
Studies in Computational Intelligence 585

Xin-She Yang Editor

Recent Advances
in Swarm
Intelligence and
Evolutionary
Computation

Studies in Computational Intelligence

Volume 585

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in com-
putational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence, cel-
lular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid
intelligent systems. Of particular value to both the contributors and the readership
are the short publication timeframe and the world-wide distribution, which enable
both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Xin-She Yang
Editor

Recent Advances in Swarm
Intelligence and
Evolutionary Computation

123

Editor
Xin-She Yang
School of Science and Technology
Middlesex University
London
UK

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-13825-1 ISBN 978-3-319-13826-8 (eBook)
DOI 10.1007/978-3-319-13826-8

Library of Congress Control Number: 2014956560

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

In many applications, we have to deal with complex optimization problems with
complicated constraints. Such problems can be challenging to solve, due to their
complexity, nonlinearity and potentially high-dimensionality. These problems can
even be NP-hard, and thus require alternative solution methods because conven-
tional methods usually cannot deal with such complex problems. In recent years,
nature-inspired metaheuristic algorithms have gained huge popularity because they
have demonstrated some promising results in solve tough optimization problems.
These metaheuristic algorithms include ant colony optimization, particle swarm
optimization, cuckoo search, firefly algorithm, bat algorithm, flower pollination
algorithm, bee algorithms and others. There are many reasons for such popularity.
In general, these algorithms tend to be flexible, efficient and highly adaptable, and
yet easy to implement. The high efficiency of these algorithms makes it possible to
apply them to a wide range of problems in diverse applications.

Swarm intelligence is quite a general concept in that multiple agents interact and
exchange information, following simple rules. Rather surprisingly, such simple
systems can show complex, self-organized behaviour. Though the characteristics of
agent interactions may be drawn from different sources of inspiration in nature,
algorithmic procedures can be quite simple and flexible, and yet efficient in practice.
On the other hand, evolutionary computation is traditionally considered as part of
computational intelligence, which concerns optimization with continuous, combi-
natorial or mixed problems. Algorithms such as genetic algorithms and evolutionary
strategy are good examples of evolutionary computation. However, evolutionary
computation has broadened its scope and extended to include many areas. Loosely
speaking, swarm intelligence is part of the evolutionary computation paradigm, but
the interests in swarm intelligence are so overwhelming that swarm intelligence has
almost become a field by itself. Here, wewill not debate onwhat the right terminology
or fields should be. We discuss both swarm intelligence and evolutionary computa-
tion in the broadest sense in this book.

The rapid advances in swarm intelligence and evolutionary computation have
resulted in a much richer literature. This timely review volume summarizes the
state-of-the-art developments in nature-inspired algorithms and applications with

v

the emphasis on swarm intelligence and bio-inspired computation. Topics include
the analysis and overview of swarm intelligence and evolutionary computation,
hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly
algorithm, particle swarm optimization, and harmony search as well as convergent
hybridization. Application case studies have focused on the feature selection by the
binary flower pollination algorithm, dehydration of fruits and vegetables by the
firefly algorithm and goal programming, job shop scheduling, single row facility
layout optimization, training of feed-forward neural networks, damage and stiffness
identification, synthesis of cross-ambiguity functions by the bat algorithm, web
document clustering, truss analysis, water distribution networks, sustainable
building designs and others.

As a timely review, this book can serve as an ideal reference for graduates,
lecturers, engineers and researchers in computer science, evolutionary computing,
artificial intelligence, machine learning, computational intelligence, data mining,
engineering optimization and designs.

I would like to thank our editors, Drs. Thomas Ditzinger and Holger Schaepe,
and the staff at Springer for their help and professionalism. Last but not least,
I thank my family for the help and support.

London, September 2014 Xin-She Yang

vi Preface

Contents

Swarm Intelligence and Evolutionary Computation: Overview
and Analysis . 1
Xin-She Yang and Xingshi He

Globally Convergent Hybridization of Particle Swarm Optimization
Using Line Search-Based Derivative-Free Techniques 25
A. Serani, M. Diez, E.F. Campana, G. Fasano, D. Peri and U. Iemma

Fireflies in the Fruits and Vegetables: Combining the Firefly
Algorithm with Goal Programming for Setting Optimal
Osmotic Dehydration Parameters of Produce 49
Raha Imanirad and Julian Scott Yeomans

Hybrid Metaheuristic Algorithms: Past, Present, and Future 71
T.O. Ting, Xin-She Yang, Shi Cheng and Kaizhu Huang

Binary Flower Pollination Algorithm and Its Application
to Feature Selection . 85
Douglas Rodrigues, Xin-She Yang, André Nunes de Souza
and João Paulo Papa

Bat Algorithm Application for the Single Row Facility Layout
Problem . 101
Sinem Büyüksaatçı

Discrete Cuckoo Search Applied to Job Shop Scheduling
Problem . 121
Aziz Ouaarab, Belaïd Ahiod and Xin-She Yang

vii

http://dx.doi.org/10.1007/978-3-319-13826-8_1
http://dx.doi.org/10.1007/978-3-319-13826-8_1
http://dx.doi.org/10.1007/978-3-319-13826-8_2
http://dx.doi.org/10.1007/978-3-319-13826-8_2
http://dx.doi.org/10.1007/978-3-319-13826-8_3
http://dx.doi.org/10.1007/978-3-319-13826-8_3
http://dx.doi.org/10.1007/978-3-319-13826-8_3
http://dx.doi.org/10.1007/978-3-319-13826-8_4
http://dx.doi.org/10.1007/978-3-319-13826-8_5
http://dx.doi.org/10.1007/978-3-319-13826-8_5
http://dx.doi.org/10.1007/978-3-319-13826-8_6
http://dx.doi.org/10.1007/978-3-319-13826-8_6
http://dx.doi.org/10.1007/978-3-319-13826-8_7
http://dx.doi.org/10.1007/978-3-319-13826-8_7

Cuckoo Search and Bat Algorithm Applied to Training
Feed-Forward Neural Networks . 139
Milan Tuba, Adis Alihodzic and Nebojsa Bacanin

The Potential of the Firefly Algorithm for Damage Localization
and Stiffness Identification . 163
Sara Casciati and Lorenzo Elia

Synthesizing Cross-Ambiguity Functions Using the Improved
Bat Algorithm . 179
Momin Jamil, Hans-Jürgen Zepernick and Xin-She Yang

Sustainable Building Design: A Review on Recent Metaheuristic
Methods . 203
Somayeh Asadi and Zong Woo Geem

Firefly Algorithm for Flow Shop Optimization 225
M.K. Marichelvam, T. Prabaharan and M. Geetha

Evaluation of Harmony Search and Differential Evolution
Optimization Algorithms on Solving the Booster Station
Optimization Problems in Water Distribution Networks 245
Şerife Gökçe and M. Tamer Ayvaz

Web Document Clustering by Using PSO-Based Cuckoo
Search Clustering Algorithm . 263
Moe Moe Zaw and Ei Ei Mon

Geometrically Nonlinear Analysis of Trusses Using Particle
Swarm Optimization . 283
Rasim Temür, Yusuf Sait Türkan and Yusuf Cengiz Toklu

viii Contents

http://dx.doi.org/10.1007/978-3-319-13826-8_8
http://dx.doi.org/10.1007/978-3-319-13826-8_8
http://dx.doi.org/10.1007/978-3-319-13826-8_9
http://dx.doi.org/10.1007/978-3-319-13826-8_9
http://dx.doi.org/10.1007/978-3-319-13826-8_10
http://dx.doi.org/10.1007/978-3-319-13826-8_10
http://dx.doi.org/10.1007/978-3-319-13826-8_11
http://dx.doi.org/10.1007/978-3-319-13826-8_11
http://dx.doi.org/10.1007/978-3-319-13826-8_12
http://dx.doi.org/10.1007/978-3-319-13826-8_13
http://dx.doi.org/10.1007/978-3-319-13826-8_13
http://dx.doi.org/10.1007/978-3-319-13826-8_13
http://dx.doi.org/10.1007/978-3-319-13826-8_14
http://dx.doi.org/10.1007/978-3-319-13826-8_14
http://dx.doi.org/10.1007/978-3-319-13826-8_15
http://dx.doi.org/10.1007/978-3-319-13826-8_15

Contributors

Belaïd Ahiod LRIT, Associated Unit to the CNRST (URAC 29), Mohammed
V-Agdal University, Rabat, Morocco

Adis Alihodzic University of Sarajevo, Sarajevo, Bosnia and Herzegovina

Somayeh Asadi Department of Architectural Engineering, Pennsylvania State
University, University Park, PA, USA

M. Tamer Ayvaz Department of Civil Engineering, Pamukkale University,
Denizli, Turkey

Nebojsa Bacanin Megatrend University Belgrade, Belgrade, Serbia

Sinem Büyüksaatçı Faculty of Engineering, Department of Industrial Engineer-
ing, Istanbul University, İstanbul, Turkey

E.F. Campana CNR-INSEAN, Rome, Italy

Sara Casciati Department of Civil Engineering and Architecture, University of
Catania, Siracusa, Italy

Shi Cheng Division of Computer Science, The University of Nottingham, Ningbo,
Zhejiang Province, China

André Nunes de Souza Department of Electrical Engineering, UNESP, Bauru,
SP, Brazil

M. Diez CNR-INSEAN, Rome, Italy

Lorenzo Elia Department of Civil Engineering and Architecture, University
of Pavia, Pavia, Italy

G. Fasano Department of Management, University Ca’ Foscari of Venice, Venice,
Italy

Zong Woo Geem Department of Energy IT, Gachon University, Seongnam, South
Korea

ix

M. Geetha Department of Mathematics, Kamaraj College of Engineering and
Technology, Virudhunagar, Tamilnadu, India

Şerife Gökçe Department of Civil Engineering, Afyon Kocatepe University,
Afyonkarahisar, Turkey

Xingshi He College of Science, Xi’an Polytechnic University, Xi’an, People’s
Republic of China

Kaizhu Huang Department of Electrical and Electronic Engineering, Xi’an
Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China

U. Iemma Department of Engineering, Roma Tre University, Rome, Italy

Raha Imanirad Technology and Operations Management, Harvard Business
School, Boston, MA, USA

Momin Jamil Automotive Division, Harman International, Karlsbad, Germany;
Blekinge Institute of Technology, Karlskrona, Sweden

M.K. Marichelvam Department of Mechanical Engineering, Mepco Schlenk
Engineering College, Sivakasi, Tamilnadu, India

Ei Ei Mon University of Technology (Yatanarpon Cyber City), Pyin Oo Lwin,
Myanmar

Aziz Ouaarab LRIT, Associated Unit to the CNRST (URAC 29), Mohammed
V-Agdal University, Rabat, Morocco

João Paulo Papa Department of Computing, UNESP, Bauru, SP, Brazil

D. Peri CNR-IAC, Rome, Italy

T. Prabaharan Department of Mechanical Engineering, Mepco Schlenk Engi-
neering College, Sivakasi, Tamilnadu, India

Douglas Rodrigues Department of Computing, UNESP, Bauru, SP, Brazil

A. Serani CNR-INSEAN, Rome, Italy; Department of Engineering, Roma Tre
University, Rome, Italy

Rasim Temür Department of Civil Engineering, Faculty of Engineering, Istanbul
University, Istanbul, Turkey

T.O. Ting Department of Electrical and Electronic Engineering, Xi’an Jiaotong-
Liverpool University, Suzhou, Jiangsu Province, China

Yusuf Cengiz Toklu Department of Civil Engineering, Faculty of Engineering,
Bilecik Seyh Edebali University, Bilecik, Turkey

Milan Tuba Megatrend University Belgrade, Belgrade, Serbia

Yusuf Sait Türkan Open and Distance Education Faculty, Istanbul University,
Istanbul, Turkey

x Contributors

Xin-She Yang School of Science and Technology, Middlesex University, London,
UK

Julian Scott Yeomans OMIS Area, Schulich School of Business, York University,
Toronto, ON, Canada

Moe Moe Zaw University of Technology (Yatanarpon Cyber City), Pyin Oo
Lwin, Myanmar

Hans-Jürgen Zepernick Blekinge Institute of Technology, Karlskrona, Sweden

Contributors xi

Swarm Intelligence and Evolutionary
Computation: Overview and Analysis

Xin-She Yang and Xingshi He

Abstract In many applications, the complexity and nonlinearity of the problems
require novel and alternative approaches to problem solving. In recent years, nature-
inspired algorithms, especially those based on swarm intelligence, have become
popular, due to the simplicity and flexibility of such algorithms. Here, we review
briefly some recent algorithms and then outline the self-tuning framework for
parameter tuning. We also discuss some convergence properties of the cuckoo
search and the bat algorithm. Finally, we present some open problems as further
research topics.

Keywords Algorithm � Adaptation � Bat algorithm � Cuckoo search � Diversity �
Firefly algorithm � Metaheuristic � Nature-inspired algorithm � Optimization �
Parameter tuning � Swarm intelligence

1 Introduction

In many applications, we have to deal with complex optimization problems with
complicated constraints. Such problems can be challenging to solve, due to their
complexity, nonlinearity and potentially high-dimensionality. These problems can
even be NP-hard, and thus require alternativemethods because conventional methods
usually cannot cope such complex problems. In recent years, nature-inspired meta-
heuristic algorithms have gained huge popularity because they have demonstrated
some promising results in solve tough optimization problems. These metaheuristic
algorithms include ant colony optimization, particle swarm optimization, cuckoo

X.-S. Yang (&)
School of Science and Technology, Middlesex University, London NW4 4BT, UK
e-mail: x.yang@mdx.ac.uk; xy227@cam.ac.uk

X. He
College of Science, Xi’an Polytechnic University, No. 19 Jinhua South Road,
Xi’an, People’s Republic of China

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_1

1

search, firefly algorithm, bat algorithm, bee algorithms and others [1–4]. There are
many reasons for such popularity. From the algorithm analysis point of view, these
algorithms tend to be flexible, efficient and highly adaptable, and yet easy to
implement. The high efficiency of these algorithms makes it possible to apply them to
a wide range of problems in diverse applications.

Swarm intelligence is quite a general concept that multiple agents interact and
exchange information, following simple rules. Rather surprisingly, such simple
systems can show complex, self-organized behaviour. Though the characteristics of
agent interactions may be drawn from different sources of inspiration in nature [4],
algorithmic procedures can be quite simple and flexible, and yet efficient in practice.
On the other hand, evolutionary computation is traditionally considered as part of
computational intelligence, which concerns optimization with continuous, combi-
natorial or mixed problems. Algorithms such as genetic algorithms and evolutionary
strategy are good examples of evolutionary computation. However, evolutionary
computation has broaden its scope and extended to include many areas. Loosely
speaking, swarm intelligence is part of the evolutionary computation paradigm, but
the interests in swarm intelligence are so overwhelming that swarm intelligence has
almost become a field of itself. Here, we will not debate what the right terminology or
fields should be. We will discuss both swarm intelligence and evolutionary com-
putation in the most broad sense.

The main purpose of this chapter is to provide an overview and the recent
advances concerning swarm intelligence and evolutionary computation. Therefore,
the chapter is organized as follows. Section 2 outlines some recent nature-inspired
algorithms, followed by the analysis and discussions of adaptation and diversity in
these algorithms in Sect. 3. Section 4 discusses the self-tuning framework for
parameter tuning and control, while Sect. 5 outlines the convergence analysis of the
cuckoo search and the bat algorithm. Finally some discussions and open problems
are presented in Sect. 6.

2 Swarm Intelligence, Adaptation and Diversity

Extensive research activities have resulted in significant developments in swarm
intelligence (SI) in recent years. It is not possible to cover even a good fraction of
the extensive literature in this brief review and thus we have to focus on the most
recent algorithms, especially those in the last few years.

2.1 The Essence of an Algorithm

Different disciplines may view an algorithm differently, and the point of view all
depends on the perspective. In essence, algorithm A is an iterative process, which

2 X.-S. Yang and X. He

aims to generate a new and better solution xtþ1 to a given problem from the current
solution xt at iteration or (pseudo)time t. It can be written as

xtþ1 ¼ Aðxt; pÞ; ð1Þ

where p is an algorithm-dependent parameter. For example, the Newton-Raphson
method to find the optimal value of f ðxÞ is equivalent to finding the critical points
or roots of f 0ðxÞ ¼ 0 in a d-dimensional space. That is,

xtþ1 ¼ xt � f 0ðxtÞ
f 00ðxtÞ ¼ AðxtÞ: ð2Þ

Obviously, the convergence rate may become very slow near the optimal point
where f 0ðxÞ ! 0. Sometimes, the true convergence rate may not be as quick as it
should be. A simple way to improve the convergence is to modify the above
formula slightly by introducing a parameter p as follows:

xtþ1 ¼ xt � p
f 0ðxtÞ
f 00ðxtÞ ; p ¼ 1

1� A0ðx�Þ : ð3Þ

Here, x� is the optimal solution, or a fixed point of the iterative formula. For
simplicity, we can treat p as a step size and this essentially becomes the modified
Newton-Raphson method.

The above formula is for a trajectory-based, single agent system. For population-
based algorithms with a swarm of n solutions ðx1; x2; . . .; xnÞ, we can extend the
above iterative formula to a more general form

x1
x2
..
.

xn

0
BBB@

1
CCCA

tþ1

¼ A ðxt1; xt2; . . .; xtnÞ; ðp1; p2; . . .; pkÞ; ð�1; �2; . . .; �mÞ
� � x1

x2
..
.

xn

0
BBB@

1
CCCA

t

; ð4Þ

where p1; . . .; pk are k algorithm-dependent parameters and �1; . . .; �m are m random
variables. An algorithm can be viewed as a dynamical system, Markov chains and
iterative maps [4], and it can also be viewed as a self-organized system [5]. Here,
the introduction of m random variables captures the essence of all contemporary
evolutionary algorithms because they all use some sort of randomization
techniques.

Whatever the perspective may be, the aim of such an iterative process is to let the
system evolve and converge into some stable optimality. In this case, it has strong
similarity to a self-organizing system. Such an iterative, self-organizing system can
evolve, according to a set of rules or mathematical equations. As a result, such a
complex system can interact and self-organize into certain converged states,
showing some emergent characteristics of self-organization. In this sense, the

Swarm Intelligence and Evolutionary Computation … 3

proper design of an efficient optimization algorithm is equivalent to finding efficient
ways to mimic the evolution of a self-organizing system [5]. In practice, all nature-
inspired algorithms try to mimic some successful characteristics of biological,
physical or chemical systems in nature [1, 4, 6].

Among all evolutionary algorithms, algorithms based on swarm intelligence (SI)
dominate the landscape. There are many reasons for this dominance, though three
obvious reasons are: (1) swarm intelligence uses multiple agents as an evolving,
interacting population, and thus provides good ways to mimic natural systems. (2)
Population-based approaches allow parallelization and vectorization implementa-
tions in practice, and are thus straightforward to implement. (3) SI-based algorithms
are simple and easy to implement, and they are flexible and yet sufficiently efficient.
As a result, these algorithms can deal with a relatively wide range of problems in
applications.

2.2 Particle Swarm Optimization

Among the swarm intelligence (SI) based algorithms, particle swarm optimization
(PSO) is among the first. PSO was developed by Kennedy and Eberhart in 1995 [1],
based on the swarm behaviour of fish or bird schooling in nature. Each particle
updates its position xi and velocity ti by

ttþ1i ¼ tti þ a �1½g� � xti� þ b�2½x�i � xti�; ð5Þ

xtþ1i ¼ xti þ ttþ1i ; ð6Þ

where �1 and �2 are two random vectors, drawn from a uniform distribution
between 0 and 1. Here, α and β are the learning parameters with typical values of
a � b � 2.

The literature of PSO is vast, with thousands of papers and dozens of books.
Therefore, we will not provide detailed literature review here, and readers can find
such literature quite easily.

2.3 Some Recent SI-Based Algorithms

In this section, we will focus on the SI-based optimization algorithms that have
been developed in recent years and these new algorithms have attracted much
attention in the last few years.

4 X.-S. Yang and X. He

2.3.1 Firefly Algorithm

The firefly algorithm (FA) is simple, flexible and easy to implement. FA was
developed by Yang in 2008 [2], which was based on the flashing patterns and
behaviour of tropical fireflies. FA can naturally deal with nonlinear multimodal
optimization problems.

The movement of a firefly i is attracted to another more attractive (brighter)
firefly j is determined by

xtþ1i ¼ xti þ b0e
�cr2ijðxtj � xtiÞ þ a �ti; ð7Þ

where the second term is due to the attraction of fireflies, and b0 is the attractiveness
at r ¼ 0. The third term is randomization with α being the randomization parameter,
and �ti is a vector of random numbers drawn from a Gaussian distribution at time
t. Other studies also use the randomization in terms of �ti that can easily be extended
to other distributions such as Lévy flights. A comprehensive review of the firefly
algorithm and its variants has been carried out by Fister et al. [7–9].

One novel feature of FA is that distance-related attraction is used, and this is the
first of its kind in any SI-based algorithms. Since local attraction is stronger than
long-distance attraction, the population in FA can automatically subdivide into
multiple subgroups, and each group can potentially swarm around a local mode.
Among all the local modes, there is always a global best solution which is the true
optimality of the problem. Thus, FA can deal with multimodal problems naturally
and efficiently [3].

2.3.2 Cuckoo Search

The cuckoo search (CS) was developed in 2009 by Yang and Deb [10]. CS is based
on the brood parasitism of some cuckoo species. In addition, this algorithm is
enhanced by the so-called Lévy flights [11], rather than by simple isotropic random
walks. Recent studies show that CS is potentially far more efficient than PSO and
genetic algorithms [12–14].

In essence, CS uses a balanced combination of a local random walk and the
global explorative random walk, controlled by a switching parameter pa. The local
random walk can be written as

xtþ1i ¼ xti þ as� Hðpa � �Þ � ðxtj � xtkÞ; ð8Þ

where xtj and xtk are two different solutions selected randomly by random permu-
tation, HðuÞ is a Heaviside function, ϵ is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights

Swarm Intelligence and Evolutionary Computation … 5

xtþ1i ¼ xti þ aLðs; kÞ; ð9Þ

where

Lðs; kÞ ¼ kCðkÞ sinðpk=2Þ
p

1
s1þk

; ðs�s0 [0Þ: ð10Þ

Here a[0 is the step size scaling factor, which should be related to the scales of
the problem of interest.

CS has two distinct advantages over other algorithms such as GA and SA, and
these advantages are: efficient randomwalks and balanced mixing. Since Lévy flights
are usually far more efficient than any other random-walk-based randomization
techniques, CS can be efficient in global search [3, 11]. In fact, recent studies show
that CS can have guaranteed global convergence [4]. In addition, the similarity
between eggs can produce better new solutions, which is essentially fitness-pro-
portional generation with a good mixing ability. In other words, CS has varying
mutation realized by Lévy flights, and the fitness-proportional generation of new
solutions based on similarity provides a subtle form of crossover. In addition, sim-
ulations also show that CS can have autozooming ability in the sense that new
solutions can automatically zoom into the region where the promising global opti-
mality is located.

In addition, Eq. (9) is essentially simulated annealing in the framework of
Markov chains. In Eq. (8), if pa ¼ 1 and as 2 ½0; 1�, CS can degenerate into a
variant of differentia evolution. Furthermore, if we replace xtj by the current best
solution g�, then (8) can further degenerate into accelerated particle swarm opti-
mization (APSO) [15]. This means that SA, DE and APSO are special cases of CS,
and this explains why CS is so efficient [3].

2.3.3 Bat Algorithm

The bat algorithm (BA) was developed by Yang in 2010 [16]. It was inspired by the
echolocation behavior of microbats. It is the first algorithm of its kind to use
frequency tuning. Each bat is associated with a velocity tti and a location xti, at
iteration t, in a d-dimensional search or solution space. Among all the bats, there
exists a current best solution x�. Therefore, the updating equations for xti and
velocities tti can be written as

fi ¼ fmin þ ðfmax � fminÞb; ð11Þ

tti ¼ tt�1i þ ðxt�1i � x�Þfi; ð12Þ

6 X.-S. Yang and X. He

xti ¼ xt�1i þ tti; ð13Þ

where b 2 ½0; 1� is a random vector drawn from a uniform distribution.
The loudness and pulse emission rates are regulated by the following equations:

Atþ1
i ¼ aAt

i; ð14Þ

and

rtþ1i ¼ r0i ½1� expð�ctÞ�; ð15Þ

where 0\a\1 and c[0 are constants. In essence, here α is similar to the cooling
factor of a cooling schedule in simulated annealing.

BA has been extended to multiobjective bat algorithm (MOBA) by Yang [17],
and Fister et al. have extended to a hybrid bat algorithm [18]. The preliminary
results suggested that they are very efficient [19, 20].

2.3.4 Flower Algorithm

Flower pollination algorithm (FPA) was developed by Yang in 2012 [21], inspired
by the flower pollination process of flowering plants. It has been extended to
multiobjective optimization problems and found to be very efficient [22, 23]. For
simplicity, we use the following four rules:

1. Biotic and cross-pollination can be considered as a process of global pollination
process, and pollen-carrying pollinators move in a way which obeys Lévy
flights (Rule 1).

2. For local pollination, abiotic pollination and self-pollination are used (Rule 2).
3. Pollinators such as insects can develop flower constancy, which is equivalent to

a reproduction probability that is proportional to the similarity of two flowers
involved (Rule 3).

4. The interaction or switching of local pollination and global pollination can be
controlled by a switch probability p 2 ½0; 1�, with a slight bias towards local
pollination (Rule 4).

In order to formulate updating formulae, we have to convert the above rules into
updating equations. For example, in the global pollination step, flower pollen
gametes are carried by pollinators such as insects, and pollen can travel over a long
distance because insects can often fly and move in a much longer range. Therefore,
Rule 1 and flower constancy can be represented mathematically as

xtþ1i ¼ xti þ cLðkÞðg� � xtiÞ; ð16Þ

Swarm Intelligence and Evolutionary Computation … 7

where xti is the pollen i or solution vector xi at iteration t, and g� is the current best
solution found among all solutions at the current generation/iteration. Here γ is a
scaling factor to control the step size.

Here LðkÞ is the parameter that corresponds to the strength of the pollination,
which essentially is also a step size. Since insects may move over a long distance
with various distance steps, we can use a Lévy flight to mimic this characteristic
efficiently. That is, we draw L[0 from a Levy distribution

L	 kCðkÞ sinðpk=2Þ
p

1
s1þk

; ðs�s0 [0Þ: ð17Þ

Here CðkÞ is the standard gamma function, and this distribution is valid for large
steps s[0. This step is essentially a global mutation step, which enables to explore
the search space more efficiently.

For the local pollination, both Rule 2 and Rule 3 can be represented as

xtþ1i ¼ xti þ �ðxtj � xtkÞ; ð18Þ

where xtj and xtk are pollen from different flowers of the same plant species. This
essentially mimics the flower constancy in a limited neighborhood. Mathematically,
if xtj and xtk comes from the same species or selected from the same population, this
equivalently becomes a local random walk if we draw ϵ from a uniform distribution
in [0, 1]. In essence, this is a local mutation and mixing step, which can help to
converge in a subspace.

In principle, flower pollination activities can occur at all scales, both local and
global. But in reality, adjacent flower patches or flowers in the not-so-far-away
neighborhood are more likely to be pollinated by local flower pollen than those far
away. In order to mimic this feature, we can effectively use a switch probability
(Rule 4) or proximity probability p to switch between common global pollination to
intensive local pollination. To start with, we can use a naive value of p ¼ 0:5 as an
initially value. A preliminary parametric showed that p ¼ 0:8 may work better for
most applications.

Recent studies suggested that flower pollination algorithm is very efficient for
multiobjective optimization [23, 24].

2.4 Other Evolutionary Algorithms

There are quite a few other evolutionary algorithms, though they are not swarm
intelligence based algorithms. So we also briefly introduce them here.

8 X.-S. Yang and X. He

2.4.1 Differential Evolution

Differential evolution (DE) was developed by Storn and Price in 1996 and 1997
[25, 26]. In fact, modern differential evolution (DE) has strong similarity to the
traditional mutation operator in the traditional pattern search. In essence, the
mutation in DE can be viewed as the generalized pattern search in any random
direction ðxp � xqÞ by

xi ¼ xr þ Fðxp � xqÞ; ð19Þ

where F is the differential weight in the range of [0,2]. Here, r, p, q, i are four
different integers generated by random permutation.

In addition, DE also has a crossover operator which is controlled by a crossover
probability Cr 2 ½0; 1� and the actual crossover can be carried out in two ways:
binomial and exponential. Selection is essentially the same as that used in genetic
algorithms. It is to select the most fittest, and for the minimization problem, the
minimum objective value. Therefore, we have

xtþ1i ¼ utþ1i if f ðutþ1i Þ
 f ðxtiÞ;
xti otherwise:

�
ð20Þ

Most studies have focused on the choice of F, Cr, and the population size n as
well as the modification of the mutation scheme. In addition, it can be clearly seen
that selection is also used when the condition in the above equation is checked.
Almost all variants of DE use crossover, mutation and selection, and the main
differences are in the step of mutation and crossover. For example, DE/Rand/1/Bin
use the three vectors for mutation, and binomial crossover. There are more than 10
different variants [27].

2.4.2 Harmony Search

Harmony search (HS) is a music-inspired algorithm, developed by Geem et al. in
2001 [28]. It is not swarm-intelligence-based, but it is a metaheuristic algorithm. In
the standard HS, solutions are represented in terms of a population of harmonies,
using the following three choices/rules (of a musician playing a piece of music): (1)
play any famous piece of music from memory, (2) play something similar to a
known piece (pitch adjustment), and (3) compose new or random notes. HS uses
mainly mutation and selection, while crossover is not explicitly used. The first rule
corresponds to selection or elitism, and the second and third rules are mutation.

Mutation can be local and global in HS. For example, the pitch adjustment (the
second rule) uses the following equation

Swarm Intelligence and Evolutionary Computation … 9

xnew ¼ xold þ bwe; ð21Þ

where bw is the bandwidth of the pitch adjustment, while ε is a random number
drawn from ½�1; 1�. This is a local random walk, and the distance of the random
walk is controlled by the bandwidth. This part can be considered as a local mutation
action with an equivalent mutation rate of 0.1–0.3.

The third rule is essentially mutation on a larger scale, which is essentially
equivalent to random walks. The selection is controlled by the probability of
choosing a harmony from harmony memory. Similar to genetic algorithms, this
choice of harmonies from the population is high with a typical value of 0.9, which
enables the system to converge in a subspace. However, this may be at the expense
of reduced probability of finding the global optimality in some highly nonlinear
problems.

2.4.3 Other Algorithms

Many other algorithms have appeared in the literature, which may require more
extensive analysis and comparisons [4]. However, as this is not the main focus of
this chapter, we will not go into more details about these algorithms.

One thing we may notice by analyzing these algorithms is that mutation and
selection are always used, while crossover are not used in most of these algorithms.
This may raise the question and further need to analyze what exactly the role of
crossover is. Therefore, there is a strong need to investigate further how two-stage
eagle strategy and co-evolutionary methods can work better. In addition, systematic
tuning of parameters in algorithms and careful control of these algorithm-dependent
parameters may be very useful to understand how these algorithms behave and how
to improve them in practice.

3 Adaptation and Diversity

The effectiveness of these algorithms can be attributed to two important charac-
teristics: adaptation and diversity of nature-inspired optimization algorithms.

Adaptation in nature-inspired algorithms can take many forms. For example, the
ways to balance exploration and exploitation are the key form of adaptation [29].
As diversity can be intrinsically linked with adaptation, it is better not to discuss
these two features separately. If exploitation is strong, the search process will use
problem-specific information (or landscape-specific information) obtained during
the iterative process to guide the new search moves, this may lead to the focused
search and thus reduce the diversity of the population, which may help to speed up
the convergence of the search procedure. However, if exploitation is too strong, it
can result in the quick loss of diversity in the population and thus may lead to the

10 X.-S. Yang and X. He

premature convergence. On the other hand, if new search moves are not guided by
local landscape information, it can typically increase the exploration capability and
generate new solutions with higher diversity. However, too much diversity and
exploration may result in meandered search paths, thus lead to the slow conver-
gence. Therefore, adaptation of search moves so as to balance exploration and
exploitation is crucial. Consequently, to maintain a balanced diversity in population
is also important.

Adaptation can also be in terms of the representations of solutions of a problem. In
genetic algorithms, representations of solutions are usually in binary or real-valued
strings [29, 30], while in swarm-intelligence-based algorithms, representations
mostly use real number solution vectors. For example, the population size used in an
algorithm can be fixed or varying. Adaptation in this case may mean to vary the
population size so as to maximize the overall performance.

For a given algorithm, adaptation can also occur to adjust its algorithm-dependent
parameters. As the performance of an algorithm can largely depend on its parameters,
the choice of these parameter values can be very important. Values can be varied so as
to adapt the landscape type of the problem and thus may lead to better search
efficiency. Such parameter tuning is in essence parameter adaptation. Once param-
eters are tuned, they can remain fixed. However, there is no particular reason why
parameters should be fixed. In fact, adaptation in parameter can be extended to
parameter control. That is to control the parameter values in such a way that their
values vary during the iterations so that optimal performance of the algorithm can be
achieved.

Diversity in metaheuristic algorithms can also take many forms. The simplest
diversity is to allow the variations of solutions in the population by randomization.
For example, solution diversity in genetic algorithms is mainly controlled by
mutation rates and crossover mechanisms, while in simulated annealing, diversity is
achieved by random walks. In most swarm-intelligence-based algorithms, new
solutions are generated according to a set of deterministic equations, which also
include some random variables. Diversity is represented by the variation, often in
terms of population variance. Once the population variance is getting smaller
(approaching zero), diversity also decreases, leading to converged solution sets.
However, if diversity is reduced too quickly, premature convergence may occur.
Therefore, a right amount of randomness and the right form of randomization can
be crucial.

In addition, adaptation and diversity can also be related to the selection of
solutions among the population and the replacement of the old population. If the
selection is based on the fitness, parent solutions with higher fitness will be more
likely to pass onto the next generation. In the extreme case, only the best solutions
can be selected, which is a kind of elitism. If the replacement of worst solutions by
new (hopefully better) solutions, this will ensure that better solutions will remain in
the population. The balance of what to replace and what to pass on can be tricky,
which requires good adaptation so as to maintain good diversity in the population.

Swarm Intelligence and Evolutionary Computation … 11

4 Self-Tuning Algorithms

From a mathematical point of view, an algorithm A tends to generate a new and
better solution xtþ1 to a given problem from the current solution xt at iteration or
time t. In modern metaheuristic algorithms, randomization is often used in an
algorithm, and in many cases, randomization appears in the form of a set of
m random variables e ¼ ðe1; . . .; emÞ in an algorithm. For example, in simulated
annealing, there is one random variable, while in particle swarm optimization, there
are two random variables. In addition, there are often a set of k parameters in an
algorithm. For example, in particle swarm optimization, there are 4 parameters (two
learning parameters, one inertia weight, and the population size). In general, we can
have a vector of parameters p ¼ ðp1; . . .; pkÞ. Mathematically speaking, we can
write an algorithm with k parameters and m random variables as

xtþ1 ¼ Aðxt; pðtÞ; eðtÞÞ; ð22Þ

where A is a nonlinear mapping from a given solution (a d-dimensional vector xt) to
a new solution vector xtþ1.

Representation (22) gives rise to two types of optimality: optimality of a problem
and optimality of an algorithm [4, 31]. For an optimization problem such as
min f ðxÞ, there is a global optimal solution whatever the algorithmic tool we may
use to find this optimality. This is the optimality for the optimization problem. On
the other hand, for a given problem Φ with an objective function f ðxÞ, there are
many algorithms that can solve it. Some algorithms may require less computational
effort than others. There may be the best algorithm with the least computing cost,
though this may not be unique. However, this is not our concern here. Once we
have chosen an algorithm A to solve a problem Φ, there is an optimal parameter
setting for this algorithm so that it can achieve the best performance. This opti-
mality depends on both the algorithm itself and the problem it solves. In the rest of
this chapter, we will focus on this type of optimality.

That is, the optimality to be achieved is

Maximize the performance of n ¼ AðU; p; eÞ; ð23Þ

for a given problem Φ and a chosen algorithm Að:; p; eÞ. We will denote this
optimality as n� ¼ A�ðU; p�Þ ¼ nðU; p�Þ where p� is the optimal parameter setting
for this algorithm so that its performance is the best. Here, we have used a fact that ε
is a random vector can be drawn from some known probability distributions, thus
the randomness vector should not be related to the algorithm optimality.

It is worth pointing out that there is another potential optimality. That is, for a
given problem, a chosen algorithm with the best parameter setting p�, we can still
use different random numbers drawn from various probability distributions and
even chaotic maps, so that even better performance may be achieved. Strictly
speaking, if an algorithm Að:; :; eÞ has a random vector ε that is drawn from a

12 X.-S. Yang and X. He

uniform distribution e1	Uð0; 1Þ or from a Gaussian e2	Nð0; 1Þ, it becomes two
algorithms A1 ¼ Að:; :; e1Þ and A2 ¼ Að:; :; e2Þ. Technically speaking, we should
treat them as different algorithms. Since our emphasis here is about parameter
tuning so as to find the optimal setting of parameters, we will omit the effect of
randomness vectors, and thus focus on

Maximize n ¼ AðU; pÞ: ð24Þ

In essence, tuning algorithm involves in tuning its algorithm-dependent
parameters. Therefore, parameter tuning is equivalent to algorithm tuning in the
present context.

4.1 Parameter Tuning

In order to tune AðU; pÞ so as to achieve its best performance, a parameter-tuning tool,
i.e., a tuner, is needed. Like tuning a high-precision machinery, sophisticated tools
are required. For tuning parameters in an algorithm, what tool can we use? One way is
to use a better, existing tool (say, algorithm B) to tune an algorithm A. Now the
question may become: how do you know B is better? Is B well-tuned? If yes, how do
you tune B in the first place? Naively, if we say, we use another tool (say, algorithm
C) to tune B. Now again the question becomes how algorithm C has been tuned? This
can go on and on, until the end of a long chain, say, algorithm Q. In the end, we need
some tool/algorithm to tune this Q, which again comes back to the original question:
how to tune an algorithm A so that it can perform best?

It is worth pointing out that even if we have good tools to tune an algorithm, the
best parameter setting and thus performance all depend on the performance measures
used in the tuning. Ideally, these parameters should be robust enough to minor
parameter changes, random seeds, and even problem instance. However, in practice,
they may not be achievable. According to Eiben [32], parameter tuning can be
divided into iterative and non-iterative tuners, single-stage and multi-stage tuners.
The meaning of these terminologies is self-explanatory. In terms of the actual tuning
methods, existing methods include sampling methods, screening methods, model-
based methods, and metaheuristic methods. Their success and effectiveness can
vary, and thus there are no well-established methods for universal parameter tuning.

4.2 Framework for Self-Tuning Algorithms

From our earlier observations and discussions, it is clear that parameter tuning is the
process of optimizing the optimization algorithm; therefore, it is a hyper-optimization
problem. In essence, a tuner is a meta-optimization tool for tuning algorithms [31].

Swarm Intelligence and Evolutionary Computation … 13

For a standard unconstrained optimization problem, the aim is to find the global
minimum f� of a function f ðxÞ in a d-dimensional space. That is,

Minimize f ðxÞ; x ¼ ðx1; x2; . . .; xdÞ: ð25Þ

Once we choose an algorithm A to solve this optimization problem, the algo-
rithm will find a minimum solution fmin which may be close to the true global
minimum f�. For a given tolerance δ, this may requires td iterations to achieve
jfmin � f�j
 d. Obviously, the actual td will largely depend on both the problem
objective f ðxÞ and the parameters p of the algorithm used.

The main aim of algorithm-tuning is to find the best parameter setting p� so that
the computational cost or the number of iterations td is the minimum. Thus,
parameter tuning as a hyper-optimization problem can be written as

Minimize td ¼ Aðf ðxÞ; pÞ; ð26Þ

whose optimality is p�.
Ideally, the parameter vector p� should be sufficiently robust. For different types

of problems, any slight variation in p� should not affect the performance of A much,
which means that p� should lie in a flat range, rather than at a sharp peak in the
parameter landscape.

4.3 A Multiobjective View

If we look the algorithm tuning process from a different perspective, it is possible to
construct it as a multi-objective optimization problem with two objectives: one
objective f ðxÞ for the problem Φ and one objective td for the algorithm. That is

Minimize f ðxÞ and Minimize td ¼ Aðf ðxÞ; pÞ; ð27Þ

where td is the (average) number of iterations needed to achieve a given tolerance δ
so that the found minimum fmin is close enough to the true global minimum f�,
satisfying jfmin � f�j
 d.

This means that for a given tolerance δ, there will be a set of best parameter
settings with a minimum td. As a result, the bi-objectives will form a Pareto front. In
principle, this bi-objective optimization problem (27) can be solved by any methods
that are suitable for multiobjective optimization. But as δ is usually given, a natural
way to solve this problem is to use the so-called ϵ-constraint or δ-constraint
methods. The naming may be dependent on the notations; however, we will use δ-
constraints.

For a given d� 0, we change one of the objectives (i.e., f ðxÞ) into a constraint,
and thus the above problem (27) becomes a single-objective optimization problem
with a constraint. That is

14 X.-S. Yang and X. He

Minimize td ¼ Aðf ðxÞ; pÞ; ð28Þ

subject to

f ðxÞ
 d: ð29Þ

In the rest of this chapter, we will set d ¼ 10�5.
The important thing is that we still need an algorithm to solve this optimization

problem. However, the main difference from a common single objective problem is
that the present problem contains an algorithm A. Ideally, an algorithm should be
independent of the problem, which treats the objective to be solved as a black box.
Thus we have Að:; p; eÞ, however, in reality, an algorithm will be used to solve a
particular problem Φ with an objective f ðxÞ. Therefore, both notations Að:; pÞ and
Aðf ðxÞ; pÞ will be used here.

4.4 Self-Tuning Framework

This framework has been proposed by Yang et al. in 2013 [31]. In principle, we can
solve (28) by any efficient or well-tuned algorithm. Now a natural question is: Can
we solve this algorithm-tuning problem by the algorithm A itself? There is no
reason why we cannot. In fact, if we solve (28) by using A, we have a self-tuning
algorithm. That is, the algorithm automatically tunes itself for a given problem
objective to be optimized. This essentially provides a framework for a self-tuning
algorithm as shown in Fig. 1.

This framework is generic in the sense that any algorithm can be tuned this way,
and any problem can be solved within this framework. This essentially achieves
two goals simultaneously: parameter tuning and optimality finding.

4.5 Self-Tuning Firefly Algorithm

Now let us use the framework outlined earlier to tune the firefly algorithm (FA). As
we have seen earlier, FA has the following updating equation:

xtþ1i ¼ xti þ b0e
�cr2ijðxtj � xtiÞ þ a�ti; ð30Þ

which contains four parameters: a; b0; c and the population size n. For simplicity for
parameter tuning, we set b0 ¼ 1 and n ¼ 20, and therefore the two parameters to be
tuned are: c[0 and a[0. It is worth pointing out that γ controls the scaling, while
α controls the randomness. For this algorithm to convergence properly, randomness

Swarm Intelligence and Evolutionary Computation … 15

should be gradually reduced, and one way to achieve such randomness reduction is
to use

a ¼ a0h
t; h 2 ð0; 1Þ; ð31Þ

where t is the index of iterations/generations. Here a0 is the initial randomness
factor, and we can set a0 ¼ 1 without losing generality. Therefore, the two
parameters to be tuned become γ and θ. This framework works wells as shown by
Yang et al. [31].

5 Convergence Analysis

There some solid mathematical analysis of nature-inspired algorithms such as
differential evolution, genetic algorithms [33], simulated annealing and particle
swarm optimization. In recent years, more theoretical results appear, and in the rest
of this section, we summarize some of the recent advances.

5.1 Global Convergence of Cuckoo Search

Wang et al. provided a mathematical proof of global convergence for the standard
cuckoo search, and their approach is based on the Markov chain theory [34]. Their
proof can be outlined as follows:

As there are two branches in the updating formulas, the local search step only
contributes mainly to local refinements, while the main mobility or exploration is
carried out by the global search step. In order to simplify the analysis and also to
emphasize the global search capability, we now use a simplified version of cuckoo
search. That is, we use only the global branch with a random number r 2 ½0; 1�,
compared with a discovery/switching probability pa. Now we have

Implement an algorithm A(., p, ε)
with parameters p = [p1, ..., pK] and random vector ε = [ε1, ..., εm];

Define a tolerance (e.g., δ = 10−5);
Algorithm objective tδ(f(x), p, ε);

Problem objective function f(x);
Find the optimality solution fmin within δ;
Output the number of iterations tδ needed to find fmin;

Solve min tδ(f(x), p) using A(., p, ε) to get the best parameters;
Output the tuned algorithm with the best parameter setting p∗.

Fig. 1 A framework for a self-tuning algorithm

16 X.-S. Yang and X. He

xðtþ1Þi xðtÞi if r\pa;

xðtþ1Þi xðtÞi þ a� LðkÞ if r[pa:

(
ð32Þ

As our cuckoo search algorithm is a stochastic search algorithm, we can sum-
marize it as the following key steps:

1. Randomly generate an initial population of n nests at the positions,
X ¼ fx01; x02; . . .; x0ng, then evaluate their objective values so as to find the cur-
rent global best g0t .

2. Update the new solutions/positions by

xðtþ1Þi ¼ xðtÞi þ a� LðkÞ: ð33Þ

3. Draw a random number r from a uniform distribution [0,1]. Update xðtþ1Þi if
r[pa. Then, evaluate the new solutions so as to find the new, global best g�t .

4. If the stopping criterion is met, then g�t is the best global solution found so far.
Otherwise, return to step (2).

The global convergence of an algorithm. If f is measurable and the feasible
solution space Ω is a measurable subset on <n, algorithm A satisfies the above two
conditions with the search sequence fxkg1k¼0, then

lim
k!1

Pðxk 2 R�;MÞ ¼ 1: ð34Þ

That is, algorithm A can converge globally with a probability of one. Here Pðxk 2
R�;MÞ is the probability measure of the kth solution on R�;M at the kth iteration.

The state and state space. The positions of a cuckoo/nest and its global best
solution g in the search history forms the states of cuckoos: y ¼ ðx; gÞ, where
x; g 2 X and f ðgÞ
 f ðxÞ. The set of all the possible states forms the state space,
denoted by

Y ¼ fy ¼ ðx; gÞjx; g 2 X; f ðgÞ
 f ðxÞg: ð35Þ

The states and state space of the cuckoo group/population. The states of all
n cuckoos/nests form the states of the group, denoted by q ¼ ðy1; y2; . . .; ynÞ. All the
states of all the cuckoos form a state space for the group, denoted by

Q ¼ fq ¼ ðy1; y2; . . .; ynÞ; yi 2 Y ; 1
 i
 ng: ð36Þ

Obviously, Q contains the historical global best solution g� for the whole popu-
lation and all individual best solutions gið1
 i
 nÞ in history. In addition, the
global best solution of the whole population is the best among all gi, so that
f ðg�Þ ¼ minðf ðgiÞÞ; 1
 i
 n.

Swarm Intelligence and Evolutionary Computation … 17

The transition probability from state y1 to y2 in cuckoo search is

PðTyðy1Þ ¼ y2Þ ¼ Pðx1 ! x01ÞPðg1 ! g01ÞPðx01 ! x2ÞPðg01 ! g2Þ; ð37Þ

where Pðx1 ! x01Þ is the transition probability at Step 2 in cuckoo search, and
Pðg1 ! g01Þ is the transition probability for the historical global best at this
step. Pðx01 ! x2Þ is the transition probability at Step 3, while Pðg01 ! g2Þ is the
transition probability of the historical global best.

For globally optimal solution gb for an optimization problem \X; f [, the
optimal state set is defined as R ¼ fy ¼ ðx; gÞjf ðgÞ ¼ f ðgbÞ; y 2 Yg.

For the globally optimal solution gb to an optimization problem \X; f [, the
optimal group state set can be defined as

H ¼ fq ¼ ðy1; y2; . . .; ynÞj9yi 2 R; 1
 i
 ng: ð38Þ

All these will ensure that the convergence conditions are met. Further detailed
mathematical analysis proves that when the number of iteration approaches suffi-
ciently large [34], the group state sequence will converge to the optimal state/
solution set H. Therefore, the cuckoo search has guaranteed global convergence.

5.2 Convergence of the Bat Algorithm

Huang et al. have carried out a detailed convergence analysis for the bat algorithm
using the finite Markov process theory [35].

In theory, an algorithm with an order-m reducible stochastic matrix P can be
rewritten as

P ¼ S. . .0
R. . .T

� �
; ð39Þ

where R 6¼ 0, T 6¼ 0, and S is order-q stochastic matrix (with q\m). Then, we have

P1 ¼ lim
k!1

Pk

¼ lim
k!1

Sk . . . 0Pk�1
i¼1

TiRSk�i . . . Tk

0
@

1
A ¼ S1. . .0

R1. . .T

� �
;

ð40Þ

which is a stable stochastic matrix and independent of the initial distribution. In
addition, we also have

18 X.-S. Yang and X. He

P1 ¼ ½pij�m�m;
pij [0; ð1
 i
m; 1
 j
 qÞ;
pij ¼ 0; ð1
 i
m; q\j
mÞ:

�
ð41Þ

The search algorithm will converge with almost probability one to the global
optimality, starting from any initial random states, if the transition probability p to a
better solution/state is p[0. Conversely, if the transition probability p to a worse
state is greater, then the algorithm will not converge.

With this main result, it has been proved that PSO will not converge to the global
optimality [36], while the bat algorithm will converge to the true global optimality
[35].

Huang et al. concluded that for unconstrained function optimization, the bat
algorithm satisfies all the conditions for guaranteed global convergence. For non-
linear constrained problems, the bat algorithm will converge with additional ini-
tialization of orthogonal Latin squares, and has guaranteed global convergence to
the true global optimality. They further concluded that

S1 ¼ ð1Þ; R1 ¼ ð1; 1; . . .; 1ÞT ; ð42Þ

and

P1 ¼
1 0 . . . 0
1 0 . . . 0
..
. ..

. ..
.

1 0 . . . 0

0
BB@

1
CCA; ð43Þ

which leads to

lim
t!1 pff ðxÞ ! f ðx�Þg ¼ 1: ð44Þ

That is, the global convergence is guaranteed.
Huang et al. also proposed a BA variant, called modified bat algorithm (MBA)

[35], which can further improve the convergence rate with guaranteed global
optimality. They also showed that this variant is suitable for large-scale, global
optimization.

For the moment, most convergence studies can provide some results in terms of
the long term behaviour of an algorithm during iterations; however, there are not
enough results about the convergence rates to indicate how quickly an algorithm
can converge and under what conditions. Obviously, more theoretical are highly
needed to analyze these algorithms further.

Swarm Intelligence and Evolutionary Computation … 19

6 Discussions and Open Problems

Despite the huge success of nature-inspired algorithms, there are still some chal-
lenging, open problems that need to be addressed. These open problems include the
balance of exploration and exploitation, selection mechanisms, right amount of
randomization, parameter tuning as well as parameter control, scalability and
others.

• Mathematical Framework: It still lacks a general mathematical framework for
analyzing the convergence and stability of metaheuristic algorithms. There are
some good results using Markov chains, dynamic systems and self-organization
theory, but a systematic framework is yet to be developed.

• Exploration and exploitation: A key problem is how to balance of exploration
and exploitation in an algorithm so that it can deal with a vast range of problems
efficiently [37]. In reality, the amount of exploration and exploitation may
depend on the type of problem, and therefore, some a priori knowledge of the
problem to be solved can help to determine such a balance. However, it is not
known how to incorporate such knowledge effectively. For example, gradient/
derivative information obtained from the objective function can be very useful
for exploitation, but if such exploitation is too strong, it can cause the system to
be trapped in a local optimum, thus sacrificing the possibility of finding the true
global optimality. There may not exist such optimal balance for all problems
[38].

• Selection Mechanism: Selection mechanism is also very important and it is not
known what selection is most effective. A proper selection pressure is crucial to
maintain a healthy population. For example, when many solutions have similar
fitness, numerically speaking, their fitness values may almost be the same, thus
how to select certain solutions becomes tricky. Typical approaches include re-
scaled fitness values, ranking of solutions, and adaptive elitism. However, it is
not clear if they can work for all algorithms and if there is other better ways to
handle selection.

• Right Amount of Randomness: In order to balance exploration and exploita-
tion, a right amount of randomness is needed. However, no one knows what
amount is the right amount. At one extreme, if there is no randomness, an
algorithm becomes a deterministic algorithm, and thus loses the ability to
explore. At the other extreme, if the search is dominated by high randomness,
the algorithm becomes a random search, and thus significantly reduces its ability
to exploit the landscape information. In fact, it is not known how to control
randomness properly so as to balance exploration and exploitation most
effectively.

• Parameter Tuning and Control: As the performance of almost any algorithm
will depend on its parameter settings, how to tune these parameters to achieve
the best performance is a higher level optimization problem. In fact, this is the
optimization of an optimization algorithm. It is still an open question. Similarly,

20 X.-S. Yang and X. He

how to control the parameters by varying their values to achieve the best overall
performance is also a key challenging issue.

• Dynamic Landscape: The problems that have been solved in the current lit-
erature usually have fixed landscape. That is, once the problem is defined, its
landscape in the search space remain unchanged. However, for dynamic prob-
lems and problems with noise, the search landscape can change with time. In
such cases, adaptation can be more sophisticated and challenging. It is not clear
if most current methods can still work well in such time-dependent, noisy
environments.

• Scalability: How to solve high-dimensional, large-scale problems effectively?
At the moment, most case studies using metaheuristic algorithms are small-scale
problems. It is not clear if these algorithms are scalable to deal with large-scale
problems effectively.

Therefore, in-depth understanding and theoretical results are needed. Possible
research routes may require a combination of mathematical analysis, numerical
simulations, empirical observations as well as other tools such as dynamical system
theories, Markov theory, self-organization theory and probability. It may even
require a paradigm shift in analyzing metaheuristic algorithms. There is no doubt
that any theoretical results will provide tremendous insight into understanding
metaheursitic algorithms.

All these challenges can present golden opportunities for further research in
analyzing adaptation and diversity in metaheuristic algorithms. It can be expected
that more efficient tools may be developed to solve more complex, real-world
problems with a diverse range of applications.

References

1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE
International Conference on Neural Networks, pp. 1942–1948. Piscataway, NJ (1995)

2. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, UK (2008)
3. Yang, X.S.: Cuckoo Search and Firefly Algorithm: Theory and Applications, Studies in

Computational Intelligence, vol. 516, Springer, Berlin (2014)
4. Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier, Amsterdam (2014)
5. Ashby, W.R.: Princinples of the self-organizing sysem. In: Von Foerster, H., Zopf, G.W., Jr.

(eds.) Pricinples of Self-Organization: Transactions of the University of Illinois Symposium,
pp. 255–278. Pergamon Press, London (1962)

6. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrite optimization. Artif.
Life 5(2), 137–172 (1999)

7. Fister, I., Fister Jr, I., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms.
Swarm Evol. Comput. 13(1), 34–46 (2013)

8. Fister, I., Yang, X.S., Brest, J., Fister Jr, I.: Modified firefly algorithm using quaternion
representation. Expert Syst. Appl. 40(18), 7220–7230 (2013)

9. Fister, I., Mernik, M., Filipic, B.: Graph 3-coloring with a hybrid self-adaptive evolutionary
algorithm. Comput. Optim. Appl. 54(3), 741–770 (2013)

Swarm Intelligence and Evolutionary Computation … 21

10. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of World Congress on
Nature and Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications,
USA (2009)

11. Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing J. Comput. Phys. 226
(2), 1830–1844 (2007)

12. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Num.
Optim. 1(4), 330–343 (2010)

13. Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. Comput. Oper.
Res. 40(6), 1616–1624 (2013)

14. Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Comput. Appl.
24(1), 169–174 (2014)

15. Yang, X.S., Deb, S., Fong, S.: Accelerated particle swarm optimization and support vector
machine for business optimization and applications. In: Networked Digital Technologies,
Communications in Computer and Information Science, vol. 136, pp. 53–66 (2011)

16. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative
Strategies for Optimisation (NICSO 2010), Studies in Computational Intelligence, vol. 284,
pp. 65–74. Springer, New York (2010)

17. Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 3(5),
267–274 (2011)

18. Fister Jr, I., Fister, D., Yang, X.S.: A hybrid bat algorithm. Elektrotehniski Vestn. 80(1–2),
1–7 (2013)

19. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering
optimization. Eng. Comput. 29(5), 1–18 (2012)

20. Yang, X.S., He, X.S.: Bat algorithm: literature review and applications. Int. J. Bio-inspired
Comput. 5(3), 141–149 (2013)

21. Yang, X.S.: Flower pollination algorithm for global optimization. In: Unconventional
Computation and Natural Computation, pp. 240–249. Springer, New York (2012)

22. Yang, X.S.: Flower pollination algorithm for global optimization. In: Unconventional
Computation and Natural Computation, Lecture Notes in Computer Science, vol. 7445,
pp. 240–249. Springer, New York (2012)

23. Yang, X.S., Karamanoglu, M., He, X.S.: Multi-objective flower algorithm for optimization.
Procedia Comput. Sci. 18(1), 861–868 (2013)

24. Yang, X.S., Karamanoglu, M., He, X.S.: Flower pollination algorithm: a novel approach for
multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

25. Storn, R.: On the usage of differential evolution for function optimization. Biennial
Conference of the North American Fuzzy Information Processing Society (NAFIPS),
pp. 519–523. Berkeley, CA (1996)

26. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

27. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global
Optimization. Springer, Berlin (2005)

28. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization: Harmony search.
Simulation 76(2), 60–68 (2001)

29. Booker, L., Forrest, S., Mitchell, M., Riolo, R.: Perspectives on Adaptation in Natural and
Artificial Systems. Oxford University Press, Oxford (2005)

30. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Anbor (1975)

31. Yang, X.S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning
optimization algorithm. Neural Comput. Appl. 23(7–8), 2051–2057 (2013)

32. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary
algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)

33. Belavkin, R.V.: Optimal measures and Markov transition kernels. J. Global Optim. 55(2),
387–416 (2013)

22 X.-S. Yang and X. He

34. Wang, F., He, X.S., Wang, Y., Yang, S.M.: Markov model and convergence analysis based on
cuckoo search algorithm. Comput. Eng. 38(11), 180–185 (2012). (in Chinese)

35. Huang, G.Q., Zhao, W.J., Lu, Q.Q.: Bat algorithm with global convergence for solving large-
scale optimization problem. Appl. Res. Comput. 30(5), 1323–1328 (2013). (in Chinese)

36. Ren, Z.H., Wang, J., Gao, Y.L.: The global convergence of particle swarm optimization based
on Markov chain. Control Theory Appl. 2011, 462–466 (2011). (in Chinese)

37. Blum, C., Roli, A.: Metaheuristics in combinatorial optimisation: overview and conceptural
comparision. ACM Comput. Surv. 35(2), 268–308 (2003)

38. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1(1), 67–82 (1997)

Swarm Intelligence and Evolutionary Computation … 23

Globally Convergent Hybridization
of Particle Swarm Optimization Using
Line Search-Based Derivative-Free
Techniques

A. Serani, M. Diez, E.F. Campana, G. Fasano, D. Peri and U. Iemma

Abstract The hybrid use of exact and heuristic derivative-free methods for global
unconstrained optimization problems is presented. Many real-world problems are
modeled by computationally expensive functions, such as problems in simulation-
based design of complex engineering systems. Objective-function values are often
provided by systems of partial differential equations, solved by computationally
expensive black-box tools. The objective-function is likely noisy and its derivatives
are often not available. On the one hand, the use of exact optimization methods
might be computationally too expensive, especially if asymptotic convergence
properties are sought. On the other hand, heuristic methods do not guarantee the
stationarity of their final solutions. Nevertheless, heuristic methods are usually able
to provide an approximate solution at a reasonable computational cost, and have
been widely applied to real-world simulation-based design optimization problems.
Herein, an overall hybrid algorithm combining the appealing properties of both
exact and heuristic methods is discussed, with focus on Particle Swarm Optimi-
zation (PSO) and line search-based derivative-free algorithms. The theoretical

A. Serani (&) � M. Diez � E.F. Campana
CNR-INSEAN, Via di Vallerano 139, Rome, Italy
e-mail: andrea.serani@uniroma3.it

M. Diez
e-mail: matteo.diez@cnr.it

E.F. Campana
e-mail: emiliofortunato.campana@cnr.it

G. Fasano
Department of Management, University Ca’ Foscari of Venice,
S. Giobbe, Cannaregio 873, Venice, Italy
e-mail: fasano@unive.it

D. Peri
CNR-IAC, Via dei Taurini 19, Rome, Italy
e-mail: daniele.peri@cnr.it

A. Serani � U. Iemma
Department of Engineering, Roma Tre University, Via Vito Volterra 62, Rome, Italy
e-mail: umberto.iemma@uniroma3.it

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_2

25

properties of the hybrid algorithm are detailed, in terms of limit points stationarity.
Numerical results are presented for a specific test function and for two real-world
optimization problems in ship hydrodynamics.

Keywords Derivative-free optimization � Global optimization � Particle swarm
optimization � Line search algorithm � Hybrid optimization algorithm � Simulation-
based design � Ship design

1 Introduction

There is plenty of challenging real applications in sciences where optimization is
naturally involved, and sophisticated minimization techniques are definitely nec-
essary in order to allocate resources. In particular, these scientific tough problems
often involve a remarkably large computational cost, along with large time of
computation and machine resources.

Up to 15–20 years ago, to a great extent the main interest of theoreticians in
optimization was for methods based on the use of derivatives. This was basically
due to the following three strong reasons:

• in several cases derivatives are available when solving computational problems.
In particular, they are always ‘analytically’ available if the nonlinear functions
involved are known in closed form (see for instance the work by Griewank in
2000 [14]), and they can be exactly computed (not simply approximated) at
reasonable cost in small-medium scale problems [12, 22];

• strong theoretical results have been developed, both in terms of convergence and
computational performance, for optimization methods where derivatives (say of
first/second order) are available;

• the use of machine resources at a cheaper cost has allowed the solution of
problems where derivatives can be suitably approximated by finite differences,
using either coarse or fine techniques.

On the other hand, engineering design offers a huge number of real-world
problems where scientists are continuously asked to apply robust methods, using
the most recent theoretical advances. In particular, design problems often include
functions which are not differentiable or where the use of derivatives is possibly
discouraged. The following issues motivate the latter statement and give more
precise guidelines for analyzing and improving optimization procedures not
involving derivatives.

• For large scale problems, computing derivatives by finite differences might be
prohibitively costly, and also Automatic Differentiation [14] might be of difficult
application. Furthermore, the computation of derivatives by finite differences
proved to be very harmful when the scale of the problem increases.

26 A. Serani et al.

• Most of the codes for complex design problems are parameter dependent, and
the parameters need to be ‘properly’ assessed. Their correct choice in practice
implies that the overall performance of the code needs to be optimized with
respect to those parameters. Thus, an implicit optimization problem with respect
to these parameters requires a solution, and surely the derivatives of the func-
tions involved are unavailable, being the output of a code nondifferentiable.

• Most of the design problems need solution procedures where expensive simu-
lations are performed. Typically, simulations are affected by noise, systematic
errors arise and stochastic parameters are used, so that derivatives are essentially
unavailable or their use may lead to completely destroy the robustness of
procedures.

The issues above contribute to motivate the use of efficient and effective
derivative-free methods, in order to solve a wide range of challenging problems.

In this chapter we focus on a modification of the PSO algorithm (originally
proposed by Kennedy and Eberhart in 1995 [18]), for the solution of the uncon-
strained global optimization problem

min
x2IRn

f ðxÞ; f : IRn ! IR: ð1Þ

At present f(x) is assumed to be a continuous nonlinear, non-convex and com-
putationally expensive function. Observe that in (1) we aim at using a modified
PSO algorithm in order to detect a global minimum of f(x), i.e. a point x� 2 IRn such
that f(x*) ≤ f(x), for any x 2 IRn.

The reason for which we focus on a modified PSO in order to tackle (1) is that
when the function f(x) is computationally costly, exact methods may be definitely
too expensive to solve (1). Moreover, some exact methods are possibly unable to
provide a current satisfactory approximation of a solution. In the latter cases the use
of heuristic approaches may be fruitful, in particular when the computational
resources and/or the time allowed for the computation are severely limited, and
asymptotically convergent procedures are unaffordable. On the basis of the latter
observations, PSO proved to be both effective and efficient on several practical
applications [8, 23, 24], so that it is often the heuristics of choice.

Recalling the above considerations, in the framework of derivative-free opti-
mization, we think that combining heuristic procedures and exact methods could be
amenable, provided that:

1. the overall hybridized scheme is efficient, i.e. it is possibly not too expensive. A
legitimate expectation is that the overall computational cost of the combined
scheme is in-between the cost of (not combined) PSO and the cost of the exact
method;

2. the results provided by the combined procedure are endowed with some
theoretical properties, which are guaranteed by an effective combination of PSO
and the exact method. Typical theoretical properties characterize both the

Globally Convergent Hybridization … 27

convergence of sequences of points, and the stationarity of limit points of the
sequences generated by the hybridized scheme.

Thus, we focus here on some modifications of PSO, where converging subse-
quences of iterates are generated. As a consequence, in the next section we are
committed to provide clear conditions, under which PSO particles trajectories can
be controlled. On the other hand, our modifications proposed for PSO guarantee
that the generated sequences of iterates have subsequences converging to stationary
points of the objective function (see also [15, 16, 29, 30]). In particular, since there
are in the literature theoretical results for several exact derivative-free methods [7,
19], we decided to combine PSO with a line search-based derivative-free algorithm,
which is to our knowledge still an unexplored issue, apart from the analysis by
Campana et al. in 2009 [1]. We consider here also a numerical experience on a
simplified method proposed by Campana et al. in 2009 [1], where the choice of the
search directions is particularly ‘intuitive’, and preserves some relevant theoretical
results.

Observe that the aim of this paper is to provide robust methods with a twofold
purpose. First we would like to exploit the capability of PSO to provide a satis-
factory approximation to a global solution, within a few iterations. Then, by
combining PSO with an exact method, we want to force the convergence of sub-
sequences of points toward a stationary point, which satisfies first order optimality
conditions for f(x). This paper is specifically concerned with both reporting some
theoretical results and performing a valid numerical experience, to prove our the-
oretical conclusions.

As regards the symbols we adopt in this chapter, subscripts are used to identify
the particles in a PSO scheme, whilst the superscripts indicate the iteration. By I we
denote the identity matrix, and k � k represents the Euclidean norm of a vector/
matrix. Finally, B(c, r) is the real ball with center in the vector c and radius r > 0,
i.e. Bðc; rÞ ¼ fy 2 IRn : y� ck k� rg. All the other symbols follow a very standard
notation.

In Sects. 2–3 we discuss some issues related to the stability of PSO iteration.
Then, the Sects. 4–5 introduce both the theory and the motivations for our modi-
fication of PSO iteration. In Sect. 6 we describe our proposal and we carry out the
related convergence analysis. Section 7 is then devoted to report a numerical
experience on a test case and real problems from ship design. Finally, Sect. 8
contains some conclusions.

2 Stable and Unstable Trajectories for PSO

The strategy of PSO for solving (1) is that of generating the P sequences fxkj g, j = 1,
…,P, of iterates in IRn, each associated with the j-th particle of the swarm. The
particles share information on the point pkg, at any iteration k, satisfying the
condition

28 A. Serani et al.

f ðpkgÞ� f ðxhj Þ; 8h� k; 8j 2 f1; . . .;Pg:

To our purposes we preliminarily refer to the following PSO iteration, for any
k ≥ 0:

vkþ1
j ¼ vj w

k
j v

k
j þ cjrj � ðpkj � xkj Þ þ cgrg � ðpkg � xkj Þ

h i
;

xkþ1
j ¼ xkj þ vkþ1

j ;
ð2Þ

where j = 1,…,P represents the j-th particle (i.e. the j-th sequence of iterates), P is
finite, while vkj and xkj are n-real vectors, which respectively represent the speed (i.e.
the search direction) and the position of the j-th particle at step k. The real bounded
coefficients cj and cg are typically given at the outset of iteration k = 0, and are
possibly not modified unless stagnation arises. On the other hand, with rj � ðpkj � xkj Þ
(similarly with rg � ðpkg � xkj Þ) we indicate that every entry of the vector ðpkj � xkj Þ is
multiplied by a different value of rj, which is a random parameter in the uniform
distribution between 0 and 1. Finally, for a given k ≥ 0, the n-real vectors fpkj g satisfy
the conditions

f ðpkj Þ� f ðx‘j Þ; 8‘� k; pkj 2 fx‘jg; ð3Þ

moreover, χj (constriction coefficient) and wk
j (inertia) are positive bounded coef-

ficients. In words the vector pkj represents the ‘best position’ in the j-th subsequence

up to iteration k, while pkg is the ‘best position’ among all the vectors fpk1; . . .; pkPg.
A keynote issue in PSO is that an effective choice of the coefficients χ, wk, cj and cg
is often problem dependent, whereas several standard settings for them have been
proposed in the literature (see [25]). Notwithstanding the latter fact, more precise
rules for assessing the coefficients in (2) are still sought, with a specific reference to
eventually avoid stagnation of PSO iteration.

