Request/AKA Challenge
Contains RAND, AUTN, MAC,
Encrypted Temporary Identities)

UE Runs AKA algorithm,
Verifies AUTN and MAC,

Stores Temporary Identities
Derives RES snd Session Keys,

(EAP Response/AKA Challenge,

Contains MAC, RES)
(EAP Response/AKA Challenge,

Contains MAC, RES)
Matches RES with XRES

3GPP AAA Server Checks MAC,

(EAP Success, MSK)

9. AAA Success

Fig. 3. Message flow during authentication in untrusted non-3GPP access to the EPC

232 H. Choudhury, B. Roychoudhury, and D. Kr. Saikia

2.2 Untrusted Non-3GPP Access

In case of untrusted Non-3GPP access, the UE does not connect directly to the
EPC, but connects via the ePDG. The UE first establishes IPSec tunnel with
the ePDG using Internet Key Exchange version 2 (IKEv2) protocol [22], and
then performs the EAP-AKA explained in Section 2.1 using this tunnel. The
message flows involved in such case is shown in Fig. 3.

The UE and the ePDG exchange a pair of messages (IKE-SA-INIT) to estab-
lish an IKEv2 channel in which the ePDG and UE negotiate cryptographic algo-
rithms, exchange nonce and perform a Diffie Hellman exchange. With the IKEv2
secure channel in place, the UE sends its identity (compliant with NAI format,
containing the IMSI or a temporary identity) to the ePDG (Fig 3, Message 1),
which can only be decrypted and authenticated by the end points (i.e., the UE
or the ePDG). The ePDG sends an authentication request message containing
the UE identity to the 3GPP-AAA server (Fig 3, Message 2). For communica-
tion between ePDG and AAA-Server, the EAP-AKA messages are encapsulated
in AAA messages. The 3GPP-AAA server fetches the AVs from the HSS (Fig
3, Message 4) as discussed in Section 2.1, and forwards the EAP message con-
taining RAND, AUTN, MAC and encrypted temporary identities to ePDG (Fig
3, Message 5), the latter forwards this message further to the UE (Fig 3, Mes-
sage 6). All messages between ePDG and UE are interchanged using IKE-AUTH
messages. The UE checks the authentication parameters in the message received
from ePDG and responds to the authentication challenge as in case of trusted
non-3GPP access (Fig 3, Message 7). The ePDG forwards this response to the
3GPP-AAA server (Fig 3, Message 8). The 3GPP-AAA server performs the
usual checks, and once successful, sends an EAP Success message and the key-
ing materials to the ePDG (Fig 3, Message 9). The ePDG forwards the EAP
Success message to the UE over the secure IKEv2 channel (Fig 3, Message 10).
This completes the EAP-AKA exchange whereby the UE and the ePDG share
keying material to be used for secure communication.

2.3 Temporary Identity Generation

An encrypted IMSI based technique is used to generate the temporary identities.
Advanced Encryption Standard (AES) in Electronic Codebook (ECB) mode of
operation is used for this purpose. A 128-bit secret key Kpseu is used for the
encryption [4]. A specific Kpseu for generation of temporary identities is used
for only a given interval determined by the operator. On expiry of this interval,
a fresh Kpseu is used to generate the identities. This ensures the freshness of
the key. Each key has a key indicator value associated with it, and this value
is send along with the temporary identity, when the latter is used by UE for
identity presentation. This allows the 3GPP-AAA server to use the correct Kpseu
for linking the presented identity to the corresponding IMSI. The 3GPP-AAA
Server should store a certain number number of old keys for interpretation of
the received temporary identities that were generated using those old keys. The
number of old keys maintained in the 3GPP-AAA server is operator specific, but

User Anonymity and Relaxed Trust Requirement 233

it must at least be one, else a just-generated temporary identity may immediately
become invalid due to the expiration of the key.

3 Identity Privacy Vulnerability

In order to ensure identity privacy to the subscribers, the 3GPP-AAA Server
generates and allocates temporary identities to the UE in a secured way (as
discussed in Section 2). These temporary identities, instead of IMSI, are mostly
presented by the UE for identity presentation. Two types of temporary identities
are allocated to the UE, viz., a re-authentication identity and a pseudonym.
The re-authentication identity is used for identity presentation during a fast re-
authentication [4] and the pseudonym is used during an EAP-AKA. The UE
does not interpret the temporary identities, it just stores and uses them during
the next authentication. In-spite of the above, EAP-AKA has vulnerabilities
whereby the permanent identity, i.e. the IMSI, might get compromised. Following
are the scenarios when IMSI may get compromised during trusted non-3GPP
access:

– The IMSI is transmitted in clear text through the radio link for identity
presentation during the very first authentication

– A subscriber having a temporary identity from the 3GPP-AAA Server may
not initiate any new authentication attempt for quite some time. If the user
initiates an authentication attempt using an old temporary identity after the
key used to generate the same has been removed from storage at the 3GPP-
AAA Server, the latter will not be able to recognize the temporary identity.
In cases when both fast re-authentication identity as well as pseudonym
are not recognized, the 3GPP-AAA Server will request the UE to send its
permanent identity. In response to such a request, the UE may have to
transmit its IMSI to the Non-3GPP AN in clear text through the wireless
link making the permanent identity accessible to eavesdroppers.

– A corrupt Non-3GPP AN may utilize the received IMSI for various kind of
malicious activities or may pass this identity to an unreliable party.

– A malicious/fake Non-3GPP AN may also take advantage of the above situa-
tion by creating a spurious EAP Request/Identity message and by requesting
the UE for its IMSI through this message; in response to which the unsus-
pecting UE that does not have a mechanism to authenticate the request at
that time, will transmit its IMSI in clear text through the radio link.

In case of untrusted non-3GPP access, there are no threats against identity
privacy from passive attackers like eavesdroppers due the IPSec tunnel set up
between the UE and the ePDG. However, there exist the following threats from
active attackers when sending the IMSI in the tunnel set-up procedure:

– The protected channel is encrypted but not authenticated at the time of
receiving the user identity (IMSI). The IKEv2 messages, when using EAP,
are authenticated at the end of the EAP exchange. So an attacker may

234 H. Choudhury, B. Roychoudhury, and D. Kr. Saikia

pose as a genuine ePDG and may request the UE for the IMSI. Although
the attack would eventually fail at the time of authentication, the attacker
would have managed to see the IMSI in clear text by then.

– The IMSI would be visible to the ePDG, which in roaming situations may
be in the VPLMN. Such a vulnerability limits the home operator in interop-
erating with a VPLMN that belongs to an untrusted third party operator.

4 Related Work

In mobile networks, the need to protect the identity privacy of a subscriber
even from intermediary network elements like the visitor access network is well
established. Herzberg et al. [19] pointed out that in an ideal situation no entity
other than the subscriber himself and a responsible authority in the subscriber’s
home domain should know the real identity of the user. Even the authority in
the visited network should not have any idea about the real identity. Towards
this, several schemes have been proposed with each of them following a varied
approach.

Many of the proposed schemes employ public key infrastructure [29][26][20]
[28][18][36], but due to their processor intensive nature, such solutions are not
the best of solutions for 3GPP based mobile systems, as the UE may not have
high processing and power capability.

The combination of both public key and symmetric key crypto system are
also explored in many of the schemes. Varadharajan et al. [31] proposed three
schemes using this hybrid approach. However, Wong et al. [33] found that they
are vulnerable to several attacks. Another hybrid scheme was proposed by Zhu
et al. that uses both public and symmetric key crypto systems [40]. However,
in Zhu et al.’s scheme certain security weaknesses were detected, due to which
several other improvements were proposed [25][34][7][37]. Recently, Zeng et al.
demonstrated that because of an inherent design flaw in the original in Zhu et
al.’s scheme, the latter and its successors are unlikely to provide anonymity [38].

Off late, several other schemes were proposed by various researchers [24][17]
[14][39][8][13][16][15][12][27][21][23][35]. However, none of these schemes are in
line with EAP-AKA. For a mobile operator that already has a big subscriber
base, changing over to a completely new authentication and key agreement pro-
tocol is a big challenge. Therefore, an ideal scheme for enhanced identity privacy
in Non-3GPP access to the EPS would be the one that can be easily configured
into the existing authentication and key agreement protocol (i.e., EAP-AKA).
At the same time, an ideal scheme should also be restricted only to the operator.
Intermediary network elements that may even belong to third party operators
should not be expected to participate equally.

5 Our Proposed Security Extension

In this section, we explain our security extension for EAP-AKA that overcomes
the existing identity privacy vulnerabilities mentioned in Section 3 and relaxes

User Anonymity and Relaxed Trust Requirement 235

the need to trust an intermediary network element with the IMSI during Non-
3GPP access to the EPS. The knowledge of the IMSI of a subscriber is restricted
to the UE and the HSS, and in no situation is revealed to any third party; thus
conforming to the requirement stated by Herzberg et al. [19]. This extension
is implemented only at Subscriber Identity Module (SIM) of the UE, and the
HSS; and does not envisage any change at the intermediate network elements
like the Non-3GPP AN and the AAA servers. The SIM and the HSS can be
upgraded to support this extension, thereby easing migration challenges in the
face of current wide scale deployment. As only the UE and HSS needs to be
aware of this extension, the migration can also be taken up in a phased manner,
or can be offered as a value added service for ensuring anonymity. This work is
in continuation of the authors’ earlier proposal for UMTS [9] and LTE [11]. The
following sub-sections explain the working of this security extension. A summary
of all the functions used in the security extension (working details of which are
explained later in this section) is presented in Table 1.

Table 1. Functions used in the extension.

Function Details

fi Generates a DMSI from a given RIC.

fEmbed Embeds a 32 bit RIC into a 128 bit
RAND.

fExtract Extracts the 32 bit RIC from a 128 bit
ERAND.

fn Encrypts RICPadded to find ERIC.

fd Decrypts ERIC to find RICPadded.

fPRNG Generates a 128 bit pseudo random num-
ber.

5.1 DMSI: Pseudonym for IMSI

Our scheme replaces the transmission of the IMSI with a pseudonym - Dynamic
Mobile Subscriber Identity (DMSI). A fresh DMSI is generated as and when the
need for transmission of IMSI as per the original protocol arises. Being untrace-
able to the IMSI, the transmission of short-lived DMSI does not compromise the
permanent identity of the user, thereby ensuring anonymity. As the IMSI never
gets transmitted, the same also remains unknown to all intermediary network
components and thereby remains restricted to UE and HSS.

5.2 Generating DMSI

The DMSI is generated from the most recent value of RAND (Equation 1)
received at UE during a successful EAP-AKA procedure, and owes its existence

236 H. Choudhury, B. Roychoudhury, and D. Kr. Saikia

Old
RICRIC

Prev
RIC

New

RIC
Fresh

VCR

SEQ
HSS

Pointer

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0

......

null

null

null

k0

k1

...

r4

r7

IMSI

i0

...

r6i1

r0

r9

null

r5

RIC Index

AUTH XRES IK CKERAND

IMSIRIC

AV

c0

c1

...

Ki

HSS Database

Fig. 4. RIC Index with modified HSS database

to a random number, called the Random number for Identity Confidentiality
(RIC) that remain embedded in the RAND (we call this Embedded RAND
or ERAND). The HSS maintains a pool of RICs, some of which may be in-
use (i.e., assigned to certain UEs) while the others not-in-use at any point in
time (Fig. 4). During each run of the EAP-AKA protocol, a not-in-use RIC is
randomly selected from the pool of RICs, and is securely transmitted, embedded
into the RAND, to the UE. The UE extracts the RIC from the most recently
received RAND to generate the next DMSI, which is then used as a pseudonym
for the IMSI of the UE. Thus, DMSI is a function of RIC as is shown later in
Equation 8:

DMSI = f(RIC) (2)

The extension ensures that the selected RIC is sufficiently random, and has
no correlation with a previously selected RIC. A mapping between the selected
RIC and the IMSI of the UE is maintained at the HSS (explained later in this
section); this allows the HSS to uniquely identify the UE with the corresponding
RIC, and thereby the DMSI.

5.3 Management of RIC

The size of RIC is decided by the operator, and this decides on the size of the
RIC pool at HSS. A RIC of size b bits provide a pool of n unique RIC values:

n = 2b (3)

As for example, a 32 bit RIC size will ensure a pool of 232, i.e., approximately
4.29 billion unique RIC values which should be sufficient for the HSS to support

User Anonymity and Relaxed Trust Requirement 237

a reasonable number of subscribers. The RIC pool is maintained at the HSS
database as the RIC-Index (Fig. 4). This is a sorted list of the possible n = 2b

RIC values. Each entry in the RIC-Index has an associated pointer the RIC-
Pointer. If the particular RIC value is assigned to a UE, i.e., the RIC is in-use,
this pointer will point to the corresponding IMSI in the HSS database. If the
RIC is not assigned to any UE, i.e., not-in-use, the RIC-Pointer will be null.

A fresh value of RIC, randomly chosen from the pool of not-in-use RICs from
the RIC-Index, is allotted to the UE during the run of EAP-AKA. This is stored
as RICFresh at the HSS database, and is cryptographically embedded into the
RAND part of AV using the long term secret key Ki shared between the HSS
and the UE resulting in a new random number called the Embedded RAND
(ERAND):

ERAND = fEmbedKi(RICFresh, RAND) (4)

The AV thus get modified as follows:

AV = (ERAND;AUTH ;XRES; IK;CK) (5)

This ERAND is now used by the 3GPP-AAA server, instead of the RAND as in
the original protocol, to challenge the UE. Since the size of RAND and ERAND
is same, this change will be transparent to the 3GPP-AAA server. Example
algorithms to embed a 32 bit RIC into a 128 bit RAND and to extract the
embedded RIC form the ERAND is proposed in [10]. Only the UE, having the
knowledge of the long term shared key Ki, will be able to extract RIC from
ERAND.

RIC = fExtractKi(ERAND) (6)

Few, say m, RICs associated with an IMSI the fresh RIC (say RICFresh) and
m− 1 previously generated RICs are stored at the HSS database against that
IMSI in the fields RICNew, RICPrev, RICOld, etc. When a new RIC is allotted,
it is stored in RICNew, the previous value at RICNew moved to RICPrev, the
previous value of RICPrev to RICOld, and so on, the oldest of the previous m
RICs being released back to the RIC-Index as not-in-use i.e., the RIC that is
released will have the IMSI-Pointer reset to null against it in the RIC-Index. This
ensures robustness of the protocol against the loss of an ERAND during transit
to the UE. The storage of m RICs ensures that a mapping between the RIC that
is currently stored at the UE and the corresponding IMSI is always maintained
at the HSS. As for any other critical information such as the subscriber’s security
credentials, billing details, etc., it is the responsibility of the operator to ensure
a robust backup mechanism against database crash.

The choice of m is left to the operator. For illustration, if we consider the
RIC size to be 32 bits, and m = 4, i.e., 22 RICs are stored against each IMSI,
it would still allow one to provide for 230, which is approximately 1.073 billion
subscribers; this number is more than 5 times the approximately 200 million
subscriber base of the largest cellular operator in India as of January, 2014 [30].

238 H. Choudhury, B. Roychoudhury, and D. Kr. Saikia

Thus, if s is the maximum number of subscribers that the operator wants the
proposed extension to handle, then

s = n/m (7)

n being the total number of possible RICs in the entire pool andm the number
of RICs maintained against each IMSI in the HSS’s database. The HSS maintains
a field SEQHSS against every IMSI to verify the freshness of a DMSI it receives
from an UE and to prevent replay attacks.

5.4 Handling Collision at RIC-Index

Whenever a RIC needs to be embedded into a RAND at the HSS, a new RIC
(RICFresh) is selected from the pool of not-in-use RICs. In order to select
RICFresh, a b bit random number (say RN) is generated using a standard Pseudo
Random Number Generator. This RN is then searched for in the RIC-Index. If
the IMSI-Pointer against RN in the RIC-Index is found to be null, RN is se-
lected as RICFresh and the null value is replaced with the address of the record
in the HSS’s database where the IMSI is stored. However, a collision may occur
in this process if the IMSI-Pointer against RN in the RIC-Index is not null, i.e.,
if that particular RIC value is in-use. For collision resolution, a b bit variable
called Variable for Collision Resolution (VCR) is maintained at HSS (Fig. 4).
The VCR always contains a not-in-use RIC. Thus, when RN results in a collision,
the value at VCR can be used instead. At the very outset, during initialization
of the HSS’s database, a b bit random number (say RN0) is stored in the VCR
and the IMSI-Pointer against it in the RIC-Index is set to the address of VCR.
Whenever there is a collision, the b bit value stored in the VCR is selected as
RICFresh, its value searched in RIC-Index and the IMSI-Pointer against it set
to the address at HSSs database where the IMSI is stored. Once the value of
VCR is used for RICFresh, the former will have to be replaced with a new not-
in-use RIC value. The oldest of the m RIC values in the HSS database against
the IMSI in question is then not released to the pool on not-in-use RICs, but is
stored at VCR, and the IMSI-Pointer against its value in RIC-Index set to the
address of the VCR. This ensures that VCR always contains a not-in-use RIC
value to take care of the collisions.

5.5 Resolving Identity to IMSI in AV Request

Under normal operation of EAP-AKA, the UE uses a temporary identity in NAI
format [2] to present its identity to the network. The realm part of the temporary
identity (NAI format) allows the intermediate AAA proxy servers to guide the
request to the appropriate 3GPP-AAA server. When a request for an AV reaches
the 3GPP-AAA server along with the temporary identity of the subscriber, the
3GPP-AAA Server resolves the temporary identity to its corresponding IMSI
using the procedure discussed in Section 2.3. The AV request is then forwarded
to the HSS along with the resolved IMSI. However, in situations enumerated in

User Anonymity and Relaxed Trust Requirement 239

Section 3 where the IMSI needs to be transmitted by the UE, the DMSI in NAI
format is now transmitted instead:

DMSI = MCC‖MNC‖RIC‖ERIC (8)

MCC stands for the Mobile Country Code, MNC stands for the Mobile Network
Code, and ERIC is created by encrypting a padded RIC (say RICpadded) with
the Advanced Encryption Standard (AES) algorithm, taking the long term secret
key Ki as parameter. Thus, the ERIC, whose use is explained later, is:

ERIC = fnKi(RICpadded) (9)

where,
RICpadded = RIC‖SEQUE‖R (10)

SEQUE is the value of a 32 bit counter maintained at UE with its value
incremented whenever a new DMSI is created for identity presentation, and R
is a 128− (32 + b) bit random number. SEQUE ensures the freshness of DMSI
and prevents replay attack at HSS, and inclusion of R pads the RICpadded to
128 bits, a requirement for AES cipher. R also introduces sufficient amount of
randomness to harden cryptanalysis of the cipher text.

As before, the realm part allows the intermediate AAA proxy servers to guide
the request to the appropriate 3GPP-AAA server, which forwards the DMSI to
the HSS along with a request for AV, as it would have done for a received IMSI.
Thus, the onus of resolving the DMSI is passed on to the HSS. On receiving the
AV request, the HSS resolves the DMSI, which it does by locating RIC part of
the received DMSI. It then uses the RIC-Index to find the corresponding RIC-
Pointer (Fig. 4), and thereby the IMSI and the long term key Ki. The next step
is to decrypt the ERIC part using AES and Ki:

RICpadded = fdKi(ERIC) (11)

The RIC contained in RICpadded is then compared with the RIC part of the
DMSI, a success ensures that the DMSI was created by UE having key Ki, and
not by a malicious agent. The sole purpose of including ERIC in DMSI is to
ensure this protection. A SEQUE value in RICpadded greater than SEQHSS

ensures the freshness of the request. If any of these checks fail, the request is
rejected, else the SEQUE is copied into SEQHSS for future reference and a
fresh AV is generated as in Equation 5 to respond to the AV request. Fig. 5 and
Fig. 6 depicts the message flow under this proposed extension for trusted and
untrusted non-3GPP access to EPS.

6 Formal Analysis of Security Requirements

We performed a formal analysis of the proposed scheme through an enhanced
BAN logic [6] called AUTLOG [32]. A similar analysis is performed by 3GPP in
[1]. The security goals for this analysis are listed in the following subsection.

240 H. Choudhury, B. Roychoudhury, and D. Kr. Saikia

UE Non−3GPP AN
3GPP AAA Server

HSS

WiredWired
Link Link

Wireless
Link

(Contains Temporary Identity or

DMSI in NAI format) (3GPP AAA Server is identified

1. EAP Request / Identity

2. EAP Response / Identity
4. AV Request, DMSI3. EAP Response / Identity

via realm part of NAI)
(If Response/Identity contained

a Temporary Identity, the
corresponnding DMSI is extracted

at the 3GPP−AAA Server)

Procedure for Establishing Connection

XRES, IK, CK)6. EAP Request/AKA Challenge

(Contains ERAND, AUTN, MAC,
Temporary Identities)

7. EAP Request/AKA Challenge

(Contains MAC, RES)
9. EAP Response/AKA Challenge

8. EAP Response/AKA Challenge

3GPP AAA Server checks MAC,
Matches RES with XRES10. EAP Success

11. EAP Success
(Contains MSK)

Non 3GPP AN stores MSK

HSS extracts IMSI from DMSI
and generates AV (Sec. 5.4, 5.2)

5. AV(ERAND, AUTN,

Verifies AUTN and MAC,

UE Runs AKA algorithm,

Stores Temporary Identities *
Derives RES, Session Keys and MSK,

* UE also stores ERAND in its non−volatile memory so that it can extract RIC

and generate a DMSI whenever required (Section 5.4)

Non 3GPP Techonology Specific

Fig. 5. Message flow during authentication under proposed extension in trusted non-
3GPP access to the EPC

6.1 Security Goals

IMSI should be a shared secret between the UE and the HSS. The same should
not be disclosed by the UE to any third party including the AN.

G1: UE believes UE
IMSI←−−→ HSS

G2: UE believes ¬(AN sees IMSI)

When ever temporary identities (i.e., re-authentication identities and
pseudonyms) fail to protect the permanent identity (due to reasons discussed
in Section 3), a backup mechanism is followed according to our proposed exten-
sion, so that identity privacy may still be ensured to the subscriber. According
to this mechanism (Section 5), a DMSI created with the RIC that is extracted
from the most recent RAND received at the UE is transmitted in lieu of the
IMSI. During every successful run of the EAP-AKA protocol, if the UE re-
ceives a fresh RIC, it can easily protect its permanent identity following this
mechanism.

G3: UE believes UE has RIC

G4: UE believes fresh(RIC)

User Anonymity and Relaxed Trust Requirement 241

It should not be possible for anyone except the HSS (that has access to the
RIC-Index) to map a DMSI with its corresponding IMSI.

G5: UE believes ¬(DMSI ≡ IMSI)

The formal analysis of our extension established the achievement of the above
security goals.

3GPP AAA Server

HSS

Wired
Link

3. AV Request, DMSI

(If AAA Message contained
a Temporary Identity the

corresponnding DMSI is extracted
at the 3GPP−AAA Server)

4. AV(ERAND, AUTN,
XRES, IK, CK)

UE

Wireless
Link

Non−3GPP AN

Link
Wired

ePDG

1. IKE−AUTH Request

2. AAA Message

6. IKE−AUTH Response

7. IKE−AUTH Request
8. AAA Message

ePDG stores MSK

10. IKE−AUTH Response

(EAP Success)

(Negotiate cryptographic algorithm,
Exchange nonces, Perform Deffie
Hellman exchange)

IKE−SA−INIT

(Contains DMSI/Temporary Identity)

(Contains DMSI/Temporary Identity)

5. AAA Message

(EAP Request/AKA Challenge,

Contains ERAND, AUTN, MAC,

Temporary Identities)

(EAP Request/AKA Challenge
Contains ERAND, AUTN, MAC,
Encrypted Temporary Identities)

UE Runs AKA algorithm,
Verifies AUTN and MAC,

Stores Temporary Identities *
Derives RES snd Session Keys,

(EAP Response/AKA Challenge,

Contains MAC, RES)
(EAP Response/AKA Challenge,

Contains MAC, RES)
Matches RES with XRES

3GPP AAA Server Checks MAC,

(EAP Success, MSK)

9. AAA Success

HSS extracts IMSI from DMSI
and generates AV (Sec. 5.4,5.2)

* UE stores ERAND in its non−volatile memory so that it can extract RIC
and generate a DMSI whenever required (Sec. 5.4).

Fig. 6. Message flow during authentication under proposed extension in untrusted non-
3GPP access to the EPC

7 Conclusion

A factor that complicates and restricts non-3GPP access to the EPS is the trust
requirement on intermediary networks (like non-3GPP AN and ePDG) to take
care of subscriber’s identity privacy. In this paper, we have proposed an exten-
sion to the EAP-AKA protocol to resolve the user anonymity related issues in
non-3GPP access to EPS. The main contribution of this paper is to enable total
confidentiality of the permanent identity - the IMSI - of the subscriber from
eavesdroppers as well as from intermediary network components; this would

242 H. Choudhury, B. Roychoudhury, and D. Kr. Saikia

allow access to 3GPP based networks from diverse non-3GPP based access net-
works without detailed requirements of trust amongst them. As an additional
feature, the proposed changes are transparent to the intermediary network com-
ponents and can be implemented over the existing subscriber base with limited
changes in the HSS and the UE, i.e. only at the operator’s level. Being a symmet-
ric key based approach, as followed in EPS-AKA, it takes care of the constraint
of the limited computational power of UE; unlike the schemes using public key
cryptography. We have also carried out a formal security analysis of our proposal
using AUTLOG, and have shown that the extension proposed here conforms to
the necessary security requirements.

References

1. 3GPP: Formal Analysis of the 3G Authentication Protocol. TR 33.902, 3rd Gen-
eration Partnership Project (3GPP) (2001),
http://www.3gpp.org/ftp/Specs/html-info/33902.htm

2. 3GPP: Numbering, addressing and identification. TS 23.003, 3rd Generation Part-
nership Project (3GPP) (2011),
http://www.3gpp.org/ftp/Specs/html-info/23003.htm

3. 3GPP: 3G Security; Security architecture. TS 33.102, 3rd Generation Partnership
Project (3GPP) (2012), http://www.3gpp.org/ftp/Specs/html-info/33102.htm

4. 3GPP: 3GPP System Architecture Evolution (SAE);Security aspects of non-
3GPP accesses. TS 33.402, 3rd Generation Partnership Project (3GPP) (2012),
http://www.3gpp.org/ftp/Specs/html-info/33402.htm

5. 3GPP: Architecture enhancements for non-3GPP accesses. TS 23.402, 3rd Gener-
ation Partnership Project (3GPP) (2012),
http://www.3gpp.org/ftp/Specs/html-info/23402.htm

6. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. Proceedings
of the Royal Society of London. A. Mathematical and Physical Sciences 426(1871),
233–271 (1989)

7. Chang, C., Lee, C., Chiu, Y.: Enhanced authentication scheme with anonymity
for roaming service in global mobility networks. Computer Communications 32(4),
611–618 (2009)

8. Chen, C., He, D., Chan, S., Bu, J., Gao, Y., Fan, R.: Lightweight and provably
secure user authentication with anonymity for the global mobility network. Inter-
national Journal of Communication Systems 24(3), 347–362 (2011)

9. Choudhury, H., Roychoudhury, B., Saikia, D.K.: End-to-end user identity confiden-
tiality for umts networks. In: 2010 3rd IEEE International Conference on Computer
Science and Information Technology (ICCSIT), vol. 2, pp. 46–50. IEEE (2010)

10. Choudhury, H., Roychoudhury, B., Saikia, D.: Umts user identity confidentiality:
An end-to-end solution. In: 2011 Eighth International Conference on Wireless and
Optical Communications Networks (WOCN), pp. 1–6. IEEE (2011)

11. Choudhury, H., Roychoudhury, B., Saikia, D.: Enhancing user identity privacy in
lte. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), pp. 949–957. IEEE (2012)

12. Feng, T., Zhou, W., Li, X.: Anonymous identity authentication scheme in wire-
less roaming communication. In: 2012 8th International Conference on Comput-
ing Technology and Information Management (ICCM), vol. 1, pp. 124–129. IEEE
(2012)

http://www.3gpp.org/ftp/Specs/html-info/33902.htm
http://www.3gpp.org/ftp/Specs/html-info/23003.htm
http://www.3gpp.org/ftp/Specs/html-info/33102.htm
http://www.3gpp.org/ftp/Specs/html-info/33402.htm
http://www.3gpp.org/ftp/Specs/html-info/23402.htm

User Anonymity and Relaxed Trust Requirement 243

13. He, D., Bu, J., Chan, S., Chen, C., Yin, M.: Privacy-preserving universal au-
thentication protocol for wireless communications. IEEE Transactions on Wireless
Communications 10(2), 431–436 (2011)

14. He, D., Chan, S., Chen, C., Bu, J., Fan, R.: Design and validation of an efficient
authentication scheme with anonymity for roaming service in global mobility net-
works. Wireless Personal Communications 61(2), 465–476 (2011)

15. He, D., Chen, C., Chan, S., Bu, J.: Analysis and improvement of a secure and
efficient handover authentication for wireless networks. IEEE Communications
Letters 16(8), 1270–1273 (2012)

16. He, D., Chen, C., Chan, S., Bu, J.: Secure and efficient handover authentication
based on bilinear pairing functions. IEEE Transactions on Wireless Communica-
tions 11(1), 48–53 (2012)

17. He, D., Ma, M., Zhang, Y., Chen, C., Bu, J.: A strong user authentication scheme
with smart cards for wireless communications. Computer Communications 34(3),
367–374 (2011)

18. He, Q., Wu, D., Khosla, P.: The quest for personal control over mobile location
privacy. IEEE Communications Magazine 42(5), 130–136 (2004)

19. Herzberg, A., Krawczyk, H., Tsudik, G.: On travelling incognito. In: First Work-
shop on Mobile Computing Systems and Applications, WMCSA 1994, pp. 205–211.
IEEE (1994)

20. Horn, G., Preneel, B.: Authentication and payment in future mobile systems. In:
Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.) ESORICS 1998.
LNCS, vol. 1485, pp. 277–293. Springer, Heidelberg (1998)

21. Jiang, Q., Ma, J., Li, G., Yang, L.: An enhanced authentication scheme with privacy
preservation for roaming service in global mobility networks. In: Wireless Personal
Communications, pp. 1–15 (2012)

22. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet key exchange protocol
version 2 (ikev2). The Internet Engineering Task Force Request for Comments
(IETF RFC) 5996 (2010)

23. Kuo, W.C., Wei, H.J., Cheng, J.C.: An efficient and secure anonymous mobility
network authentication scheme. Journal of Information Security and Applications
(2014)

24. Lee, C., Chen, C., Ou, H., Chen, L.: Extension of an efficient 3gpp authentication
and key agreement protocol. Wireless Personal Communications, 1–12 (2011)

25. Lee, C., Hwang, M., Liao, I.: Security enhancement on a new authentication scheme
with anonymity for wireless environments. IEEE Transactions on Industrial Elec-
tronics 53(5), 1683–1687 (2006)

26. Lin, H., Harn, L.: Authentication protocols for personal communication systems.
ACM SIGCOMM Computer Communication Review 25(4), 256–261 (1995)

27. Liu, H., Liang, M.: Privacy-preserving registration protocol for mobile network.
International Journal of Communication Systems (2012)

28. Park, J., Go, J., Kim, K.: Wireless authentication protocol preserving user
anonymity. In: Proceedings of the 2001 Symposium on Cryptography and Infor-
mation Security (SCIS 2001), vol. 26, pp. 159–164. Citeseer (2001)

29. Samfat, D., Molva, R., Asokan, N.: Untraceability in mobile networks. In: Pro-
ceedings of the 1st Annual International Conference on Mobile Computing and
Networking, pp. 26–36. ACM (1995)

30. Trai: Highlights on telecom subscription data as on 07 july 2014. Press release,
Telecom Regulatory Authority of India (2014)

244 H. Choudhury, B. Roychoudhury, and D. Kr. Saikia

31. Varadharajan, V., Mu, Y.: Preserving privacy in mobile communications: a hybrid
method. In: 1997 IEEE International Conference on Personal Wireless Communi-
cations, pp. 532–536. IEEE (1997)

32. Wedel, G., Kessler, V.: Formal semantics for authentication logics. In: Martella,
G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146,
pp. 219–241. Springer, Heidelberg (1996)

33. Wong, D.: Security analysis of two anonymous authentication protocols for
distributed wireless networks. In: Third IEEE International Conference on Per-
vasive Computing and Communications Workshops, PerCom 2005 Workshops,
pp. 284–288. IEEE (2005)

34. Wu, C., Lee, W., Tsaur, W.: A secure authentication scheme with anonymity for
wireless communications. IEEE Communications Letters 12(10), 722–723 (2008)

35. Xie, Q., Hu, B., Tan, X., Bao, M., Yu, X.: Robust anonymous two-factor authen-
tication scheme for roaming service in global mobility network. Wireless Personal
Communications 74(2), 601–614 (2014)

36. Yang, G., Wong, D., Deng, X.: Anonymous and authenticated key exchange for
roaming networks. IEEE Transactions on Wireless Communications 6(9), 3461–
3472 (2007)

37. Youn, T., Park, Y., Lim, J.: Weaknesses in an anonymous authentication scheme for
roaming service in global mobility networks. IEEE Communications Letters 13(7),
471–473 (2009)

38. Zeng, P., Cao, Z., Choo, K., Wang, S.: On the anonymity of some authentica-
tion schemes for wireless communications. IEEE Communications Letters 13(3),
170–171 (2009)

39. Zhou, T., Xu, J.: Provable secure authentication protocol with anonymity for roam-
ing service in global mobility networks. Computer Networks 55(1), 205–213 (2011)

40. Zhu, J., Ma, J.: A new authentication scheme with anonymity for wireless environ-
ments. IEEE Transactions on Consumer Electronics 50(1), 231–235 (2004)

A Usage-Pattern Perspective for Privacy
Ranking of Android Apps

Xiaolei Li1, Xinshu Dong2, and Zhenkai Liang1

1 National University of Singapore, Singapore
{xiaolei,liangzk}@comp.nus.edu.sg
2 Advanced Digital Sciences Center, Singapore

xinshu.dong@adsc.com.sg

Abstract. Android applies a permission-based model to regulate applications
(apps). When users grant apps permissions to access their sensitive data, they
cannot control how the apps utilize the data. Existing taint-based techniques only
detect the presence of exfiltration flow for the sensitive data, but cannot detect
how much sensitive data are leaked. Users need more intuitive measures to inform
them which apps are going to leak more of their private information. In this paper,
we take an alternative approach for identifying apps’ internal logic about how
they utilize the sensitive data. We define such logic as a sequence of operations on
the sensitive data, named as the data usage pattern. We build a static analysis tool
to automatically extract data usage patterns from Android apps. Our evaluation
shows that our approach effectively and efficiently identifies the key operations
and thus ranks Android apps according to different usage patterns.

Keywords: Android, Privacy, Static analysis, Information flow analysis.

1 Introduction

The Android system relies on a permission-based model to protect sensitive resources
on mobile devices. However, the existing permission-based model relies heavily on
users’ perception of the permissions. A recent study shows that the Android permissions
are insufficient for users to make correct security decisions [6]. Users have little idea
about how an application (app) would use the granted permissions. For example, to
use the advertised features of an app, users may simply grant the dangerous permission
to access their locations. In fact, the app may directly leak the location information
to an external third-party domain, or carelessly open new interfaces for other apps to
escalate their privileges to access it [3]. Although several existing mechanisms have
been proposed to analyze the permission usage in Android apps by detecting what and
where permissions are used, they do not provide comprehensive information for users to
understand how one app utilizes sensitive data after being granted permission to access.
Instead, we need a solution which is both technically comprehensive and sufficiently
intuitive to end users. Such a solution should help users to make wise choices to protect
their privacy when they are installing new apps.

One well-explored direction in understanding the permission usage is to apply data
flow analysis on Android apps [2,4,7,8,13,16,17]. However, most of them only deter-
mine whether a flow to leak sensitive resources exists or not, but lack precise description

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 245–256, 2014.
© Springer International Publishing Switzerland 2014

246 X. Li, X. Dong, and Z. Liang

regarding the internal data processing logic, i.e., whether the data usage leaks a lot of
information or only a little. Thus, they are unable to inform users of the difference be-
tween an app that sends the raw user location to third parties, and another app that only
provides a yes/no answer to whether the user is presently at a certain museum or not.
Therefore, a desirable approach should deliver more insight to users regarding how their
sensitive data are processed and to what extent they are leaked to other parties.

Quantitative information flow (QIF) is an emerging technique for quantifying the
information leakage. Various information-theoretic metrics have been proposed, such
as through one particular execution path [14] or publicly observable states [9]. Ideally,
QIF could be a suitable tool to evaluate how apps use sensitive resources and how much
of such information is leaked. Unfortunately, the performance and scalability of existing
QIF algorithms and tools are rather limited in practice. In addition, the Android’s event-
driven paradigm heavily involves asynchronous system callbacks and user interaction,
which makes it even more difficult to apply existing QIF mechanisms. Considering the
huge number of Android apps and their frequent updates, we need a more efficient and
scalable approach.

Our Approach. In this paper, we propose a lightweight and efficient approach to rank-
ing apps based on how they use sensitive resources. In particular, we take the location
data of the mobile device as a starting point. Meanwhile, the technique is also appli-
cable to other data types, such as the device ID and the phone number. The idea is to
summarize the sequence of key operations on the location data into a data usage pat-
tern, which represents the app’s internal logic of the location data usage. By comparing
the usage patterns for different apps, we group apps with similar functionality and rank
them according to their potential leakage of the location information.

Compared to existing data flow analysis techniques that only detect the presence of
sensitive data flows, we focus on identifying the important operations on the sensitive
data in such flows, which reflect to what extent the data are leaked. Specifically, we
propose PatternRanker, which statically analyzes how an app utilizes the location data
by analyzing its Dalvik bytecode, and extracts a general and comprehensive pattern rep-
resenting the location data usage by identifying key operations on the location data. We
collect all the possible operations by leveraging static program slicing and taint-based
techniques, and then generate the data usage patterns through pre-defined heuristics.
The applicability of the data usage pattern is not limited to app ranking. It can also ef-
ficiently assist further analysis, such as accelerating existing QIF solutions by applying
their current mechanisms on our extracted patterns instead of on the raw logic of apps.
We evaluate PatternRanker on 100 top location-related apps, and our experiments show
that PatternRanker effectively extracts the data usage pattern for ranking apps. Pattern-
Ranker also achieves an average analysis time of 27s per app, which is sufficiently small
for analyzing real-world apps.

To sum up, our work has the following contributions:

– We propose a lightweight and scalable approach to ranking apps’ threats to user
privacy based on the usage pattern of sensitive information.

– We build a static tool to automatically analyze how Android apps utilize the sensi-
tive data and identify the key operations.

A Usage-Pattern Perspective for Privacy Ranking of Android Apps 247

– We evaluate a set of 100 top location-related Android apps, and demonstrate the
effectiveness of our approach in ranking these apps and classifying them into dif-
ferent categories according to different data usage patterns.

2 PatternRanker Design

Key Design Decisions. We rank one app based on data operation analysis, instead of its
leaking bits. For example, Android provides standard APIs distanceBetween/distanceTo
for apps to calculate the distance between two points. However, some apps implement
their own methods to complete the same task through complex mathematical computa-
tion (including toRadians, sin and cos). It is extremely difficult to measure which set of
math operations may leak more bits of the raw data. It is also improper to conclude that
one is safer for leaking fewer bits of the raw data in one particular run, because they
are semantically equal even though they may get slightly different results at runtime.
Therefore, considering practicality for analyzing real-world apps, we aim to rank apps
through identifying the data usage patterns, more specifically, a sequence of key opera-
tions on the sensitive data along one flow reflecting the semantic effectiveness whether
they preserve the raw data or not, instead of finding a metric of calculating number of
bits that one app may leak.

Therefore, we aim to define a pattern to represent how an app operates on the location
data, including not only a present flow from pre-defined sources to sinks, but also the
key operations in the flow. The data usage pattern indicates two aspects: through which
channel and to what degree the sensitive data are leaked. We use the pattern as our
ranking metric. For two different usage patterns, we assign a higher rank to the one that
leaks less information in the flow, and a lower rank to the one that has only simple data
propagation from a source to a sink. We also consider various sink channels for ranking.
For example, it gains a higher rank to share the sensitive data with a trusted service than
an uncertain domain.

Assumption. The Android system provides well-defined Java interfaces for Android
apps to access resources. It also supports NDK that allows developers to design their
apps as native code. However, the native code is usually designed for performance im-
provement in CPU-intensive scenarios like game engines and physics simulation, in-
stead of Android-specific resource access. Hence, the native code is out of the scope in
our analysis. In this section, we detail our design of the data usage pattern and a static
approach to automatically extracting it.

2.1 Pattern Definition

We focus on analyzing the types of operations on sensitive data in a data flow. To rep-
resent how close the output of one operation is to the raw sensitive data, we attach an
attribute Capacity to the sensitive data during their propagation. Higher value means
the output is closer to the original sensitive data. Thus we define the Pattern as a se-
quence of key bytecode operations, which aims to expressively identify the changes
of the capacity in one data flow. The sensitive data enter at the source point with the
maximum capacity. During the data flow, an operation may reduce the output’s capac-
ity. We also aim to use the pattern to indicate the influence of the sensitive data on the

248 X. Li, X. Dong, and Z. Liang

control flow, i.e., whether a code branch is conditionally triggered by the sensitive data.
Thus we classify the operations into five categories: Source, Sink, Branch, Capacity-
preserving and Capacity-reducing. Next we explain them in detail.

Source/Sink/Branch. The existing work Susi [15] has given a concrete definition for
Android sources and sinks. For sources, we only consider the sources related to the
location permission. Additionally, the Android system supports callbacks (e.g., onLo-
cationChanged) to pass sensitive data (e.g., GPS). We also consider these sensitive call-
backs as sources. In addition to standard sinks, such as network APIs, we treat system
state-related APIs (e.g., setRingerMode) and IPC channels (e.g., startActivity) as sinks.
To avoid duplicate analysis on known trusted services and advertising libraries, we also
treat these interfaces as sinks. Branch operations refer to the bytecode operations which
are essential for exploring execution paths, such as if-* and goto.

Capacity-Preserving/Reducing. Different operations on the sensitive data may gener-
ate outputs with different capacities. According to the capacity of the output, we classify
the operations into capacity-preserving (the output has the same capacity as the input)
and capacity-reducing (the output has lower capacity than the input). When summariz-
ing the operation sequence for one pattern, we ignore capacity-preserving operations
because the sensitive data have only direct flow without any change of the capacity. Our
goal is to identify those key operations that reduce the capacity of one flow. Next, we
illustrate our idea through a simple snippet of sequential operations below.

� �

1 invoke-virtual {v0, v1}, Landroid/location/LocationManager;-> getLastKnownLocation(

Ljava/lang/String;)Landroid/location/Location;

2 move-result-object v2

3 ...

4 invoke-virtual {v2, v3}, Landroid/location/Location;-> distanceTo(

Landroid/location/Location;)F

5 move-result v4

6 move v4, v5

7 cmpg-float v5, v5, v6

8 if-gtz v5, :cond_1

9 :cond_1

10 ...

11 invoke-virtual {v7, v8}, Landroid/media/AudioManager;->setRingerMode(I)V

�� �

In the above code, we can easily identify its source and sink as Line 1 and Line 11.
Line 1 accesses the current location and moves it to v2 (Line 2). Line 4 calculates the
distance between the current location with another point, marked as capacity-reducing
operation (CRO). The result is moved to v4 and then to v5. Then Line 7 compares the
distance with one value, and sets the comparison result in v5. Line 8 uses the compari-
son result as a condition to trigger a code branch that contains the sink API. The pattern
for this code snippet is shown as follows.

� �

1 E(SOURCE): invoke-virtual, Landroid/location/LocationManager;-> getLastKnownLocation(

Ljava/lang/String;)Landroid/location/Location;

2 E(CRO): invoke-virtual, Landroid/location/Location;-> distanceTo(

Landroid/location/Location;)F

3 E(CRO): cmpg-float

4 E(BRANCH): if-gtz

5 E(SINK): invoke-virtual, Landroid/media/AudioManager;->setRingerMode(I)V

�� �

A Usage-Pattern Perspective for Privacy Ranking of Android Apps 249

It is challenging to precisely distinguish whether an operation is capacity-preserving
or capacity-reducing because it varies in different contexts due to two main scenarios:
Uncertain Operand and Uncertain Method. Whether one opcode preserves the capacity
depends on its operands. For example, add-int vx,vy,vz calculates vy+vz and
puts the result into vx. Supposingvy is the raw sensitive data, it depends on vzwhether
the result vx maintains the same amount of sensitive information. The operand may
come from an external source, such as SharedPreferences, external storage, network
and Android-specific IPC channels, which is difficult for static analysis to determine.
Fortunately, most above uncertain scenarios are rare to happen among the popular apps
that we have studied. Thus we treat them as constant values. Similarly, if it invokes
an external method that is out of our analysis code base, we are uncertain about what
kinds of operations will be possibly performed on the sensitive data. In this case, we
treat the external method invocation as capacity-preserving (the worse case) by default.
To reduce the overestimation, we semantically model frequently used libraries, such as
String, Math and parts of Android APIs.

2.2 Ranking Metric

Our ranking is based on two factors: 1) through which channel the data are leaked; 2) to
what degree the data are leaked. Note that one app may contain multiple patterns. Here
we demonstrate the metric for ranking one pattern. We use the lowest one to represent
the rank for the whole app. According to the various sinks, we classify patterns into two
main categories: In-App Usage with a higher rank and Sharing with a lower rank.

For the category of in-app usage, we further classify into two subcategories: capacity-
reducing pattern with a higher rank and capacity-preserving pattern with a lower rank.
In a capacity-preserving pattern, the sink in the flow outputs the same amount of in-
formation as the raw sensitive data, while a capacity-reducing pattern only infers less
amount of information. However, it is difficult to justify two capacity-reducing pat-
terns, for it is improper to claim that two capacity-reducing operations (e.g., subString)
leak less information than one. In future work, we will consider more metrics as ref-
erences to compare two capacity-reducing patterns, such as how many bits of infor-
mation are leaked generally in multiple runs, by applying symbolic execution-based
mechanisms [11, 12] on our extracted patterns to efficiently simulate multiple runs of
the program and evaluate the impact of these extracted key operations on the sensitive
data. For now, as a first step, we only target on identifying these key operations from
large-scale real-world Android apps, and thus give a rough classification while leaving
further analysis as future work.

For the category of sharing, considering the scenario that it is more acceptable for
users to share even the raw location data to trusted services, such as Google Map ser-
vice, than to share one bit of information with untrusted domains, we further group them
into three subcategories according to various sharing domains, from high rank to low
rank which are Known Trusted Services, Advertising Libraries and Uncertain Parties.
We use a whitelist to maintain the known trusted services and advertising libraries. We
give the lowest rank to those apps that transfer the location data to uncertain third party
domains through network APIs, WebView APIs, SMS APIs and IPC channels. Usu-
ally, apps use dedicated libraries for common services and advertising (e.g., Google

250 X. Li, X. Dong, and Z. Liang

APK Parser

Slice
Generator

Pattern
Extractor

Pattern-based
Ranking

Android Apk

A

Object Representation (class,
method, field, block)

Multiple
Program Slices

Key Operation
Sequences

High Rank

Low Rank

.

.

.

.

.

.

Fig. 1. The Architecture of PatternRanker

map), instead of re-implementing their own through raw Android interfaces (e.g., net-
work APIs). The uncertain channels are mostly used to share content and resources
with apps’ own third party servers or can only be determined at runtime. Therefore,
even though more information (e.g., the recipient’s network address, phone number and
package name) via these uncertain channels can be mined by applying backward anal-
ysis or dynamic instrumentation, they still fall into the uncertain subcategory. Instead,
we simply categorize the sharing domains through a whitelist-based filter for common
trusted services and advertising libraries collected from large-scale real-world apps.

2.3 PatternRanker Architecture

Figure 1 illustrates the overall architecture. APK Parser parses the Android apk into ap-
propriate object representations, such as Smali classes, methods and fields. Slice Gen-
erator uses slicing technique to generate all the program slices that start from accessing
the location data. Pattern Extractor extracts the pattern by identifying the key oper-
ations in each slice. We design a Pattern-based Ranking to rank the apps based on
various patterns. Next we explain each component in detail.

Apk Parser. We design static analysis directly on Android disassembled Smali code,
which overcomes limitations of the Dalvik-to-Java bytecode transformation [5]. The
apk is parsed into Smali files and represented as multiple Smali classes. Each Smali
class object is represented as a set of methods and fields. Each method can be further
decomposed into several sequential blocks according to its internal branches. Therefore,
inside one block, the instructions are sequential without any control flow. The block is
treated as a minimum unit for our further analysis.

Slice Generator. We first identify the source points in the app and then perform bottom-
to-top analysis. To explore all possible flow paths, we consider field-sensitive flow and
Android-specific callbacks into the API hierarchy. To support field-sensitive flow anal-
ysis, if the sensitive data is put into one field of a Java object in one method, say M,
we also mark all the methods reading that field as top methods of M. Specially, the
Android’s event-driven paradigm supports asynchronous invocation, such as Handler,

A Usage-Pattern Perspective for Privacy Ranking of Android Apps 251

Thread and AsyncTask. We also bridge the data flow for these scenarios. However, we
do not preserve the data flow if it flows outside the app, such as file system, network
and IPC channels. From bottom to top, we analyze each method in the call chain. Intu-
itively, we start tracking the sensitive data from the source point and propagate the taint
tags to its top methods.

Now we explain how we analyze inside one method. The method is composed of
multiple blocks. We start tainting the sensitive data from the first block with the per-
register and per-field granularity. At the beginning of our analysis for each block, we
allocate a set of tracked registers and a set of tracked fields. Inside one block, the ex-
ecution is sequential and the taint tags are propagated according to pre-defined simple
propagation rules for each bytecode instruction (e.g., move instruction and common
math operations). During the tainting, we dynamically update the tracked register set
and field set. Specially, if one method invocation involves any tainted input, we dive
into the callee method to figure out its internal logic. Note that to support field-sensitive
analysis, the input/output of one method include not only the parameters and the return
value, but also all the object fields that may be accessed inside it. For efficiency, we
do not dive into any method in the publicly known libraries, such as Android SDK,
advertising/analytics libraries and other known third-party services. After finishing one
block, we go further to its next blocks. The tracked register set and field set are used
as the initial sets for its next blocks. To record the control flow, if a branch operation
involves a tainted operand, then all the sinks in its branch are treated to be related with
sensitive data leakage. However, it may cause overtainting problem to simply taint all
the next blocks if the branch condition is tainted. Thus to mitigate this problem, we only
maintain the control flow relationship among blocks when the next block of one branch
operation has only one reachable path determined by this branch condition.

Pattern Extractor. After we get the program slices, we post-process them to extract
patterns. Each slice is treated as sequential operations. We identify whether an op-
code is capacity-preserving or capacity-reducing through pre-defined heuristics. Spe-
cially, we treat all external methods as capacity-preserving. To reduce false positive,
we semantically mark certain Math/String APIs and location-related Android APIs as
capacity-reducing, such as distanceTo/distanceBetween. For common math operations,
cmp-*, cmpl-*, cmpg-*, rem-*, and-*, or-*, neg-* are capacity-reducing
operations, while add-*, mul-*, div-*, rsub-*, sub-*, shl-*, *-to-* are
capacity-preserving operations. It is a capacity-reducing operation if it satisfies the fol-
lowing property: even if the sensitive operand is operated with a constant, the result
value is still generally unable to recover the sensitive value, such as and-int. Spe-
cially, we treat *-to-* as capacity-preserving, which indicates the data conversion,
such as double-to-int. Although the conversion may lose the accuracy of the raw
data, it semantically behaves like a move operation.

Pattern-Based Ranking. As described in Section 2.2, our ranking system is based on
two factors: through which channel and to what degree the data are leaked inside one
pattern. Thus, we classify the extracted patterns by checking their sinks (indicating
the leaking channel and the possible receiver) and their capacities (indicating whether
one pattern contains any capacity-reducing operation). As shown in Figure 2, we first

252 X. Li, X. Dong, and Z. Liang

Sink

In-App Sharing

P1

P2 P3

Sharing DomainCapacity

Capacity-
reducing
Pattern

Capacity-
preserving

Pattern

Known
Trusted
Services

Advertising
Libraries

Uncertain
Parties

Fig. 2. Pattern-based Ranking Schema

classify the apps into two main categories: in-app usage and sharing, by checking the
sinks of the patterns. For the category of sharing, we further classify them into three
subcategories based on different sharing domains by grouping various sinks. For the
category of in-app usage, we group them into two subcategories: capacity-reducing
pattern and capacity-preserving pattern, by checking whether the capacity of sensitive
data at the sink point is smaller than that at the source point.

3 Evaluation

We implement a standalone tool via Java, which directly works on disassembled Smali
code. It leverages the existing tool SAAF [10] to disassemble Android apks and parse
the Smali files into appropriate object representations, such as blocks and fields. We
implement the slice generator and pattern extractor. We collected 100 top location-
related Android apps from the official Android market (i.e., Google Play) as our sample
set, and ran our PatternRanker prototype in a Debian system on a server of Intel Xeon
E5-2640@2.50GHz with 64G memory. Next, we show our evaluation results in detail.

3.1 App Analysis on Location Usage

Specifically, we found that 28 apps in our sample set have capacity-reducing patterns
for in-app usage. Sharing is an appealing feature on the mobile platform, especially
as the social networking becomes popular. From our observation, a common usage for
location data is to share the raw location data with trusted services and advertising
libraries. According to our ranking design, we list them in the following categories
from high rank to low rank, shown as Figure 3. One app may include multiple patterns.
Here the statistics for each category shows the number of apps having that pattern.

A Usage-Pattern Perspective for Privacy Ranking of Android Apps 253

1) In-App Usage: Capacity-reducing Pattern. We identified that 28 apps have
capacity-reducing patterns. 15 of them do the distance calculation operation, among
which 10 use the default distanceTo/distanceBetween Android APIs and the rest 5 im-
plement distance calculation by themselves using Math libraries. Next we take two
examples to demonstrate the extracted patterns from them.

Auto Profile Switcher app, with 1,000 - 5,000 downloads, allows users to configure
several profiles, such as home and work. It automatically switches the profile based on
the current location. The extracted pattern for it is shown below. They implement the
distance calculation through Math library. The pattern indicates that the app makes a
complex mathematical computation on the location data and compares the result with
a special value via cmpg-float. Through manual analysis, we observed that this
special value is read from local storage implemented as SharedPreferences. This in-
formation can be obtained automatically by applying backward dependency analysis
on key operands, which we consider as future work. In the end, the comparison result
determines the invocation of a sink API setRingerMode.

� �

1 E(SOURCE): invoke-virtual, Landroid/location/LocationManager;-> getLastKnownLocation(

Ljava/lang/String;)Landroid/location/Location;

2 E(CRO): invoke-virtual, Landroid/location/Location;->getLatitude()D

3 E(CRO): invoke-virtual, Landroid/location/Location;->getLongitude()D

4 E(CRO): invoke-static/range, Ljava/lang/Math;->toRadians(D)D

5 E(CRO): ...

6 E(CRO): invoke-static/range, Ljava/lang/Math;->atan2(DD)D

7 E(CRO): cmpg-float

8 E(BRANCH): if-gtz

9 E(SINK): invoke-virtual, Landroid/media/AudioManager;->setRingerMode(I)V

�� �

Another example shows the internal logic of how the GPS data affect the display.
GPS Speedometer is a functional speedometer app with 50,000 - 100,000 downloads. It
displays the user’s location and travel history. One capacity-reducing pattern extracted
from this app is shown below. The sink is a display API setText. However, the pattern
shows that the GPS data go through multiple comparisons and branch opcodes to finally
decide the string to be displayed. Through manual analysis, we observed that the app
essentially compares the current bearing with a set of constant values and then decides
to display a string from N,NE,E,ES,S,SW,W,NW.

� �

1 E(SOURCE): Lcom/ape/apps/speedometer/SpeedometerMain;-> onLocationChanged(

Landroid/location/Location;)

2 E(CRO): invoke-virtual, Landroid/location/Location;->getBearing()F

3 E(CRO): cmpl-double

4 E(BRANCH): if-gez

5 E(CRO): cmpg-double

6 E(CRO): ...

7 E(BRANCH): if-gez

8 E(SINK): invoke-virtual, Landroid/widget/TextView;-> setText(Ljava/lang/CharSequence;)V

�� �

2) In-App Usage: Capacity-preserving Pattern. Information display is one important
feature for apps to rich their functionality and convenient users. 25 apps displayed GPS-
related information, such as position and signal strength of satellites, accuracy, speed,
acceleration and altitude. We observed the following UI-related sinks: TextView(19),
Canvas(7), Toast(3), RemoteViews(2), EditText(1), Notification(1).

254 X. Li, X. Dong, and Z. Liang

0 10 20 30 40

Tier 5 (16)

Tier 4 (22)

Tier 3 (25)

Tier 2 (38)

Tier 1 (28)

Tier 1: In-App Usage: Capacity-reducing Pattern

Tier 2: In-App Usage: Capacity-preserving Pattern

Tier 3: Share: Known Trusted Services

Tier 4: Share: Advertising Libraries

Tier 5: Share: Uncertain Parties

Fig. 3. Ranking Results of Extracted Patterns

0 20 40 60 80 100

0

100

200

300

App ID

A
n
a
ly
si
s
T
im

e
(s
)

Fig. 4. Analysis Time Distribution

30 apps logged the GPS data locally. 13 of them directly sent the data to the LogCat,
which is a public channel for all the installed apps with the READ LOGS permission.
However, through manual analysis on the path condition, we found most of them only
logged the GPS data in debug mode. This can be verified through the dynamic instru-
mentation framework [18]. We also observed other logging channels: database(10),
Bundle(4), Java/IO(8) and SharedPreferences(6).

3) Share: Known Trusted Services. From our statistic in this category, 25 apps used
Google map service while the rest 9 used other third-party services.

4) Share: Advertising Libraries. In-app advertising has become an important revenue-
generating model for mobile apps. Many of them requested the GPS location for provid-
ing targeted advertisement. We observed 22 apps include advertising/analytics libraries
potentially accessing the location data from 18 different advertising providers. Com-
monly one app includes multiple advertising libraries to increase its ads revenue.

5) Share: Uncertain Parties. We also observed that 8 apps share the GPS via IPC
channels. For the rest uncertain scenarios, we observed the following sinks: org/a-
pache/*/HttpPost (5), java/net/DatagramSocket (1), WebView→loadDataWithBaseURL
(1) and sendTextMessage (1). We manually analyzed the WebView and SMS scenarios.
In the app GPS QIBLA LOCATOR, it uses the WebView API to load an iframe with
a URL composed of a fixed third party domain and the geolocation as the parameters.

A Usage-Pattern Perspective for Privacy Ranking of Android Apps 255

Mobile Chase-GPS Tracker registers an onLocationChanged listener, inside which it
composes an SMS message using the location information and sends it to a phone num-
ber stored in the SharedPreferences.

3.2 Analysis Time

Figure 4 shows the distribution of analysis time for all the apps. Note that the analysis
time excludes the apk parsing that can be pre-processed. The average of analysis time
is about 27s per app. 35% of apps finished within 1 sec, due to the simple flow of the
location data in them. Within one minute, we achieved 87% coverage. Comparing with
other analysis tools [1, 19] at the scale of minutes or larger for real-world apps, the
average analysis time of our approach is sufficiently small for ranking a large number
of Android apps.

4 Conclusion

To provide users with more intuitive measures to understand how apps treat their pri-
vacy, we build a tool PatternRanker to automatically extract the data usage pattern to
express it. Comparing to existing taint-based techniques that focus on detecting the
presence of one flow, our approach effectively identifies the key operations in the flow.
Our experiments on the real-world apps demonstrate its effectiveness and efficiency for
ranking a large number of apps.

Acknowledgments. We thank anonymous reviewers for their valuable feedback. We
thank Prateek Saxena for his comments on an early presentation of this work. This re-
search is partially supported by the research grant R-252-000-519-112 from Ministry
of Education, Singapore. Xinshu Dong is supported by the research grant for the Hu-
man Sixth Sense Programme at the Advanced Digital Sciences Center from Singapore’s
Agency for Science, Technology and Research (A*STAR).

References

1. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
McDaniel, P.: FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In: PLDI (2014)

2. Chan, P.P., Hui, L.C., Yiu, S.M.: DroidChecker: Analyzing Android Applications for Capa-
bility Leak. In: WISEC (2012)

3. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege Escalation Attacks on
Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS,
vol. 6531, pp. 346–360. Springer, Heidelberg (2011)

4. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.: TaintDroid:
an Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones. In:
OSDI (2010)

5. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Application Security.
In: USENIX SECURITY (2011)

256 X. Li, X. Dong, and Z. Liang

6. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android Permissions: User
Attention, Comprehension, and Behavior. In: SOUPS (2012)

7. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: Automatically Detecting
Potential Privacy Leaks in Android Applications on a Large Scale. In: Katzenbeisser, S.,
Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.) Trust 2012. LNCS,
vol. 7344, pp. 291–307. Springer, Heidelberg (2012)

8. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic Detection of Capability Leaks in Stock
Android Smartphones. In: NDSS (2012)

9. Heusser, J., Malacaria, P.: Quantifying Information Leaks in Software. In: ACSAC (2010)
10. Hoffmann, J., Ussath, M., Holz, T., Spreitzenbarth, M.: Slicing Droids: Program Slicing for

Smali Code. In : SAC (2013)
11. Jeon, J., Micinski, K.K., Foster, J.S.: SymDroid: Symbolic Execution for Dalvik Bytecode.

Technical Report CS-TR-5022, Univ. of Maryland (2012)
12. Kim, J., Yoon, Y., Yi, K., Shin, J.: ScanDal: Static Analyzer for Detecting Privacy Leaks in

Android Applications. In: MOST (2012)
13. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: CHEX: Statically Vetting Android Apps for Com-

ponent Hijacking Vulnerabilities. In: CCS (2012)
14. McCamant, S., Ernst, M.D.: Quantitative Information Flow as Network Flow Capacity. In:

PLDI (2008)
15. Rasthofer, S., Arzt, S., Bodden, E.: A Machine-learning Approach for Classifying and Cate-

gorizing Android Sources and Sinks. In: NDSS (2014)
16. Sbı̂rlea, D., Burke, M.G., Guarnieri, S., Pistoia, M., Sarkar, V.: Automatic Detection of Inter-

application Permission Leaks in Android Applications. Technical Report TR13-02, Rice Uni-
versity (2013)

17. Wu, L., Grace, M., Zhou, Y., Wu, C., Jiang, X.: The Impact of Vendor Customizations on
Android Security. In: CCS (2013)

18. Yan, L.K., Yin, H.: DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic
Views for Dynamic Android Malware Analysis. In: USENIX SECURITY (2012)

19. Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., Wang, X.S.: AppIntent: Analyzing Sensitive
Data Transmission in Android for Privacy Leakage Detection. In: CCS (2013)

Privacy Leakage Attacks in Browsers

by Colluding Extensions

Anil Saini1, Manoj Singh Gaur1, Vijay Laxmi1,
Tushar Singhal1, and Mauro Conti2

1 Malaviya National Institute of Technology, Jaipur, India
{anil.cse,gaurms,vlgaur,tushar.singhal}@mnit.ac.in

2 University of Padua, Italy
conti@math.unipd.it

Abstract. Browser Extensions (BE) enhance the core functionality of
the Browser and provide customization to it. Browser extensions enjoy
high privileges, sometimes with the same privileges as Browser itself. As a
consequence, a vulnerable or malicious extension might expose Browser
and system resources to attacks. This may put Browser resources at
risk of unwanted operations, privilege escalation etc. BE can snoop on
web applications, launch arbitrary processes, and even access files from
host file system. In addition to that, an extension can even collude with
other installed extensions to share objects and change preferences. Al-
though well-intentioned, extension developers are often not security ex-
perts. Hence, they might end up writing vulnerable code. In this paper
we present a new attacks via Browser extensions. In particular, the at-
tack allows two malicious extensions to communicate and collaborate
with each other in such a way to achieve a malicious goal. We identify
the vulnerable points in extension development framework as: (a) ob-
ject reference sharing, and (b) preference overriding. We illustrate the
effectiveness of the proposed attack using various attack scenarios. Fur-
thermore, we provide a proof-of-concept illustration for web domains
including Banking & shopping. We believe that the scenarios we use in
use-case demonstration underlines the severity of the presented attack.
Finally, we also contribute an initial framework to address the presented
attack.

Keywords: Cyber Attacks, Browser Attacks, Script-based Attacks, Ma-
licious Scripts, Extension-based Attacks, Browser Vulnerabilities.

1 Introduction

Modern web Browsers support an architecture that allows third-party extensions
to enhance the core functionality of the Browser [3]. For example, Firefox pro-
vides millions of free extensions to customize and enhance the look and feel of
the Browser and enrich rendering of multimedia web content. Firefox provides
extensions code to run with full chrome (chrome is the entities making up the
user interface of a specific application or extension) privileges including access to

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 257–276, 2014.
c© Springer International Publishing Switzerland 2014

258 A. Saini et al.

all Browser components, OS resources such as file system and network services,
Browser DOM (Document Object Model) [2], and all web page elements. Con-
sequently, malicious and benign vulnerable extensions are significant security
threats. The authors have shown that malicious extension could spy on users
and install malwares [5, 13].

The Browser extension system provides XPCOM (Cross Platform Component
Object model) interface APIs that allow one extension to communicate with the
objects of other extensions. These interfaces if exploited by malicious extensions
could lead to critical attacks. For example, consider two legitimate extensions
with the following functionalities: the first extension (X) has the functionality
to capture information from any web page whereas the second extension (Y)
is able to communicate with network channel. Individually, the functionality
of these extensions looks benign, and their information flow, when analysed,
cannot be considered as malicious. However, if X is able to communicate sensitive
information to Y, this flow could be considered as malicious. Both X and Y can
send critical information captured from a web page to the attacker through the
network channel. Since attack is the combined activities of two extension, it will
not be detected by a method that analyzes individual extension statically or
dynamically.

The current research for detecting malicious flow in extensions is primarily
focused on an assumption that a single extension can only be used as a source
of attack. The paper demonstrates the weakness of this assumption, shows how
two legitimate extensions with benign functionality can communicate with each
other to deploy critical attacks. Several methods have been proposed to detect
malicious or vulnerable extensions [12,14,16]. In this paper, we focus on two of
the more popular ones: VEX [12], and SABRE [14]. These methods are able to
detect the vulnerable points or tainted JavaScript objects in a Browser extension.
Unfortunately these methods check tainted objects or flow originating within an
extension only. In particular, these methods do not examine whether the source
has originated from some other extension. This is the primary reason why these
methods are not effective for resulting from colluding extensions.

In this paper, we discuss the weaknesses of Firefox extension system in han-
dling JavaScript objects. This will lead to some vulnerable points, which an at-
tacker can exploit. We also present a proof-of-concept of the attacks showing how
a reference of the JavaScript object of one extension can be invoked by another
extension for accessing and sharing critical information. This suspicious nature
is difficult to capture with the known detection approaches [12] [14]. We have ad-
dressed the exploitable coding features in two important XPCOM interfaces [7],
and JavaScript Wrapper method offered by Firefox. We have demonstrated our
finding on different web domain applications and showed how two legitimate
extensions can collude with each other to achieve malicious goals in a Browser.

The rest of the paper is organized as follows. In Section 2, we describe a back-
ground of XPCOM framework and interfaces. A discussion on how colluding
extensions can carry out a malicious activity through inter-extension communi-
cation is discussed in Section 4. In Section 5, we present the implementation

Privacy Leakage Attacks in Browsers by Colluding Extensions 259

and evaluation of attacks. Section 6 presents few suggestion about the mitiga-
tion techniques. Section 7 surveys the related work and Section 8 presents our
conclusion and describes future work.

2 Background and Assumptions

In this section, we present XPCOM framework in brief highlighting the compo-
nents that are subject to be exploited.

