
Andreas Jedlitschka Pasi Kuvaja
Marco Kuhrmann Tomi Männistö
Jürgen Münch Mikko Raatikainen (Eds.)

 123

LN
CS

 8
89

2

15th International Conference, PROFES 2014
Helsinki, Finland, December 10–12, 2014
Proceedings

Product-Focused
Software Process
Improvement

Lecture Notes in Computer Science 8892
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Andreas Jedlitschka Pasi Kuvaja
Marco Kuhrmann Tomi Männistö
Jürgen Münch Mikko Raatikainen (Eds.)

Product-Focused
Software Process
Improvement

15th International Conference, PROFES 2014
Helsinki, Finland, December 10-12, 2014
Proceedings

13

Volume Editors

Andreas Jedlitschka
Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
E-mail: andreas.jedlitschka@iese.fraunhofer.de

Pasi Kuvaja
University of Oulu
Department of Information Processing Science
90014 Oulu, Finland
E-mail: pasi.kuvaja@oulu.fi

Marco Kuhrmann
University of Southern Denmark
The Maersk Mc-Kinney Møller Institute
Campusvej 55, 5230 Odense, Denmark
E-mail: kuhrmann@mmmi.sdu.dk

Tomi Männistö
Jürgen Münch
University of Helsinki
Department of Computer Science
00014 Helsinki, Finland
E-mail: {tomi.mannisto, juergen.muench}@cs.helsinki.fi

Mikko Raatikainen
Aalto University
Department of Computer Science and Engineering
00076 Aalto, Finland
E-mail: mikko.raatikainen@aalto.fi

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-13834-3 e-ISBN 978-3-319-13835-0
DOI 10.1007/978-3-319-13835-0
Springer Cham Heidelberg New York Dordrecht London
Library of Congress Control Number: Applied for
LNCS Sublibrary: SL 2 – Programming and Software Engineering
© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

On behalf of the PROFES Organizing Committee, we are proud to present the
proceedings of the 15th International Conference on Product-Focused Software
Process Improvement (PROFES 2014) held in Helsinki, Finland.

Since 1999, PROFES has established itself as one of the recognized interna-
tional process improvement conferences. The main theme of PROFES is profes-
sional software process improvement (SPI) motivated by product, process, and
service quality needs. PROFES 2014 addressed both quality engineering and
management topics, including processes, methods, techniques, tools, organiza-
tions, and enabling SPI. Solutions found in practice and relevant research results
from academia were presented.

A committee of leading experts in SPI, software process modeling, and em-
pirical software engineering selected the technical program.

This year, 45 full papers were submitted. At least three independent experts
reviewed each paper. After a thorough evaluation, 18 technical full papers were
finally selected (40% acceptance rate).

Furthermore, we received 22 short paper submissions. Each submission was
reviewed by three members from the PROFES Program Committee. Based on
the reviews and overall assessments, 14 short papers were accepted for presen-
tation at the conference and for inclusion in the proceedings.

The topics addressed in this year’s papers indicate that SPI is still a vibrant
research discipline, but is also of high interest for industry. Several papers report
on case studies or SPI-related experience gained in industry.

The papers addressed the following topics:

– Agile Development
– Decision-Making
– Development Practices and Issues
– Product Planning
– Project Management

Since the beginning of the PROFES conference series, the purpose has been
to highlight the most recent findings and novel results in the area of process
improvement. We were proud to have with Günther Ruhe (University of Cal-
gary) and Ville Tikka (Wecolve), two renowned keynote speakers from research
and industry at the 2014 edition of PROFES. Furthermore, the PROFES Doc-
toral Symposium now has established its place in the community. In addition,
PROFES provided tutorials addressing themes relevant for industry.

We are thankful for the opportunity to have served as chairs for this con-
ference. The Program Committee members and reviewers provided excellent
support in reviewing the papers. We are also grateful to the authors, presenters,
and session chairs for their time and effort in making PROFES 2014 a success.

VI Preface

Particular thanks go to the keynote speakers for giving their insightful speeches
at the conference. We would also like to thank the doctoral symposium chair
Maria Paasivaara (Aalto University), the tutorial chair Fabian Fagerholm (Uni-
versity of Helsinki, Finland), and the local arrangements chair Simo Mäkinen.
Last but not least, we would like to thank our social media chairs Daniel Grazi-
otin (Free University of Bozen-Bolzano) and Daniel Méndez Fernández (Tech-
nische Universität München), the publicity chair Kari Liukkunen (University of
Oulu), the website chair Max Pagels (University of Helsinki), and the head of
the conference secretariat Mary-Ann Wikström (Aalto University).

October 2014 Andreas Jedlitschka
Pasi Kuvaja

Marco Kuhrmann
Tomi Männistö
Jürgen Münch

Mikko Raatikainen

Organization

General Chair

Jürgen Münch University of Helsinki, Finland
Tomi Männistö University of Helsinki, Finland

Program Co-chairs

Andreas Jedlitschka Fraunhofer IESE, Germany
Pasi Kuvaja University of Oulu, Finland

Short Papers and Posters Chair

Marco Kuhrmann University of Southern Denmark, Denmark

Tutorial Chair

Fabian Fagerholm University of Helsinki, Finland

Doctoral Symposium Chair

Maria Paasivaara Aalto University, Finland

Proceedings Chair

Mikko Raatikainen Aalto University, Finland

Local Arrangements Chair

Simo Mäkinen University of Helsinki, Finland

Publicity Chair

Kari Liukkunen University of Oulu, Finland

Social Media Chair

Daniel Graziotin Free University of Bozen-Bolzano, Italy
Daniel Méndez Fernández Technische Universität München, Germany

VIII Organization

Website Chair

Max Pagels University of Helsinki, Finland

Head of Conference Secretariat

Mary-Ann Wikström Aalto University, Finland

Program Committee

Silvia Abrahão Universitat Politècnica de València, Spain
Sousuke Amasaki Okayama Prefectural University, Japan
Maria Teresa Baldassarre University of Bari, Italy
Andreas Birk SWPM, Germany
Luigi Buglione Engineering.IT/ETS Montréal, Canada
Gerardo Canfora University of Sannio, Italy
Marcus Ciolkowski QAware GmbH, Germany
Maya Daneva University of Twente, The Netherlands
Oscar Dieste Universidad Politécnica de Madrid, Spain
Tore Dyb̊a SINTEF/University of Oslo, Norway
Christof Ebert Vector, Germany
Davide Falessi Fraunhofer Center Experimental Software

Engineering Maryland, USA
Xavier Franch Universitat Politècnica de Catalunya, Spain
Daniel Graziotin Free University of Bozen-Bolzano, Italy
Noriko Hanakawa Hannan University, Japan
Jens Heidrich Fraunhofer IESE, Germany
Yoshiki Higo Osaka University, Japan
Frank Houdek Daimler, Germany
Martin Höst Lund University, Sweden
Hajimu Iida Nara Institute of Science and Technology

(NAIST), Japan
Janne Järvinen F-Secure, Finland
Petri Kettunen University of Helsinki, Finland
Ricardo Jorge Machado Universidade do Minho, Portugal
Lech Madeyski Wroclaw University of Technology, Poland
Vladimir Mandic University of Novi Sad, Serbia
Kenichi Matsumoto Nara Institute of Science and Technology

(NAIST), Japan
Sebastian Meyer Leibniz Universität Hannover, Germany
Maurizio Morisio Politecnico di Torino, Italy
Daniel Méndez Fernández Technical University Munich, Germany
Makoto Nonaka Toyo University, Japan
Paolo Panaroni INTECS, Italy
Oscar Pastor Universitat Politècnica de València, Spain

Organization IX

Dietmar Pfahl University of Tartu, Estonia
Reinhold Plösch Johannes Kepler University Linz, Austria
Daniel Rodriguez Universidad de Alcalá, Spain
Barbara Russo Free University of Bozen-Bolzano, Italy
Klaus Schmid University of Hildesheim, Germany
Kurt Schneider Leibniz Universität Hannover, Germany
Michael Stupperich Daimler, Germany
Marco Torchiano Politecnico di Torino, Italy
Guilherme Travassos COPPE/UFRJ, Brazil
Adam Trendowicz Fraunhofer IESE, Germany
Burak Turhan University of Oulu, Finland
Sira Vegas Universidad Politécnica de Madrid, Spain
Stefan Wagner University of Stuttgart, Germany
Hironori Washizaki Waseda University, Japan

Additional Reviewers

Asim Abdulkhaleq University of Stuttgart, Germany
Carmine Giardino Free University of Bozen-Bolzano, Italy
Javier Gonzalez-Huerta Universitat Politècnica de València, Spain
Erica Janke University of Applied Sciences Neu-Ulm,

Germany
Ana Lima Instituto Politécnico de Viana do Castelo,

Portugal
Lucy Ellen Lwakatare University of Oulu, Finland
Marta López Fernández Universidad Complutense de Madrid, Spain
Paula Monteiro Instituto Politécnico de Viana do Castelo,

Portugal
Jasmin Ramadani University of Stuttgart, Germany
Juliana Teixeira Instituto Politécnico de Viana do Castelo,

Portugal
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Table of Contents

Agile Development

A Comparative Study of Testers’ Motivation in Traditional and Agile
Software Development . 1

Anca Deak

Challenges When Adopting Continuous Integration: A Case Study 17
Adam Debbiche, Mikael Dienér, and Richard Berntsson Svensson

Agile Development in Automotive Software Development: Challenges
and Opportunities . 33

Brian Katumba and Eric Knauss

Organization-Wide Agile Expansion Requires an Organization-Wide
Agile Mindset . 48

Hidde van Manen and Hans van Vliet

Decision-Making

The Effects of Gradual Weighting on Duration-Based Moving Windows
for Software Effort Estimation . 63

Sousuke Amasaki and Chris Lokan

Identifying Rationales of Strategies by Stakeholder Relationship
Analysis to Refine and Maintain GQM+Strategies Models 78

Takanobu Kobori, Hironori Washizaki, Yoshiaki Fukazawa,
Daisuke Hirabayashi, Katsutoshi Shintani, Yasuko Okazaki,
and Yasuhiro Kikushima

The Sources and Approaches to Management of Technical Debt:
A Case Study of Two Product Lines in a Middle-Size Finnish Software
Company . 93

Jesse Yli-Huumo, Andrey Maglyas, and Kari Smolander

Application of GQM+Strategies in a Small Software Development
Unit . 108

Francisco Cocozza, Enrique Brenes, Gustavo López Herrera,
Marcelo Jenkins, and Alexandra Mart́ınez

Development Practices and Issues

Algorithmic Complexity of the Truck Factor Calculation 119
Christoph Hannebauer and Volker Gruhn

XII Table of Contents

Experiences in Applying Service Design to Digital Services 134
Stefanie Hofemann, Mikko Raatikainen, Varvana Myllärniemi,
and Terho Norja

On Infrastructure for Facilitation of Inner Source in Small Development
Teams . 149

Johan Lin̊aker, Maria Krantz, and Martin Höst

Product Planning

Analysis and Improvement of Release Readiness – A Genetic
Optimization Approach . 164

S.M. Didar-Al-Alam, S.M. Shahnewaz, Dietmar Pfahl, and
Guenther Ruhe

A Generative Development Method with Multiple Domain-Specific
Languages . 178

Edmilson Campos, Uirá Kulesza, Maŕılia Freire,
and Eduardo Aranha

Role of Software Product Customer in the Bring Your Own Device
(BYOD) Trend: Empirical Observations on Software Quality
Construction . 194

Frank Philip Seth, Ossi Taipale, and Kari Smolander

Envisioning a Requirements Specification Template for Medical Device
Software . 209

Hao Wang, Yihai Chen, Ridha Khedri, and Alan Wassyng

Project Management

Combining Static and Dynamic Impact Analysis for Large-Scale
Enterprise Systems . 224

Wen Chen, Alan Wassyng, and Tom Maibaum

Towards Adaptation and Evolution of Domain-Specific Knowledge for
Maintaining Secure Systems . 239

Thomas Ruhroth, Stefan Gärtner, Jens Bürger, Jan Jürjens, and
Kurt Schneider

Metrics to Measure the Change Impact in ATL Model
Transformations . 254

Andreza Vieira and Franklin Ramalho

Table of Contents XIII

Short Papers

Initial Data Triangulation of Agile Practices Usage: Comparing
Mapping Study and Survey Results . 269

Philipp Diebold

What Is Large in Large-Scale? A Taxonomy of Scale for Agile Software
Development . 273

Torgeir Dingsøyr, Tor Erlend Fægri, and Juha Itkonen

A Mapping Study on Cooperation between Information System
Development and Operations . 277

Floris Erich, Chintan Amrit, and Maya Daneva

Breathing Life into Situational Software Engineering Methods 281
Masud Fazal-Baqaie, Christian Gerth, and Gregor Engels

On the Role of System Testing for Release Planning: Industrial
Experiences from Comparing Two Products . 285

Michael Felderer and Armin Beer

A Process-Oriented Environment for the Execution of Software
Engineering Experiments . 290

Maŕılia Freire, Gustavo Siźılio, Edmilson Campos, Uirá Kulesza,
and Eduardo Aranha

Predicting Risky Clones Based on Machine Learning 294
Ayaka Imazato, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto

Maximizing Product Value: Continuous Maintenance 298
Tommi Mikkonen and Kari Systä

Artefact-Based Requirements Engineering Improvement: Learning to
Walk in Practice . 302

Daniel Méndez Fernández

Security and Privacy Behavior Definition for Behavior Driven
Development . 306

Takao Okubo, Yoshio Kakizaki, Takanori Kobashi,
Hironori Washizaki, Shinpei Ogata, Haruhiko Kaiya, and
Nobukazu Yoshioka

The Challenges of Joint Solution Planning: Three Software Ecosystem
Cases . 310

Danielle Pichlis, Mikko Raatikainen, Piia Sevón,
Stefanie Hofemann, Varvana Myllärniemi,
and Marko Komssi

XIV Table of Contents

A Benchmark-Based Approach for Ranking Root Causes of Performance
Problems in Software Development . 314

Mushtaq Raza and João Pascoal Faria

An Evaluation Template for Expert Review of Maturity Models 318
Dina Salah, Richard Paige, and Paul Cairns

Do Open Source Software Projects Conduct Tests Enough? 322
Ryohei Takasawa, Kazunori Sakamoto, Akinori Ihara,
Hironori Washizaki, and Yoshiaki Fukazawa

Author Index . 327

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 1–16, 2014.
© Springer International Publishing Switzerland 2014

A Comparative Study of Testers’ Motivation
in Traditional and Agile Software Development

Anca Deak

Department of Computer Science
Norwegian University of Science and Technology Trondheim, Norway

deak@idi.ntnu.no

Abstract. The future software engineers looking for positions in the software
industry tend to lean towards software development/coding rather than software
testing. Our study investigates what factors cause software testing professionals
working both in agile and traditional methodologies, to choose and remain in
this career path. Using a qualitative survey among software development
companies we retrieve information about the difference between the traditional
and agile testers. In addition we identify information about the motivating and
de-motivating factors in current testing practices. The results could help the
companies in their recruiting processes, in the transition from traditional to
agile within a company and in motivating their testers, which will lead to better
job satisfaction and productivity.

Keywords: software testing, agile, waterfall, motivation, testers, human factors.

1 Introduction

The aim of this paper is to investigate the motivational factors impacting a software
tester, observing them from the perspective of working methodology and comparing
them with the existing results developed for the software engineer category.
Motivation has been repeatedly cited as an important factor in productivity, quality
and the successful delivery of a project within budget and time constraints [1] with
several motivation theory emphasizing the importance of employee motivation such
as Herzberg [2] and Mayo [3]. In this study we are looking at the positive and
negative factors which influence professional software testers' motivation when
working in traditional and agile methodologies. The subject of motivation within
software engineers was the scope of an extensive systematic literature review
performed by Beecham et al. [4] and updated by Franca et al. [5]. The two studies
provided us with groups of motivators and de-motivators for a software engineer, as
they were identified in their literature reviews.

Although there is extensive work on motivation in IT personnel [6] and on
motivation agile teams [7] and [8], to our knowledge there is a lack of research
focusing specifically on motivation in software testing. A tester's position can be
similar to a software engineer, but there is a particularity of the testing jobs which is

2 A. Deak

prone to situations where discussions or diplomacy might be required. The results of a
survey looking at the human factors which have a negative influence on real practice
of software testing in software companies in Spain identified the following factors:
instability of testers positions (48 %), lack of attractiveness of testing (48 %) and poor
career development for testers (41,7 %), [9]. The study advises us to seriously take
into consideration these factors due to the high percentage of respondents. The human
and social aspects of working in testing, or inside a testing team, as well as the
attitude towards the testing team in a company, were studied from the testers’
perspective in a case study by Shah and Harrold [10]. These lead us to believe that it
is worthwhile to make specific investigations about motivation among software
testers. The research will be guided by the investigation of these factors, their
relationships and effects on job outcomes.

While there is a documented lack of interest in choosing and pursuing a testing
career [11] with development positions seen as more rewarding from career and
financial perspective, there is still little research on why professional software testers
choose to remain in their position. Our research is focusing on retrieving the
motivation for those who chose to remain in software testing as a profession, while
observing them in two different working environments, the agile and traditional
settings. The final results will be compared to the factors in [4] and [5], which will
enable us to observe if there are specific motivational factors for a software tester.
With the framework of these criteria in mind we retrieved information about the
difference between the traditional and agile testers, which could help the companies in
their recruiting processes or in the transition from traditional to agile within a
company. The study can also provide recommendations to companies and
management for motivating the testing personal, which will lead to a better job
satisfaction, productivity and quality of the developed product.

The rest of the paper is organized as follows: Section 2 presents the related
research while the research question and methods used are described in Section 3
together with the research design and data collection process. In Section 4 we
described and examined the results, while in Section 5 we examine the findings of the
study and discuss the implications and the future work for this research.

2 Research Context

2.1 Traditional and Agile Testing

Software testing is a process through which the functionality of a software program is
assessed during the development process. The investigation conducted for the
assessment will focus both on verification and validation [12]. During the verification,
the testers ensure that the software correctly implements a specific function and
otherwise formulated, that it answers the question: are we building the product right?
Validation ensures that the software has been built in order to satisfy customer's
requirements. Validation answers the question: are we building the right product? The
software testing process is also used to evaluate the nonfunctional quality of a system,
by assessing aspects such as performance, security or usability.

A Comparative Study of Testers’ Motivation in Traditional and Agile Software Development 3

For the traditional methodology, the software development lifecycle is constructed
from a sequential set of stages: starting with a feasibility study at the top level and
finishing with the implementation of the product. One trait of this methodology is the
placing of testing towards the end of the project life cycle, which leads to defects
being discovered close to the production deployment stage. In the requirement stage,
the software tester can check if the requirements are according to the client’s wishes,
while during the design phase, the tester can verify if the design document covers all
the requirements and review the design document from the architecture perspective.
In the coding phase the testing team can execute test cases, as well as generating
testing data. In the testing stage running the system test cases can verify whether the
system operates according to the stated requirements. Once the product reaches the
maintenance stage, the tester can retest new fixes and patches and afterwards use
regression testing to ensure that the new changes do not impact functionality in an
unintended manner.

In an Agile Environment there would be more emphasis on collaboration and face
to face interaction. The testers will be involved earlier into the development process
and the development team will have write unit tests first and then code, rather than
code first and then create a test plan which tends to occur in traditional environments.
Members of an agile team are expected to be cross-functional so they may have to
write code, do requirements elicitation or work closely with the customer. No
QA/Testing department will be present and the person involved in the testing
activities will be seen as "a team member who has most testing experience" rather
than "a tester".

2.2 Studies on Testing Practice

Software testing and industrial surveys of testing practices such as [13] and [14] have
been central themes in the specialized literature. Brain and Labiche [15] have
emphasized the importance of testing research in an industrial setting, by arguing that
the human influence and experience are important factors to be considered when
performing testing related research and that the most applicable results are the ones
obtained by observing professional testers at work.

A certain ad-hoc practice was underlined in [14], while the importance of
experience and domain knowledge in testing was emphasized by Beer and Ramler
[16]. Their multiple-case study, covering three industrial software projects, classified
two categories of experience: experience in testing and experience with the product
domain. Having a degree of experience in software testing proved to be useful for
those involved in general management of the testing and particularly for those
working with test automation. Product domain knowledge also proved valuable when
working with test case design, planning regression testing and requirement's
engineering. Those results reinforced Turley and Bieman's conclusion that experience
is a valued asset for software engineers [17], and those of the ethnographic study
conducted by Martin et al. [18] on testing processes and practices in a small start-up
company. The Martin et al. [18] study, which focused on integration and acceptance
testing done in the company, showed that testers working in contexts where

4 A. Deak

requirements were not defined in detail and without any strict processes, needed
understanding of the business and experience in the domain and techniques that were
used to test the product. In addition, testers were also required to possess good skills
in test automation.

The perceptions of software testing were in the focus of an industrial survey
conducted by Causevic et al. [19] and in that of the empirical study of a testing team
in a vendor organization conducted by Shah, Harrold and Sinha [20]. The survey
conducted by Causevic et al. [19], which uses both qualitative and quantitative
methods, organized the results into four distinct categories: safety-criticality, agility,
distribution of development and application domain. Their findings revealed the
discrepancies observed between the current practices and the perceptions of
respondents which could prove beneficial in shaping future research on software
testing. One notable result from the quantitative analysis on satisfaction level of
practitioners is related to Test Driven Development (TDD), which registered the most
significant difference between the preferred practice and the current practice.

Among the findings of the empirical study conducted by Shah, Harrold and Sinha
[20], is the enthusiasm showed by the testers about their job and their positive attitude
toward testing, which is the opposite of the common attitude towards testing: where a
software development job is preferred over a testing one. A desire for innovation and
a high value among the testers were also observed in the same study. In addition, the
results of this study show that the quality of testing is affected by motivation of testers
and emphasizes the need for appreciating testers' efforts. Taipale and Smolander
conducted a qualitative study [21], which explored the software-testing practices and
suggested improvements in this process based on the knowledge acquired during their
study. Their improvement proposition include adjusting testing according to the
business orientation of the company, enhanced testability of software components,
efficient communication, early involvement of testers and increased interaction
between developers and testers.

2.3 Existing Motivation Models in Software Engineering

Motivation in Software Engineering was the scope of a systematic literature review
conducted by Beecham et al. [4], in which 92 papers published between 1980 and June
2006 were analyzed. The result of this study provided 16 characteristics of the software
engineer together with 21 motivators and 15 de-motivators identified in the literature,
which are available in the Appendix. Another, subsequent study by Franca et al. [5]
extended and updated this results by analyzing 53 papers published between March 2006
to August 2010. As a result, another 8 additional motivators were identified: team
quality, creativity/innovation, fun, professionalism, having an ideology, non-financial
benefits, penalty policies and good relationship with users/customer, as well as a new de-
motivator: task complexity. The study also shows that two of the motivators discovered
in [4] were no longer present: appropriate working conditions and sufficient resources.
The change noticed in the motivators and de-motivators also illustrates the evolving
nature in the motivation of software engineers and this is expected to change even more
as the software engineering field is evolving.

Most of the studies involved in these two literature reviews were quantitative
survey studies and they provided important insights into characterizing the factors and

A Comparative Study of Testers’ Motivation in Traditional and Agile Software Development 5

results related to motivation. One limitation of the mentioned studies, which we need
to consider, is that the majority of the studies are referring to the job itself as being the
main motivational factor. Since the title of software engineer can contain multiple
roles and responsibilities which can greatly vary from one position to another, more
information about the job that motivates the software engineer is required. Our study
focuses on software testers, who are often considered as software engineers in job title
terminology, but have different responsibilities than developers. Based on the results
presented in systematic literature review conducted by Beecham et al. [4], same group
of authors have studied different models of motivation and proposed a new model
which was compared with the previous models and refined based on this comparison
in Sharp et al. [22]. A systematic review of motivators in the agile context conducted
by de O. Melo et al. [23], highlights differences between the overall view of
motivation in software development and the motivation in an agile context. The
study, which in addition includes three case studies in agile companies, suggests that
certain motivators have an increased importance in agile teams and provides new
motivators. The same study also claims that motivation seems to be higher for agile
development teams which were previously exposed to other working methods.

3 Research Method

The scope of this paper is to investigate the motivational factors impacting a software
tester, observing them from the perspective of traditional and agile working
methodology and comparing them with data analyzed for the software engineer
category. These objectives are reflected by the following research question:

• RQ: How do motivational and de-motivational factors for software testers
differ in agile environments versus traditional type environments?

3.1 Survey Design

The population of our study is made by software testing professionals with testing
experience. In the software testers' category we will refer to all software engineers
who have software testing as their main job responsibility. In addition, we discussed
with few developers who were involved with testing as part of their responsibilities.

A total of 26 participants were interviewed from six companies, from which 13
interviews were performed in agile working teams, while the other 13 interviews
occurred in teams following the traditional development methodology. The
interviewees included testers and testing managers who face the daily problems of
software testing activities. In company F we talked with members of two teams
involved in testing activities, one agile working team and one team following the
traditional development methodology. The companies and interviewees are described
in Table 1.

During the interviews we used a semi-structured guideline and open questions to
encourage the respondents to provide us with their own reflections and use their own
terms. The interview guideline included both closed questions, for which responses

6 A. Deak

will be easier to analyze and compare, and open questions which will allow the
participants to point out issues that were not mentioned in the closed-form questions.
The open questions were themes' based and concerned problems of testing,
collaboration within their team and relationships with fellow colleagues. In addition
we enquired about positive and negative aspects of their daily activities, working
environment, schedules and the influence of the business domain orientation. In
parallel with this process we will check if all the motivators and de-motivators of
software engineers present in literature can be applied for software testers as well.
The same set of questions will enable us to see if there is a difference in the priority of
these motivators and de-motivators between traditional and agile testers and for
testers in relation to the more general category of software engineers.

Table 1. Companies and interviewees

Company Business Size Methodology Interviewees
A Software producer

& service provider
medium
international

Agile, TDD Testing manager(1)
Tester (2)
Developer (1)

B Software producer
& testing provider

medium
international

Agile, Scrum Testing manager(1)
Tester (2)

C Software producer large
national

Traditional Section manager (1)
Testing manager (1)
Tester (2)

D Software producer large
international

Traditional Section manager (1)
Testing manager (2)
Tester (3)

E Software producer medium
international

Agile Testing manager (1)
Tester (1)
Developer (1)

F Software producer large
international

Agile/Traditional Testing manager(1)
Tester (3)
Developer (2)

The duration of the interviews varied between 30 minutes and 90 minutes, and they

were performed on the premises of each company, in quiet meeting rooms where each
participant was interviewed individually. During the interviews the respondents were
encouraged to express their opinions freely, by guaranteeing their anonymity and
assuring them that the records will be accessible only to the researchers involved in
this study. As recommended by Myers and Newman [24], we used a mirroring
technique in questions and answers in order to encourage the respondents to share
their stories. During the interviews we asked the participants to talk about both
current events and to reflect retrospectively on previous scenarios. All interviews
were recorded and transcribed, and the transcription was sent to each participant for
final checking and approval. Notes were also taken with the prominent issues for each
interview. The transcribed interviews were coded in several rounds. All data has been
anonymised, which included changing names and removing unnecessary details.

A Comparative Study of Testers’ Motivation in Traditional and Agile Software Development 7

Starting the process of analyzing the research data available, we first identified the
segments of text relevant to the research question and discarded those having no relation
to it. Afterwards, we proceeded with the coding phase and labeled each segment (or sub-
segment) by means of one or more easily recognizable terms or categories, using a
software tool designed for qualitative analysis (NVivo 10). The codes were analyzed and
similar codes were aggregated into more general codes in order to reduce the number of
codes utilized and retrieve the emerging categories. The transcripts were revisited several
times, and the coding process was performed in repeated rounds and the results were
reviewed and discussed with my senior colleagues. Each category and code can be linked
to quotations from the interviews and these are used to strengthen and enhance the
results. The categories were derived based on the results provided in the studies by
Beecham et al. [4] and [5] as a model for constructing a list of motivators and de-
motivators for software testers. Two tables, one combining the de-motivators, and
another one combining the motivators from both studies and the ones emerging from our
study, are available in the Appendix.

4 Results and Discussion

In this section we present and describe the concepts for negative and positive factors,
and we present a comparison between these factors based on the working
methodology for traditional and agile testers.

4.1 Concepts for Negative Factors

In Table 2 we can observe the relationship between codes and concepts for negative
factors derived from the study after the qualitative analyze process. The negative
factors are presented in descending order starting from the one who was most
frequently mentioned in the interviews:

Table 2. Relationships between codes and concepts for negative factors

Concepts Codes linked to concept
Negative factors

Lack of influence and
recognition

late involvement in the project, testing is underestimated in
the company, afraid of opening defects, no control over the
schedule

Unhappy with management insufficient resources, unrelated tasks

Technical issues (NEW)
versioning, insufficient number of test environments, poor
quality, integration issues with simulators

Lack of organization lack of clear processes, tasks, redundant meetings

Time pressure (NEW) squeeze, long days, short periods, overloaded schedule

Boredom routine, repetitive tasks, unchallenging work

Poor relationships with
developers

bugs related friction, stereotypic view of testing, slow defect
fix rate, late changes to the code

Working environment
issues

colleagues with no social antenna, open plan landscape related
issues

8 A. Deak

Concept - Lack of influence and recognition
The concept which appeared most often as a factor with negative impact was the lack
of influence and recognition. Under this concept we gathered the segments referring
to the irregular working flow, and lack of control over an unstable schedule. Testers'
late involvements in the development cycle, together with the struggle for recognition
are also frequently cited by the participants "When I as a tester or test manager enter a
project too late in the process to get a reasonable contribution to the quality with the
testing." (Tester, Company C). When the focus of testing activities is more on testing
issues, like retesting defects, rather than testing the product or requirement, testers are
not provided with a sense of accomplishment, but rather with a frustration of not
performing their real job. Under the same no sense of recognition concept we
aggregated the worries for an unattractive career path development, with a low
likelihood of promotion, in comparison with other roles, such as the ones for
developers. "The developing projects and the daily operations have to realize how
important software testing is. The testing area has to be lifted up as an important part
of the company’s work." (Testing Manager, Company C)

Concept - Unhappy with management
The second most mentioned concept addresses participants’ dissatisfaction with the
management related policies, the unrealistic schedules and the scarcity of resources.
An unsupportive management can lead to tester being reluctant when they need to log
in new defects: "testers use a lot of time, they are afraid of opening defects". (Testing
Manager, Company D) Opening a critical bug can be a stressful scenario even for an
experienced tester, it can lead to frictions with the fellow developers or with conflicts
with the management: "I found bugs which stopped or hold a release, which on one
hand is a good thing, because if the bug will have go into production it will have
created serious problems, but is also a little bit like putting your reputation in line. The
release is stopped because of you." (Tester, Company A) Raising defects which prove
to be invalid can be detrimental for a tester but it is a natural part of his or hers career
but can lead to a lack of respect from the developers or pressure from managers.

Concept - Technical issues
Technical issues within testing context are referring to problems with testing tools,
development environments or a weak infrastructure. An insufficient number of test
environments, poor quality or insufficient fidelity to the actual system being tested,
together with integration party with 3rd party tools or simulators were mentioned as
hindering factors of a technical nature. "It takes a lot of time to get the tests started, not
everything works correctly, setting up an environment and also installing the software
on our test servers." (Tester, Company B). In some companies the participants
complained about the weak infrastructure which was proving to be the root cause in
many false defects and required time and effort in investigations. “My main frustration
is that we don’t have good enough tools to do our work and we have to use tools that
make our work a lot more difficult than it should be.” (Developer, Company F)

Concept – Lack of organization
The interviewees were not pleased with the continuously changing plans or bad
planning from the beginning. In addition some of the participants were having an
increasing number of tasks which were not related with testing or outside their focus

A Comparative Study of Testers’ Motivation in Traditional and Agile Software Development 9

area. “We fill a lot of time until we don’t have any left space, but often we want to
update the plan.” (Tester, Company F). Participants related the lack of organization
or carefully planning as a strong source for the repeating time pressure problem for
members of the testing team. A high number of meetings which were considered
redundant or irrelevant to their work tasks were also mentioned as a time consuming
negative factor.

Concept - Time pressure
Another concept which appears often as a factor with negative impact was the time
pressure associated with testing execution. Traditional working teams often delay
testing until the end of projects, squeezing it in the process. Unfortunately, projects
often fall behind schedule, so the testing teams need to compress and sacrifice the
activities due to their shrinking time frame. "I've been in this business for many years
and testing is at the end of this lifecycle, and always pressed to so short periods, long
days, and shortcuts. It's always like that." (Testing Manager, Company D). Testing
time is sacrificed to recover the delays in other processes and by doing so there is often
a compromise on the quality of the delivered product. "I don't like that we are the last
link in the chain, and we don't always get the time that was promised in the beginning.
Give us more time to finish our testing and do it properly." (Tester, Company D).

The concept appears also in the interview with testers from agile teams where the
testing is occasionally facing similar time pressure. The company has sprints with
unbreakable deadlines, but since the first half is allocated to test case designs, issues
are often discovered late in the sprint. This situation gives little time to fix the issues.
"Sometimes it's difficult to plan because they don't really know when they are ready.
They want testing done immediately as they are ready, but they themselves don't really
know when they are ready." (Tester, Company A)

Concept - Boredom
Some of the participants mentioned the routine of some testing activities and the
feeling of boredom associated with maintenance testing. "Everything is routine, there
is no surprises after the system is in production" (Testing Manager, Company D)

Concept - Poor relationships with developers
The second most mentioned concept is the relationship between testers and
developers, which can be problematic at times. Most of these frictions results from
discussions related to bugs. "I do remember having discussions about bugs: Is it really
a bug or is it really important enough to be included in the release." (Tester, Company
A). Another factor quoted by many participants was the stereotypic view of testing by
the developers, "the classical view that they are developing and finally we are testing
and then it's coming back with us saying <<that is not good, that is not good>>"
(Testing Manager, Company A).

Two testers from different companies described their co-workers' view of testing as
"a necessary evil". The slow defect fix rate and developers making unannounced late
changes to code were also mentioned as a factor of concern and conflict between
developers and testers. "It's a lot of things, challenges that take time, sometimes it can
take time to get environments, sometimes you raise bugs and they don't take them
quickly enough" (Testing Manager, Company D)

10 A. Deak

Concept - Working environment issues
Several participants complained about working in open space landscape which is
considered noisy due to the nature of the office design but also due to colleagues with
no social antenna. “When it comes to office conditions it can be quite noisy in this open
landscape thing.” (Tester, Company F)

4.2 Concepts for Positive Factors

The relationship between codes and concepts for positive factors derived from the
study are presented in Table 3. The positive factors are presented in descending order
starting from the one which was most frequently mentioned in the interviews.

Table 3. Relationships between codes and concepts for positives factors

Concepts Codes linked to concept
Positive factors

Enjoy challenges (NEW)
Enjoy challenging yourself, every day you never know what's
coming up, like the chaos, need challenges

Focus for improving the
quality (NEW)

finding bugs, to investigate, making things better, personal
goal on improving the quality

Variety of work work variation, combine testing and programming,

Recognition

ensure that testing tasks are important in the company, send
testers to courses and conferences, get the support I need to a
good job

Good management
good communication in the team, with developers, enough
resources

Technically challenging
work technically challenging work

Concept - Enjoy challenges
Most of the interviewed participants enjoyed challenges represented by the testing
activities, challenging themselves or simply thriving on the chaos which can
sometimes accompany the daily activities of a tester. "When I perform my test and it
works, I’m thinking: Am I doing something wrong? Is the test doing what it’s supposed
to? When it fails, I'm also thinking: Is it really doing things correctly?" (Tester,
Company A) and "There is always something new, new challenges towards different
test scenarios." (Tester, Company D)

Concept - Focus for improving the quality
The second most occurring concept related to testers passion for improving the
quality of the software, the pleasure in investigating and finding defects which will
lead to a better product. "I do have a passion for improving the quality and finding
defects. And there I have learned that I have different focus than the developers, maybe
the right focus for testing. I'm happy when I find bugs. Of course, I'm also happy when
things are working." (Tester, Company A)

A Comparative Study of Testers’ Motivation in Traditional and Agile Software Development 11

Concept - Variety of work
On several occasions the concept of variety of work was mentioned and it referred to
being included in the testing activities associated with the whole development cycle,
not just a specific phase. Another contribution to the variety was considered having a
combination of programming and testing tasks as part of job responsibilities. "The
biggest factor for me is that you do different things, it's very varied and you get to see
the whole picture. You can participate from the start of a project to the end doing
various things, that's the biggest thing for me." (Tester, Company B)

Concept – Recognition
The concept of recognition included awarness of testing importance in the company
both from management and developmet teams as well as positive feedback received
from developers in relation to discovering and fixing bugs. “When we heard feedback
from engineers, when we hear they say <<thank you, this test helped us to pick
something that is wrong>>” (Tester, Company F) Under the same category we
included participants expresing the pride they experience by working in a company
known for delivering high-end products. “I believe I work in a company that is
delivering high end embedded software for the worldwide. I want to make sure that the
software we deliver has high quality. ” (Testing Manager, Company E)

Concept - Good management
Under the concept Good management we aggregated all the positive references to
relations and communication with the managers, between the testers and with
developers. "I think is important to be on good terms with the developers; if they are
having some Agile approach, you as a tester or test manager will get invited to their
daily Scrum, so you get a feel for the modules they are struggling with and so on. It
can help you prioritize, when you start to test." (Testing Manager, Company D)

Concept - Technically challenging work
Another positive concept Technically challenging work was associated with the
participants need to have allocated tasks reflecting their technical competencies. “The
most interesting thing that you can have is interesting technology to work with.”
(Developer, Company D)

If we look at the list of concepts from which we derived the factors available in
Table 4 and Table 5, we see that while both types of testers enjoy having a degree of
variety in their work, the lack of influence and recognition is a major negative factor
for most of the participants involved in this study. If we compare the concepts
emerging from this study with the list of de-motivators and motivators available in the
Appendix we noticed that several new factors emerged from our study: Time pressure
and Technical issues within testing context for the negative factors. On the positive
side we identified new factors Enjoy challenges and Focus for improving the
quality. All these concepts are specific to the nature of testing activities with
Technical issues within testing context involving large quantities of effort and time
invested in items which should be readily available at the beginning of testing. The
Time pressure concept is referring to the tendency of testing time to shrink from the
original estimate until the actual execution period is taking place.

Table 4 and Table 5 show a comparison of positive and negative factors between
the testers from the two groups, based on the number of respondents mentioning these
factors. If we look at how the factors are distributed among traditional and agile

12 A. Deak

testers, we easily observe a higher time pressure factor for the traditional testers,
while the Lack of organization tends to score higher in the agile teams. The lack of
influence and recognition is present in both type of working environments with the
traditional teams having a slightly higher occurrence. When discussing with general
managers in companies working in the traditional way, they signaled several problems
with the testing position, such as a struggle for recognition as a valuable team and also
frustration coming from the lack of influence when suggesting recommendation or
requests related to their working activities. Whatever methodology is followed, all the
participant companies are interested in providing Product Quality. What differs from
traditional to agile is that testing is started early in the sprint and the emphasis on
testing has improved with practices such as TDD.

Table 4. Positive factors for traditional and agile testers grouped by methodology

Positives factors group by
methodology Agile Traditional Total

Enjoy challenges 3 8 11
Focus for improving the quality 7 4 11
Variety of work 6 5 11
Recognition 4 5 9
Good management 2 5 7
Technically challenging work 3 3 6

Table 5. Negative factors for traditional and agile testers grouped by methodology

Negatives factors Agile Traditional Total
Lack of influence and recognition 9 12 21
Unhappy with management 9 10 19
Technical issues 9 7 16
Lack of organization 8 5 13
Time pressure 3 10 13
Boredom 7 5 12
Poor relationships with developers 5 2 7
Working environment issues 1 4 5

Testers working in Agile do not belong to a separate testing group, but work within

the development team. They consider testing an ongoing process that happens
throughout the development process, not just something that happens in a separate
phase after development is done. Another point is that testing is done by the whole
team, rather than just by testers and the relationship between testers and non-testers
tends to be collaborative rather than adversarial. It was interesting to notice that more
agile testers were unhappy about their relationship with developers since testers get
more respect on agile teams where they are seen as colleagues, and are involved much
earlier in the process, making it easier to ensure a system is produced that's easy to
test. It might be related to a situation where a company applies customized version of
agile methods “for good organizational reasons” [18]. Participants form both
categories complained about the heavy load and unrealistic schedules which is in
concordance with earlier research results [6].

A Comparative Study of Testers’ Motivation in Traditional and Agile Software Development 13

Both categories of testers face the time pressure issue and although the initial
model proposed by Beecham includes stress as a strong de-motivational factor, we
feel that time pressure is such a specific and persistent problem during testing
activities that we can assign it a separate category. A complete list of motivating and
de-motivating factors for software testers, including the ones proposed during this
study are available in the Appendix.

Limitations and Threats to Validity
The results of our study should be treated with some caution since there are other
factors which may impact the motivation of a tester such as the organization structure,
internal policies and processes. In addition, motivation can be influence by human
factors such as personality types [25], and individual characteristics such as age [26].
In order to avoid the threats to validity presented by Robson [27] in this kind of
research, we ensured observer triangulation by having the data analyzed by three
researchers. In addition, the collected data and the results of this study were compared
with our earlier quantitative study [28], which allowed us to apply both data and
method triangulation. We are aware that the low number of participants is a limitation
and given the high number of variables playing an important role in the survey, the
results of this study should be considered as preliminary, but since the focus was on
depth instead of breadth we still think that the participants provided a typical sample
giving us with a lot of inputs and perspective. Since increasing the number of
participants could reveal more details or strengthen the conclusion of this study, our
plan is to further expand our research by engaging with other companies and increase
the total number of interviewees. A longitudinal study may provide further insights
into the motivational and de-motivation factors of software testing personal. Our
qualitative analysis spanned across six companies using traditional and agile
methodologies, performing functional and non-functional testing, which could give
better generalizability than performing interviews in just one company [24].

5 Conclusion and Further Work

The extensive research about motivation in software engineering has added to the
body of knowledge characterizing the factors behind the motivation at the workplace.
In this study, we looked at a specific branch of software engineering, namely software
testing and we presented the main results of a qualitative study about motivation of
testers in four software development companies.

We provided a set of factors with negative and positive influence on the daily
activities of software testers and added additional categories to the ones already
presented and published in the software engineering world. We look at the differences
between testers working in traditional and agile development and noticed a higher
degree of stress and a positive approach towards the challenges of testing activities for
those engaged in the waterfall approaches, while the agile testers, although expressing
more problems in communication with developers seemed to be better integrated into
their teams. To further our research we plan to extend this study by involving more
companies and in addition to look into the characteristics of testers and the
relationships with their fellow coworkers.

14 A. Deak

References

1. DeMarco, T., Lister, T.: Peopleware: Productive Projects and Teams. Dorset House (1999)
2. Herzberg, F.: One More Time: How Do You Motivate Employees. Harv. Bus. Rev. 46,

53–62 (1968)
3. Mayo, E.: The social problems of an industrial civilization. Routledge & Kegan Paul,

London (1949)
4. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in Software

Engineering: A systematic literature review. Inf. Softw. Technol. 50, 860–878 (2008)
5. Franca, A.C.C., Gouveia, T.B., Santos, P.C.F., Santana, C.A., da Silva, F.Q.B.: Motivation

in software engineering: A systematic review update. In: 15th Annual Conf. on Evaluation
& Assessment in Softw. Eng. (EASE 2011), pp. 154–163. IET (2011)

6. Boehm, B.W.: Software Engineering Economics. Prentice Hall (1981)
7. Whitworth, E., Biddle, R.: Motivation and Cohesion in Agile Teams. In: Concas, G.,

Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 62–69. Springer,
Heidelberg (2007)

8. McHugh, O., Conboy, K., Lang, M.: Using Agile Practices to Influence Motivation within
IT Project Teams. Scand. J. Inf. Syst. 23 (2011)

9. Fernández-sanz, L., Villalba, M.T., Hilera, J.R., Lacuesta, R.: Factors with Negative
Influence on Software Testing Practice in Spain: A Survey 2 Analysis of Testing Practices
in Organizations, pp. 1–12

10. Shah, H., Harrold, M.J.: Studying human and social aspects of testing in a service-based
software company. In: Proceedings of the 2010 ICSE Workshop on Cooperative and
Human Aspects of Software Engineering, CHASE 2010, pp. 102–108. ACM Press, New
York (2010)

11. Deak, A., Stålhane, T., Cruzes, D.: Factors Influencing the Choice of a Career in Software
Testing among Norwegian Students. In: Software Engineering, p. 796. ACTA Press,
Calgary (2013)

12. Boehm, B.W.: Verifying and validating software requirements and design specifications.
IEEE Softw. 1, 75–88 (1984)

13. Grindal, M., Offutt, J., Mellin, J.: On the Testing Maturity of Software Producing
Organizations. In: Test. Acad. Ind. Conf. Pract. Res. Tech. (TAIC PART 2006), pp. 171–
180 (2006)

14. Runeson, P., Andersson, C., Host, M.: Test processes in software product evolution: a
qualitative survey on the state of practice. J. Softw. Maint. Evol. Res. Pract. 15, 41–59
(2003)

15. Briand, L., Labiche, Y.: Empirical studies of software testing techniques. ACM SIGSOFT
Softw. Eng. Notes. 29, 1 (2004)

16. Beer, A., Ramler, R.: The Role of Experience in Software Testing Practice. In: 2008 34th
Euromicro Conf. Softw. Eng. and Advanced Applications, pp. 258–265. IEEE (2008)

17. Turley, R.T., Bieman, J.M.: Competencies of exceptional and nonexceptional software
engineers. J. Syst. Softw. 28, 19–38 (1995)

18. Martin, D., Rooksby, J., Rouncefield, M., Sommerville, I.: “Good” Organisational Reasons
for “Bad” Software Testing: An Ethnographic Study of Testing in a Small Software
Company. In: 29th Int. Conf. Softw. Eng. (ICSE 2007), pp. 602–611. IEEE (2007)

19. Causevic, A., Sundmark, D., Punnekkat, S.: An Industrial Survey on Contemporary
Aspects of Software Testing. In: 2010 Third International Conference on Software Testing,
Verification and Validation, pp. 393–401. IEEE (2010)

A Comparative Study of Testers’ Motivation in Traditional and Agile Software Development 15

20. Shah, H., Harrold, M.J., Sinha, S.: Global software testing under deadline pressure:
Vendor-side experiences. Inf. Softw. Technol. 56, 6–19 (2014)

21. Taipale, O., Smolander, K.: Improving software testing by observing practice. In: Proc.
2006 ACM/IEEE Int. Symp. Int. Symp. Empir. Softw. Eng., ISESE 2006, p. 262 (2006)

22. Sharp, H., Baddoo, N., Beecham, S., Hall, T., Robinson, H.: Models of motivation in
software engineering. Inf. Softw. Technol. 51, 219–233 (2009)

23. De, O., Melo, C., Santana, C., Kon, F.: Developers Motivation in Agile Teams. In: 2012
38th Euromicro Conf. Softw. Eng. Adv. Appl., pp. 376–383 (2012)

24. Myers, M.D., Newman, M.: The qualitative interview in IS research: Examining the craft.
Inf. Organ. 17, 2–26 (2007)

25. Kanij, T., Merkel, R., Grundy, J.: An empirical study of the effects of personality on
software testing. In: 2013 26th Int. Conf. Softw. Eng. Educ. Train., pp. 239–248 (2013)

26. Boumans, N.P.G., de Jong, H.J., Janssen, S.M.: Age-Differences in Work Motivation and
Job Satisfaction. The Influence of Age on the Relationships between Work Characteristics
and Workers’ Outcomes. Int. J. Aging Hum. Dev. 73, 331–350 (2011)

27. Robson, C.: Real World Research, 2nd edn. Blackwell Publ., Malden (2002)
28. Deak, A., Stalhane, T.: Organization of Testing Activities in Norwegian Software

Companies. In: 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops, pp. 102–107. IEEE (2013)

Appendix

Table 6. List of de-motivating factors from previous work

Nr. De-motivating factors for Software Testers
Proposing study Beecham et al.

1 Stress
2 Inequity
3 Interesting work going to other parties

4 Unfair reward system
5 Lack of promotion opportunities
6 Poor communication
7 Uncompetitive pay/unpaid overtime
8 Unrealistic goals/phony deadlines
9 Bad relationship with users and colleagues

10 Poor working environment
11 Poor management
12 Producing poor quality software
13 Poor cultural fit/stereotyping/
14 Lack of influence/

Proposing study Franca et al.
15 Task Complexity (too easy or too difficult)

16 A. Deak

Table 7. List of motivating factors

Nr. Motivating factors for Software Testers
Proposing study Beecham et al.
1 Rewards and incentives
2 Testing needs addressed (training opportunities; opportunity to specialize)
3 Variety of work
4 Career path (opportunity for advancement, promotion prospect, career planning)
5 Empowerment/responsibility (responsibility is assigned to the person not the task)

6 Good management (sr. management support, team-building, good communication)
7 Sense of belonging/supportive relationships
8 Work/life balance (flexibility in work times, caring manager/employer)
9 Working in successful company (e.g. financially stable)
10 Employee participation/involvement/working with others
11 Feedback

12 Recognition (for a high quality, good job done based on objective criteria
13 Equity
14 Trust/respect
15 Technically challenging work
16 Job security/stable environment
17 Identify with the task (clear goals, personal interest, know purpose of task)

18 Autonomy
19 Appropriate working conditions/environment/good equipment/tools/physical space
20 Making a contribution/task significance
21 Sufficient resources

Proposing study Franca et al.
22 Team quality

23 Creativity/Innovation
24 Fun (playing)
25 Professionalism (high professional environment)
26 Having an Ideology
27 Non-financial benefits
28 Penalty Policies

29 Good relationship with users/customers

Challenges When Adopting Continuous

Integration: A Case Study

Adam Debbiche1, Mikael Dienér1, and Richard Berntsson Svensson2

1 Department of Computer Science and Engineering, Chalmers,
Gothenburg, Sweden

{adam.debbiche,mikael.diener}@gmail.com
2 Department of Computer Science and Engineering,

Chalmers, University of Gothenburg,
Gothenburg, Sweden
richard@cse.gu.se

Abstract. The complexity of software development has increased over
the last few years. Customers today demand higher quality and more
stable software with shorter delivery time. Software companies strive to
improve their processes in order to meet theses challenges. Agile practices
have been widely praised for the focus they put on customer collaboration
and shorter feedback loops. Companies that have well established agile
practices have been trying to improve their processes further by adopting
continuous integration - the concept where teams integrate their code
several times a day. However, adopting continuous integration is not
a trivial task. This paper presents a case study in which we, based on
interviews at a major Swedish telecommunication services and equipment
provider, assess the challenges of continuous integration. The study found
23 adoption challenges that organisations may face when adopting the
continuous integration process.

Keywords: continuous integration, software, challenges.

1 Introduction

Software organizations today face a market with ever changing requirements and
pressure to release more often. The use of agile practices has increased because
of the emphasis they put on customer collaboration and embracing change [14].
Still, companies have been looking into shortening the feedback loop further and
releasing more often to the customer by embracing continuous integration [14].

Continuous integration (CI) relates to the frequency at which changes are
checked in [19]. Each check in results in a new working build of the software
provided that all tests are passed. Continuous integration emphasizes multiple
code check-ins on a daily basis as opposed to nightly builds. It is the next step
in the evolution of an agile R&D company that has established agile practices
in place [14]. It has been suggested that CI increases the frequency of software
releases and shortens the feedback cycle [6]. Additionally, Miller [13] state that

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 17–32, 2014.
c© Springer International Publishing Switzerland 2014

18 A. Debbiche, M. Dienér, and R.B. Svensson

CI reduces the time developers spend on checking in new code while maintaining
the same level of product quality.

In order to support more frequent integration, requirements need to be small
enough in order for developers to test them separately then integrate multiple
times a day. This is not always a trivial task in the context of CI [6]. Breaking
down large user stories into small enough stories with the right level of detail
and visible business and customer value has been identified as a challenge [6].

The purpose of this study is to gain in-depth understanding of challenges with
organisational adoption of CI. Understanding the challenges faced by an organ-
isation that have adopted CI will help increase both academic and practitioner
understanding of the adoption of CI. This paper achieves its aim through a case
study on a single organisation to identify challenges faced by that organisation
when adopting the CI process. Data was collected through in-depth interviews
with 13 practitioners.

The remainder of this paper is organized as follows. In Section 2, related work
is presented, while the research methodology is described in Section 3. Section 4
presents the results, while Section 5 discusses and relates the findings to previous
studies, and Section 6 gives a summary of the main conclusions.

2 Related Work

Continuous Integration has its roots in the eXtreme Programming (XP) agile
method [11]. The goal for each developer is to commit new code several times
a day then build and test the software. A successful test run results in a new
build that the team can deploy. A CI system often involves using a CI server
that automates the building process [5]. When a developer has added a feature
or fixed a bug then the code is tested locally and built before being pushed to a
CI server. At this stage, the server merges the new code with the latest version
on the server. A new version of the software is built provided that the merge is
successful. Otherwise, the developer is directly notified of the conflicts.

Fowler [5] presents a set of benefits related to the implementation of CI. First,
the risk of integration errors decreases since integration is no longer a daunting
and unpredictable task that is done at the end of each sprint. Second, bugs are
discovered and fixed earlier due to the frequency of builds and tests. Bugs are
also easier to catch since each small change to the code is checked in and tested
separately before being integrated into the mainline [5]. Despite the advantages
of adopting CI, several organisations have faced challenges when migrating to
CI, e.g. challenges related to moving from agile practices to CI [14]. In [14],
CI challenges were identified in relation to problems with handling component
dependencies during development and integration. Moreover, automatic testing
in the context of CI was also a barrier since it involved testing code running on
embedded hardware [14].

The practice and implementation of CI varies in industry [17]. This is due to
the fact that the concept is interpreted differently. Sthal and Bosch [17] devel-
oped a descriptive model that facilitates the documentation of CI practices and

Challenges When Adopting Continuous Integration: A Case Study 19

implementations. The model consists of an Integration Flow Anatomy which
is essentially a directed acyclic graph (DAG) that shows the activities of a CI
process. The graph consists of two types of nodes: input (e.g. source code) and
activity (e.g. executing test cases) [17]. While the model has not been fully val-
idated due to the small sample size, it has nevertheless been tested on a real
project and the authors were able to identify areas of future improvement for
the project and team [17].

Holck and Jorgensen [7] studied the use of a decentralized CI process in the
open source community (FreeBSD and Mozilla) where developers are often dis-
tributed. The authors found that developers working on open source projects
are often free to pick any tasks or bugs they want to work on. Deciding when
to integrate changes is also delegated to the developer. This is an advantage
when compared to the more plan-driven work assignment process of traditional
projects [7]. Breaking down tasks into smaller pieces is also prevalent in open
source. However, breaking down large tasks is not trivial. For instance, adding
support for Symmetric Multi-Processing (SMP) to the FreeBSD kernel resulted
in multiple build errors and severely disrupted the work of other developers [7].

3 Research Methodology

For this study we aim to understand and explain the challenges faced by an
organisation when adopting CI. The research question that provided the focus
for the empirical investigation is:

– RQ: What are the challenges of implementing a continuous integration pro-
cess in practice?

Since the purpose of this study is to gain an in-depth understanding of the
challenges an organisation may face when adopting CI, it is important to study
software development teams in practice. The investigation presented in this pa-
per was carried out using a qualitative research approach because it allows
the researcher to understand the studied phenomenon and its context in more
depth [20]. Due to the potential richness and diversity of data that could be
collected, semi- structured interviews [16] would best meet the objectives of this
study. Semi-structured interviews help to ensure common information on pre-
determined areas is collected, but allow the interviewer to probe deeper where
required.

This study was conducted as a single case study with an interpretive per-
spective [9]. That is, to better understand social and organizational contexts
where each individual’s interpretation is of importance [9]. In addition, this
study follows the explanatory-descriptive purpose as classified by Robson [15].
The explanatory-descriptive purpose does not only focus on describing a sit-
uation and how things work but also on finding causal relationships between
problems and situations.

20 A. Debbiche, M. Dienér, and R.B. Svensson

3.1 Case Company

This research was conducted at one case company located in Sweden. The case
company is a world leading provider of telecommunication equipment and ser-
vices. It offers a wide range of products such as base stations, radio access net-
works, microwave networks as well as products for television and video. The case
company has more than 100.000 employees and offers its services to customers
in 180 countries. The products developed by the case company consist of both
hardware and software modules.

A number of cross functional teams have adopted CI as part of their develop-
ment process, albeit with a varying degree of maturity. The teams working on
the product use multiple branches for development and integration with different
quality assurance policies. Once a team begins working on a new feature or a
bug fix, changes are first pushed to their work branch (WB). When a feature is
finished then the changes are pushed to the team’s Latest Local Version (LLV)
where the new functionality is tested. If the LLV tests are successful then the
new changes are delivered to the Pre-Test Build (PTB) branch where full re-
gression tests are run. Finally, the new code is integrated with the Latest Stable
Version (LSV) branch where the system is tested as a whole.

3.2 Data Collection

Semi-structured interviews [16] were used as the method of collecting data in
this study. The research instrument was designed with respect to the different
areas of interest and inspiration from [2]. In order to identify relevant subjects for
this study, the selection process was carried out with help from a ”gatekeeper”
at the case company. That is, the researchers did not influence the selection
of subjects, nor did the researchers have any personal relationship with the
subjects. A total of 13 interviews were performed for this study, eight subjects
from Sweden and five subjects from China (see Table 1). Prior to conducting
interviews, a pilot interview was conducted to improve the interview instrument
(the pilot interview is not part of the collected data). In order to facilitate and
improve the data analysis process, for all interviews (which varied in length
from 25 to 65 minutes) we took records in the form of audio recordings and then
transcribed the interviews using NVivo.

The interviewees were asked to talk about their understanding of, and their
views on, the CI process, as well as challenges that they faced in CI. A number of
additional demographic and open-ended questions were added to ensure subjects
could disclose all knowledge relevant to the research.

3.3 Data Analysis

Data analysis in this study was done using thematic analysis [1]. It follows a
six steps method presented by Braun and Clarke [1]. The first two authors took
part in all the steps as described below while the results from the analysis was
validated and discussed with the third author:

Challenges When Adopting Continuous Integration: A Case Study 21

Table 1. Study subjects

Team Number of months Subjects
using CI

T1 18-24 2 developers

T2 2 1 developer

T3 12 1 developer

T4 0 2 developers

T5 2-3 1 developer

T6 12 1 developer

T7 8 1 CI driver

No team N/A 1 Line Manager, 1 Agile Coach
1 Configuration Manager, 1 Product Owner

Step 1 - Familiarize yourself with the data: The goal of this step is for
the researchers to get acquainted with the data collected. For this study it meant
translating interview recordings into extensive notes.

Step 2 - Generating initial codes: This phase involves creating the initial
codes from the data set [1]. Open coding as described by Robson [15] was used
throughout the analysis phase. For this study, the answers in the extensive notes
obtained from the interviews were coded into categories. It is important to note
that none of the categories were obtained prior to coding as this is highly dis-
couraged when using open coding [15]. The extensive notes were imported into
NVivo and then initial codes were generated.

Step 3 - Searching for themes: This step entails classifying the codes
initially generated into broader themes. For this study, the initial codes were
put into a main category based on the research question. The main category was
in turn divided into sub-categories containing sub-themes.

Step 4 - Reviewing themes: In this phase, the themes identified in the
preceding step are refined. In this study, the focus was on determining whether
the identified categories were appropriate and reflective of the actual data. This
was decided based on recurring patterns found in the data and whether they are
supported by multiple subjects. New codes were created as well as renamed or
removed.

Step 5 - Defining and naming themes: This step requires the scope of
the main category to be clearly defined. For this study, all the codes in each
category were verified in order to make sure that they were consistent with the
overall theme of the category. As part of this step, the final name of each theme
was decided before producing the results.

Step 6 - Producing the report: Results of this study are reported in
section 4.

3.4 Validity Threats

In this section, threats to validity in relation to the research design and data
collection are discussed. We consider the four perspectives of validity and threats
as presented in [16].

22 A. Debbiche, M. Dienér, and R.B. Svensson

Construct validity reflects to what extent the research methodology cap-
tures studied concepts and what is investigated according to the research ques-
tions. The interview protocol was designed based on work done by Claps [2] and
tested during one pilot interview. Minor revisions were made based on the feed-
back from the pilot interview. To reduce bias during the selection of subjects, a
”gatekeeper” at the case company was used. That is, the researchers did not in-
fluence the selection of subjects. In order to obtain a true image of the subjects’
opinion, anonymity was guaranteed, both within the company and externally.

Internal validity refers to the risk of interference in causal relations within
the research. Since this study is of empirical nature, incorrect data is a valid-
ity threat. In case of the interviews, the recordings and the written extensive
notes assured the correct data. In addition, the researchers had the chance to
validate the questions and answers with the subjects lessening the chances of
misunderstandings.

External validity refers to what extent the findings of the research can be
generalised and of interest to other cases. This study included interviews with
different roles and teams to benefit the external validity of this research, on the
other hand, only performing interviews at one company affects the generalisabil-
ity of the results negatively. However, the purpose of qualitative studies puts
more focus on describing and understanding a contemporary phenomenon and
less on the ability to generalize the findings beyond the boundaries of the studied
settings. Nevertheless, results from this study may benefit the investigation of
phenomena within similar contexts.

Reliability threats relate to what extent the findings of the study are de-
pendent on the researchers that executed the research. This study has been
performed by two researchers which increases the reliability and reduces the risk
of single researcher bias. In addition, all research design artifacts, findings and
each step of the research have been reviewed by the third author.

4 Results

This section answers the RQ, challenges of adopting CI in an organisation. The
identified challenges are shown in Figure 1. The most frequent mentioned chal-
lenge is Tools & Infrastructure which was mentioned by 13 practitioners, followed
by Domain applicability (mentioned by 11 practitioners), and Mindset and Un-
derstanding (both were mentioned by 10 practitioners). The challenges in Figure
1 are discussed in the following sections.

4.1 Mindset

The results of this study found that challenges related to the developer mindset
play an important role when transitioning to CI.

Scepticism. One of the mindset challenge identified at the case company is
being convinced about the benefits that come from adopting CI. Interviewees
(7 out of 13) report that they are positive about the concept of CI but need

Challenges When Adopting Continuous Integration: A Case Study 23

Fig. 1. Continuous integration challenges

to, by themselves, experience the benefits that comes with the change. This to
be fully convinced and furthermore promote the adoption. Introducing such a
big process change to about 30 teams can be a challenge, as described by a CI
driver: ”In the summer of last year, when we started to pilot CI we introduced
this change to the team. However, not all of the people are buying the change,
not all of them like this change.”

Some developers that were interviewed are not fully persuaded about the
benefits that CI might bring to the product described by agile coach: ”From the
very beginning, the team they question about the value for that, how much benefit
we can get from the CI because actually, we have already the streamline and we
have already monthly delivery and they just want to know what’s the benefit, if
we want to improve delivery frequency to a weekly delivery. what’s the benefit
for that.” Similarly, a CI Driver involved in coaching and helping teams with
transitioning to CI highlights the importance of questioning a change.

Change Old Habits. Developers often get used to working in a certain way.
The introduction of CI challenged those habit. Consequently, some developers
found it hard to give up their old habits. A line manager mentioned that people
that have been working at the company for a long time are harder to change
compared to junior people because they got used to working in a certain way.

Exposing Work Intention. Continuous integration emphasises early and fre-
quent integrations. As a result, developers are compelled to expose their work
earlier. Some interviewees (4 out of 13) found this to be challenge because they
were used to big bang integrations at the end of a sprint. This gave them enough
time to polish their code before integrating it. With the adoption of CI and the
increase in integration frequencies, developers are worried about integrating low
quality code that could be questioned by experts and managers, as an agile coach
put it, ”some teams they are not familiar or used to frequent delivery, because

24 A. Debbiche, M. Dienér, and R.B. Svensson

they feel safe if they can deliver once a month because they can make everything
ready, if they have some changes, he can correct it on his own branch, don’t
have to deliver to the main branch and then everybody can see your faults right.”
Developer confidence plays a role in this issue. Teams that are more experienced
working with CI seem to be more comfortable about exposing their work earlier.

4.2 Tools and Infrastructure

The tools and infrastructure supporting the CI process are developed and main-
tained in-house at the case company. These include tools for reviewing code,
visualising regression test results, and running automated test suites, checking
in code and such.

Code Review: Tools for reviewing integrated code has been reported to lack the
necessary features for supporting an efficient CI process. For instance, visualisa-
tion of the ”bigger picture” while performing a code review has been requested.
However, current code review tools only support visualisation of each integrated
change separately. This limits the ability to see the impact of smaller changes
and how they related to the ”bigger picture”.

Maturity: The maturity of the tools and their surrounding infrastructure that
developers use when integrating code has been reported as a challenge. These
tools are often seen as not ready for an efficient CI process. Currently, it takes
a long time for developers to integrate their work, especially to the PTB and
LSV branches. This in turn prevents them from reaching the desired integration
frequency. The build framework and the delivery tools are lacking in terms of
maturity and new ways for developers to integrate their codes need to be devel-
oped, as one configuration manager puts it, ”after years of developing a product,
process and tools tend to be tightly intertwined. When new processes come along
then you need to adopt the tools for it.” This highlights the challenge that the
introduction of CI has placed on the tools used at the moment. They need to be
better adopted to facilitate CI.

Regression Feedback Time.One common opinion at the case company is that
the feedback loops from the automated regression tests are too long. Regression
feedback times are reported to take anywhere from four hours to two days. This
highlights the problem of getting feedback from regression tests up to two days
after integrating code. By then, it could already be out of date. According to
one developer, in order to fully derive the efficiency benefits that could come
with the change of process, fast feedback loops are important when adopting CI.
Nevertheless, long feedback loops, in contrast to ”big bang integrations” are still
preferable as mentioned by one software developer: ”I think that doing it every
day actually is better than doing it in a big bang as we used to do.”

Integration Queue. The process of managing the integration queue has been
difficult due to the nature of the product. There are hundreds of developers
working on common and different parts at the same time from different loca-
tions. This means that new code is constantly added to the integration queue.

Challenges When Adopting Continuous Integration: A Case Study 25

Consequently, two issues emerge. First, keeping track of all the deliveries while
preserving quality becomes difficult. Second, the chance of blocking the inte-
gration queue increases due to the surge in integrations which can lead to the
branch being blocked for several days. These two challenges manifest themselves
primarily when integrating to the Pre-Test Branch.

Test Automation. The support of test automation is lacking in the current
infrastructure. This makes maintaining the quality of the product difficult ac-
cording to one developer. There are a lot of manual steps involved in integrating
new code. Some system tests are run manually. The ability to automate tests is
highly sought after by developers when checking in new code.

4.3 Testing

Challenges associated with testing at the case company are the lack of automated
tests along with a stable test framework according to developers.

Unstable Test Cases. Test cases are sometimes unstable (i.e. likely to break
or not reflecting the functionality to be tested) and may fail regardless of the
code. This makes the evaluation of the results difficult. The varying test cover-
age between different branch levels, for instance the LLV and the PTB, further
complicates the evaluation of the integrated code. Since the PTB covers more
tests that are stricter, teams may not be able to guarantee that integrated code
will not break the PTB branch, based solely on LLV test results.

Too Many Manual Tests. Automated tests are considered a prerequisite for
CI according to an interviewee. The current amount of manual tests is an obstacle
to the efforts of adopting CI. Many developers state that there are a lot of tests
that need to be run manually before the code can be integrated. This resulted
in gaps in the current testing frameworks. The problem is more prevalent on
the platform level of the product. This means that teams working closer to the
hardware suffer from more manual tests compared to the teams working on the
application level.

Implementation and Test Dependencies. A problem related to writing test
cases is syncing them with the code they are supposed to test. Often, code
is implemented before its test cases are written (or vice versa). This makes it
complex to coordinate the integration of new code with its corresponding test
cases. Developers do not always know what to do with new code that has no
corresponding tests yet or test cases without implemented code.

Preserving Quality. Maintaining the right level of quality while adopting CI
has been a concern. According to a CI driver, there has been too much focus on
how to introduce CI but not so much on how to retain the quality of the product
to be delivered. Additionally, the large amount of people working on the prod-
uct means that guaranteeing the quality of the increased integrations becomes
challenging. Finding an appropriate integration frequency without threatening
quality is currently an issue. This is closely related to another identified challenge

26 A. Debbiche, M. Dienér, and R.B. Svensson

while adopting CI, more specifically the increased pressure regarding higher in-
tegration frequencies. Pushing the integration frequency goal too eagerly could
jeopardise the quality of each individual integration.

4.4 Domain Applicability

The challenges related to the suitability of CI at the case company and the
related product are presented in this sub-section.

Process Suitability. While taking a step towards more frequent integrations
using CI, the case company has been experiencing problems using the same
desired frequency throughout all parts of the product. Additionally, some sub-
jects (6 out of 13) are of the opinion that CI is not feature, domain and task
independent. Meaning, the possible integration frequency differs depending on
what kind of work being carried out. Several software developers highlight the
problem of using CI for all parts of the product and features. Another identified
challenge related to the suitability of CI is the ability to break down software
requirements (described in Section 4.7)

Product Complexity. Product complexity is something that the developers
struggle with when transitioning to CI. As a result, many think that CI is difficult
to adopt in regards to the product and that it cannot be followed by the book.
Compared to smaller products, where all code is merged to a single branch, the
development makes use of many branches which adds to the complexity.

Some believe that the complexity is due to how the product is designed:
some changes (sometimes minor) require the node to be rebooted which is not
appreciated by the customer. The use of quick workarounds rather than fixing
the main problem also contributes to the complexity of the product. While the
size of the organisation, product and people involved in it has been recognized as
a challenge by most interviewees (7 out of 13). Some think that the complexity
of the product and the difficulty of transitioning to CI is more related to the
confidence of the teams and the tools at their disposal.

4.5 Understanding

The results indicate that teams and management interpret the concepts and
objectives of CI differently. These challenges are described below.

Unclear Goals. Lack of setting up clear goals for the teams migrating towards
CI is currently an impediment for the teams. Pilot teams are used to explore
the possibilities of working with CI. These pilot teams later help other teams
migrating. How the teams adopt CI has been up to them. While this freedom is
generally welcome, some interviewees (5 out of 13) still believe that the overall
goals are unclear. One line manager thinks that there are often some differences
in how teams work with CI which can lead to coordination problems and that a
more general way ought to be developed. Some developers indicated that they
want the organisation to provide clearer instructions on how to proceed with

Challenges When Adopting Continuous Integration: A Case Study 27

the adoption of CI. Another CI coach believes that more feedback from the pilot
teams is needed before any clear goals can be established while emphasising that
the aim should be to maximize integration frequencies while enabling teams to
set their own pace and goals.

Increased Pressure. The initiative to adopt CI has resulted in increased pres-
sure on the teams according to some interviewees (4 out of 13). Despite the
positive support and attitude towards the concept of CI, teams feel that man-
agement would like it to happen faster than currently possible which leads to
increased pressure. Some developers feel that they lack the confidence and ex-
perience to reach desired integration frequencies. There seems to be a general
consensus among developers that transitioning to CI carries risks, a period of
chaos and increased pressure. Hence, the frequency of integrations and how to
proceed should be done in steps in order to minimize the risk of increased pres-
sure.

Bottom-Up Approach. A pilot team was initially established to pilot the
CI concept. Currently, the pilot team members act as CI drivers. They provide
assistance and training through meetings, workshops and discussions to the other
teams. It seems that both management and the teams are mostly happy with the
work done by the pilot teams. Most think that they are committed to helping
other teams transition to CI. However, the bottom up approach seems to have led
some to believe that management could be more involved in the overall process
of transitioning to CI.

4.6 Code Dependencies

A consequence of more frequent integrations when adopting CI is that work
needs to be divided into smaller pieces. This could mean that work that would
otherwise benefit from being developed in one single integration, now might need
to be split up into several integrations. Additionally, by dividing work into several
integrations, development might be carried out by several developers instead of
a single one. This stresses the importance of considering code dependencies and
how this affects the integration process.

Integration Coordination. The results from this study indicate that the task
of coordinating integration dependencies has been more difficult since the adop-
tion of CI. Consequently, four different issues were reported by developers:

– Component interfaces need to be more clearly defined.
– It is harder to locate the source of errors during integration, because code is

delivered from different teams.
– More failures have been experienced during integration.
– Need to wait until other components/parts are done before integrating work.

It has been suggested that a solution to some of the issues presented above
could be the use of ”dead code”, which is described further in the next paragraph.

Dead Code. Integrating partial code for a feature, user story or delivery is
currently an issue for the case company. This due to the testability of such

28 A. Debbiche, M. Dienér, and R.B. Svensson

integrations. Tests will fail until all parts are in place. A suggestion presented by
multiple developers could be to create a test framework that allow integration of
so called ”dead code”. Meaning, code that is activated and tested when all parts
are in place. However, making code support this type of activation/deactivation
might be more costly, according to one software developer.

4.7 Software Requirements

Software requirements were identified as a challenge when adopting CI. It has
increased the frequency at which teams integrate their code. Consequently, re-
quirements that previously could be integrated on sprint basis now need to be
broken down to allow more frequent integrations.

Requirements Breakdown. Interviewees report that since the adoption of CI,
breaking down requirements to enable more frequent integrations, has been chal-
lenging. These challenges are related to finding a balance between size, testability
and assuring quality on the integration line. In addition, one developer reports
on the lack of experience, constant re-prioritisation and new decisions on re-
quirements, which makes the task of finding a balance even more challenging.

Deliver Feature Growth One of the issues reported by developers with break-
ing down requirements when using CI is delivering feature growth. It is difficult
to know whether small changes that do not directly add value to a feature are
worth integrating. Some developers feel this is inevitable. For instance, some-
times you need to re-factor code or make minor changes. These changes do not
necessarily contribute growth to the feature itself but are still needed. This means
that teams need to be prepared for integrations that do not automatically add
feature growth to the customer per say.

5 Discussion

The findings indicate that adopting the mindset aligned with CI is a challenge.
Interviewees were skeptical about the benefits that they could gain from adopting
CI. Similarly, Claps [2] found that teams adopting continuous deployment need
to adopt the mindset needed for it. This means that there needs to be a shift
towards a single and united organisational culture that adopts the principles of
CI. The case company is transitioning to CI in order to be able to integrate
more often and deliver better quality software according to the interviewees.
This implies that adopting CI can be seen as introducing a change to an existing
software process. Also, bringing change to an existing process in an organisation
with the aim of improving software quality is considered a software process
improvement (SPI) endeavor [4]. As such, CI is a SPI initiative undertaken by
the studied company in a bid to further increase the efficiency of the software
development process. Mathiassen et al. [12] argue that improving a process (such
as implementing CI) involves changing people. They argue that people do not
change simply because processes change. As such resistance to change should

Challenges When Adopting Continuous Integration: A Case Study 29

be expected. This could explain why some developers express some degree of
scepticism towards the adoption of CI. Another reason could be the lack of
motivation to change, due to the complexity of adopting a new process, especially
if the change is perceived as being too complex [3].

Results show that all of the 13 interviewees mentioned challenges related to
tools and infrastructure such as code review, regression feedback time when
adopting to CI. The maturity of the tools and infrastructure was found to be a
major issue. This has been mentioned in earlier literature. For instance, Olsson
et al. [14] identified tools with support for automated tests as a barrier when
adopting CI in two companies. Similarly, they argue that developing a fully au-
tomated infrastructure remains the key focus when adopting CI [14]. At the case
company, the tools and the infrastructure are not entirely ready to accommo-
date CI. Many developers feel that the current tools available are holding them
back. This means that teams are still not able to fully exploit the benefits of CI.
That said, a lot of progress is being made such as developing new tools to better
support automated tests and the reduction in the amount of branches which is
a challenge in itself [14]. The maturity issue is most likely due to the fact that
CI is a new concept that is still being adopted. Also, the ongoing responsibility
shift means that tools and infrastructure need more time to adapt.

Another issue is the tests themselves. The need for automated tests when
transitioning to CI has been recognized in previous research [5], [8]. While or-
ganisations realise the importance of automated tests when moving towards CI,
they still struggle with it [14]. Improving the testing tools and the infrastructure
is not enough according to the interviewees. Olsson et al [14] have also iden-
tified automated tests as a key barrier when transitioning from agile to CI. In
order to mitigate this problem, two companies facing this issue, have made it
their priority to greatly increase the number of automated tests [14] since this
is important for CI [5]. Doing this at the case company might not be a trivial
task due to the nature of the requirements they are facing. Some are too large
and cannot be tested separately. Therefore, writing automated tests might not
currently be an option. For instance, one issue mentioned by some of the devel-
opers is automating the tests for some features that are part of the Linux kernel
used in the product. This issue is similar to the problem encountered by the
developers of the FreeBSD project when they were implementing the Symmetric
Multi-Processing (SMP) module in the Linux kernel using CI [7]. The ongoing
struggle with manual tests could be due to to the complexity of the product
itself, which has been developed for well over a decade. Hence, updating the old
and large test cases could be a tedious and time consuming task.

Results from this study show that there is an ambiguity regarding the goals
and the organisational vision for the implementation of CI. More than half (7
of 13) of the interviewed subjects had a hard time answering questions due to
their lack of knowledge of what was expected from them personally. According to
Kotter [10], successful cases of process change all share a common denominator,
which is divided into 8 steps, liable for their success of change implementation.
Kotter [10] highlights the importance of spending the necessary amount of time

30 A. Debbiche, M. Dienér, and R.B. Svensson

on each step, and failing to do so will lead to undesired results. For instance,
lacking and under-communicating a vision might lead to confusion and incom-
patible results, which will take the organisation in the wrong direction. This
might be a reason to the unclear goals and expectations regarding CI at the
case company. Another reason could be the use of a bottom-up approach where
directions and guidance come from experience gained in pilot teams. This might
have led to the confusion regarding a vision, since the most expected communi-
cation channel for organisational visions ought to be management. According to
research done by Stahl and Bosch [17] there is no general consensus regarding
the practice of CI. Besides the fact that this makes the comparison between
different CI practitioners difficult, it could be a reason for the ambiguity at the
studied company as well.

Findings from this study show that the suitability of CI is questioned by the
majority of subjects interviewed (11 of 13 interviewees). Interviewees mentioned
the complexity of the product and the industry in which the case company oper-
ates as not being ideal for CI. Research done by Olsson et al [14] describes barri-
ers identified in hardware oriented companies moving towards CI. These compa-
nies are used to hardware oriented processes and are struggling with adopting a
software oriented process such as CITherefore a shift in culture is needed. Addi-
tionally, research done by Turk et al. [18] on the suitability of agile development
methods shows that assumptions (e.g. face-to-face communication, quality as-
surance, changing requirements) made by such methods are not appropriate for
all organisations, products and projects. The authors [18] highlight important
limitations of said methods, where two is of particular interest for this research,
namely limited support for large complex software and large teams. Agile devel-
opment methods are considered a prerequisite for CI [14], therefore findings by
Turk et al. [18], might apply to the applicability of CI. Therefore, the suitability
issues of CI raised by interviewees are most likely due to the complexity of the
product and t he number of people working on it.

6 Conclusion

This research presents the results of an empirical study that examines the adop-
tion of the CI process at a case company. Understanding the intricacies of this
complex phenomenon is critical for framing research directions that aim to im-
prove CI practices. Through a case study, 13 semi-structured interviews were
conducted and a set of challenges related to the adoption of CI were identified.

A number of adoption challenges were uncovered by the case study in this re-
search, where the most dominant results include: 1) The mindset is an important
factor in the success of implementing CI. Scepticism towards the introduction of
a new process needs be considered in order to win over non believers. 2) Testing
tools and the maturity of the infrastructure supporting the CI process is required
in order to facilitate the daily tasks involved. Continuous integration advocates
the use of automated tools to allow more frequent and efficient integrations.
3) Similar to Agile, assumptions made by the concept of CI may not apply to

Challenges When Adopting Continuous Integration: A Case Study 31

all organisations, products and projects, especially those of larger dimensions.
Some of the identified challenges such as mindset, tools and infrastructure matu-
rity and testing have been mentioned in previous literature when transitioning to
continuous integration. However, this study also identified software requirements
as a challenge when adopting CI.

For practitioners, knowing how to address the challenges an organisation may
face when adopting CI provides a level of awareness that they previously may
not have had. These challenges can be used as a checklist by companies that are
about to adopt CI. The findings of this study can be extended by observing an
increased sample of practitioners and companies using CI.

References

1. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Research
in Psychology 3(2), 77–101 (2006)

2. Claps, G.: Continuous Deployment: An Examination of the Technical and Social
Adoption Challenges. diploma thesis, The University of New South Wales (2012)

3. Conboy, K., Coyle, S., Wang, X., Pikkarainen, M.: People over process: Key chal-
lenges in agile development. IEEE Software 28(4), 48–57 (2011)

4. Deependra, M.: Managing change for software process improvement initiatives: A
practical experience-based approach. 4(4), 199–207 (1998)

5. Fowler, M.: Continuous integration @ONLINE (May 2006),
http://martinfowler.com/articles/continuousIntegration.html

6. Goodman, D., Elbaz, M.: It’s not the pants, it’s the people in the pants, learnings
from the gap agile transformation what worked, how we did it, and what still
puzzles us. In: Agile Conference AGILE 2008, pp. 112–115 (August 2008)

7. Holck, J., Jørgensen, N.: Continuous integration and quality assurance: A case
study of two open source projects. Australasian J. of Inf. Systems 11(1) (2003)

8. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, 1st edn. Addison-Wesley Professional
(2010)

9. Klein, H., Myers, M.: A set of principles for conducting and evaluating interpretive
field studies in information systems. MIS Quarterly 23(1), 67–93 (1999)

10. Kotter, J.P.: Leading change: Why transformation efforts fail. Harvard Business
Review 85(1), 96 (2007)

11. Lacoste, F.: Killing the gatekeeper: Introducing a continuous integration system.
In: Agile Conference, AGILE 2009, pp. 387–392 (2009)

12. Mathiassen, L., Ngwenyama, O., Aaen, I.: Managing change in software process
improvement. IEEE Software 22(6), 84–91 (2005)

13. Miller, A.: A hundred days of continuous integration. In: Agile Conference, AGILE
2008, pp. 289–293 (August 2008)

14. Olsson, H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven”– A multiple-
case study exploring barriers in the transition from agile development towards
continuous deployment of software. In: 38th EUROMICRO Conference on Software
Engineering and Advanced Applications, pp. 392–399 (September 2012)

15. Robson, C.: Real World Research: A Resource for Social Scientists and
Practitioner-Researchers. Regional Surveys of the World Series. Wiley (2002)

http://martinfowler.com/articles/continuousIntegration.html

32 A. Debbiche, M. Dienér, and R.B. Svensson

16. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

17. St̊ahl, D., Bosch, J.: Modeling continuous integration practice differences in indus-
try software development. J. Syst. Softw. 87, 48–59 (2014)

18. Turk, D., France, R., Rumpe, B.: Assumptions underlying agile software-
development processes. Journal of Database Management 16(4), 62–87 (2005)

19. Van Der Storm, T.: Backtracking incremental continuous integration. In: 12th Eu-
ropean Conference on Software Maintenance and Reengineering, CSMR 2008, pp.
233–242 (2008)

20. Yin, R.K.: Case study research: Design and methods. Sage (1994)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 33–47, 2014.
© Springer International Publishing Switzerland 2014

Agile Development in Automotive Software Development:
Challenges and Opportunities

Brian Katumba and Eric Knauss

Department of Computer Science and Engineering
Chalmers| University of Gothenburg

Gothenburg, Sweden
katsbriol@hotmail.com, eric.knauss@cse.gu.se

Abstract. In modern cars, most of the functionalities are controlled by soft-
ware. The increased significance of software-based functionality has resulted in
various challenges for automotive industry, which is slowly transitioning to-
wards being a software centric industry. Challenges include the definition of
key competencies, processes, methods, tools, and organization settings to ac-
commodate combined development of software and hardware. Based on qualit-
ative research, this paper aims at understanding the applicability of agile me-
thods to automotive software development. Our explorative case study with one
of the development sections at Volvo Car Cooperation identified challenges in
their software development process related to process perception and reactive
mode, multi-tasking and frequent task switching, individualism and lack of
complete knowledge, as well as long communication chains and low cross-
function mind set. Moreover it prepares a transition of software development at
this multinational automotive company towards agile by relating agile prin-
ciples and practices to automotive software process challenges.

Keywords: agile software development, automotive software development,
software process improvement, embedded systems, challenges.

1 Introduction

Agile software development methods have changed the way software is developed in
many domains. They promise better ability to cope with changing requirements,
shorter time to market, and faster release cycles [1]. In contrast to earlier assumptions,
agile principles have successfully implemented in large-scale software development
and it has been reported that advantages of agile methods can be realized even in such
environments [2–4].

In the domain of automotive software development, introduction of agile methods
is hindered by the fact that software development has to be in sync with hardware
development, which has been used as a strong argument to use a plan-driven
approach. Yet, increased complexity and interdependency of automotive software
challenges the ability to create an accurate plan upfront. In addition, automotive com-
panies face an increased pressure to shorten their time to market and their release
cycles. In this context, we performed a qualitative study with the following objective.

34 B. Katumba and E. Knauss

Research Objective: This paper aims at i) understanding to what extent agile meth-
ods are applicable to the software development at Volvo Car Cooperation (VCC) and
ii) preparing the transition of software development at this multinational automotive
company towards agile by relating agile principles and practices to automotive soft-
ware process challenges.

We approach this objective based on a qualitative explorative case study with one
development section in the powertrain department of VCC. The development section
under investigation is characterized by doing part of the software development in
house. We performed 29 semi-structured interviews with members of the develop-
ment section and triangulated this data with internal documents.

Our main finding is that today, complexity of software, need to shorten release cy-
cles, and pressure to cut development costs has led to a situation where plan-driven
development starts to fail. Our interviewees mention critical challenges they encoun-
ter today, including process perception and reactive mode, multi-tasking and frequent
task switching, individualism and lack of complete knowledge, and long communica-
tion chains and low cross function mind set. All of these challenges can be considered
waste from the perspective of Lean software Development [5–7].

2 Agile Software Development and Related Work

2.1 Agile Software Development

Agile software development approaches emerged in the mid-1990s as a new solution
to well-known problems experienced by traditional software development methods,
including exceeding budgets, poor code quality and exceeded development schedules
[6], [8], [9]. Agile methods intend to solve the persistent problems of traditional de-
velopment by taking an iterative and incremental approach to software development.
All agile methods have in common that requirements and solutions evolve through
collaboration between self-organizing and cross sectional teams. Agility focuses on
new ways of running business and casting off old ways of doing things, and the con-
cept involves exploration, opportunity exploitation [10], acquiring new competencies,
developing new product lines, and opening up new markets [11].

Agile development is guided by the agile manifesto, which declares the main val-
ues and purpose of agile software development in the form of the agile principles
[12]. Although these principles are suitable and have been widely used for smaller
software development organizations, evidence indicates that they can be adapted to
large software-intensive organizations operating in complex global development envi-
ronments [2], [4], [13]. Therefore these organizations are indeed in the process of
deploying agile methods as part of their de-facto approach to software development,
for example telecommunication companies, automotive industries, medical industries.
Hence, in representing the values mentioned above, agile methods may very well
pave the way for the future of software development also within large multi-national
software organizations [14]. This paper aims at identifying how i) to check whether
agile methods are applicable to the software development at Volvo Car cooperation

 Agile Development in Automotive Software Development 35

and ii) to use these principles to transition software development at this multinational
automotive company towards agile.

Among the agile software development methods, we discuss Scrum [15], eXtreme
Programming (XP) [16], Lean Software Development [6].

2.2 Related Work

The study of agile software development is currently persuasive in software organiza-
tions [2], however its application and context for several years has often been to
smaller organizations where development teams are involved in the product from
development to product release [17]. While seemingly incompatible in embedded
software development industry [18], introducing agile software development and
agile practices is a challenge undertaken by many automotive industries producing
embedded software. In this study we report the challenges of introducing agile soft-
ware development practices in large automotive software development industry,
where development involves the production of both hardware and software at the
same time some of the requirements are realized by the suppliers.

Paasivaara et al. report the successful use of agile practices in large software
projects [17]. Their case study is carried out on a 40-person development organization
that is geographically distributed between Norway and Malaysia. They base their
results on qualitative interviews to come up with a description on how Scrum practic-
es were successfully applied by for example the use of teleconference and web cam-
eras for daily meetings, frequent visits, unofficial distributed meetings, and annual
gathering among others.

Abrahamsson explains the need of having a cost efficient development process in
embedded software development [19]. He points out the increase of software in em-
bedded devices that has resulted into challenges in the European industry. His ITEA
agile project for application of agile processes in complex embedded systems con-
cludes that the application of agile practices in embedded software development
methods and process can reduce lead time and cost by 70% throughout the different
industry sector [19]. Abrahamsson also explores the actual use and usefulness of Ex-
treme Programming and Scrum in complex embedded software development [20].

The increasing use of embedded software in a wide range of products is causing a
considerable impact to the society. Some of these products deal directly with human
lives such as in automobiles, because of this their production need to go through ri-
gorous process. Albuquerque presents in a systematic review [18] how agile methods
have been used in the production of embedded systems. In addition they describe their
benefits, challenges, and limitations to different industries including automotive in-
dustries.

Ulrik and Bosch present a set of factors that should be considered when imple-
menting agile software development in mass produced automotive embedded
software where development is governed by a stage gate process for hardware and
product development as a whole is driven by a plan-driven process [2]. In addition
they list agile measures to be considered by the original equipment manufacturer
(OEM).

36 B. Katumba and E. Knauss

Besides applying agile in the actual automotive software development, agile has al-
so been used to enhance supply chain management between suppliers and in-house
development in the automotive industry [21].

It is worth noting that agile introduction comes with different perceptions in an or-
ganization. Dybå and Dingsoyr present an empirical study of agile software develop-
ment [22]. As part of their results, they present the perception of agile development
from a customer, developer and an organization perspective [22].

3 Background and Research Methodology

3.1 Research Site: Volvo Car Cooperation (VCC)

Volvo Car Cooperation is a Swedish automotive company operating on the global
market. For this particular study, one development section was studied. This section is
part of the department of Complete Powertrain Engineering within R&D. As part of
the Volvo Car Corporation organization, the studied section contributes to system
development of complete powertrains, developing and optimizing of the powertrain
control system and assessing the powertrain attributes in VCC's vehicles.

In specific, the studied section delivers SW and electronic HW to VCC production
line, after market, and to different departments at VCC for development purposes.
The section develops parts of the software in house (focus in this paper) and specifies
software requirements for other parts that are then developed by a variety of suppliers.
At the development section, most of the software is developed in MATLAB’s Simu-
link in addition to following MISRA-C/C++ guidelines. To confirm that a supplier
delivers what the specification stated, VCC does the validation and verification of the
software. The software developed is embedded in nature and is massively produced.

Because of the complexity of the system development within the car industry, this
section has seen a need to investigate more effective and reliable methods of system
development. In every new car model, manufacturers are introducing new advanced
functionality due to customer demands and competition from the market. Often, sup-
pliers delegate development tasks to sub-suppliers that are specialized on certain fea-
tures. This considerably adds to the complexity of integration, making software de-
velopment in the automotive industry even more complex in terms of development,
time and cost.

By transitioning to agile, the development section in our case study aims at further
improving the end-to-end process flow. Specifically the goal is to cut lead times, to be
more customers focused, and to make better use of limited resources. At the time of
initiation of this study one of four groups at the section had unsuccessfully tried using
Scrum for in-house software development. Motivated by this experience, we con-
ducted our case study to systematically explore the possibilities of adopting agile
practices at the section.

3.2 General Overview of Current Process

The development section under research consists of about 60 engineers who are
divided in four groups. The first group is responsible for the architecture &

 Agile Development in Automotive Software Development 37

non-propulsive control, while the remaining three groups are responsible for the en-
gine control modules and transmission. For software development, there are various
roles involved at the section. Intentionally, the specific names of the roles are left out
but rather the roles are categorized in seven categories as shown in Table 1; managers,
software responsible, test engineers, software coordinators, trouble shooter (not part
of this study), system responsible/ architects, system developers/designers, Hardware
responsible (not part of the study), and internal software responsible.