In order to possibly generalize the recurrence (2), we can assume that the speed
vkþ1
j depends on all the P vectors ðpkh � xkj Þ (see also [21]), h = 1,…,P, and not only

on the pair of vectors ðpkj � xkj Þ, ðpkg � xkj Þ. The resulting new iteration represents
the so called Fully Informed PSO (FIPSO). The latter generalization is possibly
unessential for our purposes, so that hereafter we limit our analysis to the more
standard iteration (2).

Observe that in order to give rules, which ensure that PSO trajectories satisfy
suitable conditions, we need to impose some restrictions to the coefficients in (2). In
particular, after reviewing the literature we remark that the following (not mutually
exclusive) conditions can be reasonably expected to hold for particles trajectories in
PSO:

Globally Convergent Hybridization … 29

(1) the sequence fxkj g converges to x�j , for any j = 1,…,P, with x�1 ¼ � � � ¼ x�P;
(2) the sequence fxkj g converges to x�j , for any j = 1,…,P, but possibly x�j 6¼ x�‘ ,

with 1� j 6¼ ‘�P;
(3) the sequence fxkj g is not diverging for any j = 1,…,P, i.e. limk!1 kxkj k\þ1,

for any j = 1,…,P and any k ≥ 0.

We highlight that different bounds can be imposed on the coefficients χ, wk, cj and
cg in (2), in order to ensure that either of the three conditions (1)–(3) is fulfilled. It is
also not difficult to realize that (1) implies (2) (but not viceversa) and (2) implies (3)
(but not viceversa). Thus, the conditions on the coefficients of PSO ensuring (3), are
expected to be both weak enough and sufficiently general to allow a wide exploration
of the search space. For the latter reason, in this paper we prefer to study and analyze
the case (3), while the interested reader can possibly refer to PSO literature (see also
Sect. 4) for the analysis on the cases (1)–(2). Now, by (2) let us preliminarily
consider the following assumption, in order to simplify our notation.

Assumption 1 We assume in (2) that χj = χ > 0, cj = c > 0 and rj = r > 0, for any
j = 1,…,P. Moreover, cg ¼ �c[0, rg ¼ �r[0 and wk

j ¼ w, for any j = 1,…,P and
any k ≥ 0.

Then (see also [2]), using Assumption 1 the iteration (2) is equivalent to the
discrete stationary (time-invariant) system

Xjðk þ 1Þ ¼
vwI �vðcr þ �c�rÞI

vwI 1� vðcr þ �c�rÞ½ �I

0
@

1
AXjðkÞ þ

vðcrpkj þ �c�rpkgÞ

vðcrpkj þ �c�rpkgÞ

0
@

1
A; ð4Þ

where

XjðkÞ ¼
vkj
xkj

 !
2 IR2n; k� 0: ð5Þ

For a given j, the vectors {Xj(k)} identify a sequence of points in IR2n and represent
indeed the trajectory of the j-th particle in the state space IR2n. By definition, since
Xj(k) represents a state vector, it can be split into the so called free response XjLðkÞ
and the forced response XjFðkÞ (see also [27]), such that

XjðkÞ ¼ XjLðkÞ þ XjFðkÞ; ð6Þ

being

XjLðkÞ ¼ UjðkÞXjð0Þ; XjFðkÞ ¼
Xk�1

s¼0

Hjðk � sÞUjðsÞ; ð7Þ

30 A. Serani et al.

and (with a little computation)

UjðkÞ ¼
vwI �vðcr þ �c�rÞI

vwI 1� vðcr þ �c�rÞ½ �I

0
@

1
A

k

; ð8Þ

Hjðk � sÞ ¼
vwI �vðcr þ �c�rÞI

vwI 1� vðcr þ �c�rÞ½ �I

0
@

1
A

k�s�1

; ð9Þ

UjðsÞ ¼
vðcrpsj þ �c�rpsgÞ

vðcrpsj þ �c�rpsgÞ

0
@

1
A: ð10Þ

We highlight the important fact that the free response XjLðkÞ in (6)–(7) only
depends on the initial point Xj(0), and is not affected by changes of the vectors psj ,
pg
τ , τ ≥ 0. The latter observation is of great interest, in order to assess rules for the

parameters χ, w, c, r, �c and �r, as the next section shows.

3 Issues on Assessing Parameters in PSO

As described in the last section, the fruitful choice of the parameters in PSO is to a
large extent guided by a couple of issues: the efficiency of the overall scheme and
the necessity of guaranteeing at least non-diverging trajectories of the particles. As
regards the first issue, the literature of PSO provides several suggestions which have
proved to be effective in most cases (see for instance [4, 26]). Conversely, some
more recent papers, concerned with studying the stability of particles trajectory,
have detailed some restrictions on PSO parameters in order to dynamically control
the trajectory of particles, and make them more accurately predictable. On this
guideline, papers like Kadirkamanathan et al. in 2006 [17], and Gazi in 2012 [12]
are advisable, since they contain clear indications on the latter issue.

Here we want to propose a unified approach for parameters assessment in PSO,
using the reformulation (4)–(5). In practice (see also [27]), as long as Assumption 1
holds, our perspective is that of using classic analysis for discrete linear systems in
order to deduce bounds on PSO parameters. On the other hand, we want to carry on
our analysis as rigorously as possible, so that we will separately develop formal
conditions for the following three purposes:

(a) define necessary conditions (possibly not sufficient) on PSO parameters, so
that particles trajectories are not diverging, i.e. the quantities kXjðkÞk are
limited, for any j = 1,…,P and any k ≥ 0;

(b) ensure no stagnation (see [13]) for a modified PSO scheme;

Globally Convergent Hybridization … 31

(c) possibly introduce simple modifications to PSO, so that the resulting scheme is
globally convergent to stationary points, i.e. for any choice of the initial
positions x01; . . .; x

0
P of the particles, the scheme generates sequences of points

like {yk}, such that

lim inf
k!1

rf ðykÞ�� �� ¼ 0:

Observe that the latter condition substantially guarantees that possibly ‘true’ min-
ima for f(x) are eventually outreached, even in case stagnation arises. We strongly
remark that though we used the symbol rf ðxÞ, the latter relation will be proved
without using any information on rf ðxÞ, so that a completely derivative-free
method will be developed.

In the current section we consider the issue (a), while in the next section issues
(b) and (c) will be analyzed in detail.

As well known, for a discrete linear system like (4)–(5) (see for instance [27]), if
the j-th trajectory {Xj(k)} in (6) is non-diverging, then

lim
k!1

XjðkÞ ¼ lim
k!1

XjFðkÞ; j ¼ 1; . . .;P:

In other words, the free response XjLðkÞ is bounded away from zero only for
finite values of the index k, and

lim
k!1

XjLðkÞ ¼ 0: ð11Þ

This introduces a possible rule to address bounds for PSO parameters, since
relation (11) imposes some restrictions to the eigenvalues of matrix UjðkÞ in (8).
Observing that Φj(k) = Φj(1)

k, for any k ≥ 0, the 2n eigenvalues of the unsymmetric
matrix Ujð1Þ are real. In particular, by setting for the sake of simplicity in (8)

a ¼ vw; x ¼ vðcr þ �c�rÞ; ð12Þ

we can prove that after some computation the matrix Ujð1Þ has two distinct
eigenvalues λj1 and λj2 given by

kj1 ¼
1� xþ a� ð1� xþ aÞ2 � 4a

h i1=2
2

;

kj2 ¼
1� xþ aþ ð1� xþ aÞ2 � 4a

h i1=2
2

;

ð13Þ

each of them with algebraic multiplicity n. Thus, a necessary (but in general not
sufficient) condition for the j-th trajectory {Xj(k)} to be non-diverging and satisfy

32 A. Serani et al.

limk!1 XjLðkÞ ¼ 0, is the following, which yields the required conditions on the
coefficients of PSO iteration.

Lemma 1 Consider the PSO iteration (2). Let Assumption 1 hold. Let the eigen-
values λj1and λj2in (13) satisfy the conditions

jkj1j\1; jkj2j\1; ð14Þ

for any j = 1,…,P. Then, the sequence fXjLðkÞg satisfies limk!1 XjLðkÞ ¼ 0, and
condition (14) is a necessary condition for the trajectory {Xj(k)} to be non-diverging.

Note that most of the typical settings for PSO parameters proposed in the lit-
erature (see e.g. [4, 5, 26]), satisfy the condition (14). Moreover, Lemma 1 does not
guarantee that the sequence {Xj(k)}, for a given j, is converging, and indeed it
possibly does not admit even limit points. This means that condition (14) only
provides a result for item (a), but is definitely inadequate to treat items (b) and (c).
This also implies that for instance if (14) holds, then possibly the trajectory fXjðkÞg
is not converging, or some of its subsequences converge to the point x�j which is not
a minimum and does not satisfy the property

f ðx�j Þ� f ðxÞ; 8x 2 Bðx�j ; eÞ; e[0:

In the next sections we focus on a rigorous analysis of the latter issue. I.e., under
mild assumptions we propose a modified PSO scheme such that, if the function f
(x) is continuously differentiable, the sequence fx11; . . .; x1P; . . .; xk1; . . .; xkPg admits
stationary limit points for f(x), so that

lim inf
k!1

rf ðxkj Þ
��� ��� ¼ 0 or lim

k!1
rf ðxkj Þ
��� ��� ¼ 0: ð15Þ

As the reader can expect, there is a theoretical and computational evidence that
fulfilling condition (15) may be met (in several real applications) at the expense of a
reasonably larger computational cost, with respect to the standard PSO iteration (2).

4 PSO and Stationarity

In Sect. 1 we have detailed some motivations, to explain why in the last two
decades design optimization and simulation-based optimization have required
effective and robust derivative-free optimization methods. Exploiting also the recent
advances on parallel computing, the last two decades have seen in particular the
blow up of a remarkably effective class of optimization methods, endowed with
complete convergence analysis and competitive performance: namely direct search
methods. The latter class (see [19]) counts several optimization methods, which do
not use derivatives but basically rely on “the ranks of a countable set of function

Globally Convergent Hybridization … 33

values” [19], i.e. on comparing the objective function values in specific points of
the search space.

Among direct search methods we focus here on a subclass of iterative tech-
niques, which is usually addressed in the literature as Generating Set Search (GSS).
In the latter class, the main idea is that of decreasing the objective function at each
iteration, on a cone in IRn generated by suitable search directions. Pattern search
methods are in the GSS class, and have the distinguishing feature of enforcing, at
each iteration, a simple decrease of the objective function. Conversely, also line
search-based derivative-free methods are iterative schemes in GSS class, however
they impose at each iteration a so called sufficient reduction of f(x). We want to
show that global convergence properties of a modified PSO scheme may be
obtained by properly combining PSO with a line search-based derivative-free
method, so that convergence to stationary points can be forced at a reasonable cost
(see also items (b) and (c) of Sect. 3). On this guideline, there is plenty of examples
where evolutionary strategies are combined with GSS schemes and yield globally
convergent algorithms (see for instance [15, 31, 32]). In particular, in the last
reference PSO is hybridized within a pattern search framework, and a resulting
method converging to stationary points is given.

Observe that in the literature of derivative-free methods we can also find PSO-
based approaches combined with a trust-region framework (see [31, 32]), in order
to provide again globally convergent methods to stationary points.

In this section we consider the solution of the problem (1), and we focus on a
modified PSO scheme, combined with a line search-based derivative-free algo-
rithm. We study in particular the nature of limit points of the sequences fxkj g, j = 1,
…,P, when Assumption 1 holds. However, we think that to have a better insight in
our analysis, the following very preliminary results (see also [7]) can help the reader
grasp the importance of the GSS class, in order to ensure convergence to stationary
points.

Definition 1 Given the set of vectors D = {d1,…,dm} of IRn, we say that D is a
Positively Spanning Set (PSS) if for any vector u 2 IRn we have

u ¼
Xm
i¼1

aidi; ai � 0;

i.e. any vector u of IRn can be expressed as the weighted sum of the vectors in D,
using nonnegative weights.

Thus, a PSS substantially provides a set of vectors which positively span the
space IRn. It can be easily proved that if D is a PSS of IRn, then its cardinality must
be at least n + 1. It is very easy to define PSSs; simple examples of them in IR2 are
given in Fig. 1, where m = 4 (top and bottom) and m = 3 (middle). In addition, there
is the following nice property of PSSs that we are going to exploit in our proposal.
If the point x 2 IRn is not stationary for f in (1) (i.e. rf ðxÞ 6¼ 0), given the PSS D in
IRn, there exists at least one vector, say d̂ 2 D, such that rf ðxÞT d̂\0, meaning that

34 A. Serani et al.

the direction d̂ is of descent for f(x) at x. The latter fact ensures that if the current
point is not stationary, and a PSS is available, roughly speaking there is at least one
direction of descent for f(x) in the PSS.

A so called cosine measure cm(D) can be associated to the PSS D of IRn, defined
as follows.

Definition 2 Given the PSS D = {d1,…,dm} in IRn, we define the cosine measure
cm(D) of D as

cmðDÞ ¼ min
v2IRnnf0g

max
di2D

vTdi
kvkkdik
� �

;

being always cm(D) > 0.

By Definition 2 the quantity cm(D) clearly represents a measure of the least
orthogonal projection of any vector in IRn on vectors in D. As a consequence, if cm
(D) → 0 then D might be not a ‘good’ PSS and consequently it might be difficult to
find a descent direction for f in D. The following result clarifies the importance of
introducing PSSs in derivative-free optimization, in order to characterize stationary
points, without using any information on the gradient of f in (1).

Fig. 1 Examples of PSSs in
IR2. The subscript ‘⊕’ in the
uppermost PSS means that the
vectors in the set are the
coordinate unit vectors ± ei,
i = 1,…,n

Globally Convergent Hybridization … 35

Theorem 1 Let D = {d1,…,dm} be a PSS. Suppose the function f(x) in (1) is
continuously differentiable in IRn and the gradient rf ðxÞ satisfies the Lipschitz
condition

rf ðyÞ � rf ðxÞk k� mky� xk; 8y 2 B
	 ðx; adÞ; d ¼ max

1� i�m
kdik;

for some ν > 0 and α > 0. If f(x) ≤ f(x + αdi), i = 1,…,m, then the following bound
holds for the gradient of f(x)

krf ðxÞk� m
2

1
cmðDÞ ad: ð16Þ

Proof Since D is a PSS, there exists at least one vector in the set fdig, say d̂ 2 D,
such that

cmðDÞ� �rf ðxÞT d̂
krf ðxÞkkd̂k ;

hence, recalling that α is positive, we have equivalently

cmðDÞkrf ðxÞkkd̂ka� �rf ðxÞTðad̂Þ: ð17Þ

h

On the other hand, the hypothesis of continuous differentiability of f(x) allows to
apply the Mean Value Theorem in the integral form, being for any d ∊ D

f ðxþ adÞ ¼ f ðxÞ þ
Z1
0

rf ½xþ tad�TðadÞdt;

or equivalently

0� f ðxþ adÞ � f ðxÞ ¼
Z1
0

rf ½xþ tad�TðadÞdt: ð18Þ

Combining (17) and (18) we obtain for the direction d̂

36 A. Serani et al.

cmðDÞkrf ðxÞk kd̂ka � �rf ðxÞTðad̂Þ þ
Z1
0

rf ½xþ tad̂�Tðad̂Þdt

�
Z1
0

rf ½xþ tad̂�Tðad̂Þ � rf ðxÞTðad̂Þ�� ��dt

�
Z1
0

rf ½xþ tad̂� � rf ðxÞ�� ��kad̂kdt

� m
Z1
0

tkad̂k2dt� m
2
a2kd̂k2;

which immediately yields (16).
Loosely speaking, in order to suggest the reader the importance of Theorem 1, it

can be rephrased in the following simple way. If the PSS D is available and the
value f(x) cannot be decreased on points along all the directions in D, then it means
that the iterate x is a stationary point. Indeed, in the latter case, from (16) we have
lima!0 krf ðxÞk ¼ 0. Also note that if the PSS D is poor (i.e. cm(D) is small), then
the bound on the gradient (16) is poor accordingly.

Since in our proposal we combine PSO with a line search-based derivative-free
method, which relies on the use of PSSs, with out proposal we will be able to
characterize stationarity conditions for a modified PSO scheme, without recurring to
any information on the gradient rf ðxÞ. In the next section we describe some basic
properties of the line search-based derivative-free method we couple with PSO.

5 Preliminaries on the Line Search-Based Method Adopted

We consider in this section the proposal by Lucidi and Sciandrone in 2002 [20],
which includes some line search-based derivative-free methods. Since it is our
intention to reduce the complexity of our proposal as much as possible, the next result
represents a simplified version of the material of Lucidi and Sciandrone in 2002 [20].

Proposition 1 Let f : IRn ! IR, with f continuously differentiable in IRn. Suppose
that the points in the sequence {xk} are bounded. Suppose the directions dk1; . . .; d

k
m

are bounded and form a positively spanning set of IRn. Then, the following sta-
tionarity condition holds

lim
k!1

krf ðxkÞk ¼ 0 if and only if lim
k!1

Xm
j¼1

min 0;rf ðxkÞTdkj
n o

¼ 0: ð19Þ

Globally Convergent Hybridization … 37

Let us consider the sequence {xk} in (19) and Theorem 1. By Proposition 1
necessary and sufficient conditions of stationarity for the sequence {xk} can be
accomplished by simply exploiting at any iterate xk the function f(x) (through its
directional derivative rf ðxkÞTdkj), along the search directions dk1; . . .; d

k
m. Table 1

details a line search-based derivative-free method for unconstrained minimization,
which uses the results of Proposition 1. In Lucidi and Sciandrone [20] a complete
convergence analysis was developed for the Algorithm LS-DF and the following
conclusion was proved (see e.g. Proposition 5.1 in [20]).

Proposition 2 Suppose the directions dk1; . . .; d
k
m satisfy Proposition 1. Consider

the sequence {xk} generated by the Algorithm LS-DF and let the level set L0 ¼
fx 2 IRn : f ðxÞ� f ðx0Þg be compact. Then we have

lim inf
k!1

krf ðxkÞk ¼ 0: ð20Þ

Note that the condition (20) is weaker than (19), and in principle is met only
asymptotically by the Algorithm LS-DF. Of course, recalling also the results in
Theorem 1, a practical stopping condition of Algorithm LS-DF could be obtained by
monitoring the steplength �ak at Steps 2 and 3. The algorithm can stop when �ak

becomes sufficiently small. Also observe that at Step 4 the point xk+1 might be
computed for instance by any heuristic procedure; nevertheless, we can set in any
case xk+1 ≡ yk, since convergence analysis does not require f(xk+1) < f(yk).

As a final consideration, note that relation (20) may be strongly strengthened by
choosing a different (and computationally more expensive) strategy at Step 2 of the
Algorithm LS-DF. Indeed, instead of requiring that at Step 2 just one direction is of
sufficient decrease for the objective function (i.e. f(xk + αkdj

k) ≤ f(xk) − γ(αk)2 for at
least one index j 2 f1; . . .;mg), we can exploit f(x) along all the directions

Table 1 The line search-based derivative-free algorithm LS-DF (see also Lucidi and Sciandrone
2002 [20])

38 A. Serani et al.

fdk1; . . .; dkmg in the PSS. The resulting algorithm is Algorithm LS-DF+ in Table 2. We
recall that, for the sake of simplicity and in order to keep the computational cost as
low as possible, we will couple PSO only with Algorithm LS-DF. In the following
proposition we summarize convergence properties also for Algorithm LS-DF+: we
remark that they are definitely stronger than the result in Proposition 2.

Proposition 3 Suppose the directions dk1; . . .; d
k
m satisfy Proposition 1. Consider

the sequence {xk} generated by the Algorithm LS-DF+and let the level set L0 ¼
fx 2 IRn : f ðxÞ� f ðx0Þg be compact. Then we have

lim
k!1

krf ðxkÞk ¼ 0: ð21Þ

Table 2 The line search-based derivative-free algorithm LS-DF+ in Lucidi and Sciandrone (2002)
[20]

Globally Convergent Hybridization … 39

It is evident that in Algorithm LS-DF+ the stronger convergence result is obtained
at the expense of a larger computational cost in Step 2. In addition, the procedure
LINE SEARCH () is aimed to determine a possible expansion of the steplength akj .

6 A Hybrid Algorithm

In this section we propose a hybrid algorithm, obtained by coupling the PSO
scheme described in Sect. 2 with the algorithm in Table 1. We remind the reader
that the resulting method should be endowed with both the (local) convergence
properties of Algorithm LS-DF and the (global) strategies of exploration of PSO (see
also Sect. 1).

Of course, it is far obvious that simply alternating a finite sequence of steps of
PSO and a finite sequence of steps of Algorithm LS-DF would provide a method
satisfying a property similar to Proposition 2. However, the latter strategy might be
a blind sequential application of two different algorithms, which does not exploit
their peculiarities. On the contrary, we prefer to consider a scheme which at once
both exploits (local strategy) and explores (global strategy) the objective function.
Thus, we consider here a PSO-based method which attempts to detect a global
minimum of the objective function, while retaining the asymptotic convergence
properties of Algorithm LS-DF.

Our proposal (namely Algorithm LS-DF_PSO) is summarized in Table 3 and its
convergence properties to stationary points are summarized in the next proposition
(see also [20]).

Proposition 4 Suppose the directions d1
k,…,dm

k satisfy Proposition 1. Consider the
sequence {xk} generated by the Algorithm LS-DF_PSO and let the level set L0 ¼
fx 2 IRn : f ðxÞ� f ðx0Þg be compact. Then we have

lim inf
k!1

krf ðxkÞk ¼ 0: ð22Þ

Proof Observe that the Algorithm LS-DF and the Algorithm LS-DF_PSO differ only at
Step 1 and Step 4. Indeed, Step 1 and Step 4 of Algorithm LS-DF_PSO are simply
obtained from the corresponding steps of Algorithm LS-DF, observing that the
iterates yk (Step 1) and xk+1 (Step 4) are computed by using PSO. Therefore,
convergence properties of the sequence generated by the Algorithm LS-DF_PSO are
basically inherited from Proposition 2. h

We conclude this section by highlighting that similarly to Algorithm LS-DF_PSO,
instead of using Algorithm LS-DF, we can couple PSO with the Algorithm LS-DF+.
The resulting hybrid scheme, would be much similar to Algorithm LS-DF_PSO but
more expensive than the algorithm in Table 3. Moreover, it would be also endowed

40 A. Serani et al.

with convergence properties similar to those reported in Proposition 3, so that the
condition (22), which is worth for Algorithm LS-DF_PSO, would be reinforced with a
condition like (21).

7 Numerical Results

Numerical results are presented for the Rosenbrock function and for two real-world
optimization problems in ship hydrodynamics. Specifically, a four-parameters
shape optimization of a catamaran is investigated for (a) resistance reduction in
calm water at fixed speed, and (b) expected resistance reduction in wave, taking into
account stochastic sea state and speed. For all optimization problems, the deter-
ministic implementation of PSO presented by Serani et al. in 2014 [28] is used for
extension to LS-DF_PSO. A number of particles equal to 4n is used, with initialization
over the variables domain by Hammersely sequence sampling, and PSO coefficients
given by Clerc in 2006 [6], i.e., χ = 0.721, w = 1, cr ¼ �c�r ¼ 1:655 (see the work by
Serani et al. in 2014 [28] for details). LS-DF_PSO parameters are set as hk = 1,
γ = 10−3, θ = 0.5, αk = 0.25 of the design variable range.

Specifically, the minimization in IR2 of the Rosenbrock function,

f ðx; yÞ ¼ ða� xÞ2 þ bðy� x2Þ2 ð23Þ

Table 3 The line search-based derivative-free algorithm LS-DF_PSO

Globally Convergent Hybridization … 41

with n = 2, a = 1, b = 100, −20 ≤ x ≤ 20 and �20� y� 20, is used as an
explanatory test problem. Figure 2a shows the convergence of the LS-DF_PSO
algorithm, compared to the standard PSO. Black squares indicate LS-DF_PSO itera-
tions where the line search procedure LS is used to improve the optimum location.
Figure 2b shows a comparison of the algorithms’ convergence in a close up of the
variables domain. The global-optimum location history is depicted, along with the
real minimum, which is located at x = 1, y = 1. The beneficial effects of using PSO
with LS are evident, providing a faster and more effective convergence to the
optimum, along with the identification of the proper region of the global optimum.

The shape optimization of the Delft catamaran is shown as an example of
industrial design problems. The Delft catamaran is a concept ship used for exper-
imental and numerical benchmarks (see, e.g., the numerical studies presented by
Diez et al. in 2013 [11]). Figure 3 shows the Delft catamaran model during towing
tank experiments at CNR-INSEAN, along with a detail of the original hull shape.
The design optimization problems are taken from the work by Chen et al. in 2014
[3] and Diez et al. in 2013 [9] respectively, and solved by means of stochastic
radial-basis functions interpolation (details may be found in the work by Volpi et al.
in 2014 [33]) of high-fidelity unsteady Reynolds-averaged Navier-Stokes (URANS)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000

f o
bj

[-
]

No. of function evaluations [-]

 0

 2

 4

 6

 8

 10

 12

-3 -2 -1 0 1 2

y
 [

-]

x [-]

DPSO
LS-DF_PSO

real minimum

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000(a) (b)DPSO
LS-DF_PSO

LS update

Fig. 2 Rosenbrock function minimization: convergence of the objective function (a) and global-
optimum location history (b)

Fig. 3 Delft catamaran: towing tank experiments at CNR-INSEAN (a) and detail of the original
geometry (b)

42 A. Serani et al.

simulations. For the first problem, the design objective is the minimization of the
resistance in calm water at Froude number equal to 0.5 (see [3] for details). For the
second problem, the design objective is the reduction of the expected value of the
mean resistance in head waves, taking into account stochastic sea state in the North
Pacific ocean and variable speed (see [9] for details). For both problems, four
design variables control global shape modifications, based on the Karhunen-Loève
expansion of the shape modification vector [10].

Figure 4a shows the convergence of the minimization procedure for the first
problem, comparing PSO with LS-DF_PSO. LS is required only few times, as indi-
cated by the black squares, and the minima provided by the two algorithms are
extremely close, as shown in Figs. 4b and 5. Nevertheless, it may be noted that, at
very reduced additional cost, LS-DF_PSO provides a solution certified with sta-
tionarity properties.

Figure 6a shows the convergence of the minimization procedure for the second
problem, comparing PSO with LS-DF_PSO. LS is required and applied a larger
number of times than in the previous problem, and is essential to identify the global

Fig. 5 Minimization of calm-water resistance for the Delft catamaran: optimal shape design by
PSO (a) and LS-DF_PSO (b)

-10

-9

-8

-7

-6

-5

-4

 10 100 1000to
ta

l r
es

is
ta

nc
e/

di
sp

la
ce

m
en

t (
Δ%

)

No. of function evaluations [-]

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

D
es

ig
n

va
ri

ab
le

 v
al

ue
 [

-]

Design variable id [-]

DPSO
LS-DF_PSO

(a) (b)

DPSO
LS-DF_PSO

LS update

Fig. 4 Minimization of calm-water resistance for the Delft catamaran: convergence of the
objective function (a) and global-optimum design variables (b)

Globally Convergent Hybridization … 43

optimum, as shown in Fig. 6b. As a result, optimal shape designs provided by PSO
and LS-DF_PSO are noticeably different (within the context of current application’s
variation), as shown in Fig. 7. Additionally, it may be noted that the solution given
by LS-DF_PSO is also endowed with stationarity properties.

8 Conclusions

In this chapter we have detailed some globally convergent modifications of PSO
iteration (2), for the solution of the unconstrained global optimization problem (1).
Under mild assumptions, Proposition 4 proved that at least a subsequence of the
iterates generated by our modified PSO, namely Algorithm LS-DF_PSO, converges to
a stationary point, which is possibly a minimum point. We recall that using the
standard PSO iteration, by no means we can guarantee convergence towards sta-
tionary points, unless we consider trivial cases of no practical interest. Thus, our

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

 10 100 1000

ex
pe

ct
ed

 v
al

ue
 o

f
re

si
st

an
ce

(Δ

%
)

No. of function evaluations [-]

DPSO

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1

(a) (b)

2 3 4

D
es

ig
n

va
ri

ab
le

 v
al

ue
 [

-]

Design variable id [-]

DPSO
LS-DF_PSOLS-DF_PSO

LS update

Fig. 6 Minimization of expected value of mean resistance in head waves for the Delft catamaran:
convergence of the objective function (a) and global-optimum design variables (b)

Fig. 7 Minimization of expected value of mean resistance in head waves for the Delft catamaran:
optimal shape design by PSO (a) and LS-DF_PSO (b)

44 A. Serani et al.

result reinforces the theoretical properties of modified PSO schemes. To the best of
our knowledge, our result is also among the first attempts to couple PSO with line
search-based derivative-free schemes (see also [30, 31] for extensions to trust-
region derivative-free approaches), where a modified PSO scheme is proved to
satisfy conditions like (20) or (21).

On the basis of our experience, which seems confirmed by the results reported
here, we are persuaded that a fruitful coupling of PSO with an iterative globally
convergent derivative-free method, should yield a compromise, between the fast
progress of PSO (global search) in the early iterations, and the capability to exploit
(local search) the objective function.

We also have reported numerical experiences on a significant test function and
two ship design problems, which confirm that LS-DF_PSO is more effective (and to a
great extent equally efficient) than PSO. Indeed, LS-DF_PSO is able to achieve better
solutions/designs, and provides stationarity properties at the associated optimal
points.

Acknowledgments The work of M. Diez is supported by the US Navy Office of Naval Research,
NICOP Grant N62909-11-1-7011, under the administration of Dr. Ki-Han Kim and Dr. Woei-Min
Lin. The work of A. Serani, E.F. Campana and G. Fasano is supported by the Italian Flagship
Project RITMARE, coordinated by the Italian National Research Council and funded by the Italian
Ministry of Education, within the National Research Program 2011–2013.

References

1. Campana, E.F., Fasano, G., Peri, D.: Globally convergent modifications of particle swarm
optimization for unconstrained optimization. In: Bohua, S. (ed.) Particle Swarm Optimization:
Theory, Techniques and Applications. Advances in Engineering Mechanics. Nova Publishers,
Hauppauge (2011)

2. Campana, E.F., Fasano, G., Pinto, A.: Dynamic system analysis for the selection of parameters
and initial population, in Particle Swarm Optimization. J. Global Optim. 48(3), 347–397
(2010)

3. Chen, X., Diez, M., Kandasamy, M., Zhang, Z., Campana, E.F., Stern, F.: High-fidelity global
optimization of shape design by dimensionality reduction, metamodels and deterministic
particle swarm. Eng. Optim. (2014). doi:10.1080/0305215X.2014.895340

4. Christopher, W., Cleghorn, C., Engelbrecht, A.: A generalized theoretical deterministic
particle swarm model. Swarm Intell. J. 8(1), 35–59 (2014)

5. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

6. Clerc, M.: Stagnation analysis in particle swarm optimization or what happens when nothing
happens. Technical Report. http://hal.archives-ouvertes.fr/hal-00122031 (2006)

7. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization.
MPS-SIAM Series on Optimization, Philadelphia (2009)

8. Corazza, M., Fasano, G., Gusso, R.: Particle swarm optimization with non-smooth penalty
reformulation for a complex portfolio selection problem. Appl. Math. Comput. 224, 611–624
(2013)

Globally Convergent Hybridization … 45

http://dx.doi.org/10.1080/0305215X.2014.895340
http://hal.archives-ouvertes.fr/hal-00122031

9. Diez, M., Chen, X., Campana, E.F., Stern, F.: Reliability-based robust design optimization for
ships in real ocean environment. In: Proceedings of 12th International Conference on Fast Sea
Transportation, FAST2013, Amsterdam, The Netherlands (2013)

10. Diez, M., Campana, E.F., Stern, F.: Design-space dimensionality reduction in shape
optimization by Karhunen-Loève expansion. Comput. Methods Appl. Mech. Eng. (2014).
doi:10.1016/j.cma.2014.10.042

11. Diez, M., He, W., Campana, E.F., Stern, F.: Uncertainty quantification of Delft catamaran
resistance, sinkage and trim for variable Froude number and geometry using metamodels,
quadrature and Karhunen-Loève expansion. J. Mar. Sci. Technol. 19(2), 143–169 (2014). doi:
10.1007/s0077301302350

12. Fasano, G., Lucidi, S.: A nonmonotone truncated Newton-Krylov method exploiting negative
curvature directions, for large scale unconstrained optimization. Optim. Lett. 3(4), 521–535
(2009)

13. Gazi, V.: Stochastic stability analysis of the particle dynamics in the PSO algorithm. In:
Proceedings of the IEEE International Symposium on Intelligent Control, Dubrovnik, Croatia,
pp. 708–713. IEEE Press, New York (2012)

14. Griewank, A.: Evaluating Derivatives. SIAM Frontieres in Applied Mathematics, Philadelphia
(2000)

15. Hart, W.E.: A stationary point convergence theory for evolutionary algorithms. Foundations of
Genetic Algorithms 4, pp. 325–342. Morgan Kaufmann, San Francisco (1996)

16. Hart, W.E.: Evolutionary Pattern Search Algorithms for Unconstrained and Linearly
Constrained Optimization. In Proceedings of the Evolutionary Programming VII, pp. 303–
312. Springer, Berlin (2001)

17. Kadirkamanathan, V., Selvarajah, K., Fleming, P.: Stability analysis of the particle dynamics
in particle swarm optimizer. IEEE Trans. Evol. Comput. 10(3), 245–255 (2006)

18. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks (Perth, Australia), vol. IV, pp. 1942–1948. IEEE
Service Center, Piscataway, NJ (1995)

19. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on
some classical and modern methods. SIAM Rev 45(3), 385–482 (2003)

20. Lucidi, S., Sciandrone, M.: On the global convergence of derivative-free methods for
unconstrained optimization. SIAM J. Optim. 13, 97–116 (2002)

21. Mendes, R.: Population topologies and their influence in particle swarm performance. Ph.D.
Dissertation, University of Minho, Departamento de Informatica Escola de Engenharia
Universidade do Minho (2004)

22. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Operations Research and
Financial Engineering. Springer, New York (2006)

23. Peri, D., Diez, M.: Ship optimization by globally convergent modification of PSO using
surrogate-based Newton method. Eng. Comput. 30(4), 548–561 (2013). doi:10.1108/
02644401311329361

24. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57
(2007)

25. Poli, R.: Analysis of the publications on the applications of particle swarm optimisation.
J. Artif. Evol. Appl. article ID 685175, 1–10 (2008)

26. Poli, R.: Mean and variance of the sampling distribution of particle swarm optimizers during
stagnation. IEEE Trans. Evol. Comput. 13(4), 712–721 (2009)

27. Sarachik, P.E.: Principles of Linear Systems. Cambridge University Press, New York (1997)
28. Serani, A., Diez, M., Leotardi, C., Peri, D., Fasano, G., Iemma, U., Campana, E.F.: On the use

of synchronous and asynchronous single-objective deterministic Particle Swarm Optimization
in ship design problems. In: Proceedings of OPT-i, International Conference on Engineering
and Applied Sciences Optimization, Kos Island, Greece (2014)

29. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter
selection. Inf. Process. Lett. 85, 317–325 (2003)

46 A. Serani et al.

http://dx.doi.org/10.1016/j.cma.2014.10.042
http://dx.doi.org/doi: 10.1007/s0077301302350
http://dx.doi.org/10.1108/02644401311329361
http://dx.doi.org/10.1108/02644401311329361

30. Van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle
trajectories. Inf. Sci. 176, 937–971 (2006)

31. Vaz, A.I.F., Vicente, L.N.: A particle swarm pattern search method for bound constrained
global optimization. J. Global Optim. 39, 197–219 (2007)

32. Vaz, A.I.F., Vicente, L.N.: PSwarm: a hybrid solver for linearly constrained global derivative-
free optimization. Optim. Methods Softw. 24, 669–685 (2009)

33. Volpi, S., Diez, M., Gaul, N.J., Song, H., Iemma, U., Choi, K.K., Campana, E.F., Stern, F.:
Development and validation of a dynamic metamodel based on stochastic radial basis
functions and uncertainty quantification, Structural Multidisciplinary Optimization (2014).
doi:10.1007/s00158-014-1128-5

Globally Convergent Hybridization … 47

http://dx.doi.org/10.1007/s00158-014-1128-5

Fireflies in the Fruits and Vegetables:
Combining the Firefly Algorithm
with Goal Programming for Setting
Optimal Osmotic Dehydration Parameters
of Produce

Raha Imanirad and Julian Scott Yeomans

Abstract This study employs the Firefly Algorithm (FA) to determine the optimal
parameter settings needed in the osmotic dehydration process of fruits and vege-
tables. Two case studies are considered. For both cases, the functional form of the
osmotic dehydration model is established using response surface techniques with
the resulting optimization formulations being non-linear goal programming models.
For optimization purposes, a computationally efficient, FA-driven method is
employed and the resulting solutions are shown to be superior to those from pre-
vious approaches for the osmotic process parameters. The final component of this
study provides a computational experimentation performed on the FA to illustrate
the relative sensitivity of this nature-inspired metaheuristic approach over a range of
the two key parameters that most influence its running time.

Keywords Firefly algorithm � Non-linear goal programming � Process parameter
optimization � Osmotic dehydration � Papaya � Mushrooms

1 Introduction

The worldwide agricultural production of fruits and vegetables is a multi-trillion
dollar enterprise. The annual global production of papayas and mushrooms cur-
rently exceeds 12 million tonnes and 6 million tonnes, respectively [1]. As with

R. Imanirad
Technology and Operations Management, Harvard Business School,
Boston, MA 02163, USA
e-mail: rimanirad@hbs.edu

J.S. Yeomans (&)
OMIS Area, Schulich School of Business, York University, Toronto,
ON M3J 1P3, Canada
e-mail: syeomans@schulich.yorku.ca

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_3

49

many agricultural commodities, the high moisture content of both papayas and
mushrooms renders them highly perishable and, due to various microbial, enzy-
matic and chemical reactions, they start to deteriorate immediately upon harvesting
[2, 3]. Therefore, it becomes imperative to determine effective preservation methods
that maintain the overall quality of the product. This is frequently accomplished
through various combinations of drying using dehydration and heat processing
techniques [4]. The drying of fruits and vegetables permits longer storage periods,
reduces shipping weights, and minimizes their packaging requirements [2]. How-
ever, conventionally hot-air dried products using vacuum, cabinet or tray dryers
have not achieved universal endorsement due to the poor resulting product quality
[2, 5, 6].

Consequently, osmotic dehydration has been introduced as an alternative pres-
ervation technique that can yield a higher quality end product [7]. In the process of
osmotic dehydration, fruits and vegetables are placed into a hypertonic solution
where water is drawn out of the produce and into the solution due to the differences
in their concentrations [7]. In this fashion, osmotic dehydration removes a pro-
portion of the water content in the produce leading to a product of intermediate
moisture content [8, 9]. A simultaneous transfer of solid materials—such as sugar
and salt—also occurs between the product and the solution [7, 10, 11]. Beneficially,
the actual osmotic process contributes only minimal thermal degradation to the
nutrients due to the relatively low temperature water removal process in comparison
to standard hot air drying techniques [7, 12–14].

Osmotic dehydration of fresh produce can also be used as a pre-treatment to
supplemental dry-processing because it improves many sensory, functional and
nutritional properties [15]. The quality of the subsequent product is superior to one
without pre-treatment due to (i) increases in the solid gain transfer of sugar and salt
from the solution, (ii) the improvements to texture of the fruits and vegetables, and
(iii) the stability of the colour pigmentation during storage [2, 12]. Thus, in con-
junction with other follow-on drying technologies, osmotic dehydration produces a
superior quality, shelf-stable product for both local consumption and export
markets.

Water removal during the dehydration process is influenced by many factors
such as type and concentration of osmotic agents, temperature, circulation/agitation
of solution, solution-to-sample ratio, thickness of food material, and pre-treatment
[7]. While an expanding market currently exists for osmo-convective dehydrated
fruits and vegetables in both domestic and world markets, only limited efforts have
been undertaken to optimize the osmotic process parameters [2, 12, 16]. Specifi-
cally, an analysis of the mass transport occurring within the osmosis process
measured in terms of water loss and solid (sugar, salt) gains is of considerable
practical relevance [6, 7, 10].

In this study, the functional form of the osmotic dehydration model is established
using a standard response surface technique [16–19]. The format of the resulting
optimization model is shown to be a non-linear goal programming problem [16].
This study investigates the effects of using a procedure that employs a Firefly
Algorithm (FA) [20–22] to determine the optimal osmotic parameters for the

50 R. Imanirad and J.S. Yeomans

dehydration cases of papaya introduced in [12] and of mushrooms in [2]. It can be
shown that the resulting solutions for the osmotic process parameters determined by
the FA are superior to those from the previous approaches. The final portion of the
study revolves around an extensive computational experimentation performed on
the FA using the osmotic dehydration models from these two cases to determine the
relative sensitivity of this nature-inspired metaheuristic over a range of the two key
parameters that most influence its running time.

2 Functional Form and Mathematical Model
of the Osmotic Dehydration Process

The first portion of the study examines the dehydration case of papaya from [12].
The initial stage requires the construction of an appropriate model of the responses
to the three main osmotic process parameters—(i) solution temperature, (ii) syrup
solution concentration and (iii) duration of osmosis—on the water loss and sugar
gain of the papaya. This functional representation can then be used to predict the
water loss and sugar gain impacts in the papaya over the requisite experimental
ranges of the three parameters. Once an appropriate model has been determined, the
next step is to optimize this model in order to find the maximum water loss and
the optimum sugar gain achieved during the osmotic dehydration process. In the
subsequent formulations, let T represent the syrup solution temperature in °C, C be
the syrup solution concentration in oBrix, and D be the duration of the osmosis
measured in hours. For the response variables, let WL be the percentage of water
loss and SG represent the solid gain of the product during the dehydration process.
In this instance, SG corresponds to the percentage of sugar gain in the papaya.

Response surface procedures are statistical techniques frequently used for
optimization in empirical studies [17–19]. Response surfaces employ quantitative
data in appropriately designed experiments to simultaneously ascertain the various
variable relationships within multivariate problems [18]. The equations constructed
describe the effect of various test variables on responses, determine interrelation-
ships among the test variables and represent the combined effect of all test variables
in any response. Response surfaces enable an experimenter to undertake an efficient
exploration of a process or system [18, 19]. These approaches have frequently been
used in the optimization of food processes [2, 12, 23–26] and will, consequently, be
employed in this study to determine the appropriate mathematical representation.
The proposed model can then be used to predict the water loss and sugar gain in the
dehydration of papaya over the different experimental ranges for the process
durations, syrup concentrations and syrup solution temperatures.

For the osmotic dehydration process, it should be noted that the exact mathe-
matical representation for the relationship between the parameters remains
unknown. Thus a response surface methodology enables an empirical approxima-
tion to it using efficient experimental design techniques [18, 19]. The specific

Fireflies in the Fruits and Vegetables … 51

testing design actually contains the three variables (T, C, D) each set at three levels
using the data taken from [12] in order to determine the corresponding water loss
(WL) and sugar gain (SG) responses. The design for the various combinations of
input variables and levels requires the fifteen experimental combinations shown in
Table 1 (see [12]).

The corresponding experimental values for the response variables WL and SG
appear in last two columns of Table 2.

Based upon the response surface experimental design appropriately applied to
the water loss and the sugar gain outputs of Table 2 [17–19], the functional
equations empirically determined for responses are:

WL ¼ 63:745�1:56275T�0:6615C�6:075Dþ 0:0286T2 þ 0:00925C2 þ 0:79D2

ð1Þ

SG ¼ 13:90875�0:830275T�0:044875C þ 0:51249Dþ 0:01058T2 þ 0:002825TC:

ð2Þ

Reference [12] established organoleptic ranges for the osmotic dehydration
parameters and restricted their search for best parameter settings to values within
these ranges. Organoleptic properties refer to sensory aspects of food including
taste, sight, smell, touch, dryness, moisture content, and stale-fresh factors. In order
to find values for the osmotic dehydration parameters, [12] constructed a number of
contour plots by varying the values of the three variables and observed the effect
that these had on their response functions. By superimposing the various contours

Table 1 Response surface experimental design layout for 3 variables and 3 levels

Treatment
No.

Level
for T

Temperature
(°C)

Level
for C

Concentration
(°Brix)

Level
for D

Duration
(h)

1 1 50 1 70 0 5

2 1 50 −1 50 0 5

3 −1 30 1 70 0 5

4 −1 30 −1 50 0 5

5 1 50 0 60 1 6

6 1 50 0 60 −1 4

7 −1 30 0 60 1 6

8 −1 30 0 60 −1 4

9 0 40 1 70 1 6

10 0 40 1 70 −1 4

11 0 40 −1 50 1 6

12 0 40 −1 50 −1 4

13 0 40 0 60 0 5

14 0 40 0 60 0 5

15 0 40 0 60 0 5

52 R. Imanirad and J.S. Yeomans

onto a single figure, they visually determined best values for the temperature,
concentration, and duration as 37 °C, 60 °Brix and 4.25 h, respectively. These
settings invoke responses of 28 % for the water loss and 4.0 % for the sugar gain
(see Table 3).

3 A Goal Programming Formulation for Setting Osmotic
Dehydration Parameters

The determination of the parameters settings can be viewed as a multi-response
optimization process and could, therefore, be transformed into a corresponding
mathematical programming model [16]. In this section, this formulation will be
accomplished by converting the parameter setting process into an equivalent goal
programming format.

Table 2 Experimental data for water loss and sugar gain under different treatments

Temperature
(°C)

Concentration
(°Brix)

Duration
(h)

Water loss
(%)

Sugar gain
(%)

50 70 5 44.5 8.1

50 50 5 35.2 5.5

30 70 5 31.7 4.5

30 50 5 23.6 3.0

50 60 6 44.5 8.2

50 60 4 39.6 7.0

30 60 6 27.2 3.9

30 60 4 23.2 2.5

40 70 6 37.8 4.8

40 70 4 34.8 4.3

40 50 6 28.4 4.4

40 50 4 25.7 3.4

40 60 5 29.7 4.3

40 60 5 30.0 4.3

40 60 5 30.2 4.4

Table 3 Best osmotic dehydration parameters determined by reference [12]

Temperature
(°C)

Concentration
(°Brix)

Duration
(h)

Water loss
(%)

Sugar gain
(%)

37 60 4.25 28 4.0

Fireflies in the Fruits and Vegetables … 53

Based upon the organoleptic requirements established for the parameters and
response functions by [12], the technical constraints for the problem can be spec-
ified as:

23:02�WL� 44:5

2:56� SG� 8:1:

30� T � 50

50�C� 70

4�D� 6

Additional organoleptic preferences can be applied to the responses and vari-
ables for the solution. The targets for these desired criteria are summarized in
Table 4. From a hierarchical preference attainment perspective, several of these
criteria can be recognized as more important attributes to achieve than the others.
Namely, from a dehydration perspective, the water loss should be as high as pos-
sible within the indicated range, while from a taste perspective, the sugar gain needs
to be as close to 4 % as possible. The relative importance for the achievement of
these hierarchy targets is indicated in the last column of Table 4.

Hence, from a mathematical perspective, each of these desired targets can be
specified as a definitive goal and the entire formulation can then be transformed into
a conventional goal programming problem. An objective function that appropriately
penalizes deviations from the desired targets must be created and, in the subsequent
mathematical programming formulation, a percentage deviation objective weighted
by the relative importance of each goal is employed. Consequently, the problem of
determining osmotic dehydration parameter values can be transformed into the
following non-linear goal programming formulation.

Table 4 Ranges for process variables and response goals in the osmotic dehydration

Parameter Goal Requirement Lower
limit

Upper
limit

Relative
importance

Temperature (°C) 1 Minimize 30 50 Important

Concentration
(°Brix)

2 Minimize 50 70 Important

Duration (h) 3 Minimize 4 6 Important

Water loss (%) 4 Maximize 23.02 44.05 Very important

Sugar gain (%) 5 Target = 4.0 2.56 8.1 Extremely
important

54 R. Imanirad and J.S. Yeomans

Minimize W1 � P1 þ W2 � P2 þ W3 � P3 þ W4 � N4 þ W5 � P5 þ N5ð Þ

subject to

P1 ¼ T�30

N1 ¼ 50�T

P2 ¼ C�50

N2 ¼ 70�C

P3 ¼ D�4

N3 ¼ 6�D

N4 ¼ 44:05�WL

P4 ¼ WL�23:02

N5 ¼ 4:00�SG

P5 ¼ SG�4:00

N6 ¼ 8:1�SG

P6 ¼ SG�2:56

Pi � 0; Ni � 0 i ¼ 1; 2; 3; 4; 5; 6

In order to complete the transformation of the problem into the series of defined
goals, several additional deviation variables have been introduced. Namely, for the
goal model, define Pi and Ni, i = 1–6, to be the positive and negative deviations,
respectively, from the disparate goal targets and constraint limits shown for the
variables in Table 4. Let Wi correspond to weighting factors applied to goal i, i = 1–
5, to reflect the relative importance in achieving that goal’s target. Each Wi also
contains the appropriate denominator constant required to transform the deviation
variables into the requisite percentage deviation value format. Thus, solving the
goal programming model would be equivalent to determining optimal parameter
values for the osmotic dehydration process.

4 A Goal Programming, Firefly Algorithm-Driven
Optimization Approach

Although several alternative solution approaches could have been applied to the
resulting optimization problem, the approach actually employed uses the FA. For
optimization purposes, [21] has demonstrated that the FA is more computationally
efficient than other such commonly-used metaheuristics as genetic algorithms,
simulated annealing, and enhanced particle swarm optimization. Hence, an FA
approach is a very computationally efficient procedure. While this section briefly
outlines the FA procedure, more detailed descriptions appear in [21] and [20].

Fireflies in the Fruits and Vegetables … 55

The FA is a biologically-inspired, population-based metaheuristic with each
firefly in the population representing a potential solution to the problem. An FA
procedure employs three idealized rules: (i) All fireflies within a population are
unisex, so that one firefly will be attracted to other fireflies irrespective of their sex;
(ii) Attractiveness between fireflies is proportional to their brightness, implying that
for any two flashing fireflies, the less bright one will move towards the brighter one;
and (iii) The brightness of a firefly is determined by the value of its objective
function. For a maximization problem, the brightness can be considered propor-
tional to the value of the objective function. Reference [21] demonstrates that the
FA approaches the global optima whenever the number of fireflies n → 1 and the
number of iterations t, is set so that t ≫1. In reality, the FA has been shown to
converge extremely quickly into both local and global optima [20, 21]. The basic
operational steps of the FA are summarized in Fig. 1 [21].

In the FA, there are two important issues to resolve: the variation of light
intensity and the formulation of attractiveness. For simplicity, it can always be
assumed that the attractiveness of a firefly is determined by its brightness which in
turn is associated with the encoded objective function. In the simplest case, the
brightness of a firefly at a particular location X would be its calculated objective
value F(X). However, the attractiveness, β, between fireflies is relative and will vary
with the distance rij between firefly i and firefly j. In addition, light intensity
decreases with the distance from its source, and light is also absorbed in the media,
so the attractiveness should be allowed to vary with the degree of absorption.
Consequently, the overall attractiveness of a firefly can be defined as

b ¼ b0expð�cr2Þ ð3Þ

Objective Function F(X), X = (x1, x2,… xd)
Generate the initial population of n fireflies, Xi, i = 1, 2,…, n
Light intensity Ii at Xi is determined by F(Xi)
Define the light absorption coefficient γ
while (t < MaxGeneration)

for i = 1: n , all n fireflies
for j = 1: n, all n fireflies (inner loop)

if (Ii < Ij), Move firefly i towards j; end if
Vary attractiveness with distance r via e- γ r

end for j
end for i
Rank the fireflies and find the current global best solution G*

end while
 Postprocess the results

Fig. 1 Pseudo code of the firefly algorithm

56 R. Imanirad and J.S. Yeomans

where β0 is the attractiveness at distance r = 0 and γ is the fixed light absorption
coefficient for a specific medium. If the distance rij between any two fireflies i and
j located at Xi and Xj, respectively, is calculated using the Euclidean norm, then the
movement of a firefly i that is attracted to another more attractive (i.e. brighter)
firefly j is determined by

Xi ¼ Xi þ b0 expð�cðrijÞ2Þ Xi�Xj
� � þ aei: ð4Þ

In this expression of movement, the second term is due to the relative attraction
and the third term is a randomization component. Reference [21] indicates that α is a
randomization parameter normally selected within the range [0, 1] and εi is a vector of
random numbers drawn from either a Gaussian or uniform (generally [–0.5, 0.5])
distribution. It should be pointed out that this expression is a random walk biased
toward brighter fireflies and if β0 = 0, it becomes a simple random walk. The
parameter γ characterizes the variation of the attractiveness and its value determines
the speed of the algorithm’s convergence. For most applications, γ is typically set
between 0.1 and 10 [21]. For all computational approaches for the FA considered in
this study, the variation of attractiveness parameter γ is fixed at 5 while the ran-
domization parameter α is initially set at 0.6, but is then gradually decreased to a value
of 0.1 as the procedure approaches its maximum number of iterations (see [21]).

By optimizing the goal programming problem formulation using the FA-driven
procedure, best process parameters for the osmotic dehydration of the papaya were
determined and these resulting values are displayed in Table 5. In comparison to the
values found by [12], it can be observed that the syrup concentration has increased
by 10 °Brix, the duration of dehydration process has been reduced slightly by
0.25 h, while the temperature parameter remains essentially the same. More
importantly, in terms of the key responses, the water loss has increased by 5 %,
while the sugar gain has remained at the highly desirable target of 4 %. Conse-
quently, since the water loss response—which is obviously the fundamental feature
of the osmotic dehydration process—has been increased significantly from that
determined by [12], this goal programming solution represents a significant
improvement.

In any given optimization problem, for a very large number of fireflies
n ≫ k where k is the number of local optima, the initial locations of the n fireflies
should be distributed as uniformly as possible to ensure that a comprehensive
search throughout the search domain occurs. As the FA proceeds, the fireflies
should converge into all of the local optima, including the global ones. By com-
paring the best solutions among all these optima, the global optima can easily be

Table 5 Optimal process parameters determined for the osmotic dehydration of papaya

Temperature
(°C)

Concentration
(°Brix)

Duration
(h)

Water loss
(%)

Sugar
gain (%)

Reference [12] 37 60 4.25 28 4.0

FA solution 37.776 70 4 32.8 4.02

Fireflies in the Fruits and Vegetables … 57

determined. As noted above, the FA approaches the global optima whenever the
number of fireflies n→1 and the number of iterations t, is set so that t≫ 1 [21]. In
reality, the FA has a tendency to converge very quickly into both local and global
optima [20, 21, 27].

In general, the two parameters that most directly impact the solution search time
of the FA are the values selected for n and t. Using terminology from computational
complexity, the running time for the FA is linear in t, but is second order poly-
nomial in n. Obviously, for practical applications, the desire is to be able to
determine the best solution in the shortest amount of time. This would correspond
to setting n and t at the minimum possible values that produce the best solution(s).
However, since the FA’s search process incorporates random components within its
solution search, the parameter setting is clearly not a strictly deterministic issue—
determining appropriate values for n and t reflects a component of choice on the
part of the decision-maker.

Consequently, for the dehydration of papaya case, an ensuing, post-optimization
sensitivity analysis was performed to investigate the impact for different combi-
nations of the number of fireflies, n, and the number of iterations, t, on the solution
quality. Specifically, the value of the firefly parameter was set at n = 20, 50, 100,
150, 200, 250, 250, 500 and the value for the number of iterations was set at
t = 100, 250, 500, 1,000, 1,500, 2,500. For 30 runs of each parametric combination
of fireflies and iterations, the corresponding responses for the water loss and sugar
gain were recorded. The average values of these responses over the 30 runs per
combination are provided in Table 6 and visual representation of these values
appears in Figs. 2 and 3, respectively.

As might have been reasonable to anticipate a priori, it is interesting to observe
that more consistent solutions (i.e. where the average values are closer to optimal)
are obtained as both the number of fireflies and the number of iterations increases.
Namely larger values of n or t produce on average the actual optimal solution, while
combinations involving smaller parameter values show more solution variability in

100
500

1500
27.00

29.00

31.00

33.00

35.00

37.00

20 50 100 150 200 250 500

100

250

500

1000

1500

2500

No. of
Fireflies

Fig. 2 Average water loss
(%) in the papaya for different
parameter settings of the
firefly algorithm

58 R. Imanirad and J.S. Yeomans

both the water loss and sugar gain. While there are multiple approaches that can be
undertaken to parse these results, Figs. 4 and 5 provide comparisons of the average
water loss and sugar gain responses obtained for the minimum and maximum
number of iterations considered in the experimentation. From Figs. 4 and 5, it can
be observed that at t = 2,500, the FA always produces the optimal water loss and
sugar gain solution, on average, for any number of fireflies other than n = 20 (i.e.
the FA always generated the optimal solution in each of the 30 runs). Conversely, at
t = 100, the average water loss and sugar gain values indicate that there can be
variability in the quality of the solution obtained irrespective of the number of
fireflies employed in the FA process. This indicates that the more iterations used,
the better the solution quality obtained by the FA.

Similar to the preceding analysis, Figs. 6 and 7 provide a comparison of the
average water loss and sugar gain responses obtained for the minimum and

100
500

1500
2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

20 50 100 150 200 250 500

100

250

500

1000

1500

2500

No. of
Fireflies

Fig. 3 Average sugar gain (%) in the papaya for different parameter settings of the firefly
algorithm

100

27.00

29.00

31.00

33.00

35.00

37.00

20 50 100 150 200 250 500

100

2500

No. of
Fireflies

Fig. 4 Comparison of average water loss (%) in the papaya from runs of 100 generations and
2,500 generations in the firefly algorithm

Fireflies in the Fruits and Vegetables … 59

T
ab

le
6

A
ve
ra
ge

su
ga
r
ga
in

(%
)
an
d
w
at
er

lo
ss

(%
)
fo
r
di
ff
er
en
t
Pa
ra
m
et
er

se
tti
ng

s
of

th
e
fi
re
fly

al
go

ri
th
m

N
o.

of
fi
re
fl
ie
s

N
um

be
r
of

ite
ra
tio

ns

10
0

25
0

50
0

1,
00

0
1,
50

0
2,
50

0

SG
W
L

SG
W
L

SG
W
L

SG
W
L

SG
W
L

SG
W
L

20
4.
55

33
.7
1

4.
60

33
.7
1

4.
72

34
.2
5

4.
32

33
.1
2

4.
25

33
.6
0

4.
30

33
.7
9

50
4.
23

32
.2
4

4.
49

33
.8
3

4.
57

33
.9
8

4.
19

33
.3
8

4.
03

32
.8
1

4.
02

32
.8
0

10
0

4.
31

33
.6
5

4.
14

33
.1
4

4.
15

33
.2
3

4.
02

32
.8
0

4.
02

32
.8
0

4.
02

32
.8
0

15
0

4.
27

33
.6
3

4.
32

33
.8
5

4.
02

32
.8
0

4.
02

32
.7
9

4.
02

32
.8
0

4.
02

32
.8
0

20
0

4.
17

33
.2
1

4.
02

32
.7
9

4.
02

32
.8
0

4.
02

32
.8
0

4.
02

32
.8
0

4.
02

32
.8
0

25
0

4.
41

34
.0
8

4.
02

32
.8
0

4.
02

32
.8
0

4.
02

32
.8
0

4.
02

32
.7
9

4.
02

32
.8
0

50
0

4.
11

33
.1
0

4.
02

32
.8
0

4.
02

32
.8
0

4.
02

32
.8
0

4.
02

32
.8
0

4.
02

32
.8
0

60 R. Imanirad and J.S. Yeomans

maximum number of fireflies considered. From these Figures, it can be seen that at
n = 500 fireflies, the FA always produces the optimal water loss and sugar gain
solutions, on average, for any number of iterations other than t = 100. Furthermore,
even at t = 100, the average solution is extremely close to the optimal solution.
Conversely, at n = 20 fireflies, the average water loss and sugar gain values show
that there can be considerable variability in the quality of the solution obtained
irrespective of the number of iterations employed in the FA. These findings clearly
illustrate that the more fireflies used in the FA, the better the solution quality.

It should be further reinforced that Table 6 shows the average response values
for each combination of n and t. While the FA in the larger parameter value
combinations always converged to the overall optimal solution, the smaller com-
binations would also frequently produce this optimal value within the set of the 30
runs. However, there would also be occasions where divergent solution values were

100

2.00

3.00

4.00

5.00

6.00

20 50 100 150 200 250 500

100

2500

No. of
Fireflies

Fig. 5 Comparison of average sugar gain (%) in the papaya from runs of 100 generations and
2,500 generations in the firefly algorithm

100
250

500
1000

1500
2500

27.00
28.00
29.00
30.00
31.00
32.00
33.00

34.00

35.00

36.00

37.00

20 500

100

250

500

1000

1500

2500

No. of
Fireflies

Fig. 6 Comparison of
average water loss (%) in the
papaya from runs with 20
fireflies and runs with 500
fireflies

Fireflies in the Fruits and Vegetables … 61

found within the runs, thereby distorting the overall averages. Given the running
time complexities for the FA, a combination of a relatively smaller value of
n combined with a relatively larger value for t would be preferable from both a
solution time and solution accuracy perspective. Table 6 shows that even the
intermediate values in the experimental ranges considered for n and t tend to
consistently produce very high quality solutions. The experimentation for this
specific problem would indicate that the value for t needs to be set somewhere in
the range of 500–1,000 iterations, while the value for n should be between 100 and
150 fireflies if calculating the true optimal solution is always required.

5 Mathematical Model and Optimization of Mushroom
Dehydration

The preceding FA-driven goal programming optimization approach was subse-
quently reapplied to an analogous case for the osmotic dehydration of mushrooms
taken from [2]. In this case, a brine solution is employed for the mushroom
dehydration and the resulting solid gain involves the transport of salt into the
mushrooms. The three main osmotic process parameters are the brine solution
temperature, the salt concentration of the brine and the duration period for the
osmosis. The two measured responses are now the water loss and salt gain of the
mushrooms. Since the two cases overlap considerably and in order to retain as
much consistency for direct comparisons between the cases as possible, the models
derived and the variables employed will remain essentially identical in the analysis.
Thus, the variables used are T for the brine solution temperature in °C, C repre-
senting the salt concentration measured in percent, and D as the duration of osmosis

100
250

500
1000

1500
2500

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

20 500

100

250

500

1000

1500

2500

No. of
Fireflies

Fig. 7 Comparison of
average sugar gain (%) in the
papaya between runs with 20
fireflies and runs with 500
fireflies

62 R. Imanirad and J.S. Yeomans

in minutes. The corresponding response variables are WL for the percentage of
water loss and SG as the percentage of salt gain of the mushrooms.

As with the papaya analysis, the specific response surface design for mushroom
dehydration contains each of the variables (T, C, D) set at three levels using the data
taken from [2] in order to construct the corresponding water loss (WL) and salt gain
(SG) response functions. The design for the various combinations of input variables
and levels requires the experimental combinations shown in Table 7 (see [2]), while
the values determined for the response variables WL and SG appear in last two
columns of Table 7.

Based upon the response surface design [17–19] applied to the water loss and
salt gain outputs from Table 7, the corresponding equations determined for the
responses are:

WL ¼ 19:58�0:13T þ 1:7C þ 0:98Dþ 0:00357TDþ 0:00673CD�343C2�0:0106D2

ð5Þ

SG ¼ �13:87þ 0:11T þ 1:09C þ 0:14D�0:000973T2�0:0296C2�0:00129D2:

ð6Þ

Table 7 Response surface design, data, and responses under different treatment levels

Level
for T

Temperature
(°C)

Level
for C

Concentration
(%)

Level
for D

Duration
(Min)

Water
loss (%)

Salt
gain
(%)

1 55 1 20 0 45 44.93 3.24

1 55 −1 10 0 45 36.38 1.03

−1 35 1 20 0 45 39.70 2.56

−1 35 −1 10 0 45 29.92 0.59

1 55 0 15 1 60 43.92 2.90

1 55 0 15 −1 30 34.23 2.24

−1 35 0 15 1 60 37.09 2.34

−1 35 0 15 −1 30 29.54 1.73

0 45 1 20 1 60 45.04 3.03

0 45 1 20 −1 30 35.51 2.22

0 45 −1 10 1 60 33.69 1.06

0 45 −1 10 −1 30 26.18 0.33

0 45 0 15 0 45 38.05 2.57

0 45 0 15 0 45 38.44 2.64

0 45 0 15 0 45 38.27 2.64

0 45 0 15 0 45 38.55 2.79

0 45 0 15 0 45 38.60 2.82

Fireflies in the Fruits and Vegetables … 63

Reference [2] established appropriate organoleptic ranges for the osmotic
dehydration parameters (see Table 8). Following the approach of [2, 12] designed a
number of contour plots of the osmotic dehydration parameters by varying the
values of the T, C and D, and then observing the effect that these variations had on
the response functions. By superimposing these contours onto a single chart, the
best settings for the temperature, concentration, and duration variables were
determined to be 44.89 °C, 16.53 % and 47.59 min, respectively. These settings
generate responses of 40.55 % for water loss and 2.98 % for salt gain (see Table 9).
Using the organoleptic ranges established for the parameters and response func-
tions, the technical constraints for the problem become:

26:18�WL� 45:04

0:33� SG� 3:24:

35� T � 55

10�C� 20

30�D� 60

The stated goals for the desired organoleptic criteria are categorized in Table 8.
In terms of hierarchical goal satisfaction, the water loss needs to be as high as
possible, while the salt gain should be as close to 2.98 % as possible. The relative
importance for the achievement of these hierarchical goals is indicated in the last
column of Table 8.

Once again, the determination of osmotic dehydration parameters can be
transformed into a non-linear goal programming problem. To complete the trans-
formation into a goal model, define Pi and Ni, i = 1 to 6, to be the positive and
negative deviations, respectively, from the disparate goal targets and constraint
limits shown for the variables in Table 8. Let Wi correspond to weighting factors

Table 8 Ranges for process variables and response goals in the osmotic dehydration

Parameter Goal Requirement Lower limit Upper limit Relative importance

Temperature (°C) 1 Minimize 35 55 Important

Concentration (%) 2 Minimize 10 20 Important

Duration (mins) 3 Minimize 30 60 Important

Water loss (%) 4 Maximize 23.02 44.05 Very important

Salt gain (%) 5 Target = 2.98 0.33 3.24 Very important

Table 9 Optimal process parameters determined for the osmotic dehydration of mushrooms

Temperature
(°C)

Concentration
(%)

Duration
(mins)

Water loss
(%)

Salt gain
(%)

Reference [2] 44.89 16.53 47.59 40.55 2.98

FA solution 54.043 19.031 46.777 45.04 2.98

64 R. Imanirad and J.S. Yeomans

applied to goal i, i = 1 to 5, to reflect the relative importance in achieving that goal’s
target. As before, each Wi contains an appropriate denominator that transforms the
deviation measures into a percentage deviation format. The resulting goal pro-
gramming formulation for the osmotic dehydration of mushrooms can, therefore, be
transformed into the following model.

Minimize W1 � P1 þW2 � P2 þW3 � P3 þW4 � N4 þW5 � P5 þ N5ð Þ

subject to

P1 ¼ T�35

N1 ¼ 55�T

P2 ¼ C�10

N2 ¼ 20�C

P3 ¼ D�30

N3 ¼ 60�D

P4 ¼ WL�26:18

N4 ¼ 45:04�WL

P5 ¼ SG�2:98

N5 ¼ 2:98�SG

P6 ¼ SG�0:33

N6 ¼ 3:24�SG

Pi � 0; Ni � 0 i ¼ 1; 2; 3; 4; 5; 6

Optimizing the goal programming model using the FA-driven procedure, pro-
vided the best process parameters for the osmotic dehydration of the mushrooms
shown in Table 9. In comparison to the values found by [2], it can be observed that
the salt concentration has increased by 2.5 %, the required temperature must be
increased by 9 °C, while the duration of dehydration should remain essentially
unchanged. In terms of the resulting responses to these parameter settings deter-
mined by the FA, the water loss increases by 4.5 %, while the salt gain remains at
the desired organoleptic target of 2.98 %. Since the water loss has increased sig-
nificantly, this goal programming solution provides a significant improvement to
that found in [2].