XPCOM Framework: XPCOM is a cross platform component object model,
similar to Microsoft COM [24], which provides a set of core components, classes
related to file and memory management, threads, basic data structures (strings,
arrays, variants), etc. The interaction of Firefox components and its extension
are shown in Figure 1. The extensions in Firefox Browser interact with Browser
components through XPCOM framework, which provides variety of services
within the Browser, such as file system access, process launching, network access,
Browser components and APIs access. The JavaScript in extension uses XPcon-
nect [8] to invoke XPCOM components. XPConnect act as a bridge between
JavaScript and XPCOM. The user interface of Firefox extension is programmed
using XUL (XML User Interface Language). Firefox extensions can randomly
change the user interface of the Browser via a technique known as overlays [9]
written in XUL. CSS are used to add the presentation and visual styles to the
Firefox extension.

Fig. 1. XPCOM Architecture View in Firefox Extension System

260 A. Saini et al.

Extension Development: Firefox supports a variety of languages such as XUL
(XML User Interface Language), JavaScript and CSS (Cascading Style Sheets)
for extension development. It is quite very easy for an attacker to develop ma-
licious extensions for deploying attacks on to Browsers. In [18, 20], we have
presented various weaknesses in Firefox extensions that can be used for mali-
cious purpose and few attacks against a number of popular Firefox extensions.
An inexperienced user might install a Browser extension by accident, without
knowing the consequences.

Assumptions: In this paper, we assume that colluding extensions are installed
in the Browser of the victim. The attacker may supply extensions either using so-
cial engineering techniques or adding them to Mozilla Add-ons database, may be
at different times to evade detection of collusion. As, individually, an extension
is benign, it could be added to Mozilla Firefox add-on store. Also, user believ-
ing that it is safe to download from this database, may download and install
the extensions. Throughout this paper we discuss about extensions or Browser
extensions that are compatible with Firefox Browser.

3 XPCOM Interfaces

An interface in Mozilla is a definition of a set of functionalities that could be
implemented by XPCOM components. Each component implements the func-
tionality as described by interfaces. A single component might implement mul-
tiple interfaces, and multiple components might implement the same interface.
XPCOM components are typically implemented natively, which means that they
generally do things that JavaScript cannot do itself. However, there is a way in
which you can call them by creating an instance of an interface. We can call
any of the functions provided by the component as described by the interfaces
it implements. For example, a File interface describes properties and functions
that can be performed on files. A file would need properties for its name, modi-
fication date and its size. Functions of a file would include moving, copying and
deleting it. The File interface only describes the characteristics of a file, it won’t
provide any implementation. The implementation part of the File interface is
provided by components. The component will have code which can retrieve the
file’s name, date and size. In addition, it will have code which copies and renames
it. Thus, we can use a component by accessing it using the functions we know
from the interface.

In Mozilla, interfaces are usually preceded by nsI or mozI so that they are
easily recognized as interfaces. For example, the nsIFile is the interface for
interacting with a File System, nsICookie is used for accessing JavaScript or
HTTP cookies. In this paper, We focus on two interfaces: (i) nsIObserver, and
(ii) nsIPrefService. We will discussed these interfaces in details in Section 4.

3.1 Interface Security Risks

To enhance the Browser functionality and get customizable features, Firefox pro-
vides extentions to execute with full Browser privileges. To gain system access

Privacy Leakage Attacks in Browsers by Colluding Extensions 261

(OS, Network and Browser components), an extension uses XPCOM interface
that provides APIs to communicate with Web applications, Browser, and Op-
erating System (OS) components. Figure 2 illustrates the privileges associated
with a JavaScript code. The JavaScript-based Extensions (JSEs) and Chrome
JavaScript can access the Browser and the OS components by invoking meth-
ods described in interfaces whereas the Web Application JavaScript cannot call
XPCOM interface. Additionally privileges gained through XPCOM interfaces
are not restricted by any Browser policy. For example, the web applications are
bound with same origin policy (SOP) [25] but extensions can override this and
access cross-domain components. These unbounded restricts makes an extension
potential source of Browser attacks.

Fig. 2. Scripting Permissions on Firefox extension

Unrestricted access, powerful privileges, and ease in development make these
interfaces very popular among extension developers. As these developers are
often not security experts, there is strong possibility of bugged/vulnerable code
that is liable to exploitation by malicious extensions. We have considered some of
the critical functionalities provided by interface methods that may pose security
risks in Browsers. We classified security risk in terms of attack vector that defines
the key attack areas used by an attacker i.e. likelihood of attack. An attack vector
represents different domains of Browser system targeted by an attacker through
XPCOM interfaces. We categorize the actions performed by an attacker into
different attack vectors as shown in Table 1 that also lets the interface used to
invoke the resources, the severity of an attack action (critical, high, moderate
and low). For example, the information accessed from password fields, cookies is
always critical to user and hence rated critical. Interfaces which allows to access
arbitrary files and processes on host system are also very critical because using
them an attacker can launch a malware process and alter user files. Mozilla and
Chromium define the security severity ratings [10] [11] based on the information
flows among various resources.

262 A. Saini et al.

Table 1. Attack Vectors for Extension-based Attacks

S.no Attack Class Resources Accessed Interface Used Rating
Exploited

1. Accessing Password DOM nsIDOMNode, Critical
from Web page nsIDOMElement

2. Launching arbitrary Invoke Process nsIProcess Critical
local application

3. Cross-domain access Network Channel nsIXMLHttpRequest, High
and violation nsIHttpChannel,

nsITransport

4. Profile Attack [20] File System nsIFile, Critical
nsILocaFile,

nsIOutputStream

5. Accessing Confidential DOM nsDOMNode, High
hata nsIDOMElement

6. Stealing Local Files File System(OS) nsIInputStream, High
nsIFileInputStream,

nsILocalFile,

nsIFile

7. Accessing Browser Browser Components nsIBrowserHistory, Moderate
history nsIGlobalHistory

8. Accessing Stored Password Manager nsILoginManager, Moderate
passwords nsILoginManagerStorage

9. Accessing events Keyboard & nsIEventListenerService Moderate
Mouse events

10. Session stealing Cookie manager nsICookieManager, Critical
nsICookie,

nsICookie2,

nsICookieService

11. Accessing Bookmarks Bookmark Service nsINavBookmarksService Low

12. Setting Browser Preference System nsIPrefService, High
preferences nsIPrefBrach

13. Setting Extension Preference System nsIPrefService, High
preferences nsIPrefBrach

14. Accessing Page DOM nsIDOMNode, Low
Information(Images/text) nsIDOMElement

15. Turn on/off private Browser Component nsIPrivateBrowsingService Moderate
browsing mode

16. Access to Windows Registry nsIWindowsRegKey High
windows registry

system

4 Extension Communication

Sometimes the Browser needs to send a message from one component to another
component leading to inter component communication. For example, a Browser
might want to notify another component that a task is completed by a particu-
lar component. This may lead to several different actions to be performed by the

Privacy Leakage Attacks in Browsers by Colluding Extensions 263

other component. Browser extension system provides us this feature so that a
user can access different components. XPCOM offers an easy way to achieve this
functionality using observers and the observer service interfaces. Also, Browser
does not provide any isolation among multiple extensions running simultane-
ously in same address space. So if an extension X is accessing some information
through component C1 and notifies to extension Y . Extension Y may have tran-
sitive access on information which was accessed by C1. An attacker can exploit
of this inter-extension communication to deploy privacy leakage attacks.

4.1 Communication Interface: nsIObserverService

Observers are objects that are notified on occurrence of an event. Using them
is a good way for objects to pass messages to each other without the ob-
jects having explicit knowledge of one another. Firefox provides an interface
called nsIObserverService to allow a client listener to register and unregister
a nsIObserver object. This service provides methods used to dynamically add
or remove an observer from a notification topic. It also provides APIs to notify
registered listeners and a way to enumerate registered client listeners. To register
for any event, an object first must implement the nsIObserver interface, only
after the observer service implementing nsIObserverService can notify an ob-
ject of registered events by means of this interface. Listing 1.1 shows an example
code for implementing nsIObserver that is registered to receive notifications for
the topic myTopicID. Lines 1-3 create an object myObserver which listens noti-
fication on a string myTopicID with a weak reference. Line 5 creates an object
observerService of nsIObserverService interface. The function in lines 6-9
is called when notification occurs. Once a notification occurs, the myObserver is
used for receiving the notification on string topic. The first parameter subject
is notification specific interface pointer whose action is being observed, topic is
the string on which the notification occurred, and data is auxiliary data describ-
ing the resultant change or action. Lines 10-11 add the observer on myTopicID,
which is observed by myObserver in line 7 and the lines 13-14 are used to un-
register myTopicID.

1 obse rve r = new myObserver () ;
2 func t ion myObserver () {
3 t h i s . r e g i s t e r () ;
4 }
5 var ob s e r v e rS e rv i c e = Components . c l a s s e s [”@mozi l la . org /

observer−s e r v i c e ; 1 ”] . g e t s e r v i c e (components . i n t e r f a c e .
n s IObse rve rServ i c e) ;

6 myObserver . prototype = {
7 obse rve r : func t ion (subject , top ic , data) {
8

9 // ex ten s ion statements here
10 } ,
11 r e g i s t e r : func t ion () {
12 ob s e r v e rS e rv i c e . addObserver (th i s , ”myTopicID” , f a l s e) ;

264 A. Saini et al.

13

14 } ,
15 un r e g i s t e r : func t ion () {
16 ob s e rv e rS e rv i c e . removeObserver (th i s , ”myTopicID”) ;
17 }
18 }

Listing 1.1. Code for Registering an Observer

Modes of Operation: In this section, we have presented two modes of op-
eration using which one extension can share reference of an object with other
extension. So, one extension can access an object of other and call functions from
that reference. This reference can be used for invoking functions. For example, if
an one extension X has a method to access the cookie information, and another
extension Y has a method to send information to a remote site. Exploiting to
the method of Y , X can send this information on the remote site. Data leakage
can be enacted in following ways.

– Mode 1: In this mode, X use an object of Y that defines myStr. X cre-
ates an observer on myStr. Y passes a reference of an object Obj through
wrappedJSObject using notifyObservers() method to X . Now X object
call method of Y with Obj’s reference using sub variable. As illustrated in
Figure 3, X is calling anyMethod() of Y using Obj’s reference. The code
snippet and interaction flow of two extensions is shown in Figure 3.

Fig. 3. Mode-1 showing how Extension X can use an object of Extension Y using
notifyObserver method

– Mode 2: We show one more way to set colluding interaction between two
extensions. In this mode, Y can use an object of X that has created an
observer on myString. X passes a reference to an object myObj through
wrappedJSObject to Y . In this case, the enumerateObserver() is used by
Y to enumerate all observers registered for topic myString. Subsequently,
Y can access the reference of the object passed by X , and can call method
of X with myObj’s reference. The code snippet and interaction flow between
two extensions are illustrated in Figure 4.

Privacy Leakage Attacks in Browsers by Colluding Extensions 265

Fig. 4. Mode-1 showing how Extension X can use an object of Extension Y using
notifyObserver() method

4.2 Preferences Interface: nsIPrefService

Preferences API allows an extension to read and write strings, numbers, booleans,
and references to files to the preferences store. It is relatively easy to use, while
providing a number of useful development features, including support for de-
fault preferences, preference overrides via user.js, and locking. The prefer-
ences API is part of XPCOM components and interfaces. Firefox supports; (1)
nsIPrefService interface, which allows to manage the preferences files and also
facilitates access to the preference branch object, (2) nsIPrefBranch that can
be used for direct manipulation of preferences data. For example, in the Home
Page Scheduler, the default home page URL and all the scheduled home pages
need to be saved somewhere so that each time the user opens Firefox the data is
available. Firefox provides you with the Preferences System for these tasks. We
can see all of the currently stored preferences in Firefox using about:config into
the location bar. This page will show you a listing of all the current preferences
and their values, such as, Browser.startup.homepage tells the Browser what page
to load when the user wishes to visit their home page.

From the attacker’s perspective, these preferences can be set or modified for
achieving malicious goals. For example, an attacker, through a malicious exten-
sion added to victim’s Browser can set a malicious page as a home page. He
can also modify the critical preferences of security tool such as noscript [19],
change Browser’s privacy settings allowing access to private data etc. In Firefox,
an extension has privilege to change the preferences of Browsers as well as any
other extension. In this paper, we will show how two preference management
interfaces (nsIPrefService and nsIBranch) can be used by attacker to set or
reset the stored preferences. We describe two potential attack points that can
be exploited by an attacker through preferences system.

– Changing Browser’s Preferences: Browser has many security related
preferences, such as, enable/disable cookies/JavaScript, privacy settings etc.
An attacker can set or reset critical Browser preferences through an
extension having privileges to override the default preferences values. For
example, we can disable the Firefox pop-up blocking by setting dom.disable
open during load preference value to true. Figure 5 shows an example for
changing preference of the Browser.

266 A. Saini et al.

Fig. 5. Changing privacy settings of web Browser

– Changing Extension’s Preferences: Some extensions use preferences
for customizing itself. For example, noscript provides the preference to set
whitelisting URLs so that it can be bypassed. An extension can change these
preferences without user’s notice. We have implemented an extension for by-
passing noScript(a security tool provided by Firefox) using nsIprefService.
Our extension is able to change critical preferences of noScript. We have
added a malicious domain(eg. malicious.com) in noScript using capability.
policy.manoscript.sites preference string, so that it bypasses all its secu-
rity checks provided by noScript for that domain. The code snippet of our
extension is shown in Figure 6.

Fig. 6. Changing Preference of NoScript Extension

5 Browser Attacks and Evaluation

We have presented two techniques for achieving privacy leakage as follows:

– Object collusion technique using sharing of object references.
– Collusion through Preference technique by changing Browser and extension

preferences.

In Object Collusion technique, we demonstrate the impact of collusion-based
attack on three major web domains; Banking, Online Shopping, and domains
that offer Download credits. Using proposed techniques, we present a modified
version of attack that is derived from MitB (Man-in-the-Browser) attack, a well

Privacy Leakage Attacks in Browsers by Colluding Extensions 267

known Banking Trojan [15]. The major goals of this attack are; (1) Stealing user
assets, such as, login credentials, (2) Modifying current web bank transaction on
the fly, and (3) Modifying web pages contents on the fly without victim’s no-
tice. The potential attack vector for MitB attack is through malicious Browser
extension. Once installed into Browser as an extension, this gets activated when
user visits target web sites, such as Bank websites. In collusion through pref-
erence technique we demonstrate the impact of insecurely configured Browser
and extension preferences. We have analysed only security relevant preferences
of Browser and popular security extensions.

5.1 Object Collusion Technique

This technique demonstrates a new way of launching the MitB attack using two
legitimate extensions, so that even a client side solutions [12] [14] won’t be able
to detect malicious flow and vulnerability by analyzing these extensions individ-
ually. We have randomly selected ten legitimate Firefox extensions from Mozilla
add-on database and modified these by adding inter-communication functional-
ity discussed in Section 4. These modified extensions are installed on different
versions (3, 9, 12 and 25) of Firefox. We then apply test case scenarios of selected
web sites of three domains.

Object Collusion Attack Scenario-1: The first attack scenario for collusion-
based attack consists of two benign extensions. FirstX can read the critical infor-
mation from a Web page whereas the second Y has functionality to communicate
over network channel. Figure 7 shows various steps taken by two extensions to
achieve malicious goal of privacy leakage.

Fig. 7. Scenario-1 showing how credentials can be stolen

268 A. Saini et al.

– Y takes user credential from Browser DOM tree and send its object’s refer-
ence to X .

– X then use this reference to access the DOM information from Y and send
it over network channel to attack domain.

The code snippet of two extensions are shown in Figure 8.

Fig. 8. Code snippet for Scenario-1

Object Collusion Attack Scenario-2: This scenario will demonstrate the
modification of web page information on the fly. We illustrate this scenario
through an example of the web sites that offer an user to buy download credits
(torrents, file hosting, warez sites, etc.). These web sites allow you to create an
userID with credentials and payment details. We have implemented two exten-
sion to steal user credits in a way the credit provider server does not notice.
Figure 9 shows various steps taken by two extension in collusion to modify cur-
rent user details. At the time of account creation, our attack modifies the user
details without victim’s notice.

– X will read the information from web page DOM.
– X will wrap the reference of an object carry web page information accessible

to extension Y .
– Y will modifies the user details and finally when victim user click on submit

button, the modified information is sent to the credit server, and with this
our account will be created on the server with download credits.

The code snippet of two extensions is shown in Figure 10.

Object Collusion Attack Scenario-3: In this scenario, we demonstrate how
an attacker can dynamically add new fields on the current page. We have con-
sidered on-line shopping websites as an example to demonstrate this attack.
Suppose a victim user wants to buy some item he has selected from a shopping
web site. We have implemented an attack using two extensions having follow-
ing functionalities; first it modifies the shipping address and mobile number of

Privacy Leakage Attacks in Browsers by Colluding Extensions 269

Fig. 9. Scenario-3 showing how a new field can be added and sent to attacker domain

Fig. 10. Code snippet for Scenario-2

purchaser and second it adds new field to steal payment details of victim user.
Figure 11 shows various steps taken by two extension to create this attack. As
a victim provides various details such as name, shipping address, mobile no etc.

– Y in reads all information from page DOM and at the same time it adds
new field to web page asking for payment details.

– Y wrap the reference of an object carry web page information accessible to
X .

– X modifies the user details.

– When victim user clicks on submit button, the modified information is sent
to the credit server, payment information is sent to attacker server.

The X remains legitimate because it modifies the information captured from
sensitive source but this information is not sent to sink, instead this information
is captured by Y . The code snippet of two extensions is shown in Figure 12.

270 A. Saini et al.

Fig. 11. Scenario-2 showing how transactions can be modified on the fly

Fig. 12. Code snippet for Scenario-3

5.2 Results for Colluding Objects Technique

Table 2 summarizes the experimental results for Object Collusion attack. We
have tested the attack using three different attack scenarios and found following:

– Scenario-1 is 100% successful against shopping and Download credit domain
whereas only few bank websites allow the extensions capture credential in-
formation. Our attack is able to capture username from banking login page
but the password is hashed. In one-third of 50 banking websites our attack
scenario is able to extract both username and password from bank login
page.

– Second attack scenario is 100% successful for all the web sites that we tested.
Every website allowed our extension to modify the typed content on the fly.

Privacy Leakage Attacks in Browsers by Colluding Extensions 271

This scenario is critical for every shopping and buy credit domains that are
tested. We have not applied this attack on banking domains.

– The third attack scenario is successfully executed on 78% is of shopping
domains and 80% of buy credit domains. Other domains did not allowed to
add extra field on the page and if field is successfully added they won’t allow
to proceed further. The web domains maintain session with every text field
using type=hidden for HTML input tag. When a new field is added to web
page, the session is changed and this effectively mitigates the attack. We
have not applied this attack on banking domains.

Table 2. Results for Attack scenarios executed on web domains

Banking
Domains(50)

Shopping
Domains(50)

Buy Credit
Domains(50)

Success Success Success

Scenario - 1 22% 100% 100%

Scenario - 2 Not Applied 100% 100%

Scenario - 3 Not Applied 78% 80%

5.3 Collusion through Preference Changes Evaluation

This technique demonstrates how mis-configured preferences can result in critical
Browser attacks. We have selected five security relevant preferences of Browser
and three popular Browser security extensions; (1) noscript, (2) web of trust,
and (3) adblock. We have implemented one extension, which is able to change
the selected preferences. Our extension is installed on different versions (3, 9, 12
and 25) of Firefox. This extension modifies the selected preferences with insecure
values and for each preference we have evaluated Browser security. Table 3 shows
the five critical Browser preferences and preferences of three security extensions
modified by our extension.

5.4 Effectiveness of Colluding Attacks over MitB

We have implemented our extensions in such a way that even a client side so-
lutions [12, 14] would not be able to detect malicious flows and vulnerabilities.
VEX and SABRE check the suspicious flow pattern from injectable sources to
executable sinks. VEX uses static analysis technique to check whether an in-
formation flow is from sensitive source to sink. Our extensions contains either
sensitive source or sink flow but not both. However, the legitimate functionality
of an extension may cause such flows but that will be discarded by current frame-
work of both the methods. Since a single extension has no suspicious flow and
vulnerability detected it will be passes as legitimate by VEX. We have checked
our extension against another solution framework called SABRE. It uses dy-
namic technique to check malicious flow from sensitive source to sink, which is
not found while an extension scanned individually.

272 A. Saini et al.

Table 3. Results showing Browser security leaks using preferences

Preference Risk after modifying preferences

Critical Browser Preferences

security.csp.enable enable/disable the content
security policy of Browser

dom.disable open during load Allows allows pop-up windows
on Browser if set to true

dom.popup allowed events Adding entries to this list
may allow unwanted pop-ups

extensions.update.url Adding malicious url using
this preference will change
extension update source

Browser.safebrowsing.malware.enabled Do not download malware blacklists
& do not check downloads if set to false

noscript Extension

capability.policy.manoscript.sites Adding url to this preference will bypass all
the security checks provided by noScript

adblock Extension

extensions.adblockplus.whitelistschemes Using this preference an attacker can

add and remove whitelisting rules

Web of Trust Extension

weboftrust.norepsfor Adding malicious domain using this
preference will bypass the malicious domains

6 Mitigation Techniques

In this section, we propose possible mitigation techniques for aforementioned
collusion attacks caused.

– Sandboxing: We explored SpiderMonkey, a JavaScript engine for Mozilla
Firefox Browser, and found few weaknesses in handling the JavaScript ob-
jects. SpiderMonkey creates top-level object called JSRuntime object that
represents an instance of the JavaScript engine. A program typically has
only one JSRuntime, though it may have many threads. JSRuntime is the
area where all the memory of the extension is global. The JSRuntime is
the universe in which JavaScript objects live; they can’t travel to other JS-
Runtimes. The JSContext is a child of the JSRuntime. A context can run
scripts, contains the global object and the execution stack. Once created, a
context can be used any number of times for different scripts. Objects may
be shared among JSContexts within a JSRuntime. There’s no fixed associ-
ation between an object and the context in which it is created. Since, the
memory is common for all extensions, and hence objects of one extension
are accessible to other extension as well. We suggest a sandbox environment
for extensions so that their memory spaces are isolated from each other, and
any communication should be through Browser kernel. Sandboxing through

Privacy Leakage Attacks in Browsers by Colluding Extensions 273

visualization shall mitigate such attacks. Alternately, binding between ob-
ject and the its context be strengthened and violation of the binding be not
allowed by default.
Few modern Web Browser components run in a sandbox environment with
restricted privileges. Browser critical component, such as, the rendering en-
gine runs in a sandbox with restricted privileges and no direct access to the
local file system or other OS level components. For example, in Chrome ar-
chitecture rendering engine runs in a sandbox and has no direct access to the
local file system. When uploading a file, rendering engine uses Browser ker-
nel API for file upload. Apart from Sandbox environment, the web Browser
provides isolation among web programs and modularizes their execution by
assigning each web program or Browser tab to the specific operating system
process within the Browser. Browser provides single and shared space for
all the extensions. In some Browsers the extensions are isolated from other
Browser components but not from other extensions, and thus, runs is same
address space. If each extensions runs in separate address space just link web
page tabs in Chromium Browser, their objects are isolated from each other
and cannot communicate directly.

– Improving Client Side Solutions: We have analyzed two popular client
side solutions, VEX [12] and SABRE [14] that are effective against vulner-
able and malicious extensions. We found that these solutions are meant for
analyzing single extension at a time, and hence remain ineffective if a mali-
cious flow originates from two inter-communicating extensions. To mitigate
such attacks, VEX (static analysis) should consider the objects created by
nsIObserverService as sensitive source as they can pass on sensitive infor-
mation to other extensions.

– Reported Solutions for MitB and Similar Attacks: Several solutions
to protect against the MitB problem have been suggested. These third-party
solutions can be adapted to mitigate information stealing from Browser.
These solution need to incorporate in Browser analysis of installed extensions
before these are accepted for extension by Browsers [1, 4, 6].

7 Related Work

Recently, the authors in [18] considered a more practical approach and demon-
strate examples of possible attacks on Firefox extensions. They discussed the
possible vulnerability is in existing Firefox extensions, which could be exploited
to launch concrete attacks such as remote code execution, password theft, and
file system access. Liu et al. [17] scrutinize the extension security mechanisms
employed by Google Chrome against ”benign-but-buggy” and malicious exten-
sions, and evaluate their effectiveness. They propose changes to Chrome to make
malware easier to identify. The work by Ter Louw et al. [21] highlighted some
of the potential security risks posed by Firefox extensions. They proposed run-
time monitoring of XPCOM calls for detecting suspicious activities in exten-
sions. To the best of our knowledge, no one considered yet an attack caused

274 A. Saini et al.

due to inter-communication between objects of two extensions, where individual
extension performs legitimately but their combined functionality could lead to
an attack. We have found this weakness in Firefox Browser and implemented
proof-of-concept for the same.

The analysis of MitB attack was first introduced by P. Guhring [15], in which
he presented the detailed description of the problem, identified the various points
of attacks, the methods of attack and also suggested possible countermeasures
for the MitB attack. A comprehensive review on the Browser extensions based
MitB Trojan attack, poses a serious and growing threat to the online banking
customers has been presented by Utakrit in [23]. In this the author has analysed
the MitB attack for online banking transactions and suggested some mitigation
techniques. In [22], Dougan and Curran have presented a comprehensive study
on the MitB attacks, its variants Trojans. The author has examined the at-
tack with reference to its control structure, data interaction techniques, and the
methods for bypassing security. The MitB attacks can be detected by client side
solutions, such as [12] [14] if it uses Browser extensions as an attack vector.

8 Conclusion and Future Work

This paper presents a new security risks and exploits present in Firefox’s XP-
COM interfaces. We have presented collusion between extensions, and showed
how two legitimate extensions collude to achieve malicious goals. Our attacks
are undetectable by existing popular client site methods used for detecting ma-
licious flow and vulnerability in extensions. We have demonstrated our finding
by meeting malicious goal using two legitimate extensions on three critical web
domains; banking, online shopping, and Buy credit domains. We also provided
the proof-of-concept explaining how the multiple extensions can collaborate with
each other for compromising the Browser.

In future, we shall examine these security issues and devise effective coun-
termeasures to improve the existing solutions. In this work, we suggested some
possible approaches to mitigate this attack. In future work, we will implement
these techniques and improve the Browser against such dangerous attacks. Also,
we hope that Mozilla Firefox will consider these issues and come with secured
policy to provide users a secure browsing environment.

Acknowledgments. Mauro Conti is supported by a Marie Curie Fellowship
funded by the European Commission under the agreement n. PCIG11-GA-2012-
321980. This work has been partially supported by the TENACE PRIN Project
funded by the Italian MIUR (20103P34XC), and by the Project “Tackling Mobile
Malware with Innovative Machine Learning Techniques” funded by the Univer-
sity of Padua.

Privacy Leakage Attacks in Browsers by Colluding Extensions 275

References

1. Defeating man-in-the-browser. how to prevent the latest malware attacks against
consumer corporate banking,
http://download.entrust.com/resources/download.cfm/24002/

2. Document object model, https://developer.mozilla.org/en/docs/DOM
3. Mozilla developer network-extensions,

https://developer.mozilla.org/en/docs/Extensions

4. Protection against man-in-the-middle attacks,
http://www.ca.com/ /media/Files/whitepapers/protection-from-mitm-

mitb-attacks-wp.pdf

5. Security issue on amo,
http://blog.mozilla.com/addons/2010/02/04/

please-read-security-issue-on-amo/

6. Understanding man-in-the-browser attacks and addressing the problem,
http://ru.safenet-inc.com/uploadedFiles/About SafeNet/Resource Library/

Resource Items/WhitePapers-SFDCProtectedEDP/Man%20in%20the%20

Browser%20Security%20Guide.pdf

7. Xpcom interface,
https://developer.mozilla.org/en-US/docs/XUL/Tutorial/XPCOM_Interfaces

8. Xpconnect, https://developer.mozilla.org/en/docs/XPConnect
9. Xul overlays, https://developer.mozilla.org/en-US/docs/XUL_Overlays

10. Adam, B.: Severity guidelines for security issues. The Chromium Project,
http://dev.chromium.org/developers/severity-guidelines

11. Adamski, L.: Security severity ratings. MozillaWiki (2008)
12. Bandhakavi, S., Tiku, N., Pittman, W., King, S.T., Madhusudan, P., Winslett,

M.: Vetting browser extensions for security vulnerabilities with vex. Commun.
ACM 54(9), 91–99 (2011)

13. Caraig, D.: Firefox add-on spies on google search results,
http://blog.trendmicro.com/firefox-addo-spies-on-google-

search-results/

14. Dhawan, M., Ganapathy, V.: Analyzing information flow in javascript-based
browser extensions. In: Proceedings of the 2009 Annual Computer Security Ap-
plications Conference, ACSAC 2009, pp. 382–391 (2009)

15. Guhring, P.: Concepts against man-in-the-browser attacks
16. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: Jsflow: Tracking information flow

in javascript and its apis. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC 2014, pp. 1663–1671. ACM, New York (2014)

17. Liu, L., Zhang, X., Yan, G., Chen, S.: Chrome extensions: Threat analysis and
countermeasures. In: NDSS (2012)

18. Liverani, R.S., Freeman, N.: Abusing firefox extensions. In: Defcon17 (2009)
19. Maone, G.: Noscript
20. Saini, A., Gaur, M.S., Laxmi, V.: The darker side of firefox extension. In: Proceed-

ings of the 6th International Conference on Security of Information and Networks,
SIN 2013, pp. 316–320. ACM (2013)

21. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Extensible Web Browser Security.
In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 1–19.
Springer, Heidelberg (2007)

http://download.entrust.com/resources/download.cfm/24002/
https://developer.mozilla.org/en/docs/DOM
https://developer.mozilla.org/en/docs/Extensions
http://www.ca.com/~/media/Files/whitepapers/protection-from-mitm-mitb-attacks-wp.pdf
http://www.ca.com/~/media/Files/whitepapers/protection-from-mitm-mitb-attacks-wp.pdf
http://blog.mozilla.com/addons/2010/02/04/please-read-security-issue-on-amo/
http://blog.mozilla.com/addons/2010/02/04/please-read-security-issue-on-amo/
http://ru.safenet-inc.com/uploadedFiles/About_SafeNet/Resource_Library/Resource_Items/WhitePapers-SFDCProtectedEDP/Man%20in%20the%20Browser%20Security%20Guide.pdf
http://ru.safenet-inc.com/uploadedFiles/About_SafeNet/Resource_Library/Resource_Items/WhitePapers-SFDCProtectedEDP/Man%20in%20the%20Browser%20Security%20Guide.pdf
http://ru.safenet-inc.com/uploadedFiles/About_SafeNet/Resource_Library/Resource_Items/WhitePapers-SFDCProtectedEDP/Man%20in%20the%20Browser%20Security%20Guide.pdf
https://developer.mozilla.org/en-US/docs/XUL/Tutorial/XPCOM_Interfaces
https://developer.mozilla.org/en/docs/XPConnect
https://developer.mozilla.org/en-US/docs/XUL_Overlays
http://dev.chromium.org/developers/severity-guidelines
http://blog.trendmicro.com/firefox-addo-spies-on-google-search-results/
http://blog.trendmicro.com/firefox-addo-spies-on-google-search-results/

276 A. Saini et al.

22. Kevin, C., Timothy, D.: Man in the browser attacks. International Journal of Am-
bient Computing and Intelligence (IJACI) 4 (2012)

23. Utakrit, N.: Review of browser extensions, a man-in-the-browser phishing tech-
niques targeting bank customer. In: 7th Australian Information Security Manage-
ment Conference, p. 19 (2009)

24. Kindel, C., Williams, S.: The component object model: A technical overview
25. Zalewski, M.: Browser security handbook. Google Code (2010)

CORP: A Browser Policy to Mitigate

Web Infiltration Attacks

Krishna Chaitanya Telikicherla, Venkatesh Choppella,
and Bruhadeshwar Bezawada

Software Engineering Research Center,
International Institute of Information Technology (IIIT),

Hyderabad - 500032, India
KrishnaChaitanya.T@research.iiit.ac.in, Venkatesh.Choppella@iiit.ac.in,

Bezawada@mail.iiit.ac.in

Abstract. Cross origin interactions constitute the core of today’s col-
laborative Word Wide Web. They are, however, also the cause of ma-
licious behaviour like Cross-Site Request Forgery (CSRF), clickjacking,
and cross-site timing attacks, which we collectively refer as Web Infiltra-
tion attacks. These attacks are a rampant source of information stealth
and privacy intrusion on the web. Existing browser security policies like
Same Origin Policy, either ignore this class of attacks or, like Content
Security Policy, insufficiently deal with them.

In this paper, we propose a new declarative browser security policy
— “Cross Origin Request Policy” (CORP) — to mitigate such attacks.
CORP enables a server to have fine-grained control on the way different
sites can access resources on the server. The server declares the policy
using HTTP response headers. The web browser monitors cross origin
HTTP requests targeting the server and blocks those which do not com-
ply with CORP. Based on lessons drawn from examining various types
of cross origin attacks, we formulate CORP and demonstrate its effec-
tiveness and ease of deployment. We formally verify the design of CORP
by modelling it in the Alloy model checker. We also implement CORP as
a browser extension for the Chrome web browser and evaluate it against
real-world cross origin attacks on open source web applications. Our
initial investigation reveals that most of the popular websites already
segregate their resources in a way which makes deployment of CORP
easier.

Keywords: Web Browser, Security, World Wide Web, Cross-site re-
quest forgery, Access control policy.

1 Introduction

When the World Wide Web was invented in 1989 [1], it only had a set of static
pages interconnected via hyperlinks. With the addition of images in 1993[2], a
request to a website could cascade a set of requests to multiple other sites. There
is something unnerving about such cross-origin (or cross-site) HTTP requests
triggered without explicit user interaction. With the advent of forms and scripts

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 277–297, 2014.
c© Springer International Publishing Switzerland 2014

278 K.C. Telikicherla, V. Choppella, and B. Bezawada

in 1995[3], cross-site interactions became a real security threat. For example, as
shown Figure 1, a genuine website, say G.com, could now be compromised by an
attacker who injects malicious content like an image tag pointing to attacker’s
site, say A.com. This is an example of a cross-site scripting (XSS) attack. A
victim requesting the infected page could end up unwittingly participating in
exfiltration, i.e., the leakage of private data to A.com.

Despite several proposals like whitelisting[4], input sanitization[5], static
analysis[6], browser sandboxing[7], XSS vulnerabilities continue to be pervasive
on the web. Browsers as early as 1995[8] introduced the Same Origin Policy
(SOP)[9], which was designed to prevent scripts from accessing DOM, network
and storage data belonging to other web origins. The earlier problem of cross-
origin requests through automatic form submissions or content inclusion was,
however, left unanswered by SOP. Content Security Policy (CSP), introduced
in 2010[10] improves on SOP in mitigating the exfiltration problem by disabling
inline scripts, restricting the sources of external scripts.

Fig. 1. Exfiltration vs. Infiltration attacks

1.1 Proposed Approach

Our work begins by seeking a common thread between CSRF, clickjacking and
cross-site timing attacks with the goal of understanding the limitations of CSP
in addressing these attacks. We label these attacks as Web Infiltration attacks.
The root of web infiltration is a request initiated from an evil page to a genuine

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 279

but unsuspecting server, (Figure 1). In web infiltration attacks, a victim who is
already logged in to a genuine site, G.com, unwittingly visits an attacker’s site,
A.com in a separate browser instance (or tab). The web page obtained from
A.com triggers state-changing requests to G.com either through an automatic
form submission initiated by a script or via an tag, or through other
similar vectors. The request to G.com goes from the victim’s browser and uses
the victim’s credentials. G.com is unable to discriminate between genuine and
forged requests. Web infiltration is complementary to exfiltration. Exfiltration
is caused by XSS and can be controlled by CSP. Infiltration, on the other hand,
can not be controlled by CSP.

We propose a novel approach to prevent web infiltration, based on the follow-
ing observations:

– Observation 1: Irrespective of how a network event (HTTP request) is
initiated, a web server responds with a resource. Therefore, any network
event, e.g., loading an image can infiltrate and potentially change the server’s
state e.g., delete a resource.

– Observation 2:The prevention and detection techniques for web infiltration
attacks that we have investigated are triggered too late. They apply either
after an HTTP request leaves the browser [11,12] or after the browser has
already received the response [13,14].

– Observation 3: Client side state information (cookies) of a website is shared
across all tabs of a browser or multiple instances of the same browser, even
though its access by other websites is restricted by Same Origin Policy.

– Observation 4: Website developers or administrators segregate the paths
of various resources on the server, as a good engineering practice.

From Observation 1, we infer that a policy which monitors the initiator of
web interactions is required. From Observation 2, we infer that every request
must be subjected to the policy before it leaves the browser. From Observation
3, we infer that the policy should be available to and enforced by all tabs of the
browser. From Observation 4, we infer that segregation of resource paths can be
used as an important factor in the design of the policy.

Based on the above inferences, we propose a simple security policy, Cross-
Origin Request Policy (CORP), to prevent web infiltration attacks. The policy
is a 3-way relation defined over the sets browser event types, origins, and the
set of resource paths derived from the server’s origin. CORP may therefore be
seen as a policy that controls who, i.e., which site or origin, can access what, i.e.,
which resource on a cross-origin server, and how, i.e., through which browser
event. CORP is declarative; it can be added as an HTTP response header of the
landing page of a website. To implement the policy, web administrators need to
segregate resources on the server based on the intended semantic effect of the
resource. For example, all public resources could be in the path /public, while
all state changing resources could be sequestered in a different path. Thus the
semantics of resources is mapped to paths. Fortunately, as discussed in Section 5,
most website administrators already segregate resources along the lines proposed
by the policy.

280 K.C. Telikicherla, V. Choppella, and B. Bezawada

A web browser enforcing CORP would receive the policy and store it in mem-
ory accessible to all tabs or browser instances similar to the cookie storage mech-
anism. Assume that tab tA contains a page pA from a server sA. Along with the
pA, the browser also receives a CORP policy c(sA) from sA. Assume that the
browser now opens a page pB received from sB in tab tB and pB attempts to
make a cascading cross-origin request to sA. The cross-origin request from pB
to sA will be intercepted and allowed only if it complies with the permissions
c(sA).

Threat Model: We follow the threat model classifications proposed by Akhawe
et al. [15], which defines the capabilities of web, network and gadget attackers.
Throughout the paper, we take into consideration only the threats that come
under the capabilities of a web attacker. A web attacker has root access on at
least one web server and can generate HTTP requests against any web server.
However, the attacker has no special network privileges, which means threats
like man-in-the-middle cannot be realized and HTTP headers generated by the
browser or server cannot be tampered.

Contributions: Our contributions in this paper are as follows: (1) We have
identified a class of web infiltration attacks that include CSRF, clickjacking and
cross-site timing attacks and designed a uniform browser policy to mitigate all
of them. (2) We have formalized our proposal in Alloy [16], a finite state model
checker, and verified that it is sound. (3) We have built two websites - one
playing the role of a genuine website and the other a malicious website (a test
suite) triggering malicious calls to the first. We have collected a large number
of attack vectors from literature and incorporated them into the test suite. (4)
We have implemented our proposal as an extension for Google Chrome web
browser. We have evaluated the extension by configuring CORP on the genuine
site and verified that infiltration attacks by the malicious site are blocked by
the extension. (5) We have configured CORP on three popular open source
web applications in our test environment to verify the effectiveness and ease
of deployment on real world websites. (6) We have also analyzed home page
traffic of over 15,000 popular websites and confirmed that the burden on web
administrators to deploy CORP will be minimum.

Organization of the Paper: The rest of the paper is organized as follows:
Section 2 gives an overview of web infiltration attacks. Section 3 gives an overview
of related work done in preventing these attacks. Section 4 explains the design of
CORP. Section 5 describes the implementation of CORP as a Chrome extension
and the experimental methodology to evaluate its effectiveness and Section 6
concludes with a discussion of future work.

2 Web Infiltration Attacks

In this section, we examine three common attacks: CSRF, clickjacking and cross-
site timing. Each of these is an instance of a web infiltration attack.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 281

2.1 Understanding CSRF

CSRF is a highly exploited web based vulnerability and is consistently listed in
the OWASP Top Ten [17]. In a typical CSRF attack, a malicious site instructs
a victim’s browser to send an HTTP request to an honest site. This malicious
request is sent on behalf of the victim, thereby disrupting the integrity of the
victim’s session.

In the example below, it is assumed that a user is logged in at a genuine site
G.com and then opens an attacker’s site A.com in a new browser tab. The page
from the attacker’s site contains the HTML shown in Listing 1.1.

Listing 1.1. Basic CSRF attack via image tag

As soon as the attacker’s page is loaded, the image tag triggers a cascading HTTP
request to G.com, which deletes the user’s profile on the site. Though servers
do not generally accept state changing requests using HTTP GET, generating
HTTP POST requests using HTML forms is trivial. Irrespective of the origin
from which a request has initiated, browsers attach authentication credentials
i.e., cookies to every request made to the destination origin. Due to this, browsers
do not distinguish between a request triggered by a genuine and a malicious web
page1. Also, in most cases servers do not have information about the origin which
triggered the request (see Section 3.1 for details).

2.2 Understanding Clickjacking

Clickjacking was first reported in web browsers in 2008 [18]. It is also known
as UI-redressing and has gained popularity in the modern attacker community.
In this, attackers lure users to visit a malicious page and trick them to click on
invisible targets e.g., buttons, which belong to a cross origin web page. Typically,
attackers embed target cross origin content in iframes, reduce their opacity to
zero and position them above seemingly genuine buttons. End users will not
have any suspicion or indication that their click is hijacked, but the attacker will
be able use their click for malicious purposes. Clickjacking differs from CSRF in
the fact that along with the click, user’s credentials as well as CSRF tokens (if
present) are submitted2. This makes clickjacking more dangerous than CSRF.

There are many online scams/spams, especially on social networks, which use
clickjacking and make money. Facebook recently sued an ad network that used
clickjacking and stole personal information of users, thereby making up to $1.2
million a month [19].

1 This is an instance of the “Confused Deputy Problem”, where the browser is the
confused deputy.

2 This is an instance of the “Confused Deputy Problem”, where the user is the confused
deputy.

282 K.C. Telikicherla, V. Choppella, and B. Bezawada

2.3 Understanding Cross-Site Timing Attacks

Bortz et al. [12] explained that the response time for HTTP requests can expose
private information of a web user e.g., detecting if a user has logged in at a
particular site, finding the number of items in the user’s shopping cart etc.
Though there are several ways to time web applications, as shown by Bortz
et al., we examine a class of timing attacks called cross-site timing attacks,
which rely on cross origin HTTP requests. In these attacks a genuine user is
tricked to open a malicious page, which tries to load resources e.g., images,
html pages etc. from a site being targeted. On measuring the time taken for
the loading of the resources, sensitive information such as the login status of a
user can be extracted. Two recent works by Stone and Kotcher et al., showed
how SVG filters [20] and CSS shaders [21] can be used as vectors for cross-site
timing. Technically, cross-site timing attacks can be classified as CSRF attacks
with the exception that the traditional defenses for CSRF i.e., tokens do not
generally work for these. Typically, attackers target authenticated resources [22],
which do not have CSRF tokens e.g., private profile pictures, script files etc.
This means, majority of websites are vulnerable to cross-site timing attacks.
We have analyzed popular social networks and email providers and found at
least one way of detecting the login status of a user. We found that apart from
authenticated resources, even authenticated URLs can also be used as a vector
for login detection. Listing 1.2 shows the case where the script tag makes a cross
origin HTTP request to a non-existing page on a target site to detect login status
of the user.

<script src="http :// example.com/user/nonExistingPage .php"

onload=notLoggedIn () onerror=loggedIn ()>

Listing 1.2. Login detection by fetching cross origin authenticated resources

Once the login status of a user is known, as explained by Bortz et al., spammers
can perform invasive advertising and targeted phishing i.e., phishing a site which
a user frequently uses, rather than phishing randomly.

Apart from these, we have identified an attack scenario that uses login detec-
tion, which we call Stealth mode clickjacking. Developers usually protect sensitive
content using authentication. So in most cases, for a clickjacking attack to be
successful, the victim should be logged in at the target site. Moreover, if the
victim is not logged in and clicks on the framed target, authentication will be
prompted, thereby raising suspicion. Using login detection techniques, an at-
tacker can redesign the attack by ensuring that clickjacking code executes only
if the victim is logged in at the target site, thereby removing any scope of suspi-
cion. We observe that it is easy to compose such attacks with a comprehensive
knowledge of the web.

We observe that CSRF, clickjacking and cross-site timing attacks have a com-
mon root, which is a cross origin HTTP request triggered by a malicious client to
a genuine server without any restrictions. We attempt to mitigate these attacks
by devising a uniform browser security policy explained in detail in Section 4.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 283

3 Related Work

In this section, we briefly describe existing defenses against each of CSRF, click-
jacking and cross-site timing attacks.

3.1 Approaches to Mitigate CSRF

In the case of CSRF, there are several server side (Secret tokens, NoForge, Ori-
gin header etc.) and client side defences (RequestRode, BEAP, CsFire etc.) to
prevent the attack.

Secret Tokens: This is one of the most popular approaches used by developers.
In this, the server generates a unique random secret and embeds it into web
pages in every HTTP response. The server checks if the secret received from
the browser is the same as the one it generated earlier and accepts the request
if the check succeeds. Since the token is not available to the attacker, request
forgery cannot happen. CSRF Guard [11] and CSRFx [23] are a few server side
frameworks which implement this technique. Though this technique is robust,
most websites, including high profile ones, often miss them. Also, using social
engineering techniques tokens can be stolen thereby re-enabling request forgery.

NoForge: NoForge [24] is a server side proxy which inspects and modifies client
requests. It modifies responses such that future requests originating from the web
page will contain a valid secret token. It takes countermeasures against requests
that do not contain a valid token. The downside of this approach is, since it is a
server side proxy, it will not be able to add tokens to dynamic content generated
by JavaScript in the browser.

SOMA: Same Origin Mutual Approval (SOMA) [25] enforcing constraints on
HTTP traffic by mandating mutual approval from both the sites participating in
an interaction. Websites send manifest files that inform a browser which domains
the site can communicate with. The domains whitelisted in the manifest expose a
service which replies with a “yes” or “no” when queried for a domain name. When
both the sites agree for the communication (via the manifest and the service),
a cross origin request is allowed. Though SOMA enforces strict restrictions on
cross origin interactions, it involves an additional network call to verify the
permissions of a request. Moreover, it does not provide fine-grained control such
as restricting only a subset of cross origin requests for a domain.

Origin Header: Barth [26] et al., proposed adding an Origin header to HTTP
request headers, which indicates the origin from which each HTTP request ini-
tiates. It was an improvement over its predecessor - the Referer header, which
includes path or query strings that contain sensitive information. Due to privacy
constraints, the Referer header is stripped by filtering proxies [27]. Since the
Origin header sends only the Origin in the request, it improves over Referer in
terms of privacy. Majority of modern browsers already implemented this header.
Using the origin information, the server can decide whether it should allow a
particular cross origin request or not. However, origin header is not sent (set to

284 K.C. Telikicherla, V. Choppella, and B. Bezawada

null) if the request is initiated by hyperlinks, images, stylesheets and window
navigation (e.g., window.location) since they are not meant to be used for state
changing operations. Developers are forced to use Form GET if they want to
check the origin of a GET request on the server. Such changes in application
code require longer time for adoption by developer community.

Request Rodeo: Request Rodeo [28] is a client side proxy which sits in between
web browser and the server. It intercepts HTTP responses and adds a secret
random value to all URLs in the web page before it reaches the browser. It also
strips authentication information from cross origin HTTP requests which do not
have the correct random value, generated in the previous response. The downside
of this is, it does not differentiate between genuine and malicious cross origin
requests. Also, it fails to handle cases where HTML is generated dynamically
by JavaScript, since this dynamic content has come after passing through the
proxy.

BEAP: Browser Enforced Authenticity Protection [29] is a browser based solu-
tion which attempts to infer the intent of the user. It considers attack scenarios
where a page has hidden iframes (clickjacking scenarios), on which users may
click unintentionally. It strips authorization information from all cross origin
requests by checking referer header on the client side. However, it also strips
several genuine cross origin interactions, which are common on the web.

CsFire: CsFire [30,31] builds on Maes et al. [32] and relies on stripping au-
thentication information from HTTP requests. A client side enforcement policy
is constructed which can autonomously mitigate CSRF attacks. The core idea
behind this approach is - Client-side state is stripped from all cross-origin re-
quests, except for expected requests. A cross-origin request from origin A to B is
expected if B previously delegated to A, by either issues a POST request to A, or
if B redirected to A using a URI that contains parameters. To remove false pos-
itives, the client policy is supplemented with server side policies or user supplied
whitelist. The downside of this approach is that without the server supplied or
user supplied whitelist, CsFire will not be able to handle complex, genuine cross
origin scenarios and the whitelists need to be updated frequently.

ARLs: Allowed Referrer Lists (ARLs) [33] is a recent browser security policy
proposed to mitigate CSRF. ARLs restrict a browser’s ability to send ambi-
ent authority credentials with HTTP requests. The policy requires developers
identify and decouple credentials they use for authentication and authorization.
Also, a whitelist of allowed referrer URLs has to be specified, to which browsers
are allowed to attach authorization state. The policy is light weight, backward
compatible and aims to eradicate CSRF, provided websites meet the policy’s re-
quirement. However, expecting all legacy, large websites to identify and decouple
their authentication/authorization credentials may be unrealistic, since it could
result in broken applications and also requires extensive regression testing. Our
proposal, CORP, which uses whitelists like CSP and ARLs, does not require
complex/breaking changes on the server. Details of the approach are explained
in Section 4.1.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 285

3.2 Approaches to Mitigate Clickjacking

There are several proposals to detect [34,35], prevent [36,37] Clickjacking and
intelligent tricks [38,39] which bypass some of them. Browser vendors and W3C
have incorporated ideas from these proposals and are working towards robust
defense for clickjacking. Below are two important contributions in this direction:

X-Frame-Options (XFO) Header: The X-Frame-Options HTTP response
header [13], was introduced by Microsoft in Internet Explorer 8, specifically to
combat clickjacking. The value of the header takes two tokens-Deny, which does
not allow content of the frame to render, and SameOrigin, which allows content
of the frame to render only if its origin matches with the origin of the top frame.
XFO was the first browser based solution for clickjacking.

CSP User Interface Security Directives: Content Security Policy (CSP)
added a set of new directives- User Interface Security Directives for Content
Security Policy [14] specifically to focus on User Interface Security. It supersedes
XFO and encompasses the directives in it, along with providing a mechanism to
enable heuristic input protections.

Both XFO and CSP, though promise to prevent clickjacking, leave CSRF wide
open. Also, these solutions get invoked just before the frame is rendered, which
is too late in the request/response life-cycle. Due to this, several bypasses such
as Double Clickjacking [38], Nested Clickjacking [39] and Login detection using
XFO [22] arise.

3.3 Approaches to Mitigate Cross-Site Timing Attacks

Bortz et al. [12] proposed that by ensuring a web server takes constant time to
process a request might help in mitigating cross-site timing attacks. However,
it is unlikely to get wider acceptance in web community as it involves complex
server side changes. A popular recommendation by security researchers is to
disable onload/onerror event handlers for cross origin requests, but this affects
genuine cases. As of date, cross-site timing attacks are still unresolved.

4 Cross Origin Request Policy

In this section, we first explain the core idea behind Cross Origin Request Policy
(CORP) and its importance in mitigating web infiltration attacks. Next, we
explain the model of a browser which receives CORP and enforces it. Finally,
we explain the directives which make the policy, with examples.

4.1 Core Idea Behind CORP

Based on our clear understanding of various types of web infiltration attacks
(Section 2), we realize the need for a mechanism which enables a server to control
cross origin interactions initiated by a browser. Precisely, a server should have

286 K.C. Telikicherla, V. Choppella, and B. Bezawada

fine-grained control on Who can access What resource on the server and How.
By specifying these rules via a policy on the server and sending them to the
browser, requests can be filtered/routed by the browser such that infiltrations
attacks will be mitigated. This is the core idea behind CORP. Formally speaking,
Who refers to the set of origins that can request a resource belonging to a server,
What refers to the set of paths that map to resources on the server, How refers to
the set of event-types that initiate network events (HTTP requests) to the server.
We identify HTML tags such as , <script>, <iframe> etc., and window
events such as redirection, opening popups etc., as event-types (explained in
Section 4.3). Therefore, CORP is a 3-way relation defined over the sets Who,
What and How, as shown in Equation (1).

CORP ⊆ Origin×ResourcePath× EventType (1)

Equation (2) shows an example of a policy which is a subset of the 3-way relation.

Origin = {O1, O2, O3}
ResourcePath = {P1, P2, P3}

EventType = {Img, Script, Form}
CORP,Cp = {(O1, P1, Img), (O2, P2, Form), (O2, P3, Script)} (2)

Let us say a website belonging to the origin O0 sets this policy and a CORP-
enabled browser receives it. Then, only the cross origin requests that satisfy the
tuples in the policy will be allowed by the browser and rest will be blocked. E.g.,
A webpage belonging to the origin O1 will be allowed to request for images only
under the path P1, from a server belonging to the origin O0 (refer to the first
tuple in Equation (2)). Similarly, a webpage belonging to the origin O1 will not
be allowed to submit a form to the server belonging to O0, since it is not defined
in the policy.

4.2 Browser Model with CORP

Figure 2 shows the model of a browser which supports CORP. It shows the differ-
ence between exfiltration and infiltration attacks, thereby explaining how CORP
differs from CSP. The figure shows a genuine serverG, with origin http://G.com,
an attacker’s server A, with origin http://A.com and a browser with two tabs
- t1 and t2. A general browsing scenario, which is also the sufficient condition
for a cross origin attack, where a user logs in at G.com in t1 and (unwittingly)
opens A.com in t2 is depicted in the model.

Setting the Policy: Once a user requests the genuine site G.com by typing
its URL in the address bar of t1, an HTTP request is sent from t1 to G. In
response, along with content, CORP is sent via HTTP response headers by G
(shown by arrows 1 and 2 in the figure). The tab t1 receives the policy and sends

http://G.com
http://A.com

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 287

Fig. 2. Browser model showing exfiltration & infiltration and how they are mitigated
by CSP & CORP

it to a shared policy store Ps where Ps ensures that CORP is available to every
tab or instance (arrows 3 and 4 in the figure) of the browser. Now, when a user
unwittingly visits a malicious page from A in t2 (arrows 5 and 6 in the figure),
every HTTP request initiated by the page in t2 to G will be scrutinized and
restrictions in CORP will be enforced (location 7 in the figure). Requests from
t2 to G will be allowed only if they comply with the configuration in the policy.
As per the guidelines in Section 4.3, web administrators will be able to configure
rules in a way that web infiltration attacks will be prevented. It is sufficient to
configure CORP on the login page/home page of a website. It is not a per-page
policy like CSP and adding CORP on every page only overrides the policy.

Deleting the Policy: As users visit multiple websites, their browsers keep ac-
cumulating CORP policies and therefore, a mechanism to delete the policies is
required. In CSP and HTML5 CORS, policies will be stored in the browser only
till the participating websites remain open in browsers. The same mechanism
cannot be used in CORP, because if a CORP-enabled website is closed acci-
dentally by a user while being logged in and the policy is destroyed, malicious
websites will be able to trigger infiltration attacks. To prevent this, it is impor-

288 K.C. Telikicherla, V. Choppella, and B. Bezawada

tant for the policy to be persistent in the browser. At the same time, its life-time
in the browser should be under the control of the server. To meet both these
objectives we follow the expiry mechanism of HTTP Strict Transport Security
(HSTS) policy [40] and mandate the server to send a max-age attribute along
with CORP directives. This attribute sets the amount of time (in seconds) for
which CORP should be active in the browser. For example, a max-age value of
2592000 seconds ensures that the policy is active for 30 days, while a max-age of
0 deletes the policy immediately. If a user visits the website before the expiration
time, the timer will be reset to the new time configured in max-age.

It is important to note that policy’s set, get and delete operations are sub-
jected to same origin checks on the browser, to prevent websites overwriting each
other’s policies. Also, since CORP aims to filter cross origin interactions, adding
it to a website does not break the site’s existing same origin HTTP transactions.

CORP and CSP - How They Differ: CORP and CSP together complement
SOP and help in fixing exfiltration and Infiltration. CSP was designed to enforce
restrictions on HTTP traffic leaving a genuine webpage, as shown by location 8
in Figure 2. CORP was designed to enforce restrictions on HTTP traffic sent by
a malicious web page to a genuine server (location 7 in the figure). Also, CSP
expects origins as directive values as they are sufficient to control exfiltration.
CORP specifies a 3-way relation defined over the sets event-types, paths and
origins. In a nutshell, CORP configured on a website A.com defines who (i.e.,
which origins) can probe what (i.e., which resource) on A.com and how (i.e.,
which event).

4.3 Abstract Syntax of CORP

Listing 1.3 shows the abstract syntax of CORP.

policy ::= rule *...

rule ::= pattern permission

pattern ::= origin -list eventType -list path -list

permission ::= ALLOW | DENY

origin -list ::= origin +... | ANY

eventType -list ::= eventType +... | ANY

path -list ::= path +... | ANY

origin ::= RFC 6454

eventType ::= img | media | style

| font | script | iframe

| form -action | xhr | hyperlink

| window | object

path ::= RFC 2396

Listing 1.3. Abstract syntax of CORP

For path, an additional pattern “resourcePath/*” is allowed to simplify the
configuration of CORP. The wild card ‘*’ in the pattern provides a way to refer
to any resource under a specific resource path. E.g., Access to all paths under
“admin” directory can be controlled using the pattern “/admin/*”.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 289

Order of Precedence for CORP Rules: CORP rules are processed from
top to bottom, till the default rule is reached. When a cross origin request is
made by a website against a CORP-enabled site, the request is scrutinized by
the first rule in the policy. If a match is found, the first rule is executed and rest
of the rules are not evaluated. Else, the request is scrutinized by the next rule
and the process continues till the last rule.

The last (default) rule is set to “* * * Allow”, which means “Allow everything”.
If a server sends an empty policy, it is the same as not configuring CORP at
all. In such cases, the default rule is evaluated and all cross origin requests are
allowed. This approach ensures that CORP does not break existing cross origin
interactions on a website. Also, it enables web administrators to incrementally
build stricter rules and tighten the security of their servers. We demonstrate a
few example policies in the following discussion.

Example Policies

– Deny All: A banking site may want to completely block all cross origin
requests to its site. It may achieve this by setting the simple policy shown
in Listing 1.4.

* * * DENY

Listing 1.4. Block all cross origin requests

– Selective Content: A photo sharing site may want to respond only to
authenticated cross origin requests involving scripts, images (from any site)
and block any other authenticated cross origin request. It may set the policy
shown in Listing 1.5.

* img /img ALLOW

* script /scripts ALLOW

* * * DENY

Listing 1.5. Allow access to selective content

– Partners Only: An e-commerce website might expose state-changing web
services and expects only its partner sites, say P1.com, P2.com, to do a form
submission to its services. It can set the policy shown in Listing 1.6.

{P1.com , P2.com} form {/update , /delete}

ALLOW

* *

*

DENY

Listing 1.6. Allow selective access to selective origins

290 K.C. Telikicherla, V. Choppella, and B. Bezawada

4.4 Security Guarantees Provided by CORP

CORP helps website administrators use browser’s capabilities in adding addi-
tional security to their sites. The following are the security guarantees provided
by CORP:

Fine Grained Access Control. Through CORP, websites can decide who
(i.e., which set of origins) can trigger cross origin requests to their sites and more
importantly how (i.e., through which mechanism). Having such a fine grained
access control helps web administrators selectively allow/deny cross origin re-
quests, thereby enhancing the security of their site.

Combating CSRF. By binding various event types e.g., to paths serv-
ing their corresponding resources e.g., http:// A. com/ images/ via CORP, the
semantics of request initiators is maintained. The implication of this binding is
that active HTML elements can no longer be used as vectors for cross origin
attacks. Also, by whitelisting sensitive paths and defining which origins can re-
quest them, automated requests triggered by scripts through various techniques
can be blocked. If CORP is properly configured, CSRF attacks can be eliminated
completely.

Early Enforcement of Clickjacking Defense. As discussed in Section 3.2,
XFO and CSP-UI-Security directives are two important proposals to mitigate
clickjacking. Figure 3 explains how enforcement of clickjacking defense takes
place in XFO/CSP and CORP. The workflow in the figure is similar to the
workflow depicted Figure 2. As explained in Section 4.2, consider the normal
browsing scenario where a user (victim) opens a genuine site G.com in tab t1
and unwittingly opens an attacker’s site A.com in tab t2. In this case, the evil
page (belonging to A.com) embeds an iframe and points its src to a page belong-
ing to G.com, with an intention to hijack the victim’s click. The iframe makes an
HTTP request to the genuine server (G) and gets the HTML response along with
HTTP headers. If the page is configured with either X-Frame-Options header or
CSP clickjacking directive, browsers enforce XFO/CSP and do not render the
HTML response (location 7 in the figure), thereby preventing clickjacking. How-
ever, since the request triggered by the iframe has already reached the server
G, CSRF attack has already taken place. Also, due to this delayed enforcement,
Clickjacking bypasses such as Double Clickjacking [38], Nested Clickjacking [39]
and Login detection using XFO [22] arise. CORP mitigates these problems by
ensuring that clickjacking enforcement take place even before a cross origin re-
quest is triggered. If the genuine site G.com in t1 is configured with CORP,
the policy will be stored in a shared policy store Ps, which is accessible to all
instances of the browser. As soon as the iframe in the evil page (loaded in t2)
triggers an HTTP request to G.com, CORP’s enforcement triggers (location 5 in
the figure), thereby blocking the request altogether. Since the request is blocked
at the browser itself, CSRF is mitigated. The same logic applies to other by-
passes for clickjacking. Hence, CORP is the right way to eliminate clickjacking
completely. Listing 1.7 shows CORP configuration to mitigate clickjacking.

http://A.com/images/

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 291

Fig. 3. Browser model showing the enforcement of Clickjacking defense in CSP/XFO
and CORP

* iframe * DENY

Listing 1.7. Defeating clickjacking with CORP

Controlling Social Engineering Attacks. Attackers attempt several social
engineering tricks on end users by leveraging popups [41], iframes [42,43] and hy-
perlinks. Spam emails having hyperlinks that point to sensitive web pages (e.g.,
delete.php) continue to be a common menace. Today, there are no standard de-
fenses against these attacks as there is no mechanism for a server to instruct how
a cross origin request should originate to itself. By configuring CORP, website
administrators can block requests initiated by frames, popup windows, hyper-
links for all or specific paths. This ensures that end users do not succumb to
most of the common social engineering tricks.

* href /non -sensitive

ALLOW

* {href , window , iframe} * DENY

Listing 1.8. Controlling social engineering attacks

Listing 1.8 shows a sample CORP configuration, which blocks vectors for so-
cial engineering. The configuration allows hyperlinks to navigate only to non-
sensitive pages, denies requests which open popups or navigate to any location
via window object and denies framing.

292 K.C. Telikicherla, V. Choppella, and B. Bezawada

Defeating Cross-Site Timing Attacks. The vectors for cross-site timing
attacks are same as that of CSRF, as discussed in Section 2.3. They use the
onload and onerror event handlers of HTML elements for measuring the time
taken for a resource to load under various conditions, thereby leaking sensitive
information such as login status. One of the suggested defenses is to disable
these event handlers for cross origin requests. This not only stops the attack but
also breaks genuine scenarios. Website administrators who are cautious about
cross-site timing attacks can configure CORP such that cross origin requests are
allowed only to public resources i.e., resources which do not need authentication.
CORP blocks requests to authenticated resources such as private pictures and
URLs before they leave the browser, thereby defeating cross-site timing attacks.
Listing 1.9 shows a sample CORP configuration for the same.

* img /public/images/* ALLOW

* * *

DENY

Listing 1.9. Defeating cross-site timing with CORP

5 Experimentation and Analysis

In this section, we explain about the implementation of CORP as a Chrome
extension, its evaluation and the results of our analysis.

5.1 Implementation

We have developed an extension for Google Chrome web browser to imple-
ment a prototype of CORP. When a user installs the extension and loads a
CORP-enabled website, the extension receives the CORP header, parses it and
stores it in browser’s memory using HTML5 localstorage API. The storage is
accessible across tabs of the browser and policies set by multiple websites are
stored and retrieved using the origin of the site as the key. When a genuine,
CORP-enabled site (G) is opened in one tab and an attacker’s site (A) makes a
cross origin request to G, the extension intercepts every outgoing request from
A if it is made to the origin of G and checks the policy associated with it.
Only if the request complies with the policy set by G, the extension will al-
low the request, else it will block it. The chrome.webRequest.onHeadersReceived
event of Chrome extension API helps in receiving HTTP response headers. The
chrome.webRequest.onBeforeRequest [44] event helps in the interception process.
It is fired before any TCP connection is made and can be used to cancel requests.

5.2 Experiments

We have conducted several experiments to evaluate the soundness of CORP, its
ease of deployment and effectiveness.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 293

Validating the Soundness of CORP: We have used Alloy [16], a finite state
model finder, to formalize and verify the soundness of our proposal, CORP. We
have modelled cross origin web interactions and came up with predicates which
show instances of web infiltration attacks. We verified that on configuring CORP,
Alloy fails to produce attack instances. Details about the formal model of CORP
shall be provided at a different venue.

Evaluating CORP against a Corpus of Attacks: We have built a web
application which is vulnerable to web infiltration attacks and a malicious web
application which can launch attacks on the vulnerable application. We have
referred to the test suite created by De Ryck et al. [31] and added their CSRF
attack vectors to the malicious web application. We have also added vectors for
clickjacking and timing to the application. As in the general browsing scenario,
if a genuine user logs in at the vulnerable application in one tab, opens the mali-
cious application in another tab and interacts with it, malicious requests (GET
and POST) will be triggered which affect the vulnerable application adversely.
On configuring CORP headers on the vulnerable web application and enabling
the extension, all malicious cross origin calls will be blocked.

The chrome extension, vulnerable and malicious web applications can be ac-
cessed online and the attacks discussed in the paper can be replayed before and
after installing the extension. Source code is available on Github [45].

Configuring CORP on Open Source Web Applications: To understand
how CORP performs on real world websites, we have deployed three popular
open source web applications (Table 1) and CORP-enabled them. Instead of
deploying vulnerable versions of these applications and fixing them with CORP,
we chose to deploy latest versions. Our idea is to verify that CORP is at least
as good as the previous defenses and additionally conforms to the security guar-
antees promised in Section 4.4. We first confirmed that these applications im-
plement at least one of the popular defenses against each of the web infiltration
attacks (Section 3). As we have seen that these defenses insufficiently deal with
infiltration attacks, we started afresh by completely disabling them. Then we
started enabling CORP on each of these applications and verified that they
are resilient to infiltration attacks. Our analysis shows that the effort required
to CORP-enable large applications greatly depends on how resources are orga-
nized on the server e.g., all images placed under a single“/images” directory as
against being scattered along multiple directories. Table 1 shows the number of
rules needed to enable CORP on each of the applications, without reorganizing
resources on the server. With proper segregation of resources, the number of
rules can be brought down to less than 10 per application.

Table 1. Summary of open source web applications we experimented with

Application Type Version # of source files Lines of code # of CORP rules
Wordpress Blog/CMS 3.9.1 2288 23.9K 14
Moodle LMS 2.5.6 11950 92.9K 84

Mediawiki Wiki software 1.15.5-7 1338 99K 11

294 K.C. Telikicherla, V. Choppella, and B. Bezawada

Analyzing Adherence of Top Websites to CORP: We have analyzed the
home page traffic of Alexa [46] Top 15,000 websites, to find if they adhere to
CORP by segregating their content based on types. The following content types
were considered for analysis - images, css, scripts, html and flash. Figure 4 shows
the results of the analysis. We find that more than 70% of sites already have
an adherence greater than 60%. This is a positive indicator for the deployment
of CORP, showing that website administrators can immediately use CORP on
their existing sites and control their susceptibility to infiltration attacks.

