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Abstract In many applications, the complexity and nonlinearity of the problems
require novel and alternative approaches to problem solving. In recent years, nature-
inspired algorithms, especially those based on swarm intelligence, have become
popular, due to the simplicity and flexibility of such algorithms. Here, we review
briefly some recent algorithms and then outline the self-tuning framework for
parameter tuning. We also discuss some convergence properties of the cuckoo
search and the bat algorithm. Finally, we present some open problems as further
research topics.
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1 Introduction

In many applications, we have to deal with complex optimization problems with
complicated constraints. Such problems can be challenging to solve, due to their
complexity, nonlinearity and potentially high-dimensionality. These problems can
even be NP-hard, and thus require alternativemethods because conventional methods
usually cannot cope such complex problems. In recent years, nature-inspired meta-
heuristic algorithms have gained huge popularity because they have demonstrated
some promising results in solve tough optimization problems. These metaheuristic
algorithms include ant colony optimization, particle swarm optimization, cuckoo
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search, firefly algorithm, bat algorithm, bee algorithms and others [1–4]. There are
many reasons for such popularity. From the algorithm analysis point of view, these
algorithms tend to be flexible, efficient and highly adaptable, and yet easy to
implement. The high efficiency of these algorithms makes it possible to apply them to
a wide range of problems in diverse applications.

Swarm intelligence is quite a general concept that multiple agents interact and
exchange information, following simple rules. Rather surprisingly, such simple
systems can show complex, self-organized behaviour. Though the characteristics of
agent interactions may be drawn from different sources of inspiration in nature [4],
algorithmic procedures can be quite simple and flexible, and yet efficient in practice.
On the other hand, evolutionary computation is traditionally considered as part of
computational intelligence, which concerns optimization with continuous, combi-
natorial or mixed problems. Algorithms such as genetic algorithms and evolutionary
strategy are good examples of evolutionary computation. However, evolutionary
computation has broaden its scope and extended to include many areas. Loosely
speaking, swarm intelligence is part of the evolutionary computation paradigm, but
the interests in swarm intelligence are so overwhelming that swarm intelligence has
almost become a field of itself. Here, we will not debate what the right terminology or
fields should be. We will discuss both swarm intelligence and evolutionary com-
putation in the most broad sense.

The main purpose of this chapter is to provide an overview and the recent
advances concerning swarm intelligence and evolutionary computation. Therefore,
the chapter is organized as follows. Section 2 outlines some recent nature-inspired
algorithms, followed by the analysis and discussions of adaptation and diversity in
these algorithms in Sect. 3. Section 4 discusses the self-tuning framework for
parameter tuning and control, while Sect. 5 outlines the convergence analysis of the
cuckoo search and the bat algorithm. Finally some discussions and open problems
are presented in Sect. 6.

2 Swarm Intelligence, Adaptation and Diversity

Extensive research activities have resulted in significant developments in swarm
intelligence (SI) in recent years. It is not possible to cover even a good fraction of
the extensive literature in this brief review and thus we have to focus on the most
recent algorithms, especially those in the last few years.

2.1 The Essence of an Algorithm

Different disciplines may view an algorithm differently, and the point of view all
depends on the perspective. In essence, algorithm A is an iterative process, which
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aims to generate a new and better solution xtþ1 to a given problem from the current
solution xt at iteration or (pseudo)time t. It can be written as

xtþ1 ¼ Aðxt; pÞ; ð1Þ

where p is an algorithm-dependent parameter. For example, the Newton-Raphson
method to find the optimal value of f ðxÞ is equivalent to finding the critical points
or roots of f 0ðxÞ ¼ 0 in a d-dimensional space. That is,

xtþ1 ¼ xt � f 0ðxtÞ
f 00ðxtÞ ¼ AðxtÞ: ð2Þ

Obviously, the convergence rate may become very slow near the optimal point
where f 0ðxÞ ! 0. Sometimes, the true convergence rate may not be as quick as it
should be. A simple way to improve the convergence is to modify the above
formula slightly by introducing a parameter p as follows:

xtþ1 ¼ xt � p
f 0ðxtÞ
f 00ðxtÞ ; p ¼ 1

1� A0ðx�Þ : ð3Þ

Here, x� is the optimal solution, or a fixed point of the iterative formula. For
simplicity, we can treat p as a step size and this essentially becomes the modified
Newton-Raphson method.

The above formula is for a trajectory-based, single agent system. For population-
based algorithms with a swarm of n solutions ðx1; x2; . . .; xnÞ, we can extend the
above iterative formula to a more general form
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where p1; . . .; pk are k algorithm-dependent parameters and �1; . . .; �m are m random
variables. An algorithm can be viewed as a dynamical system, Markov chains and
iterative maps [4], and it can also be viewed as a self-organized system [5]. Here,
the introduction of m random variables captures the essence of all contemporary
evolutionary algorithms because they all use some sort of randomization
techniques.

Whatever the perspective may be, the aim of such an iterative process is to let the
system evolve and converge into some stable optimality. In this case, it has strong
similarity to a self-organizing system. Such an iterative, self-organizing system can
evolve, according to a set of rules or mathematical equations. As a result, such a
complex system can interact and self-organize into certain converged states,
showing some emergent characteristics of self-organization. In this sense, the
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proper design of an efficient optimization algorithm is equivalent to finding efficient
ways to mimic the evolution of a self-organizing system [5]. In practice, all nature-
inspired algorithms try to mimic some successful characteristics of biological,
physical or chemical systems in nature [1, 4, 6].