As with the papaya case, an ensuing, post-optimization sensitivity analysis was
performed to examine the impact of different combinations of the number of fire-
flies, n, and the number of iterations, t, on the solution quality. For 30 runs of each
parametric combination, the corresponding average responses for the water loss and
salt gain were recorded. The average values of these response outputs over the 30
runs per combination are provided in Table 10 and visual representations of these
responses appear in Figs. 8 and 9, respectively. Again, as might have been rea-
sonably foreseen, results closer to the optimum are more consistently observed

Fireflies in the Fruits and Vegetables … 65

T
ab

le
10

A
ve
ra
ge

sa
lt
ga
in

(%
)
an
d
w
at
er

lo
ss

(%
)
fo
r
di
ff
er
en
t
pa
ra
m
et
er

se
tti
ng

s
of

th
e
fi
re
fly

al
go

ri
th
m

N
o.

of
fi
re
fl
ie
s

N
um

be
r
of

It
er
at
io
ns

10
0

25
0

50
0

1,
00

0
1,
50

0
2,
50

0

SG
W
L

SG
W
L

SG
W
L

SG
W
L

SG
W
L

SG
W
L

20
3.
00

45
.0
1

2.
69

42
.6
0

2.
89

43
.2
4

2.
93

43
.6
7

2.
88

45
.0
3

2.
93

45
.0
3

50
3.
04

45
.0
4

2.
89

45
.0
4

2.
96

45
.0
4

2.
96

45
.0
4

2.
94

45
.0
4

2.
90

45
.0
3

10
0

2.
94

45
.0
1

2.
95

45
.0
3

3.
02

45
.0
4

3.
03

45
.0
4

2.
95

45
.0
4

2.
98

45
.0
4

15
0

3.
00

45
.0
4

2.
93

45
.0
4

2.
92

45
.0
3

2.
92

45
.0
4

3.
01

45
.0
4

2.
93

45
.0
4

20
0

3.
00

45
.0
4

2.
92

45
.0
4

2.
92

45
.0
4

2.
94

45
.0
4

3.
01

45
.0
3

2.
98

45
.0
4

25
0

2.
98

45
.0
4

2.
99

45
.0
3

3.
03

45
.0
4

2.
98

45
.0
4

2.
98

45
.0
4

3.
01

45
.0
4

50
0

3.
04

45
.0
3

2.
94

45
.0
4

2.
99

45
.0
3

2.
93

45
.0
4

2.
99

45
.0
4

3.
03

45
.0
4

66 R. Imanirad and J.S. Yeomans

when either the number of fireflies or the number of iterations are set at the higher
end of the ranges considered, although most parameter combinations produce
extremely good solutions on average.

6 Conclusions

In this study, the functional form of the osmotic dehydration responses for papaya
and mushrooms were established using an empirical response surface approach and
the formats of the resulting optimization models for both cases were formulated as a
non-linear goal programming problems. Subsequently, the optimal osmotic drying
solutions to the goal programming problems were determined using an FA-directed
algorithm. The osmotic process parameters found using the FA were superior to the
solutions found in all previous instances. Computational experimentation on the
osmotic dehydration models highlighted the relative sensitivity of the nature-inspired

100
500

1500
42.00

42.50

43.00

43.50

44.00

44.50

45.00

45.50

20 50 100 150 200 250 500

100

250

500

1000

1500

2500

No. of
Fireflies

Fig. 8 Average water loss
(%) in the mushrooms for
different parameter settings of
the firefly algorithm

100
500

1500
2.00

2.20

2.40

2.60

2.80

3.00

20 50 100 150 200 250 500

100

250

500

1000

1500

2500

No. of
Fireflies

Fig. 9 Average salt gain (%)
in the mushrooms for different
parameter settings of the
firefly algorithm

Fireflies in the Fruits and Vegetables … 67

FA over the key running-time parameters of the number offireflies and the number of
iterations. This experimentation demonstrated that for intermediate-to-high values of
either of the two key parameters, the FA would always determine overall optimal
solutions, while lower values of either parameter produced greater variability in the
solution quality. Since the running time complexity of the FA is linear in the number
of iterations but polynomial in the number of fireflies, this experimentation would
seem to confirm that it would be more computationally practicable to implement an
FA using a relatively larger number of iterations together with a “reasonable”
number of fireflies than vice versa. Since an FA can clearly be modified to solve a
wide variety of “real world” problem types beyond the realm of fruits and vegetables,
the practicality of this approach can clearly be extended into numerous other “real
world” applications. These extensions will become the focus of future research.

References

1. Geohive (2014) Geohive World Crop Production www.geohive.com/charts/ag_crops.aspx
2. Mehta, B.K., Jain, S.K., Sharma, G.P., Mugdal, V.D., Verma, R.C., Doshi, A., Jain, H.K.:

Optimization of osmotic drying parameters for button mushroom (Agaricus bisporus). Food
Sci. Technol. 3(10A), 1298–1305 (2012)

3. Venturini, M.E., Reyes, J.E., Rivera, C.S., Oria, R., Blanco, D.: Microbiological quality and
safety of fresh cultivated and wild mushrooms commercialized in Spain. Food Microbiol. 28
(8), 1492–1498 (2011)

4. Ranganna, S.: Handbook of Analysis and Quality Control for Fruits and Vegetable Products.
Tata McGraw Hill Publishing, New Delhi (1986)

5. Jain, S.K., Verma, R.C.: Osmotic dehydration: A new, promising and emerging industry.
Beverage Food World 30(1), 30–34 (2003)

6. Rosa, M.D., Giroux, F.: Osmotic treatments and problems related to the solution management.
J. Food Eng. 49(3), 223–236 (2001)

7. Rastogi, N.K., Raghavarao, K.S.M.S., Niranjan, K., Knorr, D.: Recent developments in
osmotic dehydration: Method to enhance mass transfer. Food Sci. Technol. 13(1), 48–59
(2002)

8. Hawkes, J., Fink, J.M.: Osmotic concentration of fruit slices prior to dehydration. Food
Process. Preserv. 2(4), 265–267 (1978)

9. Shukla, B.D., Singh, S.P.: Osmo-convective drying of cauliflower, mushroom and green pea.
Food Eng. 80(2), 741–747 (2007)

10. Nieto, A., Castro, M.A., Alzamora, A.: Kinetics of moisture transfer during air drying of
blanched and/or osmotically dehydrated mango. J. Food Eng. 50(2), 175–185 (2001)

11. Tonon, R.V., Baroni, A.F., Hubinges, M.D.: Osmotic dehydration of tomato in ternary
solutions: Influence of process variables on mass transfer kinetics and an evaluation of the
retention of arytenoids. Food Eng. 82(4), 509–517 (2007)

12. Jain, S.K., Verma, R.C., Murdia, L.K., Jain, H.K., Sharma, G.P.: Optimization of process
parameters for osmotic dehydration of papaya cubes. Food Sci. Technol. 48(2), 211–217
(2011)

13. Kar, A., Gupta, D.K.: Osmotic dehydration characteristics of button mushrooms. J. Food Sci.
Technol. 38(4), 352–357 (2001)

14. Sodhi, N.S., Singh, N., Komal, K.: Osmotic dehydration kinetics of carrots. J. Food Sci.
Technol. 43(4), 374–376 (2006)

68 R. Imanirad and J.S. Yeomans

http://www.geohive.com/charts/ag_crops.aspx

15. Torreggiani, D., Bertolo, G.: Osmotic pretreatments in fruit processing: chemical, physical and
structural effects. J. Food Eng. 49(30), 247–253 (2001)

16. Yeomans, J.S., Yang, X.S.: Determining optimal osmotic drying parameters using the firefly
algorithm. International conference on applied operational research (ICAOR), Vancouver,
Canada, 29–31 July (2014a)

17. Box, G.E., Behnken, D.W.: Some new three level designs for the study of quantitative three
variables. Technometrics 2(4), 455–475 (1960)

18. Montgomery, D.C.: Design and Analysis of Experiments, 4th edn. Wiley, New York (1997)
19. Myers, R.H., Montgomery, D.C.: Response Surface Methodology : Process and Product

Optimization Using Designed Experiments. Wiley, New York (1995)
20. Imanirad, R., Yang, X.S., Yeomans, J.S.: Modelling-to-generate-alternatives via the firefly

algorithm. J. Appl. Oper. Res. 5(1), 14–21 (2013)
21. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Frome (2010)
22. Yeomans, J.S., Yang, X.S.: Municipal waste management optimization using a firefly

algorithm-driven simulation-optimization approach. Int. J. Process Manage. Benchmarking (4
(4), 363–375, 2014b)

23. Alam, M.S., Singh, A., Sawhney, B.K.: Response surface optimization of osmotic dehydration
process for anola slices. Food Sci. Technol. 47(1), 47–54 (2010)

24. Mudhar, G.S., Toledo, R.T., Floros, J.D., Jen, J.J.: Optimization of carrot dehydration process
using response surface methodology. J. Food Sci. 54(11), 714–719 (1989)

25. Shi, L., Xue, C.H., Zhao, Y., Li, Z.J., Wang, X.Y., Luan, D.L.: Optimization of processing
parameters of horse mackerel (Trachurus japonicus) dried in a heat pump dehumidifier using
response surface methodology. Food Eng. 87(1), 74–81 (2008)

26. Uddin, M.B., Amsworth, P., Ibanoglu, S.: Evaluation of mass exchange during osmotic
dehydration of carrots using response surface methodology. Food Eng. 65(4), 473–477 (2004)

27. Yeomans, J.S.: Simulation-driven optimization in waste management facility expansion
planning. J Comput. Methods Sci. Eng. 12(1/2), 111–127 (2012)

Fireflies in the Fruits and Vegetables … 69

Hybrid Metaheuristic Algorithms:
Past, Present, and Future

T.O. Ting, Xin-She Yang, Shi Cheng and Kaizhu Huang

Abstract Hybrid algorithms play a prominent role in improving the search capa-
bility of algorithms. Hybridization aims to combine the advantages of each algorithm
to form a hybrid algorithm, while simultaneously trying to minimize any substantial
disadvantage. In general, the outcome of hybridization can usually make some
improvements in terms of either computational speed or accuracy. This chapter
surveys recent advances in the area of hybridizing different algorithms. Based on this
survey, some crucial recommendations are suggested for further development of
hybrid algorithms.

Keywords Bio-inspired � Diversity � Evolutionary algorithms � Hybrid algo-
rithms � Metaheuristics � Nature-inspired algorithms

1 Introduction

Hybrid algorithms are two or more algorithms that run together and complement
each other to produce a profitable synergy from their integration [1]. These
algorithms are commonly known as hybrid metaheuristics (HMs) [2, 3].

T.O. Ting (&) � K. Huang
Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University,
Suzhou, Jiangsu Province, China
e-mail: toting@xjtlu.edu.cn

K. Huang
e-mail: kaizhu.huang@xjtlu.edu.cn

X.-S. Yang
School of Science and Technology, Middlesex University, The Burroughs,
London NW4 4BT, UK
e-mail: x.yang@mdx.ac.uk

S. Cheng
Division of Computer Science, The University of Nottingham, Ningbo,
Zhejiang Province, China
e-mail: shi.cheng@nottingham.edu.cn

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_4

71

The hybridization of EAs is popular, partly due to its better performance in han-
dling noise, uncertainty, vagueness, and imprecision [4, 5]. For simplicity here,
instead of using HM, we prefer to use the general term hybrid algorithms to refer to
the similar notion.

There are in fact two prominent issues of EAs in solving global and highly
nonconvex optimization problem. These are:

(i) Premature convergence: The problem of premature convergence results in the
lack of accuracy of the final solution. The final solution is a feasible solution
close to the global optimal, often regarded as satisfactory or close-to-optimal
solution.

(ii) Slow convergence: Slow convergence means the solution quality does not
improve sufficiently quickly. It shows stagnation or almost flat on a conver-
gence graph (either a single iteration or the average of multiple iterations).

These two issues above are often partly related to the solution diversity that an
algorithm can produce in the searching process. In nature, the diversity is main-
tained by the variety (quality) and abundance (quantity) of organisms at a given
place and time [6], and this principle is applicable to EAs. At the beginning of a
search process, usually diversity is high, and it decreases as the population may
move towards the global optimum. High diversity may provide better guarantee to
find the optimal solution with better accuracy, but this will usually lead to slow
convergence, and thus there are some tradeoffs between convergence and accuracy.
On the other hand, low diversity may lead to fast convergence while sacrificing the
guarantee to find global optimality and with poor solution accuracy. This scenario is
illustrated in Fig. 1. Hereby, we call the intersection between the convergence rate
and accuracy as the tradeoff point. Obviously, this is an ideally approach, and the
real-world is much grayer and things are not clearly cut.

It is worth pointing out that the diversity is one factor, which is related to the
more general concept of exploration and exploitation. High diversity encourages
exploration, and low diversity does not necessarily mean exploitation because
exploitation requires the use of landscape information and the information extracted
from the population during the search process. Even with sufficient diversity, there
is no guarantee to solve the convergence problem because convergence is a much
complicated issue. Simply balancing the exploration and exploitation may make an
algorithm work to its best capability, but this does not necessarily mean its con-
vergence rate is high. Good convergence requires clever exploitation at the right
time and at the right place, which is still an open problem.

In addition, it is widely known that one prominent factor for premature con-
vergence is the lack of diversity. Therefore, in order to escape and jump out of local
optima, proper diversity should be maintained during the search process, even with
the expense of slower convergence. To enable this, hybridization has been a widely
acceptable strategy to promote diversity along the search for the global optimum.

72 T.O. Ting et al.

In the rest of this chapter, we will briefly review the past, present and future of
the hybridization strategies used to promote solution diversity in combining algo-
rithms. Obviously, it is not possible to cover everything in a single chapter, and thus
we will focus on some key points concerning the latest developments.

2 Hybrid Algorithms

Hybrid algorithms are very diverse, and they form a long list of algorithms and
variants. Here, we only briefly touch the tip of the algorithm iceberg.

2.1 The Past

Evolutionary algorithms (EAs) [7, 8] are stochastic global optimizers that mimic the
metaphor of biological evolution. They are almost always population-based algo-
rithms that learn from the past searches by using a group of individuals or agents.
These algorithms often usually possess behaviour inspired by social or biological
behaviour in the natural world. Loosely speaking, there are three categories of EAs,
which are:

(i) Evolutionary Programming (EP) [9]
(ii) Evolutionary Strategies (ES) [10], and
(iii) Genetic Algorithms (GAs) [11]

These algorithms were among the first to offer great advantages in terms of
locating the global optimality in vast and complex search spaces, especially when
gradient information is unavailable. The implementation of these algorithms are

Fig. 1 Compromising
accuracy and convergence
rate

Hybrid Metaheuristic Algorithms: Past, Present, and Future 73

relatively straightforward and easy, based upon simple and easy to understand
concepts. They are also reasonably flexible as parameters can be changed easily for
better performance.

There were many hybrid algorithms or variants about various evolutionary
algorithms. However, key issues such as slow convergence or premature conver-
gence still exist. In addition, these algorithms can be computationally extensive and
requires a lot of iterations for highly complex problems.

2.2 The Present

The present developments tend to provide some improvements based on the
extensive developments in last few decades, and researchers are still actively trying
to design new hybrid algorithms. For example, in [1], Rodriguez et al. developed
hybrid metaheuristic by integrating an EA with Simulated Annealing (SA). In their
review, they found that there were at about 312 publications indexed by ISI Web of
Science that utilized both EA and SA algorithms. In comparison, there were only
123 publications that hybridized EAs with other metaheuristics such as the greedy
search, iterated local search, descent gradient, and tabu search. However, Rodriguez
et al.’s survey was limited to EAs and SA methods.

In the current literature, hybrid algorithms seem widely developed. Using Par-
ticle Swarm Optimization (PSO) as an example [12], the combination of PSO with
other auxiliary search techniques seems very effective in improving its performance
[13]. Genetic algorithm hybrids (or use of genetic operators with other methods) are
by far the most widely studied. Genetic operators such as selection, crossover, and
mutation have been integrated into PSO to produce better candidates [14]. Differ-
ential evolution [15], ant colony optimization [16] and also conventional local
search techniques have been used to combine with PSO [17].

In addition, to avoid locating previously detected solutions, techniques such
as deflection, sketching, repulsion [18], self-organizing, and dissipative methods
[19] have also been used in the hybrid PSO algorithms. Some biology-inspired
operators such as niche [20] and specification technique [21] are introduced into
PSO to prevent the swarm from crowding too closely and to locate as many good
solutions as possible. A cellular particle swarm optimization, in which a cellular
automata mechanism is integrated in the velocity update to modify the trajectories
of particles, is proposed in [22].

PSO is just one example, and other hybrid algorithms concerning differential
evolution and simulated annealing are also widely studied. The current trends seem
the hybridization of the conventional/well-established new algorithms. For exam-
ple, the new eagle strategy has been hybridized with differential evolution and
improved performance has been achieved [23].

74 T.O. Ting et al.

2.3 The Future

Many new algorithms have been developed in recent years. For example, the bio-
inspired algorithms such as Artificial Bee Colony Algorithm (ABC), Bat Algorithm
(BA), Cuckoo Search (CS), Firefly Algorithm (FA), Flower Pollination Algorithm
(FPA), Glowworm Swarm Algorithm (GlowSA), Hunting Search Algorithm
(HSA), Eagle Strategy (ES), Roach Infestation Optimization (RIO), Gravitational
Search Algorithm (GravSA), Artificial Fish School Algorithm (AFS), Bacterial
Evolutionary Algorithm (BEA), Artificial Plant Optimization Algorithm (APO),
Krill Herd Algorithm (KHA) and others [24].

The list is expanding rapidly. These algorithms may possess entities and some
novel characteristics for hybridization that remain to be discovered in the near
future. However, it is worth pointing out that simple, random hybridization should
not be encouraged. In a keynote talk by Xin-She Yang at the 15th EU workshop in
metaheuristics and engineering (15th EU/ME) in Istanbul, Turkey in 2014, Yang
warned about the danger of random hybridization. Suppose there are n algorithms,
if one chooses 2� k� n to produce a hybrid, there will be

Ck
n ¼ n

k

� � ¼ n!
k!ðn� kÞ! ;

possible combinations. For n = 20 and k = 2, there will be 190 hybrids, while for
n = 20 and k = 10, there will be 184,756 hybrids, which might produce 184,756
random (and almost useless) hybrids. Considering other combinations of k = 2, 3,
…, 19, there will be about 2n = 1,048,576 hybrids. This estimate comes from the
sum of binomial coefficients

Xn
k¼0

n
k

� � ¼ 2n:

As a further joke here, for any four algorithms such as PSO, Grass Colony
Optimization, Donkey Algorithm, Blue Sky Algorithm (purely random names), any
sensible researchers should not produce PSO-Donkey-BlueSky Algorithm, or
Grass-PSO-Donkey algorithm, or BlueSky-Grass-Donkey Algorithm! No one
should ever do it (except a future robot hitchhiker from another Galaxy).

Research efforts should focus on truly novel, insightful and efficient approaches.
Novel techniques and approaches should be based on mathematical theory and
insightful analysis of the main mechanisms in algorithms so that new hybrid
algorithms should truly provide more effective ways of problem-solving to large-
scale, real-world applications.

As it is really challenging to produce a good hybrid, we will try to summarize
some observations and developments concerning hybrid algorithms in a very
informal manner in the rest of this chapter.

Hybrid Metaheuristic Algorithms: Past, Present, and Future 75

3 Motivations for Hybridization

In a hybrid algorithm, two or more algorithms are collectively and cooperatively
solving a predefined problem. In some hybrids, one algorithm may be incorporated
as a sub-algorithm to locating the optimal parameters for another algorithm, while
in other cases, different components of algorithms such mutation and crossover are
used to improve another algorithm in the hybrid structure. With regards to this
nature, hybrid algorithms can loosely be divided into two categories:

(i) Unified purpose hybrids. Under this category, all sub-algorithms are utilized to
solve the same problem directly; and different sub-algorithms are used in
different search stages. Hybrid metaheuristic algorithms with local search is a
typical example. The global search explores the search space, while the local
search is utilized to refine the areas that may contain the global optimum.

(ii) Multiple purpose hybrids. One primary algorithm is utilized to solve the
problem, while the sub-algorithm is applied to tune the parameters for the
primary algorithm. For example, PSO can be applied to find the optimal value
of mutation rate in GAs. Hereby, PSO is not solving the problem, but assisting
in finding better solutions by searching for the optimal parameter for better
performance. The hyper-heuristic algorithms can be regarded as a kind of
hybrid methods. In hyper-heuristic methods, parameters are selected (by a sub-
algorithm or via a learning mechanism) [25].

4 Taxonomy of Hybrid Algorithms

Generally speaking, hybrid algorithms can be grouped into two categories, which
are described in the following subsections.

4.1 Collaborative Hybrids

This involves the combination of two or more algorithms running either in
sequential or parallel. The contributing weight of each participating algorithm can
be regarded as half and half in the simplest case. The possible frameworks of the
hybrid algorithms under this category are illustrated in Fig. 2. Three structures are
depicted in this figure, which are:

(i) Multi-stage. There are two stages involved in this case. The first algorithm acts
as the global optimizer whereas the second algorithm performs local search.
This category can fit well into the framework of the eagle strategy described
by Yang in [26]. The first algorithm is capable of exploring the search space

76 T.O. Ting et al.

globally to locate promising area of convergence. Then the second algorithm
will perform intensive local search such as hill-climbing and downhill simplex
method [27]. A challenging issue in such an implementation is to know when
to switch to the second algorithm. Measures such as diversity should be
incorporated to assist in the switch criteria. Previous works in [28, 29] utilized
Genetic Algorithm as the global optimizer (first algorithm), with Particle
Swarm Optimization (PSO) as the local searcher (second algorithm).

(ii) Sequential. In this structure, both algorithms are run alternatively until one of
the convergence criteria is met. For simplicity, both algorithms will be run for
similar number of iterations before proceeding to the next algorithm.

(iii) Parallel. Two algorithms are run simultaneously, manipulating on the same
population. One of the algorithms may be executed on a pre-specified per-
centage of an algorithm.

4.2 Integrative Hybrids

In this aspect, one algorithm is regarded as a subordinate, embedded in a master
metaheuristic. For this category, the contributing weight of the secondary algorithm
is approximately 10–20 %. This involves incorporation of a manipulating operator
from a secondary algorithm into a primary algorithm. For example, many algo-
rithms utilized the mutation operator from GA into PSO, resulted in so called
Genetic PSO or Mutated PSO. Others may incorporate the gradient techniques such
as hill-climbing, steepest descent, and Newton-Raphson into the primary algorithm.
Examples include works published in [15, 19, 30].

Under this category, Fig. 3 illustrates the two possible approaches:

(i) Full manipulation. The entire population is manipulated at every iteration.
Such operation can be integrated inline with the existing source code, usually
as a subroutine/subfunction.

(ii) Partial manipulation. In this manipulation, only a portion of the entire
population is accelerated using local search methods such as gradient
methods. Choosing the right portion and the right candidate to be accelerated
pose a great challenge in assuring the success of this hybrid structure.

Fig. 2 Collaborative framework of hybrid algorithm, depicting multi-stage, sequential, and
parallel structures

Hybrid Metaheuristic Algorithms: Past, Present, and Future 77

5 Disadvantages and Challenges of Hybrid Algorithms

Although hybrid algorithms offers great advantage of increasing the diversity in a
population and hence enhancing the search capability of the developed hybrid algo-
rithm, some drawbacks do exist, whichwill be discussed in the following subsections.

5.1 Naming Convention

The inclusion of another algorithm usually leads to a naming issue. Some
researchers adopt very different names to their hybrid algorithms. For instance, the
GAAPI algorithm [6] is an acronym for Hybrid Ant Colony-Genetic Algorithm,
which is a bit confusing to other researchers. A hybrid name such as HPSO-BFGS
[31] seems to be a tedious abbreviation, which is harder to read. In comparison to
both architectures mentioned in Sect. 4, the collaborative type of hybrid algorithm
seems to create more sophisticated names. For example, it may be interesting to
compare the names of Hybrid GA-PSO (collaborative) to Mutated PSO (integra-
tive), though those two hybrids combined GA with PSO.

5.2 Complexity of Hybrid Algorithm

In terms of algorithm architecture, the hybridization process usually creates extra
components in the overall architecture of the hybrid algorithm. This increases the

Fig. 3 Integrative structure of a hybrid algorithm, with full and partial manipulations

78 T.O. Ting et al.

complexity of the hybrid algorithm. Due to a more complicated structure, hybrid
algorithms have some resistance to be accepted by researchers. In the literature, two
popular hybrid algorithms are Hybrid Taguchi-Genetic Algorithm [32] and Hybrid
Genetic Algorithm [33], with 305 and 294 citations (from Scopus [34]), both
published in 2004. From the citations, they seem to be received well. It is inter-
esting to note that both algorithms fall in the integrative type of hybrid algorithm,
which have simpler taxonomy/architecture.

5.3 Computational Speed

In many works, hybrid algorithms seem to improve results in terms of the overall
convergence speed and accuracy. However, these convergence graphs are often
plotted with respect to the number of iterations. This simply means that the faster
convergence does not mean the true convergence rate because the hybrid usually
uses a higher number of (internal or implicit) iterations. For example, for collab-
orative (sequential type) hybrid algorithm such as GA-PSO, a cycle, or one iteration
comprises GA and PSO. For a fair comparison, this should be considered as two
cycles instead of one in the convergence graph. To avoid this issue, the final run
time should be utilized as a metric when comparing a hybrid algorithm with non-
hybrid algorithms. Besides, due to a more complicated architecture in hybrid
algorithms, the overhead arises alongside its complexity, often unavoidable. This
affects the overall performance and thereby truncates its robustness. The time
consumed by overheads should be taken into account for a fair comparison. Again,
this is possible by recording the true number of iterations taken to reach a pre-
specified target, though time complexity should be compared as well.

There are other issues concerning hybrid algorithms. For example, most hybrid
algorithms will increase the number of parameters in the algorithms, thus making it
harder to tune their parameters. I addition, the complicated structure of a hybrid
usually makes it harder to be analyzed, and thus gaining little insight into the
reasons why such hybrids work. Furthermore, hybrid algorithms are slightly harder
to implement, and thus more prone to errors. Thus, care should be taken when
interpreting results from hybrid algorithms.

6 Examples of Hybrid Algorithms

In this section, we focus on some recent hybrid algorithms that have been performed
on a wide range of numerical benchmark problems for global optimization. These
hybrid algorithms are grouped either under collaborative (Table 1) or integrative
(Table 2) categories. The prescription for both categories have been elaborated in
Sect. 4.

Hybrid Metaheuristic Algorithms: Past, Present, and Future 79

As discussed in Sect. 5.1, collaborative algorithms (in Table 1) tend to have
longer names compared to their integrative counterparts, as listed in Table 2. Also,
from our analysis above, the number of journals published for the latter category is
almost twice, compared to the first category. This means that the integrative hybrids
are more widely accepted by researchers due to the simplicity in their development
process.

In reality, hybrid algorithms have been proven successful in solving a wide
range of applications. These include a myriad of different areas, such as neural
network [45], cluster analysis [33, 46], telecommunications [47, 48], scheduling
[49], protein structure analysis [50], image processing [51, 52], power system [28,
29, 53, 54] and many others.

7 Recommendations for Future Developments

From the above analysis and observations, we can highlight some insights that
should be useful to any future developments in this area as follows:

(i) Simpler algorithm are preferred than more complex algorithms. Einstein once
said: “Everything should be made as simple as possible, but not simpler.” In
the same sense, algorithms should be made as simple as possible. In reality,

Table 1 Recent collaborative hybrid algorithms, published after 2010

Abbreviation Full name

GAAPI Hybrid ant colony-genetic algorithm (GAAPI) [6]

HPSO-BFGS PSO-broyden-fletcher-goldfarb-shanno [31]

PSO-ACO Particle swarm optimization-ant colony optimization [16]

DE-BBO Hybrid differential evolution-biogeography based optimization [35]

HABCDE Hybrid artificial bee colony-differential evolution [36]

Table 2 Recent integrative
hybrid algorithms, published
after 2010

Abbreviation Full name

CPSO Cellular particle swarm optimization [22]

TGA Taguchi genetic algorithm [32]

OGA Orthogonal genetic algorithm [37]

HABC Hybrid artificial bee colony [38]

HMA Hybrid memetic algorithm [39]

HCS Hybrid cuckoo search [40]

TC-ABC Taguchi chaos-artificial bee colony [41]

CLA-DE Cellular learning automata [42]

HPSO Hybrid particle swarm optimization [43]

HDE Hybrid differential evolution [44]

80 T.O. Ting et al.

people tend to use a robust algorithm that has simpler architecture for the ease
of implementation and is yet efficient to be useful to real-world applications.

(ii) Shorter names are much preferred in the scientific community. Names should
be as short as possible and 3–4 letters for the abbreviation.

(iii) New hybrids (either collaborative or integrative hybrids) should have a clear
structure that is easier for implementations. Ideally, any combination should
be based on clear thinking, novel feature and insightful mechanisms, which is
more likely to produce better hybrids in the long run.

8 Conclusions

In this chapter, we reviewed a wide range of hybrid algorithms and investigated the
motivations of their developments. We have also categorized these algorithms,
based on hybridization techniques. In addition, some drawbacks were discussed
concerning hybridization. Recent examples of hybrid algorithm from the literature
have been presented, with a brief summary of some prominent applications. Finally,
some suggestions were recommended that can be useful to the future developments
of hybrid algorithms.

Acknowledgments The work is supported by National Natural Science Foundation of China
(NSFC) under grant No. 61473236, 61273367; and Ningbo Science & Technology Bureau
(Project No. 2012B10055).

References

1. Rodriguez, F., Garcia-Martinez, C., Lozano, M.: Hybrid metaheuristics based on evolutionary
algorithms and simulated annealing: taxonomy, comparison, and synergy test. Evol. Comput.
IEEE Trans. 16, 787–800 (2012)

2. Talbi, E.-G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)
3. Raidl, G.: A unified view on hybrid metaheuristics. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 4030 LNCS, pp. 1–12 (2006)

4. Grosan, C., Abraham, A.: Hybrid evolutionary algorithms: methodologies, architectures, and
reviews. Hybrid evolutionary algorithms, pp. 1–17. Springer, Berlin (2007)

5. Preux, P., Talbi, E.-G.: Towards hybrid evolutionary algorithms. Int. Trans. Oper. Res. 6(6),
557–570 (1999)

6. Ciornei, I., Kyriakides, E.: Hybrid ant colony-genetic algorithm (gaapi) for global continuous
optimization. Syst. Man Cybern. Part B Cybern. IEEE Trans. 42, 234–245 (2012)

7. Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of evolutionary computation. IOP
Publishing Ltd., London (1997)

8. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, Berlin (2003)
9. Fogel, D.B. Evolutionary computation: toward a new philosophy of machine intelligence, Vol.

1, John Wiley & Sons (2006)

Hybrid Metaheuristic Algorithms: Past, Present, and Future 81

10. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies—a comprehensive introduction. Nat.
Comput. 1(1), 3–52 (2002)

11. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-
Wesley Longman, Boston (1989)

12. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the
Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

13. Cheng, S.: Population diversity in particle swarm optimization: definition, observation,
control, and application. Ph.D. thesis, Department of Electrical Engineering and Electronics,
University of Liverpool, Liverpool (2013)

14. Angeline, P.J.: Using selection to improve particle swarm optimization. In: Proceedings of the
1998 Congress on Evolutionary Computation (CEC 1998), pp. 84–89 (1998)

15. Zhang, W.-J., Xie, X.-F.: DEPSO: hybrid particle swarm with differential evolution operator.
In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC
2003), vol. 4, pp. 3816–3821 (2003)

16. Shelokar, P.S., Siarry, P., Jayaraman, V.K., Kulkarni, B.D.: Particle swarm and ant colony
algorithms hybridized for improved continuous optimization. Appl. Math. Comput. 188, 129–
142 (2007)

17. Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local
search. In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC 2005),
vol. 1, pp. 552–528 (2005)

18. Parsopoulos, K.E., Vrahatis, M.N.: On the computation of all global minimizers through
particle swarm optimization. IEEE Trans. Evol. Comput. 8, 211–224 (2004)

19. Xie, X.F., Zhang, W.J., Yang, Z.L.: A dissipative particle swarm optimization. In: Proceedings
of the Fourth Congress on Evolutionary Computation (CEC 2002), vol. 2, pp. 1456–1461
(2002)

20. Brits, R., Engelbrecht, A.P., van den Bergh, F.: Locating multiple optima using particle swarm
optimization. Appl. Math. Comput. 189, 1859–1883 (2007)

21. Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm model
using speciation. IEEE Trans. Evol. Comput. 10, 440–458 (2006)

22. Shi, Y., Liu, H., Gao, L., Zhang, G.: Cellular particle swarm optimization. Inf. Sci. 181, 4460–
4493 (2011)

23. Yang, X.-S., Deb, S.: Two-stage eagle strategy with differential evolution. Int. J. Bio-Inspired
Comput. 4, 1–5 (2012)

24. Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M. (eds.): Swarm intelligence
and bioinspired computation: theory and applications. Newnes (2013)

25. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-
heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64, 1695–1724 (2013)

26. Yang, X.-S., Karamanoglu, M., Ting, T.O., Zhao, Y.-X.: Applications and analysis of bio-
inspired eagle strategy for engineering optimization. Neural Comput. Appl. pp. 1–10 (2013)

27. Yang, X.-S., Ting, T.O., Karamanoglu, M.: Random walks, lévy flights, markov chains and
metaheuristic optimization. In Future information communication technology and
applications, pp. 1055–1064, Springer, Netherlands (2013)

28. Ting, T.O., Wong, K.P., Chung, C.Y.: A hybrid genetic algorithm/particle swarm approach for
evaluation of power flow in electric network. Lect. Notes Comput. Sci. 3930, 908–917 (2006)

29. Ting, T.O., Wong, K.P., Chung, C.Y.: Investigation of hybrid genetic algorithm/particle
swarm optimization approach for the power flow problem. In: Proceedings of 2005
International Conference on Machine Learning and Cybernetics, 2005, vol. 1, pp. 436–440,
IEEE (2005)

30. Varnamkhasti, M., Hassan, N.: A hybrid of adaptive neuro-fuzzy inference system and genetic
algorithm. J. Intell. Fuzzy Syst. 25(3), 793–796 (2013)

31. Li, S., Tan, M., Tsang, I., Kwok, J.-Y.: A hybrid pso-bfgs strategy for global optimization of
multimodal functions. Syst. Man Cybern. Part B: Cybern. IEEE Trans. 41, 1003–1014 (2011)

32. Tsai, J.-T., Liu, T.-K., Chou, J.-H.: Hybrid taguchi-genetic algorithm for global numerical
optimization. IEEE Trans. Evol. Comput. 8(4), 365–377 (2004)

82 T.O. Ting et al.

33. Oh, I.-S., Lee, J.-S., Moon, B.-R.: Hybrid genetic algorithms for feature selection. IEEE Trans.
Pattern Anal. Mach. Intell. 26(11), 1424–1437 (2004)

34. Scopus: www.scopus.com. Last checked Aug (2014)
35. Gong, W., Cai, Z., Ling, C.: De/bbo: a hybrid differential evolution with biogeography-based

optimization for global numerical optimization. Soft. Comput. 15(4), 645–665 (2011)
36. Xiang, W., Ma, S., An, M.: Habcde: a hybrid evolutionary algorithm based on artificial bee

colony algorithm and differential evolution. Appl. Math. Comput. 238, 370–386 (2014)
37. Leung, Y.-W., Wang, Y.: An orthogonal genetic algorithm with quantization for global

numerical optimization. Evol. Comput. IEEE Trans. 5, 41–53 (2001)
38. Kong, X., Liu, S., Wang, Z., Yong, L.: Hybrid artificial bee colony algorithm for global

numerical optimization. J. Comput. Inf. Syst. 8(6), 2367–2374 (2012)
39. Li, Y., Jiao, L., Li, P., Wu, B.: A hybrid memetic algorithm for global optimization.

Neurocomputing 134, 132–139 (2014)
40. Long, W., Liang, X., Huang, Y., Chen, Y.: An effective hybrid cuckoo search algorithm for

constrained global optimization. Neural Comput Appl, 1–16 (2014)
41. Tien, J.-P., Li, T.-H.: Hybrid taguchi-chaos of artificial bee colony algorithm for global

numerical optimization. Int. J. Innovative Comput. Inf. Control 9(6), 2665–2688 (2013)
42. Vafashoar, R., Meybodi, M., Momeni Azandaryani, A.: Cla-de: a hybrid model based on

cellular learning automata for numerical optimization. Appl. Intell. 36(3), 735–748 (2012)
43. Wang, J.: A hybrid particle swarm optimization for numerical optimization. Int. J. Adv.

Comput. Technol. 4(20), 190–196 (2012)
44. Yan, J., Guo, C., Gong, W.: Hybrid differential evolution with convex mutation. J. Soft. vol. 6

(11 SPEC. ISSUE), pp. 2321–2328 (2011)
45. Juang, C.-F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent

network design. Syst. Man Cybern. Part B Cybern. IEEE Trans. 34, 997–1006 (2004)
46. Firouzi, B., Sadeghi, M., Niknam, T.: A new hybrid algorithm based on pso, sa, and k-means

for cluster analysis. Int. J. Innovative Comput. Inf. Control 6(7), 3177–3192 (2010)
47. Xu, Y., Qu, R.: Solving multi-objective multicast routing problems by evolutionary multi-

objective simulated annealing algorithms with variable neighbourhoods. J. Oper. Res. Soc. 62
(2), 313–325 (2011)

48. Guo, L., Li, Q., Chen, F.: A novel cluster-head selection algorithm based on hybrid genetic
optimization for wireless sensor networks. J. Networks 6(5), 815–822 (2011)

49. M’Hallah, R.: Minimizing total earliness and tardiness on a single machine using a hybrid
heuristic. Comput. Oper. Res. 34(10), 3126–3142 (2007)

50. Tantar, A.-A., Melab, N., Talbi, E.-G.: A grid-based genetic algorithm combined with an
adaptive simulated annealing for protein structure prediction. Soft. Comput. 12(12), 1185–
1198 (2008)

51. Bhandarkar, S., Zhang, H.: Image segmentation using evolutionary computation. IEEE Trans.
Evol. Comput. 3(1), 1–21 (1999)

52. Qureshi, S., Mirza, S., Rajpoot, N., Arif, M.: Hybrid diversification operator-based
evolutionary approach towards tomographic image reconstruction. IEEE Trans. Image
Process. 20(7), 1977–1990 (2011)

53. Ting, T.O., Wong, K.P., Chung, C.Y.: Locating type-1 load flow solutions using hybrid
evolutionary algorithm. In: 2006 International Conference on Machine Learning and
Cybernetics, pp. 4093–4098, IEEE (2006)

54. Ting, T.O., Wong, K.P., Chung, C.: Two-phase particle swarm optimization for load flow
analysis. In: IEEE International Conference on Systems, Man and Cybernetics, 2006.
SMC’06. vol. 3, pp. 2345–2350, IEEE (2006)

Hybrid Metaheuristic Algorithms: Past, Present, and Future 83

http://www.scopus.com

Binary Flower Pollination Algorithm
and Its Application to Feature Selection

Douglas Rodrigues, Xin-She Yang, André Nunes de Souza
and João Paulo Papa

Abstract The problem of feature selection has been paramount in the last years,
since it can be as important as the classification step itself. The main goal of feature
selection is to find out the subset of features that optimize some fitness function,
often in terms of a classifier’s accuracy or even the computational burden for
extracting each feature. Therefore, the approaches to feature selection can be
modeled as optimization tasks. In this chapter, we evaluate a binary-constrained
version of the Flower Pollination Algorithm (FPA) for feature selection, in which
the search space is a boolean lattice where each possible solution, or a string of bits,
denotes whether a feature will be used to compose the final set. Numerical
experiments over some public and private datasets have been carried out and
comparison with Particle Swarm Optimization, Harmony Search and Firefly
Algorithm has demonstrated the suitability of the FPA for feature selection.

Keywords Feature selection � Flower pollination algorithm � Optimum-path forest

D. Rodrigues � J.P. Papa (&)
Department of Computing, UNESP, Bauru, SP, Brazil
e-mail: papa@fc.unesp.br

D. Rodrigues
e-mail: douglasrodrigues.dr@gmail.com

X.-S. Yang
School of Science and Technology, Middlesex University, London NW4 4BT, UK
e-mail: x.yang@mdx.ac.uk

A.N. de Souza
Department of Electrical Engineering, UNESP, Bauru, SP, Brazil
e-mail: andrejau@feb.unesp.br

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_5

85

1 Introduction

Machine learning techniques have been actively studied in recent years with an
increasing number of applications that make use of the so-called intelligence-based
decision processes. Roughly speaking, a standard workflow for tackling such
problems can be divided in four phases: (i) to preprocess the data (signal or image
filtering, for instance); (ii) to extract features; (ii) to train a machine learning
technique, and finally (iv) to evaluate its effectiveness over an unseen (test) data [3].

One of the most important steps concerns feature extraction is to find the most
important subset of features that leads to the best recognition rates. There are
situations we may obtain the same accuracy as before (with the original set of
features) even after feature selection, but we can save computational efforts by
avoiding extracting some features that are too costly.

Several studies have modeled the problem of feature selection as an optimization
task, since the idea is to find out the subset of features that maximizes the accuracy
of a given classifier, or minimizes its error over some validating set, for instance.
Such approaches can be useful to the application of evolutionary optimization
techniques to solve complex tasks. The readers can refer to some recent literature
such as the Binary Particle Swarm Optimization (BPSO) [5], Binary Firefly
Algorithm (BFA) [4], Binary Harmony Search (BHS) [14], Binary Gravitational
Search Algorithm (BGSA) [16], Binary Cuckoo Search (BCS) [17], Binary
Charged System Search (BCSS) [19], and Binary Bat Algorithm (BBA) [18].

Yang and Honavar [23] presented a multicriteria Genetic Algorithm (GA) to deal
with feature selection, in which the main idea was to optimize both the accuracy and
the feature extraction computational costs. Later on, Oh et al. [10] proposed a hybrid
GA to tackle the same problem with seemingly better final performance. In addition,
there are many papers that address feature selection using other methods such as the
ant colonization [2, 7, 21]. The main idea consists of reducing the number of possible
paths visited by ants in some works, as well as modified pheromone update rules.
Other approaches such as Artificial Bee Colony [9, 20] and Gravitational Search
Algorithm [1, 15] have been also employed to the same context.

Basically, the main idea of these methods is to convert the position of the agents
(bats, particles, harmonies, etc.) into binary-valued coordinates,which are represented
by a string of bits, each denoting the presence or absence of a feature. The problem of
feature selection can also be considered as a search task in a boolean lattice, in which
the number of dimensions stands for the number offeatures. As the original versions of
most evolutionary optimization techniques were proposed to handle continuous-
valued problems, the idea is to apply a discretization function (usually a constrained
sigmoid function) to map the agent locations to the boolean lattice.

Very recently, Yang [25, 26] proposed the Flower Pollination Algorithm (FPA),
which is inspired by the flower pollination process of flowering plants. This
approach has demonstrated interesting results for traditional (continuous-valued)
optimization problems, which motivated us to extend it to solve binary optimization
tasks. In this case, we now to tackle the problem of feature selection and propose

86 D. Rodrigues et al.

approach the Binary Flower Pollination Algorithm (BFPA). In regard to the fitness
function, we have used a classifier’s effectiveness over a validating set: as we need
to train a classifier every time an agent (pollen) changes its position, we need a fast
classifier. For this purpose, we use the Optimum-Path Forest (OPF) [12, 13], which
has demonstrated very promising results in several applications, and this approach
is also parameter-independent. The proposed approach has been compared with
other methods such as BPSO, BFA and BHS to evaluate several datasets. The
results are also analyzed by using statistical tools.

The remainder of this chapter is organized as follows. Section 2 introduces the
theory background about FPA and OPF techniques. Sections 3 and 4 present the
methodology and the experimental results, respectively. Finally, Sect. 5 draws some
conclusions and future works.

2 Theoretical Background

In this section, we first briefly review some of the main concepts and techniques to be
used in this chapter, as well as the proposed Binary Flower Pollination Algorithm.

2.1 Flower Pollination Algorithm

The Flower Pollination Algorithm was proposed by Yang [25], inspired by the
pollination process of flowering plants. The FPA is governed by four basic rules:

1. Biotic cross-pollination can be considered as a process of global pollination, and
pollen-carrying pollinators move in a way that obeys Lévy flights.

2. For local pollination, abiotic pollination and self-pollination are used.
3. Pollinators such as insects can develop flower constancy, which is equivalent to

a reproduction probability that is proportional to the similarity of two flowers
involved.

4. The interaction or switching of local pollination and global pollination can be
controlled by a switch probability p 2 ½0; 1�, slightly biased towards local
pollination.

However, it is necessary that the aforementioned basic rules be converted into
appropriate updating equations. For example, in the global pollination step, flower
pollen gametes are carried by pollinators such as insects, and pollen can travel over
a long distance because insects can often fly and move over a much longer range
[25]. Therefore, Rules 1 and 3 can be represented mathematically as:

xðtþ1Þ
i ¼ xti þ aLðkÞðg� � xtiÞ; ð1Þ

Binary Flower Pollination Algorithm and Its Application … 87

where

LðkÞ ¼ k � CðkÞ � sinðkÞ
p

� 1
s1þk

; s[0 ð2Þ

where xti is the pollen i (solution vector) at iteration t, g� is the current best solution
found among all solutions at the current generation, and α is a scaling factor to
control the step size, L(λ) is the Lévy flights step size corresponding to the strength
of the pollination. In addition, CðkÞ stands for the gamma function, and s is the step
size. Since insects may move over a long distance with various distance steps, Lévy
flights can be used to mimic this characteristic efficiently.

For local pollination, both Rules 2 and 3 can be represented as:

xðtþ1Þ
i ¼ xti þ eðxtj � xtkÞ; ð3Þ

where xtj and xtk stand for the pollen from different flowers j and k of the same plant
species, respectively. This mimics flower constancy in a limited neighbourhood.
Mathematically, if xtj and xtk come from the same species or are selected from the
same population, it equivalently becomes a local random walk if ε is drawn from a
uniform distribution in [0,1]. In order to mimic the local and global flower polli-
nation, a switch probability (Rule 4) or proximity probability p is used.

2.1.1 Binary Flower Pollination Algorithm

In the standard FPA, the solutions are updated in the search space towards con-
tinuous-valued positions. However, in the proposed Binary Flower Pollination
Algorithm the search space is modelled as a d-dimensional boolean lattice, in which
the solutions are updated across the corners of a hypercube. In addition, as the
problem is to select or not a given feature, a binary solution vector is used, where 1
corresponds to that a feature will be selected to compose the new dataset with 0
being otherwise. In order to build this binary vector, we have to use Eq. (5) just
after Eq. (3), which can restrict the new solutions to only binary values:

Sðx ji ðtÞÞ ¼
1

1þ e�x ji ðtÞ
; ð4Þ

x ji ðtÞ ¼ 1 if Sðx ji ðtÞÞ[r;
0 otherwise;

�
ð5Þ

where r�Uð0; 1Þ. Algorithm 1 presents the proposed BFPA for feature selection
using the recognition rate of the OPF classifier as the objective function. Note the
proposed approach can be used with any other supervised classification technique.

Lines 1–4 initialize each pollen’s position as being a binary string with random
values, as well as the fitness value fi of each individual i. The main loop in Lines

88 D. Rodrigues et al.

6–27 is the core of the proposed algorithm, in which the inner loop in Lines 7–13 is
responsible for creating the new training Z 0

1 and evaluating sets Z 0
2, and then OPF

is trained over Z 0
1 and it is used to classify Z 0

2. The recognition accuracy over Z 0
2 is

stored in acc and then compared with the fitness value fi (accuracy) of individual i:
if the latter is worse than acc, the old fitness value is kept; otherwise, the fitness
value is then updated. Lines 12–13 update the best local position of the current
pollen. Lines 14–18 update the global optimum, and the last loop (Lines 19–27)
moves each pollen to a new binary position restricted by Eq. (5) (Lines 25–27).

Binary Flower Pollination Algorithm and Its Application … 89

2.2 Optimum-Path Forest Classifier

The Optimum-Path Classifier [12, 13] models the samples as graph nodes, whose
arcs are defined by an adjacency relation and weighted by some distance function.
Further, a role competition process between some key nodes (prototypes) is carried
out in order to partition the graph into optimum-path trees (OPTs) according to
some path-cost function. Therefore, to design an Optimum-Path Forest-based
classifier, one needs to define: (i) an adjacency relation, (ii) a path-cost function and
(iii) a methodology to estimate prototypes.

Suppose we have a fully labeled dataset Z ¼ Z1 [Z2, in which Z1 and Z2 stand
for training and test sets, respectively. Let S � Z1 be a set of prototypes of all
classes (i.e., key samples that best represent the classes). Let ðZ1;AÞ be a complete
graph whose nodes are the samples in Z1 and any pair of samples defines an arc in
A ¼ Z1 � Z1. Let ps be a path in the graph that ends in sample s 2 Z1, and hps �
ðs; tÞi the concatenation between ps and the arc (s, t), t 2 Z1. In this chapter, we
employ a path-cost function that returns the maximum arc-weight along a path in
order to avoid chains, and also to show the idea of connectivity between samples.
This path-cost function is denoted here as Ψ, and it can be computed as follows:

WðhsiÞ ¼ 0; if s 2 S;

þ1; otherwise;

�
Wðps � hs; tiÞ ¼ maxfWðpsÞ; dðs; tÞg;

ð6Þ

in which d(s, t) means the distance between nodes s and t. Thus, the objective of the
Optimum-Path Forest algorithm (supervised version) is to minimize
WðptÞ; 8t 2 Z1.

An optimal set of prototypes S� can be found by exploiting the theoretical
relation between the minimum-spanning tree and optimum-path tree for Ψ. By
computing a minimum-spanning tree in the complete graph ðZ1;AÞ, we obtain a
connected acyclic graph whose nodes are all samples of Z1 and the arcs are
undirected and weighted by the distances d between adjacent samples. The span-
ning tree is optimum in the sense that the sum of its arc weights is the minimum as
compared to any other spanning tree in the complete graph. In the minimum-
spanning tree, every pair of samples is connected by a single path, which is opti-
mum according to Ψ. Thus, the minimum-spanning tree contains one optimum-path
tree for any selected root node. The optimum prototypes are the closest elements of
the minimum-spanning tree with different labels in Z1.

The Optimum-Path Forest training phase consists, essentially, of starting the
competition process between prototypes in order to minimize the cost of each
training sample. At the final of such procedure, we obtain an optimum-path forest,
which is a collection of optimum-path trees rooted at each prototype. A sample
connected to an OPT means that it is more strongly connected to the root of that tree
than to any other root in the forest.

90 D. Rodrigues et al.

Furthermore, in the classification phase, for any sample t 2 Z2, we consider all
arcs connecting t with samples s 2 Z1, as though t were part of the training graph.
Considering all possible paths from S� to t, we find the optimum path P�ðtÞ from S�

and label t with the class kðRðtÞÞ of its most strongly connected prototype
RðtÞ 2 S�. This path can be identified incrementally, by evaluating the optimum
cost C(t) as:

CðtÞ ¼ minfmaxfCðsÞ; dðs; tÞgg; 8s 2 Z1: ð7Þ

Let the node s� 2 Z1 be the one that satisfies (Eq. 7) (i.e., the predecessor P(t) in
the optimum path P�ðtÞ). Given that Lðs�Þ ¼ kðRðtÞÞ, the classification simply
assigns Lðs�Þ as the class of t.

3 Methodology

In this section, we present the methodology used to evaluate the performance of
BFPA. Details about the dataset used, experimental setup and the compared tech-
niques are also provided.

3.1 Datasets

Table 1 presents the datasets used in this work.1 Such datasets differ on the number
of samples, features and also classes. Therefore, the idea is to evaluate the proposed
approach in different contexts.

The last two datasets, i.e., NTLc and NTLi, are related to non-technical losses
detection in comercial and industrial profiles, respectively. These are private
datasets obtained by a Brazilian electrical power company. Such sort of problem is
of great interest to electrical power companies, mainly in Brazil, in which the
amount of losses in energy thefts can reach up to 20 % in some regions. Therefore,
the characterization of illegal consumers, i.e., to find out the most important features
that allow us to identify them, is so important as to effective recognize them.

3.2 Nature-Inspired Metaheuristic Algorithms

In this work, we have also employed three others evolutionary optimization tech-
niques for comparison purposes. A brief detail about each of them is given below.

1 The first four datasets can be found on http://featureselection.asu.edu/datasets.php.

Binary Flower Pollination Algorithm and Its Application … 91

http://featureselection.asu.edu/datasets.php

Particle Swarm Optimization (PSO): PSO was inspired by the social behavior of
bird flocking or fish schooling [8]. The fundamental idea is that each particle
represents a potential solution which is updated according to its own experience and
from its neighbors’ knowledge. The motion of an individual particle for the optimal
solution is governed through its position and velocity interactions, and also by its
own previous best performance and the best performance of their neighbors.

Firefly Algorithm (FA): FA was also proposed by Yang [24], based on the
flashing behaviour and attractiveness of fireflies. The brightness of a firefly at a
given position is determined by the value of the objective function in that position.
Each firefly is attracted by a brighter firefly through the attraction factor that vary
with their distance.

Harmony Search (HS): HS was a meta-heuristic algorithm inspired by the
improvisation process of music players [6]. Musicians often improvise in searching
for a perfect state of harmony. The main idea is to use the same process adopted by
musicians to create new songs to obtain a near-optimal solution according to some
fitness function. Each possible solution is modelled as a harmony, and each musical
note corresponds to one decision variable.

In this present work, we have used all the binary optimization versions of each
aforementioned technique, i.e., Binary PSO (BPSO) [5], Binary Firefly (BFA) [4,
11], as well as Binary HS (BHS) [14].

3.3 Experimental Setup

Firstly, the dataset Z is randomly partitioned in N folds, i.e., Z ¼ F1 [F2 [� � � [FN .
For each fold Fi, we train a given instance of the OPF classifier over it, for further
evaluation of another fold Fj; i 6¼ j. Therefore, the classification accuracy over Fj is
then used as the fitness function to guide the optimization algorithms for selecting
the most representative set of features. Each agent of the population (pollen, particle,
firefly, harmony) in these meta-heuristic algorithms is associated with a string of bits
denoting the presence or absence of a feature. Thus, for each agent, we construct a
classifier from the training set Fi only with the selected features, say F�

i , and assigns
the accuracy over Fj as the fitness function. As long as the procedure converges, i.e.,
all generations of a population were computed, the agent with the highest fitness
value encodes a solution with the best compacted set of features.

Table 1 Description of the
benchmarking datasets Dataset # samples # features # classes

GLI-85 85 22,283 2

SMK-CAN-187 187 19,993 2

TOX-171 171 5,748 4

AR10P 130 2,400 10

NTLc 4,952 8 2

NTLi 3,182 8 2

92 D. Rodrigues et al.

After that, we build a classification model using the training set with the selected
features ðF�

i Þ, and we also evaluate the quality of the solution through a classifi-
cation process over the test set, which is built over the remaining folds in
ZnfFi [Fjg. This procedure is conducted for each fold Fi in the dataset to be part
of the training set, and thus we have NðN � 1Þ combinations in the final of the
process, which will be averaged for comparison purposes. Figure 1 illustrates the
methodology described above.

In regard to the recognition rate, we used an accuracy measure proposed by Papa
et al. [12]. If there are two classes, for example, with very different sizes and a
classifier always assigns the label of the largest class, its accuracy will fall drastically
due to the high error rate on the smallest class. The accuracy is measured by taking
into account that the classes may have different sizes in a testing set Fj. Let us define:

ei;1 ¼ FPi

Fj

�� ��� Fi
j

��� ��� ; ð8Þ

and

ei;2 ¼ FNi

Fi
j

��� ��� ; i ¼ 1; 2; . . .;C; ð9Þ

where C stands for the number of classes, jFi
j j concerns with the number of samples

in Fj that come from class i, and FPi and FNi stand for the false positives and false
negatives for class i, respectively. That is, FPi is the number of samples from other
classes that were classified as being from the class i in Fj, and FNi is the number of
samples from the class i that were incorrectly classified as being from other classes
in Fj. The error terms ei;1 and ei;2 are then used to define the total error from class i:

Ei ¼ ei;1 þ ei;2: ð10Þ

Fig. 1 Proposed methodology to evaluate the compared techniques

Binary Flower Pollination Algorithm and Its Application … 93

Finally, the accuracy Acc is then defined as follows:

Acc ¼ 1�
PC

i¼1 Ei

2C
: ð11Þ

4 Experimental Results

In this section, we summarize and discuss the experimental results regarding the
proposed approach for feature selection. The results presented in this section stand
for the mean accuracy and standard deviation over 25 independent runs using the
methodology presented in Sect. 3.3. Since the evolutionary optimization algorithms
are non-deterministic, such approaches seem to be robust to avoid biased results.
The optimization algorithms (BFPA, BPSO, BHS and BFA) were implemented in
C language following the guidelines provided by their references. The experiments
were executed on a computer with a Pentium Intel Core i5® 3.20 Ghz processor,
4 GB of RAM and Linux Ubuntu Desktop LTS 10.04 as the operational system.

Table 2 presents the parameters used for each optimization technique employed
in this work. The c1 and c2 parameters of PSO control the pace during the particles’
movement, and the “Harmony Memory Considering Rate” (HMCR) of BHS stands
for the amount of information that will be used from the artist’s memory (songs that
have been already composed) in order to compose a new harmony. In regard to
BFA, α and β0 are related to the step size of a firefly, and γ stands for the light
absorption coefficient. In addition, we have used a population of 30 agents and 100
iterations for all techniques, with such values being an empirical set.

Figure 2 displays the mean accuracy results using the proposed methodology
(Sect. 3.3). It can be observed that the feature selection techniques can slightly
improve the results obtained using the original datasets, i.e., without feature
selection. The second point is that all techniques achieved quite similar results.
Therefore, the results showed BFPA is suitable for feature selection tasks. We have
also performed the statistical Wilcoxon Signed-Rank Test [22] to verify whether
there is a significant difference between BFPA and the other techniques used in this
work (considering the OPF recognition rate). Table 3 displays the p-values, being
the bold ones the situations in which BFPA and the respective technique have
obtained different performances, i.e., when the p-values are lower than a signifi-
cance level of α = 0.05.

Table 2 Parameters used for each meta-heuristic optimization technique. Notice the inertia weight
w for PSO was linearly decreased from 0.9 to 0.4 during the convergence process

Technique Parameters

BPSO c1 = c2 = 2

BFA c ¼ 0:8, b0 ¼ 1:0, a ¼ 0:01

BHS HMCR = 0.9

BFPA a = 1.0, p = 0.8

94 D. Rodrigues et al.

It can also be seen that there is a statistical difference between BFPA and BPSO,
and BFPA and BFA for AR10P dataset, and also a difference between BFPA and
BHS considering TOX-171 dataset. Figure 3 displays the convergence rates of all
techniques considering the datasets employed in this work. Such recognition rates
are the ones obtained over the validating set Fj, as depicted in Fig. 1.

(b)(a)

(d)(c)

(f)(e)

Fig. 2 Average OPF accuracy over a GLI-85, b SMK-CAN-187, c TOX-171, d AR10P, e NTLc

and f NTLi datasets

Binary Flower Pollination Algorithm and Its Application … 95

Table 3 Wilcoxon
Signed-Rank Test evaluation:
p-values computed between
BFPA, BPSO, BFA and BHS

Dataset BPSO BFA BHS

GLI-85 0.3130 0.5629 0.1425

SMK-CAN-187 0.1829 0.2012 0.4432

TOX-171 0.1742 0.1500 0.0112
AR10P 0.0023 0.0197 0.0573

NTLc 0.3281 0.4769 1.2290

NTLi 0.1957 0.3318 1.2290

(b)(a)

(d)(c)

(f)(e)

Fig. 3 Average convergence rate considering the OPF accuracy over the feature selection step for
a GLI-85, b SMK-CAN-187, c TOX-171, d AR10P, e NTLc and f NTLi datasets

96 D. Rodrigues et al.

From Fig. 3, it is possible to observe that BPSO has been the technique with the
fastest convergence rate, followed by BFA and BFPA. However, the good BPSO
performance over the feature selection process does not seem to enhance a lot its
final accuracy over the test set, as displayed in Fig. 2. In addition, BHS has the
slowest convergence process, since it updates only one agent (harmony) per iter-
ation, which turns it fast considering the execution time, but it tends to be slower for

(b)(a)

(d)(c)

(f)(e)

Fig. 4 Average execution time (ms) for feature selection considering a GLI-85, b SMK-CAN-
187, c TOX-171, d AR10P, e NTLc and f NTLi datasets

Binary Flower Pollination Algorithm and Its Application … 97

convergence. Figure 4 displays the execution time for all considered optimization
techniques. Though it is possible to observe that BFPA has been one of the slowest
techniques, since it is the only one that employs Lévy flights to move pollens across
the search space, which can increase the computational burden slightly. It is also
observed that BFPA in general produces better results in terms of accuracy, as seen
in Fig. 2.

(b)(a)

(d)(c)

(f)(e)

Fig. 5 Mean number of selected features considering a GLI-85, b SMK-CAN-187, c TOX-171,
d AR10P, e NTLc and f NTLi datasets. The numbers have been truncated for sake of presentation

98 D. Rodrigues et al.

In addition, Fig. 5 displays the mean number of selected features for each
dataset. It is possible to observe BHS has selected the fewest number of features,
followed by BPSO. However, as we have high dimensional datasets (in case of
GLI-85, SMK-CAN-187, TOX-171 and AR10P), the absolute number do not differ
a lot from all techniques. It seems that all techniques have obtained similar results
considering the recognition rate, except for the computational load and convergence
speed.

5 Conclusions

In this work, we have solve the problem of feature selection by considering feature
selection as an evolutionary-based optimization task, constrained on a boolean
lattice. The idea is to represent each possible solution as a string of bits, in which
each of them denotes whether or not a feature will be used to compose the final set.

We have evaluated a recent nature-inspired approach, namely the Flower Pol-
lination Algorithm, to tackle this task on six datasets. The proposed approach has
been compared with other methods such as Particle Swarm Optimization, Harmony
Search and Firefly Algorithm. The experimental results have been analyzed in terms
of the recognition rates, convergence speed, number of selected features and
computational loads. All techniques have obtained similar recognition rates, and it
seems that PSO has the fastest convergence process, while HS has lowest com-
putational cost. Therefore, we have showed that FPA is also suitable for feature
selection tasks, since its results are comparable to the ones obtained by some state-
of-the-art evolutionary techniques. Future research can focus on the parametric
studies of the FPA as well as its extension and hybridization with other techniques.

References

1. Bababdani, B.M., Mousavi, M.: Gravitational search algorithm: a new feature selection
method for {QSAR} study of anticancer potency of imidazo[4,5-b]pyridine derivatives.
Chemometr. Intell. Lab. Syst. 122(15), 1–11 (2013)

2. Chen, B., Chen, L., Chen, Y.: Efficient ant colony optimization for image feature selection.
Signal Process. 93(6), 1566–1576 (2013). (special issue on Machine Learning in Intelligent
Image Processing)

3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley, New York (2001)
4. Falcon, R., Almeida, M., Nayak, A.: Fault identification with binary adaptive fireflies in

parallel and distributed systems. In: IEEE Congress on Evolutionary Computation (CEC),
pp. 1359–1366 (2011)

5. Firpi, HA., Goodman, E.: Swarmed feature selection. In: Proceedings of the 33rd Applied
Imagery Pattern Recognition Workshop. IEEE Computer Society, Washington, DC, pp. 112–
118 (2004)

6. Geem, Z.W.: Music-inspired harmony search algorithm: theory and applications, 1st edn.
Springer, Berlin (2009)

Binary Flower Pollination Algorithm and Its Application … 99

7. Kabir, M., Shahjahan, M., Murase, K.: An efficient feature selection using ant colony
optimization algorithm. In: Leung, C., Lee, M., Chan, J. (eds.) Neural Information Processing,
Lecture Notes in Computer Science, vol. 5864, pp. 242–252, Springer, Berlin (2009)

8. Kennedy, J., Eberhart, R.C.: Swarm intelligence. Morgan Kaufman, Burlington (2001)
9. Marinakis, Y., Marinaki, M., Matsatsinis, N.: A hybrid discrete artificial bee colony—GRASP

algorithm for clustering. In: Proceedings of the International Conference on Computers
Industrial Engineering, pp. 548–553 (2009)

10. Oh, I.S., Lee, J.S., Moon, B.R.: Hybrid genetic algorithms for feature selection. IEEE Trans.
Pattern Anal. Mach. Intell. 26(11), 1424–1437 (2004)

11. Palit, S., Sinha, S.N., Molla, M.A., Khanra, A., Kule, M.: A cryptanalytic attack on the
knapsack cryptosystem using binary firefly algorithm. In: 2nd International Conference on
Computer and Communication Technology (ICCCT), pp. 428–432 (2011)

12. Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-
path forest. Int. J. Imaging Syst. Technol. 19(2), 120–131 (2009)

13. Papa, J.P., Falcão, A.X., Albuquerque, V.H.C., Tavares, J.M.R.S.: Efficient supervised
optimum-path forest classification for large datasets. Pattern Recogn. 45(1), 512–520 (2012)

14. Ramos, C.C.O., Souza, A.N., Chiachia, G., Falcão, A.X., Papa, J.P.: A novel algorithm for
feature selection using harmony search and its application for non-technical losses detection.
Comput. Electr. Eng. 37(6), 886–894 (2011)

15. Ramos, C.C.O., De Souza, A., Falcão, A., Papa, J.: New insights on nontechnical losses
characterization through evolutionary-based feature selection. Power Deliv. IEEE Trans. 27
(1), 140–146 (2012)

16. Ramos, C.C.O., de Souza, A.N., Falcão, A.X., Papa, J.P.: New insights on non-technical
losses characterization through evolutionary-based feature selection. IEEE Trans. Power
Deliv. 27(1), 140–146 (2012)

17. Rodrigues, D., Pereira, L.A.M., Almeida, T.N.S., Papa, J.P., Souza, A.N., Ramos, C.C.O.,
Yang, X.S.: A binary cuckoo search algorithm for feature selection. In: Proceedings of IEEE
International Symposium on Circuits and Systems, pp. 465–468 (2013a)

18. Rodrigues, D., Pereira, L.A.M., Nakamura, R.Y.M., Costa, K.A.P., Yang, X.S., Souza, A.N.,
Papa, J.P.: A wrapper approach for feature selection based on bat algorithm and optimum-path
forest. Expert Syst. Appl. 41(5), 2250–2258 (2013)

19. Rodrigues, D., Pereira, L.A.M., Papa, J.P., Ramos, C.C.O., Souza, A.N., Papa, L.P.:
Optimizing feature selection through binary charged system search. In: Proceedings of 15th
International Conference on Computer Analysis of Images and Patterns, pp. 377–384 (2013c)

20. Schiezaro, M., Pedrini, H.: Data feature selection based on artificial bee colony algorithm.
EURASIP J. Image Video Process. 1, 1–8 (2013)

21. Sivagaminathan, R.K., Ramakrishnan, S.: A hybrid approach for feature subset selection using
neural networks and ant colony optimization. Expert Syst. Appl. 33(1), 49–60 (2007)

22. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83
(1945)

23. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. IEEE Intell. Syst.
Appl. 13(2), 44–49 (1998)

24. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-
Inspired Comput. 2(2), 78–84 (2010)

25. Yang, X.S.: Flower pollination algorithm for global optimization. In: Proceedings of the 11th
International Conference on Unconventional Computation and Natural Computation, pp. 240–
249. Springer, Berlin (2012)

26. Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for
multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

100 D. Rodrigues et al.

Bat Algorithm Application for the Single
Row Facility Layout Problem

Sinem Büyüksaatçı

Abstract Facility layout, which involves planning, designing and optimization of
physical arrangement of resources, can be defined as one of the most fundamental
operations in manufacturing systems. A good placement of facilities contributes to
the overall efficiency of operations and reduces total operating expenses. Because of
its importance, the facility layout problem has attracted attention in the research
community. However, layout problems are known as complex and solvable in
exponential time. Due to the combinatorial nature of such problems, no efficient
exact algorithms exist. Thus, during the last decades, several metaheuristics have
been applied to obtain efficient solutions. One of the special classes of the facility
layout problem is the Single Row Facility Layout Problem (SRFLP), which is
expressed by finding an optimal linear placement of facilities with varying
dimensions on a straight line. In this study, bat algorithm is used to solve single row
layout problem. Before application, the optimal settings of the bat algorithm
parameters are determined through experimental analysis. Then the performance of
the bat algorithm is tested on six-problem set selected from the literature.

Keywords Bat algorithm � Single row facility layout problem � Design of
experiments � Experimental analysis

1 Introduction

The layout arrangement is an inevitable problem in all-industrial plants and the
decisions regarding the layout of machines receive intensive attention in production
and operations management. The physical layout design is extremely important
because it affects the required initial investments, the amount of in-progress inven-
tory, the production lead times, the production rate and the material handling cost.

S. Büyüksaatçı (&)
Faculty of Engineering, Department of Industrial Engineering, Istanbul University,
Avcılar, İstanbul, Turkey
e-mail: sinemb@istanbul.edu.tr

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_6

101

As stated by Tompkins et al. [47], estimates show that 20–50 % of the total operating
expenses of manufacturing systems are spent on material handling cost and a suitable
layout design can decrease the operating costs by 10–30 %.

Facility layout can be defined as a process in which the planning for the placement
of different types of facilities such as machines, employee workstations, utilities,
customer service areas, restrooms, material storage areas, lunchrooms, drinking
fountains, offices, internal walls etc. according to a determined objective function.

There are several alternative facility layout types that are referred in literature.
According to the production variety and volume, the facility shapes, the material
handling system chosen, the number of floors on which the machines can be
assigned, the different possible flows allowed for parts and the pick-up/drop-off
locations, layout problems are differentiated [15].

When dealing with a material handling system, the problem consists in arranging
facilities along the material-handling path. Heragu and Kusiak in 1988 [19] indi-
cated that the type of material-handling device determines the pattern to be used for
the layout of machine. The most commonly used material handling devices
(MHDs) are conveyors (belt, roller, wheel), automated guided vehicles (AGV),
handling robot, gantry robot, etc. The most frequently encountered layout types
connected to the MHDs are:

• linear single row machine layout
• linear double row machine layout
• linear multi row machine layout
• semi-circular (u-shaped) machine layout
• loop layout
• serpentine (or open field) machine layout

Although modern material handling systems often allow for complex flow path
configurations, the single row facility layout is the most widely implemented layout
pattern in the configuration of manufacturing systems. In this configuration,
machines are arranged along a straight line where a material-handling device moves
the items from one machine to another.