Fig. 4. Bar chart showing adherence of Alexa Top 15,000 websites to CORP

6 Conclusion and Future Work

HTTP works at a level of abstraction that cannot anticipate the semantics of
the transaction or of the resource sought by a client. Declarative policies like
CSP and CORP fill this semantic gap by conveying to the browser who (origins)
can access what (resources) and how (events) as a result of a transaction. We
believe that CSP and CORP together solve a large majority of exfiltration and
infiltration attacks. The truth of this conjecture will, however, depend on the
acceptance of CORP by browser vendors and its widespread adherence by web
administrators.

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 295

As new web standards emerge, declarative policies like CSP and CORP will
need to carry richer semantic intent. Such information could, for example, be
used to control other types of browser events like user interactions e.g., “no copy-
paste” while visiting Bank.com or force the browser to a canonical configuration
e.g., disable browser extensions while visiting Bank.com. As future work, we plan
to explore and expand the class of browser event types specifiable by declarative
policies and study their impact on usability and security. Browsers for other form
factors like mobiles and tablets present other challenges. We plan to experiment
the implementation of declarative policies on these platforms.

Acknowledgements. We thank Kaushik Srinivasan and Akshat Khandelwal
for their assistance in analyzing the traffic of 15,000 websites; Amulya Sri for
her assistance in implementing CORP on open source web applications.

References

1. W3C: History of the World Wide Web. Technical report (1989),
http://www.w3.org/Consortium/facts#history

2. Pilgrim, M.: Dive into HTML5. Technical report,
http://diveintohtml5.info/past.html#history-of-the-img-element

3. Berners-Lee, T., Connolly, D.: Hypertext Markup Language – 2.0. Technical Report
RFC1866, W3C (1995), http://tools.ietf.org/html/rfc1866

4. Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-
enforced embedded policies. In: Proceedings of the 16th International Conference
on World Wide Web, pp. 601–610. ACM (2007)

5. OWASP: XSS Prevention Cheat Sheet,
https://www.owasp.org/index.php/XSS (Cross Site Scripting)

Prevention Cheat Sheet

6. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross Site
Scripting Prevention with Dynamic Data Tainting and Static Analysis. In: NDSS
(2007)

7. Jayaraman, K., Du, W., Rajagopalan, B., Chapin, S.J.: Escudo: A fine-grained
protection model for web browsers. In: 2010 IEEE 30th International Conference
on Distributed Computing Systems (ICDCS), pp. 231–240. IEEE (2010)

8. Wikipedia: Netscape navigator 2 (1995),
http://en.wikipedia.org/wiki/Netscape_Navigator_2

9. Zalewski, M.: Browser Security Handbook. Technical report (2011),
https://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy

10. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security
policy. In: Proceedings of the 19th International Conference on World Wide Web,
pp. 921–930. ACM (2010)

11. OWASP: CSRF Guard (2007), https://www.owasp.org/index.php/CSRF_Guard
12. Bortz, A., Boneh, D.: Exposing private information by timing web applications.

In: Proceedings of the 16th International Conference on World Wide Web, pp.
621–628. ACM (2007)

13. Microsoft: Combating ClickJacking With X-Frame-Options. Blog (March 2010),
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/

combating-clickjacking-with-x-frame-options.aspx

http://www.w3.org/Consortium/facts#history
http://diveintohtml5.info/past.html#history-of-the-img-element
http://tools.ietf.org/html/rfc1866
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://en.wikipedia.org/wiki/Netscape_Navigator_2
https://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
https://www.owasp.org/index.php/CSRF_Guard
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx

296 K.C. Telikicherla, V. Choppella, and B. Bezawada

14. Maone, G., Huang, D.L.S., Gondrom, T., Hill, B.: User Interface Security Direc-
tives for Content Security Policy (September 2013),
https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/

user-interface-safety.html

15. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-
dation of web security. In: 2010 23rd IEEE Computer Security Foundations Sym-
posium (CSF), pp. 290–304. IEEE (2010)

16. Jackson, D.: Software Abstractions: Logic. Language, and Analysis. The MIT Press
(2006)

17. OWASP: OWASP Top Ten Project,
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

18. Hansen, R., Grossman, J.: Clickjacking. Blog (December 2008),
http://www.sectheory.com/clickjacking.htm

19. Facebook: Facebook, Washington State AG target clickjackers. Blog
(January 2012), https://www.facebook.com/notes/facebook-security/

facebook-washington-state-ag-target-clickjackers/10150494427000766

20. Stone, P.: Pixel perfect timing attacks with html5 (2013),
http://contextis.com/files/Browser_Timing_Attacks.pdf

21. Kotcher, R., Pei, Y., Jumde, P.: Stealing cross-origin pixels: Timing attacks on css
filters and shaders (2013),
http://www.robertkotcher.com/pdf/TimingAttacks.pdf

22. Jeremiah, G.: Introducing the ‘I Know...’ series. Blog (October 2012),
https://blog.whitehatsec.com/introducing-the-i-know-series/

23. Heiderich, M.: CSRFx (2007), https://code.google.com/p/csrfx/
24. Jovanovic, N., Kirda, E., Kruegel, C.: Preventing cross site request forgery attacks.

In: Securecomm and Workshops, pp. 1–10. IEEE (2006)
25. Oda, T., Wurster, G., van Oorschot, P., Somayaji, A.: SOMA: Mutual approval

for included content in web pages. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security, pp. 89–98. ACM (2008)

26. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, pp. 75–88. ACM (2008)

27. AdBlockPlus: HTTP Referer (2008),
http://adblockplus.org/blog/http-referer-header-wont-help-

you-with-csrf

28. Johns, M., Winter, J.: RequestRodeo: Client side protection against session riding.
In: Proceedings of the OWASP Europe 2006 Conference (2006)

29. Mao, Z., Li, N., Molloy, I.: Defeating cross-site request forgery attacks with browser-
enforced authenticity protection. In: Dingledine, R., Golle, P. (eds.) FC 2009.
LNCS, vol. 5628, pp. 238–255. Springer, Heidelberg (2009)

30. De Ryck, P., Desmet, L., Heyman, T., Piessens, F., Joosen, W.: CsFire: Trans-
parent client-side mitigation of malicious cross-domain requests. In: Massacci, F.,
Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 18–34. Springer,
Heidelberg (2010)

31. De Ryck, P., Desmet, L., Joosen, W., Piessens, F.: Automatic and precise client-
side protection against CSRF attacks. In: Atluri, V., Diaz, C. (eds.) ESORICS
2011. LNCS, vol. 6879, pp. 100–116. Springer, Heidelberg (2011)

32. Maes, W., Heyman, T., Desmet, L., Joosen, W.: Browser protection against cross-
site request forgery. In: Proceedings of the First ACM Workshop on Secure Exe-
cution of Untrusted Code, pp. 3–10. ACM (2009)

https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.sectheory.com/clickjacking.htm
https://www.facebook.com/notes/facebook-security/facebook-washington-state-ag-target-clickjackers/10150494427000766
https://www.facebook.com/notes/facebook-security/facebook-washington-state-ag-target-clickjackers/10150494427000766
http://contextis.com/files/Browser_Timing_Attacks.pdf
http://www.robertkotcher.com/pdf/TimingAttacks.pdf
https://blog.whitehatsec.com/introducing-the-i-know-series/
https://code.google.com/p/csrfx/
http://adblockplus.org/blog/http-referer-header-wont-help-you-with-csrf
http://adblockplus.org/blog/http-referer-header-wont-help-you-with-csrf

CORP: A Browser Policy to Mitigate Web Infiltration Attacks 297

33. Czeskis, A., Moshchuk, A., Kohno, T., Wang, H.J.: Lightweight server support for
browser-based CSRF protection. In: Proceedings of the 22nd International Confer-
ence on World Wide Web, pp. 273–284 (2013)

34. Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D., Kruegel, C.: A solution for
the automated detection of clickjacking attacks. In: ASIACCS 2010, pp. 135–144.
ACM, New York (2010)

35. Maone, G.: Hello ClearClick, goodbye clickjacking! Blog (October 2008),
http://hackademix.net/2008/10/08/hello-clearclick-

goodbye-clickjacking/

36. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a study
of clickjacking vulnerabilities at popular sites. In: IEEE Oakland Web 2.0 Security
and Privacy (W2SP 2010) (2010)

37. Huang, L.S., Moshchuk, A., Wang, H.J., Schechter, S., Jackson, C.: Clickjacking:
Attacks and Defenses. In: USENIX Security Symposium (2012)

38. Huang, L., Jackson, C.: Clickjacking attacks unresolved. White paper, CyLab
(2011), http://mayscript.com/blog/david/clickjacking-attacks-unresolved

39. Lekies, S., Heiderich, M., Appelt, D., Holz, T., Johns, M.: On the fragility and
limitations of current browser-provided clickjacking protection schemes. In: Woot
2012, USENIX Security Symposium. USENIX (2012)

40. Hodges: RFC 6797, HTTP Strict Transport Security (HSTS) (November 2012),
http://tools.ietf.org/html/rfc6797

41. Telikicherla, K.C.: Analyzing the new social engineering spam on facebook - lady
with an axe. Blog post (June 2013), http://bit.ly/FBSpamAxe

42. Nafeez, A.: Stealing Facebook Graph API Access Token: Yet Another UI Redress-
ing Vector (September 2011),
http://blog.skepticfx.com/2011/09/facebook-graph-api-access-token.html

43. Kotowicz, K.: Cross domain content extraction with fake captcha,
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-

with.html

44. Google: Life cycle of requests in Chrome.webRequest API (2013),
http://developer.chrome.com/extensions/webRequest.html

45. Telikicherla, K.C.: CORP repository (October 2013),
http://iiithyd-websec.github.io/corp/

46. Alexa: Alexa top sites (October 2013), http://www.alexa.com/topsites

http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
http://mayscript.com/blog/david/clickjacking-attacks-unresolved
http://tools.ietf.org/html/rfc6797
http://bit.ly/FBSpamAxe
http://blog.skepticfx.com/2011/09/facebook-graph-api-access-token.html
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-with.html
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-with.html
http://developer.chrome.com/extensions/webRequest.html
http://iiithyd-websec.github.io/corp/
http://www.alexa.com/topsites

An Improved Methodology towards Providing

Immunity against Weak Shoulder Surfing Attack

Nilesh Chakraborty and Samrat Mondal

Computer Science and Engineering Department
Indian Institute of Technology Patna

Patna-800013, Bihar, India
{nilesh.pcs13,samrat}@iitp.ac.in

Abstract. In a conventional password based authentication system, an
adversary can obtain login credentials by performing shoulder surfing.
When such attacks are performed by human users with limited cognitive
skills and without any recording device then it is referred as weak shoul-
der surfing attack. Existing methodologies that avoid such weak shoulder
surfing attack, comprise of many rounds which may be the cause of fa-
tigue to the general users. In this paper we have proposed a methodology
known as Multi Color (MC) method which reduces the number of rounds
in a session to half of previously proposed methodologies. Then using the
predictive human performance modeling tool we have shown that pro-
posed MC method is immune against weak shoulder surfing attack and
also it improves the existing security level.

Keywords: Authentication, Human shoulder surfer, Human performance
modeling tool, Session password.

1 Introduction

Authentication is an important component of computer security. Among the
different authentication schemes, password based authentication is one of the
popular schemes for its efficacy and ease of use. However, the scheme fails to
give security against observation attack while entering password in a public place
(like ATM counter). In this attack, the attacker observes the credentials entered
by the user and later may use it illegally for login purpose. This attack is also
referred as shoulder surfing attack.

Now depending upon the nature of shoulder surfing attack and the types of
equipment adversary uses, the attack is divided into two categories − a) Strong
Shoulder Surfing Attack, where an adversary uses some recording device (like
conceal camera) to record a user login session [12] [11] and, b) Weak Shoulder
Surfing Attack, in which attacker relies on limited cognitive capabilities of hu-
man users and does not use any recording devices, though s/he might use pencil
and paper to note down session information [18]. Now in general strong shoulder
surfing resilient schemes such as [29] [12], [11] require more computational skills
from users’ end than that of weak shoulder surfing resilient schemes [26], [18].

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 298–317, 2014.
c© Springer International Publishing Switzerland 2014

An Improved Methodology towards Providing Immunity 299

As system used in public domain (like ATM machine) is handled by all type of
users so computational complexity during login is required to be less and thus,
weak shoulder surfing resilient schemes become effective over strong shoulder
surfing resilient one. In addition of giving protection against observation attack,
shoulder surfing resilient schemes provide security against attacks such as- key-
logger based attack [14], spreading chemicals on keypad to obtain the keystrokes
[7], etc.

To avoid weak shoulder surfing attack, Roth et al. [26] proposed a scheme
(we call it as Black-White or, BW method) in 2004 which was considered to
be secure against weak shoulder surfers till 2012 [28]. Later Kwon et al. [18]
proved that, human shoulder surfers − without equipped with any gadgets like
recording device, can break the security of BW method by performing following
three operations :

1. Covert attention [21] [18]
2. Perceptual grouping [19]
3. Motor operation [2]

In their work [18] authors proposed an improved methodology (termed as Four
Color or FC method in this paper) which overcomes the above three step opera-
tions attack, performed by skilled human shoulder surfers. In literature, shoulder
surfers capable of performing Covert Attention, Perceptual Grouping and Motor
Operation are denoted as CPM shoulder surfer. The details of these operations
are explained in Section 2. Though FC method is secured against weak shoulder
surfing attack but the major problem with this scheme is that a huge number
of rounds is required for login. In fact, both BW and FC methods require 16
rounds in a session during login for a PIN of length 4. Thus the user fatigue level
becomes high [26] as user needs to face more number of rounds in a session. This
may cause human mind inattentive and increase error rate during login [22].
Motivated by this issue we have made two major contributions in this paper.

Contribution 1: We have proposed a new model known as Multi Color or MC
model in which user faces 8 rounds for a four digit PIN. Security analysis shows
that MC method provides better security against random key selection attack
(see Section 4) than of those BW and FC methods.

Contribution 2:We have performed security analysis of our method against
CPM shoulder surfers, by using human performance modeling tool as shown by
Kwon et al. [18]. We introduce the concept of hardness factor, higher value of
which shows less vulnerability of a method against weak shoulder surfing attack.
We also derive that MC method has higher value of hardness factor compared
to BW and FC method.

The rest of the paper is organized as follows − in Section 2 we have given a
brief overview of the existing work and also discussed some preliminary concepts
required to understand our approach. The proposed approach is presented in
Section 3. We have performed security analysis in Section 4. Usability analysis
of our work is illustrated in Section 5. We conclude and give future direction of
our work in Section 6.

300 N. Chakraborty and S. Mondal

2 Overview of Existing Work and Some Preliminary
Concepts

Many methods [27], [4], [12], [11] have been proposed since international standard
for PIN management, ISO 9564 mandated the fact that PIN entry device should
be designed in such a way which can give protection against shoulder surfing
attack [1]. Some methodologies such as [12], [11] were developed to resist partially
observable shoulder surfing attack. Methods like [4], [29] were proposed to tackle
fully observable shoulder surfing attack against strong adversary. However most
of these schemes require a lot of computation from the user end.

Schemes proposed to handle weak adversary is relatively easy to use. In 2004
Roth et al. proposed a scheme termed as BW method [26] which is resilient
against shoulder surfing attack performed with limited cognitive skill. In this
method, the user interface consists of a numeric keypad on which, half of the
numeric buttons on the keypad are colored as black and rest are colored as white
as shown in Fig 1.

Fig. 1. Above figure shows user response for PIN digit 3. Each time keypad gets par-
titioned into half of the keys as black and the rest as white. User needs to identify the
correct partition in which his/her PIN digit belongs.

The color of the numeric buttons varies in each round. User needs to identify
the proper color that appears on his chosen PIN digit by pressing either black or
white color button. User chooses a four digit PIN from a set Q = {0, 1, 2, ..., 9}.
User needs to face r = �log2|Q|� rounds for each PIN digit. So for a l digits (here
l = 4) long PIN user will face l × r rounds.

Limitations of BW Method: To explain the limitations of BW method, some
prerequisite knowledge is required about the vision and information processing
capabilities of human. This will help readers to understand the activities of CPM
shoulder surfers and vulnerability of BW method more clearly.

Foveal Vision: It refers to normal vision capability of human while fixing
his/her eye at a particular object [23]. For example, in the word n+1, by looking

An Improved Methodology towards Providing Immunity 301

at ‘n’ a person can understand the whole word. This is because while looking
at ‘n’, character ‘+’ and ‘1’ also come into normal vision angle. It has been
observed that people having normal (or correct to normal) vision, can notice
objects within 2◦ of visual angle, by fixing eye at a particular position. 1◦ visual
angle is about 3 normal text from the point of eye fixation.

Fig. 2. Above figure shows a foveal and parafoveal vision ranges of human eyes by
fixation of eye to a particular point (shown by yellow color +). Inner circle shows the
foveal vision range and outer circle shows the parafoveal vision range.

Parafoveal Vision: It signifies the vision region which is hard to see (if not
impossible) by fixing eye at a particular point. It starts from the end point of
foveal vision region and surrounds within an angle of 5◦ from the eye fixation
point [23]. Readers can assume that, this region starts after 4 to 5 normal text
and ends after 8 to 9 texts from there. To gain information from this vision
region, human needs saccadic (rapid) eye movements (except skillful video game
player). Video game players normally have improved vision capabilities than of
normal people [13] and can obtain information from extra foveal vision region
even without saccadic movement of eyes. Both foveal and parafoveal vision ranges
have been shown in Fig.2.

Covert Attention: Covert attention corresponds to attention not associated
with eye movements. Significance of covert attention is, human can store a fair
amount of information in visual short term memory (VSTM) [20] from foveal
vision range by performing covert attention. By this operation, video game play-
ers can obtain the information from both the visual angles (2◦ and 5◦) because
of their improved vision skill [5] [13]. Extracted information from the range of
foveal vision, helps adversary to perform perceptual grouping which is discussed
next.

Perceptual Grouping: Perceptual grouping [19] implies grouping of objects
and it depends upon their proximity, similarity, continuation, closure and sym-
metry. In BW method adversary can group objects (colored numeric buttons)
based upon their color from the fovel vision range.

302 N. Chakraborty and S. Mondal

Motor Operation: Motor operation [2] requires a co-ordination between cen-
tral nervous system and the musculoskeletal (muscular and skeletal) system.
Human processes the grouping information by performing covert attention and
perceptual grouping which requires effort of human mind. Now if the adversary
wants to write down some gained information, his/her hand (comes under mus-
culoskeletal system) must be engaged and thus the co-ordination between hand
and mind is required for surreptitious handwriting, without moving the eyes.

Attack on BW Method by CPM Shoulder Surfers: Time required to
enter a digit in each round by user is called response time. If the response time
of the user allows the attacker to perform the necessary operation to obtain the
PIN digit then attacker will proceed successfully. By using CPM-GOMS tool
Kwon et al. [18] in their work showed that CPM shoulder surfers can proceed
successfully to break the security of BW method. In Fig. 3 we have shown a
pictorial presentation of attack scenario on BW method.

Fig. 3. Above figure shows a foveal vision angle to obtain the perceptual grouping.
Parafoveal vision helps attacker to obtain the color chosen by user see (Fig. 2). Based
upon the user response attacker discards the group (shown by yellow dot in the picture)
from (visual short term memory) VSTM [8] [20] not falling into user color response.
Finally attacker obtains a group consisting of single object due to logarithmic decrease
of group cardinality in BW method.

In the first round of response of a digit, attacker first groups the black and
white objects together. One thing is needed to mention here, while attacker
groups those black and white numeric buttons depending on the colors, attacker
overlooks the digits on the color buttons. After perceptual grouping attacker
sees the user response in the first round corresponding to the first digit and
depending upon that attacker discards one of the group from VSTM. For exam-
ple, if user presses white color button then attacker discards the group of black

An Improved Methodology towards Providing Immunity 303

objects. Reason behind this is, user PIN has appeared on the button belonging
to white color group, so only that information is required by the attacker. In the
immediate next round attacker keeps his/her eyes on those part of the keyboard
interface which forms the previous color group and has been stored in his/her
VSTM. Now in this round attacker finds that color black has appeared on some
portion of the group stored in VSTM and color white has appeared on the rest.
Now again depending upon user response attacker discards some of the objects
from VSTM and stores a smaller perceptual group in VSTM at the end of the
second round. This will be continued through out the four rounds corresponding
a PIN digit of user. In every round, the cardinality of the perceptual group will
be decreased and always it will converge to 1 on or before four rounds. After
identifying a single object by the end of fourth round attacker will observe the
digit written on it. Then s/he performs hand motor operation to write down the
digit.

FC Method: In 2013 Kwon et al. [18] proposed a scheme referred as FCMethod
in which they have used four colors for coloring the numeric keypad. Each nu-
meric button has been divided into two partitions. So there has been a total of
20 partitions (10 numeric buttons each having 2 partitions) which are filled with
those 4 colors. The basic principal behind coloring the button are (i) each color
will appear in exactly 20/4 (i.e. 5) partitions. (ii) same color will not appear on
a button twice. So in each round user will find that his/her PIN digit posses two
colors. User can choose any one of those two colors as his response and will press
the color button of his/her chosen color. For giving response there exist four
color (which are used to color the numeric buttons) buttons on user interface.

Fig. 4. Above figure shows user response for PIN digit 6. Each time user keypad gets
partitioned using four colors. User needs to identify one of the correct color of his/her
corresponding PIN digit.

304 N. Chakraborty and S. Mondal

Power of FC Method: There are evidences that human can recognize a visual
object in quick time, occurring within 100− 200 milliseconds of stimulus presen-
tation and can bring that thing within consciousness in another 100 milliseconds
of time [25]. So objects posses similar properties can be perceptually grouped
within at most 300 milliseconds. As in BW method attacker needs to perceptu-
ally group two different objects (black and white) so it takes 600 milliseconds to
perform perceptual grouping. In [18] Kwon et al. showed that login time com-
plexity of BW method in each round, would allow CPM shoulder surfers to get
that required time for perceptual grouping operation. Thus security of the BW
method was compromised.

In FC method perceptual grouping to identify objects of four colors takes
(4 × 300 or) 1200 milliseconds [25] in each round. But time complexity of each
round does not allow the CPM shoulder surfers to get that required time for
perceptual grouping, in fact in [18] authors showed that CPM shoulder surfers
only get 700 milliseconds for perceptual grouping which is much less that the
required time limit and thus reduces the chance of attack.

3 Proposed Multi Color Methodology

The main problem of FC method is that it takes 16 rounds for a four digit PIN.
Thus the login process becomes lengthy and as a result is more error prone. In the
proposed approach our aim is to reduce the login rounds without compromising
with the security. In this section first we will discuss the basic feature and the
login principal by using our proposed Multi Color (MC) methodology. Next we
will describe how each digit of user PIN gets identified by the system uniquely.
In MC method we have used a set COLORS consisting of five different colors
− here COLORS = { Red, Green, Pink, Yellow, Sky }. For color blind people
the same set can be replaced by MARKS = { Black, White, Dot, Vertical strip,
Horizontal strip }. User PIN consists of 4 digits denoted as d1,d2,d3,d4.

3.1 Basic Feature of MC Method

Each numeric button in MC method is subdivided into three partitions namely
Up,Middle and Down. So for ten numeric buttons from 0 to 9 there are 30 (3×10)
partitions over which the five colors will be distributed. So each color will appear
exactly in (30/5 or) 6 places. Now there will be a coloring constraint, by following
which those colors will be distributed. The coloring constraint is described as
follows:

Each color will appear in six partitions in six different numeric buttons.
Among those six partitions, each partition will appear exactly twice.

In Fig. 5 we have shown the distribution of five colors in MC method. Each
numeric button holds three different colors. Each color is placed on six different
numeric buttons holding each partition exactly twice. Five color buttons shown
bellow in Fig. 5 are used for giving response by user. To design the login interface

An Improved Methodology towards Providing Immunity 305

Fig. 5. A prototype model of MC method

Table 1. Useful notations used in algorithms

Notations Descriptions
δ(X) Randomly permute elements of set X
Bk Numeric button associated with digit k

Bk(p) pth partition in Bk

cfPosition(S) Returns the first element from the set S
getEmpty(Bk) Returns the partitions in Bk, not filled by any color
equCheck(A,B) Checks whether set A, B are equivalent or not

colr(Bk(p)) Returns color at pth partition of Bk

getValue(p) Returns the value associated with a partition p
getColorpos(C,Bk) Returns the partition where Color C placed in Bk

cardinality(S) Returns the cardinality of set S
exchangeBackColor(BX,BS) Background color of numeric buttons BX and BS

exchanged
rand(S) Choose an element from set S randomly

view(Keypad) Shows the colored numeric buttons on user interface

we have used Algorithm 1. Readers can refer to Table 1 to understand the
meaning of the notations used in Algorithm 1 (and also in Algorithm 2 in Section
3.2) in Table 1.

Algorithm 1 takes the permuted color set COLORS as its one of the inputs.
The other input N is a set of integers from 0−9. At each iteration, for each color
C ∈ COLORS set FILLED holds those partitions where C is already placed
twice and can not be placed any more. Set S used in Algorithm 1 stores values
of k for which numeric button Bk has already been encountered for a particular
color. Variable k, used in the algorithm assures that same numeric button Bk

for a particular color C, does not get selected more than once.

306 N. Chakraborty and S. Mondal

Algorithm 1. Color.NumericButtons()

Input: This algorithm will take set COLORS and set N = {0, 1, ..., 9} as input.

Output: This algorithm colors ten numeric buttons by following coloring constraint.

COLORS ← δ(COLORS) /* randomly permute the color set */

foreach (C ∈ COLORS) do

Initialize: up ← 0; mid ← 0; down ← 0; /* variable up, mid and down are associated

with partition Up, Middle and Down respectively */

FILLED ← empty ; S ← empty;

while (1) do

k ← rand(N-S); /* selects a random number from the set N-S */

P ← getEmpty(Bk); /* holds those partitions in Bk not filled by any color */

if (equCheck(P,FILLED) = false AND P �= empty) then
pos ← cfPosition(δ(P − (P∩FILLED)));

if (pos �= empty) then /* condition false if P ⊆ FILLED */
Bk(pos) ← C;

getValue(pos)++; /* increases value of up, mid, down */

end

if (up=2) then
FILLED ← Up;

end

if (mid=2) then
FILLED ← Middle;

end

if (down=2) then
FILLED ← Down;

end

end

add digit k to set S

if (cardinality(S) = 10) then /* if color C can not be placed in any numeric

button by maintaining the coloring constraint */

for (t = 0 to 9) do

if (C /∈ Bt) then /* if Bt not posses color C */

for (r = 0 to 9) do

pos ← getEmpty(Br); /* pos initially holds partitions in Br

not filled by any color */

pos ← cfPosition(δ(pos−(pos∩FILLED)));

if (pos �= empty) then

if (colr(Bt(pos)) /∈ Br) then

Br(pos) ← colr(Bt(pos)); Bt(pos) ← C; /* swap colors

between the partitions */

getValue(pos) ++; break;

end

end

end

end

if (up = 2 AND mid = 2 AND down = 2) then
break;

end

end

end

if (up = 2 AND mid = 2 AND down = 2) then
break;

end

end

end

return (ColorNumericKeypad);

An Improved Methodology towards Providing Immunity 307

3.2 Login Procedure and Evaluation of User Response

Using our proposed methodology user will give response twice for each of his/her
PIN digit. As user PIN is 4 digit long so user will face 2 × 4 = 8 rounds in
each session. In the first round user selects one color out of three colors from
the numeric button corresponding to the first digit of the PIN and presses the
corresponding color button. While choosing the color in the first round, user
needs to remember the chosen partition. For the subsequent responses in that
session user will look for the numeric button corresponding to his/her PIN digit
and will select the color from the same partition.

Fig. 6 and Fig. 7 show user response for first two digits of PIN “d1 d2 d3
d4”(where d1 = 2, d2 = 3, d3 = 4, d4 = 1 taken as an example here). User
gives his/her response in the first round by choosing a color from the middle
of the numeric button corresponding to his/her first PIN digit 2 and thus user
will always select a color from the middle of his/her corresponding PIN digit in
that session. User enters his /her response for the first PIN digit in the first and
second round, then for the second PIN digit in third and fourth round and so
on. With the notion of the above discussion we define session partition next.

Fig. 6. Above figure shows first and sec-
ond round responses for digit 2 with ses-
sion partition selected as middle

Fig. 7. Above figure shows third and
fourth round responses for digit 3 while
session partition remains middle

Definition 1 Session partition: It represents an arbitrary partition SP ∈
{Up, Middle, Down} on the numeric button corresponding to the first PIN digit
of the user from where user chooses the first color for giving response in first
round. For giving rest of the responses, user will choose the color from same
session partition SP corresponding to the numeric button of the PIN digit.

308 N. Chakraborty and S. Mondal

Validation of User Response: Our scheme ensures that valid responses of
genuine user will uniquely be identified. This means by guessing a different PIN
an attacker will never be able to access the valid user’s account. Total 8 rounds
complete the MC method and user has to response in two consecutive rounds
for a single PIN digit. So by the end of each even round (2,4,6,8) every single
PIN digit of user should uniquely get identified by the system.

To achieve this we have used the following strategy. After giving the first color
response by the user, system will track the session partition (for that entire
session) with the help of user color response and first PIN digit of the user.
Next in each odd (1,3,5,7) round system will record the color “C” appeared on
session partition corresponding to the user PIN digit d1,d2,d3,d4 respectively.
Then system will look for all other numeric buttons (say “tracked buttons”)
along with partition (say “tracked partition”) where color “C” has appeared. In
each even round (2,4,6,8) system will ensure that color “C”, which has appeared
on the session partition on the numeric button corresponding to the user PIN
digit, will never appear in those “tracked buttons”, on the “tracked partitions”.
Though “C” may appear in those “tracked buttons” on different partitions. One
thing needed to mentioned here that “C” may same as “C”. If user fails to choose
the session partition properly then system will return numeric buttons with
arbitrary color combination by maintaining coloring constraint in each round
and will block the user at the end of the session.

For instance in Fig.6 user has responded with color button “Green” in the
first round. System finds that user has identified session partition as Middle
by identifying the color “Green” on the user PIN digit 2. Next system locates
“Green” color in all other “tracked buttons” along with partitions. In the im-
mediate even round (second round) system allocates color “Red” in the session
partition Middle, of numeric button 2. System ensures that “Red” color has not
appeared on the “tracked partitions” of those “tracked buttons”.

Significance of this is, if an attacker guesses a PIN digit wrongly, say 7 and
identified session partition as middle in the first round, then also his response
will match with the valid response of the user (see Fig. 6). This is because, same
color has appeared in both the partitions (middle of numeric button 7 and 2).
Now as system ensures that, color appear in middle of numeric button 2 will not
appear in the previously tracked partitions (including middle of numeric button
7) in immediate even round (here second round), so attacker finds a different
color (green) in middle of numeric button 7 which is not a valid color response,
as color “Red” has appeared in middle of numeric button 2. Thus if an attacker
proceedes successfully in any of those odd rounds (by guessing a wrong PIN digit
or wrong session partition), our system ensures that, in immediate even round
followed by an odd round, attacker will give a wrong response if either of PIN
digit or session partition is wrong.

We have used Algorithm 2 to evaluate user response. Two array data struc-
tures “but” (abbreviation of button) and “poss” (abbreviation of position) are
used in that algorithm which will hold the information about “tracked buttons”
and the partition information respectively. In Fig.6 user responds by pressing

An Improved Methodology towards Providing Immunity 309

color button “Green” in the first round. So array “but” and “poss” will hold
the information about color “Green” that has appeared on the other numeric
buttons. Table 2 shows the content of both the arrays for the above described
situation. We have presented Algorithm 2 which will evaluate the user response.
The user will only get authenticated if array Resp in Algorithm 2 holds value 1
at all it’s indices. In Algorithm 2 “response” indicates the color entered by user
as his/her response.

Table 2. Information stored in “but” and “poss”

index but poss
0 1 up
1 4 down
2 5 up
3 7 middle
4 9 down

4 Security Analysis

On discussing the security analysis of MC method first we will show the attack
scenario by CPM shoulder surfers against skilled user login. Skilled users [18] are
those who can minimize the login duration by suppressing rapid eye movement.
We have used CPM-GOMS tool to perform security analysis. To prove the va-
lidity of the theoretical analysis we have performed an experimental analysis in
support. Both the results show that MC method is more secure than BW and
FC method.

Modeling the Security and Usability Trade-Off Using CPM-GOMS
Tool for MC Method: Though it is quite feasible for CPM shoulder surfers to
perform shoulder surfing attack on BW method but in FC method [18] authors
have shown using CPM-GOMS tool that the same attack is infeasible. In our
work we have used the same tool to show that our method is even slightly
better than FC method. One thing can be noticed that, while performing the
experimental analysis for user login and attacker activity we have tried our best
to keep both user set and adversary set as mentioned in [18] in terms of their
background and ability to perform. This helps us to compare better with the
previous technologies.

The reason behind modeling execution time using CPM-GOMS [16] [15]
(stands for cognitive perceptual motor and goals, operators, methods, and se-
lection rules) is, it can model overlapping actions by interleaving cognitive, per-
ceptual and motor operators and thus can predict the skilled behavior. Next we
will introduce different functionality of CPM-GOMS.

310 N. Chakraborty and S. Mondal

Algorithm 2. Evaluation of user response
Input: This algorithm takes color keypad as input generated by Algorithm 1. Output: This

algorithm will check user response in each round.

for (r=1 to 8) do

Keypad ← Color.NumericButtons(); /* Keypad holds colored keypad returned by Algorithm 1 */

if (r = 1) then
view(Keypad); flag ← 0;

if (response ∈ Bd1) then

SP ← getColorpos(response,Bd1); /* sets session partition */

flag ← 1; Resp[r] ← 1; k←0;

for (i=0 to 9) do

if (response ∈ Bd�r/2� and i �= d�r/2�) then
but[k] ← i; poss[k] ← getColorpos(response,Bd�r/2�); k++;

end

end

else
SP ← null; Resp[r] ← 0;

end

else

if (SP �= null) then /* If SP correctly identified */

if (r.Isodd() = true) then
flag ← 1; view(Keypad);

if (SP = getColorpos(response,Bd�r/2�)) then
Resp[r] = 1; k←0;

for (i=0 to 9) do

if (response ∈ Bd�r/2� and i �= d�r/2�) then
but[k] ← i;

poss[k] ← getColorpos(response,Bd�r/2�); k++;

end

end

else
flag ← 0; Resp[r] ← 0;

end

else

if (flag = 1) then /* If SP correctly identified */

pColor ← colr(Bd�r/2�(SP)); /* holds valid color response */

for (t=0 to 4) do
X ← but[t]; Y ← poss[t];

if (colr(BX (Y)) = pColor) then

for (S=0 to 9) do

if (poss[t] �= getColorpos(pColor, BS)) then
exchangeBackColor(BX ,BS); break;

end

end

end

end

view(Keypad);

if (response = pColor) then
Resp[r] = 1;

else
Resp[r] = 0;

end

else
view(Keypad); Resp[r] = 0;

end

end

else
view(Keypad); Resp[r] = 0;

end

end

end

An Improved Methodology towards Providing Immunity 311

Fig. 8. Modeling and synchronization of MC method. (Each round takes 1280 ms. All
rounds finish in 10.24 sec.) Skilled user is modeled.

Descriptive Operators and Functionalists of CPM-GOMS: Every task
has been represented by a box with a duration in milliseconds (ms). According
to the architecture of production system, cycle time of each cognitive operator
is 50 ms [3] which is considered here. The cycle time to visually understand the
presence or absence of an object is taken as 100 ms [9] but it may vary with the
complexity of visual perception. The eye motor operation is set to 30 ms [17]
which follows the conventional eye movement time in all CPM-GOMS models
proposed after 1992 [10]. Time required for hand motor is reported as 300 ms
in [18] and it has been evaluated empirically in their work. In our observation
we also find the same. The reason behind this, in [6] author shows that “touch
on screen” may take around 450 ms, though it may vary depending upon the
screen distance and width. But estimated 450 ms time includes visual perception
(requires 100 ms) of button and cognitive operation “initiation of move and
touch” (requires 50 ms). So time required to perform hand motor is 300 ms,
which is justifiable. The synchronization point is set after user presses a color
button as his/her response.

Basic Idea Behind Overcoming the Attack: The basic idea behind over-
coming the attack performed by CPM shoulder surfers is to increase the time
required to perform the attack in such a manner so that it exceeds the user
login time. If attacker does not get the required time to process the information
then s/he will definitely fail. There are enough evidences that human can rec-
ognize objects within a time range of 100 − 200 ms and takes another 100 ms
to bring this information into awareness [25], thus perceptual grouping of same
type of objects take 100 + 200 = 300 ms. So in BW method adversary requires
around 600 ms for perceptual grouping (300 ms each for recognizing group of
black object and group of white object). Now in MC method as we have used
five overlapping colors so total time required for perceptual grouping is 300×5 =
1500 ms. We modeled skilled user login time (see Fig. 8) by CPM-GOMS, which

312 N. Chakraborty and S. Mondal

shows that by suppressing saccadic eye movement user can give response in 1280
ms time in each round (which is very close to the actual login time by skilled user
1275 ms in each round discussed in Section 5). So attacker needs to accomplish
the attack within 1280 ms. But human performance modeling tool shows due
to other activities like, Attend Partition, Initiate (Init.) Eye Move and so on
s/he only gets at most 900 ms (see Fig. 8) time to perform perceptual grouping
which is never been enough to perform the attack. Attacker needs 600 ms more
to perform the attack. Thus like FC method [18] and unlike BW method [26]
CPM shoulder surfers fail in MC method to perform the attack. With the notion
of above discussion we will define “hardness factor” next.

Definition 2 Hardness factor: It is the ratio of actual time needed by CPM
shoulder surfers to get the PIN digit and skilled user login time. Higher value of
this shows less vulnerability of a methodology against the shoulder surfing attack
performed by CPM shoulder surfers.

In our proposed method user login time (or the time CPM shoulder surfers gets)
is 1280 ms. But to perform the attack, it requires 1280 + 600 = 1880 ms. So
hardness factor becomes 1880/1280 or, 1.468.

Experimental Analysis of Shoulder Surfing Attack: To see whether the
theoretical acceptance of the attack model is valid in reality or not we have
selected 15 participants (12 male and 3 female) as attacker having average age
of approx 24 years and (correct-to) normal eyesight. They all were right handed.
As suggested in [18], we have selected only those people who like to play fast video
games. Our experimental analysis comprises of two phases − a)Training Phase
in which we introduced three methods to the attackers and gave a demonstration
on how attack can be performed by CPM shoulder surfers on BW method. For
each of the methods we employed 5 skilled users (total 15) who we believe, can
achieve reasonably faster login time. We also split the participants (who will
perform the attack) in 3 groups (each having 5). Then we asked them to learn
how the attack can be performed. We allow each group to perform the attack on
a single method in each day (first day on BW method, second day on FC method
and third day on MC method). There were one to one interaction between the
skilled users and participants. It took three days to complete the training phase.
Each participant faced around 15 rounds for each of the methods in training
phase. Next in b) test phase fourth, fifth and sixth day we asked the participants
to perform the attack on BW, FC and MC method respectively. The attack was
performed against 20 login (by skilled user) sessions for each participant. So we
have collected total (20× 15) = 300 results from the participants for each of the
methods. We have used smart phones for login.

We have seen that 68.3% of the attackers have been able to identify all the
four digits of PIN for BW method. Three of them were able to do it in 18,
16 and 16 sessions (out of 20 sessions). The duration of each login session was
about 15 − 16 seconds (skilled user login time) in BW method. In the next
two days of experiment, (meant for FC and MC method) there was a severe
degradation in attackers performance. None of them was able to retrieve all

An Improved Methodology towards Providing Immunity 313

Fig. 9. Above figure shows that CPM shoulder surfers in 68.3% cases can get all PIN
digits entered by user using BW method. All digits in the PIN are secure only in 3.3%
of cases of BW method and that of 64.4% for FC and 73% for MC method.

four digit successfully in any single session. Many of them even failed to detect a
single digit. Fig. 9 shows the performance graph of attacker for BW, FC and MC
method. Duration of each session for FC method was 17 − 18 seconds (skilled
user login time) and that of MC method was 10− 11 seconds (skilled user login
time). While performing the attack by video game players, we have observed
that non-video game players can achieve the same capabilities as video game
players by several practices [13].

Security against Random Key Selection Attack: In each of the BW and
FC methods, attacker can proceed successfully with a probability 1/2 in each
round by randomly guessing the color buttons. Thus security against this kind
of attack in both the method are (1/2)16 or, 15.25×10−6. In case of MC method
attacker might success in the first round with a probability 3/5 (as 3 colors will
appear on user’s PIN digit and choosing of anyone is valid for the first round).
But in subsequent rounds, the probability of success will get reduces to 1/5 and
thus probability of success by the attacker will be (3/5)× (1/5)7 or, 7.68× 10−6,
which is further reduced from both BW and FC method.

5 Usability Analysis

While performing usability analysis we have incorporated total 30 participants
(21 male and 9 female) whose ages were between 24 − 45 years. They all were
habituated with touch screen technology and having (correct-to-) normal eye
sight. We made three groups and randomly assign ten users to each group. We
demonstrated how BW, FC and MC methodologies work and uploaded all three
of those in a server so that they can use it to train themselves for login. We have
set a global PIN, which is same for all participants for all three methods. During
the demonstration we show them by suppressing saccadic eye movement, how
one can achieve faster response time and encourage them to do so while login. We
also gave all participants 2 days of time to get familiar with the login modules.

314 N. Chakraborty and S. Mondal

During test period we collected the data for one day. We randomly pick each
group and assign a random chosen login method to each group so that each
group gets one method out of three. No methods were distributed to more than
one group. Participant were asked to perform the login using smart phones. Each
participant in a group were requested to login ten times using the login method-
ology allocated to that group. Thus for each methodology we have obtained
(10× 10) 100 tested data. There after we have performed an analysis regarding
login time and percentage of error during login. Fig. 10 shows how login time
varies for BW, FC and MC methods (10.2− 14.8 sec for MC method, 17.1− 24
sec for FC method and 16 − 22 sec for BW method). We have taken average
login time for each participant to perform statistical significance test. In t test
(t(18) = 0.228, P<0.05) [24] shows no significant difference between BW and
FC method in terms of login duration. A one way ANOVA test suggest (F(2,27)
= 35.3, P<0.05) [24] among BW, FC and MC method, at least one method sig-
nificantly reduces login duration. So cumulative result of both the test suggests,
using MC method one can achieve faster login time.

Fig. 10. Above figure shows a comparison of login duration among BW, FC and MC
method

Result in Fig.10 shows that login time increases for some users and this is
because, few users make a random eye movement during login and do not follow
the strategy of “suppression of saccadic eye movement” during login. In this pa-
per we have shown that, by following some smart work user can reduce the login
time and thus can avoid the attack while using MC or, FC method. But using
BW method no user can avoid such attack and thus this method is vulnerable
to shoulder surfing attack performed by CPM shoulder surfers.

Percentage of error occurs during login was estimated as 0.16 for BW method,
0.15 for FC method and that of 0.07 for MC method. Student t test (t(18) =
0.80, P < 0.05) [24] suggests there exists no significant difference between BW
and FC method. A one-way ANOVA test shows (F (2, 27) = 3.45, p < 0.05)
[24] at least one method among BW, FC and MC method significantly reduces
error rate while login. Cumulative result of both the test shows MC method is
less prone in terms of login by user.

An Improved Methodology towards Providing Immunity 315

User Feedback: After performing the usability analysis, we gave all the users
a feedback form. Almost all (above 80%) agree that our methodology takes a bit
more time (2 − 3 login session) in terms of learning initially. But most of them
prefer MC method due to less number of rounds and better security. They also
agree that fatigue level using our methodology is much less.

In [18] using CPM-GOMS tool authors showed that skilled user login time
using BW method is 960 ms and that of 1080 ms for FC method in each round.
They also informed that CPM shoulder surfers require 960 ms to perform the
attack on BWmethod and 1580 ms for FC method (each result was derived using
CPM-GOMS tool). Hardness factor greater than 1 suggests a method is secure
against CPM shoulder surfers and it increases monotonically. In Table 3 we have
presented a summary of comparative analysis among all three methodologies.
Pr[SRKS] in Table 3 denotes probability of success by selecting random keys for
giving response.

Table 3. The outline of comparative features among BW, FC and MC method

BW method FC method MC method
PIN length 4 4 4
Rounds 16 16 8
Hardness factor 1 1.462 1.468
Pr[SRKS] 1/216 1/216 3/58

Login time More More Less

6 Conclusion and Future Work

Strong shoulder surfing attack resilient schemes (that resist recording attack)
often require more computational skills from users end and so they are not
very commonly used in public domain. Authentication system used in public
domain are often targeted by human shoulder surfers and for those systems a
better alternative is to use schemes which can resist attack performed by human
adversaries. Schemes which can resist such attack are known as weak shoulder
surfing resilient schemes.

In this paper we have presented MC Method which is immune to weak
shoulder surfing attack performed without any recording device. Our proposed
methodology minimizes user effort during login by a large margin. That is a
major advantage we have achieved here. However, to achieve this we have not
compromised with the security aspect. On the contrary we are able to increase
the security level. These two advantages combined together have made the pro-
posed MC scheme to a powerful scheme. We have also shown the comparative
study with two existing techniques and found that the proposed technique per-
forms well with respect to those techniques both in terms of usability and secu-
rity point of view. In future we will try to extend this shoulder surfing resilient
scheme against the adversaries with recording device.

316 N. Chakraborty and S. Mondal

Acknowledgments. This work is partially supported by a research grant from
the Science & Engineering Research Board (SERB), Government of India, under
sanctioned letter no. SB/FTP/ETA-226/2012. Authors also like to thank Mr.
Subho Shankar Basu for providing helpful suggestions.

References

1. Banking–Personal Identification Number (PIN) Management and Security–Part 1:
Basic Principles and Requirements for Online PIN Handling in ATM and POS
Systems, Clause 5.4 Packaging Considerations, ISO 9564-1:2002 (2002)

2. Allen, G., Buxton, R.B., Wong, E.C., Courchesne, E.: Attentional activation of
the cerebellum independent of motor involvement. Science 275(5308), 1940–1943
(1997)

3. Anderson, J.R., Matessa, M., Lebiere, C.A.-R.: A theory of higher level cognition
and its relation to visual attention. Human-Computer Interaction 12(4), 439–462
(1997)

4. Bai, X., Gu, W., Chellappan, S., Wang, X., Xuan, D., Ma, B.P.: PAS: predicate-
based authentication services against powerful passive adversaries. In: Annual
Computer Security Applications Conference, ACSAC, pp. 433–442. IEEE (2008)

5. Bavelier, D., Achtman, R., Mani, M., Föcker, J.: Neural bases of selective attention
in action video game players. Vision Research 61, 132–143 (2012)

6. Bi, X., Li, Y., Zhai, S.: FFitts law: modeling finger touch with fitts’ law. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 1363–1372. ACM (2013)

7. Blonder, G.: Graphical passwords. lucent technologies, inc., murray hill, nj. US
patent, ed. United States (June 1996)

8. Brady, T.F., Konkle, T., Alvarez, G.: A review of visual memory capacity: Beyond
individual items and toward structured representations. Journal of Vision 11(5),
1–34 (2011)

9. Card, S.K., Moran, T.P., Newell, A.: The psychology of human computer interac-
tion hillsdale. LEA, NJ (1983)

10. Carroll, J.M.: HCI models, theories, and frameworks: Toward a multidisciplinary
science. Morgan Kaufmann (2003)

11. Chakraborty, N., Mondal, S.: Color Pass: An intelligent user interface to resist
shoulder surfing attack. In: IEEE Students’ Technology Symposium (TechSym),
pp. 13–18 (2014)

12. Chakraborty, N., Mondal, S.: SLASS: Secure login against shoulder surfing. In:
Mart́ınez Pérez, G., Thampi, S.M., Ko, R., Shu, L. (eds.) SNDS 2014. CCIS,
vol. 420, pp. 346–357. Springer, Heidelberg (2014)

13. Green, C.S., Bavelier, D.: Action video game modifies visual selective attention.
Nature 423(6939), 534–537 (2003)

14. Holz, T., Engelberth, M., Freiling, F.: Learning more about the underground econ-
omy: A case-study of keyloggers and dropzones. In: Backes, M., Ning, P. (eds.)
ESORICS 2009. LNCS, vol. 5789, pp. 1–18. Springer, Heidelberg (2009)

15. John, B.E.: Extensions of GOMS analyses to expert performance requiring percep-
tion of dynamic visual and auditory information. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 107–116. ACM (1990)

16. John, B.E., Gray, W.D.: CPM-GOMS: an analysis method for tasks with parallel
activities. In: Conference Companion on Human Factors in Computing Systems,
pp. 393–394. ACM (1995)

An Improved Methodology towards Providing Immunity 317

17. John, B.E., Kieras, D.E.: The GOMS family of user interface analysis techniques:
comparison and contrast. ACM Transactions on Computer-Human Interaction
(TOCHI) 3(4), 320–351 (1996)

18. Kwon, T., Shin, S., Na, S.: Covert Attentional Shoulder Surfing: Human Adver-
saries Are More Powerful Than Expected. IEEE Transactions On Systems, Man,
and Cybernatics: Systems 44(6) (2013)

19. Lowe, D.G.: Perceptual Organization and Visual Recognition. Tech. rep., DTIC
Document (1984)

20. Luck, S.J., Vogel, E.K.: The capacity of visual working memory for features and
conjunctions. Nature 390(6657), 279–281 (1997)

21. Posner, M.I.: Orienting of Attention*. Quart. J. Experimental Psychology 32(1),
3–25 (1980)

22. Rabinbach, A.: The human motor: Energy, fatigue, and the origins of modernity.
Univ of California Press (1992)

23. Rayner, K., White, S.J., Kambe, G., Miller, B., Liversedge, S.P.: On the processing
of meaning from parafoveal vision during eye fixations in reading. In: The Minds
Eye: Cognitive and Applied Aspects of Eye Movement Research, pp. 213–234 (2003)

24. Rosenkrantz, W.A.: Introduction to Probability and Statistics for Science, Engi-
neering, and Finance. CRC Press (2011)

25. Treisman, A.M., Kanwisher, N.G.: Perceiving visually presented objects: Recogni-
tion, awareness, and modularity. Current Opinion Neurobiol. 8(2), 218–226 (1998)

26. Roth, V., Ritcher, K., Freidinger, R.: A PIN-entry method resilient against shoulder
surfing. In: ACM Conf. Comput. Commun. Security, pp. 236–245 (2004)

27. Wiedenbeck, S., Waters, J., Sobrado, L., Birget, J.-C.: Design and Evaluation of a
Shoulder-Surfing Resistant Graphical Password Scheme. In: ACM Working Con-
ference Advance Visual Interfaces, pp. 177–184 (2006)

28. Yan, Q., Han, J., Li, Y., Deng, R.H.: On Limitations of Designing Leakage-Resilient
Password Systems: Attacks, Principles and Usability. In: 19th Internet Social Net-
work Distributed System Security (NDSS) Symposium (2012)

29. Zhao, H., Li, X.: S3PAS: A scalable shoulder-surfing resistant textual-graphical
password authentication scheme. In: 21st International Conference on Advanced
Information Networking and Applications Workshops, pp. 467–472 (2007)

Catching Classical and Hijack-Based

Phishing Attacks�

Tanmay Thakur and Rakesh Verma

Computer Science Dept., University of Houston, TX, 77204, USA

Abstract. The social engineering strategy, used by cyber criminals, to
get confidential information from Internet users is called phishing. It
continues to trick Internet users into losing time and money each year,
besides the loss of productivity. The trends and patterns in such attacks
keep on changing over time and hence the detection algorithm needs to
be robust and adaptive. Although, many phishing attacks work by lur-
ing Internet users to a web site designed to trick them into revealing
sensitive information, recently some phishing attacks have been found
that work by either installing malware on a computer or by hijacking
a good web site. In this paper, we present effective and comprehensive
classifiers for both kinds of attacks, classical or hijack-based. To the best
of our knowledge, our work is the first to consider hijack-based phishing
attacks. Our techniques are also effective at zero-hour phishing web site
detection. We focus on the fundamental characteristics of phishing web
sites and decompose the classification task for a phishing web site into a
URL classifier, a content-based classifier and ways of combining the two.
Both the URL classifier and the content-based classifier introduce new
features and techniques. We present results of these classifiers and com-
bination schemes on datasets extracted from several sources. We show
that: (i) our URL classifier is highly accurate, (ii) our content-based clas-
sifier achieves good performance considering the difficulty of the prob-
lem and the small size of our white list, and (iii) one of our combination
methods achieves superior detection of phishing web sites (over 99.97%)
with reasonable false positives of about 3.5 % and another achieves just
0.22% false positives with more than 83% true positive rate. Moreover,
our content-based classifier does not need any periodic retraining. Our
methods are also language independent.

1 Introduction

Phishing is a social engineering threat aimed at gleaning sensitive information
such as user names, passwords and financial information from unsuspecting vic-
tims. Attackers typically lure Internet users to a web site designed to trick them
into revealing sensitive information. Many phishing web pages are copies of some
version of a legitimate site such as PayPal or eBay. Some offer money or prizes
as incentives. Users are typically attracted to phishing pages by sending them

� Research partially supported by NSF grants CNS-1319212 and DUE 1241772.

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 318–337, 2014.
c© Springer International Publishing Switzerland 2014

Catching Classical and Hijack-Based Phishing Attacks 319

warning or enticing emails, or by posting URL links in: forums, social network-
ing sites, chat and bulletin boards. Recently, some new phishing attacks have
surfaced that involve either installing malware on a computer [22] or hijacking a
legitimate web site, e.g., Netcraft reported that the asecna.aero site was hacked
in an April 2014 report [18]. Classical phishing attacks can be defined as the
pages asking for sensitive information from users by mimicking a legitimate do-
main or giving an incentive, warning etc. In contrast, in a hijack based attack,
phishers hijack a server on a legitimate domain and then put content to steal
sensitive information from users. In this attack, the URL and hence the domain
is legitimate, but the contents are phishing and not authored by the domain
owner.

The urgency for efficient and reliable phishing detection schemes becomes
clear upon considering the phishing activity trends in the second quarter of 2013
(April-June 2013, Q2 2013) as published by the Anti-Phishing Working Group
(APWG) Reports [2]. The APWG definition of phishing encompasses both social
engineering and technical subterfuge to steal consumers’ personally identifiable
information (PII). Social-engineering schemes include spoofed e-mails that point
consumers to counterfeit websites and technical schemes include malware planted
onto PCs to steal credentials directly. Given this definition, the APWG reports
that the number of unique phishing websites detected in Q2-2013 reached a high
of 44,511 in May 2013. Payment Services accounted for a large percent of attacks
with the number of phished brands reaching a high of 639 in Q2-2013. United
States continued its position as the top country for hosting phishing websites
during this time. The percentage of computers infected with banking Trojans
and password stealers also rose. For more information on phishing trends, refer
to the reports by APWG [2].

Besides the loss of time and productivity, estimates of money lost every year in
phishing attacks run from several hundred million to billions of dollars. Hence its
detection is an important challenge for researchers. The trends in patterns of the
phishing sites keep changing and hence, we need a robust algorithm that is not
just specific to the given dataset. Also, the lifetime of phishing sites is very short.
“On an average a phishing domain lasts 3 days 31 minutes and 8 seconds” [17].
The algorithm should also be fast enough to catch such pages before they do
their job. Finally, the algorithm should rely on fundamental characteristics of
phishing web sites. We kept all of this into consideration and designed robust
heuristics to tackle the changing patterns of the sites.

As pointed out in [28], “phishing patterns evolve constantly, and it is usually
hard for a detection method to achieve a high true positive rate while maintain-
ing a low false positive rate.” Existing phishing site detection methods fall into
one of the following categories: URL matching against human-verified blacklists,
heuristics used with machine learning, password based, or some combination of
information extraction with information retrieval. The first category of methods
has very low false positives rate, but such methods are not robust against future
cases. Sheng et al. [21] show that zero-hour protection of major blacklist-based
toolbars has true positive rates in the 15-40 % range. Updating these blacklists

320 T. Thakur and R. Verma

typically requires heavy human effort and is a slow process. For example, Jan-
uary 2012 statistics from Phishtank show that the median time to verify that
a URL is a phish was two hours. Of course, human-verification can be easily
overwhelmed by automatically generated URLs. Heuristics used with machine
learning suffer from the need for a clean, labeled training corpus, over-fitting to
the training corpus and the need for retraining because of model drift over time.
Password-based schemes lack robustness for phishing detection [9]. Information
extraction based schemes such as named-entity extraction [28] suffer from the
lack of parsable sentences on web sites and also the limits of automatic natural
language processing techniques. Moreover, named-entity extraction techniques
are also particularly prone to lower-casing problems such as failure to recognize
paypal (note the lower case) as a named entity.

Our proposed schemes are built on the following observations. First, the fun-
damental difference between a phishing and a legitimate site lies in its objective.
While a legitimate site typically conveys some information to the reader or elic-
its some basic information from a user to provide a service, a phishing site is
designed to steal the victim’s information. Second, there are basically two kinds
of phishing sites in classical phishing attacks. The first type of sites copy the
content of a legal site such as a bank, or a credit card company, or a payment
site such as PayPal, etc. The second type consists of sites that do not copy any
legal site, but instead entice the user through either an advertisement or a fi-
nancial lure such as the promise of a prize, gift, etc. These observations play
a crucial role in our method. We present a URL classifier based on new and
classical features.

A key feature of hijack-based phishing attacks is that the browser address
bar continues to show a legitimate URL, e.g., see [22] and the Netcraft news
item link given above. Hence URL analysis cannot catch such phishing attacks.
Therefore, to thwart hijack-based attacks, we present a content-based classifier
that combines structural elements of a site together with certain intentional
information extracted from the page itself. A key advantage of our content-based
classifier is that no training data is required for it. It assumes no knowledge of
phishing signatures or specific implementations. Hence, it is suitable as both a
zero-hour, stand-alone phishing site detection scheme, and also in combination
with other existing methods such as blacklists and white-lists.

Finally, for classical phishing attacks, we present three combination schemes
that combine the judgments of the URL classifier and the content-based classifier.
Another advantage of our methods is that they are language independent, which
we will justify later.

Unlike many other techniques, we also focus on the advantages of SSL cer-
tifications and the form content in the web page. SSL is an acronym for an
encryption technology called Secure Sockets Layer. Having SSL certificates for
websites ensures encrypted communication and hence secure connection between
user’s web browser and web servers. This helps in transmission of private data
without problems of eavesdropping, message forgery or message tampering. If
the web page does not have SSL certificates, then it is possible to see each bit

Catching Classical and Hijack-Based Phishing Attacks 321

of data and taking this advantage; phishers can just take information from here
instead of hosting their own phishing site. We call this kind of website unsafe or
vulnerable. Our algorithm also helps to detect such vulnerable pages.

Our content-based classifier analyzes the phishing web site’s behavior using a
copy detection algorithm and a real-time bot that injects random input data of
the correct type for the form input fields on the web site. Thus, it can also be
used to flood the phishing website with junk information and carry out a denial
of service attack on confirmed phishing sites. To the best of our knowledge, this
is the first time such an analysis has been conducted for classifying websites.

1.1 Our Contributions and Results

We present new features and techniques that are effective for zero-hour classical
phishing web site detection, for hijack-based phishing attacks, and for insecure
site detection. Our content-based classifier is based on fundamental character-
istics of a phishing site and the innate differences between a phishing site’s
behavior versus a normal site’s behavior. We surveyed the common patterns of
phishing websites from a small dataset of 200-300 phishing URLs and used these
patterns to detect them.

We evaluate all classifiers and four combination schemes. The best detection
rate is 99.97 % with 3.5% false positives. Using search based filtering it went down
to 93.37% with reasonable false positives of 0.54%. In contrast, the previous best
zero-hour phishing classifier [29] achieved a detection rate of 73% with a slightly
lower false positive rate of 0.03% (more detailed comparisons below), all with
Internet search. Our results are also competitive against the more recent work
of [27], which uses machine learning techniques. In contrast, we make minimal
use of machine learning.

The rest of this paper is organized as follows. The next section Section 2
presents relevant related work on phishing detection. Section 4 presents our URL
classifier and its performance analysis on several datasets, Section 5 presents the
content-based classifier and its performance, and Section 6 presents the datasets,
our combination schemes and their performance results. Section 8 presents the
results of testing on the datasets including the performance of individual heuris-
tics and a failure analysis. Section 9 concludes.

2 Prior Work and Comparison

Digital identity theft through phishing is primarily a social engineering at-
tack and has attracted a lot of research interest in this context. Different re-
search groups have studied this problem from various perspectives: server-side
and browser-side strategies, education/training, and evaluation of anti-phishing
tools, detection schemes and finally studies that analyze the reasons behind the
success of phishing attacks, e.g., [15,21,7,6,5,3,4,8,1,30]. Naturally, we cannot
survey all of these studies due to space limitations. We present below a selection
of past work with the understanding that this discussion is not meant to be ex-
haustive. In this section, we survey prior research directly related to our work on

322 T. Thakur and R. Verma

detecting phishing sites and especially those techniques that do not rely on URL
analysis since as mentioned earlier, the latest attacks manage to leave the URL
unchanged from that of a legal site, which are the focus of this paper. In the
following paragraphs, we briefly outline the prior work on phishing categorized
by their research objectives.

2.1 Phishing Detection Using Blacklist Approach

The reporting of a page as phishing, then its manual verification is a basic
building block of generating blacklists. This could not prove effective alone and
gave detection rate of just 15-40% [21]. Updating such blacklists over time is
a very time consuming process and requires tedious human effort for manual
verification. Also, this strategy will not help in zero-hour phish detection and
hence we do not use blacklists in our algorithm.

2.2 Phishing Detection Using Content of Page and Information
Retrieval

One approach to detect phishing using web page content is analyzing the struc-
ture of the URLs and validating the authenticity of the content of these target
web pages. Cantina [31] is one such scheme: a content-based approach to detect-
ing phishing websites, based on information retrieval and text mining algorithms.
They tested their methods on a small dataset of 100 websites since analyzing
content takes time. Their results exhibit a tradeoff between detection of phishing
web sites and the false positive rate for legitimate web sites. There are many
other schemes that use some subset of URL features, IP-based features, and
content-based features [9,16].

2.3 Zero-Hour Phishing Detection Using Text Analysis

Xiang et al. [29] proposed a scheme for zero-hour phishing site detection, which
uses whitelists, text comparison of the web-page against the text content of exist-
ing phish sites, and additional verification using a search engine (as in Cantina)
if a page is flagged as a potential phish. They also use a sliding window in the
back-end to incrementally build a machine learning model as new phishing sig-
natures are built. They achieve a 0% false positive rate with a true positive rate
of 67.74% using the search-oriented filtering and a 0.03% false positive rate and
73.53% true positive rate without it.

2.4 Phishing Detection Using Machine Learning

In [27], the Cantina+ and zero-hour phishing detection researchers enriched
their techniques with machine learning and did bigger experiments with unique
and near-duplicate websites and were able to achieve a detection rate of 92%
for phishing web sites with false positives ranging from 0.4% to 1.4% depending

Catching Classical and Hijack-Based Phishing Attacks 323

on the testing scenario: randomized (10% of phishing websites as training data
- the sites could be future or historical) versus timed testing (20% of phishing
websites as training dataset - the sites came from only historical data).

A research team from Google has presented a machine learning classification
technique with hundreds of features to accomplish a large scale automatic classi-
fication of phishing web pages [26] by analyzing both the URL and the content of
the page and claims to achieve 90% accuracy in classifying web pages with false
positives below 0.1%. This classifier is being used to maintain Google’s phishing
blacklist automatically.

The Google classifier is rebuilt every day and if a website is off-line during the
training phase it will not be in the model. We also checked their performance on
the same testing URLs. Although they have better false positives rate but their
detection rate is significantly lower than our classifier (detailed comparisons are
in the Results section). We noticed even if the phishing contents are taken down
from the website, they mark the URL as phishing. Hence, their analysis is not
real time.

Other Phishing Techniques. There are many strategies used in phishing de-
tection. Some of them are based on URL analysis, information extraction, text
analysis, etc. For more details on phishing and detection schemes, we encourage
the reader to refer the books by [13,14] and [20] and the paper [12] for additional
references. For phishing email detection schemes, we refer the reader to [24,23]
and references cited therein.

Although there is considerable research on phishing detection but there are
very few schemes for zero-hour phishing detection and the existing schemes are
not effective for hijack-based attacks. Hence, we propose and evaluate three
new classifiers for zero-hour phishing, insecure site detection, and hijack-based
attacks. The following section describes the dataset, our methodology and the
resulting classifiers in detail.

3 Overview of the Classification Approach and Initial
Steps

Phishing websites can be detected by analysis of URL, its redirection, title of the
page, text in the body, HTML source, website certification, etc. We implemented
our algorithm to check for important and fundamental clues and then take a
decision. The fundamental clues are:

– A phishing web site must ask for information.
– It must either impersonate a popular web site or entice the visitor with some

incentive (prize, gift, etc.)
– It will have a low search rank because of its short-lived nature and poor

in-degree (incoming links) from other web sites.

Focusing on fundamental clues makes our algorithms robust to the changing
trends in the phishing attacks. Our analysis is mainly based on real-time behavior

324 T. Thakur and R. Verma

of the pages and on similarity detection and hence we need some preprocessing
to get the input data. The structure can be divided in four main parts. First
part is preprocessing, second is analysis of URL, third is actual body/behavior
analysis and last is filtering with search function.

3.1 Pre-processing Steps

The very first pre-processing step is to remove duplicate URLs and analyze
only unique URLs. We check if the original URL or the URL that is reached
after opening the page (redirected URL) is already processed. This removes
redundancy in the input data and ensures unbiased results.

To ensure that we analyze the real-time content of the given page, we first
open the content in a mimicked browser. We verify and remove any pages with
404 or similar errors. We then retrieve the top level domain (TLD) of the given
URL. If the page is able to provide all the required information without any
error, then we proceed. All errors are reported and the URLs are removed from
subsequent analysis.

3.2 Whitelisted Domains

We expect that administrators of good domains will follow professional security
practices and ensure the sanctity of the content hosted on their domains. They
typically will not allow anybody to put malicious content that will cause their
domain reputation to drop. We collected a set of such genuine domains and treat
it as our whitelist.

We build our own whitelist. We listed the top 5,000 domains as ranked by
Alexa. Many phishers use free hosting domains to launch their phishing attacks.
There can be instances in which an administrator takes some time to remove
such pages from the hosting domain. To avoid this scenario we removed domains
that offer free hosting and free blogging. We studied the distribution of common
targets from the json file provided by Phishtank. We discovered that some of
the common banking targets are missing from the top rated domains. We added
them to our whitelist. Finally, we chopped the whitelist to just 5000 domains.

The Whitelist-domain function checks whether the domain of the given URL
or redirected URL is in the whitelist, and then bypasses it as a legitimate page.
Google is a top rated domain and it has google document service. We found that
phishers also managed to create phishing pages and host it on the google docu-
ment site. An illustration of such URL is https://docs.google.com/my-demo-
PayPal-phishing-page. So, we have to be cautious about such cases and hence
we allowed all the Google domains except for docs.google.[TLDs]. This function
bypasses further complex steps and hence the classification of the web pages can
be done faster. However, in principle this step could be omitted or given as an
option to the user.

https://docs.google.com/my-demo-PayPal-phishing-page
https://docs.google.com/my-demo-PayPal-phishing-page

Catching Classical and Hijack-Based Phishing Attacks 325

3.3 Sensitive Information Check

This step ensures that the page is really asking for some sensitive information and
can be a potential phishing candidate. We check whether the page has a password
field anywhere on it. Many phishing pages go offline soon, and our pre-processing
step takes care of the errors and exceptions caused by such behavior. But, many
domains show a completely different page with fancy 404 messages (e.g., Oh! You
broke something; message from http://commaccounting.co.nz/moodle/blog/

a/e84c2591f611f5438a3314460e280865). This URL hosted phishing content in
past but while we were processing it there were no such contents and no errors
but a page with this fancy message. Sensitive information check will remove
all such pages and mark them as legitimate. Only pages asking for sensitive
information advance forward after this step.

