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Abstract The hybrid use of exact and heuristic derivative-free methods for global
unconstrained optimization problems is presented. Many real-world problems are
modeled by computationally expensive functions, such as problems in simulation-
based design of complex engineering systems. Objective-function values are often
provided by systems of partial differential equations, solved by computationally
expensive black-box tools. The objective-function is likely noisy and its derivatives
are often not available. On the one hand, the use of exact optimization methods
might be computationally too expensive, especially if asymptotic convergence
properties are sought. On the other hand, heuristic methods do not guarantee the
stationarity of their final solutions. Nevertheless, heuristic methods are usually able
to provide an approximate solution at a reasonable computational cost, and have
been widely applied to real-world simulation-based design optimization problems.
Herein, an overall hybrid algorithm combining the appealing properties of both
exact and heuristic methods is discussed, with focus on Particle Swarm Optimi-
zation (PSO) and line search-based derivative-free algorithms. The theoretical
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properties of the hybrid algorithm are detailed, in terms of limit points stationarity.
Numerical results are presented for a specific test function and for two real-world
optimization problems in ship hydrodynamics.

Keywords Derivative-free optimization � Global optimization � Particle swarm
optimization � Line search algorithm � Hybrid optimization algorithm � Simulation-
based design � Ship design

1 Introduction

There is plenty of challenging real applications in sciences where optimization is
naturally involved, and sophisticated minimization techniques are definitely nec-
essary in order to allocate resources. In particular, these scientific tough problems
often involve a remarkably large computational cost, along with large time of
computation and machine resources.

Up to 15–20 years ago, to a great extent the main interest of theoreticians in
optimization was for methods based on the use of derivatives. This was basically
due to the following three strong reasons:

• in several cases derivatives are available when solving computational problems.
In particular, they are always ‘analytically’ available if the nonlinear functions
involved are known in closed form (see for instance the work by Griewank in
2000 [14]), and they can be exactly computed (not simply approximated) at
reasonable cost in small-medium scale problems [12, 22];

• strong theoretical results have been developed, both in terms of convergence and
computational performance, for optimization methods where derivatives (say of
first/second order) are available;

• the use of machine resources at a cheaper cost has allowed the solution of
problems where derivatives can be suitably approximated by finite differences,
using either coarse or fine techniques.

On the other hand, engineering design offers a huge number of real-world
problems where scientists are continuously asked to apply robust methods, using
the most recent theoretical advances. In particular, design problems often include
functions which are not differentiable or where the use of derivatives is possibly
discouraged. The following issues motivate the latter statement and give more
precise guidelines for analyzing and improving optimization procedures not
involving derivatives.

• For large scale problems, computing derivatives by finite differences might be
prohibitively costly, and also Automatic Differentiation [14] might be of difficult
application. Furthermore, the computation of derivatives by finite differences
proved to be very harmful when the scale of the problem increases.

26 A. Serani et al.



• Most of the codes for complex design problems are parameter dependent, and
the parameters need to be ‘properly’ assessed. Their correct choice in practice
implies that the overall performance of the code needs to be optimized with
respect to those parameters. Thus, an implicit optimization problem with respect
to these parameters requires a solution, and surely the derivatives of the func-
tions involved are unavailable, being the output of a code nondifferentiable.

• Most of the design problems need solution procedures where expensive simu-
lations are performed. Typically, simulations are affected by noise, systematic
errors arise and stochastic parameters are used, so that derivatives are essentially
unavailable or their use may lead to completely destroy the robustness of
procedures.

The issues above contribute to motivate the use of efficient and effective
derivative-free methods, in order to solve a wide range of challenging problems.

In this chapter we focus on a modification of the PSO algorithm (originally
proposed by Kennedy and Eberhart in 1995 [18]), for the solution of the uncon-
strained global optimization problem

min
x2IRn

f ðxÞ; f : IRn ! IR: ð1Þ

At present f(x) is assumed to be a continuous nonlinear, non-convex and com-
putationally expensive function. Observe that in (1) we aim at using a modified
PSO algorithm in order to detect a global minimum of f(x), i.e. a point x� 2 IRn such
that f(x*) ≤ f(x), for any x 2 IRn.

The reason for which we focus on a modified PSO in order to tackle (1) is that
when the function f(x) is computationally costly, exact methods may be definitely
too expensive to solve (1). Moreover, some exact methods are possibly unable to
provide a current satisfactory approximation of a solution. In the latter cases the use
of heuristic approaches may be fruitful, in particular when the computational
resources and/or the time allowed for the computation are severely limited, and
asymptotically convergent procedures are unaffordable. On the basis of the latter
observations, PSO proved to be both effective and efficient on several practical
applications [8, 23, 24], so that it is often the heuristics of choice.