Among all evolutionary algorithms, algorithms based on swarm intelligence (SI)
dominate the landscape. There are many reasons for this dominance, though three
obvious reasons are: (1) swarm intelligence uses multiple agents as an evolving,
interacting population, and thus provides good ways to mimic natural systems. (2)
Population-based approaches allow parallelization and vectorization implementa-
tions in practice, and are thus straightforward to implement. (3) SI-based algorithms
are simple and easy to implement, and they are flexible and yet sufficiently efficient.
As a result, these algorithms can deal with a relatively wide range of problems in
applications.

2.2 Particle Swarm Optimization

Among the swarm intelligence (SI) based algorithms, particle swarm optimization
(PSO) is among the first. PSO was developed by Kennedy and Eberhart in 1995 [1],
based on the swarm behaviour of fish or bird schooling in nature. Each particle
updates its position xi and velocity ti by

ttþ1i ¼ tti þ a �1½g� � xti� þ b�2½x�i � xti�; ð5Þ

xtþ1i ¼ xti þ ttþ1i ; ð6Þ

where �1 and �2 are two random vectors, drawn from a uniform distribution
between 0 and 1. Here, α and β are the learning parameters with typical values of
a � b � 2.

The literature of PSO is vast, with thousands of papers and dozens of books.
Therefore, we will not provide detailed literature review here, and readers can find
such literature quite easily.

2.3 Some Recent SI-Based Algorithms

In this section, we will focus on the SI-based optimization algorithms that have
been developed in recent years and these new algorithms have attracted much
attention in the last few years.
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2.3.1 Firefly Algorithm

The firefly algorithm (FA) is simple, flexible and easy to implement. FA was
developed by Yang in 2008 [2], which was based on the flashing patterns and
behaviour of tropical fireflies. FA can naturally deal with nonlinear multimodal
optimization problems.

The movement of a firefly i is attracted to another more attractive (brighter)
firefly j is determined by

xtþ1i ¼ xti þ b0e
�cr2ijðxtj � xtiÞ þ a �ti; ð7Þ

where the second term is due to the attraction of fireflies, and b0 is the attractiveness
at r ¼ 0. The third term is randomization with α being the randomization parameter,
and �ti is a vector of random numbers drawn from a Gaussian distribution at time
t. Other studies also use the randomization in terms of �ti that can easily be extended
to other distributions such as Lévy flights. A comprehensive review of the firefly
algorithm and its variants has been carried out by Fister et al. [7–9].

One novel feature of FA is that distance-related attraction is used, and this is the
first of its kind in any SI-based algorithms. Since local attraction is stronger than
long-distance attraction, the population in FA can automatically subdivide into
multiple subgroups, and each group can potentially swarm around a local mode.
Among all the local modes, there is always a global best solution which is the true
optimality of the problem. Thus, FA can deal with multimodal problems naturally
and efficiently [3].

2.3.2 Cuckoo Search

The cuckoo search (CS) was developed in 2009 by Yang and Deb [10]. CS is based
on the brood parasitism of some cuckoo species. In addition, this algorithm is
enhanced by the so-called Lévy flights [11], rather than by simple isotropic random
walks. Recent studies show that CS is potentially far more efficient than PSO and
genetic algorithms [12–14].

In essence, CS uses a balanced combination of a local random walk and the
global explorative random walk, controlled by a switching parameter pa. The local
random walk can be written as

xtþ1i ¼ xti þ as� Hðpa � �Þ � ðxtj � xtkÞ; ð8Þ

where xtj and xtk are two different solutions selected randomly by random permu-
tation, HðuÞ is a Heaviside function, ϵ is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights
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xtþ1i ¼ xti þ aLðs; kÞ; ð9Þ

where

Lðs; kÞ ¼ kCðkÞ sinðpk=2Þ
p

1
s1þk

; ðs�s0 [ 0Þ: ð10Þ

Here a[ 0 is the step size scaling factor, which should be related to the scales of
the problem of interest.

CS has two distinct advantages over other algorithms such as GA and SA, and
these advantages are: efficient randomwalks and balanced mixing. Since Lévy flights
are usually far more efficient than any other random-walk-based randomization
techniques, CS can be efficient in global search [3, 11]. In fact, recent studies show
that CS can have guaranteed global convergence [4]. In addition, the similarity
between eggs can produce better new solutions, which is essentially fitness-pro-
portional generation with a good mixing ability. In other words, CS has varying
mutation realized by Lévy flights, and the fitness-proportional generation of new
solutions based on similarity provides a subtle form of crossover. In addition, sim-
ulations also show that CS can have autozooming ability in the sense that new
solutions can automatically zoom into the region where the promising global opti-
mality is located.

In addition, Eq. (9) is essentially simulated annealing in the framework of
Markov chains. In Eq. (8), if pa ¼ 1 and as 2 ½0; 1�, CS can degenerate into a
variant of differentia evolution. Furthermore, if we replace xtj by the current best
solution g�, then (8) can further degenerate into accelerated particle swarm opti-
mization (APSO) [15]. This means that SA, DE and APSO are special cases of CS,
and this explains why CS is so efficient [3].