Table 1. Roles and Responsibilities

Roles Experi-
ence(Years)

Tasks and Responsibilities

Manager > 10 Spearheading group activities and project related
communication

System Responsible/
Architects

>10 Architects have the key role to control architectural
part of the model. The architect is responsible for all
elements in the architecture and communication
between the elements. This involves both hardware
and software architecture

Software responsible 2 <= 7 Responsible for both in-house and supplier soft-
ware production, software deliveries, Technical
questions of the project, Project Planning

SPM(Software
Plugin Module)
Developer

2 <= 8 Responsible for SPM(Software Plugin Modules)
development(in-house software development)

Software Coordina-
tor

5 <= 9 Responsible for controlling and coordinating soft-
ware versions and releases, Compiling software
together as well as managing change orders, upload-
ing software to DTECS- Development Tool for
Embedded Control Systems, and handling special
deliveries internally

Tester 2 <= 7 Verify and validate software on both component and
system level, software calibration

The development section follows a traditional stage-gate process (V-Model), where

the gates are driven by decisions and investment in the manufacturing of the product,
i.e. driven by the hardware. The gates progress as the project grows and their progres-
sion corresponds to software artefacts such as user requirements, system require-
ments, software architecture, component requirements, and software implementation.
At this development section, the big part of software requirements comes from the
electrical department as a result of system engineering work while the other require-
ments come from other departments, e.g. system safety, engine and transmission de-
partment, and legal department. Requirements are collected and documented in a
special purpose tool (Elektra), which acts as a requirement repository. System archi-
tects refine these requirements and break them down to support the decision on which

38 B. Katumba and E. Knauss

requirements are developed in house and which requirements are sent to the suppliers
or subcontractors.

There are three different development paths a requirement can take: i) hardware
developed by a supplier, ii) software developed by a supplier, and iii) software devel-
oped in house. In case i) and ii), the supplier decides which development process to
follow, but for software process improvement, the supplier is required to use one of
the following software process improvement models: ISO/IEC15504, Automotive
SPICE, and CMM/CMMI. In case iii), a traditional V-model approach is followed
according to the architects.

In this study various roles at the development section where interviewed (see table
1), and based on the results from the interviews we came up with different develop-
ment challenges.

3.3 Research Method

We investigated the applicability of agile methods based on an exploratory qualitative
case study [23]. In this exploratory research, the researchers studied the current
development method at VCC development section and then sought new insights and
generated new ideas and hypotheses for the study.

By definition, a case study is “an investigation of a contemporary phenomenon in
depth and within a real life context, where the boundaries between the phenomenon
and the context are unclear” [24]. With the aforementioned definition, the study is
based on real life experiences of the researchers at Volvo Cars’ Power Train section.
It was unclear if agile methods could be applied at this section; therefore it was the
purpose of the research to bring out the clarity of the phenomenon and context for the
section in question.

A case study method has been chosen because identifying a suitable development
process requires an in-depth investigation of the current process from the beginning to
the end to understand the underlying principles and the problem that may be involved.
In addition, Yin suggests that case studies allow investigators to retain the holistic and
meaningful characteristics of real life events such as individual life cycles, group
behaviors, organizational and managerial processes which can be augmented to fit the
domain of this research [24]. Similarly, Andersson and Runeson argue that case
studies in the software engineering discipline often take an improvement approach,
similar to action research [25]. The purpose of this study is to improve the working
process at the section under question.

According to [24], there are six main sources of data: documentation, archival
records, interviews, direct observations, participant observations and physical arti-
facts. For this particular study, semi-structured interviews were the primary source of
data and complemented by company presentations, company documentations and
literature reviews as the secondary data source to allow triangulation of results. Inter-
views where transcribed and coded by highlighting and labeling important parts. We
then grouped resulting codes into themes and derived opportunities and challenges in
workshops. While we used all collected data to derive our conclusions, we can only
partly disclose it to protect the company’s sensitive data.

 Agile Development in Automotive Software Development 39

3.4 Research Setting

During the study, and as a significant starting-point for acquiring an insider’s view of
the research phenomenon, one of the authors of this paper spent three or four days
every week during a four-month period at Volvo cars’ site involved in this study. In
supporting engagement between researchers and research subjects, this in-depth study
as well as the observational studies that were carried out as part of it, were important
impetus for developing an understanding of the research setting. While observational
studies, and the documentation of these, were the main activity during this time, data
sources such as meeting minutes and organizational documents were also used to get
an enhanced understanding of the development teams and the development unit in
which they operate.

As a starting point, 2 project managers introduced a vague project topic to the re-
searchers that showed a need to become agile at the development section. The re-
searcher had to narrow down the topic to make it feasible in the short time that was
available. Never the less, it was not so easy since many things had to be put in consid-
eration i.e. the time frame available, the nature of the organization and resources at
the section.

The researchers took observational studies at the premises and, 29 semi-structured
qualitative interviews1 were conducted as the primary data source. During these
interviews, questions focused around areas such as; ‘requirements’, ‘Roles and com-
petence’, ‘communication’, ‘process and phases’, agile understanding, ‘quality im-
provement’ and ‘co-location’.

In focusing the interviews around areas that had been identified as important by the
researchers, there were reasons to believe that the research would attract attention and
that the managers were even more motivated to participate actively, and on a conti-
nuous basis, in the study. The aim of the interviews was to reach an understanding of
the current process at the section, to check for the suitability of agile development,
and to initiate a new working method based on agile principles.

As in exploratory research, the findings generated emerged as an iterative process
between theoretical conceptions and empirical data [26]. In accordance to this, collec-
tion and analysis of empirical data was undertaken as a concurrent activity, with an
important part of the analysis conducted also after the empirical work. The initial
conceptual apparatus – encompassing certain assumptions, beliefs, and rationale –
transformed over time. Thus, our notions, our empirical data and the transformations
of our interpretations of this worked as entangled elements in the process of analyzing
the case.

4 Results: Process-Related Challenges in Relation to Agile

In this section, we present the results from our qualitative study and relate the finding
to the research objectives: Firstly, to check whether agile methods are applicable to

1 See interview guide at https://dl.dropboxusercontent.com/u/13255493/
Katumba-Agile_in_Automotive-Profes14-Interview_guide.pdf

40 B. Katumba and E. Knauss

the software development at Volvo Car cooperation and secondly to use these princi-
ples to prepare for the transition of software development towards agile. Specifically,
we collected opportunities for agile methods, e.g. challenges that can be addressed or
overcome by an agile method work in this context, and challenges for agile methods,
i.e. characteristics of automotive software development that make it hard to introduce
agile methods. We categorized these opportunities and challenges in five categories:
Process ability, workload management, domain specifics and supplier network, work-
ing context, and culture of sharing information and knowledge. For each category, we
include the perspective of different roles at the development section.

4.1 Process Ability

As discussed in our research background, development is supposed to follow the V-
Model, as clearly indicated by introductory interviews from two managers and inter-
nal training documents. However, our interviewees indicated a lack of structure when
it comes to developing software in house. Tasks are started as they hit the engineer’s
desktops and development seems to be driven by sudden urgencies rather than
by a long term plan. One interviewee explicitly noted this reactive mode approach by
saying:

“[For developing software in house,] There is no working process at the section, it
may be there but I have not used it nor do I know how it looks like. What I know
are the milestones and when I am supposed to deliver”

“We had a process but we stopped using it since it required a lot of resources and
hence it lacked the practicability of the project”,

This perceived lack of an accepted process by our interviewees is related to the

fact that each member may have more than three or four roles. Not having a clear
methodology to follow causes confusion and is seen as a challenge by our intervie-
wees:

“…we are in a confusing situation and nothing […] works in this confusing state of
working. If this agile thing works out, you would have [helped us a lot].”

We assume that the perceived lack of structure is the consequence of VCC aiming

at increasing their flexibility with in-house software development. Agile methods
might be helpful in this situation by adding just enough structure while still offering
flexibility.

4.2 Workload Management

Heavy workloads is one of the main challenges faced at the VCC section, as sup-
ported by all interviewees irrespective of their roles. For example, the role of the
software responsible was merged with another role in order to improve development
efficiency. Initially, this role was to work on project planning activities, cost estima-

 Agile Development in Automotive Software Development 41

tion, and supplier communication. Today, this role is also responsible for answering
technical questions, prioritizing requirements for both internal and supplier software,
breaking requirements down, as well as ensuring accuracy of test and calibration re-
sults. This multitasking is seen as challenging by our interviewees and it affects other
roles as well. For example in internal software development, one engineer is respon-
sible for all phases of development, including requirements, design and testing. This
leads to a loss of focus of developers and ultimately can affect the quality of the
feature.

A related challenge is task switching: people are participating in many projects at
the same time and often need to jump from one task to the next, which might be in the
context of a completely different project. A resulting problem mentioned in our inter-
views is the lack of time for continuous learning. Specifically, the testers at the sec-
tion claimed to serve many software responsible with a ratio of 1:3 i.e. one tester can
test software from three software responsible with each software responsible working
on more than three projects. This results in unbalanced workloads and hinders the
performance of the group members. In addition, schedule synchronization becomes a
problem, because engineers are working on many projects, on multiple tasks, which
they frequently switch. Synchronizing schedules of team members in this context
becomes challenging, as indicated by the following quote from our interviews:

 “.. you may be in one meeting yet at the same time you needed at another

meeting….”

As agile methods rely to a large extent to oral face-to-face communication, such

context switching might be problematic when introducing agile methods.

4.3 Domain Specifics and Supplier Network

The domain of automotive software development involves both in-house and supplier
software development and VCC is no exception to this setting. At VCC, the big part
of software requirements come from the electrical department as a result of system
engineering work while the other requirements come from other departments; system
safety, engine and transmission department and legal department. They usually collect
and gather requirements in a tool called Elektra, which acts as a requirement reposito-
ry. These requirements are further broken down at the section, of which some are
developed in house while other requirements are sent to the suppliers or subcontrac-
tors. It is however important to note that these requirements may be hardware, internal
software or supplier software requirements. For supplier requirements, the supplier
decides which development process to follow, and is required to produce working
software fully tested and integrated with the in house software. For software produced
internally, according to the architects it has some elements of following a traditional
V-model where specifications are done first, before design, integration, and valida-
tion. The domain of the network of in-house, supplier and hardware results into inven-
tory and motion. In this, all requirements sent to the supplier are fully managed by the
supplier till integration. This means if anything is missing or not done even if the in

42 B. Katumba and E. Knauss

house team can work on it, the software is sent back to the supplier, the interviewees
mentioned this rework could result in bottlenecks caused by process dependencies, if
the software is needed for further activities to take place. One of the software respon-
sible mentioned:

“We keep sending back the software modules to the supply in case there is
something missing, even if it is something small which we can fix internally.”

While this is a perfectly normal workflow in traditional automotive development, it
seriously impacts the effectivity of (agile) in house development.

4.4 Working Context

In this category, we discuss challenges in the context of knowing what a function or
feature should do. The interviewees claimed that at times they do not know the con-
text of the functions or features they are developing, mainly due to the fact that they
do not participate in the requirement elicitation phase of the project. This is a conse-
quence of the multitasking challenge above, as one interviewee indicates:

“There are many projects running at the same time, meaning that each per-
son is participating in more than one project”.

An example, one system responsible claimed to be participating in four projects at
the same time. In this situation, engineers tend to focus on the projects close to dead-
line instead of working in projects that are in early stages. Also, this leads to a lack of
competence and knowledge. For example, a system architect might only have a heli-
copter view of a function, whereas a tester is limited to knowledge about testing activ-
ities. This separation of concern and lack of end-to-end knowledge was perceived as
problematic in the context of agile in house software development.

Challenges around working context are intensified when requirements are vague
and not easy to understand. An example given during an interview was “the engine
should run fast and smooth”, leaving it to the developer to find out what smoothness
is and at what level of smoothness needs to be reached.

Finally, the ramp-up challenge relates to bringing new recruits up to speed. Be-
cause of the complexity and lack of structure of the current development process, new
recruits take long time to get to know their ways. The high workload means that they
get limited support from the old ‘group’ members, who are always busy working on
their tasks. This further reinforces individualism, where instead work should aim to
achieve a common goal. Also, problems like lack of continuity and low knowledge
about the features and their functions are a consequence of this.

4.5 Culture of Sharing Information and Knowledge

The different roles at VCC section under consideration are challenged with sharing
information and knowledge. This challenge is mainly caused by their working culture

 Agile Development in Automotive Software Development 43

that encompasses on individuals to achieve a common goal. Although each role is
placed in a group, when it comes to actual work, the group influence is minimal. In
addition, the chain of communication at times is long since information has to pass
through different channels to reach a person who is really going to use it. For exam-
ple, if a tester wants to clarify unclear requirements, information has to go through the
software responsible, to the architects, to the electrical department and so on. This in
the end leads to low continuity in development since by the time the information
comes back to the person who initiated it, it may be late as that person may be already
engaged with other activities in a different project. This again explains the problem of
participating in more than one project as already mentioned.

5 Discussion

In this section we discuss the themes we found in the qualitative interview study and
outline agile practices that can be adopted in automotive. For this, we map each theme
to a set of relevant agile methods, principles, and practices. From our interviews, it is
clear that the division under investigation is facing challenges that prevent them to
fully leverage the potential of developing software in-house. The opportunities and
challenges we found were grouped into themes: process related challenges, workload
management, domain specifics, working context as well as information and knowl-
edge sharing. In Table 2 we summarize opportunities and challenges for agile meth-
ods at the company and suggest agile practices that can be adopted.

The process related challenges seem to be caused by the nature of the organiza-
tional structure, which focuses more on the finished product than on the way the
product is developed. By this all interviewees were less concerned about the process
but instead more concerned on what they have to deliver.

Moreover, the organizational setting and the available competences are character-
ized by low agile knowledge as well as low general software development knowledge
in comparison to the excellent knowledge in hardware development. We triangulated
these results with responses to the agile questionnaire from interviewees and addi-
tional managers that showed that, although the teams know the term “agile”, they lack
the full context of it. This can be explained that the automotive industry has tradition-
ally been characterized more by hardware production than software [2]. Relating this
challenge to the agile methodology, it can be mitigated by having a flexible, holistic
product development strategy as for example in Scrum [27]. With Scrum, there is a
defined product strategy and structure, which accommodate changes at higher level at
the same time leaving room for flexibility and innovativeness. Besides, the process
ability challenges can also be explained by the domain specifics and supplier network.
Automotive companies produce cars in-house by integrating their suppliers’ deliveries
of hardware and software. This means there should be a strategy that can accommo-
date both the in-house process and the supplier process to reduce the inventories and
motions involved. From a lean perspective, the unnecessary motions are referred to as
waste and so lean calls for an absolute elimination of waste in the production process
[6], [7].

44 B. Katumba and E. Knauss

Table 2. Automotive challenges and opportunities for agile in-house software development

Theme

Opportunities for
agile in automotive

Challenges for agile
in automotive

Agile Practices

Process ability Perceived lack of
software develop-
ment methodology
and structure

Low agile compe-
tence,
Reactive mode

Flexible, holistic product
development strategy1,

Workload man-
agement

Heavy workloads,
Unbalanced work-
loads

Multi-tasking,
Task switching,
Schedule synchroni-
zation

Task boards1,2

Sprint planning1,
Commitment phase2
Defer Commitment3

Frequent releases, short
development cycles2

Domain specifics
and supplier
network

Inventory and mo-
tion, Rework

Process dependencies Eliminate waste3

Working context Vague require-
ments,
Lack of end-to-end
knowledge

Feature context,
Separation of con-
cerns,
Ramp-up

Requirement Prioritiza-
tion1,2, Emergent Design
and Metaphor2

Product Backlog1

User stories/ Product
vision1,2

Sprint Planning1

System metaphor2

Relying on a product
owner1

Culture of sharing
information and
knowledge

Low knowledge
sharing,
Individualism,
No team work

Long communication
chains,
Low cross function
mind set

Retrospective1,2,3

Cross function Teams1

Self-organizing teams by
encouraging colocation
of all team members1,2

Daily stand up1,
Pair programing2

Continuous learning3

NOTE: 1 – Scrum, 2- Extreme Programming, 3- Lean

The heavy workloads mentioned in the interviews by almost all interviewees have

resulted in multi-tasking, task switching, and poor schedule synchronization. These
challenges indeed affect production since they are bottlenecks to the development
chain. Management also confirmed these effects: the nature of the organization is set
that way. A similar case is also discussed and experienced in another multinational
cooperation in the telecommunication sector where task switching was one of the
bottlenecks at their development section [4]. Looking at some of the agile practices
that can be adopted to solve this issue were; using task boards to show the work to be

 Agile Development in Automotive Software Development 45

done [28], sprint planning to solve product planning issues [29] and having short it-
erations that can result into frequent releases [20].

The working and feature context showed that teams sometimes lack the domain
knowledge of the products they are working on. This was however explained by the
vague requirements they get from the requirement engineers who mainly have hard-
ware and electronics knowledge than software knowledge. In addition the separation
of concerns where for example architects are doing only architectural work and testers
do only the testing, is also seen as a cause of low domain understanding. Ramp up
was also mentioned and refers to the fact that new comers find it difficult to find their
way around development. This can be related to the process ability challenges as well.
Working context challenges are suggested to be solved by having a product backlog
for requirements [27]. The requirements in the backlog should be prioritized and each
requirement should have a user story that explains what the requirement should do
[28]. Moreover in the development, the use of design metaphors are encourages and
relaying a competent product owner to share the knowledge of requirements [2].

The culture of sharing information and knowledge is something that is vital in
software development[30]. It is in this that teams learn new tools, know each other,
and to improve the process as well as innovativeness [4], [3]. However at the devel-
opment section it was affirmed that there is low knowledge sharing, high level of
individualism and not much teamwork. This results in long communication chains
where people take long to communicate or provide feedback to those who need it. The
lack of teamwork can be explained by teams having a low cross-functional mind-set
and can result into individualism where everyone is concerned about him/herself to do
the work. We suggest retrospectives, a self-organized cross-functional team setting,
team colocation, working in pairs, and daily stand-ups to cub these challenges.

All the challenges mentioned were validated by the management at the section and
are seen to overlap each other. The process related challenges could be the cause of
low domain understanding at the same time can be argued to be the cause of workload
related challenges. On the other hand the domain specific and supplier network chal-
lenge can be the cause of process related challenges, which can explain the working
context challenges. And also having a complex development structure can explain
why there is low knowledge sharing and no team interactions. In other words, these
challenges are intertwined and one can result into the other.

6 Conclusion and Outlook

In this paper we presented our findings from a qualitative study with one of the devel-
opment sections at Volvo Car Cooperation. Challenged by its transition towards being
a software-centric company, which shows in the increased need for in-house software
development. The department is looking for ways to improve their software develop-
ment processes and decrease their time to market. Based on semi-structured inter-
views, we discovered specific challenges with the current way of developing their
software. We discuss the applicability of agile methods to these challenges. For VCC,
this study can serve as a first step towards transition to agile methods. Future work

46 B. Katumba and E. Knauss

should focus on quantifying and measuring the current challenges so that potential
improvements from switching to agile methods can be proven. We hope that others
find our insights useful for understanding challenges that arise from software and
software development pervading more and more products.

References

1. Cockburn, A.: Agile software development: The cooperative game, vol. 113, pp. 2000–
2001. Addison-Wesley (2001)

2. Eklund, U., Bosch, J.: Applying Agile Development in Mass-Produced Embedded Sys-
tems. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 31–46. Springer, Heidelberg
(2012)

3. Holmström, H.O.: Acting Agile in Streamline Development. Inf. Syst. Res. Semin. Scand.
(2009)

4. Katumba, B., Antanovich, A.: Bottlenecks in the Development Life Cycle of a Feature- A
case study conducted at Ericsson AB. In: 7th Annual International Conference on Compu-
ting and ICT Research, pp. 472–490 (2011)

5. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit. Addi-
son Wesley, Boston (2003)

6. Shalloway, A., Beaver, G., Trott, J.R.: Lean-Agile Software Development, Achieving En-
terprise Agility. Addison Wesley, Upper Saddle River (2010)

7. Womack, J.P., Jones, D.T., Roos, D.: The Machine that Changed the World: The Story of
Lean Production, pp. 1–11. Harper Collins, New York (1990)

8. Hafterson, T.: Incorporating Agile Methods into the Development of Large-Scale Systems.
In: UMM CSsci Senior Conference, Moris, MN

9. Salo, O., Abrahamsson, P.: Agile methods in European embedded software development
organisations: A survey on the actual use and usefulness of Extreme Programming and
Scrum. IET Software 2(1), 58 (2008)

10. Yusuf, Y.Y., Sarhadi, M., Gunasekaran, A.: Agile manufacturing: The drivers, concepts
and attributes. Int. J. Prod. Econ. 62(1–2), 33–43 (1999)

11. Dismukes, J.P., Uppal, M., Vonderembse, M.A., Huang, S.H.: Designing supply chains:
Towards theory development. International Journal of Production Economics 100(2), 223–
238 (2006)

12. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mel-
lor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Develop-
ment. The Agile Alliance (2001), http://agilemanifesto.org/ (accessed: May
30, 2014)

13. Harrison, R., West, A., Lee, L.: Lifecycle Engineering of Future Automation Systems in
the Automotive Powertrain Sector. In: 2006 IEEE Int. Conf. Ind. Informatics, pp. 305–310
(August 2006)

14. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile me-
thods: A comparative analysis. In: Proceedings of the 25th International Conference on
Software Engineering, pp. 244–254 (2003)

15. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, vol. 18(9), p. 158.
Prentice-Hall (2001)

16. Beck, K.: Extreme Programming Explained: Embrace Change, p. 224. IEEE (1999)

 Agile Development in Automotive Software Development 47

17. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Distributed Agile Development: Using
Scrum in a Large Project. In: 2008 IEEE Int. Conf. Glob. Softw. Eng., pp. 87–95 (August
2008)

18. Albuquerque, C.O., Antonino, P.O., Nakagawa, E.Y.: An investigation into agile methods
in embedded systems development. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N.,
Rocha, A.M.A.C., Taniar, D. O., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS,
vol. 7335, pp. 576–591. Springer, Heidelberg (2012)

19. Abrahamsson, P.: Speeding up embedded software development. ITEA Innov. Rep. (2007)
20. Salo, O., Abrahamsson, P.: Agile methods in European embedded software development

organisations: A survey on the actual use and usefulness of Extreme Programming and
Scrum. IET Software 2(1), 58 (2008)

21. Tarokh, M.J., Ghahremanloo, H., Karami, M.: Agility in Auto Dealers SCM. In: IEEE In-
ternational Conference on Service Operations and Logistics, and Informatics, SOLI 2007,
August 27-29, pp. 1–6 (2007)

22. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic re-
view. Inf. Softw. Technol. 50(9–10), 833–859 (2008)

23. Robson, C.: Real world research: A resource for social scientists and practitioner-
researchers, vol. 2, p. 624. Blackwell (2002)

24. Yin, R.K.: Case Study Research: Design and Methods, vol. 5(5), p. 219. Sage Publications
(2009)

25. Andersson, C., Runeson, P.: A spiral process model for case studies on software quality
monitoring method and metrics. Softw. Process Improv. Pract. 12(2), 125–140 (2007)

26. Klein, H.K., Myers, M.D.: A Set of Principles for Conducting and Evaluating Interpretive
Field Studies in Information Systems. MIS Q. -Spec. Issue Intensive Res. Inf. Syst. 23(1),
67 (1999)

27. Julian, B.M.: Scrum Master Activities: Process Tailoring in Large Enterprise Projects. In:
2014 IEEE 9th International Conference on Global Software Engineering (ICGSE), Au-
gust 18-21, pp. 6–15 (2014)

28. Guang-yong, H.: Study and practice of import Scrum agile software development. In: 2011
IEEE 3rd International Conference on Communication Software and Networks (ICCSN),
May 27-29, pp. 217–220 (2011)

29. Schwaber, K., Sutherland, J.: The scrum guide (October 2011)
30. Sekitoleko, N., Evbota, F., Knauss, E., Sandberg, A., Chaudron, M., Olsson, H.H.: Tech-

nical Dependency Challenges in Large-Scale Agile Software Development. In: Cantone,
G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 46–61. Springer, Heidelberg
(2014)

Organization-Wide Agile Expansion Requires

an Organization-Wide Agile Mindset

Hidde van Manen and Hans van Vliet

Computer Science Department, VU University Amsterdam, The Netherlands
hiddevanmanen@hotmail.com, hans@cs.vu.nl

Abstract. While agile methods are widely used, large organizations still
struggle with the implementation thereof throughout the whole orga-
nization. The objective of our study is to identify factors that affect
the expansion of agile software development in large organizations. We
performed a multiple-case study to do so. We found agile software de-
velopment in large organizations is more than implementing Scrum. In
particular, we identified ”agile mindset” as a crucial topic that deserves
attention when expanding agile methods in large organizations.

Keywords: agile expansion, Scrum, agile mindset.

1 Introduction

Since their origin in February of 2001, agile software development methods have
become immensely popular. While Forrester research from 2010 indicated that
agile methods were practiced in more than a third of all projects [1], this percent-
age has kept growing strongly in the last few years and is now well over eighty
percent of all projects [2]. Surely this cannot be the case in every organization?
No. A quick internet search teaches us that large, international organizations all
over the globe are still in the process of transforming their development organi-
zation towards agile software development – and that this change is not realized
overnight. An example is the U.S. Postal Service, which has spent well over three
years rolling out agile in its organization and recently announced that agile has
officially replaced the waterfall methodology in March 20131.

Agile Methods, when referred to in this paper, encompass software develop-
ment methodologies characterized by a continuous readiness to rapidly realize
change, pro-actively or reactively embrace change, and learn from change while
contributing to customer value. In particular, Scrum, the development method-
ology used in the environments studied in this paper, fits this definition. A focus
on working code right from the beginning, delivery cycles of 2-4 weeks (so-called
Sprints), and having business representatives on the team are but three practices
to achieve the above benefits [3].

1 http://fcw.com/articles/2013/06/13/usps-agile-development.aspx - accessed
on June 25, 2013.

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 48–62, 2014.
c© Springer International Publishing Switzerland 2014

http://fcw.com/articles/2013/06/13/usps-agile-development.aspx

Organization-Wide Agile Expansion 49

The introduction and adoption of agile methods within organizations is a
popular subject of research into agile methods [4]. The number of anecdotal and
qualitative studies into the challenges of such adoption is large and studies have
been performed both over short and long periods of time [5–13]. The findings
of these studies are not always consistent [7]. On the other hand some factors
are commonly accepted as being critical to the success of agile adoption, such
as ”management support” and ”customer collaboration” [7, 9, 11].

One of the items on the current research agenda is to study agile software de-
velopment within organizations that have left the so-called adoption phase [14].
Recently a few publications on this topic have seen the light, e.g. [15], but a lot
of questions remain open. There is an increasing need for knowledge about this
topic, as ”many organizations have completed the adoption stage and agile meth-
ods start to become well-established processes of these organizations” [16]. The
expansion of agile methods in large organizations is another one of the issues to
be addressed and this is also the topic of our research.

Already in the early days of agile, some publications report practitioners strug-
gling with scaling agile methods, e.g. [17]. What they describe is the demand to
balance the new agile methods with the document-driven (waterfall) approach
that large organizations require. Boehm, Beck and Turner [18, 19] were involved
in a discussion on balancing agile methods with traditional document-driven
methods in large organizations, in order to achieve the benefits of both. They
state: ”both approaches have shortcomings that, if left unaddressed, can lead to
project failure. The challenge is to balance the two approaches to take advantage
of their strengths and compensate for their weaknesses” [18, 19]. It seems rather
hard to adopt agile methods on an enterprise-wide scale in large organizations.
Agile methods in general, including Scrum, focus more on the team level and
less on organizational issues. When large organizations try to adopt agile meth-
ods, they face a myriad of issues that are different compared to individual teams
adopting agile and which make the organizational adoption a complex and hard
journey. In every organization agile methods are implemented in a unique con-
text that is the result of a combination of organizational, process, human and
technological factors. Also, the challenges concerning the use of agile methods
change when agile transforms from being a small experiment to being the main
method used company-wide.

When we speak of agile expansion or scaling, we mean that agile methods
are for example extended from one organizational unit to other organizational
units, or from an initial small project to larger and more complex projects, which
results in challenges of a new kind [15, 20]. Multiple authors describe and suggest
that there are many issues and challenges that arise when agile is implemented
and adopted at the organizational level, such as synchronization of agile and
non-agile (document-driven) functions [15, 16, 21, 22].

Beyond Budgeting is complementary to the agile way of working. It is a perfor-
mance management method oriented to fast changing environments, rather than
strict control mechanisms [23]. Traditional management adopts a command-and-
control way of thinking, whereas Beyond Budgeting adopts a sense-and-control

50 H. van Manen and H. van Vliet

way of thinking. The complementarities between Beyond Budgeting and Agile
software development are discussed in [24].

Agility can also be linked to Lean Software Development. Lean manufacturing
was introduced in the 1990’s in the Japanese car industry. The concepts of lean
manufactoring and agile software development were combined by Mary and Tom
Poppendieck [25]. Lean software development is built around seven principles:
eliminate waste, build quality in, create knowledge, defer commitment, deliver
fast, respect people, and optimize the whole. Williams [26] gives an elaborate
comparison of agile and lean production, while [27] gives an experience report
on the application of lean approaches in agile software development.

The research question we aim to answer is: Identify factors that affect the
expansion of agile development in large organizations. We performed a multiple-
case study to do so. We found agile software development in large organizations
encompasses more than implementing Scrum. We identified a number of issues
that deserve attention when expanding agile methods in large organizations.
We grouped them in two broad categories: ”agile mindset” and ”contextual
dependencies”. For lack of space, we only discuss the ”agile mindset” issues in
this paper. Example contextual dependencies identified are: ”agility of partner
organizations”, ”governance procedures”, and ”top management agile vision”.

2 Research Method

The research we have performed was a multiple-case study. The case study
method is best suited to develop an understanding of the interactions among
information technology innovations and organizational context [28]. Multiple-
case designs enable generalizability and the ability to extend theory through
cross-case analyses [29]. Some argue with this, because the characteristics of
each case are unique and this limits the external validity of comparing cases and
making generalizations [30]. However, Walsham [31] argues that generalization
is not necessarily the primary goal of studying multiple cases. More important
is the deep insight that enables the researcher to develop concepts and theory
based on information from many sources and understanding of the context.

2.1 Data Collection and Analysis

Since the focus of our research was on the expansion of agile methods in large
organizations, we needed to study organizations of a certain scale that were
in the process of expanding agile software development activities within their
organization. We selected organizations that had been working on this expansion
for quite some time, so they could discuss their previous efforts, struggles and
results with us, because we were unable to perform a longitudinal study. Stepping
in and following their efforts and progress over time was not an option. Thus, we
selected two large multi-nationals based in the Netherlands which had both been
expanding agile methods for at least 1,5 years at the time of our research. Besides
the fact that both companies met our requirements of scale and being in the

Organization-Wide Agile Expansion 51

process of expansion, our selection of companies and sub-units was opportunistic.
Due to time constraints, we have selected the first two companies that were
positive about participating in our research. We selected two different types of
organizations, a consumer electronics company and a bank, to increase diversity
of the organizational and business context. Within the companies we limited
the scope of our research to respectively a change program and a business line,
because of the limited resources (one researcher and two months time) that were
available for our research. The companies themselves selected the program and
business line. The characteristics of the two companies are listed in Table 1.

Table 1. Case company characteristics

Company A Company B

Company background Consumer electronics Bank

Unit type Program Business line

Size 12 teams, 90 persons 7-8 teams, 80 persons

Direct organizational en-
vironment

100 teams, separated in
three sectors and cross-
sector

400 employess, spread over
five business lines

Type of system developed Internal profitability mea-
suring system for controlling
department

Internal back-office systems
for global financial markets

Location Co-located teams spread
over several floors

Co-located teams on one big
floor

Development method Scrum Loose Scrum

Years of experience with
agile

1,5 years Three years ago Open UP,
one year ago ”agile the next
step”

The main source of data collection for our research was through face-to-face
interviews. In both organizations we interviewed participants that have differ-
ent roles within the organization in order to collect information from different
angles and perspectives. We selected participants who were part of the agile de-
velopment teams themselves or were directly involved with the teams that went
through the transformation. We interviewed eight persons in Company A, and
ten in Company B. Table 2 lists the interviewees, their role, and their experience
with agile. For Company B, the business line that was subject to our research
adopted several agile practices over a period of two years, such as standup meet-
ings and work boards, but not others, such as iteration development or planning
meetings. For that reason, a clear starting point for the experience with ag-
ile often cannot be given. All participants are from Dutch sites, except for the
Operations Team Lead of Company A. The interviews took place in Spring 2013.

The interviews were semi-structured and conducted following the same tem-
plate. The interviews lasted between 42 and 82 minutes with an average dura-
tion of approximately 62 minutes. The interviewer prepared an interview guide
containing topics to discuss with participants. The interview guide served as a

52 H. van Manen and H. van Vliet

Table 2. Participants overview

Company Role Experioence with Agile

Company A Delivery manager 18 months
Business analyst 12 months
Member agile work group, agile
coach

36 months (18 at another com-
pany)

Business stakeholder 18 months
Scrum master, agile coach, prod-
uct owner support

18 months

Account manager n.a.
Operations team lead n.a.

Company B Environment manager 3.5 years (1.5 Scrum master at
another company)

Agile coach 1 year
Manager projects Not clear
Team manager support Not clear
Business manager Not clear
Team maneger development Not clear
Lead business analyst Not clear
Change & release manager 1 year Scrum master
Tester 1 year
Business line manager Not clear

structure for the interview, as well as to make sure that the interviewer covered
all topics and kept the right scope. What follows is a list of the topics that were
on the interview guide:

– Description of the employees role in the organization, his/hers experience
with agile software development and general information about the project
and organization he/she is currently working on;

– Benefits of agile software development that the participant has (and has not)
seen in the organization;

– Expansion of agile - what differences does the participant experience between
agile at small (team) and large (organizational) scale;

– What challenges has the organization encountered in the expansion of agile.
Possible topics: (organizational) processes, people, business, agile method,
tools and (change) management;

– In case the participant had not made clear what he/she deemed to be most
important, we asked that if the participant could suggest one change or
give one advice to his/her CIO regarding the expansion of agile software
development, what it would be.

The interview concluded with a summary of highlights from the interview, based
on the interviewer’s notes, on which the interviewee could make remarks. Then
each participant was given the possibility to add anything to the record without

Organization-Wide Agile Expansion 53

the researcher’s possible bias. The questions in the interview were mostly open-
ended, to stimulate interviewees to tell a story in its context, which is important
in the context of agile software development. The interview setting allowed the
interviewer to explain questions or ask follow-up questions in case this was neces-
sary and thus prevent inaccurate answers. Closed questions were used to confirm
facts or statements that were made to the researcher in earlier interviews or to
challenge initial analyses of the researcher.

In addition to the data gathered through personal interviews, the researcher
has made on-site observations during daily stand-ups, retrospective and Scrum
review meetings and walking around the office locations on several occasions.
These observations and meetings were not recorded, but notes were taken. Also,
we received some files from interviewed persons, including (but not limited to)
organizational diagrams, documents about the agile vision, an agile maturity
(evaluation) model, weekly report forms and a dashboard for reporting agile
expansion KPI’s. The last source of data came from sketches made during inter-
views by interviewees, e.g. about the project initiation process or to illustrate a
timeline of events.

From the initial transcripts of the interviews, analysis went through the fol-
lowing steps:

– Initial coding: assigning codes to all relevant statements, catching the essence
of what was said. The result was close to 100 codes per company.

– Focused coding, developing ”concepts”: eliminating, combining, or subdivid-
ing codes, looking for repeating ideas and concepts. This approach was based
on [32]. We first grouped codes per person, and next merged similar concepts
from multiple interviewees.

– Pattern coding, developing ”categories”: This step aims to aggregate and
summarize the previous coding, identifying themes across all.

– Constructing theory: based on a comparison of the results for the two cases,
two findings emerged: the importance of an ”agile mindset” and ”contextual
dependencies”. The researcher then went back to consult relevant literature
on these two topics.

3 Results and Discussion

We identified two broad topics that are, according to participants of our research,
important in order to successfully expand agile software development within
a large organization: ”agile mindset” and ”contextual dependencies”. We next
went back to the codes and concepts from our research to identify factors that
are positively or negatively related to the topics agile mindset or contextual
dependencies. In this section we will go through this analysis for the ”agile
mindset” topic and relate our observations to existing literature.

Throughout our interviews participants in both companies deemed an agile
mindset crucial to the successful expansion (i.e. the potential benefits of the
agile way of working are obtained) of agile methods through the organization as a
whole. At Company A participants mainly stated that although the development

54 H. van Manen and H. van Vliet

teams had adopted agile quickly and started to think more and more in agile
ways, the business client and partner companies had more trouble changing their
mindset. In Company B we heard often that the general resistance employees had
towards working agile was partially based on a lack of an agile mindset, which in
turn was influenced by an extensive experience with non-agile methods. In both
companies participants said that managers had too little knowledge of agile or
lacked an agile mindset.

We analyzed our interview records to identify factors that participants de-
scribed in relation to an agile mindset. In this analysis three issues emerged,
which form an important part of the agile mindset. These are ’collaboration’,
’trust’ and ’continuous improvement’. In other words, if there is no collabora-
tion, trust or wish for continuous improvement, then there exists no agile mindset
within an organization.

Figure 1 shows the result of our analysis on how these three issues are in-
fluenced by organizational and cultural factors. The numbers between brackets
indicate how often these factors were mentioned during our interviews (multiple
instances per participant are counted separately) and the symbols along the ar-
rows illustrate if a relation is positive (+) or negative (-). We only include factors
that were mentioned more than once. We discuss each issue and its constituent
factors:

Collaboration

– Competing ”partners” structure (−): Having multiple competing part-
ner companies in the development process negatively affects collaboration.
These partners have a separate goal and that is to win more contracts than
other partners. Also this construction demotivates knowledge sharing across
the organization, as a participant from Company A explained to us: ”‘It
would be stupid to share all our knowledge with [the other partner compa-
nies], because then what will our advantage over them be? Why would Com-
pany A choose us for the next project?” On the other hand, a participant
from Company B told us that having a ”real” partnership with for example
your support organization could boost collaboration. A ”real” partnership
means that you discuss both positive and negative things with each other.
By doing this, the relationship is not only made up by discussions about
what is going wrong, but can be enriched by talking about the progress you
made together.

– Serial work process (−): A serial work process negatively affects collabo-
ration, because during each step of the process, someone who is part of the
process usually has less contact with other contributors of the process, but
instead just waits until he gets something delivered from the person that
precedes him in the chain.

– Individual thinking (of people, teams, departments) (−): Individual
thinking was the factor most mentioned as influencing collaboration. When
for example a team is focused too much on itself and not on the other teams
they are working with to complete a product, this can lead to misalignment

Organization-Wide Agile Expansion 55

Fig. 1. Factors influencing agile mindset

of activities. Another example comes from Company A, where it is clear that
the development organization and support organization are both pursuing
their own goals, while they could improve their collaboration by working
together as DevOps teams. One has to balance one’s identity as a team
member versus one’s role in the organization at large [33].

– Dedicated teams (with experience as one team) (+): Having a team
fully dedicated to one development stream increases collaboration, because
team members are always available and do not have to switch between teams,
environments and scopes. Also, experience as a team increases collaboration,
because team members get to know each other’s strengths and weaknesses.
Participants from both companies condemned the first period of agile devel-
opment, because they did not have dedicated teams then, as the following
quote illustrates: ”After a few months of successful Scrumming, they dis-

56 H. van Manen and H. van Vliet

banded all the teams and spread all the members over different projects. We
had to start all over again. That was a huge loss of knowledge.” The reorien-
tation required in a transition from individual work to a self-managing agile
team is extensively discussed in [34].

Trust

– Dedicated teams (with experience as one team) (+): With increased
dedication and experience as a team also comes increased trust, according to
some participants. It is harder for team members to build trust if they only
spend a fraction of their time together working on one collaborative product.
A dedicated team is also more trustworthy for management, because the
team need not spend time onboarding new team members at the beginning
of each project. This also results in more stable output of work.

– Measuring & controlling output (−): Measuring the output (story
points) of development teams and accounting teams on it, is a wrong idea
according to multiple participants of both companies.”Beforehand [manage-
ment] states how many story points a team has to earn in each Sprint. If
the team does not reach its goal, the partner company gets a fine. I do not
think that is not very agile-minded. The team needs to earn at least 80% of
your contract points, or the partner will not get paid. This has an effect on
teams. [At the start of agile] people were enthusiastic at the end of a sprint,
picking up new stories to work on. Now developers are more anxious about
starting new stories, because if they cant finish them, they will not get paid.
This has definitely affected peoples mindset. Instead of focusing on points
and giving the teams the idea that their performance is controlled, compa-
nies should focus on added business value and customer satisfaction. Part
of trust is trusting teams that they will do the best possible job they can.
Misra et al [10] also observed that a more qualitative control leads to more
success in agile projects. In terms of the Beyond Budgeting philosophy [35]:
”The main goal of Beyond Budgeting is not to get rid of budgets [. . .] but it
is more the budgeting mindset we need to get rid of.

– Lots of reports (−): The amount of reports that a team has to file is a
nice indicator for trust, say participants. ”The fact that I have to report to
approximately ten different managers each week, does not give me the feeling
that they trust our team”, is how a participant explained the importance of
reports to us.

– Process-oriented organization (−): If teams have to follow extensive
processes and cannot change them this does not positively affect the feeling
of trust in the organization. Our organization needs a planning. When we
file a project plan, we still need a Project Initiation Document (PID) with a
decent reasoning on how long your project will take. And you cannot deviate
from that too much. Another example is that IT development now wants
to count with story points, but we are paying in euros, so you still need a
translation back from story points, to working hours, to budgets. Although
we are working agile, our planning is still waterfall, with all related phases. I

Organization-Wide Agile Expansion 57

believe it will stay that way. In an agile organization, there should be room to
adjust processes and for teams to make their own choices, instead of having
an extensive process in place for each particular situation.

– Self-steering teams & facilitating management style (+): On the
other hand, if an organization allows teams to steer themselves and manage-
ment has a facilitating attitude towards teams, this has a positive effect on
trust in the organization. This is corroborated by [34] and [36], amongst oth-
ers. Moe et al [37] identify several organisational barriers to self-management
at the team level, such as the quest for organizational control and a culture
of specialization. One important aspect of the facilitating management style
is need for support and budget from the business to put qualified product
owners on all development teams.

– Culture of feedback & transparency (+): Having a culture of feedback
in the organization and being transparent across teams and departments
positively influences trust. We had our CIO at a product demo, and it was
a Sprint in which not everything had gone right. I showed him [our problems]
and he said he was happy to see that, because [he said:] all the demos that
I go to, everything goes flawless. Apparently people do not dare and want
to show what goes wrong. I think this is company culture. Everyone reports
to his/her manager that things go well. For some reason, it is not done to
report that something is not going well here, while I have seen this differ-
ently at other companies Ive worked for. One participant explained how her
organization lacks this: ”I think that at this moment there is no attention for
organizational impediments at higher levels, because these impediments are
not brought up in the first place. A lot of people are anxious about reporting
impediments, because they have experiences where bringing up these issues
was . . . not well received.”

– Culture of taking responsibility (+): The agile mindset element of trust
relies heavily on employees taking responsibility, say participants. Agile is
a certain mindset. It means that you give responsibility to employees and
[management] has to be open to that. You have to reduce the amount of
controls, and give people empowerment to take action and responsibility. If
you keep all your control structures and your blame culture in place that will
conflict with agile. Only following the method is not enough, you have to look
at the idea behind the method and adjust your controls accordingly. Instead
of hiding behind processes people should build ownership over development
processes and take responsibility of emerging problems. This helps to solve
these issues quicker and more effectively, while it also increases people’s trust
in each other. Creating such a culture is both seen as a challenge [33] and
as a success factor [10]. Taking responsibility also is one of the leadership
principles of Beyond Budgeting [24].

Continuous Improvement

– Culture of feedback and organizational structure (+): A culture of
feedback accompanied by appropriate organizational structures to cultivate

58 H. van Manen and H. van Vliet

this feedback and use it will positively affect continuous improvement. If
these organizational structures are not in place, it can lead to disappoint-
ment among teams that spend time evaluating their work and providing
constructive feedback about processes, say participants. Open constructive
feedback is essential to the continuous improvement of the organization.

– Agile champions (+): The role of the business line management should
be to address the resistance among employees, solve problems that hinder
the agile expansion, change processes that do not fit the new way of work-
ing, train and coach people and facilitate the coordination with parties that
the development depends on. However, multiple participants of our research
mentioned that they miss a clear vision of the management. It is clear that
agile is the way to go, but how, why, when and in what way the agile ex-
pansion should take place is unclear for them. Small changes are pervasive,
but there is no coherent story. There is no clear vision, no clear line. I think
it is messy; some practices are picked and we are only doing agile partially.
We are not rallying behind a choice and clearly going somewhere. We need
someone to say: this is where we are going and this is how we are going to
get there. I miss such a vision. People that support the agile mindset and
put effort in spreading it through the organization can have a lasting positive
effect on continuous improvement[38].

– Measure added business value (+): Measuring added business value
over costs focuses attention on continuous improvement of products, thus in-
creasing the overall attention of continuous improvement in the organization.
Continuous improvement is a key characteristic of both Beyond Budgeting
and Lean Software Development.

– Willingness to try new way of working (+): Finally, the willingness of
employees to try a new way of working also influences the continuous im-
provement of the organization. If employees are less willing to innovate their
work processes, this reduces the possibilities for continuous improvement.
The importance of continuous learning is also noted in [10, 39]. In the busi-
ness line of one of the companies, there was a lot of resistance against agile
among employees. This is partially a consequence of not making the change
completely (but step-by-step), because this allows people to challenge the
working method and its benefits. Improvements are not attributed to agile,
while all issues give opponents more reason to complain. As a primary reason
for the resistance, employees say that the why of the agile scaling was never
clearly explained, as the following participant explained: Change is not a
problem as long as it is clear why it is needed. I hear a lot of people ask:
Why? Did things go bad? Are there complaints? What is the goal of imple-
menting agile? Is the goal to work agile, or are we trying to achieve certain
benefits? That is not really clear. To educate employees about agile and to
create support, all employees had to follow an Agile Awareness training and
make an Agile Foundation Exam, but they perceived these to be rather use-
less and not applicable in their work. There is disunity in teams, because
some team members are opponents while other oppose agile. This resistance
is not unwillingness; it is mostly habituation of the old way of working.

Organization-Wide Agile Expansion 59

In our team we started to rollout agile. There are supporters and opponents.
I have the idea that people are not yet convinced and that makes it hard to
implement. () We have been discussing this for three weeks now, but if only
the testers want to do it, we cannot do it. It only works when the whole team
is behind it. Others do not think it is efficient, that it will not save them
time. There also seems to be a difference between more and less experienced
employees, where less experienced employees have a more positive attitude
towards the agile expansion, which is also found in earlier research [40].

It is interesting to see that something intangible as ”trust” seems to be at the
core of the agile mindset, as is also observed by Moe [34], McHugh [41] and
Strode [39]. The importance of trust was named even more than the other two
main elements combined. More than the other two elements, trust is also affected
by or reflected in organizational structures; one has to carefully balance control
and flexibility [20]. This indicates that while the agile mindset is primarily a
psychological issue, it is in fact quite related to organizational elements such as
the reporting processes.

In order to successfully expand agile throughout the organization, the or-
ganization should foster an agile mindset among its employess. This involves
developers, managers, and other stakeholders. Whitworth [42] researched the so-
cial nature of agile teams, and identified several characteristics of agile teams
that stand out: (1) oppenness and respect, (2) a strong inclination for whole
team consideration and involvement, and (3) highly value action, initiative and
continuous improvement. Such is also reflected in the three core values of the
agile mindset as identified in our research.

This agile mindset should exceed the agile team. Van Waardenburg [43] al-
ready mentions the importance of an agile mindset amongst business represen-
tatives. When the agile culture is limited to the IT department, it will only lead
to frustration when working with other, non-agile, parts of the organization.

4 Limitations

Our research was more of a snapshot than an image of the organizations over
time. A longitudinal study would have given us the chance to further validate
our findings. This was not a possibility, as only limited time and resources were
available to perform the research.

Both organizations that participated in our research used the Scrum method
as their agile method. While Scrum is the most-used method in the world of
agile, this limits the external validity of our researchs findings to organizations
using other methods. Organizations that use other methods, which for example
more directly address issues discussed in this thesis, may differ from our findings.

5 Conclusion

In this paper, we studied the expansion of agile methods in large organizations.
We found the impact of agile on the organization goes much further than just the

60 H. van Manen and H. van Vliet

development teams that practice Scrum (or a variant). If an organization wants
to become completely agile and achieve all the potential benefits of an agile way
of working, this requires a certain mindset of people throughout the organization
and an adaption of the agile implementation based on the contextual dependen-
cies along three perspectives The latter is not further elaborated in the present
paper). This conclusion is in line with results from a recent global survey on
agile development by VersionOne. When asked what barriers existed to further
adoption of agile methods in the enterprise, ranked one (selected by 52% of the
participants) was the ”ability to change organizational culture”, followed in third
place (35%) by ”trying to fit agile elements into a non-agile framework” [2].

Through analysis of both our participants thoughts on the agile mindset and
existing literature on this subject, we claim that the agile mindset’s main ele-
ments are:

– Trust: all employees should take responsibility for changes and issues, as
they are empowered and trusted by the management to make their own
decisions, while the organizational structure and processes reflect this trust;

– Continuous improvement: everyone in the organization strives for con-
tinuous improvement of all processes, people, and products, by maintaining
an open attitude towards each others feedback, and

– Collaboration: all results and improvements are achieved trough intensive
collaboration of everyone in the organization.

Being a truly agile organization requires more than the implementation of an
agile method such as Scrum. Being agile is a mindset based on trust, collabora-
tion and continuous improvement. We would like to end our conclusions with a
quote from Ivar Jacobson:

Agility should penetrate everything you do. It penetrates the way you
should manage and do requirements, architecture, design, coding, inte-
gration and testing, and in the way that you should document and track
what you do. () It reaches all levels in the company from upper level
managers down to the developers. () Agile is an attitude that everyone
must embrace. 2

Acknowledgement. We gratefully acknowledge the constructive feedback of
Torgeir Dingsøyr on an earlier version of this paper.

References

1. West, D.: Water-Scrum-Fall is the Reality Of Agile for Most Organizations Today.
Forrester (2011)

2. VersionOne: 7th annual state of agile development survey (2013)

2 Ivar Jacobson International, Scaling Agile WP,
http://www.ivarjacobson.com/resource.aspx?id=402, accessed May 17th, 2013

http://www.ivarjacobson.com/resource.aspx?id=402

Organization-Wide Agile Expansion 61

3. Schwaber, K., Sutherland, J.: The Scrum Guide: The official rulebook. Technical
Report (October 26, 1991), http://www.scrum/scrumguides/

4. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information and Software Technology 50(9-10), 833–859 (2008)

5. Boehm, B.: Get Ready for Agile Methods, with Care. Computer 35, 64–69 (2002)

6. Bottani, E.: Profile and enablers of agile companies: An empirical investigation.
International Journal of Production Economics 125, 251–261 (2010)

7. Chow, T., Cao, D.B.: A surevy study on critical success factors in agile software
projects. Journal of Systems and Software 81, 961–971 (2008)

8. Cockburn, A., Highsmith, J.: Agile software development, the people factor. Com-
puter 34, 131–133 (2001)

9. Livermore, J.: Factors that significantly impact the implementation of an agile
software development methodogy. Journal of Software 3, 31–36 (2008)

10. Misra, S.C., Kumar, V., Kumar, U.: Identifying some important success factors
in adopting agile software development practices. The Journal of Systems and
Software 82, 1869–1890 (2009)

11. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of Migrating to Agile
Methodologies. Communications of the ACM 48, 73–78 (2005)

12. Schmidt, C.T., Venkatesha, S.G., Heymann, J.: Empirical Insights into the Per-
ceived Benefits of Agile Software Engineering Practices: A Case Study from SAP.
In: Companion Volume Proceeding 36th International Conference on Software En-
gineering (ICSE), pp. 84–92. IEEE Computer Society (2014)

13. Laanti, M.: Agile Methods in Large-Scale Software Development Organizations
– Applicability and Model for Adoption. PhD thesis, University of Oulu, Oulu,
Finland (2012)

14. Dingsøyr, T., Nerur, S., Balijepally, V., Brede Moe, N.: A decade of agile method-
ologies: Towards explaining agile software development. Journal of Systems and
Software 85, 1213–1221 (2012)

15. Senapathi, M., Srinivasan, A.: Understanding post-adoptive agile usage: An ex-
ploratory cross-case analysis. Journal of Systems and Software 85, 1255–1268
(2012)

16. Abrahamsson, P., Conboy, K., Wang, X.: ‘lots done, more to do’: The current
state of agile systems development research. European Journal of Information Sys-
tems 18, 281–284 (2009)

17. Reifer, D.: Scaling agile methods. IEEE Software 20(4), 12–14 (2003)

18. Beck, K., Boehm, B.: Agility through discipline: A debate. Computer 36(6), 44–46
(2003)

19. Boehm, B., Turner, R.: Balancing Agility and Discipline. Addison Wesley (2002)

20. Mishra, D., Mishra, A.: Complex software project development: Agile methods
adoption. Journal of Software Maintenance and Evolution: Research and Prac-
tice 23(8), 549–564 (2011)

21. Mangalaraj, G., Mahapatra, R., Nerur, S.: Acceptance of software process innova-
tions – the case of extreme programming. European Journal of Information Sys-
tems 18(4), 344–354 (2009)

22. Moe, N.B., Dingsøyr, T.: Research Challenges in Large Scale Agile Software De-
velopment. ACM SIGSOFT Software Engineering Notes 38(5) (2013)

23. Bogsnes, B.: Implementing Beyond Budgeting: Unlocking the Performance Poten-
tial. Wiley (2008)

http://www.scrum/scrumguides/

62 H. van Manen and H. van Vliet

24. Lohan, G., Conboy, K., Lang, M.: Beyond Budgeting and Agile Software Develop-
ment: A Conceptual Framework for the Performance Management of Agile Soft-
ware Development Teams. In: Proceedings of the 31st International Conference on
Information Systems (ICIS 2010) (2010)

25. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development:
From Concept to Cash. Addison-Wesley (2007)

26. Williams, L.: Agile Software Development Methodologies and Practices. In: Ad-
vances in Computers, vol. 80, pp. 4–44. Elsevier (2010)

27. Wang, X., Conboy, K., Cawley, O.: “Leagile” software development: An expereince
report analysis of the application of lean approaches in agile software development.
Journal of Systems and Software 85(6), 1287–1299 (2012)

28. Seaman, C.: Qualitative Methods in Empirical Studies of Software Engineering.
IEEE Transactions on Software Engineering 25(4), 557–572 (1999)

29. Miles, M., Huberman, A.: Qualitative Data Analysis: An Expanded Sourcebook.
Saga, London (1994)

30. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C.,
Emam, K.E.: Preliminary Guidelines for Empirical Research in Software Engi-
neering. IEEE Transactions on Software Engineering 28, 721–734 (2002)

31. Walsham, G.: Interpretive Case Studies in IS Research: Nature and Method. Eu-
ropean Journal of Information Systems 4(4), 74–81 (1995)

32. Bogdan, R., Biklen, S.: Qualitative Research for Education: An introduction to
Theories and Methods, 4th edn. Pearson (2003)

33. Moore, E., Spens, J.: Scaling Agile: Finding your Agile Tribe. In: Agile 2008 Con-
ference, pp. 121–124. IEEE Computer Society (2008)

34. Moe, N.B., Dingsøyr, T., Dyb̊a, T.: A teamwork model for understanding an agile
team: A case study of a Scrum project. Information and Software Technology 52,
480–491 (2010)

35. Bogsnes, B.: Keynote: Beyond Budgeting in a Lean and Agile World. In: Abra-
hamsson, P., Marchesi, M., Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 5–7.
Springer, Heidelberg (2009)

36. Vidgen, R., Wang, X.: Coevolving Systems and the Organization of Agile Software
Development. Information Systems Research 20(3), 355–376 (2009)

37. Moe, N.B., Dingsøyr, T., Dyb̊a, T.: Overcoming Barriers to Self-Management in
Software Teams. IEEE Software 26(6), 20–26 (2009)

38. Benefield, G.: Rolling out Agile in a Large Enterprise. In: Proceedings of the 41st
Hawaii International Conference on System Sciences (HICSS 2008), p. 462. IEEE
Computer Society (2008)

39. Strode, D.E., Huff, S.L., Tretiakov, A.: The Impact of Organizational Culture on
Agile Method Use. In: Proceedings of the 42nd Hawaii International Conference
on System Sciences, pp. 1–9. IEEE Computer Society (2009)

40. Vijayasarathy, L., Turk, D.: Drivers of agile software development use: Dialec-
tic Interplay between benefits and hindrances. Information and Software Technol-
ogy 54(2), 137–148 (2012)

41. McHugh, O., Conboy, K., Lang, M.: Agile Practices: The Impact on Trust in Soft-
ware Project Teams. IEEE Software 29(3), 71–76 (2012)

42. Whitworth, E., Biddle, R.: The Social Nature of Agile Teams. In: Agile 2007, pp.
26–36. IEEE Computer Society (2007)

43. Waardenburg, G.V., van Vliet, H.: When Agile meets the Enterprise. Information
and Software Technology 55(12), 2154–2171 (2013)

The Effects of Gradual Weighting

on Duration-Based Moving Windows
for Software Effort Estimation

Sousuke Amasaki1 and Chris Lokan2

1 Okayama Prefectural University,
Department of Systems Engineering, Soja, Japan

amasaki@cse.oka-pu.ac.jp
2 UNSW Canberra,

School of Engineering and Information Technology, Canberra, Australia
c.lokan@adfa.edu.au

Abstract. Several studies in software effort estimation have found that
it can be effective to use a window of recent projects as training data
for building an effort estimation model. Windows can be defined as hav-
ing a fixed size (containing a fixed number of projects), or as having a
fixed duration. A recent study extended the idea of windows, by weight-
ing projects differently according to their order within the window, and
found that weighted moving windows could significantly improve estima-
tion accuracy. That study used fixed-size windows. This study examines
the effect on effort estimation accuracy of weighted moving windows that
are based on fixed duration. We compare weighted and unweighted mov-
ing windows under the same experimental settings. Weighting methods
are found to improve estimation accuracy significantly in larger windows,
and the methods also significantly improved accuracy in smaller windows
in terms of MRE. This result contributes further to understanding prop-
erties of moving windows.

1 Introduction

A software effort estimation model is developed from past project data. Most
studies evaluate a model’s accuracy with a hold-out or cross-validation approach.
These approaches split project data into training data and testing data randomly.

In reality, software projects can be ordered chronologically. Using past projects
as training data to predict future projects, instead of forming training and testing
sets randomly, is more reasonable. Intuitively, it also seems appropriate to use
only recent projects as a basis of effort estimation, because older projects might
be less representative of an organization’s current practices.

Lokan and Mendes [1, 2] examined whether using only recent projects im-
proves estimation accuracy. They used a window to limit the size of training
data so that an effort estimation model uses only recently finished projects. As
new projects are completed, old projects drop out of the window. They used
two types of window policies: fixed-size and fixed-duration. A fixed-size win-
dow policy determines the window size by the number of projects: the training

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 63–77, 2014.
c© Springer International Publishing Switzerland 2014

64 S. Amasaki and C. Lokan

set is the last N projects to finish before the target project starts. A fixed-
duration policy determines the window size by calendar months: the training set
is projects whose whole life cycle occurred during the last w months before the
target project starts. Intuitively, we believe that a fixed-duration policy makes
more sense: that estimators are more likely to think of “recent projects” in terms
of calendar time rather than a given number of projects.

Lokan and Mendes found that estimation accuracy could improve by using
either window policy, but the policies affected the accuracy differently.

Their studies assumed that projects within a window are all equally useful
as training data. However, the chronological order of projects can be exploited
further, by giving projects different importance according to their relative age to
the target project, so that recent projects receive higher importance than older
projects. Amasaki and Lokan examined this idea, and found that weighting the
importance of training projects according to their order within the window of
most recent projects affected estimation accuracy [3]. However, that study only
used the fixed-size window policy.

In this paper, we turn to the fixed-duration policy, and explore the effects of
weighted moving windows for software effort estimation with this approach. We
address the following questions:

RQ1. Is there a difference in the accuracy of estimates between unweighted and
weighted moving windows, when the definition of window size is based on
duration?

RQ2. Can insights be gained from difference of trends in accuracy among
weighted and unweighted moving windows as the window size varies?

RQ3. How do these results compare with results based on fixed-size windows
(windows containing a fixed number of projects)?

2 Related Work

Research in software effort estimation models has a long history. However, few
software effort estimation models were evaluated with consideration of the chrono-
logical order of projects.

Auer and Biffl [4] evaluated dimension weighting for analogy-based effort es-
timation, considering the effect of a growing data set. However, the authors
used datasets having no date information. Thus, this evaluation method did not
consider chronological order.

Mendes and Lokan [5] compared estimates based on a growing portfolio with
estimates based on leave-one-out cross-validation, using two different data sets.
In both cases, cross-validation estimates showed significantly superior accuracy.
With cross-validation, all other projects in the data set — even some that were
still in the future — are used as training data for a given project. Thus esti-
mates using cross-validation are based on unrealistic information. If estimates
based on unrealistic information are significantly more accurate than estimates
considering chronology (based on realistic information), the implication is that

The Effects of Gradual Weighting on Duration-Based Moving Windows 65

the apparent accuracy achieved when ignoring chronology does not reflect what
an estimator would achieve in practice.

Some studies such as [6, 7] used a project year in software effort estimation
model construction. However, these studies did not consider chronological order
in evaluation. Maxwell [8] demonstrated the construction and evaluation of a
software estimation model with the consideration of chronology. A candidate
effort estimation model selected a year predictor. She also separated project
data into training and test data according to a year.

Lokan and Mendes [1] studied the use of moving windows with linear regres-
sion models and a single-company dataset from the ISBSG repository. Training
sets were defined to be the N most recently completed projects. They found that
the use of a window could affect accuracy significantly; predictive accuracy was
better with larger windows; some window sizes were ‘sweet spots’. Later they
also investigated the effect on accuracy when using moving windows of various
durations to form training sets on which to base effort estimates [2]. They showed
that the use of windows based on duration can affect the accuracy of estimates,
but to a lesser extent than windows based on a fixed number of projects.

This study builds on both [2] and [3]. The same data set is investigated again.
This study extends [2] by exploring the use of weighting functions. It differs
from [3] in using duration as the basis for defining window size.

3 Research Method

3.1 Dataset Description

The data set used in this paper is the same one analyzed in [1–3]. This data set
is sourced from Release 10 of the ISBSG Repository. Release 10 contains data
for 4106 projects; however, not all projects provided the chronological data we
needed (i.e. known duration and completion date, from which we could calcu-
late start date), and those that did varied in data quality and definitions. To
form a data set in which all projects provided the necessary data for size, effort
and chronology, defined size and effort similarly, and had high quality data, we
removed projects according to the following criteria:

– The projects are rated by ISBSG as having high data quality (A or B).
– Implementation date and overall project elapsed time are known.
– Size is measured in IFPUG 4.0 or later (because size measured with an

older version is not directly comparable with size measured with IFPUG
version 4.0 or later). We also removed projects that measured size with
an unspecified version of function points, and whose completion pre-dated
IFPUG version 4.0.

– The size in unadjusted function points is known.
– Development team effort (resource level 1) is known. Our analysis used only

the development team’s effort.
– Normalized effort and recorded effort are equivalent. This should mean that

the reported effort is the actual effort across the whole life cycle.
– The projects are not web projects.

66 S. Amasaki and C. Lokan

Table 1. Summary statistics for ratio-scaled variables

Variable Mean Median StDev Min Max

Size 496 266 699 10 6294
Effort 4553 2408 6212 62 57749
PDR 16.47 8.75 31.42 0.53 387.10

In the remaining set of 909 projects, 231 were all from the same organization
and 678 were from other organizations. We only selected the 231 projects from
the single organization, as we considered that the use of single-company data
was more suitable to answer our research questions than using cross-company
data. Preliminary analysis showed that three projects were extremely influential
and invariably removed from model building, so they were removed from the set.
The final set contained 228 projects.

We do not know the identity of the organization that developed these projects.
Release 10 of the ISBSG database provides data on numerous variables; how-

ever, this number was reduced to a small set that we have found in past anal-
yses with this dataset to have an impact on effort, and which did not suffer
from a large number of missing data values. The remaining variables were size
(measured in unadjusted function points), effort (hours), and four categorical
variables: development type (new development, re-development, enhancement),
primary language type (3GL, 4GL), platform (mainframe, midrange, PC, multi-
platform), and industry sector (banking, insurance, manufacturing, other).

Table 1 shows summary statistics for size (measured in unadjusted function
points), effort, and project delivery rate(PDR). PDR is calculated as effort di-
vided by size; high project delivery rates indicate low productivity. In [1], the
authors examined the project delivery rate and found it changes across time.
This finding supports the use of a window.

The projects were developed for a variety of industry sectors, where insurance,
banking and manufacturing were the most common. Start dates range from 1994
to 2002, although only 9 started before 1998. 3GLs are used by 86% of projects;
mainframes account for 40%, and multi-platform for 55%; these percentages for
language and platform vary little from year to year. There is a trend over time
towards more enhancement projects and fewer new developments. Enhancement
projects tend to be smaller than new development, so there is a corresponding
trend towards lower size and effort.

In this study we adopt the same range of window sizes as [2]. In [2], the
smallest window size was based on the statistical significance of linear regression
with windowed project data: the smallest window size with which all regression
models were statistically significant was 12 months. The largest window size was
based on the necessary number of testing projects for evaluation. As a result, we
used window sizes from 12 to 84 months.

The Effects of Gradual Weighting on Duration-Based Moving Windows 67

Table 2. Formulae of weighting functions

Name Formula

Triangular W (x) = 1− |x|, |x| < 1
Epanechnikov W (x) = 1− x2, |x| < 1
Gaussian W (x) = exp(−(2.5x)2/2)
Rectangular (Uniform) W (x) = 1, |x| < 1

3.2 Weighted Moving Windows with Linear Regression

Linear regression is one of the popular methods for effort estimation. A typical
effort estimation model is as follows:

Effort = b0 + b1Size + ε. (1)

Here, b0 and b1 are regression coefficients, and ε represents an error term follow-
ing a normal distribution. The regression coefficients are inferred from a training
set so as to minimize the following function:

n∑

i=1

(Efforti − b0 − b1Sizei)
2
. (2)

Here, n denotes the sample size of the training set.
Equation 2 assumes that the errors of the training set are to be minimized

equivalently. Weighted linear regression controls the importance of training
projects via weighting. It minimizes the following function:

n∑

i=1

wi (Efforti − b0 − b1Sizei)
2
. (3)

Here, wi represents case weights for the training set.
From this perspective, an unweighted moving window assigns zero weight to

projects that are too old to fall within the window, and equal weights to projects
in the window. Weights can be introduced, to take into account the chronological
order of projects in the window. This study weights projects in the training set
so that a more recent project has a heavier weight. Table 2 shows four weight
functions that we examined. We determined x as follows:

x =
s− si
w

. (4)

Here, s represents the start date of the target project. si represents the start
date of training project i. w represents the duration of the window. s − si is
larger for older projects, giving them less weight.

Figure 1 shows the forms of weight functions. A rectangular function is equiv-
alent to unweighted moving windows. Different curve functions affect estimation
accuracy differently. This study adopted three typical curves: linear, concave,
S-shape. These functions are common in local regression [9].

68 S. Amasaki and C. Lokan

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

date from a target project

W
(x

)

old recent

(a) Triangular

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

date from a target project

W
(x

)

old recent

(b) Epanechnikov

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

date from a target project

W
(x

)

old recent

(c) Gaussian

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

date from a target project

W
(x

)

old recent

(d) Rectangular

Fig. 1. weight function forms

3.3 Modeling Techniques

Weighted linear regression models were built using almost the same procedure
as [1]:

1. The first step in building every regression model is to ensure numerical vari-
ables are normally distributed. We used the Shapiro-Wilk test on the training
set to check if Effort and Size were normally distributed. Statistical signifi-
cance was set at α = 0.05. In every case, Size and Effort were not normally
distributed. Therefore, we transformed them to a natural logarithmic scale.

2. Independent variables whose value is missing in a target project were not
considered for inclusion in the estimation model.

3. Every model included log(Size) as an independent variable. Beyond that,
given a training set of N projects, no model was investigated if it involved
more than N/10 independent variables (rounded to the nearest integer),
assuming that at least 10 projects per independent variable is desirable [10].

4. Models were based on variables selected with Lasso[11] (the Lasso imple-
mentation we used is the “glmnet” function from glmnet package for R.)

The Effects of Gradual Weighting on Duration-Based Moving Windows 69

5. To verify the stability of an effort model, we used the following approach:
Calculate Cook’s distance values for all projects to identify influential data
points. Any projects with distances higher than (3 × 4/N), where N repre-
sents the total number of projects, were removed from the analysis [8].

This procedure performs variable selection, and thus all variables introduced
in Section 3.1 are just candidates for independent variables. Models constructed
in our experiment can be different for every project.

3.4 Effort Estimation on Chronologically-Ordered Projects

This study evaluated the effects of moving windows of several sizes along with
a timeline of projects’ history. The effects were measured by performance com-
parisons between moving windows and a growing portfolio. A growing portfolio
uses all past projects as the training set: no project has a weight of zero.

For a window of w months, this evaluation was performed as follows:

1. Sort all projects by start date
2. Find the earliest project p0 for which using that window size could make a

difference to the training set: that is, at least one project that had finished
by the start of p0 was “too old” to be included in the window (it had started
more than w months previously);

3. For every project pi in chronological sequence (ordered by start date), start-
ing from p0, form four estimates using weighted and unweighted moving
windows, and another estimate using a growing portfolio. For moving win-
dows, the training set is the finished projects whose whole life cycle had
fallen within w months prior to the start of pi. For the growing portfolio,
the training set is all of the projects that had finished before the start of pi.

4. Evaluate estimation results.

3.5 Performance Measures

Performance measures for effort estimation models are based on the difference
between estimated effort and actual effort. As in previous studies, this study
used MMRE, PRED(25), and MMAE [12] for performance evaluation.

To test for statistically significant differences between accuracy measures, we
used the Wilcoxon ranked sign test and set statistical significance level at α =
0.05. wilcoxsign test function of coin package for R was used.

4 Results

4.1 Accuracy with Different Window Sizes

We begin by comparing estimation accuracy with each of the weighting functions
against a common baseline: not using a window at all, but instead retaining all
past projects as training data.

70 S. Amasaki and C. Lokan

Table 3. Mean absolute residuals with different window durations

Duration Testing Growing (a) (b) (c) (d)
(months) Projects MAE MAE p–val. MAE p–val. MAE p–val. MAE p–val.

12 165 2541 2730 0.127 2772 0.114 2667 0.306 2560 0.981
18 193 2630 2565 0.445 2601 0.514 2580 0.822 2549 0.287
24 201 2638 2501 0.275 2466 0.085 2541 0.183 2610 0.984
30 202 2647 2428 0.013 2491 0.093 2571 0.116 2581 0.365
36 206 2645 2518 0.139 2585 0.378 2492 0.191 2526 0.001
42 206 2645 2594 0.084 2613 0.050 2597 0.140 2559 0.004
48 206 2645 2572 0.049 2596 0.068 2618 0.157 2599 0.003
54 206 2645 2572 0.035 2593 0.007 2541 0.042 2597 0.086
60 198 2642 2550 0.005 2574 0.000 2564 0.019 2655 0.254
66 184 2622 2570 0.001 2576 0.000 2465 0.004 2702 0.226
72 153 2527 2447 0.000 2498 0.000 2490 0.000 2554 0.016
78 126 2300 2232 0.000 2281 0.000 2237 0.000 2327 0.031
84 80 2211 2165 0.000 2204 0.000 2139 0.000 2238 0.022

(a) Triangular, (b) Epanechnikov, (c) Gaussian, (d) Rectangular

Table 4. Mean MRE with different window durations

Duration Testing Growing (a) (b) (c) (d)
(months) Projects MRE MRE p–val. MRE p–val. MRE p–val. MRE p–val.

12 165 1.35 1.30 0.905 1.31 0.743 1.25 0.752 1.12 0.029
18 193 1.29 1.13 0.004 1.20 0.002 1.12 0.022 1.15 0.001
24 201 1.28 1.13 0.001 1.11 0.000 1.16 0.003 1.14 0.038
30 202 1.28 1.14 0.000 1.20 0.002 1.19 0.002 1.23 0.008
36 206 1.26 1.15 0.001 1.20 0.020 1.17 0.008 1.18 0.000
42 206 1.26 1.22 0.001 1.19 0.000 1.23 0.009 1.18 0.000
48 206 1.26 1.23 0.001 1.20 0.002 1.22 0.001 1.19 0.000
54 206 1.26 1.23 0.000 1.21 0.000 1.24 0.000 1.20 0.000
60 198 1.29 1.19 0.000 1.26 0.000 1.27 0.000 1.25 0.000
66 184 1.32 1.24 0.000 1.24 0.000 1.27 0.000 1.28 0.001
72 153 1.39 1.31 0.000 1.34 0.000 1.38 0.000 1.31 0.001
78 126 1.48 1.40 0.000 1.43 0.000 1.38 0.000 1.40 0.002
84 80 1.44 1.32 0.000 1.35 0.000 1.31 0.000 1.40 0.000

(a) Triangular, (b) Epanechnikov, (c) Gaussian, (d) Rectangular

Tables 3 and 4 show the effect of window durations on mean absolute residu-
als and mean MRE. The first column shows window durations. The 2nd column
shows the total number of projects used as a target project with the correspond-
ing window duration. The 3rd column shows accuracy measures with a growing
portfolio. The 4th column shows accuracy measures when the Triangular func-
tion was used to weight projects within the window. The 5th column shows the
p–value from statistical tests on accuracy measures between a growing portfolio
and the Triangular function. The remaining columns show accuracy measures
and p–values for the other weighting functions. The results were computed for

The Effects of Gradual Weighting on Duration-Based Moving Windows 71

10 20 30 40 50 60 70 80

−
2
0

−
1
0

0
1
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

A
E

(%
)

(a) Triangular

10 20 30 40 50 60 70 80

−
2
0

−
1
0

0
1
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

A
E

(%
)

(b) Epanechnikov

10 20 30 40 50 60 70 80

−
2
0

−
1
0

0
1
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

A
E

(%
)

(c) Gaussian

10 20 30 40 50 60 70 80

−
2
0

−
1
0

0
1
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

A
E

(%
)

(d) Rectangular

Fig. 2. The percent difference of accuracy measures between growing and windowing
(mean MAE)

every month; the tables only show every 6 months, due to space limitations. This
is sufficient to show the essential trends.

Figures 2 and 3 show the difference in mean MAE and mean MRE between a
growing portfolio and moving windows. The x-axis is the duration of the window,
and the y-axis is the subtraction of the accuracy measure value with a growing
portfolio from that with moving windows at the given x-value (expressed in rel-
ative percentage terms). Smaller values of MAE and MRE are better, so the
window is advantageous where the line is below 0. Circle points mean a statis-
tically significant difference, in favor of moving windows.

Figures and tables revealed characteristics of unweighted and weighted moving
windows compared to a growing portfolio:

– With windows of up to 30 months, MAE rarely shows significant preference
with any approach. The line starts above zero and quickly goes below zero
(favoring windows), but the difference is seldom significant (and not at all
in Fig. 2(b)). In contrast, as shown in Fig. 3, with MRE the difference was
significant regardless of weighting functions.

72 S. Amasaki and C. Lokan

10 20 30 40 50 60 70 80

−
3
0

−
1
0

0
1
0

2
0

3
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

R
E

(%
)

(a) Triangular

10 20 30 40 50 60 70 80

−
3
0

−
1
0

0
1
0

2
0

3
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

R
E

(%
)

(b) Epanechnikov

10 20 30 40 50 60 70 80

−
3
0

−
1
0

0
1
0

2
0

3
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

R
E

(%
)

(c) Gaussian

10 20 30 40 50 60 70 80

−
3
0

−
1
0

0
1
0

2
0

3
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

R
E

(%
)

(d) Rectangular

Fig. 3. The percent difference of accuracy measures between growing and windowing
(mean MRE)

– For windows of 30 to 48 months, moving windows become advantageous
in terms of MAE, but the effect varies for different weighting functions:
Figure 2(c) has no significant difference through this range of durations.
The preference for moving windows is still seen in terms of MRE, regardless
of weighting functions. However, the difference looks smaller than at smaller
window sizes.

– With larger windows, all measures are better using moving windows in Figs.
2(a), 2(b), 2(c) and Fig. 3. However, the improvements in mean MRE and
MAE decrease compared to smaller windows, especially for Epanechnikov
and Rectangular. Sometimes circle points in Figure 2 are found above zero.
This is due to the use of a non-parametric statistical test.

In summary, in this data set, weighted and unweighted windows improve esti-
mation accuracy significantly, particularly with larger windows. Different weight-
ing functions affect accuracy in different ways.

The Effects of Gradual Weighting on Duration-Based Moving Windows 73

10 20 30 40 50 60 70 80

−
1
0

−
5

0
5

1
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

A
E

(%
)

(a) Triangular

10 20 30 40 50 60 70 80

−
1
0

−
5

0
5

1
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

A
E

(%
)

(b) Epanechnikov

10 20 30 40 50 60 70 80

−
1
0

−
5

0
5

1
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

A
E

(%
)

(c) Gaussian

Fig. 4. The percent difference of accuracy measures between Rectangular and the other
weight functions (Mean MAE)

4.2 Accuracy Comparisons among Different Weighting Functions

Figures 4 and 5 show the difference in mean MAE and mean MRE between
Rectangular (unweighted) and the other functions (weighted). Weighted moving
windows are advantageous where the line is below 0. Square points mean a
statistically significant difference, with weighted moving windows being worse.
The other notations are as same as Figs. 2 and 3.

Figures 4 and 5 reveal the following:

– With windows of up to 30 months, the advantage shifted from unweighted
windows to weighted windows. Few differences are statistically significant.

– With windows of 30 to 54 months, weighted and unweighted moving windows
are similar in terms of MAE. There is rarely clear preference between them.
Statistical tests support weighted moving windows at some window sizes.
The improvement by Gaussian function is small, and the circle points are
rarely found, as shown in Fig. 4(c).

– With windows of more than 54 months, weighted moving windows are ad-
vantageous in terms of MAE and MRE. The Triangular and the Gaussian

74 S. Amasaki and C. Lokan

10 20 30 40 50 60 70 80

−
1
0

−
5

0
5

1
0

1
5

2
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

R
E

(%
)

(a) Triangular

10 20 30 40 50 60 70 80

−
1
0

−
5

0
5

1
0

1
5

2
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

R
E

(%
)

(b) Epanechnikov

10 20 30 40 50 60 70 80

−
1
0

−
5

0
5

1
0

1
5

2
0

Window Size (calendar months)

D
if
fe

re
n
c
e
s
 i
n
 m

e
a
n
 M

R
E

(%
)

(c) Gaussian

Fig. 5. The percent difference of accuracy measures between Rectangular and the other
weight functions (Mean MRE)

functions make more difference than the Epanechnikov function. Most dif-
ferences are small (plus or minus 2%).

5 Discussion

5.1 Answer to RQ1

First, the null hypothesis was rejected for the difference between weighted mov-
ing windows (with all weighting methods) and a growing portfolio. In this data
set the use of both weighted and unweighted moving windows significantly im-
proves estimation accuracy, compared to using a growing portfolio.

Next, statistical tests for differences in accuracy between unweighted and
weighted moving windows also reject the null hypothesis at many window sizes.
For the Epanechnikov function, for instance, the null hypothesis was rejected at
durations around 30 months, and from 49 to 84 months, based on mean MAE.
The difference based on mean MRE was significant at many window sizes.

The Effects of Gradual Weighting on Duration-Based Moving Windows 75

We conclude that the use of weighted moving windows can improve estimation
accuracy, compared to using unweighted moving windows, when fixed-duration
windows are used.

5.2 Answer to RQ2

Even at small window durations, Figures 4 and 5 show some window sizes where
weighted moving windows provide significantly better accuracy than unweighted
windows. The difference in MAE becomes clear when using larger windows, of
54 months or more. Differences in MRE are significant at many window sizes,
and the Gaussian and the Triangular functions showed better performance in
larger windows as shown in Figures 4 and 5.

Results show that weighting is helpful, particularly at larger window sizes.
However, it must be noted that the difference between accuracy with weighted
and unweighted windows is small, mostly around 2%.

In [3], the effectiveness of weighting was reasoned to be due to an interaction
between window sizes and the steepness of weight function curves. With small
size windows, a weight function assigns steeply declining weights. With large
window sizes, a weight function assigns gently declining weights. When the de-
gree of steepness meshes with a window size, a weight function contributes to
improvement of estimation accuracy.

Figure 1 depicts the difference of steepness among weight functions. Gaussian
is the steepest function, and Epanechnikov is the most gentle function. The
steepness of Triangular function is between them. Unweighted moving windows
assigns equal weights and is more gentle than Epanechnikov function.

Figure 2 shows the gentlest Rectangular function meshed with window sizes
earlier than steeper functions. The difference in larger windows is clear in steeper
functions. For fixed-duration windows, steeper functions could appropriately re-
flect the importance of recent projects. Rectangular function eventually meshed
with large window sizes again and improved estimation accuracy significantly.
However, the range of significant durations was narrower than that of the other
functions.

The results suggest that weighted moving windows can improve estimation
accuracy when the steepness of its function is appropriately meshed. We conclude
that all weight functions tend to mesh with large window sizes, as do unweighted
windows, but their effectiveness differs depending on how well the steepness of
the functions meshes with window sizes.

5.3 Answer to RQ3

In [2], the authors evaluated the difference between results with fixed-duration
windows and fixed-size windows, and found:

– the preference of growing portfolio in smaller windows became smaller, and
statistical significance almost diminished.

– the trend lines went upward as a window size increases.

76 S. Amasaki and C. Lokan

– the significance range is narrower, around 40 months.
– the improvement in MAE andMRE was generally smaller with fixed-duration

windows than with fixed-size windows.

Figure 2(d) supported these results, though there are additional significant win-
dow ranges because this study used another modeling approach. Fixed-duration
windows allow a variable number of training projects, which may lead to improve-
ment over unweightedmovingwindows, especially as short-durationwindowsmight
still contain numerous training projects. Figure 3(d) clearly reflected this effect.
However, the trend lines still go upward, and window sizes around 40 months are
still advantageous significantly. The range of significant durations varies with dif-
ferent weight functions, but the trends remain.

We conclude that the differences between fixed-duration and fixed-size win-
dows found previously still apply when using weighted instead of unweighted
moving windows.

6 Threats to Validity

This study shares the same threats to validity as the previous studies.
First, we used only one dataset. The dataset is a convenience sample and may

not be representative of software projects in general. Thus, the results may not
be generalized beyond this dataset; this is true of all studies based on convenience
samples. We trust that numerous potential sources of variation can be removed
from the dataset by the selection of a single-company dataset. Since the dataset
is large and covers several years, we assume it is a fair representation of this
organization’s projects. The inclusion of the industry sector as an independent
variable helps to allow for variations among sectors in the dataset.

Second, all the models employed in this study were built automatically. Au-
tomating the process necessarily involved making some assumptions, and the va-
lidity of our results depends on those assumptions being reasonable. For example,
logarithmic transformation is assumed to be adequate to transform numeric data
to an approximately normal distribution; residuals are assumed to be random
and normally distributed without that being actually checked; multi-collinearity
between independent variables is assumed to be handled automatically by the
nature of Lasso. Based on our past experience building models manually, we
believe that these assumptions are acceptable. One would not want to base im-
portant decisions on a single model built automatically, without at least doing
some serious manual checking, but for calculations such as chronological estima-
tion across a substantial data set we believe that the process here is reasonable.

Third, this study only used weighted linear regression. Many effort estimation
models have been proposed, and each model can show better accuracy in par-
ticular situations. However, regression is a popular effort estimation approach.
We thus think it is a reasonable choice.

The Effects of Gradual Weighting on Duration-Based Moving Windows 77

7 Conclusion

This paper investigated the effect on effort estimation accuracy of using weighted
moving windows, when fixed-duration windows are adopted. We have shown that
it has a statistically significant effect; different weight functions affected estima-
tion accuracy differently; with the steepness of the weight function being im-
portant; and weighted moving windows were particularly advantageous in larger
windows. These findings reinforce previous results using fixed-size windows.

Compared to [2], the use of weight functions improves estimation accuracy
significantly. Compared to [3], the percent improvements in MAE and MRE are
smaller with fixed-duration windows than with fixed-size windows.

Our future work involves generalization with other settings: other companies’
datasets and other effort estimation models. Furthermore, how to determine
appropriate steepness is a crucial question for better estimation.

References

1. Lokan, C., Mendes, E.: Applying moving windows to software effort estimation.
In: Proc. of ESEM 2009, pp. 111–122 (2009)

2. Lokan, C., Mendes, E.: Investigating the Use of Duration-Based Moving Windows
to Improve Software Effort Prediction. In: Proc. of APSEC 2012, pp. 818–827
(2012)

3. Amasaki, S., Lokan, C.: The evaluation of weighted moving windows for software
effort estimation. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T.
(eds.) PROFES 2013. LNCS, vol. 7983, pp. 214–228. Springer, Heidelberg (2013)

4. Auer, M., Biffl, S.: Increasing the accuracy and reliability of analogy-based cost
estimation with extensive project feature dimension weighting. In: Proc. of ISESE
2004, pp. 147–155. IEEE (2004)

5. Mendes, E., Lokan, C.: Investigating the use of chronological splitting to compare
software cross-company and single-company effort predictions: A replicated study.
In: Proc. of EASE 2009 (2009)

6. Keung, J.W., Kitchenham, B.A., Jeffery, D.R.: Analogy-X: Providing Statisti-
cal Inference to Analogy-Based Software Cost Estimation. IEEE Trans. Softw.
Eng. 34(4), 471–484 (2008)

7. Li, J., Ruhe, G.: Analysis of attribute weighting heuristics for analogy-based soft-
ware effort estimation method AQUA+. Empir. Softw. Eng. 13(1), 63–96 (2007)

8. Maxwell, K.D.: Applied Statistics for Software Managers. Prentice Hall (2002)
9. Loader, C.: Local Regression and Likelihood. Statistics and Computing. Springer

(1999)
10. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics. Harper-Collins (1996)
11. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist.

Soc. Ser. B, 267–288 (1996)
12. Port, D., Korte, M.: Comparative studies of the model evaluation criterions mmre

and pred in software cost estimation research. In: Proc. of ESEM 2008. ACM (2008)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 78–92, 2014.
© Springer International Publishing Switzerland 2014

Identifying Rationales of Strategies by Stakeholder
Relationship Analysis to Refine and Maintain

GQM+Strategies Models

Takanobu Kobori1, Hironori Washizaki1, Yoshiaki Fukazawa1, Daisuke Hirabayashi2,
Katsutoshi Shintani3, Yasuko Okazaki4, and Yasuhiro Kikushima5

1 Goal-oriented Quantitative Management Research Group (GQM-RG)
Waseda University 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555 Japan

2 T&D INFORMATION SYSTEM Ltd, Japan
3 Software Engineering Center Information-technology Promotion Agency, Japan

4 IBM, Japan
5 National Personnel Authority, Japan

uranus-tk@ruri.waseda.jp, {washizaki,fukazawa}@waseda.jp
dieten10@yahoo.co.jp, katsu.shintani@k3.dion.ne.jp

yokazaki@jp.ibm.com, y-kiku@ark.ocn.ne.jp

Abstract. To achieve overall business goals, GQM+Strategies® is an approach
that aligns the business goals at each level of an organization to strategies and
assesses the achievement of goals. Strategies derived from business goals are
based on rationales (contexts and assumptions). Because extracting all ratio-
nales is an important process in the GQM+Strategies approach, we propose
Context-Assumption-Matrix (CAM), which refines the GQM+Strategies model
by extracting rationales based on the analysis of the relationships between
stakeholders, and the Context Assumption (C/A) definition template to unify
the expressive style of contexts and assumptions. To demonstrate the effective-
ness of CAM, we conducted an experiment involving 43 students majoring in
information sciences at Shimane University in Japan. GQM+Strategies with
CAM can extract rationales more efficiently and exhaustively than
GQM+Strategies alone. Moreover, when the management policy or the busi-
ness environment changes, GQM+Strategies with CAM can analyze the ratio-
nales and the GQM+Strategies model easily.

Keywords: stakeholder relationship, rationales (contexts and assumptions),
business goal, organizational change.

1 Introduction

Because software is responsible for a lot business in corporate activities [1] and the
complexity of software and IT systems in general has increased, linking business and
system requirements is becoming increasingly difficult. Often it is unclear if
IT/software related strategies and an organization’s business goals are aligned. Ac-
cording to V. Mandi´c et al. [2], the success of measurement initiatives in software

 Identifying Rationales of Strategies by Stakeholder Relationship Analysis 79

companies depends on the quality of the links between metrics programs and organi-
zational business goals. One approach to resolve this issue is GQM+Strategies®1 [3,
4], which aligns and assesses the business goals of each level to the overall strategies
and goals of the organization. Many companies worldwide (e.g., the Japan Aerospace
Exploration Agency [5], the global oil and gas industry [6], and non-software devel-
opment domains such as the military training domain [7]) have applied
GQM+Strategies for measurement-based IT-business alignment. GQM+Strategies is
used to establish management strategies and plans, determine the value of a contribu-
tion, ensure the integrity of a goal between a purchaser and a contractor, and evaluate
management based on quantitative data.

The GQM+Strategies approach have a hierarchy composed of business goals,
strategies and metrics, which is called the GQM+Strategies grid. Strategies are deter-
mined from goals based on rationales (contexts and assumptions). To determine valid
strategies, rationales must be identified exhaustively, but it is unclear whether the
identified rationales cover all existing ones. Moreover, business environments are
constantly changing. In order to win business, the GQM+Strategies grid must be ad-
justed, which may alter some contexts and assumptions. However, it is difficult to
grasp exactly what has changed. Thus, GQM+Strategies needs a mechanism to identi-
fy exact changes and adapt the GQM+Strategies grid accordingly. Furthermore, ratio-
nales are often described ambiguously. It is important to unify them in an expressive
style.

This paper proposes Context-Assumption-Matrix (CAM)2 to refine business goals
and strategies iteratively. To unify the expressive style of contexts and assumptions,
the relationships of stakeholders are analyzed as a complement to GQM+Strategies
and the Context Assumption (C/A) definition template. Herein three research ques-
tions are examined.
RQ1: Can CAM and the C/A definition template efficiently extract new rationales?
RQ2: Can CAM exhaustively extract rationales?
RQ3: When the management policy or business environment changes, can the ration-
ales and the GQM+Strategies Grid be easily analyzed via CAM?

The contributions of this paper are two-fold. First, the proposed method may pro-
vide an efficient and exhaustive method to extract contexts and assumptions. Second,
when the management or business environment changes, GQM+Strategies, contexts
and assumptions can be easily analyzed.

The rest of the paper is structured as follows: in Section 2, an overview of the
GQM+Strategies approach and motivating examples of our approach is given. In
Section 3, our approach is explained. Section 4 presents the evaluation of our ap-
proach. Section 5 introduces related works. Finally, section 6 concludes conclusion
and suggests future work.

1 GQM+Strategies® is registered trademark No. 302008021763 at the German Patent and

Trade Mark Office; international registration number IR992843.
2 We have already submitted a short paper about idea of CAM to the APRES 2014 as a re-

search previews [20]. This paper is added the result and evaluation of experiments to demon-
strate the effectiveness of CAM.

80 T. Kobori et al.

2 Background

2.1 GQM+Strategies

GQM+Strategies was initially developed by the Fraunhofer Center for Empirical
Software Engineering (CESE) [8] and Fraunhofer IESE [9]. The GQM+Strategies
approach extends the goal/ question/metric paradigm to measure the success or failure
of goals and strategies, while adding enterprise-wide support to determine actions on
the basis of the measurement results [4, 10].

It is also difficult to understand the purpose of collecting such data if developers do
not know that it is required [11]. GQM provides support for measurements by devel-
oping software-related goals and generating questions to refine goals and to specify
measures that need to be considered in order to answer generated questions [6]. Al-
though the GQM approach can measure whether a business goal is achieved in an
organization, it lacks a mechanism to link higher- and lower-level business goals and
cannot support and integrate goals at different levels of an organization.

On the other hand, GQM+Strategies creates maps between goal-related data at dif-
ferent levels, allowing insights gained relative to a goal at one level to satisfy goals at
higher levels [12]. The major feature of GQM+Strategies is that the relationship be-
tween business goals and strategies is determined by rationales as “contexts” and
“assumptions”. Contexts are environmental characteristics, and assumptions are as-
pects of uncertain environments, including estimated ones. Although many strategies
are considered for a goal, the best strategy is then selected based on the rationales.
Because all of the selected strategies are detailed into lower level goals, it is possible
to determine strategies that reflect the actual business environment. Figure 1 shows an
overview of the concept of GQM+Strategies. The GQM+Strategies Grid visually
confirms the link between a goal and a strategy, allowing the entire organization to
communicate easily and work toward a common goal. Furthermore, through the GQM
paradigm, it is possible to evaluate whether the goals at each level are achieved.