Recalling the above considerations, in the framework of derivative-free opti-
mization, we think that combining heuristic procedures and exact methods could be
amenable, provided that:

1. the overall hybridized scheme is efficient, i.e. it is possibly not too expensive. A
legitimate expectation is that the overall computational cost of the combined
scheme is in-between the cost of (not combined) PSO and the cost of the exact
method;

2. the results provided by the combined procedure are endowed with some
theoretical properties, which are guaranteed by an effective combination of PSO
and the exact method. Typical theoretical properties characterize both the
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convergence of sequences of points, and the stationarity of limit points of the
sequences generated by the hybridized scheme.

Thus, we focus here on some modifications of PSO, where converging subse-
quences of iterates are generated. As a consequence, in the next section we are
committed to provide clear conditions, under which PSO particles trajectories can
be controlled. On the other hand, our modifications proposed for PSO guarantee
that the generated sequences of iterates have subsequences converging to stationary
points of the objective function (see also [15, 16, 29, 30]). In particular, since there
are in the literature theoretical results for several exact derivative-free methods [7,
19], we decided to combine PSO with a line search-based derivative-free algorithm,
which is to our knowledge still an unexplored issue, apart from the analysis by
Campana et al. in 2009 [1]. We consider here also a numerical experience on a
simplified method proposed by Campana et al. in 2009 [1], where the choice of the
search directions is particularly ‘intuitive’, and preserves some relevant theoretical
results.

Observe that the aim of this paper is to provide robust methods with a twofold
purpose. First we would like to exploit the capability of PSO to provide a satis-
factory approximation to a global solution, within a few iterations. Then, by
combining PSO with an exact method, we want to force the convergence of sub-
sequences of points toward a stationary point, which satisfies first order optimality
conditions for f(x). This paper is specifically concerned with both reporting some
theoretical results and performing a valid numerical experience, to prove our the-
oretical conclusions.

As regards the symbols we adopt in this chapter, subscripts are used to identify
the particles in a PSO scheme, whilst the superscripts indicate the iteration. By I we
denote the identity matrix, and k � k represents the Euclidean norm of a vector/
matrix. Finally, B(c, r) is the real ball with center in the vector c and radius r > 0,
i.e. Bðc; rÞ ¼ fy 2 IRn : y� ck k� rg. All the other symbols follow a very standard
notation.

In Sects. 2–3 we discuss some issues related to the stability of PSO iteration.
Then, the Sects. 4–5 introduce both the theory and the motivations for our modi-
fication of PSO iteration. In Sect. 6 we describe our proposal and we carry out the
related convergence analysis. Section 7 is then devoted to report a numerical
experience on a test case and real problems from ship design. Finally, Sect. 8
contains some conclusions.

2 Stable and Unstable Trajectories for PSO

The strategy of PSO for solving (1) is that of generating the P sequences fxkj g, j = 1,
…,P, of iterates in IRn, each associated with the j-th particle of the swarm. The
particles share information on the point pkg, at any iteration k, satisfying the
condition
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f ðpkgÞ� f ðxhj Þ; 8h� k; 8j 2 f1; . . .;Pg:

To our purposes we preliminarily refer to the following PSO iteration, for any
k ≥ 0:

vkþ1
j ¼ vj w

k
j v

k
j þ cjrj � ðpkj � xkj Þ þ cgrg � ðpkg � xkj Þ

h i
;

xkþ1
j ¼ xkj þ vkþ1

j ;
ð2Þ

where j = 1,…,P represents the j-th particle (i.e. the j-th sequence of iterates), P is
finite, while vkj and xkj are n-real vectors, which respectively represent the speed (i.e.
the search direction) and the position of the j-th particle at step k. The real bounded
coefficients cj and cg are typically given at the outset of iteration k = 0, and are
possibly not modified unless stagnation arises. On the other hand, with rj � ðpkj � xkj Þ
(similarly with rg � ðpkg � xkj Þ) we indicate that every entry of the vector ðpkj � xkj Þ is
multiplied by a different value of rj, which is a random parameter in the uniform
distribution between 0 and 1. Finally, for a given k ≥ 0, the n-real vectors fpkj g satisfy
the conditions

f ðpkj Þ� f ðx‘j Þ; 8‘� k; pkj 2 fx‘jg; ð3Þ

moreover, χj (constriction coefficient) and wk
j (inertia) are positive bounded coef-

ficients. In words the vector pkj represents the ‘best position’ in the j-th subsequence

up to iteration k, while pkg is the ‘best position’ among all the vectors fpk1; . . .; pkPg.
A keynote issue in PSO is that an effective choice of the coefficients χ, wk, cj and cg
is often problem dependent, whereas several standard settings for them have been
proposed in the literature (see [25]). Notwithstanding the latter fact, more precise
rules for assessing the coefficients in (2) are still sought, with a specific reference to
eventually avoid stagnation of PSO iteration.