2.3.3 Bat Algorithm

The bat algorithm (BA) was developed by Yang in 2010 [16]. It was inspired by the
echolocation behavior of microbats. It is the first algorithm of its kind to use
frequency tuning. Each bat is associated with a velocity tti and a location xti, at
iteration t, in a d-dimensional search or solution space. Among all the bats, there
exists a current best solution x�. Therefore, the updating equations for xti and
velocities tti can be written as

fi ¼ fmin þ ðfmax � fminÞb; ð11Þ

tti ¼ tt�1i þ ðxt�1i � x�Þfi; ð12Þ
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xti ¼ xt�1i þ tti; ð13Þ

where b 2 ½0; 1� is a random vector drawn from a uniform distribution.
The loudness and pulse emission rates are regulated by the following equations:

Atþ1
i ¼ aAt

i; ð14Þ

and

rtþ1i ¼ r0i ½1� expð�ctÞ�; ð15Þ

where 0\a\1 and c[ 0 are constants. In essence, here α is similar to the cooling
factor of a cooling schedule in simulated annealing.

BA has been extended to multiobjective bat algorithm (MOBA) by Yang [17],
and Fister et al. have extended to a hybrid bat algorithm [18]. The preliminary
results suggested that they are very efficient [19, 20].

2.3.4 Flower Algorithm

Flower pollination algorithm (FPA) was developed by Yang in 2012 [21], inspired
by the flower pollination process of flowering plants. It has been extended to
multiobjective optimization problems and found to be very efficient [22, 23]. For
simplicity, we use the following four rules:

1. Biotic and cross-pollination can be considered as a process of global pollination
process, and pollen-carrying pollinators move in a way which obeys Lévy
flights (Rule 1).

2. For local pollination, abiotic pollination and self-pollination are used (Rule 2).
3. Pollinators such as insects can develop flower constancy, which is equivalent to

a reproduction probability that is proportional to the similarity of two flowers
involved (Rule 3).

4. The interaction or switching of local pollination and global pollination can be
controlled by a switch probability p 2 ½0; 1�, with a slight bias towards local
pollination (Rule 4).

In order to formulate updating formulae, we have to convert the above rules into
updating equations. For example, in the global pollination step, flower pollen
gametes are carried by pollinators such as insects, and pollen can travel over a long
distance because insects can often fly and move in a much longer range. Therefore,
Rule 1 and flower constancy can be represented mathematically as

xtþ1i ¼ xti þ cLðkÞðg� � xtiÞ; ð16Þ
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where xti is the pollen i or solution vector xi at iteration t, and g� is the current best
solution found among all solutions at the current generation/iteration. Here γ is a
scaling factor to control the step size.

Here LðkÞ is the parameter that corresponds to the strength of the pollination,
which essentially is also a step size. Since insects may move over a long distance
with various distance steps, we can use a Lévy flight to mimic this characteristic
efficiently. That is, we draw L[ 0 from a Levy distribution

L	 kCðkÞ sinðpk=2Þ
p

1
s1þk

; ðs�s0 [ 0Þ: ð17Þ

Here CðkÞ is the standard gamma function, and this distribution is valid for large
steps s[ 0. This step is essentially a global mutation step, which enables to explore
the search space more efficiently.

For the local pollination, both Rule 2 and Rule 3 can be represented as

xtþ1i ¼ xti þ �ðxtj � xtkÞ; ð18Þ

where xtj and xtk are pollen from different flowers of the same plant species. This
essentially mimics the flower constancy in a limited neighborhood. Mathematically,
if xtj and xtk comes from the same species or selected from the same population, this
equivalently becomes a local random walk if we draw ϵ from a uniform distribution
in [0, 1]. In essence, this is a local mutation and mixing step, which can help to
converge in a subspace.

In principle, flower pollination activities can occur at all scales, both local and
global. But in reality, adjacent flower patches or flowers in the not-so-far-away
neighborhood are more likely to be pollinated by local flower pollen than those far
away. In order to mimic this feature, we can effectively use a switch probability
(Rule 4) or proximity probability p to switch between common global pollination to
intensive local pollination. To start with, we can use a naive value of p ¼ 0:5 as an
initially value. A preliminary parametric showed that p ¼ 0:8 may work better for
most applications.

Recent studies suggested that flower pollination algorithm is very efficient for
multiobjective optimization [23, 24].

2.4 Other Evolutionary Algorithms

There are quite a few other evolutionary algorithms, though they are not swarm
intelligence based algorithms. So we also briefly introduce them here.
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2.4.1 Differential Evolution

Differential evolution (DE) was developed by Storn and Price in 1996 and 1997
[25, 26]. In fact, modern differential evolution (DE) has strong similarity to the
traditional mutation operator in the traditional pattern search. In essence, the
mutation in DE can be viewed as the generalized pattern search in any random
direction ðxp � xqÞ by

xi ¼ xr þ Fðxp � xqÞ; ð19Þ

where F is the differential weight in the range of [0,2]. Here, r, p, q, i are four
different integers generated by random permutation.