Fig. 1. GQM+Strategies components (based on Basili et al. [4])

Our approach uses the following terminology (based on Basili et al. [6]):

• Organizational Goal: Objective that the organization wants to accomplish
within a given time frame that encompasses part of or the entire organization.

 Identifying Rationales of Strategies by Stakeholder Relationship Analysis 81

• Strategies: Possible approaches to achieve a goal within the environment of
the organization. The number of strategies depends on the (internal) structure
of an organization.

• Rationales: Relevant contexts and assumptions used to select goals and strat-
egies.

• Contexts: External and internal organizational environment.
• Assumptions: Estimated unknowns.
• GQM Graphs: Definition of how to measure whether a goal is accomplished

and a strategy is successful. Following the classical GQM approach, GQM
goals are defined and broken down into concrete metrics. Interpretation mod-
els are used to objectively evaluate goals and strategies.

2.2 Motivating Examples

To successfully adapt GQM+Strategies, it is important to capture rationales. High-
quality GQM+Strategies grids can guide an organization and help achieve business
goals and strategies. However, this ability depends on the methods to “capture” rele-
vant context (internal and external environment) [13].

As an example, we applied GQM+Strategies to the sales department of a stationary
company, which sells stationary to corporations. The company receives orders from
corporate customers and then ships based on the order form. Figure 2 overviews the
corporate structure of the stationary company. The purpose of using GQM+Strategies
is to improve the order acceptance process of the sales department and the shipping
business. Figure 3 shows a level-3 business goal, strategy, and rationales.

Fig. 2. Corporate structure of a stationary company

Fig. 3. Business goal, strategy, and rationales (excerpt)

82 T. Kobori et al.

In Figure 3, the strategy, which constructs an inventory control system, is deter-
mined from the goal to increases efficiency of the order reception business. Although
the GQM+Strategies process derives business goals, strategies, contexts and assump-
tions, it is unclear whether contexts and assumptions have an impact on. For example,
there may be a context that limits the budget, which may make the strategy determined
in Figure 3 impossible to execute. The lack of contexts and assumptions tends to be
misleading, which can result in deriving incorrect strategies. Therefore, a mechanism
must be able to extract contexts and assumptions efficiently and exhaustively.

Moreover, rationales are often described ambiguously. In Figure 3, the context is
“we take an order via telephone, FAX, or email”. This context is unclear about “we”,
which may lead to a misunderstanding of the context or assumption even if it is ex-
tracted via CAM. Therefore, it is important to unify the expressive style of contexts
and assumptions.

Business environments are constantly changing. For example, consider the man-
agement policy change when a company that began with individuals is sold to a cor-
poration. The GQM+Strategies Grid must be adjusted, and some contexts and as-
sumptions may change. Because the exact changes are difficult to understand, the
mechanism must also be able to grasp exact changes and adapt GQM+Strategies.

3 Our Approach

In section 3.1, we propose the Context-Assumption-Matrix (CAM), which is a me-
thod to extract contexts and assumptions efficiently and exhaustively by analyzing the
relationships between stakeholders. In section 3.2, we propose the Context Assump-
tion definition template, which is an expressive style of contexts and assumptions
related to CAM. In section 3.3, the steps of our approach are given.

3.1 Context-Assumption-Matrix

CAM organizes common contexts and assumptions between stakeholders into a two-
dimensional table. Our approach defines stakeholders as people, systems, or
processes. This definition allows CAM to respond to the actual shape of corporations.
Figure 4 provides an example of applying CAM to a stationary company and
GQM+Strategies Grid. Each row element denotes a stakeholder who views the con-
text or assumption. Each column element represents a stakeholder who is the subject
of the context or assumption. For example, in Figure 4, C3 (Context 3) is “order re-
ception group takes an order via telephone, FAX, or email.” This means that the
“Corporate Customer” (row) views that “Order reception group” (column) takes an
order.

The dotted circle in Figure 4 shows that this row lacks contexts or assumptions re-
lated to the order reception group. It is possible to omit the contexts and assumptions
from the viewpoint of the order reception group. In fact, there is a context, “finance
group says that the budget is limited”. Thus, CAM can extract contexts and
assumptions.

 Identifying Rationales of Strategies by Stakeholder Relationship Analysis 83

Moreover, CAM has a column labeled TBD, which stands for To Be Determined.
In CAM, TBD represents that a stakeholder who is undecided or does not currently
exist. For example, in Figure 4, C4 (Context 4) is “no one to integrate complaints
from customers in customer service” indicates that currently this role is not assigned.
The rationales in TBD may create new strategies. For example, they introduce CRM.

Fig. 4. An example of applying Context-Assumption-Matrix to a stationary company

Figure 5 shows the structure of CAM and a GQM+Strategies Grid for the statio-
nary company. Similar to the GQM+Strategies grid, CAM has a hierarchy, which
corresponds to the corporate structure.

Fig. 5. Structure of CAM and the GQM+Strategies Grid of the stationary company (excerpt)

In this case, CAM has three levels because the example stationary company has
three levels. The stakeholders of CAM have the same levels as the corporate structure.
Initially, the stakeholders of CAM are determined based on the corporate structure

84 T. Kobori et al.

(i.e., Management Department in level 1, Sales Department in level 2, and Order Re-
ception Group and Shipment Group in level 3), but new stakeholders (e.g., for opera-
tions and maintenance) can be added if necessary.

The lower and upper levels are assumed to have the same rationales. In this case,
rationales corresponding to their level are derived. Rationales at the higher level tend
to be defined abstractly, while ones at the lower level tend to be defined concretely.
Organizing the contexts, assumptions, and stakeholders two-dimensionally in CAM
allows the contexts and assumptions to be visually reviewed.

3.2 Context Assumption (C/A) Definition Template

Contexts and assumptions are often described ambiguously. For example, consider
the context, “We take an order via telephone, FAX, or email from a corporate compa-
ny.” This context does not clarify who “we” refers to, which may lead to a misunders-
tanding of the context or assumption even if it is extracted by CAM. Because it is
important to unify the expressive style of the contexts and assumptions, we developed
the C/A definition template. Table 1 shows the definitions and an example of a C/A
definition template. This expressive style allows contexts and assumptions to be de-
scribed exactly. Furthermore, the “viewpoint” in this template corresponds to the row
elements, while “who” corresponds to the column elements in CAM.

Table 1. Definitions and an example C/A definition template

Item Explanation Example
Level Level of corporate structure Level 3
when Period of Context and Assumption until now

viewpoint
Stakeholder who views context

or assumption (row element in CAM)
Corporate
Customer

who
Stakeholder who are subject of Context

 or Assumption (column element in CAM)
Order Group

what Contents of Context and Assumption
take an order

via telephone, FAX
or email

+/-
Context and Assumption are + or - for viewpoint.

+ is positive, - is negative, +- is neutral.
+-

Source Source of Context and Assumption business outline

3.3 Steps of Our Approach

Figure 6 shows the relationship between our approach and GQM+Strategies. CAM
finds contexts and assumptions exhaustively, while the CA definition template defines
contexts and assumptions clearly. Our approach uses the following steps:

1. Collect contexts and assumptions using the C/A definition template.
2. Extract stakeholders of CAM from departments and groups of the organizational

structure at first.

 Identifying Rationales of Strategies by Stakeholder Relationship Analysis 85

3. Apply the collected contexts and assumptions to CAM.
4. Use CAM to extract missing contexts and assumptions.
5. Create a GQM+Strategies Grid based on contexts and assumptions.
6. Update CAM and the C/A definition template by referring to the related stakehold-

ers when the management policy or business environment changes.
7. Update the GQM+Strategies Grid based on contexts and assumptions.
8. Repeat steps 6 and 7.

Fig. 6. Relationship between our approach and GQM+Strategies

4 Evaluation

4.1 Experimental Overview

To demonstrate the effectiveness of CAM, we conducted experiments involving 43
students majoring in information sciences at Shimane University in Japan. The expe-
riments were conducted on the last day of the 4 days software engineering class by
dividing students into seven teams of five or six people. Four teams were assigned to
group A, and three were assigned to group B. Exercises 1 and 2 were cases of a sta-
tionary company and a cosmetic company, respectively (Figure 7).

Fig. 7. Evaluation design

86 T. Kobori et al.

Teams were given a company profile and goals in a GQM+Strategies grid, and
were instructed to derive contexts, assumptions, and strategies for the goals. These
cases were created from examples adapted from GQM+Strategies.

Exercise 1.1 In the case of a stationary company, group A performed the exercises
with only GQM+Strategies, while group B performed the exercises with
GQM+Strategies and CAM.

Exercise 1.2 Under the same conditions as Exercise 1.1, students performed the
exercises when the management policy was changed.

Exercise 2 In the case of a cosmetics company, group A performed the exercises
with GQM+Strategies and CAM, while group B performed the exercises with
only GQM+Strategies.

4.2 Experimental Result

Table 2 shows the strategy evaluation that individual teams extracted based on three
grades: Good, Normal, and Bad. Grades were determined using two criteria: (i) Is the
strategy aligned with the goal? and (ii) Are the rationales of the strategy convincing? Good, normal, and bad satisfy both, one, and none of the criteria, respectively. To
compare the case of using only GQM+Strategies to that using GQM+Strategies with
CAM, we mapped the rationales, which students extracted using only GQM+Strategies,
to CAM.

Table 2. Evaluation of the strategies

Team_1 Team_2 Team_3 Team_4 Team_5 Team_6 Team_7

Good 1 1 2 2 4 1 2

Normal 1 1 0 0 2 1 1

Wrong 1 0 0 0 0 0 1

Team_1 Team_2 Team_3 Team_4 Team_5 Team_6 Team_7

Good 2 0 1 3 2 3 3

Normal 1 2 2 0 2 1 1

Wrong 0 0 0 1 0 0 2

Team_1 Team_2 Team_3 Team_4 Team_5 Team_6 Team_7

Good 1 3 5 2 2 1 3

Normal 2 0 2 2 2 2 1

Wrong 2 0 0 1 2 2 2

Exercise

2

Only GQM+Strategies GQM+Strategies with CAM

Exercise

1.1

GQM+Strategies with CAM Only GQM+Strategies

Only GQM+Strategies GQM+Strategies with CAM

Exercise

1.2

Figure 8 shows the relationships between the number of views and the number of ra-

tionales. The number of views is the sum of the number of “viewpoints” and “who” in
CAM, while the number of rationales is the sum of the number of contexts and assump-
tions in CAM. In Figure 8, X-axis represents number of view, and Y-axis represents
number of rationales. The team on the top right of the figure is able to verify rationales
from many viewpoints and extract many rationales. In Figure 8, an “o” mark represents
the teams using GQM+ Strategies with CAM, while an “x” mark represents the teams
using only GQM+ Strategies. Figure 9 shows the relationships between the number of
views and the number of strategies, where “o” and “x” marks are the same as in Figure 8.

 Identifying Ration

Fig. 8. Relationships b

Fig. 9. Relationships b

We conducted a question
sults to the question: “W
changes, are rationales and
Table 4 shows an example o

T

Q: When the manageme
and the GQM+

Strongly

Agree

ratio(%) 2

In addition, table 4 show
1.1. They extracted 5 cont
assumptions before the exer

nales of Strategies by Stakeholder Relationship Analysis

between the number of views and the number of rationales

between the number of views and the number of strategies

nnaire after experiments with CAM. Table 3 shows the
When the management policy or business environm
d the GQM+Strategies Grid easily analyzed using CAM
of CAM which one team creates in exercise 1.1.

Table 3. Results of the questionnaire

ent policy or business environment changes, are rational
+Strategies Grid easily analyzed using CAM?
y

Agree Neutral Disagree
Strongly

Disagree

23 53 19 5 0

ws an example of CAM which one team creates in exerc
texts and 1 assumption (we provided some contexts
rcise).

87

e re-
ment
M?”

les

cise
and

88 T. Kobori et al.

T
ab

le
 4

. A
n

ex
am

pl
e

of
 C

A
M

 w
hi

ch
 o

ne
 te

am
 c

re
at

es
 in

 e
xe

rc
is

e
1.

1

•
C

 r
ep

re
se

nt
s

co
nt

ex
t,

A
 r

ep
re

se
nt

s
as

su
m

pt
io

n.

 Identifying Rationales of Strategies by Stakeholder Relationship Analysis 89

4.3 Discussion

RQ1: Can CAM and the C/A Definition Template Efficiently Extract New
Rationales?
We conducted experiments to demonstrate the effectiveness of only CAM due to
limited time in class. Teams using GQM+Strategies with CAM extracted average of
1.0 more rationales at exercise 1.1 (Team 4 is not included) and average of 1.75 more
rationales at exercise 2 than the teams using only GQM+Strategies (Figure 8).

This is because CAM extracts new rationales based on “viewpoint” and “who”.
One team using only GQM+Strategies extracted 15 rationales in exercise 1.1. Howev-
er, it appears that the team determined the rationales from the company profile, and
although many rationales were extracted, the number of views is low.

RQ2: Can CAM Exhaustively Extract Rationales?
GQM+Strategies with CAM resulted in more numbers of views and rationales (Figure
8). In fact, an example of CAM is considered from many views (Table 3). This team
should reconsider rationales from the viewpoint of order group later, because there are
no rationales on the order group’s row. GQM+Strategies with CAM can more exhaus-
tively extract rationales than using only GQM+Strategies because CAM extracts ra-
tionales based on the relationships of stakeholders. In case of exercise 1.1 (Figure 9),
teams using GQM+Strategies with CAM extracted more strategies than teams using
only GQM+Strategies, but in exercise 2 (Figure 9), both methods extracted about the
same number of strategies. However, the strategies extracted using GQM+Strategies
with CAM tend to be more highly evaluated than those extracted using only
GQM+Strategies (Table 2). By extracting rationales exhaustively, CAM helps to im-
prove the quality of strategies.

RQ3: When the Management Policy or Business Environment Changes, Can the
Rationales and the GQM+Strategies Grid Be Easily Analyzed via CAM?
The management policy changes from exercise 1.1 to exercise 1.2. In exercise 1.2 in
Table 2, in addition to deriving more strategies, the teams using GQM+Strategies
with CAM derived better strategies. In fact, one team added new stakeholders’ views
(e.g., individual customer, a character product company, etc.) to CAM. The teams of
using only GQM+Strategies tended to extract strategies from the view of a few stake-
holders, while the teams using GQM+Strategies with CAM tended to extract strate-
gies from the view of many stakeholders. After the experiments, we asked students a
question, “When the management policy or business environment changes, are ratio-
nales and the GQM+Strategies Grid easily analyzed using CAM?” Figure 10 shows
that 76% people answered affirmatively. CAM can trace the changes easily, because
its hierarchy corresponds to the same levels of the corporate structure.

We recognize that the final validation of CAM requires more empirical research. In
this experiment, students derived contexts, assumptions, and strategies for goals in
lower levels of an organizational structure (e.g., sales group, order reception group,
and shipment group). For this reason, the derived strategies are limited, which may be
why CAM did not have a large impact on determining strategies.

90 T. Kobori et al.

4.4 Limitations

One threat to the internal validity is the difference between the ability of students by
team. To remove this, the group assignments were reversed between Exercise 1 and 2.
That is, Group A used only GQM+Strategies in exercise 1, but used GQM+Strategies
with CAM in exercise 2, and vice versa. The same results were obtained in the both
case.

We conducted experiments involving students enrolled in a class on requirements
engineering. Thus, the students had limited business knowledge. Our approach may
not have much effect on a business person with experience. This is a threat to external
validity. However, the possibility of overlooking unexpected requests is considered
high for even a business person with experience. In the future, we would like to con-
duct experiments involving not only students but also business persons. Another
threat to external validity is that the experiment was limited to two domains (a statio-
nary company and a cosmetic company). Because CAM has a hierarchy correspond-
ing to the corporate structure, it is possible that CAM also corresponds to other
domains. In the future, we would like to verify the effectiveness of CAM for other
organizations.

5 Related Work

The GQM+Strategies approach extends the goal/question/metric paradigm [4, 5],
which is a goal oriented approach. In the past, various approaches have been proposed
to execute a goal-oriented approach.

E. Yu has proposed the i* framework [14, 15], which describes the dependency re-
lationships among various actors in an organizational context. These relationships are
used to describe stakeholder interests and concerns, and how they might be addressed
by various configurations of systems and environments [16]. Moreover, an actor rela-
tionship matrix analysis method (ARM) extends the i*framework. ARM enables
requirements engineers to better ensure completeness of the requirements in a repeat-
able and systematic manner that does not currently exist in the i* framework [17]. We
use the point of analyzing requirements from the relationships between stakeholders
as a reference for our approach.

Another approach that combines GQM+Strategies and other methods is Utilizing
GQM+Strategies for Business Value Analysis [12]. This method integrates these two
approaches, coupling cost-benefit and risk analysis (value goals) with operationally
measurable business goals, which helps evaluate business goal success and the effec-
tiveness of the chosen strategies. However, in this case, how to extract rationales effi-
ciently and exhaustively is unclear.

V. Basili et al. have applied the GQM+Strategies approach to ECOPETROL, a
global player in the oil and gas industry, for measurement-based IT-business align-
ment [7]. ECOPETROL has continued to extend the model, collecting and analyzing
data based upon questionnaires. Moreover, J. Munch et al. have applied the
GQM+Strategies method to examine and align the strategic, tactical, and operational
goals in software-intensive integrated product development [18].

 Identifying Rationales of Strategies by Stakeholder Relationship Analysis 91

Our approach has been applied to an example company, but we did not consider
operation and maintenance. In the future, we should verify whether GQM+Strategies
models using CAM can be used for refinement and maintenance.

6 Conclusion and Future Work

Often, insufficient requirements management is on top of the list of factors contribut-
ing to project failures [19]. GQM+Strategies is an effective approach to align business
goals with the systemization of strategies. However, rationales may be ambiguous or
omitted. In our approach, the rationales which are important in determining strategies
are extracted by analyzing the relationships of stakeholders in an organization. More-
over, we propose a mechanism that can respond to changes in the management policy
or business environment.

To demonstrate the effectiveness of CAM, we conducted an experiment involving
43 students at Shimane University in Japan. GQM+Strategies with CAM extracted
rationales more efficiently and exhaustively than using only GQM+Strategies. Addi-
tionally, when the management policy or business environment changes, the ratio-
nales and the GQM+Strategies grid can be analyzed easily by GQM+Strategies with
CAM.

In the future, we plan to conduct experiments to derive contexts, assumptions, and
strategies for the goals at higher levels of the organizational structure or for multiple
levels simultaneously. Moreover, we intend to develop a CAM tool to link to the
GQM+Strategies grid and adapt CAM to other examples in order to validate the flex-
ibility of CAM.

Acknowledgement. In addition to co-authors, we would like to thank other members
of Goal-oriented Quantitative Management Research Group (GQM-RG) who
provided carefully considered feedback and valuable comments.

References

1. Trendowicz, A., et al.: Aligning software projects with business objectives. In: Software
Measurement, 2011 Joint Conference of the 21st Int’l Workshop on and 6th Int’l Confe-
rence on Software Process and Product Measurement (IWSM-MENSURA). IEEE (2011)

2. Mandić, V., Harjumaa, L., Markkula, J., Oivo, M.: Early empirical assessment of the prac-
tical value of GQM +  Strategies. In: Münch, J., Yang, Y., Schäfer, W., et al. (eds.) ICSP
2010. LNCS, vol. 6195, pp. 14–25. Springer, Heidelberg (2010)

3. Basili, V., et al.: Bridging the gap between business strategy and software development
(2007)

4. Basili, V., et al.: Linking software development and business strategy through measure-
ment. arXiv preprint arXiv: 1311.6224 (2013)

5. Kaneko, T., et al.: Application of GQM+Strategies in the Japanese Space Industry. In:
Software Measurement, 2011 Joint Conference of the 21st Int’l Workshop on and 6th Int’l
Conference on Software Process and Product Measurement (IWSM-MENSURA). IEEE
(2011)

92 T. Kobori et al.

6. Basili, V., Lampasona, C., Ocampo Ramírez, A.E.: Aligning Corporate and IT Goals and
Strategies in the Oil and Gas Industry. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldas-
sarre, M.T. (eds.) PROFES 2013. LNCS, vol. 7983, pp. 184–198. Springer, Heidelberg
(2013)

7. Sarcia, et al.: Is GQM+ Strategies really applicable as is to non-software development do-
mains? In: Proceedings of the ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement. ACM (2010)

8. GQM+Strategies- the Fraunhofer CESE, Web site:
http://www.fc-md.umd.edu/ (retrieved October 1, 2014)

9. GQM+Strategies- Fraunhofer IESE Fraunhofer Gesellschaft, Web site:
http://www.iese.fraunhofer.de/de/produkte/gqm.html
(retrieved June 18, 2014)

10. Solingen, V., et al.: Goal question metric (gqm) approach. Encyclopedia of Software Engi-
neering (2002)

11. Hall, T., et al.: Implementing effective software metrics programs. IEEE Software 14(2),
55–65 (1997)

12. Mandić, V., et al.: Utilizing GQM+ Strategies for business value analysis: An approach for
evaluating business goals. In: Proceedings of the ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement. ACM (2010)

13. Mandić, V., Oivo, M.: SAS: A tool for the GQM + Strategies grid derivation process.
In: Ali Babar, M., Vierimaa, M., Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156,
pp. 291–305. Springer, Heidelberg (2010)

14. i* Intentional STrategic Actor Relationships modelling – istar. from the Knowledge Man-
agement Lab, University of Toronto Web site:
http://www.cs.toronto.edu/km/istar/ (retrieved June 6, 2014)

15. Yu, E.S.: Social modeling and i*. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S.
(eds.) Mylopoulos Festschrift 2009. LNCS, vol. 5600, pp. 99–121. Springer, Heidelberg
(2009)

16. Yu, E.: Towards modelling and reasoning support for early-phase requirements engineer-
ing. In: Proceedings of the Third IEEE International Symposium on Requirements Engi-
neering. IEEE (1997)

17. Yamamoto, S., Ibe, K., Verner, J., Cox, K., Bleistein, S.: Actor relationship analysis for
the i* framework. In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2009. LNBIP, vol. 24, pp. 491–
500. Springer, Heidelberg (2009)

18. Münch, J., et al.: Experiences and Insights from Applying GQM+Strategies in a Systems
Product Development Organization. In: 39th SEAA, p. 21 (2013)

19. Ebert, C.: Requirements before the requirements: Understanding the upstream impacts.
Requirements Engineering. In: 13th IEEE International Conference on Proceedings. IEEE
(2005)

20. Kobori, T., Washizaki, H., Fukazawa, Y., Hirabayashi, D., Shintani, K., Okazaki, Y., Ki-
kushima, Y.: Efficient identification of rationales by stakeholder relationship analysis to
refine and maintain gQM+Strategies models. In: Zowghi, D., Jin, Z., et al. (eds.) APRES
2014. CCIS, vol. 432, pp. 77–82. Springer, Heidelberg (2014)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 93–107, 2014.
© Springer International Publishing Switzerland 2014

The Sources and Approaches to Management
of Technical Debt: A Case Study of Two Product Lines

in a Middle-Size Finnish Software Company

Jesse Yli-Huumo, Andrey Maglyas, and Kari Smolander

Lappeenranta University of Technology, Finland
{jesse.yli-huumo,andrey.maglyas,kari.smolander}@lut.fi

Abstract. Fierce competition in the software market forces companies to re-
lease their product under tough time constraints. The competition makes com-
panies reactive and they need to release new versions often. To achieve this
need for speed, companies take shortcuts to reach deadlines. These shortcuts
and resulting omitted quality are called technical debt. We investigated one
middle-size Finnish software company with two independent product lines and
interviewed 12 persons in different positions to understand the causes and ef-
fects of technical debt. We were also interested in specific strategies and prac-
tices for managing technical debt. The results showed that technical debt is
mostly formed as a result of intentional decisions made during the project to
reach deadlines. Customer satisfaction was identified as the main reason for
taking technical debt in short-term but it turned to economic consequences and
quality issues in the longer perspective. Interestingly, neither of the product
lines had any specific management plan for reducing technical debt but several
practices have been identified.

Keywords: technical debt, software project management, case study, software
company, software quality.

1 Introduction

The increased competition in the software market forces companies to think about
their time-to-market strategy. Balancing the choice of releasing poor-quality software
early or high-quality software late is challenging [1]. This leads companies to an
awkward situation w here they have to decide what quality is omitted and what short-
cuts in the development process they have to take. These shortcuts and omitted quali-
ty are called “technical debt.”

The term technical debt was first introduced by Ward Cunningham [2]. According
to Seaman et al. [3] compromises in software development are the reason for technic-
al debt and they should be paid back to avoid decreasing maintainability and health of
the system. Technical debt might also cause economic consequences in a software
project [4]. McConnell divides technical debt into two different basic types [5]. Type
I occurs unintentionally where a design approach turned out to be bad or a junior cod-
er writes bad code. Type II is intentional where a company makes a strategic decision

94 J. Yli-Huumo, A. Maglyas, and K. Smolander

to incur technical debt. The technical debt metaphor appeals to both project managers
and software development teams [6]. The goal of a software development team is to
create quality software and embrace tools and techniques for it [6]. People responsible
for the management of the project and the company also care about quality but are
more focused on cost and schedule factors [6].

In this paper we define technical debt as a shortcut in a software development
project to reach certain deadlines. We firmly believe that technical debt is not only
related to technical decisions but also to management and business decisions. Moreo-
ver, the decision to have some technical debt can be conscious to deliver the product
to the market faster.

This case study is conducted in one middle-size Finnish software company with
two independent product lines. The objective of this case study is to understand the
sources of technical debt in software projects. Our secondary objective is in identifi-
cation of strategies and practices for the management of technical debt.

The rest of the paper is organized as follows. Chapter 2 shows the related work of
this topic. Chapter 3 provides the research method used in this study. In Chapter 4 we
introduce the results analyzed from the gathered data. Then, in Chapter 5 we discuss
about the results and conclude the paper.

2 Related Research

In this chapter we identify the related research conducted on causes and effects of
technical debt. We are also focusing on strategies and practices used for managing
and reducing technical debt.

2.1 The Causes and Effects of Technical Debt

The study conducted by Lim et al. [7] shows that technical debt is not always a result
of bad coding. It can also include intentional decisions to trade off competing con-
cerns during business pressures. The study also identified that technical debt can be
used in short-term to capture a market share and even to collect early customer feed-
back. In the long-term technical debt effects tended to be negative. These effects in-
cluded increased complexity, poor performance, low maintainability and fragile code.
This furthermore led to bad customer satisfaction and extra working hours. However,
the authors also mentioned that there were cases where short-term benefits of technic-
al debt clearly outweighed the future costs.

Klinger et al. [8] studied the causes of technical debt by interviewing four software
architects at IBM. The study revealed causes for technical debt including pressure
from stakeholders, technical communication gap between stakeholders and project
team, decision making without quantification of possible impacts, and unintentional
debt occurring from acquisitions, change of requirements, and changes in the market
ecosystem.

Siebra et al. [9] analyzed an industrial project that lasted six years by analyzing
emails, documents, CVS logs, code files and interviews with developers and project
managers. The analysis revealed that technical debt was taken mainly with strategic
decisions. They also found that the use of a unique specialist could lead the develop-

 The Sources and Approaches to Management of Technical Debt: A Case Study 95

ment team to solutions that incur technical debt. The study also identified that the
effects of technical debt can both increase and decrease the amount of working hours.

Zazworka et al. [10] studied the effects of god classes and design debt on software
quality. God classes are examples of bad coding [11] and therefore include a possi-
bility for refactoring. The results showed that god classes require more maintenance
effort that include bug fixing and changes to software and are considered as a “cost”
to software project.

Buschmann [12] explained three different cases of technical debt effects. In the
first case technical debt in one platform started to grow so large that development,
testing and maintenance costs started to increase dramatically. In the second case
developers started to use technical debt to increase the development speed. This re-
sulted to significant performance issues that turned later on to economic conse-
quences. In the third case the software product had already incurred a huge amount of
technical debt that led to increasing maintenance costs. However, management ana-
lyzed that reengineering the whole software would cost more than doing nothing. This
resulted to situation where the management decided not to do anything for the tech-
nical debt because it was cheaper from the business point of view.

Guo et al. [13] studied the effects of technical debt by following one delayed main-
tenance task through a software project. The results showed that delaying the main-
tenance task would have almost tripled the costs if it had been done later.

Overall, the related research about the causes and effects show that technical debt
is not always caused because of technical reasons. Studies [7][8][9] showed that tech-
nical debt can also be caused by intentional decisions that were related to business
reasons.

The studies also show that taking technical debt may have short-term positive ef-
fects [7][9] such as the time-to-market benefit, but they will turn to economic conse-
quences and quality issues in a long run if not paid back [7][9][10][12][13]. However,
there are also situations where the short-term benefits overweigh the long-term costs
[7][9].

We also noticed from the related research that technical debt is not just related to
shortcuts in the coding phase. There are several different subcategories of technical
debt mentioned in literature. We have gathered all of these technical debt subcatego-
ries in Figure 1.

Overall, the existing literature reveals large set of causes and effects incurring from
technical debt, but lacks a clear mapping of relationships between different effects
and causes.

2.2 Current Strategies and Practices of Technical Debt Management and
Reduction

Lim et al. [7] found four different strategies for managing technical debt. The first
strategy is to do nothing because technical debt might not be ever visible to the cus-
tomer. The second strategy is the risk management approach to evaluate and prioritize
technical debt’s cost and value. The third strategy is to include different stakeholders

96 J. Yli-Huumo, A. Maglyas, and K. Smolander

Technical Debt

Requirements Debt [24][26]
Compliance Debt [25]

Documentation Debt [24][26][27][28]
Design Debt [27][28]

Architectural Debt [14][24][26][28]
Structural Debt [26]

Code Debt [28]
Defect Debt [27]
Build Debt [29]

Dependency Debt [29]
Safety and consistency debt [14]

Test Debt [24][26][27][28]
Automation debt [14]

Environmental Debt [28]
People Debt [26]

Fig. 1. Subcategories of technical debt

to technical debt decisions. The last strategy is to conduct audits with the develop-
ment team to make technical debt visible.

Codabux & Williams [14] revealed practices such as refactoring, reengineering,
and repackaging used for technical debt management.

The studies [15][16][17] propose the management of technical debt using the port-
folio management. This approach is similar to the investment portfolio management.
In the portfolio approach technical debt is collected to a “technical debt list” that is
being used to pay the technical debt back based on its cost and value.

Krishna and Badu have also developed guides based on their own experience of
technical debt management [18][19]. These guides are using different practices for
minimizing technical debt. The practices include the basic steps that are focusing on
improving refactoring, aspects of coding, continuous learning processes and team-
work. These practices were used in software projects and the results showed an im-
provement in the adaptation of new changes and better productivity in software
project.

Overall, the existing literature is often concentrating on strategies and practices for
reducing and preventing technical debt. As a result, the existing literature is lacking
clear management approaches for controlling technical debt through the software
development life cycle.

3 Research Methodology

Case study was selected as the research methodology for this study. Case studies have
been around a long time and they account a large proportion of books and articles
[20]. Case study is a method that involves an in-depth examination of a case [21]. Yin
defines case study as an ‘empirical inquiry that investigates a contemporary pheno-
menon within its real-life context, especially when the boundaries between phenome-
non and context are not clearly evident’ [22]. In this study, we focus on technical debt

 The Sources and Approaches to Management of Technical Debt: A Case Study 97

in software project. We focus more on technical debt causes and effects, rather than
on the qualities of technical debt in source code and how to measure them. Therefore,
we decided to use exploratory case study methodology with semi-structured inter-
views for data collection. The purpose of this study is to increase our knowledge of
the relationship between technical debt causes, effects, and management. This case
study consists of the following five steps [22]:

1. Designing the case study
2. Conducting case studies (stage 1): Preparing for data collection
3. Conducting case studies (stage 2): Collecting the evidence
4. Analyzing the case study evidence
5. Reporting the case study

3.1 Designing the Case Study

The strategy for this research was to find a suitable company to study technical debt
and to arrange multiple interviews with people in different organizational positions
(e.g. development, management, quality assurance). The reason for interviewing dif-
ferent organizational positions was to acquire information about technical debt from
different viewpoints in software development projects. The research questions this
study addresses are:

1. What are the causes and effects of technical debt?
2. What management and reduction strategies/practices are being used for tech-

nical debt?

3.2 Preparing for Data Collection

The selected company is a Finnish software company that offers SaaS business solu-
tions for professional services automation and accounting. The company has three
product lines that are managed and developed independently. This study includes two
of the product lines that are referred to as Product Line A and Product Line B.

Table 1. The roles of the interviewees

ID Product line Role
A1 A Software architect
A2 A Software designer
A3 A Project manager
A4 A Software test engineer
A5 A Production director
B1 B Software architect
B2 B Software developer
B3 B Product line manager/Software test engineer
B4 B Software architect
B5 B Software developer
B6 B UI designer

98 J. Yli-Huumo, A. Maglyas, and K. Smolander

Product line A provides a financial management solution as a cloud service. The
solution has more than 10 000 customers and it is currently the biggest financial man-
agement system provider in Finland. The product has been developed since 2004. The
size of the development team in Product Line A is 18 persons. The development team
is using agile methods and more specifically a Scrum-like approach.

Product line B is a SaaS-based project management solution for multi-organization
projects. The solution is used by 1000 companies worldwide. Product Line B was
founded 2004 and acquired by the parent company in 2010. The size of the develop-
ment team in Product Line B is 13 persons. The development team is also using agile
methodologies and a Scrum-like approach.

3.3 Collecting the Evidence

The interviews were conducted between February and March 2014. We had total of
11 interviews, of which five were from Product Line A and six from Product Line B.
One of Product Line B interviews included an interview with two persons interviewed
at the same time. The data collection started with a contact to the product line manag-
ers from both Product Line A & B. Both product managers agreed to have an inter-
view and recommended persons from their own product line that might be suitable to
interview about technical debt. We contacted all of the persons recommended and
received positive response from each of them.

Table 1 presents the roles of the interviewees in this study. The interviewees were
from different positions within the development team and we were able to discuss
technical debt from various different viewpoints. We also tailored different questions
depending on the role of an interviewee. For example if the interviewee was responsi-
ble for the management we focused our questions more on strategies and processes.
All interviewees gave us a permission to record the session with a voice recorder.
Seven interviews were conducted by one researcher in Finnish and the rest by two
researchers in English. Later all interviews were transcribed and translated to English.
Overall, the interviews lasted from 25 to 50 minutes, with the average of around 35
minutes.

3.4 Analyzing Case Study Evidence

The total amount of transcribed pages for analysis was 80. The collected data was
analyzed with a tool designed for qualitative data analysis, Atlas.ti. The analysis of
the transcribed data was performed with a similar method to open coding as in the
grounded theory method [23].

4 Results

The main findings are presented in four subsections. The first subsection presents the
causes related to technical debt. The second subsection examines strategies and prac-
tices for the management of technical debt. The third subsection focuses on the effects
in short- and long term caused by technical debt. The final section presents improve-
ments to product lines regarding technical debt.

 The Sources and Approaches to Management of Technical Debt: A Case Study 99

4.1 Causes for Technical Debt

We asked from the interviewees what the causes for technical debt usually were. The
most common cause mentioned was the lack of time given for the development. It
was also added that the lack of time generates a lot of pressure to the development
team, which ultimately leads to technical debt being taken.

 “We have things that are almost well done but they are left undone properly be-
cause deadlines are coming and it is working like “ok” and we will just leave it like
that.” – B6.

We also identified that when the source code is getting more complex and bigger,
it becomes also harder to change. This makes it easier and cheaper in the short run to
just take technical debt and use patch code, instead of fixing the bigger problem. A
software architect from Product Line A explained the situation where patch code was
used to deal with the problem.

 “We were working with our CRM product and our job was to refactor the data struc-
ture to this new type of data structure. This current data structure was used by almost
every customer and it would have been really hard to change it. So we just made some
script that syncs the data between these data structures and brings data to our CRM
same way. This has generated a lot of problems, like in CRM the data is showing little
bit differently even though it is the same data.” – A1.

Another commonly mentioned reason for technical debt was the lack of know-
ledge. Sometimes it is just impossible to predict the future and some present decisions
might incur technical debt later on. The interviewees also described different exam-
ples where lack of knowledge has caused technical debt to software product. One
interviewee explained that lack of documentation in the source code causes technical
debt because the code is then harder to understand and it takes more time to work
with it. Also, if new coders do not have enough experience in coding with the compa-
ny standards, they unintentionally incur technical debt because they produce different
style of code compared to the company standards. The last example related to lack of
knowledge described was about mistakes in specifications and requirements.

Another major aspect we were interested in at the causes of technical debt was the
effect of the business decisions. We asked interviewees about the effects of business
decisions to technical debt by causing pressures to the development team. A software
architect in Product Line B thought that business decisions do have effect to the
amount of technical debt.

 “Previous years business decisions have affected us a lot. Reason for this that we
have a release every two months and when we have a bigger release we just do not
have enough time to do it. This means that we are in a hurry at the end of release and
we have to just implement some faster solution. I think that problem is that manage-
ment is not willing to see what people are actually doing during work day and how
much time is doing something actually taking. This leads to problems in distribution
of resources and I think that has been our problem these days.” –B4.

100 J. Yli-Huumo, A. Maglyas, and K. Smolander

A project manager of Product Line A also thought that business decisions are gene-
rating pressure to the development team, but he also added that it is not completely
the decision of business managers to make deadlines for features.

 “Well of course there is pressure coming, but what is the weight of it is case-by-case.
At some point if we have promised something to our customer, we try to give
deadlines so that there should not be any pressure coming. Of course deadlines are
changing and there are situations where we have to reach fast and everything else is
postponed, but if we were in a perfect world, this is how we would deliver.” – A3.

We also asked about the communication between the development team and the
business management related to decision making on technical debt. Interviewees from
both product lines thought that they have a good communication structure where
project managers act as good filters between business managers and development
team for the decisions on technical debt. Some interviewees also added that they con-
sider this communication structure to be much better compared to companies they
have previously worked in. The reason for this was that the previous places were big
companies, where getting an opinion about technical debt was more challenging due
to more complex and larger communication structure.

We were also interested in whether business people usually listen to the technical
opinions of the development team. Most of the interviewees thought that it is difficult
to express technical opinions to business managers and to get more development time.
However, a project manager of Product Line A expressed that the development team
often mentions situations related to technical debt.

“Well we try internally say that if we don’t have capacity for some feature to make it
100% solution, it will be told usually at most of the cases. We will picture it that we
don’t have time to make this and this feature completely. So they understand us quite
well.” – A3.

We asked could one of the causes for technical debt be the lack of technical know-
ledge of business managers that might drive not to do the best possible solution. The
interviewees thought that it might be the case but did not see it as a problem because
project managers usually can express their opinions to these kinds of situations, which
limits the amount of bad decisions.

Also, one interesting fact we noticed during interviews was that the examples giv-
en by interviewees were not just related to the implementation phase. Interviewees
also described how shortcuts were taken for example in testing, architecture and re-
quirements phases of the software life cycle.

4.2 Management and Reduction Strategies for Technical Debt

The goal was to find out if the product lines A & B have any clear strategies for man-
aging and reducing technical debt. Neither of the product lines had any specific ap-
proach for managing technical debt. However, we were able to identify some practic-
es that were used to report technical debt.

 “Well for bigger things we do keep a backlog. If some feature is dropped out we do
have a backlog for it. If I am thinking myself at coding and I take some shortcut

 The Sources and Approaches to Management of Technical Debt: A Case Study 101

somewhere, so do I mark-up it somewhere, not really. But if we are dropping some-
thing or finding some things to take, we write them up.” – A1.

One interviewee from Product Line B mentioned that they are using a software
called JIRA to store their actions during development.

 “Well there is that if we decide that we are going to make it better later, we have this
software called JIRA, where we have all the tickets about things we have done. So at
least it will be stored in there, other thing is that when it will be fixed.” – B6.

Even though neither of the product lines used any specific approach to manage
technical debt we managed to identify practices that were being used to reduce and
prevent technical debt. Both of the product lines for example have a specific bug fix-
ing day each week to reduce errors and bugs.

We identified that both product lines were using refactoring to reduce technical
debt. However, they did not have any specific refactoring schedule. Refactoring was
considered as a part of normal job and was done during the implementation.

Both product lines were using coding standards/guides to prevent and reduce tech-
nical debt coming from bad coding and to increase the consistency of the source code.

 “We have guides, but they are still missing a lot of stuff. We are combining them all
the time and adding stuff. But at the moment they are mostly describing naming the
code, architectural stuff. We have different guides for different projects, like different
guides for APIs compared to normal software. But at least we have something.” –B4.

For the situation where bad solutions or inconsistency still occurs even after coding
standards/guides, both companies had code reviews to check all produced code. This
served as the last checkpoint where technical debt can be seen before a release.

4.3 Short-Term and Long-Term Effects of Technical Debt

The analysis revealed several effects how technical debt can affect a software devel-
opment project in a short-term. First, technical debt, or a shortcut, is used to save
development time and deliver a solution faster to the customer. The production direc-
tor of Product Line A explained a situation from the early stages of the product where
taking technical debt saved the company.

“Well I think that the best example is when we started the company in 2001. We were
quite out of money, so we were leveraged with debt quite heavily and we were in a
hurry to get something done for the next presentation for pilot companies and inves-
tors. So we created a lot of stuff that looked it worked, but in reality it might not even
work. Time-to-market was so important for the existence of a company, so we did
everything we could just to get stuff out to convince that this is a viable solution.” –
A5.

Second, the customer satisfaction can be increased by delivering the solution faster
but it also increases the technical debt. As customers are more interested in getting the
product on time rather than its technical details of implementation, they do not care

102 J. Yli-Huumo, A. Maglyas, and K. Smolander

about technical debt as long as it does not directly affect the product quality. One
interviewee also mentioned that taking technical debt doesn’t feel good to take from
developer’s point of view because they know that the solution is not the best one and
they might have to fix it later.

We were also able to identify long-term effects occurring from technical debt. The
interviewees from both product lines explained that if technical debt is not being ma-
naged and reduced, it will have some serious effects in the long-term. A software
architect from Product Line B explained a situation where technical debt effects have
caused problems to the product line.

 “We have things like calendar synchronization, which we have done years ago and
there is a lot of bugs and errors in the functionality and problems in implementation.
These kinds of things have generated us a lot of bugs in the long-term and lots of re-
pairing. Repairing has been done by putting patches somewhere and not by creating a
totally new base for it. For example we have had this calendar synchronization for
two years and I believe we have used hundreds of hours for fixing bugs after its re-
lease. We should take plenty of time and look at the big picture.” – B4.

The common effect mentioned by interviewees was more working hours spent for
recoding and fixing errors/bugs of solutions made with technical debt. The intervie-
wees felt that the solutions built on top of the already bad solutions were basically
already implemented wrong and fixing with patch code is just postponing the issue.
They explained that technical debt lowers the quality and performance of the product
in the long run and it ultimately leads to a decrease in customer satisfaction.

4.4 Future Improvements for Dealing with Technical Debt

We were able to some identify possible improvements related to dealing with technic-
al debt in both product lines. Neither of the product lines had any specific approach
for dealing with technical debt management and reduction. Interestingly, majority of
the interviewees thought that they would need improvement for that. We asked the
interviewees about the backlog type management where technical debt is being ma-
naged and reduced through listing all the shortcuts to a backlog and starting the reduc-
tion from there.

 “Well some feature control would be good, where you can see that what has been
done in a short way and other stuff. So some kind of feature management system.
Usually companies have these, but smaller the company less systems.” – A2.

We were also able to identify practices related to refactoring, coding stan-
dards/guides and code reviews that were used to reduce technical debt. We noticed
that the continuous delivery of new features is taking time away from refactoring.
This might lead into a situation where technical debt stays in the software because the
development team has to continuously implement new features. The risk is that if this
debt is forgotten it might cause problems in the long-run. We think that having some
refactoring time after every release to reduce the technical debt might be a good

 The Sources and Approaches to Management of Technical Debt: A Case Study 103

solution, instead of just moving to the new features of next release. Also one possible
solution could be to assign for example two developers to do only refactoring. Project
manager of Product Line A mentioned that they are trying to improve the estimation
of deadlines and include also technical debt in this.

 “Lately we have been trying to include, if we have some gap in some feature and if
we have to do something to that feature and we know that there is something existing
in that feature, that we make some time to fix it correctly.” –A3.

We also identified practices in coding standards/guides and code reviews. We no-
ticed that coding standards/guides are not used by everyone and they are also not
updated. The lack of coding standards/guides has an effect on the consistency of the
source code and especially junior coders are more exposed to write bad code that is
considered as unintentional debt. Also, we identified that in the other product line the
code reviews were not conducted on a regular basis, but only after a release. With
code reviews it is possible to interrupt these bad solutions before they are included in
the release of the software. However, we noticed that both product lines have ac-
knowledged these problems and are currently improving them by updating the coding
standards/guides and increasing code reviews. We think that improving these two
aspects will have an impact on preventing unintentional technical debt.

4.5 Summary of the Findings

In Table 2 we summarize the results of this case study. We were able to identify sev-
eral different causes for technical debt. These can be further divided into technical
debt that is a caused with intentional decisions and technical debt is incurring uninten-
tionally. We were also able to identify several short- and long-term effects of technic-
al debt to a software project. As expected, the effects of technical debt seemed to be
positive in a short-term, but turned negative in a long-term. Although we did not find
any specific approach for managing technical debt, we were able to identify some
practices for reducing technical debt.

5 Discussion and Conclusions

With this study we were able to identify empirical evidence from the relationship
between technical debt causes, effects, and management. The results from both of the
product lines are similar and clearly show that technical debt is appearing in both of
them. McConnell [5] defined that technical debt can be divided into two different
main types intentional and unintentional debt. The examples given by interviewees
also show that technical debt is occurring in product either unintentionally or with
intentional decisions. Based on these findings we agree with McConnell [5] that tech-
nical debt can be divided into these two main types. Moreover, based on our observa-
tions, technical debt does not seem to be only related to coding, where a coder takes a

104 J. Yli-Huumo, A. Maglyas, and K. Smolander

Table 2. Summary of the findings

RQ1: What are the causes and effects of technical debt?
Intentional causes of technical debt • Lack of time given for development

• Pressure to the development team
• Complexity of the source code
• Business decisions

- Lack of technical knowledge
- Communication challenges

Unintentional causes of technical debt • Lack of coding standards and guides
• Junior coders
• Lack of knowledge about future changes
• Lack of documentation

Short-term effects of technical debt • Time-to-market benefit
• Increased customer satisfaction

Long-term effects of technical debt • Extra working hours
• Errors and bugs
• Customer unsatisfaction
• Complexity of the source code

RQ2: What management and reduction strategies/practices are being used for technic-
al debt?

Practices for reducing and preventing tech-
nical debt

• Refactoring
• Bug fixing days
• Code reviews
• Coding standards and guides
• Communication structure between busi-

ness management and development team

shortcut in the source code. Instead, the results show that similar effects to take short-
cuts were happening in different phases of the software development life cycle. Our
observations suggest that similar phenomenon to take shortcuts can happen also in
requirements, architecture and testing phases. We argue that technical debt should not
be limited to shortcuts in source code only, but it should also include shortcuts in
other phases of the software life cycle as well. Dividing technical debt into more spe-
cific subcategories may bring more clarity to the concept of technical debt over the
whole software development life cycle.

The first research question was related to the causes of technical debt in the soft-
ware development life cycle. The results suggest that technical debt is not necessarily
caused by a single specific reason. The effect of the lack of time for the development
was identified as the primary reason for technical debt in a software project. We also
identified that common causes for the lack of time and pressure for the development
team include business decisions. These findings are similar to other studies [7][8][9]
where the researchers identified that taking technical debt is also caused by intention-
al decisions. We believe that the lack of time for development ultimately comes from
business realities that set up the deadlines for project based on customer needs and
current market situation. This makes the development team to take shortcuts to meet
deadlines. However we also noticed that the both product lines had built a communi-
cation structure between the business and development departments that increased the

 The Sources and Approaches to Management of Technical Debt: A Case Study 105

capability of the development team to express their opinions on technical debt deci-
sions. Klinger et al. [8] found in their study at IBM that the cause for technical debt is
the technical communication gap between business managers and the development
team. Based on these observations we think that in small and middle sized companies
technical debt decisions might be easier to deal with when compared to large compa-
nies where the communication structure is more complex. Another thing we also ob-
served in these cases was that unintentional debt was mainly caused by the lack of
knowledge about future and lack of coding standards/guides that will especially affect
junior coders.

The second part of the first research question was the short- and long term effects
of technical debt in the software development life cycle. Other studies [7][9] argue
that the good thing about technical debt is the short-term effect of time-to-market. We
were able to identify similar situations, where technical debt was used to get the solu-
tion out faster. In the long-term technical debt tends to have more negative effects
[7][9][10][12][13]. Our observations also revealed situations where technical debt in
the long-term started to generate extra working hours and errors/bugs. The effects of
technical debt are mostly positive the moment you take them but might turn into prob-
lems later if they are not paid back. This could be the reason why business people
think that technical debt is something that is really easy to take to meet the deadlines
and just fix it later.

The second research question focused on strategies of managing and reducing
technical debt. Neither of the product lines had any specific management strategy for
technical debt. However both product lines were using some practices to collect the
technical debt items to a backlog, but they did not have any reduction strategy for
them. A portfolio management strategy proposed in other studies [15][16][17], where
technical debt is stored to backlog and the development team can use that for man-
agement and reduction, would be a good option to technical debt management. This
kind of a backlog strategy might be beneficial to product lines in a long-run when
older technical debt is traceable, instead of forgotten. Even though neither of the
product lines had any clear strategy for managing technical debt we identified several
practices used for reducing it. The practices included refactoring, coding standards
and guides, code reviews, and specific bug fixing days. Similar practices have been
proposed also in other studies [14][18][19]. We believe that all these practices can
reduce and prevent the amount of technical debt and also increase the overall quality
of the product.

In conclusion, technical debt is something that companies are unable to avoid dur-
ing their software development projects. In this case study technical debt was formed
as a result of different management level decisions that were made during the project
to reach deadlines or unknowingly due to the lack of knowledge. However, technical
debt is not always a bad thing to take. Companies can use technical debt as a powerful
tool to reach their customers faster to gain an edge over the competition in the market.
Nevertheless, if technical debt is not paid back in time, it might generate economic
consequences and quality issues to the software. To use technical debt correctly com-
panies need to create a management plan including practices that decrease technical
debt.

106 J. Yli-Huumo, A. Maglyas, and K. Smolander

Acknowledgement. The authors would like to thank the company and their
employees for participating to this research. This research has been carried out in
Digile Need for Speed program, and it has been partially funded by Tekes (the
Finnish Funding Agency for Technology and Innovation).

References

1. Van de Laar, P., Punter, T. (eds.): Views on Evolvability of Embedded Systems. Springer,
Dordrecht (2011)

2. Cunningham, W.: The WyCash Portfolio Management System. In: Addendum to the Pro-
ceedings on Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA 1992, pp. 29–30. ACM, New York (1992),
http://dl.acm.org/citation.cfm?id=157715 (accessed: March 25, 2014)

3. Seaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai, Y., Vetro, A.: Using tech-
nical debt data in decision making: Potential decision approaches. In: 2012 Third Interna-
tional Workshop on Managing Technical Debt (MTD), pp. 45–48 (2012)

4. Zazworka, N., Vetro, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C., Shull, F.: Comparing
four approaches for technical debt identification. Software Quality Journal, 1–24 (2013)

5. McConnell, S.: Technical Debt-10x Software Development | Construx (November 01,
2007), http://www.construx.com/10x_Software_Development/
Technical_Debt/ (accessed: March 25, 2014)

6. Eisenberg, R.J.: A Threshold Based Approach to Technical Debt. SIGSOFT Software En-
gineering Notes 37(2), 1–6 (2012)

7. Lim, E., Taksande, N., Seaman, C.: A Balancing Act: What Software Practitioners Have to
Say about Technical Debt. IEEE Software 29(6), 22–27 (2012)

8. Klinger, T., Tarr, P., Wagstrom, P., Williams, C.: An Enterprise Perspective on Technical
Debt. In: Proceedings of the 2nd Workshop on Managing Technical Debt, New York, NY,
USA, pp. 35–38 (2011)

9. Siebra, C.S.A., Tonin, G.S., Silva, F.Q.B., Oliveira, R.G., Junior, A.L.O.C., Miranda,
R.C.G., Santos, A.L.M.: Managing Technical Debt in Practice: An Industrial Report. In:
Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, New York, NY, USA, pp. 247–250 (2012)

10. Zazworka, N., Shaw, M.A., Shull, F., Seaman, C.: Investigating the Impact of Design Debt
on Software Quality. In: Proceedings of the 2nd Workshop on Managing Technical Debt,
New York, NY, USA, pp. 17–23 (2011)

11. Vaucher, S., Khomh, F., Moha, N., Guéhéneuc, Y.: Tracking Design Smells: Lessons from
a Study of God Classes. In: 16th Working Conference on Reverse Engineering, WCRE
2009, pp. 145–154 (2009)

12. Buschmann, F.: To Pay or Not to Pay Technical Debt. IEEE Software 28(6), 29–31 (2011)
13. Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., da Silva, F.Q.B., Santos,

A.L.M., Siebra, C.: Tracking technical debt - An exploratory case study. In: 2011 27th
IEEE International Conference on Software Maintenance (ICSM), pp. 528–531 (2011)

14. Codabux, Z., Williams, B.: Managing technical debt: An industrial case study. In: 2013 4th
International Workshop on Managing Technical Debt (MTD), pp. 8–15 (2013)

15. Power, K.: Understanding the impact of technical debt on the capacity and velocity of
teams and organizations: Viewing team and organization capacity as a portfolio of real op-
tions. In: 2013 4th International Workshop on Managing Technical Debt (MTD), pp. 28–
31 (2013)

 The Sources and Approaches to Management of Technical Debt: A Case Study 107

16. Guo, Y., Seaman, C.: A Portfolio Approach to Technical Debt Management. In: Proceed-
ings of the 2nd Workshop on Managing Technical Debt, New York, NY, USA, pp. 31–34
(2011)

17. Zazworka, N., Seaman, C., Shull, F.: Prioritizing Design Debt Investment Opportunities.
In: Proceedings of the 2nd Workshop on Managing Technical Debt, New York, NY, USA,
pp. 39–42 (2011)

18. Krishna, V., Basu, A.: Minimizing Technical Debt: Developer’s viewpoint. In: Interna-
tional Conference on Software Engineering and Mobile Application Modelling and Devel-
opment (ICSEMA 2012), pp. 1–5 (2012)

19. Krishna, V., Basu, A.: Software Engineering Practices for Minimizing Technical Debt.
presented at the SERP 2013 The, International Conference on Software Engineering Re-
search and Practice (2013)

20. Denzin, N.K., Lincoln, Y.S.: The SAGE Handbook of Qualitative Research, 4th edn. Sage
Publications

21. Verner, J.M., Sampson, J., Tosic, V., Bakar, N.A.A., Kitchenham, B.A.: Guidelines for in-
dustrially-based multiple case studies in software engineering. In: Third International Con-
ference on Research Challenges in Information Science, RCIS 2009, pp. 313–324 (2009)

22. Yin, R.K.: Case study research: design and methods. Sage Publications, Thousand Oaks
(2003)

23. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. SAGE Publications (1998)

24. Ojameruaye, B., Bahsoon, R.: Systematic Elaboration of Compliance Requirements Using
Compliance Debt and Portfolio Theory. In: Salinesi, C., van de Weerd, I. (eds.) REFSQ
2014. LNCS, vol. 8396, pp. 152–167. Springer, Heidelberg (2014)

25. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical Debt: From Metaphor to Theory and Prac-
tice. IEEE Software 29(6), 18–21 (2012)

26. Zazworka, N., Spínola, R.O., Vetro’, A., Shull, F., Seaman, C.: A Case Study on Effective-
ly Identifying Technical Debt. In: Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering, New York, NY, USA, pp. 42–47
(2013)

27. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. Journal of Systems and
Software 86(6), 1498–1516 (2013)

28. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack,
A., Nord, R., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K., Zazworka, N.: Managing
Technical Debt in Software-reliant Systems. In: Proceedings of the FSE/SDP Workshop
on Future of Software Engineering Research, New York, NY, USA, pp. 47–52 (2010)

29. Morgenthaler, J.D., Gridnev, M., Sauciuc, R., Bhansali, S.: Searching for build debt: Expe-
riences managing technical debt at Google. In: 2012 Third International Workshop on
Managing Technical Debt (MTD), pp. 1–6 (2012)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 108–118, 2014.
© Springer International Publishing Switzerland 2014

Application of GQM+Strategies
in a Small Software Development Unit

Francisco Cocozza, Enrique Brenes, Gustavo López Herrera,
Marcelo Jenkins, and Alexandra Martínez

University of Costa Rica, San José, Costa Rica
{francisco.cocozzagarro,enrique.brenes,

gustavo.lopez_h}@ucr.ac.cr,
{marcelo.jenkins,alexandra.martinez}@ecci.ucr.ac.cr

Abstract. GQM+Strategies is an extension of the Goal-Question-Metric me-
thod that focuses on filling the vertical gaps in organizations in order to facili-
tate the alignment of levels. In this case study, we applied GQM+Strategies in
small software organization to define its metric program. We describe how a set
of metrics was devised using this methodology and show the implementation
results.

Keywords: GQM+Strategies, software engineering, metrics.

1 Introduction

The alignment of software projects with business goals is critical for most software
development organizations. Nevertheless, some organizations have serious vertical
harmonization issues, making this alignment difficult to achieve [1]. In this paper, we
describe the experience of an even worse scenario: a small software development unit
in an academic environment that is in charge of some of the university’s software
needs. The situation is “worse” because the organization´s goals are usually not asso-
ciated with software development, hence goal alignment is intricate.

GQM+Strategies is an extension of the Goal-Question-Metric method that focuses
on filling the vertical gaps in organizations in order to facilitate the alignment of le-
vels [2]. The purpose of GQM+Strategies is to help the software industry to create
objectives and strategies that are aligned with high-level business goals by imple-
menting a strategic measurement method that helps monitor either the fail or success
of such strategies and organizational goals [3].

In this case study, we used the GQM+Strategies in small software organization that
consists of 10 people. Through this paper, we show the results of definition of the
GQM+Strategies elements, such as goals, strategies, interpretation models, metrics
and classic GQM. Also, we expose some of the collected metrics results, defined
following the GQM+Strategies methodology.

The rest of the paper is structured as follows: Section two describes the applied
methodology, GQM+Strategies conceptual definitions, and the scope of this case

 Application of GQM+Strategies in a Small Software Development Unit 109

study. Section three shows some related work. Section four gives an overview of the
organization under study. Section five shows the actual results of applying the metho-
dology. Section six incorporates some discussion on the results of the research. Final-
ly, Section seven shows some conclusions and future work.

2 Methodology

We followed the GQM+Strategies methodology (version 2007) which consists of a
series of predefined steps [4]: (1) Determine and define business goals, (2) Select the
right strategic decisions set, (3) Select the software goals to implement the strategy,
(4) Select the correct setting and define the steps to implement the software goals, (5)
Select the adequate measurement goals, and (6) Derive questions and metrics using
GQM.

First, an introduction to the organization background and context was needed. The
presentation was led by the project manager of the organization, and it allowed us to
understand the group’s dynamics and its specific characteristics.

The next step involved an explanation of GQM+Strategies to the Project Manager
and Software Architect, emphasizing on key concepts, value, and benefits of applying
this methodology. Once they had a clear understanding of the methodology, the defi-
nition of the key elements began by specifying the assumptions, goals, metrics, and
others. The definition process and information gathering was accomplished through
several meetings and interviews.

From the interviews we identified that a critical point for this development unit is
to deliver functionality according to the agreed schedule. Estimation precision and
productivity are critical at the software level to achieve this organizational goal. In the
next sections we will present the GQM+Strategies diagram using these objectives.

Then, we proposed the definition of the GQM+Strategies grid, which includes all
the elements of the methodology. Also, to have an initial idea of the state of the or-
ganization, the defined metrics were collected and calculated. This helped us to eva-
luate the actual feasibility of collecting and calculating this set of metrics.

The definition of the GQM+Strategies grid is very important. As stated by Basili et
al. [5], defining the grid is a major contribution per se. It provides the organization
with the perspective goals, strategies, and measures that align the organization's ap-
proach for achieving its high-level goals. Basili et al. conclude their statement saying
that "Even if an organization never collects a single piece of data, they have laid out a
plan for all to see". It is worth mentioning that an evaluation of the effectiveness of
the defined metric system will be performed as future work.

3 Related Work

The case study conducted in [3] proposed to analyze how much value does the
GQM+ Strategies brings to the analysis of the business. The study found that its main
advantage is that it ties together risk analysis with business objectives. It can identify

110 F. Cocozza et al.

branches within the resulting GQM tree that require further attention so they can be
given priority in allocating effort for planning and monitoring. The authors concluded
that the methodology helps in bringing into light certain blind spots of the managed
process.

In [6] another interesting case study was conducted in which they analyzed how
feasible is and what implications entail applying GQM+Strategies in domains unre-
lated to software development. They showed that it is possible to take advantage of
the model in non-software development domains and that the model is more suitable
in human-intensive domains, as they share many similarities with software develop-
ment. The study also argues that for individuals outside the GQM paradigm is very
difficult to understand and become familiar with the model, so it is necessary to apply
intensive training in goal-oriented methodologies and GQM, which might result in a
significant increase in the cost of introducing the model.

Another implementation case study was carried out at the Japanese Aerospace Ex-
ploration Agency [7]. In their report, they note that the application of the model
benefited the organization in several ways, for example, it helped in clarifying rela-
tionships between different organizational units. As one criticism, they point out that
the model needs to be extended with a mechanism to prioritize targets.

The model was also applied in the Japanese Information Technology Promotion
Agency to determine the extent to which current projects are contributing to the high
level objectives. The study identified five projects and strategic objectives were iden-
tified. Managers concluded that the application of the model helped them to achieve
traceability from strategies towards the project-level objectives, in turn promoting
project updates to align them with the strategy and high-level objectives [7].

4 Organization Context

In our case study, we applied the GQM+Strategies methodology to a small software
organization with the aim of validating the features mentioned in the previous section.
The Software Project Unit (SPU) is responsible for developing some of the software
solutions for a large organization. Its main objective is to analyze, design, develop,
and implement a variety of management information systems that seek to streamline
and improve some of the main business processes of the organization. This software
development unit was created in 2006 and it currently has a total of ten people ar-
ranged in the simple organizational structure shown in Figure 1.

As shown in the diagram, team size is small and given their recent inception the
organization is in the process of maturation. Thus, some of the current processes are
not documented or are not controlled at all. Aware of these shortcomings, the team
leader has been focusing on improving process quality by implementing a variety of
best practices and training his people on key topics such as software testing, among
other activities.

 Application of GQM+Strategies in a Small Software Development Unit 111

Fig. 1. The organizational structure

As far as software metrics is concerned, the organization keeps track of some process
data, but data collection was not consistent across projects and therefore it was
deemed not statistically usable, hence the importance of this work.

5 GQM+Strategies Application Results

In 2012, we conducted a CMMI-DEV 1.3 gap analysis [8]. CMMI models are collec-
tions of best practices that help organizations to improve their processes effectiveness,
efficiency and quality. This maturity and capacity models are developed by teams
composed by member of the industry, government and the SEI (Carnegie Mellon
Software Engineering Institute) [9].

The evaluation evidenced a low capability level in Process Areas such as Project
Planning and Project Monitoring and Control. Some of these issues are directly re-
lated to the lack of a software metrics program. Specifically, no metrics were being
systematically and consistently collected, there was no analysis and decision making
process based on data, and the unit did not know if its project portfolio was properly
aligned with the organizational objectives.

We thus decided to apply GQM+Strategies in this unit to address these gaps. As
shown in Figure 2, at the business level the main goal is to reduce time to market, and
the proposed strategy is to improve productivity of the software development process.
Two main constraints are imposed on the organization from the university high au-
thorities: budget reduction and pressure to increase productivity. Hence, increasing
staff is not feasible to improve time-to-market.

112 F. Cocozza et al.

Fig. 2. The GQM+Strategies diagram for the software development unit

At software level the main goal is to improve project estimation accuracy and to
improve team productivity. The main context for this level is that the team is very
small and its members implement all project cycle activities. There is no traceability
between time estimations and the actual duration of the development process. We
assume that an improvement on productivity will reduce delivery time of software
products, and that 80% accuracy on project estimations will have a positive effect on
product delivery time as well.

Figure 3 shows a zoom in view of the GQM diagram that is part of the
GQM+Strategies diagram (Figure 2). The project manager and the technical leader are
mainly interested in increasing productivity because of budget reductions and the con-
stant growth in the amount of software functionality to be delivered on time. Thus, they
envision that the main objective is to deliver functionality according to the schedule
agreed with the client. Both interviewees were repetitive in the importance of strengthen-
ing the estimation process and increasing productivity in the organization. They were

 Application of GQM+Strategies in a Small Software Development Unit 113

also asked about the metrics collection process and the effort estimation process. After a
review of the available data in their current process, this set of metrics was agreed upon.

Fig. 3. The GQM diagram for the productivity goal

In a similar way, we derived a second GQM diagram related to a maintainability
objective, as shown in Figure 4.

Fig. 4. The GQM diagram for the maintainability goal

In the definition of these metrics, we took into account the special interests of the
project manager in assessing the quality of their products. In this case, maintainability
is one of the aspects or attributes used to determine the quality of the software. The
choice of these metrics also took into account the feasibility of obtaining the neces-
sary data for their calculation. Thus, based on the set of development tools they cur-
rently use, metrics such as depth of inheritance, maintainability index, and cyclomatic
complexity were chosen because their calculation can be done automatically. On the

114 F. Cocozza et al.

other hand, the organization
rently have sufficient data
noted that these metrics co
ganization adopts appropria

We proceeded to calcula
estimation efficacy in calen
manager defined the 80%
chart shows that 8 out of t
they fall below the accepta
that presents an important o

Fig. 5. E

On the other hand, Figu
set of 14 projects. In this m
ment a use case. The averag

Fig. 6. Producti

n is aware that in some particular projects it does not c
a to calculate all of these metrics. However it should
ould be implemented in all software projects, once the
ate data collection procedures.
ate the metrics in several projects. Figure 5 shows the ti
ndar days for a sample of 14 finished projects. The proj

to 120% range as an acceptable variation interval. T
the 14 projects were underestimated in terms of time
able variation interval. Clearly, time estimation is an is
opportunity for improvement in this software unit.

Estimation efficacy for 14 software projects.

ure 6 shows the software productivity metric for the sa
metric, productivity is measured in effort required to imp
ge is 0.11 use cases per day of effort.

ivity in delivered use cases for 14 software projects

cur-
d be

or-

ime
oject
This
and

ssue

ame
ple-

 Application of G

Figure 7 shows another
this case for five projects. T
invested in the project, with
of such a high variation nee
more predictable.

Fig. 7. Productiv

A maintainability index
Table 1. This metric can b
project is delivered.

Table 1. M

P

6 Discussion

Based on the application o
some advantages and disad
method has not been tried e
of reports of case studies,
drawback. There is a l
GQM+Strategies method [2
companies with low maturi
disadvantage is that GQM
processes must be consider

GQM+Strategies in a Small Software Development Unit

productivity metric, LOC delivered per day of effort
The average productivity is 57 LOC per each day of ef
h a large variation of up to 6 to 1 between projects. Sour
ed to be identified and removed from the process to mak

vity in delivered LOC per day for 5 software projects

was also computed for some finished projects, as shown
be automatically calculated from the source code once

Maintainability index for 2 software projects

roject

Maintainability Index
(20-100 range is good

)

X 72,6

Y 71

of GQM+Strategies in a small development unit we fou
dvantages of using it. The main disadvantage is that
extensively in small organizations or units. There is a l

compared with classic GQM. Its novelty generates
lack of knowledge in organizations trying to ap
2] [10]. The impact of this lack of trials increases on sm
ty levels and can generate high risk consequences. Anot

M+Strategies requires an extra effort because additio
red and this generates an overhead, therefore it is not n

115

t, in
ffort
rces
ke it

n in
the

und
the

lack
this

pply
mall
ther
onal
nor-

116 F. Cocozza et al.

mally used in small companies. In this scenario, using GQM+Strategies in a bottom-
up perspective could be beneficial in order to align the software unit with the overall
goals of the larger organization.

On the other hand, the main advantages of using GQM+Strategies in small units
inside large organizations are: it facilitates alignment with the business, it increase
transparency inside the organization, it is based on the classic GQM therefore inherits
some advantages and finally works as a measurement tool that could be used in future
inspections inside the organization.

Large organizations need high levels of transparency and the use of
GQM+Strategies could provide management with a much clear vision of the business
goals and how every part of the organization is working to achieve them. Moreover,
businesses priorities change drastically when senior management change, therefore
this transparency may allow laying responsibilities in case of failures or demonstrate
good work in cases of success.

Given that GQM+Strategies is based on a well-adopted methodology such as
GQM, it facilitates its incorporation into organizations that already use the original
GQM method. GQM+Strategies works as a measurement tool, this is important in
small units inside large organizations because measurements are crucial to determine
efficiency, and these measurements will most probably not be performed if the me-
thod is not applied.

Even in small organizations it is important to use GQM+Strategies to make sure
software projects and their respective measurement goals are properly aligned with
the organizational strategy and goals.

In our experience with this software development unit, it was relatively easy for
people to get familiar with the GQM+Strategies methodology. No special training
was necessary beyond an introductory talk.

Given that the organization under study is a small and immature software unit,
there are currently some weaknesses in the data collection and analysis processes.
Somehow the metrics derived in this case study were driven by this constrain and the
biased imposed by their current development tools. Nevertheless, we feel comfortable
that the set of metrics that were implemented provides management hereon with a
solid foundation for a data-driven decision making process.

7 Conclusions and Future Work

This research paper addressed the alignment of software projects with business goals.
We developed a case study in which GQM+Strategies was applied in a small software
development unit which is part of a larger organization whose business is not software
development. A set of estimation and productivity metrics was first specified and then
data were collected and analyzed for a sample of recent projects.

Our main motivation was a CMMI-DEV 1.3 gap analysis, because the results of
such analysis showed weak metrics gathering processes and strategies. Therefore, we
proposed the application of GQM+Strategies using the available data to align soft-
ware and business goals.

 Application of GQM+Strategies in a Small Software Development Unit 117

We found several advantages of using GQM+Strategies in small development
companies for instance: it increases transparency inside the organization, it inherits
most of the advantages of classic GQM, and the process required for GQM + Strate-
gies forces the collection of metrics which otherwise would hardly be addressed.

Also, we found some disadvantages: few case studies have addressed
GQM+Strategies on small organizations; hence our findings require further valida-
tion, there is a lack of knowledge on the application of GQM+Strategies, the
methodology requires an extra effort and this overhead can cause problems in small
organizations.

The application of this methodology could help the development unit later on if the
university as large organization changes its goals because the alignment would be
easier. As further work, we are planning to assess the effectiveness of
GQM+Strategies on this particular organization. We will measure the organization’s
alignment to proposed goals, and redefine objectives or metrics if necessary. Also, we
are going to update the proposed GQM+Strategies grid using the latest version of the
methodology as reference [5].

Acknowledgment. This work was supported by the Research Center on Information
and Communication Technologies (CITIC) and Department of Computer and Infor-
mation Sciences (ECCI) at University of Costa Rica, under grant No. 834-B2-A14.

References

1. Basili, V., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Münch, J., Rombach, D.,
Trendowicz, A.: Linking Software Development and Business Strategy through Measure-
ment. Computer, 57–65 (2010)

2. Münch, J., Heidrich, J., Mandić, V.: Business Alignment: Measurement-Based Alignment
of Software Strategies and Business Goals. In: Bomarius, F., Oivo, M., Jaring, P., Abra-
hamsson, P. (eds.) PROFES 2009. LNBIP, vol. 32, pp. 435–436. Springer, Heidelberg
(2009)

3. Mandic, V., Basili, V., Harjumaa, L., Oivo, M., Markkula, J.: Utilizing GQM+Strategies
for Business Value Analysis: An Approach for Evaluating Business Goals. In: de ACM-
IEEE International Symposium on Empirical Software Engineering and Measurement,
Bolzano-Bozen, Italy (2010)

4. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Rombach, D., Seaman, C.,
Trendowicz, A.: Bridging the Gap between Business Strategy and Software Development.
In: de International Conference on Information Systems, Québec, Canada (2007)

5. Basili, V., Trendowicz, A., Kowalczyk, M., Heidrich, J., Seaman, C., Münch, J., Rombach,
D.: Aligning Organizations Through Measurement: The GQM+Strategies Approach.
Springer International Publishing (2014)

6. Sarcia, S.A.: Is GQM+Strategies Really Applicable As is to Non-software Development
Domains? In: de Proceedings of the 2010 ACM-IEEE International Symposium on Empir-
ical Software Engineering and Measurement, New York, USA (2010)

7. Asghari, N.: Thesis: Evaluating GQM+ Strategies Framework for Planning Measurement
System (2012)

118 F. Cocozza et al.

8. Jenkins, M., Martínez, A., López, G.: A quality assurance experience in a Systems Unit.
In: de Latin American Congress on Requirements Engineering & Software Testing, Me-
dellín, Colombia (2012)

9. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI for Development: Guidelines for Process
Integration and Product Improvement, 3rd edn. Addison-Wesley (2011)

10. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Seaman, C., Regardie, M., Trendowicz,
A.: Determining the Impact Of Business Strategies Using Principles From Goal-Oriented
Measurement. In: de Internationale Tagung Wirtschaftsinformatik, Vienna, Austria (2009)

Algorithmic Complexity of the Truck Factor Calculation

Christoph Hannebauer and Volker Gruhn

paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen, Germany
{christoph.hannebauer,volker.gruhn}@uni-due.de

Abstract. Software development projects differ in their sensitivity to losing de-
velopers. Some projects must stop already if they lose a few developers, while
other projects can continue if the same number of developers leave the project.
The Truck Factor (TF) quantifies these differences: It is the number of developers
that would stop the project if they left the project. Multiple specific variants of the
TF have been suggested in literature. This paper proves that some of these imple-
mentations are actually NP-hard to compute, including the promising worst-case
metric T Fmin,c. NP-hardness prevents their use for large software development
projects. For the TF variants not proved to be NP-hard, this paper provides ef-
ficient algorithms. However, this paper argues that these TF variants have less
explanatory power.

Keywords: Truck Factor, Algorithmic Complexity, Project Survivability.

1 Introduction

The “Truck Factor” of a software project indicates “the number of people on your team
who have to be hit with a truck before the project is in serious trouble” [2]. Projects
with a high Truck Factor (TF) are less sensitive to developers leaving the project.

If a developer leaves a software development project, there is a direct and an indirect
impact on the productivity of the project. As a direct consequence, the project has less
raw programming work time at its disposal. But additionally, the project also loses
expertise. The remaining developers may need more programming work time to solve
some of the programming tasks than before, because they have less expertise with these
tasks.

Spreading expertise in a software development project can prevent or at least soften
the loss of expertise when developers leave the project. More specifically, projects are
less sensitive to expertise loss if expertise is usually not exclusive to a few develop-
ers. After all, no expertise is lost to the project if others share the same expertise as
the leaving developers. This corresponds to the “collective code ownership” principle
known from Extreme Programming (XP) [1]. XP techniques like Pair Programming can
therefore increase the TF [6].

The TF indirectly measures how broad the expertise is spread among the project
members. The original phrasing [2] was qualitative and not an exact formula, probably
intended as a thought-provoking impulse instead of a quantitative measurement. This
may also be the reason for the gory backstory of the name Truck Factor. However, newer
research used this impulse to calculate specific values for the TF [6]. The proposed

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 119–133, 2014.
c© Springer International Publishing Switzerland 2014

120 C. Hannebauer and V. Gruhn

algorithms to calculate the TF have a high algorithmic complexity that prevents their
use on larger software development projects – calculation for 30 or more developers are
impractical, calculation for more than about 50 or 60 developers are impossible using
the available algorithms [5]. Efficient algorithms need to be found before the TF can
also be calculated for larger projects.

This paper analyzes the algorithmic complexity of the TF calculations in general.
For all proposed variants of the TF, the paper either presents an efficient algorithm or
the proof that the calculation is NP-hard, and that therefore the existence of an efficient
algorithm is unlikely. Section 2 describes existing research on TF calculation, including
definitions of the variants T Fmin,c, T Fmax,c, and T Favg,c. Section 3 contains some further
definitions and a theorem important for the further analyses. The proof for NP-hardness
of the TF variant T Fmin,c can be found in Sect. 4. This proof is of special importance, as
Ricca et al. use T Fmin,c in their study [5]. Section 5 proves that the TF variant T Fmax,c

is also NP-hard. Section 6 outlines an efficient algorithm calculating T Favg,c. The paper
concludes with a summary and open issues in Sect. 7.

2 Related Work

Zazworka et al. were the first to give a formal definition of the TF metric. They use the
TF metric and other metrics to evaluate usage of XP techniques. They test their metrics
on two development projects run by students of an XP class. Their definition of the TF
involves a target coverage c ∈]0; 1], the fraction of code files for which developers
should have expertise. The case c = 0 is not interesting, as it renders the concept of a
target coverage useless. By definition, developers have expertise with a code file if they
have edited the file at least once. Each function covα : N→ [0; 1]

(
α ∈ {min, avg,max

})

assigns each number of lost developers to the fraction of code files that the remain-
ing developers still have expertise with. More specifically, covmin, covavg, covmax are the
minimum, arithmetic mean, and maximum coverages, respectively, among the cover-
ages of all combinations of remaining developers. For each of the three coverage func-
tions covα and for each target coverage c, there is one TF metric defined as T Fα,c �
max {n|covα (n) ≥ c}. Thus, T Fα,c is the greatest number of developers a project may
lose such that the remaining developers still have expertise with at least a fraction of c
of all files. [6]

Note that the TF by Zazworka et al.’s definition is one below the original, prosaic
definition: For example, T Fmin,c = 0 means that there is at least one developer whose
loss would be dangerous to the project. This corresponds to a TF of one in the original
definition, where “the project is in serious trouble” if a truck hits one developer [2].

Ricca et al. [5] evaluated whether the TF metric can be used for real Free, Libre and
Open Source Software (FLOSS) projects. They adopted Zazworka et al.’s definition of
the TF, but they used only the coverage metric covmin. They used 50%, 60%, and 70% as
threshold c in their evaluation. Thus, they calculated the TF metrics T Fmin,0.5, T Fmin,0.6,
and T Fmin,0.7. They analyzed 37 FLOSS projects, most of which are small, i.e. have
at most 10 developers. They considered a FLOSS project as large if it has more than
10 developers. The largest FLOSS project analyzed had 38 developers. They proposed
an algorithm they dubbed “naive algorithm” to calculate the TF. They showed that the

Algorithmic Complexity of the Truck Factor Calculation 121

Naive Algorithm has a worst case time complexity of nm · ∑n
i=1

n!
i!(n−i)! , where n is the

number of developers in the project and m is the number of files. They also tried to
find out thresholds for the TF that no project should fall below. However, they find out
that thresholds previously suggested are so high that all analyzed projects would be in
danger. They concluded with four open issues:

1. A more precise expertise metric of code knowledge is necessary,
2. the algorithmic complexity of the Naive Algorithm for TF calculation is bad, as the

TF calculation for their largest projects took days already,
3. the version control system (VCS) logs contain anomalies that have to be resolved

manually, and
4. research should identify reasonable thresholds for the TF so practitioners can ap-

praise the TF values they have calculated.

Their analysis shows that the proposed Naive Algorithm is unsuitable for larger soft-
ware development projects: It took days already to compute the TF for the projects with
38 developers. Since the algorithm has an exponential time complexity, as will be shown
in Sect. 4, even with cloud computing and advancements in computing performance, the
Naive Algorithm cannot practically compute the TF for software development projects
with more than about 50 or 60 developers.

3 Preliminary Remarks and Definitions

Before starting with the main proofs, a software development project as relevant for the
TF will be defined, and as a result, coverage will be specified more precisely. Addition-
ally, a lemma important for the later proofs will be proved.

The symbols � and � denote rounding to the floor, while � and 	 denote rounding to
the ceiling. P (X) is the set of all subsets of the set X.

Definition 1. A software development project (F,D, e) is a tuple of a finite set of files F,
a finite set of developers D, and a function e : D → P (F) that assigns each developer
to the files that the developer has expertise with.

The preceding definition allows a formal redefinition of the coverage functions:

Definition 2. The function avg : P (Q)→ Q shall denote the arithmetic mean of a finite
set. The functions covα : N→ [0; 1]

(
α ∈ {min, avg,max

})
are defined as

covα : k
→ α
⎧
⎪⎪⎨
⎪⎪⎩

∣∣∣
⋃

d∈S e (d)
∣∣∣

|F |

∣∣∣∣∣∣∣
S ⊆ D, |D \ S | = k

⎫
⎪⎪⎬
⎪⎪⎭

The following lemmata use the method of reducing one problem to another. A prob-
lem X is said to be reducible to Y if there is a polynomial-time-algorithm that maps
each instance of X to an instance of Y such that the result of X equals the result of Y. If
X is reducible to Y and X is NP-hard, then Y is also NP-hard. [4]

The resulting Theorem 1 implies that showing that if TF calculation is NP-hard for
one target coverage c, or even if the target coverage c depends on the instance, then TF
calculation is NP-hard for every target coverage c, except possibly c = 1.

122 C. Hannebauer and V. Gruhn

Figure 1 illustrates the core idea of the proof for the first Lemma 1 in this section:
Adding a set of dummy files N to a project lowers the relative target coverage from c1

to c2, but the absolute number of files that need to be covered stays the same. Therefore,
an algorithm that calculates the TF for a specific target coverage c2 can also be used to
calculate the TF for the target coverage c1.

Fraction of c1 files Fraction of 1-c1 files

Fraction of c2 files

F

Fraction of 1-c2 files

Original Project

Constructed
Project

N

Fig. 1. Adding the set of files N to an original project constitutes a new project, in which the same
absolute number of files within F need to be covered to reach the lower target coverage c2

Lemma 1. Let α be one of the functions min, avg,max and let c2 ∈]0; 1[be constant.
Deciding whether T Fα,c1 , with c1 ∈ [c2; 1] as a parameter, is smaller than k ∈ N reduces
to the problem of deciding whether T Fα,c2 is smaller than k ∈ N.

Proof. Assume there is a software development project (F,D, e) and a parameter c1 ∈
[c2; 1]. WLOG, assume that c1 |F | is integer, as only an integer number of files can be
covered. Let there be a second software development project (F ∪ N,D, e), where N
is chosen such that N ∩ F = ∅ and |N| =

⌊
c1−c2

c2
|F |
⌋
. Note that the developers in the

second software development project have the same expertise as the developers in the
first project, especially no developer has expertise with the files in N. Let icovα and
iT Fα,γ (γ ∈]0; 1]) denote coverage and TFs, respectively, for the i-th software develop-
ment project (i ∈ {1, 2}).

The total number of files in the second software development project is therefore
|F ∪ N| = |F |+

⌊
c1−c2

c2
|F |
⌋
=
⌊
|F | + c1−c2

c2
|F |
⌋
=
⌊

c1
c2
|F |
⌋
. Thus, there is a number r ∈ [0; 1[

such that
⌊

c1
c2
|F |
⌋
= c1

c2
|F | − r.

Since no developer has expertise with the files in N, after losing k ∈ N developers,
the numbers of covered files are equal in both software development projects:

1covα (k) · |F | = 2covα (k) · (|F ∪ N|) = 2covα (k) ·
⌊
c1

c2
|F |
⌋

(1)

As the next step, we prove the equivalence

1covα (k) ≥ c1 ⇔ 2covα (k) ≥ c2 (2)

Algorithmic Complexity of the Truck Factor Calculation 123

“⇒”: Assume 1covα (k) ≥ c1. Using Eq. 1, we see

2covα (k) ·
⌊
c1

c2
|F |
⌋

= 1covα (k) · |F | ≥ c1 |F |

⇒2covα (k) ≥ c1 |F |
⌊

c1
c2
|F |
⌋ ≥ c1 |F |

c1
c2
|F | = c2

“⇐”: Assume 2covα (k) ≥ c2. Since the number of covered files is always an integer
number, this assumption implies the stricter condition

2covα (k) |F ∪ N| ≥ �c2 |F ∪ N|	

⇔2covα (k) ≥
⌈
c2

⌊
c1
c2
|F |
⌋⌉

⌊
c1
c2
|F |
⌋

Together with Eq. 1 and
⌊

c1
c2
|F |
⌋
= c1

c2
|F | − r, this shows

1covα (k) =2covα (k)

⌊
c1
c2
|F |
⌋

|F |

≥
⌈
c2

⌊
c1
c2
|F |
⌋⌉ ⌊

c1
c2
|F |
⌋

⌊
c1
c2
|F |
⌋
|F |

=

⌈
c2

(
c1
c2
|F | − r

)⌉

|F | =
�c1 |F | − c2r	

|F |

Because 0 ≤ c2r < c1 ≤ 1 and c1 |F | is integer by assumption, the subtrahend c2r has
no effect after rounding to the ceiling and we see

1covα (k) ≥ �c1 |F | − c2r	
|F | =

c1 |F |
|F | = c1

Equivalence 2 implies

1T Fα,c1 = max {n|1covx (n) ≥ c1} = max {n|2covx (n) ≥ c2} = 2T Fα,c2

Given the straightforward definition of N, there is a polynomial time algorithm that
calculates the software development project (F ∪ N,D, e), to which 2T Fα,c2 applies,
when given a software development project (F,D, e) and a parameter c1 ∈ [c2; 1].
2T Fα,c2 is smaller than any k ∈ N iff 1T Fα,c1 is smaller than k. ��

The previous Lemma 1 stated that an algorithm that calculates the TF for a low target
coverage c2 can also be used to calculate the TF for any higher target coverage c1. The
following Lemma 2 states the complement: An algorithm that calculates the TF for a
high target coverage c2 may be used to calculate the TF for any lower target coverage
c1. The proof is very similar and the core idea is depicted in Fig. 2: A set of files C
is added to the project, with which all developers have expertise with. The TF in both
projects are identical and the target coverage is raised from c1 to c2.

Lemma 2. Let α be one of the functions min, avg,max and let c2 ∈]0; 1[be constant.
Deciding whether T Fα,c1 , with c1 ∈]0; c2] as a parameter, is smaller than k ∈ N reduces
to the problem of deciding whether T Fα,c2 is smaller than k ∈ N.

124 C. Hannebauer and V. Gruhn

Fraction of 1-c1 files Fraction of c1 files

Fraction of 1-c2 files

F

Fraction of c2 files

Original Project

Constructed
Project

C

Fig. 2. Adding the set of files C to an original project constitutes a new project, in which the same
absolute number of files within F can stay uncovered to reach the higher target coverage c2

Proof. The proof is analogous to the proof for Lemma 1.
Assume there is a software development project (F,D, e) and a parameter c1 ∈]0; c2].

WLOG, assume again that c1 |F | is integer. Let there be a second software development
project (F ∪ C,D, ê), where C is chosen such that C ∩ F = ∅ and |C| =

⌈
c2−c1
1−c2
|F |
⌉

and
ê : d
→ e (d)∪C. This time, all developers have expertise with the files in C. Obviously,
(F∪C,D, ê) can be calculated from any software development project (F,D, e) and any
c1 ∈]0; c2] in polynomial time. Again, let icovα and iT Fα,γ(γ ∈]0; 1]) denote coverage
and TFs, respectively, for the i-th software development project (i ∈ {1, 2}).

This time, the number of uncovered files is the same in both software development
projects, because of the definition of ê:

(1 − 1covα (k)) · |F | = (1 − 2covα (k)) · |F ∪ C|

⇔1 − 1covα (k) = (1 − 2covα (k))
|F | +

⌈
c2−c1
1−c2
|F |
⌉

|F | = (1 − 2covα (k))

⌈
1−c1
1−c2
|F |
⌉

|F |
(3)

Analogously to the proof for Lemma 1, we prove the equivalence

1 − 1covα (k) ≤ 1 − c1 ⇔ 1 − 2covα (k) ≤ 1 − c2

“⇒”: Assume 1 − 1covα (k) ≤ 1 − c1. Eq. 3 implies

1 − 2covα (k) = (1 − 1covα (k))
|F |

⌈
1−c1
1−c2
|F |
⌉ ≤ (1 − c1)

|F |
1−c1
1−c2
|F | = 1 − c2

“⇐”: Assume 1− 2covα (k) ≤ 1− c2. The number of uncovered files is integer, which
implies (1 − 2covα (k)) |F ∪C| ≤ �(1 − c2) |F ∪C|�. Let r ∈ [0; 1[be chosen such that
1−c1
1−c2
|F | + r is integer. Together with Eq. 3, this yields

1 − 1covα (k) = (1 − 2covα (k))
|F ∪ C|
|F | ≤

�(1 − c2) |F ∪ C|�
|F |

=

⌊
(1 − c2)

⌈
1−c1
1−c2
|F |
⌉⌋

|F | =

⌊
(1 − c2)

(
1−c1
1−c2
|F | + r

)⌋

|F |
=
�(1 − c1) |F | + (1 − c2) r�

|F |

Algorithmic Complexity of the Truck Factor Calculation 125

The last term equals 1−c1, because c1 |F | and hence (1 − c1) |F | are integer and because
0 ≤ (1 − c2) r < 1 and thus (1 − c2) r drops out when rounding to the ceiling.

1 − 1covα (k) ≤ 1 − c1 ⇔ 1 − 2covα (k) ≤ 1 − c2 is equivalent to 1covα (k) ≥ c1 ⇔
2covα (k) ≥ c2 and thus 1T Fα,c1 = 2T Fα,c2 . ��

The two Lemmata 1 and 2 together result in a more general reduction:

Theorem 1. Let α be one of the functions min, avg,max and let c2 ∈]0; 1[be constant.
Deciding whether T Fα,c1 , with c1 ∈]0; 1] as a parameter, is smaller than k ∈ N reduces
to the problem of deciding whether T Fα,c2 is smaller than k ∈ N. ��

Note that c2 = 1 does not suffice for the preceding Theorem 1.

4 Calculating TFmin,c

Ricca et al. [5] proposed an algorithm to calculate T Fmin,c. They call their algorithm
the Naive Algorithm, as it basically tests all possible combinations of developers and
calculates the resulting code coverage to find the value of T Fmin,c for a project. Let n be
the number of developers in the project and m be the number of files, then they show
that their algorithm has a worst case time complexity of

T (n,m) � nm ·
n∑

i=1

n!
i! (n − i)!

(4)

This time complexity formula can be simplified using the Binomial Theorem shown
in the following equation:

(a + b)z =

z∑

k=0

(
z
k

)

akbz−k =

z∑

k=0

z!
k! (z − k)!

akbz−k (5)

Setting a � 1, b � 1 and z � n in Eq. 5, we get 2n =
∑n

i=0
n!

i!(n−i)! . Using this in Eq. 4
leads to the following reformulation of the time complexity T (n,m):

T (n,m) = nm ·
n∑

i=1

n!
i! (n − i)!

= nm · (2n − 1) ∈ O (nm2n)

Ricca et al. tested that calculation of T Fmin,c for projects with more than 30 develop-
ers takes multiple days on one of their computers. In a list of open issues, they call for
an improvement of the Naive Algorithm to support larger projects. However, calculat-
ing T Fmin,c is NP-complete, as will be shown in the following by reducing the CLIQUE
problem to the T Fmin,c calculation. First, the CLIQUE problem will be summarized.
Second, the double-expert project is introduced as a special case of the general soft-
ware development project. Third, CLIQUE is shown to reduce to T Fmin,c calculation in
double-expert projects. All graphs in this section refer to simple graphs, i.e. are undi-
rected, have no loops, and there is at most one edge between any two given vertices.

Definition 3. A set of vertices in a graph that are adjacent to each other is called a
clique.

126 C. Hannebauer and V. Gruhn

Table 1. Example of a double-expert project

Developer List of files with expertise
d1 f1, f2

d2 f1, f3

d3 f4, f5

d4 f2, f3, f4

d5 f5

d6 f6

d7 f6, f7

d8 f7

d2
d3

d4

d1

d5

f1
f2

f5

d6

d8

d7

f6

f7
f3

f4

Fig. 3. Graph representation of the double-expert project example

Definition 4. CLIQUE is the following decision problem: Given a graph G and k ∈ N
as input, does G contain a clique with k vertices?

CLIQUE is NP-complete, which means it is NP-hard and an element of NP, i.e. there
is a non-deterministic, polynomial time algorithm for the problem. [4]

Definition 5. A double-expert project is a software development project (F,D, e) where

1. for each file, exactly two different developers have expertise with the file, i.e. ∀ f ∈
F. |{d ∈ D| f ∈ e (d)}| = 2, and

2. for any two developers, there is at most one file that they both have expertise with,
i.e. ∀d1, d2 ∈ D.d1 = d2 ∨ |e (d1) ∩ e (d2)| ≤ 1.