In order to possibly generalize the recurrence (2), we can assume that the speed
vkþ1
j depends on all the P vectors ðpkh � xkj Þ (see also [21]), h = 1,…,P, and not only

on the pair of vectors ðpkj � xkj Þ, ðpkg � xkj Þ. The resulting new iteration represents
the so called Fully Informed PSO (FIPSO). The latter generalization is possibly
unessential for our purposes, so that hereafter we limit our analysis to the more
standard iteration (2).

Observe that in order to give rules, which ensure that PSO trajectories satisfy
suitable conditions, we need to impose some restrictions to the coefficients in (2). In
particular, after reviewing the literature we remark that the following (not mutually
exclusive) conditions can be reasonably expected to hold for particles trajectories in
PSO:
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(1) the sequence fxkj g converges to x�j , for any j = 1,…,P, with x�1 ¼ � � � ¼ x�P;
(2) the sequence fxkj g converges to x�j , for any j = 1,…,P, but possibly x�j 6¼ x�‘ ,

with 1� j 6¼ ‘�P;
(3) the sequence fxkj g is not diverging for any j = 1,…,P, i.e. limk!1 kxkj k\þ1,

for any j = 1,…,P and any k ≥ 0.

We highlight that different bounds can be imposed on the coefficients χ, wk, cj and
cg in (2), in order to ensure that either of the three conditions (1)–(3) is fulfilled. It is
also not difficult to realize that (1) implies (2) (but not viceversa) and (2) implies (3)
(but not viceversa). Thus, the conditions on the coefficients of PSO ensuring (3), are
expected to be both weak enough and sufficiently general to allow a wide exploration
of the search space. For the latter reason, in this paper we prefer to study and analyze
the case (3), while the interested reader can possibly refer to PSO literature (see also
Sect. 4) for the analysis on the cases (1)–(2). Now, by (2) let us preliminarily
consider the following assumption, in order to simplify our notation.

Assumption 1 We assume in (2) that χj = χ > 0, cj = c > 0 and rj = r > 0, for any
j = 1,…,P. Moreover, cg ¼ �c[ 0, rg ¼ �r[ 0 and wk

j ¼ w, for any j = 1,…,P and
any k ≥ 0.

Then (see also [2]), using Assumption 1 the iteration (2) is equivalent to the
discrete stationary (time-invariant) system

Xjðk þ 1Þ ¼
vwI �vðcr þ �c�rÞI

vwI 1� vðcr þ �c�rÞ½ �I

0
@

1
AXjðkÞ þ

vðcrpkj þ �c�rpkgÞ

vðcrpkj þ �c�rpkgÞ

0
@

1
A; ð4Þ

where

XjðkÞ ¼
vkj
xkj

 !
2 IR2n; k� 0: ð5Þ

For a given j, the vectors {Xj(k)} identify a sequence of points in IR2n and represent
indeed the trajectory of the j-th particle in the state space IR2n. By definition, since
Xj(k) represents a state vector, it can be split into the so called free response XjLðkÞ
and the forced response XjFðkÞ (see also [27]), such that

XjðkÞ ¼ XjLðkÞ þ XjFðkÞ; ð6Þ

being

XjLðkÞ ¼ UjðkÞXjð0Þ; XjFðkÞ ¼
Xk�1

s¼0

Hjðk � sÞUjðsÞ; ð7Þ
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and (with a little computation)

UjðkÞ ¼
vwI �vðcr þ �c�rÞI

vwI 1� vðcr þ �c�rÞ½ �I

0
@

1
A

k

; ð8Þ

Hjðk � sÞ ¼
vwI �vðcr þ �c�rÞI

vwI 1� vðcr þ �c�rÞ½ �I

0
@

1
A

k�s�1

; ð9Þ

UjðsÞ ¼
vðcrpsj þ �c�rpsgÞ

vðcrpsj þ �c�rpsgÞ

0
@

1
A: ð10Þ

We highlight the important fact that the free response XjLðkÞ in (6)–(7) only
depends on the initial point Xj(0), and is not affected by changes of the vectors psj ,
pg
τ , τ ≥ 0. The latter observation is of great interest, in order to assess rules for the

parameters χ, w, c, r, �c and �r, as the next section shows.

3 Issues on Assessing Parameters in PSO

As described in the last section, the fruitful choice of the parameters in PSO is to a
large extent guided by a couple of issues: the efficiency of the overall scheme and
the necessity of guaranteeing at least non-diverging trajectories of the particles. As
regards the first issue, the literature of PSO provides several suggestions which have
proved to be effective in most cases (see for instance [4, 26]). Conversely, some
more recent papers, concerned with studying the stability of particles trajectory,
have detailed some restrictions on PSO parameters in order to dynamically control
the trajectory of particles, and make them more accurately predictable. On this
guideline, papers like Kadirkamanathan et al. in 2006 [17], and Gazi in 2012 [12]
are advisable, since they contain clear indications on the latter issue.