The single row facility layout problem (SRFLP), which is also called “the one-
dimensional machine location problem” or “the linear machine cell location
problem”, connected with some combinatorial optimization problems. One of those
that has been extensively studied in literature is quadratic assignment problem
(QAP) formulated by Koopmans and Beckman in 1957 [24]. In this problem type,
three n × n input matrices, which are flow matrix, distance matrix and cost of
placing matrix, are given. The goal of the problem is one-to-one assignment of
n facilities to n locations while minimizing the sum of the distances multiplied by
the flow between locations and the cost for placing a facility at a certain site. Linear
ordering (arrangement) problem also is a special case of SRFLP and QAP. If there
exists no interaction between facilities such that one is concerned only with locating
new facilities relative to existing facilities, the problem is linear arrangement
problem [47]. This problem type also differs from QAP by its efficient, polynomial-
time solution methods as mentioned by Burkard [12].

102 S. Büyüksaatçı

SRFLP has a number of practical applications in literature, including the
arrangement of departments on one side of a corridor in supermarkets, hospitals and
office buildings [42], the arrangement of books on a shelf in a library and the
assignment of files to disk cylinders in computer storage [37], the layout of
machines in flexible manufacturing systems, where machines within manufacturing
cells are often placed along a straight path travelled by an automated guided vehicle
[19] and the assignment of airplanes to gates in an airport terminal [9].

2 Formulations of Single Row Facility Layout Problem

A variety of formulations exist for the SRFLP in literature. In order to model the
SRFLP, the following main notations are required:

• cij: Cost of transporting a unit of material for unit distance between facilities
i and j.

• fij: Material flow between facilities i and j.
• dij: Distance between facilities i and j.
• li: Length of facility i.

The term cij has been used in different meanings in literature. It has been defined
as cost by Simmons in 1969 [42], frequency of travel by Heragu and Kusiak in
1988 [19], affinity by Romero and Sánchez-Flores in 1990 [39] and transition
probabilities by Picard and Queyranne in 1981 [37].

The first formulation, which is given in Eq. (1), was proposed by Simmons [42].

Minimize
Xn�1

i¼1

Xn
j¼iþ1

cijsij ð1Þ

where sij is the sum of the half-lengths of facility i and j added to the lengths of all
facilities between them considering the permutations.

Love and Wong in 1976 [32] presented a binary mixed integer programming
formulation for the SRFLP. The formulation is as follows.

Minimize
Pn�1

i¼1

Pn
j¼iþ1

wij Rij þ Lij
� �

subject to
Rij � Lij ¼ xi � xj þ 1

2 ðlj � liÞ
xi � xj þM aij

� �� li
xj � xi þM 1� aij

� �� lj

lj � xi �
Pn
1
li

aij ¼ 0; 1
Rij; Lij; x1; . . .; xn � 0

ð2Þ

Bat Algorithm Application for the Single … 103

where
xi Endpoint of facility i farthest from the origin,
aij 1 if facility i is to the left of facility j, 0 otherwise,
Rij Distance between centroid of facility i and centroid of facility j if facility i is to

the right of facility j, 0 otherwise,
Lij Distance between centroid of facility i and centroid of facility j if facility i is to

the left of facility j, 0 otherwise;
M An arbitrarily large number

Kumar et al. [28] provided a quadratic assignment problem formulation for the
case where a number of distinct facilities are to be assigned to an equal number
of equidistant locations which lie on a straight line in 1995. The mathematical
formulation is given in Eq. (3).

Minimize
Pn
i¼1

Pn
j¼1

Pn
k¼1

Pn
k0¼1

xikxjk0 fij k � k0j j
subject to Pn

i¼1
xik ¼ 1; k ¼ 1; 2; . . .; n

Pn
k¼1

xik ¼ 1; i ¼ 1; 2; . . .; n

xij 2 f0; 1g i; k ¼ 1; 2; . . .; n;

ð3Þ

where xik ¼ 1 if facility i is assigned to location k; 0 otherwise.

3 Solution Methods for SRFLP

In the context of combinatorial optimization (CO), algorithms can be classified as
either exact (complete) or approximate algorithms as mentioned by Talbi [45].
Exact algorithms are guaranteed to find an optimal solution for every finite size
instance of a CO problem in bounded time. Yet, for CO problems that are NP-hard,
complete methods need exponential computation time. Besides this, in approximate
methods such as heuristics, it is important to get good solutions in a significantly
reduced amount of time. But they don’t guarantee to find optimal solutions.

In the class of exact methods the following classical algorithms may be found:
dynamic programming, branch and X family of algorithms (branch and bound,
branch and cut, branch and price), constraint programming etc. These methods can
be applied to small instances of difficult problems. The size of the instance is not
only a unique indicator that describes the difficulty of a problem. For a given
problem, an exact algorithm cannot solve some small instances while some large
instances may be solved exactly by the same algorithm.

In the class of approximate methods, two subclasses of algorithms may be dis-
tinguished: approximation algorithms and heuristic algorithms. Unlike heuristics,

104 S. Büyüksaatçı

which usually find reasonably “good” solutions in a reasonable time, approximation
algorithms provide provable solution quality and provable run-time bounds.

Heuristics find “good” solutions on large-size problem instances. They allow
obtain acceptable performance at acceptable costs in a wide range of problems. In
general, heuristics do not have an approximation guarantee on the obtained
solutions.

In the 1970s, a new kind of approximate algorithm had emerged which basically
tries to combine basic heuristic methods in higher level frameworks aimed at
efficiently and effectively exploring a search space. These methods are nowadays
commonly called metaheuristics.

The word heuristic has its origin in the old Greek word heuriskein, which means
“to find” while the suffix meta, also a Greek word, means “beyond, in an upper
level”. Dr. Fred Glover first introduced the term metaheuristic in 1986 [17], which
is a master strategy that guides and modifies other heuristics to produce solutions
beyond those that are normally generated in a quest for local optimality [2, 10, 45].

This section presents the exact and approximate algorithms that have been used
to formulate and solve single row facility layout problem in literature. All these
relevant algorithms are listed in Table 1 and a detailed explanation is given.

3.1 Exact Solution Methods

Several exact methods have also been suggested to solve the SRFLP in literature.
Simmons first studied and suggested a branch-and-bound algorithm for SRFLP in
1969 [42]. The feasible layout of the facilities formed step by step in this algorithm
i.e., the permutation of facilities was not built up until the late stages of the algo-
rithm. For this reason the technique is also known as the branch and build up
approach. SRFLP instances of size up to 11 were solved using branch-and-bound
algorithm.

Afterwards Simmons [43] pointed out the dynamic programming would give
better results in solving one dimensional assignment problem. Picard and Queyr-
anne [37] first implemented the dynamic programming successfully to the SRFLP
instances with up to 15 facilities. However the high memory requirement of this
technique has rendered it unattractive for the research community. Another
dynamic programming algorithm was presented by Kouvelis and Chiang in 1996
[27]. They studied the row layout problem under the design objective of minimizing
the total backtracking distance of the material handling device and their algorithm
was able to solve SRFLP instances with 20 facilities.

Adolphson and Hu [1] suggested an algorithm for the optimal linear ordering
problem to extract the linear facility sequence for problems whose flow matrix can
be represented as a single rooted tree.

A nonlinear programming model, which is called ABSMODEL was presented
by Heragu and Kusiak in 1991 [20]. Love and Wong [32] formulated the SRFLP as
a linear mixed-integer program using distance variables and solved it using the IBM

Bat Algorithm Application for the Single … 105

T
ab

le
1

So
lu
tio

n
m
et
ho

ds
fo
r
th
e
si
ng

le
ro
w

fa
ci
lit
y
la
yo

ut
pr
ob

le
m

E
X
A
C
T

M
E
T
H
O
D
S

H
E
U
R
IS
T
IC

S
an

d
M
E
T
A
H
E
U
R
IS
T
IC

S

B
ra
nc
h

an
d

bo
un
d

D
yn
am

ic
pr
og
ra
m
m
in
g

G
ra
ph

th
eo
ry

N
on
lin

ea
r

pr
og
ra
m
m
in
g

L
in
ea
r
m
ix
ed
-

in
te
ge
r

pr
og
ra
m
m
in
g

C
ut
tin

g
pl
an
e

ap
pr
oa
ch

Se
m
i-
de
fi
ni
te

pr
og
ra
m
m
in
g

B
ra
nc
h

an
d
cu
t

E
ig
en
ve
ct
or

ap
pr
oa
ch

C
on
st
ru
ct
iv
e

he
ur
is
tic

al
go
ri
th
m

Si
m
ul
at
ed

an
ne
al
in
g

T
ab
u

se
ar
ch

G
en
et
ic

al
go
ri
th
m

A
nt

co
lo
ny

op
tim

iz
at
io
n

Pa
rt
ic
le

sw
ar
m

op
tim

iz
at
io
n

O
th
er
s

Y
ea
rs

A
ut
ho

rs
R
ef
er
en
ce
s

19
69

Si
m
m
on
s

[4
2]

✓

19
70

H
al
l

[1
8]

✓

19
71

Si
m
m
on
s

[4
3]

✓

19
73

A
do
lp
hs
on

an
d
H
u

[1
]

✓

19
74

N
eg
ha
ba
t

[3
4]

✓

19
76

L
ov
e
an
d

W
on
g

[3
2]

✓

19
81

Pi
ca
rd

an
d

Q
ue
yr
an
ne

[3
7]

✓

19
88

H
er
ag
u
an
d

K
us
ia
k

[1
9]

✓

19
90

R
om

er
o
an
d

Sa
nc
he
z-

Fl
or
es

[3
9]

✓

19
91

H
er
ag
u
an
d

K
us
ia
k

[2
0]

✓

19
92

H
er
ag
u

[2
1]

✓
✓

✓

19
92

H
er
ag
u
an
d

A
lf
a

[2
2]

✓

19
92

K
ou
ve
lis

an
d

C
hi
an
g

[2
6]

✓

19
95

K
um

ar
et

al
.

[2
8]

✓

19
96

K
ou
ve
lis

an
d

C
hi
an
g

[2
7]

✓

19
97

B
ra
gl
ia

[1
1]

✓

20
00

A
lv
ar
en
ga

et
al
.

[3
]

✓
✓

20
01

D
je
lla
b
an
d

G
ou
rg
an
d

[1
4]

✓

20
01

Po
nn
am

ba
la
m

an
d

R
am

ku
m
ar

[3
8]

✓
✓

20
05

A
nj
os

et
al
.

[7
]

✓

20
05

So
lim

an
pu
r

et
al
.

[4
4]

✓

(c
on

tin
ue
d)

106 S. Büyüksaatçı

T
ab

le
1

(c
on

tin
ue
d)

E
X
A
C
T

M
E
T
H
O
D
S

H
E
U
R
IS
T
IC

S
an

d
M
E
T
A
H
E
U
R
IS
T
IC

S

B
ra
nc
h

an
d

bo
un
d

D
yn
am

ic
pr
og
ra
m
m
in
g

G
ra
ph

th
eo
ry

N
on
lin

ea
r

pr
og
ra
m
m
in
g

L
in
ea
r
m
ix
ed
-

in
te
ge
r

pr
og
ra
m
m
in
g

C
ut
tin

g
pl
an
e

ap
pr
oa
ch

Se
m
i-
de
fi
ni
te

pr
og
ra
m
m
in
g

B
ra
nc
h

an
d
cu
t

E
ig
en
ve
ct
or

ap
pr
oa
ch

C
on
st
ru
ct
iv
e

he
ur
is
tic

al
go
ri
th
m

Si
m
ul
at
ed

an
ne
al
in
g

T
ab
u

se
ar
ch

G
en
et
ic

al
go
ri
th
m

A
nt

co
lo
ny

op
tim

iz
at
io
n

Pa
rt
ic
le

sw
ar
m

op
tim

iz
at
io
n

O
th
er
s

Y
ea
rs

A
ut
ho

rs
R
ef
er
en
ce
s

20
06

A
m
ar
al

[4
]

✓

20
08

T
eo

an
d

Po
nn
am

ba
la
m

[4
6]

✓
✓

20
08

A
nj
os

an
d

V
an
el
li

[8
]

✓
✓

20
08

A
m
ar
al

[5
]

✓

20
09

A
m
ar
al

[6
]

✓

20
09

A
nj
os

an
d
Y
en

[9
]

✓

20
09

L
in

[3
1]

✓

20
10

Sa
m
ar
gh
an
di

et
al
.

[4
1]

✓

20
10

Sa
m
ar
gh
an
di

an
d
E
sh
gh
i

[4
0]

✓

20
11

K
um

ar
et

al
.

[2
9]

✓

20
11

H
un
ge
rl
än
de
r

an
d
R
en
dl

[2
3]

✓

20
11

D
at
ta

et
al
.

[1
3]

✓

20
11

L
et
ch
fo
rd

an
d

A
m
ar
al

[3
0]

✓

20
12

O
zc
el
ik

[3
6]

✓

20
14

K
ot
ha
ri
an
d

G
ho
sh

[2
5]

✓

Bat Algorithm Application for the Single … 107

Mixed Integer Programming (MIP) code. Amaral in 2006 [4] proposed a new
mixed-integer linear programming model for the SRFLP. The new model presented
the same number of zero-one variables and a smaller number of continuous vari-
ables than the model presented by Love and Wong in 1976 [32]. In addition, the
formulation of the new model contained facet-defining inequalities, thus it was
stronger than Love and Wong’s model from a theoretical viewpoint. Amaral [5]
achieved a more efficient linear mixed integer program by linearizing a quadratic
model based on ordering variables in 2008. This code could solve SRFLP instances
with sizes up to 18 that were proposed in Simmons [42], Love and Wong [32],
Heragu and Kusiak [20] within reasonable time.

Amaral [6] suggested a linear programming based cutting plane approach to
solve SRFLP. The algorithm started by optimizing a linear program over the partial
description given and used some valid inequalities introduced as cutting planes.
Several instances from literature as well as new large instances with size n = 33 and
n = 35 are tested in the work. The computational results demonstrated that for all
the instances tested (n ≤ 35) the proposed lower bound was equal to the cost of an
optimal layout and could be computed relatively fast.

Anjos et al. [7] have constructed a semi-definite programming (SDP) relaxation
in 2005, which provides a lower bound on the optimal value of SRFLP. Semi-
definite programming refers to the class of optimization problems where a linear
function of a matrix variable X is optimized subject to linear constraints on
the elements of X and an additional constraint that X be positive semi definite. This
includes linear programming problems as a special case, namely when all the
matrices involved are diagonal. Anjos and Vanelli in 2008 [8] demonstrated that the
combination of a semi-definite programming relaxation with cutting planes is able
to compute globally optimal layouts for large SRFLPs with up to 30 departments.
Their computational results suggested that their approach could routinely obtain
optimal layouts in a few hours for SRFLPs with up to 25 facilities and in several
dozen hours for SRFLPs with up to 30 facilities. Anjos and Yen [9] extended the
work on the application of semi-definite programming presented by Anjos et al. [7].
The original SDP relaxation had O(n3) linear constraints. They proposed a new
matrix-based formulation that yields a new semi-definite programming relaxation
with O(n2) linear constraints and used it to obtain nearly-optimal solutions for
instances with up to 100 facilities with optimality gaps of consistently 5 % or less.
Hungerländer and Rendl [23] presented a systematic investigation of semi-definite
optimization based relaxations for the quadratic ordering problem in 2011,
extending and improving Anjos et al. [7] and Anjos and Yen [9] approaches. The
method by Hungerländer and Rendl built on the subgradient optimization technique
and dealt with triangle inequality cuts and the LS cuts through Langrangian duality.
They successfully applied SDP to the even larger SRFLP instances up to 100
departments.

Codes based on the work by Amaral [4, 5] suffered from weak lower bounds and
had high computation times and memory requirements. Letchford and Amaral [30]
achieved significant progress in that direction through the first polyhedral study of
the distance polytope for SRFLP and proposed a branch and cut algorithm in 2011.

108 S. Büyüksaatçı

A branch-and-cut algorithm uses a combination of a branching rules and cutting
planes to reduce the feasible region of a given mathematical programming problem.
They avoided the use of additional variables and used a specialised branching rule
to achieve feasibility. The branch-and-cut algorithm was tested on several instances
from Simmons [42], Heragu and Kusiak [19], Anjos and Vannelli [8], Anjos and
Yen [9]. The results showed that the branch-and-cut algorithm is capable of solving
all of the instances and their cutting planes yield excellent lower and upper bounds
very quickly for instances with n ≤ 30, but computing times can be quite long for
larger instances.

3.2 Heuristics and Metaheuristics in SRFLP

Due to the combinatorial nature of the facility layout problem, several heuristic and
metaheuristic procedures have been developed to obtain good solutions rather than
optimal ones. Researchers used heuristics and metaheuristics to solve larger sized
SRFLP instances.

Hall in 1970 [18] described efficient eigenvector approaches for solving qua-
dratic placement problems. Neghabat [34] proposed a constructive heuristic algo-
rithm that is capable of handling nonuniform modules and accommodates
efficiently restrictions such as the lower bounds on the relative positions between
facilities. The algorithm compared with three heuristic procedures that are Hillier,
modified Hillier and Computerized Relative Allocation of Facilities Technique
(CRAFT). Heragu and Kusiak [19] illustrated the basic types of flexible manu-
facturing system layouts and presented two new construction algorithms for solving
the problem in 1988. The algorithms generated solutions with acceptable quality in
low computational time.

Romero and Sanchez-Flores [39] first applied simulated annealing to the
SRFLP. Heragu [21] surveyed the different models of the layout problem in 1992
and compared seven heuristic algorithms for solving the models, which are 2-way
exchange algorithm, 3-way exchange algorithm, CRAFT, Modified Penalty (MP)
algorithm, Simulated Annealing (SA) algorithm, Tabu Search (TS) algorithm and
Hybrid Simulated Annealing (HSA) algorithm. Heragu and Alfa [22] tested a
hybrid simulated annealing algorithm on the single row layout problems with
facilities of unequal area and the multi row layout problems with facilities of equal
area. Kouvelis and Chiang [26] utilised a simulated annealing procedure to deter-
mine a flow line (or single-row layout) under the assumptions that the number of
machines is fixed and backtrack movements were allowed.

Kumar et al. [28] described a constructive heuristic that provided solutions to the
SRFLP to minimize the material handling cost in 1995. The heuristic differed from
earlier algorithms since at any stage of the process more than two facilities could be
added to the solution sequence. Braglia [11] solved the SRFLP with a modified
heuristic derived from a heuristic that was developed for the flow shop-scheduling
problem. Alvarenga et al. [3] compared performance of TS and SA in case of

Bat Algorithm Application for the Single … 109

single-row and multi-row facility layout problem. They reported that the processing
time of TS is better than SA though both of them have same quality solution.
Djellab and Gourgand in 2001 [14] presented a heuristic procedure for the single
row machine layout problem. They first constructed a best insertion (BI) heuristic to
determine an initial permutation of machines, which exploited the special structure
of the problem. Combining this heuristic by exploiting the current permutation, they
developed an iterative best insertion (IBI) procedure to reduce the space of feasible
solutions until only one solution was feasible.

Ponnambalam and Ramkumar [38] developed two heuristic search algorithms in
2001, one combining flow line analysis-5 and Genetic algorithm (GA) and the other
combining flow line analysis-6 with GA for the design of single row layout
problem. They used the flow-line analysis methods to obtain the initial solution and
a genetic algorithm was used to improve the solution. Solimanpur et al. [44] have
formulated a 0–1 non-linear mathematical model for the single row layout problem
and employed an ant algorithm to solve the model. Teo and Ponnambalam [46]
proposed a hybrid ant colony optimization (ACO)/particle swarm optimization
(PSO) heuristic to solve single-row layout problems in 2008. In the proposed
algorithm, ACO was used as constructive heuristic with a new pheromone update
developed to achieve better performance and PSO was used as an improvement
heuristic to guide the ants to reach the best solution.

Lin [31] addressed the topic of minimizing the moving distance among cutting
pieces during apparel manufacturing and described a hierarchical order-based
genetic algorithm to quickly identify an optimal layout that effectively shortens the
distance among. Samarghandi et al. [41] used a PSO algorithm in 2010 to solve
SRFLP in which the sizes of facilities were assumed to be different. Performance of
the proposed algorithm was tested over a large variety of the problems available
from literature (32 problems) and also compared to many other algorithms existing
in literature. The computational results verified the efficiency of the algorithm in
finding good quality, and near-optimum solutions in a similar time compared to the
best-published heuristics in literature. Samarghandi and Eshghi [40] used tabu
search (TS) algorithm to solve a special case of the SRFLP in which the size of the
machines was assumed to be different.

Kumar et al. in 2011 [29] presented a simple heuristic to determine a common
linear machine sequence for multiple products with different operation sequences and
a limited number of duplicate machine types available for the job. The heuristic was
based on minimization of the total flow distance travelled by a product on the linear
machine sequence. Datta et al. [13] preferred a permutation-based genetic algorithm
to solve the SRFLP. The GA individuals are obtained by using rule-based permu-
tations, which are improved towards the optimum value by means of specialized
mutation and crossover operators. Ozcelik [36], proposed a hybrid GA to solve the
single row layout design problem with unequal sized machines and unequal clear-
ances. The algorithm was developed by hybridization of a genetic algorithm with a
local search operator. Kothari and Ghosh [25] present a genetic algorithm called
GENALGO in 2014 to solve large single row facility layout problem instances.

110 S. Büyüksaatçı

4 Bat Algorithm

Bat Algorithm (BA), which is a search algorithm inspired by social behavior of
microbats and the phenomenon of echolocation to sense distance, proposed by
Yang in 2010 [48]. For simplicity, the algorithm is based on idealizing some of the
echolocation characteristics of bats, which are the following approximate or ide-
alized rules:

• All bats use echolocation to sense distance, and they also ‘‘know’’ the difference
between food/prey and background barriers in some magical way;

• Bats randomly fly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength k and loudness A0 to search for prey. They can automati-
cally adjust the wavelength (or frequency) of their emitted pulses and adjust the
rate of pulse emission r 2 0; 1½ �, depending on the proximity of their target;

• Although the loudness can vary in many ways, it is assumed that the loudness
varies from a large (positive) A0 to a minimum constant value Amin.

The basic steps of BA can be summarized as the pseudo code shown in Fig. 1.
At first step of BA, n number of bats, which are real-valued vectors with problem

dimension d, randomly spread to the search space by taking into account lower and
upper boundaries. Each bat is also defined by its position xi, velocity vi, pulse

Objective function f (x), x = (x1,..., xd)T

Initialize the bat population ix (i =1,2,...,n) and iv

Define pulse frequency if at ix

Initialize the pulse rate ir and the loudness iA

while (t < max number of iterations)
Generate new solutions by adjusting frequency,
And update velocities and locations/solutions

if (rand > ir)

Select a solution among the best solutions
Generate a local solution around the selected best solution
end if
Generate a new solution by flying randomly
if (rand < iA) & (() ()*xfxf i <)

Accept the new solutions
Increase ir and reduce iA

end if
Rank the bats and find the current best ()*x

end while
Postprocess results and visualization

Fig. 1 Pseudo code of the bat algorithm [16, 48, 50]

Bat Algorithm Application for the Single … 111

frequency fi, loudness Ai and the pulse emission rate ri. The pulse frequency is
randomly assigned to bats that uniformly dispersed in fmin; fmax½ � while the pulse
emission rate can simply be in the range of [0,1]. 0 means no pulses exist and 1
means that the pulse emission rate is maximum. Depending on the domain size of
the problem of interest, frequency range can be changed. During the iterations, the
new solutions xti and velocities vti at time step t can be calculated by

fi ¼ fmin þ fmax � fminð Þb ð4Þ

vti ¼ vt�1
i þ xt�1

i � x�
� �

fi ð5Þ

xti ¼ xt�1
i þ vti ð6Þ

where b 2 0; 1½ � is a random vector drawn from a uniform distribution. Here, x� is
the current global best location (solution), which is located after comparing all the
solutions among all n number of bats.

For the local search part, once a solution is selected among the current best
solutions, a new solution for each bat is generated locally using random walk

xnew ¼ xold þ eAt ð7Þ

where e 2 ½�1; 1� is a scaling factor which is a random number while At ¼ At
i

� �
is

the average loudness of all the bats at time step t. The diversity of solutions is
hereby increased.

Furthermore, as bats come to close their prey, the pulse emission rate ri increases
while the loudness Ai usually decreases. The update process as the iterations pro-
ceed as shown in Eq. (8),

Atþ1
i ¼ aAt

i rtþ1
i ¼ r0i 1� exp �ctð Þ½ � ð8Þ

where a and c are constant. The amount of decrease, which is determined by a,
plays a similar role as cooling factor in the simulated annealing algorithm [48, 49,
51, 52]. For any 0 < α < 1 and γ > 0,

At
i ! 0 rti ! r0i ; as t ! 1 ð9Þ

The choice of parameters’ values requires some experimental analysis for bat
algorithm. Due to this requirement, in this study design of experiments procedure is
used to adjust values of some parameters at the beginning of the application. The
details of application are presented in Sect. 5.

112 S. Büyüksaatçı

5 BA Application on SRFLP

Design of experiments (DOE) is an efficient procedure, which helps to investigate
the effects of factors (input variables) on a response (output variable) at the same
time. Before starting to experiments, the objective(s) of an experiment and response
variable are determined and the factors for the study are selected. As mentioned by
Montgomery [33], the objectives of the experiments may include the following:

• Determining which variables are most influential on the response y.
• Determining where to set the influential x’s so that y is always near the desired

nominal value.
• Determining where to set the influential x’s so that variability in y is small.
• Determining where to set the influential x’s so that the effects of the uncon-

trollable variables are minimized.

These experiments consist of a series of runs/tests, in which purposeful changes
are made to the levels of the factors.

Factorial designs are more efficient type of experiments to dealing with several
factors. In this method, factors are varied together instead of one at a time.
Therefore by a factorial design, all possible combinations of the levels of the factors
are investigated in each complete trial or replication of the experiments.

The effect of a factor is defined to be the change in response produced by a
change in the level of factors and called as “main effect”. If the change in response
between the levels of one factor is not same at all levels of the other factors, it
means that there is an interaction between the factors.

In this study, five parameters of BA algorithm, which are thought to influence
the outcome of the SRFLP, was examined by experiments firstly. The parameters
were shown as factors and 35 full factorial design that is a factorial arrangement
with 5 factors each at tree levels was used to investigate the appropriate values of
these parameters. The levels of the factors were denoted as low (−1), intermediate
(0) and high (1).

Table 2 shows the factors and their levels considered for the full factorial design.
The proposed design replicated twice and 35 × 2 = 486 treatment combination

performed in random order on the data set with 15 departments presented by

Table 2 Algorithm parameters and their levels

FACTORS LEVELS VALUES
Low (−1) Intermediate (0) High (1)

Population size (n) 3 30 100 200

Maximum iterations (N) 3 100 250 500

Fmax 3 1 3 5

Alpha (α) 3 0.1 0.5 0.9

Gamma (γ) 3 0.1 0.5 0.9

Bat Algorithm Application for the Single … 113

Amaral in 2006 [4]. According to the computational results, analyses were carried
out with a statistical software package.

Figure 2 shows the four-in-one residual plot (i.e. normal probability plot of
residuals, histogram of residuals, residuals versus fitted values and residuals versus
order of the data) for objective function value that was taken as response. Residuals
are used in regression and ANOVA analyses to indicate how well our model fits the
data. Results indicate that the data are linear, random scattered and the histogram is
symmetric bell-shaped. Therefore it can be said that the data are consistent with
normality, independence and constant variance. The experimental design is fairly
acceptable.

In order to see the effect of algorithm parameters on the objective function value,
main effects plot, which is given in Fig. 3 was drawn. It is clearly evident that
higher population size and maximum iteration values produce better results.
However, the objective function value increases with the increase in Fmax. Besides,
the almost flat lines show that alpha and gamma values do not influence to the
objective function value directly.

Figure 4 shows the interaction plot, which examines the interactions between
factors. Parallel lines show that there is no interaction effect between the parame-
ters. There is a less significant interaction effect in between Fmax and alpha while
adverse effect is observed in between Fmax and gamma.

Based on the experimental results, optimal values of parameters are defined as
given in Table 3.

Fig. 2 Residual plots for objective function value

114 S. Büyüksaatçı

Fig. 3 Main effects plot for objective function value

Fig. 4 Interaction plot for objective function value

Bat Algorithm Application for the Single … 115

After defining the optimal settings, six-problem set from literature were used to
evaluate the performance of the bat algorithm on the single row facility layout
problem. Problems LW5 an LW11 were adopted from Love and Wong [32].
Problems S8H, S10 were found in Simmons [42]. For problems H20 and H30, the
flow matrices were from Nugent et al. [35] and the dimensions of the facilities were
obtained from Heragu and Kusiak [20]. The clearances between the facilities were
assumed to be zero for these six problems. The algorithm was run 500 times for
each problem on a PC equipped with 2.4 GHz Intel Core 2 Duo processor and 4 GB
RAM.

Table 4 shows the optimal objective function values for the problem set. The
optimal solutions for the problems LW5, S8H, S10 and LW11 were calculated by
Amaral [4], whereas the others were provided by Anjos and Vanelli [8].

Table 5 shows the results obtained through bat algorithm and five other studies,
which proposed some heuristic methods for the single row facility layout problem.
In Table 5, the best solution in each row is set as bold. As seen in this table, all
methods achieve optimal solution for the problems LW5, S8H, S10 and LW11. The
proposed method by Heragu and Alfa [22] provides poor solution for problem H20
compared to others. The heuristic proposed by Datta et al. [13] outperform all the
heuristics for the problems LW11, H20 and H30 in terms of the CPU time. Datta
et al. [13] and Solimanpur et al. [44] obtain the same CPU time for problems LW5,
S8H and S10. The reported result for problem H30 by Solimanpur et al. [44] is
extremely low compared to the others. Its optimum value is 44,965.0. Hence, this
could be a typo error.

The average objective function value of bat algorithm deviates from optimum
solutions by 0, 0.23, 1.96, 2.97, 3.24 and 11.52 % in problems LW5, S8H, S10,
LW11, H20 and H30 respectively. The bat algorithm finds optimum solution 345
times for the problem S8H, 254 times for the problem S10, 96 times for the problem

Table 3 Optimal values of
parameters Parameters Values

Population size (n) 200

Maximum iterations (N) 500

Fmax 1

Alpha (α) 0.1

Gamma (γ) 0.9

Table 4 Optimal solutions
for the six-problem set Problem Number of facilities Optimal solution

LW5 5 151.0

S8H 8 2,324.5

S10 10 2,781.5

LW11 11 6,933.5

H20 20 15,549.0

H30 30 44,965.0

116 S. Büyüksaatçı

T
ab

le
5

C
om

pa
ri
so
n
of

ba
t
al
go

ri
th
m

ve
rs
us

fi
ve

ot
he
r
he
ur
is
tic
s
de
ve
lo
pe
d
fo
r
SR

FL
P

Pr
ob

le
m
s

N
um

be
r
of

fa
ci
lit
ie
s

H
er
ag
u
an
d
A
lf
a

[2
2]

K
um

ar
et
al
.[
28
]

So
lim

an
pu

r
et
al
.

[4
4]

T
eo

an
d
Po

n-
na
m
ba
la
m

[4
6]

D
at
ta

et
al
.
[1
3]

B
at

al
go
ri
th
m

O
FV

T
im

ea
O
FV

T
im

ea
O
FV

T
im

ea
O
FV

T
im

ea
O
FV

T
im

ea
B
es
t

O
FV

A
ve
ra
ge

O
FV

A
ve
ra
ge

T
im

ea

L
W
5

5
15

1.
0

10
.3
51

15
1.
0

0.
01

15
1.
0

0.
00

15
1.
0

0.
00
7

15
1.
0

0.
00

15
1.
0

15
1.
00

9.
21

S8
H

8
23

24
.5

11
.8
03

23
24
.5

0.
08

23
24
.5

0.
00

23
24

.5
0.
02
7

23
24

.5
0.
00

23
24
.5

23
29
.8
2

11
.2
9

S1
0

10
27

81
.5

19
.8
15

27
81
.5

0.
10

27
81
.5

0.
01

27
81

.5
0.
04
4

27
81

.5
0.
01

27
81
.5

28
35
.9
6

12
.5
8

L
W
11

11
69

33
.5

29
.1
76

72
65
.5

0.
12

69
33
.5

0.
02

69
33

.5
0.
05
7

69
33

.5
0.
01

69
33
.5

71
39
.1
5

14
.0
6

H
20

20
15

60
2.
0

60
3.
37

6
15

54
9.
0

8.
60

15
54
9.
0

2.
30

15
54

9.
0

3.
28
6

15
54

9.
0

0.
10

15
54
9.
0

16
05
2.
21

27
.6
8

H
30

30
45

11
1.
0

58
5.
94

7
44

46
6.
5

91
.8
0

25
00
0

37
.3

44
96

5.
5

82
.3
50

44
96

5.
5

0.
74

49
93
8.
5

50
14
3.
18

57
.4
3

O
F
V
O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

a
T
he

C
PU

tim
e
fo
r
al
l
m
et
ho

ds
is

in
se
co
nd
.
T
he

C
PU

tim
e
fo
r
[2
2]

w
as

ob
ta
in
ed

on
an

V
A
X

64
20

m
ai
nf
ra
m
e
co
m
pu
te
r.
K
um

ar
et

al
.
[2
8]

te
st
ed

th
ei
r
pr
op
os
ed

he
ur
is
tic

on
a
Su

n
3/
26

0
co
m
pu

te
r.
T
he

C
PU

tim
e
fo
r[
44
]w

as
ob
ta
in
ed

on
a
Pe
nt
iu
m

II
I5

50
M
H
z
PC

.T
eo

an
d
Po

nn
am

ba
la
m

[4
6]

ob
ta
in
ed

th
e
C
PU

tim
e
on

a
Pe
nt
iu
m

4
(P
re
sc
ot
t)
of

3.
36

G
H
z
w
ith

1
M
B

L
2
ca
ch
e.

D
at
ta

et
al
.
[1
3]

ex
ec
ut
ed

th
ei
r
pr
op
os
ed

al
go

ri
th
m

in
th
e
Fe
do

ra
8
L
in
ux

en
vi
ro
nm

en
t
in

a
C
om

pa
q
Pr
es
ar
io

V
60

00
no

te
bo

ok
ha
vi
ng

a
1.
73

G
H
z
pr
oc
es
so
r
w
ith

1.
0
G
B
R
A
M

Bat Algorithm Application for the Single … 117

LW11 and 84 times for the problem H20 out of 500 runs for each. Besides this, bat
algorithm requires more computational time than the other heuristic methods except
from method proposed by Heragu and Alfa [22]. Therefore, the performance of bat
algorithm needs to be improved.

The bat algorithm balances exploration and exploitation during the search
process. But it can get trapped in local minimum by varying loudness and pulse
emission rate too quickly. In order to improve the exploration capability, the
algorithm may be combined with other metaheuristics.

6 Conclusion

The rapid and promising advancement of metaheuristics in facility layout appli-
cations have provided a new perspective on this area. In this study the bat algo-
rithm, which can be considered as a new algorithm in metaheuristics, is presented
for solving the single row facility layout problem (SRFLP). The algorithm was
designed to arrange a number of facilities on a line with minimum cost. Before
application, the optimal settings of the bat algorithm parameters were determined
through experimental analysis. 35 full factorial design was used to investigate the
appropriate settings of the algorithm. Then the performance of the bat algorithm is
tested on six-problem set selected from the literature.

Bat algorithms have been applied in almost every area of optimization, classi-
fications, image processing, feature selection, scheduling, data mining etc. How-
ever, there is no application in the literature that compares the performances of the
bat algorithm on the single row facility layout problem.

In this study, only one layout type is handled to evaluate the performance of
the bat algorithm. In order to increase the performance of the bat algorithm for the
single row facility layout problem, the algoritm can be initially combined with other
metaheuristics. Multi-row layout problem, which includes both the horizontal and
vertical material handling cost and distance in objective function, can also be a
focus area for future research. Furthermore, some constraints like departments’
closeness ratings and backtrack movements can be added to the problem.

References

1. Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25(3), 403–423
(1973)

2. Alba, E.: Parallel metaheuristics: a new class of algorithms. Wiley, Hoboken (2005)
3. de Alvarenga, A.G., Negreiros-Gomes, F.J., Mestria, M.: Metaheuristic methods for a class of

the facility layout problem. J. Intell. Manuf. 11(4), 421–430 (2000)
4. Amaral, A.R.S.: On the exact solution of a facility layout problem. Eur. J. Oper. Res. 173(2),

508–518 (2006)

118 S. Büyüksaatçı

5. Amaral, A.R.S.: An exact approach for the one-dimensional facility layout problem. Oper.
Res. 56(4), 1026–1033 (2008)

6. Amaral, A.R.S.: A new lower bound for the single row facility layout problem. Discrete Appl.
Math. 157(1), 183–190 (2009)

7. Anjos, M.F., Kennings, A., Vannelli, A.: A semidefinite optimisation approach for the single-
row layout problem with unequal dimensions. Discrete Optim. 2(2), 113–122 (2005)

8. Anjos, M.F., Vannelli, A.: Computing globally optimal solutions for single-row layout
problems using semidefinite programming and cutting planes. INFORMS J. Comput. 20(4),
611–617 (2008)

9. Anjos, M.F., Yen, G.: Provably near-optimal solutions for very large single-row facility layout
problems. Optimisation Methods Softw. 24(4), 805–817 (2009)

10. Blum, C., Roli, A.: Hybrid metaheuristics: an introduction. Hybrid metaheuristics, pp. 1–30.
Springer, Berlin (2008)

11. Braglia, M.: Heuristics for single-row layout problems in flexible manufacturing systems.
Prod. Planning Control 8(6), 558–567 (1997)

12. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment problems. Revised Reprint, Siam
(2009)

13. Datta, D., Amaral, A.R., Figueira, J.R.: Single row facility layout problem using a
permutation-based genetic algorithm. Eur. J. Oper. Res. 213(2), 388–394 (2011)

14. Djellab, H., Gourgand, M.: A new heuristic procedure for the single row facility layout
problem. Int. J. Comput. Integr. Manuf. 14(3), 270–280 (2001)

15. Drira, A., Pierreval, H., Hajri-Gabouj, S.: Facility layout problems: a survey. Annu. Rev.
Control 31(2), 255–267 (2007)

16. Gandomi, A.H., Yang, X.S., Alavi, A.H., Talatahari, S.: Bat algorithm for constrained
optimization tasks. Neural Comput. Appl. 22(6), 1239–1255 (2013)

17. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput.
Oper. Res. 13(5), 533–549 (1986)

18. Hall, K.M.: An r-dimensional quadratic placement algorithm. Manage. Sci. 17(3), 219–229
(1970)

19. Heragu, S.S., Kusiak, A.: Machine layout problem in flexible manufacturing systems. Oper.
Res. 36(2), 258–268 (1988)

20. Heragu, S.S., Kusiak, A.: Efficient models for the facility layout problem. Eur. J. Oper. Res. 53
(1), 1–13 (1991)

21. Heragu, S.S.: Invited review. Recent models and techniques for solving the layout problem.
Eur. J. Oper. Res. 57, 136–144 (1992)

22. Heragu, S.S., Alfa, A.S.: Experimental analysis of simulated annealing based algorithms for
the layout problem. Eur. J. Oper. Res. 57(2), 190–202 (1992)

23. Hungerländer, P., Rendl, F.: Semidefinite relaxations of ordering problems. Math. Program.
140(1), 77–97 (2013)

24. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic
activities. Econometrica J. Econometric Soc. 53–76 (1957)

25. Kothari, R., Ghosh, D.: An efficient genetic algorithm for single row facility layout. Optim.
Lett. 8(2), 679–690 (2014)

26. Kouvelis, P., Chiang, W.C.: A simulated annealing procedure for single row layout problems
in flexible manufacturing systems. Int. J. Prod. Res. 30(4), 717–732 (1992)

27. Kouvelis, P., Chiang, W.-C.: Optimal and heuristic procedures for row layout problems in
automated manufacturing systems. J. Oper. Res. Soc. 47(6), 803–816 (1996)

28. Kumar, K.R., Hadjinicola, G.C., Lin, T.L.: A heuristic procedure for the single row facility
layout problem. Eur. J. Oper. Res. 87, 65–73 (1995)

29. Kumar, M.S., Islam, M.N., Lenin, N., Vignesh Kumar, D., Ravindran, D.: A simple heuristic
for linear sequencing of machines in layout design. Int. J. Prod. Res. 49(22), 6749–6768
(2011)

30. Letchford, A.N., Amaral, A.: A polyhedral approach to the single row facility layout problem.
Working Paper. The Department of Management Science, Lancaster University (2011)

Bat Algorithm Application for the Single … 119

31. Lin, M.T.: The single-row machine layout problem in apparel manufacturing by hierarchical
order-based genetic algorithm. Int. J. Clothing Sci. Techno. 21(1), 31–43 (2009)

32. Love, R.F., Wong, J.Y.: On solving a one-dimensional space allocation problem with integer
programming. INFOR 14(2), 139–143 (1976)

33. Montgomery, D.C.: Design and analysis of experiments, 5th edn. Wiley, Hoboken (2001)
34. Neghabat, F.: An efficient equipment layout algorithm. Oper. Res. 22(3), 622–628 (1974)
35. Nugent, C.E., Vollman, T.E., Ruml, J.: An experimental comparison of tecniques for the

assignment of facilities to locations. Oper. Res. 16(1), 150–173 (1968)
36. Ozcelik, F.: A hybrid genetic algorithm for the single row layout problem. Int. J. Prod. Res. 50

(20), 5872–5886 (2012)
37. Picard, J., Queyranne, M.: On the one dimensional space allocation problem. J. Oper. Res. 29

(2), 371–391 (1981)
38. Ponnambalam, S.G., Ramkumar, V.: A genetic algorithm for the design of single row layout in

automated manufacturing systems. Int. J. Adv. Manuf. Technol. 18, 512–519 (2001)
39. Romero, D., Sánchez-Flores, A.: Methods for the one-dimensional space allocation problem.

Comput. Oper. Res. 17(5), 465–473 (1990)
40. Samarghandi, H., Eshghi, K.: An efficient tabu algorithm for the single row facility layout

problem. Eur. J. Oper. Res. 205(1), 98–105 (2010)
41. Samarghandi, H., Taabayan, P., Jahantigh, F.F.: A particle swarm optimization for the single

row facility layout problem. Comput. Ind. Eng. 58(4), 529–534 (2010)
42. Simmons, D.M.: One-dimensional space allocation: an ordering algorithm. Oper. Res. 17(5),

812–826 (1969)
43. Simmons, D.M.: A further note on one-dimensional space allocation. Oper. Res. 19, 249

(1971)
44. Solimanpur, M., Vrat, P., Shankar, R.: An ant algorithm for the single row layout problem in

flexible manufacturing systems. Comput. Oper. Res. 32(3), 583–598 (2005)
45. Talbi, E.-L.: Metaheuristics from design to implementation. Wiley, Hoboken (2009)
46. Teo, Y.T., Ponnambalam, S.G.: A hybrid ACO/PSO heuristic to solve single row layout

problem. In: Proceeding of the IEEE International Conference on Automation Science and
Engineering (CASE), Washington DC, pp. 597–602 (2008)

47. Tompkins, J.A., White, J.A., Bozer, Y.A., Frazelle, E.H., Tanchoco, J.M.A., Trevino, J.:
Facilities planning, 2nd edn. Wiley, New York (1996)

48. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Cruz, C., Gonza ́lez, J.R., Pelta,
D.A., Terrazas, G. (eds.) Nature inspired cooperative strategies for optimization (NISCO
2010) studies in computational intelligence, vol. 284, pp. 65–74. Springer, Berlin (2010)

49. Yang, X.S.: Bat algorithm for multi-objective optimization. Int. J. Bio-Inspired Comput. 3(5),
267–274 (2011)

50. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering
optimization. Eng. Comput. 29(5), 464–483 (2012)

51. Yang, X.S.: Bat algorithm and cuckoo search: a tutorial, artificial intelligence, evolutionary
computing and metaheuristics, pp. 421–434. Springer, Berlin (2013)

52. Yang, X.S., He, X.: Bat algorithm: literature review and applications. Int. J. Bio-Inspired
Comput. 5(3), 141–149 (2013)

120 S. Büyüksaatçı

Discrete Cuckoo Search Applied to Job
Shop Scheduling Problem

Aziz Ouaarab, Belaïd Ahiod and Xin-She Yang

Abstract Discrete Cuckoo Search (DCS) algorithm is applied to solve combinatorial
optimization problems. In this chapter we discuss how DCS solves the Job Shop
Scheduling Problem (JSSP), one of the most difficult NP-hard combinatorial opti-
mization problems. DCS is recently developed by Ouaarab et al. in 2013, based on
Cuckoo Search (CS) which was proposed by Yang and Deb in 2009. DCS seeks
solutions, in the discrete search space, via Lévy flights and a switching parameter pa of
the worst solution in the population. Its search uses a subtle balance between local and
global random walks. This first version of DCS for JSSP is designed without using an
advanced local search method or hybrid with other metaheuristics. Our experimental
results show that DCS can find the optimum solutions for a number of JSSP instances.

1 Introduction

The aim of a scheduling problem is to find out the optimal feasible schedule in a
finite or countable infinite set of schedules by optimizing the defined objective
function. One of the well-known scheduling problems is the so-called Job Shop
Scheduling Problem (JSSP) [1, 2]. JSSP occurs frequently in many manufacturing
and service industries, where it is necessary to optimize the costs of production by
minimizing the all production times. Many manufacturing scheduling problems can

A. Ouaarab (&) � B. Ahiod
LRIT, Associated Unit to the CNRST (URAC 29), Mohammed V-Agdal University,
B.P. 1014, Rabat, Morocco
e-mail: aziz.ouaarab@gmail.com

B. Ahiod
e-mail: ahiod@fsr.ac.ma

X.-S. Yang
School of Science and Technology, Middlesex University, The Burroughs,
London NW4 4BT, UK
e-mail: x.yang@mdx.ac.uk

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_7

121

be considered as a JSSP model to find the optimum solution. Therefore, JSSP is
both important and challenging, and thus researchers are still trying to develop
efficient algorithms and propose some resolutions. However, as an NP-hard opti-
mization problem, all existing algorithms are not able to find the optimum solution
within a reasonable time for all problem instances. In fact, many recent studies have
attempted to use metaheuristic algorithms to find an optimal or good solution in a
good runtime [3].

Metaheuristic algorithms have demonstrated their potential and effectiveness in
many applications, and thus have been used to solve a wide range of discrete or
continuous optimization problems. As a result, they are becoming the most widely
used alternatives to solve NP-hard problems and they can perform better than
traditional algorithms for highly nonlinear problems. Two important advantages of
metaheuristic algorithms are simplicity and flexibility. They are usually simple to
implement, however they can often solve complex problems. In addition, they can
be adapted easily (or combined with other methods) to solve many real-world
optimization problems, from the fields of operations research, engineering to arti-
ficial intelligence [4, 5].

To balance their search between exploring and exploiting the solution space,
metaheuristics use several search strategies. Ideally, an algorithm should concen-
trate the search process on some promising regions by starting the search with a
population of initially guessed solutions, and then continues to iterative step-by-step
as a sequence of solutions so as to reach the optimal solution as quickly as possible
[5, 6]. Among the most popular metaheuristics, especially those inspired by nature,
we can have a long list, to name a few, Genetic Algorithms (GA) [7, 8], Tabu
Search (TS) [9], Simulated Annealing (SA) [10], Ant Colony Optimization (ACO)
[11], Particle Swarm Optimization (PSO) [12], Bee Colony Optimization (BCO)
[13], Monkey Search (MS) algorithm [14], Harmony Search (HS) algorithm [15],
Firefly Algorithm (FA) [16], Intelligent Water Drops (IWD) [17], Bat Algorithm
(BA) [18], Cuckoo Search (CS) [19], Flower Pollination Algorithm (FPA) [20, 21].

Most of these metaheuristics are nature-inspired, mimicking how nature suc-
cessfully finds ingenious solutions to a very difficult problem (either biological,
social or even physical-chemical) under dynamically changing environment. Not all
algorithms perform equally well, some may obtain better results than others for a
given problem, and there is no universally efficient algorithm to deal with all
problems. So many challenges remain, especially for solving tough, NP-hard
optimization problems [22].

Starting in the early 80s, as an important approach to solving difficult problems
with a good compromise between the cost of resolution and quality of the solution,
metaheuristics were applied to job shop scheduling problems. Some metaheuritics
such as Tabu Search (TS) algorithm [23] were implemented to adopt the disjunctive
graph representation by Taillard [24], and other studies included the TS introduced
by Nowicki and Smutnicki in 1996 [25] and the improved version proposed by the
same authors in 2005 [26]. Extensive case studies and approaches include the
Simulated Annealing approach [27], Genetic Algorithm [28, 29] and its hybridized
version with a local search procedure [30], Particle Swarm Optimization combined

122 A. Ouaarab et al.

with Simulated Annealing [31], Ant Colony Optimization combined with Taboo
Search [32] and Tabu Search-simulated annealing hybrid [33], GRASP technique
[34, 35], Bee Colony Optimization [36], Particle Swarm Optimization algorithm
hybridized with Tabu Search [37].

The aim of this chapter is to apply the Discrete Cuckoo Search to study job shop
scheduling problems. Therefore, this chapter is organized as follows: Sect. 2 pre-
sents an overview of the JSSP by discussing scheduling problem variants, schedule
classes, problem representations and JSSP graphical modelling. Section 3 first
briefly describes the standard CS, then discusses the improvements on the CS.
Then, the proposed discrete CS is presented in detail. Section 4 solves a set of
benchmarks from the OR-Library [38]. Finally, Sect. 5 concludes and summarizes
the contributions of this work.

2 Job Shop Scheduling Problem

In manufacturing, production is a system that leads to the creation of a product
through the use and transformation of resources. This production system is a set of
resources that provide a production activity. To manage production, a set of pro-
cesses is implemented to ensure to complete the manufacture of products using a set
of data and forecasts. So, we must deal with one of the most important problems
that affect directly the time and the cost of the production process. This problem is
scheduling.

In general, a scheduling problem concerns one of the following:

• A set of tasks or jobs to perform,
• A set of resources or machines to use by these jobs,
• A program to identify, to properly allocate resources to tasks.

Scheduling problems are often defined in terms of four main elements: jobs,
resources, constraints and objectives. So, it is important to discuss these four basic
elements before studying scheduling problems [39, 40].

Jobs: A job is an elementary unit of the work that uses resources from a start
date ti to an end date ci, whose implementation requires a time pi such that
pi ¼ ci � ti.

For such a problem, a job can be executed by piece or uninterrupted. In the case
of a job shop scheduling problem, we consider the first category, each job with a set
of operations subject to a number of constraints.

Resources: A resource is all that is intended to be used for performing a task,
and available in limited quantities and for a limited time. In the manufacturing
context, resources can be machines, workers, equipment, facilities and energy, etc.
In a job shop scheduling problem, a resource is a machine.

Discrete Cuckoo Search Applied to Job Shop Scheduling Problem 123

Constraints: A constraint is the restriction or limit in values. Therefore, the
constraints are the limits imposed by the environment.

Objectives: Objectives are the goals that guide the scheduling process. These
goals are distinguished in classes according to the schedule time, resources, cost,
and energy.

2.1 Scheduling Problem Variants

In scheduling, there are several variants of problem formulations, depending on the
constraints, objectives or how we manage resources and the queues in front of these
resources. In this context, there are many extensively studied such as the Flow
Shop, Flexible Flow Shop, Job Shop, Flexible Job Shop and Open Shop. We now
outline them briefly.

2.1.1 Flow Shop

All machines are in series. Each job (say, j) must be processed on each one of the
available m machines. By following the same sequence, all the jobs must be carried
out sequentially, first on machine 1 of the series, then on machine 2, etc. At each
machine, there is a queue of the jobs that come from the previous machine. While
waiting in the queue, a job cannot pass another, which means that all queues operate
under the First In First Out (FIFO) method [39].

2.1.2 Flexible Flow Shop

In essence, a flexible flow shop problem is the generalization of a flow shop
problem where each machine is replaced by a set of identical machines in parallel.
All these sets of identical machines are in series. So, all jobs have to be processed
first on the first set and so on. At each set a job j has to be processed on only one
machine at a time [39].

2.1.3 Job Shop

In a job shop with m machines, each job has to be carried out a predetermined
sequence of machines. The sequence of m machines for one job is different from
that for another, which cannot be changed during the process. At most one job can
be processed on each machine at a time [39].

124 A. Ouaarab et al.

2.1.4 Flexible Job Shop

The extension of a job shop scheduling problem is called a flexible job shop, and a
set of identical machines (in parallel) are used to replace each single machine. In
addition, a job is carried out by any machine from the given set and each job has its
own sequence of sets. At a parallel set, any job j can be processed on only any one
machine and no two machines should process the same job at the same time [39].

2.1.5 Open Shop

In the context of an open shop, each job can be done only on each machine, while
one machine can only carry out one job at a time. However, unlike the job shop, the
sequence of job-processing machines can vary freely and different jobs may have
different sequences as well. Some of job processing times may be zero [39].

2.2 Schedule Classes

To order to use the most effective methods to find an optimal solution or schedule,
any knowledge about the search space is useful. Therefore, it is important to
organize the solutions as classes. Each class has its own feature that is important
to know before the construction of the feasible schedules. This will allow us to
properly exploit the time of the schedule.

The relations between these classes are inclusion or intersection. If we begin
with the largest class which encompassing the other classes, we will find the
feasible schedule class. There are many classes, but three classes are emphasized
here: active, non-delayed and optimal schedules. It worth mentioning that an active
schedule is that for which no operation can be put into an empty hole, while
preserving feasibility, without delaying another operation. In this case, no shift to
the left is possible. The non-delayed schedules are defined in the case that if and
only if no operation, available for processing, is on the queue while a machine is
free to run. A non-preemptive, non-delayed schedules are active schedules and the
reverse is not necessarily true. A non-delayed schedule class can intersect with the
optimal solution class. For details about classes, please refer to more advance
literature [39–41].

2.3 Problem Representation

There are different ways of formulating a job shop scheduling problem (JSSP),
though in essence a JSSP can be considered as a discrete optimization problem, and
such problems can have important applications in manufacturing and engineering.

Discrete Cuckoo Search Applied to Job Shop Scheduling Problem 125

The primary task concerning the JSSP is to transform manufacturing decisions to
detailed implementation instructions, defined by the production manager program
so as to minimize the production time and cost. The typically output of the JSSP is a
schedule that provides detailed assignments of jobs with specific start and end
dates. Obviously, such a schedules must be subject to a set of constraints.

Loosely speaking, each one of the n jobs in J ¼ f1; . . .; ng ðn� 1Þ, in a JSSP,
has to be processed via the path of m machines in M ¼ f1; . . .;mg ðm� 1Þ, and
each job can be processed once and once only, in a given sequence. For each job,
the sequence of m machines can be different, and once fixed, it cannot be changed
during the process. An operation is equivalent to the processing of one job on a
machine in a specific order. In general, each job j ð1� j� nÞ can require m com-
bined operations ðoj1; oj2; . . .; ojmÞ so as to complete the work. Obviously, one
operation can be processed on only one of the m machines at a given, fixed time.
Each machine can only process at most one operation at a time, and a machine that
is processing one job cannot be interpreted by another job, The main objective or
aim of solving a JSSP is to try to find a feasible schedule of operations so as to
minimize the maximum completion time or makespan Cmax. In essence, the
makespan can be defined as the complete time for carrying out all the operations on
m machines for all the n jobs. Detailed formulation can be found in [2, 42, 43].

In general, the sequence for one job can be different from another. Obviously,
the number of operations for a given job cab be the number of machines in most
cases, which means that each job is processed once and only once. For such
reasons, the total number of operations is essentially jOj ¼ n� m, or n� m
instances. The following descriptions are mainly based on the formulation by
Ponsich et al. [41] and others [31, 44]. Now let O ¼ foji; j 2 f1; . . .; ng and i 2
f1; . . .;mgg corresponds to the set of all the operations in a JSSP. There is a fixed
processing time pji for each operation oji 2 O. Two conditions are: 1) an operation
oji can only be processed on a machine only if the machine is idle and ready. 2)
Each operation oji can start only if its predecessor operation ojði�1Þ is completed. In
essence, a schedule sequence can be coded as a vector of completion times for all
the operations, that is ðCji; i 2 f1; . . .;mg and j 2 f1; . . .; ngÞ. Thus, we use the
following notations,

1. oji: the operation i of job j,
2. pji: the processing time of oji,
3. Cji: the completion time of oji.

A schedule or solution can be generated by permutation, which can lead to the
JSSP complexity of Oððn!ÞmÞ [41]. The objective of a JSSP is to minimize
the overall completion time of all the operations, or the makespan Cmax, subject to
the following constraints:

• Once a machine is processed a job, it cannot be interrupted.
• A machine can only process (at most) one job at a time.
• An operation cannot start if its predecessor has not been completed, and the

starting time must be later than the completion time of its predecessor.

126 A. Ouaarab et al.

Therefore, the scheduling problem can be written in a compact form as

Minimize Cmax ¼ Cn�m: ð1Þ

2.4 JSSP Graphical Modelling

For simplicity in describing the JSSP scheduling process, the so-called disjunctive
graph and Gantt chart methods are often used.

2.4.1 Disjunctive Graph

The fundamental ideas of a disjunctive graph were proposed by Roy and Sussmann in
1964 [45]. Briefly speaking, a disjunctive graph representation (Fig. 1) can be denoted
as G ¼ ðA;V ;EÞ where V is a set of nodes (corresponding to the set of operations O)
with a (starting) source S and a (finishing) sink T. In addition, A corresponds to a set of
conjunctive arcs showing the sequencing or precedence constraints, while E consists
of a set of disjunctive edges, linking two operations to be processed on the same
machine. Furthermore, the edge represents the time of the operation.

2.4.2 Gantt Diagram

By far, the most common representation for a JSSP is to use the so-called Gantt chart
where an operation is represented by a segment or a horizontal bar with its length
being proportional to the time of operation. Consequently, a temporal scale is used to
indicate the occupation of all machines by different tasks and idle times as well as the
potential unavailability of machines. As shown in Figs. 2 and 3, two types of Gantt

S 2,2

1,1

1,3

2,1

1,2

2,3

4,2

3,1

4,3

4,1

3,2

3,3

T

Fig. 1 A JSSP example of a disjunctive graph representation

Discrete Cuckoo Search Applied to Job Shop Scheduling Problem 127

charts are used. A machine Gantt chart consists of a horizontal line for each machine
where the line displays the various operations in sequence periods and periods of
idleness of the machines. On the other hand, a job Gantt chart provides the overview
the sequence of job operations where each job is represented by a line with the
periods of execution of operations and waiting periods for machines [46, 47].

3 Discrete Cuckoo Search for JSSP

Now the discrete cuckoo search approach for solving the JSSP is presented in
detail.

3.1 Cuckoo Search

Cuckoo Search (CS) [19] is inspired by the brood parasitism behaviour of some
cuckoo species [48]. CS uses Lévy flights [49] to enhance the search both locally
and globally where a solution in the search space is represented by a nest or an egg.
Lévy flights are a model of random walks characterized by their step lengths which
obey a power-law distribution. Most of the Lévy steps are relatively small, with
occasional large jumps.

The standard CS was developed by Yang and Deb in 2009, initially designed for
solving multimodal functions. The main ideas can be summarized as the following

M3

M2

M1

1 2 3 4 5 6 7 8 9 10 11 12

J1 J2 J3

Fig. 2 Machine Gantt chart

J3

J2

J1

1 2 3 4 5 6 7 8 9 10 11 12

M1 M2 M3

Fig. 3 Job Gantt chart

128 A. Ouaarab et al.

ideal rules: (1) Each cuckoo lays one egg at a time and selects a nest randomly; (2)
The best nest with the highest quality egg can pass onto the new generations; (3)
The number of host nests is fixed, and the egg laid by a cuckoo can be discovered
by the host bird with a probability pa 2 ½0; 1�.

Here, pa is a switching parameter that guides the search style in the solution
space. CS can perform a balanced choice between local and the global explorative
random walks. The local random walk can be written as

xtþ1
i ¼ xti þ as� Hðpa � eÞ � ðxtj � xtkÞ; ð2Þ

where xtj and xtk are two different solutions selected by a permutation randomly,
HðuÞ is a Heaviside function, ε is a random number drawn from a uniform distri-
bution, and s is the step size. On the other hand, the global random walk is carried
out by using Lévy flights

xtþ1
i ¼ xti þ aLðs; kÞ; ð3Þ

where

Lðs; kÞ ¼ kcðkÞ sinðpk=2Þ
p

1
s1þk

; ðs 	 s0 [0Þ: ð4Þ

Here a[0 is the step size scaling factor, which should be related to the scales of
the problem of interest, and s0 is a small constant (s0 = 0.001–0.1 can be used).
Lévy flights have an infinite variance with an infinite mean [5, 19].

Discrete Cuckoo Search Applied to Job Shop Scheduling Problem 129

3.2 Discrete Cuckoo Search

In the continuous space, a solution vector is generally represented by its real
coordinates. In fact, to move from the actual position to a new one, we change only
the current values of the coordinates. A small step is done by a small modification
on the coordinate values and a big change of the coordinate values generates a big
jump.

In the discrete space, a solution can be denoted by a set of acceptable combi-
nations or permutations that are positioned, according to the order and the relations
between their components. So, the meaning of locations and distances changes and
becomes more complex. To locate a solution in the discrete space in terms of using
permutations, we need to verify that the new found solution is acceptable. In many
problems, finding a feasible solution is relatively difficult when we consider all the
constraints of this problem. On the other hand, moving in this search space requires
the proper definition of distances and neighbourhood, and thus requires proper
operators and perturbations according to the type of problem.

This discrete version of Cuckoo Search (DCS) algorithm, developed by Ouaarab
et al. [6, 50], is designed and adapted to solve discrete optimization problems such
as the Travelling Salesman Problem [50, 51], Quadratic Assignment Problem and
Job Shop Scheduling Problem. For solving a JSSP, DCS adopts its own procedure
without any subordinate heuristic used generally to improve results. DCS is applied
to solve the JSSP in order to show its performance against other metaheuristics
rather than hybrids. In the DCS, Lévy flights have a control on all moves in the
solution space. A global random walk is performed to explore the space. In fact, we
will show how to represent a solution in the space and how to move from the
current solution to another one using Lévy flights. The switching parameter pa is
also used to diversify the search to another unexplored new areas.

DCS improves its search strategy by inspiring a new notion from the way how
cuckoos exploit and explore new nests. Such cuckoo ‘intelligence’ can find much
better nests/solutions. Studies showed that cuckoos can engage a kind of surveil-
lance, before and after brooding, on nests that are likely to be a host [48]. In this
case, we are talking about a second level of local search performed by a fraction of
intelligent cuckoos around the current solutions. The new mechanism can be
introduced in the CS algorithm by a new population fraction pc. The population is
structured around three types of cuckoos: (1) A cuckoo, seeking new solutions that
are much better than the solution of an individual, randomly selected, in the pop-
ulation; (2) A fraction pa of cuckoos, seek new solutions far from the best solution
in the population; (3) The new fraction pc [50].

To move from a current solution to another, we now use a step that will be
associated to the value generated by Lévy flights. Concerning the solution space of
the studied problem, we design a model of operators and thus associate each
operator with a specific step. To facilitate the generation of these steps via Lévy

130 A. Ouaarab et al.

flights, we calculate them in an interval between 0 and 1. Therefore, according to
the value given by Lévy flights in this interval we can choose the appropriate step.

Obviously, two important components in the application of DCS on JSSP are:
solutions and moves. Each combinatorial optimization problem can have a different
solution/search space. So how to define a solution can be tricky. How to move from
one solution to another can be even harder. In a JSSP, a schedule/solution can be
interpreted by DCS as one egg in a nest, which represents an individual in the
population.

3.3 JSSP Solution

To illustrate this idea further, we use a simplified example. Considering an instance
of a JSSP, Table 1 contains (for example) 3 jobs and 4 machines where each job
operation is associated with its machine and processing time. Here, a solution of
this JSSP instance is a permutation of operations that can be generated randomly for
the initial solution as shown in Fig. 4. The solution space is all the possible
solutions/permutations for this JSSP instance.

To generate a JSSP solution from an integer series (or a random integer series in
the case of random solutions), we can take each integer from this series and apply
the operation: (i mod n) + 1, where i is a series integer and n is the number of jobs.
In the current example n = 3, so the result is a permutation of jobs, or the per-
mutation of the operations as showed in Fig. 4.

From Table 1 and the solution shown in Fig. 4, we can design a Gantt chart
(Fig. 5) for this solution (schedule). In the DCS, a schedule with the good (mini-
mum) completion time is selected to generate the next generation schedules.

Fig. 4 Procedure of generating a random initial solution

Table 1 A 3 × 4 JSSP problem

Jobs Machine sequence Processing times

1 1 2 3 4 p11 ¼ 10 p12 ¼ 8 p13 ¼ 4 p14 ¼ 2

2 2 1 4 3 p21 ¼ 8 p22 ¼ 3 p23 ¼ 5 p24 ¼ 6

3 1 2 4 3 p31 ¼ 4 p32 ¼ 7 p33 ¼ 3 p34 ¼ 5

Discrete Cuckoo Search Applied to Job Shop Scheduling Problem 131

3.4 Moving in Space

In order to move from one solution to another in the combinatorial search space, the
move can be generated by considering step lengths or topologies. A step length is
represented by the distance between solutions in a given search space. In terms of
topology, one solution is moved to another by passing from one topology to another
one. This case concerns a different kind of moves or operators.

In this application of the DCS to solve a JSSP, we propose three different moves
or operators that are controlled by or associated with Lévy flights. The first move
operator is the insertion move (Fig. 6) that removes the integer in an indicated
position ‘2’ and inserts it in the second indicated position ‘6’. The second move
operator is the swapping move operator (Fig. 7) that swaps to integers which are
located respectively in position ‘2’ and ‘6’. The third operator is the inversion
move operator (Fig. 8) that reverses integers’ order between two positions, i.e., ‘2’
and ‘6’ in the example.

M4

M3

M2

M1

10 20 30 40

2 3 1

1 2 3

2 1 3

2 1 3

Fig. 5 Gantt chart for the solution shown in Fig. 4

Fig. 6 Insert move operator

Fig. 7 Swap move operator

Fig. 8 Inverse move operator

132 A. Ouaarab et al.

These moves are associated with random values following a Lévy distribution.
In fact, a balance search in JSSP combinatorial space should be between restricted
and large areas or topologies when appropriate.

4 Experimental Results

In order to validate the proposed approach and show the performance, the DCS
algorithm has been implemented and tested on 16 instances among the benchmarks
taken from the OR-Library [38]. The DCS algorithm has been coded in JAVA
language under the 32 bits Seven Operating System, and simulated on a laptop with
the configurations of Intel(R) CoreTM 2 Duo 2.00 GHz, and 2 GB of RAM. The
parameters used are summarized in Table 2, and the parameters were based on some
preliminary parametric studies of pa, pc and the population size n.

In each case study, 10 independent runs of the DCS algorithm have been carried
out and the test results are summarized in Table 3. The first column shows the name
of the instance and the best known solution in parenthesis, the column ‘best’ shows
the completion times of the best solution found by the algorithms and the column
‘average’ denotes the average solution completion time of the independent runs of
the algorithms, and the column ‘PDav(%)’ denotes the percentage deviation of the
average solution completion time over the optimal solution completion time of 10
runs, as shown in Eq. (5):

PDavð%Þ ¼ average solution length� best known solution length
best known solution length

� 100 ð5Þ

All numbers shown in bold in Table 3 mean that the found solutions have the
same completion time over all the 10 runs.

As shown in Table 3, after testing some JSSP instances, comparisons have been
made (for all the tested instances) with the results by the recently published discrete
version of PSO for JSSP [31]. Their discrete PSO did not use any advanced local
search methods or subordinate heuristics, which is the same case as in DCS. So, we
can easily compare these two methods in terms of performance fairly.

Table 2 Parameter settings
for the DCS algorithm Parameter Value Meaning

n 30 Population size

Pa 0.2 Portion of bad solutions

pc 0.6 Portion of smart cuckoos

MaxGeneration 300 Maximum number of iterations

α 0.01 Step size

λ 1 Index

Discrete Cuckoo Search Applied to Job Shop Scheduling Problem 133

Based on the three columns [Best, Average and PDAv (%)] in Table 3, we can see
that DCS performs better than PSO in the tested instances, which is confirmed by
Fig. 9 by indicating the lower curve associated with DCS. Hence, DCS is more
appropriate to be adapted to solve JSSPs with good results. Such good performance
can be explained basically by the balance performed by CS to explore and exploit the
search space via Lévy flights and the switch parameter pa. The performance is also
enhanced by the added improvement presented by the new smart cuckoo fraction pc.