Double-expert projects can be represented as graphs, where the vertices correspond
to developers and edges correspond to files. Table 1 is an example for a double-expert
project and Fig. 3 is its graph representation.

Remark 1. As an immediate result of its definition, in a double-expert project, for any
number n of developers, there are at most

∑n−1
i=1 i = n(n−1)

2 files for which only those n

developers have expertise with, i.e. ∀D̂ ⊂ D.
∣∣∣∣
(⋃

d∈D̂ e (d)
) \
(⋃

d∈D\D̂ e (d)
)∣∣∣∣ ≤ ∑|D̂|−1

i=1 i.
��

Proposition 1. CLIQUE can be reduced to the decision of whether T Fmin,c with vari-
able c ∈]0; 1] is smaller than k ∈ N \ {1} in a double-expert project.

Proof. Let G = (V, E) be a graph and k ∈ N, with V as the set of vertices and E be
the set of edges. As CLIQUE is trivial for k = 1, we may assume k > 1. Note that in a

Algorithmic Complexity of the Truck Factor Calculation 127

clique with k vertices, there are exactly
∑k−1

i=1 i = k(k−1)
2 edges incident to two vertices of

the clique. Therefore, WLOG, we assume |E| ≥ k(k−1)
2 .

Let there be a software development project (E,V, e) with e : V → P (E) defined
as e(v)
→ { f ∈ E|v and f are incident in G}. The transformation from G to (E,V, e) is
obviously possible in polynomial time. As any edge is incident to exactly two different
vertices, the software development project fulfills the first condition of Def. 5. As there
is at most one edge between two vertices, the second condition of Def. 5 is also fulfilled.
Thus, the software development project is a double-expert project. Let ĉ � 1 − k(k−1)

2|E| ∈[
0; 1 − 1

|E|
]

and let c � ĉ + 1
2|E| ∈]0; 1[.

We show in the following that there is a clique with k vertices in G iff T Fmin,c = k−1:
“⇒”: Assume that there is a clique with k vertices in G. Losing the k developers

that correspond to the vertices in the clique results in the loss of all expertise with the
files that correspond to the edges connecting the vertices in the clique. As noted above,
there are k(k−1)

2 edges incident only to vertices in the clique. These edges correspond
to files with no expertise after losing the developers. Thus, if these developers left the
project, the remaining coverage would be the fraction between the number of files that
the remaining developers still have expertise with and the total number of files. More
precisely, the remaining coverage would be

|E| − k(k−1)
2

|E| = 1 − k(k − 1)
2 |E| = ĉ

Since covmin(k) is the lowest coverage possible among all combinations of k lost devel-
opers, this means

covmin(k) ≤ ĉ (6)

According to Remark 1, for any selection of k developers, there are at most k(k−1)
2 files

that only those k developers have experience with. Hence, no choice of k developers
results in a lower remaining coverage than ĉ. Therefore, Inequality 6 is in fact the equa-
tion covmin(k) = ĉ. Because ĉ < c, covmin (0) = 1 > c, and covmin (n) ≥ covmin (n + 1)
for all n ∈ N, we conclude

T Fmin,c = max {n ∈ N|covmin (n) ≥ c} < k (7)

For k = 2, this implies T Fmin,c = 1 already. For k > 2, we see, again with Remark 1,
that after losing any k − 1 developers, the remaining coverage covmin(k − 1) is at least
1 − (k−2)(k−1)

2|E| > 1 − k(k−1)−1
2|E| = c. This implies T Fmin,c ≥ k − 1 and, together with Eq. 7,

T Fmin,c = k − 1.
“⇐”: Assume T Fmin,c = k−1. This implies covmin(k) < c. Accordingly, there is a set

Ṽ ⊂ V of k developers such that there are less than |E| ·c files which the other developers
in V \ Ṽ have expertise with. Equivalently, there are at least |E| · (1−c) files that only the
developers in Ṽ have expertise with. Thus, the number of edges that are incident only
to the k vertices in Ṽ is at least

|E| · (1 − c) = |E| ·
(

1 −
(

1 − k(k − 1)
2 |E| +

1
2 |E|
))

=
k(k − 1) − 1

2

128 C. Hannebauer and V. Gruhn

As the number of edges incident to the vertices in Ṽ must be integer and k vertices can
be incident to at most k(k−1)

2 edges, the vertices in Ṽ are in fact incident to k(k−1)
2 edges.

Therefore, Ṽ is a clique. ��
Corollary 1. Deciding whether T Fmin,c in a double-expert project is smaller than k ∈
N, with c ∈]0; 1] as a parameter, is NP-hard. ��

Theorem 1 generalizes this result to the following corollary:

Corollary 2. Let c ∈]0; 1[be constant. Deciding whether T Fmin,c in a double-expert
project is smaller than k ∈ N is NP-hard. Complementary, deciding whether T Fmin,c in
a double-expert project is greater or equal than k ∈ N is also NP-hard. ��

It is obvious that there is a polynomial-time algorithm that calculates the remaining
coverage after a given a set of k developers leaves a software development project. An
example is the relevant part of Ricca et al.’s algorithm to calculate the TF [5]. Such an
example set of k developers therefore gives an upper bound for the remaining coverage
after losing k developers. This is also an upper bound for covmin(k). If covmin(k) < c ∈
]0; 1], then T Fmin,c must be smaller than k. Thus, deciding whether T Fmin,c is smaller
than a given k ∈ N is a problem in NP. This yields the following corollary:

Corollary 3. Given a constant c ∈]0; 1[, deciding whether T Fmin,c in a double-expert
project is smaller than k ∈ N is NP-complete. ��

Since the calculation of T Fmin,c is NP-hard even in the special case of a double-expert
project, it is also NP-hard in the general case for all software development projects,
which leads to the main theorem of this section:

Theorem 2. Calculating T Fmin,c is NP-hard for any constant c ∈]0; 1[. ��
Interestingly, this performance restriction does not apply for the case c = 1:

Proposition 2. Calculating T Fmin,1 can be calculated in polynomial time.

Proof. In linear time, an algorithm can find the file that the least developers have exper-
tise with. The number of developers that have expertise with the file is T Fmin,1: Losing
these developers results in a coverage lower than 1, but after losing any lower number
of developers, all files still have a developer that has expertise with the file. ��

However, a threshold of 1 is of little practical importance, and Ricca et al. also do
not use this threshold [5]. If a single new developer added a single code file, T Fmin,1

would already be reduced to 0.

5 Calculating TFmax,c

Ricca et al. adopted the metric T Fmin,c for their approach, as it indicates the risk of a
worst case scenario [5]. However, Zazworka et al. proposed two alternatives as TF val-
ues, namely T Fmax,c and T Favg,c [6]. This section proves that the calculation of T Fmax,c

is NP-hard as well.

Algorithmic Complexity of the Truck Factor Calculation 129

Definition 6. Set Covering Problem (SCP) is the following decision problem: The fi-
nite sets S 1, . . . , S m with m ∈ N and a number l ∈ N are the inputs. Let S �

⋃m
j=1 S j

be the universe. Are there at most l sets S j, j ∈ C ⊂ Nm, |C| ≤ l such that the union of
these chosen sets equals the union of all sets, i.e. S =

⋃
j∈C S j?

Karp has shown that the SCP is NP-complete [4].

Proposition 3. SCP can be reduced to the decision of whether T Fmax,1 is greater or
equal than k ∈ N in a software development project.

Proof. Assume we have an instance of the SCP with variable names as in Def. 6. We
will construct a software project in polynomial time such that calculating T Fmax,1 solves
the SCP.

Let there be a software development project (S ,Nm, e), where S is the set of all
files in the project, Nm = {1, . . . ,m}, and e : j
→ S j. Let k � m − l. This software
development project can obviously be calculated in polynomial time.

Then there is a selection C ⊂ Nm, |C| ≤ l of sets S j, j ∈ C such that S =
⋃

j∈C S j iff
T Fmax,1 ≥ k = m − l:

“⇒”: Assume there is a selection C ⊂ Nm, |C| ≤ l of sets S j, j ∈ C such that
S =
⋃

j∈C S j. Then for every file, at least one developer in C has expertise with that file.
Thus, it is possible to lose the at least k = m−l developers in Nm\C and still have a devel-
oper with expertise for each file. Thus, there is still maximum coverage and covmax (k) =
1. By the definition of the TF, this means T Fmax,1 = max {n|covmax (n) ≥ 1} ≥ k.

“⇐”: Assume T Fmax,1 ≥ k = m− l. This implies 1 ≥ covmax (k) ≥ covmax
(
T Fmax,1

) ≥
1 and thus covmax (k) = 1. Hence, a selection C ⊂ Nm, |C| ≤ m − k = l exists such that
the developers in Nm \ C cover all files, i.e. for every file, there is a developer who has
expertise with the file. By the definition of e, this implies that for every file s ∈ S , there
is a developer j ∈ C with s ∈ e (j) = S j, or, in other words, S =

⋃
j∈C S j. ��

Proposition 3 and Theorem 1 show that, given a constant c ∈]0; 1], deciding whether
T Fmax,c is greater or equal than k ∈ N is NP-hard. As discussed in Sect. 4, given an set
S of k developers, it is possible to check in polynomial time whether the remaining
developers cover a fraction of c files with their experience. Such an example gives a
lower bound for covmax (k). This also implies a lower bound for T Fmax,c. It is therefore
possible to decide whether T Fmax,c is greater or equal than k ∈ N in NP. This leads to
the following corollaries:

Corollary 4. Given any constant c ∈]0; 1], deciding whether T Fmax,c is greater or
equal than k ∈ N is NP-complete. ��

The preceding corollary directly implies the main theorem of this section. In contrast
to Theorem 2 for T Fmin,c, the theorem for the best case metric T Fmax,c also covers the
case c = 1:

Theorem 3. Calculating T Fmax,c with any constant c ∈]0; 1] is NP-hard. ��

130 C. Hannebauer and V. Gruhn

6 Calculating TFavg,c

The calculation of the two metrics T Fmin,c and T Fmax,c have been shown to be NP-hard
with the exception of T Fmin,1. This section analyzes the third metric T Favg,c defined by
Zazworka et al. [6], which considers the arithmetic mean of all coverages resulting from
losses of developers. In contrast to the others, T Favg,c can be computed efficiently:

Theorem 4. Let (F,D, e) be a software development project with m � |F | files and
n � |D| developers. Then the value of T Favg,c can be calculated in time O

(
mn2 log2 (n)

)
.

Proof. Let l � n− k be the number of developers that remain in the project after losing
k developers. covavg (k) is the arithmetic mean of the coverages for all combinations of
k lost developers, and can therefore be transformed in the following way:

covavg (k) =avg

⎧
⎪⎪⎨
⎪⎪⎩

∣∣∣
⋃

d∈S e (d)
∣∣∣

|F |

∣∣∣∣∣∣∣
S ⊂ D, |D \ S | = k

⎫
⎪⎪⎬
⎪⎪⎭

= |F |−1

(
n
l

)−1∑

S⊆D|S |=l

∣∣∣∣∣∣∣

⋃

d∈S
e (d)

∣∣∣∣∣∣∣

= |F |−1

(
n
l

)−1∑

S⊆D
|S |=l

∑

f∈F

∣∣∣∣∣∣∣

{
1
∣∣∣∣∣ f ∈

⋃

d∈S
e (d)
}
∣∣∣∣∣∣∣

= |F |−1

(
n
l

)−1∑

f∈F

∑

S⊆D
|S |=l

∣∣∣∣∣∣∣

{
1
∣∣∣∣∣ f ∈

⋃

d∈S
e (d)
}
∣∣∣∣∣∣∣

= |F |−1

(
n
l

)−1∑

f∈F

∣∣∣∣∣∣∣

{
S ∈ P (D)

∣∣∣∣∣ |S | = l ∧ f ∈
⋃

d∈S
e (d)
}
∣∣∣∣∣∣∣

= |F |−1

(
n
l

)−1∑

f∈F

l∑

i=1

∣∣∣
{
S ∈ P (D)

∣∣∣|S | = l ∧ |{d ∈ S | f ∈ e (d)}| = i
}∣∣∣

(8)

For every file, the set S of remaining developers can be partitioned into two disjoint
sets S 1, S 2 with S 1 ∪ S 2 = S , S 1 ∩ S 2 = ∅, such that S 1 contains only developers that
have expertise with the file and S 2 contains no developers that have expertise with the
file. Let γ : F → N be the function that maps each file to the number of developers that
have expertise with the file, i.e. γ : f
→ |{d ∈ D| f ∈ e (d)}|. Using the sets S 1 and S 2 as
well as the function γ, the following identity can be established for each file f ∈ F:

∣∣∣
{
S ∈ P (D)

∣∣∣|S | = l ∧ |{d ∈ S | f ∈ e (d)}| = i
}∣∣∣

=
∣∣∣
{
S 1 ∈ P ({d ∈ D| f ∈ e (d)})∣∣∣|S 1| = i

}∣∣∣ · ∣∣∣{S 2 ∈ P ({d ∈ D| f � e (d)})∣∣∣|S 2| = l − i
} ∣∣∣

=

(
γ (f)

i

)(
n − γ (f)

l − i

) (9)

Algorithmic Complexity of the Truck Factor Calculation 131

Combining Eq. 8 and Eq. 9 results in the following equation, with the help of Van-
dermonde’s identity:

covavg (k) = |F |−1

(
n
l

)−1∑

f∈F

l∑

i=1

(
γ (f)

i

)(
n − γ (f)

l − i

)

= |F |−1

(
n
l

)−1∑

f∈F

((
n
l

)

−
(
n − γ (f)

l

))

= |F |−1

(
n
k

)−1∑

f∈F

((
n
k

)

−
(
n − γ (f)

n − k

))

=1 − |F |−1

(
n
k

)−1∑

f∈F

(
n − γ (f)

n − k

)

Let m � |F |. As visible in the above notation for covavg (k), a straightforward imple-
mentation calculates covavg (k) using O (m) calculations of binomial coefficients lower
than

(
n
k

)
. Calculating a binomial coefficient

(
a
b

)
is possible in time O

(
b log (aa)

)
using

the formula
(

a
b

)
=
∏b

i=1
a+1+i

i . Considering
(

a
b

)
= 0 for a < b, the calculation is possible

in time O
(
a2 log (a)

)
. Other algorithms [3] may be faster, but the complexity of calcu-

lating binomial coefficients are not in the focus of this paper. Thus, the coverage for a
given number of lost developers k can be calculated in time O

(
mn2 log (n)

)
. For each

c ∈]0; 1], a binary search in Nn calculates T Favg,c = max
{
n ∈ N∣∣∣covavg (k) ≥ c

}
in time

O
(
mn2 log2 (n)

)
. ��

The above method allows calculation of T Favg,c for larger projects than the calcu-
lation of T Fmin,c and T Fmax,c. An average may also seem like a good metric of the
real dangers on first sight, as compared to worst case and best case, i.e. T Fmin,c and
T Fmax,c: The influence of expertise on the chance of leaving the project may be small.
However, there are cases where the explanatory power of T Favg,c is low: Higher overall
numbers of developers increase T Favg,c if other parameters stay the same. As an ex-
treme example, adding developers who do not write a single line of code also increases
T Favg,c, while this obviously does not strengthen the project against losing developers.
As another example, if an organization issued a policy that developers shall only cross
the streets in groups of at most the size of the TF, the organization’s projects would
still be endangered by rampaging trucks if they used T Favg,c as TF metric. When using
T Favg,c, the overall number of developers in the project should hence always be taken
into account.

7 Conclusion and Future Work

This paper analyzed the algorithmic complexity of calculating the TF for software de-
velopment projects. For this analysis, the three definitions of Zazworka et al. [6] were

132 C. Hannebauer and V. Gruhn

regarded: T Fmin,c, T Favg,c, and T Fmax,c represent the worst, arithmetic mean, and best
cases of losing developers, respectively. In Sect. 4 and 5, the paper proved that for every
c ∈]0; 1], T Fmin,c and T Fmax,c are NP-hard to compute, with the exception of T Fmin,1.
Section 4 sketched an algorithm that computes T Fmin,1 in polynomial time. T Fmin,1 has
only little practical importance, though.

Contrary to T Fmin,c and T Fmax,c, the value of T Favg,c can be computed in polynomial
time. Section 6 presents the core of an algorithm that computes T Favg,c in polynomial
time. As a downside, Sect. 6 also illustrates caveats of the interpretation of T Favg,c.

As a consequence of these findings, the “naive algorithm” to calculate T Fmin,c, which
Ricca et al. [5] have described and implemented as a tool, is despite its name unlikely
to be outperformed by other algorithms. For small projects with up to 30 developers,
this tool calculates T Fmin,c in less than a day with reasonable computing power. As
a worst-case metric, T Fmin,c has high explanatory power. Low values of T Fmin,c indi-
cate projects that rely on a small group of developers that have exclusive knowledge
about major parts of the source code. These projects should spread their source code
knowledge, for example through XP techniques.

Larger projects with more than 30 developers may calculate T Favg,c, but have to take
into account the lower explanatory power of T Favg,c. In practice, managers of these
larger project may have to rely mostly on their intuition until better tools are available.
However, careful interpretation may counter the downsides of T Favg,c. Future research
should identify the constraints under which T Favg,c can be used.

As another direction, future research should develop alternatives to the TFṪhese al-
ternatives should be efficient to calculate and still have a higher explanatory power than
T Favg,c. This search for alternatives is important to software development projects with
more than about 30 developers in particular, where computing T Fmin,c takes more than
a day [5]. In addition to the algorithmic complexity, other techniques should also allow
more qualitative conclusions as to which modules are in danger of becoming unfamiliar
to the remaining developers in the team and which developers are especially important
for the fate of the project.

Especially, three issues that Ricca et al. raised are still open: Capturing code knowl-
edge more precisely, how to deal with anomalies in VCS logs, and getting more insight
about which specific TF values indicate danger or safety for a project. [5]

Acknowledgements. We would like to thank Markus Kleffmann for his feedback on
our work.

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-
Wesley Professional (2004)

2. Bowler, M.: Truck factor (May 2005), http://www.agileadvice.com/2005/05/
15/agilemanagement/truck-factor/ (accessed September 25, 2014)

3. Goetgheluck, P.: Computing binomial coefficients. The American Mathematical Monthly
94(4), 360–365 (1987), http://www.jstor.org/stable/2323099

http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
http://www.jstor.org/stable/2323099

Algorithmic Complexity of the Truck Factor Calculation 133

4. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W.,
Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia
Series, pp. 85–103. Springer US (1972),
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

5. Ricca, F., Marchetto, A., Torchiano, M.: On the difficulty of computing the truck factor.
In: Caivano, D., Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.) PROFES 2011. LNCS,
vol. 6759, pp. 337–351. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-21843-9_26

6. Zazworka, N., Stapel, K., Knauss, E., Shull, F., Basili, V.R., Schneider, K.: Are Developers
Complying with the Process: An XP Study. In: Proceedings of the 2010 ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM 2010, pp.
14:1–14:10. ACM, New York (2010),
http://doi.acm.org/10.1145/1852786.1852805

http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-3-642-21843-9_26
http://doi.acm.org/10.1145/1852786.1852805

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 134–148, 2014.
© Springer International Publishing Switzerland 2014

Experiences in Applying Service Design
to Digital Services

Stefanie Hofemann1, Mikko Raatikainen1, Varvana Myllärniemi1, and Terho Norja2

1Aalto University, Finland
{firstname.lastname}@aalto.fi

2Steeri, Finland
terho.norja@steeri.fi

Abstract. An increasing number of services is mainly provided through digital
channels and thus, implemented as software. Nevertheless, many companies
struggle with developing digital services that are considered valuable by the
users. Recently, service design has emerged as an approach to design better
customer experience for services. We describe our experiences with a service
design approach, and specifically prototyping, to explore user needs for a digital
meeting scheduling service (MSS). We created an interactive prototype and
paper prototypes and used them in a prototype test session with potential users
to explore different design alternatives. The experiences include the
peculiarities of service design for digital services as well as challenges in
prototyping. The results indicate service design as a promising approach to
develop digital services that better meet user needs. However, challenges exist
on a practical level, such as operationalizing the value-in-use concept, applying
service design for digital services, and lack of practical guidelines for
prototyping.

Keywords: service design, prototyping, service-dominant logic, digital service.

1 Introduction

In today’s fast changing economy, it has become increasingly important to develop
software that meets users’ and other stakeholders’ needs. However, the development
of software is often still technology-driven. This can lead to technically superior
solutions that are not necessarily considered valuable by the customers [1]. In recent
years, service design (SD) has evolved as a new discipline, and it is often described as
the discipline that brings design thinking and designer’s methods into services [2].
Design thinking has been increasingly acknowledged as beneficial for innovation and
developing solutions to customers’ problems [3]. Design thinking is characterized by
first focusing on identifying the problem and exploring possible solutions; only after
that on how to implement these solutions, instead of restricting one’s thinking by
implementation constraints in the beginning [4].

The most commonly used service design methods are prototyping and visualizations
[5]. Prototypes have been used in various disciplines, but the understanding of what they

 Experiences in Applying Service Design to Digital Services 135

are varies among them. While in software development prototypes are typically seen as a
simplified version of the final software, in SD, most visualizations and other artifacts can
be considered a prototype [6].

In the field of service design, few studies have focused on services that are mainly
distributed through digital channels. Instead, most publications in service design
literature focus on case examples from traditional service industries, such as airlines,
restaurant, and public services.

This paper studies how to apply service design in general and prototyping in
particular to the development of digital services to gain better understanding of users’
needs. The study was carried out with an industrial partner to the case of a meeting
scheduling service (MSS). Thus, we aim to investigate two key questions:

RQ1 How does the development of digital services benefit from service design?
RQ2 What are the challenges in applying service design to the development of
digital services?

The remainder of this paper is organized as follows: Section 2 presents previous
work on services, service design, and prototypes. Section 3 introduces the industry
case. Section 4 describes the research method. Section 5 presents the results. Section
6 discusses the findings and Section 7 draws conclusions.

2 Previous Work

This section describes the paradigm shift to service dominant logic, followed by the
concept of service design, and ends with providing an overview of prototyping.

2.1 Services: The Paradigm Shift to Service-Dominant Logic

Services have often been defined in relation to goods and described based on
characteristics that differentiate them from goods. The most commonly cited
characteristics are intangibility, heterogeneity, inseparability and perishability, also
known as IHIP-characteristics [7]. In this goods-dominant logic (G-D logic), services
are considered inferior to goods [8]. However, in current service management
literature, the leading school of thoughts is service-dominant logic (S-D logic) [9], in
which goods are merely considered as mechanisms for the distribution of services
[10] Thus, a service offering might include tangible and intangible elements. This
paradigm shift entails a turn in the view on value creation. One definition of value is
as the trade-off between benefits and sacrifices [11]. In G-D logic, value is embedded
in the goods and referred to as value-in-exchange [12]. In S-D logic, value is referred
to as value-in-use and means the value as perceived by the customer, which arises and
changes over time [10].

Software is challenging to categorize as a product or service based on the IHIP-
characteristics. While software is intangible, the other three characteristics of service,
heterogeneity, inseparability, and perishability, only apply partially [8], [13]. Degree
of customization [14] and revenue models [15] are common approaches to categorize

136 S. Hofemann et al.

software as either product or service. Recently, Software-as-a-Service (SaaS) and
cloud-based services have become popular business models. However, these models
mainly refer to a change in the revenue model rather than a change in understanding
of value as in S-D logic.

Digital services, such as online banking, have replaced some traditional services
and new businesses have emerged, whose core offerings are digital [8]. In traditional
services, the role of the front stage employees and their interaction with the customers
is crucial for the service experience; in contrast, users of digital services might never
get into personal contact with the service provider [16]. Moreover, many digital
services, such as online social networks and online marketplaces, provide a platform
for social interaction between their users [13]. The service experience of these
services depends significantly on the behavior of other users instead of on the
behavior of the front stage employees [17].

2.2 Service Design

Service Design originates in times, when services were defined based on the IHIP-
characteristics. It was argued that not only products, but also services need design. The
strong use of different designer’s methods throughout the development process have
been defined as the distinguishing characteristics of service design from other
approaches to service development [18], [19]. The most common service design
methods are prototyping and visualizations [5]. While most visualizations can be used
as prototypes [6], not all prototypes are visualizations; for example, experience
prototyping [20] and other enacting methods. Stickdorn [21] suggests five principles,
which should guide the service design process: user-centered, co-creative, sequencing,
evidencing, and holistic. Instead of user-centered, human-centered has also been
suggested as one principle, in order to emphasize the inclusion of other stakeholders
[22]. Co-creative refers to the active involvement of users and other stakeholders in the
design process. Sequencing emphasizes the need to consider the whole customer
journey. Evidencing refers to making the back stage process of the service visible to the
customers. Holistic refers to considering also the context of use and thus, extending the
principle of sequencing. Typically, a service design process is highly iterative and at
each stage, it might be necessary to return to one of the previous stages [23].

Service design still seems to be dominated by the view that a service is different
from a product rather than a higher-level concept, as in S-D logic [9]; however, it is
seldom made explicit. Nevertheless, some authors have discussed the relation
between service design and S-D logic [24]–[26]. Most principles of service design
and S-D logic are overlapping and thus, service design is one approach to put the
theoretic principles behind the S-D logic into practice [26]. Some authors refer to
designing services driven by S-D logic as design for service instead of service design
in order to make a clear distinction [13], [24]. However, there are different viewpoints
concerning the relation of design for service and service design [24], [26]. One
viewpoint is to consider design for service as the next step in the evolution of service
design (Fig. 1). In this viewpoint product thinking equals G-D logic and service
thinking equals S-D logic.

 Experiences in Applying Service Design to Digital Services 137

value as
embedded

value in use value in
context

VALUE

SE
R

V
IC

E
service as
peripheral
activities

service sector
as engine

for growth

service as a
higher order

concept

PRODUCT
THINKING

Service Design

Design for Services

SERV ICE
THINKING

Fig. 1. The evolution from service design to design for service (Source: [25, p. 98])

Similarities exist between service design and other user-centered design
disciplines, such as user-experience design. However, service design expands the
focus to the long-term usage and across various channels [27].

2.3 Prototypes

Prototypes have been used in a variety of different disciplines; however, the purposes
vary among different disciplines [6]. One way to refer to prototypes is as a
“representation of a design idea” [28] and prototyping as “the activity of creating
prototypes, or activities made possible by or with the prototype” [29]. In software
development, and specifically user interfaces, prototyping has long been identified as
one activity [30] that is performed before the final implementation [6] in order to
evaluate hypotheses concerning the software to be build [31]. Recently, several
incremental or iterative methods, such as agile software development, have evolved,
in which the intermediate results can be considered a prototype representing a
simplified, but almost ready version of the final system [32]. Technical prototypes are
commonly used in software development to validate the technical feasibility of a
solution; however, this is only one aspect of a whole solution – other aspects are role
as well as look and feel [28]. Furthermore, prototypes have been used to evaluate the
usability of a software.

In service design, prototypes are described as a learning tools [32], which can be
used for various purposes with different levels of fidelity and at any stage of the
process [28], [31] and thus, in a broader manner than traditionally in software
development. Prototypes are not only used to evaluate a hypothesis or communication
with different stakeholders [33], as typically in software development, but also for
generation and exploration of ideas. In addition to prototypes that prototype different
parts of the service, service prototypes can be used, which encompasses several
service moments in order to prototype the holistic user experience [34].

Different frameworks exist to support prototyping [6], [31]. However, since there
is not a single way to ‘do it right’ [33], the frameworks do not provide prototypes for

138 S. Hofemann et al.

specific situations. Instead, they facilitate thinking about ‘what’ and ‘how’ to
prototype. Consequently, prototyping in service design is a holistic approach or mind-
set rather than merely a set of tools and activities [6].

3 Case Description: Meeting Scheduling Service (MSS)

The object of this study is a meeting scheduling system (MSS) for heterogeneous
calendar systems. A software architecture and technical prototype for MSS (Fig. 2)
have been developed in cooperation between Aalto University and the company
Steeri, which is a service provider for Customer Relationship Management (CRM)
solutions. MSS addresses the problem that current solutions for scheduling meetings
mainly work effortlessly for persons within the same organization and using the same
calendar system, such as Microsoft Exchange. Across organizational borders and
between different calendar systems, no solution seems to exist to automatically check
availabilities for easier meeting scheduling.

Device / cloud calendar
of the invited user

Device / cloud calendar
of the invited user

1. Organizer creates a meeting
proposal by entering the meeting
topic, location, duration, and date

range; by selecting a group; and by
selecting invited users.

0. Users form groups to indicate
the social context for meetings.

Users can define personal
availability rules for each group.

2. Free times are queried from
calendars; availability rules applied

to calculate available times; and
commonly available times

calculated.3. Organizer browses and selects a
time slot. Meeting requests are

sent via e-mail to all invited users.

OrganizerOrganizer

Invited userInvited user

UserUser

4. Invited users respond to the
meeting request. (The organizer is
able to see the participant status,

and reschedule, if necessary.)

Device / cloud calendar
of the invited user

Device / cloud calendar
of the invited user

5. An accepted meeting request is
added as a new calendar event into

the calendar.

Step Step order Interaction

Legend

Fig. 2. MSS Scheduling Process

In contrast to existing solutions, MSS automatically retrieves free time slots from
users’ calendars and provides time slots that are free in the calendar of all meeting
invitees to the meeting organizer as possible options for meeting times. Four basic
assumptions were made regarding privacy concerns of the users and taken into
consideration for the creation of the technical prototype and software architecture:
First, users would not want to share free times with everybody. Thus, users first have
to choose with whom they share their available time slots. Second, users will want to
differentiate what times are shown as available based on so-called ‘social context’.
For each social context, e.g., a project team, users can set an availability rule to define
what times are shown as available. For example, users can limit their availability for a
certain project team to times in the afternoons. Third, users would not want

 Experiences in Applying Service Design to Digital Services 139

information other than free time slots to leave their calendar system. Fourth, meeting
organizers should only see time slots that are free for all meeting invitees and not the
time slots that are free for each individual invitee. The technical prototype was
developed to address and focus on technical feasibility of the solution.

4 Research Method

The research design adheres to the explorative design science research approach [35].
The phases include gaining understanding about meeting scheduling context, creating
the interactive and paper prototypes, and a prototype test session with potential users.
Finally, the experiences are elaborated.

In order to gain initial understanding, we conducted a case study [36] consisting of
a study of the existing technical prototype and existing material, and a half-day
workshop with Steeri. The objective of the workshop was to gain better common
understanding of the practices and tools to schedule meetings. The participants were
the chief executive officer (CEO), the sales & marketing director, a senior consultant,
and a software developer. In particular, the three first frequently interact with external
parties, but only the CEO was beforehand familiar with technical prototype. In the
workshop, a short overview and demo of the prototype were given, different kinds of
meetings and the meeting scheduling process were elaborated, and challenges and
solutions were gathered on post-it notes, prioritized and discussed. We audio-recorded
the workshop and took field notes, including photographs.

After the workshop, an interactive prototype was created with the prototyping tool
Axure (Fig. 3). In order to focus the feedback on the service concept, rather than details
of the user interface, the interactive prototype had an unfinished look. The interactive
prototype demonstrates the whole process, i.e., from taking the service into use to
scheduling a meeting. The focus was on the aspects of the service relevant to the users
instead of the technical implementation of the back-end. In addition to the interactive
prototype, seven different paper prototypes (Fig. 3) were created to present different
design alternatives in order to explore factors that the researchers considered the most
critical from users’ perspective: Two alternatives for the amount of information
available to the organizer when selecting a time slot; two alternatives on how to set the
availability rules; two alternatives showing different alternatives if no common free time
slot was found; and one showing alternatives for taking location information into
consideration in order to determine the available time slots more accurately.

In a two-hour session, the prototypes were discussed with potential users. We
expected the following outcomes of the session: first, feedback for the service concept
based on the interactive prototype and the design alternatives presented as paper
prototypes; second, better understanding of users’ needs for meetings scheduling and
attitudes towards sharing of calendar data in general. The participants of the prototype
test session frequently have to schedule meetings with people in various locations and
across company borders. There were four participants in the session: three of them are
part of the IT department (one manager, two specialists); the fourth participant is a
manager in the marketing department.

140 S. Hofemann et al.

Fig. 3. Examples of the interactive prototype (left) and the paper prototype (right)

The session started by briefly introducing the goal of the session. Next, we showed
the interactive prototype and asked the participants to evaluate the prototype. In order
to spark discussion, different design alternatives were presented as paper prototypes.
The researcher mostly asked questions to clarify certain statements and comment or to
get feedback on specific topics. The session was audio recorded.

The data analysis started with extracting important points from the audio
recordings and field notes from the initial workshop. Similarly after the prototype test
sessions, we extracted the important statements and comments, resorting to the audio
recording when necessary. The data analysis then interlaced with a re-analysis of the
workshop data because we discovered differences between scheduling meeting
behaviors, since different calendar access model were used in both companies. The
later analysis focused on differences and similarities between the participants of the
workshop and the participants of the prototype test session.

5 Results

The results include the observations and experiences from the workshop with Steeri
as well as the prototype test session. This section describes the generalized findings
based on the results.

5.1 Change in the Perception of Value

The perceived value varies from user to user and it can change over time, which
implies that there is no value in a feature per-se. When applying the value-in-use
concept, the user subjectively defines the value. There is rarely a ‘one size fits all’
solution in any complex service and thus, services need to support the individual
customer journeys. For example, people at Steeri use an open calendar access model,
i.e., they can see all calendar details of their colleagues, and they seem to use this
information comprehensively for scheduling meetings. In contrast, the participants of
the prototype test session, using a restricted calendar access model, mainly seemed to
be interested in knowing free time slot in the calendar of their colleagues.
Furthermore, there also seemed to be a difference depending on the position.

 Experiences in Applying Service Design to Digital Services 141

The specialists seemed to face more challenges that others do not prioritize the
meetings that they schedule and thus, they seemed more interested in knowing more
details concerning the schedule of others.

Value also depends on the sacrifices that a customer has to make. Surprisingly, for
the participants of the prototype test session sharing information from their calendar
did not constitute much privacy concerns. Rather, a reoccurring worry was the
amount of meetings, and the risk that a service, such as MSS, could lead to having
even more meetings. Consequently, the features focusing on privacy in the technical
prototype cannot be considered generally valuable for all users.

5.2 Challenge to Consider the Whole Customer Journey

The focus of the technical prototype was on the functionality of scheduling meetings
with people from different companies. Scheduling of internal meetings was left out of
the scope. However, the results of the prototype test session indicate that people do
not clearly distinguish between internal meetings and meetings with externals.
Overall, they just wish to schedule meetings easily. Even though asked about
scheduling meetings with people from other companies, in both, the workshop with
Steeri and the prototype test session, a large amount of the discussion evolved around
scheduling meetings with colleagues. Moreover, the participants of the prototype test
session preferred not to have a separate service. While technical design sets borders
clearly, these borders do not exist similarly in the users’ mind. This can result in
superior technical solution, but inadequate user experience, since the solution might
not support the whole customer journey.

Similarly, the technical design focuses on features rather than the holistic customer
journey. For example, easy adoption and how to connect with other users in order to
share available time are crucial for the success of MSS; however, they had not been
covered, when designing the technical prototype.

5.3 Applying Service Design to an Existing Technical Prototype

A SD process typically starts from the scratch to explore possibilities rather than from
a technical prototype, as it was in the case of MSS. The technical prototype limited
the exploration of different options and thus, the service concept is an incremental
change rather than radically new compared to the existing technical prototype. The
solution might have been different if the project had started with a service design
approach to create the initial idea for the concept. However, discarding a technical
prototype and software architecture denotes a significant change that is not
necessarily wanted. This was also the case for MSS. Applying service design methods
and principles, nevertheless, helped exploring and gaining deeper understanding of
users’ needs. Furthermore, the prototypes and visualizations facilitate better
communication among the different stakeholders.

142 S. Hofemann et al.

5.4 Service Design for Digital Services

Many service design methods focus on traditional services and thus, are not directly
applicable when designing digital services. When designing traditional services, the
interaction between the front stage employees and the customer is emphasized.
Furthermore, they often take place in a specific physical space. In contrast in digital
services, users interact with a software system. Moreover, the aim of many digital
services, such as MSS, is to facilitate interaction between different users. This leads to
less control of the service experience for the service provider, since the behavior of
other users cannot be controlled in the same manner as the behavior of front stage
employees. For example, the user experience of MSS depends significantly on how
strict other users set the availability rules. Consequently, many characteristics of
digital services are different from traditional services. Furthermore, some of the basic
principles of service design do not apply in the same manner. For example,
evidencing service takes a different form. Furthermore, the methods need
consideration. For example, enacting techniques, which are common to prototype
traditional services, would have not been suitable for MSS. Overall, SD provides little
guidelines on methods for prototyping and implementing digital services.

5.5 Challenges in Choosing Prototyping Techniques

Due to the plethora of different techniques available for prototyping, it was
challenging to choose suitable techniques for the given purpose. While there are some
recommendations for which phase of the service design process some techniques are
most suitable [37], [38], overall, the choice is left to the designer. While we were
thinking prior to the prototype test session that it might be good to prototype the
experience more holistically, we discovered during the session that prototyping only
parts of MSS with the paper prototypes seems more suitable due to the early stage in
the SD process and the focus on exploration. The holistic service experience can be
prototyped at a later stage. In fact, it was challenging to achieve a service prototype
for MSS: The technical prototype is only functioning on a specific device and thus,
could not be easily used to retrieve actual data from the participants’ calendars.
Furthermore, it only covers parts of the service. The interactive prototype covers the
whole process, but only simulates the service and does not retrieve actual calendar
data. Thus, users could only imagine how it would work in practice, i.e., what kind of
time suggestions they would get in real usage situations. However, as the participants
are active users of electronic calendars, it seemed that they could imagine how the
calendar data retrieval would work in practice.

The paper prototypes and the sketchy interactive prototype seemed to encourage
open feedback, since they did not convey the notion of being close to the final
version. We had a quick walkthrough of the interactive prototype, but then mainly
focused on the paper prototypes, since they seemed to encourage more discussion
than the interactive prototype. However, the chosen method did not seem to
encourage proposing own ideas of the participants. The participants mostly focused
on their preferences comparing the different design alternatives and possibly

 Experiences in Applying Service Design to Digital Services 143

proposing to combine them. However, they did not make own suggestions. In order to
encourage generation of own ideas, other prototyping methods might have been more
beneficial. The interactive prototype could be more beneficial in a later stage of the
process, when the concept is more finalized and the focus is on evaluation rather than
a more open exploration.

5.6 Nature of Prototypes

On the basis of our experience, it seems that it was beneficial to have different design
alternatives. The alternatives reduced the likelihood of receiving purely affirmative
feedback for a proposed solution, since they forced the participants to take a stand on
what they like and what they do not like. For example, it was discovered to be more
intuitive to set the availability rules based on the organizer of the meeting rather than
social context. Another example was the preference of showing less information in
order to select free time slots. As one participant commented: “I only want to see
common free time slots. I don’t care about what others have before or after”.
However, some participants also preferred having more information available.

Besides new ideas and selection between alternatives, prototypes could exclude
certain features. However, this did not occur. For example, although the participants
were discussing about the availability rules during the prototype test session, none of
the participants mentioned why or how they would want to use availability rules. This
might indicate that the availability rules would not be used much. From service design
perspective, the findings suggest that users might not exclude superfluous features if
they do not disturb them. This can result in unnecessarily rich and complex services.

6 Discussion

This section discusses the findings related to the research problems, namely digital
service design and prototyping.

6.1 Digital Service Design

It requires a change in the mindset to consider software as a service rather than as a
product. In particular, it is more than a change in business or delivery model, as in the
case of changing to SaaS. Essentially, the understanding of value is changed: from
value-in-exchange to value-in-use. First, in contrast to traditional, technology-driven
development, the focus is more on the holistic customer journey. It also covers the
process on how the service is taken into use rather than just the usage. Second,
services need to address various customer needs and different behavior and thus, the
value of a certain feature varies between different users. In traditional services, this
can be addressed through front stage employees of the service provider, but in digital
services, there is not human intelligence to adapt to different customer needs. Third,
technical design sets clear borders of the scope. However, these do not exist in the
same manner in the customers’ mind. Consequently, the user experience might be

144 S. Hofemann et al.

impacted negatively, since only parts of the customer journey are supported. While
technical implementations will always have borders, it is important to understand the
whole customer journey, in order to design the best possible solution.

Furthermore, introducing SD to software engineering requires a change in
understanding of design and its role in the development process. User interface
designers are often brought in late in the software engineering process. Their role is
mostly the visual design and user experience of the user interface. Often, they are not
involved in defining the problem that the software is solving. This was also the case
of MSS – the project started off with a technical prototype, rather than starting with a
user-centered perspective. However, the design of user interfaces requires a holistic
understanding of the stakeholder needs, domain, and the problem [39]. Moreover,
when starting with a technical prototype, as in the case of MSS, there is a risk that the
existing technical prototype limits the possible solutions. For digital services,
software plays a significant role and discarding a previously developed technical
prototype and software architecture is often not a desired outcome. One risk of this
technology-driven approach is that the wrong problem might be solved. While service
design can nevertheless help to better understand users’ needs and improve the overall
user experience, the change is likely to be of incremental nature rather than radically
new due to the constraints of the existing technical prototype.

Service design focuses on discovering and exploring the underlying problems of
the customers first, before starting to think about solutions. A practical way to bring
service design into the process is the usage of a variety design methods, such as
explorative prototypes. In contrast to evaluative prototypes, traditionally used in
software and usability engineering, their focus is on exploring the problem rather than
evaluating the solution. Furthermore, design artifacts in software engineering often
refer to the software specification and are mostly technical. Service design artifacts
cover more holistically the customer experience over only specific requirements and
can take a variety of forms. These can support better understanding of the problem
and solution for different groups of stakeholders.

Service design originally focuses on traditional services, rather than digital
services. Thus, SD does not have any methodology for the implementation of
software and thus, it needs to be combined with models for software development,
such as agile, to actually implement the service concepts. Moreover, SD
visualizations and prototypes do not provide detailed specification to developers.
Consequently, there is currently a gap in moving to the actual technical
implementation. This issue could partially be overcome by including developers
already in the development of the service concepts.

6.2 Prototyping in Digital Service Design

The technical prototype was built more closely to traditional software engineering
approach [40], i.e. the requirements were documented in detail and the technical
prototype was evaluated against these requirements. The purpose of the technical
prototype was to evaluate the technical solution. In contrast, the service design
prototypes were built without specified requirements. Furthermore, their purpose to

 Experiences in Applying Service Design to Digital Services 145

explore user needs rather than evaluate a solution. This has also been referred to as a
shift from ‘specification-drive prototypes’ to ‘prototype-driven specification’ [41].

Using prototypes in the session with the potential users proofed to be beneficial for
gaining better understanding of users needs as well as discovering which aspects need
to be explored further. In addition, presenting different design alternatives to the
potential users, especially low-fi paper prototypes, facilitated an open mindset and
open discussion with the users, which allowed proofing some assumptions to be
wrong.

While prototyping is generally considered central to service design, there is little
guidance on the choice of methods to use for a specific service. Existing frameworks
for prototyping of services [6], [33] can guide the prototyping process. However, they
do not provide any concrete methods for implementing prototypes depending on the
type of service and purpose of the prototype. Thus, the success or failure of
prototypes depends largely on the designers’ choices. For MSS, paper prototypes
were used in order to encourage more open feedback. Furthermore, different options
were presented, in order to avoid solely affirmative feedback for the presented design.
However, despite the presentation of design alternative, one challenge was to
encourage the participants to create and share own ideas, and be critical. The
participants seemed limited with the design alternatives. A possible approach to
overcome this issue would be a workshop focusing on the creation of new ideas. The
paper prototypes seemed more suitable than the interactive prototype. Thus, one
success factor is to be clear about the purpose of the prototypes and choose the
techniques most suitable [33].

Another challenge was prototyping the whole service experience. Enacting
techniques are often suggested for traditional services, but they do not seem to be
suitable for many digital services, such as MSS. However, as the purpose of the
prototype test session was mainly exploration of design alternatives, the service
experience can be prototyped in a more holistic manner at a later stage of the process.
Nevertheless, with existing service design methods, it can be challenging to prototype
the experience of digital services in a holistic manner.

7 Conclusion

This paper studies how to apply service design, and specifically prototyping, in the
development of digital services to gain better understanding of users’ needs. The
development of digital services can benefit from service design in several ways. It
supports gaining better understanding of the users’ needs and developing a more
holistic service experience. Furthermore, different service design artifacts facilitate
the communication between different stakeholders. However, challenges exist on a
practical level. These challenges include applying the value-in-use concept, adapting
service design methods to digital service and practical guidelines for prototyping.

Thinking about software as a service rather than a product, mainly requires a
change in the understanding of value: from value-in-exchange to value in use. This
implies shifting from focusing on features to understanding the whole customer

146 S. Hofemann et al.

journey, even though the needs and behavior vary from customer to customer. One
challenge in the design of digital services is that there is no human, as in traditional
services, to adapt for different customer needs. Another challenge is that technical
design sets clear borders of the scope. However, these borders do not exist in the same
manner in the mind of the customer and thus, might impact the user experience. Using
service design methods, such as explorative prototyping, facilitates understanding of
underlying user needs and can help to avoid receiving just affirmative feedback.
However, while the plethora of different service design methods offers many
opportunities, challenges arise in choosing the right method for a given purpose and
context.

The study was conducted in collaboration with an industrial partner and having a
technical prototype is common practice in the industry. Thus, the results of this study
are applicable to similar contexts.

The results of this study focus on the benefits and challenges of applying service
design in the development of digital services. A few practices were given to address
these challenges. However, this study revealed several areas for further research. For
digital services, in which software engineering plays a crucial role, more research is
needed on the integration of service design and software engineering. Furthermore,
more work is needed in order to propose concrete guidelines for applying SD to
digital services, and specifically to support the choice of prototyping and other service
design methods most suitable for a given context. Furthermore, the special
characteristics of digital services need further clarifications.

Acknowledgements. We acknowledge the financial support of TEKES as part of the
Need for Speed (N4S) program of DIGILE.

References

1. Lindberg, T., Meinel, C., Wagner, R.: Design thinking: A fruitful concept for IT
development? In: Meinel, C., Leifer, L., Plattner, H. (eds.) Design Thinking: Understand -
Improve - Apply, pp. 3–18. Springer, Heidelberg (2011)

2. Ostrom, A.L., Bitner, M.J., Brown, S.W., Burkhard, K.A., Goul, M., Smith-Daniels, V.,
Demirkan, H., Rabinovich, E.: Moving forward and making a difference: Research
priorities for the science of service. Journal of Service Research 13(1), 4–36 (2010)

3. Brown, T.: Design thinking. Harvard Business Review 86(6), 84–92 (2008)
4. Liedtka, J., Ogilvie, T.: Designing for growth: A design thinking toolkit for managers.

Columbia University Press, New York (2011)
5. Wetter Edman, K.: Service Design – A conceptualization of an emerging practice,

Licentiate thesis, University of Gothenburg, Sweden (2011)
6. Blomkvist, J.: Conceptualising prototypes in service design, Licentiate thesis, Linköping

University, Sweden (2011)
7. Zeithaml, V., Parasuraman, A., Berry, L.: Problems and strategies in services marketing.

The Journal of Marketing 49(2), 33–46 (1985)
8. Lovelock, C., Gummesson, E.: Whither services marketing? In search of a new paradigm

and fresh perspectives. Journal of Service Research 7(1), 20–41 (2004)

 Experiences in Applying Service Design to Digital Services 147

9. Segelström, F.: Visualisations service design, Licentiate thesis, Linköping University,
Sweden (2010)

10. Vargo, S.L., Lusch, R.F.: Service-dominant logic: continuing the evolution. Journal of the
Academy of Marketing Science 36(1), 1–10 (2008)

11. Smith, J., Colgate, M.: Customer value creation: a practical framework. Journal of
Marketing Theory and Practice 15(1), 7–23 (2007)

12. Vargo, S.L., Akaka, M.A.: Service-dominant logic as a foundation for service science:
Clarifications. Service Science 1(1), 32–41 (2009)

13. Meroni, A., Sangiorgi, D.: Design for services. Gower Publishing Limited, Farnham
(2011)

14. Lassila, A., Jokinen, J., Nylund, J.: Finnish software product business: Results of the
national software industry survey 2006. Centre of Expertise for Software Product
Business, Espoo (2006)

15. Cusumano, M.A.: The business of software: What every manager, programmer, and
entrepreneur must know to thrive and survive in good times and bad. Free Press, New
York (2004)

16. Williams, K., Chatterjee, S., Rossi, M.: Design of emerging digital services: A taxonomy.
European Journal of Information Systems 17(5), 505–517 (2008)

17. Cho, E.: Interpersonal interaction for pleasurable service experience. In: Proceedings of the
2011 Conference on Designing Pleasurable Products and Interfaces. ACM (2011)

18. Holopainen, M.: Exploring service design in the context of architecture. The Service
Industries Journal 30(4), 597–608 (2010)

19. Holmlid, S., Evenson, S.: Bringing service design to service sciences, management and
engineering. In: Hefley, B., Murphy, W. (eds.) Service Science, Management and
Engineering Education for the 21st Century, pp. 341–345. Springer, Berlin (2008)

20. Buchenau, M., Fulton Suri, J.: Experience prototyping. In: 3rd Conference on Designing
Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 424–433. ACM
(2000)

21. Stickdorn, M.: 5 principles of service design thinking. In: Stickdorn, M., Schneider, J.
(eds.) This is Service Design Thinking, pp. 34–45. BIS Publishers, Amsterdam (2011)

22. Mager, A.: Service design as an emerging field. In: Miettinen, S., Koivisto, M. (eds.)
Designing Services with Innovative Methods, pp. 28–43. University of Art and Design,
Helsinki (2009)

23. Miettinen, S.: Designing services with innovative methods. In: Miettinen, S., Koivisto, M.
(eds.) Designing Services with Innovative Methods, pp. 10–25. University of Art and
Design, Helsinki (2009)

24. Kimbell, L.: Designing for service as one way of designing services. International Journal
of Design 5(2), 41–52 (2011)

25. Sangiorgi, D.: Value co-creation in design for services. In: Miettinen, S., Valtonen, A.
(eds.) Service Design with Theory: Discussions on Change, Value and Methods, pp. 95–
104. Lapland University Press, Rovaniemi (2012)

26. Wetter Edman, K.: Exploring overlaps and differences in service-dominant logic and
design thinking. In: 1st Nordic Conference on Service Design and Service Innovation, pp.
201–212 (2009)

27. Holmlid, S.: From interaction to service. In: Miettinen, S., Koivisto, M. (eds.) Designing
Services with Innovative Methods, pp. 78–97. University of Art and Design, Helsinki
(2009)

148 S. Hofemann et al.

28. Houde, S., Hill, C.: What do prototypes prototype. In: Helander, M., Landauer, T.K.,
Prabhu, P. (eds.) Handbook of Human-computer Interaction, 2nd edn., pp. 367–381.
Elsevier Science B.V., Amsterdam (1997)

29. Blomkvist, J.: Conceptualisations of service prototyping: Service sketches, walkthroughs
and live sERVICE prototypes. In: Miettinen, S., Valtonen, A. (eds.) Service Design with
Theory: Discussions on Change, Value and Methods, pp. 177–188. Lapland University
Press, Rovaniemi (2012)

30. Brocks Jr., F.P.: The mythical man-month: Essays on software engineering. Addison-
Wesley, Reading (1995)

31. Lim, Y.-K., Stolterman, E., Tenenberg, J.: The anatomy of prototypes: Prototypes as
filters, prototypes as manifestations of design ideas. ACM Transactions on Computer-
Human Interaction 15(2) (2008)

32. Coughlan, P., Fulton Suri, J., Canales, K.: Prototypes as (design) tools for behavioral and
organizational change: A design-based approach to help organizations change work
behaviors. Journal of Applied Behavioral Science 43(1), 122–134 (2007)

33. Passera, S., Kärkkäinen, H., Maila, R.: When, how, why prototyping? A practical
framework for service development. In: XXIII ISPIM Conference (2012)

34. Tassi, R.: Service prototype (2009),
http://www.servicedesigntools.org/tools/24
(accessed: October 07, 2014)

35. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research
methodology for information systems research. Journal of Management Information
Systems 24(3), 45–77 (2007)

36. Yin, R.K.: Case study research, 2nd edn. Sage, Thousand Oaks (1994)
37. Stickdorn, M., Schneider, J.: This is service design thinking. BIS Publishers, Amsterdam

(2011)
38. Tassi, R.: Service design tools, (2009), http://www.servicedesigntools.org/

(accessed: October 07, 2014)
39. Heiskari, J., Kauppinen, M., Runonen, M., Männistö, T.: Bridging the gap between

usability and requirements engineering. In: 17th IEEE International Requirements
Engineering Conference, pp. 303–308. IEEE (2009)

40. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: An empirical study. Information Systems Journal 20(5), 449–480 (2007)

41. Schrage, M.: Cultures of prototyping. In: Winograd, T. (ed.) Bringing Design to Software.
ACM Press, New York (2006)

On Infrastructure for Facilitation

of Inner Source in Small Development Teams

Johan Lin̊aker, Maria Krantz, and Martin Höst

Software Engineering Research Group, Computer Science,
Lund University, Lund, Sweden

{johan.linaker,martin.host}@cs.lth.se

Abstract. The phenomenon of adopting open source software develop-
ment practices in a corporate environment is known by many names,
one being inner source. The objective of this study is to investigate how
an organization consisting of small development teams can benefit from
adopting inner source and assess the level of applicability. The research
has been conducted as a case study at a software development company.
Data collection was carried out through interviews and a series of focus
group meetings, and then analyzed by mapping it to an available frame-
work. The analysis shows that the organization possesses potential, and
also identified a number of challenges and benefits of special importance
to the case company. To address these challenges, the case study syn-
thesized the organizational and infrastructural needs of the organization
in a requirements specification describing a technical infrastructure, also
known as a software forge, with an adapted organizational context and
work process.

Keywords: Inner source, Open source software, Software development
practices, Software ecosystem, Life cycle, Programming teams, Software
process models, Software reuse, Software forge

1 Introduction

Many open source software products have been successful in recent years, which
have led to an increased interest from the industry to investigate how the de-
velopment practices could be introduced in a corporate environment and take
advantage of the benefits seen in open source projects. Such practices include
e.g. universal access to project artefacts [8], early and frequent releases, and
“community” peer-review [2].

Mistrik et al. [11] address how closed development organizations could benefit
from open source practices as an area where further research is needed. Though
studies conducted so far are quite limited, several success stories [1, 2, 8, 13, 20]
can be found of large corporations adopting open source development.

The phenomenon of adopting these development practices in a corporate envi-
ronment has in research been referred to by many names, e.g. inner source [17],
corporate open source [2, 3] and progressive open source [1]. In this report we
have chosen to use the term inner source, as described by Stol [17].

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 149–163, 2014.
c© Springer International Publishing Switzerland 2014

150 J. Lin̊aker, M. Krantz, and M. Höst

The changes required when adopting inner source in a corporate environment
led Gurbani et al. [3] to suggest two different methods to effectively manage
inner source assets; an infrastructure-based model and a project-based model.

In the infrastructure-based model, the corporation provides the critical infras-
tructure that allows interested developers to host individual software projects
on the infrastructure, much like SourceForge1 or Github2 does with open source
projects. Platforms like these, also known as software forges [13], can be re-
sembled as component libraries where each project represents a component of
different abstractions, e.g. modules, frameworks or executables. Developers can
browse between the components and use or contribute to those they wish. The
reuse of software can be considered opportunistic or ad hoc and there is no lim-
itation on the number of projects to be shared within the organization. Success
stories include cases from SAP [13], IBM [16,19], HP [1, 10] and Nokia [7, 8].

In the project-based approach the software is managed in a project, instead
of as a long-term infrastructure. Gurbani et al. [3] describe how an advanced
technology group, or a research group funded by other business divisions in
a corporation takes over a critical resource and makes it available across the
organization. This team is often referred to as the “core team” and is responsible
for the project and the decision making. Philips Healthcare [20] and Alcatel-
Lucent [3] are two documented cases where this variant has been adopted.

In order to assess the applicability of inner source on an organization, Stol [17]
developed a framework. This framework is based on reviewed literature and a
case study of a software company referred to as “newCorp”. Though the frame-
work focuses on project-based models, it is based on success factors and guide-
lines described in both project-based and infrastructure-based case studies.The
framework consists of 17 elements divided into four categories; Software product,
Development practices, Tools and infrastructure, and Organization and commu-
nity. These categories were inspired and mapped to those proposed by Gurbani
et al. [2]. The elements can be found in the left column of Table 1. In a later
publication Stol et al. [18] present an updated version of the framework where it
has been restructured, now consisting of nine elements divided into three groups;
Software product, Practices and Tools, and Organization and Community. The
elements are more generalized and covers all of those described in the initial
framework [17].

Adopting inner source requires significant effort and change management,
which is one reason why it may be of interest to start on a smaller scale before
investing globally. However, this requires an understanding of how inner source
can be implemented on smaller teams and what parts that can be implemented
and evaluated. This study is focused towards the latter and aims to contribute
theoretically by using a framework by Stol [17] to assess the applicability of
inner source, and based on the identified challenges synthesize a solution that
addresses the organizations needs.

1 http://www.sourceforge.com/
2 http://github.com

http://www.sourceforge.com/
http://github.com

On Infrastructure for Facilitation of Inner Source 151

The outline of this paper is as follows. In Section 2 the research methodology
is presented and the results are presented in Section 3 and 4. The results are dis-
cussed and further analyzed in Section 5. The validity of the conducted research
is presented in Section 6 and the research results are summarized in Section 7.

2 Methodology

This research is of a problem-solving nature and conducted as a case study with
an exploratory strategy approach [14, 15]. The case company is experiencing
problems in regards to its reuse of code and overall efficiency. The hypothesis is
that the concept of inner source, as described earlier, can help the organization
manage these issues (e.g. [1, 2, 8, 16]).

The organization was observed in order to further define the problem during
spring 2012. Then it needed to be assessed whether inner source would fit the
organization or not, and what the challenges would be. Based on the findings,
the parts of inner source suitable for the organizations needs were synthesized
in a requirement specification describing a technical infrastructure together with
an organizational context and work process.

This improving approach can be compared to that of action research. However,
this study has focused on the initial parts and proposed a solution. This is yet
to be implemented and evaluated. I.e. the complete change process is yet to
be observed. Due to limitations in time for the researchers and organizational
conditions of the case company, this is left for future research.

2.1 The Case Company

An international software development firm, hereby known as “the case com-
pany”, has been chosen for this study. The case company has a division based
in a local office in Sweden which specializes in rapid software development and
deployment of projects where the customers seek a combination of high quality
and a fast release.

The scope is limited to the local division, though a network of corresponding
divisions is established globally. The division of interest is divided into two teams
with similar set-up and structure. Each team consists of 20-25 engineers including
developers, testers and project managers.

2.2 Case Study Steps

The data collection and analysis was carried out as outlined in Figure 1, and
described below.

2.3 Situation Analysis

A situation analysis was conducted with the objective to describe and explain
the current situation at the company. The main goal was to gain an understand-
ing of how work is conducted within the organization and can be seen as an
observational part of the research.

152 J. Lin̊aker, M. Krantz, and M. Höst

Situation analysis

Research step Main data collection procedures

Specification of
requirements on

support

Definition and
evaluation of support

prototype

- Archive analysis
- 9 interviews

- Stakeholder analysis
- Additional interviews
- 5 focus group sessions (3 areas)

Fig. 1. Overview of data collection and analysis

Qualitative data was collected by studying documentation at the case com-
pany and by interviewing a sample group. The criteria for selecting people in
this phase were that they should: be representatives from different areas, with
different work tasks, to get a good variation of answers; have more than two
years of work experience, within this or other companies; and be available for
interviews.

In total 9 individuals were interviewed which included 4 project managers
and senior back-end developers, 2 senior front-end developer, 1 junior front-end
developer, 1 junior back-end developer, and 1 service manager.

The interviews were semi-structured with 20 questions prepared in advance.
All interviews were recorded with both audio and supportive notes taken by
the authors. The interview data was then analyzed using an editorial approach
(e.g. [15]), meaning that the categories and statements for characterizing the
reasoning in the interviews were not to a large extent predefined. The qualitative
data was codified, commented and searched for patterns and themes in a first
iteration. In a second step this was used to make generalizations and relate to the
themes presented by Stol in his framework [17]. The mapping was then used to
evaluate the compatibility of the company to adopt inner source, see Table 1. The
framework was adapted with some modifications to suit the company, consisting
of three additional factors located in the end of the Table 1.

2.4 Specification of Requirements on Technical and Practical
Support

To define the technical infrastructure, related context and practices, a require-
ment specification was chosen because it is a natural approach within the soft-
ware industry to describe a desired solution. The requirements specification is

On Infrastructure for Facilitation of Inner Source 153

not presented here, although an overview of the domain can be found in Sec-
tion 4, and more information is provided in [5].

Several methods were used in order to elicit requirements from all levels of
interest, e.g. stakeholder analysis, additional interviews, and a series of focus
groups.

Stakeholder Analysis. A stakeholder analysis (e.g. [6]) was used to map all of
the stakeholders and elicit their different areas of interest. It is important that
everyone with a stake in the product gets to contribute their view, goals and
wishes concerning both functional and non-functional requirements in order for
the final product to get a corporate wide approval.

Stakeholders were identified amongst developers, project- and service man-
agers, team managers and corporate representatives. The analysis was based on
material from the interviews held in the situation analysis, complemented by
the focus group meetings and a longer interview with the case companys’ former
CTO.

Focus Groups. As it became clear early on in the case study that stakeholders
had different opinions and priorities, this technique was considered appropriate.
The incentive was to create an understanding between stakeholders in addition
to identify problems and gather ideas and opinions in a structured manner [6].
The other objective of the focus groups [4] was to elicit requirements for a sub-
stantial part for the proposed solution. Three areas with different themes were
therefore identified on which the focus groups were based upon: Reuse of code
and knowledge; Tools and functionality; Time, sales strategy and incentives.
With these themes the authors regarded to have covered all relevant aspects of
the product. Several subtopics were then identified around which the discussions
were held.

The focus groups were carried out in 1.5 hour sessions. Focus groups 1 and 2
were both split into two sessions, while focus group 3 was carried out in one single
session. The sessions were moderated by one of the two first authors, whilst the
other documented by audio recording and taking supporting notes.

Each session had a brief list of subtopics where participants were allowed to
briefly describe bad experiences and focus more on the ideal usage and func-
tions. Post-it notes were used by the participants to record their opinions, where
considered appropriate by the authors. These were then collected by the moder-
ator and presented for a joint discussion. The discussions also included different
aspects of risk, cost and benefits of the proposals. Where different opinions were
present, a collective prioritization of the ideas was conducted and motivation
to the priorities encouraged by the moderator. The sessions concluded with a
summary by the moderator.

Recordings, notes and post-its were analysed by the authors using the editorial
approach as was for the interviews. Iterations with clarification and elaboration
was performed with the participants when needed.

154 J. Lin̊aker, M. Krantz, and M. Höst

3 Results from Situation Analysis

The situation analysis is a product of applying Stol’s framework [17] to the case
company. A summarized version can be found in Table 1.

As recognized before, reuse today within the division is seen as insufficient.
There is no overview documentation available on what software is available for
reuse, causing knowledge of what has been developed and where it is located to be
spread by a “mouth-to-mouth” manner. Certain modules and functions, which
are commonly used, risk being re-developed. For example, one interviewee stated
“I use standard modules that are needed in projects that I sometimes know that
someone else has done in another project or that I have done myself in another
project and thereby I can use it. In other cases, we are not aware of it. Especially
when a new developer enters [a project] who has not been around for so long and
do not know what is available.”

It is recognized as possible to identify existing classes and functions for reuse
which could constitute the initial foundation of shared assets, time is however
viewed as a restricting factor. Also modularization of code is needed, which
may require additional training for the developers. Another quote highlights the
potential for a common framework that can be used as a standard template in
many of the projects. “We could benefit a lot from having our own demo site or
basic platform, including common modules, that projects can be based on.”

An apparent need for a platform facilitating reuse and open access exist, since
redundant work is conducted.

As each customer has his or her own specific requirements, potential shared
assets used from project to project may have to be adapted. This allows the
components to constantly evolve and mature with increased functionality, but
also with the threat of increased complexity. Requirements are mainly set at the
start of the project, but also constantly evolving incrementally in each sprint
according to the agile scrum like process used by the teams. Releases are done
frequently with each sprint. The quality assurance process with peer reviews
does exist in an informal manner but needs structure and systematization.

Concerning standardized tools, one problem exists in regardswith multiple ver-
sion control systems with the effect of code being dispersed on multiple platforms.
In general however a common set of collaborative tools are in place including an
application lifecycle management tool (TeamForge3) which is under evaluation.

Two general and important aspects, tightly knit together, are time and bud-
get. The time set for documentation is seldom used for its specific purpose.
Transfer of knowledge in general is a subject that needs to be incorporated in
the day-to-day work process in every project. There is little or no time between
projects for project feedback and knowledge transfer. This would also be an is-
sue in regards to maintenance of potential shared assets. Reason for this is to a
high concern business oriented as time estimations are kept low in order to win
customer deals and chargeable coverage is of high priority, leaving limited time
for internal improvements.

3 http://www.collab.net/products/teamforge

http://www.collab.net/products/teamforge

On Infrastructure for Facilitation of Inner Source 155

There is an open discussions ongoing in the case company, and a willingness
to change exist, even if time is a restraining factor for internal improvements as
noted.

Work coordination is maintained in each project in combination with project
leads and the agile process in place. Developers felt that they had an influence
and that there exists an open culture. The interviews specifically highlighted the
need for evangelists to overcome the responsibility issue of inner source. Potential
evangelists could be seen within the organization, if given enough encouragement
and support to take on the responsibility. This can correlate to the evangelists
described in Dinkelacker et al. [1].

One last aspect identified is about code ownership. If the customer has specific
ownership of the code, then the question arises whether it is okay or not for the
developers to turn the code into a shared asset and reuse it in other projects.
Generally it is stated in the customer contract that the case company owns the
code, whilst the customer has the rights to use it. However, this is sometimes
negotiated to the customer owning the code, which means the case company has
no rights to reuse the solutions.

4 Overview of Proposed Technical Infrastructure

The situation analysis showed both need and potential for the applicability of
inner source. Infrastructure and defined processes are required in order to be
able to create and organize shared assets, and to help facilitate inner source
practices.

Based on the situation analysis, focus group meetings and additional elici-
tation techniques, an infrastructure comparable to that of a software forge [13]
was defined and specified. The domain for the infrastructure, other than the
forge, consists of the users of the forge, and the system administrator within the
studied division of the case company. The systems for the developing and run-
ning customer projects, as well as the documentation of old projects, are outside

Fig. 2. Context diagram of the software forge domain and the outer domain of customer
projects

156 J. Lin̊aker, M. Krantz, and M. Höst

the software forge domain, see Figure 2. The forge can be seen as a component
library with a component project view for each shared asset, i.e. component.
There are two types of components which is explained further below.

Table 1. Summary chart of findings from interviews in relation to inner source prac-
tices. Elements based on framework by Stol [17]

Element Findings from interviews

Software product

Runnable software Classes and functions can be identified from previous projects, but the extraction
may be very time consuming.

Needed by several
project groups

There is potential for a common framework that can be used in several projects.
An apparent need for a platform facilitating reuse exist, since redundant work is
conducted.

Maturity state of the
software

Constantly evolving techniques and modules for customer-specific solutions.

Utility vs simplicity Some solutions may be too specific for the project in order to reuse.

Modularity Modularization of code is needed, which may require training.

Development practices

Requirement elicita-
tion

Requirements are project-specific and are mainly set at the start of the project, but
also constantly evolving in each sprint.

Implementation and
quality control

Agile, sprint-driven development, planned per sprint. The level of competence in
and knowledge of the process used varies. Senior developers review junior developers
informally. Because of insufficient unit testing, quality can sometimes be an issue.
Testing is to some extent ”bazaar-like” and peer-testing is performed as much as
possible.

Release management Frequent releases, after each sprint. Customers are provided with prototypes.

Maintenance Little or no time between projects. Development projects are generally transferred to
maintenance projects after acceptance test.

Tools & Infrastructure

Standardized tools Common set of collaborative tools are in place, though older projects remain using
older tools. Freedom to select tools locally.

Infrastructure for
open access

Projects are archived in a traditional folder structure. A project platform for dis-
tributed development has been initiated and is under evaluation.

Organization & Community

Work coordination Developers are assigned tasks. In order to control that the correct tasks are prioritized,
developers may switch between projects. Better overview desirable.

Communication Developers sit closely together and are unlikely to benefit from ”open” communica-
tion. Communication with customers is desired to be closer and steered away from
e-mailing.

Leadership and deci-
sion making

Discussions are considered open and inputs appreciated. Evangelists and/or core team
needed to take responsibility for a common framework.

Motivation and in-
centives

A lack of time is the biggest concern. Attractiveness of the tool also considered a
critical success factor.

Open culture Open discussions and willingness to change exist, though time a restraining factor for
internal improvements.

Management support Budget constraints a concern. Chargeable occupancy important. Plan for incorporat-
ing activities related to reuse in the sales strategy needed.

Additional factors

Project feedback and
knowledge sharing

More feedback on a division level desirable to improve knowledge sharing across
projects.

Project initiation Dependent on a few individuals because of expertise needed to set up projects.

Code ownership The customer is the owner of the code, which may result in constraints on what can
be reused.

4.1 Components

All components are stored in a component library (the software forge). A search
function allows the user to find a component of interest. Clear visualization

On Infrastructure for Facilitation of Inner Source 157

of ratings and issues as well as test- and review results for each components
are available so that users early can determine the potential of the component.
Components can be tagged by the users with self-defined names for easier search
and categorization. There are two types of components that can be shared,
project-based components and open components.

Project-based components require administration by a core team that is re-
sponsible for the maintenance and development of the component. All users
can access the components but the core team may restrict the user’s rights to
make any changes. Different types of components that have been identified as
project-based components are Product, Framework and Templates.

– Product: A basic solution that is ready to be sold to the customer, or to
be customized. This type is a long term idea and though the forge provides
the infrastructure to share this component, special requirements to support
this type of component will not be further considered in this project.

– Framework: A framework for the most commonly used modules. The frame-
work would be used to have an initial set of modules that are reusable and
can easily be implemented in a new project. A core team decides what goes
into the framework and makes sure the framework is up to date and of the
required quality.

– Templates: Documentation templates developed by a core team in order to
facilitate the documentation process.

Open components do not need any administration or anyone responsible for
the development of the component. No quality or generalization requirements
exist to share these components and the creator is not responsible for any main-
tenance or further development. Modules and Classes, and Knowledge Base are
types of components identified as open components.

– Modules and classes:Modules and classes that have been used in projects.
The size and complexity of these components may vary and may be more or
less suitable to reuse.

– Knowledge base: User guides for commonly performed tasks, tutorials,
lessons learned from previous projects, common errors etc. that could be
helpful in future projects.

4.2 Users

The identified user types are all employees with access to the forge. They can
be divided into three groups:

– General user: Developers reusing and contributing to components. The
general users have full rights to open components and limited rights to
project-based components.

– Core team member: Project-based components have at least one core
team member. The core team members have full access to its components
and are responsible for maintenance, support and further development of
that component.

158 J. Lin̊aker, M. Krantz, and M. Höst

– System administrator: The system administrators is responsible for the
technical support and maintenance of the forge.

Each user will have a recorded dataset of the users activity, e.g. number of
contributed tests and reviews, number of contributed components, number of
components applied in customer projects.

4.3 Component Project View

The components individual project views are unique and scalable, dependent of
whether the component is open or project-based. Functionality as task manage-
ment, issue tracking, version control, discussion areas, mailing lists and wikis are
available and adapted according to each projects governance. Rating and review
functionality is generically available.

5 Discussion

5.1 Infrastructure

The forge that was elicited and specified consists of two parts: The component
library and component project view, which conforms to other cases e.g. SAP
[13], Nokia [7, 8] and IBM [16, 19]. The former part is used for searching and
finding projects, whilst the latter offers a project specific toolbox with common
communication and development features where users and developers interact,
also commonly identified the previously mentioned studies.

Riehle et al. [13] describes three critical design issues of a forge; finding, un-
derstanding, and contributing to projects. All three topics emerged and were
heavily valued from the focus group meetings. The main feature requested for
finding relevant projects was the possibility to assign self-defined tags to the
projects. Concerning understandability, rating and reviews must be clearly pre-
sented to enable for a quick initial judgment. Discussion, wiki and mailing list
functions described by Riehle et al [13]. was also requested to offer the user the
possibility to get a more thorough understanding. Third point about the sim-
plicity of contributing to projects regards usability and an intuitive design and
integration of the different parts of the component project view.

The two types of components that were elicited, open and project-based com-
ponents, offers two styles which conforms to Gurbanis [3] definitions of infras-
tructural and project-based inner source. Open components can be anything of
general interest and the creator is not obligated to any support or maintenance
of it. The main motivation for its existence is the request for simplicity to con-
tribute and share knowledge, decrease dependency on individual developers and
enable assets to be highly dynamic. Costs of creating modular and generic com-
ponents need to be kept low as time is a scarce resource. For cases where more
structure is needed, especially projects which are business critical and demands
supervision, project-based components was introduced which are maintained and
supervised by a core team. Depending on the complexity of the component, the

On Infrastructure for Facilitation of Inner Source 159

amount of resources needed by the core team may vary. For a critical asset such
as a framework, the core team members need to have deep technical knowledge
as well as an understanding of the business- and delivery models.

The mixing of these two component types offers a broad scope of possibili-
ties for the case company. A risk however is the possibility of confusion when
to choose one or the other. Another risk is that the freedom offered by open
components can result in the forge being cluttered with components no one will
use. This could also result in troublesome searches for the right component. One
solution, which is used in the case of IBM [19], could be having an approval
process where an overall supervisor decides which components gets to be added.
Similar governance to that of the forge described by this paper can be identified
in the case of SAP, where “Everyone who’s interested can become a developer
on the forge, and everyone can register a new project without going through a
lengthy approval process” [13].

5.2 Development Practices

As described in Section 4, the domain does not include the customer projects.
Hence, the introduction of inner source, as proposed here, will have a low impact
on the development practices used. Collaborative development is used to some
extent and under improvement with the introduction of TeamForge (TF), which
would benefit the implementation process of the forge.

It was revealed in the situation analysis, that the quality of the code is an
issue from time to time. Hence, it is relevant to take advantage of the quality
benefits associated with inner source [2,3,9,16]. With the use of ratings and peer
reviews, quality can be improved both directly on the specific component and
indirectly by allowing developers to gain skills through the identification of bugs
and errors. A drawback of ratings, anticipated by the focus group meetings, is
that it can be misleading. Users who have tested or reviewed the component may
have done this to different extents why their conception of the component may
vary. This is why additional information such as tagging, rating, comments and
descriptions are considered important so that whole experiences are reflected
and potential users can get a fair comprehension of the component. Uncertainty
about the quality of a component will prohibit its use.

Alignment between the different projects is important to the team. A frame-
work is considered to improve alignment of the development from project to
project through a communal set of components, optimizing the initiation pro-
cess, raising the general quality and facilitating for developers to enter a new
project [1, 9].

5.3 Organization and Community

Though the general organizational structure does not need to change, some effort
on all levels is required to adapt to the new conditions and create business value
from the initiative.

160 J. Lin̊aker, M. Krantz, and M. Höst

An incentive and motivational structure is essential for users to be attracted
to the forge and to support the volunteer approach used, just as in any open
source community [12]. From the case company managements perspective, there
is a wish to acknowledge the competent developer and the platform could be used
as a tool for doing so. However, it is required to put some thought into what is
being measured to prevent that rewards, if any, are not misleading, nor cause
negative implications for contributing. Statistics similar to what is described
by Lindman et al. [8] was requested to serve as motivational data for the users
directly, and also for management. This would include general measurements e.g.
most popular project and more personal measures e.g. number of contributed
components applied in customer projects.

The individual developer may be motivated to contribute by the rewards and
acknowledgement of management, but motivation is also a highly cultural matter
that needs to be incorporated in the working environment [13]. Developers as well
as managers and technical leaders, need to encourage each other to contribute
and to use the forge, foster awareness and integration of the solution in the day-
to-day work. The need for an “evangelist” has been described in both literature
[1,16] and the situation analysis, Section 3 as essential for the success of an inner
source initiative. This important role is hence to be chosen carefully and early
on in the initiation process in order to push the projects forward.

As described by Wesselius, [20], one of the limiting external factors of inner
source development is overall profitability. That is, that the group should not
optimize its own profits at the expense of the company’s total profitability. By
constantly keeping an awareness of what exists on the forge and the quality
of it, which will be an increasing challenge as the content grows, individuals
with responsibility for sales can adapt their estimates to presumptive customers
and retain higher margins for tender processes [2, 3, 9, 20]. This cross-divisional
dependency calls for a communication and discussion between the different in-
ternal stakeholders. Planning and development of the assets on the forge is of
communal interest since it benefits the whole company.

6 Validity

The interviews were analyzed with the compatibility framework developed by
Stol [17]. The framework has to our knowledge not been evaluated before by oth-
ers than the author. In a later publication Stol et al. [18] presents an updated
version of the framework where it has been restructured and made more gen-
eralized, still covering the same elements described in original version [17] and
now applied on three new cases by the author. By using a theoretical framework
the assessment is more focused, and also framed to previous findings within the
research of inner source.

The proposed solution on a forge to facilitate the inner source practices and
reuse was an option that emerged in the situation analysis. This platform evolved
during the focus groups and continued studies of the case company, together
with a clear connection to the concept of a software forge and the similarity to

On Infrastructure for Facilitation of Inner Source 161

Gurbani et al.’s [3] concepts of infrastructure and project-based inner source. It
was not a predefined solution and evolved due to a natural process, though as
no other options were as thoroughly investigated, there is a risk that alternative
solutions could have been ruled out unconsciously.

Since this is an individual case study, it cannot be established if the technical
solution and recommendations are applicable to other case companies. Addi-
tionally, the solution proposed has yet not been implemented, nor evaluated.
The authors consider the solution to be an option for similar size of develop-
ment teams, being a small company or part of a larger company that want to
experiment with the adoption of inner source on a smaller scale before mak-
ing significant investments. Evaluation of the solution would be needed in order
to investigate what challenges the solution truly impose as well as the benefits
similar organizations can expect to gain.

The main measures taken to improve the validity (e.g. [15]) in the case study
can be summarized as follows.

Prolonged involvement was achieved since the two first authors spend most of
their working time at the premises of the case company during a time period of
about 4 months.

Peer debriefing, meaning that fellow researchers comment on the results was
achieved by having the third author reviewing the findings and research method-
ology during the research without being actively involved in the day-to-day data
collection.

Member checking, in this case meaning that senior engineers at the case com-
pany reviewed findings around which discussions were held continuously.

Audit trails were achieved by recording all interviews and taking extensive
notes during data collection phases.

7 Conclusion

Several potential benefits can be gained by the case company. The main moti-
vation is the possibilities it offers for improved reuse of code and solutions to
complex problems. Other benefits include improved quality of code and general
level of knowledge amongst developers, creation of a framework to standardize
and shorten initiation process of new projects, better visibility and spread of
information and knowledge, and higher margins for tender processes.

During this research the framework of Stol [17] was used as a framework in
the analysis. We conclude that this framework is useful for this purpose, and we
believe that it includes the relevant factors. There is an updated version of this
framework which is more generalized [18]. We believe that by the application of
the older version, this paper can also support the validity of the new version as
well.

In order to address the challenges seen in introducing inner source and to gain
the benefits, this case study has proposed a technical infrastructure, also known
as a software forge, presented in form of a requirement specification with an
adapted organizational context and work process. The forge forms a collaborative

162 J. Lin̊aker, M. Krantz, and M. Höst

platform where knowledge and code constitute shared assets, here known as
components, and where people can interact according to the principles of inner
source.

Two types of components were identified in order to address the types of data
which the case company wishes to share internally. Project-based components
which are, to some extent, to be seen as business critical and demands supervision
by a core team. This can be related to the concepts of project-based inner source
as identified by Gurbani et al. [3]. The other type, open components, relates in
some parts to the concept of infrastructural inner source [3]. It can also be
compared to a combination of a knowledge base and a code snippet library. This
type of component can in general be anything of general interest and creator is
not obligated to any support or maintenance of it.

With the specification and comprehensive description of a software forge, this
paper has made a contribution as the studies available are limited and more
focused on general challenges and practices. The forge presented is designed
to practically handle the challenges identified and to facilitate the inner source
practices of use to the studied organization. The process behind the analysis,
elicitation and design of the forge can be seen as a reference for future imple-
mentations by other organizations. Focus has been from the small development
team point of view, compared to global development and R&D organizations
often depicted in other studies. By first understanding of how inner source can
be implemented on smaller teams, the concept can be expanded with time more
easily.

The division studied within the case company possesses potential for the ap-
plication of inner source and if successfully applied, it can bring several rewards
to the organization by optimizing its resources. An eventual future implementa-
tion is yet to be studied. Since this study has focused on one case, it cannot be
generalized to other organization by default. Many of the findings though, can be
of value to other cases where smaller teams and organizations are investigating
the opportunities to introduce inner source, which is an area for future research.

Acknowledgments. This work was partly funded by the Industrial Excellence
Center EASE - Embedded Applications Software Engineering.

References

1. Dinkelacker, J., Garg, P.K., Miller, R., Nelson, D.: Progressive open source. In:
ICSE 2002: Proceedings of the 24th International Conference on Software Engi-
neering, pp. 177–184. ACM Press, New York (2002)

2. Gurbani, V.K., Garvert, A., Herbsleb, J.D.: A case study of a corporate open
source development model. In: ICSE 2006: Proceedings of the 28th International
Conference on Software Engineering, Shanghai, China, pp. 472–481 (2006)

3. Gurbani, V.K., Garvert, A., Herbsleb, J.D.: Managing a corporate open source
software asset. Communication of the ACM (Association for Computing Machin-
ery) 53(2), 155–159 (2010)

On Infrastructure for Facilitation of Inner Source 163

4. Kontio, J., Lehtola, L., Bragge, J.: Using the focus group method in software engi-
neering: Obtaining practitioner and user experiences. In: International Symposium
on Empirical Software Engineering, Redondo Beach, CA, USA, pp. 271–280 (2004)

5. Krantz, M., Lin̊aker, J.: Inner source: Application within small-sized development
teams. Master’s thesis, Lund University (2012)

6. Lauesen, S.: Software requirements: Styles and techniques. Addison-Wesley, Pear-
son Education Limited, Harlow (2002)

7. Lindman, J., Riepula, M., Rossi, M., Marttiin, P.: Open source technology in intra-
organisational software development: Private markets or local libraries. In: Jenny,
S.Z., Lundstrm, E., Wiberg, M., Hrastinski, S., Edenius, M., Ågerfalk, P.J. (eds.)
Managing Open Innovation Technologies, pp. 107–121. Springer, Heidelberg (2013)

8. Lindman, J., Rossi, M., Marttiin, P.: Applying open source development practices
inside a company. In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G.
(eds.) Open Source Development, Communities and Quality. IFIP, vol. 275, pp.
381–387. Springer, Boston (2008)

9. Martin, K., Hoffman, B.: An open source approach to developing software in a
small organization. IEEE Software 24(1), 46–53 (2007)

10. Melian, C., Mahring, M.: Lost and gained in translation: Adoption of open source
software development at hewlett-packard. In: Russo, B., Damiani, E., Hissam, S.,
Lundell, B., Succi, G. (eds.) Open Source Development, Communities and Quality.
IFIP, vol. 275, pp. 93–104. Springer, Boston (2008)

11. Mistŕık, I., Grundy, J., Hoek, A., Whitehead, J.: Collaborative software engineer-
ing: Challenges and prospects. In: Mistŕık, I., Grundy, J., Hoek, A., Whitehead,
J. (eds.) Collaborative Software Engineering, pp. 389–402. Springer, Heidelberg
(2010)

12. Raymond, E.S.: The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly Media (2001)

13. Riehle, D., Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh,
B., Odenwald, T.: Open collaboration within corporations using software forges.
IEEE Software 26(2), 52–58 (2009)

14. Robson, C.: Real World Research. Blackwell Publishers (2002)
15. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software

Engineering: Guidelines and Examples. John Wiley & Sons (2012)
16. Sabbah, D.: The open internet - open source, open standards and the effects on

collaborative software developmen. In: 11th International workshop on High Per-
formance Transaction Systems, Pacific Grove, CA, USA (2005)

17. Stol, K.-J.: Supporting Product Development with Software from the Bazaar. PhD
thesis, University of Limerick (2011)

18. Stol, K.-J., Avgeriou, P., Babar, M.A., Lucas, Y., Fitzgerald, B.: Key factors for
adopting inner source. ACM Trans. Softw. Eng. Methodol. 23(2), 18:1–18:35 (2014)

19. Vitharana, P., King, J., Chapman, H.: Impact of internal open source development
on reuse: Participatory reuse in action. J. Manage. Inf. Syst. 27(2), 277–304 (2010)

20. Wesselius, J.H.: The bazaar inside the cathedral: Business models for internal mar-
kets. IEEE Software 25(3), 60–66 (2008)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 164–177, 2014.
© Springer International Publishing Switzerland 2014

Analysis and Improvement of Release Readiness –
A Genetic Optimization Approach

S.M. Didar-Al-Alam1, S.M. Shahnewaz1, Dietmar Pfahl2, and Guenther Ruhe1

1 Software Engineering Decision Support Laboratory
University of Calgary, Calgary, AB, Canada

{smdalam,smshahne,ruhe}@ucalgary.ca
2 Institue of Computer Science

University of Tartu, Tartu, Estonia
dietmar.pfahl@ut.ee

Abstract
Context: Release readiness (RR) quantifies the status of a product release by
aggregating a portfolio of release related measures. Early identification of
factors responsible in improving RR (i.e. RR improvement factors) can help
project managers to (re)allocate resources to improve processes to achieve
higher level of RR score.
Objective: This paper has two objectives: i) to identify time-dependent RR
improvement (RRI) factor(s); and ii) to identify a budget allocation strategy for
maximum improvement of RR score for the upcoming time interval.
Method: RELREA is an existing approach that determines RR from
aggregating the degree of satisfaction of a portfolio of release process, product,
deployment and support related measures. The proposed method DAICO
enhances RELREA by performing dynamic instead of static analysis. For that
purpose, the RRI factors identification problem is formulated and solved as a
genetic optimization problem. Subsequently, recommendations are generated
for cost-optimized RR improvement.
Results: We demonstrated the applicability of the DAICO method for release
Publify 8.0 of an ongoing project Publify, hosted in GitHub OSS repository.
Main contributions of this paper are: i) Formulating identification of RRI
factors as an optimization problem, ii) Modeling and solving the problem using
a GA, iii) Providing recommendations for cost-optimized RR improvement
Conclusions: DAICO is a part of an ongoing effort to detect, and analyze RRI
factors when achieving RR. This method is intended to detect RRI factors
earlier and to guide the effort spent on improving RR.

Keywords: Release readiness, Release readiness improvement factor, Cost
optimization, Genetic algorithm.

1 Introduction

Failure in on-time delivery of software products may cause substantial loss in
opportunity and revenue. Due to the complex nature of development, management

 Analysis and Improvement of Release Readiness – A Genetic Optimization Approach 165

faces difficulties in evaluating the software under development from the release
perspective. In this context, release readiness (RR) is a time dependent attribute of the
product release. It aggregates a portfolio of release process and product measures to
quantify status of the release. The value (in terms of money) of knowing RR is
studied in [1]. Continuous monitoring of RR keeps the management and development
team aware of potential release problems. However, only knowing RR is not enough
for achieving high RR score. It is equally important to identify the key factors
responsible in improving RR score (i.e. RR improvement factors). Based on the
available RR measures, identifying the RR improvement (RRI) factors and
(re)allocating available budget to achieve higher RR is a challenging task. Therefore,
our goal is to develop an analytical approach that allows i) identifying RRI factors at
any point in time of the release cycle, and ii) (re)allocating available budget to
achieve higher RR.

This paper is part of an ongoing effort to detect, and analyze RRI factors for
achieving higher RR. In [2], we proposed an analytical approach called RELREA
(RELease REAdiness) to evaluate RR which was partially based on the concept of
fuzzy set theory [3]. RELREA aggregates the degree of satisfaction of a portfolio of
release process and product measures to evaluate the readiness of a product for
release. However, this approach was not designed to identify RRI factors. In this
paper, we propose a comprehensive method called DAICO (Dynamic Analysis of RR
Improvement factors and Cost Optimized RR improvement). DAICO determines RRI
factors and an optimized budget allocation strategy to increase RR by performing
analysis based on genetic algorithms. We validated the applicability of the DAICO
method with an illustrative case study using version Publify 8.0 of the OSS project
Publify (hosted in GitHub). The main contributions of this paper are: i) Formulating
RRI factor identification as an optimization problem, ii) Modeling and solving the
problem using a GA, and iii) Providing recommendations for cost-optimized RR
improvement.

The rest of the paper is organized as follows: Section 2 discusses related work. In
Section 3, we present necessary background information including definitions of the
key concepts. The problem is formulated in Section 4. Section 5 describes the
proposed method DAICO. In Section 6, we present the empirical evaluation of
the proposed method. Section 7 discusses the applicability and limitations of the
proposed DAICO method. Finally, Section 8 presents a summary and outlines an
agenda for future research.

2 Related Work

In the context of software development, release is a decision to deliver the developed
product into the operational environment [1]. Though few attempts have been made to
evaluate RR in academia and industry, RR is not yet well understood. Previous
literature [4][5] evaluated RR with respect to defect tracking and test related metrics,
e.g., number of defects, defect removal rate, test execution rate and test pass rate.
Wild et al. [6] proposed to consider metrics from multiple dimensions (e.g.,

166 S.M. Didar-Al-Alam et al.

requirements, functionality, reliability etc.) in evaluating RR. Industry tools, e.g.
Borland TeamInspector1 and PTC Integrity2, visualize and verify functionality, code
and test related metrics before releasing a piece of software.

However, evaluating RR only at the end of the project is not sufficient to ensure
project success. Continuous awareness of the status of the product release is required
to identify release-related problems. Identification and analysis of the RRI factors is
required to solve these problems and ensure project success. In our earlier research,
we proposed an analytical approach RELREA [2] for evaluating RR score based on
fuzzy set theory [3]. RELREA can evaluate RR at any point in time during the release
cycle with respect to the degree of satisfaction of individual attributes. None of the
existing approaches, including RELREA, attempted to identify the attributes that are
responsible for improving RR (i.e., the RRI factors), or to optimally allocate resources
to improve the RR score.

Some attempts were made in literature to identify key factors significantly
influencing project success. Reyes et al. [7] applied GA based technique to identify
these factors. Abe et al [8] collected 29 metrics to develop a prediction model for
software project success. Hahn et al. [9] attempted to identify influencing factors of
OSS success from project management perspectives. To the best of our knowledge,
yet there is no uniform method to identify RRI factors of project success from the RR
perspective. In addition, no previous literature proposed a cost optimization approach
to improve the RR score. To mitigate this gap, we propose a sophisticated method to
identify the RRI factors. Our new method, DAICO, also recommends how (re-)
allocation of available resources can achieve a higher RR score.

3 Background

3.1 RR Attributes and Degree of Satisfaction

RR attributes are attributes of the candidate system that can define and judge the RR
of the system. Satisfaction of Defect find rate (DFR), and Bug fix rate (BFR) are two
examples of RR attributes. We apply the Goal-Question-Metric (GQM) [10] paradigm
to guide the selection of RR attributes.

In [2], the degree of satisfaction of the RR attributes is evaluated using the concept
of membership function from fuzzy set theory [3]. A membership function
quantifies the degree of membership of element x in a fuzzy set F. The project
manager select appropriate shapes and corresponding parameters of the membership
function associated with each individual RR attributes to evaluate the degree of
membership (i.e. the degree of satisfaction) based on its value. Further details
regarding this is presented in [2].

1 http://techpubs.borland.com/bms/TeamInspector2008
2 http://www.ptc.com/solutions/application-lifecycle-management/

 Analysis and Improvement of Release Readiness – A Genetic Optimization Approach 167

Definition 1 (Degree of Satisfaction): We assume that project P with duration [0,T]
at given week 0, has

i. a given set of RR attributes , , … . . , ;
ii. for each RR attribute a corresponding membership function given by the

set , , … . . , ;

iii. corresponding values of RR attributes given by the n-dimensional vector ;
iv. Then, 0,1 is the degree of satisfaction [3] of attribute at

week . It is calculated based on the corresponding value in vector
and membership function .