In addition, DE also has a crossover operator which is controlled by a crossover
probability Cr 2 ½0; 1� and the actual crossover can be carried out in two ways:
binomial and exponential. Selection is essentially the same as that used in genetic
algorithms. It is to select the most fittest, and for the minimization problem, the
minimum objective value. Therefore, we have

xtþ1i ¼ utþ1i if f ðutþ1i Þ
 f ðxtiÞ;
xti otherwise:

�
ð20Þ

Most studies have focused on the choice of F, Cr, and the population size n as
well as the modification of the mutation scheme. In addition, it can be clearly seen
that selection is also used when the condition in the above equation is checked.
Almost all variants of DE use crossover, mutation and selection, and the main
differences are in the step of mutation and crossover. For example, DE/Rand/1/Bin
use the three vectors for mutation, and binomial crossover. There are more than 10
different variants [27].

2.4.2 Harmony Search

Harmony search (HS) is a music-inspired algorithm, developed by Geem et al. in
2001 [28]. It is not swarm-intelligence-based, but it is a metaheuristic algorithm. In
the standard HS, solutions are represented in terms of a population of harmonies,
using the following three choices/rules (of a musician playing a piece of music): (1)
play any famous piece of music from memory, (2) play something similar to a
known piece (pitch adjustment), and (3) compose new or random notes. HS uses
mainly mutation and selection, while crossover is not explicitly used. The first rule
corresponds to selection or elitism, and the second and third rules are mutation.

Mutation can be local and global in HS. For example, the pitch adjustment (the
second rule) uses the following equation
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xnew ¼ xold þ bwe; ð21Þ

where bw is the bandwidth of the pitch adjustment, while ε is a random number
drawn from ½�1; 1�. This is a local random walk, and the distance of the random
walk is controlled by the bandwidth. This part can be considered as a local mutation
action with an equivalent mutation rate of 0.1–0.3.

The third rule is essentially mutation on a larger scale, which is essentially
equivalent to random walks. The selection is controlled by the probability of
choosing a harmony from harmony memory. Similar to genetic algorithms, this
choice of harmonies from the population is high with a typical value of 0.9, which
enables the system to converge in a subspace. However, this may be at the expense
of reduced probability of finding the global optimality in some highly nonlinear
problems.

2.4.3 Other Algorithms

Many other algorithms have appeared in the literature, which may require more
extensive analysis and comparisons [4]. However, as this is not the main focus of
this chapter, we will not go into more details about these algorithms.

One thing we may notice by analyzing these algorithms is that mutation and
selection are always used, while crossover are not used in most of these algorithms.
This may raise the question and further need to analyze what exactly the role of
crossover is. Therefore, there is a strong need to investigate further how two-stage
eagle strategy and co-evolutionary methods can work better. In addition, systematic
tuning of parameters in algorithms and careful control of these algorithm-dependent
parameters may be very useful to understand how these algorithms behave and how
to improve them in practice.

3 Adaptation and Diversity

The effectiveness of these algorithms can be attributed to two important charac-
teristics: adaptation and diversity of nature-inspired optimization algorithms.

Adaptation in nature-inspired algorithms can take many forms. For example, the
ways to balance exploration and exploitation are the key form of adaptation [29].
As diversity can be intrinsically linked with adaptation, it is better not to discuss
these two features separately. If exploitation is strong, the search process will use
problem-specific information (or landscape-specific information) obtained during
the iterative process to guide the new search moves, this may lead to the focused
search and thus reduce the diversity of the population, which may help to speed up
the convergence of the search procedure. However, if exploitation is too strong, it
can result in the quick loss of diversity in the population and thus may lead to the
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premature convergence. On the other hand, if new search moves are not guided by
local landscape information, it can typically increase the exploration capability and
generate new solutions with higher diversity. However, too much diversity and
exploration may result in meandered search paths, thus lead to the slow conver-
gence. Therefore, adaptation of search moves so as to balance exploration and
exploitation is crucial. Consequently, to maintain a balanced diversity in population
is also important.

Adaptation can also be in terms of the representations of solutions of a problem. In
genetic algorithms, representations of solutions are usually in binary or real-valued
strings [29, 30], while in swarm-intelligence-based algorithms, representations
mostly use real number solution vectors. For example, the population size used in an
algorithm can be fixed or varying. Adaptation in this case may mean to vary the
population size so as to maximize the overall performance.

For a given algorithm, adaptation can also occur to adjust its algorithm-dependent
parameters. As the performance of an algorithm can largely depend on its parameters,
the choice of these parameter values can be very important. Values can be varied so as
to adapt the landscape type of the problem and thus may lead to better search
efficiency. Such parameter tuning is in essence parameter adaptation. Once param-
eters are tuned, they can remain fixed. However, there is no particular reason why
parameters should be fixed. In fact, adaptation in parameter can be extended to
parameter control. That is to control the parameter values in such a way that their
values vary during the iterations so that optimal performance of the algorithm can be
achieved.

Diversity in metaheuristic algorithms can also take many forms. The simplest
diversity is to allow the variations of solutions in the population by randomization.
For example, solution diversity in genetic algorithms is mainly controlled by
mutation rates and crossover mechanisms, while in simulated annealing, diversity is
achieved by random walks. In most swarm-intelligence-based algorithms, new
solutions are generated according to a set of deterministic equations, which also
include some random variables. Diversity is represented by the variation, often in
terms of population variance. Once the population variance is getting smaller
(approaching zero), diversity also decreases, leading to converged solution sets.
However, if diversity is reduced too quickly, premature convergence may occur.
Therefore, a right amount of randomness and the right form of randomization can
be crucial.