Here we want to propose a unified approach for parameters assessment in PSO,
using the reformulation (4)–(5). In practice (see also [27]), as long as Assumption 1
holds, our perspective is that of using classic analysis for discrete linear systems in
order to deduce bounds on PSO parameters. On the other hand, we want to carry on
our analysis as rigorously as possible, so that we will separately develop formal
conditions for the following three purposes:

(a) define necessary conditions (possibly not sufficient) on PSO parameters, so
that particles trajectories are not diverging, i.e. the quantities kXjðkÞk are
limited, for any j = 1,…,P and any k ≥ 0;

(b) ensure no stagnation (see [13]) for a modified PSO scheme;
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(c) possibly introduce simple modifications to PSO, so that the resulting scheme is
globally convergent to stationary points, i.e. for any choice of the initial
positions x01; . . .; x

0
P of the particles, the scheme generates sequences of points

like {yk}, such that

lim inf
k!1

rf ðykÞ�� �� ¼ 0:

Observe that the latter condition substantially guarantees that possibly ‘true’ min-
ima for f(x) are eventually outreached, even in case stagnation arises. We strongly
remark that though we used the symbol rf ðxÞ, the latter relation will be proved
without using any information on rf ðxÞ, so that a completely derivative-free
method will be developed.

In the current section we consider the issue (a), while in the next section issues
(b) and (c) will be analyzed in detail.

As well known, for a discrete linear system like (4)–(5) (see for instance [27]), if
the j-th trajectory {Xj(k)} in (6) is non-diverging, then

lim
k!1

XjðkÞ ¼ lim
k!1

XjFðkÞ; j ¼ 1; . . .;P:

In other words, the free response XjLðkÞ is bounded away from zero only for
finite values of the index k, and

lim
k!1

XjLðkÞ ¼ 0: ð11Þ

This introduces a possible rule to address bounds for PSO parameters, since
relation (11) imposes some restrictions to the eigenvalues of matrix UjðkÞ in (8).
Observing that Φj(k) = Φj(1)

k, for any k ≥ 0, the 2n eigenvalues of the unsymmetric
matrix Ujð1Þ are real. In particular, by setting for the sake of simplicity in (8)

a ¼ vw; x ¼ vðcr þ �c�rÞ; ð12Þ

we can prove that after some computation the matrix Ujð1Þ has two distinct
eigenvalues λj1 and λj2 given by

kj1 ¼
1� xþ a� ð1� xþ aÞ2 � 4a

h i1=2
2

;

kj2 ¼
1� xþ aþ ð1� xþ aÞ2 � 4a

h i1=2
2

;

ð13Þ

each of them with algebraic multiplicity n. Thus, a necessary (but in general not
sufficient) condition for the j-th trajectory {Xj(k)} to be non-diverging and satisfy
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limk!1 XjLðkÞ ¼ 0, is the following, which yields the required conditions on the
coefficients of PSO iteration.

Lemma 1 Consider the PSO iteration (2). Let Assumption 1 hold. Let the eigen-
values λj1and λj2in (13) satisfy the conditions

jkj1j\1; jkj2j\1; ð14Þ

for any j = 1,…,P. Then, the sequence fXjLðkÞg satisfies limk!1 XjLðkÞ ¼ 0, and
condition (14) is a necessary condition for the trajectory {Xj(k)} to be non-diverging.

Note that most of the typical settings for PSO parameters proposed in the lit-
erature (see e.g. [4, 5, 26]), satisfy the condition (14). Moreover, Lemma 1 does not
guarantee that the sequence {Xj(k)}, for a given j, is converging, and indeed it
possibly does not admit even limit points. This means that condition (14) only
provides a result for item (a), but is definitely inadequate to treat items (b) and (c).
This also implies that for instance if (14) holds, then possibly the trajectory fXjðkÞg
is not converging, or some of its subsequences converge to the point x�j which is not
a minimum and does not satisfy the property

f ðx�j Þ� f ðxÞ; 8x 2 Bðx�j ; eÞ; e[ 0:

In the next sections we focus on a rigorous analysis of the latter issue. I.e., under
mild assumptions we propose a modified PSO scheme such that, if the function f
(x) is continuously differentiable, the sequence fx11; . . .; x1P; . . .; xk1; . . .; xkPg admits
stationary limit points for f(x), so that

lim inf
k!1

rf ðxkj Þ
��� ��� ¼ 0 or lim

k!1
rf ðxkj Þ
��� ��� ¼ 0: ð15Þ

As the reader can expect, there is a theoretical and computational evidence that
fulfilling condition (15) may be met (in several real applications) at the expense of a
reasonably larger computational cost, with respect to the standard PSO iteration (2).