4 URL Classifier

4.1 U1: Targets in URL

Cyber criminals put the target (e.g., PayPal, eBay, BankOfAmerica, etc.) in
the URL to disguise the URL to the user. According to quarterly reports by
APWG (Anti PhishingWorking Group), 45-50% phishing URLs contained target
names in the URL last year (2013). This strategy is used to fool naive users
into believing that they are really visiting the desired page. Many researchers
discussed this strategy and use of this feature. We have improved this method
over existing techniques. We take the URL, and remove the main domain and
TLD from it. We are now left with either subdomain and/or the extended URL.
We check targets in such remaining part of the URL and not the complete URL
directly. We need an accurate and comprehensive list of targets for this purpose.
We analyzed 12,000 URLs from Phishtank and collected the top targets that were
targeted more than 0.1% of the time among those 12,000 URLs. As expected,
PayPal ranked first with more than 13.6% followed by AOL, which was just
1.1%. Also, phishers try to attack a big population and hence a popular domain.
So, we added all the whitelisted domains to the list of targets. This made the list
strong and removing the actual domain name with TLD from the input URL
helped us to get rid of false positives. Experiments were done to test this function
and the result varied from true positive rate of 40% to 50% with almost 0% false
positives.

4.2 U2: Misplaced TLDs

This is similar to checking targets in URL, but we check for list of all top level
domains (TLDs) that are placed not at the actual TLD location. Phishers use
this strategy to disguise URLs. We remove the main domain and actual TLD
from the URL and check for the TLDs in the rest of the URL.

http://commaccounting.co.nz/moodle/blog/a/e84c2591f611f5438a3314460e280865
http://commaccounting.co.nz/moodle/blog/a/e84c2591f611f5438a3314460e280865

326 T. Thakur and R. Verma

4.3 U3: URL Classification Using Machine Learning Approach

4.3.1 Features
The above two methods for URL analysis are modifications on prior research
work and observations. In addition, we also implemented single feature classifiers
to classify the URL based on the length of just the domain and distribution of the
characters independently. We used machine learning algorithm to build a model
for those features. The first classifier’s feature is the length of the domain of the
URL, while the second classifier’s feature was the Euclidean distance between
the distribution of English characters in the URL and the distribution of English
characters in standard English text.

4.3.2 Machine Learning Algorithm
Both classifiers were based on the WEKA library’s PART machine learning
algorithm. The PART algorithm is a separate-and-conquer rule learner. It creates
a partial C4.5 decision tree and chooses the best leaf as a rule for the classifier.
The algorithm combines C4.5 and RIPPER rule learning algorithms. We chose
to use PART because it performs reliably, and allows us to view the rules that
the algorithm generates. Being able to view the rules gives us insight into the
classifier, and allows us to, for example, identify reasons for false-positive results.

4.3.3 Dataset, Training and Testing
In order to train both of the classifiers a data set was created that consisted of
20,240 URLs with 10,600 legitimate and 9,640 phishing URLs. The legitimate
URL list was taken from the top 12,000 websites provided by Alexa.com ac-
cessed on February 11, 2014. The phishing URLs were taken from 12,000 results
from Phishtank.com accessed on February 12, 2014. We then took the 12,000
legitimate URLs and removed all common occurrences with the testing data
sets bringing the count to 10,600 and thereby ensuring that our training and
testing sets were completely unique. We used the same process on the phishing
set bringing the count to 9,640. Combining these two sets, we created our final
training data set for the URL classifiers. We used a 10-fold cross validation tech-
nique to evaluate our two single feature classifiers. The true positive rate of URL
length classifier was 76% with false positive rate of 14% while the URL distance
classifier was better with about 92% true positive rate and false positives of just
9%.

4.4 Overall URL Classifier

The final URL classifier score is a logical OR of the decisions of the (i) Targets
in URL (U1) detector (ii) Misplaced TLD (U2) detector and (iii) the Machine-
learning based URL classifier (U3), which means a URL is classified as phishing
if either of these three judges returns true for phishing and legitimate if none of
them returns true.

Catching Classical and Hijack-Based Phishing Attacks 327

5 Content-Based Classifier

5.1 C1: More Redirections

To maximize the profit by phishing attacks, phishers use free hosting sites to
launch their attacks. Such free hosting sites want to advertise their domains
and so they keep many links redirecting to the main site. They also give very
less data space and phishers cannot use the big sized data such as images. So,
phishers directly use the image links from the actual target site to display it
on the phishing page. All of this leads to more external URLs than internal.
We count both internal, external URLs and if external URL count is more than
internal then we say that the page may be a phish.

5.2 C2: Copy Detection

The goal of Copy Detection is to determine the closeness and similarity of the
given page with the target pages. We developed this method since a phisher
tries to make the phishing page look very similar to a target page to disguise the
malicious intent. We calculate precision, recall and F-score of the closeness of
the candidate page with potential target pages. A small experiment with about
100 phishing pages and 100 legitimate pages was conducted to determine the
threshold to use for the F-score. If the F-score for the similarity of a candidate
page with a legitimate page exceeds the empirical threshold and the URL of the
page is not in the whitelist, then it is marked as phishing.

The second part in this function, which is performed sequentially after the
closeness check, is to check the copyright name of the page. We have data for 513
login pages of common targets. We know that such big organizations have their
own website team and they reserve their own copyrights. Most of the time the
copyright name partially matches the part of the domain of the URL. Again, this
is a novel idea to the best of our understanding. For example, PayPal phishing
site has copyright 1999-2014 PayPal, Facebook has copyright Facebook 2014.
Phishing pages copy the targets as much as possible and hence, they show the
same copyright message. This definitely fails to match with the domain of the
URL and hence we mark such cases as Phishing. In some cases, a legitimate site
may have a domain name that does not match with the copyright information.
In such cases, there is usually an image in the address bar and image similarity
or image text similarity techniques can be used. We leave this extension to future
work.

If we do not find any similar candidate of the given page in our dataset then
we mark it undetermined. This is justified since our whitelist is not necessarily
exhaustive.

5.3 C3: Unsecured Password Handling

It is very important for any page to transmit the passwords in encrypted format.
SSL certificates are given to the domains or sites to ensure this secured and

328 T. Thakur and R. Verma

encrypted flow of passwords. The best case is when the page having SSL is asking
for password fields and submitting it to the page with SSL certificate. Some
organizations ask for the password fields without SSL but ensure to transmit
the password via a secured SSL channel and to the page having SSL. Use of SSL
avoids eavesdropping to a greater extent. As the cost of SSL is high, phishers
usually do not use SSL. Above heuristics made us think about the logic of this
method.

In this method, we check for the secured flow of the passwords. If there are
no password fields then we directly say that the page is legitimate. If the page
has unsecured flow, then we mark it as a potentially phishing page.

5.4 B1: Real-Time Form Behavior Analysis

There are many methodologies depending on various heuristics for phishing de-
tection. However, for determining the true false negatives and true false positives,
the “best” way is to visit the page from browser and look for signs of phishing
pages or actually fill all the input elements and notice where we land.

If we fill all the required fields in the form with all invalid credentials, we
expect that the page should give an error message and ask us to re-enter the
information. This is the legitimate behavior. But, phishing pages will accept any
data filled in the fields and either redirect us to actual target page or give us a
message similar to “Thanks for logging in. Please connect after some time.” After
entering the fake confidential data on the forms, we noticed following behavior.

Legitimate Behavior:

– Keeps on the same domain and/or redirects to SSL certified same domain.
– Gives error message.
– Gives another chance to login or asks to reset password giving “Forgot Pass-

word?” link.

Phishing Behavior:

– Accepts the fake credentials and shows page similar to ‘successful login’
– Redirects to the target domain (or any other domain than the input URL).
– Asks for more information.

This is very basic behavior and due to space limitations, we cannot list all the
(rare) cases of more complex behaviors. We take advantage of such distinguishing
behavior of login forms and create our classifier. Logins forms have action-URL.
We create a bot to mimic a web browser and parse all the forms on the given
page. We bypass the forms which don’t ask for sensitive information and process
the remaining forms. Action-URL is the biggest hint for observing the form
behavior.

Catching Classical and Hijack-Based Phishing Attacks 329

Algorithm 1. Behavior Analysis

1: procedure Real-time Form Analysis(URLs)
2: Parse all the forms in the HTML for the input URL
3: Extract all the forms requesting input through password fields
4: if not a single form for the input-URL then
5: return Legitimate
6: end if
7: Parse the action-URLs
8: if domain of the action-URL = the input domain then
9: if the web-page of action-URL is SSL certified then

10: return Legitimate
11: end if
12: end if
13: if domain of the new URL �= domain of the input URL then
14: return Phishing
15: else if action-URL = given-URL then
16: legitimateF lag := True
17: end if
18: Open the page of the action-URL inside sandbox
19: if the new page did not ask to login again then
20: phishingF lag := True
21: else if new page keeps on same domain & asks for some more sensitive

information & none of the conditions above satisfies then
22: create a set URLsToProcessSet of all such action-URLs from the

page
23: end if
24: while URL in URLsToProcessSet do
25: iterationCounter ← iterationCounter+ 1
26: Follow the similar steps from (step 2) for each URL
27: Remove the processed URL from URLsToProcessSet
28: end while
29: if URLsToProcessSet is empty ‖ iterationCounter > threshold then
30: if legitimateF lag := True then
31: return Legitimate
32: else if phishingF lag = True then
33: return Phishing
34: else
35: return Undetermined
36: end if
37: end if
38: return Undetermined
39: end procedure

end

330 T. Thakur and R. Verma

Algorithm 1 simulates human interaction with the Web site to check its be-
havior. It is a completely novel method to the best of our knowledge.

Sign-up forms have exceptional behavior. As they enable us to create new
profile, they accept any syntactically correct email-ID and/or user-name and
password. Then they display a message like profile created successfully and may
give a form to login. From the bot perspective this is the combination of both
phishing and legitimate behavior. Step-15 of Algorithm 1 takes care of such
behaviors.

5.5 Overall Content-Based Classifier

The final content-based classifier score is a logical OR of the decisions of the
(i) More Redirections (C1) detector (ii) Copy Detection (C2) (iii) Unsecured
Password Handling (C3) (iv) Real-time Form Analysis (B1) , which means a page
is classified as phishing if either of these four judges returns true for phishing
and legitimate if none of them returns true.

6 Combination Schemes

If the URL is not bypassed by any of initial steps given above, we have results
from the URL classifier and the content-based classifier including each of the
components that make up these two classifiers.

For the final decision we study three combination schemes. The first scheme
(called OR scheme hereafter) takes the logical OR of the results of the URL
classifier and the content-based classifier, which means the page is marked as
phishing if either of them declares the page to be a phishing page. The second
scheme (called AND scheme hereafter) computes the logical AND of the URL
classifier and the content-based classifiers. The third scheme (called Potential
scheme) works on the potential of the phishing nature. It calculates how many
component functions of the two classifiers classify the page as phishing and keeps
the count as potential. If the potential is at least two, then the page is marked
as a phishing page.

Fourth scheme (Content scheme) is designed to focus more on hijack based
attacks, where the URL belongs to the legitimate domain but the contents come
from hijackers/ phishers. Content scheme is logical OR of all classifiers excluding
the URL classifiers. Table 1 summarizes the combinations.

Table 1. Summary of schemes

Scheme Name Logical Formula

OR (U1 OR U2 OR U3) OR (C1 OR C2 OR C3 OR B1)

AND (U1 OR U2 OR U3) AND (C1 OR C2 OR C3 OR B1)

Potential Count of classifiers classifying an URL as ‘phish’ ≥ 2

Content C1 OR C2 OR C3 OR B1

Catching Classical and Hijack-Based Phishing Attacks 331

6.1 Search Based Filtering

At the very end, if the page is marked as phishing, we check the results of an
Internet search. However, this is an optional step in our algorithm (as opposed
to some previous work in which it is essential) and we do report the results with
and without Internet search.

Search engines have special features which enables them to display highly
ranked pages higher in the search results. Login page from legitimate sites would
have been accessed by many people and hence, it will be ranked higher. In
contrast, as the lifetime of the phishing websites is very low, there is no chance
that they can make high page-rank. We take advantage of page-rank system by
search engines.

Unlike other systems [31,29], our search based filtering is the simplest. We do
not use any TF-IDF, nor the most frequently appearing words in the page, and
no natural language processing, we simple input the whole redirected URL to
yahoo search engine with its default settings. We take the top 10 results from
it. If there are at least two matches for the domain of the input URL with
the domains in the result, then we mark this page as legitimate. Otherwise we
mark it as undetermined. This function is mainly focused on reducing the false
positives rather than phishing detection.

7 Datasets and Extraction of URLs

Our final experiment is tested on 17200 legitimate URLs and 17200 phishing
URLs. In mid-November of 2013, we downloaded the top ranked 1 million URLs
from Alexa.com. Top ranked 5000 domains are used in our whitelist after some
filtering process. DMOZ [19] is open directory with large number of legitimate
URLs. We took a random set of 17200 URLs from it as our legitimate dataset.

As we are interested in checking the real-time behavior of a page, we wanted
those phishing pages that remain online at least until we test the URL. Since
we do not want to test our classifiers on old phishing modus operandi, we do
not save the information regarding the URL and/or its contents; we extract
fresh phishing URLs each time. We used Phishtank data to extract the phishing
URLs. They provide a json file of phishing URLs with some details. We extracted
the URLs verified from Phishtank and reported as online. But, after manually
checking some of those URLs at random, we found that many of them were 404
pages, or pages with no content, or had some other errors. Thus, the data from
Phishtank tends to be noisy and we needed more filtering.

As direct parsing from json file is not sufficient, we developed our own filtering
mechanism. We mimicked an internet browser and went to the URLs automat-
ically. Then, we checked for 404 messages from the browser. If we get such a
message, we removed the URL from the set. While designing this algorithm,
we also found that there were many URLs that took more than 10 seconds to
load and gave timeout exception. We checked for all the exceptions possible in-
cluding connection-timeout, malformed URL, pages with no content, and server
errors. We also removed the URLs giving such exceptions. After this filtering, we

332 T. Thakur and R. Verma

get the potential phishing pages with high likelihood but no guarantee that the
page will have phishing behavior while testing. Thus, we try our best to make
the data noise-free, but making the data totally noise free is almost impossible
as the lifetime of phishing URLs is too small.

We also made sure to extract the phishing URLs just before running our main
algorithm to avoid the problem of the phishing URL going offline. To extract
such URLs for the final testing, we used json file from Phishtank dated 15 July
2014. We believe that the latest reported phishing URLs are more likely to still
host phishing content when we test our algorithms on them and hence we extract
fresh URLs. Finally, we have 17200 phishing URLs and 17200 legitimate URLs.
Our whole analysis is based on real-time behavior of the pages and hence we
need the preprocessing step to get the input data.

8 Results and Evaluation

8.1 Pre-processing, Whitelisting and Sanitization

We tested our system extensively on 34400 URLs, half of which were potential
phishing and half were legitimate. To remove the error pages and offline pages,
we have used pre-processing steps as described above.

Out of 17200 legitimate URLs, 14382 URLs gave error free response in timely
manner and these URLs are actually tested. Similarly, out of 17200 phishing
URLs, 1981 URLs were duplicates and removed from the analysis and 7507
URLs responded without any error and were given to our algorithm. Hence, out
of 34400 URLs, 21889 URLs are processed, and tested by our algorithm.

As the dataset is huge, and our system is automated, instead of opening the
page in a browser, we create a sandbox and open the page in it. We use python
2.7.6 and different modules of it including urllib2, mechanize, and beautifulSoup.
The algorithm requires strong and stable network connection. The average time
per URL is slightly over two seconds. It includes the time to reach the server,
download the information, library calls such as getTLD and other local compu-
tations.

8.2 Analysis of Methods over Input URLs

The page is tested through all of our classifiers (viz. U1, U2, U3, C1, C2, C3,
and B1) and the individual results are noted. Figure 1 shows contribution of
each classifier separately. From the figure it is clear that if we logically combine
the output of the classifiers, we will get a better result. Hence, we have created
OR, AND, Potential and Content schemes.

8.3 Summary of Results and Measurements

Our results are now summarized using the following measures with definitions
given below. Since we are interested in detecting phishing pages, we consider

Catching Classical and Hijack-Based Phishing Attacks 333

Fig. 1. Statistics for Individual Classifiers on input URLs

this as the “positive condition.” We apply the following formulas to present the
results of all the schemes.

TruePositiveRate(TPR) = TruePositives/ActualPositive

= TP/(TP + FN)

FalsePositiveRate(FPR) = FalsePositive/ActualNegative

= FP/(FP + TN)

Precision(PR) = TP/(TP + FP)

F − score = 2 ∗ PR ∗ TPR/(PR+ TPR)

Table 2. Results of different schemes

Search Filtering = OFF Search Filtering = ON

Scheme TPR FPR PR F-score TPR FPR PR F-score

OR 99.97% 3.50% 88.25% 93.75% 93.37% 0.54% 97.84% 95.55%

AND 87.64 % 1.80 % 92.76% 90.13% 82.30% 0.22% 98.98% 89.88%

Potential 97.94 % 2.48 % 91.24 % 94.47 % 91.55 % 0.36 % 98.52 % 94.91 %

Content 99.31 % 3.44 % 88.37 % 93.52 % 92.84 % 0.53 % 97.88 % 95.30 %

All the classifiers serve different purposes. URL classifier works only on the
given URL and can be considered to be doing static analysis. Even if the system
is not connected to the Internet, this scheme will work. Other advantage of this
scheme is that this scheme is fastest among our schemes.

334 T. Thakur and R. Verma

Content-based classifier will help to see the live and dynamic content of
the web page. Hence, the analysis is completely real-time. Real-time analy-
sis using only content can detect hijack-based attacks. We know that the life-
time of the phishing URLs is very short. And even if the URL started hosting
genuine content, unlike our content-based scheme, almost all other detection
techniques would still classify the URL as phishing. This analysis is completely
dynamic and requires a stable Internet connection. C2 performs the lowest among
the classifiers since we used a very small list of potential targets for similarity
checking.

Language independence of the classifiers can be elaborated with the help of a
few simple facts [10]. URLs of web pages in any language are created with valid
ASCII characters. Our URL based classifiers work on analysis of such ASCII
characters and hence they can work for web page in any language. Content clas-
sifiers C1, C3 and B1 check for the HTML code and more specifically redirection
tags. Those tags have a specific syntax and cannot be changed according to the
language of the web page. C2 tries to check similarity of pages by directly match-
ing the words in it. It is a check for a perfectly matching set of characters and no
processing is required in terms of finding the meaning or context of the words.
Hence, all the classifiers and hence the system can withstand the phishing attack
in any language.

Combination of these schemes makes our detection technique more accurate,
robust, reliable and real-time. Table 2 shows that the performance of AND
scheme is optimal and the search-based filtering will have negligible effect on
the TPR as well as FPR and hence PR and F-Score.

8.4 Direct Comparison

Each browser, nowadays, has an integrated phishing detector. Also, extensions
(sometimes called plugins) like Netcraft [18] and Web of Trust [25] are available
to provide more security to the users. Anti-virus programs like McAfee install
extra layer of protection from phishing URLs to the browser. The only way to
compare our model with such detection systems is to manually visit each of the
URLs from our TestingSets and see the visible response on the web browser.
This is very tedious and difficult way to get the results for each of the URLs.
We also tried to get tools for phishing detection from other researchers, but they
either didn’t have any public API or we didn’t get response from them.

The work done by Xiang et al. [29] cannot be directly compared to our work
as the datasets are different. However, their TPR of 67.74% is very less than our
TPR with modest FPR.

Fortunately, Google has an API for phishing detection called Google Safe
Browsing API [11]. We fed the same dataset to the API simultaneously with our
experiments and recorded the results. We found that, Google’s safe browsing
(GSB) is good in maintaining the FPR close to zero, but it failed in detecting
the phishing sites. Direct comparison is shown in Table 3.

Catching Classical and Hijack-Based Phishing Attacks 335

Table 3. Direct comparison of different schemes

Search Filtering = OFF Search Filtering = ON

Scheme TPR FPR PR F-score TPR FPR PR F-score

GSB 51.46 % 0.03 % 99.80 % 67.91 % - - - -

OR 99.97% 3.50% 88.25% 93.75% 93.37% 0.54% 97.84% 95.55%

AND 87.64 % 1.80 % 92.76% 90.13% 82.30% 0.22% 98.98% 89.88%

Potential 97.94 % 2.48 % 91.24 % 94.47 % 91.55 % 0.36 % 98.52 % 94.91 %

Content 99.31 % 3.44 % 88.37 % 93.52 % 92.84 % 0.53 % 97.88 % 95.30 %

8.5 Security Analysis

The determined phisher who reads our work can try and thwart detection as
follows. Copying a legal web-site’s content is almost a necessary step to lure
victims (the only other mechanism is to offer some kind of incentive to people,
which may not attract many victims since these strategies are quite dated now,
e.g., the Nigerian emails). Assume that the phisher can thwart the URL analysis
or take the scenario of a hijack based attack. In this case they must proceed as
follows to thwart the content-based analysis.

First, they must ensure that the number of external links is smaller than the
number of internal links. Second, they must change the behavior of the website
to that of a legal one to avoid detection, which means that the site should show
an error message or two and then keep the user on the same page with asking
credentials again. Next they must obtain an SSL certificate and lastly they must
insert enough junk text into the web site to thwart copy detection and make an
invisible/hidden copyright field whose name matches with the domain of their
URL while showing a copyright of the target being copied. There are a couple of
problems with this approach. First, this means that the phisher cannot be lazy
and use some kind of kit for building the site. Thus the work of the phisher is
increased significantly and the cost-benefit ratio becomes less attractive. Second,
a user that is redirected to the same page after entering valid credentials may
smell a rat very quickly after a few attempts to get into what seems like the legal
site and thus the time left for the phisher to carry out any exploits on the user’s
accounts will be diminished. Responsible user will report the URL as phishing
and the URL would be blacklisted sooner. Even if all the phisher does is sell
those credentials in some underground network, those credentials will be usable
for a shorter period and such credentials will be worth less and less over time.
Third, this requires considerable sophistication from the phisher and obviously
our schemes can be made even more sophisticated as well.

9 Conclusions and Future Work

We have considered the problem of detecting phishing web sites and presented
a comprehensive solution that is robust and uses novel techniques in the URL

336 T. Thakur and R. Verma

classifier (e.g., character frequencies, Euclidean distance) and in the content-
based classifier (e.g., similarity detection using F-score and real-time web page
behavior) apart from some other simplifications and improvements over existing
methods. It performs competitively with the best previous methods. Further-
more, we address the important problem of hijack-based phishing attacks (as
far as we know for the first time) through the content-based classifier and the
problem of zero-hour phishing detection as well. The content-based classifier has
the advantage of not needing any retraining and the URL classifier also requires
minimal training, which is fast and efficient.

One direction for future work is to combine it with a malware detector to
detect and thwart sites that do not try to steal sensitive information but install
malware on the web site visitor’s machine. Another useful direction would be to
expand the size of the whitelist, which would help the copy detector in catching
more phishing sites.

Acknowledgments. We would like to thank the reviewers for their constructive
comments.

References

1. Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A comparison of machine learning
techniques for phishing detection. In: Proc. Anti-phishing Working Group’s 2nd
Annual eCrime Researchers Summit, pp. 60–69. ACM (2007)

2. Anti-Phishing Working Group. Phishing activity trends report - h1 2011. In:
APWG Phishing Trends Reports (2011)

3. Basnet, R., Mukkamala, S., Sung, A.: Detection of phishing attacks: A machine
learning approach. Soft Computing Applications in Industry, 373–383 (2008)

4. Bergholz, A., Beer, J.D., Glahn, S., Moens, M.-F., Paaß, G., Strobel, S.: New
filtering approaches for phishing email. Journal of Computer Security 18(1), 7–35
(2010)

5. Bergholz, A., Chang, J., Paaß, G., Reichartz, F., Strobel, S.: Improved phishing
detection using model-based features. In: Proc. Conf. on Email and Anti-Spam
(CEAS) (2008)

6. Chandrasekaran, M., Narayanan, K., Upadhyaya, S.: Phishing email detection
based on structural properties. In: NYS CyberSecurity Conf. (2006)

7. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Proc. 16th
int’l conf. on World Wide Web, pp. 649–656. ACM (2007)

8. Gansterer, W.N., Pölz, D.: E-mail classification for phishing defense. In:
Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS,
vol. 5478, pp. 449–460. Springer, Heidelberg (2009)

9. Garera, S., Provos, N., Chew, M., Rubin, A.: A framework for detection and mea-
surement of phishing attacks. In: Proc. 2007 ACM Workshop on Recurring Mal-
code, pp. 1–8 (2007)

10. Google- Webmaster Central Blog. Working with multilingual websites (2010)
11. Google Developers. Safe browsing api – google developers (2013)
12. Hong, J.: The state of phishing attacks. Commun. ACM 55(1), 74–81 (2012)
13. Jakobsson, M., Myers, S.: Phishing and countermeasures: understanding the

increasing problem of electronic identity theft. Wiley-Interscience (2006)

Catching Classical and Hijack-Based Phishing Attacks 337

14. James, L.: Phishing exposed. Syngress Publishing (2005)
15. Ludl, C., McAllister, S., Kirda, E., Kruegel, C.: On the effectiveness of techniques

to detect phishing sites. In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007.
LNCS, vol. 4579, pp. 20–39. Springer, Heidelberg (2007)

16. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Learning to detect malicious urls.
ACM TIST 2(3), 30 (2011)

17. McGrath, D.K., Gupta, M.: Behind phishing: An examination of phisher modi
operandi. In: LEET (2008)

18. Netcraft. Netcraft extension - phishing protection and site reports (2014)
19. Netscape Communications Corporation. Open directory rdf dump (2004)
20. Ollmann, G.: The phishing guide. Next Generation Security Software Ltd. (2004)
21. Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., Zhang, C.: An empirical

analysis of phishing blacklists. In: Proc. 6th Conf. on Email and Anti-Spam (2009)
22. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,

R.A., Kruegel, C., Vigna, G.: Your botnet is my botnet: analysis of a bot-
net takeover. In: ACM Conference on Computer and Communications Security,
pp. 635–647 (2009)

23. Verma, R., Hossain, N.: Semantic feature selection for text with application to
automatic phishing email detection. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013.
LNCS, vol. 8565, pp. 455–468. Springer, Heidelberg (2014)

24. Verma, R., Shashidhar, N., Hossain, N.: Detecting phishing emails the natural
language way. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 824–841. Springer, Heidelberg (2012)

25. Web of Trust. Safe browsing tool — wot (web of trust) (2014)
26. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phishing

pages. In: Proc. of 17th NDSS (2010)
27. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: Cantina+: A feature-rich machine

learning framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur.
14, 21:1–21:28 (2011)

28. Xiang, G., Hong, J.I.: A hybrid phish detection approach by identity discovery and
keywords retrieval. In: Proceedings of the 18th International Conference on World
Wide Web, pp. 571–580. ACM (2009)

29. Xiang, G., Pendleton, B.A., Hong, J., Rose, C.P.: A hierarchical adaptive prob-
abilistic approach for zero hour phish detection. In: Gritzalis, D., Preneel, B.,
Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 268–285. Springer,
Heidelberg (2010)

30. Yu, W., Nargundkar, S., Tiruthani, N.: Phishcatch-a phishing detection tool. In:
33rd IEEE Int’l Computer Software and Applications Conf., pp. 451–456 (2009)

31. Zhang, Y., Hong, J., Cranor, L.: Cantina: a content-based approach to detecting
phishing web sites. In: Proc. 16th Int’l Conf. on World Wide Web, pp. 639–648.
ACM (2007)

PMDS:

Permission-Based Malware Detection System

Paolo Rovelli1 and Ýmir Vigfússon1,2

1 School of Computer Science
Reykjavik University

Menntavegi 1, Reykjavik 101, Iceland
2 Department of Mathematics and Computer Science

Emory University
400 Dowman Drive, Atlanta GA 30322, USA

Abstract. The meteoric growth of the Android mobile platform has
made it a main target of cyber-criminals. Mobile malware specifically
targeting Android has surged and grown in tandem with the rising pop-
ularity of the platform [3, 5, 4, 6]. In response, the honus is on defenders
to increase the difficulty of malware development to curb its rampant
growth, and to devise effective detection mechanisms specifically target-
ing Android malware in order to better protect the end-users.

In this paper, we address the following question: do malicious appli-
cations on Android request predictably different permissions than legit-
imate applications? Based on analysis of 2950 samples of benign and
malicious Android applications, we propose a novel Android malware
detection technique called Permission-based Malware Detection Systems
(PMDS). In PMDS, we view requested permissions as behavioral markers
and build a machine learning classifier on those markers to automatically
identify for unseen applications potentially harmful behavior based on
the combination of permissions they require. By design, PMDS has the
potential to detect previously unknown, and zero-day or next-generation
malware. If attackers adapt and request for fewer permissions, PMDS
will have impeded the simple strategies by which malware developers
currently abuse their victims.

Experimental results show that PMDS detects more than 92–94% of
previously unseen malware with a false positives rate of 1.52–3.93%.

Keywords: Android, Permissions, Malware Detection System, Machine
Learning, Data Mining, Heuristics.

1 Introduction

Mobile devices are being adopted at an exponential rate: mobile phone sub-
scriptions have increased from 700 million in 2000 to 7 billion by the end of
2014, representing more than 96% of the world’s population, with the market
penetration in developing world projected to reach 90% by the same time [1].
The number of smartphones in use worldwide have surpassed one billion-unit for

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 338–357, 2014.
c© Springer International Publishing Switzerland 2014

Permission-Based Malware Detection System 339

the first time ever in second half of 2012 [7], and already in 2013 did the total
number of smartphones shipped exceed that of feature phones [8].

The convenience of interactive mobile devices has enticed their users, who
now carry a wealth of sensitive information around with them: personal data,
bank information and account details, GPS location, contacts, text messages and
emails [9–13]. The value of these data has attracted cyber-criminals who invest
time and money in exploiting vulnerable mobile platforms, commonly through
malware.
Google’s Android platform has become the most targeted mobile operating sys-
tem, likely for two key reasons [14]. On one hand, Android is a ubiquitous plat-
form, with more than 1.9 billion installed-base devices [2]. On the other hand,
Android applications are easy to reverse-engineer and can be readily modified
or repackaged. Since attackers focus their energy on targets that have the high-
est return on investment, popular platforms like Android with accessible inner
workings are doomed to attract special attention from cyber-criminals.

In anticipation of malicious behavior, the fundamental Android design in-
cludes various security and authentication mechanisms. One of the fundamental
mechanisms is application permissions, where newly installed applications will
ask the user for approval on what types of access will be required for the pro-
gram to work. The mechanism enables granular control of restrictions into what
specific operations can be performed by the particular application.

Yet the old adage that security is only as strong as the weakest link con-
tinues to apply: many families of Android malware prey on unsuspecting users
by camouflaging themselves as regular applications that need elevated privileges
to the system. Often times, legit applications are “repackaged” with a Trojan
payload that preys on unsuspecting users or steals the ad revenue from the host
application [18, 19]. Researchers from the App Genome project reported that
11% of the Android applications in two alternative China-based markets were
repackaged, and another study has reported an alarming 5-13% repackaging rate
among six different third-party markets [20]. The effectiveness of the permissions
mechanism is compromised if the user fails to notice unusual requests for per-
missions.

In this paper, we focus on a basic question: to what extent can Android mal-
ware be detected and thereby thwarted by solely focusing on the permissions they
request? We compare 1450 malware samples to 1500 benign applications from the
Google Play Store and analyze differences and patterns between the two groups.
We found correlation between the group of permissions required by an applica-
tion with its behavior, that is whether the application was benign or malicious.
Using this link, we propose a novel Android malware detection technique, called
Permission-based Malware Detection Systems (PMDS). PMDS uses a machine
learning classifier to automatically identify (potentially) dangerous behavior of
previously unseen applications based on the combination of permissions they re-
quire. Through a machine learning approach, PMDS has the potential to detect
previously unknown and zero-day or next-generation malware.

340 P. Rovelli and Ý. Vigfússon

The contributions presented in this paper are the following.

– We propose PMDS: a simple, novel approach to categorize the behavior of
an Android application and consequently to detect malware.

– We present a low-overhead cloud-based architecture for PMDS, detailing
both the client-side and a server-side applications, which uses the previously
presented Android malware detection technique.

– We demonstrate the feasibility of our system through cross-validation on
2950 real-world samples, showing that PMDS was able to detect 92–94% of
previously unseen Android malware at 1.52%–3.93% false positive rate.

2 Background

Android is an operating system, primarily designed for touchscreen mobile de-
vices, including smartphones and tablets, the core of which is built on top of
a modified version of the Linux kernel. Every application on Android is run as
a different user in its own, separate Linux process [38]. Above the Linux kernel
layer, Android provides native user-space libraries, such as OpenGL and WebKit,
and the Dalvik Virtual Machine (VM): an open source Virtual Machine opti-
mized to run Java applications on mobile devices. On top of the Android system
architecture there are the applications, which run on an application framework
composed of Java-compatible libraries based on Apache Harmony.

Android applications are distributed and installed using the Android PacKage
(APK) file format: an archive file built on the ZIP file format and carries the
.apk file extension. Since each Android application runs in its own process with
its own instance of the Dalvik VM, all application code runs in isolation from
other applications.

Furthermore, each application in the Android architecture has access only to
the components it requires to complete its work, and none other. Consequently,
an application that wishes to access particular system components must request
specific permission. The design creates a secure operating environment in which
applications cannot access parts of the system unless they are explicitly granted
privileges [38, 39].

An application that requires special privileges must explicitly declare those
in an AndroidManifest.xml file, an entry file bundled within APK packages that
provides semantic-rich information about the application itself and its compo-
nents.

Furthermore, Android applications (as well as libraries) can enforce their own,
custom permissions. These custom permissions are also declared in the Android-
Manifest.xml file together with the system ones. [40, 39]

Because each permission is related to an action, the permissions required by
an application can be seen as an indicator of its possible1 future behavior and
thus the risk manifested by granting the privileges to the program at hand.

1 It is important to note that the declaration of certain permissions in the Android-
Manifest.xml file does not necessarily imply their use at runtime.

Permission-Based Malware Detection System 341

Fig. 1. Example of a malicious application (Trojan-Banker://Android/ZitMo.B) which
requires for a specific group of permissions. On the right the permissions are required
during the installation process, while on the left the AndroidManifest.xml file in which
the required permissions are declared.

We note that not every piece of malware asks for a dangerous combination of
permissions. Some rely on exploiting vulnerabilities in other services to escalate
privileges, and may not require for any special permissions at all [14]. Zhou
et al. showed that bundling exploits was the exception rather than the norm
in modern Android malware. Our focus will be on malware that specifically
requests permissions to undertake undesirable behavior.

3 Design and Implementation

The key goal of our study is to understand whether the group of permissions
required by an application correlates with its ultimate behavior as either benign
or malicious. If there is a correlation, how can it be leveraged to automatically
identify potentially dangerous behavior of previously unseen applications? In this
section we describe design decisions and implementation of a detection frame-
work architecture that exploits a classifier based on application permissions.

3.1 Design

A malware detection framework for Android can be architected in a variety of
ways. A proactive approach would be to embed detection for all users into an
Android marketplace, such as Google Play Store or an alternative third-party
market, and perform a scan when developers upload their code. However, such
changes are dramatic and should only be issued after the methods have been

342 P. Rovelli and Ý. Vigfússon

thoroughly validated. Here, we instead describe a proof-of-concept architecture
focused on protecting individual clients.

By taking a client-centric view, the next issue is to address the trade-off be-
tween overhead and accuracy. On one end of the spectrum, the detection logic
could reside entirely on the mobile device, with updates periodically issued from
an Internet service. This option requires more processing and in turn consumes
more battery from the device. It also leaves open a window of vulnerability
between updates during which malicious applications could be installed with-
out warning. On the opposite end, one could outsource detection entirely to
a cloud service, leaving a bare bones client-side framework that focuses solely
on mitigation when malicious applications are detected. This strategy allows
more elaborate and powerful detection programs to be run in the cloud where
resources are less constrained. However, communication with a remote service
incurs higher latency and may degrade user experience if the application cannot
start until it has been scanned, or security if the application starts before the
response from the scan has been received from the cloud server.

Fig. 2. The Permission-based Malware Detection System (PMDS) architecture. The
clients, whether they are Android devices or Android marketplaces, have a “Permission
Checker” that extracts permissions by an application and sends them to a server-side
application where the application is evaluated as benign or malicious.

Taking these factors into consideration, PMDS is implemented as a cloud
system. Such system has several additional advantages. An important one is
that the cloud service is no longer subjected to the Android architecture design
and its limitations, allowing more accurate analysis that are poised to improve
detection rates. As mentioned above, the second main advantage is that fewer
resources are spent on the device itself, which in turn will improve the battery
lifetime compared to an on-device scan.

As shown in Figure 2, the Permission-basedMalware Detection System (PMDS)
is composed of a client-side application, whose task is to extract the permissions

Permission-Based Malware Detection System 343

of an application and send them to the server-side component. The server is the
core of our technology, as it is tasked with classifying the behavior of the given
application instance as either benign or malicious and, then, signaling the results
to the client-side application as quickly as possible. In order to do so, we will
rely on machine learning classifiers that we discuss below.

As with other malware detection systems, the client-side component can im-
plement two strategies: it can provide an interface that enables the user to per-
form a manual scan of installed programs (on-demand scan), or it can be used
to automatically scan recently obtained applications (on-install scan). Anecdotal
evidence suggests that people are not vigilant about virus and malware scans,
making time between scans larger than needed, so we focus on on-install scans.

However, the standard Android platform is designed to disallow applications
from interacting with the installation process. Specifically, when an application
is installed from Google Play Store or another third-party market, our malware
scanner is limited to registering and then handling an event telling us that a new
application has been installed, rather than interrupting the process. In light of
this limitation, our on-install scanner will be able to detect a malicious applica-
tion only after it has been installed, creating a race condition between execution
of the new program and the scan. If the scan is fast enough, PMDS will detect
and remove a malicious application before it is launched and thus before it can do
harm. Our implementation is guided by the concern that lookups must produce
a prompt response, meaning that we strive to minimize server-side computation
time and network latency. On a positive note, the asynchronous notifications
about newly installed applications implies that no particular delay is added to
the installation process, thereby minimizing user interruption.

Finally, we must be mindful of two additional concerns when designing a
cloud system for mobile devices. First, one cannot trust that mobile devices is
connected to the global Internet at all possible times. We will make the assump-
tion that applications are generally installed from markets on the Internet, and
that the connection will remain up for a short amount of time following the
installation. In fact, our analysis below confirms that most applications require
Internet access to function properly. The second concern is that applications
should strive to minimize network traffic. The communication protocol we im-
plemented is designed to communicate the required information efficiently, as
described below.

3.2 Implementation

Server-Side Application. The server-side application is the crux of our
Permission-based Malware Detection System (PMDS) as it is the component re-
sponsible for classifying an application’s behavior as either benign or
malicious.

In our prototype of the server-side application, we use Python to automat-
ically extract the permissions declared by an application in its AndroidMani-
fest.xml file of the APK package (see Figure 3). We piggyback on the Android
Asset Packaging Tool (aapt) which is a part of the Android SDK. The aapt pro-

344 P. Rovelli and Ý. Vigfússon

gram is versatile, in particular the “aapt dump permissions” command lists the
permissions declared by an application:

$ aapt dump permissions MyPkg.apk | sed 1d | awk ’{print \$NF}’

After extracting the permissions, the program automatically save the informa-
tion in the Weka’s Attribute-Relation File Format (ARFF) [43, 44].

Our prototype then uses Weka [33] to train multiple classifiers in order to
detect new and unseen malware.

Fig. 3. To create the classifier’s dataset, the permissions declared in the AndroidMan-
ifest.xml file of an application are automatically extracted using the Android Asset
Packaging Tool (aapt). Then, the classifier automatically labels the application be-
havior, as either benign or (potentially) malicious, according to the combination of
permissions the application requires.

Android applications can enforce their own custom permissions, as mentioned
earlier, which appears as noise in the classifier. In PMDS, we omit custom per-
missions and collect only the system permissions available in the Android API
documentation, for a total of 130 permissions [41]. The permissions requested by
an application is represented as a binary vector of Boolean values, one for each
permission, where TRUE stays for the presence of that particular permission
while FALSE stays for its absence. In our database, we also store the applica-
tion behavior, saved as either benign or malicious.

FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE,

TRUE,...,FALSE,FALSE,FALSE,malicious

As an optimization, we store permissions in a fixed-length array rather than an
extensible map. Modifying the permission types, such as by adding new per-
missions, or order can compromise the integrity or prediction quality of the
classifiers. The optimization allows us to compress the data for each application
into no more than a bit for each permission.

In order to automatically and properly label the behavior of previously unseen
applications (as either benign or malicious), we train a representative classifier

Permission-Based Malware Detection System 345

from each of four modern approaches for classifiers. We chose the following ma-
chine learning algorithms: C4.5 Decision Tree, K∗, RIPPER and Näıve Bayes,
and evaluate their performance in Section 4.

C4.5 Decision Tree-Based Learning. We used the J48 open source Java im-
plementation of the Ross Quinlan’s C4.5 Decision Tree-based learning algorithm
which is available in Weka. The C4.5 algorithm builds decision trees from a set
of training data using information entropy as a distance measure. The decision
trees are then used as predictive models for mapping observations about an item
– its features – and conclusions about the item’s target value – its class label.
[34, 32, 33]

K∗ Lazy Learning. On the other hand, K∗ is a Lazy (Instance-based) learning
algorithm developed by Cleary and Trigg. The K∗ algorithm classifies an instance
by comparing it to a database of pre-classified examples and using entropy as
a distance measure. The biggest drawback is that evaluation is comparatively
slow and can grow with data, in exchange for faster training times. [35]

RIPPER Rule-Based Learning. RIPPER (Repeated Incremental Pruning
to Produce Error Reduction) is a Rule-based learning algorithm developed by
William W. Cohen. The RIPPER algorithm classifies an instance according to
a sequence of Boolean clauses linked by logical AND operators, which together
imply the membership of the instance to a particular class. [31]

Näıve Bayes Learning. Finally, Näıve Bayes is a simple Bayesian learning
algorithm developed by John and Langley. The Näıve Bayes probabilistic algo-
rithm is based on applying Bayes’ theorem with strong (näıve) independence
assumptions. In other world, for this algorithm, the presence (or absence) of a
particular feature is unrelated to the presence (or absence) of any other feature
of a class. [36]

3.3 Client-Side Application

The client-side component is responsible for extracting the permissions declared
by an application and send them to the server-side application.

Retrieving the list of applications currently installed on an Android device –
irrespective of whether they are user or system applications (see Section 2) – can
be achieved by PackageManager class. The interface further enables the caller
to retrieve various extra information related to each application, including the
permissions they require [42].

Recall that Android explicitly prohibits tampering with the installation pro-
cess of an application from Google Play Store. PMDS instead registers a handle
for the event that a new application has been installed. A custom on-install scan-
ner will scan the executable, but notably malware can only be detected after the
application has been installed. However, the detection is designed to be faster
than an average user is at opening the newly installed application.

We “hook” our scanner to the installation process by creating and registering a
BroadcastReceiver handler for thePACKAGE ADDED andACTION PACKAGE

346 P. Rovelli and Ý. Vigfússon

final PackageManager pm = getPackageManager();

final List<ApplicationInfo> listOfInstalledApps =

pm.getInstalledApplications(PackageManager.GET_META_DATA);

// Retrieve each installed app info:

for (final ApplicationInfo ai : listOfInstalledApps) {

final String appName = pm.getApplicationLabel(ai).toString();

final String appPackage = ai.packageName;

List<String> appPermissions;

final PackageInfo pi = pm.getPackageInfo(appPackage,

PackageManager.GET_PERMISSIONS);

if ((pi != null) && (pi.requestedPermissions != null)) {

Collections.addAll(appPermissions, pi.requestedPermissions);

}

...

}

Fig. 4. Assembling a list of installed applications on Android. The getInstalledApplica-
tions() method of the PackageManager class returns a list of ApplicationInfo objects.
Each of these objects represents an installed application.

REPLACED broadcast actions. The first action is broadcast every time a new ap-
plication package has been installed on the device, while the latter is called every
time a new version of an application package has been installed, thus replacing an
existing version that was previously installed.

<receiver android:name="com.example.onInstallBroadcastReceiver"

android:exported="false">

<intent-filter android:priority="1000">

<action android:name="android.intent.action.PACKAGE_ADDED" />

<action android:name=

"android.intent.action.ACTION_PACKAGE_REPLACED" />

<data android:scheme="package" />

</intent-filter>

</receiver>

Fig. 5. XML. Example of BroadcastReceiver that handles the on-install event, thanks
to the PACKAGE ADDED and ACTION PACKAGE REPLACED broadcast actions.

When the BroadcastReceiver is triggered, the permissions required by the
installed APK package are extracted by the client-side component and sent to
the server-side application.

Permission-Based Malware Detection System 347

public class onInstallBroadcastReceiver

extends BroadcastReceiver {

/**

* Receiving an Intent broadcast.

*

* @param context the Context in which the receiver is running.

* @param intent the Intent being received.

*/

@Override

public void onReceive(Context context, Intent intent) {

String action = intent.getAction();

if (action.equals(Intent.ACTION_PACKAGE_ADDED) ||

action.equals(Intent.ACTION_PACKAGE_REPLACED)) {

// Retrieve the installed/updated package:

final String appPackage =

intent.getData().getEncodedSchemeSpecificPart();

// [...] Scan the APK package [...]

}

}

}

Fig. 6. Java. Example of BroadcastReceiver handler for the on-install event, corre-
sponding to the XML code in Figure 5.

The use of BroadcastReceiver allows us to minimize the use of the CPU
and, therefore, the battery consumption. Since PMDS uses only the 130 system
permissions available in the Android API documentation [41] on the server side,
we can also optimize the packet exchange so that the client-side application
needs transmit only a data sequence of 130 bits that indicates each permission
requested by the application. The server-side application will answer with a single
bit, predicting that the application intention is either malicious or benign. Note
that other layers, such as TCP, the HTTPS protocol and other chatty formats,
add additional space overhead on top of the protocol.

4 Evaluation

Since it is the core of our Permission-based Malware Detection System (PMDS),
our evaluation is focused on determining the efficiency of the server-side classifier.

348 P. Rovelli and Ý. Vigfússon

4.1 Dataset and Analysis

We use a dataset of 2950 samples, divided into 1500 unique benign samples (i.e.
no updated versions of the same applications are included) and 1450 malicious
ones. The benign samples were collected from the Google Play Store [46], while
all the malicious samples were taken from both the Android Malware Genome
Project [14] and Contagio Mobile [45]. We disregard applications that do not
request additional permissions.

Figure 7 shows the most frequently requested permissions by the samples
in our dataset, both benign and malicious, ordered by decreasing popularity.
The INTERNET privilege was the most required permission for both benign
and malicious applications, in concord with Zhou and Jiang’s study [14]. On
the other hand, our dataset shows significant difference between the groups in
certain permissions, such as: READ PHONE STATE, ACCESS WIFI STATE,
READ SMS, WRITE SMS, SEND SMS, RECEIVE SMS, READ CONTACTS
and CALL PHONE.

4.2 Experimental Set-Up

In order to evaluate the accuracy of each machine learning classifier, we use the
standard tenfold cross-validation. Cross-validation is a model validation method
that divides data into two segments: one used to train the machine learning
algorithm and one used to test it. Tenfold cross-validation takes 90% of the
dataset for training and 10% for testing, and then repeats the procedure 10
times with different parts used for training and testing, and then outputs the
average accuracy across the runs. In this way, we are testing the classifiers against
previously unseen data (i.e. data not used for training the classifiers), which in
our case represent zero-day or next-generation malware.

In order to evaluate the results of the performed experiments, we use the
following standard evaluation measures: True Positive (TP) – the number of
applications correctly classified as malicious, True Negative (TN) – the number
of applications correctly classified as benign, False Positive (FP) – the number
of applications mistakenly classified as malicious, and False Negative (FN) – the
number of applications mistakenly classified as benign. Furthermore, we define
the normalized term True Positive Rate (TPR) to mean the fraction of truly
benign samples that were characterized as such (i.e. TPR = TP

TP+FN), and the

term False Positive Rate (FPR = FP
FP+TN). We also define Accuracy (ACC)

to mean the fraction of applications correctly classified out of the total amount
of applications (i.e. ACC = TP+TN

TP+TN+FP+FN) and, finally, with the term Error
Rate (ER) we mean the fraction of applications mistakenly classified out of
the total amount of applications (i.e. ER = FP+FN

TP+TN+FP+FN). To illustrate
the efficacy of a solution, we will use Receiver Operating Characteristic (ROC)
curves, graphical plots of the TPR versus the fraction of false positives out of
the total actual negatives (i.e. FP

TN+FP), at various threshold settings.

Permission-Based Malware Detection System 349

Fig. 7. Most frequently requested permissions by the Android applications in our
dataset. The blue bars show the number of times the specific permissions have been
requested by benign applications, while the orange bars show the number of times they
have been requested by malicious applications.

4.3 Standard Machine Learning Classifiers

Table 1, and Figures 8 and 9, show the results obtained in our first batch of
experiments, where we used the four representative machine learning algorithms
(C4.5, K∗, RIPPER and Näıve Bayes).

Table 1. Experimental results using four different classifiers: a Decision Tree-based
learner (C4.5), a Lazy Instance-based learner (K∗), a Rule-based learner (RIPPER)
and a Bayesian learner (Näıve Bayes). The classifiers automatically label the behavior
of previously unseen applications as either benign or malicious.

TP TN FP FN TPR FPR ACC ER

C4.5 1340 1456 44 110 92.41 % 3.03 % 94.78 % 5.22 %

K∗ 1338 1478 22 112 92.28 % 1.52 % 95.46 % 4.54 %

RIPPER 1338 1465 35 112 92.28 % 2.4 % 95.02 % 4.98 %

Näıve Bayes 1155 1450 50 295 79.66 % 3.45 % 88.31 % 11.69 %

As evident on the figures, the overall best results were obtained usingK∗, with
which we achieved a detection rate of 92.28% and a false positives rate of 1.52%
– the minimum across all experiments. We achieved the highest detection rate
(92.41%) using C4.5, while the highest accuracy (95.02%) using RIPPER. Näıve
Bayes produced the least competitive results, both in terms of the detection rate
and the false positive rate.

350 P. Rovelli and Ý. Vigfússon

Fig. 8. The Receiver Operating Characteristic (ROC) Curve of our C4.5 (left) and K∗

(right) classifiers, respectively

Fig. 9. The Receiver Operating Characteristic (ROC) Curve of our RIPPER (left) and
Näıve Bayes (right) classifiers, respectively

4.4 Boosted Machine Learning Classifiers

The machine learning literature is endowed with a methodology called boosting
that converts rough and moderately inaccurate classifiers into stronger com-
bined classifiers by systematically reducing bias. We subjected three of the four
classifiers that had been trained to Adaptive Boosting (AdaBoost), a machine
learning meta-algorithm developed by Yoav Freund and Robert Schapire. Ad-
aBoost uses a boosting approach in which multiple classifiers (possibly through
parameterization) are trained, and their output is joined into a weighted sum
that can provide more accurate prediction [37].

We boosted the previously evaluated machine learning algorithms with Ad-
aBoost, and show the results in Table 2, and Figures 10 and 11.

Permission-Based Malware Detection System 351

Table 2. Experimental results using AdaBoost in conjunction with the previous ma-
chine learning algorithms (i.e. C4.5, RIPPER and Näıve Bayes)

TP TN FP FN TPR FPR ACC ER

C4.5 1366 1443 57 84 94.21 % 3.93 % 95.22 % 4.78 %

RIPPER 1353 1442 58 97 93.31 % 4 % 94.75 % 5.25 %

Näıve Bayes 1345 1362 138 105 92.76 % 9.52 % 91.76 % 8.24 %

Fig. 10. The Receiver Operating Characteristic (ROC Curve) of our AdaBoost classi-
fier using RIPPER (left) and C4.5 (right) as base classifiers respectively

In these experiments, we note that Näıve Bayes had the largest relative im-
provement in detection rate and false positives rate through boosting. The best
results were obtained from the boosted version of the C4.5, with which we achieve
a detection rate of 94.21% and a false positive rate of 3.93%. The improved de-
tection rate over the best non-boosted method thus comes at the price of higher
false positive rate.

We note that False Positive Rate (FPR) must be minimized since malware
detection engines are primarily engineered to filter out potentially harmful con-
tent. The FPR is low but not zero, and may potentially be reduced through the
use of a whitelisting mechanism.

4.5 Improvements

Future work will address areas where improvement is needed. First, some permis-
sions declared by Android applications imply different privileges; this delegation
of privilege is not captured by the PMDS prototype.

For example, theREAD EXTERNAL STORAGE permission, which allows an
application to read from the External Storage, is implicitly grantedby the system if
the targeted API level is equal or lower than 3 or if the application

352 P. Rovelli and Ý. Vigfússon

Fig. 11. Comparison of the Receiver Operating Characteristic (ROC Curve) across
various base classifiers (left) and the AdaBoost variants (right)

requires the WRITE EXTERNAL STORAGE permission, which allows an ap-
plication to write to the External Storage. Furthermore, theREAD EXTERNAL
STORAGE permission is enforced only from API level 19, from which point this
permission is not longer required to readfiles in the application-specific directories.

Another example is the READ CALL LOG permission, which allows an ap-
plication to read the user’s call log. If an application targets API level equals or
lower than 15, this particular permission is implicitly granted by the system if
the application requires also the READ CONTACTS permission, which allows
an application to read the user’s contacts data. PMDS needs to be carefully
designed to capture the nuances of privilege delegation.

It is possible that an application uses some permissions – and accordingly
to performs some system actions – without explicitly declaring them in its An-
droidManifest.xml file. Our PMDS prototype ignores this dilemma, but future
work should account for implied permissions in order to provide more precise
correlation between the group of permissions required by applications and their
behavior.

5 Related Work

While many traditional malware detection methodologies are based on signa-
tures, there is a growing trend towards apply machine learning and data mining
techniques to detect unknown malicious code. The approaches taken thus far,
however, have been mostly concentrated on malware for the Microsoft Windows
platform [23–30].

Some prior works explore the possibility of detecting Android malware us-
ing permissions. These projects, however, are predominantly based on heuristics
and do not deploy machine learning techniques. In the closest project, Huang

Permission-Based Malware Detection System 353

et al. [16] ask the same research question as us: can malicious applications be
detected using permissions? In order to retrieve the permissions, the authors
disassemble the APK packages, identify the Android system functions invoked,
and then reconstruct the permissions being used. To evaluate their detection
model, the authors use a dataset of 124,769 benign applications and 480 ma-
licious ones, and 4 machine learning algorithms, respectively: AdaBoost, Näıve
Bayes, Decision Tree and Support Vector Machine. The authors use several other
features (e.g. the number of particular file formats and both the number of
under-privileged and over-privileged permissions) in addition to the permissions
to improve their detection mechanism. The authors claim that their experiments
show that a single classifier is able to detect about 81% of malicious applications.
Our evaluation of PMDS suggest that the method achieves comparatively higher
detection rate.

Other related works that take advantage of permissions are VetDroid [22], the
fingerprinting schemes DroidRanger [17], DroidMOSS [20], and work on genera-
tive models for risk scores based on requested permissions of Sarma et al. [21].

VetDroid [22] is a dynamic behavioral profiler framework which use the per-
missions to reconstruct sensitive behaviors in Android applications. VetDroid is
able to reconstruct some malicious behaviors of Android applications, to ease
malware analysis, and to find information leaks and vulnerabilities. The authors
use a dataset of 600 malware, collected from the Android Malware Genome
Project [14], and 1,249 free applications collected from the Google Play Store.
While both VetDroid and PMDS try to correlate permissions to behavior, Vet-
Droid is a tool to provide better behavior understanding and to help analysis
(the output of the system is a report), rather than a complete detection system.

DroidRanger is a permission-based behavioral fingerprinting scheme to detect
new samples of known Android malware families [17]. The authors propose a
two layer scheme. Applications are first filtered based on the Android permis-
sions required and then sieved through a heuristics-based filter. The authors
use a dataset of 182,823 applications collected from 5 different marketplaces to
evaluate their detection model. They claim that their experiments show that
DroidRanger detects 119 infected applications in their dataset, with a false neg-
ative rate of 23.52% in the first version and of 5.04% in the second version.
The authors focus only on the most used Android permissions of 10 Android
malware families whereas PMDS investigates the whole vector. The works also
differ in that PMDS leverages machine learning algorithms for its detection
whereas DroidRanger takes a heuristic-based approach. A subset of the authors
of DroidRanger also created DroidMOSS [20], which is focused entirely on de-
tecting repackaged applications and uses fuzzy hashing to detect the changes
made from the original legitimate program.

Sarma et al. propose the use of probabilistic generative models to compute
a risk score depending on the permissions required by an application [21]. The
authors use a dataset of 158,062 benign applications collected from the Android
Market and 121 malicious ones. The authors claim that, for a very low warning
rate of 0.05%, they were able to identify the 50% of the malware. Furthermore,

354 P. Rovelli and Ý. Vigfússon

using a different weight when training, they claim to achieve 71% of detection
rate and 2.4% of warning rate. PMDS, in contrast, achieved 94% detection rate
in our evaluation – comprised of nearly 10×more malicious applications and 10×
fewer benign ones – while retaining a lower warning rate. We believe the two
approaches are also complementary and could potentially be fused to provide an
even more effective detection system.

6 Conclusion

In the wake of the exponential growth of the Android mobile platform there is
rapid proliferation of Android malware. In this paper we have proposed a new
detection technique for Android malware, called Permission-based Malware De-
tection System (PMDS). Our work focuses exclusively on how well permissions in
Android are indicative of undesirable behavior. We built a client-server architec-
ture for PMDS, the crux of which is a server-side machine learning classifier that
automatically identifies (potentially) dangerous behaviors of previously unseen
applications based on the combination of permissions they require.

Our experimental results shows the feasibility of using well-established clas-
sifiers in order to provide heuristic detection on unknown and zero-day or next-
generation malware which are not detected by standard detection systems. PMDS
was able to detect more than 92–94% of previously unseen malware with a false
positive rate of 1.52–3.93%. Our approach shows that a simple permission-based
mechanism may be used alongside classic detection algorithms to thwart the
rampant mobile malware and thus raise the security bar in the mobile space.

Acknowledgments. We thank Gianfranco Tonello of TG Soft for support,
Marjan Siriani for helpful comments and the anonymous reviewers for construc-
tive feedback. Our work was supported in part by grants from Emory University,
and grant-of-excellence #120032011 from the Icelandic Research Fund.

References

1. The International Telecommunication Union. The World in 2014: ICT Facts and
Figures (2014),
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/

ICTFactsFigures2014-e.pdf

2. Gartner Forecast: PCs, Ultramobiles, and Mobile Phones, Worldwide, 2011-2018,
2Q 2014 (2014),
http://www.gartner.com/document/2780117

3. Svajcer, V.: Sophos Mobile Security Threat Report (2014)
4. Panda Security: Annual Report PandaLabs 2013 (2013),

http://press.pandasecurity.com/wp-content/uploads/2010/05/

Quarterly-Report-PandaLabs-April-June-2013.pdf

5. F-Secure: F-Secure Mobile Threat Report Q3 2013 (2013),
http://www.f-secure.com/static/doc/labs global/Research/

Mobile Threat Report Q3 2013.pdf

http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
http://www.gartner.com/document/2780117
http://press.pandasecurity.com/wp-content/uploads/2010/05/Quarterly-Report-PandaLabs-April-June-2013.pdf
http://press.pandasecurity.com/wp-content/uploads/2010/05/Quarterly-Report-PandaLabs-April-June-2013.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q3_2013.pdf
http://www.f-secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q3_2013.pdf

Permission-Based Malware Detection System 355

6. G Data SecurityLabs: G Data Mobile Malware Report H2 2013 (2013),
https://blog.gdatasoftware.com/uploads/media/

GData MobileMWR H2 2013 EN.pdf
7. Strategy Analytics: Global Smartphone Installed Base by Operating System for 88

Countries: 2007 to 2017 (2012),
http://www.strategyanalytics.com/default.aspx?mod=

reportabstractviewer&a0=7834
8. IDC: More Smartphones Were Shipped in Q1 2013 Than Fea-

ture Phones, An Industry First According to IDC (2013),
http://www.idc.com/getdoc.jsp?containerId=prUS24085413

9. Leavitt, N.: Malicious code moves to mobile devices. IEEE Computer 33(12), 16–19
(2000)

10. Foley, S.N., Dumigan, R.: Are handheld viruses a significant threat? Communica-
tions of the ACM 44(1), 105–107 (2001)

11. Dagon, D., Martin, T., Starner, T.: Mobile Phones as Computing Devices: The
Viruses are Coming! IEEE Pervasive Computing 3(4), 11–15 (2004)

12. Hypponen, M.: State of cell phone malware in 2007. USENIX (2007),
http://www.usenix.org/events/sec07/tech/hypponen.pdf

13. Lawton, G.: Is it finally time to worry about mobile malware? Computer 41(5),
12–14 (2008)

14. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution.
In: IEEE Symposium on Security and Privacy (SP), pp. 95–109. IEEE (2012),
http://www.malgenomeproject.org

15. Spreitzenbarth, M., Freiling, F.: Android Malware on the Rise. University of Er-
langen, Germany, Tech. Rep. CS-2012-04 (2012)

16. Huang, C.-Y., Tsai, Y.-T., Hsu, C.-H.: Performance evaluation on permission-based
detection for android malware. In: Pan, J.-S., Yang, C.-N., Lin, C.-C. (eds.) Ad-
vances in Intelligent Systems & Applications. SIST, vol. 21, pp. 111–120. Springer,
Heidelberg (2012)

17. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, You, Get Off of My Market: Detect-
ing Malicious Apps in Official and Alternative Android Markets. In: Proceedings
of the 19th Annual Network and Distributed System Security Symposium (2012)

18. Chen, K., Liu, P., Zhang, Y.: Achieving accuracy and scalability simultaneously
in detecting application clones on Android markets. In: Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pp. 175–186. ACM,
New York (2014)

19. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: Detecting cloned applica-
tions on android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS
2012. LNCS, vol. 7459, pp. 37–54. Springer, Heidelberg (2012)

20. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone appli-
cations in third-party Android marketplaces. In: Proceedings of the Second ACM
Conference on Data and Application Security and Privacy, CODASPY 2012, pp.
317–326. ACM, New York (2012)

21. Sarma, B.P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., Molloy, I.: Android
permissions: a perspective combining risks and benefits. In: Proceedings of the 17th
ACM Symposium on Access Control Models and Technologies, pp. 13–22. ACM
(2012)

22. Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X.S., Zang, B.:
Vetting undesirable behaviors in android apps with permission use analysis. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security. ACM (2013)

https://blog.gdatasoftware.com/uploads/media/GData_MobileMWR_H2_2013_EN.pdf
https://blog.gdatasoftware.com/uploads/media/GData_MobileMWR_H2_2013_EN.pdf
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=7834
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=7834
http://www.idc.com/getdoc.jsp?containerId=prUS24085413
http://www.usenix.org/events/sec07/tech/hypponen.pdf
http://www.malgenomeproject.org

356 P. Rovelli and Ý. Vigfússon

23. Siddiqui, M., Wang, M.C., Lee, J.: A Survey of Data Mining Techniques for Mal-
ware Detection using File Features. In: Proceedings of the 46th Annual Southeast
Regional Conference on XX, pp. 509–510. ACM (2008)

24. Ye, Y., Wang, D., Li, T., Ye, D.: IMDS: Intelligent Malware Detection System. In:
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1043–1047. ACM (2007)

25. Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data Mining Methods for Detec-
tion of New Malicious Executables. In: IEEE Symposium on Security and Privacy
(SP), pp. 38–49. IEEE (2001)

26. Kolter, J.Z., Maloof, M.A.: Learning to Detect and Classify Malicious Executa-
bles in the Wild. The Journal of Machine Learning Research 7, 2721–2744 (2006),
JMLR.org

27. Tabish, S.M., Shafiq, M.Z., Farooq, M.: Malware Detection using Statical Analy-
sis of Byte-Level File Content. Proceedings of the ACM SIGKDD Workshop on
CyberSecurity and Intelligence Informatics, pp. 23–31. ACM (2009)

28. Kiem, H., Thuy, N.T., Quang, T.M.N.: A Machine Learning Approach to Anti-virus
System. In: Proceedings of Joint Workshop of Vietnamese Society of AI, SIGKBS-
JSAI, ICS-IPSJ and IEICE-SIGAI on Active Mining, Hanoi-Vietnam, pp. 61–65
(2004)

29. Firdausi, I., Lim, C., Erwin, A., Nugroho, A.S.: Analysis of machine learning tech-
niques used in behavior-based malware detection. In: Second International Con-
ference on Advances in Computing, Control and Telecommunication Technologies
(ACT), pp. 201–203. IEEE (2010)

30. Dua, S., Du, X.: Data mining and machine learning in cybersecurity. Taylor &
Francis (2011)

31. Cohen, W.W.: Fast effective rule induction. In: ICML, vol. 95, pp. 115–123 (1995)

32. Quinlan, J.R.: C4.5: programs for machine learning, vol. 1. Morgan Kaufmann
(1993)

33. Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learning workbench.iN:
Proceedings of the Second Australian and New Zealand Conference on Intelligent
Information Systems, pp. 357–361. IEEE (1994)

34. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann (2005)

35. Cleary, J.G., Trigg, L.E.: K∗: An Instance-based Learner Using an Entropic Dis-
tance Measure. In: ICML, pp. 108–114 (1995)

36. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers.
In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
pp. 338–345. Morgan Kaufmann (1995)

37. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning
and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS,
vol. 904, pp. 23–37. Springer, Heidelberg (1995)

38. The Android Open Source Project: Application Fundamentals,
http://developer.android.com/guide/components/fundamentals.html

39. The Android Open Source Project: System Permissions,
http://developer.android.com/guide/topics/security/permissions.html

40. The Android Open Source Project: App Manifest,
http://developer.android.com/guide/topics/manifest/manifest-intro.html

41. The Android Open Source Project: Android Permissions,
http://developer.android.com/guide/topics/security/permissions.html

JMLR.org
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/security/permissions.html

Permission-Based Malware Detection System 357

42. The Android Open Source Project: PackageManager,
http://developer.android.com/reference/android/content/pm/

PackageManager.html

43. The University of Waikato: Attribute-Relation File Format (ARFF),
http://www.cs.waikato.ac.nz/ml/weka/arff.html

44. The University of Waikato: ARFF, http://weka.wikispaces.com/ARFF
45. Mila: Contagio Mobile, http://contagiominidump.blogspot.it
46. Google: Google Play Store, https://play.google.com/store

http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://www.cs.waikato.ac.nz/ml/weka/arff.html
http://weka.wikispaces.com/ARFF
http://contagiominidump.blogspot.it
https://play.google.com/store

Efficient Detection of Multi-step
Cross-Site Scripting Vulnerabilities

Alexandre Vernotte1, Frédéric Dadeau1,2, Franck Lebeau3,
Bruno Legeard1,4, Fabien Peureux1, and François Piat1

1 Institut FEMTO-ST, UMR CNRS 6174 – Route de Gray, 25030 Besançon, France
{avernott,fdadeau,blegeard,fpeureux,fpiat}@femto-st.fr

2 INRIA Nancy Grand Est – BP 239, 54506 Vandoeuvre-lès-Nancy, France
frederic.dadeau@inria.fr

3 Erdil – 9, Avenue des Montboucons, 25000 Besançon, France
franck.lebeau@erdil.com

4 Smartesting R&D Center – 2G, Avenue des Montboucons, 25000 Besançon, France
bruno.legeard@smartesting.com

Abstract. Cross-Site Scripting (XSS) vulnerability is one of the most
critical breaches that may compromise the security of Web applications.
Reflected XSS is usually easy to detect as the attack vector is imme-
diately executed, and classical Web application scanners are commonly
efficient to detect it. However, they are less efficient to discover multi-step
XSS, which requires behavioral knowledge to be detected. In this paper,
we propose a Pattern-driven and Model-based Vulnerability Testing ap-
proach (PMVT) to improve the capability of multi-step XSS detection.
This approach relies on generic vulnerability test patterns, which are
applied on a behavioral model of the application under test, in order
to generate vulnerability test cases. A toolchain, adapted from an ex-
isting Model-Based Testing tool, has been developed to implement this
approach. This prototype has been experimented and validated on real-
life Web applications, showing a strong improvement of detection ability
w.r.t. Web application scanners for this kind of vulnerabilities.