In addition, adaptation and diversity can also be related to the selection of
solutions among the population and the replacement of the old population. If the
selection is based on the fitness, parent solutions with higher fitness will be more
likely to pass onto the next generation. In the extreme case, only the best solutions
can be selected, which is a kind of elitism. If the replacement of worst solutions by
new (hopefully better) solutions, this will ensure that better solutions will remain in
the population. The balance of what to replace and what to pass on can be tricky,
which requires good adaptation so as to maintain good diversity in the population.

Swarm Intelligence and Evolutionary Computation … 11



4 Self-Tuning Algorithms

From a mathematical point of view, an algorithm A tends to generate a new and
better solution xtþ1 to a given problem from the current solution xt at iteration or
time t. In modern metaheuristic algorithms, randomization is often used in an
algorithm, and in many cases, randomization appears in the form of a set of
m random variables e ¼ ðe1; . . .; emÞ in an algorithm. For example, in simulated
annealing, there is one random variable, while in particle swarm optimization, there
are two random variables. In addition, there are often a set of k parameters in an
algorithm. For example, in particle swarm optimization, there are 4 parameters (two
learning parameters, one inertia weight, and the population size). In general, we can
have a vector of parameters p ¼ ðp1; . . .; pkÞ. Mathematically speaking, we can
write an algorithm with k parameters and m random variables as

xtþ1 ¼ Aðxt; pðtÞ; eðtÞÞ; ð22Þ

where A is a nonlinear mapping from a given solution (a d-dimensional vector xt) to
a new solution vector xtþ1.

Representation (22) gives rise to two types of optimality: optimality of a problem
and optimality of an algorithm [4, 31]. For an optimization problem such as
min f ðxÞ, there is a global optimal solution whatever the algorithmic tool we may
use to find this optimality. This is the optimality for the optimization problem. On
the other hand, for a given problem Φ with an objective function f ðxÞ, there are
many algorithms that can solve it. Some algorithms may require less computational
effort than others. There may be the best algorithm with the least computing cost,
though this may not be unique. However, this is not our concern here. Once we
have chosen an algorithm A to solve a problem Φ, there is an optimal parameter
setting for this algorithm so that it can achieve the best performance. This opti-
mality depends on both the algorithm itself and the problem it solves. In the rest of
this chapter, we will focus on this type of optimality.

That is, the optimality to be achieved is

Maximize the performance of n ¼ AðU; p; eÞ; ð23Þ

for a given problem Φ and a chosen algorithm Að:; p; eÞ. We will denote this
optimality as n� ¼ A�ðU; p�Þ ¼ nðU; p�Þ where p� is the optimal parameter setting
for this algorithm so that its performance is the best. Here, we have used a fact that ε
is a random vector can be drawn from some known probability distributions, thus
the randomness vector should not be related to the algorithm optimality.

It is worth pointing out that there is another potential optimality. That is, for a
given problem, a chosen algorithm with the best parameter setting p�, we can still
use different random numbers drawn from various probability distributions and
even chaotic maps, so that even better performance may be achieved. Strictly
speaking, if an algorithm Að:; :; eÞ has a random vector ε that is drawn from a
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uniform distribution e1	Uð0; 1Þ or from a Gaussian e2	Nð0; 1Þ, it becomes two
algorithms A1 ¼ Að:; :; e1Þ and A2 ¼ Að:; :; e2Þ. Technically speaking, we should
treat them as different algorithms. Since our emphasis here is about parameter
tuning so as to find the optimal setting of parameters, we will omit the effect of
randomness vectors, and thus focus on

Maximize n ¼ AðU; pÞ: ð24Þ

In essence, tuning algorithm involves in tuning its algorithm-dependent
parameters. Therefore, parameter tuning is equivalent to algorithm tuning in the
present context.

4.1 Parameter Tuning

In order to tune AðU; pÞ so as to achieve its best performance, a parameter-tuning tool,
i.e., a tuner, is needed. Like tuning a high-precision machinery, sophisticated tools
are required. For tuning parameters in an algorithm, what tool can we use? One way is
to use a better, existing tool (say, algorithm B) to tune an algorithm A. Now the
question may become: how do you know B is better? Is B well-tuned? If yes, how do
you tune B in the first place? Naively, if we say, we use another tool (say, algorithm
C) to tune B. Now again the question becomes how algorithm C has been tuned? This
can go on and on, until the end of a long chain, say, algorithm Q. In the end, we need
some tool/algorithm to tune this Q, which again comes back to the original question:
how to tune an algorithm A so that it can perform best?

It is worth pointing out that even if we have good tools to tune an algorithm, the
best parameter setting and thus performance all depend on the performance measures
used in the tuning. Ideally, these parameters should be robust enough to minor
parameter changes, random seeds, and even problem instance. However, in practice,
they may not be achievable. According to Eiben [32], parameter tuning can be
divided into iterative and non-iterative tuners, single-stage and multi-stage tuners.
The meaning of these terminologies is self-explanatory. In terms of the actual tuning
methods, existing methods include sampling methods, screening methods, model-
based methods, and metaheuristic methods. Their success and effectiveness can
vary, and thus there are no well-established methods for universal parameter tuning.