These results confirm that this first version of DCS is more adaptable to this kind
of combinatorial optimization problems. The proposed DCS can also provide a

Table 3 Computational comparison between PSO and DCS algorithms

DCS PSO [31]

Instance (opt) Best Average PDAv (%) Best Average PDAv (%)

Abz5 (1234) 1,239 1,239.6 0.00 – – –

Abz6 (943) 943 946.4 0.00 – – –

Ft06 (55) 55 55 0.00 55 56.1 0.02

Ft10 (930) 945 966.8 0.03 985 1,035.6 0.11

Ft20 (1165) 1,173 1,178.8 0.01 1,208 1,266.9 0.08

La01 (666) 666 666 0.00 666 668.6 0.00

La02 (655) 655 655 0.00 – – –

La03 (597) 604 607 0.01 – – –

La04 (590) 590 590 0.00 – – –

La06 (926) 926 926 0.00 926 926 0.00

La11 (1222) 1,222 1,222 0.00 1,222 1,222 0.00

La16 (945) 946 967.7 0.02 956 986.9 0.04

La21 (1046) 1,055 1,070.1 0.02 1,102 1,128.4 0.07

La26 (1218) 1,218 1,218 0.00 1,263 1,312.6 0.07

La31 (1784) 1,784 1,784 0.00 1,789 1,830.4 0.02

La36 (1268) 1,297 1,313.6 0.03 1,373 1,406.2 0.10

Instance

P
D
A
v(
%
)

0

0.025

0.05

0.075

0.1

f t0
6

f t1
0

f t2
0

la
01

la
06

la
11

la
16

la
21

la
26

la
31

la
36

Discrete cuckoo search

Particle swarm optimization
Fig. 9 PDAv (%) for 11 OR-
Library instances

134 A. Ouaarab et al.

good balance between intensification and diversification. The use of Lévy flights,
the reduced number of parameters and the introduced fraction pc of smart cuckoos
has enhanced the performance of the population by improving its structure. One
further advantage of the improved DCS is the level-independence varieties for the
best positions. Each cuckoo (according to its category) in the population can follow
one of the three different strategies (discussed in the DCS part). So, it is more likely
to find good solutions in the areas unexplored by other metaheuristics.

It can be expected that our proposed approach can be easily improved by adding
a good local search method or by hybridization with other metaheuristics.

5 Conclusion

We have discussed a class of well-known job shop scheduling problems that are
important in real-world applications. In this chapter, we have prosed an improved
discrete version of Cuckoo Search (CS) to solve this NP-Hard problem. The new
discrete CS (DCS) developed to solve combinatorial optimization problems, can
enhance the performance of CS by reconstructing the population and introducing a
new kind of intelligent cuckoos category. Such adaptation to the JSSP is based on a
study of terminology interpretation used in CS and in its inspiration sources. It
provides an effective to generate JSSP solutions and to move from one solution to
another new one, using newmove operators in terms of distances and neighbourhood.

DCS has been implemented and its performance has been tested on sixteen
benchmark JSSP instances. Its performance has been compared with the discrete
PSO [31]. The results of the comparison have shown that the discrete CS outper-
forms the discrete PSO for solving JSSP instances. The good performance of DCS
can be explained by the management of intensification and diversification through
Lévy flights and the structure of the population. The new population structure
contains a variety of cuckoos that use multiple research methods adopted by pa and
pc fractions. So, the combination of more than one search components and the high
level use of the best solution from the population provides an effective approach for
problem solving for combinatorial problems. The aim of such adaptation is to give a
good example of mimicking nature and try to design new algorithms to solve very
complex problems more efficiently. It is also important to link the efficiency of the
algorithms with the simplicity of its implementation.

It can be expected that it will be useful to investigate how DCS can be improved
and hybridized with other methods. DCS shows, in some recent studies that it can
be adapted to solve the Traveling Salesman Problem and Quadratic Assignment
Problems, which confirms that DCS can provide more flexibility to solve (or by
hybridization) more combinatorial optimization problems. In addition, DCS has
fewer number of parameters and thus it is easier to implement and to tune these
parameters. Furthermore, further studies can be fruitful when focusing on the
applications of DCS into other combinatorial problems.

Discrete Cuckoo Search Applied to Job Shop Scheduling Problem 135

References

1. Applegate, D., Cook, W.: A computational study of the job-shop scheduling problem. ORSA
J. comput. 3(2), 149–156 (1991)

2. Manne, A.S.: On the job-shop scheduling problem. Oper. Res. 8(2), 219–223 (1960)
3. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual

comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)
4. Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Metaheuristic applications in

structures and infrastructures. Newnes (2013)
5. Yang, X.S.: Nature-inspired metaheuristic algorithms. Luniver Press, Bristol (2010)
6. Ouaarab, A., Ahiod, B., Yang, X.S.: Improved and discrete cuckoo search for solving the

travelling salesman problem. In: Cuckoo Search and Firefly Algorithm, pp. 63–84. Springer,
Berlin (2014)

7. Davis, L., et al.: Handbook of genetic algorithms, vol. 115. Van Nostrand Reinhold, New
York (1991)

8. Sivanandam, S., Deepa, S.: Genetic Algorithm Optimization Problems. Springer, Berlin
(2008)

9. Glover, F., Laguna, M.: Tabu search. Springer, Berlin (1999)
10. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. Springer, Berlin (1987)
11. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoret. Comput. Sci. 344

(2), 243–278 (2005)
12. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–

766. Springer, Berlin (2010)
13. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Appl.

Soft Comput. 8(1), 687–697 (2008)
14. Mucherino, A., Seref, O.: Monkey search: a novel metaheuristic search for global

optimization. In: Data Mining, Systems Analysis and Optimization in Biomedicine, vol.
953, pp. 162–173. AIP Publishing, New York (2007)

15. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony
search. Simulation 76(2), 60–68 (2001)

16. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic algorithms:
foundations and applications, pp. 169–178. Springer, Berlin (2009)

17. Shah-Hosseini, H.: The intelligent water drops algorithm: a nature-inspired swarm-based
optimization algorithm. Int. J. Bio-Inspired Comput. 1(1), 71–79 (2009)

18. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin (2010)

19. Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: Nature & Biologically Inspired
Computing, 2009. NaBIC 2009. World Congress on, pp. 210–214. IEEE, New York (2009)

20. Yang, X.S.: Nature-Inspired Optimizaton Algorithms. Elsevier (2014)
21. Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for

multiobjective optimization. Eng. Optim. 46, 1222–1237 (2014)
22. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. Evolut. Comput.

IEEE Trans. 1(1), 67–82 (1997)
23. Dell’Amico, M., Trubian, M.: Applying tabu search to the job-shop scheduling problem. Ann.

Oper. Res. 41(3), 231–252 (1993)
24. Taillard, E.D.: Parallel taboo search techniques for the job shop scheduling problem. ORSA

J. Comput. 6(2), 108–117 (1994)
25. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Manage.

Sci. 42(6), 797–813 (1996)
26. Nowicki, E., Smutnicki, C.: An advanced tabu search algorithm for the job shop problem.

J. Sched. 8(2), 145–159 (2005)
27. Van Laarhoven, P.J., Aarts, E.H., Lenstra, J.K.: Job shop scheduling by simulated annealing.

Oper. Res. 40(1), 113–125 (1992)

136 A. Ouaarab et al.

28. Davis, L.: Job shop scheduling with genetic algorithms. In: Proceedings of an International
Conference on Genetic Algorithms and Their Applications, vol. 140 (1985)

29. Della Croce, F., Tadei, R., Volta, G.: A genetic algorithm for the job shop problem. Comput.
Oper. Res. 22(1), 15–24 (1995)

30. Gonçalves, J.F., de Magalhães Mendes, J.J., Resende, M.G.: A hybrid genetic algorithm for
the job shop scheduling problem. Eur. J. Oper. Res. 167(1), 77–95 (2005)

31. Lin, T.L., Horng, S.J., Kao, T.W., Chen, Y.H., Run, R.S., Chen, R.J., Lai, J.L., Kuo, I., et al.:
An efficient job-shop scheduling algorithm based on particle swarm optimization. Expert Syst.
Appl. 37(3), 2629–2636 (2010)

32. Huang, K.L., Liao, C.J.: Ant colony optimization combined with taboo search for the job shop
scheduling problem. Comput. Oper. Res. 35(4), 1030–1046 (2008)

33. Zhang, C.Y., Li, P., Rao, Y., Guan, Z.: A very fast ts/sa algorithm for the job shop scheduling
problem. Comput. Oper. Res. 35(1), 282–294 (2008)

34. Aiex, R.M., Binato, S., Resende, M.G.: Parallel grasp with path-relinking for job shop
scheduling. Parallel Comput. 29(4), 393–430 (2003)

35. Binato, S., Hery, W., Loewenstern, D., Resende, M.: A grasp for job shop scheduling. In:
Essays and Surveys in Metaheuristics, pp. 59–79. Springer, Berlin (2002)

36. Chong, C.S., Low, M.Y.H., Sivakumar, A.I., Gay, K.L.: A bee colony optimization algorithm
to job shop scheduling. In: Simulation Conference, 2006. WSC 06. Proceedings of the Winter,
pp. 1954–1961. IEEE, New York (2006)

37. Sha, D., Hsu, C.Y.: A hybrid particle swarm optimization for job shop scheduling problem.
Comput. Ind. Eng. 51(4), 791–808 (2006)

38. Beasley, J.E.: Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc.
pp. 1069–1072 (1990)

39. Pinedo, M.L.: Scheduling: theory, algorithms, and systems. Springer, Berlin (2012)
40. T’kindt, V., Scott, H., Billaut, J.C.: Multicriteria scheduling: theory, models and algorithms.

Springer, Berlin (2006)
41. Ponsich, A.: Coello Coello, C.A.: A hybrid differential evolution—tabu search algorithm for

the solution of job-shop scheduling problems. Appl. Soft Comput. 13(1), 462–474 (2013)
42. Błażewicz, J., Domschke, W., Pesch, E.: The job shop scheduling problem: Conventional and

new solution techniques. Eur. J. Oper. Res. 93(1), 1–33 (1996)
43. Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: Past, present and future. Eur.

J. Oper. Res. 113(2), 390–434 (1999)
44. Cheng, T., Peng, B., Lü, Z.: A hybrid evolutionary algorithm to sovle the job shop scheduling

problem. Ann. Oper. Res. pp. 1–15, 2013. http://link.springer.com/article/10.1007
45. Roy, B., Sussmann, B.: Les problemes d’ordonnancement avec contraintes disjonctives. Note

ds 9 (1964)
46. Esquirol, P., Lopez, P., professeur de robotique) Lopez, P.: L’ordonnancement. Économica

(1999)
47. Herrmann, J.W.: Handbook of production scheduling, vol. 89. Springer, Berlin (2006)
48. Payne, R.B.: The cuckoos, vol. 15. Oxford University Press, Oxford (2005)
49. Shlesinger, M.F., Zaslavsky, G.M., Frisch, U.: Lévy flights and related topics in physics. In:

Levy flights and related topics in Physics, vol. 450 (1995)
50. Ouaarab, A., Ahiod, B., Yang, X.S.: Discrete cuckoo search algorithm for the travelling

salesman problem. Neural Comput. Appl. pp. 1–11 (2013)
51. Ouaarab, A., Ahiod, B., Yang, X.S.: Random-key cuckoo search for the travelling salesman

problem. Soft Comput. pp. 1–8 (2014)

Discrete Cuckoo Search Applied to Job Shop Scheduling Problem 137

http://springerlink.bibliotecabuap.elogim.com/article/10.1007

Cuckoo Search and Bat Algorithm
Applied to Training Feed-Forward
Neural Networks

Milan Tuba, Adis Alihodzic and Nebojsa Bacanin

Abstract Training of feed-forward neural networks is a well-known and important
hard optimization problem, frequently used for classification purpose. Swarm
intelligence metaheuristics have been successfully used for such optimization
problems. In this chapter we present how cuckoo search and bat algorithm, as well
as the modified version of the bat algorithm, were adjusted and applied to the
training of feed-forward neural networks. We used these three algorithms to search
for the optimal synaptic weights of the neural network in order to minimize the
function errors. The testing was done on four well-known benchmark classification
problems. Since the number of neurons in hidden layers may strongly influence the
performance of artificial neural networks, we considered several neural networks
architectures for different number of neurons in the hidden layers. Results show that
the performance of the cuckoo search and bat algorithms is comparable to other
state-of-the-art nondeterministic optimization algorithms, with some advantage of
the cuckoo search. However, modified bat algorithm outperformed all other algo-
rithms which shows great potential of this recent swarm intelligence algorithm.

Keywords Cuckoo search � Bat algorithm � Training neural networks � Swarm
intelligence � Nature-inspired algorithms � Metaheuristic optimization

M. Tuba (&) � N. Bacanin
Megatrend University Belgrade, Bulevar Umetnosti 29, 11070 N. Belgrade, Serbia
e-mail: tuba@ieee.org

N. Bacanin
e-mail: nbacanin@megatrend.edu.rs

A. Alihodzic
University of Sarajevo, Studentski trg 16, 71000 Sarajevo, Bosnia and Herzegovina
e-mail: adis_mtkn@yahoo.com

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_8

139

1 Introduction

Artificial neural network (ANN) is a computational model inspired by central nervous
system which is capable of machine learning and pattern recognition. Like other
machine learning methods, neural networks have been used for different optimization
and mathematical problems such as clustering [1], text categorization [2], pattern
recognition [3], weather forecasting [4], bankruptcy forecasting [5] etc. A neural
network consists of two types of components: processing elements (neurons) and
connections (links) between them. Every link has a weight parameter associated with
it. The neural network is generally presented as a system of interconnected artificial
neurons which can compute values from their inputs. Namely, each neuron receives
signals from the neighboring neurons connected to it, processes the information, and
produces an output. The neurons of neural networks can process input data in dif-
ferent ways and also can have various interconnections. Different structures of the
artificial neural networks can be made by using different processing elements and by
the specific manner in which they are connected. Artificial neural networks play an
important role as classifiers in classification of non-separable data.

The design of ANN was motivated by the structure of a real brain, but the
processing elements and the architectures used in ANN have gone far from their
biological inspiration. Finding an optimal neural network structure as well as
weight values presents a difficult optimization problem. Among many different
ANN models, the multilayer feed-forward neural network (MLFF) is one which
consists of neurons, that are ordered into layers where the first layer is called the
input layer, the last layer is the output layer, and the layers between are hidden
layers. These artificial networks have been mainly used due to their well-known
universal approximation capabilities [6]. Successful application of the MLFF ANN
to any problem will depend on the choice of structures used in training as well as
the training algorithms.

A well-known algorithm named back-propagation (BP) algorithm is used for
optimal network performance for training the MLFF ANN. BP Algorithm is a
gradient descent optimization method that searches the synaptic weight coefficients
of the MLFF ANN and minimizes the calculated gradient of the error with respect
to the weight coefficients for a given input by propagating error backwards through
the network. Since the error function of MLFF ANN is a multi-modal function, this
method, although best in its class, has two important drawbacks: slow convergence
speed and getting stuck into local minima easily.

The Levenberg-Marquardt algorithm (LMA) [7] combines the advantages of
gradient-descent method and Gauss-Newton method. It is a very popular algorithm,
but it finds only a local optimum. Therefore, many global optimization methods have
been proposed to overcome the weakness of gradient-based techniques. Swarm
intelligence algorithms like ant colony optimization [8–11], artificial bee colony
[12–15], seeker optimization algorithm [16, 17], firefly algorithm [18–23] etc. have
been successfully used for such hard optimization problems. Some nature inspired
metaheuristics like genetic algorithms (GA) [24], particle swarm optimization (PSO)

140 M. Tuba et al.

[25], differential evolution (DE) [26], artificial bee colony (ABC) [27, 28] and firefly
algorithm [29] were used to train the MLFF networks as an alternative to BP
algorithm.

In order to overcome the disadvantages of the conventional BP, this chapter
proposes two relatively new meta-heuristic search algorithms, called cuckoo search
(CS) algorithm [30–34] and bat algorithm (BA) [35–37]. The CS, BA, and modified
BA results obtained by using sigmoid transfer function are compared with the
results obtained by Levenberg-Marquardt algorithm (LMA), artificial bee colony
(ABC), and genetic algorithm (GA) from the paper [27], as well as with the results
reported by the firefly algorithm [29]. The results in the papers [27] and [29] are
also obtained by using sigmoid transfer function for the same sample data. Since the
choice of number hidden neurons affects on the performance of neural network
[38], we will perform the comparison of the results provided by the CS, BA and
MBA for different number of neurons in the hidden layers.

Cuckoo search (CS) is a novel swarm intelligence metaheuristic algorithm
introduced by Yang and Deb [32] which imitates animal behavior and is useful for
global optimization [39]. Different approaches based on the CS algorithm were
successfully applied to solve various optimization problems, such as engineering
optimization problems [40], Knapsack problems [41], image thresholding [31] etc.
Also, different versions of the implementation of the cuckoo search algorithm were
provided [42].

Bat algorithm (BA) is also a novel swarm intelligence metaheuristic algorithm
introduced by Yang [35] based on so-called echolocation of the bats. The primary
purpose for bat’s echolocation is to serve as a hunting strategy. A comprehensive
review about swarm intelligence involving the bat algorithm is performed by Zhang
and Wang [43] and Huang and Zhao [44]. Furthermore, Tsai proposed an evolving
bat algorithm to improve the performance of standard BA with better efficiency
[45]. Bat algorithm was successfully used for other problems [46, 47]. In this paper,
its application to the training of MLFF networks is investigated.

Basically, the bat algorithm is powerful at intensification, but at times it may get
trapped into some local optima, so that it may not perform diversification very well.
In order to enhance the search performance of the bat algorithm, and also to avoid
trapping into local optima, we introduce additional four modifications and tuning of
the BA that almost always uniformly improve the results during the training of the
neural networks. As a result, we propose a modified bat algorithm (MBA) which
speeds up the global convergence rate of the BA while preserving its attractive
characteristics.

Generally, metaheuristic search algorithms are often nature-inspired, and they
are now the most practical approach for solving complicated optimization problems
where traditional approaches are inefficient. The challenges of research in com-
putational optimization are to find the right algorithms most suitable for a given
practical problem to obtain acceptable solutions in a reasonable time with a limited
amount of resources. In this chapter we present the use of metaheuristics for
computational optimization and application to the classification problems, focusing

Cuckoo Search and Bat Algorithm Applied … 141

on bridging a significant gap between theory and the practical use of such algo-
rithms in bio-inspired computing.

In this chapter, the main focus was on three things: the speed of convergence
analysis of metaheuristics, the stability of used metaheuristics, as well as the
classification accuracy obtained by mentioned metaheuristics. Namely, the speed of
convergence is measured by counting the number of evaluations required for
classification of a problem, the stability is measured by standard deviation, and the
classification accuracy is expressed as the percentage of correct and false classifi-
cation. In order to show the key points of the swarm intelligence based algorithms,
in this chapter the following metaheuristics are discussed: Levenberg-Marquardt
algorithm (LMA) search method, bat algorithm (BA), cuckoo search (CS) algorithm
and modified bat algorithm (MBA).

The remainder of the chapter is organized as follows. Section 2 presents the
structure of the artificial neural networks and introduces the Levenberg-Marquardt
back-propagation algorithm. In Sects. 3 and 4 two recent population based meta-
heuristic algorithms are shown: cuckoo search algorithm (CS) and bat algorithm
(BA). In Sect. 5, our proposed modified bat algorithm (MBA) is presented. In
Sect. 6, the benchmark problems considered in this paper are described, as well as
the discussion and analysis of the obtained experimental results. Finally, our con-
clusions are presented in Sect. 7.

2 Artificial Neural Networks

The basic MLFF neural network generates its output by transforming input data. In
this work, we used MLFF neural network (see Fig. 1) that has three layers known as
input, hidden and output layers, respectively. Each of the layers, input, hidden or
output, consists of a certain number of nodes or neurons that are interconnected by
links, so each processing node calculates a weighted sum of the nodes in the
preceding layer to which it is connected. This weighted sum further transformed
through the transfer or activation function to calculate output which is fed to the
neurons in the next layer. Each link has a scalar weight associated with it that is
adjusted during the training process.

Fig. 1 Typical structure of a multi-layer feed-forward neural network

142 M. Tuba et al.

In the MLFF neural network, training data during the learning time move
forward in only one direction from the input nodes, through several hidden nodes
(if any) and to the output nodes. The output of the i-th node is calculated as

Oi ¼ flð
Xn

i¼1

wi;jIj þ biÞ; ð1Þ

where Ij is the input to the node j, bi is the bias levels of a neural network, wi;j is the
synaptic weight for the connection linking node i to j, and fl is the transfer (acti-
vation) function which generates the output from nodes. The transfer function is
usually a nonlinear function such as a sigmoid function [6], and is defined as

fl ¼ 1
1þ e�x

: ð2Þ

Input-output samples or training data Ts that are used during the training process
of a neural network can be defined as

Ts ¼ fðxs; dsÞ : xs 2 Rn; ds 2 Rmg; s ¼ 1; . . .; p ð3Þ

where xs is the input sample, ds is the desired sample, and p is the total number of
input-output samples.

Given training data Ts, the task of evolutionary algorithms is to during the
learning of the MLFF neural network, compute its free parameters so that the actual
output due to xs is close enough to ds for all s in statistical sense. In this sense, in
order to minimize the learning error function, the mean-square error (MSE) is used
as the cost function, which is defined by

MSE ¼ 1
p � m

Xp
s¼1

Xm
i¼1

ðds;i � Os;iÞ2; ð4Þ

where m denotes the number of MLFF ANN outputs, and Os;i is the actual output
value, both for the output i and the input sample s.

In nature inspired algorithms, operators are used to change the population, i.e.,
the vector of connection weights and the learning error obtained by the MLFF
neural networks is used as a cost function which guides the selection.

The Levenberg-Marquardt algorithm (LMA) [7] combines the advantages of
gradient-descent method and Gauss-Newton method, where backpropagation is a
steepest descent algorithm, i.e., first-order gradient-based method and Gauss-
Newton method [48] is a second-order curvature-based method. LMA starts with
initial guess w0, and w is adjusted by δ only for downhill steps:

d ¼ ðJTðwÞJðwÞ þ kIÞ�1JTðwÞrðwÞ; ð5Þ

Cuckoo Search and Bat Algorithm Applied … 143

where J(w) is the Jacobian matrix of the residual vector r(w) evaluated in w, λ is
damping parameter and I is the identity matrix. The details of the Levenberg-
Marquardt algorithm are:

1. Initialization. Set the generation counter t = 1; Initialize values for the parameter
w, the LMA parameter λ as well as kup and kdown to be used to adjust the
damping parameter. Evaluate the residuals r and the Jacobian J at the initial
parameter guess.

2. Repeat. Calculate the matrix G ¼ JTJ þ kI, and the cost gradient C ¼ JTr,
rC ¼ 0:5r2.

3. Evaluation. Evaluate the new residuals rnew at the point given by
wnew ¼ w� g�1rC, and calculate the cost at the new point, Cnew ¼ 0:5r2new.

4. If ðCnew\CÞ then accept the step w ¼ wnew, and set r ¼ rnew and k ¼ k
kdown

.
Otherwise, reject the step, keep the old parameter guess w and the old residuals
r, and set k ¼ k � kup.

5. Check for convergence. If the method has converged, return w as the best-fit
parameters. If the method has not yet converged but the step was accepted,
evaluate the Jacobian J at the new parameter values. Then go to Step 2.

3 Cuckoo Search Algorithm

Cuckoo search (CS), swarm intelligence algorithm introduced by Yang and Deb
[32], is based on the brood parasitism of some cuckoo species that lay their eggs in
the nests of other host birds. Furthermore, the CS algorithm is enhanced by the so-
called Levy flight used instead of simple isotropic random walk. It was successfully
applied to a number of very different problems like structural engineering optimi-
zation [33], test effort estimation for testing the software [49], planar graph coloring
problem [34], etc. The latest survey is [50].

In the CS algorithms, a nest represents a solution, while a cuckoo egg represents
a new solution. The goal is to use the new and potentially better solutions to replace
worse solutions in the population. In order to implement the CS algorithm, the
following three idealized rules are used:

• Each cuckoo can lay only one egg at a time and choose random nest for laying
their eggs;

• Greedy selection process is applied, so only the eggs with highest quality are
passed to the next generation;

• Available host nests number is fixed. Host bird discovers cuckoo egg with
probability pa from [0, 1]. If cuckoo egg is discovered by the host, the host bird
can either throw the egg away or leave the nest, and create a completely new
nest.

144 M. Tuba et al.

This last assumption can be approximated by the fraction pa of the n nests that
are replaced with new random solutions. In the basic form of the CS algorithm, each
nest contains one egg. This algorithm can be extended to more complicated cases in
which each nest contains multiple eggs, i.e. set of solutions. In this approach, as
well as the BA approach, the CS algorithm tries to find the optimal k-dimensional
vector which will minimize the objective function [in our case defined by Eq. (4)].
Based on above approximations and idealization, the basic steps of the cuckoo
search algorithm can be described as follows:

1. Initialization. Initialize the population of n nests randomly and each nest cor-
responding to a potential solution to the required problem. Calculate objective
function values of all solutions and set the generation counter cycle to one.

2. Calculate new population. Detects the most successful solution as the best
vector of weights. Calculate the step scale factor as:

u ¼ Cð1þ bÞ � sinðp � b2Þ
Cð1þ b

2Þ � b � 2b�1
2

 !1
b

; ð6Þ

where b denotes Levy distribution parameter, and c denotes gamma function.
For this step size, recommended value for b ¼ 1:5 is used. Then each vector of
the weights coefficients t from the search population produces a new solution
v and tests its the objective function value. The new solution v is defined by:

v ¼ tþ sk � r1 � u
r2

� �1
b

�ðt� tbestÞ � r3; ð7Þ

where r1, r2 and r3 are three normally distributed random numbers, and sk are the
scaling factors. At each computation step, check the boundary conditions of the
created new solution. If the objective function value of the new one v is higher
than that of the previous one t, memorize v and forget the old one. Otherwise,
keep the old solution.

3. Record the best solution. Memorize the best solution vector tbest with the
optimal objective fitness value.

4. Fraction pa of worse nests are abandoned and new nests are being built. For
each solution t apply the crossover operator in the search population by:

v ¼ tþ rand1 � ðtperm1 � tperm2Þ; if rand2\pa;
t; otherwise;

�
ð8Þ

where rand1 and rand2 are uniform random numbers in range [0, 1], and perm1 and
perm2 are different rows permutation functions applied to nests matrix.

Cuckoo Search and Bat Algorithm Applied … 145

5. Record the best solution. Memorize the best solution of the weight coefficients
tbest so far, and increase the variable cycle by one.

6. Check the termination criterion. Until the termination criteria is satisfied or
cycle > MaxGeneration.

4 Bat Algorithm

Bat algorithm (BA) is a new population based metaheuristic approach proposed by
Yang [35] with the latest review in [51]. The algorithm uses the so-called echo-
location of the bats. Echolocation is typical sonar which bats use to detect prey and
to avoid obstacles. From physics, it is known that pulses reflect from barriers. The
bats move by using the time delay between emission and reflection. In order to
transform these behaviors of bats to algorithm, Yang used three generalized rules:

• All bats use echolocation to sense distance, and they also know the surroundings
in some magical way;

• Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength k and loudness A0 to search for prey. Bats are able to
automatically set the wavelength of their transmitted pulses and tune the rate of
pulse emission r from [0, 1], depending on the proximity of their target;

• Since the loudness of bats can be changed in several ways, it is supposed that the
loudness changes from a positive large value A0 to a minimum constant value
Amin.

Based on these approximations and idealization, the basic steps of the bat
algorithm can be described as follows:

1. Initialization. Set the generation counter t = 1; Initialize the population of n bats
randomly and each bat corresponding to a potential solution to the given
problem; Define loudness Ai, pulse frequency Qi and the initial velocities
vi ði ¼ 1; 2; . . .;NÞ; Set pulse rate ri.

2. Repeat. Based on the updated frequency and velocity of the movement of bats,
new solutions are created (Eqs. 9–11);

if (rand > ri) then
Select a solution among the best solutions;
Generate a local solution around the selected best solution Eq. (12);
end if
Make a new solution by flying randomly;
if (rand < Ai and f(xi) < f(x*)) then
Accept the new solutions;
Increase ri and reduce Ai (Eqs. 13, 14);
end if
Rank the bats and find the current best x*;
t = t + 1

146 M. Tuba et al.

3. Check the termination criterion. Until the termination criteria is satisfied or
t > MaxGeneration.

4. Finish. Show the results of processing and make visualization.

In bat algorithm, initialization of the bat population is performed randomly and
each bat is defined by its locations xti, velocity vti, frequency f ti , loudness A

t
i, and the

emission pulse rate rti in a search space of synaptic weights. The new solutions xti
are performed by moving virtual bats according to the following equations:

fi ¼ fmin þ ðfmax � fminÞ � b; ð9Þ

vti ¼ vt�1
i þ ðxt�1

i � x�Þ � fi; ð10Þ

xti ¼ xt�1
i þ vti; ð11Þ

where b from the closed interval [0, 1] is a random vector drawn from a uniform
distribution. Here x� is the current global best vector of synaptic weights which is
located after comparing all the weights among all the bats. Initially, each bat is
randomly assigned a frequency which is drawn uniformly from the interval [fmin,
fmax]. A random walk with direct exploitation is used for the local search that
modifies the current best vector of weights according the equation:

xnew ¼ x� þ e � sk; ð12Þ

where e from the interval [−1, 1] is a is a random number, sk ¼ juk � lkj are the
scaling parameters, uk is upper bounds and lk is lower bounds. We can see from the
pseudo code of the BA that the intensive local search is controlled by the loudness
and pulse rate. As the loudness usually decreases once a bat has found its pray,
while the rate of pulse emission increases, the loudness can be chosen as any value
of convenience. Mathematically, these characteristics are defined with the following
equations:

Atþ1
i ¼ a � At

i; ð13Þ

rtþ1
i ¼ r0i � ð1� e�ctÞ; ð14Þ

where a and c are constants. In this approach, the BA tries to find the optimal k-
dimensional vector which will minimize the objective function defined by Eq. (4),
whereby k denotes the total number of synaptic weights.

In this chapter, we will introduce some modifications to the basic bat algorithm
for training neural networks, so as to further improve its global search performance.
For some benchmark problems, acceptable results are obtained by the bat algorithm.
However, based on both our experiments and the results published in the papers
[46, 47, 52, 53], we noticed that bat algorithm for some problems has somewhat
weaker diversification, compared to good intensification. Hence, after some time, it
may be stuck into some local optimum for some class of problems, for example

Cuckoo Search and Bat Algorithm Applied … 147

XOR 2-2-1 without bias. Therefore, we propose modified version of bat algorithm
(MBA) adopted to more efficient search for synaptic weights during the training
neural networks. As we will see in Sect. 5, this modification will be based on the
principles of the artificial bee colony algorithm (ABC) and partly on differential
evolution (DE) algorithm. We compared our proposed algorithm with the LMA, GA,
ABC, FA, CS and BA algorithms, and demonstrated that it always produces better
results considering both accuracy and, especially, convergence speed.

5 Modified Bat Algorithm

In order to enhance the search performance of the BA and also to avoid trapping
into local optima, we introduce four modifications to the basic bat algorithm. As a
result, we propose a modified bat algorithm (MBA) which not only inherits the
simplicity and efficiency of the basic BA with a capability of searching for global
minimum, but also speeds-up the global convergence rate of the BA while pre-
serving its attractive characteristics.

In the pure bat algorithm [35] exploration and exploitation are controlled by
functions in Eqs. (13, 14). Analyzing these functions, we noticed that the algorithm
for some problems loses exploration capability as iterations proceed. In order to
avoid this problem and establish a good balance between intensification and
diversification of BA, we changed the form of pulse rate function (Eq. 13), because
it allows to switch from the exploration to exploitation and vice versa. The reason
for the introduction of this first modification is that when the loudness usually starts
to decrease, while at the same time the rate of pulse emission starts to increase, then
the bats start to best approximate their optimum solutions.

The first modification is to modify the pulse emission rate vector r ¼ rti by

rti ¼ rmax � rmin þ k� 10
t�ðrmax�rminÞ

tmax ; ð15Þ

where rmax and rmin from interval [0.5, 1.0) are maximum and minimum pulse rate
emission, respectively, k is a constant factor from the interval [0, 0.5), tmax is the
maximal number of generations. It was empirically determined that the best results
are obtained for maximum and minimum pulse rates rmax ¼ 0:95, rmin ¼ 0:7,
k ¼ 0:3, initial loudness A0 ¼ 0:95 and a ¼ 0:9.

Therefore, thanks to the new form of pulse rate function, by appropriately tunned
parameters such as rmax, rmin and k, in the early stages of the bat algorithm, a large
part of agents (bats) will be redirected to diversification, and the remaining will be
responsible for intensification. On the other hand, as iterations progress, some of
agents will reorient from the diversification to intensification, hence enabling more
exhaustive search in the beginning and more targeted towards end.

In the basic bat algorithm [35], the bats randomly select a range of frequency
f from Eq. (9) and based on that frequency, they adjust their own solutions

148 M. Tuba et al.

(positions). It is clear that these frequencies will have the same effect to all
dimensions of some solution. Since the increasing or decreasing of the frequency
controls the rate of bats moving, the old frequencies from Eq. (9) will reduce the
local search performance of the basic bat algorithm. Therefore, in this paper we
propose the new equation for the frequency modification as the second
modification.

The second modification is to change the frequency f from Eq. (9) according to
the Eq. (15), which is given by

f ti ¼ 1� maxðfmin;minðfmax; rtiÞÞ � b; if rti\
jbj
2 ;

maxðfmin;minðfmax; rtiÞÞ � b; otherwise;

�
ð16Þ

where fmax and fmin from interval [0, 1) are maximum and minimum frequency, and
b is a random number generated from normal distribution with zero mean value,
and standard deviation which is equal one.

Since the new position of individual bat is generated using its velocity and its
own position, in order to avoid premature convergence, we change the old Eq. (10)
for the velocity and we propose the new equation as a third modification. The main
idea is that the velocity of an individual bat is updated by adjusting its pulse rate
emission and frequency by equations Eqs. (15, 16), respectively.

The third modification relates to the modification of the equation for the
velocity of an individual bat, and that velocity modification is represented by:

vti;j ¼
0; if c[Cr;
ðxti;j � xta;jÞ � f ti ; otherwise;

�
ð17Þ

where Cr is a crossover probability from the interval [0, 1), c and a are the uni-
formly distributed random numbers from the interval [0, 1) and a 6¼ i, and j is a
uniformly distributed random number from the interval [0, d), and d denotes the
dimension of a considered problem.

As we can see from the Eq. (17), this equation combines one part of the equation
from the ABC algorithm that is used in the procedure employed bee phase and
adapted version of the differential operator that is similar to the mutation strategy
DE/best/1 in the differential algorithm (DE). Through testing benchmarks in the
following sections, it was found that setting parameter of the crossover probability
Cr to 0.85 produced the best results.

Although the above modification can improve the performance of the bat
algorithm over most of the benchmark problems, several solutions in the XOR 2-2-
1 without bias problem may remain stuck in some local minimum. In order to fix
this lack of the former modifications, we introduced the fourth modification, which
is inspired by launch of the scouts in the scout phase of the ABC algorithm.

The fourth modification provides that when some solution gets trapped into a
local optima after a certain number of iterations, it will eventually exceed the pre-
determined number of allowed trials called “limit”. When a solution unchanged
exceeds the limit trials, it is redirected to search new space by using the random walk.

Cuckoo Search and Bat Algorithm Applied … 149

6 Experimental Results

In order to estimate the performance of the cuckoo search algorithm, bat algorithm
and modified bat algorithm applied to the training of the MLFF neural networks and
also to compare with other state-of-the-art algorithms applied to the same problem,
four well-known benchmark problems were used. The details of these problems are
described in the next subsection.

All training algorithms have been implemented in C# programming language.
All tests were done on an Intel Core i7 3770 K, 3.5 GHz with 16 GB of RAM and
Windows 8 × 64 Professional operating system. In the experiments, for each
benchmark problem experiments were repeated 30 times and training processes
were stopped when the mean squared error (MSE) of the outputs associated with
inputs was equal to or less than 0.01 or when the maximum cycle number has been
reached.

6.1 Benchmark Problems

1. The Exclusive-OR (XOR) Problem is the first problem used in the experi-
ments. It has a long history in the study of neural networks [54]. Boolean
function using for this classification problem maps two binary inputs to a single
binary output. Input-output samples for this problem are: (0 0; 0 1; 1 0; 1
1) → (0; 1; 1; 0). In the simulations, we used different models of the MLFF
neural networks with and without biases as: 2-2-1; 2-3-1; 2-4-1; 2-5-1, 2-10-1.

2. 3-Bit Parity Problem is the second problem taken into account in the experi-
ments. This problem is a special case of N-Bit Parity Problem [49]. Also, the
XOR problem is a special case of N-Bit Parity Problem for N = 2. The N-bit
parity function maps the set of distinct binary vectors in the set {0, 1}. It is the
indicator function that returns 1, when the number of binary units is odd, else it
returns 0. Input-output samples for 3-Bit Parity problem are: (0 0 0; 0 0 1; 0 1
0; 0 1 1; 1 0 0; 1 0 1; 1 1 0; 1 1 1) → (0; 1; 1; 0; 1; 0; 0; 1). In the experiments,
we used the following versions with biases of the MLFF neural networks: 3-3-1,
3-5-1, 3-10-1, 3-20-1, 3-30-1.

3. 4-Bit Encoder/Decoder Problem is the third problem used in the experiments.
This problem has four distinct input samples, each of them has only one bit
turned on. This is quite close to real world pattern classification problems, where
small changes in the input samples cause small changes in the output samples.
Input-output samples for this type of problem are: ð0001; 0010; 0100;
1000Þ ! ð0001; 0010; 0100; 1000Þ. In the simulations, we used the following
models with biases of the MLFF neural networks: 4-2-4, 4-4-4, 4-5-4, 4-10-4, 4-
20-4.

4. Iris classification problem is the fourth problem used in the experiments. This
problem is used as a benchmark widely in the artificial neural networks field.

150 M. Tuba et al.

It is 4 dimensional pattern classification problem with three classes: Setosa,
Versicolor, and Virginica. This problem has 150 input-output samples and can
be downloaded from [55]. Each input sample consists of four attributes that can
be described as categorical, nominal and continuous. Namely, these attributes
are named with: sepal length, sepal width, petal length, and petal width. It is
realized that the petal width is always smaller than petal length and sepal width
is also smaller than sepal length. In the experiments, we used the following
models with biases of the MLFF neural networks: 4-5-3, 4-10-3, 4-15-3, and
compared the performance for different number of hidden neurons.

In all experiments, for each model of the MLFF neural network, the parameter
ranges for all problems are [−100, 100] and [−10, 10], respectively. The total
number of weight coefficients with and without bias in the MLFF neural network is
defined as ð1þ niÞ � nh þ ð1þ nhÞ � no and ðni þ noÞ � nh, respectively. The total
number of biases is defined as nh þ no, where ni, nh and no denote the total number
of neurons in the input, hidden and output layers, respectively.

6.2 Parameter Settings

Since each benchmark problem has its own difficulty, different parameter setups
were used for each of them. The MLFF neural network architecture 2-2-1 without
biases for XOR benchmark problem is the most difficult problem so that all
algorithms were run through more generations for this type of problem. We have
the following adjustments of parameters for the following algorithms (GA, ABC
and FA are from [29]):

• GA setup—In the experiments, the parameters value are the following: single
point crossover with the rate of 0.8, uniform mutation with the rate of 0.05 are
employed. Generation gap is set to 0.9. The population size in GA is 50 for all
problems;

• ABC setup—The parameter values utilized by ABC in all the experiments are
the following: the value of limit is equal to SN*D, where D is the dimension of
the problem, and colony size (2*SN) is 50 for all problems.

• FA setup—In the FA algorithm, the parameter values in the all experiments are:
size of firefly population is 50, the value of parameter c is set to 1.0, the initial
values of the attractiveness are set to 1.0, the initial value of paremeter a is 0.9,
i.e. the reduction scheme was followed by reducing from 0.9.

• BA setup—Parameter values utilized by BA in the all experiments are: size of
bat population is 50, the initial values of the pulse rates are set to 0.9, the initial
values of the loudness are set to 0.95, minimum and maximum frequencies fmin
and fmax are set to 0 and 2 as well as the constants a and c are set to 0.9 and 0.99,
respectively.

• CS setup—In the CS algorithm, the probability of discovering a cuckoo egg pa
is set to 0.5. Although the value 0.25 of parameter pa was suitable for the most

Cuckoo Search and Bat Algorithm Applied … 151

applications, we have found that the best performance of the neural networks is
achieved for this choice of the parameter value. The population size is 50 for all
benchmark test problems.

• MBA setup—In our proposed MBA approach, the parameter values for the all
experiments are: size of bat population is 50, the initial values of the pulse emission
rates are set to rmin = 0.70 and rmax = 0.95, respectively, the initial values of the
loudness are set to 0.95, the crossover probability Cr is set to 0.85, minimum and
maximum frequencies fmin and fmax are set to 0.2 and 0.8, respectively, as well as
the constants a, k, and c are set to 0.9, 0.3 and 0.99, respectively. The parameter
limit in the fourth modification of the MBA is set to 150.

The maximum number of evaluations for the following architecture of neural
networks: XOR without bias (2-2-1), XOR with bias (2-2-1), XOR with bias (2-3-1),
3-Bit Parity problem with bias (3-3-1), 4-Bit Encoder-Decoder problem with bias
(4-2-4) and Iris classification problem are set to 375,000, 5,000, 3,750, 50,000,
50,000, and 25,000 respectively.

6.3 Discussion and Analysis

Comparative results for the LMA, GA, ABC, FA, BA, CS and MBA obtained by
using sigmoid activation function are given in Table 1 (results for GA, ABC and FA
are from [29]). The best obtained results in Table 1 are highlighted in the bold type.

We can see that the LMA gives the worst results in comparison with the
remaining algorithms for almost all test problems, so it will not further continue to
participate in the analysis and comparison with other algorithms.

When comparing the GA with the remaining algorithms not taking into account
the LMA, from the results in Table 1, we can conclude that the algorithms ABC,
BA, CS and MBA produce better results with respect to all statistical parameters as
MMSE, SDMSE, MC and SR. Comparing it with the FA, we can notice from
Table 1 that both GA and FA show similar performances for problems XOR 2-2-1
without bias and Enc.-Dec. 4-2-4 problem. For the remaining two test problems, FA
obtained better results, especially for the XOR 2-2-1 with bias. Also, from the mean
of cycle numbers, it can be seen that FA converges significantly faster than GA.

Since the ABC produced better results compared to the LMA and GA, it remains
to see how the ABC behaves in the comparison with remaining algorithms. When
comparing ABC with respect to FA, we can see that ABC performs better on
problems XOR 2-2-1 without bias, 3-Bit Parity problem and Enc.-Dec. problem.
For the XOR 2-2-1 problem with bias, from the MMSE and MC, it can be seen that
FA performs better than ABC, i.e. it converges more than three times faster to the
global minimum compared to ABC for this benchmark problem. In the comparison
of ABC and BA algorithms, we can see that the ABC outperformed the BA for
most of the benchmark problems. For Enc.-Dec. problem, it can be seen that the BA
has better MMSE and SDMSE than the ABC. When it comes to the CS algorithm,

152 M. Tuba et al.

then both the ABC and CS algorithms show similar performances for all benchmark
problems. Namely, the ABC gives a slightly better results with respect to the MC
for the third and fourth benchmark problem, and worse results with respect to the
MMSE for all benchmark problems. The CS converges somewhat faster than the
ABC for the problem XOR 2-2-1 with and without bias, and it converges slower
than the ABC for the remaining problems. From Table 1, it can clearly be shown
that the ABC algorithm was completely outperformed by the modified bat algo-
rithm (MBA) for all benchmark problems as well as for all statistical parameters:
MMSE, SDMSE, MC and SR.

Table 1 Results for 30 independent runs of the training MLFF ANN produced by LMA, GA,
ABC, FA, BA, CS and MBA using sigmoid transfer function

Algor. Statistics Benchmark classification problems

XOR XOR 3 Bit. parity Enc. Dec.

MLFF neural network architecture

2-2-1 without bias 2-2-1 3-3-1 4-2-4

LMA MMSE 0.1107 0.0491 0.0209 0.0243

SDMSE 0.0637 0.0646 0.0430 0.0424

GA MMSE 0.099375 0.047968 0.028725 0.016400

SDMSE 0.02785 0.052000 0.032900 0.031300

MC 7500 77.067 501.1333 400.1333

SR 0 40 63.3333 86.6667

ABC MMSE 0.007051 0.006956 0.006679 0.008191

SDMSE 0.002305 0.002402 0.002820 0.001864

MC 2717.4 32 179.07 185

SR 100 100 100 100

FA MMSE 0.078939 0.004971 0.015399 0.017473

SDMSE 0.018168 0.002677 0.023297 0.022646

MC 7500 9.3 181.63 216.03

SR 0 100 83.3 80

BA MMSE 0.050402 0.006275 0.006924 0.007601

SDMSE 0.028339 0.003448 0.002194 0.001825

MC 6678.5 60 325.1 300.1667

SR 26.66667 86.6667 100 100

CS MMSE 0.005974 0.005913 0.006565 0.007285

SDMSE 0.003179 0.002351 0.002120 0.001808

MC 1519.333 30.96667 212.1 219.86667

SR 100 100 100 100

MBA MMSE 0.005060 0.004656 0.005432 0.006864
SDMSE 0.003147 0.002873 0.002986 0.002338
MC 946.63 26.233 137.4 184.37
SR 100 100 100 100

MMSE mean of mean squared errors, SDMSE standard deviation of mean squared errors, MC
mean of cycle numbers, SR success rate

Cuckoo Search and Bat Algorithm Applied … 153

Since the performance of the FA has already been compared with the perfor-
mances of ABC, GA and LMA algorithms, now it remains that the results obtained
by the FA are compared to the results of the remaining algorithms. Firstly, as we
can see from Table 1, the FA in the comparison to the BA produces the worse
results with respect the statistical parameter success rate (SR). Namely, the BA has
twice reached a 100 % SR, unlike the FA, which succeeded in only one. On other
hand, for the XOR 2-2-1 problem with bias, 3 Bit. Parity problem and Enc.-Dec.
problem,the FA is superior compared with BA with respect to the MC, and inferior
with respect to the MMSE for all benchmark problems except for the XOR 2-2-1
problem with bias. When comparing the FA with the CS, we can see that the CS
produces better results than the FA for all statistical parameters except for the MC.
The MBA outperforms the FA for all statistical parameters, except for the XOR 2-
2-1 problem, where the FA shows the higher rate of the convergence.

From Table 1, it can been seen that the BA is inferior in the comparison with the
CS and MBA for all statistical parameters.

As we can see from Table 1, our proposed method (MBA) has the best results
compared to the all algorithms for the all test problems. It has the fastest rate of
convergence and also has the best MMSE values for all benchmark problems.

Our proposed algorithm (MBA) as well as both the CS and ABC have 100 %
success rate for all test problems. We can see that the CS gives better mean square
error compared to the ABC for all test problems, while the ABC gives slightly
better results compared to the BA for almost all test problems, except for the XOR
2-2-1 with bias and Encoder-Decoder problem.

Since the number of hidden neurons affects the performance of the neural net-
work, the MLFF neural network is trained for different number of hidden neurons
considering the XOR, 3-Bit Parity and Encoder-Decoder problems.

The results obtained by the BA, CS and MBA algorithms applied to the XOR
problem are shown in Table 2. The maximum numbers of evaluations for all
architectures 2-3-1, 2-4-1, 2-5-1 and 2-10-1 are set to 5,000. From Table 2, we can
see that all algorithms had a 100 % success rate for all architectures. The CS
outperformed the BA with respect to average mean square error, while our proposed
methodMBA in comparison with the other two algorithms, CS and BA, provides the
best results for AMSE as well as for ANE. Also, our proposed method MBA tends to
faster convergence when the number of hidden neurons is increased from 3 to 10.

It is shown in Table 3 that for 3-Bit Parity problem all algorithms achieved 100
% accuracy rate and that the MBA has the best average mean square error (AMSE)
for all architectures of neural networks. The remaining algorithms also show good
performance with respect the mean number of evaluations and the standard devi-
ation. The maximum number of evaluations for the 3–Bit parity and Encoder-
Decoder benchmark problems that are discussed in Tables 3 and 4, respectively, is
limited to 50,000.

In Table 4, for the Encoder-Decoder problem all three algorithms performed
classification with the 100 % accuracy rate. As in the previous cases, the MBA has
the best performance compared to other algorithms with respect to the average of
mean square error and average number of evaluations (ANE). From the results

154 M. Tuba et al.

shown in mentioned tables, we can see that with increasing the number of hidden
neurons, we obtain a faster convergence rate and greater stability of the solutions.

Iris datasets from [55] are selected and used to train the MLFF neural network.
Out of these 150 samples, 90 samples (30 samples were taken from each class) were
used for training, 30 samples were used for validation (10 samples were taken from

Table 2 Average of mean square error (AMSE), standard deviation of mean square error
(SDMSE), average number of evaluations (ANE), and accuracy rate (AR) for all training samples
over 30 independent runs for BA, CS and MBA using sigmoid transfer function for XOR problem

Algor. Statistics Benchmark classification XOR problem

MLFF neural network architecture with bias

2-3-1 2-4-1 2-5-1 2-10-1

BA AMSE 0.005672 0.005417 0.004813 0.003937

SDMSE 0.002758 0.002517 0.002948 0.002844

ANE 1780.00 1106.50 966.50 430.00

AR 100 100 100 100

CS AMSE 0.005169 0.005142 0.004679 0.003480

SDMSE 0.002829 0.002407 0.002761 0.002364

ANE 1135.00 861.50 630.00 430.00

AR 100 100 100 100

MBA AMSE 0.003782 0.003741 0.003157 0.002412
SDMSE 0.002846 0.002791 0.002780 0.002310
ANE 831.5 608.5 555 353.5
AR 100 100 100 100

Table 3 Average, standard deviation, average number of evaluations, and accuracy rate of MSE
for all training samples over 30 independent runs for BA, CS and MBA using sigmoid transfer
function for 3-bit parity problem

Algor. Statistics Benchmark classification 3 bit. parity problem

MLFF neural network architecture with bias

3-5-1 3-10-1 3-20-1 3-30-1

BA AMSE 0.006724 0.006022 0.004842 0.004255

SDMSE 0.002262 0.002525 0.003040 0.002710

ANE 7986.50 6198.50 4328.50 4066.50

AR 100 100 100 100

CS AMSE 0.005548 0.005347 0.004615 0.003942

SDMSE 0.002901 0.002712 0.002315 0.003042

ANE 6263.50 4063.50 3191.50 2523.50

AR 100 100 100 100

MBA AMSE 0.005122 0.004172 0.002913 0.002718
SDMSE 0.003109 0.002901 0.003333 0.002335
ANE 2538.5 1998.5 1638.5 1571.5
AR 100 100 100 100

Cuckoo Search and Bat Algorithm Applied … 155

each class) and the remaining 30 samples to test the MLFF neural networks for each
class separately. For each class, the first 30 samples are randomly chosen for the
training process, the next 10 samples are randomly used for validation and the
remaining 10 samples in the class remain to be tested. Since Iris classification
problem was not used in [29] only algorithms that we implemented here were
applied, namely BA, CS and MBA.

In order to prevent the over-training during training the neural networks, the
validation of dataset is done. The results of training and testing neural networks to
solve Iris classification problem are presented in Tables 5 and 6, respectively.

For this classification problem, we use MLFF neural network with architecture
4 × HN × 3, where HN is the number of hidden nodes, and we compare the
performance of neural networks with HN = 5, 10 and 15. Table 5 shows the best,
mean and standard deviation of MSE, and the average number of evaluations
obtained for each algorithm and for different number of hidden neurons (HN). Each
of the 30 independent run stops when the mean square error (MSE) is less than
tolerance value 0.01 or when the maximum number of evaluations (25,000) is
reached.

In the case when the number of hidden neurons is 10 and 15, respectively, the
results in Table 5 show that the MBA gives better results for the average mean
square error, standard deviation of the mean square error and average number of
evaluations compared to the BA and CS over 30 independent runs for almost all
cases of hidden number of neurons. Also, in this case the MBA has better results for

Table 4 Average, standard deviation, average number of evaluations, and accuracy rate of the
MSE for all training samples over 30 independent runs for BA, CS and MBA using sigmoid
transfer function for encoder-decoder problem

Algor. Statistics Benchmark classification Enc. Dec. problem

MLFF neural network architecture with bias

4-4-4 4-5-4 4-10-4 4-20-4

BA AMSE 0.006137 0.005994 0.005620 0.004964

SDMSE 0.002708 0.002461 0.002554 0.003247

ANE 7826.50 7060.00 6906.50 6218.50

AR 100 100 100 100

CS AMSE 0.006131 0.005951 0.005474 0.004634

SDMSE 0.002488 0.002959 0.002491 0.003018

ANE 5720.00 5671.50 4821.50 4461.50

AR 100 100 100 100

MBA AMSE 0.005644 0.005589 0.004683 0.004358
SDMSE 0.002928 0.002688 0.003046 0.003208
ANE 5523.50 5293.50 4608.50 4357.00
AR 100 100 100 100

156 M. Tuba et al.

the Best of MSE compared to the remaining algorithms. As can be inferred from
Table 5, the best performance with respect to AMSE for the algorithm MBA are
achieved when the number of hidden neurons is equal to 10. The best results are
highlighted in bold type. Table 5 shows that MBA and CS have the best conver-
gence rate for all values of the hidden neurons (HN).

From Table 6, we can see that with regard to the best classification rate, the
algorithms CS, BA and MBA have a 100 % classification rate for all classes and
show the best results for all architectures of MLFF neural networks. In this case, all
samples belonging the classes Setosa, Versicolor and Virginnica are 100 % clas-
sified. With regard to the average classification, we can see from Table 7, that the
MBA has the same classification rate as the CS for the architecture 4 × 10 × 3, and
better classification rates for the remaining architectures of the neural networks. For
architecture 4 × 5 × 3, the CS and BA produce the similar classification results,
while for the other models of architecture; the CS gives classification results which
are much better than those obtained by the BA. As we can see from 6, as well as for
this classification problem, the MBA has a better classification rate compared to the
CS and BA. Namely, in 500 generations, for all architectures of neural network, the
MBA were classified 74 samples of the total of 75 samples, only one sample was
not correctly classified, while the CS algorithm is able to classify two times 73
samples in the case of architectures 4 × 5 × 3 and 4 × 15 × 3, respectively, and once
classified 74 samples in the case of architectures 4 × 10 × 3. Thus, CS algorithm is
by efficiency immediately after the MBA algorithm, while the BA is by the effi-
ciency in the third place, because only once it was able to classify 72 samples.

Table 5 Best, average, standard deviation, average number of evaluations of MSE for all training
samples over 30 runs for BA, CS and MBA using sigmoid transfer function for classification

HN Algorithms Benchmark Iris classification problem

MLFF neural network architecture 4 × HN × 3

Best of
MSE

Average of
MSE

Std. De. of
MSE

Average num. of
evaluations

5 BA 0.015980 0.029381 0.007464 15065.00

CS 0.016108 0.024712 0.010707 10585.00

MBA 0.013546 0.023088 0.006785 7935
10 BA 0.013077 0.028409 0.006048 18531.67

CS 0.013082 0.031885 0.007562 9921.67

MBA 0.01208 0.024892 0.006985 5635
15 BA 0.012390 0.030534 0.009083 21023.33

CS 0.015094 0.026972 0.008258 12263.33

MBA 0.012133 0.026620 0.006345 5395

Cuckoo Search and Bat Algorithm Applied … 157

Table 6 Best, average, worst classifications for all testing samples over 30 independent runs for
CS, BA and MBA using sigmoid transfer function

HN Algorithms IRIS plant
classes

Test classification data for Iris classification problem
for 500 generation

MLFF neural network architecture 4 × HN × 3

Best classifi-
cation %

Average classifi-
cation %

Worst classifi-
cation %

5 BA Setosa 100 100 99

Vericolor 100 92 32

Virginnica 100 97 79

CS Setosa 100 100 100

Vericolor 100 96 82

Virginnica 100 97 87
MBA Setosa 100 100 100

Vericolor 100 97 82

Virginnica 100 99 83

10 BA Setosa 100 100 96

Vericolor 100 85 30

Virginnica 100 97 60

CS Setosa 100 100 93

Vericolor 100 96 73

Virginnica 100 99 92

MBA Setosa 100 100 100
Vericolor 100 96 82
Virginnica 100 99 87

15 BA Setosa 100 100 94

Vericolor 100 86 0

Virginnica 100 87 0

CS Setosa 100 100 96

Vericolor 100 92 0

Virginnica 100 100 87

MBA Setosa 100 100 100

Vericolor 100 97 82
Virginnica 100 99 85

158 M. Tuba et al.

T
ab

le
7

A
ve
ra
ge

cl
as
si
fi
ca
tio

ns
fo
r
al
l
te
st
in
g
sa
m
pl
es

ov
er

30
in
de
pe
nd

en
t
ru
ns

fo
r
C
S,

B
A

an
d
M
B
A

us
in
g
si
gm

oi
d
tr
an
sf
er

fu
nc
tio

n

H
N

A
lg
or
ith

m
s

B
en
ch
m
ar
k
Ir
is
cl
as
si
fi
ca
tio

n
pr
ob

le
m

M
L
FF

ne
ur
al

ne
tw
or
k
ar
ch
ite
ct
ur
e
4
×
H
N

×
3

Se
to
sa

V
er
si
co
lo
r

V
ir
gi
nn

ic
a

T
ot
al

C
la
ss
.

N
ot

cl
.

C
la
ss
.

N
ot

cl
.

C
la
ss
.

N
ot

cl
.

C
la
ss
.

N
ot

cl
.

5
B
A

25
0

23
2

24
1

72
3

C
S

25
0

24
1

24
1

73
2

M
B
A

25
0

24
1

25
0

74
1

10
B
A

25
0

21
4

24
1

70
5

C
S

25
0

24
1

25
0

74
1

M
B
A

25
0

24
1

25
0

74
1

15
B
A

25
0

21
4

21
4

67
8

C
S

25
0

23
2

25
0

73
2

M
B
A

25
0

24
1

25
0

74
1

Cuckoo Search and Bat Algorithm Applied … 159

7 Conclusion

Adjustment and application of the cuckoo search, bat algorithm and modified bat
algorithm to training of the multilayer feed-forward artificial neural networks is
described in this chapter. Four well-known benchmark problems: XOR problem, 3-
bit Parity problem, Encoder-Decoder problem and Iris classification problem were
used to evaluate the performance of these new learning algorithms using sigmoid
activation function. The results are compared with the results reported by Leven-
berg-Marquardt algorithm, genetic algorithm, artificial bee colony and firefly
algorithm. According to the experimental results for all benchmark problems, it can
be concluded that cuckoo algorithm produces good results, while the results for
pure bat algorithm are somewhat inferior for this class of problems. In order to
improve the results obtained by the pure bat algorithm, we introduced four modi-
fications and our proposed modified bat algorithm achieved the best results com-
pared to all other compared algorithms by all statistical parameters. Here we
demonstrated great potential of the cuckoo search and bat algorithms for training
multilayer feed-forward neural networks by testing on three simple and one more
complex standard benchmark problems. Future work may include large-scale
benchmark problems, some real-life problems as well as additional modifications to
the algorithms to further improve the performance.

Acknowledgments This reserach was supported by Ministry of Education and Science of
Republic of Serbia, Grant III-44006.

References

1. Du, K.L.: Clustering: a neural network approach. Neural Netw. 23(1), 89–107 (2010)
2. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1),

1–47 (2002)
3. Kim, T.: Pattern recognition using artificial neural network: a review. Inf. Secur. Assur.

Commun. Comput. Inf. Sci. 76, 138–148 (2010)
4. Shrivastava, G., Karmakar, S., Kowar, M.K., Guhathakurta, P.: Application of artificial neural

networks in weather forecasting: a comprehensive literature review. Int. J. Comput. Appl. 51
(18), 17–29 (2012)

5. Perez, M.: Artificial neural networks and bankruptcy forecasting: a state of the art. Neural
Comput. Appl. 15(2), 154–163 (2006)

6. Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, New Jersey (2009)
7. Marquardt, D.W.: An algorithm for least squares estimation of non-linear parameters. J. Soc.

Ind. Appl. Math. 11(2), 431–441 (1963)
8. Jovanovic, R., Tuba, M.: Ant colony optimization algorithm with pheromone correction

strategy for the minimum connected dominating set problem. Comput. Sci. Inf. Syst.(ComSIS)
10(1), 133–149 (2013)

9. Tuba, M., Jovanovic, R.: Improved ACO algorithm with pheromone correction strategy for the
traveling salesman problem. Int. J. Comput. Commun. Control 8(3), 477–485 (2013)

10. Jovanovic, R., Tuba, M.: An ant colony optimization algorithm with improved pheromone
correction strategy for the minimum weight vertex cover problem. Appl. Soft Comput. 11(8),
5360–5366 (2011)

160 M. Tuba et al.

11. Jovanovic, R., Tuba, M.: An analysis of different variations of ant colony optimization to the
minimum weight vertex cover problem. WSEAS Trans. Inf. Sci. Appl. 6(6), 936–945 (2009)

12. Bacanin, N., Tuba, M.: Artificial bee colony (ABC) algorithm for constrained optimization
improved with genetic operators. Stud. Inf. Control 21(2), 137–146 (2012)

13. Brajevic, I., Tuba, M.: An upgraded artificial bee colony algorithm (ABC) for constrained
optimization problems. J. Intell. Manuf. 24(4), 729–740 (2013)

14. Subotic, M., Tuba, M.: Parallelized multiple swarm artificial bee colony algorithm (MS-ABC)
for global optimization. Stud. Inf. Control 23(1), 117–126 (2014)

15. Tuba, M., Bacanin, N.: Artificial bee colony algorithm hybridized with firefly metaheuristic
for cardinality constrained mean-variance portfolio problem. Appl. Math. Inf. Sci. 8(6), 2831–
2844 (2014)

16. Tuba, M., Brajevic, I., Jovanovic, R.: Hybrid seeker optimization algorithm for global
optimization. Appl. Math. Inf. Sci. 7(3), 867–875 (2013)

17. Tuba, M., Bacanin, N.: Improved seeker optimization algorithm hybridized with firefly
algorithm for constrained optimization problems. Neurocomputing 143, 197–207 (2014).
doi:10.1016/j.neucom.2014.06.006

18. Yang, X.S.: Firefly algorithms for multimodal optimization. Stochastic Algorithms: Found.
Appl. LNCS 5792, 169–178 (2009)

19. Fister, I., Fister, I.J., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms.
Swarm Evol. Comput. 13(1), 34–46 (2013)

20. Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 29(2),
175–184 (2013)

21. Tuba, M., Bacanin, N.: Upgraded firefly algorithm for portfolio optimization problem. In:
Proceedings of the 16th IEEE International Conference on Computer Modelling and
Simulation, UKSim-AMSS 2014, pp. 112–117. IEEE, New Jersey (2014)

22. Tuba, M., Bacanin, N.: JPEG quantization tables selection by the firefly algorithm. In:
Proceedings of the 4th IEEE International Conference on Multimedia Computing and Systems
(ICMCS14), IEEE Catalog Number: CFP14050-CDR, Submission 402, pp. 153–158. IEEE,
New Jersey (2014)

23. Bacanin, N., Tuba, M.: Firefly algorithm for cardinality constrained mean-variance portfolio
optimization problem with entropy diversity constraint. Sci. World J. 2014 (721521) 16
(2014). doi:10.1155/2014/721521

24. Che, Z.G., Chiang, T.A., Che, Z.H.: Feed-forward neural networks training: A comparison
between genetic algorithm and back-propagation learning algorithm. Int. J. Innov. Comput.
Inf. Control 7(10), 5839–5850 (2011)

25. Mendes, R., Cortez, P., Rocha, M., Neves, J.: Particle swarm for feedforward neural network
training. In: Proceedings of the International Joint Conference on Neural Networks 2, 1895–
1899 (2002)

26. Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algorithm for feed-
forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)

27. Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for
training feed-forward neural networks. Lecture Notes in Computer Science: Modeling
Decisions for Artificial Intelligence 4617, 318–329 (2007)

28. Karaboga, D., Ozturk, C.: Neural networks training by artificial bee colony algorithm on
pattern classification. Neural Netw. World 19(3), 279–292 (2009)

29. Brajevic, I., Tuba, M.: Training feed-forward neural networks using firefly algorithm. In:
Proceedings of the 12th International Conference on Artificial Intelligence, Knowledge
Engineering and Data Bases (AIKED ’13), pp. 156–161 (2013)

30. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer.
Optim. 1(4), 330–343 (2010)

31. Brajevic, I., Tuba, M.: Cuckoo search and firefly algorithm applied to multilevel image
thresholding. In: X.S. Yang (ed.) Cuckoo Search and Firefly Algorithm: Theory and
Applications, Studies in Computational Intelligence, vol. 516, pp. 115–139. Springer
International Publishing, Switzerland (2014)

Cuckoo Search and Bat Algorithm Applied … 161

http://dx.doi.org/10.1016/j.neucom.2014.06.006
http://dx.doi.org/10.1155/2014/721521

32. Yang, X.S., Deb, S.: Cuckoo search via Levy flights. In: Proceedings of World Congress on
Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214 (2009)

33. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach
to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

34. Zhou, Y., Zheng, H., Luo, Q., Wu, J.: An improved cuckoo search algorithm for solving
planar graph coloring problem. Appl. Math. Inf. Sci. 7(2), 785–792 (2013)

35. Yang, X.S.: A new metaheurisitic bat-inspired algorithm. Stud. Comput. Intell. 284, 65–74
(2010)

36. Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 3(5),
267–274 (2011)

37. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering
optimization. Eng. Comput. 29(5), 464–483 (2012)

38. Moustafa, A.A., Alqadi, Z.A., Shahroury, E.A.: Performance evaluation of artificial neural
networks for spatial data analysis. WSEAS Trans. Comput. 10(4), 115–124 (2011)

39. Tuba, M., Subotic, M., Stanarevic, N.: Modified cuckoo search algorithm for unconstrained
optimization problems. In: Proceedings of the European Computing Conference (ECC 2011)
pp. 263–268 (2011)

40. Tuba, M., Subotic, M., Stanarevic, N.: Performance of a modified cuckoo search algorithm for
unconstrained optimization problems. WSEAS Trans. Syst. 11(2), 62–74 (2012)

41. Layeb, A.: A novel quantum-inspired cuckoo search for knapsack problems. Int. J. Bio-
Inspired Comput. 3(5), 297–305 (2011)

42. Bacanin, N.: Implementation and performance of an object-oriented software system for
cuckoo search algorithm. Int. J. Math. Comput. Simul. 6(1), 185–193 (2012)

43. Huang, G.Q., Zhao, W.J., Lu, Q.Q.: Bat algorithm with global convergence for solving large-
scale optimization problem. Appl. Res. Comput. 30(3), 1–10 (2013)

44. Du, Z.Y., Liu, B.: Image matching using a bat algorithm with mutation. Appl. Mech. Mater.
203(1), 88–93 (2012)

45. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J., Istanda, V.: Bat algorithm inspired algorithm for
solving numerical optimization problems. Appl. Mech. Mater. 148–149, 134–137 (2011)

46. Alihodzic, A., Tuba, M.: Improved hybridized bat algorithm for global numerical
optimization. In: Proceedings of the 16th IEEE International Conference on Computer
Modelling and Simulation, UKSim-AMSS 2014, pp. 57–62 (2014)

47. Alihodzic, A., Tuba, M.: Improved bat algorithm applied to multilevel image thresholding. Sci
World J 2014(176718), 16 (2014). doi:10.1155/2014/176718

48. Battiti, R.: First- and second-order methods for learning: Between steepest descent and
newtons method. Neural Comput. 4(2), 141–166 (1992)

49. Srivastava, P.R., Varshney, A., Nama, P., Yang, X.S.: Software test effort estimation: a model
based on cuckoo search. Int. J. Bio-Inspired Comput. 4(5), 278–285 (2012)

50. Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Comput. Appl.
24(1, SI), 169–174 (2014). doi:10.1007/s00521-013-1367-1

51. Yang, X.S., He, X.: Bat algorithm: literature review and applications. Int. J. Bio-Inspired
Comput. 5(3), 141–149 (2013). doi:10.1504/IJBIC.2013.055093

52. He, X., Ding, W.J., Yang, X.S.: Bat algorithm based on simulated annealing and gaussian
perturbations. Neural Comput. Appl. 25(2), 459–468 (2014)

53. Wang, G., Guo, L.: A novel hybrid bat algorithm with harmony search for global numerical
optimization. J. Appl. Math. 2013, 1–22 (2013)

54. Liu, D., Hohil, M.E., Smith, S.H.: N-bit parity neural networks: new solutions based on linear
programming. Neurocomputing 48(1–4), 477–488 (2002)

55. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning databases
(1998). http://www.ics.uci.edu/mlearn/MLRepository.html

162 M. Tuba et al.

http://dx.doi.org/10.1155/2014/176718
http://dx.doi.org/10.1007/s00521-013-1367-1
http://dx.doi.org/10.1504/IJBIC.2013.055093
http://www.ics.uci.edu/mlearn/MLRepository.html

The Potential of the Firefly Algorithm
for Damage Localization and Stiffness
Identification

Sara Casciati and Lorenzo Elia

Abstract The identification of those differences between the current behavior and
the initial state of a structure which are indicative of the presence of damage is one
of the aims of structural health monitoring. Since the last decades, considerable
research advances have been conducted in the optimization field. In this paper, an
objective function that minimizes the discrepancies between the analytical and the
experimental modal features obtained from the measurements of the actual dynamic
response of a structure is formulated. Once the stiffness parameters are set as design
variables, the firefly algorithm is applied to carry out the iterations toward the global
minima. Partial solutions are analyzed along different steps of the procedure and
identified as local optima by calculating the new stiffness matrices and estimating
the corresponding values of the objective function. Eventually, the damage detec-
tion and localization are pursued by the comparison between the stiffness matrix
identified once the optimization process is finished and the starting one. This
procedure is applied to a numerical example, which is representative of a generic
structure meshed into finite elements where damage is introduced as a local stiffness
reduction.