4 PSO and Stationarity

In Sect. 1 we have detailed some motivations, to explain why in the last two
decades design optimization and simulation-based optimization have required
effective and robust derivative-free optimization methods. Exploiting also the recent
advances on parallel computing, the last two decades have seen in particular the
blow up of a remarkably effective class of optimization methods, endowed with
complete convergence analysis and competitive performance: namely direct search
methods. The latter class (see [19]) counts several optimization methods, which do
not use derivatives but basically rely on “the ranks of a countable set of function
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values” [19], i.e. on comparing the objective function values in specific points of
the search space.

Among direct search methods we focus here on a subclass of iterative tech-
niques, which is usually addressed in the literature as Generating Set Search (GSS).
In the latter class, the main idea is that of decreasing the objective function at each
iteration, on a cone in IRn generated by suitable search directions. Pattern search
methods are in the GSS class, and have the distinguishing feature of enforcing, at
each iteration, a simple decrease of the objective function. Conversely, also line
search-based derivative-free methods are iterative schemes in GSS class, however
they impose at each iteration a so called sufficient reduction of f(x). We want to
show that global convergence properties of a modified PSO scheme may be
obtained by properly combining PSO with a line search-based derivative-free
method, so that convergence to stationary points can be forced at a reasonable cost
(see also items (b) and (c) of Sect. 3). On this guideline, there is plenty of examples
where evolutionary strategies are combined with GSS schemes and yield globally
convergent algorithms (see for instance [15, 31, 32]). In particular, in the last
reference PSO is hybridized within a pattern search framework, and a resulting
method converging to stationary points is given.

Observe that in the literature of derivative-free methods we can also find PSO-
based approaches combined with a trust-region framework (see [31, 32]), in order
to provide again globally convergent methods to stationary points.

In this section we consider the solution of the problem (1), and we focus on a
modified PSO scheme, combined with a line search-based derivative-free algo-
rithm. We study in particular the nature of limit points of the sequences fxkj g, j = 1,
…,P, when Assumption 1 holds. However, we think that to have a better insight in
our analysis, the following very preliminary results (see also [7]) can help the reader
grasp the importance of the GSS class, in order to ensure convergence to stationary
points.

Definition 1 Given the set of vectors D = {d1,…,dm} of IRn, we say that D is a
Positively Spanning Set (PSS) if for any vector u 2 IRn we have

u ¼
Xm
i¼1

aidi; ai � 0;

i.e. any vector u of IRn can be expressed as the weighted sum of the vectors in D,
using nonnegative weights.

Thus, a PSS substantially provides a set of vectors which positively span the
space IRn. It can be easily proved that if D is a PSS of IRn, then its cardinality must
be at least n + 1. It is very easy to define PSSs; simple examples of them in IR2 are
given in Fig. 1, where m = 4 (top and bottom) and m = 3 (middle). In addition, there
is the following nice property of PSSs that we are going to exploit in our proposal.
If the point x 2 IRn is not stationary for f in (1) (i.e. rf ðxÞ 6¼ 0), given the PSS D in
IRn, there exists at least one vector, say d̂ 2 D, such that rf ðxÞT d̂\0, meaning that
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the direction d̂ is of descent for f(x) at x. The latter fact ensures that if the current
point is not stationary, and a PSS is available, roughly speaking there is at least one
direction of descent for f(x) in the PSS.

A so called cosine measure cm(D) can be associated to the PSS D of IRn, defined
as follows.

Definition 2 Given the PSS D = {d1,…,dm} in IRn, we define the cosine measure
cm(D) of D as

cmðDÞ ¼ min
v2IRnnf0g

max
di2D

vTdi
kvkkdik
� �

;

being always cm(D) > 0.

By Definition 2 the quantity cm(D) clearly represents a measure of the least
orthogonal projection of any vector in IRn on vectors in D. As a consequence, if cm
(D) → 0 then D might be not a ‘good’ PSS and consequently it might be difficult to
find a descent direction for f in D. The following result clarifies the importance of
introducing PSSs in derivative-free optimization, in order to characterize stationary
points, without using any information on the gradient of f in (1).