4.2 Framework for Self-Tuning Algorithms

From our earlier observations and discussions, it is clear that parameter tuning is the
process of optimizing the optimization algorithm; therefore, it is a hyper-optimization
problem. In essence, a tuner is a meta-optimization tool for tuning algorithms [31].
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For a standard unconstrained optimization problem, the aim is to find the global
minimum f� of a function f ðxÞ in a d-dimensional space. That is,

Minimize f ðxÞ; x ¼ ðx1; x2; . . .; xdÞ: ð25Þ

Once we choose an algorithm A to solve this optimization problem, the algo-
rithm will find a minimum solution fmin which may be close to the true global
minimum f�. For a given tolerance δ, this may requires td iterations to achieve
jfmin � f�j 
 d. Obviously, the actual td will largely depend on both the problem
objective f ðxÞ and the parameters p of the algorithm used.

The main aim of algorithm-tuning is to find the best parameter setting p� so that
the computational cost or the number of iterations td is the minimum. Thus,
parameter tuning as a hyper-optimization problem can be written as

Minimize td ¼ Aðf ðxÞ; pÞ; ð26Þ

whose optimality is p�.
Ideally, the parameter vector p� should be sufficiently robust. For different types

of problems, any slight variation in p� should not affect the performance of A much,
which means that p� should lie in a flat range, rather than at a sharp peak in the
parameter landscape.

4.3 A Multiobjective View

If we look the algorithm tuning process from a different perspective, it is possible to
construct it as a multi-objective optimization problem with two objectives: one
objective f ðxÞ for the problem Φ and one objective td for the algorithm. That is

Minimize f ðxÞ and Minimize td ¼ Aðf ðxÞ; pÞ; ð27Þ

where td is the (average) number of iterations needed to achieve a given tolerance δ
so that the found minimum fmin is close enough to the true global minimum f�,
satisfying jfmin � f�j 
 d.

This means that for a given tolerance δ, there will be a set of best parameter
settings with a minimum td. As a result, the bi-objectives will form a Pareto front. In
principle, this bi-objective optimization problem (27) can be solved by any methods
that are suitable for multiobjective optimization. But as δ is usually given, a natural
way to solve this problem is to use the so-called ϵ-constraint or δ-constraint
methods. The naming may be dependent on the notations; however, we will use δ-
constraints.

For a given d� 0, we change one of the objectives (i.e., f ðxÞ) into a constraint,
and thus the above problem (27) becomes a single-objective optimization problem
with a constraint. That is

14 X.-S. Yang and X. He



Minimize td ¼ Aðf ðxÞ; pÞ; ð28Þ

subject to

f ðxÞ
 d: ð29Þ

In the rest of this chapter, we will set d ¼ 10�5.
The important thing is that we still need an algorithm to solve this optimization

problem. However, the main difference from a common single objective problem is
that the present problem contains an algorithm A. Ideally, an algorithm should be
independent of the problem, which treats the objective to be solved as a black box.
Thus we have Að:; p; eÞ, however, in reality, an algorithm will be used to solve a
particular problem Φ with an objective f ðxÞ. Therefore, both notations Að:; pÞ and
Aðf ðxÞ; pÞ will be used here.

4.4 Self-Tuning Framework

This framework has been proposed by Yang et al. in 2013 [31]. In principle, we can
solve (28) by any efficient or well-tuned algorithm. Now a natural question is: Can
we solve this algorithm-tuning problem by the algorithm A itself? There is no
reason why we cannot. In fact, if we solve (28) by using A, we have a self-tuning
algorithm. That is, the algorithm automatically tunes itself for a given problem
objective to be optimized. This essentially provides a framework for a self-tuning
algorithm as shown in Fig. 1.

This framework is generic in the sense that any algorithm can be tuned this way,
and any problem can be solved within this framework. This essentially achieves
two goals simultaneously: parameter tuning and optimality finding.

4.5 Self-Tuning Firefly Algorithm

Now let us use the framework outlined earlier to tune the firefly algorithm (FA). As
we have seen earlier, FA has the following updating equation:

xtþ1i ¼ xti þ b0e
�cr2ijðxtj � xtiÞ þ a�ti; ð30Þ

which contains four parameters: a; b0; c and the population size n. For simplicity for
parameter tuning, we set b0 ¼ 1 and n ¼ 20, and therefore the two parameters to be
tuned are: c[ 0 and a[ 0. It is worth pointing out that γ controls the scaling, while
α controls the randomness. For this algorithm to convergence properly, randomness

Swarm Intelligence and Evolutionary Computation … 15



should be gradually reduced, and one way to achieve such randomness reduction is
to use

a ¼ a0h
t; h 2 ð0; 1Þ; ð31Þ

where t is the index of iterations/generations. Here a0 is the initial randomness
factor, and we can set a0 ¼ 1 without losing generality. Therefore, the two
parameters to be tuned become γ and θ. This framework works wells as shown by
Yang et al. [31].

5 Convergence Analysis

There some solid mathematical analysis of nature-inspired algorithms such as
differential evolution, genetic algorithms [33], simulated annealing and particle
swarm optimization. In recent years, more theoretical results appear, and in the rest
of this section, we summarize some of the recent advances.