3.2 Release Readiness

At any point in time during a release cycle 0, , the measurement of RR attributes
helps project managers assess the status of the next release. RR is defined as the
aggregation of various RR attributes that are considered to be essential to judge
whether a product release is ready for shipping. Project managers based on successful
legacy release and personal experience provide the relative weights of RR attributes.
Details regarding RR measure is available in [2].

Definition 2 (Release Readiness): At given week 0, , we assume project
P and consider (i) to (iv) from Definition 1. In addition, we define

v. , , … , are the attributes’ weights, satisfying 0,1 , ∑ 1;

Then Release Readiness RR is defined by the Weighted Arithmetic Mean (WAM)

of degree of satisfaction of all RR attributes as follows: , , … . . , ∑ 1

(1)

WAM considers the relative importance of RR attributes while aggregating them into
one aggregated RR score.

3.3 Release Readiness Improvement Factor

Release Readiness Improvement (RRI) factors are defined as the factor(s) most
influential to improve RR score of a project. For given project P with duration 0, and given time 0, , ∆ , , denotes the increase in RR score
achievable due to allocation of budget towards RR attribute . Project manager
should allocate majority of available budget towards RRI factors to achieve maximum
improvement in RR score.

Definition 3 (RRI Factor): At given time 0, , for a given project P the
RR Improvement factor RRI() is a RR attribute that is determined by the highest
value of ∆ , , among all RR attributes due to a budget allocation of .

168 S.M. Didar-Al-Alam et al.

4 Problem Formulation

4.1 Illustrative Example

To better explain the problem dealt in this paper, we present an example for a
hypothetical project P. We consider two releases called version1 and version2. For
each release, duration is 20 weeks and allocated total budget is $180,000.
Data are collected with respect to three RR attributes: Bug fix rate (BFR), Feature
completion rate (FCR) and Build success rate (BSR).

To evaluate the degree of satisfaction of RR attributes, we applied piecewise linear
membership functions as presented in Eq. 2. This has proven sufficiently good in
many applications [11]. For example, to evaluate satisfaction of BFR we collected the
metric bugs_fixed/day. All values between 1 and 10 represent intermediate values for
the degree of satisfaction. At week 10, for 3 bugs_fixed/day, the degree
of satisfaction of BFR is 0.22 according to Eq. 2. Subsequently, for FCR and BSR we
collected the metrics (closed features/total features) and (successful builds/total
builds), respectively based on the last week observation. At week 10, respective
satisfaction values are calculated as 0.64 and 0.75. Relative weights of BFR, FCR and
BSR are 0.5, 0.3 and 0.2, respectively.

To aggregate the degree of satisfaction of individual RR attributes into an RR
score, we applied operator as presented in Eq. 1. At week 10, RR score for
project P was calculated 0.45. This is an aggregated measure that represents the
perceived readiness of a release normalized to 0,1 .

For project P, the requested and actual RR scores for past 10 weeks are presented
in Figure 1 using dotted and solid lines, respectively. Project manager defined the
requested RR scores based on version1. Version1 was a successful legacy release that
achieved a RR score of 0.85. The gap between actual and requested RR score at week 10 is marked with the red circle.

 1 10

 (2)

10

1

0 x
bug fixed/day

 Analysis and Improvement of Release Readiness – A Genetic Optimization Approach 169

Fig. 1. Actual and requested RR scores and the gap in between for last 10 weeks from project P

We assume that the total budget is distributed equally among all weeks and all
attributes. The project manager has a budget of $9,000 for week 11. ∆ , , denotes the increase in degree of satisfaction of RR attribute in one
week, due to allocation of budget . Based on version1, for BFR, FCR and BSR the
value of ∆ , $3000 are calculated 0.03, 0.06 and 0.06, respectively.

Project manager’s goal is to i) identify RRI factor at week 11, and ii) propose
a strategy for budget allocation for week 11, which ensures a maximum increase
of the RR score and consequently, minimize the gap between actual (0.45) and the
requested (0.57) RR score. We formulated this problem as an optimization problem
and solved in our proposed solution approach. Details of the proposed method are
described in Section 4.2 and in Section 5. Our solution identifies RR attribute FCR as
the RRI factor and propose an optimized budget allocation for a maximum RR
increase. The optimized solution allocated the entire budget of next week in FCR. The
increased score for RR now is 0.51.

In week 11, allocation of an equal budget of $3000 individually in BFR,
FCR and BSR results in an increase of RR score of 0.015, 0.018, 0.012 respectively. It
shows that FCR has higher influence on the RR improvement compared to BFR or
BSR. The proposed solution allocated maximum budget to FCR and successfully
identified FCR as the RRI factor. In Figure 2, we compare the increase in RR score at
t=11 week due to four possible budget allocation strategies:

• S1: Actual RR(t) at 11 week.

• S2: The budget equally distributed among RR attributes,

• S3: The budget equally distributed among minimum satisfied RR attribute, and

• S4: Applying optimized budget allocation.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10 11

R
R

 s
co

re

Week no

Req RR Actual RR

170 S.M. Didar-Al-Alam et al.

Fig. 2. Comparing different budget allocation scenarios at week 11 with respect to increase
in RR scores

4.2 Problem Statement

4.2.1 Decision Variables
We consider a set of three (i.e. n=3) RR attributes , , for example BFR,
FCR, BSR, respectively. For a project P with duration 0, and a given time 0, , the actual degree of satisfaction of these attributes are defined as , , , respectively. is the aggregation of degree of
satisfaction of all RR attributes as presented in Eq. 1. The goal is to provide guidance
on what need to be done next to increase the RR score in an optimal way. For that
purpose, we consider the budget available and being allocable among the
different RR attributes at week .
4.2.2 Constraints
Valid solutions of the optimization problem must satisfy all its constraints. In this
problem, constraint is related to the budget. The allocation of budget for RR
attribute at week 0, is denoted as , , . Total allocation
of budget among all RR attributes must not exceed the available budget at
week . , , (3)

4.2.3 Objective
For project P, at given week 0, , three RR attributes are considered. The
objective function 1 is the aggregation of increased degree of satisfaction
of RR attributes defined as follows:

 1 1 (4)

0 0.01 0.02 0.03 0.04 0.05 0.06

S1

S2

S3

S4

Increase achieved in RR Score at t=11 week

B
ud

ge
t A

llo
ca

ti
on

 S
ce

na
ri

os

 Analysis and Improvement of Release Readiness – A Genetic Optimization Approach 171

In Eq. 4, is the relative weight corresponding to RR attribute defined by the
project manager. 1 is the increased RR score at time 1 . 1 is the increased degree of satisfaction of due to budget allocation ci defined as: 1 ∆ , (5)

In Eq. 5, is the actual degree of satisfaction of attribute . ∆ ,
is the average increase in the actual degree of satisfaction of RR attribute due to
budget allocation .

4.2.4 Optimization Problem
The goal is to maximize RR by allocating limited budget at week 0, among RR attributes in an optimal way. Taking into account all the notations,
constraints and concepts discussed above the optimization problem tackled in this
paper is formulated below. , 1 . . . 3 , 4 , 5 (6)

5 Proposed Solution Approach

5.1 Choice of Solution Approach

We analyze the optimization problem (formulated in Section 4) to determine a
solution approach that finds an optimal solution. Subsequently, we present details of
our proposed method DAICO. The number of RR attributes (n) is a key determinant
of the size of the optimization problem. Another key determinant is the limit of
budget allocation for individual RR attribute at week 0, , denoted as _ , . Addition of new RR attribute will exponentially increase the
problem size. Continuous range of _ , , theoretically allows infinite
attempts to allocate budget while finding an optimal solution. Therefore, an
exhaustive search is impractical to find the optimal budget allocation.

We applied a Genetic Algorithm (GA) to find near optimal budget allocation. GA
was invented from natural process or biological evaluation [12] and has been
successfully applied in various software engineering related problems, e.g. release
planning [13]. Prior success in solving large optimization problems within reasonable
duration and availability of empirically evaluated applications made GA a suitable
choice for our solution approach to identify the RRI factors and recommend
optimized budget allocation to achieve higher release readiness. Key steps of the
proposed method DAICO are discussed in next section.

5.2 Steps of the Proposed Method DAICO

Step 1: Determine Requested RR Score: For any project P with duration 0, ,
project manager determines the requested RR score for week at the beginning

172 S.M. Didar-Al-Alam et al.

of the project. Based on this, the requested RR score distribution over the period 0, is determined. Successful legacy releases are used to guide this process.

Step 2: Define RR Attributes and RR Metrics: Project manager defines a set of
context specific RR attributes and corrsponding RR metrics. Designing of this
measurement program is guided by the Goal-Question-Metric (GQM) [10] paradigm.
Questions correspond to processes (e.g., Implementation, Testing) related to RR
attributes refine the goal “Evaluating overall RR”. A set of RR attributes, corresponding
questions and related RR metrics are presented in Table 1 below. The metrics represent
50% of the RR attributes found from comprehensive industry guidelines3.

Step 3: Compute Actual RR Score: We evaluate the actual RR score by applying
our former proposed approach RELREA. The degree of satisfaction of a set of
individual RR attributes are determined by using the concept of membership function
[3]. The shape of the membership function and corresponding parameters are
determined by the project manager at week 0. Based on [2], we suggest applying
heuristic membership function, e.g., piecewise linear functions. Applying Eq. 1, we
calculate the RR score. We applied the Weighted Arithmetic Mean (WAM) operator
to aggregate degree of satisfaction of individual RR criteria into an overall RR score.
WAM considers relative weights of individual RR attributes which were defined at
week 0 by the project manager.

Table 1. List of RR attributes, corresponding RR metric definitions and acronyms

RR Attributes Questions RR Metric Definitions Acronyms

Satisfaction of feature
completion

To what extend open
features are closed?

of closed features/ # of
open features (per week)

FCR

Satisfaction of features
implemented

To what extent requested
features are completed?

of closed features (per
week)

FI

Satisfaction of build
trends

To what extent the builds are
successful?

of successful builds/# of
total builds (per week)

BSR

Satisfaction of
implementation effort

To what extent the source
code is becoming stable?

of LOC last week / 7
(per day)

CCR

Satisfaction of change
completion

To what extent requested
changes are completed?

of closed changes/ # of
total changes (per week)

CR

Satisfaction of defect
finding

To what extent the testing
activity reducing the
defects?

of defects found /14
(per day)

DFR

Satisfaction of bug
fixing

To what extent detected bugs
are fixed?

of closed bugs/ # of
total bugs (per week)

BFR

Satisfaction of pull
request completion

To what extent pull-requests
are completed?

of closed pull requests/
of total pull requests (per
week)

PCR

 3 http://www.softwareconsortium.com/software-release-
 readiness-criteria.html

 Analysis and Improvement of Release Readiness – A Genetic Optimization Approach 173

Step 4: Optimal Allocation of Available Budget
Initialize GA: To maximize RR, the allocation of available budget applies a GA
based optimization process. A set of initial population is generated to initiate GA.
Each member of this population use a chromosome to abstractly represent a solution
(i.e. budget allocation) of the problem. Genes represent individual RR attributes and
allele (i.e. the value of the gene) represent corresponding , , . , , denotes the allocation of budget for a RR attribute at time 0, . Initial population is generated by allocating random budget to RR
attributes within corresponding _ , .

The fitness function evaluates each chromosome of the population and assigns a
fitness value. Fitness value indicates how good a member is in solving the problem.
We apply the objective function (Eq. 4) as the fitness function such that the constraint
(Eq. 3) is fulfilled. The fitness value of a solution is penalized with lower values if it
violates the constraint.

Crossover and Mutation: Crossover generates new generation of chromosomes from
selected parent chromosomes. We apply Roulette-Wheel method [14] to select the
parent chromosomes. The probability of an individual chromosome to get selected as
a parent is proportional to its fitness value. We apply a one-point crossover, which
split parent chromosome at a single point and exchange the genes among themselves.
The crossover rate limits the amount of genes parents can exchange. While giving
privilege to the high fitness chromosomes in crossover, it is important to preserve the
population diversity as well. Mutation randomly selects chromosomes and modifies
random genes to introduce variance and avoid premature convergence. We apply a
random bit-wise mutation [14] in DAICO. The mutation rate determines the
probability of mutation of a chromosome.

Termination Criteria: After termination within a reasonable duration, GA offers the
highest fitness member as the optimized solution. Two termination criteria are
applied:

i. A pre-defined number of generations (e.g. 300 generations) are produced.
ii. Improvement in best fitness value achieved within 0.5% deviation over 30

generations.

Step 5: RRI factor identification and optimized budget reallocation: Increase in
degree of satisfaction of RRI factors will induce a higher increase of the overall RR
score than the degree of satisfaction increase (by the same margin) of any of the other
RR attributes. Consequently, Assumption1 is applied in RRI factor identification.

Assumption 1: To achieve maximum increase in RR score within a limited budget,
majority of the budget should be allocated in increasing degree of satisfaction of RRI
factor(s).

Based on assumption1, the RR attribute(s) with maximum allocated budget are
identified as the RRI factor(s). The other objective was to recommend optimized
budget allocation among RR attributes to achieve maximum increase in the RR score.
The GA solution represents the optimized budget allocation and ensures maximum

174 S.M. Didar-Al-Alam et al.

RR increase. This guides (re)allocation of available budget among RR attributes to
achieve maximum RR increase.

6 Empirical Evaluation

6.1 Case Study Context

We evaluated our proposed method DAICO in an illustrative case study with respect
to project Publify hosted in GitHub repository. Publify is a powerful open source
blogging engine and one of the oldest Ruby on Rails project started back in 2004. We
selected the project by consulting with four propositions of case selection by Verner
et al. [15]. We retrospectively collected data from two releases called Publify 8.0 and
Publify 7.0 for a duration of 29 and 32 weeks, respectively. This study analyzes
Publify 8.0. Publify 7.0 is considered as a successful legacy release, which aid in
determining expected RR score and parameters for membership functions (MF)
correspond to each RR attribute. Data are collected with respect to eight RR attributes
as listed in Table 1. They are selected using the GQM paradigm. Selected RR
attributes, corresponding relative weights, membership function parameters and
satisfaction improvement per attributes are presented in Table 2 below.

Table 2. RR attributes along with their relative weights, MF parameters, and satisfaction
improvement

RR Attributes FCR FI BSR CCR CR DFR BFR PCR

Max sat for MF 0.5 21 0.75 0 0.95 0 1 48

Min sat for MF 0 0 0.05 5000 0.15 1 0 0

Relative weights 0.09 0.14 0.12 0.18 0.11 0.13 0.12 0.11 ∆ , 0.005 0.006 0.032 0.093 0.022 0.027 0.020 0.044

Case Study Goal: The goal of this empirical evaluation is to demonstrate the
applicability of DAICO method in assisting the project manager and improving the
development process. Two analyses conducted are i) How can identification of RRI
factor aid project managers in improving RR score? and ii) How cost-optimized
budget allocation in DAICO compare with other approaches with respect to RR
improvement?

6.2 Implementation and Tuning of Parameters

We primarily implemented DAICO using the SAS4 tool, a renowned statistical
analysis tool developed by the SAS community. RR was evaluated by the RELREA
approach. The optimization problem (formulated in section 4) is solved by applying a
GA. While selecting the initial population size several values were experimented. For

4 www.sas.com

 Analysis and Improvement of Release Readiness – A Genetic Optimization Approach 175

example, initial population size: 100, 300 and 500 with crossover rate 0.9 and
mutation rate 0.125 (i.e. 1/ , with 8 being the number of RR attributes) were
tested. No significant differences were found either in the RRI factors or in the
achieved RR score. Therefore, we chose 300 as the population size to keep the
computational time lower. Subsequently, this population size is checked with
different crossover rate, e.g., 0.9, 0.8, 0.7 and varying mutation rate of 0.3, 0.5 and
0.2. We could not find any significant performance differences. Therefore, we
decided to apply crossover rate = 0.9 and mutation rate = 0.125 along with an initial
population size =300 to execute GA. We generated up to 300 generations for each
week observations.

6.3 Case Study Results

To analyze Publify 8.0, we divided the duration of release 0, in four quarters and
applied DAICO in the last week of each quarter. At any given week 0, ,
budget allocation in RRI factors induces higher increase in RR score compared to the
budget allocation (by the same margin) in any of the other RR attributes. Early
identification of RRI factors aid project manager to take early action (e.g. re-allocation of
budget) to achieve maximum improvement in RR score. In this study, PCR and BSR
were identified as RRI factor in first and second two weeks of observation, respectively.
None of these factors have highest relative weights or satisfaction improvement values
(i.e. ∆ , . Therefore, without analyzing different budget allocation strategies
RRI identification is not possible. DAICO performs this analysis and successfully
identifies the RRI factors. To achieve maximum improvement in RR score, the majority
of the budget is allocated in the RRI factors. We further analyzed the influence of
DAICO in RR improvement and compared with other approaches. Results of RR
improvement are compared among three different approaches as listed below:

i. S1: Available budget equally distributed among all RR attributes.
ii. S2: Available budget equally distributed among the least satisfied RR

attributes.
iii. S3: Optimized budget allocation from DAICO is applied

Fig. 3. Comparing three budget allocation scenarios with respect to increase in RR score

0

0.01
0.02
0.03

0.04
0.05
0.06

t=6 t=12 t=18 t=23

P
er

ce
nt

ag
e

of
 R

R
 im

pr
ov

em
en

t

Weeks observed

S1 S2 S3

176 S.M. Didar-Al-Alam et al.

Figure 3, presents this comparison using a column chart. DAICO (S3) achieved
highest improvement in RR score compared to S1 or S2 in all four observations. S3
applies an optimized budget allocation strategy and the increase in RR score is
expected to outperform any random budget allocation. We found DAICO is capable
of proposing optimized budget allocation that achieves maximum increase in RR
score within a limited budget. However, due to optimizing towards next week, GA
identifies local optimal solutions. Project manager should carefully choose the budget
to be (re)allocated among the RR attributes.

7 Threats to Validity

DAICO applies GA in RRI factor identification and cost-optimized RR improvement.
GA cannot guarantee optimality, which imposes a threat to the construct validity of
the method. Empirical evaluations have shown that, GA produces reasonably near
optimal solution within a realistic execution time. Therefore, this threat is partially
mitigated. We have not yet incorporated subjective attributes (e.g. user experience) in
our proposed approach. This imposes another threat to the construct validity.
Considering subjective attributes requires more involvement of management staff and
may create error prone results. For simplicity, we consider subjective attributes out of
our scope. Representativeness of the selected project is a threat to the external validity
of the case study. To mitigate this threat, we selected the project by consulting with
four propositions of case selection by Verner et al. [15]. Due to unavailability of
domain experts, the choice of RR attributes, their relative weights, corresponding
membership function parameters are threats to the internal validity. To mitigate this
threat, we applied GQM in RR attribute selection. Selected RR attributes represents
RR attributes from comprehensive industry guidelines. Relative weights for RR
attributes are selected by consulting with two senior industry developers. To avoid
any further bias, membership function parameters are selected based on the past
release data.

8 Summary and Future Research

Achieving the requested RR score prior to releasing the software ensures better
software release. This involves continuous monitoring of RR score, identifying RRI
factors and optimized (re)allocation of available budget among the RR attributes to
improve RR score. We proposed an analytical method DAICO to fulfill this
requirement. We formulated and solved the problem as a genetic optimization
problem. DAICO provides the knowledge of the gap between requested and actual
RR, responsible factors for this gap and a budget allocation strategy to minimize the
gap. We empirically evaluated DAICO with respect to release Publify 8.0 of an OSS
project Publify hosted in GitHub. DAICO has been successful in identifying RRI
factors and increasing RR score higher compared to other approaches.

In future research, DAICO will be extended by considering more context specific
parameters e.g. relation among the RR attributes, effort estimation etc. Broadening the

 Analysis and Improvement of Release Readiness – A Genetic Optimization Approach 177

project scope to proprietary projects and comparison of results with former
observations from OSS projects can be an important step forward. Another major
direction of future research is to analyze the robustness of the results in dependence
on the varying weights of RR attributes and the defined membership functions.

Acknowledgement. This work was partially supported by the Natural Sciences and
Engineering Research Council of Canada, NSERC Discovery Grant 250343-12, and
by the institutional research grant IUT20-55 of the Estonian Research Council.

References

[1] Port, D., Wilf, J.: The Value of Certifying Software Release Readiness. In: ESEM, pp.
373–382 (2013)

[2] Shahnewaz, S., Ruhe, G.: RELREA - An Analytical Approch for Evaluating Release
Readiness. In: SEKE (2014)

[3] Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
[4] Staron, M., Meding, W., Palm, K.: Release Readiness Indicator for Mature Agile and

Lean Software Development Projects. Agil. Process. Softw. Eng. Extrem. Program., 93–
107 (2012)

[5] Quah, J.T.S., Liew, S.W.: Gauging Software Readiness Using Metrics. In: SMCia, pp.
426–431 (2008)

[6] Wild, R., Brune, P.: Determining Software Product Release Readiness by the Change-
Error Correlation Function: On the Importance of the Change-Error Time Lag. In: HICSS,
pp. 5360–5367 (2012)

[7] Reyes, F., Cerpa, N., Candia-Véjar, A., Bardeen, M.: The optimization of success
probability for software projects using genetic algorithms. J. Syst. Softw. 84(5), 775–785

[8] Abe, S., Mizuno, O., Kikuno, T., Kikuchi, N., Hirayama, M.: Estimation of project
success using Bayesian classifier. In: ICSE, vol. 4, pp. 600–603 (2006)

[9] Hahn, J., Zhang, C.: An exploratory study of open source projects from a project
management perspective. In: MIS Research Workshop. Purdue University, West
Lafayette (2005)

[10] Basili, V.R., Caldiera, G., Rombach, H.D., Solingen, R.V.: The Goal Question Metric
Approach. Encycl. Softw. Eng. 1(1), 578–583 (2000)

[11] Bilgiç, T., Türkşen, I.B.: Measurement of membership functions: Theoretical and
empirical work. Fundam. Fuzzy Sets, 195–227 (2000)

[12] Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press
(1975)

[13] Greer, D., Ruhe, G.: Software release planning: An evolutionary and iterative approach.
Inf. Softw. Technol. 46(4), 243–253 (2004)

[14] Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge (1998)
[15] Verner, J.M., Sampson, J., Tosic, V., Bakar, N.A.A., Kitchenham, B.A.: Guidelines for

industrially-based multiple case studies in software engineering. In: RCIS, pp. 313–324
(2009)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 178–193, 2014.
© Springer International Publishing Switzerland 2014

A Generative Development Method
with Multiple Domain-Specific Languages

Edmilson Campos1,2, Uirá Kulesza1, Marília Freire1,2, and Eduardo Aranha1

1 Federal University of Rio Grande do Norte, Natal-RN, Brazil
{edmilsoncampos,marilia.freire}@ppgsc.ufrn.br

{uira,eduardoaranha}@dimap.ufrn.br
2 Federal Institute of Rio Grande do Norte, Natal-RN, Brazil

Abstract. This paper investigates approaches proposed in the literature to
compose domain-specific languages (DSLs) and mechanisms to integrate DSLs
with feature models (FMs) in product line engineering. We propose a method
for the development of generative approaches based on existing related work,
which provides guidelines for the systematic development of DSL composition
integrated with FMs during domain and application engineering. The proposed
method is evaluated through an exploratory study of development of a
generative approach for the experimental software engineering domain.

1 Introduction

Over the last years, there is an increasing usage of domain-specific languages (DSLs)
for the development of software systems. The adoption of DSLs raises the abstraction
level and provides facilities for the generation of models or source code, especially
used in generative approaches to specify and derive products, thus bringing the
potential to increase the productivity of software development in various domains [1].
This development requires modeling product families, designing some means to
derivative products, i.e. specifying products, providing the implementation
components to assemble the products from generators that map the product speci-
fications to concrete assemblies of implementation code assets [2,3]. In this context,
DSLs play an important role because they are used to automatically derive products
(instances) of a system family.

DSLs can also have different specialization levels. Complex projects require
several and different DSLs to specify a complete application. Each DSL can provide a
separate view or perspective of the software system modeling. However, the adoption
of multiple DSLs brings some consequences that need to be addressed. The main
concern is the increased risk of consistency loss among model elements, which
requires greater concern with regard to this issue [4]. Consistency maintenance among
models is a critical challenge involved on DSLs composition. In this way, new
methods, techniques and tools must provide support to these problems.

The use of DSLs in generative development is already considered by some
existing methods [5,6]. The generative development aims to specifying, modeling and

 A Generative Development Method with Multiple Domain-Specific Languages 179

implementing system families or software product lines so that a given system can be
automatically generated from a features specification expressed in some high-level
domain-specific language (DSL). Over the past few years, several methods for
generative development [6,7,8,5] have been proposed. There is also research work
exploring the integration between DSLs and feature models (FMs) [9]. However,
most proposed methods for generative development do not explicitly address the
issues of DSLs composition. On the other hand, some recent studies [8,9] discuss
approaches for software development with multiple DSLs. In this context, this paper
proposes a method for the development of generative approaches focused on the
integration of FMs with multiple DSLs. The method is based on the investigation of
existing research work. The proposed method is evaluated through an exploratory
study of implementation of a generative approach for the automatic derivation of
workflows for controlled experiments in software engineering.

The remainder of this paper is organized as follow. Section 2 describes our pro-
posed method. Section 3 details the exploratory study of evaluation of the proposed
method. Finally, Section 4 presents the conclusions and possible future works.

2 The Proposed Method

This section presents our method for generative development, which extends existing
methods to deal with DSL composition. Existing research work already considers the
usage of DSLs [5] and feature models [9]. However, existing generative development
methods do not explicitly address the issues of development with multiple DSLs.
Some recent research work [10,11] discusses approaches for development with
multiple DSLs. Our proposed method focuses on the integration of FMs and
composition of domain-specific languages.

2.1 Method Background

Our method is based on the approach proposed by Czarnecki and Eisenecker [5]. This
approach is organized in two main phases from product line engineering (PLE): (i)
domain engineering (DE) – which focuses on the identification of common and
variable features/requirements, the definition of a flexible software product line
architecture that addresses the implementation of reusable code assets, and the
definition of DSLs that enable the customization of the architecture and code assets
for generating specific products; and (ii) application engineering (AE) – that includes
activities to derive specific products using the DSLs and code assets producing during
DE. Our method focuses mainly in the domain design and implementation from DE,
and in the product derivation from AE.

Voelter and Visser [7] investigate the application of DSLs in PLE as a middle
ground between FM and code assets of the software product line (SPL). They analyze
the limits of FM expressiveness and show that DSLs can be used as a complementary
element in such cases. DSLs do not represent an alternative mutually exclusive
to FMs, they can be used in combination with FMs in order to expand the possibilities
of product derivation in SPLs. Since we are interested in investigating different

180 E. Campos et al.

strategies to combine FM
contributed to the developm

Regarding the adoption
explored and investigated.
the kinds of existing con
identified: (i) well-formedn
across artifacts; (iii) referen
Moreover, constraints viola
which can be errors or w
Hessellund [8], which propo
specification and applicatio
important role in definin
proposed in this paper, spec

Fig. 1 presents an overv
method is based on the gen
the steps that involve the u
derivation). There are seve
artifacts such as the domai
addition, specific activities
composition of DSLs as an

Ms and DSLs in the DE and AE, their approach
ment of our method.
n of multiple DSLs, several questions still need to
Hessellund et al. [4] conducted a case study to investig

nstraints between DSLs. Four kinds of constraints w
ness of individual artifacts; (ii) simple referential integ
nces with additional constraints; and (iv) style constrai
ation may be still classified according to the severity le
warnings [12]. Some of these issues are addressed
oses a method that provides activities for the identificati
on of composition between DSLs. This work played

ng the development method of generative approac
cifically the activities to compose DSLs.
view of our proposed method. The general structure of
nerative development approach proposed in [5] focusing
use of DSLs (domain design/implementation and prod
eral activities to identify and implement DSLs from in
in requirements, FM, and the product line architecture
were included at each step to support the development
alternative to the limits of FM expressiveness.

Fig. 1. Method Overview

[7]

be
gate

were
grity
ints.
vel,
by

ion,
d an
ches

the
g on
duct
nput
e. In
and

 A Generative Development Method with Multiple Domain-Specific Languages 181

2.2 Method Structure

The method is divided into three stages: (i) Domain Design, (ii) Domain Implemen-
tation; and (iii) Product Derivation. The first two are part of the domain engineering,
and the last one of the application engineering. Each stage has activities that are
performed by specific roles to produce or generate a set of artifacts. Some activities of
our method are based or extend characteristics of other approaches (Section 2.1),
which are represented in the legend of Fig. 1. The method also presents alternative
strategies to integrate DSLs with FMs: (i) using only DSLs; or (ii) combining DSLs
with FMs. The following sections provide an overview of each step.

2.2.1 Domain Design
The aim of this first stage is to identify the existence of different domains and their
relationships. It receives as input a FM, the specification of the domain requirements,
and an architectural model of the SPL (or system family). The input artifacts are then
analyzed by a domain expert: (i) to identify which set of abstractions are more
strongly connected to characterize a domain; and (ii) to identify the overlap between
them. In summary, the activities of Domain Design are the following:

• Separation of domains (Activity 1): It involves the identification and separation of
the SPL scope elements into subdomains based on the input artifacts. The result of
this activity will result in a list of domains, each one representing a specific aspect
to be separately modeled and (possibly) reused;

• Identification of relationships (Activity 2): After the organization into subdomains,
it is necessary to verify the occurrence of references among subdomains and
classify these overlaps based on the degree of entanglement of the subdomains. It
results in a list of domains and their respective relationships.

This last activity brings consequences to the implementation of the DSLs
composition. Once identified, the references must be classified according to the
complexity and nature of the intertwining of the models. The classification task is part
of the Identification of relationships activity and is fundamental to the approach.
Based on the kind of reference, engineers can choose how to implement the DSL
composition during the domain implementation stage. The references also imply the
existence of some kinds of constraints that need to be maintained during the
development of applications with multiple DSLs.

2.2.2 Domain Implementation
The goal of this stage is to implement specific solutions for each subdomain identified
on previous stage. As a result, it must implement the reusable code assets of the SPL
(or system family), as well as the DSLs and respective transformations, which are
used to support the automatic product derivation during application engineering. The
creation of DSLs, either graphical or textual, arises from the need to broaden the ex-
pressiveness of domain abstractions, limited by the representation of the FM [7]. The
DSL implementation also involves the choice of technologies to implement its gram-
mar and respective relationships. Moreover, the usage of modularly composable DSL
has great advantages over monolithic DSL, including reusability and scalability [5].

182 E. Campos et al.

The following three activities are accomplished in this stage:

• Specification of DSLs syntax (Activity 3): It is necessary to choose the technology
to implement a BNF (Backus-Naur Form) grammar that incorporates the variabil-
ity of the SPL in each domain. The syntax of the DSL must allow specifying any
product to be generated from the SPL reusable assets, including those that are not
possible using only FM, but can be addressed using more expressive DSLs;

• Specification of the composition (Activity 4): The purpose of this step is to
implement the connections identified previously, according to the reference type.
This activity will result in changes to the built grammar and, if necessary, the
implementation of additional methods to validate restrictions of the DSLs;

• Implementation of transformations (Activity 5): Finally, it is necessary to
implement transformations that allow defining the mapping between the DSLs and
the reusable code assets of the SPL. This activity will result in a specification of
transformations ready to be executed in AE during the product derivation.

A complementary task to the activity of specification of the composition is the
implementation of restrictions. Restrictions must be specified to validate primarily the
consistency between the models of the DSLs. In some cases, such restrictions need to
be implemented to complement the rules defined by the DSL grammar.

2.2.3 Product Derivation
The product derivation is the final stage of the method and belongs to the application
engineering phase. The goal of this step is to generate products (systems) from the
artifacts produced in the DE phase. The generation of products may occur in a manual
or automated way. Generative development motivates automated product derivation
using DSLs. The resultant product – software system – may be a partial or complete
final product, according to the derivation strategy used. Our method provides two
different strategies to product derivation. The first one adopts only DSLs, and the
second one integrates DSLs and FMs. They represent distinct alternatives with
different purposes for the same goal.

2.2.3.1 Product Derivation with DSLs
In this strategy, the developed DSLs in domain engineering are used to model
products (systems) that we are interested to generate. As we are dealing with a
composition approach, each DSL is used to specify a specific part of the final product.
In this case, it is also necessary to manage the consistency between the DSLs and
validate existing restrictions. Validations are only possible due to the implementation
of restrictions tied to DSLs grammars. The modeling of the product using DSLs
defines the features that will be part of it. The transformation models implemented in
the Domain Implementation stage are used to generate the final product from product
modeling using DSLs. The DSLs grammars must address all the variables elements of
the SPL. This also allows for model validation before generating the final
specification of the product, ensuring that the specified product can be transformed to
generate the final product without violates any domain restriction.

 A Generative Development Method with Multiple Domain-Specific Languages 183

2.2.3.2 Product Derivation with FMs and DSLs
This strategy is more appropriate when deriving products with similar characteristics
to previous ones already generated in the same approach. In other words, the strategy
is used when there is already existing DSL modeling containing fragments that can be
reused to generate new and very similar products. Therefore, it is necessary to identify
those reusable modeling fragments, and associate them to features in a FM. This
initial effort will only occur on the first use of this strategy or during the SPL
evolution. The first step in the product derivation for this strategy is to specify a
selection of features in the FM. After that, it is generated a partial modeling of the
desired product expressed in the DSLs. The application engineer can then edit and
complement the specification of its product using the DSLs. Finally, this specification
is automatically transformed to generate the code assets corresponding to the request
product, similar to the previous strategy.

3 Exploratory Study

This section presents an exploratory study conducted aiming to evaluate the proposed
method. Our study involves the composition of different DSLs to model controlled
experiments in software engineering. Moreover, it has used both product derivation
strategies of our method when generating specification of experiments.

3.1 Study Research Questions

The main aim of our exploratory study was to evaluate the proposed method at work,
through the development of a generative approach that involves the composition of
multiple DSLs. In particular, the exploratory study was developed in order to answer
the following research questions:

RQ1. How the composition of DSLs can be specified and implemented during the
domain engineering using our method, the xText framework and Ecore
models?

RQ2. How to implement the product derivation strategies of our method that
involve the DSLs and feature model composition in application engineering?

RQ3. Which kind of reuse can be accomplished with the DSLs in the domain and
application engineering?

In order to answer these questions, the proposed method was applied to a real domain
to investigate how to compose DSLs during the domain engineering and how to use
derivation strategies during the application engineering with DSL composition.

3.2 Target Generative Approach

In our study, we have established the following prerequisites to be addressed by the
generative approach to be modeled and implemented: (i) to belong to a real domain
documented in the literature; (ii) to have a scope with enough complexity to be sec-
tioned into smaller views, thus allowing reuse of parts and modeling of different

184 E. Campos et al.

DSLs; and (iii) to have req
was not able to express. W
Experimental Software En
method in the developmen
cialized workflows for eac
The approach is under study

Fig. 2.

Fig. 2 presents an ove
controlled experiments. It is
The planning perspective a
with their respective pro
specification is then transfo
and configuration files. A
workflow engine web syst
forms, which are responsib
the subjects’ activities. Fig
between the perspectives is
which are not presented in
more interested in the appli

3.3 Results Main Summ

This section presents a sum
during the method applica
artifacts can be found at http

Initially, based on the k
experiments [13,15,16,17]
commonalities and variab
architectural models of the
workflows of the controlled
FM and architecture mode
The method was applied fo
each stage. A summary of
presented below.

quirements and variabilities whose representation the
We have chosen the domain of controlled experiments
ngineering (ESE). In particular, we apply the propo
nt of a model-driven generative approach to generate s
h experiment subject according to the experiment desi
y and development in our research group [13,14,15,16].

Controlled experiment approach overview

erview of the model-driven approach for modeling
s presented from two perspectives: planning and executi
ggregates a series of elements used to specify experime

ocesses and metrics during the planning phase. T
ormed with the aim of generating workflow specificati

After this step, these generated files are deployed in
tem in order to generate specialized workflows and w
ble for the execution of the experiment and monitoring
g. 2 also presents this execution perspective. The mapp
s implemented by means of model-driven transformatio
n this paper due to space limitation. In our study, we
cation of the method to the planning perspective.

mary

mmary of the main results in terms of produced artifa
ation in our exploratory study. More details about th
p://sites.google.com/site/generativedsl.
know-how of our research group carrying out control
, we extracted the domain requirements and mode
bilities using a FM. Finally, we also specified
e web system responsible for instantiating and execut
d experiment approach [13]. These artifacts – requireme
el – were then provided as input artifacts for our meth
ollowing its activities in order to produce new artifact
f the artifacts produced in each activity is systematica

FM
s in

osed
spe-
ign.

g of
ion.
ents
This
ions
n a
web
g of
ping
ons,
are

acts
hese

lled
eled
the

ting
ents,
hod.
s at
ally

 A Generative Developm

Activity 1: Separating Subd

In this first step, from the
ceived as input artifacts, we
mains, according to their re
our experimental generativ
subdomains. Each identifie
controlled experiment dom
Process, involves the eleme
needed data from the subj
groups the features that al
variables of the specified e
The other, (iii) Experimen
setting the treatments and
experiment. A treatment ca
that can have different co
Questionnaire, allows spec
from the experimental subje

Fig. 3. FM

Fig. 4

ment Method with Multiple Domain-Specific Languages

domains
feature model and domain requirements specification

e analyzed the features and grouped them into four sub
elationships and reuse opportunity. Fig. 3 shows the FM
e approach by highlighting the features from the differ
ed subdomain represents a specific view or aspect of

main that can be reused in other domains. The first one,
ents that define the procedures to be followed to collect
ects in a controlled experiment. The second, (ii) Met
low specifying metrics related to some of the depend

experiment and that will be collected during its executi
t, is defined for the ESE context and it basically allo
the control variables that are required for the specif

an be composed of the combination of one or more fact
ontrol levels. In addition, the last one subdomain,
cifying questionnaires with the aim of collecting feedb
ects.

M of the experiment approach with subdomains

4. Relationships between the subdomains

185

re-
bdo-
M of
rent
the

, (i)
the

tric,
dent
ion.
ows
fied
tors
(iv)

back

186 E. Campos et al.

Activity 2: Identifying Relationships
After the separation of the subdomains, it was identified the existing overlaps between
them, which were then classified in terms of the degree of complexity of the
references. In this activity, the requirement specifications and constraints represented
in the FM were used as input artifacts. This analysis resulted in the identification of
eight reference points between the subdomains, which are illustrated in Fig. 4 and
discussed below.

The Process subdomain is the only that does not reference another one. For this
reason, it can be used to specify processes from distinct domains such as software de-
velopment or experiment processes, or even a business process. The Experiment
subdomain needs to reference the processes, metrics and questionnaires that are part
of the experiment. A Questionnaire element is referenced in an experiment. Each
questionnaire may reference one or more processes, because it defines specific ques-
tions to be accomplished during the process activities. Moreover, the Metric
subdomain is always related to a process and must indicate the artifacts, activities or
tasks of this process that have to be considered for measurement. Here we identified a
typical reference case with additional constraint where the referenced element in the
metric has to respect the restriction of being an artifact, activity or task in the existing
related process.

Activity 3: Specifying DSLs Syntax
This is the first activity of the implementation stage, which aims to implement the
DSLs grammar for each subdomain identified in the previous stage. It also requires
selecting the technology to be used. Since one of the goals of this study is to
investigate MDE technologies to implement composed DSLs, we chose a model-
driven framework for the DSLs development based on Ecore metamodel from the
Eclipse Modeling Framework (EMF) [18], known as xText (http://eclipse.org/xtext).
Thus, each subdomain resulted in a DSL with its own syntax, which can be used alone
or combined.

Activity 4: Specifying Composition
After specifying the DSLs grammar, we have specified and codified the references
between the DSLs (Activity 2). We changed the DSLs grammar using special features
from xText and wrote some additional validations in the Java language. The
composition specification varies according to the reference type to be implemented.
In our study, two reference types were identified in the investigated domain: (i)
simple references and (ii) references with additional constraints.

a) Simple references: It was used explicit references, natively supported by xText.
The framework offers the possibility that a metamodel imports another one in order to
implement the explicit references among models. Since we are working with Ecore-
based DSLs, xText has a model generator created for each grammar and responsible
for the equivalent Ecore metamodel generation. To perform the importing, it is only
needed to inform the grammar model generator path to create the reference. After
that, each referenced metamodel can be recognized by an alias name making possible
to explicitly refer to anyone of its elements. Fig. 5 illustrates an example of the
ExperimentDSL grammar referencing the ProcessDSL process element.

 A Generative Developm

Fig. 5.

b) References with additio
simple references, but it w
based grammars, the mode
element beyond helper clas
and so on. We used this xT
specific DSL. Java methods

Activity 5: Implementing T
In this last activity of the d
text transformations were
specification using the DSL
experiment to be executed
language (http://eclipse.org
was used to implement the t

Activity 6: Modeling the Re
The activity six and seven
according to the chosen pro
these activities in both stra
one time for each strategy. T

Experiment 1: Programming

productivity u

Experiment 2: Configuration

hension of con

Experiment 3: Testing Tech

two black-box

a) Derivation using only
experiment presented, we
engineering to model the fe
strategy, the modelling wa
xText framework. Fig. 6
ProcessDSL.

Fig. 6. S

ment Method with Multiple Domain-Specific Languages

 ExperimentDSL referencing ProcessDSL

onal constraints: In this case, we have also used expl
was needed to create extra validation routines. In Eco
el generator also creates Java classes to each DSL mo
sses with specific function, such as formatting, validati

Text support to encode additional restrictions required fo
s were implemented to validate this reference type.

Transformations
domain engineering phase, model-to-model and model
implemented to transform a ESE controlled experim

Ls to workflows and configuration files that represent
d in the workflow engine web system [13]. The QV
g/mmt) and Acceleo language (http://eclipse.org/accel
transformations.

equirements using DSLs
n belong to the application engineering phase. They v
oduct derivation strategy. Aiming to assess the operation
ategies, three controlled experiments were derived tw
The experiments were:

g Languages, adapted from [19], the goal is to compare the developm

sing two programming languages.

n Knowledge, adapted from [20], the goal is to investigate the compre

nfiguration knowledge in three product derivation tools in the SPL.

hniques for SPL, adapted from [21], the goal is to analyze the impac

x testing techniques (hereby called treatments) for SPL products derive

DSLs: Based on the definition of the scope of e
have used the four DSLs implemented in the dom

features to be included in each derived experiment. In
as realized manually using the specific resources of

shows a specification example of a task using

Specification of a task using the ProcessDSL

187

licit
ore-
odel
ion,
or a

l-to-
ment

the
VTo
leo)

vary
n of

wice,

ment

e-

ct of

ed.

each
main

this
the
the

188 E. Campos et al.

Each part of the experiment
these modeling formed the

b) Derivation combining D
reusable modeling fragmen
the FeatureMapper framew
This FM was used to choo
partial modeling of the ex
manually edited to conclud
example of this automatic r
framework.

Fig

Activity 7: Applying Comp
After or during the modelin
need to compose the mode
the inclusion of resources f
consistency, and (iii) pres
maintenance checking is th
the restrictions are maintain
of the encoding performed
xText alert resources. The
pop-ups with suggested valu

Fig

t was modeled using the correspondent DSL. The result
final specification of each experiment to be derived.

DSLs and FMs: In this strategy, we initially identif
nts and then represented them in a FM. For this, it was u
work (featuremapper.org) to represent the features in a F
ose the modeling fragments to be reused and after tha
xperiment using the DSL was generated, which can
de the specification of the experiment. Fig. 7 illustrates
reuse of modeling using the FM built with FeatureMap

g. 7. Derivation using FeatureMapper

position
ng of the requirements of the experiment to be derived, i
els applying the composition between them. This invol
for (i) navigation between models, (ii) maintenance of
sentation of guidance during the modeling activity. T
he method key-point because it allows examining whet
ned or violated. This consistency checking is conseque
on the specification step, and it becomes visible from
xText can provide warnings or errors guidance and a

ues (Fig. 8) during the typing.

g. 8. Pop-up with reference suggestions

s of

fied
used
FM.
at a

n be
s an
pper

it is
lves
the

The
ther

ence
the

also

 A Generative Developm

We also investigated the
case study performed in [4]
sue, the xText uses the DSL
order to check missing attri
displayed, e.g. when a task
name before the description

Fig. 9. P

The second restriction ty
better supported by xText.
implementation in the ca
presented in the next paragr

References with addition
QuestionnaireDSL. In this
others, but with customize
messages are used to vali
conforming encoded in the
using MetricDSL for the C
ReplyTimeOLIS metric is
activityBegin refers to an
BuyerAgentProcess. An err
the validation routine crea
whether the activity is a val
metric to refer to activities f

Fig. 10. M

The last restriction type
also requires the implemen
any scenario to apply this k
experimental generative ap
typed with lowercase start l
would generate only a warn

ment Method with Multiple Domain-Specific Languages

e xText support for the four restrictions types listed in
]. For the restriction related to the well-formed artefacts
L grammar to confront the syntax used in the modelling
ibutes or incorrect syntax. In case of failure, error alerts

k modelling using ProcessDSL does not inform the proc
n attribute. Fig. 9 shows an example of an error message.

Pop-up indicating not well-defined artefacts

ype, the simple referential integrity, is the constraint tha
The integrity validation among models only requires c

ase of references with additional restrictions, such
raph.
nal restrictions occurred in our study in the MetricDSL
current stage, these restrictions result in similar effect

ed alerts messages presentation. The warnings and er
date the constraints and are introduced through pop-

e specification step. Fig. 10 illustrates the metrics model
Configuration Knowledge Experiment. We can see that

related to the OLISProcess process but its attrib
activity (Question 1) that belongs to another proces

ror message was displayed as a result of the execution
ated in the specification step. The error is shown e
lid activity in other process. It does not make sense for
from different processes.

Metric modeling violating additional restriction

is the style constraint. The specification of this restrict
ntation of validation methods. Our study has not identif
kind of restriction. One possible situation to apply it in
pproach is to create a style that prevents processes to
letter. As this rule would not be an actual style, its violat
ning.

189

the
s is-
g in
are

cess
.

at is
ode

as

and
s to
rror
-ups
lled
the

bute
ss –
n of
even
this

tion
fied
the

o be
tion

190 E. Campos et al.

3.4 Discussions

After the usage of the method in our exploratory study, we can reflect about some
preliminary results about its applicability. The study investigated the application of
mechanisms for the integration of FMs and DSLs using current MDE technologies in
order to answer the research questions of this study (Section 3.1).

DSL Composition (RQ1). The results showed that it is possible to apply our method
to compose DSLs during domain engineering using technologies based on MDE. In
our study, DSLs have been implemented using the xText framework, which is based
on the Ecore meta-model. References between grammars were implemented using
explicit references between models, which allows the xText to automatically manage
the consistency between models during application engineering. Resources native of
the xText, such as intelligent assistants, also enabled navigation assistance and models
repairs during the modeling, and they were useful to validate the models built with
DSLs. Also, the constraints among DSLs were specified and validated by only
specifying the DSLs grammar. Just in the case of references with additional con-
straints and styles constrains that it was necessary to implement extra methods to
validate the constraints of the domain using the Java language. Table 1 presents a
summary of the implementation that was performed using xText to implement each
constraint types.

Table 1. Summary of constraints implementation using xText

Constraint type Implementation using xText

Well-formedness of individual

artifacts

The grammar of the own DSL defines the format of the its

element/attribute

Simple referential Using only explicit references

References with additional

constraints

Using explicit references among grammars and extra method to

validate the constraint

Style constraints Using method to validate the style

Derivation Strategies (RQ2). In our study, we derived products using both strategies
provided by the method: (i) using only DSLs and (ii) combining DSLs with FMs. As
a result, we observed that the first one seems more appropriate to derive new products
from a SPL, when there is no reusable modeling fragments between the different
products. For instance, when the research teams are still beginning to specify their
controlled experiments using the generative approach. On the other hand, the strategy
that integrates DSLs with FMs is more appropriate when there are already other
similar products derived with model fragments that could be reused. We used the
FeatureMapper framework to support the implementation of this second strategy. In
our study, we have not quantified the spent effort in the application of each strategy.
However, we noticed that the strategy combining DSLs and FMs requires additional
effort in preparing the FMs. It is important to emphasize that such effort is necessary
only in the first application of the strategy, in order to prepare the model fragments to
be reused through of their mapping to the FM. Table 2 summarizes the main findings
related to the use of each of the strategies in our exploratory study.

 A Generative Development Method with Multiple Domain-Specific Languages 191

Table 2. Comparison of Derivation Strategies

Scenario/Strategy Only DSLs DSLs with FMs

Reuse of modeling fragments Manual (copy-paste) automatic (selection of features)

Derivation of new products (without

fragments to be reused)
most indicated less indicated

Derivation similar products (with

fragments to be reused)
less indicated most indicated

extra effort needed

(in the first application)
none

Specifying the FM to represent

variabilities

Reuse with the DSLs (RQ3). The application of the method also allowed us to
observe that the separation of domains into smaller views favors the reuse in the
generative approach. In our study, we have applied the method on a specific scenario,
but some of our DSLs could be reused in other contexts. The ExperimentDSL, for
example, can be used to model experiments from other domains. On the other hand,
the MetricDSL is always related to a process; whereas the QuestionnaireDSL, by
definition, may or not be related to processes. Finally, the ProcessDSL is the only
independent DSL in our approach that does not refer to any other. Because of that, it
can be reused in different contexts, such as in the modelling of business or software
processes. If we consider the reuse inside the same domain – in our case, reuse
between ESE controlled experiments – we can notice that the processes, metrics and
even questionnaires modeled for a given experiment using our DSLs can be
completely or partially reused in the context of other experiments. Hence, despite
reuse has not been explicitly investigated in this study, there is a great opportunity to
explore the reuse of the specification of an experiment using our DSLs. We are
currently conducting new studies to evaluate these issues.

4 Conclusions and Future Work

This paper presented a method for the development of generative approaches with
multiple DSLs. Mechanisms to integrate DSLs and FMs, and specifying the DSLs
composition were investigated through an exploratory study using the proposed
method. Our study focused on the usage of current MDE technologies to provide
support to the application of the method, resulting in the composition of Ecore-based
DSLs implemented using the xText framework. The method was applied in the
modeling and composition of DSLs that allow specifying and executing controlled
experiments in software engineering. Our main contributions were: (i) to present a
summary of existing approaches to deal with the DSLs composition and generative
approaches; (ii) identification and implementation of different integration strategies
that can occur between FMs and DSLs during generative development; (iii) proposal
of a generative development method that supports multiple DSLs; (iv) evaluation of
the proposed method through the design and implementation of a generative approach
for the experimental software engineering domain.

192 E. Campos et al.

We are currently conducting other studies to apply the method to other domains.
The main purpose is to evaluate the proposed method considering different settings
and contexts. Furthermore, we also intend to conduct more controlled studies with
more participants to understand and analyze the method usability, as well as compare
quantitatively the different derivation strategies regarding the reuse. Finally, we also
plan to evaluate the usage of other MDE frameworks, which can be used to support
the development with composition of multiple DSLs.

Acknowledgments. This work was partially supported by National Institute of
Science and Technology for Software Engineering (INES) under grants CNPq
573964/2008-4 and 552645/2011-7.

References

1. Bräuer, M., Lochmann, H.: Towards Semantic Integration of Multiple Domain-Specific
Languages Using Ontological Foundations. In: ATEM/MODELS (2007)

2. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Professional.
Addison-Wesley (2011)

3. Weiss, D., Lai, C.T.: Software Product-Line Engineering: A Family-Based Software
Development Process. Addison-Wesley Professional, EUA (1999)

4. Hessellund, A., Czarnecki, K., Wąsowski, A.: Guided Development with Multiple
Domain-Specific Languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 46–60. Springer, Heidelberg (2007)

5. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional, New York (2000)

6. Greenfield, J., Short, K., Cook, S., et al.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley, EUA (2004)

7. Voelter, M., Visser, E.: Product Line Engineering using Domain-Specific Languages. In:
15th SPLC, Washington, pp. 70–79 (2011)

8. Hessellund, A.: Domain-specific multimodeling. PhD Thesis, IT University of
Copenhagen, Denmark (2009)

9. Lochmann, H., Hessellund, A.: An Integrated View on Modeling with Multiple Domain-
Specific Languages. In: IASTED on ICSE, pp. 1–10 (2009)

10. Groher, I., Fiege, L., Elsner, C., Schwanninger, C., Völter, M.: Solution-driven software
product line engineering. In: Aspect-Oriented Model-Driven Software Product Lines: The
AMPLE WAY, pp. 316–344. Cambridge Univ. Press, NY (2011)

11. Zschaler, S., Sánchez, P., Nebrera, C., Fuentes, L., Gasiunas, V., Fiege, L.: Produt-driven
software product line engineering. In: Aspect-Oriented Model-Driven Software Product
Lines: The AMPLE Way, pp. 287–315. Cambridge University Press, New York (2011)

12. Bézivin, J.F.: Using ATL for Checking Models. In: GraMoT, pp. 69–81 (2005)
13. Freire, M., Accioly, P., Sizílio, G., Campos Neto, E., Kulesza, U., Aranha, E., Borba, P.: A

Model-Driven Approach to Specifying and Monitoring Controlled Experiments in
Software Engineering. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.)
PROFES 2013. LNCS, vol. 7983, pp. 65–79. Springer, Heidelberg (2013)

14. Freire, M., Aleixo, F., Kulesza, U., Aranha, E., Coelho, R.: Automatic Deployment and
Monitoring of Software Processes: A Model-Driven Approach. In: SEKE (2011)

 A Generative Development Method with Multiple Domain-Specific Languages 193

15. Campos Neto, E., Freire, M., Kulesza, U., Aranha, E., Bezerra, A.: Composition of
Domain Specific Modeling Languages: An Exploratory Study. In: 1st MODELSWARD,
Barcelona, vol. 1, pp. 149–156 (2013)

16. Freire, M., Kulesza, U., Aranha, E., Jedlitschka, A., Campos Neto, E., et al.: An Empirical
Study to Evaluate a Domain Specific Language for Formalizing Software Engineering
Experiments. In: SEKE, Vancouver, pp. 250–255 (2014)

17. Campos Neto, E., Bezerra, A., Freire, M., Kulesza, U., Aranha, E.: Composição de
Linguagens de Modelagem Específicas de Domínio: Um Estudo Exploratório. In: III WB-
DSDM, Natal, vol. 8, pp. 41–48 (2012)

18. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional (2008)

19. Wohlin, C.: dRuneson, P., Höst, M., Ohlsson, M., Wesslén, A.: Experimentation in
Software Engineering: An Intoduction. Kluwer Academic Publishers (2000)

20. Cirilo, E., Nunes, I., Garcia, A., Lucena, C.: Configuration Knowledge of Software
Product Lines: A Comprehensibility Study. In: VariComp., New York, pp. 1–5 (2011)

21. Accioly, P., Borba, P., Bonifácio, R.: Comparing Two Black-box Testing Strategies for
Software Product Lines. In: VI SBCARS (2012)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 194–208, 2014.
© Springer International Publishing Switzerland 2014

Role of Software Product Customer in the Bring Your
Own Device (BYOD) Trend: Empirical Observations

on Software Quality Construction

Frank Philip Seth, Ossi Taipale, and Kari Smolander

Department of Software Engineering and Information Management
Lappeenranta University of Technology, Lappeenranta, Finland

{frank.seth,ossi.taipale,kari.smolander}@lut.fi

Abstract. The Bring Your Own Device (BYOD) trend, allows employees to
bring personal devices of their choice into the work environment. Since quality
goals vary between employees and the organization where they work, it is diffi-
cult for software developers to deliver quality product that will satisfy both par-
ties at the same time. This study presents seven findings: First, visible features
of the software and functional requirements supersede nonfunctional (quality)
characteristics when dealing with customer requirements; second, quality de-
pends more on the market decision than standards’ requirements; third, compa-
nies focus on ‘just enough quality’ and not on ‘high quality’ products; fourth,
software quality has a dimension of cost; fifth, organizations try to alleviate
threats brought by employees’ device or software through policies (quality as-
pect of policy) ; sixth, simplicity and attractiveness of devices sell poor quality
software; and seventh, the number of product features does not affect the sense
of quality, but quality characteristics do. These findings identify the role of
software customers in deciding about the quality of products and the impact in
the BYOD. Software is developed according to end-user requirements, and the
end-user has the freedom to choose devices, applications software, and place to
use the devices including working environment, where the software may cause
risk to the company.

Keywords: Consumerization, BYOD, Bring Your Own Device, software quali-
ty construction, functional requirements, nonfunctional requirements, attrac-
tiveness, software quality, quality characteristics.

1 Introduction

Software quality construction is a complex sociotechnical process (Hovenden et al.
1996) influenced by technical and nontechnical stakeholders, processes, organization-
al systems and tools (Park et al. 2012; Seth et al. 2014a; Seth et al. 2014b). It is diffi-
cult to define quality, there is no one ultimate definition of quality agreed upon all
stakeholders (Garvin 1984; Seth et al. 2012; Smolander 2002), and either there is no
specific approach to achieving software quality. For example, Kitchenham and
Pfleeger (1996) describe quality as aiming an elusive target.

 Role of Software Product Customer in the Bring Your Own Device (BYOD) Trend 195

This study adopts the ISO/IEC 25020 (2007) standard definition of software quality
as: internal quality and external quality. The standard defines the internal software
quality as the capability of a set of static attributes of a software product to satisfy
stated and implied needs when the software product is used under specified condi-
tions; and external software quality as the capability of a software product to enable
the behavior of a system to satisfy stated and implied needs when the system is used
under specified conditions.

Consumerization of IT, which is also termed as the Bring Your Own Device
(BYOD) (Sangroha and Gupta, 2014; Scarfo, 2012), is a phenomenon where end-
users bring their personal devices in the production environment, i.e. working places.
BYOD phenomenon has increasingly gained popularity in the past decade (Scarfo,
2012). This phenomenon has also shaped the software and hardware industry; soft-
ware and hardware companies try to reorient products and service designs around the
individual end-users. For example, software development is focusing on the individu-
al consumer as the primary driver of product and service design. There is also an
increase use of smart phones, and tablets, which necessitates some companies and
business to conform to delivering services into those platforms.

Several challenges surround software industry with regards to BYOD trend. One of
the challenges is to develop quality software at reasonable cost and time (Osterweil,
1997), yet to meet quality requirements, such as security for achieving organizational
goals in the company where the end-user works (Scarfo, 2012). BYOD phenomenon
causes the software developers also to think about both the hardware i.e. devices, and
the business environment where the end-user of the device is working. This means,
although the software aims to meet end-user requirements, it should also meet some
business requirements, which in this respect vary among the users depending on the
type of business they are engaged.

This study considers the opinion that among the software engineering objectives is
to reduce costs and improve product quality (Osterweil, 1997). However, the ultimate
goal for software developing companies is not only to develop quality products, but
also to win more customers for the purpose of acquiring economical gains and profit
(Barney and Wohlin, 2009). Profit making aspects cannot be isolated from the aims of
software development; otherwise the software companies will fail to operate. Barney
and Wohlin (2009) argue that software quality construction should focus on achieving
some common goals. In the BYOD trend, it is challenging to have a common goal
between the software developing companies, individual end-users of software prod-
ucts, device manufacturing companies and the companies where the end-users work.
So, in order to make profit, software-developing companies choose to optimize quali-
ty based on their customers and add value (Perner, 2008) that will also benefit com-
panies where the software or devices will be used in other environments beyond
personal use. Savolainen et al. (2007) discuss the importance of varying requirements;
varying requirements that are adaptable in various situations provide key competitive
advantages that allow economic success for the product line (Clarke and O’Connor,
2012).

This empirical study investigates practical experiences in software developing
companies. The objective of the study is to understand the challenges to meet quality

196 F.P. Seth, O. Taipale, and K. Smolander

requirements of software products in the BYOD environment. A qualitative approach
is adopted to increase understanding of how customer satisfaction and preferences
influence the way software developing companies deal with software quality. Thus,
the findings are expected to provide useful information that is applicable in the day-
to-day software development activities. The scope of this study is confined to soft-
ware development activities in the software companies. The research question studied
is: How does the role of a software product customer influence software quality con-
struction in a BYOD environment?

The rest of the paper is organized as follows: Section two presents the related lite-
rature; Section three presents research methodology and data analysis; Section four
present results; Section five presents discussion and finally, Section six presents the
conclusions of the study.

2 Related Literature

Software developing companies try various approaches to increase quality of software
products. For example, Mäkinen and Münch (2014) elaborate test-driven development
as one of many approaches. However, there is a different view of quality when the
software is used in other environments, which were not included in the testing. Soft-
ware is typically tested in a given set of parameters and scope. When the parameters
and scope are changed, the quality of software also changes. This means, the quality
of a software product is defined at given parameters. When any of the parameters is
altered, the quality may be evaluated differently. For example, in the BYOD pheno-
menon, the software is not tested in various working environments where the end-user
will use their devices, which imply that quality of the software may not meet the qual-
ity standards of the end-user’s working place.

In the BYOD trend, customer-centered software development is the key success
factor for both software development companies and hardware companies. In the
quest to increase market share, software companies try to be innovative; in this way
they attract more customers and boost sells. However, there is a risk involved. For
example, Aslhford, (1985) report that detailed specification standards may discourage
innovation. This means that some of the software development companies are flexible
with some standards and regulations as long as their customers are satisfied with the
products. Thus, quality is leaning to the customer and little emphasis is placed on
other quality characteristics, which are not immediate end-user demands, hence im-
posing threat to the end-users’ work place.

Software industry and technology at large have gained a pace that is ahead of stan-
dards and regulatory authorities (Kalyani, 2013). For example, business and services
are migrating to clouds in the absence of the standards and regulations in that area,
which contributes to the risk. While trying to innovate products, attend customer sa-
tisfaction and reduce costs (Osterweil, 1997), businesses are kept at risk especially
when the employees of companies use their own devices, and also hook their devices
to other online services which are not standardized or regulated, such as phishing
sites, free apps and online downloadable software sites.

 Role of Software Product Customer in the Bring Your Own Device (BYOD) Trend 197

Types of devices such as smartphones, tablets and other handhelds, have influence
on the type of software the end-user will use. In many cases, end-user will choose the
device before choosing the platform or the software running in such devices, because
he or she is attracted to the device. Eventually, the BYOD trend leads to end-users
bringing their own software (BYOS) for their own devices, which means more diffi-
culties in dealing with organizational software quality requirements and risk mitiga-
tion (Sophos 2014).

The end-user purchasing behavior suggests that decision is influenced by what they
see or feel than what could be the actual value of the product. Savolainen et al. (2007)
argue that customers do not care how the products are created; they value how well
the product satisfies their needs. In this view, the quality of the software would also
be judged and evaluated based on the visible or felt features of the software or device
such as interfaces, graphics, camera, etc. For example, recently, some studies indicate
that even size of the device contribute to customer satisfaction (Xue and Chen, 2011),
and therefore influence the decision to buy a particular device. On the other hand,
Hashmi et al. (2013) argue that cost has an influence to customer satisfaction. So,
when we look into software quality in the light of BYOD trend, we should also con-
sider the devices and software in terms of cost. According to Hashmi et al. (2013) we
see that the users will buy what they are satisfied with, but considering the cost and
not other quality characteristics in general. Thus, free software or low priced software
and devices are likely to fall in user preferences and hence users use them in the
working environment, which may result to security threats.

3 Research Methodology and the Sample

40 semi-structured interviews were used to collect information from testers, develop-
ers, managers, R&D personnel, marketing personnel and quality control specialists.
The study involved 13 software-developing companies. We collected data during
three interview rounds. The sample was identified using polar type criteria (Eisen-
hardt, 1989) to cover different types and sizes of companies in terms of mode of oper-
ation, business domains, etc. (Table 1). The sampling was theoretical (Eisenhardt,
1989). The goal of theoretical sampling is not to find a representative sample of all
possible variations but to gain a deeper understanding of the analyzed cases and iden-
tify concepts and their relationships for the emerging theory (Eisenhardt, 1989).

The interview questions were sent to the companies beforehand so that the inter-
viewees could prepare for interviews. The interviewees were let to answer the ques-
tion without further guidance so that they could reveal new concepts beyond the
questions. All interviews were recorded and transcribed by a specialized company. At
the end of each interview, the data was analyzed and leads were identified. Every time
a new lead was found, the interview questions were modified to follow the leads for
the next interview session. We analyzed the data using the analysis tool Atlas.ti
(2005). The study followed the grounded theory method (Strauss and Corbin, 1990).

The size of company is defined by the EU SME definition (EU, 2003). Themes and
research questions are available at http://bit.ly/intquest.

198 F.P. Seth, O. Taipale, and K. Smolander

Table 1. Business domain, data collection rounds, company size and role of interviewees

CASE Business
domain

1st Round
interviews

2nd Round
interviews

3rd Round
interviews

Company
size

Role of the inter-
viewees

A Inventory
management
systems.

1 Small R&D and quality
assurance manager
(1).

B Banking and
insurance.

4 5 Large Test analysts (1), test
designer (2), De-
signer and developer
(2).

C Space satellite. 1 1 1 Small Designer and devel-
oper (2) and Project
manager (1).

D Web applica-
tions.

1 Small Tester and developer
(1).

E Embedded
software.

4 4 2 Large Tester (1), developer
(2) and requirement
management (1).

F Quality and
testing consul-
tancy

1 2 Medium Quality manager (1),
developer (1) and
consulting tester (1).

G Various soft-
ware develop-
ers.

1 1 Large Quality manager (1)
and tester (1).

H Cloud compu-
ting Web
applications.

1 Small CEO, developer,
tester and designer
(1).

I Fleet manage-
ment systems.

2 1 Large Test consultant (1)
and test manager (1).

J Cloud compu-
ting services and
consultancy.

1 Small CEO (1).

K Banking, ener-
gy, health, etc.

1 1 1 Large Quality assurance
and tester (1).

L Development
and testing
consultants.

 2 Small Consultant tester (1)
and developer (1).

M Various soft-
ware develop-
ers.

1 Large Project manager (1).

13 18 15 7 40

4 Results

The purpose of our analysis was to understand how the role of a software product
customer influences software quality construction in a BYOD environment. The anal-
ysis produced four major categories: customer requirements, quality characteristics,
software domain and goal of software development.

4.1 Analysis and Categorizing

Following the grounded theory, the focus of the analysis was on the software devel-
opment activities and particularly on how the companies dealt with customers during
requirements prioritization, how they selected features and quality characteristics for
software products. In the open coding concepts were identified from the data and
coded. Concepts that were not aligned with the research goals were omitted.

 Role of Software Product Customer in the Bring Your Own Device (BYOD) Trend 199

The axial coding started by comparing and differentiating the concepts labeled in
the open coding. Similar concepts were grouped into one category and labeled. So, we
grouped the concepts into four major categories: customer requirements, quality cha-
racteristics, software domain and goal of software development.

The activities studied in the data indicated that companies solicited information
from the customer in order to obtain important requirements for the products. Howev-
er, some concepts indicated that some product features were developed not by using
customer requirements but developers’ creativity. Methods of requirements elicitation
varied from company to company. All concept related to requirements were groped
into the category named customer requirements.

Several concepts indicated that quality characteristics vary between customers de-
pending on the purpose of the software. So, we grouped the concepts into in-house
software and public software. The in-house software is the one that the company is
building for its own internal use, and the public software is for outside customers. The
two groups show that consideration for features and characteristics widely varied.
Some concepts indicated that product features have an impact on quality but the num-
ber of features in the product does not affect much its quality because customers use
only a few features of most interest. So we considered features as important subject,
but to reduce the number of categories for analysis, all concepts describing product
features were put into one category, which was named quality characteristics.

The domain in which the software was used seemed to decide the type of quality
characteristics. For example, banking domain seemed to have special standards for
security, despite of customer requirements. We grouped concepts depending of criti-
cality of software and studied that criticality of software is also influenced by the
domain. So, all concepts, which described domain, criticality and area of application,
were assigned into one category named software domain.

Goal of software development varied from company to company. Some companies
defined quality goals from the beginning of the development while other did not think
about quality upfront. Some companies focused more on functional requirements and
less on nonfunctional requirements. All concepts, which described the quality goals of
development, were assigned into the category named goal of software development.

The last phase of grounded theory analysis is the selective coding. The goal of se-
lective coding is to identify the core category. In this analysis none of the four catego-
ries was broad enough to describe all the other categories. So, we looked again into
the categories and found that all categories contain concepts pertinent to product qual-
ity that indicated challenges in identifying or meeting those requirements, so we
created a conceptual category and named it ‘influence of software product customer
on software quality construction’.

4.2 Findings

We summarize seven findings based on the described categories, which explain the
role of software product customer in the software quality construction process, hence
the result is related to the current situation i.e. the BYOD trend.

200 F.P. Seth, O. Taipale, and K. Smolander

Finding 1: Visible features of the software and functional requirements super-
sede nonfunctional (quality) characteristics when dealing with customer
requirements
In the data analysis we noted that some quality characteristics are not given as much
attention as the functional characteristics. Generally, most of customers do not under-
stand the internal details of the software and the backend side of the systems i.e. the
internal software quality (ISO/IEC, 2007). Thus, customers evaluate software or sys-
tems in terms of the outer visible interfaces, usability, outputs, and efficiency in the
production environment based on the behavior of software or systems i.e. external
software quality (ISO/IEC, 2007). For this reason, software external characteristics
are more likely to attract end-users than internal quality characteristics.

“More than 90% of the time and concentration go to the functionality. And some-
times it is quite interesting actually when we have not discussed about the security.
Well, it is not so important, or not even the performance of the applications but how
actually the product works.” – Tester, Case K.

One of the important user acceptance tests is the functional suitability that indicates
conformance to the requirements. When the software performs what the customer
requires, the customer is satisfied and the software is termed as quality software.

Finding 2: Quality depends more on the market decision than standards’
requirements
The goal of software development influences the development process. For example,
it was observed that developers in most of the studied companies do not use the quali-
ty standards and frameworks such as the ISO/IEC 25020 (2007) standards. Good prac-
tices, rules and procedures seemed to be optional. For example, in company D the
director says,

“In our company we have a set of best practices published in a book for use in
software development projects, but this is totally up to the project manager to take
those practices or not.” – Testing director, company D.

This phenomenon was more evident in small companies than large companies. The
questions raised from this observation were: If the development is not guided by some
standards, or some best practices, how then the quality is achieved? What is so impor-
tant in the software development? The development engineer in company E answers
by saying,

“I don't need to care about the standards in my work. But I guess, probably the
manager [cares]. At least we have some ISO 9000 but I don't see it in my own work.”
- Development engineer, Case E.

This observation suggests that quality depends on what the market decides rather
than what standards require. People buy what they see other people buying. The com-
panies are focusing to deliver what their customers need and not the best product
described in the standards and books.

 Role of Software Product Customer in the Bring Your Own Device (BYOD) Trend 201

Finding 3: Companies focus on ‘just enough quality’ and not on ‘high quality’
products
When dealing with quality characteristics and features, developers’ approach to
quality prompts us in comparing ‘high quality’ and ‘just enough quality’ products.
Winning the customers relies on “how the product attracts the customers” than “how
the product is too good”. In common circumstances, companies deliver just enough
quality than high quality products as long as the customer is satisfied. From the ob-
servations in several companies including D and K above, we realized that functional-
ity (ISO/IEC 25020, 2007) and attractiveness (ISO/IEC-25051, 2006) are the charac-
teristics that push the market and customers to choose what to buy; what they find
appealing to them in the unforeseeable future. The above two findings lead us to think
that fictional characteristics of the product influence customers in buying decision.
However, poor internal quality will render the product failure in the long run.

It is difficult to precisely distinguish between the “just enough quality” and the
“high quality” products. The literature does not give the assurance of “high quality”
products. Jørgensen (1999) argues that there is no universal measurement or scale
for quality. He emphasizes that quality depends on the taste and preference of the user
of the product. Therefore, the software developer may only try to produce relevant
products with preferences of a specified domain or users. For example, the software
developer in company E was asked, “What kind of quality is important to you in soft-
ware you develop?” He responded by saying,

“It’s hard to say which quality is the most important, but I think quality in our case
is much dependent on the fact that once we release a software to a customers, they
might not be so willing to upgrade any firmware to their devices. So really whether
the fact that the firmware is error-free, or has few errors, the functionality is what the
customer expects. That’s one of the key issues. We try to deliver what the customer
wants in his situation.” - Software developer, Case E.

The developer in company E tries to express the risk to deliver more quality than
the customer required in the prevailing situations at customer’s side, i.e. other soft-
ware, platforms, firmware, etc. From this point of view, the “high quality” product
may be defined in the customer’s perspective and not from the developer of the soft-
ware’s perspective. What works best with the customers is the “high quality” product
for them.

Finding 4: Software Quality has a Dimension of Cost
Looking into customer requirements category, we noted that there is a cost dimension
that limits customer demands when comes to requirements. Customer satisfaction
includes being satisfied with the cost of a product.

“If you think about the total quality. If the product has a higher cost to the cus-
tomer, then you can see that the total quality is getting lower; because total quality is
how your customer is happy and satisfied with the product.” - Quality advisor,
Case F.

Two important questions to answer before software development projects are:
First, what is the important quality to build for a particular customer? Second, how to

202 F.P. Seth, O. Taipale, and K. Smolander

build such quality into a product at reasonable cost and time? The first question tar-
gets the customer and the second targets the developer (companies). Dromey and
McGettrick (1992) suggest that the quality of software product is about features, qual-
ity characteristics and satisfaction of customers. So the stakeholders of the software
decide what to include or exclude, and how to implement these features and characte-
ristics in the software. The efforts of the developers to understand the customers have
positive effect on quality. On the other hand, Boehm (1984) argues that since we work
in limited resource environments, there is never enough time or capital, monetary and
intellectual, to consider all the good features we would like to put into a software
product. Thus, the balance between the “just enough quality” and the “high quality”
products should be carefully observed. For example, development engineer in compa-
ny E was asked, “What are the indicators that the quality you aimed at has been
reached?” and he responded,

“We have a department that is testing the products. They test the product in the
way that it works as the previous product has worked. So it is merely just test that we
haven't broken anything. That is the main testing.” - Development engineer, Case E.

Thus, companies try to deliver what the customers need according to their budget
and time frame. Customer satisfaction is also affected by cost involved, which means
a customer weighs between the product quality and the cost to determine the total
quality of the software.

Finding 5: Quality Aspect of Policy in the Software
Since the software in various devices is focusing on satisfying an individual, but it
may be used in other undetermined environments such as end-user’s working place,
the policies may be considered as an important aspect of software quality. For exam-
ple, Sangroha and Gupta (2014) gave an example of an end-user of a device, which
has vulnerable software. This end-user connects to the office network and exposes the
threats to the entire network through his infected device. Since it is difficult to deal
with individual user’s devices, the companies need to enforce some policies that will
determine the allowable standard of devices and software, which could be used in the
office network.

“The security is a problem and must be taken care seriously. Also if we think about
an industry or big factories using LAN networks, they use own networks but almost
every sensor can be connected to LAN, therefore raising security and safety concerns.
However, security is not a problem for stand-alone servers.” - Senior consultant,
Case B.

It was also noted that software developers, intentionally put less attention to some
quality characteristics because they assume that the system where the software
is going to be applied will take care of some of those characteristics, for example,
security.

“I am aware of security but we do not really consider security in the normal work.
We do not spend time on that in every day's work because the security is integrated
into the system so we do not have to think about it” - Developer engineer, Case A.

 Role of Software Product Customer in the Bring Your Own Device (BYOD) Trend 203

Thus, some of the quality characteristics may exist as policies to those systems
where the software will be applied. For example, if the end-user software does not
have some security features, but the developers explain how the system should deal
with that software, then the software is of good quality.

Finding 6: Simplicity and Attractiveness of Devices Sell Poor Quality Software

Usability has proven to be key item for software acceptance or rejection (Chao,
2009). In the BYOD trend, it is the user of device who choses what he is comfortable
with. So the choice may be based on the simplicity of the software interfaces.

“The key thing is that we implement applications that user should be able to use
the application without any user guides. If software application needs a user guide
then it is too complex to use, no enough usability. That is the reason why iPhone is so
successful because of the usability. You don't need any kind of instructions to use it.”
- Senior consultant, Case B.

According to Cisco annual security report (Stewart, 2014) of January 2014, ninety
nine percent (99%) of all mobile malware targeted Android devices in 2013. Howev-
er, Truong et al. (2014) report that infection rates in Android devices are at around
zero point two five per cent (0.25%), significantly higher than the previous indepen-
dent estimate.

Android is a one of the large provider of platform and applications for handheld
devices. The finding 4.1.1 suggests those users are more attracted with what they see
than what they don’t, which means the external quality is important in the buying
decision. The blooming number of Android users suggests that the stake is higher in
the BYOD trend because users chose devices based on the attractiveness and simplici-
ty overlooking some important internal characteristics. Arthur, (2013) suggest that
some mobile phone companies have lost their market share because their products are
not simple to use and do not have attractive interfaces, although they might be supe-
rior in the internal quality.

Finding 7: The number of Product ‘features’ Does not Affect the Sense of Quali-
ty, but Quality Characteristics Do
In the analysis we noted that quality of the product is not much affected by the num-
ber of features, but functionality, and usability. Users chose only a few of features and
use them while forgetting about the rest. Form this observation we can also argue that
product features have impact on product quality in similar manner as quality characte-
ristics.

“Usually a lot of customers are still satisfied because they normally use only few of
the product’s features. The experience shows that when we release software with
some few problems only 10 to 15 percent of the customers will complain.” The senior
consultant in company B claims that “we put too much focus on functionality and
there should be more focus on usability and reliability particularly for web applica-
tions. It's better to have fewer features. The less features you have, the better the soft-
ware.” - Development engineer, Case E.

204 F.P. Seth, O. Taipale, and K. Smolander

When looking closer at this observation, we can also cement the above finding
4.1.1 that visible features of the device or software have a remarkable impact on the
way user judge product quality. In most of the devices features are conspicuous and
could be counted, or easily compared among devices at the layman’s point of views,
but characteristics are difficult to see and evaluate. Therefore, devices with attractive
features are likely to cause more threat in the BYOD environment because users are
likely to buy them despite of internal weak characteristics.

5 Discussion

This study consist of seven major findings that describe software development activi-
ties, and challenges involved in quality construction in the light of BYOD trend.
According to the results of this study, the risks involved in the BYOD including secu-
rity risk, are potentially caused by the buying behavior of the end-users of the soft-
ware and devices. Although some end-users may understand security risks, they are
still satisfied with the software or device they use because of cost. Similar finding is
discussed by (Chang and Lee 2013; Hashmi et al. 2013; Savolainen et al. 2007). For
example, Savolainen et al. (2007) argue that the customers do not care how the prod-
ucts are created; they value how well the product satisfies their needs. On the other
hand, Chang and Lee (2013) discuss the impact of the free apps. Results show that
end-users are satisfied while they put their personal data at risk and in the BYOD, the
companies’ data is also at risk.

Devices attract end-users and they prefer device to software. This observation sug-
gests that visible features of the device or software, and functional requirements
supersede nonfunctional (quality) characteristics when customers judge software
quality. Furthermore, the finding of this study suggests that the number of product
‘features’ does not affect the customer sense of quality. Software development com-
panies pay more attention on functional requirements than quality requirements. This
result suggests that, customers are more satisfied when they have working software
with great observable features such as interfaces, graphics, etc. Similar findings are
disuse by Savolainen et al. (2007).

Software companies are not strict with quality standards such as ISO and IEEE in
the development of generic software. This behavior enables the companies to inno-
vate products and cater better for their customers’ requirements without limitations.
However, some companies were strict with some specific standards for mission criti-
cal software, such as banking software, space satellite, and software for nuclear rec-
tors. Quality for generic software seemed to depend more on the market decision than
standards’ requirements. Similar finding is reported by (Aslhford, 1985; Kalyani,
2013).

Software quality has a dimension of cost (Savolainen et al. 2007). Companies fo-
cus on delivering ‘just enough quality’ and not on ‘high quality’ products as to optim-
ize the cost of production. Companies deliver ‘just enough’ quality to avoid problems
caused by over-spec products. It was observed that the over-spec products lead
to incompatibility with the existing systems at the customer side. Osterweil, (1997)

 Role of Software Product Customer in the Bring Your Own Device (BYOD) Trend 205

discusses the goals of software development as to meet high quality products at low
cost. On the other hand, Savolainen et al. (2007) points out that cost is part of the
customer satisfaction. The finding of this study suggest that since customers are will-
ing to pay less, and the companies are willing to deliver what the customers are satis-
fied (just enough quality), the problem of poor quality products persist and increase
threat on the BYOD environment.

This study has several theoretical and practical implications. First it establishes that
software quality is more customer dependent than developer dependent. What satis-
fies the customers is high quality to them. Second, customer satisfaction as the indica-
tor of quality is influenced by cost and value of the products. There is a dimension of
cost in measuring customer satisfaction in relation to quality. Third, customer prefer
device to software, which implies that physical appearance, such as graphics, inter-
faces, etc., have a large impact on customer satisfaction. Fourths, the risks associated
to BYOD are manageable, but at the company side, by enforcing security policies.

Threats to validity inherent in qualitative studies have been discussed in several
studies. For example, some of the phenomena were observed in only one or a few
companies. However, since the study is qualitative and not quantitative, the value of
the findings is not affected by the frequency of occurrence but by its relevance and the
grounding in the data (Klein and Myers 1999; Van Manen 1990). Strauss and Corbin
(1990) emphasize on theory emergent from the data analysis. However, the theory
created is rather dynamic than static, and can be extended by adding new data. This
study involved 13 companies and 40 interviews were conducted. The process of data
collection continued until saturation point where there were no new concepts
emerged. So we believe that the observed phenomena are relevant and applicable in
other situations. To minimize the threat of bias, this study involved a team of four
researchers, who collectively prepared the interview questions and collected the data.
The interviews were tape-recorded and transcribed by a specialized company. How-
ever, there could be some expressions of the interview, which could not be captured
and transcribed.

Future study may focus on establishing standard requirements for devices allowa-
ble to be used in corporate environment, which will be enforced by organizational
security policies.

6 Conclusions

This study concludes that end-user of devices in the environment where the BYOD is
allowed, is a threat factor. Software and device companies deliver quality products at
the level of their customers’ satisfaction. The customers’ preferences on quality and
cost are the source of the threat. However, BYOD phenomenon comes with many
advantages. Companies exploit its employees’ resources to achieve their mission and
goals. Despite of threats, the BOYD adds value to business because the company
extends services beyond office premises and working hours.

Since the goal of software development is to make profit, at the same time compete
in the market, software companies focus on delivering ‘just enough’ quality as per

206 F.P. Seth, O. Taipale, and K. Smolander

customer requirements. In this view, software-developing companies focus on cater-
ing for the requirements of the immediate customer, and not other environments
where the software or devices can be used. Therefore, this study suggests that compa-
nies may include policies to alleviate security risks caused by employees’ devices or
employees’ behavior.

References

1. Scarfo, A: New Security Perspectives around BYOD. In: 7th International Conference on
Broadband, Wireless Computing, Communication and Applications (BWCCA), Victoria,
BC, pp. 446 – 451 (2012).

2. ISO/IEC-25020: Software Engineering — Software quality requirements and evaluation
(SQuaRE) —Quality measurement, Geneva, Switzerland, International Organization for
Standardization (2007)

3. Aslhford, N.A., Ayer, C., Stone, R.F.: Using Regulation to Change the Market for Innova-
tion (1985),
http://dspace.mit.edu/bitstream/handle/1721.1/1555/
%252319.PDF?sequence=1 (accessed on May 7, 2014)

4. Kalyani, M.: Setting Standards for the Murky Cloud Market (2013),
https://spideroak.com/privacypost/business-the-cloud/
cloud-computing-regulations-on-the-rise/ (accessed on May 7, 2014)

5. Osterweil, L.J.: Software processes are software too. In: The 19th International Conference
on Software Engineering, Boston, pp. 343–344 (1997)

6. Strauss, A.L., Corbin, J.: Basics of Qualitative Research: Grounded Theory Procedures and
Applications. Sage Publication, Newbury Park (1990)

7. ISO/IEC-25051: Software engineering — Software product Quality Requirements and
Evaluation (SQuaRE) — Requirements for quality of Commercial Off-The-Self (COTS)
software product and instructions for testing, Geneva, Switzerland, International Organiza-
tion for Standardization (2006)

8. Dromey, R.G., McGettrick, A.D.: On Specifying Software Quality. Software Quality Jour-
nal 1(1), 45–74 (1992)

9. Boehm, B.W.: Software engineering economics. IEEE Transactions on Software Engineer-
ing Se-10(1), 4–21 (1984)

10. Jørgensen, M.: Software Quality Measurement. Advances in Engineering Software 30(2),
907–912 (1999)

11. Chao, G.: The usability test methods and design principles in the human-computer inter-
face design. In: 2nd IEEE International Conference on Human-computer Interaction:
Computer Science and Information Technology, ICCSIT, Beijing, pp. 283–285 (2009)

12. Sophos.: BYOD Risks & Rewards, http://www.sophos.com/en-us/security-
news-trends/security-trends/byod-risks-rewards/what-is-
byos.aspx (accesses on September 26, 2014)

13. Stewart, J.N.: Cisco Annual Security Report Documents Unprecedented Growth of Ad-
vanced Attacks and Malicious Traffic (2014),
http://newsroom.cisco.com/release/1310011/Cisco-Annual-
Security-Report-Documents-Unprecedented-Growth-of-Advanced-
Attacks-and-Malicious-Traffic

 Role of Software Product Customer in the Bring Your Own Device (BYOD) Trend 207

14. Truong, H.T.T., Lagerspetz, E., Nurmi, P., Oliner, A.J., Tarkoma, S., Asokan, N., Bhatta-
charya, S.: The Company You Keep: Mobile Malware Infection Rates and Inexpensive
Risk Indicators. In: The International World Wide Web Conference (WWW 2014), Seoul,
Korea (2014)

15. Park, C., Pattipati, K.R., An, W., Kleinman, D.L.: Quantifying the Im-pact of Information
and Organizational Structures via Distributed Auction Algorithm: Point-to-Point Commu-
nication Structure. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans 42(1), 68–86 (2012)

16. Seth, F.P., Taipale, O., Smolander, K.: Organizational and Customer re-lated Challenges
of Software Testing: An Empirical Study in 11 Software Companies. In: IEEE-RCIS 2014
Conference, Marrakech (2014a)

17. Seth, F.P., Mustonen-Ollila, E., Taipale, O.: The Influence of Management on Software
Product Quality: An Empirical Study in Software Developing Companies. In: Barafort, B.,
O’Connor, R.V., Poth, A., Messnarz, R. (eds.) EuroSPI 2014. CCIS, vol. 425, pp. 147–158.
Springer, Heidelberg (2014)

18. Hovenden, F.M., Walker, S.D., Sharp, H.C., Woodman, M.: Building quality into scientif-
ic software. Software Quality Journal 5(1), 25–32 (1996)

19. Seth, F.P., Mustonen-Ollila, E., Taipale, O., Smolander, K.: Software Quality Construc-
tion: Empirical Study on the Role of Requirements, Stake-holders and Resources. In: Asia
Pacific Software Engineering Conference APSEC 2012, Hong Kong, pp. 17–26 (2012)

20. Smolander, K.: Four metaphors of architecture in software organizations: Finding out the
meaning of architecture in practice. In: International Symposium on Empirical Software
Engineering (ISESE 2002), Nara, Japan (2002)

21. Garvin, D.A.: What Does “Product Quality” Really Mean? Sloan Management Review (4),
25–43 (1984)

22. Kitchenham, B., Pfleeger, S.L.: Software Quality: The Elusive Target. IEEE Soft-
ware 13(1), 12–21 (1996)

23. Clarke, P., O’Connor, R.V.: Business Success in Software SMEs: Recommendations for
Future SPI Studies. In: Winkler, D., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2012.
CCIS, vol. 301, pp. 1–12. Springer, Heidelberg (2012)

24. Barney, S., Wohlin, C.: Software Product Quality: Ensuring a Common Goal. In: Wang,
Q., Garousi, V., Madachy, R., Pfahl, D. (eds.) ICSP 2009. LNCS, vol. 5543, pp. 256–267.
Springer, Heidelberg (2009)

25. Mäkinen, S., Münch, J.: Effects of test-driven development: A comparative analysis of
empirical studies. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2014. LNBIP,
vol. 166, pp. 155–169. Springer, Heidelberg (2014)

26. Sangroha, D., Gupta, V.: Exploring Security Theory Approach in BYOD Environment,
Wireless Networks and Security. In: Proceedings of the Second International Conference
on Advanced Computing, Networking and Informatics (ICACNI 2014), Kolkata, India, pp.
259–266 (2014)

27. Eisenhardt, K.M.: Building Theories from Case Study Research. Academy of Management
Review 14, 532–550 (1989)

28. Perner, L.: (2008),
http://www.consumerpsychologist.com/
marketing_introduction.html (accessed on June 17, 2014)

29. Savolainen, J., Kauppinen, M., Mannisto, T.: Identifying Key Requirements for a New
Product Line. In: 14th Asia-Pacific Software Engineering Conference (IEEE-APSEC
2007), Aichi, pp. 478–485 (2007)

208 F.P. Seth, O. Taipale, and K. Smolander

30. Xue, J., Chen, C.W.: 2011 IEEE International Conference on Multimedia and Expo
(ICME), Barcelona, pp. 1–6 (2011)

31. Hashimi, U.S., Anjum, N., Israr, A.: Impact of Software Quality Standards on Commercial
Product Development and Customer Satisfaction for Software Industry in Pakistan. In:
Fifth International Conference on Computaional Intelligence, Modelling and Simulation
(CIMSim), Seoul, pp. 269–274 (2013)

32. Chang, S.E., Lee, P.-F.: Leveraging Social Network APIs for Enhancing Smartphone
Apps. In: IEEE International Conference on and IEEE Cyber, Physical and Social Compu-
ting, Beijing, pp. 1219–1224 (2013)

33. Van Manen, M.: Researching lived Experience: Human Science for an Action Sensitivity
Pedagogy. Althouse Press, London (1990)

34. Klein, H.K., Myers, M.D.: A set of principles for conducting and evaluating interpretive
field studies in information systems. MIS Quarterly 23(1), 67–94 (1999)

35. Arthur, C.: Why BlackBerry failed (2013),
http://www.theguardian.com/commentisfree/2013/nov/05/why-
blackberry-failed (accessed on May 23, 2014)

Envisioning a Requirements Specification Template
for Medical Device Software

Hao Wang1,�, Yihai Chen2,��, Ridha Khedri3,���, and Alan Wassyng4,†

1 Faculty of Engineering and Science, Aalesund University College, Norway
2 School of Computer Engineering and Science, Shanghai University, China
3 Department of Computing and Software, McMaster University, Canada

4 McMaster Centre for Software Certification (McSCert), McMaster University, Canada

Abstract. In many health jurisdictions, software is considered to be medical
device software (MDS), when it is used to analyze patient data in order to render
a diagnosis or monitor the patient’s health; when it is to be used by a patient
to diagnose an ailment; or when it is used to deliver functionality for a medical
device. Flaws in MDS can result in patient harm, including death. Legislators and
regulatory agencies publish guidelines and regulatory standards that are aimed at
ensuring the safety, security and dependability of MDS. These guidelines and
standards universally agree that a complete and consistent requirement specific-
ation is vital to the success of medical device software. Moreover, we observe
that regulators are shifting from being process focused to being product focused
in their approval guidance. In this paper, we review challenges associated with
requirements used in the development of MDS, current standards and guidelines
relevant to MDS, and existing templates for requirement specifications. We then
propose a set of design objectives for a ‘good’ MDS requirements template and
propose a template structure for MDS requirement specification fulfilling all the
design objectives. Our template is, by design, tailored to facilitate the gathering
and documenting of high quality requirements for MDS.

1 Introduction and Motivation

Many medical devices nowadays rely heavily on software. In 2006, over half the med-
ical devices on the U.S. market involved software [10]. The European Medical Device
Directive MDD 93/42/EEC [26], one of the foundational Council Directives in med-
ical devices, includes software as one type of medical device. The guidance on Medical
Device Directives [8] explicitly lists the following circumstances under which software
is regarded as a medical device: (a) The software is for a purpose explicitly mentioned
in a Medical Device Directive; (b) The software is intended to control or influence the

� Supported by IBM Canada R&D Centre, McSCert, and Southern Ontario Smart Computing
Innovation Platform (SOSCIP) while he conducted this research in Canada.

�� Supported by Natural Science Foundation of China (NSFC) through the grant No. 61170044.
��� Supported by SOSCIP, and the Natural Sciences and Engineering Research Council of

Canada (NSERC) through the grant RGPIN 2014-06115.
† Supported by SOSCIP, Ontario Research Fund - Research Excellence, and NSERC.

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 209–223, 2014.
c© Springer International Publishing Switzerland 2014

210 H. Wang et al.

functioning of a medical device; (c) The software is intended for the analysis of patient
data generated by a medical device with a view to diagnosis and monitoring; (d) The
software is intended for use for/by patients to diagnose or treat a physical or mental
condition or disease. In addition, the International Electrotechnical Commission (IEC)
and the U.S. Food and Drug Administration (FDA) have included software as a category
of medical devices and presented standards and guidelines regulating them. Software
regarded as a medical device is called Medical Device Software (MDS).