Fig. 1 Examples of PSSs in
IR2. The subscript ‘⊕’ in the
uppermost PSS means that the
vectors in the set are the
coordinate unit vectors ± ei,
i = 1,…,n
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Theorem 1 Let D = {d1,…,dm} be a PSS. Suppose the function f(x) in (1) is
continuously differentiable in IRn and the gradient rf ðxÞ satisfies the Lipschitz
condition

rf ðyÞ � rf ðxÞk k� mky� xk; 8y 2 B
	 ðx; adÞ; d ¼ max

1� i�m
kdik;

for some ν > 0 and α > 0. If f(x) ≤ f(x + αdi ), i = 1,…,m, then the following bound
holds for the gradient of f(x)

krf ðxÞk� m
2

1
cmðDÞ ad: ð16Þ

Proof Since D is a PSS, there exists at least one vector in the set fdig, say d̂ 2 D,
such that

cmðDÞ� �rf ðxÞT d̂
krf ðxÞkkd̂k ;

hence, recalling that α is positive, we have equivalently

cmðDÞkrf ðxÞkkd̂ka� �rf ðxÞTðad̂Þ: ð17Þ

h

On the other hand, the hypothesis of continuous differentiability of f(x) allows to
apply the Mean Value Theorem in the integral form, being for any d ∊ D

f ðxþ adÞ ¼ f ðxÞ þ
Z1
0

rf ½xþ tad�TðadÞdt;

or equivalently

0� f ðxþ adÞ � f ðxÞ ¼
Z1
0

rf ½xþ tad�TðadÞdt: ð18Þ

Combining (17) and (18) we obtain for the direction d̂
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cmðDÞkrf ðxÞk kd̂ka � �rf ðxÞTðad̂Þ þ
Z1
0

rf ½xþ tad̂�Tðad̂Þdt

�
Z1
0

rf ½xþ tad̂�Tðad̂Þ � rf ðxÞTðad̂Þ�� ��dt

�
Z1
0

rf ½xþ tad̂� � rf ðxÞ�� ��kad̂kdt

� m
Z1
0

tkad̂k2dt� m
2
a2kd̂k2;

which immediately yields (16).
Loosely speaking, in order to suggest the reader the importance of Theorem 1, it

can be rephrased in the following simple way. If the PSS D is available and the
value f(x) cannot be decreased on points along all the directions in D, then it means
that the iterate x is a stationary point. Indeed, in the latter case, from (16) we have
lima!0 krf ðxÞk ¼ 0. Also note that if the PSS D is poor (i.e. cm(D) is small), then
the bound on the gradient (16) is poor accordingly.

Since in our proposal we combine PSO with a line search-based derivative-free
method, which relies on the use of PSSs, with out proposal we will be able to
characterize stationarity conditions for a modified PSO scheme, without recurring to
any information on the gradient rf ðxÞ. In the next section we describe some basic
properties of the line search-based derivative-free method we couple with PSO.

5 Preliminaries on the Line Search-Based Method Adopted

We consider in this section the proposal by Lucidi and Sciandrone in 2002 [20],
which includes some line search-based derivative-free methods. Since it is our
intention to reduce the complexity of our proposal as much as possible, the next result
represents a simplified version of the material of Lucidi and Sciandrone in 2002 [20].

Proposition 1 Let f : IRn ! IR, with f continuously differentiable in IRn. Suppose
that the points in the sequence {xk} are bounded. Suppose the directions dk1; . . .; d

k
m

are bounded and form a positively spanning set of IRn. Then, the following sta-
tionarity condition holds

lim
k!1

krf ðxkÞk ¼ 0 if and only if lim
k!1

Xm
j¼1

min 0;rf ðxkÞTdkj
n o

¼ 0: ð19Þ
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Let us consider the sequence {xk} in (19) and Theorem 1. By Proposition 1
necessary and sufficient conditions of stationarity for the sequence {xk} can be
accomplished by simply exploiting at any iterate xk the function f(x) (through its
directional derivative rf ðxkÞTdkj ), along the search directions dk1; . . .; d

k
m. Table 1

details a line search-based derivative-free method for unconstrained minimization,
which uses the results of Proposition 1. In Lucidi and Sciandrone [20] a complete
convergence analysis was developed for the Algorithm LS-DF and the following
conclusion was proved (see e.g. Proposition 5.1 in [20]).

Proposition 2 Suppose the directions dk1; . . .; d
k
m satisfy Proposition 1. Consider

the sequence {xk} generated by the Algorithm LS-DF and let the level set L0 ¼
fx 2 IRn : f ðxÞ� f ðx0Þg be compact. Then we have

lim inf
k!1

krf ðxkÞk ¼ 0: ð20Þ

Note that the condition (20) is weaker than (19), and in principle is met only
asymptotically by the Algorithm LS-DF. Of course, recalling also the results in
Theorem 1, a practical stopping condition of Algorithm LS-DF could be obtained by
monitoring the steplength �ak at Steps 2 and 3. The algorithm can stop when �ak

becomes sufficiently small. Also observe that at Step 4 the point xk+1 might be
computed for instance by any heuristic procedure; nevertheless, we can set in any
case xk+1 ≡ yk, since convergence analysis does not require f(xk+1) < f(yk).