Keywords: Vulnerability Testing, Model-Based Testing, Vulnerability
Test Patterns, Web Applications, Multi-step Cross-Site Scripting.

1 Introduction

Code injection security attacks, and more particularly cross-site scripting (XSS),
are part of the most prevalent and dangerous cyber-attacks against Web appli-
cations reported these last years; see, for example, OWASP Top Ten 2013 [29],
CWE/SANS 25 [20] and WhiteHat Website Security Statistic Report 2013 [28].
In this latter, XSS appears to represent 43% of all the serious vulnerabilities
discovered in a large panel of Web applications. As another example, Claudio
Criscione reports at GTAC 2013 that nearly 60% of security bugs detected in
Google software are XSS vulnerabilities1.
1 https://developers.google.com/google-test-automation-conference/2013/
presentations#Day2Presentation7 [Last visited: July 2014]

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 358–377, 2014.
c© Springer International Publishing Switzerland 2014

https://developers.google.com/google-test-automation-conference/2013/presentations#Day2Presentation7
https://developers.google.com/google-test-automation-conference/2013/presentations#Day2Presentation7

Efficient Detection of Multi-step XSS Vulnerabilities 359

An XSS vulnerability occurs each time an application stores (with more or
less persistence) a user input and displays it into a Web browser without proper
sanitization (without removing or replacing any character that may contribute
to an unwanted behavior). Therefore, it is possible to inject a piece of code and
see this code executed by the Web browser, potentially causing severe damage to
visitors (often without them knowing). XSS attacks is easy to put into practice,
and presents a great number of variants. It is also an entry point for many
exploits (session hijacking, credentials stealing, etc.). The difficulty of handling
XSS issues is mainly due to the complexity of the application logics. Indeed,
developers need to think about a systematic protection of the displayed data,
what is an error-prone exercise, since a given user input may be subsequently
displayed in a large variety of places in the application. It is thus mandatory to
detect XSS-related issues at the earliest, by performing vulnerability testing at
the application level. XSS vulnerabilities can be classified into four categories2:
(i) DOM-based XSS when the injected data stay within the browser (and

modify the DOM “environment”),
(ii) Reflected XSS when the untrusted injected data are directly displayed/ex-

ecuted right after being injected,
(iii) Stored XSS when the injected data is stored by the application and re-

trieved later in another context (e.g., in a user’s profile),
(iv) Multi-step XSS (a special breed of stored XSS) when it requires that the

user performs several actions on the applications (mainly navigation steps)
to display/execute the attack vector.

While the first three categories are usually well-identified and easily detected
by automated penetration testing tools, such as Web application vulnerability
scanners [2], the last one remains a challenging issue [10]. On the one hand,
manual vulnerability testing is becoming more and more difficult as Websites
are growing in size and complexity: indeed, as the result of an attack cannot be
seen immediately, the penetration tester has to dig into the application logics to
understand where a given user input is supposed to be sent back to the client.
On the other hand, current automated vulnerability discovery techniques can
test for a large percentage of technical vulnerabilities, but are often limited in
accessing large parts of the Web application, because they lack any knowledge
about the functional behaviour and the business logics of the application.

Recently, vulnerability test patterns have been introduced to describe a test-
ing procedure for each class of vulnerabilities [25]. However, such a process re-
mains manual, and using vulnerability test patterns for testing automation is
still a challenge. In addition, the current automated vulnerability testing tools
(i.e. Web application scanners) often display false positive and false negative
results, raising alarms when there is no error or missing potential weaknesses,
respectively. Hence, it is the cause of a useless and costly waste of time.

The approach presented in this paper aims to improve the accuracy and pre-
cision of multi-step XSS testing, by proposing a testing approach driven by
2 https://www.owasp.org/index.php/Top 10 2013-A3-Cross-Site Scripting
(XSS) [Last visited: July 2014]

https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)

360 A. Vernotte et al.

automated vulnerability test patterns composed with a behavioral model of the
system under test. These patterns describe generic test scenarios that assess the
robustness of the Web application w.r.t. a given kind of vulnerability. To achieve
that, it relies on the information contained in the behavioral model, especially
the location of the possible user inputs and their associated resurgences, to check
that user inputs are correctly sanitized before being displayed on a Web page. As
a major result, this approach increases the efficiency of penetration testers for
detecting vulnerabilities such as multi-step XSS. The main contribution of this
paper relates to the proposal of a pattern-driven and model-based approach to
generate vulnerability tests for Web applications. More precisely, this concerns:

– The formalization of vulnerability test patterns using generic test purposes
to drive the test generation engine, including a combinatorial unfolding of
untrusted injected data taken from standard databases, such as the OWASP
collection of attack vectors3.

– The separation of the behavioral model for Web application vulnerability
testing between a generic part (whatever the application under test is) and
an ad-hoc part, which is specific to the targeted application under test.

– The full automation of the testing process, including test generation, test
execution and verdict assignment.

The paper is organized as follows. Section 2 introduces the principles of XSS-
based attacks, and illustrates them on a running example of a vulnerable Web
application named WackoPicko. Section 3 describes the contribution of the pa-
per, namely our pattern-driven and model-based vulnerability testing approach.
It especially defines the content of the behavioral model and the expressiveness
of the test pattern language, which are the key artefacts of the approach. Ex-
perience reports are provided and experimental results are discussed in Sect. 4.
Finally, the related work is presented in Sect. 5, while conclusion and future
works are given in Sect. 6.

2 Challenges of Detecting Multi-Step Cross-Site
Scripting Vulnerabilities

This section introduces the challenge of detecting multi-step XSS vulnerabilities,
and illustrates this issue on a running example of a vulnerable Web application.
More precisely, this section aims to explain and exemplify the difficulties faced by
mainstream automated penetration testing tools (i.e. commercial or open-source
Web scanners) for accurately detecting multi-step XSS vulnerabilities. Based on
these conclusions, we finally expose the research questions we are addressing to
efficiently detect such multi-step XSS vulnerabilities.

3 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet [Last vis-
ited: July 2014]

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Efficient Detection of Multi-step XSS Vulnerabilities 361

2.1 Running Example: The WackoPicko Web Application

First of all, in order to illustrate multi-step XSS vulnerability and to evaluate
the accuracy and precision of our approach, we use the Web application called
WackoPicko4, which is a deliberately-unsecured Web application developed by
Adam Doupé [10]. The objective of this test bed, developed using PHP/MySQL,
is to provide a realistic but vulnerable environment. Like education-oriented vul-
nerable Web applications such as DVWA (Damn Vulnerable Web Application5)
or WebGoat6, WackoPicko can aid security professionals to learn, improve or
test their skill in vulnerability discovery on a realistic Web application, with
nowadays features (e.g., posts, comments) and realistic workflows. It can also be
used to test Web security testing tools, like vulnerability scanners for instance.

Basically, WackoPicko allows users to authenticate themselves, share pictures,
comment pictures, and possibly buy pictures. WackoPicko presents realistic fea-
tures (authentication, shopping, ...) that can be found in many Websites, along
with more complex workflows (e.g., uploading a picture, commenting the pic-
ture). It embeds several vulnerabilities, notably SQL Injection, Cross-Site Script-
ing, Cross-Site Request Forgery and Local/Remote File Inclusion, which are
ranked by the OWASP project among the most frequently used attacks.

2.2 Multi-step XSS Principles and Illustration

The main characteristic of a multi-step vulnerability is that the attack vector is
injected in one page, saved (e.g., in a database), and then echoed later in an-
other page or another application. Hence, detecting such a vulnerability involves
being able to perform a sequence of actions starting from attack vector injection
until vulnerability checking. For instance, using the WackoPicko example, such a
sequence appears when a user adds a comment to a picture. The corresponding
workflow, depicted in Fig. 1, is now described.

(a) Comment setting (b) Comment preview (c) Comment display

Fig. 1. Nominal workflow of picture comment using WackoPicko

4 https://github.com/adamdoupe/WackoPicko [Last visited: July 2014]
5 http://www.dvwa.co.uk/ [Last visited: July 2014]
6 https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project [Last vis-

ited: July 2014]

https://github.com/adamdoupe/WackoPicko
http://www.dvwa.co.uk/
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

362 A. Vernotte et al.

0. Prerequisites. This preliminary step consists in logging the user on the
application, and browsing the application until viewing a particular picture.

1. Setting a comment. In this step (see Fig. 1(a)), the user sets his new com-
ment in the text area, and clicks the Preview button. By clicking the button,
the client (i.e. the browser) sends a POST request to the Web server.

2. Preview of the comment. This step (see Fig. 1(b)), consists of visualizing
the comment before validation by the user. When the server receives the
POST request, it stores the new comment in the comments preview table
of its database. Then, the server sends back to the browser a new page
that displays a preview of the comment. The user may accept or reject its
comment with the respecting Create and Cancel buttons. By clicking the
Create button, the browser sends a POST request to the server.

3. Displaying the comment. The final step (see Fig. 1(c)) consists in dis-
playing a validated comment. When the server receives the previous POST
request, it concretely relates the comment to the picture, making this com-
ment available every time the picture page is displayed.

A malicious attack can consist of injecting a piece of code (for instance the
vector <script>alert("XSS")</script>) in the text area, previewing, creating,
and visualizing the result. What makes this attack a multi-step XSS attack is
the fact that only the picture page is vulnerable to XSS: the injected vector is
properly sanitized on the comment preview page and it thus requires an extra
step from the user (validating the comment) to detect the vulnerability. The
corresponding workflow, depicted in Fig. 2, shows that the attack vector injected
as picture comment (see Fig. 2(a)) is next interpreted as Javascript code (and
not as a harmless string) and the alert window is displayed (see Fig. 2(c)).

(a) Comment setting (b) Comment preview (c) Comment display

Fig. 2. Multi-step XSS attack workflow of picture comment using WackoPicko

It should be noted that the comment preview page is not vulnerable to
XSS attack (see Fig. 2(b)): there is no alert message since the attack vector
is treated as a standard string in which special characters are encoded. Indeed,
the source code of the page embeds the harmless HTML-encoded attack vector
(<script>alert("XSS")</script>). This prevents the <script>
tag from being interpreted by the browser.

Efficient Detection of Multi-step XSS Vulnerabilities 363

2.3 Research Questions

As illustrated in the previous section, whereas it is mostly easy to automatically
detect reflected XSS, multi-step XSS are far more difficult to discover. Indeed,
the untrusted data are not immediately displayed/executed after they are in-
jected, and several navigation steps to display/execute the attack vector are
required to record the breach. Current vulnerability detection techniques highly
struggle with this problem, mostly because it requires knowledge of the logic of
the application under test to navigate from an injection point to its output page.
Hence, within our work, we aim to address the following research questions:

RQ1. To what extend does the knowledge of the business logic of the application
help to increase the accuracy of the detection for multi-step XSS?

RQ2. To what extend is it possible to automatize generic test patterns dedicated
to such Web application vulnerabilities?

RQ3. To what extend test execution and verdict assignment can be fully auto-
mated?

RQ4. To what extend is it possible to improve the overall efficiency of the
process with respect to manual penetration testing activities and state of the
practice by means of automated penetration testing techniques and tools?

To achieve this goal, the proposed testing approach consists to combine for-
malized test patterns with a behavioral model focused on the business logic
for vulnerability testing of Web applications. Formalized test patterns provide
penetration testing scenarios, and the model provides the minimal but necessary
required information, namely: states/pages and transitions/navigation combined
with logical application data and dataflow information. The next section intro-
duces this testing approach, called Pattern-driven and Model-based Vulnerability
Testing (PMVT).

3 Pattern-Driven and Model-Based Vulnerability Testing
for Multi-step XSS

This section introduces a Pattern-driven and Model-based Vulnerability Testing
(PMVT) approach, which is a generic solution for Web application vulnerability
testing. We first describe the principles of the approach, before giving informa-
tion on the different artefacts that it involves, namely a behavioral model and
test purposes implementing a vulnerability test pattern.

3.1 Principles of the PMVT Approach

The PMVT process, depicted in Fig. 3, is composed of four activities:

① The Test Purposes design activity consists of formalizing a test procedure
from vulnerability test patterns that the generated test cases have to cover.
These Test Purposes can be generic to be applied for a category of appli-
cation. We show later that the Test Purpose for multi-step XSS is generic
whatever the Web application is.

364 A. Vernotte et al.

Test
Purposes

Model

Vulnerability
Test

Patterns

Adaptation

Security Test Engineer

Test Execution

1

2

Automated
Test

Generation

3

4

Vulnerability
Tests

SUT

Functionnal
Specification

Legend :

Fig. 3. Pattern-driven and Model-based Vulnerability Test process

② The Modeling activity aims to design a test model that captures the be-
havioral aspects of the application under test to generate consistent (from a
functional point of view) sequences of stimuli.

③ The Test Generation activity consists of automatically producing abstract
test cases, including expected results, from the artifacts defined during the
two previous activities.

④ The Adaptation, Test Execution and Observation activity aims to (i) trans-
late the generated abstract test cases into executable scripts, (ii) to execute
these scripts on the application under test, (iii) to observe the responses and
to compare them to the expected results in order to assign the test verdict
and automate the detection of vulnerabilities.

All these activities are supported by a dedicated toolchain, based on an existing
Model-Based Testing (MBT) software named CertifyIt [18] provided by the com-
pany Smartesting7. CertifyIt is a test generator that takes as input a test model,
written with a subset of UML (called UML4MBT [3,8]), capturing the behavior
of the application under test. A UML4MBT model consists of (i) UML class
diagrams to represent the static view of the system (with classes, associations,
enumerations, class attributes and operations), (ii) UML object diagrams to de-
fine the data and entities (used to compute test cases) that exist at the initial
state, and (iii) statechart diagrams (annotated with OCL constraints) to specify
the dynamic view of the application under test. Such UML4MBT models have a
precise and unambiguous meaning, so that those models can be understood and
computed by the CertifyIt technology. This precise meaning makes it possible to
simulate the execution of the models and to automatically generate test cases by
applying the strategies given by the test purposes. Each generated test case is
typically an abstract sequence of high-level actions from the UML4MBT mod-
els. These generated test cases contain the sequence of stimuli to be executed,
but also the expected results (to perform the observation activity and automate
the verdict assignment), obtained by resolving the associated OCL constraints.
The next sections describe each of the activities and illustrate them using the
WackoPicko running example.
7 http://www.smartesting.com [Last visited: July 2014]

http://www.smartesting.com

Efficient Detection of Multi-step XSS Vulnerabilities 365

3.2 Formalizing Vulnerability Test Patterns into Test Purposes

A Vulnerability Test Patterns (vTP) is a normalized textual document describ-
ing the testing objectives and procedures to detect a particular flaw in a Web
application. Hence, there are as much vTP as there are types of application-level
flaws. Our approach is based on the vTP provided during the ITEA2 research
project DIAMONDS8 [26]. For instance, Fig. 4 presents an excerpt of the vTP
defined for the multi-step XSS vulnerability. At this stage, Vulnerability Test
Patterns are still textual. The PMVT approach takes such textual vTP as start-
ing point by translating them into formal directives, called Test Purposes, in
order to be able to automate testing strategy implementation and execution.

Name multi-step XSS
Description This pattern can be used on an application that does not check user inputs.

An XSS attack can redirect users to a malicious site, or can steal user’s private
information (cookies, session, ...).

Objective(s) Detect if a user input can embed attack vector enabling an XSS attack.
Prerequisites N/A
Procedure Identify a sensible user input, inject the attack vector

<script>alert(xss)</script>.
Observation/ Go to a page echoing the user input, check if a message box ’xss’ appears.
Oracle
Variant(s) - attack vector variants: character encoding, Hex-transformation, comments in-

sertion
- procedure variants: attack can be applied at the HTTP level; the attack vector
is injected in the parameters of the HTTP messages sent to the server, and we
have to check if the attack vector is in the response message from the server

Known Issue(s) Web Application Firewalls (WAF) filter messages send to the server (black list,
clac regEx, ...); variants allows to overcome these filters

Affiliated vTP Stored XSS
Reference(s) CAPEC: http://capec.mitre.org/data/definitions/86.html

WASC: http://projects.Webappsec.org/w/page/13246920/CrossSiteScripting
OWASP: https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

Fig. 4. Vulnerability Test Pattern of multi-step XSS attack

A test purpose is a high-level expression that formalizes a testing objective
to drive the automated test generation on the behavioral model. It has been
originally designed to drive model-based test generation for security components,
typically Smart card applications and cryptographic components [6]. Within
PMVT context, a test purpose formalizes a given vTP in order to drive the
vulnerability test generation on the behavioral model. Basically, such a test
purpose is a sequence of significant steps that has to be exercised by the test case
scenario in order to assess the robustness of the application under test w.r.t. the
related vulnerability. Each step takes the form of a set of operations/behaviors
to execute, or specific state to reach.

Figure 5 shows the WackoPicko test purpose formalizing the vTP presented in
Fig. 4. This automatically generated test purpose specifies that, for all sensible
pages echoing user inputs and for each user input of a given page, a test has
to perform the following actions: (i) use any operation to reach a page showing
8 http://www.itea2-diamonds.org [Last visited: July 2014]

http://capec.mitre.org/data/definitions/86.html
http://projects.Webappsec.org/w/page/13246920/Cross Site Scripting
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.itea2-diamonds.org

366 A. Vernotte et al.

Fig. 5. Test purpose formalizing the vTP of multi-step XSS attack (Figure 4)

the XSS-sensitive user input, (ii) inject an attack vector in this user input,
(iii) use any operation to reach a page echoing the user input, and (iv) check
if the attack succeeded. It should be underlined that the structure of this test
purpose, addressing multi-step XSS vulnerability, is fully generic. Moreover, since
pages and user inputs are automatically retrieved from OCL constraints from the
UML4MBT test model, this automated generation of test purpose can therefore
be applied for any Web application.

3.3 Test Model Specification

As for every Model-Based Testing (MBT) approach, the modeling activity con-
sists of designing a test model that will be used to automatically generate ab-
stract test cases. Our approach, based on Smartesting technology, requires a
model designed using the UML4MBT notation. To ease and accelerate this mod-
eling activity, which is known to be time consuming, we have developed a Domain
Specific Modeling Language (DSML), called DASTML, that allows to model the
global structure of a Web application: the available pages, the available actions
on each page, and the user inputs of each action potentially used to inject at-
tack vectors. It solely represents all the structural entities necessary to generate
vulnerability test cases. The transformation of a DASTML instantiation into
a valid UML4MBT model is automatically performed by a dedicated plug-in
integrated to the Smartesting modeling environment. The DASTML Domain
Specific Modeling Language is composed of four entities:

Page. Page entities represent the different pages that compose the Web ap-
plication under test. We follow the comparison technique proposed in [11],
meaning that we may consider two physical pages as the same if they ex-
actly provide the same action and navigation entities. On the contrary, we
may consider a single physical page as two distinct pages if there is at some
point a variation in the action and navigation entities. We also distinguish
the initial page from the others by using a boolean attribute is init.

Efficient Detection of Multi-step XSS Vulnerabilities 367

Navigation. Navigation entity is typically a link or a button that takes the
user to another page, without altering the internal state of the application
nor triggering any function or service of the application.

Action. Action entities have pretty much the same form as navigation entities,
but there are two main differences. First, an action entity may carry data
(in case of a Web form for instance). Second, an action entity can alter the
internal state of the application (e.g., any user interaction that has modify
the database is considered as an action). In addition, the is auth attribute
allows to distinguish authentication actions from the others. This way, we
can easily refer to it when the attacker has to log on the Web application.

Data. Data entity, defining any user input, is composed of a key and a value.

The metamodel of DASTML is depicted in Fig. 6. Entities interact with each
other based on multiple relations. Navigate to and navigate from provide the
source page and the target page of a navigation entity. Identically, has action
and sends users to provide the source page and the target page of an action
entity. An action may be associated to one or more data (in case of a Web form
for instance), with relation has data. Data have a (reflects) relation to link them
to one or more output page (in this way, for each user input, the page where it
is rendered back is known, what is crucial for XSS vulnerability testing).

Fig. 6. Metamodel of the DASTML Domain Specific Modeling Language

The code fragment, introduced in Fig. 7, is an instantiation of DASTML to
model the WackoPicko running example. In this DASTML model, the entry point
is the “HOME” page, where users can navigate to the “LOGIN” page. There,
users can authenticate themselves (see the :auth suffix on the “LOGIN” action),
and if valid credentials are provided, they reach the “HOME LOGGED IN”
page. At some point, users may visit a picture page. This page has a “COM-
MENT PICTURE” action that requires a user input called “CP CONTENT”,
which abstract value is “CONTENT1”. This input is rendered back on two pages:
“PICTURE CONFIRM COMMENT” and “PICTURE”. Finally, the completion
of the action redirects users to the “PICTURE CONFIRM COMMENT”.

368 A. Vernotte et al.

PAGES {
”HOME” : in i t {

NAVIGATIONS {
”GO TO LOGIN” −> ”LOGIN”

}
}

”LOGIN” {
ACTIONS {

”LOGIN” : auth (”USERNAME” = ”
USER1” ,

”PASSWORD” = ”
PWD1”)

−> ”HOME LOGGED IN”
}

}

”HOME LOGGED IN” {
NAVIGATIONS {

”GOTO RECENT PICTURES”
−> ”RECENT PICTURES” ,

”GOTOGUESTBOOK”
−> ”GUESTBOOK”

}
}

”RECENT PICTURES” {
NAVIGATIONS {

”SHOW PICTURE” −> ”PICTURE”
}

}

”PICTURE” {
ACTIONS {

”COMMENT PICTURE” (”
CP CONTENT” = ”CONTENT1”

=> {”
PICTURE CONFIRM COMMENT” , ”PICTURE”})

−> ”PICTURE CONFIRM COMMENT” ,
}

}
”PICTURE CONFIRM COMMENT” {

ACTIONS {
”CONFIRMCOMMENT” −> ”PICTURE

”
}

}
}

Fig. 7. DASTML instantiation for the WackoPicko application

3.4 Test Generation

The test generation activity, which aims to produce test cases from both the
behavioral model and the test purpose, is composed of three phases.

The first phase aims to transform the model and the test purposes into ele-
ments computable by the test case generatorCertifyIt. Notably, test purposes are
transformed into test targets, which a sequence of intermediate objectives used by
the test generation engine [7]. The sequence of steps of a test purpose is mapped
to a sequence of intermediate objectives of a test target. Furthermore, this first
phase unfolds the combination of values between iterators of test purposes, such
that one test purpose produces as many test targets as possible combinations.

The second phase consists to automatically derive abstract test cases by com-
puting the test targets on the behavioral model. This phase is computed by the
test case generator CertifyIt. An abstract test case is a sequence of completely
valuated operation calls (i.e. all parameters are instantiated). An operation call
represents either a stimulation or an observation of the application under test.
Each test target automatically produces one test case verifying both the sequence
of intermediate objectives and the model constraints. Note that an intermediate
objective (i.e. a test purpose step) can be translated into several operation calls.

Finally, the third phase allows to export the abstract test cases into the exe-
cution environment. Within PMVT approach, this consists of (i) automatically
creating a JUnit test suite, in which each abstract test case is exported as a
JUnit test case, and (ii) automatically creating an interface, which defines the
prototype of each operation of the application under test. The implementation of
these operations, which aims at linking abstract keywords/operations to concrete
actions, is in charge of the test automation engineer (see next subsection).

Figure 8 presents an abstract test case for the WackoPicko example, generated
from the multi-step XSS attack test purpose introduced in Fig. 5, and the test
model derived from the DASTML instantiation presented in Fig. 7.

Efficient Detection of Multi-step XSS Vulnerabilities 369

1 sut.goToLogin()
2 sut.login(LOGIN 1,PWD 1)
3 was.finalizeAction()
4 sut.checkPage() = HOME LOGGED IN
5 sut.goToRecentPictures()
6 sut.checkPage() = RECENT PICTURES
7 sut.goToPicture(PICTURE ID 1)
8 sut.checkPage() = PICTURE
9 sut.submitComment(P COMMENT CONTENT 1)
10 threat.injectXSS(PICTURE COMMENT)
11 was.finalizeAction()
12 sut.checkXSS()
13 sut.checkPage() = PICTURE COMMENT PREVIEW
14 sut.validateComment())
15 sut.checkXSS()
16 sut.checkPage(PICTURE)

Fig. 8. Abstract test case for the WackoPicko application

Basically, this test case consists to (i) log on the application using valid cre-
dentials (steps #1, #2, #3 and #4), (ii) browse the application to a picture
(steps #5, #6, #7 and #8), (iii) submit a comment with an attack vector on
a given user input (steps #9, #10, #11, #12 and #13), (iv) browse to a page
echoing the injected data and check if there exists an application-level flaw (steps
#14, #15 and #16), using the checkXSS() observation that allows to assign a
verdict to the test case.

3.5 Adaptation and Test Execution

During the modeling activity, all data used by the application (pages, user input,
attack vector, etc.) are modeled at an abstract level. As a consequence, the test
cases are abstract and cannot thus be executed as they are. The gap between
stimuli (resp. keywords) of the abstract test cases and the concrete API (resp.
data) of the application under test must be bridged. To achieve that, the test case
generator CertifyIt generates a file containing the signature of each operation.
The test automation engineer is in charge of implementing each operation of
this interface. Since Web applications become richer and richer (notably due
to more and more complex client-side behaviors), actions and observations of
the application are executed on the client-side Web GUI by using the HtmlUnit
framework9. The different attack vector variants are extracted from the OWASP
XSS Filter evasion cheat sheet10, which provides about one hundred variants
for XSS detection. This way, our approach only focuses on producing abstract
vulnerability test cases, and each one is concretized and automatically executed
with each possible attack vector variant.

Finally, regarding the test verdict assignment, we introduce the following ter-
minology: Attack-pass when the complete execution of a test reveals that the
application contains a breach, Attack-fail when the failure of the execution of
the last step reveals that the application is robust to the attack.
9 http://htmlunit.sourceforge.net/ [Last visited: July 2014]

10 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet [Last vis-
ited: July 2014]

http://htmlunit.sourceforge.net/
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

370 A. Vernotte et al.

4 Experimental Results on Real-Life Applications

The execution of the hundred test cases generated for the vulnerable WackoPicko
example (derived from the abstract test case introduced in Fig. 8 and using
the hundred OWASP XSS attack vector variants), has shown that 80% of the
executed test cases are attack-pass. The remaining 20% have been run with
variants designed to unveil a particular XSS vulnerability, for which WackoPicko
example is not sensitive. Hence, these results fit the manual experiments we
conducted on WackoPicko and gave a first validation of our approach, i.e. our
approach is suitable for effective detection of multi-step XSS vulnerabilities on
early 2000’s simple Web applications. However, to complete and confirm these
first results, further experimentations have been conducted to do comparison
with other techniques like vulnerability scanners and penetration testing.

4.1 Overview of the stud-e Web Application

We notably applied the PMVT approach on a real-life Web application, named
stud-e, and conducted this industrial use case in partnership with the develop-
ment team. This case study is an e-learning Web-based application that is cur-
rently used by more than fifteen thousands users per year in France. It provides
three profiles: students, teachers, and administrators. Students can access and
download material of their courses, practice quizzes and exercises, participate to
their exams and review their scores, interact with their teachers through embed-
ded emails and forums. Teachers can grant course material, elaborate quiz and
exercises, manage their courses, group courses into modules, define exams, give
scores to exams, tutor their students. Administrators are in charge of student
registrations, teacher management, privilege definition and parameter settings.
This application uses infinite-urls, meaning that every page is accessed through a
unique timestamped identifier. It also uses a custom url-rewriting mechanism. A
lot of effort has been put into security-related matters: all non-user data are en-
crypted (e.g., session data, database keys, etc.), data retrieved from the database
are sanitized, and user input validation occurs both at client-side and server-side.
That is why Stud-e is representative of an important class regrouping sensitive
Web applications (e.g., banking area) that emphasizes security protection and
encryption, which is a struggle for current vulnerability detection techniques.

Because the application uses infinite-urls, exhaustive testing of the Website
based on its url is impossible. Hence, we applied a risk assessment approach to
identify potential threats, business assets, vulnerabilities, and attack scenarios.
These pieces of information were gathered while interviewing real users about the
attack scenarios they feared the most. As a result, two possible attack scenarios
arise. The first attack scenario focuses on a dishonest teacher who wants to
steel/suppress educational material, for its own needs or for revenge. In this
first case, the threat is a dishonest teacher, the targeted business assets are the
educational materials. The second scenario focuses on a dishonest student who
wants to cheat by influencing its scores. In this second case, the threat is a
dishonest student, the targeted business assets are the exams and related scores.

Efficient Detection of Multi-step XSS Vulnerabilities 371

Both attack scenarios are particularly complex. For instance, the dishonest
teacher scenario involves browsing 9 pages and performing 38 user actions (clicks,
field filling, etc.), and features a great number of intermediate pages and actions.
In this scenario, the test engineer has to browse 6 pages and perform 8 user
actions between the injection page and the observation page. These features make
the detection of multi-step XSS vulnerabilities very hard for current techniques.

4.2 Experimental Results

We were able to successfully apply the PMVT approach to stud-e despite all
its security features. It took approximately 3 hours to produce the DASTML
instantiation of the Web application including pages, actions and data. The
test generator computed the 14 expected vulnerability test cases in 15 minutes.
Five (5) more hours were spent for adaptation activity to write the HtmlUnit
implementation of the operations corresponding to the abstract actions. Finally,
it took about 2 seconds to execute one test with a particular variant. Hence, it
requires approximately 50 minutes, to execute the entire set of tests (2s × 14
tests × 106 variants = 2968 s).

Two vulnerabilities has been discovered. The first one was introduced for the
sake of this study, whereas the second concerned a unintended multi-step XSS
vulnerability. Tests executions did not produce any false positive, thanks to the
short risk assessment phase and the precision of the test targets. They did not
produce any false negative either, even though 20% of executions were marked
as attack-fail: it means that stud-e is robust to the variants used in each attack-
failed test execution. It takes the entire variants list to assess the presence of
a certain vulnerability. Compared to the two identified attack scenarios, the
sequence embedding the second multi-step XSS vulnerability was both shorter
and simpler (only one profile was involved). This discovery led to a update of the
source code of the Web application. Notice that this discovery was due to the
systematic identification of user input fields and their respecting echoing page,
which produces test cases with many relevant checks all along the test case.

4.3 Comparison Studies

To do comparison with other approaches, we conducted two vulnerability de-
tection campaigns on the stud-e application: one using Web Application Scan-
ners (WAS), one following a penetration testing protocol. Experiments with five
WASs (IBM AppScan, NTOSpider, w3af, skipfish, and arachni) showed that
these tools are not suitable for this kind of Web application. Most of them
(w3af, skipfish, arachni and NTOSpider) were not able to authenticate to the
application.

The protection mechanism of stud-e, which we described earlier, constitutes a
solid barrier for scanners since their modus operandi relies on storing all found
URL to fuzz each of them without respect of logical workflow (aside from the
authentication process).

372 A. Vernotte et al.

An additional protection mechanism, which makes stud-e almost impossible
to crawl, is the use of a frame set. If the request does not originate from the frame
that contains the link or the form responsible for the request, the server refuses
the request and the user gets thrown back to the authentication page. Hence,
only IBM AppScan was able to get past through the authentication page and
access the authenticated area. However, we had to define a “multi-step operation
sequence” in order to reach an injection page. No XSS vulnerability has been
found during the scan.

Experiments with penetration testing were not straightforward. The use of
tools (like intrusive proxies) demonstrates to be inefficient, mainly for two rea-
sons. Firstly, none of these tools are able to replay a full test sequence. Their
replay feature only allows to replay one HTTP request to the server, and this
is not relevant for the purpose of detecting multi-step XSS vulnerabilities. Sec-
ondly, they work at the HTTP level, which is not suited for stud-e. Indeed, this
application embeds a protection mechanism, which makes the crafting of rele-
vant HTTP requests very difficult. Each request to the server embeds control
parameters, dynamically generated on each page. Without the knowledge of the
Javascript code behavior and the knowledge of the control parameter, crafting
a correct HTTP request is merely impossible.

Hence, after failing at using intrusive proxies, we finally execute the tests
by hand. For the dishonest student attack scenario, it took approximatively 1
minute to execute the entire scenario. Knowing that this scenario has three tests,
and that each test must be executed 106 times (because of the 106 attack vector
variants), the total execution time required to test the scenario is approximately
5 hours (1 min × 3 tests × 106 variants = 318 min). For the dishonest teacher
attack scenario, it took approximatively one minute and a half to execute the
entire scenario. Knowing that this scenario has 11 tests, and that each test must
also be executed 106 times, the total execution time required to test the scenario
is approximatively 29 hours (1.5 min × 11 tests × 106 variants = 1749 min to
compute all the execution configurations).

4.4 Experimentation Summary

After a short risk assessment phase that lead to identify two threat scenarios, the
PMVT approach has been experimented with a focus on them. It successfully
detected 2 multi-step XSS vulnerabilities (now corrected by the development
team) on a large and real-life Web application. We spent 10 hours to deploy
the whole process. In comparison with a manual penetration testing approach,
we have shown the efficiently of PMVT, which makes it possible to save about
19 hours in regard to manual testing attempt. The experiments using 5 Web
Application Scanners have also shown that, due to specific characteristics of the
stud-e application (defensive programming), no scanner succeeded to find any of
the vulnerabilities. To conclude, these encouraging experimental results enable
to successfully validate the relevance and efficiency of our approach.

Efficient Detection of Multi-step XSS Vulnerabilities 373

5 Related Work

Due to the prevalence of XSS vulnerabilities, many research directions are in-
vestigated to prevent XSS exploits or to detect XSS flaws.

Examples of prevention are defense mechanisms installed on the server (Web
application firewalls for instance) and/or on the client’s browser that examines
incoming data and sanitizes anything considered malicious. Lots of solutions
have been elaborated to protect against XSS, based on Web proxies [16], reversed
proxies [30], dynamic learning [4], data tainting [21], fast randomization tech-
nique [1], data/code separation [12], or pattern-based HTTP request/response
analysis [19]. XSS prevention is efficient against multi-step XSS vulnerabilities
because it is enough to scan user inputs to spot malicious vectors. But it comes
with another challenge, which is the capacity of identifying script code as be-
ing malicious. Again, it takes some knowledge of the application’s behavior to
separate harmless scripts sent by the server from malicious scripts injected by
miscreants. In addition, it does not solve the main problem of developers who are
unaware of the severity of XSS and good practices that help enforcing security.
Worse, it might invite them to solely rely on third party security tools like Web
Application Firewalls and foster poor-secured Web applications to proliferate.

Contrary to prevention approach, detection is an offensive strategy. It is a test-
ing activity consisting of impersonating a hacker and performing attack scenarios
using manual, tool-based (intrusive proxies, ...) or automated techniques (Web
Application Vulnerability Scanners, ...), in a harmless way (without compromis-
ing the application or the server where it is hosted). Usually, XSS detection is
done post-development, by a third-party security organization. It can also be
done prior to the application’s deployment, and therefore may be seen as an
acceptance test criterion. Related work on XSS detection can be classified into
two categories: static analysis security testing (SAST), or dynamic analysis se-
curity testing (DAST). The first category encompasses the use of code-based
techniques while the second category consists of executing and stimulating the
system in order to detect vulnerabilities.

A majority of the techniques found in the literature propose to deal with XSS
using SAST techniques. Kieyzun et al. [15] propose a vulnerability detection
technique addressing SQL injections (SQLi) and XSS-1 (reflected) as well as
XSS-2 (stored) vulnerabilities, based on dynamic taint analysis. Wassermann and
Su [27] use string-taint analysis for cross-site scripting vulnerabilities detection.
This technique combines the concepts of tainted information flow and string
analysis. Shar et al. [23] present an automated approach that not only detects
XSS vulnerabilities using a combination of the concepts of tainted information
flow and string analysis, but also statically removes them from program source
code. The same authors designed another approach [24] that aims to build SQLi
and XSS detectors by statically collecting predefined input sanitization code
attributes. All these approaches are SAST techniques, meaning that program
source code has to be disclosed one way or another. The underlying concept
behind each is taint analysis [22] which consists of keeping track of the values
derived from user inputs throughout the application internals.

374 A. Vernotte et al.

Although code analysis appears quite effective for detecting multi-step XSS,
a major problem is that program source code is not always available. Moreover,
these techniques are bound to a specific programming language, while there
exists a tremendous number of languages to develop a Web application (PHP,
.NET, JSP, Ruby, J2E, and so on). Hence, several dynamic application secu-
rity testing (DAST) techniques have been proposed regarding the detection of
vulnerabilities such as XSS.

In [17], Korscheck proposes a workflow-based approach to deal with multi-
step XSS vulnerabilities, by using manually recorded traces to model a Web
application and then injecting malicious data by replaying the traces. User traces
reduce the test design cost while still carrying enough information to handles
logical barriers, but it hardly handles the Web application evolution.

In [14], the authors present a multi-agent black-box technique to detect stored-
XSS vulnerabilities in Web forms. It is composed of a Web page agent parser (i.e.
a crawler), a script injection agent to perform the attacks, and a verification agent
to assign a verdict. This approach solely relies on an automatic Web crawler,
which may miss consequent parts of the Web application, and therefore miss
potentially vulnerable injection points.

Blome et al. [5] propose a model-based vulnerability testing that relies on
attacker models, which can be seen as an extension of Mealy machines. The ap-
proach is based on a list of nominal and attack vectors, a configuration file that
contains system-specific information, and an XML file, describing the attacker
model. This approach addresses lots of vulnerabilities but multi-step XSS is not
addressed. It would imply to model a complex heuristic to inject and observe this
particular vulnerability type. Also, attacker models are specific to one Web ap-
plication, and it requires great effort from test engineers to design these artifacts
for every test campaign.

The approach presented in [13] consists of modeling the attacker behavior. It
also requires a state-aware model of the application under test, annotated using
input taint data-flow analysis, to spot possible reflections. Concrete application
inputs are generated with respect to an Attack Input Grammar, which produces
fuzzed values for reflected application input parameters. This technique tackles
multi-step XSS detection. However, it requires a great effort from test engineers
to deploy the approach: the model inference process needs to be rightly tuned.
Also, it cannot handle client-side oriented applications (using Ajax).

Buchler et al. [9] formalize the application under test using a secure ASLan++
model, where all traces fulfill the specified security properties. The goal is to
apply a fault injection operator to the model, and use a model checker to re-
port any violated security goal. For each violated security goal corresponds an
abstract attack trace which is concretized semi-automatically using a pivot lan-
guage. This approach has been able to find reflected XSS vulnerabilities, but has
not been used to discover multi-step XSS. Also, having test engineers provide a
formalized representation of a Web application is something we consider highly
handicapping.

Efficient Detection of Multi-step XSS Vulnerabilities 375

6 Conclusion and Future Works

This paper introduced an original approach, called Pattern-driven and Model-
based Vulnerability Testing (PMVT), for the detection of Web application vul-
nerabilities. This approach is based on generic test patterns (i.e. independent
from the Web application under test) and a behavioral models of the application
under test. The behavioral model describes the functional and behavioral aspects
of the Web application. The generic test patterns define abstract vulnerability
scenarios that drive the test generation process. The proposed approach thus
consists of instantiating the abstract scenarios on the behavioral model in order
to automatically generate test cases, which target the vulnerability described
in the initial test pattern. To experiment and evaluate the PMVT approach, a
full automated toolchain, from modeling to test execution, has been developed
and experimented, using real-life Web applications, to detect multi-step cross-
site scripting vulnerabilities, which are nowadays one of the most critical and
widespread Web application attacks.

A thorough experimentation on a real-life e-learning Web application has been
conducted to validate the approach, and a comparison with existing automated
testing solution, such as vulnerability scanners, has shown its effectiveness to gen-
erate more accurate vulnerability test cases and to avoid the generation of false
positive and false negative results. These benefits directly stem from the combi-
nation of the behavioral model, capturing the logical aspects of the application
under test, and the test patterns, driving with precision the test generation pro-
cess. Moreover, the automation of the test generation and test execution makes
it possible to adopt an iterative testing approach and is particularly efficient to
manage security regression tests on updated or corrected further versions of the
application under test.

Besides these research results, the experiments showed possible improvements
of the method and the toolchain. The main drawback of our approach echoes
the one of traditional MBT process. Indeed, although we reached a first level
of simplification using the dedicated DASTML Domain Specific Modeling Lan-
guage, the needed effort to design the model is still high. We are working on to
integrate another simplification level by using user traces (as proposed in [17]) to
infer the model: users would browse a Web Application and record their actions,
then an algorithm would translate the results into a DASTML instantiation.
This improvement may also automate the adaptation of the generated abstract
test cases since the user traces could naturally provide the link between the ab-
stract stimuli/data of the model and the corresponding concrete ones. We are
also investigating the extension of the approach in order to address more vulner-
ability classes, both technical (such as cross-site request forgery, file disclosure
and file injection) and logical (such as integrity of data over applications busi-
ness processes). This extension requires to define generic test patterns ensuring
the automated coverage of these vulnerabilities. Finally, another research direc-
tion aims at experimenting and extending the current approach to address Web
applications on mobile devices.

376 A. Vernotte et al.

Acknowledgment. This work is supported by the French FSN project DAST
(see the project Website at dast.univ-fcomte.fr [Last visited: July 2014]).

References

1. Athanasopoulos, E., Pappas, V., Krithinakis, A., Ligouras, S., Markatos, E.P.,
Karagiannis, T.: xJS: practical XSS prevention for web application development.
In: Proc. of the USENIX Conference on Web Application Development (WebApps
2010), pp. 147–158. USENIX Association, Boston (2010)

2. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the Art: Automated Black-
Box Web Application Vulnerability Testing. In: Proc. of the 31st Int. Symp. on
Security and Privacy (SP 2010), pp. 332–345. IEEE CS, Oakland (2010)

3. Bernard, E., Bouquet, F., Charbonnier, A., Legeard, B., Peureux, F., Utting, M.,
Torreborre, E.: Model-based Testing from UML Models. In: Proc. of the Int. Work-
shop on Model-Based Testing (MBT 2006). LNI, vol. 94, pp. 223–230. GI, Dresden
(2006)

4. Bisht, P., Venkatakrishnan, V.N.: XSS-GUARD: Precise dynamic prevention of
cross-site scripting attacks. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137,
pp. 23–43. Springer, Heidelberg (2008)

5. Blome, A., Ochoa, M., Li, K., Peroli, M., Dashti, M.: Vera: A flexible model-based
vulnerability testing tool. In: 6th Int. Conference on Software Testing, Verification
and Validation (ICST 2013), pp. 471–478. IEEE CS, Luxembourg (2013)

6. Botella, J., Bouquet, F., Capuron, J.-F., Lebeau, F., Legeard, B., Schadle, F.:
Model-Based Testing of Cryptographic Components – Lessons Learned from Ex-
perience. In: Proc. of the 6th Int. Conference on Software Testing, Verification and
Validation (ICST 2013), pp. 192–201. IEEE CS, Luxembourg (2013)

7. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F.: A test generation solution
to automate software testing. In: Proc. of the 3rd Int. Workshop on Automation
of Software Test (AST 2008), pp. 45–48. ACM Press, Leipzig (2008)

8. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N., Utting, M.: A
subset of precise UML for model-based testing. In: Proc. of the 3rd Int. Workshop
on Advances in Model-Based Testing (AMOST 2007), pp. 95–104. ACM Press,
London (2007)

9. Buchler, M., Oudinet, J., Pretschner, A.: Semi-Automatic Security Testing of Web
Applications from a Secure Model. In: 6th Int. Conference on Software Security
and Reliability (SERE 2012), pp. 253–262. IEEE, Gaithersburg (2012)

10. Doupé, A., Cova, M., Vigna, G.: Why Johnny Can’t Pentest: An Analysis of Black-
Box Web Vulnerability Scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010.
LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010)

11. Doupé, A., Cavedon, L., Kruegel, C., Vigna, G.: Enemy of the State: A State-aware
Black-box Web Vulnerability Scanner. In: Proc. of the 21st USENIX Conference on
Security Symposium (Security 2012), pp. 523–537. USENIX Association, Bellevue
(2012)

12. Doupé, A., Cui, W., Jakubowski, M.H., Peinado, M., Kruegel, C., Vigna, G.: deDa-
cota: toward preventing server-side XSS via automatic code and data separation.
In: Proc. of the 20th ACM SIGSAC Conference on Computer and Cummunications
Security (CCS 2013), pp. 1205–1216. ACM, Berlin (2013)

13. Duchene, F., Groz, R., Rawat, S., Richier, J.L.: XSS Vulnerability Detection Using
Model Inference Assisted Evolutionary Fuzzing. In: Proc. of the 5th Int. Conference
on Software Testing, Verification and Validation (ICST 2012), pp. 815–817. IEEE
CS, Montreal (2012)

dast.univ-fcomte.fr

Efficient Detection of Multi-step XSS Vulnerabilities 377

14. Gálan, E.C., Alcaide, A., Orfila, A., Aĺıs, J.B.: A multi-agent scanner to detect
stored-XSS vulnerabilities. In: 5th Int. Conference for Internet Technology and
Secured Transactions (ICITST 2010), pp. 1–6. IEEE, London (2010)

15. Kieżun, A., Guo, P.J., Jayaraman, K., Ernst, M.D.: Automatic creation of SQL
injection and cross-site scripting attacks. In: 31st Int. Conference on Software En-
gineering (ICSE 2009), pp. 199–209. IEEE, Vancouver (2009)

16. Kirda, E., Jovanovic, N., Kruegel, C., Vigna, G.: Client-side cross-site scripting
protection. Computers & Security 28(7), 592–604 (2009)

17. Korscheck, C.: Automatic Detection of Second-Order Cross Site Scripting Vulnera-
bilities. Diploma thesis, Wilhelm-Schickard-Institut für Informatik, Universität auf
Tübingen (December 2010)

18. Legeard, B., Bouzy, A.: Smartesting CertifyIt: Model-Based Testing for Enterprise
IT. In: Proc. of the 6th Int. Conference on Software Testing, Verification and
Validation (ICST 2013), pp. 391–397. IEEE CS, Luxembourg (2013)

19. Mahapatra, R.P., Saini, R., Saini, N.: A pattern based approach to secure web ap-
plications from XSS attacks. Int. Journal of Computer Technology and Electronics
Engineering (IJCTEE) 2(3) (June 2012)

20. MITRE: Common weakness enumeration (October 2013), http://cwe.mitre.org/
(last visited: February 2014)

21. Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-Site Script-
ing Prevention with Dynamic Data Tainting and Static Analysis. In: Proc. of the
Network and Distributed System Security Symposium (NDSS 2007), pp. 1–12. The
Internet Society, San Diego (2007)

22. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. Journal on
Selected Areas in Communications Archive 21(1), 5–19 (2006)

23. Shar, L.K., Tan, H.B.K.: Automated removal of cross site scripting vulnerabilities
in web applications. Information and Software Technology 54(5), 467–478 (2012)

24. Shar, L.K., Tan, H.B.K.: Predicting SQL injection and cross site scripting vul-
nerabilities through mining input sanitization patterns. Information and Software
Technology 55(10), 1767–1780 (2013)

25. Smith, B., Williams, L.: On the Effective Use of Security Test Patterns. In: Proc.
of the 6th Int. Conference on Software Security and Reliability (SERE 2012), pp.
108–117. IEEE CS, Washington, DC (2012)

26. Vouffo Feudjio, A.G.: Initial Security Test Pattern Catalog. Public De-
liverable D3.WP4.T1, Diamonds Project, Berlin, Germany (June 2012),
http://publica.fraunhofer.de/documents/N-212439.html (last visited: Febru-
ary 2014)

27. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:
Proc. of the 30th Int. Conference on Software Engineering (ICSE 2008), pp. 171–
180. IEEE, Leipzig (2008)

28. Whitehat: Website security statistics report (October 2013),
https://www.whitehatsec.com/assets/WPstatsReport_052013.pdf (last visited:
February 2014)

29. Wichers, D.: Owasp top 10 (October 2013),
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project (last vis-
ited: February 2014)

30. Wurzinger, P., Platzer, C., Ludl, C., Kirda, E., Kruegel, C.: SWAP: mitigating
XSS attacks using a reverse proxy. In: 5th Int. Workshop on Software Engineering
for Secure Systems (SESS 2009), pp. 33–39. IEEE, Vancouver (2009)

http://cwe.mitre.org/
http://publica.fraunhofer.de/documents/N-212439.html
https://www.whitehatsec.com/assets/WPstatsReport_052013.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

CliSeAu: Securing Distributed Java Programs
by Cooperative Dynamic Enforcement

Richard Gay, Jinwei Hu, and Heiko Mantel

Department of Computer Science, TU Darmstadt, Germany
{gay,hu,mantel}@mais.informatik.tu-darmstadt.de

Abstract. CliSeAu is a novel tool for hardening distributed Java pro-
grams. CliSeAu takes as input a specification of the desired properties
and a Java bytecode target program, i.e. the format in which Java pro-
grams are usually provided. CliSeAu returns hardened Java bytecode
that provides the same functionality as the original code, unless this
code endangers the desired properties. By monitoring the components
of a distributed system in a decentralized and coordinated fashion, our
tool CliSeAu is able to enforce a wide range of properties, both ef-
fectively and efficiently. In this article, we present the architecture of
CliSeAu, explain how the components of a distributed target program
are instrumented by CliSeAu, and illustrate at an example application
how CliSeAu can be used for securing distributed programs.

1 Introduction

Dynamic enforcement mechanisms establish security at run-time by monitoring a
program’s behavior and by intervening before security violations can occur [1–3].
Dynamic enforcement mechanisms are often tailored to a particular purpose. For
instance, authentication mechanisms ensure the authenticity of users, access-
control mechanisms ensure that only authorized accesses can be performed, and
firewalls ensure that only authorized messages can pass a network boundary.
Besides such special-purpose security mechanisms, there are also dynamic en-
forcement mechanisms that can be tailored to a range of security concerns.

Our novel tool CliSeAu belongs to this second class of dynamic enforcement
mechanisms. Given a Java bytecode target program and a policy that specifies a
user’s security requirements, CliSeAu enforces that the requirements are met.

In this respect, CliSeAu is very similar to two well known tools, SASI [4] and
Polymer [5], and there are further similarities. Firstly, all three tools aim at secur-
ing Java bytecode.1 Secondly, like in Polymer, security policies in CliSeAu are
specified in Java. Thirdly, like Polymer, CliSeAu bases enforcement decisions
on observations of a target program’s actions at the granularity of method calls.
Fourthly, like in Polymer, the possible countermeasures against policy violations
include termination of a target program, suppression or replacement of policy-
violating actions, and insertion of additional actions. Finally, all three tools
1 There is a second version of SASI for securing x86 machine code.

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 378–398, 2014.
c© Springer International Publishing Switzerland 2014

CliSeAu: Securing Distributed Java Programs 379

enforce policies by modifying the target program’s code. Like SASI, CliSeAu
performs this modification statically before a program is run.

A distinctive feature of CliSeAu is the support for enforcing security proper-
ties in distributed systems in a coordinated and decentralized fashion. CliSeAu
generates an enforcement capsule (brief: EC) for each component of a distributed
program. The granularity of encapsulated components is chosen such that each of
them runs at a single agent, i.e. at a single active entity of a given distributed sys-
tem. The local ECs at individual agents can be used to make enforcement deci-
sions in a decentralized fashion. Decentralizing decision making in this way avoids
the bottleneck and single point of failure that a central decision point would be.
Moreover, localizing enforcement decisions increases efficiency by avoiding com-
munication overhead. Purely local, decentralized enforcement, however, has the
disadvantage that a smaller range of security properties can be enforced than
with centralized enforcement decisions [6]. CliSeAu overcomes this disadvan-
tage by supporting communication and coordination between ECs. If needed,
enforcement decisions can be delegated by one EC to another. There are a few
other tools that support decentralized, coordinated enforcement, and we will
clarify how they differ from CliSeAu when discussing related work.

Another distinctive feature of CliSeAu is the technique used for combining
ECs with components of a target program. Parts of the EC code are interwoven
with the target program using the in-lining technique [4], which is used by SASI
and Polymer. Other parts of the EC code are placed in a process that runs
in parallel with the modified target program. This ensures responsiveness of an
EC , even if its target program is currently blocked due to a pending enforcement
decision or has been terminated due to a policy violation.

The enforcement of security properties with CliSeAu is both effective and
efficient. In this article, we illustrate the use of CliSeAu at the example of dis-
tributed file storage services. As example policy, we use a Chinese wall policy
[7]. This is a prominent example of a security policy that cannot be enforced
in a purely local, decentralized fashion [6] and, hence, the communication and
coordination between ECs is essential for enforcing this policy. We also provide
results of an experimental evaluation using three different distributed file stor-
age services as target programs. Our evaluation indicates that the performance
overhead caused by CliSeAu is moderate. Preliminary reports on further case
studies with CliSeAu in the area of social networks, version control systems, and
e-mail clients can be found in the student theses [8], [9], and [10], respectively.

In summary the three main novel contributions of this article are the descrip-
tion of the architecture and implementation of CliSeAu (Sections 3 and 5),
the explanation of how CliSeAu combines ECs with the components of a tar-
get program (Section 4), and the report on the case study and experimental
evaluation with distributed file storage systems (Sections 6 and 7).

CliSeAu’s source code is available under MIT License at
http://www.mais.informatik.tu-darmstadt.de/CliSeAu.html.

http://www.mais.informatik.tu-darmstadt.de/CliSeAu.html

380 R. Gay, J. Hu, and H. Mantel

2 Scope of Applications for CliSeAu

Programs are often developed without having a full understanding yet of the
security concerns that might arise when these programs are used. Moreover, even
if security aspects have been addressed during program development, a user of
the program might not be convinced that this has been done with sufficient rigor.
Finally, security requirements might arise from a particular use of a program,
while being irrelevant for other uses. In general, it is rather difficult for software
engineers to anticipate all security desires that forthcoming users of a program
might possibly have. Moreover, being overly conservative during system design
regarding security aspects is problematic because security features might be in
conflict with other requirements, e.g., regarding functionality or performance
and, moreover, can lead to substantial increases of development costs.

Hence, there is a need for solutions that harden programs for given security
requirements. This was our motivation for developing CliSeAu as a tool that
enables one to force properties onto existing, possibly distributed programs.

CliSeAu can be used by both software developers and software users. In order
to apply CliSeAu, one must be able to express security requirements by a Java
program (see Section 6 for more details on how this works) and the architecture
of the distributed target program must be static.

The class of properties that can be enforced with CliSeAu falls into the class
of safety/liveness properties [11,12]. These are properties that can be expressed
in terms of individual possible runs of a system, such that a property is either
satisfied or violated by an individual program run. Security requirements that
can be expressed by properties within this spectrum are, for instance, “A file
may only be read by a user who is permitted to read this file.” (confidentiality),
“Only programs that are authorized to write a given channel may send messages
on this channel.” (integrity), and “A payment may only be released if different
users from two given groups have confirmed the payment.” (separation of duty).
Security properties that are outside this spectrum are now commonly referred
to as hyper-properties [13] and include, for instance, many information flow
properties, as already pointed out in [14]. The limitation to properties falling into
the safety/liveness spectrum is shared by many other generic tools for dynamic
enforcement, including the aforementioned tools SASI and Polymer.

In order to enforce a given property, a dynamic enforcement mechanism needs
certain capabilities. Firstly, it must be able to anticipate the next action of the
target program. Secondly, it must be able to block this action until it is clear
whether this action is permissible. Thirdly, it must be able to unblock the ac-
tion – if the action is permissible – and to impose suitable countermeasures on
the target program – if the next action would lead to a violation of the de-
sired property. As mentioned before, CliSeAu encapsulates each component of
a target program by an EC . Each of these ECs runs at a single agent and can
observe, block, and unblock the method calls of the target’s component that
this EC supervises. An EC can also impose countermeasures on the supervised
component. The implementation technique that CliSeAu uses for combining

CliSeAu: Securing Distributed Java Programs 381

Fig. 1. Architecture of a distributed file service

a target program with the enforcement code ensures that each EC has these
capabilities (see Section 4 for details on this technique).

Consider, for instance, a file storage service that provides large storage capac-
ities to users. The functionality of a file storage service includes the uploading
and downloading of files by users as well as the controlled sharing of files among
users. A well known example of such a file storage service is DropBox.2

Figure 1 depicts the architecture of a distributed realization of a file storage
service. The service is deployed on a collection of distributed machines, each of
which hosts a file server program. Users interact with an interface that mitigates
their input to the appropriate servers and that communicates the outputs of
each file server to the respective users. The mapping of files to servers might be
based on criteria like, e.g., geographic proximity in order to ensure low latency.
The concrete mapping of files to servers might be hidden from the user.

CliSeAu can be used to secure such a distributed file storage service by
encapsulating each file server program with an EC . Each EC is tailored to a
security policy that captures the user’s security requirements. An individual EC
could be tailored, e.g., to a policy requiring that users access files stored at the
supervised server only if they are authorized to do so. Moreover, an individual
EC could also be used to control the sharing of files stored at the given server.
However, there are also security requirements that cannot be enforced locally
by an individual EC . This is the case when the EC does not have sufficient
information to decide whether an action is permissible or not. For instance, if one
wants to limit how much data a user shares within a particular time period then
an EC needs to know how much data stored at other servers has been shared by
this user. Another example are conflicts of interest, where if a user has accessed
some file A then he must not access some other file B afterwards, even if in
principle she is authorized to access both files. In order to decide whether file B
may be accessed, an EC needs to know whether the user has already accessed
file A at some other server. Conflicts of interest must be respected, e.g., within
companies that work for other companies who are competitors.

In our case study and experimental evaluation, we show how CliSeAu can
be used to prevent conflicts of interests, expressed by a Chinese Wall policy, in a
distributed file storage service. The ability of CliSeAu’s ECs to communicate
2 https://www.dropbox.com/

https://www.dropbox.com/

382 R. Gay, J. Hu, and H. Mantel

with each other and to coordinate their actions is essentail for CliSeAu’s ability
to enforce such a Chinese wall policy in a decentralized fashion.

3 Design of CliSeAu

CliSeAu is designed in a modular fashion, following principles of object-oriented
design [15,16]. The ECs generated by CliSeAu are modeled by UML diagrams
that capture different views on CliSeAu. Design patterns employed in the design
of CliSeAu include the factory pattern and the strategy pattern [16]. Objects
are used to capture the actions of a target program as well as an EC ’s reactions
to such actions.

An EC ’s reaction to an action is captured by a decision object, which corre-
sponds to a particular decision of how to influence the behavior of the target.
For example, decisions could range over a fixed set of decision objects that rep-
resent the permission or the suppression of a program action, the insertion of
additional program actions, or the termination of the program. Decision objects
can also be more fine-grained and specify further details such as the reason why
a decision is made or how the program should be terminated.

An action of a target program is represented by an event object, which corre-
sponds to a particular method call by the target program. The fields of such an
object capture information about the method call, like actual parameters or the
object on which the method is called. How much detail about a method call is
stored in the corresponding object, can be chosen by a user of CliSeAu. This
allows the user to abstract from details of a method call that are not relevant
for her security requirements. For instance, one might represent the program
action of sending a particular file by an event object that captures the name of
the file and the identifier of the receiver in fields, while abstracting from other
information like the name of the protocol by which the file shall be transferred.

In the following, we call an action of the target program (i.e., a method call)
security relevant if its occurrence might result in a security violation. We also
call an action security relevant if whether this actions occurs or doesn’t occur
affects whether possible future events are deemed security-relevant or not. When
applying CliSeAu, one can specify the subset of a program’s actions that are
security relevant. CliSeAu exploits this information to choose which of a pro-
gram’s actions need to be guarded or tracked.

The abstraction from a target program’s security-irrelevant actions and from
security-irrelevant details of security-relevant actions both reduce conceptional
complexity. This simplifies the specification of security policies and improves
performance. Memory is needed only for storing the security-relevant details of
security-relevant actions and only security-relevant actions needed to be super-
vised by CliSeAu.

In the following, we show different views on CliSeAu’s ECs, focusing on the
ECs’ activities (Section 3.1), the high-level architecture (Section 3.2), and the
parametric low-level architecture (Section 3.3). We conclude this section with
the architecture of CliSeAu itself (Section 3.4).

CliSeAu: Securing Distributed Java Programs 383

EC activities

intercept action enforce decisiondecide cooperativelyprogram action
event object decision object

Fig. 2. Activities of an EC (UML activity diagram)

ECs deciding cooperatively
event object

delegation response
to EC-1

delegation request
to EC-1

can decide? can decide?

delegate decide
locally

decide
locally

extract
decision

decision object

delegation response
to EC-2

delegation request
to EC-2

delegation request

delegation requestevent object

delegation response

decision
object

delegation
request

delegation
response

decision
object

[yes] [yes][no][no]

EC-2 EC-2
[EC-1 != EC-2] [EC-1 != EC-2]

Fig. 3. Cooperative deciding by ECs (UML activity diagram)

3.1 Activity View of an EC

At runtime, an EC performs three main activities (Figure 2): intercepting the
next security-relevant actions of the program, deciding about such actions, and
enforcing the decisions. Intercepting consists of observing the execution of a
target program, blocking security-relevant actions until a decision about them
has been made, and capturing the respective next security-relevant action by an
event object. Enforcing consists either of enabling the currently blocked action of
the target program or, alternatively, of forcing a countermeasure on the target.

The ECs generated by CliSeAu can cooperate with each other when making
decisions. We capture the individual activities belonging to cooperative deciding
in detail in Figure 3. Essentially, four cases can be distinguished:

1. locally making a decision for a locally intercepted event. This case occurs
when an event object (top box) is given to the deciding activity by the
intercepting activity of Figure 2 and the check whether the EC itself can
decide succeeds. Then the EC decides locally and returns the result as a
decision object (bottom box).

2. remotely making a decision for a locally intercepted event. This case also
occurs when an event object is given to the deciding activity. However, in
this case, the check whether the EC can decide fails and the EC delegates
the decision-making to an EC -2 by signalling a delegation request to EC-2.

384 R. Gay, J. Hu, and H. Mantel

<<component>>
EC

<<component>>
interceptor

<<component>>
coordinator

<<component>>
enforcer

<<component>>
local policy

event delivery

decision
delivery

<<component>>
target program

observation
and blocking

unblocking
and intervention

remote
request

local
request

cooperation
with other EC

cooperation
with other EC

Fig. 4. High-level architecture of CliSeAu’s ECs (UML component diagram)

This case leads to a decision object when a delegation response to EC (top
left) is signalled and the EC extracts the decision from the delegation re-
sponse.

3. locally making a decision for a remotely intercepted event. This case occurs
when a delegation request is signalled to the EC and the check whether the
EC itself can decide succeeds. Then the EC locally decides and signals the
decision as a delegation response to an EC -2.

4. remotely making a decision for a remotely intercepted event. This case also
occurs when a delegation request is signalled to the EC . However, in this
case, the check whether the EC itself can decide fails and the EC -2 delegates
the decision-making to an EC -2 by signalling a delegation request to EC -2.

Note that the cooperative deciding activity ends when the EC delegated the
decision-making for an event object. That is, the activity does not block until
a response is signalled, which enables the EC to cooperate with remote ECs in
the meantime.

3.2 High-Level Architecture of ECs

The high-level architecture of the ECs generated by CliSeAu follows the con-
cept of service automata [6], according to which a service automaton is an EC
that features a modular architecture consisting of four particular components:
the interceptor, the coordinator, the local policy, and the enforcer. Each of the
components is responsible to perform particular activities of the EC (see Sec-
tion 3.1) and uses particular interfaces to interact with the other components
of the EC . The UML component diagram in Figure 4 visualizes the high-level
architecture of CliSeAu’s EC .

In CliSeAu, the interceptor is a component that performs the activity of
intercepting attempts of the program to perform security-relevant actions. Fur-
thermore, its purpose is to generate event objects. The component requires an
interface to the program by which it observes and blocks the program’s attempts
to perform actions. How this interface is established by combining the EC with
the target program is the focus of Section 4. The component also requires an
interface for the event delivery.

CliSeAu: Securing Distributed Java Programs 385

<<component>>
EC

<<component>>
interceptor

<<component>>
coordinator

<<component>>
enforcer

<<component>>
local policy

event delivery

decision delivery

<<component>>
target program

observation
and blocking

unblocking
and intervention

remote
request

local
request

cooperation
with other EC

cooperation
with other EC

<<component>>
event factory

<<component>>
enforcer factory

enforcer object
creation

event object
creation

Fig. 5. Low-level architecture of an EC (UML component diagram)

The enforcer of CliSeAu is a component that enforces decisions. The compo-
nent provides an interface for the delivery of enforcement decisions. It requires
an interface for unblocking and intervening the program execution.

The local policy of CliSeAu is a component that performs the activities
of (i) checking in which cases it can make a local decision, (ii) making local
decisions, (iii) delegating the decision-making for events, and (iv) extracting
decision objects from delegation responses. The component provides an interface
for processing local requests – in the form of events capturing local program
actions – as well as remote requests – in the form of delegation requests or
delegation responses.

The coordinator of CliSeAu is a component that connects the components
within one EC as well as ECs with each other. The component provides an
interface for the delivery of events that are to be decided. It requires interfaces
for the delivery of enforcement decisions, the delivery of local requests, and the
delivery of remote requests. For the cooperation with other ECs, an EC provides
one interface and requires one interface of each other EC .

3.3 Parametric Low-Level Architecture of ECs

CliSeAu provides a generic EC , that is, an EC that is parametric in the security
policy that the EC enforces. The parametricity of CliSeAu’s ECs is manifested
in two kinds of entities: data structures (event objects, decision objects, delega-
tion requests, and delegation responses) as well as active components. The re-
fined architecture of ECs in Figure 5 pinpoints the parametric activities to three
components (solid white boxes in the figure): the event factory (enabling para-
metric events), the enforcer factory (enabling parametric countermeasures), and
the local policy (enabling parametric deciding and delegation). The remaining
components (shaded boxes) are fixed by the EC .

386 R. Gay, J. Hu, and H. Mantel

Parametric events. An event object corresponds to a particular attempt of the
target program to perform a security-relevant action. The concrete type of event
objects can be chosen by the user of CliSeAu. That allows the user of CliSeAu
to choose how much detail about a program action is stored in the corresponding
event object.

Closely related to event objects in an EC is the event factory component, a
component that creates event objects. It encapsulates functionality that trans-
forms the details of a program action to the content of an event object. The
parametric event factory allows a user of CliSeAu to specify how the informa-
tion that an event object captures is obtained from a concrete program action.
The use of the factory design pattern [16] allows the EC architecture to integrate
varying concrete event factories despite the fixed interceptor component.

For an example, consider again the actions of sending a file. To create the
event objects for the action of sending a file, the factory could access the actual
parameters to the method call of the action and read the needed information
from the arguments. Suppose that two sending actions share the same file name
and recipient, but differ in the protocol used for the file transfer (e.g., FTP vs.
HTTP) and in the access time-stamp. In this case, the factory could transform
the two actions to the same event object, which contains only the fields file name
and recipient identifier.

Parametric deciding and delegation. A decision object corresponds to a par-
ticular decision of how to influence the behavior of the target program. The
concrete type of decision objects can be chosen by the user of CliSeAu. That
allows the user of CliSeAu to choose how much technical details about concrete
countermeasures must be known when making decisions.