The literature abounds with data that clearly show that any shortcoming in defining
the requirements for computer-based systems in general imperils the deliverables of
all the subsequent stages of their development [35]. The importance that ought to be
given to documenting system requirements is undeniable when dealing with medical
devices due to their significant role in altering human biological function or structure.
Even slightly erroneous behavior by such a device could lead to a grave incident. The
FDA Manufacturer and User Facility Device Experience (MAUDE) database [28] con-
tains a large number of reports on such incidents: nearly 17,000 insulin pump-related
adverse-event reports from October 1, 2006, through September 30, 2009. Among the
310 death reports, 41 were associated with blood-sugar levels being too high or too low,
suggesting the device may not have been working properly [6]. As to security, experts
showed that a popular wireless-enabled pump could be hacked [24]. In 2002-2010, there
were more than 537 recalls of devices that used software, which affected over 1.5 mil-
lion devices being used in the U.S. [16]. Until recently, regulatory approval of MDSs
was dependent on process based guidance, e.g., IEC 62304 regulates the development
processes of medical device software. The large number of adverse-event reports has
proven that this practice is inadequate. The FDA recently changed its approval process
to be more product focused for infusion pumps, so that the production of an assur-
ance case that demonstrates that the device is safe and effective is now a recommended
regulatory requirement in the U.S. [5].

In fields such as manufacturing [2] or aerospace [27], engineers are expected to de-
velop and use requirements templates that are designed to put more emphasis on doc-
umenting key requirements of their systems. However, in the field of MDS, the almost
complete lack of regard for the specification of requirements [22] is striking. Moreover,
we cannot directly use existing templates as they do not properly help address some
of the requirements that are specific to MDS (see Section 2.2). Medical devices are a
class of systems that have stringent safety and security requirements that ought to be
documented and updated regularly at every newly reported incident. A precondition for
ensuring the safety and reliability of MDS is having a complete and consistent require-
ments document. A MDS specific template for eliciting and documenting requirements
is an important step toward achieving this precondition. Medical devices are subject to
government and international laws and regulations. Therefore, a MDS specific template
to guide capturing all the requirements from these standards and regulations would be
invaluable. Safety and security requirements for MDS ought to be given sufficient atten-
tion so that the devices may be shown to be safe, secure and dependable. A requirements
template has to provide adequate means for ensuring the completeness of the require-
ments, especially regarding safety, security, and other aspects of system dependability.

Envisioning a Requirements Specification Template for Medical Device Software 211

United States European Union Canada

FDA Guidelines Medical Device
Regulations

Therapeutic Products
Directorate Regulatory

Guidances

International Standards

The Regulations
Code of Federal Regulations

21CFR 800-1299

93/42/EEC
European Medical Device

Directive

Canadian Medical Device
Regulations

(SOR/98-282) Regulations
Mandtory)

Regulatory
Guidances
(Voluntary)

Standards
(Voluntary)

Legend

Recommends

IEC 62304
Medical device

process standard

ISO 14791
ISO 13485

Medical device
management standards

IEC 60601-1
IEC 61010-1

Medical device
product standards

IEC/ISO 12207
Systems and software

engineering — Software
life cycle processes

Other Source of
Information

IEC/ISO 61508
IEC/ISO 90003,...

Fig. 1. Regulations and Standards related to MDS

In this paper we discuss the main design objectives for a MDS requirements tem-
plate. Based on these objectives, we present the highlights of a template that is intended
to guide the eliciting and documenting of the requirements for MDSs. We have also
assessed the proposed template versus the outlined design objectives.

The remainder of this paper is organized as follows: Section 2 introduces the stand-
ards and guidelines related to MDS, and reviews existing requirement templates. Sec-
tion 3 proposes a set of objectives for a ‘good’ MDS requirements template. Section 4
gives the main characteristics of the proposed MDS requirements template and assesses
it based on the design objectives set in Section 3. Then, we conclude and point to our
future work in Section 5.

2 Background

2.1 Standards and Guidelines on Software Medical Devices

We briefly review European and North American current regulations and guidelines
as well as ISO/IEC standards. Figure 1 shows the hierarchy of regulations and related
international standards relevant to the development of medical device software. Gov-
ernments publish laws and regulations to control medical device industries, which are
expected to abide by them. Governments also provide guidelines and a list of harmon-
ized standards for medical device manufacturers for reference and voluntary adoption.
Usually, compliance with guidelines and harmonized standards is deemed to satisfy
the applicable regulations. This has necessarily resulted in regulatory regimes that are
primarily process focused, rather than a more modern product focus.

U.S. regulation requires that medical devices go through premarket approval or a
premarket notification process [33, Page 15]. The FDA defines the regulations in Title
21 of the U.S. Code of Federal Regulations, which is commonly referred to as 21 CFR.
The articles 800 to 1299 of the regulations cover responsibilities of the medical device
manufacturer [33, Page 17]. To help manufacturers through the premarket processes,

212 H. Wang et al.

the FDA provides guidelines w.r.t. MDS (e.g., Guidance for the Content of Premarket
Submissions for Software Contained in Medical Devices [32] and General Principles of
Software Validation [31]). The FDA also encourages the manufacturers to take advant-
age of recognized standards. Approval by the FDA requires that the device be shown to
be both safe and effective. Alternatively, manufacturers can follow the FDA guidance
Use of Standards in Substantial Equivalence Determinations [30] to demonstrate that
the device they want to market is ‘substantially equivalent’ to a device already approved.

In order to market medical devices in Canada, manufacturers must be authorized and
approved by the Canadian Medical Devices Bureau of the Therapeutic Products Dir-
ectorate (TPD) for their safety, effectiveness and quality. TPD is a Directorate within
Health Canada, and the legal structure is defined by the Food and Drugs Act and Med-
ical Devices Regulations (SOR/98-282). TPD also publishes several guidance docu-
ments to assist in the interpretation of policies and governing statutes and regulations.
For example, the TPD Guidance Document on Recognition and Use of Standards under
the Medical Devices Regulation lists recognized standards for MDS.

In Europe, the Medical Device Directive (MDD) 93/42/EEC and its latest amend-
ment MDD 2007/47/EC regulate the implementation of MDS. Some ISO/IEC standards
cover the development process and quality aspects of MDS. They are all recognized by
regulatory agencies depicted in Figure 1.

2.2 Review of Existing Requirements Templates

There are several published requirements templates [15,23,9,27,4,2,20] in the literat-
ure. However, as commented in [11], “the needs of organisations working on different
projects can, and do, vary”, and unfortunately none of these templates can fully satisfy
the needs of quality requirements documents for MDS. For example, the above tem-
plates fall short in helping to guide the requirements analyst in documenting safety re-
quirements or making sure that the requirements specification contains all the elements
needed to comply with the applicable regulations and standards. Unlike other indus-
tries, the agencies that regulate medical devices mentioned above have not provided
documentation templates for requirements or any other software life cycle processes.

IEEE Standard 830-1998 [15] provides a template along with detailed recommended
practice for software requirements specification. It has been one of the most import-
ant references for software industrial and academic projects. One important feature of
the IEEE template is that the specific (functional) requirements can be structured in
several ways (e.g., using system modes or use-cases). The Volere template [23] is a
general purpose requirements template It emphasizes project requirements. Three sec-
tions, project drivers, project constraints, and project issues, give detailed coverage on
issues related to contractual matters and understanding between different stakeholders,
which makes it unique among templates in this respect. The shortcoming of the Volere
template compared with the IEEE one is that the functional requirements part is general
without clear guidance on organization. More importantly, there is a common problem
with the two templates that they are short on means to support hazard identification and
safety requirements, which are vital in the development of MDS.

Envisioning a Requirements Specification Template for Medical Device Software 213

The European Space Agency provides a set of Software Engineering Standards, PSS-
05-0. A requirements specification that is compliant with this standard ought to include
a user requirement document (URD), targeted at non-technical audiences such as users
and project managers. It should also include a software requirements document (SRD)
that is intended for use by designers and developers. In an effort to pursue homogeneity
across space organizations in Europe, the European Cooperation for Space Standard-
isation (ECSS) replaced the PSS standard family with a new set of standards. ECSS-E-
40C [9] is the ECSS standard for software engineering and is based on ISO/IEC 12207
for general software life cycle processes. To be compliant with ECSS-E-40, an inter-
face requirements document (IRD) and a software requirements specification (SRS) are
needed. The new standard is closely related to its ancestor, the PSS standard in the
following ways: 1) the division of the requirements specification into IRD and SRS is
similar to the division into URD and SRD in PSS-05-0; 2) the prescribed content could
be traced back to the PSS standards; 3) the shortcomings are common: a) the SRS tem-
plate requires that functional requirements shall be organized by subject and links to
system states and modes shall be provided. Other than that, there is no further guid-
ance; b) explanations of content to be filled into each sub-sections are still too general
(high level) and could cause confusion.

We have found several other requirements templates and requirements guidelines that
we now describe briefly. The U.S. Federal Aviation Administration provides a set of re-
commended practices on how to collect, write, validate, and organize requirements in its
Requirements Engineering Management Handbook [27], targeted at real-time, embed-
ded systems and, specifically, the avionics industry. The A-7E software requirements
document [4] was a result of a joint project of the Naval Research Laboratory and the
Naval Weapons Center to re-engineer the A-7 operational flight program. The software
was rebuilt by applying numerous software engineering techniques such as modularity
and information hiding, formal specification and abstract interfaces, to mention a few.
In addition, Ahmadi [2] and Lai [20] proposed respectively, requirements templates for
manufacturing systems and scientific computation. These references, though specific to
a particular industry, provide useful guidance for our proposed template.

In summary, the existing templates are typically used in non-medical applications
domains. We need to tailor the existing templates to medical devices, taking into ac-
count medical device specifics and the regulatory requirements.

3 Objectives for a Robust MDS Requirements Template

Similar to designing systems, designing a requirements template for MDS starts with a
list of design objectives. Their purpose is to specify which characteristics of the tem-
plate are to be achieved. In this section, we present and discuss the list of objectives that
we think are necessary for the sought template.

Compliance with the Regulations and Standards

MDS regulatory systems consist of regulations adopted into law through whatever
legislative or administrative procedures are appropriate to the legal system in place.

214 H. Wang et al.

The public expectations and the dependability and safety of MDSs are embodied in
the regulations to ensure that they perform as expected. For instance, the FDA regula-
tion 21 CFR (discussed in Section 2.1) describes the responsibilities of medical device
manufacturer. Also, the FDA proposes guidelines on how developers should present the
software content of premarket submissions for approval and clearance. Submissions are
made to FDA to demonstrate that the device to be marketed is safe and effective.

Regulations cannot include details of technical methods and evaluation criteria.
Therefore, standards are proposed to provide this level of details. They are more tech-
nical documents that rely on significant input from technical experts and participants
on standards committees are often from the industry to be regulated, and who may have
financial interests in the items covered. There are several standards for the requirements
of medical devices. However, while they contain recommendations on the general ap-
proach to produce MDSs, they do not prescribe the explicit content of the requirements
document. The decision on how to package the requirements is left to the user of the
standard. For example, we read in IEC62304 [13, Page 14], "The MANUFACTURER
of MEDICAL DEVICE SOFTWARE shall demonstrate the ability to provide MED-
ICAL DEVICE SOFTWARE that consistently meets customer requirements and ap-
plicable regulatory requirements."

In summary, the template has to satisfy the following objectives:

Objective 1. The template should guide the elicitation of the requirements governed by
the relevant regulations and standards.

Sections in the template should help capture and document requirements coming
from the regulations and the standards, and list all the regulations that apply to the
targeted markets. The template should provide means to trace the regulations and the
standards to sections in the template. The structure should enable requirements engin-
eers or analysts to locate what information must be collected in order to comply with
the applicable regulations and standards.

System Approach to the Elicitation of the Requirements

In fields such as aeronautics it has been observed [21,34] that system factors for ac-
cidents result from dysfunctional interactions among components, not from individual
component failure. This kind of accident is referred to as a system accident. Each of
the components operates according to its specification, but the combined behaviours
leads to a dysfunctional system. A quick look at the FDA MAUDE database shows
that the situation is similar for medical devices. It has been reported [34] that accidents
involving software often occur within an engineering culture that has unrealistic expect-
ations about software and the use of computers. Providing a structured way to document
the requirements can help overcome some aspects of this culture. It would help engin-
eers establish the safety and effectiveness of the medical device that contains software
components. Moreover, all the standards for the development of medical devices that
we consulted [29] clearly indicate a system approach to the elicitation and document-
ation of the requirements of medical devices. For instance, we read in IEC62304 [13,
Page 18] “For each SOFTWARE SYSTEM of the MEDICAL DEVICE, the MANU-
FACTURER shall define and document SOFTWARE SYSTEM requirements from the

Envisioning a Requirements Specification Template for Medical Device Software 215

SYSTEM level requirements.” Hence, any proposed template should be structured to
facilitate the system approach to the requirements elicitation and documentation. The
system approach is one of the objectives that a template suitable for documenting the
requirements for medical devices has to satisfy.

Objective 2. The template should guide the elicitation of the requirements from several
system perspectives. Each perspective should be the viewpoint of one of the system’s
environment actor, or partner applications or systems.

The observed behaviour of an open system is governed by the stimuli it gets from
its environment [19]. The actors in a system environment interact with the system and
affect its behaviour. The system responds to the stimuli from these actors. There are
some stimuli that are particular as they are not a response to a previous stimulus. They
are without apparent cause and initiate a sequence of action and reaction between the
system and the actors of its environment. These special stimuli are commonly referred
to as business events and we call each of them an initiator-event (IE). A technique for
requirements elicitation is to identify both the actors (or at least the most relevant ones)
of the system’s environment and the major initiator-events that affect the system. A
template that guides the elicitation of the requirements from several system perspect-
ives ought to be structured to capture the requirements from each influential actor in
the system environment and that with regard to each IE that is relevant to the system.
This approach helps to conquer the complexity and largeness of systems; any system
is looked at from the perspectives of its environment actors and with regard to an IE.
A perspective of requirements would constitute a use-case or a scenario that give the
actor-system interactions to fulfill the set of behaviours demanded by the considered IE.

Each Section Should Encapsulate Only One Concern

This objective is about the application of the principle of separation of concerns, which
is a means to achieving information hiding. Each section in the template should address
a separate concern. A concern in the functional requirements could be an IE or a mode
as perceived by one of the actors or stakeholder in the system’s environment. The ap-
plication of this principle enhances modularity, where each module (i.e., section in the
template) has a set of cohesive requirements that are lowly coupled to the rest of the
requirements in the document. Therefore, the obtained document will exhibit desirable
properties such as modifiability, non-redundancy, verifiability, and ease of validation.

Objective 3. The decomposition of the template should be based on the principle of
separation of concerns.

For the functional requirements, if we adopt the decomposition of the requirements
based on initiator-events, we are going to have a decomposition that satisfies the above
objective. Any change in the environment is relative to an actor and that with regard to
an IE. To ensure this principle in the nonfunctional requirements, we ought to have a
fine grained decomposition of each of the expected overall qualities of the system. For
instance, the security requirements, should be decomposed into access requirements,
integrity requirements, privacy requirements, audit requirements, and immunity (pre-
vention) requirements. Each of these sub-classes of security requirements can be de-
composed further, which helps to better separate the several security concerns.

216 H. Wang et al.

Capturing Safety Requirements

This objective aims at ensuring that we document all the known and foreseen hazards
and their mitigating measures. A hazard is the potential source of harm, which is a phys-
ical injury or a damage to property or the environment [18]. IEC 62304 [13, Sec 4.2]
states that “the MANUFACTURER shall apply a RISK MANAGEMENT PROCESS
complying with ISO 14971”. The term risk refers to the combination of the probability
of occurrence of harm and the severity of that harm [18]. Usually in risk management an
emphasis is put on the most likely risks. Analysts prioritize risks to be prevented based
on their probabilities of occurrence. However, we are cautious to propose prioritization
based on probabilities for the following reasons. Estimating the probability of occur-
rence of a harm is quite difficult and often inaccurate when dealing with critical systems
in general and medical software in particular. The other reason is that unlikely to happen
harm can have extremely damaging and irreversible consequences. Therefore, we think
that the only criterion on whether to consider a risk or not is based on whether we can
technically come up with the appropriate mitigating measures. Hence, we should con-
sider all risks regardless of their probabilities. The deviations of European harmonized
ISO 14971 from the original international standard support our recommendation. In-
deed, Deviation 1 indicates that manufacturers should not discard negligible risks, and
Deviation 2 disallows manufacturers to decide the acceptability of risks. The risks left
without control measures due to technical infeasibility of the measures are called resid-
ual risks. The user should be clearly notified that the medical device does not cope with
them. Indeed, Derivation 7 of ISO 14971 [17, Page 7] states “users shall be informed
about the residual risks” and that “manufacturers shall not attribute any additional risk
reduction to the information given to the users.” We need to keep in mind that economic
considerations of mitigating measures are inappropriate in considering risks with MDS.
European harmonized ISO 14971 in Deviation 3 [17, Page 7] requires reducing risks as
far as possible as opposed to as low as reasonably practicable.

We call an IE that leads to a risk a Risk Initiator-Event (RIE). The common sources
for gathering RIEs are accident and incident reports documented for previous version
of the medical device or for similar medical devices. For instance, FDA Manufacturer
and User Facility Device Experience (MAUDE) database [28] contains a large number
of reports that can be used for gathering RIEs. In identifying these events, one needs
to keep in mind their root cause. For instance, if the RIE is “Patient is having blurred
vision” the requirement for the mitigation mechanisms would be ineffective and vague:
prescribe new set of glasses, or see the doctor, or have a blood test, etc. Whereas, if the
root cause is “Patient is having blurred vision due to low level of glucose in the blood”,
then the requirements for mitigating actions would be easily articulated. Ideally, the
analysts should reach a one-to-one mapping between the RIEs and the risks for which
a specific functional requirement is documented.

Analysts should hold RIE workshops where different stakeholders brainstorm and
discuss possible RIEs. Then, they should refine them to relate them to relevant root
causes, and document requirements for the appropriate responses to handle or at least
mitigate their affects. The literature abounds with techniques for analyzing and dis-
covering safety related hazards [7] that can be attributed to safety risks. ISO 14971
recommends traditional techniques like Fault Tree Analysis (FTA), Failure Mode and

Envisioning a Requirements Specification Template for Medical Device Software 217

Effects Analysis (FMEA). The more recent System-Theoretic Process Analysis (STPA),
proposed by Leveson [21], considers new causal factors, which are not handled by the
traditional techniques, including design errors like software flaws, component interac-
tion accidents, and human decision-making errors.

Ranking risks eases the management and documenting the requirements of a portfo-
lio of complex risks. For this purpose we need to carefully breakdown risks into simple
(not too long) risk scenarios. For this purpose, the requirements analyst and the stake-
holders need to identify a set of RIEs and evaluation criteria. The ranking is done by
combining the evaluations of RIEs against set criteria into a single risk score. This ap-
proach helps in dealing with systems with a high degree of complexity. It is flexible for
any type of risk and may be used with a variety of quantitative and qualitative evaluation
criteria. However, it has several disadvantages such as requiring significant effort in es-
tablishing RIEs and evaluation criteria. It requires significant effort in breaking down
risk events into many elementary RIEs related to their root causes as described above.

Once we have a list of RIEs, we need to assess the severity of the risk that can
be reached from each risk initiator-even. A class is assigned to each level of severity.
For instance, IEC 62304 [13] requires “The MANUFACTURER shall assign to each
SOFTWARE SYSTEM a software safety class (A, B, or C) according to the possible
effects on the patient, operator, or other people”, Class A, B, and C are based on the
severity of the effects: for a system of Class A, “No injury or damage to health is
possible”, while for Class C, “Death or SERIOUS INJURY is possible”.

The risks of a system are dependent on its scope. It is extremely important that the
scope of the system be carefully defined as well as its components, users, and partner
applications. All of them can trigger RIEs , and the requirements must document the
reaction of the medical device to each RIE .

Objective 4. The template should guide documenting the safety RIEs that are handled
by the device and support their ranking. As well, it should support articulating the
device/environment interactions in response to these safety RIEs.

Capturing Security Requirements

It is commonly believed that the most secure system is a closed system. The sources
of the most serious security threats to a system come from its environment. Figure 2
illustrates the environment of a medical device. It includes several kind of actors: the
legitimate users of the device, the partner application and systems, and other actors that
might exist in the device environment such as hackers or illegal users. To ensure device
security, we need to make sure that all the device environment actors do not misuse
common assets of the device such as data stores (e.g., registers, files), and channels
of communication that it uses for internal or external communication. Explicit access
policies ought to be articulated in the requirements to clearly assign each of the legitim-
ate users to a security class that enables her to have specified access rights to the device
common assets. Also, we need to make sure that no environmental actor can change the
prescribed behaviour of the device or affect its overall qualities (nonfunctional require-
ments). To achieve this goal, we need to require that all the functional requirements of
the software and hardware comprising the device are space complete; we have explicit
prescribed behaviour for every possible device state-space.

218 H. Wang et al.

Actors
Users Partner Applications Other Actors in Env

System
Device Software

Ext. interaction Int. interaction

Fig. 2. Software Intensive Medical Device and its Environment

To ensure the secure use of the device data stores, the template needs to guide the
analyst to document the requirements on the confidentiality policies, the measures for
the prevention of unauthorized data leakage, the detection of unauthorized usage of
data, and for the recovery of any data lost or corruptions by malice or unintended error,
such as transmission errors. Mechanisms for recovery or detection could necessitate the
requirements of their corresponding auditing mechanisms.

To secure the device’s overall properties, the template ought to help identify all the
system-environment shared resources such as communication channels, or any shared
hardware or software elements. The template should help document the fair and legit-
imate sharing of these common resources. In other terms, the analyst ought to document
the liveness properties regarding the access to these resources. Any request from author-
ized users ought to be granted within a reasonable time or the device needs to be put in
a safe and secure space-state. The time period prescribed for a reasonable access to a
shared resource needs to be clearly specified. These requirements will help avoid denial
of service for a user or a partner application that might put the patient health in danger.

We call the data stores and the shared resources threat targets; they are targeted
by the security threats. The template as explained above ought to help document the
security requirements for a secure access and use of each of these threat targets. For
each one of them, it should allocate a section that encompasses the requirements for
prevention of, detection of, and recovery from security threats targeting it.

Objective 5. The template should guide documenting the device’s threat targets and
specify the reasonable time for accessing the resources it shares with the environment.
It should provide the needed requirements for a thorough security assessment according
to Common Criteria for Information Technology Security Evaluation Models (e.g., [1,
Fig 5, Page 60]).

Capturing Privacy Requirements

Privacy essentially deals with the question how to preserve and protect all information
that can be used to identify the user. It is related to the security aspects specially to the
confidentiality aspect. However, when we discuss the privacy issue, we are focusing on
personally identifiable information. It includes all information that is connected directly
or indirectly to the user personally. When dealing with MDS, especially in the case of
the Implantable Medical Devices (IMD), the following concerns rise [12]:

1. Whether a patient has a Medical Device (MD) or not should remain protected from
unauthorized users. These users should not be able to determine that a patient is
using a MD. This requirement prevents patients using medical devices from being
targeted either by curious parties or by criminals that could harm them by interfer-
ing with their devices.

Envisioning a Requirements Specification Template for Medical Device Software 219

2. Unauthorized parties should not be able to link a specific-device identifying feature
(e.g., device Identification Number) to the user. This requirement is to prevent
compromising the user identity and might lead to compromising other Personally
identifiable information such as the user’s location.

3. All the standards and regulations regarding of the privacy of medical data should
be taken into account, e.g., IEC 62443 [14] is recognized by FDA for medical
devices [29]. These standards are about any data gathered about patients and about
all the measurements taken regarding their health. Usually, a MD generates patient
data intended for diagnosis and monitoring of the state of the patient. This data
could be in many instances considered as private data that can be used to identify
the user as individual or to reveal information about her health.

Some of the above issues are already covered by the security objective as they deal with
the authorised access to the data in the device and its partner applications data stores.
However, due to technical or performance reasons, we might not be able to ensure strict
control on all the common assets of the device (e.g., registers, files, communication
channels). This privacy objective puts emphasis on the importance of securing some
information that might lead to breach of the privacy of the user.

Objective 6. The template should guide documenting the privacy requirements that
ensure the protection of the user’s personally identifiable information.

Template Provides Several Presentation Views

The requirements content that a template helps document is intended for diverse stake-
holders. For instance, some users and project managers would need non-technical re-
quirements giving a very general presentation of the device. While, designers and other
technical stakeholders would require very technical content. The template needs to help
get requirements that can be presented at several technical levels. For instance, a re-
quirements specification that is compliant with the PSS-05-0 standard should include
a user requirements document that targets non-technical audiences and a software re-
quirements document that is intended for technical stakeholders. A template for docu-
menting MDS ought to capture the material relevant for different presentation views.

The functional requirements part of a requirements template can be organised in
several ways. For instance, the requirements could be organised by (IE, Viewpoint,
Use-case) or by (Viewpoint, IE, Use-case). These ways of organizing this part of the
requirements are isomorphic, and therefore one organization can be obtained from an-
other. In practice, we notice that one representation could lead to a sparse document
where some sections are empty. On the other hand, an isomorphic representation to the
sparse document gives a more compact document.

Objective 7. The template should help formally document the functional requirements,
while at the same time help document requirements intended for non-technical users.
The formalism should at least support formal and automated verification of the space
completeness, and the dictionary (i.e., naming) and behaviour consistency of the func-
tional requirements.

220 H. Wang et al.

Supporting a Family Approach to Document the Requirements

One important dilemma faced by developers of MDSs is the following. On the one
hand, we seek systems that are simple, and carry the needed functionality, no more no
less. This minimality objective is sought in all critical systems. A module or element
that is not essentially needed could interfere with the rest of the system and lead to a
failure. On the other hand, we have several classes of users of a MDS. For instance, an
insulin pump for children should have common features with one for adults, but could
have other features relevant only to children. One can think about having one pump
that includes all the features possible for an insulin pump but configurable for each
specific patient. However, it is against the minimality condition in building critical and
dependable systems. Therefore, we should adopt a family approach to the development
of MDSs. Software product family engineering proposes techniques and processes that
enable us to focus on the commonality and variability among the members of a MDS
family. The template should at least provide the feature model of the MDS family and
clearly capture the characteristics of each member of a product family or subfamily. It
is widely reported in the literature that a family approach to software development in
general helps to deal with unexpected changes to the requirements. The MDS industry
is heavily regulated, which leads to unexpected changes in the requirements of MDS
due to changes in the regulations. Hence, we should have the following objective.

Objective 8. The template should support a family approach to document software
medical devices.

4 A Structure for a Template Satisfying the Objectives

Based on the objectives given in the previous section, we propose a template that has
the structure given in appendix A. In the proposed template we adopted the features of
the surveyed templates that are appropriate for MDS. We started from the template pro-
posed in [2]. Then, we amended it to satisfy the objectives presented above to remedy
the limitations of the other templates found in the literature [15,23,9,27,4,2,20]. Table 1
traces the sections of the proposed template structure to the design objectives.

Table 1. Tracing Sections in the template to the design objectives

Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Obj. 7 Obj. 8

Sec. 2.6 & 7 Sec. 5 & 6 Sec. 5 & 6 Sec. 6 Sec. 8 Sec. 9 Sec. 5 & 6 Sec. 2 & 3

An open source tool called SMART II [3] that supports the proposed template struc-
ture has been developed. It is an amended version of the tool SMART [2]. This Java-
based user-friendly tool stores requirements in XML with access control mechanisms,
and it can generate a full requirements specification in RTF and PDF formats and en-
ables math formulae and tabular expressions written in LATEX. This tool provides mech-
anisms to control the access and the modification of the requirements, audit the changes
to all the sections of the requirements document, and makes it easy to document and
retrieve requirements. In summary, the proposed template, supported by a user-friendly
tool, helps capture requirements and reduce errors in the development of MDS.

Envisioning a Requirements Specification Template for Medical Device Software 221

5 Conclusions and Future Work

Documenting the requirements for MDSs is a very challenging task due to the nature of
the systems to be built and the stringent regulatory rules that need to be followed. These
systems ought to exhibit the highest dependability qualities such as safety, security, and
availability. A systematic approach to tackle the gathering and documentation of the
requirements of the system in general is usually very desirable. However, we think that
it is a must for MDS . In this paper we presented the objectives for designing a suitable
requirements template for MDS . We do not claim that the list of proposed objectives
is complete. They are in our view the essential and the most pressing objectives for
a suitable template for MDS . We perceive that the proposed template is a work in
progress. It can be taken as an initial scheme for formatting a requirements document
and for guiding analysts in their quest of getting the information needed to build a
dependable MDS. We provide as well a software system that can be used to automate
the production of the MDS requirements document based on the proposed template.

The tool that we developed requires other supporting tools to automate the formal
verification of the requirements. They will be needed to discover all the implicit re-
quirements in order to document them properly and make sure that our requirements
are complete and consistent. Other partner tools and techniques [25] will be needed to
help trace the requirements to the regulations. We are working on building these tools.

References

1. Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and
General Model (September 2012),
http://www.commoncriteriaportal.org/cc/

2. Ahmadi, M.: Requirements Documentation for Manufacturing Systems: Template and Man-
agement Tool. Master’s thesis, McMaster University (September 2006)

3. Ahmadi, M., Tounsi, N., Khedri, R., Chen, Y., Wang, H., Huang, M.: SMART II. A Tool for
the Documentation of Software Requirements Specification (August 2014), (Available for
download under the GNU General Public License)
http://www.cas.mcmaster.ca/~khedri/?page_id=460

4. Alspaugh, T.A., Faulk, S.R., Britton, K.H., Parker, R.A., Parnas, D.L.: Software Require-
ments for the A-7E Aircraft. Tech. rep., Naval Research Lab (1992)

5. Chen, Y., Lawford, M., Wang, H., Wassyng, A.: Insulin Pump Software Certification. In: Gib-
bons, J., MacCaull, W. (eds.) FHIES 2013. LNCS, vol. 8315, pp. 87–106. Springer, Heidel-
berg (2014)

6. Dooren, J.C.: FDA Sees Increasing Number Of Insulin Pump Problems. Wall Street Journal
(March 2010),
http://online.wsj.com/article/
SB10001424052748703862704575099961829258070.html

7. Ericson, C.A.: Hazard Analysis Techniques for System Safety. Wiley-Interscience (2005)
8. European Co-ordination of Notified Bodies Medical Devices: European NB-MED Recom-

mendation 2.2 on Council Directives 90/385/EEC, 93/42/EEC and 98/79/EC (June 2001)
9. European Cooperation for Space Standardisation: ECSS-E-ST-40C: Standard on Space En-

gineering – Software general requirements (2009)
10. Faris, T.H.: Safe and Sound Software: Creating an Efficient and Effective Quality System for

Software Medical Device Organizations. ASQ Quality Press (2006)

http://www.commoncriteriaportal.org/cc/
http://www.cas.mcmaster.ca/~khedri/?page_id=460
http://online.wsj.com/article/SB10001424052748703862704575099961829258070.html
http://online.wsj.com/article/SB10001424052748703862704575099961829258070.html

222 H. Wang et al.

11. Giakoumakis, E., Xylomenos, G.: Evaluation and Selection Criteria for Software Require-
ments Specification Standards. Software Engineering Journal 11(5), 307–319 (1996)

12. Halperin, D., Kohno, T., Heydt-Benjamin, T.S., Fu, K., Maisel, W.H.: Security and Privacy
for Implantable Medical Devices. IEEE Pervasive Computing 7(1), 30–39 (2008)

13. IEC 62304: Medical Device Software – Software Life Cycle Processes (May 2006)
14. IEC 62443: Industrial communication networks–Network and system security
15. IEEE Standard: IEEE Recommended Practice for Software Requirements Specifications.

IEEE Std 830-1998 (June 1998)
16. Institute of Medicine: Medical Devices and the Public’s Health: The FDA 510(k) Clearance

Process at 35 Years. The National Academies Press (2011)
17. ISO 14971:2007: Medical devices – Application of Risk Management to Medical Devices

(2007)
18. ISO/IEC Guide 51:1999: Safety aspects – Guidelines for their inclusion in standards (1999)
19. Jaskolka, J., Khedri, R., Zhang, Q.: Endowing Concurrent Kleene Algebra with Communic-

ation Actions. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMiCS 2014. LNCS,
vol. 8428, pp. 19–36. Springer, Heidelberg (2014)

20. Lai, L.: Requirements Documentation for Engineering Mechanics Software. Master’s thesis,
McMaster University (2004)

21. Leveson, N.: Engineering a Safer World: Applying Systems Thinking to Safety. MIT Press
(2012)

22. Networking and Information Technology Research and Development Program (NITRD):
High-Confidence Medical Devices: Cyber-Physical Systems for 21st Century Health Care.
Tech. rep. (2009)

23. Robertson, J., Robertson, S.: Volere Requirements Specification Template (August 2007)
24. Robertson, J.: The trials of a diabetic hacker. Bloomberg Businessweek (February 2012),

http://www.businessweek.com/articles/2012-02-23/
the-trials-of-a-diabetic-hacker

25. Singh, N.K., Wang, H., Lawford, M., Maibaum, T.S.E., Wassyng, A.: Formalizing the Gluc-
ose Homeostasis Mechanism. In: Duffy, V.G. (ed.) DHM 2014. LNCS, vol. 8529, pp. 460–
471. Springer, Heidelberg (2014)

26. The Council Of The European Communities: Council Directive 93/42/EEC concerning med-
ical devices (June 1993)

27. U.S. Federal Aviation Administration: DOT/FAA/AR-08/32. Requirements Engineering
Management Handbook (June 2009)

28. U.S. Food and Drug Administration: Manufacturer and User Facility Device Experience
Database, http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfmaude/search.cfm

29. U.S. Food and Drug Administration: Recognized Consensus Standards Database,
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfStandards/search.cfm

30. U.S. Food and Drug Administration: Guidance for Industry and for FDA Staff: Use of Stand-
ards in Substantial Equivalence Determinations (March 2000)

31. U.S. Food and Drug Administration: General Principles of Software Validation; Final Guid-
ance for Industry and FDA Staff (January 2002)

32. U.S. Food and Drug Administration: Guidance for the Content of Premarket Submissions for
Software Contained in Medical Devices (May 2005)

33. Vogel, D.A.: Medical Device Software Verification, Validation, and Compliance. Artech
House (2011)

34. Weiss, K., Leveson, N., Lundqvist, K., Farid, N., Stringfellow, M.: An Analysis of Causation
in Aerospace Accidents. In: DASC 2001: The 20th Conference on Digital Avionics Systems,
vol. 1, pp. 4A3/1–4A3/12 (2001)

35. Wiegers, K.E., Beatty, J.: Software Requirements, 3rd edn. (August 2013)

http://www.businessweek.com/articles/2012-02-23/the-trials-of-a-diabetic-hacker
http://www.businessweek.com/articles/2012-02-23/the-trials-of-a-diabetic-hacker
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm

Envisioning a Requirements Specification Template for Medical Device Software 223

A SRS Template for Product Family

Revision history
1. Introduction

1.1 Document Purpose
1.2 Abbreviations and Acronyms
1.3 References
1.4 Document Organization

2. General Family Description
2.1 Medical Condition (Pathology)
2.2 Family Purpose
2.3 Family Scope
2.4 Family Context
2.5 User Characteristics
2.6 Standards and Regulations to

Comply with
3. Family Model

3.1 Feature Models
3.2 Constraints on Family Views
3.3 Constraints and Assumptions on

Ext. Entities
4. Non-functional Requirements

4.1 Accuracy Requirements
4.2 Performance Requirements
4.3 Maintainability Requirements
4.4 Look and Feel Requirements
4.5 Usability Requirements
4.6 Portability Requirements
4.7 Life cycle Requirements
4.8 Others

5. Functional Requirements (device
main purpose)

5.1 Normal Event 1
5.1.1 Viewpoint 1

5.1.1.1 Use Case
...

6. Safety Functional Requirements
6.1 Risk Events

6.1.1 Class C

6.1.1.1 Risk Event 1
6.1.1.1.1 Viewpoint 1
6.1.1.1.2 Use Case

6.1.2 Class B
...

6.2 Residual Risks
6.2.1 Class C

6.2.1.1 Risk 1
6.2.1.1.1 Description
6.2.1.1.2 Tech constraints

...

7. Security and Privacy Regulations
8. Security Requirements

8.1 Data Stores
8.1.1 ST for Data Store 1

8.1.1.1 ST Introduction
8.1.1.2 Conformance Claims
8.1.1.3 Security Problem Def
8.1.1.4 Security Objectives
8.1.1.5 Security Requirements
8.1.1.6 TOE Summary Spec

...
8.2 Shared Resources

8.2.1 ST for Shared Resource 1
...

9. Privacy Requirements
9.1 Mechanisms for anonymizing

users
9.2 Mechanisms for protecting users

from attacks
10. Traceability Matrices

10.1 Traceability to Regulations and
Standards
11. Open Issues
12. Waiting Room
13. Expected Possible Changes

13.1 Fundamental Assumptions

Combining Static and Dynamic Impact Analysis

for Large-Scale Enterprise Systems

Wen Chen, Alan Wassyng, and Tom Maibaum

McMaster Centre for Software Certification,
McMaster University, Hamilton, Ontario, Canada

{chenw36,wassyng}@mcmaster.ca, tom@maibaum.org

Abstract. Software changes and their impact on large-scale enterprise
systems are critical, hard to identify and calculate. A typical enterprise
system may consist of hundreds of thousands of classes and methods.
Thus it is extremely costly and difficult to apply conventional testing
techniques to such a system. In our previous work [1], a conservative
static analysis with the capability of dealing with inheritance was con-
ducted on an enterprise system and associated changes to obtain all the
potential impacts. However, since static analysis takes into account all
the possible system behaviours, the analysis often results in a good num-
ber of false-positives and thus over-estimation of the impact on other
methods in the system. This work focuses on extending our previous
static approach by an aspect-based dynamic analysis, to instrument the
system and collect a set of dynamic impacts at run-time. The new ap-
proach is still safe, but more precise than the static analysis. Safety is
preserved since the static analysis serves as the input source to the dy-
namic analysis, and we are careful not to discard impacts unless we can
show that they are definitely not impacted by the change. It is more pre-
cise since dynamic analysis examines behaviours that do definitely occur
at run-time and hence is able to reflect the real impacts. Additionally,
our analysis is able to handle the scalability issue. The targeted system
is orders of magnitude larger than the system other existing approaches
can deal with. A case study was conducted to illustrate that specific
objectives can be attained.

Keywords: Large-scale Enterprise Systems, Impact Analysis, Static
Analysis, Dependency Graph, Dynamic Analysis, Instrumentation,
Aspect-oriented Programming, AspectJ, Regression Testing.

1 Introduction

Enterprise systems are commercial software packages that enable the integra-
tion of transaction-oriented data and business processes throughout an organiza-
tion. They are gaining popularity in organizations all over the world. Take ERP
(Enterprise Resource Planning) systems as an example. By 1998, approximately
40% of companies with annual revenues of more than $1 billion had implemented

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 224–238, 2014.
© Springer International Publishing Switzerland 2014

Combining Static and Dynamic Impact Analysis 225

ERP systems [2]. One of the largest enterprise vendors, SAP, had 2012 revenue
of 16.22 billion Euros [3]. Among SAP product lines, SAP Business One Oper-
ation, Financials and Human Resources has over 40,000 customers. Enterprise
systems are clearly a common phenomenon in the IT marketplace, with fast
growing needs.

Some crucial characteristics of enterprise systems are:

1. Scalable. The size of typical enterprise systems is extremely large. For in-
stance, Oracle Corporation’s E-Business Suite consists of a collection of
ERP, CRM, SCM computer applications either developed or acquired by
Oracle. The total number of classes in release 11.5 is around 200 thousand,
and the total number of methods is over 4.6 million.

2. Complex. Since the richness of functionalities in enterprise systems, it’s not
trivial to fully understand how the components within the system commu-
nicate.

3. Critical. In spite of scalability, complication, enterprise system plays a critical
role in organizations, they can reflect the actual business process, information
flows, reporting, data analytic, etc. It’s critical to implement all the modules
correctly and maintain it in a safe and efficient way.

4. Costly. It is estimated that “Large companies can also spend $50 million to
$100 million on software upgrades. Full implementation of all modules can
take years” [4].

As a consequence of these characteristics, these systems can also often be clas-
sified as legacy systems and are poorly understood and difficult to maintain.

Software changes are inevitable and change impact analysis is a key approach
in analyzing software changes or potential changes and in identifying the software
objects the changes might affect [5]. Organizations need a change impact analysis
tool to identify the impacts of a change after or even before making a change.
If the impacts can be obtained even before applying the change, it enables the
organization to make test plans or to run tests in advance, saving the lag between
system deployment and release. By using the identified impacts, organizations
can know what to test, instead of having to run all their existing tests, and can
augment the test suite to cover software entities that are affected but not covered
in the existing test suite.

Static analysis examines program code and reasons over all possible behaviours
that might arise at run-time. Typically, static analysis is conservative and sound.
Soundness guarantees that analysis results are an accurate description of the pro-
gram’s behaviour, no matter what inputs or in what environment the program
is run. Conservatism means reporting weaker properties that are guaranteed to
be true, preserving soundness, but may not be strong enough to be useful [6].
For example, in our case, the static analysis reports all impacts possible, which
includes the complete set of inherited sub-classes, even though many of those
sub-classes will not be affected in a particular case.

Dynamic analysis operates by executing a program and observing the execu-
tions. The dynamic information consists of execution data for a specific set of

226 W. Chen, A. Wassyng, and T. Maibaum

program executions, such as executions in the field, executions based on an oper-
ational profile, or executions of test cases. Apiwattanapong et al. [7] defines the
dynamic impact set to be the subset of program entities that are affected by the
changes during at least one of the considered program executions. It is precise
because no approximation or abstraction needs to be performed. The analysis
examines the actual run-time behaviour of the program, and so the control-flow
paths that were taken during those executions are known. Another benefit over
static analysis in the context of object-oriented software is the exposure of ob-
ject identities and the actual resolution of late binding. A drawback is that in
dynamic analysis the results obtained are valid only for the scenarios that were
exercised during the analysis.

Our contributions in this work are: (1) We have developed a multi-tasking,
aspect-oriented instrumentor to adequately instrument large-scale systems and
collect traces at bytecode level; (2) We have successfully combined static analysis
and dynamic analysis, providing both safety and improved precision; (3) We have
empirically demonstrated the practical applicability of the improved approach
on a very large enterprise system involving hundreds of thousands of classes.

2 Related Work

Apiwattanapong et al. [7] pointed out that static impact analysis algorithms
often come up with impact sets that are too large to be useful, due to their over
conservative assumptions. For example, regression testing techniques that use
impact analysis to identify which parts of the program to retest after a change
would have to retest most of the program. Therefore, recently, researchers have
investigated and defined impact analysis techniques that rely on dynamic, rather
than static, information about program behaviour [8,9].

The dynamic information consists of execution data for a specific set of pro-
gram executions, such as executions in the field, executions based on an opera-
tional profile, or executions of test suites. CoverageImpact [9] and PathImpact

[8] are two well known dynamic impact analysis approaches that use this infor-
mation. PathImpact works at the method level and uses compressed execution
traces to compute impact sets. CoverageImpact also works at the method level
but it uses coverage, rather than trace, information to compute impact sets.
However they are not suitable for enterprise systems. For instance, the coverage-
based instrumentation that collects dynamic data from either field execution or
test case execution, is not suitable because:

– Field execution requires the collection of users’ executions of methods in
the set of changes, and this is often not available, since methods may have
been newly added to introduce new functionalities. After changes have been
applied to the system, there is no way to collect the information concerning
executions of the new methods. In addition, the coverage information in the
collection will be inaccurate.

– Due to the size of enterprise systems, it is extremely unrealistic to collect
users’ executions in a continuous way. Orso et al. [9], with the aid of 12 users,

Combining Static and Dynamic Impact Analysis 227

spent 12 weeks to collect 1,100 executions on a program JABA which consists
of 550 classes and 2,800 methods. For enterprise systems, the number of
classes can easily exceed 100,000, which is nearly 200 times the size reported
in JABA. To collect user information on such systems is very time consuming,
and may be even longer than rerunning the entire regression test suite.

In all these dynamic approaches, one of the most important tasks is to instru-
ment the program in an appropriate way. We can divide the instrumentation into
two categories: (1) those which simulate, emulate, or translate the application
code, and (2) those which instrument the application code. SPIM [10], Shade [11]
and more recently Pin [12], Soot [13] fall into the first type in which the original
code was simulated or transformed to some intermediate representation to be
processed. On the other hand, tools like ATUM [14] and more recently BCEL [15],
AspectJ [16] and InsECTJ [17] fall into the other type, where the application
code is executed and in the meantime runtime information is collected.

Instrumentation tools in the first category requires extra computing time and
space resources to accomplish the simulation, emulation or translation. For in-
stance, Soot provides four intermediate representations for code: Baf, Jimple,
Shimple and Grimp [13]. The representations provide different levels of abstrac-
tion on the represented code and are targeted at different uses. This tool works
perfectly for small or medium programs, but when it comes to systems of the size
of enterprise systems, it runs out of memory quickly since an intermediate rep-
resentation is required for each class. Instrumentation tools in the first category
are not a viable choice in solving our problem.

3 Research Motivation

The complexity and large-scale of an enterprise system make it impossible for a
tester to adequately comprehend the impact of changes, and often results in high
costs, over-estimation and/or under-estimation. The majority of testing work is
dependent on the tester’s domain knowledge, which makes the testing results
very risky to rely on. There has been extensive research work on conventional
impact analysis approaches, but they do not deal adequately with the scale
of enterprise systems or provide a good solution in terms of both safety and
precision. We observed that there is great potential in combining static and
dynamic approaches in analyzing change impacts. Static analysis considers all
possible software behaviours which may result in imprecision, but it provides
a conservative way to assess the impacts that lead to soundness and safety.
Also, as software impact analysis often works for regression testing and test
selection, it can be used to jointly determine whether changes made on the
system have been fully covered by a user’s test suite. It is important that no
necessary impacts are omitted. Starting with an abstract model of the state of the
program, dynamic analysis can be used to make the analysis more precise. Thus
our research motivation is to investigate the possibility of combining static and
dynamic analysis to achieve: (1) the preservation of both safety and precision;
and (2) the capability of dealing with extremely large enterprise systems.

228 W. Chen, A. Wassyng, and T. Maibaum

4 Static Analysis

In our previous work [1], a static impact analysis was conducted on a large-scale
enterprise system. In particular, we built a access dependency graph to abstract
a static graph representation of the system. Both calling dependencies and field
dependencies were taken into account, and it was able to handle object-oriented
features like inheritance and dynamic binding.

Most modern enterprise systems were written in an object-oriented language
to encapsulate fields and methods, provide information hiding, etc. However,
in analyzing the impacts of a change, object-oriented features can make the
analysis more complex. We observed that many of the over-estimated impacts in
the static analysis are caused by inheritance and dynamic binding. Surprisingly,
vendors prefer to add or modify a feature by simply inheriting a parent method
and then adding the new/changed functionality to the inherited method. For
the sake of safety, one has to include all the possible superclasses in determining
the dependencies. The method we use to construct an access dependency graph
looks into each method invocation and only includes methods that have actually
implemented parents’ methods. Effectively it reduces the amount of dependencies
we used to include.

However, even with the ability of dealing with inheritance and dynamic bind-
ing, the analysis may still contain a good number of false-positive for two resons:
(1) many of the methods identified as impacted by the static analysis cannot be
executed in real time; or (2) “impacted” methods may be possible, but cannot
be affected. To make the results more precise, dynamic instrumentation of the
system is needed.

5 Dynamic Analysis

Dynamic analysis is more efficient than static analysis, with respect to running
time and precision in finding impacts, locating defects, etc. It requires run-time
executions of the program to collect information such as field data, coverage,
event traces, etc. Then software developers/testers can compute dynamic im-
pacts of a change by identifying affected entities in the program. Even though a
dynamic approach is more efficient, one cannot instrument the program to cover
all feasible executions, so dynamic analysis often leads to under-estimation, and
thus violates our quest for safety.

As mentioned earlier, coverage-based dynamic approaches are not suitable for
us, while path-based approaches seems more practical and effective. However
current path-based approaches [7,8] have a number of limitations that can lead
to long running time and low precision, and one has to to have particular do-
main knowledge such as a full understanding of the application logic to conduct
the instrumentation. Certain functions require certain inputs and a certain or-
der of executions to make the instrumentation meaningful, which dramatically
increases the difficulty and complexity. Long execution time is mainly caused
by duplicate traces, even though compression algorithm or finer analysis (e.g.

Combining Static and Dynamic Impact Analysis 229

execute-after) can be employed, it still requires a large amount of time that may
almost equal running the entire regression suite.

Considering the pros and cons of static and dynamic analysis, and limits
of current approaches, there exists a good potential of combining the two ap-
proaches to achieve a hybrid approach which is safe, precise but requires a smaller
running time. Since our target systems are typically very critical, the first and
most important consideration is safety. Hence an access dependency graphG can
be used to capture all the potential impacts S and serves as the input source of
dynamic analysis. Then we could run aspect-oriented instrumentation on each
method in S. The major reason is, aspect-oriented instrumentation doesn’t re-
quire any domain knowledge, nor test data. In the aspect we created, we define
a pointcut for each method execution, as well as advice in collecting event traces
from the method. In this way, we compute a set of dynamic impacts D which
is essentially a subset of S, as well as a set of potential over-estimated impacts
(PO): impacts that were not traversed by the instrumentation.

In the next section we briefly introduce the background of aspect-oriented
programming and its popular implementation AspectJ, and then details of why
and how we use it in instrumenting enterprise systems.

5.1 Aspect-Oriented Programming and AspectJ

Aspect-oriented programming. (AOP) [18] has been proposed as a technique for
improving separation of concerns in software. AOP builds on previous tech-
nologies, including procedural programming and object-oriented programming,
which have already made significant improvements in software modularity. Kicza-
les et al. [19] pointed out the central idea in AOP is that while the hierarchical
modularity mechanisms of object-oriented languages are extremely useful, they
are inherently unable to modularize all concerns of interest in complex systems.
Instead, we believe that in the implementation of any complex system, there will
be concerns that one would like to modularize, but for which the implementa-
tion will instead be diffused over a number of modules. This happens because
the natural modularity of these concerns crosscuts the natural modularity of the
rest of the implementation.

AOP does for concerns that are naturally crosscutting what OOP does for
concerns that are naturally hierarchical. It provides language mechanisms that
explicitly capture crosscutting structure. This makes it possible to program cross-
cutting concerns in a modular way, and thereby achieve the usual benefits of
modularity: simpler code, that is easier to develop and maintain, and that has
greater potential for reuse [16].

AspectJ, originally developed at Xerox Parc, is an implementation of the
aspect-oriented programming paradigm for the Java language. It adds to Java
just one new concept, a join point and a few new constructs: pointcuts, advice,
inter-type declarations and aspects [20].

230 W. Chen, A. Wassyng, and T. Maibaum

– Pointcuts pick out certain joint points in the program flow.
– After pointcuts pick out join points, we use advice to implement crosscutting

behaviour. Advice brings together a pointcut (to pick out join points) and a
body of code (to run at each of those join points).

– Inter-type declarations in AspectJ are declarations that cut across classes
and their hierarchies. They may declare members that cut across multiple
classes, or change the inheritance relationship between classes.

– The definition of aspects is very similar to classes, which wrap up point-
cuts, advice, and inter-type declarations in a a modular unit of crosscutting
implementation.

5.2 Aspect-Oriented Instrumentation

Unlike many other tools, AspectJ works at bytecode level, which is powerful since
organizations usually only have the running version from the vendors. Moreover,
it doesn’t require any modifications of the existing code. The instrumentation
code is encapsulated as an aspect which may be developed by a different develop-
er/tester who is familiar with the instrumentation environment, not necessarily
with the application logic. The application code is simply recompiled using a
special compiler, the aspect weaver, which connects the aspect code with the
application code. Thus, the instrumentation can easily be integrated into an
existing application.

The idea is to define a pointcut on every method execution, as well as some
advice to run when they turn up before the code is executed. Below is an aspect
we use to trace system executions:

Listing 1.1. Aspect Trace

1 aspect Trace{
2 pointcut traceMethods() : (execution(∗ ∗(..))&& !cflow(within(Trace)));
3 before(): traceMethods(){
4 Signature sig = thisJoinPointStaticPart.getSignature();
5 String line =””+ thisJoinPointStaticPart.getSourceLocation().getLine();
6 String sourceName = thisJoinPointStaticPart.getSourceLocation().

getWithinType().getCanonicalName();
7 Logger.getLogger(”Tracing”).log(
8 Level.INFO,
9 ”Call from ”

10 + sourceName
11 +” line ” +
12 line
13 +” to ” +sig.getDeclaringTypeName() + ”.” + sig.getName()

);
14 }
15 }

In the aspect Trace, we define a pointcut traceMethods() (Line 2) to pick
out executions of every method in every class, as long as the control flow is

Combining Static and Dynamic Impact Analysis 231

not in the current class, such that we can identify all the other methods being
called in each particular execution. Then we define an advice immediately before
executing the method (Line 3). In the advice we log information of caller and
callee when the pointcut is hit, including names and line numbers of the calling
sites. AspectJ provides a special reference variable, thisJointPointStaticPart,
that contains reflective information about the current join point for the advice
to use.

To use this aspect, we need to compile it using AspectJ’s compiler ajc:

ajc -outxml -outjar aspects.jar Trace.java

ajc is AspectJ’s compiler and bytecode weaver for the Java language. The ajc
command compiles and weaves AspectJ code together with Java source or .class
files, producing .class files compliant with any Java VM. Now we can use this
compiled Jar file aspects.jar to run the instrumentation process:

java -javaagent:<path to aspectjweaver.jar> -cp <path to aspects.jar>:

<path to target jar/folder> <name of main class to run>

A sample output of running this Jar on a class MGPApp.class from Oracle E-
Business Suite is listed below:

Listing 1.2. Output Sample for MGPApp.class

1 \$ java −javaagent:/ebs/orahome/
2 aspectj1.7/lib/aspectjweaver.jar −cp /ebs/orahome/aspects.jar:/ebs/oracle/

prodcomn/java/ MGPApp
3 INFO: Call from oracle.lite.sync.ConsNls line 37 to oracle.lite.sync.ConsNls.

initialize
4 INFO: Call from MGPApp line 106 to MGPApp.main
5 INFO: Call from oracle.lite.web.util.JupMGPDebug line 134 to oracle.lite.web.util.

JupMGPDebug.init
6 INFO: Call from oracle.lite.web.util.JupMGPDebug line 27 to oracle.lite.web.util.

JupMGPDebug.load
7 INFO: Call from oracle.lite.common.Profile line 153 to oracle.lite.common.Profile.

getBinDirectory
8

We can then extract the dynamic event traces from this output. It is worth
pointing out, our instrumentation does not alter system behaviour in any ways. It
is used only to log necessary information from the code being executed and does
not pass any arguments to the execution. We already discussed the alternative
aspect-oriented instrumentation approach implemented in AspectJ, which allows
us to conduct a fully dynamic instrumentation on the bytecode level of programs.
Aspect-oriented instrumentation “weaves” together the program code/bytecode
and the aspects, and encapsulates advice (insertion code) to monitor and collect
dynamic information, without modifying the program. Developers/testers can
focus on the instrumentation and data collection, saving effort in learning the
application logic. Additionally, space and running time is quite reasonable: it
requires hundreds of kilobytes per class, and running time of seconds per class.
Details will be discussed in the case study.

232 W. Chen, A. Wassyng, and T. Maibaum

Fig. 1. System Flow Chart. In this chart, greyed modules were newly introduced to
our previous static approach [1]. The input to the analysis was a set of atomic changes,
such as patches; and the output was calculated by adding the potential false-positives
and the dynamic impacts (see below).

6 Impact Analysis Overall

We extended the static approach in [1] using dynamic analysis, to form the
new process depicted in Figure 1. In this overall process, an aspect-based dy-
namic instrumentation and data collection is conducted to collect event traces
for functions f ∈ S identified in the static impact set. The traversing informa-
tion obtained in this process includes names of invoked functions; where they
come from and where they will go. Then a dynamic impact set D is computed to
gather that traversing information for each f . EssentiallyD is a subset of S, that
is, functions and thus associated dependencies are proved to exist in real time.
In the meantime, a set of potential over-estimated impacts PO can be obtained
by a subtraction: PO = S −D.

7 Case Study

Our goal in the case study is to empirically investigate whether our motivations
of (1) safety and precision, and (2) capability of dealing with the size of enterprise
systems, can be met in practice. We now present the variables and measures,
experiment setup and design, threats to validity and final results with analyses.

There is only one independent variable in this study: the extended impact
analysis tool. Dependent variables in this study include precision and time over-
head. To retain consistency with existing literature, our measure of precision
remains the conventional one at the moment (Equation 1), where M represents

Combining Static and Dynamic Impact Analysis 233

Table 1. Oracle E-Business Suite Release 11i and Some Facts

Release Facts

Application Database Classes
Entities

(functions and fields)
LOC

(approx.)

11.5.10.2 (11i) 10.2.0.2.0 (10g) 195,999 3,157,947 8.7 Million

Table 2. Patches for Oracle E-Business Suite 11i

Patches Release
Facts

Size Description

5565583 11.5.10.2 212MB Fusion Intelligence for E-Business Suite Family Pack
11I.BIS PF.H.

10107418 10KB This patch has fix for bug 9086631 and bug 9190120
(CPU bugs).

14321241 99MB ORACLE Applications With 11i.ATG PF.H RUP6:
CPU ConsolidatedPatch For OCT 2012.

the total number of methods and fields in the program [21].

Precision =
|I|
|M | (1)

To evaluate the execution cost of the new approach, we measured the time
overhead of each major step in the overall process.

7.1 Experiment Setup

The experiment was set up on a desktop server with a Quad core 3.2GHz CPU,
32G RAM and the operating system was Red Hat Enterprise Linux Server release
5.10 (Tikanga) 64 bit. We used Oracle E-Business Suite 11.5.10.2 (Table 1) as
the object of the analysis, and for source of atomic changes we used multiple
patches (Table 2) that can be obtained either from Oracle E-Business Suite
Patch Wizard or manually downloaded from Oracle Metalink. The patches were
selected by an industrial user of the software, who had tried to analyze those
patches and could then see whether our analysis added value - it did.

Vendor patches can range from a couple of KBs to hundreds of MBs, depend-
ing on what the purposes are for applying them. The smallest patch in this study
is a patch (# 10107418) that was developed to fix responses to some CPU bugs
– presumably this would not affect any system’s behaviour, in terms of function-
ality, but certainly we cannot make any conclusion before conducting the impact
analysis.

7.2 Experimental Design

We want to empirically examine if our approach is safe and scalable. At first,
we intended to conduct only static analysis. In particular, the experiment was

234 W. Chen, A. Wassyng, and T. Maibaum

Table 3. Execution Time for Patch #5565583, where G is the access dependency
graph, S and D represents the set of static impacts and the set of dynamic impacts,
respectively.

Build G
Extract
Changes

Reverse
Search

Compute S Instrumentation Compute D Total

9.5 Hrs 2 Hrs 3.8 Hrs 1 Hr 48 Hrs 2 Hrs ∼50 Hrs

conducted on the system and the above three patches respectively. Details of
performing the static analysis are omitted, since they are exactly the same as
described in [1].

After the static analysis, we ran dynamic instrumentation on the system via
the aspect-oriented instrumentor Trace. The instrumentation was only executed
on methods in the static impact set, since the whole point of dynamic analysis
in our approach is to investigate which paths in the static impact set are valid in
runtime. Instrumenting the entire system is not necessary and very expensive.
The result to be gathered in this experiment is essentially the remaining and
the “verified” dependencies. With those impacts we could then calculate the
precision.

7.3 Results and Analysis

The entire system contains 195,999 classes. We determined that there are
3,157,947 entities (both functions and fields) in the system. The process of build-
ing the access dependency graph added over 18.4 million dependencies and took
over 9.5 hours (Table 3) to complete, which is large but quite manageable, espe-
cially as this process is independent of any patch or proposed change, and thus
can be prepared in advance. Reverse searching this dependency graph takes
only a few seconds for each starting point method or field. By patch analysis1,
we found 16,787 direct database changes, and 25,613 direct library changes for
patch #5565583; 610 direct database changes, and 3,374 library changes for
patch #14321241; no direct database changes, and no library changes for patch
#10107418. Apparently patch #5565583 is the largest patch among the three
and hence it is intended to change quite a number of functions in the system.
Patch #10107418 is a pretty small one and only intended to fix some CPU issues,
just as we expected, it doesn’t contain any functional changes.

The computed static impacts for each patch are listed in Table 4. As we can
observe from Table 4, the static impacts can reach up to 22.2% of functions
in the system, including the “top functions”. We had almost one out of ten
top callers identified as impacted. It is quite a large portion of the system, and
if testers were given this set of impacts, a large amount of testing work still

1 Patch analysis is to analyze patch files (bytecode, xml, database procedures, etc.) to
extract direct changes to either the library application or the database. Those direct
changes are then used to serve as atomic changes in the impact analysis.

Combining Static and Dynamic Impact Analysis 235

Table 4. Static Impacts of the Patches

Patch
Direct

Changes
Affected Functions

(% of total functions)
Affected Top Functions

(% of total top functions)

5565583 42,400
699,534
(22.2%)

160,800
(9.6%)

14321241 3,984
230,209
(7.3%)

69,971
(4.2%)

10107418 0 0 0

Table 5. Results after Instrumentation for Patch # 5565583

Patch
Total

Function
Total

Top Function
Static

Impacts
Dynamic
Impacts

Potential
False-Positives

5565583 3,157,947 1,673,132 699,534 4,806 694,728

has to be conducted. This is mainly caused by false-positives. In other words,
we may have included many over-estimated impacts that come from infeasible
executions, invalid calling paths, etc.

We ran AspectJ to instrument the identified static impacts, for each “affected
function”. In the experiment this was accomplished by looking into the pro-
duction directory, executing predefined “aspects” for each class when a main

function was found. The instrumentation was extremely time consuming, since
our target system is very large. Initially this process took over one week. On
one hand, many executions were simply long - may take up to hours for a single
run. On the other hand, many of them prompted the user for inputs to con-
tinue. We split the instrumentation into sub-tasks, each one of them focused on
instrumenting just one component in the system and for the latter problem, we
conservatively collected all the calling relations no matter what the user inputs
were. With this approach we tried to maximize the usage of CPU and memory,
and in the end, the instrumentation was reduced to around 48 hours.

After the instrumentation, dynamic information was collected (Table 5):
among the total static dependencies, only 8,357 were covered in the executions,
that is, 0.45‰; and 4,806 functions, that is, 0.26% of all top callers (of 1,673,132)
were covered. From the numbers, it seems the instrumentation touched only a
tiny portion of the system. However, the fact is, for that tiny portion of the sys-
tem, these paths were executed in total 159,367 times. In other words, certain
executions pointed to certain top callers, which did not vary much with respect
to the number of executions. By actually running the system, we observed that
only a small portion of the system can be impacted – however, this does not
mean other impacts in the static impact set are not valid. Those 4,806 functions
were kept in the final impact set, as they were “confirmed” in run time.

The entire process currently requires considerable time to complete. Consid-
ering the sizes of the system and patch, it is still much more manageable than
rerunning everything in the regression suite. More crucially, it provides testers

236 W. Chen, A. Wassyng, and T. Maibaum

confidence in which parts in the system are affected. The most time-consuming
task is the instrumentation, which occupies around 56.8% of the total execution
time. Just as the static dependency graph, the instrumentation forms a substan-
tial corporate asset for future analysis, and can be easily and quickly updated
as needed.

7.4 Threats to Validity

Like most of other empirical studies, our study also has limitations that we should
be aware of while interpreting the results. At the moment of this study, a user’s
application and test cases are not accessible to us. Hence our case study currently
focuses on identifying impacts within the system, though it’s not hard to extend
our study to cover customized code since the underlying techniques remain the
same. Also, while interpreting the results, the way of calculating precision can
vary. Since the validity of computing the size of actual impacts by extracting
from program logs the direct modifications [22] is quite complicated, and in
practice not available most of the time, Maia’s definition [23] is accurate but not
useful. We intend to use Orso’s definition [21], which is straightforward but less
accurate, and sometimes even dangerous when the approach is not safe. However,
since our approach of impact analysis computes a complete static dependency,
Orso’s definition would not be risky for our case study.

8 Conclusion

8.1 Achievement

In this work, we investigated how to conduct an impact analysis that combines
static analysis and dynamic analysis on large-scale enterprise systems, to achieve
safety and precision. The achievements reported on are:

– We have developed a multi-tasking, aspect-oriented instrumentor to ade-
quately instrument large-scale systems and collect traces at bytecode level.
The instrumentor does not require testers to fully understand the applica-
tion logic or prepare any test data. This is extremely useful when the size of
the program is large, given that existing tools are too expensive and require
extra information such as test coverage and operational profiles, which are
usually hard to access.

– We have successfully combined static analysis and dynamic analysis. The
hybrid approach retains the safety of the static approach, but is more precise
since the dynamic analysis removes some of the false positives. Safety is
retained since the static analysis was used as the input to the dynamic
analysis, and our techniques were carefully designed not to remove impacted
methods from the impact set unless we could prove that they were false
positives. Instead of instrumenting the entire program, our instrumentor
only instruments those methods of interest – functions or fields that have
been already identified as static impacts.

Combining Static and Dynamic Impact Analysis 237

– We have empirically demonstrated the practical applicability of the improved
approach on a very large enterprise system involving hundreds of thousands
of classes. Such systems are perhaps 2 orders of magnitude larger than the
systems analyzed by other approaches.

Our approach is safe, more precise than the static analysis and scalable. Ad-
ditionally, it is able to compute the impact result before applying the changes,
since the access dependency graph in static analysis was augmented to include
the original changes. The final impact set obtained from our approach can be
used in regression test selection, focused testing, and planning enhancements to
applications, etc.

8.2 Future Work

As we can observe from the case study, the instrumentation took approximately
2 days to finish, even with taking into account dividing the task into smaller
ones. This amount of run time is reasonable, with respect to the size of the
system. However, from a software tester’s point of view, it may still need to be
reduced to improve the efficiency.

Results of the case study also indicate that dynamic analysis only found a
small portion of the static impacts are real impacts. It might be the case that
runtime use of a large software system may only access a small part of the
software. However, we may also not have filtered out enough false-positives. For
instance, if we break down the static analysis to include control-flow information,
we might be able to identify infeasible paths with mis-matched calls and returns.
And then, mapping those infeasible paths to dependencies, we could cut off
further false-positives in the static impact set. Also, even for feasible paths, there
is some chance that they are not affected. If we are able to look into changes
and identify what they really intend to change, e.g. changing a field’s name,
modifying a function’s signature, we can further find out whether functions that
have access to them can be affected.

References

1. Chen, W., Iqbal, A., Abdrakhmanov, A., Parlar, J., George, C., Lawford, M.,
Maibaum, T., Wassyng, A.: Large-scale enterprise systems: Changes and impacts.
In: Cordeiro, J., Maciaszek, L.A., Filipe, J. (eds.) ICEIS 2012. LNBIP, vol. 141,
pp. 274–290. Springer, Heidelberg (2013)

2. Caldwell, B., Stein, T., Beyond, E.: New it agenda. Information Week 711, 30–34
(1998)

3. AG, S.: Annual report 2012, financial highlights (2012)
4. Monk, E.F., Wagner, B.J.: Concepts in enterprise resource planning. CengageBrain.

com (2008)
5. Bohner, S.A.: Software Change Impact Analysis. In: Proceedings of the 27th An-

nual NASA Goddard/IEEE Software Engineering Workshop (SEW-27’02) (1996)
6. Ernst, M.D.: Static and dynamic analysis: Synergy and duality. In: WODA 2003:

ICSE Workshop on Dynamic Analysis, Portland, OR, pp. 24–27 (May 9, 2003)

238 W. Chen, A. Wassyng, and T. Maibaum

7. Apiwattanapong, T.: Efficient and precise dynamic impact analysis using execute-
after sequences. In: Proceedings of the 27th International Conference on Software
Engineering (2005)

8. Law, J., Rothermel, G.: Whole program path-based dynamic impact analysis. In:
Proceedings of the 25th International Conference on Software Engineering (2003)

9. Orso, A., Apiwattanapong, T., Harrold, M.J.: Leveraging field data for impact
analysis and regression testing. In: Proceedings of the 9th European Software En-
gineering Conference held Jointly with 11th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, vol. 28(5) (September 2003)

10. Patterson, D.A., Hennessy, J.L.: Computer organization and design: The hard-
ware/software interface. Morgan Kaufmann (2008)

11. Cmelik, B., Keppel, D.: Shade: A fast instruction-set simulator for execution pro-
filing. Springer (1995)

12. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2005, pp. 190–200.
ACM, New York (2005)

13. Lam, P., Bodden, E., Lhotak, O., Lhotak, J., Qian, F., Hendren, L.: Soot: A
Java Optimization Framework. Sable Research Group, McGill University, Mon-
treal, Canada (March 2010), Electronically available at
http://www.sable.mcgill.ca/soot/

14. Agarwal, A., Sites, R.L., Horowitz, M.: ATUM: A new technique for capturing
address traces using microcode, vol. 14. IEEE Computer Society Press (1986)

15. Sosnoski, D.: Java programming dynamics, part 7: Bytecode engineering with bcel
(April 2004)

16. AspectJ: Aspectj main page (2014)
17. Seesing, A., Orso, A.: Insectj: A generic instrumentation framework for collecting

dynamic information within eclipse. In: Proceedings of the 2005 OOPSLA Work-
shop on Eclipse Technology eXchange, Eclipse 2005, pp. 45–49. ACM, New York
(2005)

18. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. Springer (1997)

19. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072,
pp. 327–354. Springer, Heidelberg (2001)

20. Project, E.A.: Introduction to aspectj (February 2014)
21. Orso, A., Apiwattanapong, T., Law, J., Rothermel, G., Harrold, M.J.: An empirical

comparison of dynamic impact analysis algorithms. In: Proceedings of the 26th
International Conference on Software Engineering, ICSE 2004, pp. 491–500. IEEE
Computer Society, Washington, DC (2004)

22. Hattori, L., Guerrero, D., Figueiredo, J., Brunet, J., Damasio, J.: On the precision
and accuracy of impact analysis techniques. In: Seventh IEEE/ACIS International
Conference on Computer and Information Science, ICIS 2008, pp. 513–518 (May
2008)

23. Maia, M.C.O., Bittencourt, R.A., de Figueiredo, J.C.A., Guerrero, D.D.S.: The
hybrid technique for object-oriented software change impact analysis. In: European
Conference on Software Maintenance and Reengineering, pp. 252–255 (2010)

http://www.sable.mcgill.ca/soot/

Towards Adaptation and Evolution

of Domain-Specific Knowledge for Maintaining
Secure Systems�

Thomas Ruhroth1, Stefan Gärtner2, Jens Bürger1,
Jan Jürjens3, and Kurt Schneider2

1 TU Dortmund, Germany
{thomas.ruhroth,jens.buerger}@cs.tu-dortmund.de

2 Leibniz Universität Hannover, Germany
{stefan.gaertner,kurt.schneider}@inf.uni-hannover.de

3 TU Dortmund and Fraunhofer ISST, Germany
http://jan.jurjens.de

Abstract. Creating and maintaining secure software require a good un-
derstanding of the system and its environment. Knowledge management
is therefore one of the key factors to maintain secure software success-
fully. However, acquiring and modeling knowledge is a labor-intensive
and time-consuming task. Thus, knowledge ought to be shared among
different projects and must be adapted to their specific needs. In this
paper, we present an approach allowing the stepwise adaptation from
domain- to project-specific knowledge based on OWL ontologies. For
this purpose, we define a basic set of adaptation operators which allows
effective and frugal changes. Moreover, we discuss how our approach can
be integrated into common software process models in order to adapt
knowledge required for maintenance. Since domain- and project-specific
knowledge changes over time, we show how our approach copes with
changes efficiently, so that the affected knowledge remains consistent.
The shared use of knowledge significantly reduces the complexity and ef-
fort to model required knowledge in various projects. Our case study and
tool implementation shows the benefits for maintaining secure systems.

Keywords: ontology adaptation, domain-specific adaptation, maintain-
ing secure systems, (co-)evolution.

1 Introduction

Knowledge is part of a software development process at many points. While it
often seems easy to take knowledge about security and compliance into account
in the design phase of a project, it becomes more difficult during later mainte-
nance phase. Overall, maintaining software is a knowledge-intensive activity [28].
Thus, it is important to have access to the knowledge that has already been used

� Funded by the DFG project SecVolution (JU 2734/2-1, SCHN 1072/4-1), part of the
priority programe SPP 1593 “Design For Future - Managed Software Evolution”.

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 239–253, 2014.
c© Springer International Publishing Switzerland 2014

240 T. Ruhroth et al.

for security analysis as well as additional knowledge gained while the develop-
ment took place. Regarding security and compliance, required knowledge differs
according to the domain and system context and also includes domain-specific
knowledge as well as assumptions about the environment. Thus, some issues
are common to a wide range of systems (e.g. encryption, privacy) and others
need only to be considered for a specific domain or system (e.g. biometric, mal-
ware). Moreover, most required knowledge is nowadays documented in natural
language and contains references to further natural language documents. Typical
examples are regulations, laws, and best practices.

To support knowledge intensive tasks in an at least semiautomatic manner [6],
a formal representation of knowledge is inevitable. Since collecting, formalizing,
and maintaining required knowledge is a laborious task, a formal representa-
tion of knowledge should be shared among various projects and adapted to the
specific needs and requirements. For example, privacy should be fulfilled by an
organization according to given security standards and regulations. Therefore,
the European Union defines privacy rules [5] which have to be refined by each
member state (compare Germany: Bundesdatenschutzgesetz BDSG [2], France:
Data Protection Act DPA98 [1]). Additionally, each organization has its own
privacy guidelines extending and re-defining the respective country regulation.

To model such knowledge, ontologies are a commonly used technique [9,20].
They represent knowledge in a formal manner by using a set of types, properties,
relationships, individuals, and axioms.

In this paper, we present a knowledge management approach based on ontolo-
gies which allows sharing common knowledge between projects for the integra-
tion in the maintenance process of the development cycle. The idea is to provide
a simple and straight set of adaptation operators to support maintenance of
domain- and project-specific knowledge. Moreover, knowledge management ac-
tivities (e.g. use of ontologies) need to fit into the developers’ workflow since
rigid integration typically results in retarding instead of supporting the devel-
opment as well as the maintenance process [17]. On this account, our approach
is designed to fit well in existing development process models.

As knowledge evolves regularly, the corresponding links between domain- as
well as project-specific knowledge must be re-adapted. This task, however, is la-
borious and error-prone and should be supported to cope with knowledge changes
efficiently. Since the proposed set of adaptation operators is simple and straight,
we show that our approach is suitable for this task.

The remainder of this paper is structured as follows: In Sec. 2 we sketch
our approach and define the scope of our research as well as relevant research
questions. The set of adaptation operators is proposed in Sec. 3 and it is shown
in Sec. 4 that our approach is suitable to cope with knowledge changes efficiently.
Afterwards, in Sec. 5 we introduce the case study and evaluate our approach. In
Sec. 6, we discuss how to integrate our approach with common process models.
Related research in the field of knowledge adaptation and evolution is listed in
Sec. 7. Finally, in Sec. 8 our results and insights are discussed and future research
is outlined.

Towards Adaptation and Evolution of Domain-Specific Knowledge 241

2 Proposed Approach and Research Objective

In this paper, we focus on the distribution of domain-specific knowledge between
different software projects. The aim of our research is to provide knowledge for
evaluating the compliance and security of a software product. Thus, it is impor-
tant to be compatible with different development process models and various
domains.

We explain our research objective using the running case study of the pa-
per that addresses privacy in software and its legal foundation. The European
Union (EU) passed a privacy directive (Directive 95/46/EC [5]) which had to be
refined into a local law of all EU member states. In Germany, the Bundesdaten-
schutzgesetz (BDSG) [2] resembles the local refinement of this directive. Some
parts of Directive 95/46/EC are optional to implement and the BDSG does not
implement all optional parts (e.g. regulations about safety of privacy data). In
contrast to the EU directive, the BDSG was amended several times during the
past years. In Fig. 1, the adaptation of the above-mentioned directives is shown.
As Directive 95/46/EC is implemented differently in the member states, the first
adaptation is required to refine EU privacy rules. The second adaptation reflects
modifications necessary to fit the development process and different compliance
analysis techniques. The resulting structure builds a hierarchy upon the privacy
knowledge. However, adaptation of ontologies is not supported sufficiently by
existing ontology frameworks at this moment.

Regarding our case study, we identified following research questions in soft-
ware maintenance and knowledge management. The first question is RQ1: How
can common or domain-specific knowledge efficiently be shared among differ-
ent projects? Here, we assume that among different projects the domain-specific

Fig. 1. Adaptation of knowledge

242 T. Ruhroth et al.

Fig. 2. Workflow of our proposed ontology adaptation approach

knowledge only differs in details. This leads to the second research question
RQ2: Which operations can adapt the common or domain-specific knowledge
to fit the needs of different projects in a straight and sound manner?

To answer the given research questions, we propose an approach as illustrated
in Fig. 2. Our approach consists of two activities: Adapt Ontologies (see 1) and
Apply Evolution Strategy (see 3). To adapt ontologies to certain projects as well
as process-specific needs, we establish a straight set of adaptation operators
which are used by domain experts. To cope with changes (depicted as 2) of
the original ontologies, we combine these operators with pre-defined knowledge
changes. They are used to determine co-evolution strategies for the adapted on-
tologies semiautomatically. For ambiguous cases, the domain expert must decide
which strategy fits best.

The knowledge adaptation presented in this paper facilitates the SecVolution
[22,3] approach, which aims to maintain security properties in the software de-
velopment process. For this purpose, SecVolution continuously monitors security
knowledge and its evolution to determine required changes to the system semi-
automatically. By applying our SecVolution approach, a long-living system is
wrapped into a layer of relevant knowledge to maintain an appropriate level of
security over a long period of time.

3 Operations for Modified Import of Ontologies

As described in Sec. 2, ontologies do not always match their intended use exactly.
Hence, we must be able to adapt ontologies because during creation of a refined
ontology, some knowledge may be missing, needs to be adapted or parts are not
used in an adapted version. Furthermore, there may be local changes that are
unique to an ontology of a specific layer.

OWL already features a mechanism to support the integration of knowledge
called import. With this it becomes possible to simply insert elements from
another ontology without any constraint. However, the import mechanism is

Towards Adaptation and Evolution of Domain-Specific Knowledge 243

data

crit. pers. data personal data

faith

data

personal data

faith

personal datapersonal datapersonal data

salary

datadatadata

crit. pers. dataAdaptation:
add Original ontology

Adapted ontology Adapted ontology

Adaptation:
hide

data

crit. pers. data personal data

faith
salary

Fig. 3. Example depicting the hide and implicit add operation

insufficient because importing an element of an ontology may enforce a cascade
of element additions. They may become necessary if a change needs to be applied
to an element that has been imported beforehand. For example, regarding the
EU directive for privacy of 2001, a number of classes have to be redefined when
creating a refined ontology to reflect its German implementation. The standard
import mechanism does not support redefinition of elements, so new concepts
ought to be created. Hence, every role restriction and concept depending on
these concepts needs to be changed as well so that the new (redefined) concept
can use it.

In summary, it can be stated that not only the replaced parts of an ontology
need to be changed but also every element that is directly or indirectly related
to the elements that have been changed in the first place, needs to be altered as
well.

To overcome the above-mentioned limitations, we propose a set of ontology
modification operators extending OWL’s import mechanism. The extension con-
sists of two pairs of operators: hide / unhide and change / reset. These operators
are used to realize the activity Adapt Ontologies (1) of our workflow presented
in Fig. 2. By this means, it becomes possible to organize (i.e. layer) ontologies
hierarchically in order to adapt them to project-specific needs. Table 1 gives an
overview about the operators and their relation to each other.

Since there is currently no common graphical notation for ontologies, we use
the representation as depicted in Fig. 3 throughout this paper. Individuals (rect-
angles) are the basic elements of ontologies and represent the actual knowledge.
Individuals can share properties and are assigned to concepts (or classes) which
are depicted as ovals. Axioms and properties are omitted in our representation
due to simplicity and clearness of the example. Fig. 3 sketches an exemplary
ontology that is adapted in two ways using two different adaptation operators.

The operator add (cf. Table 1) is implicitly defined by the existing import
mechanism of OWL. It is easy to import a small ontology by featuring the
elements that need to be added from the original ontology. Fig. 3 depicts the

244 T. Ruhroth et al.

effect of the add operation. Here, the individual salary is added and thus is part
of the adapted ontology.

The operation pair hide / unhide (cf. Table 1) allows to remove and to re-
include elements from the original ontology. As Fig. 3 shows, the subconcept
critical personal data is hidden by the adapted ontology or ontologies on lower
layers. But in contrast to simply importing or ignoring elements, the unhide
operator is useful to revert applied hidings. In comparison to simply adding the
respective element, the unhide operation creates a link to the original element
of the upper layer. This allows more sophisticated possibilities to react on the
evolution of re-included elements, because original elements can be re-used and
relations to further elements are preserved instead of simply creating a copy that
just has the same name.

The operation pair change / reset (cf. Table 1) allows direct modification of
elements, thus we can use straight adaptations avoiding many add and remove
adaptations (straightness). For the reset operation the same arguments as for
the unhide operator apply here.

As shown in Table 1, every adaptation operation is guarded by a precondition
to ensure that the resulting ontology is syntactically and semantically sound.
For example, a concept should only be hidden if it is not used by elements that
are still visible. To ensure this, a concept can only be hidden if there is no
unhidden reference pointing at it in the ontology. We assume that all adaptation
operations between two ontologies take place in an atomic step and therefore
avoid a problem with cyclic hide and unhide operations.

The adaptation operators are chosen in a way that they can build a set of sim-
ple, straight and revertable adaptation operations of ontologies. Simple means
that the goal is to have a small set of basic operations that is sufficient to de-
scribe all possible modifications. The straightness property describes that we can
use the operations without having to resort to complex sequences which include
pathological states. For example, the operators add and remove are as basic
operations to describe all possible modifications, but the only use of them leads
to complex adaptations. In the worst case, nearly or even all elements of an on-
tology have to be deleted until it contains only a few (or even no) elements and
the whole ontology has to be rebuild in the modified structure from scratch. The

Table 1. Adaptation operators for include operations

Operation Description Reverted by Precondition

add Addition of new OWL 2 elements.
The add operation is defined by
the usual means of the import.

hide

hide Removal of OWL 2 element. unhide There are only hidden references to
this element

unhide Reinclude a previously hidden ele-
ment

(hide) The element is not referencing any
hidden element and the hide is in
scope.

change Change a property of an element reset

reset Revert a change (change)

Towards Adaptation and Evolution of Domain-Specific Knowledge 245

third property revertable is used in import chains of ontologies when a former
state should be reinstated. Regarding the running case study, reverting can be
necessary if a system is implemented in Germany but is also involved in inter-
national (i.e. EU-wide) relationships. Therefore, the system inherently is related
to the German adaptations of the privacy regulations but needs to revert some
of them to get parts of the EU directive hold directly.

4 Application to Evolving Domain-Specific Knowledge

In Sec. 3 we explained the first part of our approach (see Fig. 2) that enables
ontologies to import knowledge from one another. In this section, we show the
second part dealing with changes of the ontology (evolution) and the needed
modifications of adapted ontologies (co-evolution). Based on a formalism that
describes possible patterns of ontology changes, we apply our approach exem-
plary and show how to determine strategies to solve co-evolution problems semi-
automatically.

Figure 4 shows a typical adaptation as well as evolution process, featuring
two ontologies on different layers. The boxes shows two states of the adaption
where the left one is an evolved version of the right one. The question mark
reflects an issue coming from the German privacy law BDSG as described in
our running case study. In a former version of the BDSG, data is distinguished
in two subcategories: anonymized data and personal data. During the adapta-
tion process it was decided that, considering the specific system, data is needed
to be distinguished into three categories: anonymized data, data of 1st / 2nd
party and 3rd party data. As an evolution of the domain knowledge, we con-
sider a change of the BDSG so that a new category is introduced to represent
critical personal data. Thus, the domain ontology evolves and all adapted on-
tologies need to inherit these changes. Therefore, the changes that are unique to

Fig. 4. Example of layered ontologies and the reaction to knowledge evolution

246 T. Ruhroth et al.

Table 2. Examples for occurring change patterns (compare [12])

Change Pattern Description Constraint
Parameters

Split Concept A class X is split into two or Concept X deleted
(X,(Y1, . . . , Yn)) more classes Y1, . . . , Yn ∧ Concept Y1, . . . , Yn created

∧ ∀i superclass(X) = superclass(Yi)

Merge Concepts One ore more Concept Y1, . . . , Yn deleted
((Y1, . . . , Yn), X) classes Y1, . . . , Yn are ∧ Concept X created

merged into one class X ∧ ∀i superclass(Yi) = superclass(X)

Pull up Concept Concept X is pulled up to before: superclass(X) = Y,
(X, Y) class Y after: superclass(X) = superclass(Y)

Pull down Concept Concept X is pulled down to before: superclass(X) = superclass(Y)
(X, Y) class Y after: superclass(X) = Y

the system layer and the changes of the domain ontology have to be combined
to update the whole ontology and to preserve consistency between the layers.
Ontologies may become complex very fast, so avoiding inconsistencies is an im-
portant and non-trivial problem. Firstly, syntactic or structural inconsistencies
arise when constraints are violated or entities cannot be referenced. Secondly,
semantic inconsistencies arise when the meaning of an entity changes or gets
ambiguous. Thirdly, adaptations themselves need to be evolved if the adapted
elements evolve. Hence, the evolution process requires a detailed analysis of side
effects as consequence of change operations [26].

For avoiding inconsistencies, it is important to perceive the ontology changes
and their actual meaning. To keep track of what changes on a syntactic level
mean on a semantic level, we use the concept of change patterns as proposed
by Javed et al. [13,12]. These change patterns are used to provide the semantic
part of the ontology evolution process. To resolve occurring inconsistencies and
to assist the domain expert during the update process, the detected change pat-
terns are further used to compute additional change sets to realize co-evolution.
More precisely, there may be several strategies to resolve a specific inconsistency
detected by the cause of an ontology evolution, and change patterns are the base
for computing the possible alternatives. Note that, when considering a manual
adaptation of changes, individuals or properties may not be visible to the do-
main expert during the process of applying modifications because they are not
properly linked. This is an error-prone situation because if the ontology to be
revised is complex, it is difficult to keep track of everything and information
about how objects are linked can get lost.

An example of a typical ontology evolution is to split a class into two or more
classes at the same hierarchical level (basically the same as in Fig. 4) Thus,
the pattern Split Concept consists at least of three activities. First, a class is
deleted. After that, at least two classes are inserted on the same hierarchical level.
These activities can surely be performed intermittently and in an arbitrary order.
Hence, a given evolution resembling Split Concept can be realized in numerous
ways. The discovery of relevant change patterns as well as finding a complete set

Towards Adaptation and Evolution of Domain-Specific Knowledge 247

of change patterns is a key task to make our approach able to react on evolution.
It can be achieved by mining frequent patterns from change logs or by simply
defining them as done in [13]. Some change patterns related to our running case
study are shown in Table 2 according to [12]. Every pattern is defined by a
function with a parameter set and a description. A list of constraints for each
pattern shows which detected actions in the course of ontology evolution indicate
that a given change pattern is present.

After all occurred changes are characterized by instances of change patterns,
the consecutive step is to determine appropriate evolution strategies. Since every
evolution has its own precondition, not all possible strategies are applicable in
certain cases [23]. For example, if a class is split into two classes that are disjoint,
it is not possible to re-attach the individuals to all new classes. If more than one
evolution strategy is enabled for a given change pattern occurrence, different
evolution strategies can also be combined arbitrarily.

In the following, we give an example how adaptation operators can be com-
bined with change patterns and co-evolution strategies to realize the integration
ontology evolution and co-evolution. Fig. 5 shows an evolution of a simple on-
tology with the split concept pattern and a possible evolution strategy following
and extending the example of Fig. 4. On the left, the ontology in its unmodi-
fied state is shown. Now, the domain expert decides to refine the structure of
the ontology such that normal and critical personal data can be distinguished.
Thus, the Split Concept pattern occurs: The class personal data is deleted and
two new classes are introduced, both also being subclasses of data. The resulting
ontology is shown in the middle. The problem to be solved is how the individ-
uals salary and faith should be linked now. To react upon the change pattern,
a possible evolution strategy is to involve the domain expert who decides how
every individual is re-attached to one of the new classes. More precisely, the
salary individual will be re-attached to the personal data class and faith to the
crit. personal data class. By applying this strategy of re-attaching to the two
individuals, the ontology is now in a consistent state again.

data

personal data

faith salary

data

crit. pers. data

faith

personal data

salary

data

crit. pers. data

faith

personal data

salary
?

Fig. 5. Split Concept Pattern

5 Case Study and Implementation

To evaluate the feasibility of our approach, we implemented the adaptation stage
in Java and OWL. To be compatible with standard OWL tools such as Protégé
[25], we include the adaptation operators as annotations in the OWL files.

248 T. Ruhroth et al.

We use our prototype for our case study to show that our approach is capable
of adapting knowledge in real world scenarios. Therefore, we use the BDSG
to define the privacy properties in an extended version of the CoCoME case
study [11]. CoCoME represents a trading system as it can be found in most
supermarkets. The system consists of a number of cash desk PCs connected to a
store server. A number of store servers again is connected to a central enterprise
server. As the communication paths between these systems are used to transmit
business as well as personal data (e.g. when processing electronic cash (EC)
transactions), communication between the systems has to satisfy given security
requirements. Moreover, a lot of additional hardware is plugged into the cash
desk PC providing various entry points to the whole trading system.

In this case study, which is also part of a larger scenario of the SecVolution
project, we describe the privacy regulations using three layers of ontologies: The
global layer is defined by the EU directive (directive 95/46/EC), the domain is
reflected by the German law (BDSG) and the system layer contains informa-
tion specific to the CoCoME system and its development process model. In the
global and domain layer, some concepts resembling regulations from the laws
are defined. Moreover, various objects and subjects are introduced, e.g. different
stakeholders like data subject or processor. Roles are defined so that they can
be used in the system layer to define the relationship of different individuals.
For example, we need to know if an operation requires the the data subject’s
consent (technically also called OptIn) before it is performed. The system layer
includes information that is specific to the CoCoME, e.g. which data is to be
considered as personal data. Using reasoning techniques, we can derive a number
of concepts that allow to determine easily if the system is compliant to the laws.

An interesting point of this case study is that the BDSG failed to be a rigorous
implementation of EU directive in the beginning, and thus needed some adapta-
tions regarding concepts and roles. Later on, Germany was forced to change the
BDSG to fully implement the directive and so raised the need for adaptation. In
this case study, we therefore consider two significantly different versions of the
BDSG.

The results of applying our approach to the case study are shown in Table 3.
On the left, the number of elements is presented that are included in the basic on-
tology (EU Directive). The two other ontologies (BDSG before 2003 and BDSG
2009) are examples of adaptations of the basic ontology. Since both BDSG ver-
sions differ significantly, they are analyzed separately. For each BDSG version,
the number of ontology elements are given that have been used to adapt the ele-
ments from the basic ontology. As presented in Table 3, the use of our adaptation
operators in contrast to the standard OWL features reduces the number of ele-
ments up to 34%. Thus, the OWL import feature is not sufficient to build up an
ontology hierarchy because the BDSG extends the meaning of derived concepts
that cannot be expressed without redefining parts of the ontology structure. For
example, the EU directive does not incorporate the notion of anonymization
which is only part of the BDSG. Anonymization means that if data is changed
in a way that it cannot be associated with the subject anymore, the data can

Towards Adaptation and Evolution of Domain-Specific Knowledge 249

Table 3. Sizes of privacy ontologies with/without using adaptation operators.
(*) Not fully compliant with EU Directive.

EU Directive BDSG (before 2003)(*) BDSG (actual - 2009)

Size Size Difference Size Difference
without with # diffs reduction without with # diffs reduction
Adaptation Adaptation

Concepts 31 52 40 12 23% 46 39 7 15%
Individuals 4 4 4 0 0% 4 4 0 0%
Axioms 20 44 29 15 34% 41 29 12 29%
Roles 6 12 8 4 33% 12 8 4 33%
Assertions 0 0 0 0 0% 0 0 0 0%

be used without the consent of the subject. Thus, the derived concepts needs to
be redefined to include the new regulations. In summary, the use of adaptation
operators reduces the number of newly defined elements in the ontologies due
to the reuse of existing (changed) elements in contrast to additionally defined
specializations.