5.1 Global Convergence of Cuckoo Search

Wang et al. provided a mathematical proof of global convergence for the standard
cuckoo search, and their approach is based on the Markov chain theory [34]. Their
proof can be outlined as follows:

As there are two branches in the updating formulas, the local search step only
contributes mainly to local refinements, while the main mobility or exploration is
carried out by the global search step. In order to simplify the analysis and also to
emphasize the global search capability, we now use a simplified version of cuckoo
search. That is, we use only the global branch with a random number r 2 ½0; 1�,
compared with a discovery/switching probability pa. Now we have

Implement an algorithm A(., p, ε)
with parameters p = [p1, ..., pK ] and random vector ε = [ε1, ..., εm];

Define a tolerance (e.g., δ = 10−5);
Algorithm objective tδ(f(x), p, ε);

Problem objective function f(x);
Find the optimality solution fmin within δ;
Output the number of iterations tδ needed to find fmin;

Solve min tδ(f(x), p) using A(., p, ε) to get the best parameters;
Output the tuned algorithm with the best parameter setting p∗.

Fig. 1 A framework for a self-tuning algorithm
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xðtþ1Þi  xðtÞi if r\pa;

xðtþ1Þi  xðtÞi þ a� LðkÞ if r[ pa:

(
ð32Þ

As our cuckoo search algorithm is a stochastic search algorithm, we can sum-
marize it as the following key steps:

1. Randomly generate an initial population of n nests at the positions,
X ¼ fx01; x02; . . .; x0ng, then evaluate their objective values so as to find the cur-
rent global best g0t .

2. Update the new solutions/positions by

xðtþ1Þi ¼ xðtÞi þ a� LðkÞ: ð33Þ

3. Draw a random number r from a uniform distribution [0,1]. Update xðtþ1Þi if
r[ pa. Then, evaluate the new solutions so as to find the new, global best g�t .

4. If the stopping criterion is met, then g�t is the best global solution found so far.
Otherwise, return to step (2).

The global convergence of an algorithm. If f is measurable and the feasible
solution space Ω is a measurable subset on <n, algorithm A satisfies the above two
conditions with the search sequence fxkg1k¼0, then

lim
k!1

Pðxk 2 R�;MÞ ¼ 1: ð34Þ

That is, algorithm A can converge globally with a probability of one. Here Pðxk 2
R�;MÞ is the probability measure of the kth solution on R�;M at the kth iteration.

The state and state space. The positions of a cuckoo/nest and its global best
solution g in the search history forms the states of cuckoos: y ¼ ðx; gÞ, where
x; g 2 X and f ðgÞ
 f ðxÞ. The set of all the possible states forms the state space,
denoted by

Y ¼ fy ¼ ðx; gÞjx; g 2 X; f ðgÞ
 f ðxÞg: ð35Þ

The states and state space of the cuckoo group/population. The states of all
n cuckoos/nests form the states of the group, denoted by q ¼ ðy1; y2; . . .; ynÞ. All the
states of all the cuckoos form a state space for the group, denoted by

Q ¼ fq ¼ ðy1; y2; . . .; ynÞ; yi 2 Y ; 1
 i
 ng: ð36Þ

Obviously, Q contains the historical global best solution g� for the whole popu-
lation and all individual best solutions gið1
 i
 nÞ in history. In addition, the
global best solution of the whole population is the best among all gi, so that
f ðg�Þ ¼ minðf ðgiÞÞ; 1
 i
 n.
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The transition probability from state y1 to y2 in cuckoo search is

PðTyðy1Þ ¼ y2Þ ¼ Pðx1 ! x01ÞPðg1 ! g01ÞPðx01 ! x2ÞPðg01 ! g2Þ; ð37Þ

where Pðx1 ! x01Þ is the transition probability at Step 2 in cuckoo search, and
Pðg1 ! g01Þ is the transition probability for the historical global best at this
step. Pðx01 ! x2Þ is the transition probability at Step 3, while Pðg01 ! g2Þ is the
transition probability of the historical global best.

For globally optimal solution gb for an optimization problem \X; f [ , the
optimal state set is defined as R ¼ fy ¼ ðx; gÞjf ðgÞ ¼ f ðgbÞ; y 2 Yg.

For the globally optimal solution gb to an optimization problem \X; f [ , the
optimal group state set can be defined as

H ¼ fq ¼ ðy1; y2; . . .; ynÞj9yi 2 R; 1
 i
 ng: ð38Þ

All these will ensure that the convergence conditions are met. Further detailed
mathematical analysis proves that when the number of iteration approaches suffi-
ciently large [34], the group state sequence will converge to the optimal state/
solution set H. Therefore, the cuckoo search has guaranteed global convergence.

5.2 Convergence of the Bat Algorithm

Huang et al. have carried out a detailed convergence analysis for the bat algorithm
using the finite Markov process theory [35].

In theory, an algorithm with an order-m reducible stochastic matrix P can be
rewritten as

P ¼ S. . .0
R. . .T

� �
; ð39Þ

where R 6¼ 0, T 6¼ 0, and S is order-q stochastic matrix (with q\m). Then, we have

P1 ¼ lim
k!1

Pk

¼ lim
k!1

Sk . . . 0Pk�1
i¼1

TiRSk�i . . . Tk

0
@

1
A ¼ S1. . .0

R1. . .T

� �
;

ð40Þ

which is a stable stochastic matrix and independent of the initial distribution. In
addition, we also have
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P1 ¼ ½pij�m�m;
pij [ 0; ð1
 i
m; 1
 j
 qÞ;
pij ¼ 0; ð1
 i
m; q\j
mÞ:

�
ð41Þ

The search algorithm will converge with almost probability one to the global
optimality, starting from any initial random states, if the transition probability p to a
better solution/state is p[ 0. Conversely, if the transition probability p to a worse
state is greater, then the algorithm will not converge.