When an EC cannot make a decision about an event on its own, it delegates
the decision-making to another EC . In this process, the ECs exchange delegation
requests and delegation responses. A delegation request is an object that captures
enough information for the delegate EC to make a decision or to further delegate
the request. Analogously, a delegation response is an object that captures a
decision for the receiving EC . The concrete types of delegation requests and
delegation responses can be chosen by the user of CliSeAu. That allows the
user of CliSeAu to choose what information is exchanged between the ECs.
For instance, a delegation request corresponding to an event object could, in
addition to the event object to be decided upon, carry partial information about
the delegating EC ’s state.

The local policy is the active component of an EC that encapsulates the EC ’s
functionality for deciding and delegating decision-making. The parametric local
policy allows a user of CliSeAu to specify for the respective security policy how
decisions shall be made and when cooperation between ECs shall take place. The
use of the strategy design pattern [16] allows the EC architecture to integrate
varying concrete local policies despite the fixed coordinator component.

Parametric countermeasures. CliSeAu captures countermeasures, i.e., actions
that the EC performs to prevent security violations, by enforcer objects in the

CliSeAu: Securing Distributed Java Programs 387

EC . An enforcer object is an object that encapsulates concrete code whose ex-
ecution results in actions that prevent the security violations. For instance, an
enforcer object can encapsulate code for suppressing an action of the program,
for terminating the program, for replacing an action of the program by other
actions like the display of an error message, or for allowing an action to exe-
cute. The concrete set of possible enforcer objects can be chosen by the user of
CliSeAu. This allows one to tailor countermeasures to the concrete target.

Closely related to decision objects and enforcer objects inside an EC is the
enforcer factory component. An enforcer factory is an object that generates en-
forcer objects. The factory takes a decision object as input and returns enforcers
whose execution could achieve the effect intended by the decision. Being a para-
metric component, the enforcer factory allows a user of CliSeAu to tailor which
decisions result in which countermeasures specificly for the application scenario.
For example, for a decision object “permit”, the factory could return an enforcer
that permits the execution of program actions. For the decision “terminate”, the
factory could return an enforcer that executes “System.exit(1)”.

Instantiation of parameters. The parametric components of an EC must be
instantiated, i.e., substituted by concrete instances of the components, before
the EC can be used for enforcing a concrete security policy on a concrete target.
That is, before one can use CliSeAu, one must define a concrete instance for
each parametric component of the EC .

When using CliSeAu to enforce a security policy in a distributed target pro-
gram, one must instantiate an EC for each of the target’s agents. All ECs for the
target must share at least the same instantiation of the delegation request and
delegation response objects, such the ECs can cooperate with each other. The
remaining parameters of the ECs can be instantiated tailored to the respective
agents of the target. For instance, decisions may be enforced differently at the
individual agents. In this case, the instantiated ECs would comprise different
enforcer factories and enforcer objects. However, for a distributed target consist-
ing of replications of one and the same agent, all parameter instances may also
be shared among the individual ECs.

3.4 Architecture of CliSeAu

Figure 6 shows the high-level architecture of CliSeAu. This architecture con-
sists of three main components. The configuration reader consumes as input
the instantiations of the EC parameters. It passes these parameters to the EC
instantiator. The EC instantiator takes CliSeAu’s generic EC as well as the
parameters of the EC and instantiates the EC based on the parameters. The EC
combiner takes an instantiated EC as well as the code of an agent and combines
the two. This combination establishes the interfaces between the program and
the interceptor and enforcer that are described in Section 3.2. The technique for
combining the code of an agent with an EC is described in Section 4.

When using CliSeAu to enforce a security policy on a distributed target,
each agent of the distributed target is combined with an EC . This EC intercepts

388 R. Gay, J. Hu, and H. Mantel

<<component>>
configuration reader

<<component>>
CliSeAu

<<component>>
EC instantiator

<<component>>
EC combiner

<<use>>

<<use>>

configuration
element
access

instantiation
of ECs 1..n

<<artifact>>

code of
agents 1..n

<<artifact>>

generic EC implementation
<<artifact>>

<<use>>

encapsulated
agents 1..n

<<artifact>><<produce>>

instantiated
EC access

Fig. 6. Architecture of CliSeAu (UML component diagram)

the security-relevant events of the agent, participates in cooperatively deciding
for security-relevant events, and enforces decisions on the agent. To enforce a
security policy on a distributed target, CliSeAu therefore takes instantiations
of the EC parameters for each agent and all agents of the target as input.

The result of applying CliSeAu to a distributed target with a given instan-
tiation of the ECs is a set of encapsulated agents. The ECs at the encapsulated
agents then together enforce the security policy encoded by the instantiation.

4 Technique for Combining ECs with Targets

For combining the components of a distributed target program with ECs gener-
ated by CliSeAu, CliSeAu applies a technique that we describe in the follow-
ing. The combination of an EC with an agent consists of two parts: rewriting
the code of the agent as well as creating a separate program that shall, at the
runtime of the agent, run in parallel to the agent.

Rewriting the code of the agent serves the purpose of making security-relevant
program action’s guarded. Being guarded here means that the EC makes a check
against the policy before the action occurs and runs a countermeasure against the
action in case the action would violate the policy. For this rewriting, CliSeAu
takes as input a specification of the security-relevant program actions.

As part of the rewriting, CliSeAu places code into the agent that corresponds
to the EC components for intercepting and the acting. That is, the interceptor,
the event factory, the event objects, the enforcer, the enforcer factory, the en-
forcer objects, and the decisions objects are placed into the code of the agent.
In the rewritten code of the agent, the code of the interceptor is placed before
each security-relevant action and the enforcer is placed “around” the action in
the style of a conditional. The remaining components are added to the code of
the agent at a place where they can be invoked by the interceptor or enforcer
executor.

The separate program that is created by CliSeAu as part of combining an EC
with an agent covers the EC components for deciding. That is, the separate pro-

CliSeAu: Securing Distributed Java Programs 389

gram contains the coordinator, the local policy, the delegation request/response,
and the event and decision objects.3

Placing the interceptor and the enforcer executor into the code of the agent as
guards of code for security-relevant actions serves the purpose of enabling an ef-
ficient enforcement of security policies that are expressed at the level of program
actions. Alternatives such as intercepting and enforcing within the operating sys-
tem may allow the ECs to enforce the same security policies but incurs overhead
for reconstructing program-level actions from operating system-level actions.

Placing the event factory and the enforcer factory into the code of the agent
mainly serves the purpose of efficiency: event objects are supposed to be smaller
in size than all agent’s data related to a program action (e.g., large data struc-
tures on which the action operates); hence, transmitting an event object from
the agent to the separate program requires less time. A similar argument applies
to the placement of the enforcer factory, because decision objects are smaller
in size than the enforcer objects. A beneficial, more technical side-effect of this
placement of the factory components is that this placement eliminates or reduces
the dependency of the separate program on agent-specific data structures.

Placing the coordinator and the local policy into a separate program serves
the purpose of effectiveness and efficiency: the separate program runs in parallel
to the agent; hence, it remains responsive even when the agent is blocked due to
a pending enforcement decision or has been terminated due to a policy violation.
More concretely, even in these cases the separate program can receive delegation
requests and make decisions or delegate further with the coordinator and local
policy. If a blocked agent would delay the operation of the coordinator and local
policy, this would impact the efficiency of the enforcement. Worse, if a terminated
agent would prevent the coordinator and local policy from operating, then this
could prevent an effective enforcement in cases when cooperation is required to
make precise decisions.

5 Implementation

The CliSeAu implementation consists of two parts: an implementation of generic
ECs following the architecture in Figure 5, called SeAu, and a command-line
tool following the architecture in Figure 6, called Cli, for instantiating ECs and
combining the instantiated ECs with target agents. The SeAu implementation
consists of Java classes for the fixed components of CliSeAu’s ECs and Java in-
terfaces and abstract classes for the parametric components. Cli takes as input
the instantiation of the SeAu ECs in the form of a configuration file and produces
instantiated ECs. An example configuration is given in Section 6. For modifying
the Java bytecode of the agents of a target program according to the technique
presented in Section 4, Cli uses AspectJ [17] as a back-end.

3 CliSeAu provides a base implementation of the delegation request/response; one
can also supply one’s own implementation.

390 R. Gay, J. Hu, and H. Mantel

6 Case Study

We have applied CliSeAu to a distributed file storage service.We built the
service by ourselves, following the architecture of distributed programs depicted
in Figure 1 of Section 2. Our service uses off-the-shelf file servers: DRS [18],
AnomicFTPD [19], and Simple-ftpd [20]. Function-wise, our service allows users
to upload, download, and share files.

Security-wise, our service only supports user authentication. However, other
more specific security requirements may also arise. Consider for instance that
the storage service is used in an enterprise setting like in a bank. According to
[21], an employee of the bank may not access files from the bank’s two client
companies that have conflicts of interests. In general, such a requirement is
captured by Chinese Wall policies [7]: no single user may access files that belong
to two companies bearing conflicts of interests.

To enforce a security requirement that is not obeyed in our service, like a
Chinese Wall policy, we need to employ some security mechanism. CliSeAu
can be used to generate such a mechanism by performing the following steps:
(1) define security-relevant actions, event objects, and event factory; (2) define
the ECs’ local policies; (3) define decision objects, enforcer objects, and enforcer
factory; (4) assemble the above to a configuration for CliSeAu.

Following these 4 steps, we actually provide an instantiation for CliSeAu.
In turn, CliSeAu uses this instantiation to generate ECs and combine them
with the file servers of our service. In this way, our service is hardened with
the enforcement of the Chinese Wall policy. Now we explain in detail how to
construct an instantiation for our service with AnomicFTPD as the file servers.

Security-relevant actions, event objects, and event factory. In order to enforce
a security requirement on a program, we first identify the program’s security-
relevant actions. For the Chinese Wall policy that we want to enforce on our
service, the actions are method calls whose execution corresponds to users’ file
accesses. For the AnomicFTPD file server, we find that file download boils down
to a call of the method eventDownloadFilePre of an ftpdControl class with a File
parameter. Therefore we use the pointcut in Figure 7 (a) (Lines 1-3) to spec-
ify that calls of the method eventDownloadFilePre are security-relevant and shall
be intercepted.4 From an intercepted method call, an event object shall be cre-
ated. Observe that the Chinese Wall policy shall define which company each
file belongs to and a COI (conflicts-of-interests) relation on the set of com-
panies. As such, the event object should capture the user who attempts to
access a file, the company that the file belongs to, and the involved COI re-
lationships. Figure 7 (a) (Lines 4-5) shows the event object AccessEvent, which
has three fields: user, company and COI. In order to construct AccessEvents, we

4 The security-relevant actions depend on the interpretation of “access”: users access
files by (1) only downloading them or (2) by either downloading or uploading. Fig-
ure 7 (a) (Lines 1-3) is defined for case (1). In case (2), we could define a similar
specification but with the pointcut extended to match method calls for file uploads.

CliSeAu: Securing Distributed Java Programs 391

(a
)

ac
ti

on
s,

ev
en

ts
an

d
ev

en
t

fa
ct

or
y

1 pointcut FileAccess(ftpdControl control, File file > boolean):
2 call(boolean eventDownloadFilePre(File))
3 && target(control) && args(file);
4 class AccessEvent implements AbstractEvent {
5 String user, company, COI; }
6 class AccessEventFactory {
7 AccessEvent fromFileAccess(ftpdControl control, File file) {
8 return new AccessEvent(getUser(control),
9 getCompany(file), getCOI(file)); } }

(b
)

lo
ca

l
po

lic
y class ChineseWallPolicy extends LocalPolicy {

PolicyResult decideEvent(AccessEvent event) {
if (locallyResponsibleFor(event)) return getChineseWallDecision(event);
else return new Delegation(whoIsResponsible(event), event); } }

(c
)

de
ci

si
on

s
an

d
en

fo
rc

er
fa

ct
or

y 1 enum BinaryDecision implements AbstractDecision { PERMIT, REJECT }
2 class SuppressionEnforcerFactory implements EnforcerFactory{
3 Enforcer fromDecision(final AbstractDecision d) {
4 BinaryDecision bd = (BinaryDecision) d;
5 switch (bd.decision) {
6 case PERMIT: return new PermittingEnforcer();
7 case REJECT: return new SuppressingEnforcer(); } } }

(d
)
C
li
Se

A
u

co
nfi

gu
ra

ti
on

1 cfg . agents = srv1, srv2 , srv3 , ...
2 srv1 . code = AnomicFTPD.jar
3 srv1 . address = srv1.example.com
4 srv1 . localPolicy = ChineseWallPolicy
5 srv1 . pointcuts = FileAccess. pc
6 srv1 . eventFactory = AccessEventFactory
7 srv1 . enforcerFactory = SuppressionEnforcerFactory
8 # parameters for srv2 , ... are defiend similarly and are omitted here

Fig. 7. An instantiation of CliSeAu

use the AccessEventFactory in Figure 7 (a) (Lines 6-9). In this event factory, the
fromFileAccess method uses the actual parameters of the intercepted method call
and extracts the needed information to create an object of AccessEvent.

Local policy. Next we define the local policy component of an EC . The local
policy shall make decisions about security-relevant actions and about delegation
of decision-making. For our service, we construct the local policy component
named ChineseWallPolicy in Figure 7 (b). ChineseWallPolicy checks whether it should
decide upon an input event by the method locallyResponsibleFor. If it is the case,
then a decision is computed by the method getChineseWallDecision. Otherwise
ChineseWallPolicy delegates the decision-making for the event to a remote EC by
the method whoIsResponsible. We implement the methods locallyResponsibleFor and
whoIsResponsible with the guarantee that accesses to conflicting files are always

392 R. Gay, J. Hu, and H. Mantel

decided by the same EC (i.e., its local policy component). The implementation
of getChineseWallDecision checks whether or not a user trying to access a file
has already accessed a conflicting file before. A method for deciding delegation
requests is defined analogously to decideEvent and thus omitted here.

Decision objects, enforcer objects, and enforcer factory. We choose a decision
for enforcing the Chinese Wall policy to be either permitting an access or re-
jecting the access; the BinaryDecision object in Figure 7 (c) (Line 1) captures this
choice of decision. Corresponding to the two decision values are two enforcers:
PermittingEnforcer and SuppressingEnforcer, which allows an intercepted method
call to execute and suppresses the call, respectively. These two enforcers are
provided by CliSeAu. The SuppressionEnforcerFactory of Figure 7 (c) (Lines 2-7)
turns a reject decision into a SuppressingEnforcer object and a permit decision into
a PermittingEnforcer object.

Configurations. Finally, we provide the configuration in Figure 7 (d) forCliSeAu.
The configuration declares which agents exit (Line 1), which programs the agents
run (Line 2), and the agents’ addresses (Line 3). The configuration also assembles
references to the previously described parts of the instantiation (Lines 4-7).

Figure 7 constitutes an instantiation of CliSeAu, which hardens our file
storage service with a system-wide enforcement of Chinese Wall policy. CliSeAu
allows us to address individually the aspects of an instantiation: how to intercept
security-relevant actions, how to decide and possibly delegate, and how to enforce
decisions. When using CliSeAu, we can focus on these aspects and, for instance,
we need not be concerned about exchanging messages between distributed ECs
or instrumenting the executables of the program. In particular, the deciding can
be defined at a more abstract level (here based on AccessEvents) than the level
of program actions (here involving the program-specific data type ftpdControl).

7 Performance Evaluation

Securing a program with CliSeAu necessarily results in some reduction on the
program’s runtime performance. Our evalution focuses on the run-time overhead
of the enforcement.

Experimental setup. We evaluated CliSeAu with the distributed file storage
service introduced in Section 6. The service has 3 variants, depending on which
file servers are used. In our experiments, the service consisted of 10 file servers,
all of which are either DRS [18], AnomicFTPD [19], or Simple-ftpd [20]. We
refer to them as DRS service, AnomicFTPD service, and Simple-ftpd service,
respectively. We used CliSeAu to enforce the Chinese Wall policy (i.e., no single
user may access files bearing conflicts of interest), as described in Section 6.

We conducted all experiments on a 2.5 GHz dual CPU laptop running Gentoo
Linux with Kernel 3.6.11, OpenJDK 6, and AspectJ 1.6.12. All servers of each
service were run on the same machine. We chose this setup because in our exper-
iments, we are interested in the overhead introduced by the implementation of

CliSeAu: Securing Distributed Java Programs 393

20 40 60 80 100
200

205

210

215

220

file size [KB]

fi
le

d
ow

n
lo
a
d
ti
m
e
[m

s] variations of local decisions

unmodified service

service with CliSeAu
(incl. runtime overhead)

0 5 10
200

205

210

215

220

path length [hops]

fi
le

d
ow

n
lo
a
d
ti
m
e
[m

s] effect of distance

Fig. 8. AnomicFTPD runtime evaluation

CliSeAu. By using local network connections, we factor out the overhead intro-
duced by a real network, as this overhead originates from CliSeAu-independent
aspects such as network topology and network load distribution. We leave ex-
periments in real network settings as future work.

Run-time overhead. We evaluated the impact of CliSeAu on the services’ run-
time performance of file downloads from the perspective of a service user: we
measured the duration from the moment the user made a file download request
till the moment the user obtained the file. For DRS, we used a modified DRS
client to access files and measured inside the client the durations of the accesses;
the modification was done to measure the time. For AnomicFTPD and Simple-
ftpd, we accessed files and measured durations with a self-written FTP client
implemented based on the Apache Commons Net library. In both clients, time
was taken using the System.nanoTime API method of Java.

For each service, we varied both the size of the requested files and the number
of hops taken in the cooperation between the ECs for making enforcement deci-
sions. Figures 8–10 show the results, which are averaged over the measurements
of 2500 independent experiments.

The diagram on the left-hand side of Figure 8 shows the absolute time required
for downloading files of different size from the AnomicFTPD service. With the
unmodified service, downloads took from about 203.5 ms to 206 ms, depending
on the file size. As Figure 8 (lhs) shows, the time is roughly linear in the file size.
On the other hand, the service secured with CliSeAu used time ranging from
about 206 ms to 208.5 ms. Still, download time remains linear in the file size (see
Figure 8, lhs). As Figure 9 (lhs) shows, the absolute runtime overhead caused by
CliSeAu ranged from about 2.5 ms to 2.75 ms. This corresponds to a relative
overhead of about 1.3%. We consider this performance overhead reasonable for
the security enforcement it is traded for.

We conducted the same experiments on the DRS service and the Simple-ftpd
service as on the AnomicFTPD service. Figure 9 shows the results. The absolute
overhead is less than 3 ms. For Simple-ftpd and AnomicFTPD, the overhead is
roughly constant regardless of the changes in file size. For DRS, the overhead

394 R. Gay, J. Hu, and H. Mantel

20 40 60 80 100
0

1

2

3

file size [KB]

a
b
so
lu
te

ov
er
h
ea
d
[m

s] AnomicFTPD

20 40 60 80 100
0

1

2

3

file size [KB]
a
b
so
lu
te

ov
er
h
ea
d
[m

s] DRS

20 40 60 80 100
0

1

2

3

file size [KB]

a
b
so
lu
te

ov
er
h
ea
d
[m

s] Simple-ftpd

Fig. 9. Absolute runtime overhead for different file sizes

0 5 10
0

5

10

15

20

path length [hops]

a
b
so
lu
te

ov
er
h
ea
d
[m

s] AnomicFTPD

0 5 10
0

5

10

15

20

path length [hops]

a
b
so
lu
te

ov
er
h
ea
d
[m

s] DRS

0 5 10
0

5

10

15

20

path length [hops]

a
b
so
lu
te

ov
er
h
ea
d
[m

s] Simple-ftpd

Fig. 10. Absolute runtime overhead for different path lengths (effect of distance)

was relatively more unstable; the reason for this remains unclear to us. Still, the
variation stays in a limited range from 1.9 ms to 2.8 ms.

Figure 8 (rhs) shows the absolute time required for downloading files of 10
kilobytes from the AnomicFTPD service when varying the number of hops taken
in the cooperation between the ECs. We obtained up to 10 hops by letting the
local policy implementations to not directly delegate to the responsible EC but
delegate to a number of other ECs before. This setting reflects the cases where
responsible ECs are not directly reachable from a delegating EC or where more
than one EC share the information for deciding about an event. In our exper-
iments, the download time ranged from about 206 ms to 220 ms, corresponding
to overhead between about 2.7 ms and 16.1 ms (see Figure 10, lhs). The overhead
grows almost linearly with the number of hops at approximately 1.34 ms per hop.
Our experiments with DRS and Simple-ftpd show very similar results; see the
diagrams in the middle of and on the right hand side of Figure 10, respectively.

Summary. The ECs gengerated by CliSeAu caused moderate runtime overhead
for our file storage service: For file download, the overhead was about 3 ms when
the ECs could make decisions locally. When coopeerative decision-making was
needed, the overhead increased linearly with the number of the hops between
the ECs involved in the cooperation. This linearity is encouraging for deploy-

CliSeAu: Securing Distributed Java Programs 395

ing CliSeAu-generated ECs in a real-world setting like the Internet where a
distributed program may have a larger number of agents and thus of hops for
cooperation among ECs.

8 Related Work

As described in the introduction, CliSeAu follows the line of SASI [4] and Poly-
mer [5]. SASI is a tool for generating ECs for Java bytecode programs as well as
for x86 executables. The ECs generated by SASI either permit the occurrence of
a security-relevant action or terminate the target otherwise. CliSeAu also al-
lows one to specify enforcers that use termination as a countermeasure. However,
CliSeAu additionally allows one to specify countermeasures corresponding to
the suppression, insertion or replacement of security-relevant actions.

Polymer is a tool for generating ECs for Java bytecode programs. The poli-
cies that a user provides to Polymer can define so-called abstract actions, Java
classes whose instances can match a set of program instructions. Furthermore,
Polymer allows a policy to be composed from several subordinate policies; in
such a composition, the superior policy queries its subordinate policies for their
policy suggestions and combines these to obtain its own suggestion. Only when
a suggestion is accepted, its corresponding countermeasure is executed. For the
countermeasures, Polymer supports the insertion and replacement of actions,
throwing a security exception, as well as to termination of the target. Con-
sidering a non-distributed setting, Polymer and CliSeAu support the same
observable program operations (method calls), the same expressiveness in the
decision-making (Java code), and the same kind of countermeasures. Therefore,
the class of properties enforceable with CliSeAu is the same as for Polymer.
Conceptually, Polymer’s abstract actions are very similar to the combination
of CliSeAu’s event objects and event factories. Polymer’s suggestions, in turn
bear a similarity to CliSeAu’s decision objects. However, in Polymer the layer
between suggestions and their corresponding countermeasures serves the pur-
pose of policy composition while CliSeAu’s layer between decision objects and
countermeasures (as enforcer objects) reduces the dependency between the local
policy and technical details of the target program.

Further tools for generating ECs for Java bytecode programs include, for ex-
ample, JavaMOP [22]. A particular characteristic of JavaMOP is the generation
of efficient ECs for properties on parametric program actions. The focus of Java-
MOP’s efficiency efforts is enforcing properties on individual Java objects of the
target program, which are realized by binding the objects of the target program
to individual monitors for the decision-making. In contrast, with CliSeAu, we
sacrifice this kind of optimization for the sake of an abstraction layer that maps
program entities to entities at the policy-level. The latter shall then be usable by
a distributed EC in the decision-making for system-wide security requirements.

Tools that are specifically tailored to distributed systems include, for example,
Moses [23], DiAna [24], and Porscha [25]. Moses is a tool for dynamic enforcement
for distributed Java programs. Technically, Moses is implemented as a middle-
ware that is to be used by the agents of target programs for the coordination

396 R. Gay, J. Hu, and H. Mantel

among themselves. Moses aims at enforcing properties, called laws, on the co-
ordination between agents. The policies of Moses enforce such properties at the
level of agent communication by delivering, blocking, or modifying exchanged
messages. CliSeAu differs from Moses in two main directions. First, CliSeAu
can intercept and intervene not only communication operations of agents but
also computation operations of a single agent, like the file accesses in our ex-
ample of a distributed file storage service. Second, CliSeAu can be applied to
arbitrary Java programs and does not rely on the program to be built upon a
particular middleware. This allows CliSeAu to enforce security requirements
also on programs that have not been designed with an enforcement by CliSeAu
in mind, such as the targets of our experimental evaluation (Section 7).

DiAna is a tool for monitoring temporal properties on the state of distributed
Java programs. These programs are assumed to be built on a monitoring library.
In this sense, DiAna is similar to Moses. DiAna’s ECs intercept the communi-
cation operations between the agents of the target and exchange information
among each other by piggy-backing the information on the messages exchanged
between the agents. That is, DiAna’s ECs perform coordinated decentralized
monitoring. CliSeAu differs from DiAna in two main directions: first, CliSeAu
does not rely on the target to be built upon a particular library and, second, a
EC generated by CliSeAu is able to intercept and coordinate its enforcement
for program actions beyond agent communication.

Porscha [25] is an EC for enforcing digital rights management policies on An-
droid smart phones. Porscha ECs are placed in the runtime environment of the
target. Also, the ECs exchange information about the policy that affects the data
exchanged by the agents of the target. Porscha and CliSeAu have in common
that they support coordinated decentralized enforcement. However, a key differ-
ence is that the ECs generated by CliSeAu can coordinate their enforcement by
themselves, without relying on the intercepted communication actions of agents.
That is, the ECs communicate and cooperate in a proactive way, regardless of
whether and when the agents of a distributed program communicate with each
other. This allows the ECs to enforce security in the scenario of Section 6, in
which cooperation is required also for file access events that do not correspond
to data exchange between agents of the storage service.

9 Conclusion
We presented the toolCliSeAu for securing distributed Java programs.CliSeAu
uses cooperative dynamic mechanisms to enforce system-wide security require-
ments and allows to instantiate the mechanism for different programs and
security requirements. We showed a case study of CliSeAu on a distributed file
storage service and performed experimental evaluation on the example service.
The experimental results demonstrate that the enforcement mechanisms provided
by CliSeAu incur moderate runtime overhead.

Acknowledgments. We thank Sarah Ereth, Steffen Lortz, and Artem Starostin
for their feedback on our research. We are also grateful to Cédric Fournet and

CliSeAu: Securing Distributed Java Programs 397

Joshua Guttman for inspiring discussions at early stages of our research project.
This work was partially funded by CASED (www.cased.de) and by the DFG
(German research foundation) under the project FM-SecEng in the Computer
Science Action Program (MA 3326/1-3).

References

[1] Schneider, F.B.: Enforceable Security Policies. Transactions on Information and
System Security 3(1), 30–50 (2000)

[2] Fong, P.W.L.: Access Control By Tracking Shallow Execution History. In: IEEE
Symposium on Security and Privacy, pp. 43–55. IEEE Computer Society (2004)

[3] Ligatti, J., Bauer, L., Walker, D.: Edit Automata: Enforcement Mechanisms for
Run-time Security Policies. IJIS 4(1-2), 2–16 (2005)

[4] Erlingsson, U., Schneider, F.B.: SASI Enforcement of Security Policies: A Retro-
spective. In: Proceedings of the 2nd NSPW, pp. 87–95. ACM (2000)

[5] Bauer, L., Ligatti, J., Walker, D.: Composing Expressive Runtime Security Poli-
cies. Transactions on Software Engineering and Methodology 18(3) (2009)

[6] Gay, R., Mantel, H., Sprick, B.: Service automata. In: Barthe, G., Datta, A.,
Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 148–163. Springer, Heidelberg
(2012)

[7] Brewer, D.F., Nash, M.J.: The Chinese Wall Security Policy. In: Proceedings of
the IEEE Symposium on Security and Privacy, pp. 206–214 (1989)

[8] Mazaheri, S.: Race conditions in distributed enforcement at the example of online
social networks. Bachelor thesis, TU Darmstadt (2012)

[9] Scheurer, D.: Enforcing Datalog Policies with Service Automata on Distributed
Version Control Systems. Bachelor thesis, TU Darmstadt (2013)

[10] Wendel, F.: An evaluation of delegation strategies for coordinated enforcement.
Bachelor thesis, TU Darmstadt (2012)

[11] Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Transac-
tions on Software Engineering 3(2), 125–143 (1977)

[12] Alpern, B., Schneider, F.B.: Defining Liveness. Information Processing Letters 21,
181–185 (1985)

[13] Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Secu-
rity 18(6), 1157–1210 (2010)

[14] McLean, J.D.: Security Models. In: Marciniak, J. (ed.) Encyclopedia of Software
Engineering. John Wiley & Sons, Inc. (1994)

[15] Booch, G., Maksimchuk, R.A., Engle, M.W., Young, B.J., Connallen, J., Houston,
K.A.: Object-oriented Analysis and Design with Applications, 3rd edn. (2007)

[16] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1995)

[17] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 327–353. Springer, Heidelberg (2001)

[18] DRS (1999), http://www.octagonsoftware.com/home/mark/DRS/
[19] AnomicFTPD v0.94 (2009), http://anomic.de/AnomicFTPServer/
[20] simple-ftpd (2010), https://github.com/rath/simple-ftpd
[21] PUBLIC LAW 107 - 204 - SARBANES-OXLEY ACT OF 2002

www.cased.de
http://www.octagonsoftware.com/home/mark/DRS/
http://anomic.de/AnomicFTPServer/
https://github.com/rath/simple-ftpd

398 R. Gay, J. Hu, and H. Mantel

[22] Chen, F., Roşu, G.: MOP: An Efficient and Generic Runtime Verification Frame-
work. In: Proceedings of the 22nd OOPSLA, pp. 569–588. ACM (2007)

[23] Minsky, N.H., Ungureanu, V.: Law-governed Interaction: a Coordination and Con-
trol Mechanism for Heterogeneous Distributed Systems. ACM Transactions on
Software Engineering Methodology 9(3), 273–305 (2000)

[24] Sen, K., Vardhan, A., Agha, G., Roşu, G.: Efficient Decentralized Monitoring of
Safety in Distributed Systems. In: Proceedings of the 26th ICSE, pp. 418–427
(2004)

[25] Ongtang, M., Butler, K.R., McDaniel, P.D.: Porscha: Policy Oriented Secure Con-
tent Handling in Android. In: ACSAC, pp. 221–230 (2010)

Automatic Generation of Compact

Alphanumeric Shellcodes for x86

Aditya Basu, Anish Mathuria, and Nagendra Chowdary

DA-IICT, Gandhinagar, India
{basu aditya,anish mathuria,posani nagendra}@daiict.ac.in

Abstract. Shellcode can be viewed as machine language code that is
injected in the form of string input to exploit buffer overflows. It usually
contains non-ASCII values because not all machine instructions encode
into ASCII values. Many applications allow arbitrary string input, even
though only strings containing characters that are ASCII or a subset of
ASCII are deemed valid. Thus a common defense against shellcode in-
jection is to discard any string input containing non-ASCII characters.
Alphanumeric shellcode helps attackers bypass such character restric-
tions. It is non-trivial to construct alphanumeric shellcodes by hand and
so tools have been created to automate the process. The alphanumeric
equivalent, generated by the existing tools, is much larger than the orig-
inal shellcode. This paper presents two new encoding schemes to reduce
the size of the alphanumeric equivalent. A smaller shellcode is better as
it can fit into smaller buffers and is even more useful in case an applica-
tion restricts the input size. Results show that the size reduction of the
encoded shellcode is more than 20% for many shellcodes.

1 Introduction

A common and important class of attack on computer systems is the code injec-
tion attack. This attack has two phases: a) injection of code (a.k.a. the shellcode),
and b) execution of the injected code. Typically, code is injected in placeholders
for data. So, while the target program expects data, the attacker instead sends
code (disguised as data). The attacker then redirects the program execution to
the injected code. To do this, the attacker can exploit program vulnerabilities
such as buffer overflows [1].

The ASCII ranges 0x30 − 0x39 (0-9), 0x41 − 0x5a (A-Z) and 0x61 − 0x7a
(a-z) form the alphanumeric character set. Shellcodes typically consist of bytes
that are not alphanumeric. To counter shellcode injection, we can inspect each
byte of the incoming data and discard any byte that is not an alphanumeric
character. Such filtering does not provide adequate protection, as it is feasi-
ble to construct shellcodes that consist of only alphanumeric bytes. However,
constructing alphanumeric shellcodes by hand is a non-trivial and tedious task.
Rix [2] developed a tool to automate the conversion of non-alphanumeric shell-
code into alphanumeric shellcode for the x86 architecture. His tool encodes the

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 399–410, 2014.
c© Springer International Publishing Switzerland 2014

400 A. Basu, A. Mathuria, and N. Chowdary

non-alphanumeric bytes into alphanumeric bytes and further embeds instruc-
tions within the output shellcode, whose purpose is to decode (or recover) the
original bytes at runtime. Rix uses the XOR instruction (which is alphanumeric
for many combinations of operands on x86) to recover the non-alphanumeric
bytes of the shellcode. The XOR instructions use specific hardcoded constants
for each non-alphanumeric byte that is encoded. The most important drawback
of Rix’s approach is that every non-alphanumeric byte of the original shellcode
requires separate instructions to be embedded in the modified shellcode. This
increases the size of the modified shellcode, which typically is over 4 times the
size of the original shellcode (see Table-2, section 4.2).

Jan Wever [3] introduced the looped decoding approach as an alternative
to the sequential decoding used by Rix. The encoding scheme used by Wever
modifies both alphanumeric and non-alphanumeric bytes of the shellcode. The
decoding logic is implemented in the form of a loop, whose size is independent of
the size of the encoded shellcode. Using a fixed size decoder helps to reduce the
size of the modified shellcode, which is important due to the constraints placed
on the shellcode.

The exploit shellcodes typically spawn a shell, copy a file (like passwd), expose
a port, and so on. Such shellcodes have alphanumeric characters like filenames
(e.g. “/bin/sh” or “/etc/passwd”) and ports (e.g. 8080) in them, to name a few.
Over and above, there are some instructions that are partly or completely al-
phanumeric. So, if we only patch the non-alphanumeric bytes in the shellcode,
then it results in a more compact alphanumeric shellcode encoding. Using a
looped decoder, as opposed to a sequential decoder, also helps to reduce the size
of the final alphanumeric shellcode. In this paper we propose two new encod-
ing schemes: Non-Alpha Touch and Alpha Freedom. The main idea behind the
proposed schemes is to patch only the non-alphanumeric bytes (Rix’s idea), but
using a looped decoder (Jan Wever’s idea). The performance of our schemes
depends on the number of non-alphanumeric bytes present in the original shell-
code. We demonstrate that our schemes yield more compact encodings than Jan
Wever’s Encoder, for many shellcodes (see Table 1, section 4.2).

In the Non-Alpha Touch scheme, a fixed alphanumeric byte (called the alpha
mark) is inserted before every non-alphanumeric byte in the original shellcode.
Each non-alphanumeric byte is replaced with two corresponding alphanumeric
bytes, which represent the encoded form of the non-alphanumeric byte. At run-
time, the decoding loop uses the alpha mark to determine the portions of the
shellcode which need to be decoded. This scheme uses three bytes to encode each
non-alphanumeric byte in the original shellcode.

In the Alpha Freedom scheme, we add a tweak to the encoding scheme, which
allows the decoding loop to determine the need for decoding without the alpha
mark. This helps further reduce the number of encoding bytes to two for every
non-alphanumeric byte in the original shellcode. This is done by constricting the
range of allowed alphanumeric values that can be used in the encoded shellcode.

The rest of the paper is organized as follows. Section 2 gives an overview of the
previous related work. Section 3 describes the new schemes in detail. Section 4

Automatic Generation of Compact Alphanumeric Shellcodes for x86 401

presents the implementation related aspects of the new schemes and compares
their performance with the existing schemes. Section 5 concludes the paper and
discusses some future work.

2 Related Work

2.1 Rix — XOR Patching

The Phrack article by Rix [2] is one of the first works on automatic translation
of arbitrary shellcode into an alphanumeric shellcode with similar functionality.
The main idea behind his tool was categorizing each byte of the shellcode into one
of the four categories (explained below) and the fact that the XOR opcode with
many operand combinations forms instructions consisting only of alphanumeric
bytes (for x86). Also, some essential operations like negation can be simulated
by: XORing with −1. As −1 is non-alphanumeric, it is obtained by decrementing
0 by 1.

The alphanumeric shellcode generated by the Rix tool can be divided into
three sections. The first section is the Initializer, the second is the XOR Patcher,
and the third is the Encoded Shellcode. The Initializer (first section) initializes
registers with constants and the memory address of the start of the shellcode.
The XOR Patcher (second section) performs the actual decoding of the Encoded
Shellcode. This section consists of XOR instructions to decode the encoded non-
alphanumeric values in the Encoded Shellcode section. The patching instructions
vary based on the category of the byte and the actual byte value to be patched
(decoded). For this reason, the XOR Patcher is sequential in nature and its
size partly depends on the number of non-alphanumeric bytes in the original
shellcode. Due to size optimizations done by Rix, the actual size of the XOR
Patcher also depends on the distribution of non-alphanumeric bytes across the
original shellcode. Once the XOR Patcher section finishes execution, the Encoded
Shellcode section (third section) is completely decoded and the original shellcode
is recovered.

Rix’s tool works as follows. For each byte B of the input shellcode, it performs
exactly one of the four actions listed below.

1. The byte B is alphanumeric. Skip the byte.

2. The byte B is not alphanumeric, but is less than 0x80. Then, find a and b,
such that a ⊕ b = B, where a and b are any suitable alphanumeric bytes1.
Then one of a or b is embedded in the encoded shellcode and the other byte
is used in the XOR instruction that recovers the original byte at runtime.

3. The byte B is not alphanumeric, but is greater than 0x80, and (∼ B) is
alphanumeric. Then embed (∼ B) into the encoded shellcode and add in-
structions to the XOR patcher to recover the original byte at runtime.

1 Here it is implicitly assumed that the required bytes a and b exist. This can be
proved but we omit the proof.

402 A. Basu, A. Mathuria, and N. Chowdary

4. The byte B is not alphanumeric, but is greater than 0x80, and (∼ B) is
not alphanumeric. Then, (∼ B) is less than 0x80. So we do the operation as
listed in (2).

Rix encodes the non-alphanumeric shellcode by replacing all non-alphanumeric
bytes with some chosen alphanumeric bytes. The decoder recovers the original
shellcode by XORing the replaced bytes with some chosen alphanumeric bytes.
The latter are hardcoded in the decoder itself and so the size of the decoder
increases as the number of non-alphanumeric bytes (in the original shellcode)
increase. It takes 7 bytes of decoder instructions for recovering each isolated
non-alphanumeric byte of the original shellcode. If a series of non-alphanumeric
bytes occur together, then Rix does some size optimizations to reduce the number
of the decoder instructions.

2.2 Jan Wever — Looped Decoding

In 2004, Jan Wever released his alpha series of alphanumeric shellcode de-
coders [3]. To minimize the size of the decoder, he came up with the idea of
Looped Decoding. He encoded the bytes of the original shellcode by replacing
every byte (including alphanumeric and non-alphanumeric bytes) of the original
shellcode with two bytes of alphanumeric encoded data. To get back the orig-
inal byte, he used a left-shift operation, followed by, an ex-or (xor) operation.
He created an alphanumeric decoding loop, which when repeatedly run on the
encoded shellcode, would decode the corresponding bytes of the encoded shell-
code. A significant advantage of looped decoding is that the size of decoder is
fixed: it is not dependent on the size of input shellcode. This property helps
to substantially reduces the total size of the resultant alphanumeric shellcode.
It also helps in predicting the size of the output (runtime decoder + encoded
shellcode). One other important benefit of the looped decoder approach is that,
unlike Rix, both the decoder and the encoded shellcode can be independently
generated. The decoder can be compiled separately, without any knowledge of
the type of shellcode that it needs to decode. The exact encoding and decoding
procedures of Jan Wever’s scheme are explained in more detail below.

Encoding. To encode a byte, say 0xAB, from original shellcode, we choose
two bytes 0xCD and 0xEF ; where F = B, E is chosen such that 0xEF
is alphanumeric, D = A ⊕ E, and C is again chosen such that 0xCD is
alphanumeric.

Decoding. To decode the original byte, we first fetch the corresponding bytes
0xCD and 0xEF . We then compute (CD << 4)⊕EF ; the least significant
byte of the computed value yields the desired byte, 0xAB.

3 Two New Encoding Schemes

3.1 Non-Alpha Touch (NAT)

In this scheme, we put an alpha mark (i.e. alpha byte) before every non-
alphanumeric byte of the shellcode. This alpha mark, which is chosen to be ‘y’

Automatic Generation of Compact Alphanumeric Shellcodes for x86 403

in the implementation of this scheme, tells the runtime looped decoder to decode
the next two bytes and recover back the original byte of the shellcode. Another
alpha mark, chosen to be ‘z’, is used to mark the end of the encoded shellcode.
After ‘z’ is encountered, the loop breaks and control is transferred to the start
of the decoded shellcode. The end mark ’z’ can be omitted if the encoded shell-
code is NULL terminated. Wever’s decoder terminates when it encounters a null
character in the encoded shellcode.

We chose the bytes ‘y’ and ‘z’ as the alpha marks to simplify the decoder logic.
There are no alphanumeric characters after ‘z’. So a single compare operation
followed by conditional jumps can be used to detect the necessity of decoding.

All the alphanumeric bytes, except ‘y’ and ‘z’, are kept intact in the en-
coded version of the shellcode. The bytes ‘y’ and ‘z’, along with all the non-
alphanumeric bytes are encoded into 3 bytes: (i) Start marker i.e. ‘y’, (ii and
iii) Encoded bytes using Jan Wever’s encoder. During encoding, the most sig-
nificant nibbles (of CD and EF) are chosen to ensure that the bytes CD and EF
are alphanumeric. When choosing C and E, we make sure that the ASCII values
of CD and EF are not equal to the values of characters ‘y’ and ‘z’. This ensures
that the decoding loop will be able to successfully recover the encoded shellcode.
Examples of some bytes encoded using NAT are shown in Figure 1.

For the final output to be completely alphanumeric, the decoding loop needs
to be alphanumeric, along with the encoded shellcode. As the control transfer
instructions such as jump and call are not alphanumeric, the decoding loop
is not completely alphanumeric. To make the decoder loop alphanumeric, it is
first patched using Rix’s technique (XOR patching), and then followed by the
encoded shellcode. So, the decoding process now becomes a 2-stage process, in
which Rix’s XOR Patcher, patches our looped decoder, which in turn recovers
the encoded shellcode.

A

A

0x5b

y 3 k z

y
Original

Shellcode

NAT Encoded
Shellcode

End Marker

y 4 9

Fig. 1. NAT Encoding Illustrated

Analysis. This scheme introduces three alphanumeric bytes in place of a single
non-alphanumeric byte of the shellcode. If the size of the original shellcode is
n bytes, then the encoded shellcode size using Jan Wever’s encoder is 2n. The
size in bytes of the shellcode encoded using Non-Alpha Touch scheme is between

404 A. Basu, A. Mathuria, and N. Chowdary

n + 1 and 3n+ 1. The plus 1, comes due to additional end alpha marker. This
alpha marker can be omitted if the encoded shellcode is guaranteed to be NULL
terminated, which is required by Jan Wever’s implementation. In the worst case,
if all bytes need to be patched, then the size of the encoded shellcode will be
3n+ 1 bytes; if none needs to be patched, then the size will be n+ 1 bytes.

3.2 Alpha Freedom (AF)

With NAT, the size of the encoded shellcode can go up to 3n+1 bytes, whereas
with Wever’s encoding it is exactly 2n bytes. To improve the encoding perfor-
mance of our approach, we need to be able to perform decoding without an
explicit alpha marker, which could save one byte per encoded byte. To this end,
we will partition the alphanumeric range into two parts. The partitioning process
is explained below.

Note that in Jan Wever’s encoding scheme, we select the most significant
nibble – MSN (of CD and EF), such that both CD and EF are alphanumeric.
The corresponding MSN’s are C and E, respectively. Let’s focus on the byte CD.
The possible values of both C and D, individually, are in {0, 1}4 (in binary).
Now, D is fixed and given to us by calculations, but we are free to choose C,
to make CD alphanumeric. As the nibble D can have a possible of 16 values
({0, 1}4), we choose a subset of the alphanumeric ASCII characters whose least
significant nibbles cover the entire range of all possible 16 values. Let’s say we
choose the character range as ‘K-Z’ (0x4b− 0x5a). Then, we can always choose
the MSN of CD, such that CD lies in the range ‘K-Z’, effectively partitioning all
alphanumeric characters into ‘K-Z’ and non-‘K-Z’ space. As before, we set aside
‘z’ to mark the end of encoded shellcode. The end marker is again optional, as
in NAT, if we know that the encoded shellcode is NULL terminated.

We choose a continuous ASCII range of alphanumeric characters to make the
decoding logic simpler. Effectively, the runtime decoder only needs to check if
the current byte lies in the ‘K-Z’ range or not (along with if it’s ‘z’ or not). If
the current byte lies in the ‘K-Z’ range, then the current byte and the next byte
are used to recover the corresponding byte of the original shellcode.

During encoding, if we encounter a byte in the ‘K-Z’ range or if the byte
is ‘z’, then we need to encode that byte also, even though it is alphanumeric.
This is the price that we pay to get rid of the explicit alpha marker. Although
other ranges are possible, the ’K-Z’ range is selected for a specific reason. Many
shellcodes have alphanumeric characters in the form of filenames (e.g. ”/bin/sh”
or ”/etc/passwd”), ports (e.g. 8080), etc. The capital letters are not commonly
found in such ASCII strings. So by selecting our implicit marker range as ’K-Z’,
we get a more compactly encoded shellcode as compared to both the Wever’s
encoding scheme and the NAT scheme.

Examples of some bytes encoded using AF are shown in Figure 2. As in NAT,
the decoding loop is not completely alphanumeric. So the decoding loop is first
patched using Rix’s technique and then followed by the encoded shellcode.

Automatic Generation of Compact Alphanumeric Shellcodes for x86 405

A

A

0x5b

Q K z

K
Original

Shellcode

AF Encoded
Shellcode

End Marker

P K

Fig. 2. AF Encoding Illustrated

Analysis. The Alpha Freedom scheme is superior to NAT, in terms of the size
of the encoded shellcode. But, it also results in a more complicated decoding
logic. For larger shellcodes, this is less of an issue as the encoding performance
of AF is much better than NAT. The encoded shellcode size is between n + 1
and 2n+ 1, for an unencoded shellcode which is n bytes long.

4 The Implementation

The alphanumeric shellcode generated by our tool consists of three stages. The
first is the Rix stage, the second is the scheme specific - decoder loop stage,
and the third stage is the actual shellcode. The last stage (chronologically the
third one), contains the actual shellcode which needs to be executed, but in
encoded form. In essence, transformations are performed on the original shell-
code to make it completely alphanumeric. Different transformations are made
depending on the encoding scheme in use - NAT or AF. Once the transforma-
tions are performed on the original shellcode, we get the encoded shellcode, which
is used in the last stage. It is the second stage (decoder loop) that, at runtime,
undoes all the transformations done on original shellcode, in order to recover
back the original shellcode. However, this second stage is again not completely
alphanumeric. We transform the second stage using the Rix tool to encode the
non-alphanumeric bytes present in the decoder loop. After the transformations
are done, the second stage becomes completely alphanumeric. Now comes the
first stage which consists of the initializer and XOR patcher sections that are
emitted by Rix tool. Combining all the above three stages yields a completely
alphanumeric equivalent version of the original shellcode that can be readily
executed.

At runtime, the Rix stage (first stage) recovers the decoding loop. The decod-
ing loop in turn recovers the original shellcode by decoding the third stage. At
this point, the original shellcode starts executing.

We wrote a python script that takes as input any shellcode and converts it
into an encoded form (the third stage) using NAT or AF. Both the first and sec-
ond stages are invariant for any shellcode (for a particular scheme). So, the actual

406 A. Basu, A. Mathuria, and N. Chowdary

output is readily generated by prepending the precomputed first and second
stages to the output of the python script.

We use the GNU portable assembler as to compile the assembly code of the
scheme specific decoder loop. Then we strip the ELF header from the compiled
binary. This stripped binary is then passed on to the Rix tool, which generates
the first and second stages required for our use. The total size of the first and
second stages taken together is 363 bytes for NAT and 291 bytes for AF.

4.1 Decoding Loop

The general structure of the decoders for both the schemes is the same. The
decoder first computes the memory address of the start of the Encoded Shellcode
and stores the computed address in a register. As the looped decoder iterates
over the Encoded Shellcode, it keeps on incrementing this computed address, to
keep track of the next byte to be decoded.

Next the decoder sets the ECX and the EDX registers to point to the start
of the Encoded Shellcode. The ECX register is used to read the values from
memory, whereas the EDX register is used to write values to the memory. So
the ECX register is labelled as the get register and the EDX register is labelled
as the set register. After decoding, a NAT encoded byte shrinks from three bytes
to a single byte, while an AF encoded byte shrinks from two byte to a single
byte. The get register is used to keep track of the next byte to be fetched and
the set register is used to ensure that the decoded shellcode is not fragmented.

The loop section performs the actual decoding process. It performs arithmetic
operations on the byte pointed by the get register, and then based on the result
it decides whether the byte needs decoding or not. From the result of these
arithmetic operations, the decoder also figures out whether the decoding process
needs to continue or stop. These arithmetic operations performed by the loop
section are scheme specific. A series of conditional jump instructions are used to
branch to the relevant section for processing the byte.

The alpha skip section copies a single byte from the get memory location to
the set memory location, and then increments the get and set registers by one.
This section is used to skip decoding for the bytes which were alphanumeric in the
original shellcode. Next comes the non alpha combine or the non alpha collapse
section. This section fetches the relevant bytes from the get memory location,
performs the decoding using Jan Wever’s decoding logic, and writes back the
decoded byte to the set memory location. Finally, on completion of the decod-
ing process - when ′z′ (the end mark) is encountered, the control jumps to the
end of payload section. In case of the NAT decoder, this section NULL termi-
nates the decoded shellcode, whereas in case of the AF decoder, this section
marks the beginning of the decoded shellcode. The NULL termination is not
strictly necessary and can be skipped. It is present in the NAT decoder only
for debugging purposes. Once the NAT decoder NULL terminates the decoded
shellcode, the instructions that follow are part of the original shellcode. After
the decoder loop terminates, the original shellcode, located immediately after

Automatic Generation of Compact Alphanumeric Shellcodes for x86 407

the decoder, starts executing. This is achieved by setting the initial value of the
set memory location to the end of the decoder.

Listing 1.1 gives the assembly code for the implementation of AF decoder; the
total size of the AF decoder is 52 bytes, out of which 27 bytes are alphanumeric.
The code for the NAT decoder is omitted for lack of space.

Listing 1.1. AF Implementation

1 #AF Decoder:

2
3 00000000 <looped_decoder >:

4 # ecx is set to the addr of the pop instruction

5 0: e8 00 00 00 00 call 5 <anchor >

6 00000005 <anchor >:

7 5: 59 pop %ecx

8 # compute start address of encoded shellcode

9 6: 8d 49 2f lea 0x2f(%ecx),%ecx

10
11 # Alphanumeric way to copy ecx into edx

12 # ecx = edx = pointer to encoded shellcode

13 9: 51 push %ecx

14 a: 5a pop %edx

15
16 0000000b <loop >:

17 b: 30 ff xor %bh ,%bh

18
19 # Compare M[ecx] with byte ’K’

20 d: 80 39 4b cmpb $0x4b ,(%ecx)

21 # If less , goto alpha_skip

22 10: 7c 0c jl 1e <alpha_skip >

23
24 # Compare M[ecx] with ’Z’

25 12: 80 39 5a cmpb $0x5a ,(%ecx)

26 # If less or equal , goto non_alpha_collapse

27 15: 7e 0f jle 26 <non_alpha_collapse >

28
29 # Compare M[ecx] with byte ’z’

30 17: 80 39 7a cmpb $0x7a ,(%ecx)

31 # If less , goto alpha_skip

32 1a: 75 02 jne 1e <alpha_skip >

33 1c: 74 16 je 34 <end >

34
35 0000001e <alpha_skip >:

36 1e: 32 39 xor (%ecx),%bh ;

37 20: 88 3a mov %bh ,(%edx)

38 22: 41 inc %ecx ;

39 23: 42 inc %edx ;

40 24: 75 e5 jne b <loop >

41
42 00000026 <non_alpha_collapse >:

408 A. Basu, A. Mathuria, and N. Chowdary

43 26: 32 39 xor (%ecx),%bh ;Get CD byte

44 28: c0 e7 04 shl $0x4 ,%bh ;Compute CD << 4

45 2b: 41 inc %ecx

46 2c: 32 39 xor (%ecx),%bh ;Compute CD << 4 ^ EF

47 2e: 41 inc %ecx

48 2f: 88 3a mov %bh ,(%edx) ;

49 31: 42 inc %edx ;

50 32: 75 d7 jne b <loop >

51 00000034 <end >:

4.2 Performance Analysis

Table 1 compares the encoding performance of Wever’s encoding with the NAT
and AF encodings. Note that the header size (Rix stage + looped decoder) is not
included in the figures mentioned in the table. We tested our implementation
on several shellcodes taken from a well-known public repository [4]. Table 2
compares the total size of the alphanumeric shellcodes generated by the Rix tool
with the NAT and AF schemes.

Table 1. Encoding Performance

Shellcode Original Size Wever NAT AF
Alpha Non-Alpha Total (in bytes)

Exit gracefully 1 6 7 14 20 14

Spawn shell - /bin/sh 20 14 34 68 63 55

Add root user with no password 36 33 69 138 136 110

Execute command after setreuid 39 32 71 142 136 112

Copy /etc/passwd to /tmp 43 54 97 194 206 158

SET PORT() portbind 47 53 100 200 209 169

Append etc passwd & exit() 41 66 107 214 240 175

Download + chmod + exec 54 54 108 216 217 173

TCP bind shell 41 67 108 216 245 190

Send /etc/passwd over TCP port 44 67 111 222 246 189

Forks a HTTP Server on port 8800 44 122 166 332 411 301

Password Authentication portbind 75 91 166 332 351 281
port 64713

ConnectBack with SSL connection 270 152 422 844 727 588

Automatic Generation of Compact Alphanumeric Shellcodes for x86 409

Table 2. Total Size Comparison

Name Original Size Rix NAT AF
Alpha Non-Alpha Total

Exit gracefully 1 6 7 103 383 305

Spawn shell - /bin/sh 20 14 34 192 426 346

Add root user with no password 36 33 69 379 499 401

Execute command after setreuid 39 32 71 350 499 403

Copy /etc/passwd to /tmp 43 54 97 589 569 449

SET PORT() portbind 47 53 100 571 572 460

Append etc passwd & exit() 41 66 107 650 603 466

Download + chmod + exec 54 54 108 636 580 464

TCP bind shell 41 67 108 682 608 481

Send /etc/passwd over TCP port 44 67 111 670 609 480

Forks a HTTP Server on port 8800 44 122 166 1178 774 592

Password Authentication portbind 75 91 166 961 714 572
port 64713

ConnectBack with SSL connection 270 152 422 1970 1090 879

5 Conclusions and Future Work

Existing approaches to automatically-generated alphanumeric shellcodes work
as follows: the shellcodes are placed in encoded form and then recovered at
runtime using self-modifying code. The two schemes presented in this paper
focus on optimizing this encoded form of the shellcode while trying to keep the
decoding logic simple. The schemes produce a more compactly encoded shellcode
than the existing schemes. However, the size of the output (decoder + encoded
shellcode) is bigger for small shellcodes due to the complexity and size of the
decoder.

Our future work will involve improving the performance of the NAT and AF
schemes. The size of the complete decoder (Rix stage + Scheme decoder) can be
reduced by re-writing the scheme decoder using more alphanumeric instructions.
The current NAT implementation uses fixed alphanumeric characters as the
alpha and end markers. The alpha and end markers can be chosen at compile
time based on the least frequently occurring - alphanumeric character in the
shellcode. This will help in reducing the number of unnecessary encodings of
alphanumeric characters of the shellcode. This in turn will help in the reducing
the overall size of the output. The same can also be done for the end marker as
well as the implicit marker range of the current AF implementation.

410 A. Basu, A. Mathuria, and N. Chowdary

Previous work to automate the process of creating alphanumeric shellcode for
the 64-bit architecture (x86-64 or IA64) includes JanWever’s alpha3 compiler [5].
The alpha3 compiler can produce IA64 alphanumeric shellcode for any given
input IA64 binary shellcode. We plan to develop a tool for automating IA64
alphanumeric shellcodes using the schemes presented in the paper (NAT and
AF).

The proposed schemes can also be implemented for the ARM architecture.
It has been shown that alphanumeric shellcode can be written for the ARM
architecture [6], [7]. Some work has also been done to automate the process of
generating alphanumeric shellcodes for ARM [8].

Acknowledgments. We thank the anonymous reviewers for their critical and
insightful comments on a draft of this paper.

References

1. Aleph One. Smashing the stack for fun and profit. Phrack, 49 (1996),
http://phrack.org/issues/49/14.html

2. Rix. Writing IA32 alphanumeric shellcodes. Phrack, 57 (2001),
http://phrack.org/issues/57/18.html

3. Wever, B.J.: Writing IA32 restricted instruction set shellcode decoder loops,
http://skypher.com/wiki/index.php?title=Www.edup.tudelft.nl/ bjwever/

whitepaper shellcode.html.php

4. Shellcodes database, http://shell-storm.org
5. ALPHA3 - alphanumeric shellcode encoder, https://code.google.com/p/alpha3/
6. Younan, Y., Philippaerts, P.: Alphanumeric RISC ARM shellcode. Phrack, 66

(2009), http://phrack.org/issues/66/12.html
7. Younan, Y., Philippaerts, P., Piessens, F., Joosen, W., Lachmund, S.: Filter-

resistant code injection on ARM. Journal of Computer Virology and Hacking Tech-
niques 7(3), 173–188 (2011)

8. Kumar, P., Chowdary, N., Mathuria, A.: Alphanumeric Shellcode Generator for
ARM Architecture. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE
2013. LNCS, vol. 8204, pp. 38–39. Springer, Heidelberg (2013)

http://phrack.org/issues/49/14.html
http://phrack.org/issues/57/18.html
http://skypher.com/wiki/index.php?title=Www.edup.tudelft.nl/~bjwever/whitepaper_shellcode.html.php
http://skypher.com/wiki/index.php?title=Www.edup.tudelft.nl/~bjwever/whitepaper_shellcode.html.php
http://shell-storm.org
https://code.google.com/p/alpha3/
http://phrack.org/issues/66/12.html

Analysis of Fluorescent Paper Pulps

for Detecting Counterfeit Indian Paper Money

Biswajit Halder1, Rajkumar Darbar2, Utpal Garain3, and Abhoy Ch. Mondal1

1 Dept. of Computer Science, University of Burdwan, W.B., India
2 School of Information Technology, IIT, Kharagpur, India

3 Indian Statistical Institute, Kolkata, India
{biswajithalder88,rajdarbar.r}@gmail.com, utpal@isical.ac.in,

abhoy mondal@yahoo.co.in

Abstract. The paper itself forms an important security feature for
many security paper documents. This work attempts to develop a ma-
chine assisted tool for authenticating the paper of a security document.
Image processing and pattern recognition principles form the basis of
this automatic method. Paper pulps play a crucial role in characterizing
a paper material. These pulps are visible in the UV scanned image of
the document. Therefore, the pulps are first identified in the UV scanned
image. This identification is done by borrowing ideas from rice grain de-
tection method. Once the pulps are detected, shape and color features
are extracted from them. Paper pulps coming from fake documents are
significantly different from those of genuine documents in their shapes
and colors. Using the shape and color features, a multilayer back prop-
agation neural network is used to discriminate paper pulps as genuine
or fake. The proposed method is tested with Indian banknote samples.
Experiment shows that consideration of paper pulps is one of the crucial
tests for authenticating paper money.

Keywords: Computational Forensics, Security document authentica-
tion, Banknote,Paper pulp, Image Processing, Pattern Recognition.

1 Introduction

With the advancement of scanning, copying and printing technologies, counter-
feiting of security documents (i.e. deeds, postal stamp, ticket, bank check and
draft etc.) has become a serious threat to our society. Counterfeiting of bank
notes is playing havoc on economy of many countries [4, 2, 3]. As a result, au-
thentication of banknotes has been an area of utmost concern [5, 6]. Though
significant study has been conducted in the field of forensic signature or hand-
writing authentication, little research has been done for authentication of secu-
rity paper documents [22]. This work is motivated by this research need. Bank
notes consist of several security features in order to prevent their counterfeit-
ing. Printing technique, artwork, security thread, watermark, etc. are significant
security marks that are embedded in banknotes [7, 8]. The manual authentica-
tion of these security features as so far have been done by the forensic question

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 411–424, 2014.
c© Springer International Publishing Switzerland 2014

412 B. Halder et al.

document examiners is a time consuming process and an unattractive solution
especially when verification of a large number of documents comes into question.
An automatic authentication process could provide a viable solution to this prob-
lem. A couple of patents on developing automatic method for authentication of
currency notes is reported in the literature [9–11] but the technical details of
these systems are not readily available because of the commercial reason. This
has severely limited us to judge the true potential of the commercial systems. In
this area, the reproducible research efforts are still rare in number.

The authors of the paper in [1] proposed a semi-automatic approach for char-
acterizing and distinguishing original and fake Euro notes. Their method is based
on the analysis of several areas of a banknote using a Fourier transformed infra-
red spectrometer with a microscope with an attenuated total reflectance (ATR)
objective. They considered four different regions of a note and observed that fake
notes were easily identifiable from the analysis of the spectra corresponding to
the four regions. However, the authors did not propose any automated scheme
for decision-making. Later on, the authors in [12] described another system for
authenticating Bangladeshi Bank Notes. They assumed that original currencies
under test have the bank name printed in micro letter text. They scanned this
part (the region where the bank name should be) using a grid scanner and the
textual images are fed in an optical character recognition engine that matches
characters with prototypes. Since the fake currencies were assumed not to have
the text they show very low matching score. The algorithm is heavily dependent
on one feature which makes the system very sensitive. The system would fail mis-
erably if the counterfeiters happen to develop means of duplicating the feature in
question. Recently, Roy et. al.[13] presented an authentication method based on
detection of printing technique. They tested their method for Indian bank notes
where the name of the bank and denomination of the note are printed using
intaglio technique. Any deviation from this printing technique was reported as a
counterfeiting effort. Later on, they extended their system to consider other se-
curity features like artwork, micro print text, security thread, etc. and presented
a more robust system for authentication of banknotes [14].

The previous efforts attempted to exploit several security features but the
paper material itself was hardly consulted for authenticating the document in
question. For any security paper documents including the banknotes, the paper
itself plays a crucial role in proving some kind of security to the document [15].
The paper based security is normally achieved by embedding certain special
ingredients to the paper material during its manufacturing process. A review on
security papers can be found in [16]. Colour optical pulp (or fibre) embedded
in the paper is an example. Security fibres may be metallic or photo-chromic.
The optical pulp defines a certain kind of characteristics of the paper. They are
luminescent under ultraviolet (UV) ray and therefore, visible when the paper is
scanned under UV or illuminated light ray. The forensic experts often check the
intended paper quality by physical contacts and sometimes, though manually,
they check the brightness, illumination and density of the paper pulp in order to
authentic the paper of the document in question. This paper attempts to make

Fluorescent Paper Pulps for Detecting Counterfeit Indian Paper Money 413

this process automatic. The preliminary version of this paper was presented in an
unreferenced workshop [17]. Here we present an extended and elaborate version
of the research.

The salient contribution of this work is to capture the pulp-based paper se-
curity feature in a computational way and then associate these features with
the notion of genuine and fake documents. The problem has been viewed from
the pattern recognition and artificial intelligence principles. Security aspects are
represented as feature vectors and the concept of genuine and fake is defined in
the feature space. For extracting features, ideas from rice grain detection [18, 19]
in images are borrowed as it closely matches with the present problem of detect-
ing fluorescent paper pulps in images. The features suitable for paper pulps are
identified in this work. Moreover, as elimination of foreign body is more diffi-
cult in UV scanned images than in rice grain images taken by CCD camera,
an improved elimination method has been designed for paper pulp detection.
Next, the features are extracted and analysed. Classification is done using neu-
ral network. Experiment considers Indian banknotes that make use of pulp based
paper as a major security aspect. Involvement of real forensic samples is a sig-
nificant aspect of this study. The experiment shows the importance of paper
pulp in detecting fraudulent documents and attests the proposed approach for
authenticating banknotes.

2 Proposed Method

The paper used for printing currency notes is a high quality paper made by
100% cotton. Cotton has given whiteness of paper and folding capability. This
paper also gives specific identity by its surface finish and crackling sound. During
manufacturing process extra features like watermark, security thread and opti-
cal fibre (i.e. pulp) are embedded for additional security aspects. The optical
fibres or pulps are of specific color and length. For example, in Indian 500 rupee
currency note, these fibres are photo-chromic in nature. It spreads randomly on
the notes which are illuminated under UV light source. When a banknote is
scanned under UV light, the fluorescent paper pulps are visible in the scanned
image. Fig. 1(a) shows a banknote and Fig. 1(b) shows the UV scanned image
of the banknote. One may see the fluorescent paper pulps visible in the image in
Fig. 1(b). The bright spots in the scanned image correspond to the paper pulps
present in the note. These pulps play crucial role in authenticating the paper.
In a counterfeit note, if the paper is very different from the genuine one, these
pulps may not be seen at all. In a high quality counterfeiting, these pulps came
as very bright spots and their shapes show significant difference with respect to
the pulp marks of the genuine. Therefore, the illumination and shape of these
paper pulps are important in characterizing a note paper as genuine or fake.

Our overall approach is divided into a number of stages: (i) detect pulps in a
UV scanned banknote, (ii) extract features from the detected pulps, (iii) train a
NN classifier based training samples that include both genuine and fake notes.

414 B. Halder et al.

(a)

(b)

Fig. 1. (a) A 500 rupee Indian banknote (b) UV scanned image of the note

Once the classifier is trained, we use this for classification which is configured as
2-class (genuine vs. fake) problem.

2.1 Detection of Paper Pulps

Detection of paper pulps has two stages: identification and verification. During
identification phase, detected pulps may be mixed with several foreign (non-
pulp) elements mostly coming from background artworks. So removal of foreign
particles is done during verification stage.

Identification of Paper Pulps: Paper pulps are identified in a UV scanned image
by following a 7-step method as given in Algorithm-1. The UV scanned image is
represented in RGB color space. As the pulps are mostly blue in color, we convert
the RGB image to CMY (Step-2 of the algorithm) and consider the cyan part
of the resultant image at Step-3. Next, median filtering is applied at Step-4 to
eliminate small unwanted particles. The centroids obtained at Step-7 indicate
individual position of pulps in the image. At this stage, all detected points do
not correspond to paper pulps. Many other particles which are same as pulp are
identified at this stage. These foreign bodies come from background artwork of
the banknote. So the next step is to eliminate these foreign elements and identify
only the pulps in the image. This elimination is done by the following process.

Elimination of Non-pulp Elements: The method described in Algorithm-2 elim-
inates the non-pulp particles from the detected set of pulps. In Algorithm-1, the
centroids detected at Step-7 correspond to paper pulps. Here, around each cen-
troid an m-by-m pixel-window is considered on the initial RGB image (Step-1 of

Fluorescent Paper Pulps for Detecting Counterfeit Indian Paper Money 415

Algorithm 1. PULP IDENTIFICATION

Begin
Step 1: Acquire the currency note image (RGB) by UV light
Step 2: Image Complement (RGB − > CMY)
Step 3: Extract cyan image
Step 4: Apply median filter
Step 5: Convert binary image by OTSU thresholding
Step 6: Connected component labelling of background pixels
Step 7: Compute centroid of each component
End

Algorithm-2). The value of m is sufficiently large to completely contain a pulp
mark within the window. The gray level co-occurrence matrix (GLCM) [20] is
computed for each pixel window at Step-2. For this purpose, we transform the
gray image to k (k < 256) level image (I). Let s≡(x,y) be the position of a pixel
in I and t≡(�x,�y) be a translation vector. Then the co-occurrence matrix Mt

is calculated as,

Mt = card(s, s+ t) ∈ R2 | I[s] = i, I[s+ t] = j (1)

Where co-occurrence matrix Mt is a (k x k) matrix whose (i,j)-th element in-
dicates the number of pixel pairs separated by the translation vector t (here,
t = 1) that have the pair of gray levels (i, j). Texture features are extracted
at Step-3. An artificial neural network (ANN) is used at Step-4 to discriminate
pulp from non-pulp elements. A set of training samples is separately identified
for the training this ANN. The features extracted at Step-3 are tagged with pulp
and non-pulp identification for training the ANN. In our experiment, the values
of m and k are set to 60 and 8 (i.e. the image transforms to 8 levels). These
values are fitted empirically. Fig.2 shows the detection of pulp in Fig. 2(a) and
then elimination of non-pulp elements to give final result in Fig. 2(b). Fig. 3(a)
shows detection of an individual pulp.