Keywords Damage localization � Firefly algorithm � Metaheuristic methods �
Stiffness identification

S. Casciati
Department of Civil Engineering and Architecture,
University of Catania, piazza Federico di Svevia, Siracusa, Italy

L. Elia (&)
Department of Civil Engineering and Architecture,
University of Pavia, via Ferrata 3, Pavia, Italy
e-mail: lorenzo.elia@unipv.it

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_9

163

1 Introduction

In the structural engineering field, most design optimization problems are
non-linear, with complicated constrains and a large number of design variables. In
order to avoid multiple local optima when dealing with non-linearity, one should
resort to global algorithms only, as stated in Gandoni et al. [1]. Commonly, damage
is characterized by changes in the modal parameters, e.g., natural frequencies and
mode shapes, as reported in Perera et al. [2]. Therefore, an objective function which
minimizes the discrepancies between the analytical and the experimental modal
features obtained from the measurements of the actual structural dynamic response
is herein formulated. The selected design variables are the local stiffness parameters
and the firefly algorithm (FA) is applied to carry out the iterations toward the global
minima in a metaheuristic framework. At each step of the proposed procedure, the
objective function is computed based on the newly generated stiffness matrix.
Finally, damage detection and localization are achieved by comparing the stiffness
matrix identified once the optimization process is finished with the starting one. The
procedure is applied to a numerical example, which is representative of a generic
structure meshed into finite elements where the damage is introduced as a local
stiffness reduction.

2 The Firefly Algorithm Approach

A large number of classical and current optimization algorithms is deterministic, as
mentioned by Yang in [3]. The gradient-based methods are widely used in most
deterministic optimization algorithms, as the Newton-Raphson method. Such
algorithms are not applicable when the objective function is very discontinuous.
In these cases, a gradient-free algorithm is conveniently applied since it requires
only to evaluate the function and not its derivatives. In particular, Yang developed
in 2007 the firefly algorithm [4] that is based on the behavior and patterns of
fireflies. This algorithm was first introduced for continuous optimization and later
extended to discrete problems with applications in different fields, such as structural
control or image processing among others. Basically, the firefly algorithm is
founded on three main assumptions, as stated by Yang in [5]:

• all the fireflies are assumed to be unisex, therefore a firefly is attracted to another
one regardless the sex;

• the attractiveness of a firefly is strictly related to its brightness and decreases
with the distance;

• the brightness of a firefly is determined based on the objective function.

The brightness is the main aspect for determining the movement of the fireflies [6].
If the maximum is pursued and two fireflies are considered, the less bright one moves
towards the brighter one. The reverse occurs if the minimum is sought. In the total

164 S. Casciati and L. Elia

absence of brightness, the fireflies move randomly. The search of the optimal point,
(i.e., the global minimum or maximum of the objective function) is performed by the
objective function itself, without depending on the calculation of its gradient. This
condition allows not to use the derivatives, thus simplifying the computational bur-
den. Unlike classical gradient methods, the firefly algorithm does not introduce any
error when either the variables are discrete or the function is not differentiable [7].
Furthermore, the firefly algorithm depends only on few control parameters and
requires a small computational effort with respect to other metaheuristic methods,
owed to the elementary operations to solve, as sums and differences.

The procedure starts from a randomly generated population (P) of fireflies,
whose size is NP. This population belongs to a well-defined existence domain,
which depends on the dimension (d) of the optimization problem. Initially the

fireflies are uniformly distributed in the entire search domain at locations xðPÞi with
i ¼ 1; 2; . . .;NP. Each individual of the population is considered as a possible
candidate to construct the following generation. Furthermore, the Cartesian distance

between any two fireflies xðPÞi and xðPÞj is calculated as

rðPÞij ¼ xðPÞi � xðPÞj

��� ��� ¼
ffiXd
k¼1

xðPÞi;k � xðPÞj;k

� �2

vuut ð1Þ

where x Pð Þ
i;k represents the k-th component of the vector xðPÞi of the i-th firefly.

Two important items are the variation of the light intensity and the formulation
of the attractiveness. The value of the objective function assessed at the current
point of the solution space determines the light intensity. When the cost function
minimization is pursued, the current firefly shall move toward a less bight one. The
attractiveness is defined as

bðPÞij rðPÞij

� �
¼ 1� bminð Þe�crðPÞ

2

ij þ bmin ð2Þ

where βmin denotes the minimum attractiveness, (1−βmin) the attractiveness increase

at rðPÞij ¼ 0, and γ the light absorption. Thus, the movement of a firefly xðPÞi that is

attracted to another one xðPÞj less bright but more attractive, is given by

xðPþ1Þ
i ¼ xðPÞi þ b Pð Þ

ij xðPÞj � xðPÞi

� �
þ fjðPÞi ð3Þ

where the second term on the right hand side is due to the attraction, and the last

one denotes the randomization term, with ζ and jðPÞi representing the randomization
parameter and the vector of random numbers drawn from a Gaussian distribution,
respectively.

The Potential of the Firefly Algorithm … 165

Usually, in structural health monitoring, a typical issue consists of evaluating the
performance of a structure without a priori knowing its actual mechanical properties,
but only its response under dynamic excitation [8]. In order to solve the inverse
problem, a numerical approach consists of running finite elements analyses where
the design variables ought to satisfy the requirement of minimizing the discrepancies
with the measured response. Furthermore, for linear systems, the requirement
becomes a null difference between the generated and the measured modal parame-
ters. Hence, in such cases, the optimal value of the objective function is known and
equal to zero.

The adopted solution strategy based on the firefly algorithm is summarized by
the flowchart in Fig. 1 and implemented in MATLAB® [9]. As the iterations of the
algorithm progress, the fireflies move toward local optima. By comparing the best
solution among the optima, the global one is eventually achieved. In this manner,
the convergence of the algorithm is achieved from any large number of fireflies.

Fig. 1 Flowchart of firefly
algorithm

166 S. Casciati and L. Elia

The performance and the accuracy of the method is based on two main steps:

1. the selection of the optimization variables;
2. the formulation of the objective function.

The latter topic is discussed in the following section, for the general structural
health monitoring application under study.

The computational burden increases proportionally with the number of design
parameter. A numerical example is then used to check whether the method is
applicable to high-dimensions problems.

3 The Formulation of the Objective Function

One assumes that the dynamic signature of a structure in its current state is known
as either experimentally measured or numerically simulated. Traditional modal
analysis tools for linear systems can then be applied to derive its modal features,
such as frequencies and mode shapes. The obtained parameters are indicated with
the subscript ‘exact’ in the following elaborations because they refer to the actual
behavior of the structure in its present conditions. In particular, �xexact denotes the
N × 1 vector of known natural frequencies, and �Uexact the N × N matrix of the
corresponding modal shapes.

Let x be a generic d × 1 vector of design parameters in the current population
along the firefly algorithm. For easiness of the notation, the superscript tracking the
population and the subscript identifying the individual are herein dropped.

The corresponding stiffness matrix, Kgen xð Þ; is computed at the beginning of the
current step of the algorithm. The frequencies and the mode shapes are then
obtained by solving the following eigenvalue-eigenvector problem [8]:

KgenðxÞ � x2
i;genðxÞM

h i
/i;genðxÞ ¼ 0, i = 1,. . .,N ð4Þ

where M indicates the mass matrix and it is assumed as known and unvaried with
respect to the initial state. The resulting eigenvalues are stored in a N × 1 vector
xgenðxÞ, while the eigenvectors in a N × N matrix UgenðxÞ, which has the N × 1
eigenvector /i;genðxÞ as the i-th column.

The objective function is formulated as the norm of the difference between the
exact and generated parameters, and is given as follows by using matrix notation:

FðxÞ ¼
ffi

�xexact � xgenðxÞ
�xexact

� �T

�P � �xexact � xgenðxÞ
�xexact

� �" #vuut þ wG �Uexact;UgenðxÞ
� 	

ð5Þ

The Potential of the Firefly Algorithm … 167

or, equivalently, in explicit scalar form as:

FðxÞ ¼
ffiXN
i¼1

1
i

�xi;exact � xi;genðxÞ
�xi;exact

� �2
vuut þ w max

1� j�N

PN
i¼1

�Uij;exact�Uij;genðxÞ
� 	2

PN
i¼1

�U
2
ij;exact

2
6664

3
7775
ð6Þ

being P a N × N diagonal matrix of weights, where the i-th element (1/i) is selected
to prioritize the lower frequencies over the higher ones, which are more affected by
the measurements noise.

The first term on the right hand side of Eq. (5) was initially considered alone.
The further introduction of the mode shapes results in an improvement for the
convergence of the method, as confirmed by the numerical results reported in the
following section. A scalar weight, w, is also introduced and preliminary calibrated
by manually running the code several times in order to achieve satisfying results. It
is worth noting that, when the eigenvectors are considered, the norm of a matrix is
not uniquely defined. Indeed, according to [10], the norm of a N × N matrix H could
be computed as either:

l2normðHÞ ¼ greatest eigenvalue of HTH
� 	1=2 ð7Þ

or

l1norm(HÞ ¼ max
1� j�N

XN
i¼1

ðHijÞ ð8Þ

When the l2norm is applied to the j-th column of matrix H, it degenerates to the

traditional norm of a vector, i.e.: l2normðHjÞ � Hj
�� �� ¼

ffiP
i¼1; ...;N ðH2

ijÞ
q

with

j ¼ 1; . . .;N.
The last term on the right hand side of Eq. (5) is given as the maximum of the

ratios between the squares of the l2norm of the vectors �/j;exact � /j;genðxÞ

 �

and
�/j;exact, for j ¼ 1; . . .;N. In mathematical form, one reads

G �Uexact;UgenðxÞ
� 	 ¼ max

1� j�N

/j;exact � /j;genðxÞ
�� ��

�/j;exact

�� ��2 ð9Þ

whose scalar expression is explicitly represented by the second term in Eq. (6).
Finally, the optimization problem is formulated as follows:

168 S. Casciati and L. Elia

minimizeFðxÞ
under the constraint: xLb � x� xUb

ð10Þ

being xLb and xUb the d × 1 vectors containing the lower and the upper bounds of
each variable in the design parameters vectors, respectively.

4 The Numerical Example

All numerical studies were performed in the MATLAB® environment, including
also the finite element analyses, so that the advantage of transparency at each step
of the procedure is achieved.

As shown in Fig. 2, a short cantilever beam of length 10.16 cm and height
5.08 cm is chosen as the case study. The beam is discretized in sixteen, two-
dimensional, four-noded (ne = 4), iso-parametric elements over two layers, under
the assumption of plane stress condition. Hence, the mesh consists of 16 elements
(m = 16) and 27 nodes (n = 27), with 3 of them that are fixed (nf = 3), so that the
degrees of freedom are ndof = 2(n−nf) = 48.

The material is assumed as isotropic and each element has a Young modulus
E = 703.7 MPa, a Poisson ratio v = 0.3, and a mass density q ¼ 7:7�
10�5 N

�
mm3

� 	�
mm

�
s2

� 	
.

5 Finite Element Analyses

A classical displacements-based approach is adopted to carry out the finite element
analyses [11]. Thus, the local displacements of a single element are expressed as
functions of its nodal displacements by an approximate model depending on the
selection of the so-called shape function, Ne.

In this context, the element stiffness matrix Ke, of size 2ne × 2ne, follows the
principle of virtual work and is given by

Fig. 2 Finite element
discretization of the cantilever
beam

The Potential of the Firefly Algorithm … 169

Ke ¼
Z
Ve

BT
eDeBedV ð11Þ

where Ve is the volume of the e-th finite element, Be the compatibility matrix that
contains the spatial derivatives of the shape functions, and De the matrix of the
material constants.

By properly defining the connectivity matrix, Le, for each e-th element, one can
assemble the global stiffness matrix, of size ndof × ndof, as

K ¼
Xm
e¼1

LT
eKeLe ð12Þ

According to this procedure, the continuity of the structure is imposed at the
nodes in common to several elements, which have to undergo the same displace-
ments passing from the local to the global reference system. Furthermore, the
displacements prevented by the boundary conditions are properly erased during the
process of assembling.

Similarly, for a given material of mass density ρ, one defines an element mass
matrix as

Me ¼
Z
Ve

qNT
eNedV ð13Þ

and assembles, over all elements, a global mass matrix, of size ndof × ndof, given by

M ¼
Xm
e¼1

LT
eMeLe ð14Þ

Once this process is completed, the resulting stiffness and mass matrices are both
symmetric and positive-definite. The ndof × 1 vector of unknown displacements, u,
is assumed to be governed by the equations of motion of an undamped system in
free vibration: M€uþKu ¼ 0. By expressing the displacements in terms of modal
coordinates, classical modal analysis is performed.

In the present work, a damage is induced to any e-th element of the structure by
simply multiplying the corresponding local stiffness matrix by a non-dimensional
quantity, αe, whose real value falls in the interval between 0 and 1. In other words, a
degradation of stiffness in the e element yields to a damaged stiffness matrix which
can be expressed as

Ke;dam ¼ aeKe ð15Þ

170 S. Casciati and L. Elia

with 0 < αe < 1, being αe = 1 associated to the undamaged reference condition. The
analyses are carried out for different damage scenarios as summarized in Table 1
and Fig. 3.

It is worth noting that the mass matrix can be constructed using two different
methods:

1. the herein adopted finite elements method is based on a consistent mass matrix,
i.e., a full matrix of non-null inertia terms, that also includes the rotational
inertia;

2. the classical assumption that the masses are lumped at the nodal points yields,
instead, to a diagonal mass matrix which, for the element e, is given by
MLe ¼ qVe=neð ÞIe, with Ie the identity matrix of size 2ne × 2ne.

Table 1 Different structural configuration and damage scenarios

Structural configuration Element stiffness coefficients

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16

Undamaged 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Damage A 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Damage B 1 1 1 1 1 1 1 1 0.8 1 1 1 1 1 1 1

Damage C 0.8 1 1 1 1 1 1 1 0.8 1 1 1 1 1 1 1

Damage D 0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Damage E 1 1 1 1 1 1 1 1 0.4 1 1 1 1 1 1 1

Damage F 1 1 1 1 1 1 1 1 1 1 1 0.8 1 1 1 1

Damage G 0.8 0.9 1 1 1 1 1 1 0.7 0.8 1 1 1 1 1 1

Fig. 3 Different damage scenarios for each structural configuration

The Potential of the Firefly Algorithm … 171

However, the purpose of this study is limited to the identification of only the
stiffness matrix.

The exact values of the natural frequencies and mode shapes are achieved by
solving the eigenvalue problem in Eq. (4) for all the structural configurations
defined in Table 1. The resulting first nine circular frequencies are reported in
Table 2 for each of the considered cases. In the following analyses, the quantities
�xexact and �Uexact have size ndof × 1 and ndof × ndof, respectively, where ndof denotes
the number of degrees of freedom.

6 Identification of the Stiffness Matrix via FA

All the performed analyses aim to recognize the previously defined damage sce-
narios (see Table 1), given the identified modal features. Once the frequencies �xexact

and the mode shapes �Uexact are introduced in the objective function defined in
Eq. (5), the firefly algorithm is applied to solve the optimization problem stated in
Eq. (10). The following d × 1 parameters vector collects the coefficients of the
element stiffness matrix which have to be identified:

x ¼ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16½ �T ð16Þ

Theoretically, the existence domain of each parameter is the interval between 0
and 1 on the real line. In order to numerically identify the proper search domain
where the convergence of the method is achieved, a preliminary study is carried out
on the undamaged structure. For each case defined in Table 1, damage detection
and localization are then pursued.

Table 2 First exact nine modal frequencies for different values of the element stiffness coefficients

Structural
configuration

Exact values of the first nine circular frequencies (rad/s)

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

Undamaged 66.86 235.38 262.48 562.97 701.09 733.97 956.56 965.88 1,059.69

Damage A 65.41 232.10 258.81 555.75 692.53 727.73 955.39 959.60 1,046.85

Damage B 65.41 232.10 258.81 555.75 692.53 727.73 955.39 959.60 1,046.85

Damage C 63.98 228.67 254.64 548.06 684.12 720.89 953.07 954.65 1,036.58

Damage D 60.03 220.53 248.33 533.26 660.24 710.43 941.83 952.27 999.05

Damage E 60.03 220.53 248.33 533.26 660.24 710.43 941.83 952.27 999.05

Damage F 66.44 233.17 260.35 557.90 699.04 733.11 952.10 955.97 1,047.43

Damage G 61.73 222.33 248.70 540.96 674.26 713.24 944.25 953.27 1,027.94

172 S. Casciati and L. Elia

6.1 A Preliminary Study on the Undamaged Configuration

In the following analyses, the entire sets of the eigenvalues and eigenvectors are
considered as inputs to the firefly algorithm. Furthermore, in Eq. (4), one assumes
N = ndof = 48. The undamaged state is preliminary investigated to calibrate the
control parameters of the firefly algorithm and to define a proper search
domain [12]. In all the analyses, a unit weight, w = 1, is assumed for the contri-
bution of the eigenvectors in the objective function. The control parameters of the
FA are reported in Table 3.

In particular, the randomization parameter, ζ, the minimum attractiveness, βmin,
and the absorption coefficient, γ, are kept constant in all the analyses, as suggested
in literature and in most implementations [5]. Instead, the size of the initial pop-
ulation, NP, and the maximum number of iterations, Imax, may change depending
on the scale of the optimization problem.

The definition of the search domain of each variable is assigned as an interval
centered around the value x0 = 1.0. The lower and upper bounds of this interval are
given as xLb ¼ 4=5ð Þx0 ¼ 0:80 and xUb ¼ 6=5ð Þx0 ¼ 1:20, respectively. Under
these assumptions, the solution in the undamaged case is reached after 224 itera-
tions, with an error close to 0 %.

6.2 Damage Localization Analyses

Several analyses are carried out to localize the damage in the structure under
different damage scenarios. For the first and the second damage cases, denoted as A
and B in Table 1, the correct solution should localize and quantify the damage in
correspondence with elements 1 and 9, respectively, which are both adjacent to the
fixed edge of the beam. The path to convergence for damaged case A is shown in
Fig. 4 by plotting the successive values of the objective function versus the number
of iterations. For case A the convergence to a null value of the objective function is
achieved after 196 iterations, and a similar trend is also observed for the case B.

The typical shape of the objective function under consideration is shown in
Fig. 5 for the case when the weight w in Eq. (5) is set equal to 0, i.e., there is no
eigenvector contribution.

Table 3 Input parameters of
the firefly algorithm Control parameter Value

NP, Size of the initial population of fireflies 50

Imax Maximum number of iterations 1,000–1,500

ζ, randomization parameter 0.5

βmin, minimum attractiveness 0.2

γ, absorption coefficient 1

The Potential of the Firefly Algorithm … 173

When, instead, the weight in Eq. (5) is set equal to 1, a curve presenting a very
steep slope in the neighborhood of the global minimum is obtained, as shown in
Fig. 6. The global optimum is located at the bottom of a ‘well’, and the challenge
consists of entering the ‘well’ without first getting trapped on a local minimum.
Indeed, it is evident from the plots in Figs. 5 and 6 that there exist several situations
in which the requirement on the natural frequencies is satisfied, but there is only one
point where also the eigenvectors’ difference is minimized. This point represents the
searched global minimum of the objective function, and it is achieved when
the current vector of the design parameters corresponds to the actual one. Therefore,

Fig. 4 Path to convergence for damaged case A

Fig. 5 Objective function for damaged case A with w = 0

174 S. Casciati and L. Elia

the strength of the objective function formulation given in Eqs. (5) and (6) is
represented by the existence and the uniqueness of the global minimum.

The detection of multiple damages is also carried out by considering case C,
where the damage is symmetrically introduced in both elements 1 and 9. For this
case, the convergence is achieved after 375 iterations.

When considering cases D and E, the location of the single damaged element
coincides with the one of cases A and B, respectively, but the intensity of damage is
higher. As a consequence, the number of iterations necessary for convergence
reduces to 76.

Fig. 6 Objective function for damaged case A with w = 1

Fig. 7 Path to convergence for damaged case F

The Potential of the Firefly Algorithm … 175

To verify that the central elements behave in the same manner as the edge ones,
a small damage is introduced in the element 12, as shown in Fig. 3 for case F. The
convergence is reached after 217 iterations. The path to convergence and the shape
of the objective function with w = 1 are shown in Figs. 7 and 8, respectively.

The last analyzed case (labelled as G in Table 1) is characterized by multiple,
non-symmetric damage. The exact solution consists of a local stiffness coefficient of
0.8 in elements 1 and 10, 0.9 in element 2, and 0.7 in element 9 (see Fig. 3). With
respect to the other cases, an increased maximum number of iterations from 1,000

Fig. 8 Objective function for damaged case F with w = 1

Fig. 9 Path to convergence for damaged case G

176 S. Casciati and L. Elia

to 1,500 is assigned, while the population size and the other parameters are
unchanged.

The path to convergence and the shape of the objective function for the case G
are shown in Figs. 9 and 10, respectively. The performed analysis shows that the
convergence can be reached after only 114 iterations.

7 Conclusions

In this chapter, an objective function to minimize the difference between the ana-
lytical and the experimental modal characteristics of the dynamic response of a
structure is formulated. The so-called firefly algorithm, which belongs to the class
of the nature-inspired metaheuristic algorithms, is adopted as the solving technique.
Once the damage is introduced [13, 14] in a generic structure as a local stiffness
deterioration, the proposed procedure permits to detect and localize it by the
identification of the change in the stiffness matrix with respect to the initial and
undamaged state as stated in [15] by Casciati and Faravelli and in [16] by Faravelli
and Marazzi.

From the results of the analyses performed on a numerical example, the firefly
algorithm can converge on global optima with a quite small population of fireflies
and a consequent moderate computational burden.

Acknowledgments The authors gratefully acknowledge the financial support provided by the
corresponding Athenaeum Research Grants.

Fig. 10 Objective function for damaged case G with w = 1

The Potential of the Firefly Algorithm … 177

References

1. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using firefly
algorithm. Comput. Struct. 89, 2336–2535 (2011)

2. Perera, R., Ruiz, A., Manzano, C.: An evolutionary multiobjective framework for structural
damage localization and quantification. Eng. Struct. 292, 2540–2550 (2007)

3. Yang, X.S.: Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press (2010)
4. Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 29,

175–184 (2013)
5. Yang, X.S.: Firefly algorithms for multimodal optimization, in stochastic algorithms:

foundations and applications, SAGA 2009. Lect. Notes Comput. Sci. 5792, 169–178 (2009)
6. Casciati, F., Elia, L., Faravelli, L.: Optimization of sensors location for structural monitoring,

on the proceedings of OPT-i, international conference on engineering and applied sciences
optimization. Kos Island, Greece, (2014)

7. Casciati, S., Elia, L.: Potential of metaheuristic methods for damage localization and stiffness
identification, on the proceedings of OPT-i, international conference on engineering and
applied sciences optimization. Kos Island, Greece (2014)

8. Casciati, S.: Stiffness identification and damage localization via differential evolution
algorithms. Struct. Control Health Monit. 15, 439–449 (2008)

9. Matlab Matlab user manual. Mathworks Inc., Lowell (2013)
10. Nair, K.K., Kiremidjian, A.S., Law, K.H.: Time series-based damage detection and

localization algorithm with application to the ASCE benchmark structure. J. Sound Vib.
291, 349–368 (2006)

11. Papadimitriou, C.: Optimal sensor placement methodology for parametric identification of
structural systems. J. Sound Vib. 278, 923–947 (2004)

12. Morlier J.: Méthodes d’analyse des déformées modales par traitement du signal pour le
diagnostic in situ de structures. Ph.D. Thesis, University of Bordeaux, France (2005) (in
French)

13. El-Borgi, S., Choura, S., Ventura, C., Baccouc, M., Cherif, F.: Modal identification and model
updating of a reinforcement concrete bridge. Smart Struct. Syst. 1, 83–101 (2005)

14. Savoia M., Vincenzi L.: Differential evolution algorithm for dynamic structural identification.
In: Proceedings of ICOSSAR’05, Rome, Italy, Millpress, Rotterdam (2005)

15. S. Casciati, L. Faravelli, Stiffness matrix estimation via differential evolution algorithm. In:
Proceedings of the Third European Workshop on Structural Health Monitoring, Granada,
Spain. DEStech Publications, Lancaster, U.S.A. (2006)

16. Faravelli, L., Marazzi F.: Stiffness matrices and genetic algorithm identifiers toward damage
detection. In: Proceedings of IABMAS’06, Porto, Portugal (2006)

178 S. Casciati and L. Elia

Synthesizing Cross-Ambiguity Functions
Using the Improved Bat Algorithm

Momin Jamil, Hans-Jürgen Zepernick and Xin-She Yang

Abstract The cross-ambiguity function (CAF) relates to the correlation processing
of signals in radar, sonar, and communication systems in the presence of delays and
Doppler shifts. It is a commonly used tool in the analysis of signals in these systems
when both delay and Doppler shifts are present. In this chapter, we aim to tackle the
CAF synthesization problem such that the synthesized CAF approximates a desired
CAF. A CAF synthesization problem is addressed by jointly designing a pair of
waveforms using a metaheuristic approach based on the echolocation of bats.
Through four examples, it is shown that such an approach can be used as an
effective tool in synthesizing different types of CAFs.

Keywords Cross-ambiguity function � Metaheuristic algorithm � Improved bat
algorithm � CAF synthesization

1 Introduction

In a conventional matched filter receiver, the internal reference waveform is a
duplicate of the transmitted signal, i.e., the receiver reference waveform is matched
to the transmitted signal [1]. However, in radar applications, the appropriate time
delay and compression must be taken into account at the receiver side. Therefore, in

M. Jamil (&)
Automotive Division, Harman International, Becker-Goering Str. 16,
76307 Karlsbad, Germany
e-mail: momin.jamil@harman.com

M. Jamil � H.-J. Zepernick
Blekinge Institute of Technology, 371 79 Karlskrona, Sweden
e-mail: hans-jurgen.zepernick@bth.se

X.-S. Yang
School of Science and Technology, Middlesex University,
London NW4 4BT, UK
e-mail: x.yang@mdx.ac.uk

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_10

179

a conventional matched filter receiver, the receiver waveform is a replica of the
transmitted signal with appropriate time delay and time compression. However, a
conventional receiver is not able to take care of clutter or jamming suppression. In a
radar system, clutter appears as signal echoes with different delays or Doppler shifts
compared to the signal of interest. In order to suppress impairments due to clutter
and interference, it is desirable to minimize these effects at the receiver side.
Accordingly, a joint design of the transmit signal and receive filter is desirable such
that the signal-to-clutter-plus-interference ratio (SCIR) of the receiver output is
maximized at the time of target detection [2]. As a result, an alternative to con-
ventional receivers, known as a general or optimum receiver, was proposed in [1].
This receiver can be used as a trade-off between the signal-to-noise ratio (SNR) for
improved SCIR [1]. In an optimum receiver, the internal or reference waveforms (or
equivalent filter) may be deliberately mismatched to reduce the sidelobes in the
delay-Doppler plane.

The aforementioned joint design for clutter/interference suppression has been
addressed in [2–9] and the references therein. However, a joint design of the
mismatched filter at the receiver side and the transmit signal leads to a more
complex optimization problem that involves either assessing cross-correlation (CC)
properties with respect to delay in the case of negligible Doppler shifts or focusing
on cross-ambiguity function (CAF) characteristics in the delay-Dopper plane
otherwise [4, 10].

A performance measure frequently used to assess waveforms for radar, sonar,
and communication applications in the presence of delay and Doppler shifts, known
as ambiguity function (AF), was proposed in [11]. An AF is a function of two
variables representing correlation properties of a signal in the delay-Doppler plane.
It provides a mathematical representation of the response of a matched filter to a
received waveform. The waveform design that would yield an optimum AF has
been on the forefront of research for many years. In an ideal case, an AF would
have the shape of a spike at the origin and zero elsewhere in the delay-Doppler
plane. Although such an AF is certainly desirable, in practice, it is not realizable for
signals having finite energy. As a result, large efforts have been given to waveform
designs that relax the zero sidelobe constraint throughout the delay-Doppler plane
to uniformly low sidelobes, while still maintaining a reasonable large value at the
origin. In practice, radar waveforms are often designed by minimizing the sidelobes
of an auto-correlation function (ACF), i.e., by basically matching pre-defined
specifications only to the zero-Doppler cut of an AF [12].

In Woodward [11], the importance of signal designs using waveform synthesis
for radar and sonar applications has been stressed. Nevertheless, the search for
practical solutions to the synthesis problem still poses a challenge to radar system
engineers. A first known mathematical solution to the synthesization problem was
presented in [13]. However, this solution has two drawbacks: (i) it requires that the
shape of a desired ambiguity function is given in analytical form, (ii) it does not
cope with settings where only certain parts of the ambiguity surface are to be
approximated, e.g., the clear area in and around a large neighbourhood of the origin.
As a consequence, this solution is of limited interest to practical radar applications.

180 M. Jamil et al.

In practice, radar engineers typically have a general idea about the desirable shape
of an AF rather than an exact expression of it as a mathematical function. Fur-
thermore, in many scenarios, it is not even necessary to specify the shape of an AF
for the entire delay-Doppler plane. In other words, the region where an AF is
required to produce small values very much depends on the particular radar
application. For example, the Doppler shift may be much smaller compared to the
bandwidth of the transmitted waveform which can be in the order of several
megahertz. In this case, the AF for Doppler shifts beyond the maximum induced
shifts is not required. An alternative approach of constructing a waveform with
optimal ambiguity surface in a region around the main lobe of an AF using well-
know Hermite waveforms has been presented in [14].

In single-input single-output (SISO) radar systems, the problem becomes to
synthesize a single radar waveform that approximates a desired auto-ambiguity
function (AAF) of pre-defined magnitude over the delay-Doppler plane. On the
other hand, multiple-input multiple-output (MIMO) radar systems or communica-
tion systems involve pairs of signals rather than a single waveform. Accordingly,
the synthesis problem focuses on the CAF between a pair of signals. In the con-
sidered context, the CAF describes the receiver response to a mismatched signal as
a function of time and Doppler shift. In particular, the continuous-time CAF is
defined as

vðs; fdÞ ¼
Z1
�1

aðtÞb�ðt þ sÞ expðj2pfdtÞdt; ð1Þ

where a(t) and b(t) are arbitrary waveforms as a function of time t, τ is delay, fd
denotes Doppler frequency/Doppler shift, (·)* denotes complex conjugate, and
j ¼ ffiffiffiffiffiffiffi�1p

. In practice, the CAF is applicable for a SISO radar system when a(t) is
the transmit signal and b(t) represents the receive filter [15]. Similarly, the CAF is
used for a MIMO radar system when both a(t) and b(t) are different transmit signals
[16]. In a conventional matched filter receiver, where the receiver reference
waveform is matched to the transmitted signal [1], i.e. a(t) = b(t), the CAF becomes
an AAF.

Let us now consider two signals a(t) and b(t), consisting of a train of N pulses
si(t) and sj(t), respectively, as

aðtÞ ¼
XN
i¼1

aisiðtÞ; ð2Þ

bðtÞ ¼
XN
j¼1

bjsjðtÞ; ð3Þ

Synthesizing Cross-Ambiguity Functions … 181

where the coefficients ai and bi can be expressed as column vectors of length N as

a ¼ ða1; a2; . . .; aNÞT ; ð4Þ

b ¼ ðb1; b2; . . .; bNÞT ; ð5Þ

and sk(t); k = i, j denotes a pulse shaping function. For example, a rectangular pulse
shaping function is defined as

skðtÞ ¼ 1ffiffiffiffiffi
Tc
p s

t � ðk � 1ÞTc
Tc

� �
; k ¼ 1; 2; . . .;N; ð6Þ

where Tc denotes the pulse duration and

sðtÞ ¼ 1; 0� t� Tc;
0; elsewhere:

�
ð7Þ

Substituting (2), (3), and (6) into (1), the CAF comprising of pulse shaping
functions with respective shifted pulses and corresponding coefficients ai and bj can
be obtained as

vðs; fdÞ ¼
XN
i¼1

XN
j¼1

aib
�
i

Z1
�1

siðtÞs�j ðt þ sÞ expðj2pfdtÞdt; ð8Þ

where the integral represents the CAF between pairs of pulse shaping functions, i.e.,

v̂i;jðs; fdÞ ¼
Z1
�1

siðtÞs�j ðt þ sÞ expðj2pfdtÞdt: ð9Þ

Clearly, synthesizing a CAF such that it matches a desired CAF of pre-defined
magnitude over the delay-Doppler plane is a difficult task. As a result, not many
methods, other than solutions based on the least-squares approaches exist, see, e.g.,
[1, 14, 17–21]. Recently, in [22], an algorithm has been proposed to match a
synthesized CAF to a desired CAF of pre-defined magnitude over the delay-
Doppler plane. More specifically, this algorithm proposes a joint design of a pair of
signals a(t) and b(t), or sequences a and b to tackle the CAF synthesization
problem. Furthermore, in [23], Jamil et al. proposed a Lévy flight based cuckoo
search for a joint sequence design such that their CAF approximates a desired CAF
indicating the potential of metaheuristic approaches to solve such challenging
sequence design problems.

In view of the above, this chapter considers a joint sequence design using the
improved bat algorithm (IBA) of [24] to address the problem of matching a syn-
thesized CAF to a desired CAF of pre-defined magnitude over the delay-Doppler

182 M. Jamil et al.

plane. We hypothesize that a joint design of a pair of sequences a and b such that
their CAF approximates a desired CAF is a global optimization problem (GOP).
Apparently, this type of problem is a highly multimodal problem without any a
priori information about the location of the optimum solution (unimodal) or solu-
tions (multimodal). Traditional optimization methods that require either a good
initial guess or gradient information are unsuitable to solve such problems to
optimality. Therefore, nature-inspired population methods, mimicking the behav-
iour of different species of animals, have been proposed to solve such problems
[25–27]. Due to their general applicability and effectiveness, these algorithms have
been a popular choice to solve modern optimization problems. These population-
based algorithms use population members to explore the problem search space for a
possible solution or solutions by maintaining a balance between intensification
(exploitation) and diversification (exploration). However, intensification (exploita-
tion) and diversification (exploration) are usually based on a uniform or Gaussian
distribution. Lévy flights (LFs) based on the Lévy distribution have been proposed
as an alternative to achieve exploitation and exploration strategies.

The remainder of this chapter is organized as follows. In Sect. 2, we briefly
introduce the Lévy probability distribution, and the motivation of using LFs in
metaheuristic algorithms. In Sect. 3, we present the improved bat algorithm in
detail. In Sect. 4, the formulation and solution to the considered synthesis problem
is presented. Numerical results are presented in Sect. 5. Finally, Sect. 6 concludes
the chapter.

2 Lévy Probability Distribution

2.1 Lévy Distribution

A random process is called stable if the sum of a given number of independent
random variables, X1, X2, …, XN, has the same probability density function (PDF)
up to location and scale parameters as the individual random variables. A well-
known example of a stable random process is a Gaussian process, i.e., the sum of
Gaussian random variables also produces a Gaussian distribution which in addition
has a finite second moment. A stable random process with infinite second moment
produces a so-called α-stable distribution. An α-stable random variable S is defined
by its characteristic function as follows [28]:

Ua;b ¼ E½expðjzSÞ� ¼ expð�bajzjaÞ ð10Þ

where E[·] denotes the expectation operator, j ¼ ffiffiffiffiffiffiffi�1p
, z 2 R, α ∊ (0, 2] and β ≥ 0.

The Lévy probability distribution belongs to a special class of symmetric α-stable
distributions. According to [28], the PDF of a symmetric α-stable random variable
is given by the inverse Fourier transform of (10) as

Synthesizing Cross-Ambiguity Functions … 183

La;bðSÞ ¼ 1
p

Z1
0

expð�bzaÞ cosðzSÞdz ð11Þ

In (11), the parameters α and β control the shape and the scale of the distribution,
respectively. The parameter α takes values in the interval 0 < α ≤ 2 and controls the
heaviness of the distribution, i.e., the decay of the tails. The smaller the value of α,
the more the accumulation of data in the tails of the distribution. In other words, the
random variable values are more likely to be far away from the mean of the
distribution. On the other hand, the larger the value of α, the more the accumulation
of data near the mean of the distribution. Except for a few special cases, a closed-
form expression of the integral in (11) is not known for α in general. The integral in
(11) becomes a Cauchy distribution and Gaussian distribution for α = 1 and 2,
respectively.

2.2 Lévy Flight Based Metaheuristic Algorithms

In recent years, a number of theoretical and empirical studies have tried to explain
that foragers such as grey seals [29], microzooplankton [30, 31], reindeer [32],
wandering albatrosses [33], fish [34], among many others, adapt LF as an optimal
search strategy in search of food. However, it should be mentioned that foragers
adapt their search strategy based on the density of prey, sometimes switching
between LF and Brownian motion (BM). In metaheuristic and stochastic optimi-
zation algorithms, random walks play an important and central role in the explo-
ration of the problem search space. The search performed by metaheuristic
algorithms (MAs) is carried out in a way that it can accomplish goals of intensively
explored areas of the search space with high-quality solutions and move to unex-
plored areas of the search space when necessary. Intensification and diversification
[35, 36] are two key ingredients to achieve these goals. By maintaining a fine
balance between these two components define the overall efficiency of MA. In fact,
Lévy flights have already been used to enhance metaheuristic algorithms with
promising results in the literature, including the cuckoo search and firefly algorithm
[23, 25, 26].

An alternative to a uniform or Gaussian distribution to realize randomization in
MA is offered by the Lévy distribution. Not only does the power law behavior of a
Lévy distribution reduce the probability of returning to previously visited sites in
the problem search space, but it also provides an effective and efficient exploration
mechanism of the far-off regions of the function landscape.

184 M. Jamil et al.

3 Improved Bat Algorithm

The bat algorithm (BA) mimicking the echolocation behavior of certain species of
bats was presented in [27] and is based on the following set of rules and
assumptions:

1. All bats know the difference between food/prey, background barriers, and use
echolocation to sense the proximate distance from the prey;

2. In search mode, bats fly randomly with a frequency fmin with velocity vi at
position xi. During search mode, bats vary wavelength λ (or frequency f) and
loudness A0. Depending on the proximity from the target, bats can automatically
adjust the wavelength (or frequency) for their emitted pulses and adjust the rate
of pulse emission r ∊ [0, 1];

3. It is further assumed that the loudness varies from a large (positive A0) to a
minimum value of Amin;

4. Ray tracing is not used in estimating the time delay and three dimensional
topography;

5. The frequency f is considered in a range [fmin, fmax] corresponding to the range of
wavelengths [λmin, λmax];

6. For simplicity, frequency is assumed in the range f ∊ [0, fmax].

According to [27], by making use of the above rules and assumptions, the
standard bat algorithm (SBA) will always find the global optimum. However, in
SBA, the bats rely purely on random walks drawn from a Gaussian distribution,
therefore, speedy convergence may not be guaranteed [27]. To improve the bat
algorithm further, Jamil et al. developed the improved bat algorithm (IBA) [24].

In this section, a brief overview of the IBA [24] is presented which constitutes an
improved version of SBA [27]. In IBA, the random motion of bats is replaced by
LF instead of using a Gaussian distribution. The motivation for this choice is that
the power-law behavior of the Lévy distribution will produce some members of the
random population in the distant regions of the search space, while other members
will be concentrated around the mean of the distribution. The power-law behavior
of the Lévy distribution also helps to induce exploration at any stage of the con-
vergence, making sure that the system will be not trapped in local minima. The
Lévy distribution also reduces the probability of returning to the previously visited
sights, while the number of visitations to new sights is increased [24, 25, 27]. For a
comprehensive review of the bat algorithm and its variants, please refer to [37].

3.1 Motion of the Bats

In IBA, the position or location of each bat is given as xti and it flies through the D-
dimensional search space or solution space with a velocity vti. The position and
velocity for bat i are updated at time t, respectively, as

Synthesizing Cross-Ambiguity Functions … 185

vti ¼ vt�1i þ ðxt�1i � xbesti Þfi; ð12Þ

xtþ1i ¼ xt�1i þ vtiDt; ð13Þ

where Δt represents the discrete time step of the iteration. However, in mathematical
optimization, emphasis is often given to dimensionless variables, and therefore,
Δt can be implicitly chosen as 1. Furthermore, the pulse frequency fi for bat i at
position xi is given by

fi ¼ fmin þ ðfmax � fminÞb; ð14Þ

and vectors xi and vi represent the position and velocity of bat i. In (14), β ∊ [0, 1] is
a random number drawn from a uniform distribution, fmin and fmax denote the
minimum and maximum frequency of the emitted pulse [27]. The symbol xbesti in
(12) represents the current best solution found by bat i by comparing all the
solutions among all the NP bats.

In IBA [24], once a best solution is selected among the current best solutions, a
new solution for each bat is generated using an LF that is based on a Lévy dis-
tribution according to

xti ¼ xbesti þ c � LaðSÞ: ð15Þ

Here, vector LaðSÞ represents a random walk that is generated based on the Lévy
distribution for each i (bat) with parameter α. The parameter γ > 0 scales the random
step length and is related to the scales of the problem [25–27]. Specifically, the step
size S of the random walk is drawn from a Lévy distribution (with an infinite mean
and variance) that is often given in terms of a power-law formula given as [25, 26, 28]

LaðSÞ� 1
Saþ1

; jSj � 0; ð16Þ

where α is the exponent determining the shape of the tail of the distribution.

3.2 Variation of Loudness and Pulse Rates

In IBA, we use the originally proposed approach of controlling the exploration and
exploitation in bats as proposed in [27], i.e., variation of loudness and pulse rates. In
order to switch to the exploitation stage when necessary, each bat i varies its
loudness Ai and pulse emission rate ri iteratively as follows:

186 M. Jamil et al.

Atþ1
i ¼ �At0

i ; ð17Þ

rtþ1i ¼ rt0i ½1� expð�CtÞ�; ð18Þ

where At0
i , Atþ1

i , rt0i , and rtþ1i , respectively, represent initial loudness, updated
loudness, initial pulse emission rate, and updated pulse emission rate after each
iteration for bat i. Furthermore, ϒ and Γ are constants.

4 Problem Formulation

In practice, infinite energy signals do not exist, therefore, ambiguity surfaces that
produce a Dirac impulse or a function with ideal delay-Doppler characteristics do
not exist. Thus, it is often desirable to design waveforms that exhibit a peak at the
origin and produce an almost flat surface in and around a large neighborhood of the
origin.

The problem of matching a CAF to a desired CAF can be formulated as a
minimization problem and can be solved by using the cyclic approach proposed in
[22]. Accordingly, such an optimization problem can be formulated as

min
a;b

Cða; bÞ ¼
Z1
�1

Z1
�1

wðs; fdÞ � ½dðs; fdÞ � jbHXðs; fdÞaj�2dsdfd ; ð19Þ

where w(τ, fd) is a weighting function that specifies which area of the CAF in the
delay-Doppler plane needs to be emphasized and (·)H denotes Hermitian transpose.
The modulus of the desired CAF is denoted by d(τ, fd) which is positive and real-
valued, a and b are different sequences. In view of (9), the cross-ambiguity matrix
of the pulse shaping functions can be written as

Xðs; fdÞ ¼
v̂1;1ðs; fdÞ � � � v̂1;Nðs; fdÞ
..
. . .

. ..
.

v̂N;1ðs; fdÞ � � � v̂N;Nðs; fdÞ

2
64

3
75: ð20Þ

where v̂i;jðs; fdÞ denotes the CAF between the i-th and j-th pulse shaping function
given by (9). Furthermore, the term under the absolute value operator |·| in (19)
represents the CAF in (8) in a more compact form as

vðs; fdÞ ¼ bHXðs; fdÞa: ð21Þ

Due to phase incoherencies, the magnitude of the ambiguity function contains all
the information about a signal pertinent to system performance [20]. In order to
solve the ambiguity function synthesis problem, the indirect approach introduced in

Synthesizing Cross-Ambiguity Functions … 187

[20, 38] can be used. Accordingly, auxiliary phases are introduced to the desired
ambiguity function d(τ, fd) in (19), that is

~Cða; b; hðs; fdÞÞ ¼
Z1
�1

Z1
�1

wðs; fdÞ � jdðs; fdÞe jhðs;fdÞ � bHXðs; fdÞaj2dsdfd: ð22Þ

Introducing auxiliary phases θ(τ, fd) makes the integrand in (22) real and positive
everywhere. The minimization problem in (22) can then be solved by fixing two
arguments of ~Cð�; �; �Þ and minimizing ~Cð�; �; �Þ with respect to the third variable
[22].

First, let us fix a pair of sequences a and b which leads to the auxiliary phase
θ(τ, fd) being expressed as [20, 38]

hðs; fdÞ ¼ argfbHXðs; fdÞag: ð23Þ

Second, by fixing the auxiliary phases θ(τ, fd) and sequence b, the criterium
~Cð�; �; �Þ ! ~CðaÞ can be written as [20, 38]

~CðaÞ ¼ aHD1a� aHD2b� bHDH
2 aþ

Z1
�1

Z1
�1

wðs; fdÞjdðs; fdÞj2dsdfd

¼ ða� D�11 D2bÞHD1ða� D�11 D2bÞ þ C;

ð24Þ

where constant C does not depend on sequence a and therefore can be ignored. It
follows from (24) that the minimizer a is given as

a ¼ D�11 D2b; ð25Þ

where D1 2 C
N	N and D2 2 C

N	N , respectively, are given as

D1 ¼
Z1
�1

Z1
�1

wðs; fdÞXHðs; fdÞbbHXðs; fdÞdsdfd; ð26Þ

D2 ¼
Z1
�1

Z1
�1

wðs; fdÞdðs; fdÞehðs;fdÞXHðs; fdÞdsdfd: ð27Þ

188 M. Jamil et al.

Third, by fixing the auxiliary phases θ (τ, fd) and sequence a, the criterium
~Cð�; �; �Þ ! ~CðbÞ can be formulated as [20, 38]

~CðbÞ ¼ bHD3b� bHD2a� aHDH
2 bþ

Z1
�1

Z1
�1

wðs; fdÞjdðs; fdÞj2dsdfd

¼ ðb� D�13 DH
2 aÞHD3ðb� D�13 DH

2 aÞ þ C;

ð28Þ

where constant C does not depend on sequence b and therefore can be ignored.
Then, in view of (28), the minimizer b can be obtained as

b ¼ D�13 DH
2 a; ð29Þ

where D3 2 C
N	N is given as

D3 ¼
Z1
�1

Z1
�1

wðs; fdÞXðs; fdÞaaHXHðs; fdÞdsdfd : ð30Þ

4.1 Proposed Approach

In the proposed approach, the phases of the elements of sequence a 2 C
N	1 and

sequence b 2 C
N	1, respectively, are denoted by column vectors of length N as

/a ¼ ½/að1Þ;/að2Þ; . . .;/aðNÞ�T ; ð31Þ

/b ¼ ½/bð1Þ;/bð2Þ; . . .;/bðNÞ�T : ð32Þ

In the context of IBA, each element of the column vectors /a and /b in (31) and
(32), respectively, is considered as a single bat generated randomly in the interval
[0, 2π]. The population size (bats) is equal to the length N of the sequences. Then,
the corresponding sequences a and b, respectively, are given as

a ¼ ½e/að1Þ; e/að2Þ; . . .; e/aðNÞ�T ; ð33Þ

b ¼ ½e/bð1Þ; e/bð2Þ; . . .; e/bðNÞ�T : ð34Þ

Given the above notion of sequence elements being bats, the pseudocode to solve
the CAF synthesization problem using IBA can be formulated as in Procedure 1.

Synthesizing Cross-Ambiguity Functions … 189

Procedure 1: Pseudocode of IBA for CAF synthesization.

190 M. Jamil et al.

4.2 Parameter Settings

Universal values of the parameters At0 , rt0 , Γ, and ϒ do not exist for the problems that
will be discussed in Sect. 5. This is due to the fact that each problem has a different
landscape and dimension. Hence, an effective set of initial values of these parameters
require some experimentation. Accordingly, the initial values for these parameters
were obtained from trial experiments on the optimization problems that will be
considered in Sect. 5. Different initial values for loudness A and pulse emission rate
r were taken in the range [0, 1] with increments of 0.1. For each optimization
problem, the selected values of At0 , rt0 , Γ, and ϒ produced slightly different rates of
convergence as each optimization problem has a different landscape.

In reality, bats increase pulse emission rate ri and decrease loudness Ai after
potential prey has been detected and their approach towards the prey has com-
menced. In the context of optimization, prey refers to a solution of the problem. As
such, an update of loudness Ai and pulse emission rate ri in (17) and (18),
respectively, takes place in the IBA only if a new solution is found. This implies
that the virtual bats are moving towards the optimal solution.

The above experimental approach was also adapted to select the values of
constants ϒ and Γ. The best combination of ϒ and Γ was found to be ϒ = Γ = 0.5.
The results that will be presented subsequently in Sect. 5 show that this choice of
parameters seems to be appropriate for the optimization problems considered. In
summary, the parameter settings listed in Table 1 are used in the simulations.

4.3 Calculation of Lévy Step Size

A CAF synthesization problem can be considered as multimodal optimization
problem without any a priori information regarding the location of an optimal
solution. LFs can be used to generate the random step length S of a random walk

Table 1 Parameter setting
for IBA Parameter Value

Number of bats (population
size), NP

depending on the length
of the sequence to be
synthesized

Number of generations, G 200

Initial loudness, At0 0.1

Initial pulse emission rate,
rt0

0.1

Constants, ϒ = Γ 0.5

Lévy step length, S 1.5

Minimum frequency, fmin 0

Maximum frequency, fmax depending on the problem
domain size

Synthesizing Cross-Ambiguity Functions … 191

drawn from a Lévy distribution. The choice of α in (16) determines the probability
of obtaining a Lévy random number in the tail of the Lévy distribution. Given that
each optimization problem is unique, i.e., has different dimension and landscape,
the task of choosing a favorable value of α that generates a suitable step length
S becomes difficult. In particular, the search ability of the algorithm may be severely
hampered, if an improper value of α is used to generate S.

Given the complex nature of the CAF synthesization problem, it seems that a
universal value of α required to generate S for guiding virtual bats in IBA without
getting trapped in a local minimum does not exist. Therefore, it is appropriate to
carry out a series of experiments in order to find a suitable value of α. For this
purpose, four values of α = 1.3, 1.4, 1.5, and 1.6 were selected. For each of these
values, 10 independent trials for a fixed number of iterations were performed to
minimize (22) for the problems that will be discussed in Sect. 5. It turned out that
α = 1.5 produces the best value of criterium (22) in average over the number of
trails. Therefore, this value has been used to generate the random step length S for
all problems considered in Sect. 5.

4.4 Selection of Scaling Factor

The parameter γ in (15) determines how far the virtual bats in IBA can travel in the
search space. An excessively large value of c causes new solutions to jump outside
of the feasible search space and even to fly off to far regions. On the other hand, the
search is confined to a rather narrow region, if γ is too small. In the former case, the
LF becomes too aggressive, whereas, in the latter case, the LF is not efficient.
Therefore, some sort of strategy is needed to scale step length S such that an
efficient search process is maintained. In order to avoid the particles/bats flying too
far, a small value of parameter γ can be more efficient [25, 26]. A small value of γ
may apply for unimodal problems. We hypothesize that the location of an optimal
solution to a multimodal problem such as CAF synthesization is not known. As
such, selecting a small value of γ will hinder the search process.

Therefore, in order to select an appropriate value of γ, we have adopted the
experimental approach described in Sect. 4.3 and conducted a series of trials with
different values of γ. We have conducted 10 independent trails for a fixed number of
iterations that were performed to minimize (22) for Example 2 in Sect. 5 using
c ¼ 0:01; 0:05; 0:1; 0:5; 0:7 and 0.9. The best peak-to-average power ratio (PAR)
for each of these values produced by IBA for each run was recorded. It was found
that γ = 0.05 produces the best PAR and hence was subsequently used as a basis for
the examples presented in Sect. 5.

192 M. Jamil et al.

5 Numerical Results

Let us consider sequences of length N = 50 for Examples 1 and 2, sequence length
N = 53 for Example 3 and sequence length N = 31 for Example 4. Each element of
the considered sequences corresponds to the phase-coded amplitude of a rectan-
gular pulse shape function of duration Tc. Thus, the duration of a sequence is given
as T = N ·Tc. Furthermore, τ denotes the delay by which a transmitted signal is
returned from a target and fd denotes the Doppler frequency induced by a moving
target. In the sequel, we utilize normalized delay τ/Tc and normalized Doppler
frequency fd ·T, respectively. In what follows, we illustrate by way of four examples
that IBA is able to jointly design sequences a and b such that a desired CAF is
synthesized.

5.1 Example 1

In this example, we aim at synthesizing a CAF with a diagonal ridge while being
zero elsewhere. This type of CAF is desirable when a filter bank is too expensive to
cope with different Doppler frequencies and tolerance to Doppler shifts is needed.
The weighting function is w(τ, fd) = 1 for all (τ, fd) in (19) and the sequence a has
constant modulus, i.e., each element of a takes on the value of one and hence
PAR = 1. The desired CAF is shown in Fig. 1 and the corresponding synthesized
CAF obtained by using IBA is shown in Fig. 2. As can be seen from Fig. 2, the
CAF synthesized by IBA approximates the desired CAF in Fig. 1.

Delay

D
op

pl
er

−50 −40 −30 −20 −10 0 10 20 30 40 50

−20

−10

0

10

20

−35

−30

−25

−20

−15

−10

−5

0Fig. 1 Desired CAF with
diagonal ridge

Synthesizing Cross-Ambiguity Functions … 193

5.2 Example 2

The synthesization of an ideal thumbtack CAF, i.e., narrow peak at the origin and
zero sidelobes in the rest of the delay-Doppler plane is not possible due to the
volume property of CAFs. Therefore, in this example, we aim at synthesizing a
CAF with a clear area in and around a large neighbourhood of the origin using the
following CAF modulus:

dðs; fdÞ ¼ N; for ðs; fdÞ ¼ ð0; 0Þ;
0; elsewhere;

�

and weighting function

wðs; fdÞ ¼ 1; for ðs; fdÞ 2 XdsnX� ds;
0; elsewhere;

�

where Xds ¼ �10Tc; 10Tc½ � 	 � 2
Tc
; 2
Tc

h ion
is the selected region of interest of the

synthesized CAF. In order to compensate for sharp changes in the desired CAF d
(τ, fd) near the origin, the area of the main lobe X� ds ¼ f½�Tc; Tc�nf0g 	
½� 1

Tc
; 1
Tc
�nf0gg near the origin has to be excluded [22]. Recall that the Doppler shift

fd induced on the signal in practice is often much smaller compared to the band-
width of the transmitted signal. Therefore, the weighting function w(τ, fd) outside
the maximum induced Doppler shift fd can be set to zero.

The need of this type of CAF arises in applications such a geolocation of signals,
where the CAF is used to calculate the time of difference of arrival and frequency
difference of arrival of the emitted signal using two receivers [39]. The two col-
lector architecture offers the opportunity to compare the reception of a likely similar

Delay

D
op

pl
er

−50 −40 −30 −20 −10 0 10 20 30 40 50

−20

−10

0

10

20

−35

−30

−25

−20

−15

−10

−5

0Fig. 2 Synthesized CAF
using IBA for γ = 0.05
(PAR = 1)

194 M. Jamil et al.

radar pulse using cross-correlation concepts with respect to delay. Thus, one col-
lector will see the radar pulse as a(t) and the other collector will see it as b(t + τ).
Also, it is assumed that one collector is moving with some relative velocity to the
other collector which supports measuring the frequency of the received pulse at
slightly different frequencies [39].

Furthermore, a CAF with a clear area around a large neighbourhood of the origin
also arises in situations, when it is not possible to design a sequence or set of
sequences that yield zero sidelobes over the entire delay-Doppler plane. Therefore,
it is desirable to design a reference waveform or equivalent filter at the radar
receiver end. Such a receiver, is called an optimum receiver [1] in which the internal
or reference waveform (or equivalent filter) is deliberately mismatched compared to
the transmitted waveform in order to reduce the sidelobes in the delay-Doppler
plane.

Figure 3 shows the CAF of sequences a and b generated by IBA with γ = 0.05.
The desired sidelobe free area can be observed within the rectangular area close and
around the origin. The sidelobe free region in Fig. 3a is due to the fact that the
amplitude of the generated sequences a or b is not constrained. This may result in
sequences with relatively high PAR and relatively low sidelobe levels. The PAR of
sequences a and b for the CAF shown in Fig. 3a were found to be PARa ¼ 3:9 and
PARb ¼ 7:2, respectively. It is noted that low sidelobe levels are desirable in radar
applications to avoid masking of main peaks of secondary targets, even if the
targets are well separated. Moreover, in case of a multiple target environment, the
sum of all sidelobes may build up to a level sufficient to mask even relatively strong
targets.

The widespread use of solid state power amplifiers and digitization can have a
significant impact on the overall performance of radar, sonar, and communication
systems. For example, the transmission of a signal or a waveform of arbitrary
amplitude is not possible due to the limitations of power amplifiers and analog-to-
digital converters. As a result, it is often desirable that transmit signals or wave-
forms have a constant amplitude or a low PAR. One of the possibilities that allows
the consideration of waveforms with variable amplitude is to work with a pair of
waveforms, i.e., the transmitted signal of constant amplitude and the reference
signal of arbitrary amplitude that is used during signal processing at the receiver
[40]. Therefore, to constrain the PAR of a transmit waveform with PAR = 1, the
following additional operation may be employed in the IBA algorithm in Procedure
1 after Step 14 (see also [22]):

sn exp½j argðsnÞ�: ð35Þ

However, inducing such a constraint further complicates the design of wave-
forms with prescribed ambiguity surfaces. Using (35), somewhat higher sidelobes
can be observed in the results shown in Fig. 3b. The normalized zero-Doppler cut
through the CAF for the unconstrained design (PAR > 1) and constrained design
(PAR = 1) are shown in Fig. 4.

Synthesizing Cross-Ambiguity Functions … 195

5.3 Example 3

In this example, we aim at synthesizing a CAF for Björck sequences of length
N = 53. In particular, Björck sequences of length N = P, where P is a prime number
and P
 1ðmod4Þ, are defined as

BðkÞ ¼ exp j2ph
k
P

� �� �
; h ¼ arccosð 1

1þ ffiffiffi
P
p Þ; ð36Þ

where k
P

� 	
denotes the Legendre symbol which is defined as

k
P

� �
¼

1; if k
 0 ðmod PÞ;
1; if k
 m2 ðmod PÞ for m 2 Z;
�1; if k =
 m2_ðmod PÞ for m 2 Z:

8<
:

Delay

D
op

pl
er

−50 −40 −30 −20 −10 0 10 20 30 40 50

−20

−10

0

10

20

−35

−30

−25

−20

−15

−10

−5

0(a)

Delay

D
op

pl
er

−50 −40 −30 −20 −10 0 10 20 30 40 50

−20

−10

0

10

20

−35

−30

−25

−20

−15

−10

−5

0(b)

Fig. 3 CAF synthesization
without and with PAR
constraint (35) for γ = 0.05:
a Synthesized CAF of random
sequences of length N = 50
(PAR = 3.9), b Synthesized
CAF of random sequences of
length N = 50 (PAR = 1)

196 M. Jamil et al.

The synthesized CAFs for the case of Björck sequences which approximates a
desired thumbtack CAF without and with using constraint (35) are shown in
Fig. 5a, b, respectively. The normalized zero-Doppler cuts through the CAFs for the
unconstrained design (PAR > 1) and the constrained design (PAR = 1) are shown in
Fig. 6. A sidelobe level below −45 dB respective −30 dB can be observed for these
cases.

5.4 Example 4

Finally, we synthesize a CAF for the case of Oppermann sequences [41] of length
N = 31. The phase φk(i) of the i-th element uk(i) of the k-th Oppermann sequence
uk ¼ ½ukð0Þ; ukð1Þ; . . .; ukðN � 1Þ� of length N is defined as

ukðiÞ ¼
p
N
½kmðiþ 1Þp þ ðiþ 1Þn þ kðiþ 1ÞN�; ð37Þ

where 1� k�N � 1, 0 ≤ i ≤ N − 1 and integer k is relatively prime to the length
N. The parameters m, n and p in (37) take on real values and define a family of
Oppermann codes.

The CAF for the case of Oppermann sequences with parameters m, p = 1 and
n = 3 is shown in Fig. 7. The synthesized CAF of these Oppermann sequences is

−50 −40 −30 −20 −10 0 10 20 30 40 50

−45

−30

−15

0

Delay

N
or
m
al
iz
ed

A
m
bi
gu

it
y
C
ut

fo
r
f
d
=

0

PAR = 3.9
PAR = 1.0

Fig. 4 Normalized zero-
Doppler cut of the CAFs of
Fig. 3a, b without and with
constraint (35), respectively

Synthesizing Cross-Ambiguity Functions … 197

Delay

D
op

pl
er

−50 −40 −30 −20 −10 0 10 20 30 40 50

−20

−10

0

10

20

−35

−30

−25

−20

−15

−10

−5

0(a)

Delay

D
op

pl
er

−50 −40 −30 −20 −10 0 10 20 30 40 50

−20

−10

0

10

20

−35

−30

−25

−20

−15

−10

−5

0(b)

Fig. 5 CAF synthesization
without and with (35) for
γ = 0.05: a Synthesized CAF
for Björck sequence of length
N = 53 (PAR = 4.9),
b Synthesized CAF for
Björck sequence of length
N = 53 (PAR = 1)

−50 −40 −30 −20 −10 0 10 20 30 40 50

−45

−30

−15

0

Delay

N
or
m
al
iz
ed

A
m
bi
gu

it
y
C
ut

fo
r
f
d
=

0

PAR = 4.9
PAR = 1.0

Fig. 6 Normalized zero-
Doppler cut of the CAFs
shown in Fig. 5a, b without
and with constraint (35),
respectively

198 M. Jamil et al.

shown in Fig. 8, which approximates the desired CAF with a sidelobe free area
around the neighbourhood of the origin. Relatively low sidelobe levels can be
observed within the rectangular area close and around the origin with improved
delay-Doppler characteristics compared to the CAF of the original sequence that is
shown in Fig. 7. The zero-Doppler cut of the synthesized Oppermann sequence is
shown in Fig. 9 which exhibits a low sidelobe level with respect to delay compared
to the original Oppermann sequences.

Delay

D
op

pl
er

−30 −20 −10 0 10 20 30
−20

−10

0

10

20

−30

−25

−20

−15

−10

−5

0Fig. 7 Synthesized CAF of
Oppermann sequences with
parameters m, p = 1, and n = 3

Delay

D
op

pl
er

−30 −20 −10 0 10 20 30
−20

−10

0

10

20

−30

−25

−20

−15

−10

−5

0Fig. 8 Synthesized CAF of
Oppermann sequences with
γ = 0.05 and using constraint
(35)

Synthesizing Cross-Ambiguity Functions … 199

6 Conclusions

In this chapter, the problem of synthesizing CAFs using a metaheuristic approach
based on the echolocation of bats has been addressed. The fundamental problem in
this context is to minimize the integrated square error between a desired CAF and a
synthesized CAF. In particular, the IBA has been combined with a cyclic approach
to solve this problem. By using four examples, we have shown that the approach
based on echolocation of bats can indeed synthesize CAFs that approximate CAF
surfaces having a diagonal ridge and zero value elsewhere as well as CAF surfaces
with a clear area around the origin. Our results indicate that the proposed approach
is a promising technique for synthesizing CAFs. Further research will focus on
more extensive studies of how to synthesize other complex functions and
waveforms.

References

1. Van Tress, H.L.: Optimum signal design and processing for reverberation-limited
environment. IEEE Trans. Military Electron. 9(3), 212–229 (1965)

2. Stoica, P., Li, J., Xue, M.: Transmit codes and receive filters for radar. IEEE Signal Process.
Mag. 25(6), 94–109 (2008)

3. Blunt, S.D., Gerlach, K.: Adaptive pulse compression via MMSE estimation. IEEE Trans
Aerosp Electron. Syst. 42(2), 572–584 (2006)

4. Delong Jr, D.F., Hofstetter, E.M.: The design of clutter-resistant radar waveforms with limited
dynamic range. IEEE Trans. Inf. Theor. 15(3), 376–385 (1967)

5. Kay, S.: Optimal signal design for detection of Gaussian point targets in stationary Gaussian
clutter/reverberation. IEEE J. Sel. Top. Sign. Process. 1(1), 31–41 (2007)

6. Key, E.L.: A method of sidelobe reduction in coded pulse waveform. Tech. Report 209, M.I.T
Lincoln Lab., Lexington, Mass (1959)

−30 −20 −10 0 10 20 30

−45

−30

−15

0

Delay

N
or
m
al
iz
ed

A
m
bi
gu

it
y
C
ut

fo
r
f
d
=

0

Original Oppermann Seq
Synthesized Seq

Fig. 9 Normalized zero-
Doppler cuts through the
CAFs shown in Figs. 7, 8

200 M. Jamil et al.

7. Rummler, W.D.: A technique for improving the clutter performance of coherent pulse train
signals. IEEE Trans Aerosp. Electron. Syst. 3(6), 898–906 (1967)

8. Stutt, C., Spafford, L.J.: A best mismatched filter response for radar clutter discrimination.
IEEE Trans. Inf. Theor. 14(2), 280–287 (1968)

9. Urkowitz, H.: Some high-velocity clutter effects in matched and mismatched receivers. IEEE
Trans Aerosp. Electron. Syst. 4(3), 481–485 (1968)

10. Spafford, L.J.: Optimum radar signal processing in clutter. IEEE Trans. Inf. Theor. 14(5), 734–
743 (1968)

11. Woodward, P.M.: Probability and information theory with applications to radar. Pergamon
Press (1953). Reprint: Artech House, London (1980)

12. Stoica, P., He, H., Li, J.: New algorithms for designing unimodular sequences with good
correlation properties. IEEE Trans. Signal Process. 57(4), 1415–1425 (2009)

13. Wilcox, C.H.: The synthesis problem for radar ambiguity functions. MRC Tech. Summary
Report 157, US Army, University of Wisconsin, Madison, Wisconsin, USA (1960). Reprint:
Radar and Sonar, Part 1, The IMA volumes in mathematics and its applications. Springer (1991)

14. Gladkova, I., Chebanov, D.: On the synthesis problem for a waveform having a nearly ideal
ambiguity function. In: International Conference on Radar Systems. Toulouse, France (2004)

15. Stein, S.: Algorithms for ambiguity function processing. IEEE Trans. Acoust. Speech Signal
Process. 29(3), 588–599 (1981)

16. Sharama, R.: Analysis of MIMO radar ambiguity function and implications on clear region. In:
IEEE International Radar Conference. Washington DC, USA (2010)

17. Blau, W.: Synthesis of ambiguity functions for prescribed responses. IEEE Trans.
Aerosp. Electron. Syst. 3(4), 656–663 (1967)

18. Rihaczek, A.W., Mitchell, R.L.: Radar waveforms for suppression of extended clutter. IEEE
Trans. Aerosp. Electron. Syst. 3(3), 510–517 (1967)

19. Siebert, W.: A Radar Detection Philosophy. IRE Trans. Inf. Theor. 2(3), 204–221 (1956)
20. Sussman, S.: Least-square synthesis of the radar ambiguity function. IEEE Trans. Inf. Theor. 8

(3), 246–254 (1962)
21. Wolf, J.D., Lee, G.M., Suyo, C.E.: Radar waveform synthesis by mean-square optimization

techniques. IEEE Trans Aerosp. Electron. Syst. 5(4), 611–619 (1969)
22. He, H., Stoica, P., Li, J.: On synthesizing cross ambiguity function. In: IEEE International

Conference on Acoustics, Speech and Signal Processing. Prague, Czech Republic (2011)
23. Jamil, M., Zepernick, H.-J., Yang, X-S.: Lévy flight based cuckoo search algorithm for

synthesizing cross-ambiguity functions. In: IEEE Military Communications Conference,
pp. 823–828, San Diego, USA (2013)

24. Jamil, M., Yang, X-S., Zepernick, H.-J.: Improved Bat-inspired metaheuristic algorithm with
Lévy flights for global optimization problems. J. Appl. Softw. Comput.—Under Revision

25. Yang, X-S., Deb, S.: Cuckoo search via Lévy flights. Congress on Nature and Biological
Inspired Computing, pp. 210–214, Coimbatore, India (2009)

26. Yang, X-S.: Firefly algorithm, Lévy flights and global optimization. In: Bramer, M., Ellis, R.,
Petridis, M. (eds.) Research and Development in Intelligent Systems XXVI, pp. 209–218,
Springer, Berlin (2010)

27. Yang, X-S.: A new metaheuristic bat-inspired algorithm. In: Gonzalez et. al. J.R. (eds.) Nature
Inspired Cooperative Strategies for Optimization, Studies in Computational Intelligence,
pp. 65–74, Springer, Berlin (2010)

28. Gutowski, M.: Lévy flights as an underlying mechanism for global optimization algorithms.
In: Proceedings of National Conference on Evolutionary Computation and Global
Optimization. Jastrzębia Góra, Poland (2001)

29. Austin, D., Bowen, W.D., McMillan, J.I.: Intraspecific variation in movement patterns:
modelling individual behaviour in a large marine predator. Oikos 105(1), 15–30 (2004)

30. Bartumeus, F., Peters, F., Pueyo, S., Marrase, C., Catalan, J.: Helical Lévy walks: adjusting
searching statistics to resource availability in microzooplankton. Proc. Nat. Acad. Sci. USA
100(22), 12771–12775 (2003)

Synthesizing Cross-Ambiguity Functions … 201

31. Humphries, N.E., Querioz, N., Dyer, J.R.M., Pade, N.G., Musyl, M.K., Schaefer, K.M., Fuller,
D.W., Brunnschweiler, J.M., Doyle, T.K., Houghton, J.D.R., Hays, G.C., Jones, C.S., Noble, L.
R., Wearmouth, V.J., Southall, E.J., Sims, D.W.: Environmental context explains Lévy and
Brownian movement patterns of marine predators. Nature 451(7301), 1066–1069 (2010)

32. Mårell, A.J., Ball, P., Hofgraad, A.: A foraging and movement paths of female reindeer:
insights from fractal analysis, correlated random walks and Lévy flights. Can. J. Zool. 80(5),
854–865 (2002)

33. Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E.:
Lévy flight search patterns of wandering albatrosses. Nature 381(6581), 413–415 (1996)

34. Viswanathan, G.M.: Fish in Lévy-flight foraging. Nature 465(7301), 1018–1019 (2010)
35. Glover, F.: Tabu search—Part I. ORSA J. Comput. 1(3), 190–206 (1989)
36. Glover, F.: Tabu search—Part II. ORSA J. Comput. 2(1), 4–32 (1990)
37. Yang, X.-S., He, X.: Bat algorithm review and applications. Int. J. Bio-Inspired Comput. 5(4),

141–149 (2013)
38. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)
39. Overfield, J., Biskaduros, Z., Buehrer, R.M.: Geolocation of MIMO signals using the cross

ambiguity function and TDOA/FDOA. In: IEEE International Conference on
Communications, pp. 3648–3653, Ottawa, Canada (2012)

40. Levanon, N., Mozeson, E.: Radar Signals. Wiley, New York (2004)
41. Oppermann, I., Vucetic, B.S.: Complex spreading sequences with a wide range of correlation

properties. IEEE Trans. Commun. 45(3), 365–375 (1997)

202 M. Jamil et al.

Sustainable Building Design: A Review
on Recent Metaheuristic Methods

Somayeh Asadi and Zong Woo Geem

Abstract A notable portion of the total primary energy is consumed by today’s
buildings in developed countries. In recent years, decision makers and planners are
facing increased pressure to respond more effectively to a number of energy-related
issues and conflicts. Therefore, this article strives to make a technical review of all
relevant research applying simulation-based optimization methods to sustainable
building design problems. A summary of the application of common heuristic and
meta-heuristic methods to different fields of sustainable building design is given.