6 Process Model Integration

In this section, we discuss how our approach as presented in Fig. 2 can be
integrated with existing development and maintenance processes. To identify
reasonable connection points, we therefore reviewed common development pro-
cess models in software engineering. They reviewed models are: Waterfall Model
(with iterations), Rapid Prototyping, iterative development, agile development,
incremental development, and Boehm’s spiral model (cmp. [18]). Moreover, the
adapted knowledge must be used, re-adapted, co-evolved, and extended in the
maintenance process. Here, we considered following models: Quick-Fix Model,
Boehm’s Model, Osborne’s Model, and Iterative Enhancement Model (cmp. [7]).

During initial development, the required knowledge is adapted to the domain
and project requirements as described above for activity Adapt Ontologies (see
Fig. 2). For this purpose, the domain expert or requirements engineer chooses an
appropriate knowledge base in the system analysis or requirements engineering
phase that is provided by all abovementioned process models (part of the plan-
ning stage). The knowledge is adapted to the actual development project based
on the corresponding project management, assumptions about the environment,
and system as well as software requirements. In the development stages (e.g.
design, coding, testing), the adapted knowledge can then be utilized by various
assessment techniques to analyze software artifacts (cmp. [6]). Feedback cycles
and iterations can be used to re-adapt and extend the knowledge during devel-
opment. This is important because domain experts or requirements engineers
are not able to adapt the knowledge at once, as they usually have to deal with
vague requirements and constraints. Thus, process models which contain feed-
back cycles and iterations (e.g. Rapid Prototyping, agile development) increase
the efficiency of our approach.

250 T. Ruhroth et al.

Compared with new development, maintenance process models have similar
stages. But in software maintenance more effort is required in the early stages
in order to understand the system at hand as well as to analyze and classify in-
coming change request [7]. Moreover, documentation is of particular importance
in software maintenance to discover dependencies between development artifacts
and to avoid ripple effects. Thus, knowledge that has been adapted during the
initial development can be used to support these tasks. To incorporate knowl-
edge changes properly, the analysis, re-design, or documentation stage and their
corresponding feedback cycles of the maintenance process can be used. This in-
cludes to re-adapt, co-evolve, and extend the knowledge as required for activity
Apply Evolution Strategy (see Fig. 2).

7 Related Research

Ontology reuse is an important issue in many areas such as knowledge man-
agement and software engineering. For this purpose, global ontologies must be
adapted to a specific domain or system which is known as adaptation, integra-
tion, or matching. The fundamental problem is to specify the mapping between
the global ontology and the local ontologies. To cope with this problem, Cal-
vanese et al. [4] proposed a framework for ontology integration. Another ap-
proach addressing ontology integration based on integration operations is given
by Pinto et al. [21]. Integration operators specify how elements from a global
ontology are included and combined with elements in the local ontology. They
comprise composing, combining, modifying, and assembling operators. Addi-
tionally, ontology integration is closely related to ontology alignment. There,
relationships between two ontologies must be determined based on a pre-defined
similarity measure. Udera et al. [29] proposed an approach leveraging the data
and structure contained in ontologies. Alignment of ontologies can be used to
identify knowledge elements which need to be added in an adaptation.

To cope with changes, Ruhroth et al. [23,24] described a basic set of evo-
lutions and co-evolutions. It represents a formal foundation of (co-)evolutions
which can be utilized in a wide scope of applications. Heflin et al. [10] pointed
out the problem of changing ontologies in distributed environments. They argue
that a changed ontology can be used without any problems if it is backwards
compatible to the original ontology. An ontology is backwards compatible if only
concepts and relations have been added. Otherwise, the ontology or query needs
to be modified manually to reflect changes. Ontology evolution allows access to
the elements through the most recent ontology, while ontology versioning al-
lows access through different versions. For that reason, ontology evolution can
be treated as part of ontology versioning [16]. Noy et al. [19] emphasized that
existing versioning systems are not able to compare and represent structural
changes. Thus, they present an ontology versioning environment to address the
problem of maintaining versions of ontologies. Based on this approach, the do-
main expert is able to analyze changes in order to accept or reject them. They
extended their approach in [20] and proposed a framework for ontology evolu-
tion in collaborative environments based on their own experiences. Stojanovic

Towards Adaptation and Evolution of Domain-Specific Knowledge 251

et al. [27] proposed a well-structured ontology evolution process which provides
the domain expert capabilities to control it. Therefore, the domain expert can
select one of the proposed co-evolution strategies. Moreover, Stojanovic [26] also
presented an approach to solve inconsistencies by using co-evolution strategies.
For this purpose, they used a model for the semantic of changes in OWL on-
tologies as well as resolution strategies to ensure consistency [8]. Javed et al.
[13,12] presented a graph based approach of pattern matching and the discovery
of frequent changes in ontologies.

In summary, most approaches propose a rather large number of adaptation
operators which makes adaptation of ontologies complex and error-prone. Thus,
to support maintenance of knowledge more efficiently we presented a simple
and straight set of operators. Hence, our operators are more suitable to cope
with evolution and co-evolution of knowledge. In contrast, approaches regard-
ing ontology changes in response to certain needs do not cope with integrated
ontologies sufficiently or even address co-evolution strategies.

8 Discussion and Conclusion

We introduced a set of adaptation operators that allow one to modify an ontol-
ogy on special needs of different projects. Thus, we can share common knowl-
edge between projects without ignoring the different needs and also reducing the
workload for the elicitation and maintenance of knowledge. The case study as
introduced in Sec. 5 shows that the use of adaptation operators can reduce the
size of modifications significantly. The effect can be explained by the straight-
ness property. Since modifications can be made locally, the changes are smaller
compared to the case where only a minimal set of operations (add/remove) are
used.

We discuss the achieved results with our research questions: RQ1: How can
common or domain-specific knowledge efficiently be shared among different
projects? Knowledge given by an ontology can be shared among projects by us-
ing stepwise adaptation to different domains and in the last step to the system
itself. As presented in Fig. 1, knowledge is therefore hierarchically structured.
This means that the most common knowledge is stored on top of the hierar-
chy. Thus, a maximal amount of the knowledge can be reused. Additionally,
maintaining widespread knowledge becomes more straightforward.

RQ2: Which operations can adapt the common or domain-specific knowledge to
fit the needs of different projects in a straight and sound manner? The defined
adaptation operators (add, hide/unhide, change/reset) give an answer to RQ2.
Adaptation operators can be used to add, change or remove knowledge. They
are complete in the sense that they can be used to adapt an ontology to any
other ontology. To show this, we can use the sometimes used argument by de-
structing the ontology by removing (here hiding) all elements, such that we get
an empty ontology. Afterwards we can build any new ontology. The strength of
our adaptation set is to be compatible with evolution, such that the evolution
of common knowledge can be co-evolved in the adapted versions. Since many

252 T. Ruhroth et al.

co-evolutions need a manual interaction, the straightness and the reversibility
reduces the amount of manual interaction. This is also a result of the small
adaptations between ontologies.

The presented approach is a foundation of the central part of the approach
developed in the project SecVolution, namely the Security Maintenance Model.
The sharing of global knowledge as well as the adaptation and evolution of the
Security Maintenance Model is used to trigger semiautomatic evolutions of the
software itself and thus forms an important base for a security aware evolution
approach of long-living software systems. The advantages of the presented ap-
proach are used to integrate our project work with other projects in the joint
case study CoCoME of the SPP “Design for Future - Managed Software Evolu-
tion”. In future work, we furthermore plan to use the results presented here in
the context of model-based development of secure software [15,14].

In summary, software maintenance of long-living software can benefit from
domain-specific knowledge which is gathered and adapted during development.
Our approach aims to decrease the effort to adapt required knowledge and thus
increases the return of investment.

References

1. British Parliament: Data Protection Act (1998)
2. Bundesministerium des Inneren: Bundesdatenschutzgesetz. Bundesgesetzblatt
3. Bürger, J., Jürjens, J., Ruhroth, T., Gärtner, S., Schneider, K.: Model-based secu-

rity engineering: Managed co-evolution of security knowledge and software models.
In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD VII. LNCS, vol. 8604, pp.
34–53. Springer, Heidelberg (2014)

4. Calvanese, D., De Giacomo, G., Lenzerini, M.: A Framework for Ontology Integra-
tion. In: The Emerging Semantic Web. IOS Press (2002)

5. EU Parliament: Directive 95/46/EC of the european parliament and of the council
of 24 october 1995. Official Journal of the European Union L 281, 0031–0050 (1995)

6. Gärtner, S., Ruhroth, T., Bürger, J., Schneider, K., Jürjens, J.: Maintaining Re-
quirements for Long-Living Software Systems by Incorporating Security Knowl-
edge. In: 22nd IEEE International Requirements Engineering Conference, pp. 103–
112. IEEE (2014)

7. Grubb, P., Takang, A.: Software Maintenance: Concepts and Practice. World Sci-
entific (2003)

8. Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In: Gómez-
Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer,
Heidelberg (2005)

9. Happel, H., Seedorf, S.: Applications of ontologies in software engineering. In: Proc.
of Workshop on Sematic Web Enabled Software Engineering (SWESE) (2006)

10. Heflin, J., Hendler, J., Luke, S.: Coping with changing ontologies in a distributed
environment. In: AAAI 1999 Workshop on Ontology Management (1999)

11. Herold, S., et al.: CoCoME - The common component modeling example. In:
Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component
Modeling Example. LNCS, vol. 5153, pp. 16–53. Springer, Heidelberg (2008)

12. Javed, M.: Operational Change Management and Change Pattern Identification
for Ontology Evolution. PhD thesis, Dublin City University (May 2013)

Towards Adaptation and Evolution of Domain-Specific Knowledge 253

13. Javed, M., Abgaz, Y.M., Pahl, C.: Ontology change management and identification
of change patterns. J. Data Semantics 2(2-3), 119–143 (2013)

14. Jürjens, J.: Secure Systems Development with UML. Springer (2005)
15. Jürjens, J., Wimmel, G.: Security modelling for electronic commerce: The Common

Electronic Purse Specifications. In: Schmid, B., Stanoevska-Slabeva, K., Tscham-
mer, V. (eds.) Towards the E-Society. IFIP, vol. 74, pp. 489–506. Springer, Boston
(2001)

16. Klein, M., Fensel, D.: Ontology versioning on the Semantic Web. In: SWWS, pp.
75–91 (2001)

17. Meyer, S., Averbakh, A., Ronneberger, T., Schneider, K.: Experiences from Es-
tablishing Knowledge Management in a Joint Research Project. In: Dieste, O.,
Jedlitschka, A., Juristo, N. (eds.) PROFES 2012. LNCS, vol. 7343, pp. 233–247.
Springer, Heidelberg (2012)

18. Münch, J., Armbrust, O., Kowalczyk, M., Soto, M.: Software Process Definition
and Management. Springer (2012)

19. Noy, N.F., Kunnatur, S., Klein, M., Musen, M.A.: Tracking changes during ontol-
ogy evolution. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC
2004. LNCS, vol. 3298, pp. 259–273. Springer, Heidelberg (2004)

20. Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A framework for ontology evolu-
tion in collaborative environments. In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 544–558. Springer, Heidelberg (2006)

21. Pinto, H.S., Martins, J.P.: A methodology for ontology integration. In: Proc. of
K-CAP, pp. 131–138. ACM (2001)

22. Ruhroth, T., Gärtner, S., Bürger, J., Jürjens, J., Schneider, K.: Versioning and evo-
lution requirements for model-based system development. In: International Work-
shop on Comparison and Versioning of Software Models (CVSM) (2014)

23. Ruhroth, T., Wehrheim, H.: Refinement-preserving co-evolution. In: Breitman, K.,
Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 620–638. Springer, Hei-
delberg (2009)

24. Ruhroth, T., Wehrheim, H.: Model evolution and refinement. Science of Computer
Programming 77(3), 270–289 (2012)

25. Stanford Center for Biomedical Informatics Research (BMIR): Protege - homepage,
http://protege.stanford.edu

26. Stojanovic, L.: Methods and tools for ontology evolution. PhD thesis, Karlsruhe
Institute of Technology (2004)

27. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-driven ontology evo-
lution management. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 285–300. Springer, Heidelberg (2002)

28. Tiwana, A.: An empirical study of the effect of knowledge integration on software
development performance. Information and Software Technology 46(13), 899–906
(2004)

29. Udrea, O., Getoor, L., Miller, R.J.: Leveraging data and structure in ontology
integration. In: Proc. of SIGMOD, pp. 449–460. ACM (2007)

http://protege.stanford.edu

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 254–268, 2014.
© Springer International Publishing Switzerland 2014

Metrics to Measure the Change Impact
in ATL Model Transformations

Andreza Vieira and Franklin Ramalho

Department of Computer and Systems,
Federal University of Campina Grande

Campina Grande, Paraíba, Brazil
andreza@copin.ufcg.edu.br,

franklin@computacao.ufcg.edu.br

Abstract. The Model-Driven Development (MDD) shifts the focus on code to
models in the software development process. In MDD, model transformations
are elements that play important role. In the software process, MDD projects
evolve as changes in their transformations are frequent. Before applying
changes it is important to measure their impacts in the transformation.
However, currently no technique helps practitioners in this direction. In this
work, we conducted an exploratory study to identify the criteria used by
practitioners to measure the impact of changes in model transformations. As a
result, we propose a set of metrics to measure such impacts. By measuring the
change impact, practitioners can (i) save effort and development time for
estimating costs to apply changes; and (ii) better schedule and prioritize
changes according to the impact.

Keywords: MDD, model transformation, ATL, change impact, metrics.

1 Introduction and Motivation

An approach that works to provide greater automation and higher productivity within
the software development process is the MDD (Model-Driven Development) [1]. It
separates the specification of a system from its implementation details. The main
objective of this approach is to shift the focus on code to models in the software
development process. Within the MDD, transformation definitions are transformation
rules describing how input models can be transformed into output models. ATL
(ATLAS Transformation Language) [2] is an example of transformation languages.

During the software process, projects evolve and their requirements constantly
change for several reasons, such as to satisfy the user expectations or to reach
software design improvements. In the same way, MDD-based projects evolve and
their transformation definitions constantly change. Before applying changes to a
transformation it is important: (i) to understand the whole transformation, i.e. the
dependencies and relationships between its elements; and (ii) to know the
consequences of the change in advance, i.e. the whole impact caused by the change.
An approach that can be used to achieve such information is the change impact

 Metrics to Measure the Change Impact in ATL Model Transformations 255

analysis: the process to find potential consequences of a change and estimate what
needs to be modified to accomplish a change.

In the MDD context there is a lack of techniques for helping practitioners during
the MDD-based software process. Nowadays, when practitioners have to apply
changes to their model transformations they adopt a manual process to analyze and
measure the impacts, which is a hard, labor-intensive and error-prone activity. In
MDD, [3] proposes a catalogue of refactorings for model transformations. On the
other hand, some works [4, 5, 6, 7, 8, 9] propose approaches to help practitioners
adapting their transformations and models according to changes performed in the
metamodels referenced by them. However, these works allow neither the analysis nor
the measurement of the impact caused by a change in the transformation. In the
general context of software change, there are some works that use change impact
analysis techniques to guide changes. For instance, [10] applies data mining to
version histories in order to identify related changes from files changed in the past.

Within the software process most of the time is spent during maintenance tasks,
such as correcting bugs and improving functionalities. Therefore, the metrics to
measure the change impact could improve the software process.

In this paper, we conducted an exploratory case study to investigate how the
practitioners manually measure the change impact within ATL model transformations
before a change is applied. As the nature of the changes, we consider bug correction,
transformation evolution, transformation maintenance and transformation refinement.
We analyzed all answers of the participants and the results of this study pointed to
significant criteria. The objective of this work was to identify such criteria and define
a set of metrics to help practitioners measuring such impact automatically. With the
proposed metrics the practitioners can: (i) save effort and development time for
estimating costs to apply changes; and (ii) better schedule and prioritize changes
according to the impact. By knowing the impact of a change, project managers can
more easily realize the costs and time required to accomplish a change and thus they
can better optimize the development process.

This paper is organized as follows. In Section 2, we introduce concepts on MDD
and ATL transformation language, as well as change impact. In Section 3, we explain
the exploratory study we conducted to obtain some criteria that practitioners use to
measure the change impact. In Section 4, we show the metrics we defined. In Section
5, we give an overview concerning related work on change impact measure. Finally,
Section 6 summarizes our conclusions and gives some pointers to future work.

2 Background

2.1 MDD and ATL Transformations

The MDD approach recognizes the need of having several kinds of models to
represent the software, such as business processes, system requirements, architecture,
design and tests. In MDD, the effort and time spent during the tests and
implementation tasks of the software development lifecycle are shifted to modeling,
metamodeling and transformations tasks. The elements specified in a given model are

256 A. Vieira and F. Ramalho

defined by its metamodel, which is a model that describes another model. Metamodels
are MDD artifacts that define the abstract syntax of languages and domains. An
example of a metamodel is the UML (Unified Modeling Language) metamodel
introduced by the UML specification [11]. For instance, modelers can design classes,
attributes, associations and other elements in a UML class diagram because these
elements are defined by the UML metamodel.

In MDD, source models can automatically be transformed into target models by
means of transformation definitions that are model transformation rules that describe
how source models must automatically generate target models. Transformation
languages, such as ATL, are used to express the transformation definitions, which are
executed by a tool called transformation engine.

ATL is one of the most popular transformation languages. It allows developers to
define ATL modules, which specifies the way that source models will automatically
generate target models. Within modules developers can specify helpers and rules.
ATL supports two kinds of helpers: functional and attribute, which can be viewed as
methods and constants, respectively. Both can be referenced from different points of
an ATL transformation. On the other hand, ATL supports three kinds of rules:
matched rules, lazy matched rules and called rules. A matched rule is a declarative
rule that specifies for which kinds of source elements the target elements must be
generated. It is automatically executed when the ATL transformation is executed. A
lazy matched rule is a kind of matched rule that must explicitly be invoked by another
rule to be executed. A called rule is an imperative rule that can optionally generate
target model elements and must be invoked by another rule to be executed.

Fig. 1 presents an excerpt of the UML2JAVA transformation [12] that generates a
Java model from a UML model. The Java model to be generated holds information
for creating Java classes, as well as their attributes and methods. Line 1 specifies the
module name, whereas line 2 specifies the input and output model names, both
followed by their metamodel names. Lines 3-4 specify a functional helper that verifies
if a UML model element has public visibility or not. The matched rule
AttributeToField is specified at lines 5-10. It enables to match an attribute of a UML
model and to generate a field of a Java model in the way that the field’s properties
assume the same values as the attribute’s properties: name, isPublic and type.

Fig. 1. Excerpt of the UML2Java transformation module

 Metrics to Measure the Change Impact in ATL Model Transformations 257

2.2 Change Impact

Software changes within the software development process must carefully be
managed given that changes to requirements may lead to massive software changes
and unpredictable consequences that often delay their implementation. It is important
to understand the software to be changed and the consequences of the change in
advance. The change impact analysis is a way to accomplish such information.

According to [13], the change impact analysis is the process in which it is possible
to identify the potential consequences of a change and estimate what needs to be
modified to accomplish it. The change impact analysis can be used by means of: (i)
static analysis to detect the impacts of a change before it is applied based on the
source code (or bytecode) inspection; and (ii) dynamic analysis to detect the impacts
of a change after it is applied based on the software execution traces.

3 An Exploratory Case Study

This section describes an exploratory case study we conducted as a preliminary
research to define some metrics with the intent to measure the change impact in model
transformations. All the study material is available online1.

3.1 Study Definition

The main objective of this case study was to identify which criteria the participants
adopt to previously analyze and measure change impacts in model transformations
before applying them. Thus, we asked them to manually analyze some changes to
measure the impact of applying them and report to us the criteria they adopted. After,
we analyzed all criteria and defined a set of metrics to measure the change impacts.

In this context, we elaborated a research question for the study: Which criteria the
participants adopt to measure the impact of changes in model transformations?

3.2 Study Planning

To gather a group of participants for this study we sent a message inviting ATL
communities and ATL experts. As a result, we gathered 12 persons available to
engage in this case study, which: (i) were from different universities and research
groups; (ii) were undergraduate and postgraduate (PhD or MSc) students in Computer
Science; (iii) were experts2 in ATL transformations; and (iv) had different level of
expertise since some of them worked with ATL for years in their projects. We also
invited the professional community to engage in this study, but nobody was available.
Even considering only students in this study, it is important to emphasize that we

1 http://goo.gl/T22wKG
2 As criteria we consider experts the participants with at least one year of experience with ATL.

Therefore, all participants of this study were experts.

258 A. Vieira and F. Ramalho

selected only students with wide experience in using and that adopted ATL to
implement their real projects during their researches.

We adopted ATL in this work as a proof of concept because: (i) it is a popular
transformation language; (ii) there is a rich documentation available for users and
developers; (iii) there are many repositories with transformations available for use,
becoming possible the evaluation of this work; and (iv) our research group has large
experience in constructing ATL transformations.

We selected ATL transformations as the cases used in this study. To select them we
investigated several changes from repositories with real ATL projects developed by
different research groups. We choose four ATL projects and, for each of them, we
selected one transformation module: (i) PITM2PSTM 3 (project Mobit); (ii) BPMN
para Atividades 4 (project Transformacao-bpm) (BPMN to Activities, project
Transformation BPM); (iii) emig2EMFTVM 5 (project Emf Migrate); and (iv)
SimpleGTtoEMFTVM 6 (project SimpleGT).

For each transformation module we choose three changes to be analyzed, which we
extracted from different versions of their repositories. Therefore, a set of 12 changes
were analyzed. To select these modules we followed the criteria: (i) they should not be
very large (up to 1.400 LOC7) because the participants had to manually analyze each
change and this task would be time-consuming for very large transformation modules;
and (ii) the changes should not be the same. We selected four ATL model
transformations and three changes for each one to be analyzed due to the time the
participants would spend to perform the study. If we have selected many cases, the
results of the study would have been damaged due to the fatigue of the participants.

To allow the execution of this study we provided all instrumentation for the
participants. It includes: (i) a presentation on the case study, where the study’s
conductor presented to the participants the study context, objectives, material to be
used, changes to be analyzed and tasks to be accomplished; and (ii) an execution
guide, where the participants followed a set of instructions to execute the study.

To collect all data for this case study we applied the execution guide to the
participants, where they followed the instructions to analyze each change and then
answered a questionnaire related to the change being analyzed.

3.3 Study Execution

We executed a pilot study to revel deficiencies in the design of this case study before
conducting a larger study. After, we did some adjustments in the execution guide and
we started the execution of the case study. As the participants were located in
different places, we conducted the study through videoconferences where the study’s
conductor: (i) presented the study to be executed; and (ii) assigned to each participant
an execution guide with a different order of the changes to be analyzed, which were

3 https://sites.google.com/a/computacao.ufcg.edu.br/mobit
4 https://code.google.com/p/transformacao-bpm
5 https://code.google.com/a/eclipselabs.org/p/emfmigrate
6 http://soft.vub.ac.be/soft/research/mdd/simplegt
7 To count the LOC (Lines Of Code) we consider the lines of code, the empty lines and the

comments of the code.

 Metrics to Measure the Change Impact in ATL Model Transformations 259

randomly defined to avoid that the analysis of the latter changes be affected due to the
fatigue of the participants. Then, the participants executed the analysis of each change
and after they answered a questionnaire about the impact of the changes and criteria
they should adopt to measure such impacts. Each participant spent about three hours
to execute the case study.

3.4 Study Analysis and Interpretation

With the case study we could observe that the participants do not have a common
consensus about all the criteria adopted to measure the impact of changes to be applied
to model transformations. In general, the majority of the participants measured the
change impacts according to the parts of the transformation affected with the change,
which we call as impacted elements8.

To answer the research question for this case study, we present as follows a
compilation of all criteria the participants adopted to measure the change impacts as
well as the respective metrics we defined to them.

• Characteristic of the element - each element has its own characteristics. For
instance, a matched rule can be an abstract rule and extend other rule. On the
other hand, a helper can be invoked by other elements and accept parameters.
Therefore, the more relevant characteristics are, the higher the change impact.
The associated metric we defined to this criteria is the RTEC (section 4.1);

• Types of relationships - within a model transformation there are several
relationships between the elements. For instance, a matched rule R1 can have a
relationship called extends with another matched rule R2, which indicates that
R1 extends R2. Therefore, as the element has more relationships and the more
important they are, the higher the impact is. The associated metric we defined
to this criteria is the RTERT (section 4.2);

• Number of impacted elements - for each change to be applied, the participants
identified the element to be changed within the transformation and they looked
for possible dependencies of this element. For instance, if a helper that is
invoked by two rules will be removed from the transformation, then such rules
will be impacted with the change. Therefore, the more elements affected with
the change, the higher the change impact. The associated metric we defined to
this criteria is the RITE (section 4.3);

• Change type - the impact in a transformation module depends on the change
type to be applied. Some change types can impact it more than others. For
instance, the change removeHelper usually causes an impact higher than the
change changeHelperName since the elements invoking the helper to be
changed can become inconsistent if they are not adapted to the change.
Therefore, the more complex is the change type, the higher the impact. The
associated metric we defined to this criteria is the RCTAE (section 4.4);

8 In this paper, element is a term we use to represent: helpers, attributes, called rules, matched

rules and lazy matched rules of a model transformation.

260 A. Vieira and F. Ramalho

• Impact in the output model - some changes can affect the output model
generated by the transformation. For instance, if a matched rule will be
removed, then the output model generated by this rule will be affected.
Therefore, the more the output model is affected, the higher the impact. The
associated metric we defined to this criteria is the RCITOM.

3.5 Threats to Validity

We enumerate as follows the threats to the validity that we identified in this study as
well as how we tried to control or mitigate their effects on the observations.

Internal Validity: The participants had to analyze 12 different changes and answer a
questionnaire for each one, which took to them about three hours. We believe that the
analysis of the latter changes would be affected by the fatigue of the participants or by
the hurry to finish the study. To address this threat, we developed different versions of
the execution guide and for each one we randomized the order of the changes to be
analyzed. Also, the execution guides were randomly assigned to the participants.

External Validity: As we have conducted a case study, a condition limits the
generalization of our results: they were obtained from the analysis of only 12
participants. In addition, even though the transformation modules used in this study are
real and non-trivial, a few number of changes were analyzed (only 12).

4 Definition of the Metrics

This section presents the metrics we defined based on criteria reported by the
participants of the study to measure the impact of changes in model transformations.
As a starting point, we defined five metrics: RTEC, RTERT, RITE, RCTAE and
RCITOM. Due to limit of space the metric RCITOM (Relevance of the Change Impact
in the Transformation Output Model) is neither described nor considered in this paper.
Table 1 shows a summary of the metrics to be described in the next subsections.

The result calculated by each metric can assume values in a range between 0 and 1.
The closer to 0 is the value the lower is the impact and the closer to 1 the higher is the
impact. Let E = {e1,..., en} be the set of elements specified in a transformation, where n
is the number of elements specified within the transformation under analysis. Each
ATL transformation has a given number of elements that can be helpers, attributes,
called rules, matched rules and lazy matched rules. Therefore, the proposed approach
obtains (automatically) this number from the transformation to calculate the metrics.

Table 1. Summary of the proposed (and described in this work) metrics

Set of Metrics

RTEC (Relevance of the Transformation Element Characteristics)

RTERT (Relevance of the Transformation Element Relation Types)

RITE (Relevance of the Impacted Transformation Elements)

RCTAE (Relevance of the Change Type Applied to an Element)

 Metrics to Measure the Change Impact in ATL Model Transformations 261

4.1 RTEC

The RTEC (Relevance of the Transformation Element Characteristics) metric states the
relevance of a transformation element in terms of the characteristics it can assume in
the transformation. They give a different meaning and relevance for the element since
their occurrence (or not) may become the element more or less complex. We analyzed
each element of several ATL transformations to find characteristics they can assume.

Table 2. Classification of the transformation elements characteristics

Characteristic ATL Transf. Element Relevance Index

isAbstract Matched or Lazy Matched Rule 0.16

isEntrypoint Called Rule 0.15

hasUsingBlock Matched or Lazy Matched Rule

Called Rule

0.16

0.13

hasNotPrimitiveContextType Helper

Attribute

0.17

0.22

hasNotPrimitiveReturnType Helper 0.17

hasNotPrimitiveType Attribute 0.18

hasFilter Matched or Lazy Matched Rule 0.18

hasParameter Called Rule

Helper

0.15

0.19

hasImperativeBlock Matched or Lazy Matched Rule

Called Rule

0.16

0.13

hasToBlock Called Rule 0.16

hasIfExpression Helper

Attribute

Matched or Lazy Matched Rule

Called Rule

0.16

0.20

0.16

0.13

hasLetExpression Helper

Attribute

0.12

0.16

hasCollectionExpression Helper

Attribute

Matched or Lazy Matched Rule

Called Rule

0.19

0.24

0.18

0.15

Table 2 details the characteristics (Column 1) as follows: (i) Column 2 shows the
elements that can assume the characteristics. For instance, a matched rule can assume
the characteristics isAbstract and hasUsingBlock, i.e. it can be abstract and comprise a

262 A. Vieira and F. Ramalho

block responsible for declaring and initiating variables; and (ii) Column 3 shows the
relevance index we defined for each characteristic. It captures the level of influence
that a characteristic can reach in the whole transformation in a way that its presence (or
not) can become the maintenance of the transformation easier (or not). For instance, a
rule that comprises an imperative block is commonly more complex than another one
without any characteristic, since it enables users to specify imperative code, in which
one can invoke others elements as well as specify statements. Therefore, the bigger is
the number of characteristics an element assumes, more relevant we consider it is.

To define the relevance indexes we conducted a new study with the objective of
obtaining a number to represent the relevance of each characteristic. To engage in this
study we selected 09 expert ATL users from the 12 ones engaged in the previous study.
We elaborated a form9 where the participants had to assign for each characteristic a
value in a range between 0 and 5, where 0 means no relevance and 5 means extreme
relevance. They had to consider the relevance they think the characteristics represent to
a transformation as well as to observe what and how the characteristics can influence
the impact of changing an element. We collected the results and, for each
characteristic, we calculated the average of the values assigned by the participants.
After, we normalized each calculated average in the way that the sum of the values
normalized (relevance indexes) for each characteristic should be 1.

The metric RTEC is calculated through the function calcRelevOfCharac(ei), where ei
represents the element to be changed. As presented in (1), this function sums the
relevance indexes for the characteristics that ei assumes. Let C = {c1,...,cs} be the set of
relevance indexes for the characteristics ck (k = 1,...,s) that ei assumes, where s is the
number of characteristics that ei assumes. 1

To illustrate this metric we present in Fig. 2 an excerpt of the called rule TDFile
(the element to be changed) from the transformation PITM2PSTM10 (project Mobit)
that assumes the characteristics hasToBlock and hasImperativeBlock. Considering their
relevance indexes, after calculating the RTEC we obtain the result 0.29.

Fig. 2. Called rule TDFile

9 http://goo.gl/lKAGYn
10 http://goo.gl/aEpyqM

 Metrics to Measure the Change Impact in ATL Model Transformations 263

4.2 RTERT

The RTERT (Relevance of the Transformation Element Relation Types) metric states
the relevance of an element in terms of the relation types it assumes. By observing the
dependencies between the elements of many transformations, we found four relation
types: (i) invokes, when an element invokes another one; (ii) isInvoked, when an
element is invoked by another one; (iii) extends, when a rule extends another one; and
(iv) isExtended, when a rule is extended by another one. Each element can
simultaneously assume several relations and optionally it can assumes neither of them.

It is important to consider the relation types when measuring the change impact
because they indicate the relevance of the element to be changed through its
dependencies: the bigger is the number of relations it assumes, more elements in the
transformation are related to and potentially depend on it. For instance, a lazy matched
rule that assumes the relation types isExtended, invokes and isInvoked has more
dependencies in the transformation than another one that assumes only the relation
isInvoked, since the former assumes more relations.

Similarly to the metric RTEC, we defined a relevance index for each relation type to
represent the level of influence a relation can reach in the transformation in a way that
its presence (or not) can become the maintenance of the transformation easier (or not).
We believe that each relation type can cause a different impact in the element,
therefore, it must have a different relevance index.

The relevance indexes were defined through the same study conducted to obtain the
relevance of the characteristics, as previously discussed in the metric RTEC. Table 3
shows the relation types and the relevance indexes we obtained from the study.

Table 3. Classification of the relation types

Relation Type ATL Transf. Element Relevance Index

Invokes Helper, Attribute or Called Rule
Matched Rule
Lazy Matched Rule

0.49
0.34
0.25

isInvoked Helper or Attribute
Lazy Matched Rule
Called Rule

0.51
0.27
0.51

Extends Matched Rule
Lazy Matched Rule

0.30
0.22

isExtended Matched Rule
Lazy Matched Rule

0.36
0.26

The metric RTERT is calculated through the calcRelevOfRelType(ei) function, where
ei represents the element to be changed. As presented in (2), this function sums the
relevance indexes for the relations that ei assumes. Let R = {r1,...,rm} be the set of
relevance indexes for the relation rk (k = 1,...,m) that an element ei assumes, where m is
the number of relations that ei assumes, considering all relation types.

264 A. Vieira and F. Ramalho

 2

To illustrate this metric we suppose that a change will be applied to the called rule
previously presented in Fig. 2, which assumes relations of the types invokes and
isInvoked, whose relevance indexes are 0.49 and 0.51, respectively. After calculating
the metric RTERT we obtain the result 1.

4.3 RITE

The RITE (Relevance of the Impacted Transformation Elements) metric states the
relevance of a transformation element ei in terms of the elements impacted when a
given change is applied to ei. As our approach adopted static analysis, it considers as
impacted all elements that invoke or extend ei, even if they do no invoke ei in
execution time. In addition, it only considers the impacted elements specified in the
same transformation definition of the element to be changed.

It is important to consider the impacted elements when measuring the change
impact because they indicate the parts of the transformation that must be adapted after
the change is applied: the bigger is the number of impacted elements, the bigger is the
effort to adapt them after the change. For instance, it is easier to apply a change to a
rule that impacts two elements than to another rule that impacts seven elements.

The metric RITE is calculated through the function calcRelevOfImpactedElem(ei),
where ei represents the element to be changed. As presented in (3), this function
calculates the ration between the number of elements impacted with the change (t)
and the total number of elements of the transformation (n). Let E’ = {e’1,...,e’t}; t < n;
E’ ⊆ E be the subset of elements impacted e’i (i = 1,...,t) when a change is applied to ei,
where t is number of impacted elements.

 tn 3

To illustrate this metric we suppose that a change will be applied to the called rule
previously presented in Fig. 2. As the TDFile rule is invoked by only one rule within
the transformation, the change has only one impacted element. The transformation is
composed by a total of 26 elements, resulting in the value 0.04 for the RITE metric.

4.4 RCTAE

The RCTAE (Relevance of the Change Type Applied to an Element) metric states the
relevance of a change type according to the difficulty to apply it to an element of the
transformation module. Such difficulty is measured through the number of actions
required to apply the change as well as the relevance of the element to be changed. If
this metric was not considered, change types as removeRule and changeRuleName
would have the same impact. However, the impact of removing a rule is usually

 Metrics to Measure the Change Impact in ATL Model Transformations 265

higher. The table comprising all possible actions that must be performed to apply each
change type we defined is available online (see http://goo.gl/kcZ3sJ).

It is important to emphasize that the number of actions required to apply a given
change type to an element is automatically obtained by the tool support according to
the actions actually required for it, instead of all possible actions. For instance, to
apply the change type removeHelper to a helper H1 a number of four actions are
possible: (i) to verify if any element of the transformation invokes H1; (ii) if it is
invoked, to remove the invocations from the elements that invoke it; (iii) if it is
invoked, to adapt the elements that invoke it after the removal; and (iv) to remove H1
of the transformation. However, only two actions (the first and the last one) are
actually required to remove this helper since it is not invoked.

Besides the difficulty to apply the change type, RCTAE also considers the
relevance of the element to be changed. Therefore, we defined a different value for
each transformation element, i.e. a different relevance index.

In the same study that we conducted to obtain the relevance indexes used in the
metrics RTEC and RTERT, we obtained the relevance indexes used in the metric
RCTAE. Table 4 shows the transformation elements and the relevance indexes we
obtained from the study.

Table 4. Classification of the transformation elements

ATL Transformation Element Relevance Index

Called Rule 0.62

Attribute 0.69

Lazy Matched Rule 0.72

Helper 0.76

Matched Rule 0.87

The metric RCTAE is calculated by means of the calcRelevOfChangeType(ei, ch)

function, where the parameter ei represents the element to be changed and ch
represents the change type. As presented in (4), this function calculates the ration
between the number of actions required to apply the change ch and the maximum
number of possible actions required to apply a change (considering all change types
we defined). Then, it calculates the average between this result and the relevance
index of the element to be changed. Let:

• A = {a1,...,ap} be the set of required actions ai(i = 1,...,p) that must be
performed to apply a given change type ch to an element ei of the
transformation, where p is the number of required actions;

• d be the maximum number of possible actions required to apply a change,
considering all change types we defined. To obtain this number we
enumerated the actions for each change type and among them the maximum
number of possible actions is 08 (for the change type removeRule);

266 A. Vieira and F. Ramalho

• b be the relevance index of the element to be changed.

, p/d b2 4

To illustrate this metric we suppose that the change type AddRuleParameter will be
applied to the called rule previously presented in Fig. 2. To add a parameter to this
called rule it is required to perform 03 actions. According to the results obtained from
the study, the relevance index for a called rule is 0.62. Given that the maximum
number of possible actions required to apply a change (considering all change types we
defined) is 08, after calculating the metric RCTAE we obtain the result 0.50.

4.5 Measuring the Impact Value

To automatically measure the impact value based on the four metrics previously
presented we defined the function calcChangeImpactValue(ei) presented in (5), where
ei is the element to be changed. Let: M = {m1,...,my} be the set of metrics mk (k = 1,...,4)
defined by (1), (2), (3) and (4) where y is the number of metrics to be calculated. ∑ y 5

Practitioners that specify their transformations in ATL can use the proposed
metrics given that the information required for calculating them can be retrieved from
any ATL transformation through a static analyzer. For instance, to calculate the
metric RTERT for an element ei it is required to: (i) identify number of relations that ei
assumes considering all relation types; and (ii) define a relevance index for each
relation type. All these information are available in ATL transformations. Thus, a
static analyzer for ATL is important to help practitioners extracting such information.

In addition, the metrics can also be adopted to calculate the change impact of
programs specified in general purpose languages, such as Java. However, they must
be adapted according to the semantics of Java constructors. For instance, before
removing a given Java method the metric RTERT would be reused to calculate the
relevance of this method in terms of its relation types.

Practitioners can customize the function named calcChangeImpactValue(ei) by
considering just the metrics they are interested. For instance, they can remove the
metric RTEC if they do not wish to consider the properties assumed by the element to
be changed. Additionally, practitioners can add new metrics.

5 Related Works

To the best of our knowledge, within the MDD context few works are focused on
change impact measure. [3] proposes a catalogue of refactorings to improve the
performance and quality attributes of model transformations. However, [3] does not
measure the impact on the transformation caused by the change (refactoring).

 Metrics to Measure the Change Impact in ATL Model Transformations 267

[4] proposes an approach to help developers adapting their model transformations
according to changes performed in the source metamodel. It uses HOTs (Higher-
Order Transformations) [14] to generate annotated transformations that include
suggestions about how metamodel changes have impacted the rules.

[5] and [6] propose a methodology to adapt transformations after the metamodels
referenced by them are evolved. The former is composed by three phases (impact
detection, impact analysis and transformation adaptation) to reestablish consistency
after metamodel evolution, while the latter proposes to adapt transformations by
means of external transformation composition.

[7] addresses the identification, prediction and evaluation concerning the
significance of the metamodel change impact over the artifacts. It proposes an
approach that allows developers to define relationships between the metamodel and
its related artifacts, as well as to detect such elements within the artifacts affected by
the metamodel changes. In addition, there are some works that propose to automate
the migration of existing models according to the evolved metamodel [8, 9].

Although [4, 5, 6, 7, 8, 9] are pretty related to our work on impact analysis, they
are focused on metamodel evolution and they allow developers neither to analyze nor
to measure the impact on the transformation caused by a change applied to any
element of the transformation itself.

Software metrics are widely used to assess the quality of software in general.
Within the MDD context, such issue has also been addressed. Both [15] and [16]
propose a set of metrics to measure model transformations and to enable assessing
their quality. However, the former is applied to transformations defined using the
ASF+SDF term rewriting system, while the latter is applied to ATL modules and
libraries (but the metrics are not focused on change impact measurement).

In the context of software process and MDA, [17] proposes a conceptual
framework with a metrics suite to evaluate maintainability of MDA process models,
i.e. software process. However, the metrics proposed in [17] are related to MDA
process models and not to change impact analysis.

6 Conclusions and Future Works

In this work, we have conducted an exploratory case study to identify criteria that
practitioners adopt to analyze and measure the change impact in ATL model
transformations. We found five criteria: (i) the characteristic of the element to be
changed; (ii) the relationship types of the element to be changed; (iii) the number of
elements impacted with the change; (iv) the change type to be applied; and (v) the
impact caused in the output model generated by the transformation. Based on these
criteria, we defined a set of metrics to measure the change impact.

The metrics are very important for the MDD-based software process because they
aid practitioners with their maintenance tasks. When the change impact is measured
by using the proposed metrics, then project managers can use the impact value as
support to make project decisions, as well as to better schedule and prioritize changes
according to the impact. By knowing the impact of a change, project managers can
more easily realize the costs and time required to accomplish a change and thus they
can better optimize the development process. In addition, the risk of costly change
(re-work) and the potential for errors in planning estimates are reduced.

268 A. Vieira and F. Ramalho

To complement the metrics proposed in this work, it would be useful to define
metrics in the context of dynamic analysis to consider the impact in the logic and
behavior of the transformation elements. For instance, the metric would detect if the
removal of a helper affects the behavior of the rule that invokes.

As ongoing work, we are: (i) elaborating a study to evaluate the effectiveness of
the metrics; (ii) developing a tool support to automatically measure the change impact
based on the proposed metrics; (iii) elaborating more metrics to be incorporated in the
tool support; (iv) defining a generic change impact measure approach for any model
transformation language; and (v) defining new metrics based on dynamic analysis.

Acknowledgments. We would like to acknowledge the CAPES for the financial
support as well as the participants engaged in the study we conducted in this work.

References
1. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Softw. 20(5), 19–25

(2003)
2. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS

2005 Workshops. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)
3. Wimmer, M., Martínez, S., Jouault, F., Cabot, J.: A Catalogue of Refactorings for Model-

to-Model Transformations. Journal of Object Technology (JOT) 11(2), 1–40 (2012)
4. Garcia, J., Díaz, O.: Adaptation of Transformations to Metamodel Changes. Library 2, 1–9

(2010)
5. Mendez, D., Etien, A., Muller, A., Casallas, R.: Towards Transformation Migration After

Metamodel Evolution. In: Model and Evolution Workshop, Olso, Norway (2010)
6. Garcés, K., Vara, J., Jouault, F., Marcos, E.: Adapting Transformations to Meta-Model

Changes via External Transformation Composition. Software and Systems Modeling
(2012)

7. Iovino, L., Pierantonio, A., Malavolta, O.: On the Impact Significance of Metamodel
Evolution in MDE. Journal of Object Technology 11(3), 1–33 (2012)

8. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing Model Adaptation by Precise
Detection of Metamodel Changes. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009)

9. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - Automating Coupled Evolution of
Metamodels and Models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
52–76. Springer, Heidelberg (2009)

10. Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.: Mining Version Histories to Guide
Software Changes. IEEE Transactions on Software Engineering 31(6), 429–445 (2005)

11. Object Management Group. Unified Modeling Language (UML) Infrastructure 2.4.1
(2011), http://goo.gl/9W81lu

12. INRIA, UML to Java Example (2005), http://goo.gl/2yPY2O
13. Bohner, S., Arnold, R.: Software Change Impact Analysis. IEEE Computer Society Press,

Los Alamitos (1996)
14. Tisi, M., Cabot, J., Jouault, F.: Improving higher-order transformations support in ATL. In:

Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 215–229. Springer,
Heidelberg (2010)

15. Vignaga, A.: Metrics for Measuring ATL Model Ttransformations, Tech. Report,
University of Chile (2009)

16. Amstel, M.F., Lange, C.F.J., Brand, M.G.J.: Metrics for Analyzing the Quality of Model
Transformations (2008)

17. da Silva, B.C., Maciel, R.S.P., Ramalho, F.: Evaluating Maintainability of MDA Software
Process Models. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.)
PROFES 2013. LNCS, vol. 7983, pp. 199–213. Springer, Heidelberg (2013)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 269–272, 2014.
© Springer International Publishing Switzerland 2014

Initial Data Triangulation of Agile Practices Usage:
Comparing Mapping Study and Survey Results

Philipp Diebold

Fraunhofer IESE, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

philipp.diebold@iese.fraunhofer.de

Abstract. Background: Agile software development methods are commonly
customized to a specific need, such as usage or adaptation of agile practices. In
order to identify which agile practices organizations are using, we performed a
systematic mapping study. Objective: In this paper, our goal is to present the
generalizable state of the practice in agile practices usage. Method: We used tri-
angulation of these study data and the data of the state of agile development
survey related to agile practices usage. Results: This comparison shows similar
results; obvious deviations and contradictions are discussed. Conclusion: The
results of the triangulation of the two studies can be considered as an initial ge-
neralizable state of the practice for the usage of agile practices.

Keywords: software processes, agile software development, agile practices.

1 Introduction

Today software companies are commonly using agile methods, e.g. Scrum, by adopt-
ing a subset of the related agile practices that are appropriate for their development
context [2]. Therefore, it is important to know which agile practices are used to which
extend in industry.

In the mapping study [1] we identified a preliminary set of the most frequently used
agile practices in industry and the domains and lifecycle processes in which they are
being used. However, the results of this mapping study can only be generalized in
terms of the published literature results.

In order to get a better understanding of the state of the practice of agile practices,
we triangulated the results of the mapping study with the largest available survey on
agile software development, namely the state of agile development survey [4].

After providing some background information about the two data sources and sets,
we will present the data triangulation and its results, including threats to validity.
Based on the results, we will conclude the paper, answer the question of representa-
tiveness, and sketch some future work.

270 P. Diebold

2 Background

From the meagre amount of literature reporting about agile practices, we selected the
first mapping study [1] about this aspect and the state of agile development survey
[4], as this is the best known and most frequently referenced survey dealing with agile
development.

Mapping Study [1]: At the end of 2013, we performed a mapping study to determine
which agile practices are used in industry. This study included 24 studies from the
years 2010-2013 with 68 different projects. We identified 18 agile practices and cha-
racterized their usage as full, partial, or none. This study gave us an overview of the
usage of agile practices as reported in the literature, especially regarding domains.

State of Agile Development Survey [4]: VersionOne performed a yearly survey on
agile software development aimed at representing the state of the practice in agile
development [4]. The survey sample included 3500 participants, most of them practi-
tioners. The question regarding agile practices was “Agile techniques employed” [4,
p. 4]. For each of their 26 agile techniques, a Boolean question was asked as to
whether it is used.

3 Data Triangulation

Triangulation Method [3]: We first mapped the agile practices reported in our map-
ping study and the agile techniques from the survey (Table 1):

Table 1. Mapping of Agile Practices

Mapping Study Agile Development Survey (Agile Techniques)

Time boxing
Learning loop retrospectives, velocity
Planning meeting iteration planning, release planning
Specification story mapping
Daily discussion daily standup
Product vision
Continuous
integration/deployment

continuous integration, continuous deployment,
automated builds

Specification analysis
Customer involvement dedicated product owner
Validation practice automated acceptance testing, unit testing
Frequent releases
Outcome review
Progress monitoring burndown, digital task board, Kanban, analog task board
Quality check pair programming, unit testing, TDD, integrated Dev/QA
Common knowledge collective code ownership
Refactoring refactoring

Unattached com. teams open work area
Small cross-func. teams

 Initial Data Triangulation of Agile Practices Usage 271

Out of the 18 agile practices identified in our mapping study, six practices were not
covered by the survey (see Table 1). In addition, four agile techniques reported in the
survey – agile games, cycle time, coding standards, and BDD – could not be mapped
to the agile practices identified in our mapping study because the first one was not
known and the others were not agile practices.

Next, we calculated the percentage values of the usage for each agile practice. For
the mapping study, we based our calculation on the absolute numbers of projects ()
reported in [1]: . We only used the overall agile practices usage and combined the

full and partial usage values into one. For the survey, we recalculated the values for

each practice mapped to 1 techniques as the average:
∑

 and as the minimum: min . We needed both statistical measures, as some techniques were orthogon-
al to the respective practice, while others were not.

Results: The overall results of the comparison are shown in Fig. 1. They contain all
18 agile practice categories of the mapping study [1]. The left side presents the per-
centage values from the mapping study; the gray bars and practices are those not cov-
ered by the agile techniques in the survey [4]. In contrast, the right side contains the
resulting values from the survey (average black; minimum white). The agile practices
are listed in descending order, based on their occurrence in [1]. Since our focus is on
the mapping study’s results, we did not consider the results for practices in the survey
that do not fit into our categorization.

Fig. 1. Comparison of occurrence for mapping study [1] (left; gray = not in survey)
and survey [4] (right; black = average; white = minimum) expressed in percentage

At first glance, the results of the different studies do not seem to be very similar to
each other. But in general the right side of the figure also shows that the more fre-
quently used practices are at the top, e.g., learning loop, planning meeting, and daily

87% Timeboxing
53% Learning loop 67% 60%
51% Planning meeting 73% 70%
50% Specification 41%
46% Daily discussion 85%
43% Product vision
34% Continuous int./dep. 44% 25%
34% Specification analysis
32% Customer involvement 55%
29% Validation practice 50% 28%
29% Frequent releases
26% Outcome review
25% Progress monitoring 44% 22%
25% Quality check 39% 30%
22% Common knowledge 29%
18% Refactoring 47%
15% Unattached com. teams 44%
15% Small cross-func. teams

0% 50% 100%0%50%100%

272 P. Diebold

discussions. The only exception is specification practice, which makes sense because
the survey only asked about story mapping and not about any further possible specifi-
cation practices, such as user stories, which are also covered by the mapping study.
Thus, we assume that specification is also used very similarly in both studies.

The remaining practices are all close together and most are also ordered similar to
those on the left side. Only the position of continuous integration and deployment as
well as common knowledge is a little bit too low. The reason for the position of com-
mon knowledge is similar to that for specification because only collective code owner-
ship is mapped to it. In contrast, continuous integration and deployment is mapped to
three different practices, which are rated very differently in the survey: automated
builds with 56%, continuous integration with 50%, and continuous deployment with
25%, which results in an aggregated value that is lower than some others.

Threats to Validity: We did not have access to the raw data of the survey. We could
check overlapping between the survey sample and the authors of the studies identified
in the mapping study by analyzing the countries where the participants and authors
were working. Whereas the survey participants are mainly from North America (66%)
and Europe (20%), the authors of the studies identified in the mapping study were
mainly working in South America (19%), Asia (31%), and Australia (18%).

4 Summary and Conclusions

Based on the data triangulation performed on the mapping study and the state of agile
development survey, we found consistent results and could explain apparent devia-
tions and contradictions. Thus, the results of this data triangulation and the two stu-
dies can be generalized as the state of the practice regarding agile practices usage.

For future work, we are in contact with VersionOne to get the full detailed data set
(only the question regarding the techniques and demographical data) for further de-
tailed analysis in order to compare their results to our domain-specific usage in [1].
Additionally, we are looking for reasons for high or low occurrence in the original
studies to learn more about the effects of certain practices on the respective context.

Acknowledgments. This research was carried out in the SPES-XT project (BMBF
01IS12005E, German Ministry of Education and Research). We would like to thank
L. Guzmán for her help.

References

1. Diebold, P., Dahlem, M.: Agile Practices in Practice – A Mapping Study. In: Proceedings of
18th Conference on Evaluation and Assessment in Software Engineering, EASE 2014.
ACM, New York (2014)

2. Rodriguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on Agile and Lean Usage in
Finish Software Industry. In: Proceedings of 6th International Symposium on Empirical
Software Engineering and Measurement, ESEM 2012, pp. 139–148. ACM, New York
(2012)

3. Rothbauer, P.: Triangulation. In: The SAGE Encyclopedia of Qualitative Research Me-
thods, pp. 892–894. Sage Publications (2008)

4. VersionOne: 8th Annual State of Agile Development Survey. VersionOne Inc. (2014)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 273–276, 2014.
© Springer International Publishing Switzerland 2014

What Is Large in Large-Scale?
A Taxonomy of Scale for Agile Software Development

Torgeir Dingsøyr1,2, Tor Erlend Fægri1, and Juha Itkonen3

1 SINTEF,
NO-7465 Trondheim, Norway

{torgeird,toref}@sintef.no
2 Department of Computer and Information Science,
Norwegian University of Science and Technology

3 Aalto University, Department of Computer Science and Engineering
FI-00076 Aalto, Finland

juha.itkonen@aalto.fi

Abstract. Positive experience of agile development methods in smaller projects
has created interest in the applicability of such methods in larger scale projects.
However, there is a lack of conceptual clarity regarding what large-scale agile
software development is. This inhibits effective collaboration and progress in
the research area. In this paper, we suggest a taxonomy of scale for agile
software development projects that has the potential to clarify what topics
researchers are studying and ease discussion of research priorities.

Keywords: Large-scale agile software development, portfolio management,
project management, coordination, software engineering, agile methods.

1 Introduction

In the introduction to the special issue on agile methods in IEEE Computer in 2003,
Williams and Cockburn stated that “agile value set and practices best suit co-located
teams of about 50 people or fewer who have easy access to user and business experts
and are developing projects that are not life-critical” [19]. Since then, agile methods
have received significant attention from practitioners and academia [6], and have
increasingly been applied in new settings, such as global, distributed development
[16] and large-scale development [13].

The rise of agile methods has also brought out critics, e.g. related to lack of focus
on architectural decisions and that the methods are suitable only for small teams.
Large projects are likely to have high societal impact and thus justify a serious
consideration of critique. It is very important to understand if, when, and how agile
methods can be suitable ‘in the large.’ Adaptions of agile principles may be necessary
when scaling along dimensions of project size, project complexity and distribution of
personnel.

The continued interest in this research area is exemplified by the practitioners at
the XP2010 conference voting “agile in the large” to be “the top burning research
question” [8]. Boehm and Turner discussed how risk exposure can be used to balance

274 T. Dingsøyr, T.E. Fægri, and J. Itkonen

agile and plan-driven methods [2]. Lindvall et al. reported from meetings and a
workshop amongst large companies and their experience with agile in the large [10].

However, there is little agreement on what large-scale agile development is [5].
Webster´s define ‘large-scale’ as “very extensive; of great scope” [18]. Some have
used the term to describe projects with many members in a single team, while others
are referring to projects with multiple teams over a number of years or a combination
of size, distribution and specialization [3].

In order to facilitate discussion of planned studies and identify basic assumptions
and knowledge gaps, we suggest a taxonomy of scale for agile projects, and discuss
how this taxonomy can be used in future studies of large-scale agile development.

Research on large-scale agile development can include numerous topics, but the
research community should emphasize more conceptual clarity and awareness
regarding scale and the implications for scalability of agile methods. This would, for
example, contribute to effective selection of case studies. To deepen our
understanding and develop research-based knowledge, we need in-depth studies that
serve as exemplars [7]; they provide a richer description of the projects and help
research to connect to relevant theories that can explain the cases and thereby provide
lessons for other projects. An agreement upon a taxonomy of scale for agile
development projects would make it clearer what topics researchers are addressing,
ease discussion of priority of topics in research agendas and make it more evident
when studies can provide meaningful lessons for others.

2 A Taxonomy of Scale

A taxonomy may pinpoint differences in various types of large-scale agile projects
that could lead to novel research questions. If we are to develop such a taxonomy of
scale, the question is then which dimension(s) should we use? Project cost, number of
people involved, number of requirements, lines of code, number of teams, additional
practices needed? Would large-scale be different in various application domains [14]?
In the following, we discuss these possible dimensions:

When focusing on large-scale in relation to development method, the cost is not a
sufficient a criterion for large-scale. Costs vary across projects – some may involve
hardware procurement or organizational change programs. Furthermore, these cost
drivers are different from country to country. The code size is also a problematic
factor; code could be generated by tools or be the result of modifications to existing
code. Number of requirements, user stories or features to be developed suffers from
high variability in the time to implement them. Some domains have a number of non-
functional requirements, such as real-time systems in the telecom industry, which
leads to additional effort in development. In addition, the size of software in terms of
code or requirements is rarely available as comparable measures across technologies
and project contexts.

We suggest including generally available and reliable factors. One factor that
makes large projects difficult is the coordination overhead that is increasing with size.
In management science, there are two general approaches to coordination of work:
programming (up-front decisions) and feedback [11]. The nature of software
development, being innovative work that is only partially compatible with

 What Is Large in Large-Scale? A Taxonomy of Scale for Agile Software Development 275

programmed coordination, requires a strong emphasis on personal communication [9]
and tacit knowledge embedded in the team [1]. The common advice in agile methods
is to have teams of 7 plus/minus two people in a team1 to achieve effective teamwork
by reducing the number of communication lines.

When more people are required in a project, the work is then divided between
several teams. We can identify this as a second type of large-scale project. The use of
multiple teams will reduce the effectiveness of communication [17]. Curtis [4] shows
how rapid clarification of conflicts is essential to effective software practice. More
teams will incur an increase in the number of communication lines, and we can
identify a new major change to coordination when we exceed 7 (+/- 2) teams.
Coordination forums with many participants will be ineffective, and therefore large
projects needs additional fora to coordinate subprojects.

This third type of large projects needs a new level of coordination. A pyramid
organization paradigm adds distance between floor and top [15], and distance
increases risk of distortion in information and ‘knowledge silos’.

Following this line of thought, we end up with a taxonomy as described in Table 1.
This is inspired by a taxonomy in requirements engineering [12]. One could criticize
that this taxonomy is based on a theoretical model of a project, and in practice one
may organize a large project with subprojects that are functionally or technically
divided. But distinguishing on number of teams makes an easy and widely applicable
taxonomy.

Table 1. A taxonomy of scale of agile software development projects

Level Number
of teams

Coordination approaches

Small-scale 1 Coordinating the team can be done using agile practices such as
daily meetings, common planning, review and retrospective
meetings.

Large-scale 2-9 Coordination of teams can be achieved in a new forum such as a
Scrum of Scrums forum.

Very large-
scale

10+ Several forums are needed for coordination, such as multiple Scrum
of Scrums.

We suggest that this taxonomy can be used in designing studies in order to be more

precise on selection criteria in case studies. Further, the taxonomy could be used in
research question design, in order to focus on relations between large-scale projects
and topics such as appropriateness of agile practices and when additional practices are
required. Finally, the taxonomy can be important in characterizing state of the art of
research, in showing the state of research on the different levels of scale. We would
welcome a further discussion on the suitability of this taxonomy and whether a
taxonomy of scale should include also other dimensions.

1 http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/
 Scrum_Guide.pdf

276 T. Dingsøyr, T.E. Fægri, and J. Itkonen

Acknowledgement. The work on this article was supported by the SINTEF internal
project "Agile project management in large development projects" and by the project
Agile 2.0 which is supported by the Research council of Norway through grant
236759/O30, and by the companies Kantega, Kongsberg Defence & Aerospace and
Steria.

References
[1] Boehm, B.: Get ready for agile methods, with care. IEEE Computer 35, 64–69 (2002)
[2] Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.

Addison-Wesley (2003)
[3] Bosch, J., Bosch-Sijtsema, P.M.: Coordination between global agile teams: From process

to architecture. In: Smite, D., Moe, N.B., Ågerfalk, P.J. (eds.) Agility Across Time and
Space: Implementing Agile Methods in Global Software Projects, pp. 217–233. Springer,
Heidelberg (2010)

[4] Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large
systems. Communications of the ACM 31, 1268–1287 (1988)

[5] Dingsøyr, T., Moe, N.B.: Research Challenges in Large-Scale Agile Software
Development. ACM Software Engineering Notes 38, 38–39 (2013)

[6] Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A Decade of Agile Methodologies:
Towards Explaining Agile Software Development. Journal of Systems and Software 85,
1213–1221 (2012)

[7] Flyvbjerg, B.: Five Misunderstandings about Case Study Research. Qualitative
Inquiry 12, 219–245 (2006)

[8] Freudenberg, S., Sharp, H.: The Top 10 Burning Research Questions from Practitioners.
IEEE Software, 8–9 (2010)

[9] Kraut, R.E., Streeter, L.A.: Coordination in software development. Communications of
the ACM 38, 69–81 (1995)

[10] Lindvall, M., Mutig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May, J.,
Kähkönen, T.: Agile Software Development in Large Organizations. IEEE Computer 37,
26–34 (2004)

[11] March, J., Simon, H.A.: "Organizations," University of Illinois at Urbana-Champaign’s
Academy for Entrepreneurial Leadership Historical Research Reference in
Entrepreneurship (1958)

[12] Regnell, B., Svensson, R.B., Wnuk, K.: Can we beat the complexity of very large-scale
requirements engineering? In: Rolland, C. (ed.) REFSQ 2008. LNCS, vol. 5025, pp. 123–
128. Springer, Heidelberg (2008)

[13] Reifer, D.J., Maurer, F., Erdogmus, H.: Scaling agile methods. IEEE Software 20, 12–14
(2003)

[14] Robert, L.G.: Contemporary Application-Domain Taxonomies. IEEE Software 12, 63–76
(1995)

[15] Semler, R.: Managing without managers. Harvard Business Review 67, 76–84 (1989)
[16] Smite, D., Moe, N.B., Ågerfalck, P.: Agility Across Time and Space: Implementing Agile

Methods in Global Software Projects. Springer (2010)
[17] Van de Ven, A.H., Delbecq, A.L., Koenig Jr., R.: Determinants of coordination modes

within organizations. American Sociological Review, 322–338 (1976)
[18] Webster’s, Encyclopedic Unabridged Dictionary of the English Language. Gramercy

Books, New York (1989)
[19] Williams, L., Cockburn, A.: Agile Software Development: It’s about Feedback and

Change. IEEE Computer 36, 39–43 (2003)

A Mapping Study on Cooperation between

Information System Development
and Operations

Floris Erich, Chintan Amrit, and Maya Daneva

University of Twente, Enschede, The Netherlands

Abstract. DevOps is a conceptual framework for reintegrating develop-
ment and operations of Information Systems. We performed a Systematic
Mapping Study to explore DevOps. 26 articles out of 139 were selected,
studied and summarized. Based on this a concept table was constructed.
We discovered that DevOps has not been adequately studied in scien-
tific literature. There is relatively little research available on DevOps
and the studies are often of low quality. We also found that DevOps is
supported by a culture of collaboration, automation, measurement, infor-
mation sharing and web service usage. DevOps benefits IS development
and operations performance. It also has positive effects on web service
development and quality assurance performance. Finally, our mapping
study suggests that more research is needed to quantify these effects.

1 Introduction

Many organizations which develop and use Information Systems (IS) make a
structural division of their IS departments. A popular one is separating IS de-
velopment and operations. Some practitioners argue that this division has a
negative impact. DevOps is a conceptual framework which aims at benefiting IS
development by reintegrating development and operations in various ways.

In this paper we try to find empirical evidence that DevOps does indeed
benefit IS development. To accomplish this we have performed a systematic
mapping study, asking the following main research question: ”How does DevOps
influence IS development and operations performance?”

2 Research Method

We performed a systematic mapping study [5]. We started our search with the
search term DevOps. Based on our preliminary findings we also added the search
terms ”Continuous Delivery” AND Software; and ”development and operations”
AND software. We applied the search terms to the databases of Scopus, Web
of Science, IEEE Xplore and ACM Digital Library. The first author selected
the articles and discussed them with the co-authors. Papers considered for the
review were (1) published in 2007 and onward; (2) related to problems found in

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 277–280, 2014.
c© Springer International Publishing Switzerland 2014

278 F. Erich, C. Amrit, and M. Daneva

the intersection of software development and software operations; and (3) mainly
considering IS. Because we did not closely study the potential biases authors of
the studies might have, and which validity instruments were used, we present
our work in progress as a mapping study instead of an SLR.

3 Results

We selected 14 journal articles, 10 conference proceedings and 2 industry reports
out of 139 articles found. From the journal articles, 10 originated from special
issues on DevOps from the Cutter IT Journal. Summaries of the papers as well
as their related concepts can be found online [2]. Following the concept map-
ping approach [6], we labeled each article based on their primary concerns. This
produced the following labels (and the amount of articles labeled as such):

– Culture of collaboration (9): Articles concerning the cultural changes re-
quired to reintegrate development and operations.

– Automation (9): Articles describing how the SDLC can be automated, cov-
ering both development and operations.

– Measurement (4): Articles describing how measurements can be introduced
which cover both development and operations.

– Sharing (5): Articles describing how information sharing between develop-
ment and operations can be increased and improved.

– Services (4): Articles describing how DevOps supports service development
and is supported by existing services.

– Quality assurance (5): Articles describing what role quality assurance plays
in a DevOps initiative.

– Structures and standards (8): Article describing how DevOps can be inte-
grated into existing processes and works together with standards.

Regarding study quality, we have classified each study according to the Study
Design Hierarchy for Software Engineering [4, p. 13]. We have classified 20 ar-
ticles to be in the lowest level (5, evidence being limited to expert opinion), 5
articles to be in level 4 (evidence from (quasi-)randomized experiments in an
artificial setting or case series) and one article to be in level 3 (in this case a
multi-arm study considering a focus group and two cases).

4 Discussion

Until now development and operations have mostly been studied as two different
fields. We believe our research shows that there is some merit in studying the
combination of both. This is because in industry, many organizations are rein-
tegrating development and operations. We understand that academic research
should not primarily be swayed by trends in industry, which are often the sub-
ject of hype. But at the same time, academic research should support industry
developments by finding evidence which supports or rejects the value proposition
of commercial offerings that match the respective market developments.

A Mapping Study on Cooperation 279

Our survey of the academic literature available on DevOps shows that there
is some interest in DevOps from an academic perspective in three ways: DevOps
is considered as (i) the subject of discussion, (ii) a supporting factor of some
other subject (iii) a factor supported by some other subject. Yet, we consider
the study design quality of the discovered literature to be low.

A problem frequently discovered in the literature is the lack of a concrete
shared definition of DevOps. While we have defined it as a conceptual framework,
some authors see DevOps as a job description and others see it a skill set.
Research could benefit from a clarification by creating a DevOps taxonomy [1]. A
good starting point for a taxonomy is the CAMS framework [3]. We suggest that
DevOps research can be classified using an extended version of this framework,
including the concepts of services, quality assurance and structures & standards.

We believe the different views of DevOps require us to look at DevOps from
multiple perspectives. This allows us to unite the conflicting definitions of Dev-
Ops under separate names, such as DevOps as a role in the SDLC process,
DevOps as a skill set and DevOps as a conceptual framework for supporting IS
development and operations.

We hope that by writing this article we have contributed towards creating
more awareness and some initial understanding of DevOps.

5 Limitations

One must consider two primary limitations of mapping studies. First, possible se-
lection bias. This bias is reduced significantly, as no author has prior publications
in the area nor collaborations with authors of the included 26 papers. Also, our
inclusion of English-only papers might mean that we missed out relevant studies
in other languages actively exploring DevOps. This could not be avoided since
English was the only feasible common language for our team. Second, it is possi-
ble that we collectively categorized a paper in a wrong way. The categorization
was reviewed by another senior researcher, minimizing this threat’s risk.

We think our research is in particular vulnerable to two biases, the argument
from authority bias and the publication bias. Most articles selected in the review
are based on expert opinion. While we have no reason to doubt these opinions,
one should be aware that experts can be wrong. When one blindly follows expert
opinion, one is vulnerable to the argument from authority bias. That is why ex-
pert opinion should be backed up with other sources of evidence. In our research
we have found little evidence of DevOps having a positive effect on IS develop-
ment besides expert opinion. The research is also vulnerable to publication bias,
which means there is a tendency to publish only positive results. Hence, there
might be organizations which struggle with DevOps and might have abandoned
it, yet nothing is published regarding this. We control for these biases by being
aware of them and regularly reflecting on the risks they pose.

We have limited our research to IS development and operations. This lim-
itation follows from our belief that this is the biggest class of systems using
structured software development processes, such as agile software development.

280 F. Erich, C. Amrit, and M. Daneva

Our limitation to academic search engines hides a lot of potential sources
of state-of-the-art material on DevOps research and development. DevOps is
a concept born in the field, the primary venue for research and development
of the DevOps concept are professional conferences and blogs. But professional
conferences are hosted in native languages in countries all over the world, mak-
ing it hard to extract useful information about them. Also, getting a complete
overview of which authors have blogged about DevOps is nearly impossible. We
have decided to offer a complete study over a smaller population, rather than
offer a possibly incomplete study over a larger population. This paper still rep-
resents the state-of-the-art of academic DevOps research. We recommend future
research to focus on the gap between professional research and development
regarding DevOps and the academic research on the topic.

6 Conclusions

We now return to the main research question, which asked how DevOps influ-
ences IS development and operations performance. We have discovered that this
influence is generated by practices which are considered part of DevOps, as well
as how DevOps supports the development of web services and the process of
quality assurance. DevOps itself is both supported by structures and standards,
as well as allows the realization of structures and standards which are considered
beneficial for IS development and operations.

The arguments of DevOps proponents that development and operations could
benefit from more integration are quite compelling, yet lack very strong evidence.
We suggest further research is needed to discover whether DevOps actually in-
creases IS development and operations performance.

References

1. Bailey, K.: Typologies and Taxonomies: An Introduction to Classification Tech-
niques, 1st edn. SAGE Publications, Inc. (June 1994)

2. Erich, F., Amrit, C., Daneva, M.: Report: Devops literature review (October 2014),
http://www.utwente.nl/mb/iebis/staff/amrit/devopsreport.pdf

3. Humble, J., Molesky, J.: Why enterprises must adopt devops to enable continuous
delivery. Cutter IT Journal 24(8), 6–12 (2011)

4. Kitchenham, B.: Procedures for performing systematic reviews (2004)
5. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies

in software engineering. In: Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering, EASE 2008, pp. 68–77. British
Computer Society, Swinton (2008)

6. Webster, J., Watson, R.: Analyzing the past to prepare for the future: Writing a
literature review. MIS Quarterly, 26(2), xiii–xxiii (2002)

http://www.utwente.nl/mb/iebis/staff/amrit/devopsreport.pdf

Breathing Life into Situational Software

Engineering Methods

Masud Fazal-Baqaie, Christian Gerth, and Gregor Engels

University of Paderborn, Zukunftsmeile 1, 33102 Paderborn, Germany
{masudf,gerth,engels}@uni-paderborn.de

Abstract. Software engineering methods are used to prescribe and coor-
dinate the tasks necessary to plan, build, deliver, and maintain software.
There is a broad consensus that there is no one-size-fits-all method and
that, e.g., agile and plan-driven approaches have to be mixed sometimes,
based on the context of a project. Creating these so-called situational
methods and assuring that they cover all necessary details consistently
is a challenge. There is also the challenge for the project teams to fol-
low methods as prescribed by the method engineer. Our approach sup-
ports the creation of consistent situational methods from a repository
of pre-existing building blocks. Moreover, we present means to enact
these methods with standard BPEL/BPEL4People workflow engines, au-
tomating the coordination of tasks and providing guidance for them.

Keywords: Situational Method Engineering, Method Enactment,
BPEL4People, MESP.

1 Introduction

Special attention has been given lately to the need for methods that combine
plan-driven and agile philosophies [1] based on the project characteristics. For
example, in a previous paper, we described the trade-off between formality and
agility in eID projects [2]. Approaches for situational method engineering support
the creation of so-called situational methods based on the project context [3],
however workflow support to guide project members in following the method
is usually not available. Based on the initial idea of process programs [4] other
researchers proposed modeling languages expressive enough to execute methods.
However, approaches commonly do not support situational method engineering.
Instead methods have to be modelled from scratch.

The aim of our approach called method engineering with method services and
method patterns (MESP) is to support the creation of situational methods and
to enact these methods with a standard workflow engine, which coordinates the
tasks and provides guidance for the tasks of project members during enactment.
We support the novel notion of method patterns that describe context-specific
quality constraints, e.g., that tasks with specific characteristics have to be part
of the method [2]. In this paper, we focus on how methods are enacted with
standard BPEL/BPEL4People workflow engines.

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 281–284, 2014.
c© Springer International Publishing Switzerland 2014

282 M. Fazal-Baqaie, C. Gerth, and G. Engels

2 Overview of the MESP Approach

Figure 1 provides an overview of the different roles and tasks that are part of the
MESP approach. They are called meta-roles and meta-tasks to avoid ambiguity
regarding roles and tasks defined in a situational method:

The senior method engineer is responsible for defining method building blocks
based on existing software engineering methods and his project experience (1).
First, method services describe method content, e.g., a textual description of a
task to define a software architecture. Second, method patterns describe context-
specific quality constraints, e.g., that tasks with specific characteristics have to be
part of the method. Method patterns are used to guide project method engineers
during the creation of situational methods [2]. The senior method engineer also
associates services and patterns with situational factors (e.g. project risk or
team size) used to identify suitable elements during method assembly and is
responsible for the quality assurance of the method base (2).

Define Method Services +
Method Patterns

Enact Method

Senior
Method
Engineer

Project
Method
Engineer

Project
Team

1

Characterize
Project

ChC3 Identify Patterns
+ Services

dI4 Integrate Patterns +
Services to Method

nt
Ser
I

S
5

Assure Quality
of Method

A6

8

Assure Quality
of Method Base

2

Transform and
Deploy Method

er

D
7

Meta-Roles Meta-Tasks

Fig. 1. Overview of MESP meta-roles their meta-activities

The project method engineer is responsible for defining a situational method
with respect to a specific project. She characterizes a project based on the avail-
able situational factors (3) and uses this characterization to identify suitable
method services and method patterns from the method base (4). Then she as-
sembles chosen elements to a situational method (5). Once a method is assem-
bled, she is responsible for the quality assurance of the method (6), e.g., that no
data flow specification is missing and that there are no contradictions between
the control and data flow specification. In addition, the constraints imposed by
the method patterns used in the method need also to be fulfilled. These meta-
tasks of the project method engineer are carried out iteratively to allow for
stepwise refinement. When the method assembly is finished, the project method
engineer invokes the transformation and automatic deployment of the method
to the workflow engine (7). Here, she assigns individual project members to the
roles used in the method.

The project team can enact the method by interacting with the workflow
engine (8), once it is deployed. The workflow engine creates workflow tasks for
the responsible project members based on the process flow defined in the method
and presents task descriptions and runtime information about the current state
of the method instance.

Breathing Life into Situational Software Engineering Methods 283

3 Method Enactment and Transformation to BPEL

Figure 2 is showing an example situational method. It includes among other ele-
ments a phase “Elaboration Phase”. This phase contains an iteration called
“MonthlyIteration”, where first, a method service descriptor “HoldStandup-
Meeting” is invoked. Afterwards, concurrently “ImplementTheSolution” and
“RefineTheArchitecture” are invoked. Method service descriptors reference
method services, defined in the method base, which in turn reference tasks using
task descriptors. Tasks contain among other information a textual description.

In
ce

pt
io

n
Ph

as
e

Se
qu

en
ce

Ho
ld

St
an

du
pM

ee
tin

g

Im
pl

em
en

tT
he

So
lu

tio
n

Re
fin

eT
he

Ar
ch

ite
ct

ur
e

M
on

th
ly

Ite
ra

tio
n

Se
qu

en
ce

El
ab

or
at

io
n

Ph
as

e

+

Fig. 2. A situational method referencing the method service “Refine The Architecture”

When the method is deployed on the workflow server, team members can
log in to see their open workflow tasks according to their roles set up in the
system. Once a workflow task is selected, information about it is presented. This
description originates from the textual description of the task defined in the
method base. In addition, information about the current phase and iteration
is shown based on the method execution so far. Also the locations (URIs) of
the inputs for this workflow task are presented. Once the owner of the task is
finished, she enters the URI locations of the outputs she created, such that they
can be retrieved and used in subsequent workflow tasks.

As soon as the workflow task is finished, the workflow engine executes the
subsequent tasks based on the specified flow. According to the method shown in
Figure 2, the workflow inside the iteration is finished after “Refine the Architec-
ture”, assuming that the concurrently executed “Implement the Solution” was
also already performed. Based on our implementation of the concept iteration,
a workflow task is created at the end of each iteration. This workflow task is
basically a yes-or-no decision, whether another run of the iteration “Monthly-
Iteration” should follow or not. Let us assume that this workflow task finished
with a positive decision. In this case, the workflow engine would execute the
contents of the iteration again. According to Figure 2 the first task of the se-
quence is the task “Hold Standup Meeting”. A standup meeting is a short status
meeting of the whole project team defined in the method Scrum. The invocation
of this task creates a workflow task for the associated role.

284 M. Fazal-Baqaie, C. Gerth, and G. Engels

In order to enable the described enactment of situational methods, MESP
methods are transformed into BPEL4People processes. While, e.g., sequences of
MESP can be directly transformed into BPEL sequences, the transformation of
tasks descriptors is non-trivial and requires several BPEL activities: A task
descriptor is transformed into the invocation of a HumanTask (peopleActivity)
that will trigger the creation of a workflow task. To do this, the invocation pa-
rameter variable of this HumanTask has to be initialized, so that the right in-
formation is presented to the project member. First, a part of the invocation
parameter variable is assigned values from the Task that is referenced, e.g., its
name, its description and the associated role. Second, a part of the invocation
parameter variable is assigned values from the process, e.g., the current phase
and the current iteration. Third, a part of the invocation parameter variable is
assigned values of work product variables that store the locations of inputs.
After these assign activities the HumanTask can be invoked with the initial-
ized parameter variable. Afterwards, another assign activity saves the provided
output by the project member into a work product variable for that output. This
way it can be used as input by other workflow tasks.

4 Conclusions and Future Work

In this paper, we presented an overview of the MESP approach and illustrated
the transformation and enactment of situational methods. Our approach enables
the coordination of tasks during method enactment and incorporates the data
flow of input and output work products, which is often neglected. Currently,
we work on finishing the implementation of conditional control flow constructs
and improving the GUIs as part of a technical validation. Additionally, we are
improving our MESP approach in a project with an industrial partner1. We are
working on the definition of a method base in order to evaluate the approach with
first application examples. In future, we want to extend the modeling capabilities
to incorporate exceptions and exceptional flows.

References

1. Boehm, B.W., Turner, R.: Observations on Balancing Discipline and Agility. In:
Proc. of the Conf. on Agile Development (ADC 2003), pp. 32–39. IEEE Computer
Society, Los Alamitos (2003)

2. Fazal-Baqaie, M., Luckey, M., Engels, G.: Assembly-Based Method Engineering with
Method Patterns. In: Wagner, S., Lichter, H. (eds.) Proc. of the Software Engineering
2013. LNI, vol. 215, pp. 435–444. GI (2013)

3. Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art
Review. Journal of Universal Computer Science (J. UCS) 16(3), 424–478 (2010)

4. Osterweil, L.J.: Software processes are software too. In: Proc. of the 9th Int. Conf.
on Softw. Eng. (ICSE), pp. 2–13. IEEE Computer Society, Washington D.C. (1987)

1 http://s-lab.uni-paderborn.de/s-lab-software-quality-lab/

unsere-innovativen-projekte/aktuell/tasq.html

http://s-lab.uni-paderborn.de/s-lab-software-quality-lab/unsere-innovativen-projekte/aktuell/tasq.html
http://s-lab.uni-paderborn.de/s-lab-software-quality-lab/unsere-innovativen-projekte/aktuell/tasq.html

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 285–289, 2014.
© Springer International Publishing Switzerland 2014

On the Role of System Testing for Release Planning:
Industrial Experiences from Comparing Two Products

Michael Felderer1 and Armin Beer2

1 University of Innsbruck & QE LaB Business Services,
Innsbruck, Austria

michael.felderer@uibk.ac.at
2 BVA & Beer Test Consulting, Baden, Austria

armin.beer@bva.at

Abstract. In this paper, we highlight our experiences on the important role of
system testing for release planning. We do so by analyzing and comparing the
release planning in two products which are based on the same underlying
release planning process of a public health insurance institution in Austria.

1 Introduction and Industrial Context

Release planning (RP) is an important part of any type of incremental product
development [1]. Often, too much emphasis solely is put into functionality when
making release decisions, thereby neglecting system testing (ST) and related quality
aspects important for the success of the released product [2]. In this paper, we
therefore highlight our industrial experiences on the role of ST for RP based on the
analysis and comparison of the RP process of two similar products developed at a
public health insurance institution in Austria to motivate further research in this field.
The process of RP in the studied institution has five steps shown in Fig. 1.

Fig. 1. Release Planning Process of the Studies Institution

Step 2: Assignment of features to releases
Input: Scope of iterations/releases

Output: Features with requirements assignment to releases

Step 3: Estimation of effort and time of actual release
Input: Requirements with priority, release plan

Output: Project plan

Step 5: Decisions on the deployment of the next release
Input: Management reports

Step 1: Definition of baseline of iterations/releases
Input: Project definition

Output: Scope and number of iterations/releases

Step 4: Monitoring development and testing activities
Input: Project plan, test reports
Output: Management reports

Analyst

Project
Manager

Test
Manager

286 M. Felderer and A. Beer

Each product is developed in an iterative and incremental development process,
where each iteration contains several releases. The key stakeholders involved in these
are the analyst, project manager and test manager. The project manager is also
responsible for product management. In Step 1, the project manager and the analyst
specify the scope and effort of each iteration as well as the number of releases. The
definition of the baseline has to be altered in the course of a more detailed analysis in
Step 2. In Step 2, the analyst has to partition the features of the product which are
related to a bundle of requirements. It is considered that dependencies between the
different features have to be minimized to avoid redesign of precedent iterations. In
Step 3, the project manager and the test manager estimate the effort and duration of an
iteration taking the priority of the requirements and the risk of use case misbehavior
into account. The estimation is based on the experience of the project and test
managers and results in a concrete project plan for a release defining its development
and test schedule as well as resources. In Step 4, the development and testing
activities are monitored by the project and test manager based on the project plan and
test reports reflecting the ratio of test cases failed as well as new and closed defects. A
key issue in monitoring release plans is to assess the quality of a release and to
recommend which defects should be corrected in the next release or could be
postponed. These recommendations and the underlying test and defect data are
collected in management reports. Finally, in Step 5, decisions when and what to
deploy in the next release are made in change control board (CCB) meetings where
the project manager, the analyst and the test manager are involved. These decisions
take the management reports and the results of CCB meetings into account. Based on
the decision, the next release is estimated in Step 3 or the release process terminates if
the product is finally released.

The presented RP process is applied for the development and test of Product A and
Product B. The characteristics of these products are shown in Table 1.

Table 1. Characteristics of Products A and B

Characteristics Product A Product B

Area
Web application for refunding invoices of medical
care and managing these cases

Web application for accounting liabilities and
automatically issuing payment orders

Staff 43 23

Duration
3 years of development, operation started in
February 2014

2.5 years of development, operation started in
February 2014

Iterations 6 4

Size
~ 250 requirements, 45 use cases, 100 business
rules

~ 140 requirements, 65 use cases, 277 business
rules

Total effort 50 PY 12 PY

System test cases ~ 2.500 ~ 3.000

Max. effort of system
testing per iteration

40% of overall product effort 60% of overall product effort

2 Analysis and Comparison of Release Planning Processes

We first analyze specifics of the RP process of Products A and B with regard to system
testing on the basis of the institution’s RP process presented before.

 On the Role of System Testing for Release Planning 287

In Product A, two releases were in general planned per iteration. Dependencies
between features, which were implemented in different iterations, impeded the
development and testing in later iterations. The effort and the schedule of development
and ST of all iterations were calculated at the beginning of the project. However, bug
fixing and change requests influenced effort and allocation of resources significantly.
For instance, an unplanned bug fixing release or the implementation of change requests
increased the effort for development and ST to about 30% in a subsequent release and
delayed the deployment of an iteration up to 50%. The implementation of feature and
change requests was prioritized over bug fixing. Also requests of to add new
requirements, shortly before the development of a release was finished, harmed the
quality of the released product. The consequence were numerous bugs in the state
“new” and “re-opened” (for instance 227 in Rel. 1.6.3 of Product A). These bugs were
categorized as “enhancements” and their resolution postponed. For instance, in
Iteration 3 the number and severity of failures during system testing required a code
freeze and made a complete test cycle, regression tests included, mandatory. Another
issue was manual regression testing as well as the fact that effort and time to run tests
for the unplanned releases exceeded the effort and time estimated at the beginning of
the product. Release decisions were driven by the goal of the project manager to
balance the workload of the developers, without taking the release quality into account.
Bug fixing was shifted to later releases and new features were implemented instead.
Features closer to completion or a small number of defects of severity blocker or
critical were prioritized. An extra effort and time of executing added regression test
cycles in Iterations 5 and 6 could not be afforded. The situation was even worse,
because several external components and services with no integration testing
beforehand were added.

In Product B, the original RP with 4 iterations was updated in Iteration 1 and kept
until the end of the project. The system test cycles included regression testing and test
of bug fixes. The analyst focused on the testability of requirements and features. The
iterations are defined according to the business processes. The features are partitioned
into components, where no changes are expected, e.g. fundamentals of double-entry
bookkeeping, and where updates during the software life cycle are expected, e.g.
operating sequences. Components which are stable, important and risky are
implemented in the first place. The test manager calculated the effort and duration of
the releases to be tested according to an estimation procedure already in place in the
organization. A revision of the release plan was needed only once. The test results
documented in the test reports influenced release decisions in respect of the correction
of defects in the next release. In Product B, the value of early bug fixing was
appreciated by the stakeholders and automatic unit and interface testing using mock
objects was in place. Change requests shortly before the development of a release was
finished caused a tradeoff in quality. In Product B, a mix of test methods, the
simulation of external components, the good testability of requirements and the
automatic unit tests with the measurement of branch coverage fostered the good quality
of a release and enabled the decision when and what to release next.

Based on the analysis presented before, we compare the role of ST for RP in
Product A and B and highlight positive and negative influence factors. In both

288 M. Felderer and A. Beer

products, number and scope of iterations were planned. One iteration was generally
split into two releases. However, in Product B the release plan was rather stable,
whereas in Product A it was changed several times. The release plan could be kept
until the end of the development of Product B, mainly because bug fixing of critical
defects had a high priority. In general, in Product B the viewpoint of the analyst and
the test manager influenced release planning more than in Product A. The sequence of
releases, the number of executed test cases and the percentage of test cases failed is
shown in Table 2. In Product A, seven releases using the test process in place were
tested. Thereby, several test cases could not be executed, because functionality or bug
fixes were not implemented according to the release notes. For instance, the share of
failed test cases would rise up to about 40% in Release 6 of Product A. Six releases
had to be deployed after Release 7 (Iteration 5 and 6), one release every 3-5 days. The
aim of these releases was to fix the most critical bugs to keep the start of operating in
the organization by beginning of February 2014. Systematic regression testing was not
feasible any more leading to quality degradation. But in Product B, system testing and
regression testing could be performed regularly, due to a more realistic release
planning taking the availability of enough testing resources into account. The share of
the effort for ST was 60% for Product B (Iteration 4), compared to 40% for Product A
(Iteration 5). The ratio of all test cases failed throughout the development cycle related
to all test cases is 6% for Product B compared to 27% for Product A, despite the fact
that more tests were performed for Product B. For this product, the number of failed
test cases decreased significantly after Release 2, but stayed high for Product A.

Table 2. Results of System Testing of Products A and B per Release

TC
executed

% TC not
exec. %TC failed

TC
executed

% TC not
exec. %TC failed

Rel. 1 V01.02.00 154 8,50 52,60
V 0.1.1 V
0.1.2 166 13,54 12,05

Rel. 2 V01.02.01 16 31,25 V 0.2.4 675 16,97 20,59
Rel. 3 V01.03.00 79 58,23 V 0.3.0
Rel. 4 V01.03.01 354 57,91 V 0.3.1 1.414 4,26 7,00
Rel. 5 V01.03.02 169 44,38 V 0.4.0 508 75,63 2,17

Rel. 6

V01.04.00
not
testable V 0.4.1 1.846 0 4,28

Rel. 7

V01.04.00 -
hot fix not
testable V 0.4.2 1.921 0 2,19

Rel. 8 V01.04.01 1065 9,50 23,29 V 1.0 Nov.13
Rel. 9 V01.04.02 872 1,00 12,84
Rel. 10 V01.05.00 254 62,50 8,66

Rel. 11
V01.05.0
hf1 637 31,27 27,32

Rel. 12
V01.05.01
funct.test 886 1,00 21,67

Rel. 12

V01.05.01
regression
test 696 7,69 3,02

Rel.13
V01.06.00
funct.test 68 76,00 47,06

Rel.13

V01.06.00
regression
test 602 64,73 3,32
V 01.06.01 -
01.06.04
hot-fixes
V 1.0 Feb.14

Sum TCs
executed 5852 6530

Average 450 29 30,12 1088 18 8,05
Median 354 10 27 1414 9 6

Product B

Bug testing only, no regr. tests

Product A

 On the Role of System Testing for Release Planning 289

The key issues for a release decision in Product A were (1) the priority of the
implementation of a new function instead of bug fixing, and (2) a balanced workload
of development resources. The key issues for a release decision in Product B were (1)
test results and error rates, and (2) coverage of requirements and business rules.

3 Conclusion

In this paper, we presented the RP process of a public health insurance institution and
analyzed this process in two products. Experiences from our comparison of the RP
process in the two products indicate that it should take the availability of test resources,
adequate ST techniques, the viewpoint of the analyst and test manager as well as the
quality of a release into account to keep the planned number of releases and the
testability of a product. As such, this paper is relevant to product managers, project
managers, requirements engineers as well as test managers. In addition, we conclude
that additional research on the integration of RP and ST is needed. First, empirical
studies are required to provide evidence for our experiences. Then, further decision
support for RP is needed that takes testing into account. Finally, requirements
engineering and testing have to be aligned to support integration of testing into RP.

References

1. Ruhe, G.: Product release planning: methods, tools and applications. CRC Press (2010)
2. Felderer, M., Beer, A., Ho, J., Ruhe, G.: Industrial evaluation of the impact of quality-

driven release planning. In: ESEM 2014, p. 62 (2014)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 290–293, 2014.
© Springer International Publishing Switzerland 2014

A Process-Oriented Environment for the Execution
of Software Engineering Experiments

Marília Freire1,2, Gustavo Sizílio1, Edmilson Campos1,2,
Uirá Kulesza1, and Eduardo Aranha1

1 Federal University of Rio Grande do Norte, Natal-RN, Brasil
{marilia.freire,gustavo.sizilio,edmilsoncampos}@ppgsc.ufrn.br,

{uira,eduardoaranha}@dimap.ufrn.br
2 Federal Institute of Rio Grande do Norte, Natal-RN, Brasil

Abstract. Over the last decade, the software engineering community has been
discussing how to better support the planning, execution and analysis of con-
trolled experiments. There is a growing interesting in this topic because it is a
mean to meet empirical evidence facilitating the work of researchers. In this pa-
per, we present a process-oriented environment proposed to support the conduc-
tion of controlled experiments in software engineering. We describe the desired
requirements for such kind of experimental supporting environment and analyze
how our experimental environment addresses these requirements.

1 Introduction

Controlled experiments play an important role in science. However, the planning,
conduction and analysis of controlled experiments are, in general, work intensive,
time consuming and error prone [1] [2]. Besides the importance of experimentation to
the area and although there is an increased number of guidelines on the topic [3],
there are still a few supporting environments to the conduction of controlled experi-
ments [4]. Arisholm et al. [5] developed a web-based tool that supports management
of participants. Its weakness is the data collection and analysis, since it does not pro-
vide support to the analysis and interpretation stage. In addition, Travassos et al. [6]
provided an environment, called eSEE, with a set of facilities to allow geographically
distributed software engineers and researchers to accomplish and manage experimen-
tation processes, as well as scientific knowledge concerned with different study types
through the web. It has a prototype and an initial set of tools to populate the eSEE
infrastructure has being built.

The lack of supporting environments has hampered the running of controlled expe-
riments with professionals from industry using professional development tools [1],
and invalidated experiment results due to planning or conduction problems [7]. The
challenges are even greater when considering distributed experiment [8] and experi-
ment replication [9] or meta-analysis [10]. Some of the reasons that contributes to the
existing lack of supporting environments are (i) the absence of a conceptual model
that precisely represents the experimental planning and (ii) the necessity of an envi-
ronment customization according to the experiment procedure and design.

A Process-Oriented Environment for the Execution of Software Engineering Experiments 291

In this work, we present a process-oriented execution environment to help re-
searchers guiding the experiment participants during the planning, execution and
analysis of controlled experiments. It is based on the experiment formalization using a
domain-specific language and supports data collection, online execution monitoring,
data analysis, reporting and contributes for replication and packaging.