Algorithm 2. ELIMINATION OF NON-PULP ELEMENTS

Begin
Step 1: Around each centroid as detected at Step 7 of Algorithm-I, m × m sub-image is
cropped from the initial RGB image.
Step 2: For each such sub-image, compute Gray Level Co-occurrence Matrix (GLCM) [20]
under consideration of two adjacent pixels on four directions 0 ◦, 45 ◦, 90 ◦,and 135 ◦ .
Step 3: Generate texture level four statistical features i.e. contrast, correlation, energy and
homogeneity from each co-occurrence matrix.
Step 4: Configure an artificial neural Network (ANN) for discriminating pulps from non-pulp
particles.
End

2.2 Feature Extraction from Pulps

Two aspects, namely, shape and color of pulps are considered for feature extrac-
tion. Regions of interest are found around the detected pulps. One such example

416 B. Halder et al.

(a)

(b)

Fig. 2. Identification of pulps: (a) detected pulps after execution of Algorithm-1 (b)
pulps after elimination of foreign bodies by Algorithm-2

is shown in Fig. 3(b). Feature are extracted from this region of interest. Im-
age analysis techniques used for extraction of features. In total, 10 features are
extracted: 4 features coming from shape properties and the remaining 6 fea-
tures are from color properties of the pulp particles. The four shape features are
computed as follows:

(i) Area (f1): This feature calculates the number of pixels inside pulp identified
by a connected component (refer Step 6 of Algorithm-1).

(ii) Rectangular Aspect Ratio (f2): This feature is given by the ratio of the
length and width of the rectangular bounding box of the pulp particle. Fig. 3(c)
shows how the rectangular bounding box of a detected pulp is identified.

(a) (b) (c)

Fig. 3. Rectangular box around a pulp: (a) Pulp detection, (b) Region of interest and
(c) identification of the rectangular box around the pulp

Fluorescent Paper Pulps for Detecting Counterfeit Indian Paper Money 417

(iii) Pulp Aspect Ratio (f3): The pulp aspect ratio is computed as the ratio
of the lengths of the major and minor axes. The length (dmax) of the major
axis is measured as the distance between the end points of the longest line that
could be drawn through the pulp particle. Similarly, the length (dmin) of the
minor axis is the distance between the end points of the longest line that could
be drawn inside the pulp and is perpendicular to the major axis.

(iv) Shape Factor (f4): This feature is defined as follows:f4=
drms

d
; where, drms

is the root means squared deviation and is defined as,

√
(dmax−d̄)2+(d̄−dmin)2

2 . The

mean diameter of the pulp is denoted by d̄ and computed as (dmax−dmin)
2 .

(v) Colour Features: The brightness and illumination of paper pulps give sig-
nificant clue about the paper quality. They change with the change in paper
material. Therefore, features extracted from color space play crucial role in dis-
criminating pulps coming from genuine or fake paper. We consider HSI color
space for extracting color features The average Hue, Saturation and Intensity of
the pulp pixels give three features f5, f6, and f7. Similarly, their variances are
computed and give another three features (f8, f9, and f10).

The above features are considered after consulting with the forensic experts.
Many of these features they use for manual inspection of the paper in question.
It is noted that these features show significant discriminatory power in differenti-
ating genuine and fake samples. This is highlighted in Sec. 3 where experimental
results are shown. Fig. 4 shows the discriminatory power of three features, the
first one refers to pulp aspect ratio (f3), the second refers to the average hue (f5)
coming from color space analysis and the third, i.e., shape factor (f4) coming
from shape analysis.

2.3 Training of the Classifier

Initially a neural classifier is configured to discriminate whether a pulp is part
of genuine or fake paper. A back propagation neural network (BPNN) is used
for this purpose. Multilayer perceptron is used where input layer is consisting
of 10 nodes corresponding to 10 features as described in Sec. 2.2. The output
layer has just 1 node as the classification problem is binary in nature. Only one
hidden layer is used and the number of nodes in the hidden layer is computed
as: N=(I+O

2 +
√
y);where N=number of nodes in hidden layer; I=number of

input features; O=number of outputs; and y=number of patterns in the training
set. The multilayer feed forward network model with back propagation (BP)
algorithm for training is employed for classification task. A gradient descent
method is used to find the optimized set of connection weights that are updated
as per the following equation:

Wt+1 = Wt + α

(
∂E

∂W

) ∣
∣
∣
∣
∣
Wt

+ β

{

Wt −Wt−1

}

(2)

where Wt is weight at the current iteration, Wt+1 is weight in the next itera-
tion, E is the error term which is calculated as E= 1

2 (T −O)2 ; T is Target and

418 B. Halder et al.

(a)

(b)

(c)

Fig. 4. Discriminatory power of the extracted features: (a) distribution of the pulp
aspect ratio (f3) for pulps from genuine and fake banknotes (blue line is for samples
from fake currency); (b) distribution of average hue (f5) of pulp pixels coming from
genuine (green line) and fake (red line) banknote samples; (c) distribution of the shape
factor (f4) for pulps from genuine (green line) and fake banknotes (blue line)

O is Output. The parameters α and β are the learning rate and momentum,
respectively. A four-fold cross validation is used for the classification task. The
efficiency of the BPNN is evaluated using 3 performance measures i.e. Confu-
sion Matrix, Performance Plot, and ROC plot. The graphical representation of
confusion matrix, performance plot and ROC plot in each fold is investigated.

Fluorescent Paper Pulps for Detecting Counterfeit Indian Paper Money 419

The root-mean-square-error (RMSE) is also studied both at the individual pulp
and document (i.e. whole paper currency) levels.

2.4 Authentication of Banknotes

Finally, authentication of banknotes is done based on the pulp level authentica-
tion. For example, if p number pulps are detected in a UV scanned image of a
banknote, each pulp undergoes checking for its authenticity. The neural network
described in Sec. 2.3 is used for this purpose. If majority of the pulps show a
particular type (genuine or fake), the banknote turns out of that category.

3 Experiment

3.1 Dataset

The experiment considers 200 samples of banknotes. All of these are not real
samples. We got some real samples from the forensic experts who labelled genuine
and fake notes. We extracted features from these labelled notes and labelled
the feature vectors as genuine or fake. From these feature vectors, later, we
synthetically generated other samples so that we get 100 samples for each genuine
and fake classes. We assumed the distribution to be Gaussian to generate the
synthetic samples. Each real sample is scanned using VSC5000 UV scanner. The
resolution of scanning was set at 200 dpi. It is noted that each genuine currency
note image contains about 15 pulps (this number normally varies from 11 to
17). In fake samples, this number does not vary significantly. In 200 banknotes
including both the genuine and fake samples, a total of 3124 pulps were detected.
The pulps coming from genuine banknotes are labelled as genuine sample and
the pulps originated from the fake banknotes are treated as fake samples.

Identification of the pulps above is done following a semi-automatic process.
Sec. 2.1 describes a two-stage method for pulp identification. Though the first
stage does not require any training, the second stage of this method requires
training of a Neural Net. The stage one of the pulp detection algorithm is initially
executed for 50 banknotes and extracted pulps are manually tagged as pulp or
foreign to train the net. Next, this trained net is used to detect pulps in the
remaining 150 notes. It is observed that the net gives about 90% accuracy in
discriminating detected pulps as true pulp or foreign element. The errors are then
manually corrected to make the dataset suitable for the subsequent experiments.

From each pulp, a 10-dimensional feature vector is extracted. Among 3124
feature vectors, 1602 are labelled as genuine and 1522 are tagged as fake. Tagging
of each pulp is quite easy as all the pulps extracted from a banknote take the
label of that note. The whole dataset is divided into 4 subsets for conducting
a four-fold cross validation test. The numbers of samples in training, validation
and test sets are in 2:1:1 ratio.

420 B. Halder et al.

Table 1. Confidence in Pulp Level

It. Confidence Interval Classification of pulps
No. Genuine Fake Genuine Samples Fake Samples

G F C F G C

1 (0.975,1.025) (-0.0150,0.0150) 47 02 01 45 03 02
2 (0.970,1.029) (-0.0128,0.0128) 49 01 00 46 01 03
3 (0.969,1.030) (-0.0182,0.0182) 44 03 03 47 03 00
4 (0.970,1.029) (-0.0250,0.0250) 48 00 02 43 02 05

Avg.(%) 94% 3% 3% 90.5% 4.5% 5%
It.: Iteration, G: Genuine, F: Fake, C: Confusion, Accu.: Accuracy

Table 2. Pulp Level Authentication

Fold #Epoch (Best validation MSE (Min) Gradient Classification accuracy
at epoch no.) Training Test

Fold 1 44 (38) 0.00107300 0.00291 94.93% 90.00%
Fold 2 27 (21) 0.00784510 0.00924 92.88% 88.67%
Fold 3 27 (21) 0.07414200 0.03070 90.91% 88.11%
Fold 4 34 (28) 0.06693800 0.04040 89.94% 86.88%

Avg. 33 0.03749952 0.02081 92.16% 88.41%

3.2 Pulp Level Authentication

As mentioned earlier that a neural network is used for discriminating each pulp
as genuine or fake. The parameters of the back-propagation neural network are as
follows: maximum number of epochs: 1000, minimum MSE value: 0.001, learning
rate (α): 0.9, momentum (β): 0.1. Two early stopping conditions were used: (a)
total mean squared error (MSE)≤ 0.001 (b) training stopped after 1000 epochs.

At first, recognition of individual pulps is evaluated without mixing genuine
and fake pulps together. In evaluating this, we find out two confidence intervals,
one for the genuine pulps and the other for the fake pulps. These two confidence
intervals are calculated as 1± [σ.Zα

2
] and 0± [σ.Zα

2
], respectively where σ is the

standard deviation of pulp recognition accuracy (say, r), i.e. σ =
√
(r.(1−r)

n),
where n is the total number of pulps; α

2 represents the area in each of the two
tails of the standard normal distribution curve and Zα

2
is the two-tailed normal

score for the probability of error α. Following these confidence intervals, Table-1
shows the result for recognition of pulp types at 94% confidence level.

Next all the pulps are mixed together and recognition of their types using
the neural net is evaluated. Table-2 reports this result. It is noted that about
88% pulps are accurately classified as genuine or fake by the neural net and
this accuracy is achieved at quite low MSE, i.e. 0.037. Fig. 5 graphically shows
the behaviour of the neural net. The results are plotted for fold-1. However,
similar characteristic curves were observed for other folds. Fig. 5(a) shows the
confusion matrix. The ROC plot is shown in Fig. 5(b). As the ROC plot hugs
more the left and top edges, it guarantees better accuracy. Fig. 5(c) shows the

Fluorescent Paper Pulps for Detecting Counterfeit Indian Paper Money 421

(a) (b)

(c)

Fig. 5. Behaviour of the neural net in classifying pulps: (a) confusion matrix, (b) ROC
plot and (c) performance plot

performance plotted with mean square error (MSE) value against each epoch.
The performance plot shows that with the increase of the number of epoch,
the MSE value during training gradually decreases and the best validation is
achieved at epoch number 38.

3.3 Authentication of Banknotes Using Pulp

Pulp level authentication result is used to authenticate a banknote as described
in Sec. 2.4. Let p be the number of pulps detected in the UV scanned image
of bank-note after execution of Algorithm-2 (Sec. 2). Each of these p pulps is
authenticated using the neural network as reported in Sec. 3.2. The individual
authentication scores are then consulted to determine the nature of the banknote.

422 B. Halder et al.

Fig. 6. Banknote classification using paper pulps

In Sec. 3.2, we have checked that the classifier can authenticate the paper pulps
with about 88% accuracy. Keeping this accuracy in mind, we decided that at
least 75% of the pulps in a banknote should be of similar type (genuine or fake)
to label the banknote with that type. If it happens that 75% paper pulps do not
show agreement in their class label, the system rejects that banknote and calls
for manual intervention. For example, if a banknote normally shows 16 paper
pulps, at least 12 pulps should have the same class (genuine or fake) for the
system to take decision about the category of the banknote.

The above method was tested for authentication of 200 banknotes divided into
4 groups for conducting a 4-fold cross-validation task. The banknotes of the first
two folds participated in training of the neural net. Actually, the pulps inside
them are used to train the classifier. The third fold is used for validation purpose.
The banknotes in the fourth set are authenticated using the trained classifier.
It is observed that out of 200 banknotes 199 samples were correctly classified
based on their paper pulp. In one case (which is actually a genuine sample), the
system fails to decide as some of its paper pulps are degraded because of the
degradation of the paper of the banknote. This banknote is an old one and had
been folded at many places. For all other cases, 75% or more paper pulps are
rightly authenticated for their class and hence, the system could take accurate
decision.

Fig. 6 plots errors in recognizing pulp types as well as document types for eight
representative banknotes (genuine samples are marked with green color and red
color is used to mark fake samples). The 45◦ line is shown using the blue color.
It is noted that for each banknote there are some pulps for which types are not
recognized properly. Misclassified pulps are marked with ‘×’ for genuine and ‘+’
for fake samples. For these pulps RMSE value is higher. However, as the majority
of the pulps in a banknote are classified properly, the overall document level (i.e.
at banknote level) RMSE value is quite low. Therefore, banknote note types are
correctly identified.

Fluorescent Paper Pulps for Detecting Counterfeit Indian Paper Money 423

4 Conclusion

This paper reports an experiment in the context of machine aided authentication
of security paper documents. The role of paper pulps is investigated in order to
authenticate a paper in question. To the best of our knowledge, this is one of
pioneering efforts for involving paper pulp for developing automatic authentica-
tion of security paper documents. Experiments with banknotes strongly attest
the viability of the proposed method. As availability of real forensic data in large
scale is a hurdle in every country, a small set of real forensic samples is used to
develop and verify the system. The future of this research would consider a sep-
arate dataset to test the generality of the approach. Though the present study
shows the role of paper pulps for banknotes, we advocate that the proposed
approach can be used as a part of the whole system for authenticating paper
documents. This is because the full authentication should use other security
features too. For example, for authenticating banknotes other salient security
features like watermark, security thread, background artwork, printing process,
etc. are to be validated [14], [21].

Acknowledgments. The authors sincerely acknowledge the help from the ques-
tioned document examiners of the Department of Forensic Sciences, Kolkata,
India. Initial version of this work was presented in an unreferenced work-
shop namely, 5th Int. Workshop on Computational Forensics (IWCF), 2012
[17]. The authors sincerely acknowledge the researchers who gave their sugges-
tions/comments on the work.

References

1. Vila, A., Ferrer, N., Mantecon, J., Breton, D., Garcia, J.F.: Development of a fast
and non-destructive procedure for characterizing and distinguishing original and
fake Euro notes. Analytica Chimica Acta 559(2), 257–263 (2006)

2. Counterfeit Currency in Canada, Publication of Royal Canadian Mounted Police
(December 2007)

3. Kaushal, R.: Fake money circulation boosts black economy, India Today (August
5, 2009)

4. Counterfeit Banknotes, Report of the parliamentary office of science and technol-
ogy, UK (1996), http://www.parliament.uk/briefing-papers/POST-PN-77.pdf

5. Williams, M.M., Anderson, R.G.: Currency Design in the United States and
abroad: Counterfeit Deterrence and Visual Accessibility. Federal Reserve Bank
of St. Louis Review 89(5), 371–414 (2007)

6. Counterfeit deterrence: Currency design in India and Abroad, The Holography
Times 3(6) (2009)

7. Reserve Bank of India,High Level RBI Group Suggests Steps to Check Menace of
Fake Notes, Press release number 2009-2010/232 (August 11, 2009)

8. Department of Financial Services, Ministry of Finance, Govt. of India, Counterfeit
Notes from ATM, Press release number F No 11/16/2011-FI, 3rd Floor, Jeevan
Deep Building, New Delhi, India (July 6, 2012)

http://www.parliament.uk/briefing-papers/POST-PN-77.pdf

424 B. Halder et al.

9. Mondardini and Massimo, Device for validating banknotes, EPO Patent, No. EP
0537513 (A1) (April 21, 1993)

10. Graves, B.T., Jones, W.J., Mennie, D.U., Sculits, F.M.: Method and Apparatus for
Authenticating and Discriminating Currency, US Patent, No. 5,960,103 (September
28, 1999)

11. Slepyan, E., Kugel, A., Eisenberg, J.: Currency Verification, US Patent, No.
6,766,045 (July 20, 2004)

12. Yoshida, K., Kamruzzaman, M., Jewel, F.A., Sajal, R.F.: Design and implemen-
tation of a machine vision based but low cost stand-alone system for real time
counterfeit Bangladeshi bank notes detection. In: Proc. 10th Int. Conf. on Com-
puter and Information Technology (ICCIT), Dhaka, pp. 1–5 (December 2007)

13. Roy, A., Halder, B., Garain, U.: Authentication of Currency Notes through Printing
Technique Verification. In: Indian. Conf. On Computer Vision, Graphics & Image
Processing (ICVGIP), India (2010)

14. Roy, A., Halder, B., Garain, U., Doermann, D.: Automatic Authentication of In-
dian Banknotes. In: Machine Vision and Applications (MVA). Springer (2013)
(submitted)

15. Chia, T.H., Levene, M.J.: Detection of counterfeit U.S. paper money using intrinsic
fluoresecence lifetime. Optics Express 17(24) (2009)

16. Van Renesse, R.L.: Paper based document security - a review. In: IEEE European
Conference on Security and Detection, pp. 75–80 (April 1997)

17. Halder, B., Darbar, R., Garain, U.: Investigating the role of fluorescent paper pulp
for detecting counterfeit Banknotes. In: Proc. 5th Int. Workshop on Computational
Forensics (IWCF), Tsukuba, Japan (2012)

18. Sun, C., Berman, M., Coward, D., Osborne, B.: Thickness measurement and crease
detection of wheat grains using stereo vision. Pattern Recognition Letters 28(12),
1501–1508 (2007)

19. Hobson, D.M., Carter, R.M., Yan, Y.: Characterisation and Identification of Rice
Grains through Digital image Analysis. In: Proc. IEEE Instrumentation and Mea-
surement Technology Conference (IMTC), Poland, pp. 1–5 (2007)

20. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural Features for Image Classi-
fication. IEEE Trans. Systems, Man and Cybernetics (SMC) 3(6), 610–621 (1973)

21. BARS 5000 Currency sorter, by BARS GmbH, Siemensstr. 14, D-840 30 Landshut,
Germany

22. Garg, G., Sharma, P.K., Chaudhury, S.: Image based document authentication
using DCT. Pattern Recognition Letters 22, 725–729 (2001)

A Vein Biometric Based Authentication System

Puneet Gupta and Phalguni Gupta

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Kanpur 208016, India
{puneet,pg}@.iitk.ac.in

Abstract. In this paper, a highly secure and an accurate personal au-
thentication based on palm-dorsa vein patterns is proposed. Hand-dorsa
images are acquired in infrared light by using a low cost camera. Ac-
quisition takes place under unconstrained environment in a contact-less
manner. Hand-dorsa images are preprocessed to extract the palm-dorsa
which is used for vein pattern extraction by using multi-scale matched fil-
tering. Image registration based matching is performed to verify the user
identity. Performance of the proposed system is evaluated on a database
containing 840 images from 140 different classes. Experimental results
indicates that the proposed system performs better that other existing
systems.

Keywords: Vein matching, Biometrics, Vein extraction, Hand detec-
tion.

1 Introduction

Due to availability of large digital data and cheap hardware, data protection or
security is a prime concern which can grant the access to genuine user while
restricting the impostor. Tradition systems make use of keys or passwords for
system security. But these are not much effective because these can be easily
spoofed, forget, lost or stolen. In contrast, modern systems based on biometrics
are proliferated which require individual characteristics for recognition because
it has following physiological properties: universality, uniqueness, permanence
and acceptability [4].

Vein pattern is one such biometric trait which is the created from the sub-
cutaneous blood vessels. Like any other biometric trait, it is highly useful for
personal authentication because it: i) is unique; ii) can be easily acquired by
cheap sensors; iii) can be instantaneously acquired; iv) is assumed to be stable
for longer duration; v) is highly user friendly; and vi) is universal. It is hard
to forge as it lies inside the skin and assures liveness. Due to this, vein based
biometric systems are considered to be more secure than any other biometric
trait based systems. An image containing vein pattern can be acquired by using
x-ray and ultrasonic scanners. In addition, it is observed that a vein pattern is
visible in infrared (IR) light because veins contain blood which can absorb the

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 425–436, 2014.
© Springer International Publishing Switzerland 2014

426 P. Gupta and P. Gupta

IR light and result in darker intensities near vein pattern. Even though x-ray
and ultrasonic scanners (in medical imaging) acquires high quality vein images,
these are avoided during acquisition because of high user’s inconvenience and
slow acquisition time. In contrast, infrared imaging instantaneously acquire the
vein images in a contact-less and non-invasive manner. But these have low con-
trast, poor quality and non-uniform illumination. A vein image can be acquired
by either near infrared (NIR) or far infrared (FIR) imaging [20]. In NIR, vein
image is acquired by infrared (IR) light by using the fact that blood flowing in
vein absorbs IR light. While in FIR, vein image is acquired as a thermal im-
age by using the fact that the vein areas have higher temperature as compared
to its surrounding tissues. In comparison to FIR images, NIR images are more
robust against environmental conditions (like humidity and temperature) and
human body conditions (like skin thickness). Therefore, NIR based vein image
are acquired in this paper.

Despite of various advantages of a vein pattern based biometric system, it
suffers from various problems which limit its applicability. Spurious vein can
be generated or genuine veins can be missed during vein extraction due to (i)
skin properties (like thickness and hairs); (ii) environmental conditions (like
temperature); (iii) non-uniform illumination; (iv) varying width veins; and (v)
area near interphalangeal joints has high illumination. Further, contact-less data
acquisition can also results in different pose [11] which can deteriorate the vein
matching accuracy. The proposed system is designed to handle these issues.
It uses multi-scale matched filtering to suppress the noise and to enhance the
variable width veins. It presents a image registration based correlation matching
to handle occlusion and spurious vein generation. Also, it detects the hand type
(either left or right) present in the image which prunes a large database during
matching.

This paper is organized as follows. Some vein pattern based biometric au-
thentication systems are discussed in the next section. The proposed system is
explained in the Section 3. Experimental results have been analyzed in Section
4. Conclusions are given in the last section.

2 Literature Survey

Like any other biometric system, a vein pattern based biometric system consists
of three stages, which are:

1. Enhancement: Spurious veins can be extracted from the acquired vein
images due to non-uniform illumination, low local contrast and noises due
to hairs and texture on human hand. Thus, various filters like Gabor [13],
Steerable [23] and Curvelets [27] filters are applied on vein images. These
are formed by using local neighborhoods of vein pattern and thus perform
ineffectively for variable width veins. Vein tracking can be used by using the
intuition that vein area can be tracked large number of times from several
locations while background areas are tracked fewer number of times. Local
minima has been used to track the vein structure in [16]. Maximum curvature

A Vein Biometric Based Authentication System 427

information along with vein tracking has been used in [17]. But thin veins
are tracked few number of times due to small width. In addition, local shape
of a vein is neglected during vein tracking which can result in the generation
of spurious veins. Vein images can also be enhanced by using restoration
algorithms [24], [25] which tries to minimize the scattering effect produced
during IR imaging.

2. Feature Extraction: Thresholding algorithms [13], [26] are used to extract
the veins from the enhanced vein image. Global thresholding algorithms
give wrong results if there is a significant overlap between foreground and
background pixel intensities. On the other hand, local adaptive thresholding
algorithms can handle such issue and give better vein extraction even if
non-uniform illumination are present in the image. Features extracted from
the vein pattern are categorized as either local features or global features.
Local features [15] consists of geometrical transformation invariant points
like minutiae endings and bifurcations. In [18], vein double bifurcation is
also used for performance improvement. Various minutiae representations
like distances between minutiae pairs [19], minutiae triangulations [12] and
spectral minutiae [8] can be used as feature representation to obtain better
results. Another category of feature extraction, global features mainly use
full vein pattern or vein skeletons.

3. Matching: Point to point matching algorithms can be used for local fea-
ture matching, either in spatial domain [20], [21] or in frequency domain
[9]. Systems which match local features, have poor performance because: 1)
sometime noise can generate spurious features; 2) local feature representa-
tions like orientation of minutiae cannot be accurately determined; and 3)
sometime few genuine local features are extracted. In contrast, global feature
matching of shape feature can handle these issues. It has large dimension-
ality which can be reduced by using invariable moments [14] and machine
learning techniques [10]. But such a loss of information reduces the system
performance. Better options are the use of pixel-by-pixel matching [1] and
correlation matching [3] which match the full vein pattern or vein skeleton.

3 Proposed System

In this section, a vein biometric based authentication system is proposed. Ini-
tially, hand-dorsa of user hand is acquired by using the acquisition setup. Palm-
dorsa present in the hand-dorsa is used to extract the genuine vein pattern. Vein
patterns are matched for authenticating the user. Figure 1 shows the flow-graph
of the proposed system.

3.1 Image Acquisition

The proposed acquisition setup consists of a wooden box with a fixed plank
attached at its bottom. Plank is of black color and free from pegs. A low cost
camera is attached on the top of wooden box such that area of plank can be

428 P. Gupta and P. Gupta

Fig. 1. Flow-graph of the Proposed System

(a) Setup

Fig. 2. Image Acquisition

completely captured. A user hand is placed on the plank without any constraint
on finger orientation, in such a way that the hand-dorsa is completely exposed
to the camera. An IR filter is attached in front of camera which allow the camera
to acquire the IR images. But IR radiation of 3000-12000 nm emitted from the
human hand, cannot be perceived by the camera. Thus, an IR lamp of 850 nm
is placed inside the box for irradiating the user hand. For illustration, consider
Figure 2 which shows the acquisition setup. Since the proposed setup does not
contain any other docking device or pegs, it is an unconstrained data acquisition.
Also, no direct contact between user hand and camera makes it a completely
touch-less system.

3.2 Preprocessing

Most of the areas in the acquired image (let I) contain background which do
not contain useful information and hence, such areas should be removed [6].
Hand-dorsa present in I is extracted and it is eventually processed to extract
the palm-dorsa and to detect the hand type (either left or right hand).

A Vein Biometric Based Authentication System 429

Algorithm 1. Preprocessing(I)

Require: Hand image, I
Ensure: Return HandType and II storing hand type and extracted ROI respectively.

1: IB = global threshold algorithm(I) //Binarized image
2: Remove holes and small sized components from IB.
3: Bh = canny edge detector(IB) //contains contour
4: Find key-points by applying contour tracing algorithm on Bh.
5: Detect HandType (left or right) by using hand geometry constraints on key-points.

6: Find end points of thumb and left finger.
7: Fingers are removed from IB by using key-points to detect the ROI, II .
8: return (HandType and II)

Since there is a clear separation between intensity of plank and hand area,
global thresholding algorithm followed by 8-neighborhood connectivity algorithm
[5] is applied on I to extract the hand-dorsa. It may happen that small blobs
or holes are present in the hand-dorsa due to hair or texture on the hand-
dorsa. Morphological operations [7] are used to remove such noises. Contour (or
boundary) of extracted hand, Bh, is detected by using Canny edge detector.

(a) I (b) Hand-dorsa mask
(e) Key-points (f) Palm-dorsa, II

Fig. 3. Various Stages of Preprocessing

Finger areas present in acquired IR image are removed to obtain palm-dorsa
area or region of interest (ROI). Two types of key-points are used for this pur-
pose, viz., (i) valley points between alternating fingers which are given by local
minima in Bh; and (ii) fingertips which are determined by local maxima in Bh.
It is intuitive that the length of hand boundary from the fingertip of ring finger
to the fingertip of little finger is less than the length of hand boundary from
the fingertip of thumb to the fingertip of index finger. This intuition along with
detected key-points is used to determine the hand type. To remove the fingers
from the extracted hand, two additional key-points are required which are the
end points of thumb and little finger. These are determined by using the fact
that end points of a finger are equidistant from its fingertip. By using domain
knowledge of hand geometry and extracted key-points, fingers present in the

430 P. Gupta and P. Gupta

extracted hand are cropped to obtain the ROI. For illustration, consider Figure
3 which shows an acquired image, hand-dorsa area, key-points and extracted
ROI. In it, blue, red and green color represent valley points, fingertips and addi-
tional key-points respectively. Let II represents the extracted ROI from I. Steps
required during acquired image preprocessing are given in Algorithm 1.

3.3 Vein Enhancement

II contains low contrast, non-uniform illumination and noises due to hairs and
texture. Thus, it is enhanced by using matched filtering to account for these
issues. A template which looks like a vein is required for effective matched filter-
ing. It has been observed that a vein resembles line shaped structure in a local
neighborhood [27] while its cross sectional profile has nearly Gaussian shape [17].
Therefore, a vein shaped filter, Gφ, is defined which has two orthogonal direc-
tions such that in one direction, it has Gaussian shape of standard deviation σ
and mean m while in other direction, it has line shape of length l. It is given by:

Gφ,s (x, y) = −e(p
2/sσ2

x) −m

such that
p = x cosφ+ y sinφ and |p| ≤ 3sσx

q = y cosφ− x sinφ and |q| ≤ sl/2

where (x, y) represents the pixel location while φ and s denotes the orientation
and scale respectively. It is applied on II to obtain the filter response, that is

Rs
g (x, y) = Gφ,s (x, y)⊗ II (x, y)

where ⊗ denotes the convolution operator. Such a matched filter at one scale is
unable to detect the variable width veins. Thus, matched filter at multiple scales
are evaluated and then consolidated to obtain variable width veins. In addition,

Algorithm 2. V ein Enhancement(IRI , G1, G2)

Require: Two filters, G1 and G2 at different scales along with ROI, II .
Ensure: Return M containing vein enhanced image.
1: Rs1

g = G1 ⊗ II
2: Rs2

g = G2 ⊗ II
/* Rs1

g andRs2
g are filter responses at different resolutions while ⊗ is the convolution

operation */
3: for each pixel (x,y) do
4: M (x, y) =

(
Rs1

g (x, y) × Rs2
g (x, y)

)

// Consolidation of filter responses
5: end for
6: return M

A Vein Biometric Based Authentication System 431

it is also beneficial to reduce the effects of noises. Mathematically, consolidated
of filter responses at two different scales, s1 and s2, is carried out by using:

M =
(
Rs1

g ∗ Rs2
g

)

where M is the multi-scale matched filter response and ∗ represents the element-
wise product operation. Algorithm 3 describes the steps involved in vein enhance-
ment.

(a) Input, IRC (b) Response, Rs1
g (c) Response, Rs2

g (d) Vein Pattern, VG

Fig. 4. Example of Vein Pattern Enhancement and Extraction

3.4 Vein Extraction

In the enhanced vein image M , there is a clear distinction between vein and non-
vein pixels thus, global thresholding algorithm is applied onM to extract the vein
pattern. It may happen happen that the extracted vein pattern contains spurious
holes or blobs due to noises, which are removed by using standard morphological
open and close operations. It is observed that the boundary of II can generate
spurious vein pattern. Therefore, boundary of II is detected by using canny
edge detector and is eventually removed from the extracted vein pattern. Let
vein pattern extracted from M is denoted by VG. Steps involved during vein
extraction are described in Algorithm 3. An example of vein extraction is shown
in Figure 4.

Algorithm 3. V ein Extraction(M)

Require: M storing the vein enhanced image.
Ensure: Return VSG containing the extracted vein pattern.
1: IB = global threshold algorithm(M) //Binarized image containing vein pattern
2: Remove holes and small sized components from IB.
3: B = canny edge detector(IRI) //contains hand contour
4: for each pixel (x,y) do
5: VSG (x, y) = IB (x, y) ∧ (¬B (x, y))

// where ¬ and ∧ are negation and binary AND operation respectively.
6: end for
7: return VSG

432 P. Gupta and P. Gupta

3.5 Vein Matching

Assume that VG claims the user identity stored corresponding to the template,
UG. It should be remembered that UG and VG have same hand type, i.e., either
both left or both right hands. The proposed acquisition setup which offers un-
constrained imaging can introduce large translation and rotation deformations
in the acquired image. But large nonlinear deformations cannot be generated by
it. In addition, it is possible that: (i) sometime some part of genuine vein pattern
is missed; or (ii) spurious vein pattern can be generated. Reasons behind these
are noises, low local contrast and non-uniform illumination [22] in the acquired
images. To handle these issues, correlation based matching along with image reg-
istration is used in this paper. Fourier-Mellin transform based image registration
[2] is used to register VG with respect to UG, which accounts for translation, scal-
ing, rotation, occlusion (or missing of some vein areas) and noise (or generation
of false veins). In it, rotation and scaling parameters are transformed into trans-
lation by using log-polar transformation on spectral magnitude. Eventually, all
geometrical parameters required for registration are calculated by using phase
correlation. Let R represents the registered image obtained after transforming
VG with respect to UG. Matching score, suv, between UG and VG, is evaluated
by

suv =

∑
x,y R (x, y)× UG (x, y)

max
{∑

x,y R (x, y) ,
∑

x,y UG (x, y)
} (1)

where max is the maximum operator while (x, y) denotes a pixel location. If
suv is greater than the preassigned threshold then VG and UG are said to be
matched otherwise, not-matched. Algorithm 4 describes the steps required in
the proposed vein matching algorithm.

4 Experimental Results

4.1 Database Description

To the best our knowledge, there does not exist any such publicly available
database. A database consisting of hand-dorsa images acquired under IR light
is created in Biometrics lab, IIT Kanpur to evaluate the performance of the
proposed system. It contains 840 images collected from 70 users, each of size
2304×1536 pixels. From each user, it acquires images of both hand, six images
per hand. Thus, total twelve images per user are acquired. Different hand refers
to a separate class during performance evaluation, thus 140 different classes
are considered for experimentation. Correct recognition rate (CRR) and equal
error rate (EER) are used for performance evaluation. For testing, the test set is
created from one image per class while rest of the images are used as a probe set.
Hence, total 700 (1 × 700) genuine matchings and 97,300 (139 × 700) impostors
matchings are used for evaluation.

A Vein Biometric Based Authentication System 433

Algorithm 4. V ein Matching(VG, UG, th)

Require: Vein patterns, VG and UG, along with a threshold, th, required for matching.
Ensure: Return matching decision in D.
1: Transform VG such that VG is registered with respect to UG and store it in R.

2: suv =
∑

x,y R(x,y)×UG(x,y)

max{∑x,y R(x,y),
∑

x,y UG(x,y)}
3: if suv ≤ th then
4: D = not matched
5: else
6: D = matched
7: end if
8: return D

4.2 Performance Evaluation

In Table 1, comparison between the proposed vein biometric based authentica-
tion system with various existing systems is shown. It indicates that the proposed
system has better performance than other systems. Reasons behind this are:

1. The proposed system uses full vein pattern while other systems uses only a
subpart of vein pattern. More vein pattern means more features and thus
better matching results.

2. It has been observed that matched filtering delivers better performance if
the filters required for filtering closely resembles the required shape. Thus,
in the proposed system, filters are created by using the most appropriate
vein like structure which enhances the performance of the proposed system.

3. Variable width veins and noises due to non-uniform illumination, hairs and
texture can result in erroneous vein matching. In the proposed system, these
issues are suitably handled by using multi-scale analysis and thus allows
better performance of the proposed system.

4. Under unconstrained environment, large rotation and translation can be in-
troduced which degrade the system performance. Such geometric deforma-
tions are appropriately eliminated in the proposed system by using image
registration.

5. Missing of genuine vein pattern or generation of spurious veins are inevitable
and can result in spurious vein generation which further degrades the sys-
tem performance. These are effectively handled by using correlation based
matching.

6. Low performance is observed in [21] because: (i) minutiae features are not
accurately localized; (ii) sometime a vein image contains only few genuine
minutiae; and (iii) spurious minutiae are extracted which can lead to false
matching.

7. System in [14] performs worst than any other system because it uses invari-
able moments for dimensionality reduction which leads to loss of useful in-
formation. Use of such feature descriptors having low discriminatory power,
results in spurious vein matching.

434 P. Gupta and P. Gupta

8. Since [16] and [17] do not consider local vein shape for vein extraction, false
veins can be generated due to hairs and texture on palm-dorsa. Due to the
false veins, these systems have lower performance than the proposed system.

In addition, it has been seen that the proposed system has accurately detected
the hand type from the acquired image with correct detection accuracy of 100%.

Table 1. Results of Unimodal Hand Geometry Matching

System Features Matching Algorithm ROI Type CRR EER

[21] Minutiae Haudroff Distance Subpart 86.42 15.29

[14] Moments Support Vector Machine Subpart 57.57 45.78

[16] Vein Correlation Subpart 96.14 5.31

[17] Vein Correlation Subpart 97.28 4.16

Proposed Vein Proposed Full 98.71 2.43

5 Conclusions

An accurate personal authentication based on palm-dorsa vein patterns has been
presented in this paper. It has acquired hand-dorsa images under unconstrained
environment in a contact-less manner from a low cost camera. Palm-dorsa has
been extracted from acquired images by using the domain knowledge of hand ge-
ometry. Multi-scale matched filtering is applied on it to extract vein pattern. For
authentication, vein pattern has been used for matching. But it can be erroneous
due to geometrical deformations, occlusion and noises. Thus, image registration
based correlation matching has been used. To evaluate the performance of the
proposed system, a database containing 840 images from 140 different classes
has been used. Experimental results have illustrated that the proposed system
exhibit superior performance than other existing systems.

Acknowledgment. Authors are thankful to Saurabh Srivastava who have
helped in designing the setup and data acquisition, and to the anonymous re-
viewers for their valuable suggestions. This work is partially supported by the
Department of Information Technology (DIT), Government of India.

References

1. Badawi, A.M.: Hand vein biometric verification prototype: A testing performance
and patterns similarity. In: International Conference on Image Processing, Com-
puter Vision, and Pattern Recognition, pp. 3–9 (2006)

2. Chen, Q., Defrise, M., Deconinck, F.: Symmetric phase-only matched filtering of
fourier-mellin transforms for image registration and recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 16(12), 1156–1168 (1994)

A Vein Biometric Based Authentication System 435

3. Cross, J., Smith, C.: Thermographic imaging of the subcutaneous vascular network
of the back of the hand for biometric identification. In: International Carnahan
Conference on Security Technology, pp. 20–35. IEEE (1995)

4. Flynn, P.J., Jain, A.K., Ross, A.A.: Handbook of biometrics. Springer (2008)
5. Gupta, P., Gupta, P.: Slap fingerprint segmentation. In: International Conference

on Biometrics: Theory, Applications and Systems, pp. 189–194. IEEE (2012)
6. Gupta, P., Gupta, P.: A dynamic slap fingerprint based verification system. In:

Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2014. LNCS, vol. 8588,
pp. 812–818. Springer, Heidelberg (2014)

7. Gupta, P., Gupta, P.: An efficient slap fingerprint segmentation and hand classifi-
cation algorithm. Neurocomputing 142, 464–477 (2014)

8. Hartung, D., Aastrup Olsen, M., Xu, H., Thanh Nguyen, H., Busch, C.: Compre-
hensive analysis of spectral minutiae for vein pattern recognition. IET Biomet-
rics 1(1), 25–36 (2012)

9. Hartung, D., Olsen, M.A., Xu, H., Busch, C.: Spectral minutiae for vein pattern
recognition. In: International Joint Conference on Biometrics, pp. 1–7. IEEE (2011)

10. Heenaye, M., Khan, M.: A multimodal hand vein biometric based on score level
fusion. Procedia Engineering 41, 897–903 (2012)

11. Huang, B., Dai, Y., Li, R., Tang, D., Li, W.: Finger-vein authentication based
on wide line detector and pattern normalization. In: International Conference on
Pattern Recognition, pp. 1269–1272. IEEE (2010)

12. Kumar, A., Prathyusha, K.V.: Personal authentication using hand vein triangula-
tion and knuckle shape. IEEE Transactions on Image Processing 18(9), 2127–2136
(2009)

13. Kumar, A., Zhou, Y.: Human identification using finger images. IEEE Transactions
on Image Processing 21(4), 2228–2244 (2012)

14. Li, X., Liu, X., Liu, Z.: A dorsal hand vein pattern recognition algorithm. In:
International Congress on Image and Signal Processing, vol. 4, pp. 1723–1726.
IEEE (2010)

15. Lin, C.L., Fan, K.C.: Biometric verification using thermal images of palm-dorsa vein
patterns. IEEE Transactions on Circuits and Systems for Video Technology 14(2),
199–213 (2004)

16. Miura, N., Nagasaka, A., Miyatake, T.: Feature extraction of finger-vein patterns
based on repeated line tracking and its application to personal identification. Ma-
chine Vision and Applications 15(4), 194–203 (2004)

17. Miura, N., Nagasaka, A., Miyatake, T.: Extraction of finger-vein patterns using
maximum curvature points in image profiles. IEICE Transactions on Information
and Systems 90(8), 1185–1194 (2007)

18. Soni, M., Gupta, P.: A robust vein pattern-based recognition system. Journal of
Computers 7(11), 2711–2718 (2012)

19. Wang, K., Zhang, Y., Yuan, Z., Zhuang, D.: Hand vein recognition based on
multi supplemental features of multi-classifier fusion decision. In: International
Conference on Mechatronics and Automation, pp. 1790–1795. IEEE (2006)

20. Wang, L., Leedham, G., Cho, S.Y.: Infrared imaging of hand vein patterns for
biometric purposes. IET Computer Vision 1(3), 113–122 (2007)

21. Wang, L., Leedham, G., Siu-Yeung Cho, D.: Minutiae feature analysis for infrared
hand vein pattern biometrics. Pattern Recognition 41(3), 920–929 (2008)

22. Wilson, C.: Vein pattern recognition: a privacy-enhancing biometric. CRC Press
(2011)

23. Yang, J., Li, X.: Efficient finger vein localization and recognition. In: International
Conference on Pattern Recognition, pp. 1148–1151. IEEE (2010)

436 P. Gupta and P. Gupta

24. Yang, J., Shi, Y.: Finger–vein roi localization and vein ridge enhancement. Pattern
Recognition Letters 33(12), 1569–1579 (2012)

25. Yang, J., Shi, Y.: Towards finger-vein image restoration and enhancement for
finger-vein recognition. Information Sciences 268, 33–52 (2014)

26. Yang, J., Shi, Y., Yang, J., Jiang, L.: A novel finger-vein recognition method
with feature combination. In: International Conference on Image Processing,
pp. 2709–2712. IEEE (2009)

27. Zhang, Z., Ma, S., Han, X.: Multiscale feature extraction of finger-vein patterns
based on curvelets and local interconnection structure neural network. In: Interna-
tional Conference on Pattern Recognition, pp. 145–148. IEEE (2006)

Digital Forensic Technique

for Double Compression Based JPEG Image
Forgery Detection

Pankaj Malviya and Ruchira Naskar

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Rourkela–769008, India
malviyapankaj023@gmail.com, naskarr@nitrkl.ac.in

Abstract. In today’s cyber world images and videos are the major
sources of information exchange. The authenticity of digital images and
videos is extremely crucial in the legal industry, media world and broad-
cast industry. However, with huge proliferation of low-cost, easy–to–use
image manipulating software the fidelity of digital images is at stake.
In this paper we propose a technique to detect digital forgery in JPEG
images, based on ”double–compression”. We deal with JPEG images be-
cause JPEG is the standard storage format used in almost all present
day digital cameras and other image acquisition devices. JPEG com-
presses an image to optimize the storage space requirement. When an
attacker or criminal alters some part of a JPEG image by any image–
editing tool and rewrites it to memory, the forged or modified part gets
doubly–compressed. In this paper, we exploit this double–compression
in JPEG images to identify digital forgery.

Keywords: Cyber forgery, Digital forensics, Image tampering, JPEG
compression, Image Authentication.

1 Introduction

In todays cyber world digital images and videos act as the most frequently trans-
mitted information carriers. This has been made possible by the huge prolifer-
ation of low–cost, efficient devices such as digital cameras for image acquisition
and availability of high–speed transmission media such as the internet. Gone
are the days when image acquisition was camera film dependent and image for-
mation could only be done by experts in dark rooms. With the advancement
of analog to digital converters, every step of digital image acquisition, forma-
tion and storage, is now well within the grip of the common man. However, the
present day easy availability of low–cost image processing software and desktop
tools, having immense number of multimedia manipulating features, pose threat
to the fidelity of digital multimedia data. Common image processing operations
such as cropping, splicing, blurring etc., made widely available by such software
tools, compel us to question the trustworthiness of the digital images and videos.

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 437–447, 2014.
c© Springer International Publishing Switzerland 2014

438 P. Malviya and R. Naskar

Digital images and videos being the major sources of evidence towards faithful-
ness of any event, maintenance of their trustworthiness and reliability is a major
challenge in todays digital world. Digital images act as the major electronic ev-
idences for law enforcement across the world. They are the most effective and
efficient means to collect digital evidences from crime scenes. It is extremely
crucial to preserve such digital evidences against cyber–crime for suitable pre-
sentation in court of law as well as for the media world and broadcast industry.
The need for investigation and maintenance of the fidelity and reliability of dig-
ital images and videos, has given rise to the field of “Digital Forensics” [1,2] in
the research community. Over the recent years, researchers have focused on the
areas of digital image authentication, detection of tampering, identification of
image forgery as well as investigation of image sources.

In most present–day digital cameras the standard format for image storage
is JPEG (Joint Photographic Experts Group) [3]. This standard is used due to
the fact that JPEG format provides the best compression, hence optimal space
requirement for image storage. The statistical as well as perceptual redundancy
in natural images, are efficiently exploited in JPEG compression. Moreover, the
JPEG format has an adaptive compression scheme that allows saving in varying
levels of compression. However, every time we compress an image some space
is saved but at the same time some information loss occurs. Also when the im-
age is reconstructed from its JPEG compressed version, it contains degradations
compared to the original image. Although the loss of information is disadvan-
tageous while image forgery detection, various JPEG features are advantageous
for identification of alteration or modification of JPEG images.

In this paper, we present a digital forensic technique for detection of forgery
in JPEG images. To clearly understand the concept behind JPEG forgery inves-
tigation technique, proposed in this paper, let us consider a modification attack
carried out on JPEG images. To deliver the attack, the attacker first opens the
image in an image editing software, manipulates some regions of the image, and
finally re–saves the image back in JPEG format. In this entire process, some
regions of the image get “doubly–compressed”. Hence, degree of compression of
the forged part is different from the rest of the image. This difference in degree of
compression, although not perceptible to the Human Visual System (HVS), has
been efficiently utilized in our work to provide evidence of image manipulation.

Rest of the paper is organized as follows. In Section 2 we present the back-
ground of digital forensics and its application to JPEG images. In Section 3
we describe in detail, the proposed technique for detection of digital forgery
in JPEG images. In Section 4 we present our experimental results. Finally we
conclude the paper with directions for future research in Section 5.

2 Related Work

Digital forensics is the branch of science and technology which deals with detec-
tion of cyber–crime and forgery by investigation of digital evidences. Here we

Digital Forensic Technique for Double Compression 439

deal with digital forensics of multimedia data, specifically digital image foren-
sics [4,2].

In this work we deal with detection of digital image forgery, specifically JPEG
images. A digital image forgery may involve a single or multiple images. In a
single image forgery, some portion of the image is replaced by some other portion.
Hence some objects may be deleted from, modified or repeated in the image.
Additionally such image modifications are usually accompanied by smoothening
of the object edges by smudging or blurring selected regions of the image. As
mentioned previously, in todays scenario, easy availability of user–friendly image
processing tools has made such image manipulations extremely trivial, even for
novice users.

Many digital forensic methods exploit the statistical characteristics, inher-
ently present in natural images (for e.g., very high pixel–value correlation) to
identify forged or unnatural images. In natural images, visual descriptors are
features used to quantify the visual stimulus that the image produces in the
HVS. One example of visual descriptors used in [5] to identify natural images, is
color properties of the image. The authors [5] have used the number of distinct
colors comprising the image as well spatial variation of colors in the image. Reg-
ularity in color composition is another inherent natural image statistical feature,
exploited by the authors in [7], by considering that the foreground (objects) and
background are highly color–compatible in natural images.

Examples of other natural image statistics used in digital image forensics are
shadow texture, surface roughness or smoothness, power spectrum of image [8,9]
etc. Wavelet domain coefficients and various moments of the wavelet distribution,
such as mean and variance, are also used by some researchers [10,11] as natural
image statistics in digital forensics.

In digital image forgeries involving multiple images, portion(s) of one image
is maliciously transplanted into another, to give an idea to the viewers that the
transplanted portion is a valid part of the latter image. This class of forgery is
referred as “copy–move” forgery. One of the earliest digital forensic techniques for
copy–move attack, proposed by Fridrich et. al. in [12], is based on the principle
of cloning identification. In [12], the authors search for two image regions, having
exactly identical pixel values. However standard images consisting of thousands
of pixels, it is computationally quite infeasible to carry out a brute–force search
to find such identical (image region) pairs. To make the searching efficient, the
authors divide the entire image into fixed–sized blocks and then sort the blocks
lexicographically. Post–sorting, extraction of identical image blocks from this
sorted list is trivial.

While transplanting an image block onto some other region of the image,
many times the adversary needs to resize the block, to match the dimension of
the region to obscure. One such forgery approach has been presented in [13].
Re–sampling (by an integer factor) induces periodic correlations among original
and forged image blocks. Such correlation among signal samples, a phenomenon
not prevalent in natural images, is exploited in [13] to detect transplantation of
re–sampled image blocks.

440 P. Malviya and R. Naskar

The image blocks which are transplanted may also be geometrically trans-
formed by the attacker in many situations, e.g. an image block may be rotated
by some angle by the attacker before it is transplanted. In such case, dupli-
cate image regions may be detected by matching Scale–invariant feature trans-
form (SIFT) [14] keypoints of the regions. Such forensic approaches to diagnose
copy–move forgery having geometrically transformed image blocks, have been
proposed in [15,16].

Digital forensic techniques for JPEG forgery detection, based on analysis of
JPEG ghost classification are proposed in [17] and [18]. JPEG ghost classifica-
tion is a forensic analysis technique that enables detection of multiple JPEG
compressions in an image. As discussed previously, when some region in a JPEG
image is manipulated by an adversary, it undergoes multiple compressions while
re–saving. Multiple JPEG compressions, limited to specific image regions are
detectable by investigation of JPEG ghosts. JPEG ghosts differentiate between
the different compression ratio in the image while compressing the image more
than once. A JPEG ghost is uncovered by comparing original and re–compressed
versions of the forged image. The technique of JPEG image forgery detection
through analysis of JPEG ghosts is beneficial in situations where some parts of
the image is forged and it is very difficult to visually identify the tampering. To
understand the details of JPEG forgery detection through classification of JPEG
Ghosts, the readers are requested to refer to [17,18].

3 Proposed Work

In a JPEG image, whenever any kind of editing is carried out on the image and
it is written back to memory, the image undergoes re–compression. This feature
is exploited in the proposed work to detect any illegal modification or tampering
in JPEG images. To make the idea clearer, let us consider the 512× 512 Lena
images shown in Fig. 1 (a) and (c), both of which are JPEG images. Now let
us consider a modification attack which modifies a region at the center of the
original image shown in Fig. 1(a). This central region of size 200 × 200 pixels,
shown in Fig. 1(b), has been extracted, re–saved at a different JPEG quality and
transplanted into the original image of Fig. 1(a) to produce the forged image of
Fig. 1(c). It is evident from Fig. 1 that the regions saved at different JPEG
quality factors, are not perceptibly distinguishable.

Next, we propose a forensic technique to identify such JPEG forgeries with
multiple degrees of compression (the degree of compression varying from region
to region) within the same image. To detect such forgery of a JPEG image, the
following procedure is followed:

1. First, we compress the entire JPEG image iteratively, at varying degrees of
compression. We refer to this degree of compression as the JPEG quality
factor. The JPEG quality factor may range from 0 to 100. Higher the JPEG
quality, higher is the image quality, with quality factor 100 implying no
compression of the image at all. With decrease in the value of quality factor,

Digital Forensic Technique for Double Compression 441

Fig. 1. Lena JPEG images: (a) Original 512×512 image; (b) Central 200×200 portion,
re–saved at a different degree of compression; (c) Forged image having its central
portion modified

the image degradation increases. In our work, we vary the quality factor
between [40,90].

2. Let the quality factor of the original JPEG image I be q, which is a constant,
and the quality factor used for re–compression be q′, which is varied in [40,90]
in steps of 1. For each q′, we find the squared–error matrix of the image. The
squared–error matrix D1 is defined as:

D1(i, j) = [I(i, j)− Iq′ (i, j)]
2
, ∀512 ≤ i, j ≤ 512 (1)

where image Iq′ (i, j) is produced by compressing I at quality q′.
3. From each squared–error matrix Iq′ , we again compute the consecutive hor-

izontal pixel–pair differences, row–wise. The absolute pixel–pair differences
are computed as:

D2 = {|Iq′(i, j)− Iq′(i, j + 1)| : 1 ≤ i ≤ 512, 1 ≤ j ≤ 511} (2)

where D2 contains 512× 511 elements.
4. We consider D2 as the vector [D2(1), D2(2), . . . D2(512 × 511)]. And we

consider another vector P of pixel–pair positions in a 512 × 512 matrix;
P = [1, 2, . . .512× 511].

5. Finally, we plot the vector of absolute differences, D2 against P . We inves-
tigate the variation of the elements of D2 over the entire 512 × 512 image
matrix, from the D2 vs. P plot. Our key observation in this paper is that,
for forged JPEG images (containing multiple degrees of compression within
the same image), for certain values of q′ ∈ [40, 90], the D2 vs. P plot demon-
strates a sudden rise, which remains persistent over a range of P (pixel–pair
positions), corresponding to the area or region of image tampering. That
is, if 200 × 200 pixels are tampered, the D2 values remain persistent for
(200× 199 =)39, 800 positions, after the sudden rise.

The D2 vs. P plot for the Lena image in Fig. 1 has been shown in Fig. 2.
Fig. 2(a) shows a sudden rise in the plot, which is persistent for the range of

442 P. Malviya and R. Naskar

Fig. 2. Absolute squared–error pixel–pair differences vs. pixel–pair positions: (a) Plot
for forged Lena image; (b) Plot for authentic/original Lena image

pixels having undergone double–compression due to modification. This feature
of JPEG images, provides an evidence of JPEG image forgery, involving double–
compression. Authentic JPEG images having no sub–part manipulated (hence
doubly–compressed), demonstrate neither such a sudden rise of D2 values nor its
persistence. This is evident from Fig. 2(b), which shows the D2 vs. P character-
istics of the authentic or original JPEG Lena image, without any modification
or tampering.

Note that, the proposed scheme is a blind forgery detection technique, where
we need neither the original image nor any information pre–computed from the

Digital Forensic Technique for Double Compression 443

Fig. 3. 512× 512 Test Images

original image, for forgery detection. The only information a forensic analyzer
has in a blind detection scheme is the (possibly) forged image.

4 Results and Discussion

The proposed scheme has been implemented in MATLAB. We have utilized the
imwrite function of the MATLAB Image Processing Toolbox to compress im-
ages at varied JPEG quality factors. Our test images include standard image
processing test images. In this paper we present the results for six test images,
shown in Fig. 3.

In our experiments, we have manually induced modification into our test
images to test the efficiency of forgery detection by the proposed scheme. To
bring about this manual modification attack, we have performed the following
steps:

1. We extracted a central 200× 200 pixels region from a test image.
2. The extracted portion was re–saved as a separated JPEG image, at a qual-

ity factor different from that of the original test image, using the imwrite

function.
3. The re–compressed portion is transplanted into the original image, at the

same central position.

Now, the manually modified or forged images were analyzed by the proposed
technique to detect forgery.

As discussed in Section 3, different values of forged image re–compression
factor q′, give different squared–error matrices Iq′ . The optimal squared–error
matrix is determined to be the one, from which the modified image region(s)

444 P. Malviya and R. Naskar

Fig. 4. Squared–error matrices for test image Lena, at varying degrees of re–
compression q′

is(are) most clearly visible. For all our test images, the re–compression factor q′

generating the optimal squared–error matrix, has been found to lie within the
range [65,85]. For the Lena image, the squared–error matrices for varying degree
of re–compression, q′, have been shown in Fig. 4. Here, the optimal squared–
error matrix, in which the modified image regions are most clear, is generated
by q′ = 70.

For a particular test image, we have investigated double–compression based
JPEG forgery by analyzing its D2 vs. P characteristics, corresponding to the
optimal squared–error matrix, for which q′ ∈ [65, 85]. These plots have been
shown in Fig. 5 (a)–(d) for our test images Lena, Mandrill, Barbara and Goldhill.
The plots in Fig. 5 prove that for modified JPEG images there is a sudden
increase in absolute squared–error pixel–pair difference, and this increased value
is retained over a range of pixel–pair locations, corresponding to the area of
tampering. However this characteristics is inherent in JPEG images containing
regions with double–compression. In JPEG images with no modification, such
characteristics is absent. This is evident from the D2 vs. P plots corresponding
to our original and authentic test images, as shown in Fig. 6.

Note that the plots corresponding to authentic Barbara and Goldhill images
(Fig. 6 (c) and (d) respectively) demonstrate considerable uniformity in differ-
ence values (≈ 0) over the entire range of pixel–pair locations, as compared to

Digital Forensic Technique for Double Compression 445

Fig. 5. Absolute squared–error pixel–pair differences vs. pixel–pair locations: (a) Plot
for forged Lena image; (b) Plot for forged Mandrill image; (c) Plot for forged Barbara
image; (d) Plot for forged Goldhill image; (e) Plot for forged Plane image; (f) Plot for
forged Sailboat image

Lena and Mandrill (Fig. 6 (a) and (b) respectively). This is due to high corre-
lation among neighboring pixels, present in Barbara and Goldhill images. Due
to minimum inter–pixel correlation in Mandrill, the plot of Fig. 6(b) shows the
maximum randomness in variation of absolute difference. However, irrespective
of inter–pixel correlation among neighboring pixels, a forged JPEG image always
demonstrates consistent D2 vs. P characteristics, as is evident from Fig. 5.

446 P. Malviya and R. Naskar

Fig. 6. Absolute squared–error pixel–pair differences vs. pixel–pair locations: (a) Plot
for authentic Lena image; (b) Plot for authentic Mandrill image; (c) Plot for authentic
Barbara image; (d) Plot for authentic Goldhill image; (e) Plot for authentic Plane
image; (f) Plot for authentic Sailboat image

5 Conclusion

In this paper, we have presented a digital forensic technique for detection of
JPEG image forgery, which results from modifying the image and re–writing
it to memory by an adversary. The proposed technique exploits the feature of
“double–compression”, inherent in forged JPEG images. Out experimental data
prove the forgery detection efficiency of the proposed scheme. Automation of
Quality factor determination is the future direction for this research. Utilizing
the forensic results and data related to JPEG forgery, recovery of forged JPEG
regions may also be investigated in the future.

Digital Forensic Technique for Double Compression 447

References

1. Sencar, H.T., Memon, N. (eds.): Digital Image Forensics: There is More to a Picture
than Meets the Eye. Springer, New York (2013)

2. Redi, J., Taktak, W., Dugelay, J.L.: Digital Image Forensics: A Booklet for Begin-
ners. Multimedia Tools and Applications 51(1), 133–162 (2011)

3. Wallace, G.: The JPEG still picture compression standard. IEEE Transactions on
Consumer Electronics 34(4), 30–44 (1991)

4. Sencar, H.T., Memon, N.: Overview of state-of-the-art in digital image forensics.
Indian Statistical Institute Platinum Jubilee Monograph series titled Statistical
Science and Interdisciplinary Research. World Scientific, Singapore (2008)

5. Wu, J., Kamath, M.V., Poehlman, S.: Detecting differences between photographs
and computer generated images. In: Proceedings of the 24th IASTED Interna-
tional conference on Signal Processing, Pattern Recognition, and Applications,
pp. 268–273 (2006)

6. Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and Tex-
ture Descriptors. IEEE Trans. Circuits and Systems for Video Technology 11(6),
703–715 (2001)

7. Lalonde, J.F., Efros, A.A.: Using color compatibility for assessing image realism.
In: Proceedings of the International Conference on Computer Vision (2007)

8. Wang, N., Doube, W.: How real is really a perceptually motivated system for quan-
tifying visual realism in digital images. In: Proceedings of the IEEE International
Conference on Multimedia and Signal Processing, pp. 141–149 (2011)

9. Ng, T.T., Chang, S.F.: Classifying photographic and photorealistic computer
graphic images using natural image statistics. Technical report, ADVENT Techni-
cal Report, Columbia University (2004)

10. Farid, H., Lyu, S.: Higher–order wavelet statistics and their application to digital
forensics. In: IEEE Workshop on Statistical Analysis in Computer Vision (2003)

11. Srivastava, A., Lee, A.B., Simoncelli, E.P., Zhu, S.C.: On advances in statistical
modeling of natural images. Journal of Mathematical Imaging 18(1), 17–33 (2003)

12. Fridrich, A.J., Soukal, B.D., Lukáš, A.J.: Detection of copy-move forgery in digital
images. In: Proceedings of Digital Forensic Research Workshop (2003)

13. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of
re–sampling. IEEE Transactions on Signal Processing 53(2), 758–767 (2005)

14. Lowe, D.: Distinctive image features from scale–invariant key–points. Internaional
Journal of Computer Vision 60(2), 91–110 (2004)

15. Pan, X., Lyu, S.: Detecting image duplication using SIFT features. In: Proceedings
of IEEE ICASSP (2010)

16. Huang, H., Guo, W., Zhang, Y.: Detection of copy–move forgery in digital im-
ages using SIFT algorithm. In: IEEE Pacific–Asia Workshop on Computational
Intelligence and Industrial Application (2008)

17. Farid, H.: Exposing digital forgeries from JPEG ghosts. IEEE Transactions on
Information Forensics and Security 4(1), 154–160 (2009)

18. Zach, F., Riess, C., Angelopoulou, E.: Automated Image Forgery Detection through
Classification of JPEG Ghosts. In: Proceedings of the German Association for
Pattern Recognition (DAGM 2012), pp. 185–194 (August 2012)

Preserving Privacy in Location-Based

Services Using Sudoku Structures

Sumitra Biswal1, Goutam Paul2, and Shashwat Raizada3

1 Independent Researcher, New Delhi 110 095, India
sbiswal2912@gmail.com

2 Cryptology and Security Research Unit,
R. C. Bose Centre for Cryptology & Security,

Indian Statistical Institute, Kolkata 700 108, India
goutam.paul@isical.ac.in
3 Applied Statistics Unit,

Indian Statistical Institute, Kolkata 700 108, India
shashwat.raizada@gmail.com

Abstract. With the prevalence of ubiquitous computing and the in-
crease in the number of mobile phone and smartphone users, multiple
features and applications are being introduced to facilitate users’ daily
life. However, users are unaware of the potential danger when the data is
collected in return by the service providers. Users and the data associated
with them are vulnerable to privacy attacks and threats. The concern-
ing issue has been of interest to many researchers and several techniques
have been proposed to counteract such threat and vulnerability issues.
This paper proposes a new technique using Sudoku structures and shows
how it can ensure users’ privacy and degrade the confidence level at the
adversary’s end for tracking the user. In the proposed scheme, the ser-
vice providers can be customized for varying needs of the user and in
accordance with the types of queries. As a simple yet effective technique,
it can create reasonable obfuscation for the adversary while guaranteeing
accuracy of service for the users.

Keywords: Anonymity, Location-Based Services, Location Privacy,
Obfuscation, Sudoku.

1 Introduction and Motivation

Consider the plight of an undercover cop caught spying in the territories con-
trolled by drug cartel. He has been shot and is injured. However, he runs off and
lands up in a place and is unaware of any nearby medical centers. He could call
someone or some hospital known to him for his help. But he might be tracked;
meanwhile, he cannot afford to disclose his position anyway. It would be ideal if
he knew a place nearby. So, how is he supposed to meet his requirement without
disclosing his location?

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 448–463, 2014.
c© Springer International Publishing Switzerland 2014

Preserving Privacy in Location-Based Services Using Sudoku Structures 449

This is where privacy-preserving technique comes into scenario. It is critical,
not only for the agent but also for every user who wants to get some information
via the Location-Based Services (LBS) offered in one’s smart phones, without
revealing one’s personal data that include one’s location as well.

Several studies have found that smartphone and mobile phone users access
these LBS facilities more often. A recent study by the Pew Internet and American
Life Project [1] reveals that about 74% of smartphone users overall accessed
LBS. This tremendous and apparently ever increasing growth of mobile phone
and smartphone users equipped with LBS, certainly are exposed to irresistible
and plethora of applications and services, which they avail at the cost of their
private information.

The computation of region for providing LBS is not limited to a single server.
The work gets divided amongst many servers and third party services that can
be untrustworthy. An adversary might mask itself as one of the trusted third
party or hack into one of those intermediary service providers, thereby gaining
control over the database to extract private or sensitive data from the users
query.

Elaina Zintl [14] reports that according to Privacy Rights Clearinghouse
(PRC), smartphones and mobile phones can be used to track the user location,
as well as everything they do on it. For example, a device known as Stingray,
brought up by Harris Wireless Products Group of Melbourne, is a sham cell
phone tower that deceits all nearby wireless devices to connect to it.

Similar violations of user privacy have been reported in news media as well.
The Red Tape Chronicles [14] finds that the gadget is able to collect data such as
the cell phone’s unique ID, the dialed numbers and location information without
user’s knowledge. The Brickhouse Security [14] also states that all the informa-
tion recorded by the service providers are accessible by the third parties and as
well as the Government agencies.

Another report [13] justifies how exposed data can be of threat. Certain com-
panies that try to get rid of old data and upgrade to newer versions, sell off their
obsolete systems on eBay and other online websites. However, as most of these
companies are unaware of proper way of deletion of data, the system sold still
pertain to some amount of private data.

It is therefore pertinent that without forbidding the usage of LBS, we need
to develop a technique wherein LBS services are provided without collecting
sensitive or privacy oriented user data. This technique would work at a prime
level for various kinds of queries like, private query over public data, public
query over private data and private query over private data [11]. It should also
focus on user location privacy and involve client-server architecture to attain an
acceptable level of computational complexity and to ensure privacy of desired
level. Our current work focuses on designing such a system exploiting the Sudoku
structure. As we will see, a clever way of using multiple Sudoku structures gives
the scope for preserving user’s privacy in location-based services.

450 S. Biswal, G. Paul, and S. Raizada

2 Related Works

We find two major approaches to address the problem of location privacy, one
involving anonymity and the other using obfuscation.

The most widely used method to achieve anonymity has been using
pseudonyms, i.e., assigning false identity to users during query. Beresford and
Stajano [12] have come up with methods for tracing the users - their names,
the places they most frequently visit and their stay in office building. Despite
frequent changes in pseudonyms, it is not difficult to trace out the actual user
and their location through queries posed by the users and collected database.

k-anonymity is another important concept brought by Sweeney [3]. This deals
with making a user indistinguishable from other k − 1 users. This k-factor
proposed by Sweeney has made major contributions to the field of Privacy-
Preserving technique.

Bugra Gedik and Ling Liu [4] have come up with personalization of k-factor
to suit users’ anonymity level. They believe that “One size fits all” might not be
valid in every case. We also understand that a uniform value of k might not satisfy
users’ environmental variations such as sparse domain or instantaneous change
of population density while on the move. In [8], Vitaly also focuses the same
aspect as to how it might get useless with respect to the curse of dimensionality.