Keywords Sustainable � Residential and commercial building � Design �
Optimization � Heuristic methods

1 Introduction

1.1 World Energy Consumption

The rapidly increasing world energy consumption has raised concerns about supply
complications, exhaustion of energy resources, and severe environmental impacts.
The International Energy Agency (IEA) has provided informative data on energy
consumption trends. Over the last years, primary energy has increased by 83 % from
1980 to 2011 and CO2 emissions by 85 %, with an average annual increase of 2.67
and 2.74 % respectively (refer to Fig. 1) [1]. According to IEA, world energy
consumption will increase from 524 quadrillion Btu in 2010 to 630 quadrillion Btu

S. Asadi
Department of Architectural Engineering, Pennsylvania State University,
213 Engineering Unit A, University Park, PA 16802, USA

Z.W. Geem (&)
Department of Energy IT, Gachon University, 1342 Seongnam Daero,
Seongnam 461-701, South Korea
e-mail: geem@gachon.ac.kr

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_11

203

in 2020 and 820 quadrillion Btu in 2040, a 30-year increase of 56 % (Fig. 2). More
than 85 % of the increase in global energy demand from 2010 to 2040 takes place
among the developing nations outside the Organization for Economic Cooperation

Year
1980 1985 1990 1995 2000 2005 2010

Pr
im

ar
y

E
ne

rg
y

C
on

su
m

pt
io

n
(Q

ua
dr

il
lio

n
B

tu
)

200

300

400

500

600

700

800

C
O

2
E

m
is

si
on

 (
 M

ill
io

n
T

on
s

of
 C

ar
bo

n)

3000

4000

5000

6000

7000

8000

9000

10000

Primary Energy Consumption
CO2 Emission

Fig. 1 World energy consumption and CO2 emission

History Projections

Year

1990 2000 2010 2020 2030 2040

Pr
im

ar
y

E
ne

rg
y

C
on

su
m

pt
io

n
(

Q
ua

dr
il

lio
n

B
tu

)

150

200

250

300

350

400

450

500

550

Non-OECD
OECD

Fig. 2 World energy consumption prediction

204 S. Asadi and Z.W. Geem

and Development (non-OECD), driven by strong economic growth and expanding
populations. This discrepancy is due to the different pattern of consumption in
OECD and non-OECD countries in which the former have more mature con-
sumption pattern and well established electricity markets than the latter [1].

On the other hand, the building sector plays a significant role regarding energy
consumption. As it can be seen in Fig. 3, building sector is one of the largest energy
consumers in the world. According to the World Business Council for Sustainable
Development, buildings consume 40 % of the total energy [2]. Aside from energy
consumption, buildings produce Greenhouse Gas emission (GHG) which results in
global warming. It was also anticipated that in 2035, the carbon emission of
buildings across the world will get to 42.4 billion tons which will increase by 43 %
compared to 2007 [3]. Furthermore, the renovation, refurbishment, and retrofitting
of building consume natural resources and energy and produce GHG emission as
well as other pollutants [4].

Recently, several studies have been carried out to enhance energy efficiency and
decrease energy consumption and GHG emission. It is obvious that energy-efficient
design methods provide considerable benefits to the end user. A building which is
designed based on energy-saving measures decreases building life cycle costs due
to lower energy consumption and CO2 emission. Lower CO2 emissions into the
atmosphere during the building’s life cycle benefits society as well.

Year

2010 2015 2020 2025 2030 2035 2040

E
ne

rg
y

C
on

su
m

pt
io

n
(

T
ri

ll
io

n
C

ub
ic

 F
ee

t)

0

10

20

30

40

50

60

70

Electric Powe
Industrial
buildings
Transportation

Fig. 3 World energy consumption in different sectors

Sustainable Building Design … 205

1.2 Sustainable Building Design

Sustainable buildings [5] are defined as buildings with minimum negative envi-
ronmental impacts. Sustainable buildings may be defined as building practices which
struggle for essential quality (including economic, social, and environmental per-
formance). Therefore, the reasonable use of natural resources and suitable man-
agement of the building stock will save rarer resources, decrease energy use, and
improve environmental quality.

To design a sustainable building, the whole life cycle of buildings from raw
material extraction to building end of life should be considered. Therefore, sus-
tainable building design is the contemplative incorporation of architecture with
electrical, mechanical, and structural engineering resources. As sustainability pro-
gressively influences upon the lives of corporations, individuals and wider society,
the chances for accountable and holistic thinking is also growing [6]. The design of
sustainable buildings is not simple since all buildings are distinct, there are no
specific models, and they must attain high levels of performance with low cost. In
addition, there are many physical procedures that result in conflicting objectives in
design of sustainable buildings. Therefore, these challenges have made them valu-
able to utilize computational methods of design optimization [7, 8].

In recent years, several solution approaches such as gradient-based optimization
methods and meta-heuristic optimization algorithms have been suggested to design
sustainable buildings. The gradient-based optimization methods require derivative
information of the mathematical equations and a good starting point for decision
variables; therefore, their applications may be both problematic and impracticable.
This makes meta-heuristic optimization algorithms as one of the proper methods to
design sustainable buildings and optimize their performance. Figure 4 shows the
growing trend of international optimization studies (indexed by SciVerse Scopus of
Elsevier) in the field of building science. It can be seen that the number of opti-
mization papers has increased sharply since the year 2005. This indicates a great
interest on optimization techniques among building research communities [9].
Therefore, this study seeks to critically review the green building related studies in
order to emphasize the state of art and future needs in this field. It also provides a
systematic review of existing body of knowledge. Such systematic review plays a
significant role to not only classify the common research streams but also determine
the future research trends.

2 Overview of Existing Meta-Heuristic Algorithms

2.1 Classifications

Heuristic or metaheuristic is considered as one of the main approaches of problem-
solvingby trial anderror. ‘Heuristic’means to ‘find’or ‘search’by trials anderrors.The
meta-heuristics algorithmscontain twomaincomponents including intensificationand

206 S. Asadi and Z.W. Geem

diversificationwhichwas defined byTabu [10, 11]. In order to develop an efficient and
effective algorithm, it must be able to make a wide range of solutions while it
strengthens its search around the neighborhood of an optimal or nearly optimal solu-
tion. Therefore, every section of the search area must be available. Diversification
creates diverse solutions which is able to examine the search area on the global scale.
However, intensificationonly concentrates on the search in a local regionbyexploiting
the information that a current good solution is found in this region [10–15]. In a case
that the intensification is too robust, only a portion of solution areamight be considered
which may result in a risk of being stuck in a local optimum. In the meantime, if the
diversification is too robust, the algorithms converge very gradually because solutions
jump around some potentially optimal solutions. Usually, the solutions start with
random solutions and slowly decrease their diversification while raising their inten-
sification simultaneously. Therefore, in order to develop an effective meta-heuristic
algorithm, aproper balancebetween intensificationanddiversification is required [12].
Meta-heuristic models are usually based on the assumption that a methodology is
chosen and formed according to the minimization of some objective function.
Therefore, randomization provides a good way to move away from local search to the
searchon theglobal scale.Almost allmeta-heuristic algorithms intend tobe suitable for
global optimization [16].

There are various ways to classify the meta-heuristics algorithms including
population-based and trajectory-based. For example, genetic algorithms are popu-
lation-based since they use a set of strings, so is the particle swarm optimization
(PSO) which uses multiple agents [17]. Instead, simulated annealing uses a single

Year
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

N
um

be
r o

f p
ub

lic
at

io
ns

0

20

40

60

80

100

120

140

Fig. 4 Trend of number of optimization studies in building science (after [9])

Sustainable Building Design … 207

agent or solution which moves through the search area in a piecewise style [18].
Figure 5 shows the classification of meta-heuristic algorithms. However, it is dif-
ficult to decide which type of method is more effective under appropriate
conditions.

2.2 Application of Some Selected Algorithms to Design
Sustainable Buildings

Providing a general rule for the algorithm selection to design sustainable buildings
is generally infeasible due to complexity and diversity of their design. The meta-
heuristic algorithms such as harmony search, genetic algorithm, particle swarm

Fig. 5 Classification of meta-heuristic algorithms (after [19])

208 S. Asadi and Z.W. Geem

optimization, ant colony optimization, etc. were the most frequently used methods
in building performance optimization. Such stochastic algorithms cannot promise
that the best solution will be reached after a finite number of iterations, but they are
utilized to find the best solutions in a rational amount of time [9].

2.2.1 Harmony Search

Recently, the meta-heuristic Harmony Search (HS) optimization algorithm which is
conceived using the musical process of searching for the perfect state of harmony
was developed by Geem et al. [20]. HS is based on the musical process of searching
for a perfect state of harmony, such as jazz improvisation. Jazz improvisation
searches for musically pleasing harmony as identified by an aesthetic standard. The
notes and the pitches of each musical instrument regulate the aesthetic quality, just
as the objective function value is determined by the values assigned to design
variables. Practice improves the quality of harmony, similar to the solution quality
that improves with iteration [20].

HS algorithm is simple in concept, involves only a few parameters, and can be
easily implemented. It has been successful in a wide variety of real-world and
benchmark optimization problems [20–23], presenting several advantages with
respect to traditional optimization techniques such as the following [22]: (a) it
imposes fewer mathematical requirements and does not require initial value settings
of the design variables, (b) it uses stochastic random search so calculus-based
derivative information is also unnecessary, and (c) it generates a new solution
vector after considering all of the existing vectors. These features increase the
flexibility of the HS algorithm and result in better solutions. The HS algorithm
performs well for global searching; however, since it does not use gradient infor-
mation, it may take a relatively long time to converge to a local optimum.

In Table 1, the HS algorithm is briefly described in a pseudo-code form. In the
HS optimization methodology, first, the initial values of design variables are ran-
domly assigned within the defined range of variables. Then a simulation is done to
evaluate the objective function. Next, the HS algorithm, based on the obtained
results, sets new values for design variables and another simulation is performed to
evaluate the objectives of the new design. The new values of the design variables
can be chosen either by random or using the best obtained values which are already
stored in harmony memory of the algorithm. In a case that the new solution is better
than the worst solution available in the harmony memory, the worst solution is
replaced by the new solution. As optimization process proceeds, little by little, the
solutions stored in harmony memory become better and approach the optimum
solution. The process is continued until a pre-specified maximum number of iter-
ations for the HS algorithm is reached [24].

The HS algorithm has been recently used to design energy efficient and low
emission building and several engineering optimization problems. Originally,
applications where HS was first evaluated as an effective meta-heuristic method,
focused mainly on the design of water distribution networks [20], benchmark

Sustainable Building Design … 209

optimization [25], structural design [26], and vehicle routing problems [27, 28].
Since then, the activity around this algorithm has increased sharply, spanning its
applicability to a very heterogeneous portfolio of application scenarios such as
traveling salesman problem [29], optimization of the river flood model [30], opti-
mum design of water distribution network [20], optimum design of truss structures
[26, 31, 32], design of energy efficient buildings [24], and the simultaneous
determination of aquifer parameters and zone structures by an inverse solution
algorithm [33]. In order to get a clear overview of the classification and analysis
presented in different sections, Fig. 6 depicts the current approximate distribution of
areas of HS application as measured by the number of publications of each par-
ticular topic.

Fesanghary et al. [24] applied HS algorithm to investigate the trade-off between
energy use and life-cycle cost (LCC) by varying building constructions. A multi-
objective optimization model based on HS algorithm was presented in this study.
The objective function of this study was to minimize the LCC and carbon dioxide

Table 1 The pseudo-code of the HS algorithm [24]

210 S. Asadi and Z.W. Geem

equivalent (CO2-eq) emissions of a typical residential building. Several building
envelope parameters including wall, roof, ceiling, and floor construction materials
as well as glazing type are taken as the design variables. It is common to define
these parameters as continuous variables because in numerical optimization
methods it is difficult to deal with discrete variables. However, the optimum values
obtained in this case are not necessarily available in the market, which causes
mismatch between optimization suggestions for materials based on numerical
results and components commonly used in design practice [34]. In order to solve
the problem of the obvious mismatch, Fesanghary et al. [24] treated all variables as
discrete variables and those materials which are available in the market were
considered in the optimization process. To demonstrate the efficiency of the pro-
posed approach, the performance of the model was tested on a typical single-family
house. A series of Pareto optimal solutions was identified which can help designers
to get a better understanding of the trade-off relation between the economical and
environmental performances.

In another study conducted by Asadi [35], a multi-objective optimization model
coupled with an energy simulation program with life cycle assessment (LCA) and
LCC allowing the design space to be explored in search of optimal or near optimal
solutions. To demonstrate the effectiveness and efficiency of the proposed method,
a typical single-family house in different climate regions in the United States is
selected. In this study, a series of Pareto optimal solutions was identified which can
help designers to get a better understanding of the trade-off relation between the
LCC and LCA at the early stages of the design. Results of this study showed the
significant effect of climate regions on the global warming potential gases and life

Percentage (%)

0 4 8 12 16 20 24 28 32

HS and variants

Cross-Application uses

Robotics

Medical

Engineering

Control

Power and Energy

Water/Groundwater system management

Others

Fig. 6 Application of HS algorithm in different discipline areas

Sustainable Building Design … 211

cycle cost. It was found that changing the climate zone from zone 1 to 5 increases
the global warming potential gases by 24 % and LCC by 21 %. This was mainly
due to energy consumption during the use phase of building’s life cycle.

As it can be found from literature review, HS has successfully been applied to a
wide variety of practical optimization problem, however, there has been a lack of
studies to design sustainable building and only few studies focus on this area.

2.2.2 Genetic Algorithm

Genetic Algorithm (GA) method which is an effective method for solving opti-
mization problems was first proposed by Holland in 1975 [36]. Since then, it slowly
advanced into a computer model of solving optimization problems by simulating
natural evolution and was widely utilized in many domains [37]. GA is defined as
heuristic search method having extensive applicability, ease of use, and the capacity
to search many variables from a global perspective. Since the search of design
alternatives within the design process is not linear, stochastic approaches such as
GAs are normally considered suitable.

GA based solution methods have been used in several studies to predict building
energy consumption and design sustainable buildings [38–65]. Among which the
Vector evaluated GA (VEGA) [66], Multi-objective Genetic Algorithm (MOGA)
[67], Niched Pareto Genetic Algorithm (NPGA) [68], Weight-based Genetic
Algorithm (WBGA) [69], Non-dominated Sorting Genetic Algorithm (NSGA) [70],
Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) [71], and Multi-
objective Evolutionary Algorithm (MEA) [72] are frequently used in building
research.

Hauglustaine and Azar [73] used GA to optimize the building envelope. Dif-
ferent criteria associated with code compliance, energy use, and cost were con-
sidered in this study. In a study conducted by Wang et al. [34], a multi-objective
optimization model was developed using GA that could assist designers to design
green buildings. Variables considered in this study were those parameters that are
usually determined at the early stages of design and that have significant impact on
building performance. LCA methodology was used to assess design alternatives for
both economical and environmental criteria. Life cycle environmental impacts were
assessed in terms of expanded cumulative exergy consumption. They also identified
a series of Pareto optimal solutions which consisted of discrete regions with dif-
ferent optimal solutions. GA was used by Tuhus-Dubrow and Krarti [61] to opti-
mize nine construction and two shape parameters of a residential building to
minimize LCC. In another study, Palonen et al. [54] used GA to optimize building
energy consumption and cost. The design variables considered in this study were
construction features and heat recovery efficiency.

In another study conducted by Hamdy et al. [74], a modified multi objective
optimization approach based on GA was developed and combined with building
performance simulation program. The objective function of this study was to
minimize the CO2-eq emissions and the investment cost for a two-story house and

212 S. Asadi and Z.W. Geem

its HVAC system. Several parameters including heating/cooling energy source, heat
recovery type, and six building envelope parameters were considered as design
variables. It was found that in comparison with preliminary design, the CO2-eq
emissions and investment cost were reduced by 32 and 26 %, respectively. They
also found that the type of heating energy source has a noticeable effect on the
optimal solutions. In a similar study, Wright et al. [75] optimized the thermal design
and control of buildings employing multi-criteria GAs. The objectives of this study
were to reduce the functioning cost and improve thermal comfort. The design
variables included on/off status for 15 h/day, supply air flow rate, and temperature
for each hour, coil width, coil height, number of rows, and water circuits in each of
the two coils, water flow rate, fan diameter, and heat recovery device size which
resulted in 200 design parameters.

Verbeeck and Hens [76] carried out a comprehensive study to optimize the life
cycle energy, cost, and environmental impact of buildings. In this study, GA was
combined with the Pareto front concept to solve a multi variable problem with
multiple objectives. They determined a hierarchy of methods which can reduce
building energy consumption over its life cycle. This approach consisted of
improving insulation in the building, applying an efficient heating system, and
finally renewable energy driven heating. The primary focus of this study was on
operational energy. In another study, Kubota et al. [77] applied GA to properly
extract and select measured data, and then developed fuzzy neural networks model
to predict building energy load prediction.

Two different problems of optimization of building parameters regarding heating
and cooling loads were addressed separately by Znouda et al. [82] to minimize the
power consumption and the cost. The building parameters considered in this study
were geometry of the building, composition of walls and floors, and solar protec-
tion. Later, a comprehensive optimization work using GA was carried out by
Wright, Zhang and others to investigate the [78–80] the configuration of HVAC
mechanisms. Various parameters such as component selections, network topolo-
gies, flow rates, and thermal capacities were considered in this optimization study.
In a similar study conducted by Stanescu et al. [81], GA algorithm was used to
optimize the configuration of an HVAC network by allocating different zones to
different systems. DOE-2 energy simulation program was used to quantify the
energy consumption of the HVAC system. Genetic algorithms are also applied to
electric utility planning and building energy management problems [82].

2.2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) which is first recommended by Kennedy and
Eberhart [83] is a heuristic search method that mimics the movements of a flock of
birds seeking to find food. Each bird which is called particle, in the population,
named swarm, is supposed to ‘fly’ over the search space to search for proper
solutions [84]. Unlike the genetic GA, PSO does not use filtering operators such as
crossover and mutation in searching for solutions. As an alternative, it uses a

Sustainable Building Design … 213

population of particles that “fly” through a multi-dimensional search space with
given rates. The simplicity of PSO method and the fact that is a population-based
technique have made it an accepted candidate to be used for multi-objective opti-
mization [85].

In PSO, a number of simple entities—the particles—are located in the search
area of some problem or function, and each assesses the objective function at its
current location. Each particle then identifies its movement through the search area
by uniting some aspect of the history of its own current and best locations with
those of one or more members of the swarm, with some random perturbations. The
next iteration occurs after all particles have been moved. Eventually the swarm as a
whole, like a flock of birds collectively searching for food, is likely to move close to
an optimum of the fitness function [86].

Particle swarm optimization model has several advantages. The search mecha-
nism is robust and efficient in maintaining diversity, and is able to reach at the
global optimization solution with a high probability. The algorithm is easy to realize
with only a few adjustable parameters, is fast converging, and can be conducted
with parallel computation. Canonical particle swarm [87] and fully-informed par-
ticle swarm [88] are defined as variants of PSO. Figure 7 shows a dramatic annual
increase in the literature published in the area of PSO over the last 17 years. These
studies include data clustering, sensor network clustering, building, construction,
image segmentation and clustering, gene clustering, document and text clustering,
hybrid clustering, and other discipline areas.

Even though PSO is a generally popular method and has been applied to tackle a
wide variety of problems, but rarely has been used in studies focusing on the
optimization of building design. Some studies applied PSO algorithm to design

Year

2000

N
um

be
r

of
 A

rt
ic

le
s

0

1000

2000

3000

4000

5000

95 96 97 98 99 01 02 03 04 05 06 07 08 09 10 11 12

Fig. 7 Trend of PSO studies

214 S. Asadi and Z.W. Geem

efficient HVAC systems [89–91]. Wang et al. [92] used PSO algorithm to analyze
the energy flow of the conventional separation production (SP) system and the
redundant BCHP system. Four decision variables including the capacity of power
generation unit (PGU), the capacity of heat storage tank, the on–off coefficient of
PGU, and the ratio of electric cooling were considered in this study as the design
variables. The objective function of this study was to simultaneously measure the
energetic, economical, and environmental benefits attained by BCHP system in
comparison to SP system.

Multi-objective Particle Swarm Optimization (MOPSO) was used by Yang et al.
[93] to optimize thermal comfort and building energy consumption. This study
investigates the relation between energy consumption and occupants’ comfort.
They suggested a multi-agent based control framework for energy and comfort
management in smart building. Two objectives including energy consumption and
the occupant thermal comfort were considered as the objective functions of this
study. In a similar study, Kusiak et al. [94] used a data-driven approach to optimize
HVAC system in an office building. A neural network (NN) algorithm was used to
develop a predictive model. The NN-derived predictive model was then optimized
with a strength multi-objective particle-swarm optimization (S-MOPSO) algorithm.
It was found that the developed model was highly accurate and the optimization
approach provides acceptable solutions for users with different preferences.

Rapone and Saro [95] used PSO to optimize curtain wall façades of office
buildings and determined the configuration of selected parameters that minimizes
the total carbon emissions associated with building operation. In this study, PSO
algorithm was coupled to a dynamic energy simulation engine in order to conduct a
completely automated search intended at determining the optimal values of the
envelope features. This study investigated the effect of different types of external
shading devices and different climate regions. It was found that PSO algorithm is
considerably better method to quantify energy performance within a short amount
of time and by simulating only a small percentage of all potential alternatives. The
optimized designs prove the tendency for a reduction of cooling demands at the
expense of heating energy demands and at the same time allowing for enough
daylighting. In addition, results of the sensitivity analysis demonstrated the
dependency of the optimized configuration on climate region and external shading
devices.

Hasan et al. [96] used PSO algorithms to optimize LCC of a single detached
house in Finland. They coupled the IDA ICE 3.0 building performance simulation
program with the GenOpt 2.0 generic optimization program to identify optimized
values of five selected design variables in the building construction and HVAC
system. Insulation thickness of the external wall, roof, and floor as well as U-value
of the windows and type of heat recovery was considered as design variables. It was
found that coupling the combining simulation and optimization was very advan-
tageous. Results suggested decreasing the U-value of external wall, roof, floor and
the window from their initial values. Reduction of 23–49 % in the space heating
energy for the optimized house is achieved in comparison with the reference case.
In another study, Stephan et al. [97] used a hybrid PSO-Hooks Jeeves algorithm for

Sustainable Building Design … 215

the optimization of envelope openings in order to ensure desired natural ventilation.
The method presented in this study has the benefit of considerably reducing the
number of independent variables.

2.2.4 Ant Colony Optimization

Ant Colony Optimization (ACO) is a Swarm Intelligence technique which stimu-
lated from the foraging behavior of real ant colonies and was proposed by Colorni
et al. [98]. The ants deposit pheromone on the ground in order to mark the route for
identification of their routes from the nest to food that should be followed by other
members of the colony. The basic way of working of an ACO algorithm is
graphically shown in Fig. 8.

Hadjiski [98] proposed an intelligent system for HVAC control by the inte-
gration of a multi-agent system, dynamic ontology, and ant colony optimization.
The combination of data-driven and knowledge-driven methods results in a sig-
nificant improvement of all behavioral indexes of HVAC control systems such as
speed, stability, internal communication rate, robustness and disturbances. Ghasemi
and Farshchin [99] applied ACO method to investigate the ordinary moment-
resisting frames for multi-objective design under seismic loading. The objective
function of this study was to minimize the total weight as well as the corresponding
seismic base shear. To analyze the ordinary moment-resisting frames, the modal
spectral method was used.

Fig. 8 The working of the ACO meta heuristic

216 S. Asadi and Z.W. Geem

In a study conducted by Lixing et al. [100], a novel building cooling load
forecasting approach combining support vector regression (SVR) and ACO was
proposed. ACO was developed to optimize three parameters of SVR, including
penalty parameter, insensitive loss function, and kernel function. Normalized Mean
square error (NMSE) of fitting result was used as the target of the model. ACO
identified the best parameters which were corresponded to the NMSE. The results
showed that the proposed approach in comparison with back-propagation neural
network model was an efficient way to model building cooling load with good
predictive accuracy. ACO and SVR provided a useful tool for maximizing the
combustion efficiency of cooling load.

A multi criteria ACO method using Pareto filtering was used by Shea et al.
[101]. The Radiance software program was used to calculate lighting performance
for the media center in Paris. Results showed that the method is capable of gen-
erating Pareto optimal design and it archived up to 11 independent performance
criteria. In addition, a preliminary GUI for visualizing the Pareto design archives
and selecting designs was developed in this study. The results indicated that for
desired values of lighting performance in different internal spaces, there is often a
range of possible panel configurations and costs. In a similar study, a novel algo-
rithm for optimization of building life cycle energy consumption was developed by
improving the multi-objective ACO. In this algorithm, the estimation mechanism of
Pareto optimal solution and the update rule of pheromone were derived. An
effective optimization solution for building life cycle energy consumption and an
innovative application of multi-objective ACO algorithm in the building energy
efficiency area were presented [102].

Although in general, ACO algorithms attain very good results, there are cases
where an hybridization with other heuristics or meta-heuristics is necessary.
Therefore, in the past few years, authors have developed hybrid algorithms between
ACO and Local Search [103], Simulated Annealing [104], Post Processing Pro-
cedures [105], and even with GA [106]. This allowed ACO algorithms to achieve
even better results in complex problems solved by a single heuristic method.

2.2.5 Evolutionary Programming

Evolutionary Programming (EP) is one of a class of paradigm for simulating
evolution which utilizes the concepts of Darwinian evolution to iteratively generate
increasingly appropriate solutions in light of a static or dynamically changing
environment. In a most general framework, EP may be considered an optimization
technique wherein the algorithm iteratively optimizes behaviors and parameters.

A meta-heuristic simulation–EP coupling approach was developed by Fong et al.
[107]. The simulation–EP coupling is able to solve the discrete, non-linear, and
highly constrained optimization problems such as HVAC systems. The effective-
ness of this simulation was shown through the establishment of a monthly optimum
reset scheme for both the chilled water and supply air temperatures of the HVAC
installations of a local project. Results showed that the component-based HVAC

Sustainable Building Design … 217

model and the evolutionary programming technique functioned well together in
achieving the optimum combination of the chilled water and supply air tempera-
tures for effective energy management throughout a year. Later, Fong et al. [108]
developed the robust evolutionary algorithm to optimize HVAC energy manage-
ment system. The robust evolutionary algorithm is an effective method to manage
with the complex simulation models, as well as those represented by explicit
mathematical expressions of HVAC engineering optimization problems. This can
improve the optimization-simulation for a variety of HVAC scenarios, even
extended to other kinds of engineering problems.

Yang et al. [109] proposed an evolutionary approach to identify building thermal
model parameters using SaNSDE+. The HAMBase building simulation model was
used to formulate optimization problems with six and ten objective functions.
Results showed that the adopted evolutionary algorithm (i.e. SaNSDE+) was very
effective for parameter identification problems. It was found that SaNSDE+ is
significantly better than the other evolutionary algorithms such as SGA and FEP. In
another study conducted by Kampf [110], a hybrid CMA-ES/HDE algorithm was
used to optimize building forms for the utilization of solar irradiation either passive
or active. The backwards ray tracing program RADIANCE in conjunction with a
cumulative sky model was used to predict the solar irradiation. It was found that a
hybrid CMA-ES/HDE algorithm consistently converged to a good solution while
taking constraints into account. Results indicated that the forms of these solutions
tend to be highly non-intuitive.

Fang et al. [111] utilized an evolutionary algorithm to develop an optimal design
of solar water heating system. The objective function of this study was to maximize
the year-round energy saving using the solar heating instead of conventional
domestic electric heating. The TRNSYS plant simulation model was developed and
coupled with the optimization algorithm. The optimization results showed that the
solar collectors can be installed onto the external shading devices as an integrated
architectural feature, since the optimal tilt angle is 21° and relatively flat. Both the
optimal values of calorifier storage capacity and pump flow rate indicated that the
calculations from normal design practice may not achieve an optimal performance.
Therefore, an effective methodology of optimization and simulation is required to
create an optimal design.

3 Conclusions

This papers provides an overview of the latest research developments concerning to
the application of meta-heuristic algorithms for design and control problems in the
field of sustainable building. The review of over 100 papers from the major ref-
erenced journals in the fields of sustainable energy offers interesting conclusions
that can be useful for building design researchers. The first conclusion of this
review is that the number of research papers that use meta-heuristic algorithms to
design sustainable buildings has increased dramatically in recent years, especially

218 S. Asadi and Z.W. Geem

for HVAC systems. This can be attributed to the ever-increasing computational
power available to solve the problems that were previously unfeasible. In addition,
we found that GA optimization technique is widely used in designing sustainable
buildings in comparison with other techniques (e.g. HS, PSO, and ACO). For ACO,
PSO, and even HS, we discovered there is not as much of researches in sustainable
building design. The third conclusion of this review is that the number of research
papers that use these methods to optimize building design, is still small compared to
the number of papers regarding the optimization of building control. A possible
explanation is that the whole building simulation study became popular only in the
last decade. Recently, optimization tools coupled to a whole building simulation
program exist and they are ready to be used. It was also found that the environ-
mental impact, the initial cost investment, the operational cost, and comfort criteria
are usually the targets of these optimization studies while construction materials,
building geometry and orientation, HVAC system design, and shading options are
the typical design variables.

References

1. IEA.: Key world energy statistics (2013)
2. WBCSD.: Energy efficiency in buildings, business realities and opportunities 2007. The

World Business Council for Sustainable Development (2007)
3. USEIA.: International Energy Outlook 2010. Department of Energy, Washington, DC (2010)
4. WBCSD.: Vision 2050: the new agenda for business. World Business Council for

Sustainable Development (2010)
5. OECD.: Design of sustainable building policies. Available at http://www.uea.ac.uk/env/

(2002)
6. BIONIS.: Available at http://www.extra.rdg.ac.uk/eng/BIONIS/ (2004)
7. Evins, R.: A review of computational optimisation methods applied to sustainable building

design. Renew. Sustain. Energy Rev. 22, 230–245 (2013)
8. Evins, R.: A review of computational optimisation methods applied to sustainable building

design. Renew. Sustain. Energy Rev. 22, 230–245 (2012)
9. Nguyen, A.-T., Reiter, S., Rigo, P.: A review on simulation-based optimization methods

applied to building performance analysis. Appl. Energy 113, 1043–1058 (2014)
10. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)
11. Blum, C., Roli, A.: Metaheuristics in combinatorial optimisation: overview and conceptual

comparison. ACM Comput. Surv. 35, 268–308 (2003)
12. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)
13. Yang, X.S.: Harmony search as a metaheuristic algorithm. In: Geem, Z.W. (ed.) Music-

Inspired Harmony Search Algorithm. Springer, Berlin (2008)
14. Geraili, A., Sharma, P., Romagnoli, J.A.: A modeling framework for design of nonlinear

renewable energy systems through integrated simulation modeling and metaheuristic
optimization: applications to biorefineries. Comput. Chem. Eng. 61, 102–117 (2014)

15. Geraili, A., Sharma, P., Romagnoli, J.A.: Technology analysis of integrated biorefineries
through process simulation and hybrid optimization. Energy, 1–15 (2014)

16. Yang, X.S.: Review of metaheuristics and generalized evolutionary walk algorithm. Int.
J. Bio-Inspired Comput. 3(2), 77–84 (2011)

17. Kennedy, J., Eberhart, R.: Particle swarm optimisation. In: Proceedings of the IEEE
International Conference on Neural Networks. Piscataway, NJ (1995)

Sustainable Building Design … 219

http://www.uea.ac.uk/env/
http://www.extra.rdg.ac.uk/eng/BIONIS/

18. Kirkpatrick, S., Gellat, C.D., Vecchi, M.P.: Optimisation by simulated annealing. Science
220, 671–680 (1983)

19. Manjarres, D., Linda-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M.N., Salcedo-Sanz, S.,
Geem, Z.W.: A survey on applications of the harmony search algorithm. Eng. Appl. Artif.
Intell. 26, 1818–1831 (2013)

20. Geem, Z.W.: Optimal cost design of water distribution networks using harmony search. Eng.
Optim. 38(3), 259–280 (2006)

21. Vasebi, A., Fesanghary, M., Bathaee, S.M.T.: Combined heat and power economic dispatch
by harmony search algorithm. Int. J. Electr. Power 29, 713–719 (2007)

22. Doodman, A., Fesanghary, M., Hosseini, R.: A robust stochastic approach for design
optimization of air cooled heat exchanger. Appl. Energy 86, 1240–1245 (2009)

23. Cheng, Y.M., Li, L., Lansivaara, T., Chi, S.C., Sun, Y.J.: An improved harmony search
minimization algorithm using different slip surface generation methods for slope stability
analysis. Eng. Optim. 40, 95–115 (2008)

24. Fesanghary, M., Asadi, S., Geem, Z.W.: Design of low-emission and energy-efficient
residential buildings using a multi-objective optimization algorithm. Build. Environ. 49,
245–250 (2012)

25. Li, H.Q., Li, L.: A novel hybrid particle swarm optimization algorithm combined with
harmony search for high dimensional optimization problems. In: International Conference on
Intelligent Pervasive Computing, Korea (2007)

26. Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony search
algorithm. Comput. Struct. 82(9–10), 781–798 (2004)

27. Geem, Z.W.: School bus routing using harmony search. In: Genetic and Evolutionary
Computation Conference. Washington, DC (2005)

28. Geem, Z.W., Tseng, C.-L., Park, Y.: Harmony search for generalized orienteering problem:
best touring in China. In: Lecture Notes in Computational Science, pp. 741–750 (2005)

29. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony
search. Simulation 76(2), 60–68 (2001)

30. Kim, J.H., Geem, Z.W., Kim, E.S.: Parameter estimation of the nonlinear Muskingum model
using harmony search. J. Am. Water Resour. Assoc. 37(5), 1131–1138 (2001)

31. Kaveh, A., Talatahari, S.: Particle swarm optimizer, ant colony strategy and harmony search
scheme hybridized for optimization of truss structures. Comput. Struct. 87, 267–283 (2009)

32. Kaveh, A., Abadi, A.S.M.: Cost optimization of a composite floor system using an improved
harmony search algorithm. J. Constr. Steel Res. 66(5), 664–669 (2010)

33. Ayvaz, T.: Simultaneous determination of aquifer parameters and zone structures with fuzzy
c-means clustering and meta-heuristic harmony search algorithm. Adv. Water Resour. 30
(11), 2326–2338 (2007)

34. Wang, W.M., Zmeureanu, R., Rivard, H.: Applying multi-objective genetic algorithms in
green building design optimization. Build. Environ. 40, 1512–1525 (2005)

35. Asadi, S.: A multiobjective harmony-search algorithm for building life-cycle energy
optimization. In: Construction Research Congress, Atlanta (2014)

36. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)
37. Bian, J., Bai, Q., Shi, Q.: A review of genetic algorithms applied to optimizing maintenance

strategy of bridges. Adv. Mater. Res. 374–377, 2437–2441 (2012)
38. Caldas, L.G., Norford, L.K.: A design optimization tool based on a genetic algorithm.

Autom. Constr. 11(2), 173–184 (2002)
39. Caldas, L.: Generation of energy-efficient architecture solutions applying GENE_ARCH: an

evolution-based generative design system. Adv. Eng. Inform. 22(1), 59–70 (2008)
40. Coley, D., Schukat, S.: Low-energy design: combining computer-based optimisation and

human judgement. Build. Environ. 37, 1241–1247 (2002)
41. Congradac, V., Kulic, F.: Recognition of the importance of using artificial neural networks

and genetic algorithms to optimize chiller operation. Energy Build. 47, 651–658 (2012)
42. Chow, T.T., Zhang, G.Q., Lin, Z., Song, C.L.: Global optimization of absorption chiller

system by genetic algorithm and neural network. Energy Build. 34(1), 103–109 (2002)

220 S. Asadi and Z.W. Geem

43. Evins, R., Pointer, P., Vaidyanathan, R.: Multi-objective optimisation of the configuration
and control of a double-skinfacade. In: Proceedings of the Building Simulation (2011)

44. Evins, R., Pointer, P., Burgess, S.C.: Multi-objective optimisation of a modular building for
different climate types. In: Proceedings of the Building Simulation and Optimisation (2012)

45. Evins, R., Pointer, P., Vaidyanathan, R., Burgess, S.: A case study exploring regulated
energy use in domestic buildings use in design-of-experiments and multi-objective
optimisation. Build. Environ. 54, 126–136 (2012)

46. Gagne, J., Andersen, M.: A generative facade design method based on daylighting
performance goals. J. Build. Perform. Simul. 5(3), 141–154 (2011)

47. Hamdy, M.H.A., Siren, K.: Applying a multi-objective optimization approach for design of
low-emission cost-effective dwellings. Build. Environ. 46(1), 109–123 (2011)

48. Hamdy, M., Hasan, A., Siren, K.: Amulti-stage optimization method forcost- optimal and
nearly-zero-energy building solutions in line with the EPBD- Recast 2010. Energy Build. 56,
189–203 (2013)

49. Jin, Q., Overend, M.: Facade renovation for a public building based on a whole-life value
approach. In: Proceedings of The Building Simulation and Optimization Conference (2012)

50. Huang, H., Kato, S., Hu, R.: Optimum design for indoor humidity by coupling genetic
algorithm with transient simulation based on contribution ratio of indoor humidity and
climate analysis. Energy Build. 47, 208–216 (2012)

51. Kayo, G., Ooka R.: Application multi-objective genetic algorithm for optimal design method
of distributed energy system. In: Proceedings of the Building Simulation (2009)

52. Lu, L., Cai, W., Xie, L., Li, S., Soh, Y.C.: HVAC system optimization—in-building section.
Energy Build. 37(1), 11–22 (2005)

53. Li, H., Nalim, R., Haldi, P.-A.: Thermal-economic optimization of a distributed multi-
generation energy system a case study of Beijing. Appl. Therm. Eng. 26 (2006)

54. Palonen, M., Hasan, A., Siren, K.: A genetic algorithm for optimization of building envelope
and HVAC system parameters. In: Proceedings of the Building Simulation (2009)

55. Ooka, R., Komamura, K.: Optimal design method for building energy systems using genetic
algorithms. Build. Environ. 44(7), 1538–1544 (2009)

56. Pernodet, F., Lahmidi, H., Michel, P.: Use of genetic algorithms for multicriteria
optimization of building refurbishment. In: Proceedings of the Building Simulation (2009)

57. Pountney, C.: Better carbon saving: using a genetic algorithm to optimise building carbon
reduction. In: Proceedings of the Building Simulation and Optimization Conference (2012)

58. Salminen, M., Palonen, M., Siren, K.: Combined energy simulation and multi-criteria
optimisation of a LEED-certified building. In: Proceedings of the Building Simulation and
Optimization Conference (2012)

59. Sahu, M., Bhattacharjee, B., Kaushik, S.: Thermal design of air-conditioned building for
tropical climate using admittance method and genetic algorithm. Energy Build. 53, 1–6
(2012)

60. Romero, D., Rincon, J., Almao, N.: Optimization of the thermal behavior of tropical
buildings. In: Proceedings of the Building Simulation (2001)

61. Tuhus-Dubrow, D., Krarti, M.: Genetic-algorithm based approach to optimize building
envelope design for residential buildings. Build. Environ. 45(7), 1574–1581 (2010)

62. Zheng, D.X.M., Ng, S.T., Kumaraswamy, M.M.: Applying a genetic algorithm-based
multiobjective approach for time-cost optimization. J. Constr. Eng. Manage. 130(2), 168–176
(2004)

63. Krarti, M.: An overview of artificial intelligence-based methods for building energy systems.
J. Sol. Energy Eng. 125, 331 (2003)

64. Huang, W., Lam, H.N.: Using genetic algorithms to optimize controller parameters for
HVAC systems. Energy Build. 26, 277–282 (1997)

65. Guillemin, A., Morel, N.: An innovative lighting controller integrated in self-adaptive
building control system. Energy Build. 33, 477–487 (2001)

66. Schaffer, J.: Multi objective optimization with vector evaluated genetic algorithms. In:
International Conference on Genetic Algorithm and Their Applications (1987)

Sustainable Building Design … 221

67. Fonseca, C.M., Fleming, P.J.: Multi-objective genetic algorithms. In: IEE Colloquium on
Genetic Algorithms for Control Systems Engineering, London (1993)

68. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for
Multiobjective Optimization. In: Proceedings of the First IEEE Conference on
Evolutionary Computation (1994)

69. Hajela, P., Lin, C.-Y.: Genetic search strategies in multicriterion optimal design. Struct.
optim. 4(2), 99–107 (1992)

70. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic
algorithms. Evol. Comput. 2(3), 221–248 (2007)

71. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. In: IEEE Transactions on Evolutionary Computation (2002)

72. Sarker, R., Liang, K., Newton, C.: A new multiobjective evolutionary algorithm. Eur.
J. Oper. Res. 140(1), 12–23 (2002)

73. Hauglustaine, J.-M., Azar, S.: Interactive tool aiding to optimise the building envelope during
the sketch design. In: Lamberts, R., Negarao, C.O.R., Hensen, J. (eds.) Proceedings of the 7th
International IBPSA Conference (2001)

74. Hamdy, M., Hasan, A., Siren, K.: Applying a multi-objective optimization approach for
Design of low-emission cost-effective dwellings. Build. Environ. 46, 109–123 (2011)

75. Wright, J.A., Loosemore, H.A., Farmani, R.: Optimization of building thermal design and
control by multi-criterion genetic algorithm. Energy Build. 34(9), 959–972 (2002)

76. Verbeeck, G., Hens, H.: Life cycle optimisation of extremely low energy dwellings. J. Build.
Phys. 31(2), 143–177 (2007)

77. Kubota, N., Hashimoto, S., Kojima, F., Taniguchi K.: GP-preprocessed fuzzy inference for
the energy load prediction. In: Proceedings of the 2000 Congress on Evolutionary
Computation, pp. 1–6 (2000)

78. Zhang, Y., Hanby, V., Wright, J.A.: Energy aspects of HVAC system configurations—
problem definition and test cases. HVAC&R Res. 12(3c), 871–888 (2006)

79. Wright, J.A., Zhang, Y.: Evolutionary synthesis of HVAC system configurations:
experimental results. HVAC&R Res. 14(1), 57–72 (2008)

80. Wright, J.A., Zhang, Y., Angelov, P., Hanby, V.I., Buswell, R.A.: Evolutionary synthesis of
HVAC system configurations: algorithm development. HVAC&R Res. 14(1), 33–55 (2008)

81. Stanescu, M., Kajl, S., Lamarche, L.: Evolutionary algorithm with three different permutation
options used for preliminary HVAC system design. In: Proceedings of the Buildings
Simulation and Optimization Conference (2012)

82. Wright, J.A., Loosemore, H., Fermani, R.: Optimization of building thermal design and
control by multi-criterion genetic algorithm. Energy Build. 34, 959–972 (2002)

83. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference
on Neural Networks Man, and Cybernetics, Piscataway, pp. 1942–1948 (1995)

84. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of IEEE
International Joint Conference on Evolutionary Computation, pp. 69–73 (1998)

85. del Valle, Y., Venayagamoorthy, G.K., Mohaghenghi, S., Hernandez, J.C., Harley, R.G.:
Particle swarm optimization: basic concepts, variants and applications in power systems.
IEEE Trans. Evol. Comput. 12, 171–195 (2008)

86. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Overv. Swarm Intell. 1,
33–57 (2007)

87. van den Bergh, F., Engelbrecht, A.: A new locally convergent particle swarm optimiser. In:
IEEE International Conference on Systems, Man and Cybernetics, vol. 3 (2002)

88. Zhang, J., Huang, D.S., Liu, K.H.: Multi-sub-swarm particle swarm optimization algorithm
for multimodal function optimization. In: IEEE Congress on Evolutionary Computation
(CEC 2007), pp. 3215–3220 (2007)

89. Bravo, R.H., Flocker, F.W.: Designing HVAC systems using particle swarm optimization.
HVAC&R Res. 18(5), 845–857 (2011)

90. Patel, V.K., Rao, R.V.: Design optimization of shelland—tube heat exchanger using particle
swarm optimization technique. Appl. Therm. Eng. 30, 1417–1425 (2010)

222 S. Asadi and Z.W. Geem

91. Khooban, M.H., Soltanpour, M.R., Abadi, D.N.M., Esfahani, Z.: Optimal intelligent control
for HVAC systems. J. Power Technol. 92(3), 192–200 (2012)

92. Wang, J., Zhai, Z., Jing, Y., Zhang, C.: Particle swarm optimization for redundant building
cooling heating and power system. Appl. Energy 87, 3668–3679 (2010)

93. Yang, R., Wang, L., Wang, Z.: Multi-objective particle swarm optimization for decision-
making in building automation. In: IEEE Power and Energy Society General Meeting (2011)

94. Kusiak, A., Xu, G., Tang, F.: Optimization of an HVAC system with a strength multi-
objective particle-swarm algorithm. Energy 36, 5935–5943 (2011)

95. Rapone, G., Saro, O.: Optimisation of curtain wall facades for office buildings by means of
PSO algorithm. Energy Build. 45, 189–196 (2012)

96. Hasan, A., Vuolle, M., Siren, K.: Minimisation of life cycle cost of a detached house using
combined simulation and optimisation. Build. Environ. 43, 2022–2034 (2008)

97. Stephan, L., Bastide, A., Wurtz, E., Souyri, B.: Ensuring desired natural ventilation rate by
means of optimized openings. In: Building Simulation. Glasgow (2009)

98. Hadjiski, V.B.: Dynamic Ontology-based approach for HVAC Control via Ant Colony
Optimization in DECOM 2007. Izmir (2007)

99. Ghasemi, M.R., Farshchin, M.: Ant colony optimisation-based multiobjective frame design
under seismic conditions. In: Proceedings of the ICE—Structures and Buildings (2011)

100. Ding, L., Lv, J., Li, X., Li, L.: Support vector regression and ant colony optimization for
HVAC cooling load prediction. In: International Symposium on Computer, Communication,
Control and Automation, pp. 537–541 (2010)

101. Shea, K., Sedgwick, A., Antonuntto, G.: Multicriteria optimization of paneled building
envelopes using ant colony optimization. In: Intelligent Computing in Engineering and
Architecture, pp. 627–636. Springer, Berlin (2006)

102. Yuan, Y., Yuan, J., Du, H., Li, L.: An improved multi-objective ant colony algorithm for
building life cycle energy consumption optimisation. Int. J. Comput. Appl. Technol. 43(1),
60–66 (2012)

103. Pour, H.D., Nosraty, M.: Solving the facility layout and location problem by ant-colony
optimization-meta heuristic. Int. J. Prod. Res. 44, 5187–5196 (2006)

104. Bouhafs, L., Hajjam, A., Koukam, A.: A combination of simulated annealing and ant colony
system for the capacitated location-routing problem. In: KES, pp. 409–416 (2006)

105. Crawford, B., Castro, C.: Integrating lookahead and post processing procedures with aco for
solving set partitioning and covering problems. In: ICAISC, pp. 1082–1090 (2006)

106. Altiparmak, F., Karaoglan, I.: A genetic ant colony optimization approach for concave cost
transportation problems. In: Evolutionary Computation, pp. 1685–1692 (2007)

107. Fong, K.F., Hanby, V.I., Chow, T.T.: HVAC system optimization for energy management by
evolutionary programming. Energy Build. 38, 220–231 (2006)

108. Fong, K.F., Hanby, V.I., Chow, T.T.: System optimization for HVAC energy management
using the robust evolutionary algorithm. Appl. Therm. Eng. 29, 2327–2334 (2009)

109. Yang, Z., Li, X., Bowers, C.P., Schnier, T., Tang, K., Yao, X.: An efficient evolutionary
approach to parameter identification in a building thermal model. IEEE Trans. Syst. Man
Cybern. Part C Appl. Rev. 42(6), 957–968 (2012)

110. Kampf, J.H., Robinson, D.: Optimisation of building form for solar energy utilisation using
constrained evolutionary algorithms. Energy Build. 42, 807–814 (2010)

111. Fong, K.F., Chow, T.T., Hanby, V.I.: Development of optimal design of solar water heating
system by using evolutionary algorithm. In: ASME 2005 International Solar Energy
Conference, pp. 333–341. ASME, Orlando (2005)

Sustainable Building Design … 223

Firefly Algorithm for Flow Shop
Optimization

M.K. Marichelvam, T. Prabaharan and M. Geetha

Abstract In this chapter, a recently developed bio-inspired meta-heuristic algorithm
namely firefly algorithm (FA) is addressed to solve the flow shop scheduling prob-
lems with sequence dependent setup times which have been proved to be strongly
NP-hard type of combinatorial optimization problems. Four different performance
measures namely minimization of makespan, mean flow time, mean tardiness and
number of tardy jobs are considered. Extensive computational experiments were
carried out to compare the performance of the proposed FA on different random
problem instances. The results indicate that the proposed FA is more effective than
many other algorithms reported earlier in the literature.

Keywords Flow shop � Scheduling � NP-hard � Firefly algorithm (FA) �
Makespan � Flow time � Tardiness � Tardy jobs

1 Introduction

Scheduling is defined as a process of allocating resources over time to perform a
collection of tasks [3]. It is a decision-making process and plays a vital role for the
development industries. Scheduling problems are non-deterministic polynomial
time hard (NP-hard) type combinatorial optimization problems. Hence it is difficult
to solve the problems. Researchers addressed different type of scheduling problems
[44]. Among them flow shop scheduling problems have attracted the researchers for
the past several decades. Many industries such as metal, plastic, chemical and food

M.K. Marichelvam (&) � T. Prabaharan
Department of Mechanical Engineering, Mepco Schlenk Engineering College,
Sivakasi 626005, Tamilnadu, India
e-mail: mkmarichelvamme@gmail.com

M. Geetha
Department of Mathematics, Kamaraj College of Engineering and Technology,
Virudhunagar 626001, Tamilnadu, India

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_12

225

industries resemble the flow shop environment. Most of the research papers
addressed the flow shop scheduling problems without considering the setup times.
However, setup time plays significant role in many industries such as ceramic tile
and paper cutting industries [53]. Hence, in this chapter we consider the flow shop
scheduling problems with sequence dependent setup times. Moreover, researchers
have proposed many bio-inspired metaheuristic algorithms recently. Firefly algo-
rithm is one of the algorithms. We present the firefly algorithm to solve the flow
shop scheduling problems to minimize the makespan, mean flow time, mean tar-
diness and number of tardy jobs. The remaining of the chapter is organised as
follows. A brief review of literature is presented in Sect. 2. The problem definition
is presented in Sect. 3. The proposed firefly algorithm is explained in detail in
Sect. 4. Section 5 illustrates the computational results. Finally, the conclusions and
future research opportunities are discussed in Sect. 6.

2 Literature Review

This section will briefly present the backgrounds necessary for the current study.
It includes the flow shop scheduling problems with different objective functions and
firefly algorithm.

2.1 Flow Shop Scheduling

The flow shop model was first proposed by Johnson [27] and many researchers
addressed different types of scheduling problems for the past few decades. How-
ever, it has been reported that most of the researchers considered makespan min-
imization as the objective function [23] and very few of them only considered the
setup times. Corwin and Esogbue [11] first proposed a two machine flow shop
scheduling problems with sequence dependent setup times. They developed a
dynamic programming to minimize the makespan. They compared the dynamic
programming approach with the branch-and-bound algorithm. Gupta and Darrow
[20] developed four efficient approximate algorithms to solve the two-machine flow
shop scheduling problems sequence dependent setup times to minimize the
makespan. Srikar and Ghosh [58] developed a mixed integer linear programming
model for the flow shop scheduling problems with sequence dependent setup times.
Osman and Potts [41] proposed a simulated annealing (SA) algorithm for solving
the permutation flow-shop scheduling problems to minimize the maximum com-
pletion time. Rios-Mercado and Bard [51] addressed two new heuristics for solving
the flow shop scheduling problems with sequence-dependent setup time to mini-
mize the makespan. T’kindt et al. [60] applied the ant colony optimization (ACO)
algorithm to solve a 2-machine bicriteria flow shop scheduling problem with the
objective of minimizing both the total completion time and the makespan criteria.

226 M.K. Marichelvam et al.

The proposed algorithm heuristic also used the features of SA and local search
algorithms. Computational experiments showed the effectiveness of the proposed
algorithm.

Rajendran and Ziegler [49] proposed two ACO algorithms for permutation flow
shop scheduling problems to minimize the makespan and total flow time. They
tested the performance of the proposed algorithms with the benchmark problems
addressed in the literature. França et al. [16] proposed two evolutionary algorithms
namely genetic algorithm (GA) and a memetic algorithm (MA) with local search for
solving flowshop scheduling problems with sequence dependent family setup times
to obtain optimal schedule. Ravindran et al. [50] proposed three different heuristics
to minimize the makespan and total flow time in a flow shop scheduling envi-
ronment. The effectiveness of the heuristics was tested with the benchmark prob-
lems addressed in the literature. Ruiz et al. [53] addressed the different variants of
GA to solve the permutation flowshop scheduling problems with sequence
dependent setup times to minimize the makespan. They calibrated the parameters
and operators of the GA by means of Design of Experiments. They tested the
proposed algorithms with the benchmark problems addressed in the literature and
proved that the proposed algorithms were superior. Liao et al. [32] addressed a
discrete particle swarm optimization (DPSO) algorithm for solving the flow shop
scheduling problems. A local search was also incorporated into the proposed
algorithm. Computational results showed that the proposed PSO algorithm was
very competitive. Marichelvam [34] addressed an improved hybrid cuckoo search
algorithm to minimise the makespan in FSSPs. Chowdhury et al. [9] proposed a
novel GA to solve the blocking flow shop problems to minimize the makespan.

Ignall and Schrage [25] applied the branch-and-bound algorithm to solve the
flow shop scheduling problems to minimize the flow time. Rajendran [46] devel-
oped a heuristic algorithm for solving flow shop scheduling problems to minimize
the total flowtime. Vempati et al. [67] developed an effective heuristic to solve the
flow shop scheduling problems to minimise the total flow time. Neppalli et al. [40]
developed two GA based approaches for solving the two-stage bicriteria flow shop
scheduling problems. The objective was minimization of total flow time and
makespan. Computational experiments showed that the proposed algorithms were
effective. Rajendran and Ziegler [47] developed a new heuristic to minimize the
sum of weighted flow time in a flow shop environment with sequence-dependent
setup times of jobs. Extensive computational experiments showed that the proposed
heuristic was faster and more effective than other heuristics. Gupta et al. [21]
proposed a tabu search algorithm to minimise the total flow time in a flow shop
environment. Gupta et al. [22] proposed several polynomial heuristic solution
algorithms to solve the two-machine flow shop scheduling problems to minimize
the total flow time and makespan. Tang and Liu [59] developed modified version of
GA to solve the flow shop scheduling problems to minimise the mean flow time.
Varadharajan and Rajendran [66] developed a multi-objective SA (MOSA) algo-
rithm for solving the flow shop scheduling problems to minimise the makespan and
total flow time. Nagano and Moccellin [38] proposed a constructive heuristics to
minimise the mean flow time in a flow shop environment. Tasgetiren et al. [61]

Firefly Algorithm for Flow Shop Optimization 227

applied the PSO algorithm to solve the flow shop scheduling problems for mini-
mizing the makespan and total flow time. Yagmahan and Yenisey [71] addressed an
ACO algorithm for solving the multi-objective flow shop scheduling problems.
They considered minimization of makespan, total flow time and total machine idle
time as the objective function. They compared the performance of the proposed
algorithm with other multi-objective heuristics. Computational results showed that
proposed algorithm was more effective and better than other methods compared.
Dong et al. [14] suggested an iterated local search algorithm to minimise the total
flow time in the flow shops. A distribution algorithm was proposed by Jarboui et al.
[26] for minimizing the total flow time.

Zhang et al. [72] presented a hybrid GA for solving the flow shop scheduling
problems with total flow time objective. Chakraborty and Turvey [7] addressed a
differential evolution (DE) algorithm and Czapiński [12] addressed a parallel SA
algorithm with genetic enhancement for solving the flow shop problems with flow
time objective. A mathematical programming model was developed by Salmasi
et al. [54] for minimizing total flow time of the flow shop with sequence dependent
group scheduling. They proposed a tabu search algorithm and a hybrid ACO
algorithm to solve the problem. Tseng and Lin [64] proposed a genetic local search
algorithm for minimizing the total flow time. A discrete harmony search algorithm
was developed for solving the flow shop scheduling problems to minimise the total
flow time by Gao et al. [18]. Tasgetiren et al. [62] addressed a discrete artificial bee
colony (ABC) algorithm to minimise the total flow time in permutation flow shops.
Two constructive heuristics were developed by Gao et al. [19] to solve the no-wait
flow shop scheduling problems to minimize the total flow time.

Simons [57] proposed several decomposition methods to solve the reentrant flow
shop scheduling problems with sequence dependent setup times to minimize
maximum lateness. Kim [31] also developed a branch-and-bound algorithm to
minimize the total tardiness in a permutation flow shop environment. Murata et al.
[37] developed a multi-objective GA (MOGA) to solve the flow shop scheduling
problems to minimize the makespan, total tardiness and total flow time. Partha-
sarathy and Rajendran [43] also proposed the SA algorithm to solve the flow shop
scheduling problems with sequence-dependent setup times to minimize mean
weighted tardiness. They considered a drill-bit manufacturing industry. Computa-
tional results revealed that the proposed heuristic was better than many other
algorithms. Armentano and Ronconi [1] proposed a tabu search based heuristic for
solving the flow shop scheduling problems to minimize total tardiness. Rajendran
and Ziegler [48] proposed heuristics to solve the flow shop scheduling problems
with sequence-dependent setup times to minimize the sum of weighted flowtime
and weighted tardiness of jobs.

Arroyo and Armentano [2] developed a genetic local search for solving the
multi-objective flow shop scheduling problems. The algorithm was applied to the
flowshop scheduling problem for the following two pairs of objectives: (i) make-
span and maximum tardiness; (ii) makespan and total tardiness. The performance of
the proposed algorithm was compared with two multi-objective genetic local search
algorithms proposed in the literature. Computational results showed that the

228 M.K. Marichelvam et al.

proposed algorithm was better than other algorithms. Rahimi-Vahed and Mirg-
horbani [45] developed a multi-objective PSO (MOPSO) algorithm for solving the
flow shop scheduling problems to minimize the weighted mean completion time
and weighted mean tardiness. The computational results showed that the proposed
algorithm was better than the GA. Ruiz and Stützle [52] developed two new iterated
greedy heuristics to solve the flowshop scheduling problems with sequence
dependent setup times. Minimization of makespan and weighted tardiness were the
objectives considered by them. Tavakkoli-Moghaddam et al. [63] addressed a
hybrid multi-objective algorithm based on the features of a biological immune
system (IS) and bacterial optimization (BO) to find Pareto optimal solutions for
solving the multi-objective no-wait flow shop scheduling problems to minimize the
weighted mean completion time and weighted mean tardiness. They compared the
performance of the proposed algorithm against five different multi-objective evo-
lutionary algorithms addressed in the literature and proved that the proposed
algorithm was efficient. Naderi et al. [39] presented an electromagnetism-like
mechanism and SA algorithms for flow shop scheduling problems for minimizing
the total weighted tardiness and makespan. Pan et al. [42] presented a discrete ABC
algorithm to solve the lot-streaming flow shop scheduling problems with the cri-
terion of total weighted earliness and tardiness. They used the dispatching rules to
construct the initial population. A simple and effective local search approach was
also used by them. Khalili and Tavakkoli-Moghaddam [30] presented a new multi-
objective electromagnetism algorithm (MOEM) to solve the bi-objective flowshop
scheduling problems. The objective was to minimize the makespan and total
weighted tardiness. They considered the transportation times between machines.
They also applied the SA algorithm to solve the given problem. They conducted the
computational experiments and proved that the proposed MOEM provided better
results. Boxma and Forst [6] proposed heuristics to minimize the expected weighted
number of tardy jobs in a stochastic flow shops.

2.2 Firefly Algorithm

Firefly algorithm (FA) is one of the recently developed meta-heuristic algorithms by
Yang [70]. Sayadia et al. [55] presented a new discrete firefly algorithm (DFA) meta-
heuristic to minimize the makespan for the permutation flow shop scheduling
problems. Computational results indicated that the proposed DFA was better than
the ACO algorithm for the well known benchmark problems reported in the litera-
ture. Banati and Bajaj [4] presented a new feature selection approach by combining
the rough set theory with the FA. The FA was applied by Gandomi et al. [17] to solve
the mixed continuous/discrete structural optimisation problems. Kazemzadeh and
Kazemzadeh [28] proposed an improved FA to solve the structural optimisation
problems. Liu and Ye [33] solved the permutation flow shop scheduling problem by

Firefly Algorithm for Flow Shop Optimization 229

a FA to minimize the makespan. Computational experiments proved the efficiency of
the proposed FA.

The FA has been applied to solve the clustering problems by Senthilnath et al.
[56]. Chandrasekaran and Simon [8] proposed a binary real coded FA to solve the
unit commitment problem. Coelho and Mariani [10] proposed the FA to solve the
multivariable PID controller tuning problems. Dekhici et al. [13] applied the FA for
economic power dispatching problems with pollutants emission. The FA was
applied for vector quantization in image compression problems by Horng [24]. The
job shop scheduling problems have been solved using the FA by Khadwilard et al.
[29]. They also investigated the different parameters for the proposed algorithm and
compared the performance with different parameters. The FA was applied for
solving the economic load dispatching problems by Yang et al. [69].

An efficient FA was presented by Miguel et al. [36] to simultaneously optimize
the size, shape and topology of the truss structures. They proved the effectiveness of
the proposed FA by solving the benchmark problems reported in the literature.
Fister et al. [15] presented a comprehensive review of FAs. Yang [68] proposed a
multi-objective FA for continuous optimisation problems. Vahedi Nouri et al. [65]
proposed a hybrid algorithm based on firefly and SA algorithms for solving the flow
shop scheduling problems. The objective was to minimize the sum of tardiness
costs and maintenance costs. A mixed integer linear programming model was
proposed to formulate the problem. Marichelvam et al. [35] addressed a DFA for
solving the hybrid flow shop scheduling problems to minimise the makespan and
mean flow time.

3 Problem Definition

Flow shop scheduling environment consists of bank of m machines in series and n
jobs are to be scheduled. Each job should be processed on the machines in a
particular sequence. A job is first processed on machine 1, then on machine 2 and
finally completed on machine m. The processing time of the jobs are known in
advance, fixed and nonnegative. It is expected that the jobs are available at time
zero. Each machine can processes only one job at a time and each job can be
processed on only one machine at a time. The processing of each job cannot be
interrupted, that is, preemption is not allowed. It is also assumed that the machines
are available for the entire scheduling period (no machine breakdown). Minimi-
zation of makespan, mean flow time, mean tardiness and number of tardy jobs are
the objective functions considered. The flow shop scheduling environment is given
in Fig. 1 [34].

230 M.K. Marichelvam et al.

3.1 Makespan (Cmax)

Makespan is the completion time of the last job to leave the system production
system. Minimizing makespan would lead to the maximization of the resource
utilisation and the throughput of a production system.

3.2 Mean Flow Time (f)

Mean flow time is defined as the average time spent by the jobs in the production
system. It is one of the most important performance measures. Mean flow time can
help to effective utilization of resources, rapid turn-around of jobs, and minimi-
zation of work-in-process inventory costs.

3.3 Mean Tardiness (T)

The tardiness is defined as the lateness of a job if it fails to meet its due date, or zero
otherwise. Tardiness is associated with the service quality and customer
satisfaction.

3.4 Number of Tardy Jobs (NT)

This performance measure represents how many jobs are delayed in satisfying the
due date. The detailed mathematical model for makespan, mean flow time, mean
tardiness and number of tardy jobs can be found in [3].

Fig. 1 Layout of a flow shop environment

Firefly Algorithm for Flow Shop Optimization 231

3.5 Objective Function

The objective of this chapter is to minimize the weighted sum of makespan, mean
flow time, mean tardiness and number of tardy jobs.

Z ¼ w1Cmax þ w2f þ w3T þ w4NT ð1Þ

where w1, w2, w3 and w4 are the weight values of the objective functions and
w1 � 0; w2 � 0; w3 � 0 andw4 � 0:

w1 þ w2 þ w3 þ w4 ¼ 1 ð2Þ

4 Firefly Algorithm

Firefly algorithm (FA) is a nature- inspired meta-heuristic algorithm. The FA is
inspired by the social behavior of fireflies. Fireflies may also be called as lighting
bugs. There are about two thousand firefly species in the world. Most of the firefly
species produce short and rhythmic flashes. The pattern of flashes is unique for a
particular species. A firefly’s flash is mainly act as a signal system to attract mating
partners and to attract potential prey. Flashes also serve as a protective warning
mechanism. The following three idealized rules are considered for describing the
FA [70].

1. All fireflies are unisex so that one firefly will be attracted to other fireflies
regardless of their sex

2. Attractiveness is proportional to their brightness, thus for any two flashing
fireflies, the less bright one will move toward the brighter one. The attractive-
ness is proportional to the brightness and they both decrease as their distance
increases. If there is no brighter one than a particular firefly, it will move
randomly

3. The brightness of a firefly is affected or determined by the landscape of the
objective function. For a maximization problem, the brightness may be pro-
portional to the objective function value. For the minimization problem the
brightness may be the reciprocal of the objective function value.

The Pseudo code of the FA is given in Fig. 2.

4.1 Attractiveness of a Firefly

The attractiveness of a firefly is determined by its light intensity. The attractiveness
may be calculated by using the Eq. (3).

232 M.K. Marichelvam et al.

bðqÞ ¼ b0e
�cr2 ð3Þ

where β is the attractiveness of a firefly and γ is the light absorption coefficient.

4.2 Distance Between Two Fireflies

The distance between any two fireflies k and l at Xk and Xl is the Cartesian distance
using the Eq. (4).

rkl ¼ Xk � Xlk k ¼
ffiXd
k¼1

ðXk;o � Xl;oÞ2
vuut ð4Þ

4.3 Movement of a Firefly

The movement of a firefly k that is attracted to another more attractive firefly l is
determined by the Eq. (5).

Xk ¼ Xk þ b0e
�cr2klðXl � XkÞ þ a rand � 1

2

� �
ð5Þ

where α is the randomization parameter and rand is a number uniformly drawn from
the interval [0, 1].