As a final consideration, note that relation (20) may be strongly strengthened by
choosing a different (and computationally more expensive) strategy at Step 2 of the
Algorithm LS-DF. Indeed, instead of requiring that at Step 2 just one direction is of
sufficient decrease for the objective function (i.e. f(xk + αkdj

k) ≤ f(xk) − γ(αk)2 for at
least one index j 2 f1; . . .;mg), we can exploit f(x) along all the directions

Table 1 The line search-based derivative-free algorithm LS-DF (see also Lucidi and Sciandrone
2002 [20])
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fdk1; . . .; dkmg in the PSS. The resulting algorithm is Algorithm LS-DF+ in Table 2. We
recall that, for the sake of simplicity and in order to keep the computational cost as
low as possible, we will couple PSO only with Algorithm LS-DF. In the following
proposition we summarize convergence properties also for Algorithm LS-DF+: we
remark that they are definitely stronger than the result in Proposition 2.

Proposition 3 Suppose the directions dk1; . . .; d
k
m satisfy Proposition 1. Consider

the sequence {xk} generated by the Algorithm LS-DF+and let the level set L0 ¼
fx 2 IRn : f ðxÞ� f ðx0Þg be compact. Then we have

lim
k!1

krf ðxkÞk ¼ 0: ð21Þ

Table 2 The line search-based derivative-free algorithm LS-DF+ in Lucidi and Sciandrone (2002)
[20]
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It is evident that in Algorithm LS-DF+ the stronger convergence result is obtained
at the expense of a larger computational cost in Step 2. In addition, the procedure
LINE SEARCH () is aimed to determine a possible expansion of the steplength akj .

6 A Hybrid Algorithm

In this section we propose a hybrid algorithm, obtained by coupling the PSO
scheme described in Sect. 2 with the algorithm in Table 1. We remind the reader
that the resulting method should be endowed with both the (local) convergence
properties of Algorithm LS-DF and the (global) strategies of exploration of PSO (see
also Sect. 1).

Of course, it is far obvious that simply alternating a finite sequence of steps of
PSO and a finite sequence of steps of Algorithm LS-DF would provide a method
satisfying a property similar to Proposition 2. However, the latter strategy might be
a blind sequential application of two different algorithms, which does not exploit
their peculiarities. On the contrary, we prefer to consider a scheme which at once
both exploits (local strategy) and explores (global strategy) the objective function.
Thus, we consider here a PSO-based method which attempts to detect a global
minimum of the objective function, while retaining the asymptotic convergence
properties of Algorithm LS-DF.

Our proposal (namely Algorithm LS-DF_PSO) is summarized in Table 3 and its
convergence properties to stationary points are summarized in the next proposition
(see also [20]).

Proposition 4 Suppose the directions d1
k,…,dm

k satisfy Proposition 1. Consider the
sequence {xk} generated by the Algorithm LS-DF_PSO and let the level set L0 ¼
fx 2 IRn : f ðxÞ� f ðx0Þg be compact. Then we have

lim inf
k!1

krf ðxkÞk ¼ 0: ð22Þ

Proof Observe that the Algorithm LS-DF and the Algorithm LS-DF_PSO differ only at
Step 1 and Step 4. Indeed, Step 1 and Step 4 of Algorithm LS-DF_PSO are simply
obtained from the corresponding steps of Algorithm LS-DF, observing that the
iterates yk (Step 1) and xk+1 (Step 4) are computed by using PSO. Therefore,
convergence properties of the sequence generated by the Algorithm LS-DF_PSO are
basically inherited from Proposition 2. h

We conclude this section by highlighting that similarly to Algorithm LS-DF_PSO,
instead of using Algorithm LS-DF, we can couple PSO with the Algorithm LS-DF+.
The resulting hybrid scheme, would be much similar to Algorithm LS-DF_PSO but
more expensive than the algorithm in Table 3. Moreover, it would be also endowed
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with convergence properties similar to those reported in Proposition 3, so that the
condition (22), which is worth for Algorithm LS-DF_PSO, would be reinforced with a
condition like (21).

7 Numerical Results

Numerical results are presented for the Rosenbrock function and for two real-world
optimization problems in ship hydrodynamics. Specifically, a four-parameters
shape optimization of a catamaran is investigated for (a) resistance reduction in
calm water at fixed speed, and (b) expected resistance reduction in wave, taking into
account stochastic sea state and speed. For all optimization problems, the deter-
ministic implementation of PSO presented by Serani et al. in 2014 [28] is used for
extension to LS-DF_PSO. A number of particles equal to 4n is used, with initialization
over the variables domain by Hammersely sequence sampling, and PSO coefficients
given by Clerc in 2006 [6], i.e., χ = 0.721, w = 1, cr ¼ �c�r ¼ 1:655 (see the work by
Serani et al. in 2014 [28] for details). LS-DF_PSO parameters are set as hk = 1,
γ = 10−3, θ = 0.5, αk = 0.25 of the design variable range.