2 An Integrated Environment for the Execution of Software
Engineering Experiments

Our environment is part of a larger project that intends to provide a complete infra-
structure to support the conduction of controlled experiments in software engineering
(SE). In this context, this environment is grounded by a model-driven process-
oriented approach, which was presented in [11] [12]. The approach has two main
stages: (i) the definition and deployment of an experiment specification; and (ii) the
configuration and execution of the experiment.

The first stage of our approach is responsible to support the experiment definition
using a domain-specific language (Step 1), which is then used to produce workflow
models (Step 2). These workflows have to be deployed in a workflow engine in order
to provide the participants guidance during the experiment execution (Step 3).

The second stage represents the proposed environment, a web application powered
by a workflow engine. This stage provides the entire necessary configuration before
starting the experiment execution. Therefore, in order to execute an experiment, the
environment automatically distributes the treatments and configures the participants
(Step 4). Then, these workflows can be instantiated in order to be executed for each
participant. The workflows are executed in the web application responsible for guid-
ing (Step 5) and monitoring the participants during the experiment execution, includ-
ing the feedback gathering from the participants (Step 6).

The environment functionalities were developed in order to meet a set of require-
ments, which are listed and discussed below:

Experiment Formal Documentation – This requirement was addressed by the expe-
riment formalization in ExpDSL. The DSL provides a formal way to specify and doc-
ument an experiment.
Automatic Treatment Distribution – This requirement is partially supported in the
execution environment. It depends on the DoE selected to the experiment. Firstly, the
DSL provides an element responsible to define the statistical design of experiment
(DoE). The experimental design type in ExpDSL currently supports three types of
DoE: (i) completely randomized design (CRD); (ii) randomized complete block de-
sign (RCBD); and (iii) Latin square (LS). In case of a not supported type, the re-
searchers responsible for the experiment can distribute the treatments manually using
the application environment.
Participant Guiding – The workflows generated from the model-driven transforma-
tion (step 2) from the treatment process definition in ExpDSL (step 1) represent them-
selves the participant guidance. Each ExpDSL process activity is represented as a
workflows task in the workflow model generated and is instantiated as part of a

292 M. Freire et al.

web-form in the execution environment. The participants are then guided as the se-
quence of workflows tasks.
Data Collection - The workflows are responsible by these data collection using the
web forms generated for the execution environment (step 6). During the experiment
definition, the Artefact Element, for example, is responsible to define the output that
the participants have to produce during an activity of the experiment process. It is
essential in the data collection procedure to gather the participant output information.
Experiment Monitoring – The participants’ interactions as well as their generated
artefacts can be monitored by the researcher during the experiment execution (step 6)
in our execution environment. The online experiment monitoring also allows re-
searchers to take notes for the experiment and produce historical information.
Integrated Analysis – The environment allows experiment analysis through the inte-
gration with the R statistical tool. It is important to emphasize that additional
processing (or preparation) of the collected data set can be required. This includes, if
appropriate, data transformation, identification and potential removal of outliers, and
handling of missing values, as well as the discussion of dropouts. Our environment
currently provides support to the analysis of variance (ANOVA) for the three statis-
tical designs supported by ExpDSL: CRD, RCBD and Latin Square.
Report Generation – The reporting generated by the environment contains informa-
tion about the experiment execution and a summary of analysis results.
Gathering of feedback – The participants can be asked to answer feedback question-
naires when specified in the ExpDSL definition. In our environment, these question-
naires are presented as online web questionnaires before or after the execution.
In order to meet these requirements is needed to organize and formalize all the in-
volved information related to experiment conduction as well as providing a custo-
mized environment that can run and analyze different designs of experiments in SE.

3 Conclusions and Future Work

This paper described a process-oriented experimental environment that supports the
conduction of controlled experiments in software engineering. We presented the re-
quirements of the environment and how they were addressed. The preliminary
execution of some experiments in the proposed environment helped us to identify its
benefits and limitations in order to improve it. Our environment is integrated with a
model-driven approach [12] and a domain-specific language [13], which enable to
specify
and generate formal definition of experiments to be executed and analysed in
the environment. Additional details about the environment can be found at
http://goo.gl/0VnkKB.

As part of future work of this research, we are preparing two new studies to be
conducted: (i) a survey that will be performed and applied to experts from the expe-
rimental software engineering community to collect feedback about the current pro-
posal of the environment; and (ii) the usage of the environment to conduct controlled
experiments by external researchers in order to assessing the usability and perfor-
mance of the complete approach.

A Process-Oriented Environment for the Execution of Software Engineering Experiments 293

Acknowledgments. This study is supported by the program “Ciência sem
Fronteiras”, from Ministério da Ciência, Tecnologia e Inovação (MCTI) and
Ministério da Educação (MEC) of Brazil, through CNPq and CAPES. It is partially
supported by the National Institute of Science and Technology for Software Engineer-
ing (INES), funded by CNPq, grants 573964/2008-4 and 552645/2011-7, and by
FAPERN, CETENE and CAPES/PROAP.

References

[1] Sjøberg, D.I., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanovic, A., Koren,
E.F., Vokác, M.: Conducting Realistic Experiments in Software Engineering. In: ISESE
(2002)

[2] Hochstein, L., Nakamura, T., Shull, F., Zazworka, N., Basili, V.R., Zelkowitz, M.V.: An
Environment for Conducting Families of Software Engineering Experiments. Advances in
Computers 74, 175–200 (2008)

[3] Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting Experiments in Software
Engineering. In: Guide to Advanced Empirical Software Engineering. Springer
Science+Business Media (2008)

[4] Freire, M., Alencar, D., Campos, E., Medeiros, T., Aranha, E., Kulesza, U.: Automated
Support for Controlled Experiments in Software Engineering: A Systematic Review. In:
SEKE, Boston/USA (2013)

[5] Arisholm, E., Sjøberg, D.I.K., Carelius, G.J., Lindsjørn, Y.: A Web-based Support
Environment for Software Engineering Experiments. Nordic Journal of Computing 9(4),
231–247 (2002)

[6] Travassos, G.H., Santos, P.S.M., Mian, P.G., Dias Neto, A.C., Biolchini, J.: An
environment to support large scale experimentation in software engineering. In: 13th
IEEE ICECCS, pp. 193–202 (2008)

[7] Accioly, P.: Comparing Different Testing Strategies for Software Product Lines (Masters
Thesis) Federal University of Pernambuco, Recife, Brasil (2012)

[8] Budgen, D., Kitchenham, B., Charters, S., Gibbs, S., Pohthong, A., Keung, J., Brereton,
P.: Lessons from Conducting a Distributed Quasi-experiment. In: SEKE (2013)

[9] Solari, M.: Identifying Experimental Incidents in Software Engineering Replications. In:
SEKE (2013)

[10] Ciolkowski, M.: An Approach for Quantitative Aggregation of Evidence from Controlled
Experiments in Software Engineering (PHD Thesis) Kaiserslautern (2013)

[11] Freire, M., Accioly, P., Sizílio, G., Campos Neto, E., Kulesza, U., Aranha, E., Borba, P.:
A Model-Driven Approach to Specifying and Monitoring Controlled Experiments in
Software Engineering. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.)
PROFES 2013. LNCS, vol. 7983, pp. 65–79. Springer, Heidelberg (2013)

[12] Freire, M.A.: A Model-Driven Approach to Formalize and Support Controlled
Experiments in Software Engineering. In: IDOESE, Baltimore (2013)

[13] Freire, M., Kulesza, U., Aranha, E., Jedlitschka, A., Campos, E., Acuña, S., Gómez, M.:
An Empirical Study to Evaluate a Domain Specific Language for Formalizing Software
Engineering Experiments. In: SEKE, Vancouver (2014)

Predicting Risky Clones Based

on Machine Learning

Ayaka Imazato1, Keisuke Hotta1, Yoshiki Higo1, and Shinji Kusumoto1

Graduate School of Information Science and Technology, Osaka University,
1-5, Yamadaoka, Suita, Osaka, Japan,

{i-ayaka,k-hotta,higo,kusumoto}@ist.osaka-u.ac.jp

Abstract. Code clones are similar or identical code fragments to one
another in source code. It is said that code clones decrease maintainabil-
ity of software. On the other hand, all the code clones are not necessarily
harmful to software. In this study, we propose a method to identify risky
code clones out of all the code clones in source code by using machine
learning techniques. Our proposed method learns information about fea-
tures of code clones which existed in the past and whether they were risky
or not. Then, based on these information, we identify risky code clones.
As a result of a pilot study, we confirmed that the proposed method was
able to predict risky code clones with high accuracy.

1 Introduction

It is said that code clones (hereafter, clone) have bad effects on maintainabil-
ity of software. For example, when one code fragment is modified, other code
fragments that are similar or identical to it also require the same modifications
frequently [2]. When multiple code fragments that are similar to one another
require similar modifications, there is a possibility of overlooking some of the
code fragments that should be modified. If overlooking happens, bugs might oc-
cur in the overlooked location. Hence, clones could decrease maintainability of
software [1]. On the other hand, all the clones are not necessarily risky. For ex-
ample, clones are harmless to maintainability of software if they have never been
modified since they had appeared. Moreover, it is not realistic that developers
manage all the clones because there are a huge number of clones.

It is necessary to take care of only risky clones out of all the clones in order
to manage clones efficiently. In this study, we propose a method to identify
risky clones out of all the clones by using machine learning (hereafter, ML). In
our proposed method, we analyze development histories of software to obtain
information about features of clones which existed in the past and whether they
caused bugs or not. Then, based on these information, we construct models to
predict risks of clones, and identify risky clones out of all the clones in current
source code with the models. We have implemented our proposed method, and
conducted a pilot study to evaluate the accuracy of predictions with our proposed
method. As a result, we confirmed that the proposed method was able to predict
risky clones with high accuracy.

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 294–297, 2014.
c© Springer International Publishing Switzerland 2014

Predicting Risky Clones Based on Machine Learning 295

2 Background and Related Work

All the clones are not necessarily risky. Hence, it is necessary to identify only
risky clones in order to manage clones efficiently. The authors thought that it
might be possible to predict risky clones with ML. ML is a technique to predict
or identify the characteristics of unknown data by learning existing data. Several
research uses ML to predict clones that should be taken care of.

Yang et al. assume that judging whether a clone is useful or not varies from
user to user [4]. They proposed a method to identify useful clones for each user
with ML. Wang et al. proposed a method to predict risks of the clones when
clones are generated by copy and paste operation [3].

In Yang’s proposed method, users have to classify clones manually beforehand.
Wang’s method works only under the limited situations. On the other hand, our
proposed method does not need any advance preparations by users, and can
predict risks of arbitrary clones.

3 Proposed Method

We propose a method to predict risks of clones by using ML. ML learns exist-
ing data, and predict or identify the characteristics of unknown data based on
learned information. In ML, data for learning are called training data, and
a model that is constructed by learning training data to predict characteristics
of unknown data is called learning model. Our method learns information of
clone set (group of code fragments that are similar to one another) as training
data, and constructs a learning model to predict risks of clone sets. Also, our
method intends to identify clone sets that will cause bugs in the future. There-
fore, we define that clone sets which will cause bugs in the future are risky, and
otherwise not risky. Our method takes the development history of the target
software as its input, and provides a learning model to predict risky clone sets
as its output. The proposed method consists of the following four phases.

1. First, we detect all the clone sets that were generated during past devel-
opment process by analyzing the development history. Then, for each de-
tected clone set, we obtain its evolutional data since it was generated. The
evolutional data of clone set is typically called genealogy of clone set
(genealogy). Fig.1 illustrates an example of it.

2. Then, for each genealogy, we judge whether it was risky or not. We regard
a given genealogy as risky if it had undergone one or more bug fixes during
its evolution. For example, the genealogy in Fig.1 is judged as risky because
there was a bug fix between revision r+1 and r+2. Note that we get infor-
mation of bug fixes through commit messages. We regard the modifications
at the commit as bug fix if the commit message includes any words that
imply to fix bugs such as bug fix.

3. After judging risks of all the genealogies, our method extracts training data
from each genealogy. In our method, we extract the clone sets at the start

296 A. Imazato et al.

Fig. 1. An Example of a Genealogy

(a) J48 (b) SVM (c) BayesNet

Fig. 2. Result

revision of each genealogy as training data. For the genealogy in Fig.1, the
clone set at revision r is extracted as training data. Subsequently, we judge
risks of clone sets extracted as training data. In our method, training data
belonging to risky genealogies are considered risky, and training data be-
longing to not risky genealogies are considered not risky. At the same time,
we investigate the status of training data. The status of training data is,
for example, the number of the elements that compose the clone set, the
similarity between the elements, and so on. In this paper, we call such values
and parameters that describe the status of clone set feature value. Our
method uses 30 kinds of feature values in total.

4. Finally, for each clone set extracted as training data, we learn its feature
values and information about whether it is risky or not together to construct
a learning model. Our method predicts risk of a given clone set when users
give feature values of it to the constructed learning model.

4 Pilot Study

We have conducted a pilot study with an open source project jEdit (the number
of target revision is 5,292, and the development period is about 11 years) to
evaluate our method. As described in the previous section, we detected all the
genealogies and extracted their first clone sets from the jEdit project. We call
the set of the clone sets data set. Note that the data set consists of 1,695 risky
clone sets, and 2,563 not risky clone sets. This pilot study adopts the cross
validation. The cross validation divides the data set into k blocks, and evaluates
the accuracy of prediction by using these blocks. Note that the number of clone
sets in each block is almost the same. In the cross validation, we use k − 1
blocks as training data, and the remaining one block as test data. Concretely,

Predicting Risky Clones Based on Machine Learning 297

we construct a learning model by learning training data. Then, we adopt the
learning model to test data and measure the accuracy. This process is repeated
k times, with each of the k blocks used exactly once as test data. The average
of k results is the entire accuracy. We set k = 10 in this pilot study. This pilot
study uses two indicators below as measure for evaluation.

Precision: the rate of risky clone sets in clone sets that are predicted as risky
by the learning model

Recall: the rate of clone sets that are correctly predicted as risky by the learning
model in all the risky clone sets

Also, we use three algorithms (J48, BayesNet(Bayesian Network), SVM(Support
Vector Machine)) to construct learning models, and evaluate each learning model.
Fig.2 shows the results. As shown in this figure, the proposed method can pre-
dict risky clones with high accuracy, 83–95% Precision and 83–90% Recall. The
accuracy of J48 is very high, both Precision and Recall are almost 90%. For
SVM, Precision is the highest among the three algorithms, 95%, but Recall is
the lowest. For BayesNet, on the contrary, Precision is lower than other algo-
rithms, but Recall is the highest. The result of the pilot study showed that the
proposed method was able to predict risky clones with high accuracy.

5 Conclusions

In this study, we proposed a method to identify risky clones out of all the clones
in source code by using machine learning. As a result of a pilot study, we con-
firmed that the proposed method was able to predict risky clones with 83–95%
Precision and 83–90%Recall. However, at present, our proposed method cannot
rank specified risky clones, which is our future work.

Acknowledgment. This work was supported by MEXT/JSPS KAKENHI
24680002 and 24650011.

References

1. Higo, Y., Kusumoto, S.: How Often Do Unintended Inconsistencies Happen? De-
riving Modification Patterns and Detecting Overlooked Code Fragments. In: ICSM,
pp. 222–231 (September 2012)

2. Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An Empirical Study of Code Clone
Genealogies. FSE 30(5), 187–196 (2005)

3. Wang, X., Dang, Y., Zhang, L., Zhang, D., Lan, E., Mei, H.: Can I Clone This Piece
of Code Here? In: ASE, pp. 170–179 (September 2012)

4. Yang, J., Hotta, K., Higo, Y., Igaki, H., Kusumoto, S.: Classification model for code
clones based on machine learning. ESE, 1–31 (June 2014)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 298–301, 2014.
© Springer International Publishing Switzerland 2014

Maximizing Product Value: Continuous Maintenance

Tommi Mikkonen and Kari Systä

Tampere University of Technology
Korkeakoulunkatu 1, FI-33720 Tampere, Finland
{tommi.mikkonen,kari.systa}@tut.fi

Abstract. A frequent software related claim is that the initial development costs
are 30% and that 70% more is needed in maintenance. However we claim that
in today’s software industry, software maintenance and the development of new
features are intimately tangled, and it is impossible to separate them in a
reliable fashion. We demonstrate this by showing how some modern software
engineering approaches address maintenance and the development of new
features, and we describe a concept of continuous maintenance to manage
frequent changes both in software and business.

Keywords: Maintenance, agile development, development methodologies.

1 Introduction

A frequent software related claim is that the initial development costs are around 30%
and that 70% more is needed in maintenance. These figures, which refer to software
development expenditure for 1977 in the USA, are often still used as a rule of thumb
[6]. The comment

"Thank you for your improvement ideas, thus Symbian is in maintenance mode and
no new features will be implement without extremely good reason (business case).”

at Nokia's bug tracker1 inspired the authors to consider what is the investment that is
still being made in the Symbian platform by its stakeholders, and what percentage
will that be in the total cost of building the platform in the first place in the light of
our experiences and earlier claims.

In this paper, we address the resulting ideas regarding software maintenance. The
main claims we make are that 1) maintenance is intimately built in agile development
methodologies; 2) it is difficult to define beyond all doubt what is maintenance and
what is new development; 3) the way of working in modern software development is
largely similar what we used to understand as maintenance. Consequently, we claim
that only about 10% is truly original work and up to 90% is maintenance, leading us
to conclude that today’s software development is about continuous maintenance.

Jones in [5] also claims that maintenance is an ambiguous term but he considers
enhancements (new features) to be substantially different from maintenance (bug

1 http://mynokiablog.com/2012/10/18/symbian-in-maintenance-mode-
or-crossed-wires/

 Maximizing Product Value: Continuous Maintenance 299

fixing) and suggests that development of new and maintenance should be separated.
We believe that the reasoning of Jones (Table 1 in [5]) might apply to traditional
waterfall style development, but in this paper we claim the opposite: in modern
software engineering new features and bug fixes should managed together and in a
similar, uniform fashion.

2 Defining Maintenance

Like development, maintenance of software has an abstract nature. Maintenance is
commonly considered to include all work on the software after it has been taken into
use for the first time. Therefore, actions to be taken in maintenance phase are many.
Bugs repeatedly require fixing. Reacting to external changes, such as availability of a
certain hardware element, can lead to wide spectrum of changes. Improving
performance, battery life, or network throughput are common reasons for changes.
New needs are frequently discovered, which require changes or totally new code.

The IEEE-ISO Guide to the SWEBOOK [1] is based on standard ISO/IEC 14764
[4] and defines the following activities as a part of maintenance:

1. Program understanding: activities needed to obtain a general knowledge of
what a software product does and how the parts work together.

2. Transition: a controlled and coordinated sequence of activities during which
software is transferred progressively from the developer to the maintainer.

3. Modification request acceptance/rejection: modifications requesting work
beyond a certain size/effort/complexity may be rejected by maintainers and
rerouted to a developer.

4. Maintenance help desk: an end-user and maintenance coordinated support
function that triggers the assessment, prioritization, and cost estimation of
modification requests.

5. Impact analysis: a technique to identify areas impacted by a change.
6. Maintenance service-Level agreements (SLAs) and maintenance licenses and

contracts: contractual agreements that describe the services and quality
objectives

3 Maintenance in Modern Software Development Models

Scrum. Scrum is a simple, iterative framework for project management [8]. In Scrum,
incoming requirements are stored in product backlog. Collection of product backlog
items are selected for implementation within fixed-length iterations called sprints.
Each sprint results in a complete, robust system that can at least in principle be
delivered to customers. It is important to note that prioritization and selection of the
items for a sprint is based on value - only items with enough value will be considered.
Maintenance related activities in Scrum. The only way to introduce a change –
regardless of its complexity and motivation – is to include it in the product backlog.
This offers two interpretations for maintenance related activities: 1) every sprint
improves the original system, so everything that will be done is in fact maintenance;
2) each sprint creates a new, improved system, and there is no need for maintenance

300 T. Mikkonen and K. Systä

as a special activity. Still, it is not uncommon to perform special maintenance actions
on already installed customer systems outside sprints, especially in critical situations.

Lean Startup. In Lean Startup [7] Minimum Viable Product (MVP) is a key concept.
The goal is to identify the most valuable features by iteratively experimenting the
market. The goal of iterations is to learn what features customers are ready to pay for,
and which are not interesting. While the lean startup approach defines no particular
process or tools fot software development, agile development approaches are assumed
to minimize the time from a concept to a prototype that can be experimented with.

Maintenance related activities in Lean Startup. The target of the Lean Startup is
iterative improvement of software and business direction together. New features are
rapidly introduced, and those that fail are rapidly removed - in essence maintenance.
Due to the rapid changes in the feature set, there is a high risk of technical debt.

DevOps. DevOps stresses communication, collaboration, and integration between
software developers and IT professionals running the information systems [2]. A key
target is to enable rapid development and utilization of the software. To reach this
target continuous deployment and/or continuous delivery [3] are used. Moreover, in
order to gain benefits from the capability to release rapidly requires that also business
goals are defined in a clear and achievable fashion. Technical requirements for
implementing DevOps include release management for and standardized development
and product environments, as well as a high degree of automation.

Maintenance related activities in DevOps. In many cases, maintenance is split to
maintenance of the software applications (performed by development team) and
maintenance of the operations (performed by IT operations). In the DevOps approach
the maintenance challenge is shared by development and operation. In essence this
means that all changes to the running system, be it new development or an operational
modification, are executed similarly.

4 Discussion

In the above examples, implementation of new features (or change) is based on
business value compared to the associated cost, similarly to what has been the
traditional goal of maintenance. Regardless if the action is “development of new” or
“maintenance” in traditional terminology, the decision and development processes
are same, and in agile approaches one must embrace change and be prepared to deal
with it with minimal extra trouble. Agile approaches also provide control to changes
and interrupts change request cause to the process. Agile is thus about bringing
structure to maintenance to manage ongoing activities, value-based decisions and
feedback mechanisms.

The discussion above was given from point of view of the developer organization,
but these changes have implications to the business and customer organization, too.
Firstly, is that there should not be any borderline between implementation and
maintenance. New products are based on older ones, i.e., source code of the older
product is used as a platform for the new. Thus the implementation work of a new

 Maximizing Product Value: Continuous Maintenance 301

product resembles maintenance. The agile way of working amplifies this
phenomenon, and continuous deployment makes process of business decisions unified
with SW engineering process. Secondly, many customers still think that they first
make a contract to buy new SW system, wait until it is ready, and then budget money
for the maintenance. However, the best way is to develop a useful system is to
participate in the project and give constant feedback. This means that both developers
and customers are in the mode of continuous maintenance – and the first main
borderline is the date when software is in operational use for the first time.

For the maintenance activities discussed in Section 2, the model of Continuous
Maintenance means the following modifications to the standard definition:

1. Program understanding: as the same team(s) is responsible for both new
development and maintenance, they should already know the code.

2. Transition: no transition is needed before the software is considered as too
old for new features (as in the case of Symbian platform).

3. Modification request acceptance/rejection: done together with development
decision, using customer input and value for prioritization.

4. Maintenance help desk: only one interface towards the customer.
5. Impact analysis: easier and similar to analysis of all changes and additions;
6. Maintenance Service-Level Agreements (SLAs) and maintenance licenses

and contracts: DevOps type of operation and maintenance means that
maintenance is put under the same contract.

To return to “maintenance mode” as indicated in Nokia's bug tracker mentioned
earlier, the statement can only be taken as a point where the final actions to keep
software alive after any active development have stopped, and no effort is made to
avoid declining quality. Such event will be followed by the rampdown of the
supporting organization. At this point, the cost is only a fraction of what was invested
before, no matter whether classical or modern development methodology is used.

References

[1] Bourque, P., Fairley, R.E. (eds.): SWEBOOK, Guide to the Software Engineering Body of
Knowledge, Version 3.0. IEEE Computer Society (2014)

[2] Debois, P.: Devops: A software revolution in the making. Cutter IT Journal 24(8) (August
2011)

[3] Humble, J., Farley, D.: Continuous delivery: reliable software releases through build, test,
and deployment automation. Pearson Education (July 27, 2010)

[4] ISO/IEC 14764: Software Engineering, Software Life Cycle, Processes, Software
Maintenance (2006)

[5] Jones, C.: Geriatric Issues of Aging SoftwareJones. CrossTalk - The Journal of Defense
Software Engineering, pp. 4–8 (December 2007),
http://www.compaid.com/caiinternet/ezine/
capersjones-maintenance.pdf

[6] Lehman, M.M.: On Understanding Laws, Evolution, and Conservation in the Large-
Program Life Cycle. Journal of Systems and Software 1, 213–221 (1980)

[7] Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Publishing (2011)

[8] Schwaber, K., Beedle, M.: Agile Development with Scrum. Prentice-Hall (2001)

Artefact-Based Requirements Engineering

Improvement: Learning to Walk in Practice

Daniel Méndez Fernández

Technische Universität München, Germany
http://www4.in.tum.de/~mendezfe

Abstract. Requirements engineering process improvement (REPI) has
gained much attention in research and practice. Most REPI approaches
are of solution-driven and activity-based nature. They focus on the as-
sessment of company-specific RE reference models against an external
norm of best practices, and they propagate an improvement by fore-
casting the adaptation of the processes and methods in the RE refer-
ence model towards that norm. In recent years, we could develop a first
problem-driven RE improvement approach that supports an improve-
ment against individual goals and problems of a company putting pri-
mary attention to the quality of the RE artefacts (named ArtREPI). In
this short paper, we briefly illustrate our resulting approach and report
on our initial experiences from ongoing empirical evaluations in practice.
We conclude with a summary of planned next steps.

Keywords: Requirements Engineering, Artefact Orientation, Software
Process Improvement, Case Study Research.

1 Introduction

Requirements engineering (RE) constitutes an important success factor for soft-
ware development projects. Its interdisciplinary nature, the uncertainty, and the
complexity in the process, however, make the discipline hard to investigate and
even harder to improve [1]. For such an improvement, process engineers have
to decide whether to opt for a problem-driven or for a solution-driven improve-
ment [2]. In a solution-driven improvement, the engineers assess and adapt their
RE reference model, which captures company-specific RE practices and arte-
facts, against an external norm of best practices. The latter is meant to lead to
a high quality RE based on universal, external goals (see, e.g. CMMI for RE [3]).
Whereas solution-driven improvement approaches might thus serve the purpose
to achieve externally predefined goals (e.g. as part of a certification), they do not
necessarily consider company-specific goals that dictate the notion of RE qual-
ity within a particular context and, thus, result in an RE reference model that
might alien to the organisational culture. A notion of RE quality where individ-
ual company-specific goals dictate the improvement is taken by problem-driven
approaches. Besides the principle of conducting the improvement, the paradigm
in which the targeted RE reference model is structured (and, thus, improved)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 302–305, 2014.
c© Springer International Publishing Switzerland 2014

http://www4.in.tum.de/~mendezfe

Artefact-Based Requirements Engineering Improvement 303

plays an important role, too. A reference model can either be activity-based or it
can be artefact-based. An activity-based improvement approach focuses on im-
proving the quality of the RE activities (practices) while an artefact-based one
puts focus on improving the quality of the RE artefacts.

In a recent systematic mapping study [4], we revealed that the high number
of available RE improvement approaches still remains solution-driven. They fo-
cus on assessments and benchmarks of a company-specific RE based on external
activity-centric norms of best practices. As the notion of RE quality is rela-
tive to its context [5], those approaches encounter problems in practice [6] and
are, thus, often rejected by practitioners [1]. In response to this shortcoming,
we elaborated concepts of an artefact-based and problem-driven RE improve-
ment. In [6], we presented how we inferred its basic concepts from selected REPI
projects we conducted in practice. Since then, we extended our concepts to a
holistic tool-supported and seamless approach. We call our approach ArtREPI.
With ArtREPI, we could make first contributions and experiences to support a
problem-driven and artefact-based RE improvement [6], but we still have little
empirical evidence on the benefits and limitations. In this paper, we therefore
provide an overview of ArtREPI and report on experiences resulting from ongo-
ing evaluations. The purpose is to support the dissemination and evaluation.

2 ArtREPI in a Nutshell

Figure 1 shows the simplified structure of ArtREPI. We distinguish two views
on the notion of RE quality: an external one (lower part of the figure) and one
where the notion of quality is relative to its socio-economic context (upper part
of the figure). The external context comprehends external norms of best practices
and is not key to solution-driven improvement approaches, but we postulate its
importance also to a problem-driven improvement as technology transfer accord-
ing to context-specific goals is an important facet. The socio-economic context
comprehends a set of disciplines that aim at managing software processes and
changes therein. A change is performed as part of an RE process improvement
project which is in scope of the (cyclic) ArtREPI phases. During the prepara-
tion phase, we agree on the general improvement plan, define the goals, and
infer a set of metrics and measurements which serve to evaluate the efficacy of
an improvement. During the problem analysis, we create an artefact model that
reflects the current practice in an organisation. We call in practitioners to vali-
date the as-is model and identify potential problems and candidates for an im-
provement. The improvement design is concerned with the actual improvement
where we establish a model candidate and a first prototypical implementation
(e.g. modelling tools to create the RE artefacts). The improvement evaluation
and transfer preparation finally comprehends the evaluation of the RE model in
realistic environments provided by pilot projects, before preparing its release.
The full ArtREPI model including its (EPF) process implementation, document
templates, and evaluation instruments can be taken from our online sources [7].

304 D. Méndez Fernández

Fig. 1. ArtREPI in a nutshell

3 Ongoing Evaluations and Next Steps

To effectively evaluate our approach, we implemented the process using the EPF
Composer, and we made all models and evaluation instruments publicly avail-
able [7]. This supports the dissemination, its (technical) validation, and its
evaluation in the long run. As an initial evaluation, we applied ArtREPI in two
socio-economic contexts via a series of (technical) action research workshops fol-
lowed by a rating by process engineers and project participants. Process engineers
rated the actual approach and project participants rated the improvement out-
come after applying it in a series of pilot projects as only they could decide to
which extent the improvement outcome eventually achieves their improvement
goals. The instruments can be found in our online material. As cases served the
companies Wacker Chemie, a German company and works in the chemical busi-
ness, and SupplyOn AG, a company that works as a software as a service provider.
Of particular interest was to know what general benefits and limitations we can
expect when applying ArtREPI in a socio-economic context and whether our ap-
proach can be used by others if we are not involved at all. For this reason, we
conducted the second case study as an independent replication of the first.

Our results indicate, so far, that ArtREPI is well suited to cover the needs of
a structured problem-driven improvement while supporting knowledge transfer.
The results from pilot project further suggest that the improvement eventu-
ally achieved the improvement goals indicating to the problem-driven nature
of ArtREPI. Out of scope, however, where long-term investigations. A detailed
analysis of our case studies and a longitudinal study are in scope of future work.

Artefact-Based Requirements Engineering Improvement 305

We see the biggest benefits of case studies, however, not in providing evidence
on what works, but in revealing limitations and eventually fail conditions for an
ArtREPI. The limitations include, inter alia, that we, as researchers involved in
the development of ArtREPI, seemed to lower the efficiency and effectivity of
an improvement due to long preparation phases to explore the domain and the
terminology used. Our initial assumption that the success of ArtREPI strongly
depends on us conducting the improvement thereby seems to be wrong.

Also, there are a plethora of subjective (social and political) factors impor-
tant to the success of an RE improvement of which only some might be tackled
by methodological aspects; for instance, by involving project participants early
in the improvement process to mitigate a missing organisational willingness to
change. However, many factors might not be tackled by an improvement ap-
proach, nor by an RE reference model that, by nature, abstracts from those
aspects important to RE, such as desires, beliefs, experiences, and expectations.

To elaborate to what extent the application of an artefact-based and problem-
driven RE improvement eventually leads to an improvement, and how to measure
the success of an improvement, we therefore need to:

1. increase our understanding on the variables as there are many facets that
we did not measure, that are not measurable at all, or that do not depend
at all on the chosen process model (see also [5] for richer discussions). This
also supports conducting longitudinal studies.

2. further scaling up to practice to come close to a generalisation.

We support the latter as we made all our material publicly accessible [7], but
we need to take new perspectives and conduct further independent case study
replications. We therefore encourage researchers and practitioners to join us to
fully understand the broad spectrum of possibilities and limitations in ArtREPI.

References

1. Méndez Fernández, D., Wagner, S.: Naming the Pain in Requirments Enginering: A
Design for a global Family of Surveys and First Results from Germany. IST (2014)

2. Pettersson, F., Ivarsson, M., Gorschek, T., Öhman, P.: A practitioner’s Guide to
light weight Software Process Assessment and Improvement Planning. JSS (2008)

3. Beecham, S., Hall, T., Rainer, A.: Defining a requirements process improvement
model. Software Quality Control 13 (2005)

4. Méndez Fernández, D., Ognawala, S., Wagner, S., Daneva, M.: Where Do We Stand
in Requirements Engineerign Improvement Today? First Results from a Mapping
Study. In: ESEM 2014 (2014)

5. Méndez Fernández, D., Mund, J., Femmer, H., Vetrò, A.: Quest for Requirements
Engineering Oracles: Dependent Variables and Measurements for (good) RE. In:
EASE (2014)

6. Méndez Fernández, D., Wieringa, R.: Improving requirements engineering by arte-
fact orientation. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.)
PROFES 2013. LNCS, vol. 7983, pp. 108–122. Springer, Heidelberg (2013)

7. Méndez Fernández, D.: ArtREPI Online Resources (2014),
http://www4.in.tum.de/~mendezfe/openspace.shtml

http://www4.in.tum.de/~mendezfe/openspace.shtml

Security and Privacy Behavior Definition

for Behavior Driven Development

Takao Okubo1, Yoshio Kakizaki2, Takanori Kobashi3, Hironori Washizaki3,
Shinpei Ogata4, Haruhiko Kaiya5, and Nobukazu Yoshioka6

1 Institute of Information Security, 2-14-1, Tsuruyamachi, Kanagawa-ku,
Yokohama, Japan

2 School of Science and Technology for Future Life, Tokyo Denki University, 5,
Senjuasahimachi, Adachi-ku, Japan

3 Computer Science and Engineer Department, Waseda University, 1-104
Totsukamachi, Shinjuku-ku, Tokyo, Japan

4 Shinshu University, 4-17-1, Wakasato, Nagano City, Japan 380-8553
5 Kanagawa University, 2946 Tsuchiya, Hiratsuka-shi, Kanagawa-ken, Japan

6 GRACE Center, National Institute of Informatics / SOKENDAI,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Abstract. There is an issue when security measures are implemented
and tested while using agile software development techniques such as
Behavior Driven Development (BDD). We need to define the necessary
levels of security and the privacy behaviors and acceptance criteria for
the BDD. A method for defining the acceptance criteria (BehaveSafe)
by creating a threat and countermeasure graph called theT&C graph is
proposed in this paper. We have estimated the efficiency of our method
with a web based system.

1 Introduction

Agile software development techniques such as the spiral and incremental types
of development have been popular for developing small applications such as web
applications. The threat analysis in the design phase of this type of develop-
ment techniques requires designing detailed specifications such as data flow dia-
grams [1] and activity diagrams [3]. However, with agile software development,
developers do not produce many design specification documents.

We put the following research questions.

RQ1: Is there any threat analysis method suitable for agile development?
RQ2: What kind of security testing is suitable for agile development?
RQ3: How to create test cases for such testing?
RQ4: Is the testing method sufficient for each release?

We propose a method for defining the acceptance criteria by creating a threat
and countermeasure graph called theT&C graph and specifying the method for
the security behavior BehaveSafe by using an attack scenario defined by the
threats in the T&C graph relation to answer to these questions.

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 306–309, 2014.
c© Springer International Publishing Switzerland 2014

Security and Privacy Behavior Definition for Behavior Driven Development 307

One of our contributions is that the proposed T&C graph makes use of the
proper implementation of security countermeasures when using an iterative and
incremental development technique. The countermeasure related to the architec-
tural choice for each iteration is specified in the T&C graph. Another contribution
is that the developers or testers can verify the security level of the countermea-
sures they implemented by using the acceptance criteria generated by using the
attackers’ attack scenarios.

2 Threat Analysis and Behavior Specification

For BDD, we need to identify and define the specifications for the security and
privacy functions. We propose a process with security and privacy requirements
analysis and threat and countermeasure analysis. We use a conventional misuse
case [4] approach for the former analysis and our analysis method called T&C
graph for the latter analysis to answer RQ1. Moreover, for specifying the behav-
iors and acceptance criteria for security countermeasures, we propose a novel
behavior definition method called BehaveSafe to answer RQ2.

2.1 Requirements Analysis

In this step, the analysts should identify any threats and then specify the security
(countermeasure) requirements that mitigate these threats. The analysts can
use the misuse case or the MASG approach [2] for this analysis. The threats
decomposition or detailed security design specification should not be done in
this step. They are issues for the next step.

2.2 T&C Graph

Threat and Countermeasure graph (T&C graph) provides security countermea-
sure decomposition in addition to the threat decomposition like a threat tree [1].
Fig. 1 represents the metamodel of the T&C graph. Each threat has multiple
children who are actually decomposed attack methods or conditions. The threats
are linked to multiple countermeasures, which means the threats can be miti-
gated with countermeasures linked to them.

The relation links between the parents and children have ”and” / ”or” values.
”And” means that in order to achieve the parent threat (countermeasure), all the
children linked with the ”and” value are required. Otherwise, the children with
the ”or” value are independent from the other children. Each relation also has
the ”architecture” property value that represents the architecture specification
that the children require. The ”scenario” property of a threat and the ”behavior”
property are explained in the next section.

The proposed T&C graph makes a proper implementation of the security
countermeasures using iterative and incremental development for each iteration
or sprint, and the countermeasure related to the architecture choice is specified
by the ”architecture” property of the relation in the T&C graph.

308 T. Okubo et al.

- scenario : Scenario

Threat

- parent

- child

*

*

Relation

rel

- and/or : int
- architecture : String

Relation

- behavior : Behavior

Countermeasure

** - child

- parent

*
*

rel

Fig. 1. Metamodel of T&C graph

2.3 BehaveSafe

The security countermeasures contain two types of behaviors. One is a functional
behavior and the other is a non-functional one. The functional behavior can be
specified just like other non-security function since it only represents the func-
tional requirements. Although the non-functional behavior is more important
for security and privacy reasons, it is more difficult to specify since it cannot be
retrieved directly from the functional requirements.

BehaveSafe focuses on specifying the non-functional behavior. BehaveSafe
uses the relation of the T&C graph. The developers or security analysts define
the attack scenarios for each threat identified through the threat decomposition
process using the T&C graph. The attack scenarios are written on the ”scenario”
property.

The acceptance criteria of each countermeasure can be generated from the
attack scenarios of the threats linked to the countermeasure. The acceptance
criteria are defined so that they do not satisfy the post condition of the attack
scenario: If the attack scenario fails due to a countermeasure, it satisfies the
acceptance criteria. In other words, we can create test cases not being satisfied
from the attack scenarios, that is our answer to RQ3.

2.4 Testing Countermeasures When Using Agile Software
Development

As mentioned in the section 2.2, there is a parent-child relation in the threat
graph and the countermeasure graph. Therefore, the acceptance criteria must
inherit the criteria of the parent countermeasure.

There is an issue when security needs to be implemented and tested while
using spiral agile software development. When a countermeasure is implemented
at an iteration or sprint, the countermeasure is tested using its acceptance cri-
teria including all the inherited ones. However, there is an exception. When a
countermeasure has multiple children linked by ”and” relations, the parent’s ac-
ceptance criteria cannot be satisfied until all the children are implemented. In
this case, the testing of the parent’s acceptance criteria is postponed until the
iteration when all the countermeasures of all the children are implemented. Alter

Security and Privacy Behavior Definition for Behavior Driven Development 309

all, the structure of a T&C graph tells us how many security tests we need for
each release. This might imply an answer to RQ4.

More comprehensive testing such as testing using black box tools is preferable
before finishing creating the software.

3 Discussion

This section discusses the effectiveness of the proposed method using the T&C
graph and BehaveSafe. We used an actual application being developed at the au-
thor’s institute called EMS (Enrollment Management system) for the evaluation
of our method. EMS is a web application for universities.

One of the developers of EMS has succeeded in identifying 26 threats and
designed 39 countermeasures using the T&C graph for one day as a part of
agile software development. Security experts verified the results and confirmed
it is sufficient. Another developer created acceptance tests using BehaveSafe and
tested EMS in another day. In this case, we can create proper test cases for a
release. This is why we can say the T&C graph and the BehaveSafe might be
suitable for agile development, which are answers to RQ1, RQ2, and RQ4.

It, however, might take more time when the number of use cases increases.
On the other hand, since it takes more than a day for the analysis and testing,
our approach may not match the development style for a short span iteration
(every day release). For future work, we need additional experiments, because
we have not enough evaluation for verifying RQ4.

4 Conclusion

A method for threat analysis and countermeasure specification using threat and
countermeasure graphs called T&C graphs is proposed in this paper. A novel
method for specifying the acceptance criteria for agile software development
such as Behavior Driven Development (BDD) is also presented here. We have
evaluated our methods using the development of a typical software problem
called EMSsec. The evaluation results indicated two key points. One is that the
T&C graph and BehaveSafe are useful for defining the acceptance criteria for the
security level, and also the specified criteria are useful for verifying the security
level for BDD and the iterative developments.

References

1. Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft (2006)
2. Okubo, T., Taguchi, K., Kaiya, H., Yoshioka, N.: Masg: Advanced misuse case anal-

ysis model with assets and security goals. IPSJ Journal of Information Process-
ing 22(3), 536–546 (2014)

3. Sindre, G.: Mal-activity diagrams for capturing attacks on business processes.
In: Sawyer, P., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 355–366.
Springer, Heidelberg (2007)

4. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir.
Eng. 10(1), 34–44 (2005)

The Challenges of Joint Solution Planning:

Three Software Ecosystem Cases

Danielle Pichlis1, Mikko Raatikainen1, Piia Sevón1, Stefanie Hofemann1,
Varvana Myllärniemi1, and Marko Komssi2

1 Aalto University, Helsinki, Finland
2 F-Secure, Helsinki, Finland

{firstname.lastname}@aalto.fi, marko.komssi@f-secure.com

Abstract. Software ecosystems are increasingly involving multiple com-
panies to collaboratively propose value for an end user. When planning
a joint solution however, there are challenges for companies. In this pa-
per, we study the experience of joint solution planning in three different
kinds of ecosystem settings, highlighting the nature of collaboration and
the challenges that arise. The results suggest that the key challenges are
not of a technological nature, but instead concern the process of value
creation and collaboration.

Keywords: software ecosystem, solution planning, value, case study.

1 Introduction

In order to succeed in the market, companies are opening up their businesses to
third parties [2]. Recently, software ecosystems (SECO) are becoming increas-
ingly common among software development organizations [6] to effectively build
large systems utilizing the contribution of multiple parties [11] beyond what is
possible for a single organization [1]. SECOs diverge from traditional software
development in that the development and the ownership of the software is decen-
tralized [4]. A SECO enables development that can harness open innovation [13]
and can significantly increase the value to the end user or customer, thereby
contributing to the success of all stakeholders [11]. Central characteristics of a
SECO include the use of a common technology; collaboration with the keystone
player (who is primarily responsible for the common technology), third party de-
velopers and users; and shared value proposition [1][3][5][7,8]. In addition, there
are a number of secondary characteristics which can be used to classify or differ-
entiate SECOs in a more detailed manner, such as governance model [5][7] and
entry conditions [2][7,8].

Throughout the planning of the joint solution, the participating companies
face several challenges: For example, identifying the value proposition for each
stakeholder as well as the responsibilities. This paper addresses the research
question: What are the challenges of joint solution planning in different kinds
of software ecosystems? The contribution of the paper is to give an account
of three different SECOs elaborating their peculiarities and the challenges that

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 310–313, 2014.
c© Springer International Publishing Switzerland 2014

The Challenges of Joint Solution Planning: Three Software Ecosystem Cases 311

arise during the planning of a joint solution, especially in light of the identified
peculiarities.

This research employs the case study approach [12], covering three different
cases, each involving the collaboration between two industrial companies. The
unit of analysis within these cases is joint solution planning, and especially the
challenges arising from it. The data collection relied primarily on workshops,
in which we observed the joint solution planning. The workshops were recorded
and notes were taken. Furthermore, additional data was based on more informal
discussions.

2 Results

2.1 Case A: Companies Alpha and Beta

Companies Alpha and Beta aimed to initiate collaboration to provide services
for other ecosystems operating in the cloud, such as those of Amazon or Google.
The products of Company Alpha could be utilized in such ecosystems as services,
while Company Beta provides consulting services for the cloud, utilizing Com-
pany Alpha’s products. Thus, neither of the companies are actually a keystone
organization but provide specific services for existing ecosystems. The common
value for both would be more extensive usage of their services in the cloud.

The challenge here, for the success of this collaborative solution depends upon
the service design of Company Alpha’s product offering, in terms of business
model and value proposition. In fact, only minimal tweaks would be required on
the technology level, as technical prototypes of this kind of offering have already
been evaluated.

2.2 Case B: Companies Alpha and Gamma

Company Gamma is a small company operating in a niche market and consisting
of only two founders. Company Alpha has developed an ecosystem platform,
which Company Gamma is eager to utilize in order to extend their own offering.
Company Gamma has developed an application, which could be integrated with
the platform of Company Alpha.

One major challenge for this particular collaboration concerns who is driving
the joint solution development and taking responsibility for its progress. In this
case, a common value proposition does not yet exist, there is no common busi-
ness model and the companies are not equally interested in investing resources.
For Company Alpha, the solution with Company Gamma represents only one
of many possible applications for their ecosystem platform. The collaboration
has an unknown impact; although, as a keystone organization, Company Alpha
would benefit from the application of its ecosystem platform in the new domain.
Thus, there is no strong wish to adapt the platform, especially considering the
uncertainty surrounding the business case. Company Gamma has a strong inter-
est in the collaboration; however, they are small and lack the resources for the

312 D. Pichlis et al.

development. As a result of these challenges, the collaborative solution planning
is currently lacking a clear vision, and the parties are unevenly committed to its
progress.

2.3 Case C: Companies Alpha and Delta

Company Delta has developed a prototype service that could complement their
current offering. However, in order to be a viable product and not just a pro-
totype, the service needs to be integrated with various external heterogeneous
data providers. Furthermore, this service, and Company Alpha’s platform could
complement each other.

Two major challenges exist in this case. First, the parties, and specifically
Company Alpha, doubt the market potential. Second, neither of the involved
parties seemed to be interested in taking leadership of developing the collabora-
tion or joint solution further, as it would be outside the core business for both
companies. Even though the platform of Company Alpha has been launched al-
ready and Company Delta only has a prototype, no major imbalance in terms of
potential benefits of a joint solution and potential resources to be invested from
both sides seemed to exist.

3 Conclusions

An examination of the SECO cases reveals only a minimal amount of technolog-
ical uncertainty, whether or not something can be done, and even development
seems easy and fast. The main reason for this seems to be that SECOs com-
bine the competences of its participants and the platform of the SECO provides
many technological solutions. However, a SECO can also be restricting, e.g., by
requiring certain architectural styles.

Instead, the challenges are more about defining the value for each stakeholder.
This includes what each actor brings to the SECO, their individual and combined
business value, and value for the customer. The concerns that the case compa-
nies highlighted dealt with understanding stakeholders and their relationships.
Furthermore, the responsibilities and relationships are more complex when sev-
eral organizations work together within a SECO. Consequently, the difficulties
lie not in technological uncertainty, but relate more to market uncertainty [10].

The challenges were emphasized due to the fact that in all cases the companies
also had other existing businesses. Consequently, the novel joint solutions were
competing with those core activities for attention and resources. Nevertheless,
SECOs are a means to find new business opportunities for companies that cannot
do everything by themselves. The joint planning seems to benefit from holistic,
cross-functional competencies. In the aforementioned cases the user experience
design and business model planning could have been more present in the collab-
orative workshops. A means to tackle the challenges would have been to operate
in an internal start-up or joint venture [9] manner that would have provided the
required ownership and resources, separate from the existing business activities.

The Challenges of Joint Solution Planning: Three Software Ecosystem Cases 313

As demonstrated by the three cases, SECOs differ largely regarding the par-
ticipating actors, their roles and value within the SECO. Even within one SECO
there can be major differences, as exemplified by Case B and C, where the
keystone organization and technological platform were common to both. Con-
sequently, whenever designing a joint solution for a SECO, these differentiating
characteristics need to be considered and accounted for.

Acknowledgments. We acknowledge the financial support of TEKES as part
of the Need for Speed (N4S) and FinnCloud2 programs of DIGILE.

References

1. Bosch, J.: From software product lines to software ecosystems. In: 13th Interna-
tional Software Product Line Conference, pp. 111–119. Carnegie Mellon University,
Pittsburgh (2009)

2. Bosch, J.: Software ecosystems: Taking software development beyond the bound-
aries of the organization. Journal of Systems and Software 85(7), 1453–1454 (2012)

3. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems and
Software 83(1), 67–76 (2010)

4. Ghazawneh, A., Henfridsson, O.: Balancing platform control and external contri-
bution in third-party development: The boundary resources model. Information
Systems Journal 23(2), 173–192 (2013)

5. Hanssen, G.K.: A longitudinal case study of an emerging software ecosystem: Impli-
cations for practice and theory. Journal of Systems and Software 85(7), 1455–1466
(2012)

6. Hanssen, G.K., Dyb̊a, T.: Theoretical foundations of software ecosystems. In: Forth
International Workshop on Software Ecosystems. CEUR Workshop Proceedings,
vol. 879, pp. 6–17 (2012)

7. Jansen, S., Cusumano, M.A.: Defining software ecosystems: A survey of software
platforms and business network governance. In: Forth International Workshop on
Software Ecosystems. CEUR Workshop Proceedings, vol. 879, pp. 40–58 (2012)

8. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 31st International Conference on Software En-
gineering, Companion Volume, pp. 187–190. IEEE (2009)

9. Komssi, M., Pichlis, D., Raatikainen, M., Kindström, K., Järvinen, J.: What are
hackathons for? IEEE Software (PrePrints, 2014)

10. MacMillan, I.C., McGrath, R.G.: Grafting R&D project portfolios. Research &
Technology Management 45(5), 48–59 (2002)

11. Manikas, K., Hansen, K.M.: Software ecosystems — A systematic literature review.
Journal of Systems and Software 86(5), 1294–1306 (2013)

12. Yin, R.K.: Case Study Research, 2nd edn. Sage, Thousand Oaks (1994)
13. Yoo, Y., Henfridsson, O., Lyytinen, K.: Research commentary — The new or-

ganizing logic of digital innovation: An agenda for information systems research.
Information Systems Research 21(4), 724–735 (2010)

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 314–317, 2014.
© Springer International Publishing Switzerland 2014

A Benchmark-Based Approach for Ranking Root Causes
of Performance Problems in Software Development

Mushtaq Raza and João Pascoal Faria

INESC TEC and Department of Informatics Engineering,
Faculty of Engineering, University of Porto

Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal
uomian49@yahoo.com, jpf@fe.up.pt

Abstract. In previous work we proposed a performance analysis model for au-
tomatically identifying potential root causes of performance problems in
personal software development. In this paper we present an approach for auto-
matically ranking those potential root causes based on a cost-benefit estimate
that takes into account historical data. The approach was applied for the Person-
al Software Process, taking advantage of a large data set referring to more than
30,000 projects, but can be replicated in other contexts.

Keywords: Ranking, Root causes, Performance problems, Personal Software
Process.

1 Introduction

High-maturity software development processes, such as the Team Software Process
(TSP) and the accompanying Personal Software Process (PSP) [1, 2], can generate
large amounts of performance data that can be periodically analyzed [3] to identify
performance problems, determine potential root causes and devise improvement ac-
tions. The manual analysis of such data is problematic because of the lack of bench-
marks, the amount of data to analyze, and the expert knowledge required.

To overcome the lack of support in existing tools for such type of analysis
[4, 5, 6, 7], in previous work [8, 9] we developed a performance model and a proto-
type tool, tailored for the PSP, validated and calibrated based on a large PSP data set
referring to more than 30,000 projects, to enable the automated identification of per-
formance problems of individual PSP developers and their potential root causes.

In this paper we propose a novel approach to rank the identified root causes, based
on a cost-benefit estimate that takes into account historical data, so that subsequent
improvement actions can be focused on the highest-ranked root causes.

The rest of the paper is organized as follows. Section 2 presents the proposed rak-
ing approach. Section 3 presents an example to illustrate the application of the ap-
proach. Section 4 presents the conclusions and points out future work. Due to space
limitations, further details about the approach can be found in a technical report [10].

 A Benchmark-Based Approach for Ranking Root Causes of Performance Problems 315

2 Proposed Ranking Approach

The model [9] developed in our previous work for analyzing the performance of PSP
developers contains a set of performance indicators (PI) organized hierarchically,
starting from three top-level PIs (for productivity, quality and predictability), and
descending to lower level PIs that affect the higher-level PIs according to formulas or
historical data. For each PI, the model contains performance ranges for classifying its
values as suggesting a clear (red), potential (yellow) or none (green) performance
problem. The performance ranges and dependencies between PIs were calibrated
and validated, respectively, based on a large PSP data set from the Software Engineer-
ing Institute with data from 31,140 projects. Having such a model as input and some
PSP project data to analyze, our PSP PAIR tool automatically indicates performance
problems (top-level PIs with 'red' values) and their root causes (lower-level PIs with
'red' or 'yellow' values), but does not indicate the relative importance of those causes.

Here we propose to order the lower-level PIs (X1, ..., Xn), or factors, that affect a
higher-level PI (Y) according to the value of a ranking coefficient , computed for
each Xi as the product of a sensitivity coefficient and a percentile coefficient .

The sensitivity coefficient σ estimates the impact on Y of a small change in the
value of Xi, whilst keeping all the other factors unchanged, and is computed by [11]:

 σ ∆∆ , for small ∆ (1)

Here we assume that: (i) the relationship between Y and the factors X1, ..., Xn can be
described by a function Y=h(X1, ..., Xn), representing an exact formula for deriving Y
or a regression formula [12] calibrated based on historical data; (ii) the higher order
partial derivatives of h are negligible for small variations; and (iii) there is no correla-
tion between the factors, so that one factor can be changed at a time [13].

The percentile coefficient is an indicator of the 'cost' to improve the value of
each Xi. Intuitively, the closest a value is to the optimal value, in terms of percentiles,
the more difficult it is to improve it. Let x denote an actual value of Xi, let Fi(x) denote
the approximate cumulative distribution function of Xi, let fi(x)=F'i(x) denote the
approximate probability density function of Xi, let oi denote the optimal value of Xi,
and let Pi(x)=Fi(oi)-Fi(x) denote the percentile distance of x to oi. Our base hypothesis
for deriving a ranking coefficient is that equal relative variations in the Pis have equal
cost. Then, the percentile coefficient is:

 π ∆∆ , for small ∆ (2)

The approximate cumulative distribution function Fi(x) can be obtained by compu-
ting a theoretical distribution that best fits the historical data, or by linear interpolation
between a few percentiles computed from the historical data.

The overall ranking coefficient is a composite sensitivity coefficient, representing a
ratio between a benefit estimate (a relative variation in the value of Y) and a cost es-
timate (a relative variation in the percentile distance of Xi to the optimal value):

 ρ Y π σ ∆Y Y∆ , for small ∆ (3)

316 M. Raza and J.P. Faria

3 Example

In the PSP, the size of the delivered program (measured in functions points, lines of
code or other size unit) and the effort spent in each process phase (Plan, Design, De-
sign Review, Code, Code Review, Compile, Test, and Postmortem) are among the
base measures collected by developers with tool support. From these base measures,
we can compute the overall productivity (Prod) in a project, as a ratio between the
program size and the total project effort, as well as the productivity per phase Prodk
(where k denotes a process phase), as a ratio between the program size and the effort
in phase k. The overall productivity is affected by the productivity per phase accord-

ing to the formula ∑ . From this formula we can derive the sensitivity

coefficients
 . This formula basically tells that Prodk

will be ranked higher for the phases that consume more effort.
Table 1 presents productivity values from a concrete project (out of the training da-

ta set), as well as all the calculations performed to rank the factors (productivity per
phase) that affect the overall productivity. Regarding the sensitivity coefficient, the
phases that consume more effort (i.e., with lower productivity) - Design and Unit Test
- are ranked at the top 2 positions. However, the productivity in Unit Test is signifi-
cantly closer to the optimal value (in terms of percentiles) than, for example, in De-
sign Review, so, when computing the combined ranking coefficient, the productivity
in Unit Test goes down to the 4th position. In the final ranking, the top two phases
which productivity should be improved (for improving the overall productivity with
the best cost-benefit ratio) are the Design and Design Review phases. In our previous
work [9], all the phases with a value in the red range (percentile below 33%) - all but
the Code phase in this case - would be indicated to the user as equally important for
improvement.

Table 1. Ranking calculations for the factors that affect the overall productivity

i Variable
Value
(LOC/
hour)

Percentile
(Fi) (1)

Probability
Density
(fi) (1)

Percentile
Coefficient π Sensitivity

Coefficientσ

Ranking
Coefficient ρ π σ

0 Productivity 8.63 7% 0.00936 11.45
1 Plan Productivity 73.5 10% 0.00223 5.48 0.117 0.64 (3rd)

2 Design Productivity 19.4 3% 0.00172 29.11 0.446 12.98 (1st)

3 Design Review Prod. 100.0 7% 0.00066 14.26 0.086 1.23 (2nd)

4 Code Productivity 87.8 45% 0.00693 0.91 0.098 0.09 (7th)

 5 Code Review Prod. 163.6 18% 0.00211 2.39 0.053 0.13 (6th)

7 Unit Test Prod. 67.9 18% 0.00353 3.42 0.127 0.43 (4th)

8 Postmotem Pord. 120.0 20% 0.00220 3.03 0.072 0.22 (5th)
(1) Computed by liner interpolation between a few percentiles computed from the training data set.

(2) The optimal value assumed here is oi=∞, so 1

 A Benchmark-Based Approach for Ranking Root Causes of Performance Problems 317

4 Conclusion and Future Work

We proposed an approach for ranking the root causes of performance problems, based
on a cost-benefit estimate, combining an estimate of the cost to change each factor
and an estimate of the benefit (impact) on the affected PI. We illustrated its applica-
tion with a real world example in the context of the PSP. For space limitations, a case
study conducted to show the adequacy of the approach can be found in [10].

As future work, we intend to extend our Performance Analysis and Improvement
Recommendation tool [8], build a comprehensive catalogue of improvement actions
to recommend for the highest-ranked root causes, conduct further experiments, and
extend the approach for analyzing data produced in the context of other processes.

Acknowledgments. The authors would like to acknowledge the SEI for facilitating
the access to the PSP data for performing this study. The work of J. Faria is partly
funded by FEDER through the Portuguese ON.2 Program, under project reference SI
IDT - 21562/2011. The work of M. Raza is partially funded by the Portuguese Foun-
dation for Science and Technology, under research grant SFRH/BD/85174/2012.

References

1. Humphrey, W.: PSPsm: A Self-Improvement Process for Software Engineers. Addison-
Wesley Professional (2005)

2. Davis, N., Mullaney, J.: The Team Software Process (TSP) in Practice: A Summary of Re-
cent Results. CMU/SEI-2003-TR-014 (2003)

3. Burton, D., Humphrey, W.: Mining PSP Data. In: TSP Symposium 2006 Proceedings
(2006)

4. The Software Process Dashboard Initiative, http://www.processdash.com/
5. Hackystat, http://code.google.com/p/hackystat/
6. Shin, H., Choi, H.-J., Baik, J.: Jasmine: A PSP Supporting Tool. In: Wang, Q., Pfahl, D.,

Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 73–83. Springer, Heidelberg (2007)
7. Nasir, M., Yusof, A.: Automating a Modified Personal Software Process. Malaysian Jour-

nal of Computer Science 18, 11–27 (2005)
8. Duarte, C., Faria, J.P., Raza, M.: PSP PAIR: Automated Personal Software Process Per-

formance Analysis and Improvement Recommendation. In: Proceedings of the 8th Int.
Conf. on the Quality of Information and Communications Technology, pp. 131–136. IEEE
(2012)

9. Raza, M., Faria, J.P.: A Model for Analyzing Estimation, Productivity and Quality Per-
formance in the Personal Software Process. In: 2014 International Conference of Software
and System Process, pp. 10–19. ACM (2014)

10. Raza, M., Faria, J.P.: A Benchmark-based Approach for Ranking Root Causes of Perfor-
mance Problems in Software Development. TR-PROCPAIR-2014-01, FEUP (2014),
http://www.fe.up.pt/~jpf/TR-PROCPAIR-2014-01.pdf

11. Saltelli, A., Chan, K., Scott, E.M.: Sensitivity Analysis. Wiley (2008)
12. Navidi, W.: Statistics for Engineers and Scientists, 3rd edn. McGraw-Hill (2011)
13. Hamby, D.M.: A Review of Techniques for Parameter Sensitivity Analysis of Environ-

mental Models. Environmental Monitoring and Assessment 32(2), 135–154 (1994)

An Evaluation Template for Expert Review

of Maturity Models

Dina Salah, Richard Paige, and Paul Cairns

The University of York, York, UK
{dm560,richard.paige,paul.cairns}@york.ac.uk

Abstract. This paper describes an evaluation template for expert re-
view of maturity models. The template addresses the different aspects
involved in assessing both the construct and instruments of maturity
models. It was produced via an extensive literature review of principles
of design, development and evaluation of maturity models. This template
can be beneficial to creators of maturity models since it provides them
with a road map of the issues involved in evaluating maturity models
via expert reviewers. The results of the expert evaluation can lead to the
evolution of the maturity model into a number of subsequent versions.

Keywords: Maturity Models, Expert Review, Evaluation, Assessment.

1 Introduction

Maturity Models are normative reference models [5] that embrace the assump-
tion of predictable evolution and change patterns. The main purpose of maturity
models is to assess the current situation in order to evaluate the strengths and
weaknesses and then prioritize and plan for improvement [5]. This is achieved
via evolutionary successive stages or levels that signify step by step patterns of
evolution and change designating the desirable or current organisational capa-
bilities against a specific class of entities [3,7]. Those maturity levels form a path
from initial state to maturity that can describe logical, anticipated, or desired
evolution and change path(s) [3,1]. Although maturity models represent assess-
ment tools yet maturity models are also subject to evaluation and improvement
activities [4]. Maturity model assessment focus on comprehending and enhancing
the process under investigation whereas the evaluation focus is to understand
and improve the maturity model itself [4].

The purpose of this paper is to propose a template for maturity model eval-
uation that can be utilised by expert reviewers as a checklist for evaluating
maturity model constructs and instruments. The result of the expert evaluation
can lead to the evolution of the maturity model into a number of subsequent
versions.

The rest of this paper is structured as follows: section 2 discusses maturity
model components. Section 3 discusses the evaluation methods of maturity mod-
els. Section 4 discusses the proposed evaluation template. Section 4, presents the
planned evaluation and section 5 discusses the conclusion.

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 318–321, 2014.
c© Springer International Publishing Switzerland 2014

An Evaluation Template for Expert Review of Maturity Models 319

2 Maturity Model Components (Instruments)

Maturity models are composed of three components; first, Reference Model: a
set of dimensions that represent fundamental elements that should be examined
in an assessment. The results of the assessment can help organisations assess
their current status and identify weaknesses and strengths in order to pinpoint
improvement areas. Second, Performance Scale: that helps the assessors to
rate organisational performance in regards to the examined elements included
in the reference model. Third, Assessment Procedure: that provides guid-
ance to assessors and is composed of a maturity recording sheet, maturity levels
performance rating, and typical quotes.

3 Evaluation of Maturity Models

A systematic mapping study on maturity models’ evaluation and assessment
proposed three types of maturity model evaluation [4]. First, Author Eval-
uation: that is conducted via the maturity model authors who evaluate the
maturity model’s processes for its intended use or compare it with other similar
maturity models. Second, Domain Expert Evaluation: this evaluation occurs
via experts in the type of process that the maturity model intends to improve,
but who were not involved in the maturity model development. This evaluation
is usually performed via surveys, interviews, or simulated assignments. Third,
Practical Setting Evaluation: this evaluation involves using the maturity
model in practical settings. This method is considered to be the most costly,
however, the evaluation results is used to analyse and improve both the exam-
ined process and the maturity model [4].

4 Evaluation Form for Domain Expert Evaluation of
Maturity Models

Maturity model testing should focus on two aspects: the model’s construct and
the model instruments [2]. Maturity model constructs should be tested for com-
pleteness, simplicity, understandability, ease of use, operationality, efficiency and
impact on the environment and users [6]. Whereas the model instruments need
to be tested for validity and reliability [6]. Maturity models should also possess a
number of qualities, for example, flexibility, understandability, implement-ability,
correctness, and relevance [8]. Maturity models should be tested to ensure the
presence of those qualities as well.

There is an absence of a study that provides concrete guidance on how expert
reviewers can conduct evaluations of maturity models and what aspects of the
maturity model constructs and instruments needs to be examined during that
evaluation. Based on extensive literature review of principles of design, devel-
opment and evaluation of maturity models an evaluation form was designed in
order to evaluate the various aspects related to expert review of maturity model
construct and instruments.

Figure 1 shows the proposed domain expert evaluation form.

320 D. Salah, R. Paige, and P. Cairns

Maturity Model Domain Expert Evaluation Forms

Expert Information
Date
Name (Optional)
Organization/Institute
Position
Email
 Criteria Strongly

Disagree
Slightly
Disagree

Neither
Disagree
Nor
Agree

Slightly
Agree

Strongly
Agree

Maturity Levels
The maturity levels are sufficient to represent, all maturation
stages of the domain (Sufficiency)

There is no overlap detected between descriptions of maturity
levels (Accuracy)

Processes and Practices
The processes and practices are relevant to the domain
(Relevance)

Processes and practices cover all aspects impacting/ involved in the
domain (Comprehensiveness)

Processes and practices are clearly distinct (Mutual Exclusion)
Processes and practices are correctly assigned to their respective
maturity level (Accuracy)

Maturity Model
Understandability

The maturity levels are understandable
The assessment guidelines are understandable
The documentation is understandable

Ease of Use
The scoring scheme is easy to use
The assessment guidelines are easy to use
The documentation is easy to use

Usefulness and Practicality
The maturity model is useful conducting assessments
The maturity model is practical for use in industry

Q1. Would you add any maturity levels? If so please explain what and why?

Q2. Would you update the maturity level description? If so please explain what and why?

Q3. Would you add any processes or practices? If so please explain what and why?

Q4. Would you remove any of the processes or practices? If so please explain what and why?

Q5. Would you redefine/update any of the processes or practices? If so please explain what and why?

Q6. Would you suggest any updates or improvements related to the scoring scheme? If so please explain what
and why?

Q7. Would you suggest any updates or improvement related to the assessment guidelines? If so please explain
what and why?

Q8. Would you like to elaborate on any of your answers?

Q9. Could the model be made more useful? How?

Q10. Could the model be made more practical? How?

Fig. 1. Maturity Model Domain Expert Evaluation Forms

An Evaluation Template for Expert Review of Maturity Models 321

5 Testing

The testing phase for the proposed template for expert review of maturity models
will involve inviting a set of maturity model domain experts to evaluate the
proposed template. The domain expert evaluation process will include a number
of steps: choosing domain experts, inviting them to take place in the evaluation,
evaluating the template by maturity model expert reviewers and then the results
of the evaluation will lead to the evolution of the template into subsequent
versions as a result of the experts feedback. The selection of the expert panel
occurred via preparing a preliminary list of potential candidates who are experts
in the development, design, and evaluation of maturity models.

6 Conclusions

This paper reported on the development of a template for evaluating the con-
structs and instruments of maturity models via expert reviewers. This template
provides maturity models creators with a road map of issues involved in evalu-
ating maturity models via expert reviewers. The results of the expert evaluation
can lead to the evolution of the maturity model into a number of subsequent
improved versions. The changes to the model’s maturity levels, key practices,
scoring scheme as a result of the evaluation and the reasons behind these changes
should be recorded and analysed.

References

1. Becker, J., Knackstedt, R., Poppelbus, J.: Developing Maturity Models for IT Man-
agement. Business and Information Systems Engineering 1, 213–222 (2009)

2. DeBruin, T., Freeze, R., Kaulkarni, U., Rosemann, M.: Understanding the Main
Phases of Developing a Maturity Assessment Model. In: Australian Conference on
Information Systems, New South Wales, Sydney, Australia (2005)

3. Gottschalk, P.: Maturity Levels for Interoperability in Digital Government. Govern-
ment Information Quarterly 26, 75–81 (2009)

4. Helgesson, Y.Y.L., Host, M., Weyns, K.: A Review of Methods for Evaluation of
Maturity Models for Process Improvement. Journal of Software: Evolution and Pro-
cess 24(4), 436–454 (2012)

5. Iversen, J., Nielsen, P.A., Norbjerg, J.: Assessment of Problems in Software De-
velopment. ACM SIGMIS Database - Special Issue on Infomration Systems 30(2),
66–81 (1999)

6. March, S., Smith, G.: Design and Natural Science Research on Information Tech-
nology. Decision Support Systems 15, 251–266 (1995)

7. Mettler, T.: Maturity Assessment Models: A Design Science Research Approach.
International Journal of Society Systems Science 3, 81–98 (2011)

8. Poppelbub, J., Roglinger, M.: What Makes a Useful Maturity model? A Framework
of General Design Principles for Maturity Models and its Demonstration in Business
Process Management. In: European Conference on Information Systems (2011)

Do Open Source Software Projects

Conduct Tests Enough?

Ryohei Takasawa1, Kazunori Sakamoto2, Akinori Ihara3,
Hironori Washizaki1, and Yoshiaki Fukazawa1

1 Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
3 Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan

Abstract. Do open source software projects provide and maintain tests?
What metrics are correlated with the test success? This paper answers
these questions by executing tests of 452 open source software projects
in GitHub and measuring 13 metrics from 77 projects. Only 117 projects
passed all test cases. Additionally, the results are correlated with the
comment density, public documented API density, and test coverage.

1 Introduction

The number of Open Source Software (OSS) projects is increasing [1]. Because
the source code in OSS is more readily available than commercial software,
empirical studies on OSS are being actively conducted. For example, Hars et al.
analyzed the reasons why developers participate in OSS projects [2]. Schryen et
al. compared OSS and Closed Source Software (CSS) in terms of vulnerability
[3], while other studies have examined OSS from various viewpoints. However,
little is known about the test activities on OSS.

It is unclear what percentage of OSS projects pass all their test cases and
then how carefully we should treat OSS projects in general. Moreover, executing
tests is a simple and good way to evaluate OSS projects, but such tasks are
time consuming. It is also unclear whether there are useful metrics to estimate
test quality such as test results (passed or failed) and test coverage without
execution.

Thus, we conducted large-scale analysis of OSS projects by collecting 791
Maven projects from GitHub, executing tests of 452 projects and measuring 13
metrics from 77 projects. As a result, only 117 projects passed all their test cases
and comment metrics (comment density and public documented API density)
and test coverage are useful metric to estimate test results.

The research questions (RQs) of this paper are following.

RQ1. What percentage of OSS projects pass all their test cases?
RQ2. Which metrics are useful to estimate whether OSS projects are well tested

without execution?

A. Jedlitschka et al. (Eds.): PROFES 2014, LNCS 8892, pp. 322–325, 2014.
c© Springer International Publishing Switzerland 2014

Do Open Source Software Projects Conduct Tests Enough? 323

The contributions of this paper are following.

– We show only 14.8% OSS projects passed all their test and we recommend
users and contributors to treat OSS projects carefully.

– We find comment metrics are useful to evaluate OSS projects quickly without
execution.

2 Experimental Setup

We collected projects in GitHub1, a famous project hosting service. We targeted
projects that use Maven2, which is the most poplular project management tool
for Java, because it automates projects’ build, reporting and documentation,
including testing and measuring. We used Maven to test projects and measure
metrics through SonarQube3, a metrics management platform.

We collected all the found projects with a search query indicating that target
projects contain the pom.xml file which is a build file for Maven. We limited
the size of the pom.xml file is 8,798-8,894 or 9,001-9,189 or 9,501-9,562 bytes in
order to avoid the limitation of the search result of GitHub, which shows 1,000
projects at a maximum.

We chose 13 metrics4 : lines of code, number of statements, number of files,
comment density, lines of comments, cyclomatic complexity per files, total cy-
clomatic complexity, line coverage, branch coverage, public documented API
density, duplicated lines density, violations, violations per file.

Lines of code, number of statements and number of files are a popular index of
the scale of a project. In this paper, lines of code exclude comments. Comment
density is defined as the ratio of the lines of comments from the lines of code
and comments. Line coverage and branch coverage are the ratio of the executed
program elements (line or branch) in testing. Public documented API density is
defined as the ratio of public APIs with document from all public APIs which
are public classes, interfaces, methods, constructors, annotations and fields. Du-
plicated lines density is defined as the ratio of duplicated lines from all lines.
Violations is defined as the number of issues found in static code analysis.

3 Experimental Results

Although 791 projects were gathered from GitHub, the metrics in some projects
could not be measured due to build failures, especially failures caused by omis-
sions of the dependency on the configuration file. Therefore, the experiment
included 452 projects (57.1%) that were built without errors.

Next we executed tests, which are included in the targeted projects, and
collected the metrics from these 452 projects. Test cases were not run in 276

1 http://github.com/
2 http://maven.apache.com/
3 http://www.sonarqube.org/
4 http://docs.codehaus.org/display/SONAR/Metric+definitions/

http://github.com/
http://maven.apache.com/
http://www.sonarqube.org/
http://docs.codehaus.org/display/SONAR/Metric+definitions/

324 R. Takasawa et al.

projects (34.9%), it means there were no test cases, or misconfiguration. In 59
projects (7.46%), tests cases were run but failed. Only 117 (14.8%) passed the
tests.

In order to measure meaningfully, we targeted projects which have 10 or more
test cases and 1 or more files. Then we analyzed the averages of the metrics values
for the 51 projects that successfully passed all the test case runs (successful
projects) and the 27 projects that failed some test cases (failed projects).

Table 1 shows the results. Although successful projects had higher values of
most metrics than failed projects, only 4 metrics listed in Table 1 had statistically
significant difference in the average values (p < 0.05).

Table 1. Results of metrics

Comment Density Documented API Density Line Coverage Branch Coverage

Success Failure Success Failure Success Failure Success Failure

average 18.9% 10.8% 52.4% 35.0% 50.5% 31.0% 43.6% 23.2%

dispersion 0.0102 0.0100 0.0957 0.103 0.107 0.0704 0.0918 0.0727

p value 0.00121 (< 0.05) 0.0223 (< 0.05) 0.0170 (< 0.05) 0.00769 (< 0.05)

4 Discussion

Surprisingly, 14.8% of projects have test cases and pass all of them (RQ1). Pham
et al. found that projects with test cases have more contributions from outside
developers than those without test cases [4]. Speaking in terms of psychological
aspects [5], not fixing failed test cases can be harmful because their presence
may cause developers to ignore future failed test cases, increasing the number of
failed test cases.

Thus, a method to aid developers in writing test cases should improve OSS
projects. We recommend that users of OSS projects pay attention to the exis-
tence of test cases and the OSS quality. Because most OSS projects lack the
ability to test the contributions from outside developers, we also recommend
that contributors write test cases to assure the quality of their contributions.

Although reviewing and executing existing test cases is a simple and effective
way to evaluate the quality of OSS projects, it is a costly task. Arafat et al.
mentioned that successful OSS projects are consistently well documented and
commented [6]. Our results show that the comment metrics and test coverage
are strongly correlated with the test results. Because the comment metrics can
be measured without execution, it is useful to evaluate OSS projects quickly
(RQ2).

5 Threats to Validity

The experiment only used Maven projects, which may cause limitations. How-
ever, measuring metrics or running test code is difficult without using tools.
Consequently, this issue is unavoidable when studying metrics or testing.

Do Open Source Software Projects Conduct Tests Enough? 325

There are other repository hosting services besides GitHub (e.g., SourceForge5

or Google Code6). The difference of the service may affect the experimental
results, thus, we will conduct more experiments on other services.

6 Conclusion

Herein we mined OSS projects in GitHub, and we found that most of projects
do not have test code. Furthermore, we found a correlation between the testing
results and metric values.

The answers (As) to the research questions are as follows:

A1. Only 14.8% of the projects passed their test cases. Thus, users should pay
attention to the quality of OSS projects and contributors should write their
own test cases.

A2. The comment metrics and test coverage are correlated with the test results,
thus, the comment metrics can be used as lightweight metrics to evaluate
OSS projects without execution.

We plan to publish our data set and create a platform to search specific
characteristics of OSS projects. For example, users can search projects by the
percentage of successful test cases. This platform may make it easier to conduct
studies on OSS projects.

References

1. Deshpande, A., et al.: The Total Growth of Open Source. IFIP Advances in Infor-
mation and Communication Technology 275, 197–209 (2008)

2. Hars, A., et al.: Working for Free? -Morivations of Participating in Open Source
Projects. International Journal of Electronic Commerce 6, 25–69 (2002)

3. Schryen, G., et al.: Open source vs.closed source software: towards measurring se-
curity. In: Proc. of the 24th Annual SCM Symposium on Applied Computing, pp.
2016–2013 (2009)

4. Pham, R., et al.: Creating a Shared Understanding of Testing Culture on a Social
Coding Site. In: Proc. of the 35th International Conference on Software Engineering,
pp. 112–121 (2013)

5. Wilson, J.Q., Kelling, G.L.: Broken windows. Atlantic Monthly 249(3), 29–38 (1982)
6. Arafat, O., et al.: The Commenting Practice of Open Source. In: Proc. of 24th

ACM SIGPLAN Conference Companion on Object Oriented Programming Systems
Languages and Applications, pp. 857–864 (2009)

5 http://sourceforge.net/
6 http://code.google.com/

http://sourceforge.net/
http://code.google.com/

Author Index

Alam, S.M. Didar-Al- 164
Amasaki, Sousuke 63
Amrit, Chintan 277
Aranha, Eduardo 178, 290

Beer, Armin 285
Berntsson Svensson, Richard 17
Brenes, Enrique 108
Bürger, Jens 239

Cairns, Paul 318
Campos, Edmilson 178, 290
Chen, Wen 224
Chen, Yihai 209
Cocozza, Francisco 108

Daneva, Maya 277
Deak, Anca 1
Debbiche, Adam 17
Diebold, Philipp 269
Dienér, Mikael 17
Dingsøyr, Torgeir 273

Engels, Gregor 281
Erich, Floris 277

Fægri, Tor Erlend 273
Faria, João Pascoal 314
Fazal-Baqaie, Masud 281
Felderer, Michael 285
Freire, Maŕılia 178, 290
Fukazawa, Yoshiaki 78, 322

Gärtner, Stefan 239
Gerth, Christian 281
Gruhn, Volker 119

Hannebauer, Christoph 119
Higo, Yoshiki 294
Hirabayashi, Daisuke 78
Hofemann, Stefanie 134, 310
Höst, Martin 149
Hotta, Keisuke 294

Ihara, Akinori 322
Imazato, Ayaka 294
Itkonen, Juha 273

Jenkins, Marcelo 108
Jürjens, Jan 239

Kaiya, Haruhiko 306
Kakizaki, Yoshio 306
Katumba, Brian 33
Khedri, Ridha 209
Kikushima, Yasuhiro 78
Knauss, Eric 33
Kobashi, Takanori 306
Kobori, Takanobu 78
Komssi, Marko 310
Krantz, Maria 149
Kulesza, Uirá 178, 290
Kusumoto, Shinji 294

Lin̊aker, Johan 149
Lokan, Chris 63
López Herrera, Gustavo 108

Maglyas, Andrey 93
Maibaum, Tom 224
Mart́ınez, Alexandra 108
Méndez Fernández, Daniel 302
Mikkonen, Tommi 298
Myllärniemi, Varvana 134, 310

Norja, Terho 134

Ogata, Shinpei 306
Okazaki, Yasuko 78
Okubo, Takao 306

Paige, Richard 318
Pfahl, Dietmar 164
Pichlis, Danielle 310

Raatikainen, Mikko 134, 310
Ramalho, Franklin 254

328 Author Index

Raza, Mushtaq 314
Ruhe, Guenther 164
Ruhroth, Thomas 239

Sakamoto, Kazunori 322
Salah, Dina 318
Schneider, Kurt 239
Seth, Frank Philip 194
Sevón, Piia 310
Shahnewaz, S.M. 164
Shintani, Katsutoshi 78
Siźılio, Gustavo 290
Smolander, Kari 93, 194
Systä, Kari 298

Taipale, Ossi 194
Takasawa, Ryohei 322

van Manen, Hidde 48
van Vliet, Hans 48
Vieira, Andreza 254

Wang, Hao 209
Washizaki, Hironori 78, 306, 322
Wassyng, Alan 209, 224

Yli-Huumo, Jesse 93
Yoshioka, Nobukazu 306

	Preface
	Organization
	Table of Contents
	Agile Development
	A Comparative Study of Testers’ Motivation in Traditional and Agile Software Development
	1 Introduction
	2 Research Context
	2.1 Traditional and Agile Testing
	2.2 Studies on Testing Practice
	2.3 Existing Motivation Models in Software Engineering

	3 Research Method
	3.1 Survey Design

	4 Results and Discussion
	4.1 Concepts for Negative Factors
	4.2 Concepts for Positive Factors

	5 Conclusion and Further Work
	References
	Appendix

	Challenges When Adopting ContinuousIntegration: A Case Study
	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 Case Company
	3.2 Data Collection
	3.3 Data Analysis
	3.4 Validity Threats

	4 Results
	4.1 Mindset
	4.2 Tools and Infrastructure
	4.3 Testing
	4.4 Domain Applicability
	4.5 Understanding
	4.6 Code Dependencies
	4.7 Software Requirements

	5 Discussion
	6 Conclusion
	References

	Agile Development in Automotive Software Development: Challenges and Opportunities
	1 Introduction
	2 Agile Software Development and Related Work
	2.1 Agile Software Development
	2.2 Related Work

	3 Background and Research Methodology
	3.1 Research Site: Volvo Car Cooperation (VCC)
	3.2 General Overview of Current Process
	3.3 Research Method
	3.4 Research Setting

	4 Results: Process-Related Challenges in Relation to Agile
	4.1 Process Ability
	4.2 Workload Management
	4.3 Domain Specifics and Supplier Network
	4.4 Working Context
	4.5 Culture of Sharing Information and Knowledge

	5 Discussion
	6 Conclusion and Outlook
	References

	Organization-Wide Agile Expansion Requiresan Organization-Wide Agile Mindset
	1 Introduction
	2 Research Method
	2.1 Data Collection and Analysis

	3 Results and Discussion
	4 Limitations
	5 Conclusion
	References

	Decision-Making
	The Effects of Gradual Weightingon Duration-Based Moving Windowsfor Software Effort Estimation
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Dataset Description
	3.2 Weighted Moving Windows with Linear Regression
	3.3 Modeling Techniques
	3.4 Effort Estimation on Chronologically-Ordered Projects
	3.5 Performance Measures

	4 Results
	4.1 Accuracy with Different Window Sizes
	4.2 Accuracy Comparisons among Different Weighting Functions

	5 Discussion
	5.1 Answer to RQ1
	5.2 Answer to RQ2
	5.3 Answer to RQ3

	6 Threats to Validity
	7 Conclusion
	References

	Identifying Rationales of Strategies by Stakeholder Relationship Analysis to Refine and Maintain GQM+Strategies Models
	1 Introduction
	2 Background
	2.1 GQM+Strategies
	2.2 Motivating Examples

	3 Our Approach
	3.1 Context-Assumption-Matrix
	3.2 Context Assumption (C/A) Definition Template
	3.3 Steps of Our Approach

	4 Evaluation
	4.1 Experimental Overview
	4.2 Experimental Result
	4.3 Discussion
	4.4 Limitations

	5 Related Work
	6 Conclusion and Future Work
	References

	The Sources and Approaches to Management of Technical Debt: A Case Study of Two Product Lines in a Middle-Size Finnish Software Company
	1 Introduction
	2 Related Research
	2.1 The Causes and Effects of Technical Debt
	2.2 Current Strategies and Practices of Technical Debt Management and Reduction

	3 Research Methodology
	3.1 Designing the Case Study
	3.2 Preparing for Data Collection
	3.3 Collecting the Evidence
	3.4 Analyzing Case Study Evidence

	4 Results
	4.1 Causes for Technical Debt
	4.2 Management and Reduction Strategies for Technical Debt
	4.3 Short-Term and Long-Term Effects of Technical Debt
	4.4 Future Improvements for Dealing with Technical Debt
	4.5 Summary of the Findings

	5 Discussion and Conclusions
	References

	Application of GQM+Strategies in a Small Software Development Unit
	1 Introduction
	2 Methodology
	3 Related Work
	4 Organization Context
	5 GQM+Strategies Application Results
	6 Discussion
	7 Conclusions and Future Work
	References

	Development Practices and Issues
	Algorithmic Complexity of the Truck Factor Calculation
	1 Introduction
	2 Related Work
	3 Preliminary Remarks and Definitions
	4 Calculating TFmin,c
	5 Calculating TFmax,c
	6 Calculating TFavg,c
	7 Conclusion and Future Work
	References

	Experiences in Applying Service Design to Digital Services
	1 Introduction
	2 Previous Work
	2.1 Services: The Paradigm Shift to Service-Dominant Logic
	2.2 Service Design
	2.3 Prototypes

	3 Case Description: Meeting Scheduling Service (MSS)
	4 Research Method
	5 Results
	5.1 Change in the Perception of Value
	5.2 Challenge to Consider the Whole Customer Journey
	5.3 Applying Service Design to an Existing Technical Prototype
	5.4 Service Design for Digital Services
	5.5 Challenges in Choosing Prototyping Techniques
	5.6 Nature of Prototypes

	6 Discussion
	6.1 Digital Service Design
	6.2 Prototyping in Digital Service Design

	7 Conclusion
	References

	On Infrastructure for Facilitationof Inner Source in Small Development Teams
	1 Introduction
	2 Methodology
	2.1 The Case Company
	2.2 Case Study Steps
	2.3 Situation Analysis
	2.4 Specification of Requirements on Technical and Practical Support

	3 Results from Situation Analysis
	4 Overview of Proposed Technical Infrastructure
	4.1 Components
	4.2 Users
	4.3 Component Project View

	5 Discussion
	5.1 Infrastructure
	5.2 Development Practices
	5.3 Organization and Community

	6 Validity
	7 Conclusion
	References

	Product Planning
	Analysis and Improvement of Release Readiness – A Genetic Optimization Approach
	1 Introduction
	2 Related Work
	3 Background
	3.1 RR Attributes and Degree of Satisfaction
	3.2 Release Readiness
	3.3 Release Readiness Improvement Factor

	4 Problem Formulation
	4.1 Illustrative Example
	4.2 Problem Statement

	5 Proposed Solution Approach
	5.1 Choice of Solution Approach
	5.2 Steps of the Proposed Method DAICO

	6 Empirical Evaluation
	6.1 Case Study Context
	6.2 Implementation and Tuning of Parameters
	6.3 Case Study Results

	7 Threats to Validity
	8 Summary and Future Research
	References

	A Generative Development Method with Multiple Domain-Specific Languages
	1 Introduction
	2 The Proposed Method
	2.1 Method Background
	2.2 Method Structure

	3 Exploratory Study
	3.1 Study Research Questions
	3.2 Target Generative Approach
	3.3 Results Main Summ mary
	3.4 Discussions

	4 Conclusions and Future Work
	References

	Role of Software Product Customer in the Bring Your Own Device (BYOD) Trend: Empirical Observations on Software Quality Construction
	1 Introduction
	2 Related Literature
	3 Research Methodology and the Sample
	4 Results
	4.1 Analysis and Categorizing
	4.2 Findings

	5 Discussion
	6 Conclusions
	References

	Envisioning a Requirements Specification Templatefor Medical Device Software
	1 Introduction and Motivation
	2 Background
	2.1 Standards and Guidelines on Software Medical Devices
	2.2 Review of Existing Requirements Templates

	3 Objectives for a Robust MDS Requirements Template
	4 A Structure for a Template Satisfying the Objectives
	5 Conclusions and Future Work
	References
	A SRS Template for Product Family

	Project Management
	Combining Static and Dynamic Impact Analysisfor Large-Scale Enterprise Systems
	1 Introduction
	2 Related Work
	3 Research Motivation
	4 Static Analysis
	5 Dynamic Analysis
	5.1 Aspect-Oriented Programming and AspectJ
	5.2 Aspect-Oriented Instrumentation

	6 Impact Analysis Overall
	7 Case Study
	7.1 Experiment Setup
	7.2 Experimental Design
	7.3 Results and Analysis
	7.4 Threats to Validity

	8 Conclusion
	8.1 Achievement
	8.2 Future Work

	References

	Towards Adaptation and Evolutionof Domain-Specific Knowledge for MaintainingSecure Systems
	1 Introduction
	2 Proposed Approach and Research Objective
	3 Operations for Modified Import of Ontologies
	4 Application to Evolving Domain-Specific Knowledge
	5 Case Study and Implementation
	6 Process Model Integration
	7 Related Research
	8 Discussion and Conclusion
	References

	Metrics to Measure the Change Impact in ATL Model Transformations
	1 Introduction and Motivation
	2 Background
	2.1 MDD and ATL Transformations
	2.2 Change Impact

	3 An Exploratory Case Study
	3.1 Study Definition
	3.2 Study Planning
	3.3 Study Execution
	3.4 Study Analysis and Interpretation
	3.5 Threats to Validity

	4 Definition of the Metrics
	4.1 RTEC
	4.2 RTERT
	4.3 RITE
	4.4 RCTAE
	4.5 Measuring the Impact Value

	5 Related Works
	6 Conclusions and Future Works
	References

	Short Papers
	Initial Data Triangulation of Agile Practices Usage: Comparing Mapping Study and Survey Results
	1 Introduction
	2 Background
	3 Data Triangulation
	4 Summary and Conclusions
	References

	What Is Large in Large-Scale?: A Taxonomy of Scale for Agile Software Development
	1 Introduction
	2 A Taxonomy of Scale
	References

	A Mapping Study on Cooperation betweenInformation System Developmentand Operations
	1 Introduction
	2 Research Method
	3 Results
	4 Discussion
	5 Limitations
	6 Conclusions
	References

	Breathing Life into Situational SoftwareEngineering Methods
	1 Introduction
	2 Overview of the MESP Approach
	3 Method Enactment and Transformation to BPEL
	4 Conclusions and Future Work
	References

	On the Role of System Testing for Release Planning: Industrial Experiences from Comparing Two Products
	1 Introduction and Industrial Context
	2 Analysis and Comparison of Release Planning Processes
	3 Conclusion
	References

	A Process-Oriented Environment for the Execution of Software Engineering Experiments
	1 Introduction
	2 An Integrated Environment for the Execution of Software Engineering Experiments
	3 Conclusions and Future Work
	References

	Predicting Risky Clones Basedon Machine Learning
	1 Introduction
	2 Background and Related Work
	3 ProposedMethod
	4 Pilot Study
	5 Conclusions
	References

	Maximizing Product Value: Continuous Maintenance
	1 Introduction
	2 Defining Maintenance
	3 Maintenance in Modern Software Development Models
	4 Discussion
	References

	Artefact-Based Requirements EngineeringImprovement: Learning to Walk in Practice
	1 Introduction
	2 ArtREPI in a Nutshell
	3 Ongoing Evaluations and Next Steps
	References

	Security and Privacy Behavior Definitionfor Behavior Driven Development
	1 Introduction
	2 Threat Analysis and Behavior Specification
	2.1 Requirements Analysis
	2.2 T&C Graph
	2.3 BehaveSafe
	2.4 Testing Countermeasures When Using Agile Software Development

	3 Discussion
	4 Conclusion
	References

	The Challenges of Joint Solution Planning:Three Software Ecosystem Cases
	1 Introduction
	2 Results
	2.1 Case A: Companies Alpha and Beta
	2.2 Case B: Companies Alpha and Gamma
	2.3 Case C: Companies Alpha and Delta

	3 Conclusions
	References

	A Benchmark-Based Approach for Ranking Root Causes of Performance Problems in Software Development
	1 Introduction
	2 Proposed Ranking Approach
	3 Example
	4 Conclusion and Future Work
	References

	An Evaluation Template for Expert Reviewof Maturity Models
	1 Introduction
	2 Maturity Model Components (Instruments)
	3 Evaluation of Maturity Models
	4 Evaluation Form for Domain Expert Evaluation of Maturity Models
	5 Testing
	6 Conclusions
	References

	Do Open Source Software ProjectsConduct Tests Enough?
	1 Introduction
	2 Experimental Setup
	3 Experimental Results
	4 Discussion
	5 Threats to Validity
	6 Conclusion
	References

	Author Index