With this main result, it has been proved that PSO will not converge to the global
optimality [36], while the bat algorithm will converge to the true global optimality
[35].

Huang et al. concluded that for unconstrained function optimization, the bat
algorithm satisfies all the conditions for guaranteed global convergence. For non-
linear constrained problems, the bat algorithm will converge with additional ini-
tialization of orthogonal Latin squares, and has guaranteed global convergence to
the true global optimality. They further concluded that

S1 ¼ ð1Þ; R1 ¼ ð1; 1; . . .; 1ÞT ; ð42Þ

and

P1 ¼
1 0 . . . 0
1 0 . . . 0
..
. ..

. ..
.

1 0 . . . 0

0
BB@

1
CCA; ð43Þ

which leads to

lim
t!1 pff ðxÞ ! f ðx�Þg ¼ 1: ð44Þ

That is, the global convergence is guaranteed.
Huang et al. also proposed a BA variant, called modified bat algorithm (MBA)

[35], which can further improve the convergence rate with guaranteed global
optimality. They also showed that this variant is suitable for large-scale, global
optimization.

For the moment, most convergence studies can provide some results in terms of
the long term behaviour of an algorithm during iterations; however, there are not
enough results about the convergence rates to indicate how quickly an algorithm
can converge and under what conditions. Obviously, more theoretical are highly
needed to analyze these algorithms further.
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6 Discussions and Open Problems

Despite the huge success of nature-inspired algorithms, there are still some chal-
lenging, open problems that need to be addressed. These open problems include the
balance of exploration and exploitation, selection mechanisms, right amount of
randomization, parameter tuning as well as parameter control, scalability and
others.

• Mathematical Framework: It still lacks a general mathematical framework for
analyzing the convergence and stability of metaheuristic algorithms. There are
some good results using Markov chains, dynamic systems and self-organization
theory, but a systematic framework is yet to be developed.

• Exploration and exploitation: A key problem is how to balance of exploration
and exploitation in an algorithm so that it can deal with a vast range of problems
efficiently [37]. In reality, the amount of exploration and exploitation may
depend on the type of problem, and therefore, some a priori knowledge of the
problem to be solved can help to determine such a balance. However, it is not
known how to incorporate such knowledge effectively. For example, gradient/
derivative information obtained from the objective function can be very useful
for exploitation, but if such exploitation is too strong, it can cause the system to
be trapped in a local optimum, thus sacrificing the possibility of finding the true
global optimality. There may not exist such optimal balance for all problems
[38].

• Selection Mechanism: Selection mechanism is also very important and it is not
known what selection is most effective. A proper selection pressure is crucial to
maintain a healthy population. For example, when many solutions have similar
fitness, numerically speaking, their fitness values may almost be the same, thus
how to select certain solutions becomes tricky. Typical approaches include re-
scaled fitness values, ranking of solutions, and adaptive elitism. However, it is
not clear if they can work for all algorithms and if there is other better ways to
handle selection.

• Right Amount of Randomness: In order to balance exploration and exploita-
tion, a right amount of randomness is needed. However, no one knows what
amount is the right amount. At one extreme, if there is no randomness, an
algorithm becomes a deterministic algorithm, and thus loses the ability to
explore. At the other extreme, if the search is dominated by high randomness,
the algorithm becomes a random search, and thus significantly reduces its ability
to exploit the landscape information. In fact, it is not known how to control
randomness properly so as to balance exploration and exploitation most
effectively.

• Parameter Tuning and Control: As the performance of almost any algorithm
will depend on its parameter settings, how to tune these parameters to achieve
the best performance is a higher level optimization problem. In fact, this is the
optimization of an optimization algorithm. It is still an open question. Similarly,
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how to control the parameters by varying their values to achieve the best overall
performance is also a key challenging issue.

• Dynamic Landscape: The problems that have been solved in the current lit-
erature usually have fixed landscape. That is, once the problem is defined, its
landscape in the search space remain unchanged. However, for dynamic prob-
lems and problems with noise, the search landscape can change with time. In
such cases, adaptation can be more sophisticated and challenging. It is not clear
if most current methods can still work well in such time-dependent, noisy
environments.

• Scalability: How to solve high-dimensional, large-scale problems effectively?
At the moment, most case studies using metaheuristic algorithms are small-scale
problems. It is not clear if these algorithms are scalable to deal with large-scale
problems effectively.

Therefore, in-depth understanding and theoretical results are needed. Possible
research routes may require a combination of mathematical analysis, numerical
simulations, empirical observations as well as other tools such as dynamical system
theories, Markov theory, self-organization theory and probability. It may even
require a paradigm shift in analyzing metaheuristic algorithms. There is no doubt
that any theoretical results will provide tremendous insight into understanding
metaheursitic algorithms.

All these challenges can present golden opportunities for further research in
analyzing adaptation and diversity in metaheuristic algorithms. It can be expected
that more efficient tools may be developed to solve more complex, real-world
problems with a diverse range of applications.
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