Specifically, the minimization in IR2 of the Rosenbrock function,

f ðx; yÞ ¼ ða� xÞ2 þ bðy� x2Þ2 ð23Þ

Table 3 The line search-based derivative-free algorithm LS-DF_PSO
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with n = 2, a = 1, b = 100, −20 ≤ x ≤ 20 and �20� y� 20, is used as an
explanatory test problem. Figure 2a shows the convergence of the LS-DF_PSO
algorithm, compared to the standard PSO. Black squares indicate LS-DF_PSO itera-
tions where the line search procedure LS is used to improve the optimum location.
Figure 2b shows a comparison of the algorithms’ convergence in a close up of the
variables domain. The global-optimum location history is depicted, along with the
real minimum, which is located at x = 1, y = 1. The beneficial effects of using PSO
with LS are evident, providing a faster and more effective convergence to the
optimum, along with the identification of the proper region of the global optimum.

The shape optimization of the Delft catamaran is shown as an example of
industrial design problems. The Delft catamaran is a concept ship used for exper-
imental and numerical benchmarks (see, e.g., the numerical studies presented by
Diez et al. in 2013 [11]). Figure 3 shows the Delft catamaran model during towing
tank experiments at CNR-INSEAN, along with a detail of the original hull shape.
The design optimization problems are taken from the work by Chen et al. in 2014
[3] and Diez et al. in 2013 [9] respectively, and solved by means of stochastic
radial-basis functions interpolation (details may be found in the work by Volpi et al.
in 2014 [33]) of high-fidelity unsteady Reynolds-averaged Navier-Stokes (URANS)
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Fig. 2 Rosenbrock function minimization: convergence of the objective function (a) and global-
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Fig. 3 Delft catamaran: towing tank experiments at CNR-INSEAN (a) and detail of the original
geometry (b)
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simulations. For the first problem, the design objective is the minimization of the
resistance in calm water at Froude number equal to 0.5 (see [3] for details). For the
second problem, the design objective is the reduction of the expected value of the
mean resistance in head waves, taking into account stochastic sea state in the North
Pacific ocean and variable speed (see [9] for details). For both problems, four
design variables control global shape modifications, based on the Karhunen-Loève
expansion of the shape modification vector [10].

Figure 4a shows the convergence of the minimization procedure for the first
problem, comparing PSO with LS-DF_PSO. LS is required only few times, as indi-
cated by the black squares, and the minima provided by the two algorithms are
extremely close, as shown in Figs. 4b and 5. Nevertheless, it may be noted that, at
very reduced additional cost, LS-DF_PSO provides a solution certified with sta-
tionarity properties.

Figure 6a shows the convergence of the minimization procedure for the second
problem, comparing PSO with LS-DF_PSO. LS is required and applied a larger
number of times than in the previous problem, and is essential to identify the global

Fig. 5 Minimization of calm-water resistance for the Delft catamaran: optimal shape design by
PSO (a) and LS-DF_PSO (b)
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optimum, as shown in Fig. 6b. As a result, optimal shape designs provided by PSO
and LS-DF_PSO are noticeably different (within the context of current application’s
variation), as shown in Fig. 7. Additionally, it may be noted that the solution given
by LS-DF_PSO is also endowed with stationarity properties.

8 Conclusions

In this chapter we have detailed some globally convergent modifications of PSO
iteration (2), for the solution of the unconstrained global optimization problem (1).
Under mild assumptions, Proposition 4 proved that at least a subsequence of the
iterates generated by our modified PSO, namely Algorithm LS-DF_PSO, converges to
a stationary point, which is possibly a minimum point. We recall that using the
standard PSO iteration, by no means we can guarantee convergence towards sta-
tionary points, unless we consider trivial cases of no practical interest. Thus, our
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optimal shape design by PSO (a) and LS-DF_PSO (b)
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result reinforces the theoretical properties of modified PSO schemes. To the best of
our knowledge, our result is also among the first attempts to couple PSO with line
search-based derivative-free schemes (see also [30, 31] for extensions to trust-
region derivative-free approaches), where a modified PSO scheme is proved to
satisfy conditions like (20) or (21).

On the basis of our experience, which seems confirmed by the results reported
here, we are persuaded that a fruitful coupling of PSO with an iterative globally
convergent derivative-free method, should yield a compromise, between the fast
progress of PSO (global search) in the early iterations, and the capability to exploit
(local search) the objective function.

We also have reported numerical experiences on a significant test function and
two ship design problems, which confirm that LS-DF_PSO is more effective (and to a
great extent equally efficient) than PSO. Indeed, LS-DF_PSO is able to achieve better
solutions/designs, and provides stationarity properties at the associated optimal
points.
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