We also observe from [10] that frequently occurring elements having similar
query can make the actual user vulnerable to another major and popular form
of attack, called probabilistic inference attack. Entropy l-diversity technique cer-
tainly gives the efficiency of a database in terms of diversity. However, entropy
might not be sufficient to reveal the risk level of adversary attack, especially,
probability inference attack.

Hashing combined with k-anonymity, as described in [7], has major influence
to serve the issue of private query on private data. However, we believe that
it might lead to formation of look-up tables by comparing the value against a
certain place. This might violate the trajectory mode of privacy [11] (avoidance
of linking locations to form trajectory).

Krumm [2,9], finds that adding random noise to obfuscate users’ location has
also been influential in the field of concern but, the inference attack still lies high
on certain entities most probably due to non-uniformity.

Other much relevant and significant techniques of obfuscation based on accu-
racy of users presence to enhance ones privacy are Location perturbation, Spatial
cloaking, Spatio-Temporal cloaking [11]. However, their Quality of Service (QoS)
degrades with increasing masks.

Some papers have given novel location privacy preserving mechanisms where
the worst case scenarios are well addressed along with the strategies to be
adopted by the users to maintain privacy. In [20,21], the use of Markov model to
determine the users real identity is well described. Along with, the level of pri-
vacy incurred by users and the rate of failure of an adversary are well computed.
Further, mechanisms to safeguard user privacy has been described along with
how optimal it is to ensure privacy of user. However, the work [21] talks about

Preserving Privacy in Location-Based Services Using Sudoku Structures 451

distortion factor that has impact on QoS rendered to the user. The trade off
between privacy and QoS still persists. Further, the choice of imposing maximum
quality loss to the user seems unrealistic, since in general use, determining the
amount of privacy required cannot be best quantified. Again, the adversary, in
the worst case, turns out to be the LBS, there are chances of determining the
degree of quality loss manipulation by a user at a given event (position and
timestamp). Hence, coalescing such degree of quality loss over a time period can
also help in building user profile.

In [22], the various means of attack on location privacy along with parameters
that can be source of eroding location privacy have been well described. Of all
the points enlisted, the inference attack, availability of quasi-identifier’s users’
Point of Interests (POIs) have been discussed which are also covered in our work
with strategic mechanism as how to make it difficult for adversary to violate
trajectory privacy.

Most research works infer that the degree of security and data privacy lies
on a threshold value defined by the user or in the prescribed algorithm. The
threshold level, when not met, can cause data leakage for adversary attacks.

Thus, to provide the optimum level of security and user privacy, it is required
that the data obfuscation be done to such a degree, so as neither to distort it
to a high level, nor to release enough data for the adversaries to breech user
privacy. It should be designed to increase confidence level at the user end to get
accurate response for the query and at the same time degrade the confidence
level at the adversary’s end to identify the location and identity of the user.

It is also to be noted that our work is not a pure form of k-anonymity. Our
work does not have k-factor of users for posing a query. It also does not rely on
third parties like anonymizers. In [5], Ghinita et al. proposed the Private Infor-
mation Retrieval (PIR) framework which is very similar to our mechanism. Both
include a grid granularity method of computing entities desired by the querying
user. Both do not require trusted third parties. Identification probability and
correlation attacks are also significantly reduced in both the methods. However,
the difference lies in the cryptographic support extended by PIR, while our work
focuses on retrieving information without disclosing user’s location. Further, the
cost incurred in PIR is comparatively higher than that of Kido’s work [15] and
our work. As per [6], none of the optimization mechanisms used can break the
linear server computation restriction which forms an integral part of the PIR
protocol. Hence, though PIR gives so far the best privacy feature to the users in
LBS, yet it incurs high cost of communication.

3 Sudoku-Based Privacy Preserving Technique

The technique based on a Sudoku based architecture, can map an entire city
over a set of Sudoku grids. A user’s location is determined by the block number
in the Sudoku grid.

452 S. Biswal, G. Paul, and S. Raizada

3.1 Why Sudoku?

Sudoku is a class of puzzles consisting of a partially completed rectangular grid
of N2 cells, partitioned into N regions each containing N cells, where N = n2, n
being an integer. The grid has to be filled in using a pre-defined set of N distinct
symbols (typically, the numbers 1, . . . , N), so that each row, column and region
contains exactly one of each element of the set. The puzzle was popularized in
1986 by the Japanese puzzle company Nikoli, under the name Sudoku, meaning
single number.

Sudoku variants are characterized by the size N and shape of their regions.
For classic Sudoku, N = 9 and the regions are 3 × 3 squares. If the regions
are simply rows and columns, the Sudoku becomes a latin square. The general
problem of solving n2 × n2 Sudoku grids is known to be NP-complete [17]. The
number of classic 9 × 9 Sudoku solution grids is approximately 6.67 × 1021. It
has recently been shown that the arrangement of numbers in Sudoku puzzles
have greater Shannon entropy than the number arrangements in a randomly
generated 9× 9 matrices [16].

The rationale behind using a sudoku-based scheme is as follows.

1. Sudoku is an MDS (Maximal Distance Separable) matrix. There is no num-
ber that repeats itself in the same row or column or region.

2. It follows uniform distribution principle. Each number appears scattered
evenly in a given pattern.

3. There may be multiple solutions to a sudoku puzzle. Because of the com-
plexity of finding a solution and multiplicity of the solutions, a Sudoku grid
satisfies the confidence level rising at the user-end and degrading confidence
level at adversary’s end.

3.2 Parameters of Our Scheme

Consider that a city is mapped by different servers on the basis of different
Sudoku structures. The structure gets repeated to cover the entire city. It is nec-
essary to define certain terms or parameters in this context, in order to describe
and evaluate our technique. Let [1, N] denote the set of integers {1, . . . , N}.
Definition 1. Grid. A grid is a basic N × N Sudoku square, containing the
numbers from [1, N].

Definition 2. Order. An N × N Sudoku grid containing the numbers from
[1, N] is said to have order N .

Definition 3. Cell. A cell is the smallest square in the Sudoku grid, labeled by
exactly one number in [1, N].

Definition 4. Cellsize. The length of the edge of each cell in meters is called
the cellsize.

Definition 5. Block. A block refers to the set of cells in the city having the
same number from [1, N].

Preserving Privacy in Location-Based Services Using Sudoku Structures 453

3.3 Description of the Proposed Technique

Let the order be N . The cellsize of the smaller cells in a given grid can vary
within 15 sq.km. Assume that, the order of the Sudoku structure varies from
one mapping server to other, as depicted in Fig. 1, Fig. 2 and Fig. 3.

In accordance to service provider 1, suppose the user finds himself in cell
numbered 2 and queries the server, “Find the hospitals in cell numbered 2.”
The benefit here lies in the fact that, the server has to respond to the query
irrespective of users position. The response contains hospitals from all the cells
which are numbered 2 in the city.

Fig. 1. Service Provider 1 maps city with
Sudoku structure of order N=4

Fig. 2. Service Provider 2 maps city with
Sudoku structure of order N=9

Fig. 3. Service Provider 3 maps city with Sudoku structure of order N=25

In the second step, the user wants a refined answer to his or her query, as
all entities are not relevant. Asking the same server would be useless and he
cannot afford to give more information to get the reply. So the second step
involves taking help of service provider 2 which has mapped the city according
to its terms. The procedure repeats but the set of responses generated can vary
according to the pattern and structure of the Sudoku.

454 S. Biswal, G. Paul, and S. Raizada

The refined result involves comparison of the collected sets of response from
each server to find the most common entity/entities. Thus, the user can get
his/her desired result. Since every server is independent of each other, it is likely
that an adversary masking itself as one of those servers cannot affect the location
privacy of the user. There are chances that a user might get more than one or
two entities in the refined stage which gives the user an option to go for any of
those entities, thereby obfuscating the refined response for the adversary.

A major benefit lies in the mining of common entities restricted to the user
device. The technique can work more effectively by perceptively collecting the
amount of entities used for obfuscation as well as computing cell size for an
optimal amount of entities for privacy preservation. However, potential threats
exist that two or more servers are hacked by an adversary and sets generated
are collided before it reaches the user system. Therefore, it is important that,
we aim at encrypting the sets such that unauthorized person cannot interpret
the results.

Fig. 4. Schematic Diagram of the Mechanism

Each service provider makes its scheme, i.e., the cellsize and the Sudoku map-
ping pattern (order, grid structure), and the view port or boundary of application
available to the user. The user gets to know his or her location using GPS and
then computes the block he/she is in using the details made available by the
service providers. The user then makes the desired query to the service provider.

On the service provider side, the mapping server provides the database of
entities. The entities received are distributed in various blocks as per the schemes
of the service provider. The results matching the query are made available to the
user. For optimum result, the user queries other service providers in a similar
fashion. At last all the results obtained are analyzed at user end to find the
closest answer to the query.

Preserving Privacy in Location-Based Services Using Sudoku Structures 455

Fig. 4 gives a schematic diagram of the entire system.
The data is stored in a sanitized form, each time a user queries an entity

or navigates through a route. Instead of storing the records in the form of
timestamp, latitude and longitude and speed, the data stored is of the format
- pseudonym, delayed timestamp and block traversed. Hence, the database re-
mains ambiguous to the adversary.

4 Adversary Attack Scenarios

Suppose we are given a city with area X sq.m, let the grid used to map be of
order N and cellsize C (in meters).

Number of such grids mapping the city is given by

G = X / (N2 · C2).

Number of each kind of block available for a city is given by

U = G ·N = X/(N · C2).

We may consider U as a measure of ubiquity [15] that means subjects existing
in an entire area. In other words, it is the uniform scattering of users such that
the service providers have trouble in spotting them. Since each block represents
a user, his/her ubiquity equates to U .

We assume that the adversary gets hold of a server’s answering dataset. It is
likely that each dataset offers varying number of choices for the user to opt as
per suitability. In order to have a generic view of user’s block of presence, the
adversary intends to look for closely spaced entities.

For a given query, suppose the dataset of k entities is obtained in a block
and dij is the distance between the i-th and the j-th entities. There are two
conditions that will enhance adversary complexity.

– Scattering of Scarce Entities: If the pairwise distance (dij) between the
entities is greater than or equal to C

√
2, it indicates that the entities are

not clustered within the same block, but scattered across all such identical
blocks. Thus, they are physically located in different blocks but logically
belong to a single block.

– Scattering of Abundant Amount of Entities: If dij is less than C
√
2

for many pairs, it indicates that there is uniform clustering of the entities
across the identical blocks.

It has been experimentally observed that the above conditions are valid in
most of the responses obtained. This is because all the entities are located at a
fair amount of distance from each other. While a user chooses a smaller cellsize
for a refined response, the entities are unlikely to deviate from the aforesaid
conditions.

456 S. Biswal, G. Paul, and S. Raizada

Fig. 5. Scattering of scarce Entities Fig. 6. Scattering of Abundant amount of
Entities

In this technique, there is no third party service made available. There is
always higher chances of the third party services being compromised.

An adversary attack may become easier if at least three service providers
are compromised. However, since the response generated at each provider is
sufficiently large and dynamic, it is highly uncertain to obtain smaller set of
entities via data intersection.

Overhead issue at the server end is reduced since no fake user locations are
used. While most techniques are based on multiple users communicating with
a single service provider, our technique uses single user communicating with
multiple service providers [11].

The above measure can sustain as long as the user is static and has not
begun his/her journey. Nevertheless, the most prominent mechanism of attack is
Inference based Attack wherein the adversary links the movement of the user and
builds in a generic profile of user’s lifestyle. Such a technique of attack involves
formation of a trajectory based on the POIs visited by the user over a specific
time period. [18]

For instance, there are four POIs visited by a user over a week at specific
timings. The user leaves a certain location, say, POI 1 at 8:00 a.m, follows a
particular route except on Sunday. He reaches POI 2 at 8:30 a.m. He follows
another route every weekdays starting his/her journey at 9:00 a.m from POI 2
and reaches POI 3. He starts from POI 3 again and follows a route to POI 2
and reaches there by 2:00 p.m. He reaches POI 1 by 3:00 p.m. Then he follows
another route to POI 3. He leaves POI 3 at 6:00 p.m every weekday and follows
a route to POI 4. He visits POI 4 on weekdays at 6:00 p.m and on weekends at
7:00 a.m. Then he goes to POI 1 and resides there for more than 10 Hours.

Such observations on a consistent basis acquired from the service provider
database can provide ample of information to the adversary about his/her daily
life. He can deduce that POI 1 is his/her residence, POI 2 is some School/
Educational Institute. POI 3 is his/her workplace and POI 4 is some recreational
club (Gym, Sports complex etc). Thus, in order to prevent such specific user
based profiling by the adversary, we suggest the following technique.

Preserving Privacy in Location-Based Services Using Sudoku Structures 457

Step 1: Server End

– Computing centers of regions in a grid as per cellsize.
– Categorizing centroid to blocks.
– Computation of all possible routes between given blocks.

Step 2: User End

– Geocode the destination and find the block as per desired server schemes.
– Query server on basis of source block and destination block.
– Retain all possible routes available from server.
– Follow the appropriate route and change of pseudonym each time a block is

crossed with delaying of time involved.

The service provider database in general is complied with certain policies to
prevent linking observations. However, in our paper, we do not trust the service
provider either. Hence, the data records released from user device are sanitized
using mix-zone concepts (pseudonym for every block covered), random delay of
time recorded for every move and user location replaced with block numbers
(anonymization). In addition, the user’s routing query is also anonymized.

Hence, by this method, there is obfuscation of link-based user data thereby
providing no ample set for observation and profiling at adversary’s end.

5 Experimental Results

In this paper, we focus on the uniformity of the distribution of various entities.
We carried out a series of experiments wherein we analyzed results of 20 samples
containing varying amount of entities. For implementation, we used C# and
SQL.

We observed that, there is uniform distribution of entities across the blocks,
provided the population of such entities is fairly large or dense. It is also ob-
served that while we decrement the cellsize, the degree of variation amidst the
entities in blocks degrades. As the cellsize approaches a value near the order,
ideal uniformity is approached.

Table 1. Grid Order 4 with no. of entities = 1680 and cellsize = 500m

BLOCK HOSPITALS RESTAURANTS ATM COUNTERS

1 84 236 470
2 6 14 23
3 4 13 27
4 86 237 480

Table 1 shows ones of the simulation results of dense entity population. It
can be observed that there is high amount of non-uniformity in blocks 2 and

458 S. Biswal, G. Paul, and S. Raizada

3. This can lead to tracing out the user location as per user query; provided
the condition “Scattering of scarce entities” is not valid (see Section 4). Hence,
uniform distribution is envisaged to enhance security of entities so as to prevent
user location detection.

Table 2. Grid Order 4 with no. of entities = 1680 and cellsize = 50m

BLOCK HOSPITALS RESTAURANTS ATM COUNTERS

1 49 124 227
2 51 113 251
3 35 135 252
4 45 128 250

Table 2 shows a relatively uniform distribution of entities, thereby enhancing
obscurity. To quantify the (non-)uniformity in the entities, we define a term
called variability as follows.

Fig. 7. Degree of Variability vs. Cellsize for Grid Order 4

Suppose there are N blocks and M types of entities. Suppose ni,j is the
number of entities of type j in block i, 1 ≤ i ≤ N , 1 ≤ j ≤ M .

Preserving Privacy in Location-Based Services Using Sudoku Structures 459

Fig. 8. Degree of Variability vs. Cellsize for Grid Order 9

Definition 6. Variability. It is the sum of Standard Deviation values computed

for each kind of entity across the blocks, i.e.,
∑M

j=1

√
1

N−1

∑N
i=1(ni,j − nj)2,

where nj =
1
N

∑N
i=1 ni,j.

Fig. 7 and Fig. 8 show the trend of decreasing variability (degree of variation)
with decreasing cellsize. It was also observed that with cellsize approaching the
order of the grid, the result tends to be highly favorable. Further, with increasing
order, the variability tends to decrease. While in many techniques, the service
providers give details of the entities, our method provides pertinent details of
entities to geocode. Hence it is a cost reduction technique.

5.1 Comparison with Kido et al.’s Scheme

Following Kido et al. [15], we assume that the average total cost per entity
including the packet header equals to 128 bytes and we took a total of 1000
entities. Tables 3, 4, and Figures 9, 10, 11, 12 show the ubiquity model and
answering message cost against cellsize.

In Table 5, we compare the techniques that follow similar yet widely diverse
methods to enhance location and trajectory privacy.

460 S. Biswal, G. Paul, and S. Raizada

Table 3. Ubiquity and Message cost for Order 4

CELLSIZE (m) UBIQUITY ANSWERING MESSAGE COST (KBytes)

500 1484 33.9968

800 579.6875 35.5456

1000 371 34.4448

2500 59.36 33.984

4000 23.1875 35.0848

5000 14.84 34.8416

Table 4. Ubiquity and Message cost for Order 9

CELLSIZE (m) UBIQUITY ANSWERING MESSAGE COST (KBytes)

200 4122.22 14.6944

500 659.956 14.08

800 257.638 13.7088

1000 164.88 15.7696

2500 26.382 14.72

4000 10.305 15.7824

Fig. 9. Order 4 : Cellsize Vs. Ubiquity Fig. 10. Order 9 : Cellsize Vs. Ubiquity

Fig. 11. Order 4: Cellsize Vs. Answer
Message Cost

Fig. 12. Order 9: Cellsize Vs. Answer
Message Cost

Preserving Privacy in Location-Based Services Using Sudoku Structures 461

Table 5. Comparative Features of [15] and Sudoku Query Techniques

Properties Anonymous Communication tech-
nique using Dummies in LBS [15]

Sudoku based Query and Location
Privacy technique

Dummy users Yes No

Pseudonyms Yes Yes

Communication cost for Re-
quiring message

(+ 8 Bytes) with increase of send-
ing position data by one
O(

√
n)1 where n is number of posi-

tion data

Remains constant as no Dummy
users position Data generated i.e. 8
Bytes every Query
O(1) as each query involves sending
only block value.

Communication cost for An-
swer Message Over 100
queries and each service cost
= 128 bytes

PER POSITION DATA:
Minimum = 14.7 KB (Average
number of services = 114.47)
Maximum = 137 KB (Maximum
number of services = 1067)

PER CELLSIZE:
Order 9 : 13.7 KB - 15.78 KB (ap-
prox.) and
Order 4 : 33.9 KB - 35.8 KB (ap-
prox.)
PER BLOCK:
Order 9 : 12.672 KB - 17.536 KB
(approx.) and
Order 4 : 29.44 KB - 37.76 KB (ap-
prox.)
SQL based query cost is O(log n)
Where n is the number of entities
selected

Ubiquity Increases with increasing number of
Dummies

Increases with decreasing cellsize

Trajectory Privacy Enhanced with help of Dummies
and movement algorithms

Enhanced with help of Block values,
Pseudonyms and delayed Times-
tamp

1According to [15], the complexity is O(log(n)). It should be O(
√
n), because

storage or message required is N +N = 2N , that is O(N). Together, they can
form N ·N = N2 many pairs. With N2 = n, we have N =

√
n.

6 Conclusion

Our paper focuses on adversarial location service provider and extracting service
without the involvement of any third party. It also provides mechanism to miti-
gate the issues of adversary gaining access to location service provider database
or user device data logs and records.

Our work for experimentation has involved real time coordinates and posi-
tions but has not incorporated any real time metadata or user dataset. In future,
we intend to work with real time metadata to improvise the observations. The
technique addresses the issues pertaining to the LBS behavior discussed in [22].
Further, with alarming concern of privacy owing to disclosures of NSA surveil-
lance [23], location service providers market has encountered a major setback.
Our approach provides a solution for LBS providers as well, such that they do
not seek users’ location in order to provide the services.

So far, there has been no ideal privacy related approach that guarantees full
privacy to the user from an adversary. At any point of time, given enough quasi-

462 S. Biswal, G. Paul, and S. Raizada

identifiers, the users’ profiling is possible. Note that cryptographic approach
can safeguard user-server interaction from eavesdroppers; however, the compu-
tational and communication costs incurred in this case are very high.

The major challenge posed by Location privacy domain is to ensure balance
amidst privacy, QoS and cost. In our future work, we intend to improvise our
work that addresses this challenge expeditiously.

References

1. Murphy, S.: More SmartPhone Owners Use Location-Based Products [STUDY]
(May 11, 2012),
http://mashable.com/2012/05/11/location-based-services-study

2. Krumm, J.: Inference Attacks on Location Tracks. In: LaMarca, A., Langheinrich,
M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 127–143. Springer,
Heidelberg (2007)

3. Sweeney, L.: k-Anonymity: A model for protecting privacy. International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)

4. Gedik, B., Liu, L.: Protecting Location Privacy and Personalized k-Anonymity:
Architecture and Algorithms. IEEE Transactions on Mobile Computing 7(1) (Jan-
uary 2008)

5. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.-L.: Private queries
in location based services: anonymizers are not necessary. In: ACM SIGMOD In-
ternational Conference on Management of Data, pp. 121–132 (2008)

6. Khoshgozaran, A., Shahabi, C.: In Privacy in Location-Based Applications, pp.
59–83 (2009)

7. Raizada, S., Paul, G., Pandey, V.: Nearby-Friend Discovery Protocol for Multiple
Users. In: International Conference on Computational Science and Engineering,
vol. 3, pp. 238–243 (2009)

8. Shmatikov, V.: k-Anonymity and Other Cluster-Based Methods,
https://www.cs.utexas.edu/~shmat/courses/cs380s_fall09/21kanon.ppt

9. Krumm, J.: A Survey of Computational Location Privacy. Personal and Ubiquitous
Computing 13(6), 391–399 (2009)

10. Fung, B.C.M., Wang, K., Fu, A.W.-C., Yu, P.S.: Introduction to Privacy-Preserving
Data Publishing Concepts and Techniques. Series Editor: Kumar, V. (ed.) Chap-
man & Hall/CRC Data Mining and Knowledge Discovery Series

11. Mokbel, M.F.: Privacy-Preserving Location Services[Tutorial]. In: IEEE Interna-
tional Conference on Data Mining, IEEE ICDM 2008 (2008)

12. Beresford, A.R., Stajano, F.: Location Privacy in Pervasive Computing. IEEE Per-
vasive Computing 2(1), 46–55 (2003)

13. Devaney, T.: Hackers grab private data from devices. In The Washington Times
(September 05, 2012),
http://www.equities.com/news/headline-story?dt=2012-09-06&val=

454542&cat=finance

14. Zintl, E.: ‘Stingray’ Device Invades American Privacy (September 13, 2012),
http://theminaretonline.com/2012/09/13/article23248

15. Kido, H., Yanagisawa, Y., Satoh, T.: An Anonymous Communication Technique
using Dummies for Location-based Services. In: Second Int’l Conf. Pervasive
Services (ICPS), pp. 88–97 (2005)

http://mashable.com/2012/05/11/location-based-services-study
https://www.cs.utexas.edu/~shmat/courses/cs380s_fall09/21kanon.ppt
http://www.equities.com/news/headline-story?dt=2012-09-06&val=454542&cat=finance
http://www.equities.com/news/headline-story?dt=2012-09-06&val=454542&cat=finance
http://theminaretonline.com/2012/09/13/article23248

Preserving Privacy in Location-Based Services Using Sudoku Structures 463

16. Newton, P.K., DeSalvo, S.A.: The Shannon entropy of Sudoku matrices. Proceed-
ings of the Royal Society A 466(2119), 1957–1975 (2010)

17. Yato, T., Seta, T.: Complexity and Completeness of Finding Another Solution and
Its Application to Puzzles. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E86-A(5), 1052–1060 (2003)

18. Gambs, S., Killijian, M.-O., del Prado Cortez, M.N.: Show Me How You Move and
I Will Tell You Who You Are. Transactions on Data Privacy 4(2), 103–126 (2011)

19. Khoshgozaran, A., Shahabi, C.: Private Information Retrieval Techniques for en-
abling Location Privacy in Location-Based Services. In: Bettini, C., Jajodia, S.,
Samarati, P., Wang, X.S. (eds.) Privacy in Location-Based Applications. LNCS,
vol. 5599, pp. 59–83. Springer, Heidelberg (2009)

20. Shokri, R., Theodorakopoulos, G., Le Boudec, J.-Y., Hubaux, J.-P.: Quantifying
Location Privacy. In: IEEE Symposium on Security and Privacy (SP), pp. 247–262
(May 2011)

21. Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.-P., Le Boudec, J.-
Y.: Protecting location privacy: optimal strategy against localization attacks. In:
ACM Conference on Computer and Communications Security (CCS), NY, USA,
pp. 617–627 (2012)

22. Freudiger, J., Shokri, R., Hubaux, J.-P.: Evaluating the Privacy Risk of Location-
Based Services. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 31–46. Springer,
Heidelberg (2012)

23. Paganini, P.: Location services, Google is tracking your every move you make
(August 24, 2014),
http://securityaffairs.co/wordpress/27739/digital-id/

location-services-track-you.html

http://securityaffairs.co/wordpress/27739/digital-id/location-services-track-you.html
http://securityaffairs.co/wordpress/27739/digital-id/location-services-track-you.html

A. Prakash and R. Shyamasundar (Eds.): ICISS 2014, LNCS 8880, pp. 464–476, 2014.
© Springer International Publishing Switzerland 2014

Location Obfuscation Framework
for Training-Free Localization System

Thong M. Doan1, Han N. Dinh1, Nam T. Nguyen1, and Phuoc T. Tran2

1 John von Neumann Institute, Vietnam National University, Ho Chi Minh, Vietnam
2 University of Information, Vietnam National University, Ho Chi Minh, Vietnam

{thong.doan,han.dinh,nam.nguyen}@jvn.edu.vn,
phuoctran.uit@gmail.com

Abstract. Wi-Fi localization has become an essential service for many aspects
of life, especially for indoor-environment where GPS-based technology cannot
operate. SIL, a new family of Wi-Fi localization algorithms, has been intro-
duced recently. SIL stands out from the rest of the localization techniques
thanks to its training-free property. Capable of performing localization without
pre-trained data, SIL resolves the costly training-phase commonly presenting in
most other Wi-Fi localization algorithms. SIL can either operate independently
or use crowd-sourcing to query and share preprocessed location information.
The latter saves the bandwidth cost but poses a security threat of user’s location
leakage. In this paper, we propose LOF, a framework to secure location ano-
nymity while preserving acceptable-bandwidth-cost for training-free localiza-
tion algorithms such as SIL.

Keywords: location anonymity, k-Anonymity, distortion, obfuscation, location
privacy.

1 Introduction

Many Wi-Fi-based localization techniques have been proposed due to the increasing
popularity of Wi-Fi APs (Access Points). Generally, these techniques can be classified
into two main categories: training-required and training-free [1]. In the former catego-
ry, one common step that all algorithms share is the costly training phase. In this step,
some known positions in the network are recorded with their associated information.
This information map is used to estimate the location in the runtime phase. The biggest
challenge of this training step is that it costs a lot of time and physical-labor. Addi-
tionally, this step needs to be repeated regularly to adapt to environment changes.

To avoid the costly training phase, SIL-family algorithms [1, 2] are proposed. They
are the first training-free algorithms, which exploit the nearby observable access
points’ names to infer the location. Specifically, SIL utilizes what the APs’ names
represent (usually the business names or its related information) and aggregates this
information to predict the device’s current position.

 Location Obfuscation Framework for Training-Free Localization System 465

In SIL, querying HTML pages to extract location information is one of the essen-
tial components. Nevertheless, this component consumes high bandwidth, which
causes significant overhead for SIL. To reduce such overhead, SIL has a choice to
retrieve the pre-processed location-information from a third-party, such as a server
node or a peer node. Querying the pre-processed information saves considerable
bandwidth than self-querying multiple HTML pages to extract the information, as
HTML pages are usually large in size. Thus, the overhead is reduced dramatically.
However, requesting the location information from the third-party poses users to pri-
vacy problems since the third-party can easily find the location of users.

In this paper, we propose LOF – Location Obfuscation Framework. This frame-
work addresses the privacy threat in the training-free Wi-Fi localization while main-
taining low and customizable bandwidth overhead. LOF allows users to decide the
trade-off between privacy level and the corresponding overhead cost. The foundation
of LOF is based on two key ideas: 1) utilizing K-Anonymity to add distortion infor-
mation in the query sent to the third-party [3-8]; 2) removing customizable amount of
important information in the query. By applying LOF into SIL, we aim to preserve
the location anonymity while still keeping the bandwidth cost at an acceptable level.
Based on experimental results, LOF secures at least 90-percent of anonymity level.
Additionally, the bandwidth overhead is nearly costless for performing localization.

2 Related Works

In this section, we study the training-free localizations and their location-privacy
threat. Then we review K-Anonymity – a general model for privacy protection.

2.1 SIL – Training-Free Localization

SIL is proposed as a Wi-Fi-based training-free localization framework that aims to
remove the need of the expensive training step. To predict the device’s current posi-
tion, SIL utilizes the SSIDs of nearby observable APs to aggregate the related location
information via Web search results. In fact, SIL relies on the observation that the names
of the APs located at a location often contain information related to that location. For
instance, if an AP, named TokyoDeli, is detected, it is a good indicator telling us that our
current position is nearby one of the TokyoDeli restaurants. Thus, if SIL can analyze all
the SSIDs of observed APs, it can extract the location information linking to the user’s
current position. Aggregating all the information, SIL can predict the device’s location.

Continuing with the previous example, if we can detect another AP with the name
McDonald, we can conclude that the current location must be around both McDonald
and TokyoDeli restaurants. Thus, if we are able to find a location that is geographi-
cally close to both restaurants, we can return it as the predicted address.

Fig. 1 illustrates general framework of SIL. It is composed of three components:
SSID Scanning, Geo-Information Retrieving and Address Processing.

In the SSID Scanning component, the mobile device will scan for SSIDs
from nearby APs. In the Geo-Information Retrieving component, based on collected

466 T.M. Doan et al.

SSIDs, SIL will gather related information from the Internet and extract a list of po-
tential addresses, called candidate list. In the Address Processing component, SIL
ranks addresses in the candidate list and return the correct one to the users. The per-
formance of SIL depends greatly on the algorithm chosen for the Address Processing
component. Such algorithms are ISIL and CGSIL [1, 2].

However, both algorithms are experiencing the bandwidth-overhead problem, result-
ing from the Geo-Information Retrieving component. In details, for each observed
SSID, this component is responsible for downloading many HTML files related to that
SSID. Based on those files, the component must extract relevant address information
from the HTML files. This process is bandwidth-consuming due to the accumulative
downloading of HTML files. As a result, it also requires more power. This is especially
true for mobile device due to its limitation in data-plan and battery power.

Fig. 1. The General Framework of SIL

To avoid this bandwidth overhead, the authors in SIL recommend using both local
cache and third-party help. Specifically, every time SIL extracts the location informa-
tion from HTML files, it will store that information in cache so that it can reuse the
cached data the next time it sees the same SSID. This approach helps reduce down-
loading the same HTML files. On the other hand, in the third-party optimization, the
mobile node will present the SSID to the third-party and ask the third-party to retrieve
the location information on its behalf. Note that the third-party can be a dedicated
server, other peer nodes or the cloud. The idea of using the third-party as the crowd-
source will considerably reduce the bandwidth and operation overhead [2].

However, asking the third-party poses location privacy threat; as the third-party
could use the SSIDs embedded in the query to estimate the user location by applying
any SIL-family algorithm internally. Thus, to prevent such threat, we propose using
K-Anonymity [3] and PIH (partial information hiding). Specifically, K-Anonymity
will add carefully-chosen distortion SSIDs to the requested query; while PIH will
remove a percentage of actual SSIDs from the query. The final goal is to obfuscate
the information sent to the third-party so that it cannot deduce the user location.

2.2 K-Anonymity

According to [3-8], K-Anonymity is a framework to prevent a third-party from deduc-
ing the user location based on the requested data sent to the third-party. K-Anonymity
is widely used to protect location privacy [3-8]. One application of K-Anonymity is to

 Location Obfuscation Framework for Training-Free Localization System 467

prevent location-based identity inference in anonymous spatial queries [4]. Fig. 2
presents an overview of how K-Anonymity is usually deployed.

Fig. 2. K-Anonymity Framework

As illustrated in Fig. 2, there are three entities in the framework: the user, an ano-
nymizer and a third-party (service or information provider). In this framework, a user
sends his location to the anonymizer. The anonymizer, which is a trusted server, sends
the request of the user together with K-1 requests from other users to the third-party.
The fundamental idea of K-Anonymity is to ensure the user request is indistinguisha-
ble from the K-1 requests. After receiving K requests, the third-party will
return all possible results to the anonymizer. Finally, the anonymizer will remove
unnecessary results (from other K-1 users) and return the desired result to the user.

Fig. 3. Example of K-Anonymity with K=3

For instance, in Fig. 3, Jenny sends her request to the anonymizer. Assuming that
K=3, the anonymizer generates a package including Jenny’s request together with two
other users’ requests, and sends the package to the third-party. The third-party then
returns all possible answers (A, B, C, D, E) for all three requests in the package to the
anonymizer. The anonymizer, upon removing unrelated results from the package, will
forward the remaining results to the corresponding user. Even though the third-party
could predict positions of all three users, it has a possibility of 1/3, or 1/K, to ascertain
the position of each user.

In most applications of K-Anonymity, the mobile node cannot localize its location
by itself, but must ask a third-party for the location localization instead [3-8]. Addi-
tionally, all nodes must trust the anonymizer. Nevertheless, in SIL, the mobile node
is capable of performing the localization itself [1, 2] at the cost of bandwidth over-

468 T.M. Doan et al.

head. Therefore, to reduce such cost, SIL has an option to request a third-party for
pre-processed location information, which as a result, leads to the need for concealing
the user location information. In other words, if the mobile node downloads and ex-
tracts the location information by itself, it can protect its location privacy. However,
if the node asks a third-party for the pre-processed location information, it potentially
reveals its location information. Hence, LOF is proposed as a feasible solution to
preserve location anonymity for SIL while maintaining low and customizable band-
width overhead. Note that, LOF does not require any trusted anonymizer as in other
approaches.

Adopting the idea of K-Anonymity, LOF includes distortion information in the re-
quest to mix up the localization information at the third-party side. Additionally, rather
than sending the full request information, LOF partially removes some information in
the request. To sum up, instead of sending the whole SSID-set to the third-party, LOF
sends a partial set to make it insufficient for the third-party to extract user location.

3 Our Approach

In this paper, we propose LOF, a system to protect the user privacy in SIL-family algo-
rithms while maintaining minimal bandwidth overhead.

As mentioned in Section 2.1, to cut down the bandwidth cost, mobile node will re-
quest the pre-processed geo-information from a third-party. In our system, we call the
third-party as Geo-Information Supporter (GIS).

In the most ideal case, GIS will process all the geo-information and the mobile
node just takes it for granted to perform the rest of the localization step. Thus, the
processing and bandwidth overhead of SIL could be reduced dramatically as most
work is shifted to the GIS. However, in that case, the personal information of the user
could be leaked out to the GIS. In other words, the privacy has been violated. On the
other hand, if mobile node decides to process all geo-information by itself, it can
avoid the privacy concern at the cost of high bandwidth overhead. Thus, the goal of
LOF is to introduce a framework that obfuscates the user location information while
minimizes the bandwidth overhead.

Note that in SIL, the GIS returns intermediate geo-information result rather than
direct location address. The result is utilized to estimate the device’s location [1, 2].

3.1 Anatomy of LOF

In SIL, the mobile device sends the set of observable SSIDs to the GIS. In return, the
GIS responds with geo-information related to the location. Thus, to prevent privacy
leakage, LOF will obfuscate the requested set by: 1) applying K-Anonymity to add
distortion information to the set; 2) applying PIH to remove certain important informa-
tion from the set.

Specifically, by applying K-Anonymity, LOF will send additional noise to GIS to
further reduce the chance of exposing the user location to GIS. A set of irrelevant
SSIDs, called disguised SSIDs, forms the disguised-set and is used as the noise.

 Location Obfuscation Framework for Training-Free Localization System 469

On the other hand, in PIH, the full set of observable SSIDs, called original set, are
divided into two subsets. One of them, called request-set, is sent to GIS. The other
subset, called process-set, is self-processed by the device. The reason for the division
is to minimize the risk of information leakage when exposing the whole SSID-set to
GIS. Also, the division helps reduce the chance for GIS to predict user location based
on the received information.

The disguised-set (K-Anonymity) and request-set (information partition) form the
obfuscated set, which is sent to the GIS. Note that the GIS has no further knowledge
to distinguish the request-set from the disguised-set. We define:

• , , … , as the original set
•

: process-set
: request-set | || | . 100%

• , , … , as the obfuscated set
•

: disguised-set | || | . 100% | | | | | |
The device will send O, composed of Fq (based on alpha value – α) and D (based on

beta value – β), to the GIS. At the same time, the device self-retrieves and processes geo-
information of Fp. The information returned from the GIS and the information self-
retrieved by the device are aggregated to localize the position of the device.

Note that the higher value of α, the less work for the device to self-process by simply
receiving processed geo-information from GIS. For example, if α is 100%, the bandwidth
the device uses is negligible since the device received all geo-information from GIS,
which is up to a few kilobytes [2]. However, in general, as α increases, the location ano-
nymity decreases as more information is sent to the GIS. In contrast, the greater β value
is, the more disguised SSIDs GIS will receive. If β is 200% and the actual-set has 10
original SSIDs, GIS will receive 20 disguised SSIDs in total. In other words, as β increas-
es, the location anonymity increases as less location information is sent to the GIS.

However, the experimental result has shown that not only the size of the disguised set
(β) contributes to the location anonymity, the way we select the disguised SSIDs also
does. We will discuss the selection (distribution) of disguised SSIDs in the next section.

470 T.M. Doan et al.

3.2 Distribution of Disguised SSIDs

As usual, we tend to select the disguised SSIDs randomly. However, according to [2],
CGSIL works based on the geo-correlation of the SSIDs. Hence, if the disguised SSIDs
are in random positions and are not in a close proximity, they will be weakly ranked or
eventually filtered out by the three filters of CGSIL, leading to the expose of the actual
address in the request-set. Therefore, we suggest selecting the disguised SSIDs so that
they could be in a close proximity with each other. In general, we have two ways of
picking the disguised SSIDs, as illustrated in Fig. 4.

• Random Distribution (RD): the SSIDs are scattered randomly and have no
geo-relation with each other.

• Inter-proximate Distribution (ID): the SSIDs are geo-correlated and in close
proximity with each other.

Fig. 4. Distribution of Disguised SSIDs

The effect of each distribution onto privacy leakage is described in Section 5.2.

4 Experiment Setup

4.1 Data Collection

The dataset we use is the same as that of [2]. Specifically, in our experiment, we col-
lected data from four districts including about 60 roads in HCM City. The total street
length in our collected data is about 67,500m. On each street, we recorded data at differ-
ent locations. We collected more than 6,700 locations, which equals to 600 hours of
labor. The collected data includes the AP’s name. The exact street number addresses
were also recorded for the purpose of evaluating the accuracy of our approach.

4.2 Experiment Simulation

For each road in our dataset, we simulate a mobile device applying LOF whenever it
performs SIL localization. The locations where the device conducts experiment are 10-
15m apart from each other, which is a reasonable distance for a mobile device to per-
form localization in real time. At each location, the predicted address by SIL and by
GIS are recorded for evaluation.

 Location Obfuscation Framework for Training-Free Localization System 471

4.3 Privacy Measurement

We define some terminologies used for presenting results in Section 5:

• Distance error: the Euclid distance between the actual address and the pre-
dicted address.

• Acceptable error range: the error range that is acceptable by the users. For
example, if the acceptable error range is 500m, that means the users accept
the predicted address to be correct if its distance error is 500m.

• Accuracy: the accuracy level of CGSIL is calculated as:

• Normalized anonymity: the anonymity level secured by LOF is calculated as
the complement of the accuracy level and vice versa. 1

• Bandwidth: the bandwidth is calculated by the total bytes of 1) the HTML
files the device download; 2) the results the device receives from GIS.

For evaluation purpose, we calculate the accuracy when GIS performs localization
on the obfuscated set with different settings of α and β. Then the accuracy is converted
and normalized into the anonymity level to evaluate the efficiency of LOF.

5 Performance Results

In this section, we will first study the effect of α and β onto the anonymity level. Fol-
lowing that we will describe the different distribution (ID or RD) of the disguised SS-
IDs in terms of privacy. Then we will examine the correlation between α and β. Note
that the SIL algorithm we use in these experiment is CGSIL [2].

5.1 The Effect of α and β on Anonymity and Overhead

In this section, we will discuss the effect of changing the values of α and β onto the
prediction accuracy by GIS. Based on the experimented result, we try to figure out the
suitable values of α and β for securing the user privacy while minimizing the band-
width overhead.

472 T.M. Doan et al.

Fig. 5. Anonymity level with fixed β, error range = 500m, with ID SSIDs

In Fig. 5 and Fig. 6 the horizontal axis stands for the values of α while the vertical
axis stands for the anonymity level (defined in Section 4.3). Note that in these experi-
ments, the β value is fixed, the α value is varied and the anonymity is measured with
error range=500m. The disguised SSIDs in Fig. 5 and 6 are distributed as ID and RD
distributions respectively.

According to both figures, the anonymity level increases as β increases from 0% to
200%. In contrast, the anonymity decreases as α increases from 10% to 100%. Howev-
er, in Fig. 5, the anonymity level is stable at 95% when β is 100%, regardless of differ-
ent values of α. In other words, 95% of the cases, the prediction of user location by the
GIS is outside 500-meter radius of the actual address. The same result is achieved in
Fig. 6 where the stable anonymity level is 90%. This is due to the fact that the dis-
guised SSIDs are dense enough to distract the concentration of the SSIDs in the re-
quest-set, leading to the wrong prediction of GIS.

Fig. 6. Anonymity level with fixed β, error range = 500m, with RD SSIDs

To sum up, if we want the bandwidth overhead to be reduced in half, α should be
50% and β should be 100%. In addition, if we want the bandwidth to be negligible, we
should set both α and β to be 100%. In either case, the anonymity level is at least 90%.

5.2 The Effect of ID and RD Distributions on Anonymity

In Section 5.1, we have examined the effect of α and β onto the anonymity level. Nev-
ertheless, we still do not know which kind of disguised SSIDs distribution (ID vs. RD)

60

70

80

90

100

10 20 30 40 50 100

N
or

m
al

iz
ed

An
on

ym
ity

 (%
)

60

70

80

90

100

10 20 30 40 50 100

N
or

m
al

iz
ed

An
on

ym
ity

 (%
)

 Location Obfuscation Framework for Training-Free Localization System 473

is more efficient for LOF. Thus, the task of this experiment is to study how different
distributions of disguised SSIDs affect the anonymity level.

Fig. 7. Anonymity level with fixed α, error range = 500m

In Fig. 7, the horizontal axis stands for the values of α while the vertical axis stands
for the accuracy of the prediction. Also, the β value is varied and the α value is fixed at
50% and 100%. As shown in the figure, as β increases, the anonymity level increases.
Especially, the slope of the ID line (solid line) is steeper than that of the RD line (dash
line). In other words, as β increases, the anonymity in case of ID increases faster than
that in case of RD. This implies that ID distribution yields better anonymity level than
RD distribution. Because CGSIL works based on the geo-correlation of the SSIDs [2],
SSIDs in ID distributions are less likely to be filtered out by CGSIL’s filters since the
SSIDs are in close proximity to each other. On the other hand, SSIDs in RD distribu-
tion have high tendency to be filtered out by the filters.

In summary, we should use ID distribution in LOF to better protect user privacy.

5.3 The Correlation of α and β

So far we have analyzed the effect of α and β onto the anonymity level. These values
are configurable in LOF at deployment phase. Therefore, in case the users prefer cus-
tomized values, they should understand the correlation of α and β. Thus, this section
will discuss such relationship.

Fig. 8. Hit-Rate of GIS Prediction with β=0%

60

70

80

90

100

0 25 50 100 200

N
or

m
al

iz
ed

An
on

ym
ity

 (%
)

ID,
ID,
RD,
RD,

0

20

40

60

80

100

0 1 2 3 4 5

Hi
t-

Ra
te

 (%
)

Error Range (km)

original CGSIL

474 T.M. Doan et al.

In Fig. 8 and Fig. 9 show the CDF (cumulative distribution function) of the Hit-Rate
for different values of error range. The vertical axis represents the hit-rate of GIS;
while the horizontal axis represents the error range. We define hit-rate as the percen-
tage of cases that the GIS predicts the user location correctly within a given radius
error range. For example, in Fig. 8, at error range equal to one kilometer and α equal to
10%, the 20-percent-hit-rate means that 20% of the cases, GIS will predict the user
position to be within one-kilometer-radius from the actual address correctly. Note that
the β value in Fig. 8 and Fig. 9 are 0% and 200% respectively.

As shown in Fig. 8, the curves at different values of α are separated from each other,
which means the accuracy strongly depends on α rather than β. In details, the accuracy
decreases as α decreases. The result is reasonable because the smaller value α is, the
less information GIS acquires to predict the user location, leading to lower accuracy.
Note that in the Fig. 8, the curve at α = 100% (β=0%) is the same as the curve of the
original CGSIL, since we send the original set to GIS without distortion; therefore GIS
and the device have the same set of SSIDs, leading to the identical accuracy.

However, when β increases to 200%, all six curves, each of which represents for
one value of α, converge to one curve and clearly distinguish themselves from the orig-
inal CGSIL. It means that, at high value of β, the accuracy seems to be steady and is
determined by β rather than α. Since at that time, the amount of disguised SSIDs out-
numbers (two times) the amount of original SSIDs. Thus, the disguised SSIDs strongly
affect the prediction of the GIS and obfuscate the actual address.

Fig. 9. Hit-Rate of GIS Prediction with β=200%

In summary, at low values of β, the anonymity is dependent upon α’s value; but, at
comparatively high values of β, the anonymity is dependent upon β’s value.

5.4 Overhead Analysis

In this section, we study the correlation between the overhead and α value. The band-
width depends mainly on α rather than β value because α is proportional to the amount
of HTML files the device must download and process. Thus, in this experiment, we
only analyze the effect of α on the overhead; we fix β=100% (Section 5.1).

0

20

40

60

80

100

0 1 2 3 4 5

Hi
t-

Ra
te

 (%
)

Error Range (km)

original CGSIL

 Location Obfuscation Framework for Training-Free Localization System 475

In Fig. 10, the vertical axis represents the bandwidth overhead in megabyte, while
the horizontal axis represents the α value. According to the figure, the bandwidth de-
creases as α increases. It is reasonable because the higher α value is, the more informa-
tion LOF requests to GIS, leading to less work for the device to process. At α=50%,
the bandwidth cost is 6MB and at α=100%, the bandwidth cost is negligible.

Fig. 10. Bandwidth Overhead with a Variety of α Values

In conclusion, if users prefers 90% of anonymity, they should pick α=50% and
β=100% with the average cost at 6MB per location. However, if users prefer virtually
no bandwidth cost, they could pick α=100% and β=100%; in which the anonymity is
reduced by 4%.

6 Conclusion

We have proposed LOF, a system to secure the location anonymity for SIL-family
algorithms. The system obfuscates the user’s actual location from the GIS by adding
distortion information into the requested set and removing certain important informa-
tion from that set also. While securing the user privacy, LOF efficiently keeps the
bandwidth overhead at minimal level. In general, if users prefer high anonymity (90%),
with low bandwidth cost (6-MB), α should be 50%. However, if users prefer negligible
bandwidth cost and 4-percent-reduction in anonymity, α should be 100%. In either
case, the β should be 100% or more. For better anonymity level, the suitable distribu-
tion for disguised SSIDs should be ID.

Acknowledgement. This research is funded by Viet Nam National University Ho Chi
Minh City - John von Neumann Institute, under grant number C2013-42-02 and re-
search fund for contract 16-2014/HDK-JVN.

0

5

10

15

10 20 30 40 50 100

Ba
nd

w
id

th
 (M

B)

476 T.M. Doan et al.

References

1. Le, T., Doan, T., Dinh, H., Nguyen, N.: Instant Search-based Indoor Localization.
In: IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas,
Nevada, USA, pp. 143–148 (2013)

2. Doan, T.M., Dinh, H.N., Nguyen, N.T.: CGSIL: Collaborative Geo-clustering Search-based
Indoor Localization. Accepted in the 16th IEEE International Conference on High Perfor-
mance Computing and Communications (HPCC), Paris, France (2014)

3. Le, T.D., et al.: Convert Wi-Fi Signals for Fingerprint Localization Algorithm. In: Proc.
IEEE Int. Conf. on Wireless Communication, Networking and Mobile Computing
(WiCOM 2011), Wuhan, China, Session 12, pp. 1–5 (2011)

4. Sweeney, L.: k-Anonymity: A Model for Protecting Privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-Based Systems, 557–570 (2002)

5. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing Location-Based Identity
Inference in Anonymous Spatial Queries. IEEE Transactions on Knowledge and Data Engi-
neering 19(12), 1719–1733 (2007)

6. Gedik, B., Liu, L.: A Customizable k-Anonymity Model for Protecting Location Privacy.
In: ICDCS, pp. 620–629 (2004)

7. Zhong, G., Hengartner, U.: A Distributed k-Anonymity Protocol for Location Privacy. In:
IEEE Int. Conference on Pervasive Computing and Communications (PerCom), pp. 1–10
(2009)

8. Gedik, B., Liu, L.: Protecting Location Privacy with Personalized k-Anonymity: Architec-
ture and Algorithms. IEEE Transactions on Mobile Computing 7(1) (2008)

9. Gkoulalas–Divanis, A., Kalnis, P., Verykios, V.S.: Providing K–Anonymity in Location
Based Services. SIGKDD Explorations 12(1)

Author Index

Atluri, Vijayalakshmi 129

Basu, Aditya 399
Bezawada, Bruhadeshwar 277
Bhattacharjee, Jaya 149
Biskup, Joachim 30
Biswal, Sumitra 448
Bugliesi, Michele 89
Butin, Denis 69

Calzavara, Stefano 89
Chakraborty, Nilesh 298
Choppella, Venkatesh 277
Choudhury, Hiten 226
Chowdary, Nagendra 399
Conti, Mauro 257
Cybenko, George 1

Dadeau, Frédéric 358
Darbar, Rajkumar 411
Decroix, Koen 69
De Groef, Willem 89
Dinh, Han N. 464
Doan, Thong M. 464
Dong, Xinshu 245

Fayaz, Seyed Kaveh 9

Garain, Utpal 411
Gaur, Manoj Singh 257
Gay, Richard 378
Gupta, Phalguni 425
Gupta, Puneet 425

Halder, Biswajit 411
Heorhiadi, Victor 9
Hu, Jinwei 378

Jajodia, Sushil 1
Jansen, Joachim 69
Jha, Sadhana 129
Jinwala, Devesh 167

Kauer, Michaela 204
Khan, Wilayat 89

Laxmi, Vijay 257
Lebeau, Franck 358
Legeard, Bruno 358
Li, Xiaolei 245
Liang, Zhenkai 245
Liu, Peng 1

Majumdar, Arun Kumar 109
Malviya, Pankaj 437
Mantel, Heiko 378
Mathuria, Anish 399
Mayer, Peter 204
Mazumdar, Chandan 149
Mondal, Abhoy Ch. 411
Mondal, Samrat 298
Mukherjee, Sarbajit 185

Naessens, Vincent 69
Naskar, Ruchira 437
Nguyen, Nam T. 464

Padhya, Mukti 167
Paul, Goutam 185, 448
Peureux, Fabien 358
Piat, François 358
Piessens, Frank 89
Preuß, Marcel 30

Raizada, Shashwat 448
Ramanujam, R. 50
Reiter, Michael K. 9
Rovelli, Paolo 338
Roy, Arindam 109
Roychoudhury, Basav 226

Saikia, Dilip Kr. 226
Saini, Anil 257
Sarkar, Pratik 185
Sekar, Vyas 9
Sengupta, Anirban 149
Singhal, Tushar 257
Sundararajan, Vaishnavi 50
Sural, Shamik 109, 129
Suresh, S.P. 50

478 Author Index

Telikicherla, Krishna Chaitanya 277
Thakur, Tanmay 318
Tran, Phuoc T. 464

Vaidya, Jaideep 129
Verma, Rakesh 318

Vernotte, Alexandre 358

Vigfússon, Ýmir 338

Volkamer, Melanie 204

Wellman, Michael P. 1

	8880front
	Preface
	Organization
	Table of Contents
	Invited Talks
	Adversarial and Uncertain Reasoning for Adaptive Cyber Defense: Building the Scientific Foundation*
	1Introduction
	2 Adaptation Techniques
	3 Adversarial Reasoning
	4 The Proposed ACD Framework
	5 Conclusion
	References

	SNIPS: A Software-Defined Approach for Scaling Intrusion Prevention Systems via Offloading
	1 Introduction
	2 Related Work
	3 Motivation and Challenges
	3.1 Case for Offloading
	3.2 Challenges in Offloading NIPS

	4 SNIPS System Overview
	5 SNIPS Optimization
	6 Implementation Using SDN
	6.1 Challenges in Using SDN
	6.2 Our Approach
	6.3 Putting it Together

	7 Evaluation
	7.1 System Benchmarks
	7.2 Benefits of SNIPS
	7.3 Sensitivity Analysis

	8 Conclusions
	References

	Contributed Papers
	Security Inferences
	Inference-Proof Data Publishing by Minimally Weakening a Database Instance
	1 Introduction
	2 Basic Ideas: Inference-Proofness by Weakening
	3 Treating Non-simple Sets of Potential Secrets
	3.1 A First Generic Approach
	3.2 Algorithmic Treatment of an Availability-Maximizing Flavor
	3.3 Admissible Indistinguishabilities Based on Local Distortion

	4 Creation of Inference-Proof Weakenings
	5 Efficiency of the Approach
	6 Extending the Approach
	7 Conclusion and Future Work
	References

	Extending Dolev-Yao with Assertions
	1 Motivation
	1.1 Assertions as Certification
	1.2 Assertions in Protocols, and Possible Attacks
	1.3 Logicization and Challenges

	2 Model
	2.1 The Term Model
	2.2 The Assertion Language
	2.3 The ProtocolModel
	2.4 Comments on the Transition Rules
	2.5 Example Protocol

	3 The Derivability Problem and Its Complexity
	3.1 Properties of the Proof System
	3.2 Lower Bound
	3.3 Upper Bound
	3.4 Analysis of the Algorithm
	3.5 Optimization: Bounded Number of Disjunctions

	4 Safety Checking
	5 Extending the Assertion Language
	5.1 Assertion Language with
	5.2 ProtocolModel
	5.3 Example Protocol
	5.4 Derivability Problem
	modal context.

	6 Conclusions
	References

	Inferring Accountability from Trust Perceptions
	1 Context and Motivation
	2 IDP
	3 A Railway Station Surveillance Scenario
	4 Components of the Accountability Inference Model
	4.1 Personal Data
	4.2 Entities
	4.3 Statements and Local Accountability Statements
	4.4 Trust Perception and Global Accountability Inference

	5 Computation and Evaluation
	5.1 Trust-Dependent GAP Inference
	5.2 Statements Modeling and User Models

	6 Related Work
	7 Conclusions
	References

	Client Side Web Session Integrityas a Non-interference Property
	1 Introduction
	2 Informal Overview
	3 Login History Dependent Non-interference: Definition and Enforcement
	3.1 Reactive System
	Definition 1 (Reactive System).
	Definition 2 (Reactive Behaviour).
	3.2 Login History Dependent Non-interference
	Definition 3 (LHD-similarity).
	Definition 4 (LHDNI).
	3.3 Enforcement
	–
	–
	–
	3.4 Security
	Theorem 1 (Security).
	Definition 5 (
	relation
	–
	–
	–
	Lemma 1.

	4 Instantiation to Web Session Integrity
	5 Extensions
	6 Implementation
	7 Related Work
	7.1 Formal Models of Web Session Integrity
	7.2 Countermeasures against CSRF
	7.3 Information Flow Control for the Web

	8 Conclusions
	References

	Security Policies
	Impact of Multiple t-t SMER Constraintson Minimum User Requirement in RBAC
	1 Introduction
	2 Preliminaries
	3 Problem Definition
	4 Complexity Class of
	5 Modeling
	6 Solving
	7 Implementation and Experimental Results
	8 Related Work
	9 Conclusion and Future work
	References

	Temporal RBAC Security AnalysisUsing Logic Programming in the Presenceof Administrative Policies
	1 Introduction
	2 Preliminaries
	2.1 RBAC and TRBAC
	2.2 ARBAC97 and AMTRAC
	2.3 Introduction to Prolog

	3 System Modeling in Prolog
	3.1 Modeling TRBAC Using Prolog
	3.2 Modeling of AMTRAC in Prolog

	4 Analysis of Security Properties
	4.1 Safety Analysis
	4.2 Liveness Analysis

	5 Experimental Results
	6 Related Work
	7 Conclusions and Future Work
	References

	A Formal Methodology for Modeling Threatsto Enterprise Assets
	1 Introduction
	2 Related Work
	3 Threat Categories
	4 Threat Model
	4.1 Likelihood of Occurrence of Threat

	5 ThreatImpact
	6 Utility of Proposed Methodology
	7 Case Study
	8 Conclusion and Future Work
	References

	A Novel Approach for Searchable CP-ABE with Hidden Ciphertext-Policy
	1 Introduction
	1.1 Our Contributions
	1.2 Organization of the Rest of the Paper

	2 Related Work
	3 Preliminaries
	3.1 Ciphertext-Policy Attribute Based Encryption

	4 Proposed Approach
	5 Security Game
	5.1 CPA (Chosen Plaintext Attack) Security Game
	5.2 CKA (Chosen Keyword Attack) Security Game

	6 Construction : Searchable CP-ABE
	6.1 Recipient Anonymity

	7 Security Analysis
	7.1 Security Analysis : CPA Security Game
	7.2 Security Analysis : CKA Security Game

	8 Complexity Analysis
	9 Conclusion
	References

	Security User Interfaces
	Towards a More Democratic Mining in Bitcoins
	1 Introduction
	2 Proof-of-Work and Its Weaknesses
	2.1 Rich Gets Richer, Poor Gets Poorer
	2.2 Block Races and Selfish Mining
	2.3 Illegal Usage of Machines for Mining
	2.4 Wastage of Computing Power
	2.5 No Guarantee of Coin Generation at a Fixed Rate

	3 Existing Alternative Proposals and Their Disadvantages
	3.1 Proof-of-Burn
	3.2 Proof-of-Stake

	4 Our Proposal
	4.1 Resources Needed
	4.2 Description of Our Algorithm
	4.3 Message Complexity
	4.4 Security Issues

	5 Comparison with Proof-of-Work Protocol and Its Existing Alternatives
	6 Towards Greener Bitcoins
	7 Conclusion
	References

	Authentication Schemes - Comparisonand Effective Password Spaces
	1 Introduction
	2 The Password Space
	3 Graphical Passwords
	3.1 Cued-Recall-Based Schemes
	3.2 Recognition-Based Schemes

	4 Related Work
	5 Configuration of the Schemes
	5.1 Text Password
	5.2 Cued-Recall-Based Schemes
	5.3 Recognition-Based Schemes

	6 User Study Methodology
	6.1 Participants
	6.2 Recorded Measures

	7 Results
	7.1 Validity of the Security Assumptions
	7.2 Usability Evaluation

	8 Discussion
	9 Conclusion
	References

	A Security Extension Providing User Anonymityand Relaxed Trust Requirementin Non-3GPP Access to the EPS
	1 Introduction
	2 Access Security for Non-3GPP Access to the EPS
	2.1 Trusted Non-3GPP Access
	2.2 Untrusted Non-3GPP Access
	2.3 Temporary Identity Generation

	3 Identity Privacy Vulnerability
	4 Related Work
	5 Our Proposed Security Extension
	5.1 DMSI: Pseudonym for IMSI
	5.2 Generating DMSI
	5.3 Management of RIC
	5.4 Handling Collision at RIC-Index
	5.5 Resolving Identity to IMSI in AV Request

	6 Formal Analysis of Security Requirements
	6.1 Security Goals

	7 Conclusion
	References

	A Usage-Pattern Perspective for Privacy Ranking of Android Apps
	1 Introduction
	2 PatternRanker Design
	2.1 Pattern Definition
	2.2 Ranking Metric
	2.3 PatternRanker Architecture

	3 Evaluation
	3.1 App Analysis on Location Usage
	3.2 Analysis Time

	4 Conclusion
	References

	Security Attacks
	Privacy Leakage Attacks in Browsersby Colluding Extensions
	1 Introduction
	2 Background and Assumptions
	3 XPCOMInterfaces
	3.1 Interface Security Risks

	4 Extension Communication
	4.1 Communication Interface: nsIObserverService
	4.2 Preferences Interface: nsIPrefService

	5 Browser Attacks and Evaluation
	5.1 Object Collusion Technique
	5.2 Results for Colluding Objects Technique
	5.3 Collusion through Preference Changes Evaluation
	5.4 Effectiveness of Colluding Attacks over MitB

	6 Mitigation Techniques
	7 Related Work
	8 Conclusion and Future Work
	References

	CORP: A Browser Policy to MitigateWeb Infiltration Attacks
	1 Introduction
	1.1 Proposed Approach

	2 Web Infiltration Attacks
	2.1 Understanding CSRF
	2.2 Understanding Clickjacking
	2.3 Understanding Cross-Site Timing Attacks

	3 Related Work
	3.1 Approaches to Mitigate CSRF
	3.2 Approaches to Mitigate Clickjacking
	3.3 Approaches to Mitigate Cross-Site Timing Attacks

	4 Cross Origin Request Policy
	4.1 Core Idea Behind CORP
	4.2 Browser Model with CORP
	4.3 Abstract Syntax of CORP
	4.4 Security Guarantees Provided by CORP

	5 Experimentation and Analysis
	5.1 Implementation
	5.2 Experiments

	6 Conclusion and Future Work
	References

	An Improved Methodology towards ProvidingImmunity against Weak Shoulder Surfing Attack
	1 Introduction
	2 Overview of Existing Work and Some Preliminary Concepts
	3 Proposed Multi Color Methodology
	3.1 Basic Feature of MC Method
	3.2 Login Procedure and Evaluation of User Response

	4 Security Analysis
	5 Usability Analysis
	6 Conclusion and Future Work
	References

	Catching Classical and Hijack-BasedPhishing Attacks
	1 Introduction
	1.1 Our Contributions and Results

	2 Prior Work and Comparison
	2.1 Phishing Detection Using Blacklist Approach
	2.2 Phishing Detection Using Content of Page and Information
	2.3 Zero-Hour Phishing Detection Using Text Analysis
	2.4 Phishing Detection Using Machine Learning

	3 Overview of the Classification Approach and Initial Steps
	3.1 Pre-processing Steps
	3.2 Whitelisted Domains
	3.3 Sensitive Information Check

	4 URL Classifier
	4.1 U1: Targets in URL
	4.2 U2: Misplaced TLDs
	4.3 U3: URL Classification Using Machine Learning Approach
	4.4 Overall URL Classifier

	5 Content-Based Classifier
	5.1 C1: More Redirections
	5.2 C2: Copy Detection
	5.3 C3: Unsecured Password Handling
	5.4 B1: Real-Time Form Behavior Analysis
	5.5 Overall Content-Based Classifier

	6 Combination Schemes
	6.1 Search Based Filtering

	7 Datasets and Extraction of URLs
	8 Results and Evaluation
	8.1 Pre-processing, Whitelisting and Sanitization
	8.2 Analysis of Methods over Input URLs
	8.3 Summary of Results and Measurements
	8.4 Direct Comparison
	8.5 Security Analysis

	9 Conclusions and Future Work
	References

	Malware Detection
	Permission-Based Malware Detection System
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 Design
	3.2 Implementation
	3.3 Client-Side Application

	4 Evaluation
	4.1 Dataset and Analysis
	4.2 Experimental Set-Up
	4.3 Standard Machine Learning Classifiers
	4.4 Boosted Machine Learning Classifiers
	4.5 Improvements

	5 Related Work
	6 Conclusion
	References

	Efficient Detection of Multi-step Cross-Site Scripting Vulnerabilities
	1 Introduction
	2 Challenges of Detecting Multi-Step Cross-Site Scripting Vulnerabilities
	2.1 Running Example: The WackoPicko Web Application
	2.2 Multi-step XSS Principles and Illustration
	2.3 Research Questions

	3 Pattern-Driven and Model-Based Vulnerability Testing for Multi-step XSS
	3.1 Principles of the PMVT Approach
	3.2 Formalizing Vulnerability Test Patterns into Test Purposes
	3.3 Test Model Specification
	3.4 Test Generation
	3.5 Adaptation and Test Execution

	4 Experimental Results on Real-Life Applications
	4.1 Overview of the
	4.2 Experimental Results
	4.3 Comparison Studies
	4.4 Experimentation Summary

	5 Related Work
	6 Conclusion and Future Works
	References

	CliSeAu: Securing Distributed Java Programs by Cooperative Dynamic Enforcement
	1 Introduction
	2 Scope of Applications for CliSeAu
	3 Design of CliSeAu
	3.1 Activity View of an
	3.2 High-Level Architecture of
	3.3 Parametric Low-Level Architecture of
	3.4 Architecture of CliSeAu

	4 Technique for Combining
	with Targets
	5 Implementation
	6 Case Study
	7 Performance Evaluation
	8 Related Work
	9 Conclusion
	References

	Automatic Generation of CompactAlphanumeric Shellcodes for x86
	1 Introduction
	2 Related Work
	2.1 Rix — XOR Patching
	2.2 Jan Wever — Looped Decoding

	3 Two New Encoding Schemes
	3.1 Non-Alpha Touch (NAT)
	3.2 Alpha Freedom (AF)

	4 The Implementation
	4.1 Decoding Loop
	4.2 Performance Analysis

	5 Conclusions and Future Work
	References

	Forensics
	Analysis of Fluorescent Paper Pulpsfor Detecting Counterfeit Indian Paper Money
	1 Introduction
	2 ProposedMethod
	2.1 Detection of Paper Pulps
	2.2 Feature Extraction from Pulps
	2.3 Training of the Classifier
	2.4 Authentication of Banknotes

	3 Experiment
	3.1 Dataset
	3.2 Pulp Level Authentication
	3.3 Authentication of Banknotes Using Pulp

	4 Conclusion
	References

	A Vein Biometric Based Authentication System
	1 Introduction
	2 Literature Survey
	3 ProposedSystem
	3.1 Image Acquisition
	3.2 Preprocessing
	3.3 Vein Enhancement
	3.4 Vein Extraction
	3.5 Vein Matching

	4 Experimental Results
	4.1 Database Description
	4.2 Performance Evaluation

	5 Conclusions
	References

	Digital Forensic Techniquefor Double Compression Based JPEG ImageForgery Detection
	1 Introduction
	2 Related Work
	3 ProposedWork
	4 Results and Discussion
	5 Conclusion
	References

	Location Based Security Services
	Preserving Privacy in Location-BasedServices Using Sudoku Structures
	1 Introduction and Motivation
	2 Related Works
	3 Sudoku-Based Privacy Preserving Technique
	3.1 Why Sudoku?
	3.2 Parameters of Our Scheme
	3.3 Description of the Proposed Technique

	4 Adversary Attack Scenarios
	5 Experimental Results
	5.1 Comparison with Kido et al.’s Scheme

	6 Conclusion
	References

	Location Obfuscation Framework for Training-Free Localization System
	1 Introduction
	2 Related Works
	2.1 SIL – Training-Free Localization
	2.2 K-Anonymity

	3 Our Approach
	3.1 Anatomy of LOF
	3.2 Distribution of Disguised SSIDs

	4 Experiment Setup
	4.1 Data Collection
	4.2 Experiment Simulation
	4.3 Privacy Measurement

	5 Performance Results
	5.1 The Effect of
	5.2 The Effect of ID and RD Distributions on Anonymity
	5.3 The Correlation of
	5.4 Overhead Analysis

	6 Conclusion
	References

	Author Index