−]

Objective function f(x), x = (x1, ..., xd)
T

Generate initial population of fireflies xi (i = 1, 2,..., n)
Light intensity Ii at xi is determined by f(xi)
Define light absorption coefficient
While (t <MaxGeneration)
for i = 1 : n all n fireflies
for j = 1 : i all n fireflies
if (Ij > Ii), Move firefly i towards j in d-dimension; end if
Attractiveness varies with distance r via exp [2

Evaluate new solutions and update light intensity
end for j
end for i
Rank the fireflies and find the current best
end while
Postprocess results and visualization

γ

γr

Fig. 2 Pseudo code of the
firefly algorithm

Firefly Algorithm for Flow Shop Optimization 233

4.4 Discrete Firefly Algorithm (DFA)

The FA has been originally developed for solving the continuous optimization
problems. The FA cannot be applied directly to solve the discrete optimization
problems. In this chapter, the smallest position value (SPV) rule described by Bean
[5] is used to enable the continuous FA to be applied to solve the discrete HFS
scheduling problems. For this, a discrete firefly algorithm (DFA) is proposed. More
detail about the DFA can be found in [35].

4.5 Implementation of the DFA for Flow Shop Scheduling
Problems

This section illustrates how the DFA is applied for solving the flow shop scheduling
problems.

4.5.1 Solution Representation

Solution representation is one of the most important issues in designing a DFA. The
solution search space consists of n dimensions as n number of jobs is considered in
this book chapter. Each dimension represents a job. The vector Xt

i ¼
ðXt

i1;X
t
i2; . . .;X

t
inÞ represents the continuous position values of fireflies in the search

space. The SPV rule is used to convert the continuous position values of the fireflies
to the discrete job permutation. The solution representation of a firefly with 6 jobs is
illustrated in Table 1

The smallest position value is xti4 ¼ 0:07and the dimension j = 4 is assigned to
be the first job in the permutation according to the SPV rule. The second smallest
position value is xti3 ¼ 0:22 and the dimension j = 3 is assigned to be the second job
in the permutation. Similarly, all the jobs are assigned in the permutation.

4.5.2 Population Initialization

In most of the meta-heuristics, the initial population is generated at random. In the
DFA the initial population is also generated at random. The continuous values of
positions are generated randomly using a uniform random number between 0 and 1.

Table 1 Solution representation of a FA

Dimension j

1 2 3 4 5 6 7

xij 0.83 0.94 0.22 0.07 0.74 0.61 0.96

jobs 5 6 2 1 4 3 7

234 M.K. Marichelvam et al.

4.5.3 Solution Updation

By using the permutation, each firefly is evaluated to determine the objective
function value. The objective function value of each firefly is associated with the
light intensity of the corresponding firefly. A firefly with less brightness is attracted
and moved to a firefly with more brightness. The attractiveness of the firefly is
determined using the Eq. (3). The distance between each two fireflies is determined
by the Eq. (4). The SPV rule is applied to obtain the job permutation. The attrac-
tiveness is calculated for each firefly. Then, the movement of the firefly is deter-
mined by the Eq. (5) depending on the attractiveness of the firefly. The above steps
are repeated until the termination criterion is met.

5 Computational Results

The proposed algorithm was coded in C++ and run on a PC with an Intel Core Duo
2.4 GHz CPU, 2 GB RAM, running Windows XP. Simulation experiments are
performed with different parameter settings to evaluate the performance of the FA.
The factor levels for the design of experiments are given in Table 2.

Hence we conduct 3 × 3 × 1 × 1 × 1 × 3 × 3 × 3 = 243 experiments to evaluate
the performance of the proposed algorithm. Each problem is tested with 20 repli-
cations. We compare the performance of the proposed discrete firefly algorithm
with the genetic algorithm (GA), ant colony optimization (ACO) algorithm, cuckoo
search (CS), particle swarm optimization (PSO) and the simulated annealing (SA)

Table 2 Factor levels for the design of experiments

Sl. No. Factors Levels

1 Number of jobs 20, 50 and 100

2 Number of machines 2, 5 and 10

3 Processing time distribution Uniform (1–100)

4 Setup times Uniform (0–10)

5 Due date 0.5–1.2 times processing time

6 Attractiveness of a firefly β0 0.0 (low)

0.5 (medium)

1.0 (high)

7 Light absorption coefficient γ 0.5 (low)

0.75 (medium)

1.0 (high)

8 Randomization parameter α 0.0 (low)

0.5 (medium)

1.0 (high)

Firefly Algorithm for Flow Shop Optimization 235

T
ab

le
3

R
es
ul
t
co
m
pa
ri
so
n
of

di
ff
er
en
t
al
go

ri
th
m
s

Sl
.
N
o.

N
um

be
r
of

jo
bs

N
um

be
r
of

m
ac
hi
ne
s

β 0
γ

α
M
R
D
I

SA
A
C
O

G
A

C
S

PS
O

D
FA

1
20

2
0

0.
50

0
8.
00

7.
85

6.
62

2.
21

4.
23

0.
00

2
20

2
0

0.
75

0
8.
35

7.
25

6.
69

2.
77

4.
41

0.
00

3
20

2
0

1.
00

0
8.
95

7.
46

6.
54

2.
07

4.
62

0.
00

4
20

2
0

0.
50

0.
50

8.
15

7.
70

6.
51

2.
39

4.
89

0.
00

5
20

2
0

0.
75

0.
50

8.
26

7.
48

6.
74

2.
19

4.
60

0.
00

6
20

2
0

1.
00

0.
50

8.
55

7.
05

6.
85

2.
91

4.
51

0.
00

7
20

2
0

0.
50

1.
00

8.
42

7.
76

6.
83

2.
92

4.
97

0.
00

8
20

2
0

0.
75

1.
00

8.
14

7.
80

6.
43

2.
36

4.
38

0.
00

9
20

2
0

1.
00

1.
00

8.
62

7.
31

6.
53

2.
18

4.
92

0.
00

10
20

5
0.
50

0.
50

0
8.
94

7.
33

6.
88

2.
13

4.
06

0.
00

11
20

5
0.
50

0.
75

0
8.
45

7.
56

6.
68

2.
98

4.
81

0.
00

12
20

5
0.
50

1.
00

0
8.
32

7.
91

6.
34

2.
34

4.
63

0.
00

13
20

5
0.
50

0.
50

0.
50

8.
28

7.
24

6.
29

2.
56

4.
76

0.
00

14
20

5
0.
50

0.
75

0.
50

8.
56

7.
36

6.
82

2.
82

4.
12

0.
00

15
20

5
0.
50

1.
00

0.
50

8.
72

7.
42

6.
18

2.
64

4.
14

0.
00

16
20

5
0.
50

0.
50

1.
00

8.
16

7.
31

6.
54

2.
57

4.
48

0.
00

17
20

5
0.
50

0.
75

1.
00

8.
43

7.
52

6.
62

2.
73

4.
51

0.
00

18
20

5
0.
50

1.
00

1.
00

8.
32

7.
75

6.
41

2.
32

4.
78

0.
00

19
20

10
1.
00

0.
50

0
8.
46

7.
33

6.
50

2.
56

4.
51

0.
00

20
20

10
1.
00

0.
75

0
8.
45

7.
50

6.
39

2.
72

4.
52

0.
00

21
20

10
1.
00

1.
00

0
8.
24

7.
70

6.
24

2.
82

4.
55

0.
00

22
20

10
1.
00

0.
50

0.
50

8.
56

7.
63

6.
63

2.
68

4.
63

0.
00

23
20

10
1.
00

0.
75

0.
50

8.
46

7.
29

6.
61

2.
64

4.
53

0.
00

(c
on

tin
ue
d)

236 M.K. Marichelvam et al.

T
ab

le
3

(c
on

tin
ue
d)

Sl
.
N
o.

N
um

be
r
of

jo
bs

N
um

be
r
of

m
ac
hi
ne
s

β 0
γ

α
M
R
D
I

SA
A
C
O

G
A

C
S

PS
O

D
FA

24
20

10
1.
00

1.
00

0.
50

8.
48

7.
58

6.
41

2.
34

4.
62

0.
00

25
20

10
1.
00

0.
50

1.
00

8.
53

7.
91

6.
59

2.
48

4.
75

0.
00

26
20

10
1.
00

0.
75

1.
00

8.
63

7.
57

6.
64

2.
68

4.
60

0.
00

27
20

10
1.
00

1.
00

1.
00

8.
64

7.
33

6.
67

2.
70

4.
62

0.
00

28
50

2
0

0.
50

0
8.
56

7.
29

6.
38

2.
57

4.
48

0.
00

29
50

2
0

0.
75

0
8.
43

7.
69

6.
55

2.
46

4.
61

0.
00

30
50

2
0

1.
00

0
8.
36

7.
45

6.
72

2.
92

4.
68

0.
00

31
50

2
0

0.
50

0.
50

8.
56

7.
66

6.
59

2.
68

4.
45

0.
00

32
50

2
0

0.
75

0.
50

8.
08

7.
94

6.
51

2.
67

4.
59

0.
00

33
50

2
0

1.
00

0.
50

8.
12

7.
35

6.
40

2.
48

4.
59

0.
00

34
50

2
0

0.
50

1.
00

8.
32

7.
74

6.
38

2.
45

4.
57

0.
00

35
50

2
0

0.
75

1.
00

8.
46

7.
88

6.
41

2.
37

4.
59

0.
00

36
50

2
0

1.
00

1.
00

8.
36

7.
33

6.
59

2.
94

4.
55

0.
00

37
50

5
0.
50

0.
50

0
8.
56

7.
28

6.
34

2.
69

4.
66

0.
00

38
50

5
0.
50

0.
75

0
8.
00

7.
71

6.
45

2.
54

4.
56

0.
00

39
50

5
0.
50

1.
00

0
8.
35

7.
60

6.
52

2.
73

4.
62

0.
00

40
50

5
0.
50

0.
50

0.
50

8.
95

7.
43

6.
55

2.
68

4.
70

0.
00

41
50

5
0.
50

0.
75

0.
50

8.
15

7.
21

6.
54

2.
54

4.
67

0.
00

42
50

5
0.
50

1.
00

0.
50

8.
26

7.
83

6.
67

2.
63

4.
44

0.
00

43
50

5
0.
50

0.
50

1.
00

8.
46

7.
78

6.
62

2.
58

4.
56

0.
00

44
50

5
0.
50

0.
75

1.
00

8.
45

7.
13

6.
72

2.
63

4.
81

0.
00

45
50

5
0.
50

1.
00

1.
00

8.
24

7.
89

6.
54

2.
56

4.
42

0.
00

46
50

10
1.
00

0.
50

0
8.
00

7.
58

6.
54

2.
83

4.
58

0.
00

(c
on

tin
ue
d)

Firefly Algorithm for Flow Shop Optimization 237

T
ab

le
3

(c
on

tin
ue
d)

Sl
.
N
o.

N
um

be
r
of

jo
bs

N
um

be
r
of

m
ac
hi
ne
s

β 0
γ

α
M
R
D
I

SA
A
C
O

G
A

C
S

PS
O

D
FA

47
50

10
1.
00

0.
75

0
8.
35

7.
52

6.
50

2.
67

4.
59

0.
00

48
50

10
1.
00

1.
00

0
8.
95

7.
64

6.
40

2.
48

4.
60

0.
00

49
50

10
1.
00

0.
50

0.
50

8.
15

7.
20

6.
73

2.
78

4.
54

0.
00

50
50

10
1.
00

0.
75

0.
50

8.
26

7.
84

6.
50

2.
48

4.
57

0.
00

51
50

10
1.
00

1.
00

0.
50

8.
43

7.
53

6.
45

2.
69

4.
48

0.
00

52
10

0
10

1.
00

0.
50

1.
00

8.
32

7.
82

6.
40

2.
78

4.
37

0.
00

53
10

0
10

1.
00

0.
75

1.
00

8.
46

7.
18

6.
63

2.
82

4.
65

0.
00

54
10

0
10

1.
00

1.
00

1.
00

8.
45

7.
40

6.
54

2.
49

4.
65

0.
00

55
10

0
2

0
0.
50

0
8.
24

7.
34

6.
53

2.
68

4.
49

0.
00

56
10

0
2

0
0.
75

0
8.
00

7.
23

6.
67

2.
58

4.
65

0.
00

57
10

0
2

0
1.
00

0
8.
53

7.
64

6.
56

2.
76

4.
66

0.
00

58
10

0
2

0
0.
50

0.
50

8.
59

7.
54

6.
65

2.
97

4.
64

0.
00

59
10

0
2

0
0.
75

0.
50

8.
21

7.
42

6.
36

2.
67

4.
46

0.
00

60
10

0
2

0
1.
00

0.
50

8.
62

7.
46

6.
53

2.
91

4.
63

0.
00

61
10

0
2

0
0.
50

1.
00

8.
55

7.
64

6.
62

2.
68

4.
77

0.
00

62
10

0
2

0
0.
75

1.
00

8.
42

7.
84

6.
34

2.
59

4.
62

0.
00

63
10

0
2

0
1.
00

1.
00

8.
14

7.
43

6.
54

2.
67

4.
58

0.
00

64
10

0
5

0.
50

0.
50

0
8.
62

7.
36

6.
59

2.
46

4.
49

0.
00

65
10

0
5

0.
50

0.
75

0
8.
94

7.
46

6.
47

2.
73

4.
43

0.
00

66
10

0
5

0.
50

1.
00

0
8.
46

7.
62

6.
54

2.
91

4.
51

0.
00

67
10

0
5

0.
50

0.
50

0.
50

8.
45

7.
43

6.
54

2.
67

4.
71

0.
00

68
10

0
5

0.
50

0.
75

0.
50

8.
24

7.
36

6.
64

2.
68

4.
45

0.
00

69
10

0
5

0.
50

1.
00

0.
50

8.
00

7.
56

6.
46

2.
74

4.
51

0.
00

(c
on

tin
ue
d)

238 M.K. Marichelvam et al.

T
ab

le
3

(c
on

tin
ue
d)

Sl
.
N
o.

N
um

be
r
of

jo
bs

N
um

be
r
of

m
ac
hi
ne
s

β 0
γ

α
M
R
D
I

SA
A
C
O

G
A

C
S

PS
O

D
FA

70
10

0
5

0.
50

0.
50

1.
00

8.
35

7.
28

6.
58

2.
68

4.
61

0.
00

71
10

0
5

0.
50

0.
75

1.
00

8.
95

7.
12

6.
74

2.
56

4.
53

0.
00

72
10

0
5

0.
50

1.
00

1.
00

8.
15

7.
32

6.
64

2.
74

4.
44

0.
00

73
10

0
10

1.
00

0.
50

0
8.
26

7.
46

6.
55

2.
82

4.
59

0.
00

74
10

0
10

1.
00

0.
75

0
8.
55

7.
36

6.
50

2.
72

4.
67

0.
00

75
10

0
10

1.
00

1.
00

0
8.
42

7.
56

6.
61

2.
74

4.
53

0.
00

76
10

0
10

1.
00

0.
50

0.
50

8.
14

7.
82

6.
48

2.
68

4.
59

0.
00

77
10

0
10

1.
00

0.
75

0.
50

8.
62

7.
64

6.
65

2.
73

4.
46

0.
00

78
10

0
10

1.
00

1.
00

0.
50

8.
94

7.
20

6.
57

2.
77

4.
57

0.
00

79
10

0
10

1.
00

0.
50

1.
00

8.
54

7.
84

6.
34

2.
74

4.
77

0.
00

80
10

0
10

1.
00

0.
75

1.
00

8.
42

7.
53

6.
58

2.
68

4.
43

0.
00

81
10

0
10

1.
00

1.
00

1.
00

8.
12

7.
82

6.
70

2.
67

4.
58

0.
00

Firefly Algorithm for Flow Shop Optimization 239

algorithms addressed in the literature. Mean Relative Deviation Index (MRDI) is
used as a performance measure to compare the performance of different algorithms.
MRDI is calculated as given below:

MRDI ¼
XR
l¼1

Z� � ZMETAj j
Z� � 100=R ð6Þ

Where,
Z* best objective function value
ZMETA objective function value obtained by different metaheuristic algorithms
R number of runs (20)

Lower value of MRDI value indicates the better performance of the algorithm.
The comparison results of some sample problems are presented in Table 3.
From the result table, it can be easily concluded that the proposed DFA is better

than many other algorithms addressed in the literature.

6 Conclusions

A discrete firefly algorithm is presented in this chapter to minimize the weighted
sum of makespan, mean flow time, mean tardiness and number of tardy jobs for
flow shop scheduling problems. The proposed DFA has been tested over a set of
random problem instances with different parameter settings and the results have
been compared with other metaheuristics addressed in the literature. It is concluded
that the DFA provides better results than many other metaheuristics. This work may
be extended in many directions. The algorithm can also be applied to solve real
industrial scheduling problems. The research may also be conducted for other types
of scheduling problems. It would be interesting to conduct the computational
experiments with several other parameters values to determine the optimal
parameters of the firefly algorithm.

References

1. Armentano, V.A., Ronconi, D.P.: Tabu search for total tardiness minimization in flowshop
scheduling problems. Comp. Oper. Res. 26(3), 219–235 (1999)

2. Arroyo, J.E.C., Armentano, V.A.: Genetic local search for multi-objective flowshop
scheduling problems. Eur. J. Oper. Res. 167, 717–738 (2005)

3. Baker, K.R.: Introduction to sequencing and scheduling. Wiley, New York (1974)
4. Banati, H., Bajaj, M.: Firefly based feature selection approach. Int. J. Comp. Sci. Issues 8(4),

473–480 (2011)

240 M.K. Marichelvam et al.

5. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA
J. comput. 6(2), 154–160 (1994)

6. Boxma, O.J., Forst, F.G.: Minimizing the expected weighted number of tardy jobs in
stochastic flow shops. Oper. Res. Lett. 5(3), 119–126 (1986)

7. Chakraborty, U.K., Turvey, K.P.: Floating-point to integer mapping schemes in differential
evolution for permutation flow shop scheduling. Int. J. Bio-Inspired Comput. 2(3), 183–204
(2010)

8. Chandrasekaran, K., Simon, S.P.: Network and reliability constrained unit commitment
problem using binary real coded firefly algorithm. Int. J. Electr. Power Energy Syst. 43(1),
921–932 (2012)

9. Chowdhury, A., Ghosh, A., Sinha, S., Das, S., Ghosh, A.: A novel genetic algorithm to solve
travelling salesman problem and blocking flow shop scheduling problem. Int. J. Bio-Inspired
Comput. 5(5), 303–314 (2013)

10. Coelho, L.D.S., Mariani, V.C.: Firefly algorithm approach based on chaotic Tinkerbell map
applied to multivariable PID controller tuning. Comput. Math. Appl. 64(8), 2371–2382 (2012)

11. Corwin, B.D., Esogbue, A.O.: Two machine flow shop scheduling problems with sequence
dependent setup times: a dynamic programming approach. Naval Res. Logistics Q. 21(3),
515–524 (1974)

12. Czapiński, M.: Parallel simulated annealing with genetic enhancement for flowshop problem
with Csum. Comput. Ind. Eng. 59(4), 778–785 (2010)

13. Dekhici, L., Borne, P., Khaled, B.: Firefly algorithm for economic power dispatching with
pollutants emission. Informatica Economică 16(2), 45–57 (2012)

14. Dong, X., Huang, H., Chen, P.: An iterated local search algorithm for the permutation
flowshop problem with total flowtime criterion. Comput. Oper. Res. 36(5), 1664–1669 (2009)

15. Fister, I., Fister Jr, I., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms.
Swarm Evol. Comput. 13, 34–46 (2013)

16. França, P.M., Gupta, J.N., Mendes, A.S., Moscato, P., Veltink, K.J.: Evolutionary algorithms
for scheduling a flowshop manufacturing cell with sequence dependent family setups.
Comput. Ind. Eng. 48(3), 491–506 (2005)

17. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using firefly
algorithm. Comput. Struct. 89(23), 2325–2336 (2011)

18. Gao, K.Z., Pan, Q.K., Li, J.Q.: Discrete harmony search algorithm for the no-wait flow shop
scheduling problem with total flow time criterion. Int. J. Adv. Manuf. Technol. 56(5–8),
683–692 (2011)

19. Gao, K., Pan, Q., Suganthan, P.N., Li, J.: Effective heuristics for the no-wait flow shop
scheduling problem with total flow time minimization. Int. J. Adv. Manuf. Technol. 66(9–12),
1563–1572 (2013)

20. Gupta, J.N., Darrow, W.P.: The two-machine sequence dependent flowshop scheduling
problem. Eur. J. Oper. Res. 24(3), 439–446 (1986)

21. Gupta, J.N.D., Chen, C.L., Yap, L.Y., Deshmukh, H.: Designing a tabu search algorithm to
minimize total flow time in a flow shop. Arab. J. Sci. Eng. 25(1), 79–94 (2000)

22. Gupta, J.N., Neppalli, V.R., Werner, F.: Minimizing total flow time in a two-machine
flowshop problem with minimum makespan. Int. J. Prod. Econ. 69(3), 323–338 (2001)

23. Gupta, J.N., Stafford Jr, E.F.: Flowshop scheduling research after five decades. Eur. J. Oper.
Res. 169(3), 699–711 (2006)

24. Horng, M.H.: Vector quantization using the firefly algorithm for image compression. Expert
Syst. Appl. 39(1), 1078–1091 (2012)

25. Ignall, E., Schrage, L.: Application of the branch and bound technique to some flow-shop
scheduling problems. Oper. Res. 13(3), 400–412 (1965)

26. Jarboui, B., Eddaly, M., Siarry, P.: An estimation of distribution algorithm for minimizing the
total flowtime in permutation flowshop scheduling problems. Comput. Oper. Res. 36(9),
2638–2646 (2009)

27. Johnson, S.M.: Optimal two and three stage production schedules with setup times included.
Naval Res. Logistics Q. 1(1), 61–68 (1954)

Firefly Algorithm for Flow Shop Optimization 241

28. Kazemzadeh, A.S., Kazemzadeh, A.S.: Optimum design of structures using an improved
firefly algorithm. Int. J. Optim. Civ. Eng. 2, 327–340 (2011)

29. Khadwilard, A., Chansombat, S., Thepphakorn, T., Thapatsuwan, P., Chainat, W.,
Pongcharoen, P.: Application of firefly algorithm and its parameter setting for job shop
scheduling. J. Ind. Technol. 8, 49–58 (2012)

30. Khalili, M., Tavakkoli-Moghaddam, R.: A multi-objective electromagnetism algorithm for a
bi-objective flowshop scheduling problem. J. Manuf. Syst. 31(2), 232–239 (2012)

31. Kim, Y.D.: Minimizing total tardiness in permutation flowshops. Eur. J. Oper. Res. 85(3),
541–555 (1995)

32. Liao, C.J., Tseng, C.T., Luarn, P.: A discrete version of particle swarm optimization for
flowshop scheduling problems. Comput. Oper. Res. 34(10), 3099–3111 (2007)

33. Liu, C.P., Ye, C.M.: Solving Permutation Flow Shop Scheduling Problem by firefly
Algorithm. Ind. Eng. Manage. 17(3), 56–59 (2012)

34. Marichelvam, M.K.: An improved hybrid Cuckoo Search (IHCS) metaheuristics algorithm for
permutation flow shop scheduling problems. Int. J. Bio-Inspired Comput. 4(4), 200–205
(2012)

35. Marichelvam, M.K., Prabaharan, T., Yang, X.S.: A discrete firefly algorithm for the multi-
objective hybrid flowshop scheduling problems. IEEE Trans. Evol. Comput. 18(2), 301–305
(2014)

36. Miguel, L.F.F., Lopez, R.H., Miguel, L.F.F.: Multimodal size, shape, and topology
optimisation of truss structures using the firefly algorithm. Adv. Eng. Softw. 56, 23–37 (2013)

37. Murata, T., Ishibuchi, H., Tanaka, H.: Multi-objective genetic algorithm and its applications to
flowshop scheduling. Comput. Ind. Eng. 30(4), 957–968 (1996)

38. Nagano, M.S., Moccellin, J.V.: Reducing mean flow time in permutation flow shop. J. Oper.
Res. Soc. 59(7), 939–945 (2008)

39. Naderi, B., Tavakkoli-Moghaddam, R., Khalili, M.: Electromagnetism-like mechanism and
simulated annealing algorithms for flowshop scheduling problems minimizing the total
weighted tardiness and makespan. Knowl.-Based Syst. 23(2), 77–85 (2010)

40. Neppalli, V.R., Chen, C.L., Gupta, J.N.: Genetic algorithms for the two-stage bicriteria
flowshop problem. Eur. J. Oper. Res. 95(2), 356–373 (1996)

41. Osman, I.H., Potts, C.N.: Simulated annealing for permutation flow-shop scheduling. Omega
17(6), 551–557 (1989)

42. Pan, Q.K., Fatih Tasgetiren, M., Suganthan, P.N., Chua, T.J.: A discrete artificial bee colony
algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181(12), 2455–2468
(2011)

43. Parthasarathy, S., Rajendran, C.: An experimental evaluation of heuristics for scheduling in a
real-life flowshop with sequence-dependent setup times of jobs. Int. J. Prod. Econ. 49(3),
255–263 (1997)

44. Pinedo, M.: Scheduling: theory, algorithms, and systems. Prentice-Hall, New Jersey (2002)
45. Rahimi-Vahed, A.R., Mirghorbani, S.M.: A multi-objective particle swarm for a flow shop

scheduling problem. J. Comb. Optim. 13(1), 79–102 (2007)
46. Rajendran, C.: Heuristic algorithm for scheduling in a flowshop to minimize total flowtime.

Int. J. Prod. Econ. 29(1), 65–73 (1993)
47. Rajendran, C., Ziegler, H.: An efficient heuristic for scheduling in a flowshop to minimize total

weighted flowtime of jobs. Eur. J. Oper. Res. 103(1), 129–138 (1997)
48. Rajendran, C., Ziegler, H.: Scheduling to minimize the sum of weighted flowtime and

weighted tardiness of jobs in a flowshop with sequence-dependent setup times. Eur. J. Oper.
Res. 149(3), 513–522 (2003)

49. Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop scheduling to
minimize makespan/total flowtime of jobs. Eur. J. Oper. Res. 155(2), 426–438 (2004)

50. Ravindran, D., Selvakumar, S.J., Sivaraman, R., Haq, A.N.: Flow shop scheduling with
multiple objective of minimizing makespan and total flow time. Int. J. Adv. Manuf. Technol.
25(9–10), 1007–1012 (2005)

242 M.K. Marichelvam et al.

51. Rios-Mercado, R.Z., Bard, J.F.: Heuristics for the flow line problem with setup costs. Eur.
J. Oper. Res. 110(1), 76–98 (1998)

52. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)

53. Ruiz, R., Maroto, C., Alcaraz, J.: Solving the flowshop scheduling problem with sequence
dependent setup times using advanced metaheuristics. Eur. J. Oper. Res. 165(1), 34–54 (2005)

54. Salmasi, N., Logendran, R., Skandari, M.R.: Total flow time minimization in a flowshop
sequence-dependent group scheduling problem. Comput. Oper. Res. 37(1), 199–212 (2010)

55. Sayadi, M., Ramezanian, R., Ghaffari-Nasab, N.: A discrete firefly meta-heuristic with local
search for makespan minimization in permutation flow shop scheduling problems. Int. J. Ind.
Eng. Comput. 1(1), 1–10 (2010)

56. Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: performance study.
Swarm Evol. Comput. 1(3), 164–171 (2011)

57. Simons Jr, J.V.: Heuristics in flow shop scheduling with sequence dependent setup times.
Omega 20(2), 215–225 (1992)

58. Srikar, B.N., Ghosh, S.: A MILP model for the n-job, m-stage flowshop with sequence
dependent set-up times. Int. J. Prod. Res. 24(6), 1459–1474 (1986)

59. Tang, L., Liu, J.: A modified genetic algorithm for the flow shop sequencing problem to
minimize mean flow time. J. Intell. Manuf. 13(1), 61–67 (2002)

60. TT’kindt, V., Monmarché, N., Tercinet, F., Laügt, D.: An ant colony optimization algorithm to
solve a 2-machine bicriteria flowshop scheduling problem. Eur. J. Oper. Res. 142(2), 250–257
(2002)

61. Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: A particle swarm optimization
algorithm for makespan and total flowtime minimization in the permutation flowshop
sequencing problem. Eur. J. Oper. Res. 177(3), 1930–1947 (2007)

62. Tasgetiren, M.F., Pan, Q.K., Suganthan, P.N., Chen, A.H.: A discrete artificial bee colony
algorithm for the total flowtime minimization in permutation flow shops. Inf. Sci. 181(16),
3459–3475 (2011)

63. Tavakkoli-Moghaddam, R., Rahimi-Vahed, A., Mirzaei, A.H.: A hybrid multi-objective
immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean
completion time and weighted mean tardiness. Inf. Sci. 177(22), 5072–5090 (2007)

64. Tseng, L.Y., Lin, Y.T.: A genetic local search algorithm for minimizing total flowtime in the
permutation flowshop scheduling problem. Int. J. Prod. Econ. 127(1), 121–128 (2010)

65. Vahedi Nouri, B., Fattahi, P., Ramezanian, R.: Hybrid firefly-simulated annealing algorithm
for the flow shop problem with learning effects and flexible maintenance activities. Int. J. Prod.
Res. 51(12), 3501–3515 (2013)

66. Varadharajan, T.K., Rajendran, C.: A multi-objective simulated-annealing algorithm for
scheduling in flowshops to minimize the makespan and total flowtime of jobs. Eur. J. Oper.
Res. 167(3), 772–795 (2005)

67. Vempati, V.S., Chen, C.L., Bullington, S.F.: An effective heuristic for flow shop problems
with total flow time as criterion. Comput. Ind. Eng. 25(1), 219–222 (1993)

68. Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 29(2),
175–184 (2013)

69. Yang, X.S., Sadat Hosseini, S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex
economic dispatch problems with valve loading effect. Appl. Softw. Comput. 12(3),
1180–1186 (2012)

70. Yang, X.S.: Nature-Inspired metaheuristic algorithms. Luniver press, UK (2008)
71. Yagmahan, B., Yenisey, M.M.: Ant colony optimization for multi-objective flow shop

scheduling problem. Comput. Ind. Eng. 54(3), 411–420 (2008)
72. Zhang, Y., Li, X., Wang, Q.: Hybrid genetic algorithm for permutation flowshop scheduling

problems with total flowtime minimization. Eur. J. Oper. Res. 196(3), 869–876 (2009)

Firefly Algorithm for Flow Shop Optimization 243

Evaluation of Harmony Search
and Differential Evolution Optimization
Algorithms on Solving the Booster Station
Optimization Problems in Water
Distribution Networks

Şerife Gökçe and M. Tamer Ayvaz

Abstract Disinfection of water in distribution networks is usually achieved by
chlorine injection at outlet of the treatment plants. However, such disinfection
applications cause non-uniform chlorine residuals since chlorine decays during its
propagation in the network. To maintain chlorine residuals within allowable limits,
additional chlorine injection locations called as the booster stations are installed at
some strategic locations of distribution networks. Therefore, estimation of the
numbers, locations, and injection rates of the booster stations becomes an important
problem. For this purpose, this chapter evaluates the performance of Harmony
Search (HS) and Differential Evolution (DE) optimization algorithms for solving
the booster station optimization problems.

Keywords Booster stations � Differential evolution algorithm � Harmony search
algorithm � Water distribution networks

1 Introduction

Disinfection of drinking water distribution networks is crucial task for human
health. This task is usually performed by using the chlorine as a disinfector due to
its large effects on microorganisms and its low price. Generally, chlorine is injected
to the network from outlet of the treatment plants. However, such disinfection
applications cause excessive residuals around the injection locations, which may

Ş. Gökçe
Department of Civil Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey
e-mail: sgokce@aku.edu.tr

M.T. Ayvaz (&)
Department of Civil Engineering, Pamukkale University, Denizli, Turkey
e-mail: tayvaz@pau.edu.tr

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_13

245

lead to some taste and odor problems as well as formation of some carcinogenic
disinfection by-products (DBPs). In addition, these injection applications may not
maintain the required residual limits throughout the network since chlorine decays
by reacting with some materials in both bulk water and pipe wall. Therefore,
maintaining the chlorine residuals within the allowable limits (usually between
0.20 and 4.0 mg/l) becomes an important engineering problem. With this purpose,
additional chlorine injection locations, called as the booster chlorination stations,
are usually installed in the vicinity of the locations with low levels of chlorine
residuals. Therefore, identification of the numbers, locations as well as the chlorine
injection schedules of the booster stations becomes an important optimization
problem to be solved by the decision makers.

In the literature, the solution of the booster station optimization problems was
performed by using both deterministic and heuristic optimization approaches [7].
Among them, the pioneering work was performed by Bocelli et al. [3] where the
problem of booster station optimization was formulated as a linear programming
(LP) problem. The objective of their problem was to minimize the chlorine injection
rates of the fixed booster locations by maintaining the chlorine residual limits
throughout the network. Their results indicated that chlorine concentrations at
consumer points are the linear functions of the chlorine injection rates in case of the
first-order bulk and wall reaction kinetics [6]. By utilizing this relationship, chlorine
residuals for a given consumer point and time can be calculated based on a response
matrix (RM) approach. Using this feature, Tryby et al. [19] also defined the booster
locations as the decision variables of the optimization model and solved by using a
mixed integer linear programming (MILP). Propato and Uber [14] formulated the
booster station optimization problem as linear least-square (LLS) problem and
solved with quadratic programming (QP) approaches. As an extension, they also
combined their LLS formulation with the mixed-integer quadratic programming
(MIQP) approach to determine the locations of the booster stations together with
the corresponding chlorine injection rates [15]. Sert [17] also solved the booster
station optimization problem via LP by considering the non-zero initial concen-
trations at consumer points within the network.

It should be noted that deterministic solution approaches were used in all of the
studies given above. Global optimum solutions were obtained by utilizing the RM
approach by assuming the first-order bulk and wall reaction kinetics throughout the
system. However, if this assumption is satisfied in the network, chlorine residuals
cannot be classified as the linear functions of the chlorine injection rates from the
booster stations. For such cases, the booster station optimization problem cannot be
solved via LP based RM approach, and thus, use of the nonlinear optimization
approaches is required. Although nonlinear optimization approaches are effective in
finding the global optimum solutions in reasonable times, their efficiency usually
depends on the initial values of the decision variables especially for the non-convex
solution spaces [1]. Furthermore, since almost all of these approaches require of
taking the partial derivatives of the objective and constraint functions, they cannot
be used for the cases where taking the partial derivatives is not possible. Therefore,
use of the heuristic optimization approaches is usually preferred for solving the

246 Ş. Gökçe and M.T. Ayvaz

booster station optimization problems. There are several heuristic optimization
approaches in the literature, which mimic some natural phenomena. These phe-
nomena include natural selection and evolution in genetic algorithm (GA) [8] and
differential evolution (DE) [18], physical annealing process in simulated annealing
(SA) [10], social behaviors of birds or fishes in particle swarm optimization (PSO)
[9], finding the shortest paths between nest and a food source in ant colony opti-
mization (ACO) [4], and musical improvisation process in harmony search (HS)
[5]. Using these approaches, the current literature includes several applications for
solving the booster station optimization problems. Munavalli and Mohan Kumar
[11], Özdemir and Uçaner [13], Ostfeld and Salamons [12] solved the booster
station optimization problems by using different genetic algorithm (GA) based
solution approaches. The same problem was also solved by using the ant colony
optimization (ACO) by Wang and Guo [21], and particle swarm optimization
method by Wang et al. [20].

The main objective of this chapter is to evaluate the performances of two dif-
ferent heuristic optimization approaches, HS and DE, on solving the booster station
optimization problems. With this purpose, recent applications of HS and DE are
evaluated [6, 7] and the identification results are compared with the other solutions
which were obtained by using several deterministic and heuristic optimization
approaches. The performance of these two approaches is evaluated on an existing
water distribution network by comparing the trade-off between chlorine injection
rates and water quality improvements. Identified results indicated that both HS and
DE based optimization models not only determined the optimum chlorination plan,
but also provided better results than those obtained by different solution approaches
in the literature.

2 Harmony Search (HS) Algorithm

Like other heuristic optimization algorithms, HS is also inspired from a heuristic
event. However, its main difference from the others is that HS does not get its main
philosophy from a natural process, instead, gets from the musical improvisation
which occurs when a group of musicians searches for a better state of harmony [2].
This philosophy was first adapted to the optimization problems by Geem et al. [5].
In this adaptation, each musician mimics to a decision variable and the notes in the
musicians’ memories correspond to the values of the decision variables. When the
musicians find the fantastic harmony from their memories, it means, a global
optimum solution is obtained using the corresponding decision variables. Note that
an aesthetic harmony can be obtained based on the following three musical oper-
ations [2]: (i) Playing a note from the harmony memory, (ii) Playing a note ran-
domly from the possible note range, (iii) Playing a note which is close to another
one stored in memory. Adaptation of these musical operations into the engineering
optimization problems is as follows: (i) New variable values are selected from the
harmony memory, (ii) New variable values are randomly selected from the possible

Evaluation of Harmony Search and Differential Evolution … 247

random range, (iii) New variable values are further replaced with other values
which are close to the current values. Combination of these three operations allows
exploring the search space for finding a global optimum solution. The following
computational scheme describes the required solution steps for solving an opti-
mization problem using HS [7]:

Step 1: Generate random solution vectors x1; . . .; xHMSð Þ as many as harmony
memory size (HMS), then, store them in harmony memory (HM)

Step 2: Generate a new solution vector x0ð Þ. For each element x0i
� �

:

• With probability of HMCR (harmony memory considering rate,

HMCR 2 0; 1½ �), pick the sorted value from HM such that x0i
xint r 0;1ð Þ�HMSð Þþ1
i where r 0; 1ð Þ is the uniform random number between
the specified lower and upper bounds

• With probability of 1-HMCR, pick a random value within the allowed
range.

Step 3: Perform additional adjustment if the value in Step 2 came from HM:

• With probability of PAR (pitch adjusting rate, PAR 2 0; 1½ �), change
the value x0i by a small amount such that x0i xi þ fw � r �1; 1ð Þ where
fw is the fret width which can be defined as the amount of the maxi-
mum change in pitch adjusting process

• With probability of 1-PAR, do nothing

Step 4: If the value of x0 is better than the worst vector xworst in HM, replace xworst

with x0

Step 5: Repeat from Step 2 to Step 4 until termination.

3 Differential Evolution (DE) Algorithm

DE, proposed by Storn and Price [18], is a population-based heuristic optimization
algorithm. It can solve the optimization problems with non-differentiable, non-
continuous or noisy solution spaces. Also, it can handle continuous, discrete and
integer variables and/or constraint equations. Basically, DE has similar character-
istics with the GA in terms of operation and calculation schemes. As in GA, a new
individual solution in DE is created by sequentially applying the mutation, cross-
over and selection operators. Although DE and GA have similar calculation
schemes, they have some differences. While DE can solve an optimization problem
using the real coded decision variables only, GA can both use the real and binary
coded decision variables. Unlike the GA, all the individual solutions in DE are
subjected to evolution via genetic operators and the evolved solutions are directly
transferred to next generations, if their corresponding objective function values are
improved. The basic computational steps of DE can be described as follows [6]:

248 Ş. Gökçe and M.T. Ayvaz

Step 1: Randomly initialize all agents x (e.g. candidate solutions) in the population
(NP being the population number).

Step 2: Repeat the following until a termination criterion is met:

• For each agent x in the population do:

– Randomly select three distinct solutions a, b and c from the
population

– Pick a random index R 2 1; 2; 3; . . .; nf g (n being the dimension of
the problem).

– Compute the agent’s potentially new position y ¼ y1; y2; y3; . . .; yn½ �
as follows:

For each i, pick a uniformly distributed random number
ri ¼ U 0; 1ð Þ
If ri\CR (CR 2 0; 1½ � is the crossover rate) or i = R then set
yi ¼ ai þ Fðbi � ciÞ (F 2 0; 2½ � is the differential weight)
otherwise set yi ¼ xi
In essence, the new position is outcome of binary crossover of
agent x with intermediate agent z ¼ aþ F b� cð Þ

– If f yð Þ\f xð Þ replace the agent in the population with the improved
candidate solution, that is replace x with y in the population

Step 3: Pick the agent from the population that has the highest fitness or lowest
cost and return it as best found candidate solution.

4 Problem Formulation

The problem of booster station optimization in water distribution networks can be
solved by developing an optimization model [6, 7]. The main objective of this
model is to maintain the chlorine residual limits throughout the network by max-
imizing an objective function consisting two conflicting objectives. While the first
objective aims to maximize the volume of “high quality water” which is defined as
the volumetric water demand within the specified residual limits, the second
objective aims to minimize the total chlorine injection rates from the defined
booster locations. These two objectives can be combined in a single objective
function as follows [6, 7]:

z ¼ max x1f1 � x2f2ð Þ ð1Þ

f1 ¼
Ptþnh�1

m¼t
Pnm

j¼1 V
m
j

V
� 100 ð2Þ

Evaluation of Harmony Search and Differential Evolution … 249

Vm
j ¼

Qm
j Dth if cmin

j � cmj � cmax
j

0 otherwise

�
j ¼ 1; 2; 3; . . .; nm; m ¼ t; . . .; t þ nh � 1

ð3Þ

f2 ¼
Xnb
i¼1

Xnk
k¼1

uki ~Q
k
i ð4Þ

where nm is the number of consumer points where chlorine residuals are controlled,
nh is the number of monitoring time steps, t is the monitoring starting time, Vm

j is
the volumetric water demand within the specified residual limits at node j in
monitoring period m, V is the total volume of demand over a hydraulic cycle, Qm

j is
the demand at node j in monitoring period m, Dth is the length of the monitoring
time step, cmj is the chlorine residual at monitoring node j and monitoring time m,

cmin
j (0.2 mg/l) and cmax

j (4 mg/l) are the lower and upper limits of the chlorine
residuals at monitoring node j, nb is the number of booster stations, nk is the number
of chlorine injection time steps, uki is the chlorine injection rate [ML−3] added from
booster station i at injection period k, ~Qk

i is the total outflow [L3T−1] at node i at
injection period k, x1 and x2 are the weighting coefficients.

It can be seen that the main objective function (z) includes two different
objective terms. While the first term f1ð Þ is related with the maximization of per-
centage of high quality water within chlorine residual limits, the second term f2ð Þ
deals with the minimization of chlorine injection rates. Because of the nature of
these two objective functions (f1 and f2) are different, weighting coefficients of x1

and x2 are used for adjusting the contribution of both objectives to the main
objective function value (z) [6, 7]. After performing several trials, it is concluded
that use of the values of x1 ¼ 1 and x2 ¼ 0:01 is sufficient to approximately
equalize the contribution from both objectives [6, 7].

It canbe seen from themathematical formulationgiven above, calculationofEq. (3)
requires of knowing the nodal chlorine residuals of cmj ðj ¼ 1; 2; 3; . . .; nm; m ¼
t; . . .; t þ nh � 1Þ for all the consumer points of the network. A water quality simu-
lation model is required to establish the link between chlorine dosages applied at
booster stations and chlorine residuals at the consumerpoints.As indicated previously,
Bocelli et al. [3] showed that chlorine residuals at junctions vary linearly with the
injected chlorine concentrations when first-order bulk and wall reaction kinetics are
valid throughout the network. Thus, chlorine residuals at junction j and time period
m can be calculated by using the linear superposition principle as follows:

cmj ¼
Xnb
i¼1

Xnk
k¼1

akmij u
k
i j ¼ 1; 2; 3; . . .; nm; m ¼ t; . . .; t þ nh � 1 ð5Þ

where booster stations and time periods for which chlorine injection is realized are
represented by indices i and k, respectively; akmij is the response coefficient whose

250 Ş. Gökçe and M.T. Ayvaz

value is calculated from akmij ¼ @cmj
.
@uki . Note that the response coefficients for unit

chlorine injections from the potential booster stations and time periods are calculated
by using the EPANET model [16]. EPANET is a commonly used robust tool to
perform hydraulic and water quality simulations in looped distribution networks. It
also includes a developer’s toolkit to reach EPANET’s built-in functions from the
different programming environments. By using this feature, developed EPANET
model can be run for each optimization cycle to calculate the associated chlorine
residuals in the consumer points. Although such integration is practically possible
and is implemented in many of the previously conducted studies, it may have high
computational cost especially for large networks and/or simulation times. Therefore,
the RM approach proposed by Bocelli et al. [3] is considered for calculating the
chlorine residuals in this chapter. Note that, RM approach depends on the linear
superposition principle and this principle is only applicable when first-order bulk and
wall decay reaction kinetics are valid throughout the network [3]. When higher order
reaction kinetics is valid in the system, this principle cannot be used due to nonlinear
behavior of the residual concentrations with respect to the injected chlorine dosages.
In addition, since nodal chlorine concentrations cannot be calculated using the
response coefficients, EPANET has to be integrated into the optimization model as
indicated as the first option.

5 Numerical Applications

The performance of the developed solution model is evaluated on Cherry Hill-Brushy
Plains water distribution network of the South Central Connecticut (USA) Regional
Water Authority. This network is the second tutorial network of the EPANET 2.0
model and previously used in many studies regarding booster station optimization
[3, 6, 7, 11, 14–17, 19]. The schematic view of the network is given in Fig. 1.

The network includes 1 pumping station (1st junction), 1 storage tank (26th
junction), 34 consumer nodes (2nd–25th and 27th–36th junctions) which are
connected with 47 links with a total pipe length of 11.26 km. There are also six
additional hypothetical nodes (junctions A-F) in Fig. 1 which were used as the
potential booster locations in some previous studies [3, 6, 7, 11, 14–17, 19]. For this
network, baseline demand values and global demand multipliers of the 34 consumer
nodes are shown in Figs. 2a, b. Pumping station at junction 1 pumps a flow rate of
43.81 l/s to the consumer nodes based on the pump multipliers given in Fig. 2c.

The EPANET model is executed with the network data to obtain the hydraulic
behavior of the network (see Fig. 3). As can be seen in Fig. 3, the network hydraulic
behavior is mainly controlled by the pumping station for the first and the third 6-
hour time periods of the day. For the remaining time periods, the consumer nodes
are supplied from the tank since the pumping station is switched-off based on
Fig. 2c. Due to this change in the network hydraulics, flow directions in the pipes
change in each 6-hour time period.

Evaluation of Harmony Search and Differential Evolution … 251

As indicated previously, a number of EPANET runs are conducted to determine
the response coefficients, akmij at the consumer nodes. The previous works of Bocelli
et al. [3] and Tryby et al. [19] indicate that a periodic hydraulic behavior is required
to compute chlorine residuals using the linear superposition principle. The periodic
hydraulic behavior is usually obtained when two successive daily chlorine residuals
are equal and this can be achieved as a result of a long simulation period [17]. In the
current study, a total simulation time of 288 h is used since the exact periodic
behavior is obtained after about 264 h. The response coefficients of akmij are then
calculated using concentration values obtained for the following 24 h after the
periodic behavior is reached. Note that bulk and wall chlorine decay rate coeffi-
cients are assumed to be 0.50 d�1 and 0, respectively.

Fig. 1 Layout of the Cherry
Hill-Brushy Plains network
[3]

252 Ş. Gökçe and M.T. Ayvaz

In the following sections, the identification results of two previously published
studies are briefly evaluated [6, 7]. While the first study [7] aimed to determine the
chlorine injection rates from the pre-defined booster locations, the second one [6]
aimed to determine both locations and chlorine injection rates of the booster sta-
tions. Results of both studies are compared with the results of several studies those
obtained by using different optimization formulations and approaches in literature.

Fig. 2 a Baseline demand values of the consumer nodes; b global baseline demand multipliers;
c pump demand multipliers

Evaluation of Harmony Search and Differential Evolution … 253

5.1 Application 1: Evaluation of HS Based Optimization
Model

In this section application of the HS based optimization model by Gökçe and Ayvaz
[7] on solving the booster station optimization problem is evaluated. As indicated
previously, the main objective of the HS based optimization model is to determine
the chlorine injection rates pre-defined booster locations by taking the mathematical
formulation between Eqs. (1) and (5) into account. It is assumed that the chlorine is
injected to the network from the booster locations of A–F by considering the mass
booster (MB) and 4 chlorine injection steps in a day.

For this problem, the performance of the HS based optimization model is
evaluated for 8 different HS parameter sets given in Table 1. This is an important
step for evaluating the robustness of the optimization models since the quality of the
identified solutions in heuristic optimization approaches depends on the selection of
their solution parameters. Note that during the optimization process cmin

j and cmax
j

Fig. 3 Hydraulic behavior of the network

Table 1 Different HS
solution parameters [7] Case number HMS HMCR PAR

1 5 0.85 0.40

2 5 0.95 0.50

3 10 0.85 0.40

4 10 0.95 0.50

5 20 0.85 0.40

6 20 0.95 0.50

7 30 0.85 0.40

8 30 0.95 0.50

254 Ş. Gökçe and M.T. Ayvaz

j ¼ 1; 2; 3; . . .; 34ð Þ are chosen as 0.20 mg/l and 4.00 mg/l respectively to satisfy
both the Safe Drinking Water Act (SDWA) regulations and obtain comparable
results with literature.

Figure 4 shows the convergence charts for each HS solution in terms of the final
chlorine injection rates (g/day). As can be seen, all the solutions start the search
process from different initial solutions and converge to the approximately same
solution wherever the optimization begins. Results of the best solution in Fig. 4 are
compared in Table 2 with the results obtained by QP and GA based solution
approaches in literature. As can be seen from the given results, the final chlorine
injection rates have similar magnitudes for all the booster stations and injection
periods. The main contribution is supplied from the booster stations A, C and F, and
the remaining stations are only used for maintaining the minimum residual con-
dition especially for the far points of the network. For the booster stations A and C,
large chlorine injection rates are obtained for the first and the third injection periods.
This result is an expected behavior since pumping station is active only for these
time periods. On the contrary, large chlorine injections are obtained for booster
station F in the second and the fourth injection periods since the network feeds
mainly from the storage tank for those time periods. Comparison of the total
chlorine injection rates showed that HS based optimization model finds the same
injection rate with those obtained by the GA based optimization model. But these
two results are higher than the one obtained by the QP based optimization approach.
The reason of this situation may be associated with the differences between the used
objective functions and/or the nature of the heuristic algorithms. Average chlorine
residuals at all the consumer nodes are given in Fig. 5. It can be seen that all the

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1 10 100 1,000 10,000 100,000

Iteration Number

C
h

lo
ri

n
e

In
je

ct
io

n
 R

at
e

(g
/d

ay
)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Fig. 4 Convergence plots of the 8 cases in terms of the chlorine injection rates (g/day); (a) Case 1;
(b) Case 2; (c) Case 3; (d) Case 4; (e) Case 5; (f) Case 6; (g) Case 7; (h) Case 8 [7]

Evaluation of Harmony Search and Differential Evolution … 255

chlorine residual values are obtained between 0.20 and 4.00 mg/l. This result shows
strong constraint satisfaction ability of the HS based solution model during the
solution of the booster station optimization problem.

Table 2 Comparison of the identified results

Injection
period

Booster stations/Chlorine injection rates
(mg/min)

Total injection
rate (g/day)

A B C D E F

QP
[14]

1 589 7.9 419 0.1 0.1 0 1,176

2 0 0 0 0.2 0.6 727

3 636 4.9 454 0 0.1 8

4 0 0.4 0 0.8 1.4 409

GA
[11]

1 599.3 9.8 473.6 0.7 0.4 0 1,205

2 0 0.7 0 0.3 0.4 713.5

3 680.1 4.3 413 0 0.3 47.1

4 0 0 0.3 0.7 1 400.7

HS
[7]

1 600.7 9 415.1 0 2.8 2.7 1,205

2 0 5.7 0.2 0 1.6 732.5

3 913.6 4.4 211.8 0 3.9 9.2

4 0 0 0 0 9.2 424

LP Linear Programming; QP Quadratic Programming; GA Genetic Algorithms) [7]

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

26
5

26
6

26
7

26
8

26
9

27
0

27
1

27
2

27
3

27
4

27
5

27
6

27
7

27
8

27
9

28
0

28
1

28
2

28
3

28
4

28
5

28
6

28
7

28
8

Time (h)

A
ve

ra
g

e
C

h
lo

ri
n

e
C

o
n

ce
n

tr
at

io
n

s
(m

g
/L

) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Fig. 5 Averaged chlorine concentrations at all consumer nodes [7]

256 Ş. Gökçe and M.T. Ayvaz

5.2 Application 2: Evaluation of DE Based Optimization
Model

In this section application of the DE based optimization model by Gökçe and Ayvaz
[6] for solving the booster station optimization problems is evaluated. Unlike the first
HS application, the objective of the DE based optimization model is to determine the
locations as well as the associated chlorine injection rates of the booster stations.
This task is performed by examining the trade-off between the booster station
numbers and water quality improvements. For this application, it is assumed that all
the nodes in Fig. 1 are considered as the potential flow paced booster (FPB) loca-
tions. All the solutions are performed by assuming 1 chlorine injection time steps in a
day for comparison purposes. After calculating the composite response coefficients
for all the potential booster locations, the DE based optimization model is executed
for different booster station numbers in order to evaluate the trade-off between the
booster station numbers and water quality improvements.

Figure 6 shows the convergence charts in terms of the chlorine injection rates for
the solutions with 1 to 6 booster stations. It is clearly seen that, the final chlorine
injection rates decrease when the number of booster stations increases as an
expected behavior.

Table 3 compares the DE based optimization model with those obtained by using
the MIQP based optimization model by Propato and Uber [15]. Note that Propato
and Uber [15] also treated the booster locations as the integer decision variables and
solved the related optimization problem through a branch-and-bound solution
approach. When the identified results given in Table 3 are compared, it can be seen
that, for nb ¼ 1, MIQP based solution model is located the booster station to junction
A whereas the DE based model is located to the 2nd junction. Since the 2nd junction

Fig. 6 The final convergence plots in terms of the chlorine injection rates (g/day) [6]

Evaluation of Harmony Search and Differential Evolution … 257

T
ab

le
3

C
om

pa
ri
so
n
of

th
e
lo
ca
tio

ns
an
d
in
je
ct
ed

ch
lo
ri
ne

co
nc
en
tr
at
io
ns

of
th
e
so
lu
tio

ns

n b
In
je
ct
ed

ch
lo
ri
ne

do
sa
ge
s
(m

g/
l)

lo
ca
tio

ns
of

th
e
id
en
tif
ie
d
bo

os
te
r
st
at
io
ns

h
i

M
IQ

P
[1
5]

D
E
[6
]

1
1.
83

5
–

–
–

–
–

1.
78

0
–

–
–

–
–

Ah
i

2h
i

2
0.
53

1
0.
35

8
–

–
–

–
0.
51

7
0.
34

9
–

–
–

–

1h
i

26h
i

2h
i

26h
i

3
0.
48

9
0.
72

7
0.
40

8
–

–
–

0.
43

3
0.
37

2
0.
05

4
–

–
–

1 h
i

26 h
i

29 h
i

2 h
i

26 h
i

29 h
i

4
0.
36

0
0.
70

3
0.
43

0
0.
43

6
–

–
0.
35

1
0.
20

9
0.
14

3
0.
07

7
–

–

1 h
i

26 h
i

29 h
i

33 h
i

2 h
i

26 h
i

29 h
i

33 h
i

5
0.
36

0
0.
70

9
0.
43

4
0.
43

2
0.
68

2
–

0.
28

4
0.
05

2
0.
22

0
0.
16

0
0.
19

7
–

1 h
i

26 h
i

33 h
i

35 h
i

E h
i

2 h
i

8 h
i

22 h
i

26 h
i

29 h
i

6
0.
29

9
0.
06

6
0.
19

1
0.
11

9
0.
11

8
0.
18

7
0.
25

6
0.
06

6
0.
66

1
0.
16

3
0.
20

7
0.
01

9

1 h
i

8 h
i

26 h
i

33 h
i

35 h
i

E h
i

2 h
i

8 h
i

22 h
i

26 h
i

29 h
i

32 h
i

M
IQ

P
M
ix
ed

In
te
ge
r
Q
ua
dr
at
ic

Pr
og

ra
m
m
in
g;

D
E
D
iff
er
en
tia
l
E
vo

lu
tio

n
A
lg
or
ith

m
[6
]

258 Ş. Gökçe and M.T. Ayvaz

T
ab

le
4

C
om

pa
ri
so
n
of

th
e
ca
lc
ul
at
ed

ch
lo
ri
ne

in
je
ct
io
n
ra
te
s
an
d
th
e
w
at
er

qu
al
ity

re
sp
on

se
s
[6
]

n b
M
IQ

P
[1
5]

D
E
[6
]

C
hl
or
in
e
re
si
du

al
s
(m

g/
l)

C
hl
or
in
e
in
je
ct
io
n
ra
te
s
(g
/d
ay
)

C
hl
or
in
e
re
si
du

al
s
(m

g/
l)

C
hl
or
in
e
in
je
ct
io
n
ra
te
s
(g
/d
ay
)

M
ea
n

M
in
im

um
M
ax
im

um
M
ea
n

M
in
im

um
M
ax
im

um

1
1.
06

0.
20

3.
29

3,
11

6
1.
07

0.
20

3.
52

3,
01

0

2
0.
45

0.
20

0.
55

1,
26

0
0.
45

0.
20

1.
02

1,
21

3

3
0.
42

0.
20

0.
63

1,
15

5
0.
41

0.
20

0.
86

1,
09

4

4
0.
31

0.
20

0.
46

83
5

0.
31

0.
20

0.
69

79
9

5
0.
31

0.
20

0.
38

83
0

0.
27

0.
20

0.
56

64
5

6
0.
27

0.
20

0.
32

70
3

0.
29

0.
20

0.
89

61
4

M
IQ

P
M
ix
ed

In
te
ge
r
Q
ua
dr
at
ic

Pr
og

ra
m
m
in
g;

D
E
D
iff
er
en
tia
l
E
vo

lu
tio

n
A
lg
or
ith

m

Evaluation of Harmony Search and Differential Evolution … 259

is at just downstream of the junction A, this result does not produce a significant
change in the chlorine distributions. For nb ¼ 2, both DE and MIQP models
determined the same locations (e.g. 26th junction) for the second booster station. For
the other solutions, the DE and MIQP based solution found the same or close booster
stations with approximately the similar injected chlorine concentrations.

For different booster station numbers, Table 4 compares the chlorine residuals
and final injection rates which were calculated using the DE and MIQP based
optimization models. As can be seen from Table 4, the mean chlorine residuals have
almost the same values for both DE and MIQP. Minimum chlorine residuals are all
obtained as 0.20 mg/l, which is previously defined as the minimum residual limit.
Although maximum chlorine residual values of DE are all greater than the MIQP, it
can be seen that all the results are in the range of the permissible residual limits.
When chlorine injection rates are compared, it can be seen that DE model is resulted
with the lower chlorine injection rates than MIQP for all the solutions.

6 Conclusions

In this chapter, the performance of HS andDE based optimizationmodels is evaluated
on solving the booster station optimization problems. The main objective of HS and
DE based optimization model is to maintain the chlorine residual limits throughout
the network by determining the optimum chlorination plans. Results of the both
solutionmodels are compared with those obtained by using QP, GA, andMIQP based
optimization models. Identified results indicated that both HS and DE based opti-
mization models determined identical or better solutions than different approaches in
terms of the chlorine injection dosages and water quality improvements.

Acknowledgments The work given in this chapter is supported by The Turkish Academy of
Sciences (TÜBA)—The Young Scientists Award Programme (GEBIP). The second author thanks
TÜBA for their support of this study.

References

1. Arora, J.S.: Introduction to optimum design. Elsevier Academic Press, San Diego (2004)
2. Ayvaz, M.T.: Solution of groundwater management problems using harmony search

algorithm, recent advances in harmony search algorithm. In: Zong Woo Geem (ed) Studies
in computational intelligence series. Springer, Berlin (2010b)

3. Bocelli, D.L., Tryby, M.E., Uber, J.G., Rossman, L.A., Zierolf, M.L., Polycarpou, M.M.:
Optimal scheduling of booster disinfection in water distribution systems. J. Water Res. Plan.
Manage. 124(2), 99–111 (1998)

4. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimisation by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1), 29–41 (1996)

5. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony
search. Simulation 76(2), 60–68 (2001)

260 Ş. Gökçe and M.T. Ayvaz

6. Gokce, S., Ayvaz, M.T.: A simulation-optimization model for optimal estimation of the
numbers, locations and chlorine injection rates of the booster stations in water distribution
networks. In: 11th international conference on hydroinformatics (HIC2014), 17–21August 2014

7. Gokce, S., Ayvaz, M.T.: Application of harmony search algorithm for solving the booster
station optimization problems in water distribution networks. In: International civil
engineering & architecture symposium for academicians (ICESA2014), 17–20 May 2014

8. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-
Wesley Pub., Boston (1989)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE
international conference on neural networks, Piscataway, pp. 1942–1948 (1995)

10. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220
(4598), 671–680 (1983)

11. Munavalli, G.R.: Mohan Kumar M. S.: Optimal scheduling of multiple chlorine sources in
water distribution systems. J. Water Res. Plan. Manage. 129(6), 493–504 (2003)

12. Ostfeld, A., Salomons, E.: Conjunctive optimal scheduling of pumping and booster chlorine
injections in water distribution systems. Eng. Optim. 38(3), 337–352 (2006)

13. Özdemir, O.N., Uçaner, M.E.: Success of booster chlorination for water supply networks with
genetic algorithms. J. Hydraul. Res. 43(3), 267–275 (2005)

14. Propato, M., Uber, J.G.: Linear least-squares formulation for operation of booster disinfection
systems. J. Water Res. Plan. Manage. 130(1), (2004)

15. Propato, M., Uber, J.G.: Booster system design using mixed-integer quadratic programming.
J. Water Res. Plan. Manage. 130(4), 348–352 (2004)

16. Rossman, L.A.: EPANET 2 users manual. EPA/600/R-00/057, U.S. Environmental Protection
Agency, Cincinnati (2000)

17. Sert, Ç.: Booster disinfection in water distribution networks. M.Sc. thesis, Middle East
Technical University, Ankara (2009)

18. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

19. Tryby, M.E., Bocelli, D.L., Uber, J.G., Rossman, L.A.: Facility location model for booster
disinfection of water supply networks. J. Water Res. Plan. Manage. 128(5), 322–333 (2002)

20. Wang, H., Guo, W., Xu, J., Gu, H.: A hybrid PSO for optimizing locations of booster
chlorination stations in water distribution systems. In: Proceedings of the 2010 International
Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 1,
pp. 126–129 (2010)

21. Wang, H., Guo, W.:Ant colony optimization for booster chlorination stations of water
distribution systems. In: Proceedings of the 2010 International Conference on Computer
Application and System Modeling (ICCASM), vol. 1, pp. 166–170 (2010)

Evaluation of Harmony Search and Differential Evolution … 261

Web Document Clustering by Using
PSO-Based Cuckoo Search Clustering
Algorithm

Moe Moe Zaw and Ei Ei Mon

Abstract With the increasing amount of web information, web document clustering
plays an important role in Information Retrieval. This paper presents a PSO-based
Cuckoo Search Clustering Algorithm to combine the strengths of Cuckoo Search
and Particle Swarm. The solutions of new cuckoos are based on the solutions of
PSO. Among these solutions, the algorithm will replace some eggs on lack of fitness
with successful solutions until an optimal solution emerges. The proposed hybrid
algorithm is tested with a web document benchmark dataset and the results show that
it performs well in web document clustering area.

Keywords Cuckoo search � Particle swarm optimization � Clustering algorithm �
Web document clustering

1 Introduction

Clustering (or cluster analysis) is one of the main data analysis techniques and it
deals with the organization of a set of objects in a multidimensional space into
similar groups, called clusters. Objects contained in each cluster are very similar to
each other and very dissimilar to objects in other clusters. An example of a clus-
tering is depicted shown in figure. Figure 1 shows the input data and the existing
clusters of input data are shown in Fig. 2. The same symbols illustrate that objects
belong to the same cluster. Cluster analysis aims to discover objects that have some
representative behavior in the collection. So, it is assumed that if a rule is valid for
one object, it can also be assumed that that the rule can probably be applied to all
the objects that are very similar to it. By using this technique, we can find dense and

M.M. Zaw (&) � E.E. Mon
University of Technology (Yatanarpon Cyber City), Pyin Oo Lwin, Myanmar
e-mail: moemoezaw@gmail.com

E.E. Mon
e-mail: eieimon.ucsy@gmail.com

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_14

263

sparse regions in the data space. And then we can discover hidden similarities,
relationships and concepts to group large datasets with regard to the common
characteristics of their objects. Clustering is a type of unsupervised classification, in
which the categories into which the data must be partitioned are not known. So the
clustering process means the discovering of these categories [1].

Web document clustering is an important problem for two main reasons. First,
we can more easily browse and use the web documents if we cluster a document
collection into categories. Automatic categorization is especially important for the
World Wide Web because of its huge number of dynamic (time varying) documents
and diversity of topics; such features make it difficult to classify pages manually.
Second, clustering can improve the performance of search and retrieval on a doc-
ument collection [2].

Text document clustering groups similar documents in order to form a compact
cluster, where documents that are different have separated across into different clus-
ters. However, the definition of a pair of documents being similar or different is not
always clear and can vary according to the own problem setting. For example, when
research papers are clustered, two documents are assumed as similar if they share
similar thematic topics. When clustering is employed on web sites, we are usually
more interested in clustering the component pages according to the type of information
described in the page. Therefore, by grouping similar types of information sources

Fig. 1 Clustering example:
input data

Fig. 2 Clustering example:
existing clusters of input data

264 M.M. Zaw and E.E. Mon

together, this kind of clustering can benefit further analysis and utilize of the dataset
such as information retrieval and information extraction [3].

The World Wide Web keeps on growing rapidly as a huge resource of infor-
mation and services. The number of available web documents on the internet is
growing rapidly day by day. So, a major challenge in Information Retrieval
becomes to find the relevant information on the web. If the World Wide Web
continues to grow rapidly, automatic categorization of web pages is essentially
needed because of its increasing size and the dramatic content. One of the tech-
niques that can play a special role towards the achievement of this objective is web
document clustering.

The existence of an abundance of information, makes information retrieval a
tedious process for the average user because of both the dynamic and heterogeneous
nature of the Web. Search engines, meta-search engines and Web Directories have
been developed so that they can help the users quickly and easily satisfy their
information need. This causes the need of new techniques to assist users effectively
navigate, trace and organize the available web documents. This is the ultimate goal
of finding those best matching their needs. To get the achievement of this objective,
one important role is document clustering. The increasing importance of document
clustering and the variety of its applications cause the development of a wide range
of algorithms with different quality [4].

Although there is already much research conducted on the field of web document
clustering, it is clear there are still some open issues that call for more research.
Therefore, this chapter aims to develop a clustering algorithm and apply in web
document clustering area.

2 Literature Review

Clustering can be performed by dividing a set of objects into a specified number of
clusters. The main purpose of clustering a set of data is to find inherent structure
inside the data and to describe this structure as a set of groups. A wide variety of
application areas, such as pattern recognition, marketing, biology, geology and web
analysis are the most common used areas of clustering. To apply swarm intelligence
in the clustering research area, it can be viewed that the clustering problem is an
optimization problem that locates the optimal centroids of the clusters rather than it
is an optimal partition finding problem. So, swarm intelligence algorithms are
widely applied in clustering area.

The authors in [5] proposed the two new approaches to using PSO to cluster
data. It is shown how PSO can he used to find the centroids of a user specified
number of clusters. The algorithm is then extended to use K-means clustering to
seed the initial swarm. In the second algorithm, PSO refines the clusters formed by
K-means. The new PSO algorithms are evaluated on six data sets. And they are
compared to the performance of K-means clustering. The experiments show that the

Web Document Clustering by Using PSO-Based … 265

PSO approaches have better convergence to lower quantization errors, and larger
inter-cluster distances and smaller intra-cluster distances.

The hybrid PSO and K-means algorithm with a novel alternative metric, called
Alternative KPSO-clustering (AKPSO), is developed in [6]. It automatically detects
the cluster centers of geometrical structure data sets. It is known that the alternative
metric is to have more robust ability than the common-used Euclidean norm. In
AKPSO algorithm, the authors consider the special alternative metric to improve
the traditional K-means clustering algorithm to deal with various structure data sets.
The proposed system is tested on several artificial and real data sets. Simulation
results are compared with some well-known clustering methods. The results show
that the novel AKPSO method is robust and efficient.

In [7], a Particle Swarm Optimization (PSO) document clustering algorithm is
proposed. Contrary to the localized searching of the K-means algorithm, the PSO
clustering algorithm can perform a global search in the entire solution space. For
experiments, the PSO, K-means and hybrid PSO clustering algorithm are tested on
four different text document datasets. The results illustrate that the hybrid PSO
algorithm can generate more compact clustering results than the K-means algorithm.

The authors in [8] articulate the unique requirements of Web document clus-
tering and reports on the first evaluation of clustering methods in this domain.
A key requirement is that the clusters are based on the short snippets returned by
Web search engines. They have found that clusters based on snippets are almost as
good as clusters created using the full text of Web documents. To satisfy the
stringent requirements of the Web domain, the authors introduce an incremental,
linear time (in the document collection size) algorithm called Suffix Tree Clustering
(STC). This algorithm creates clusters based on phrases shared between documents.
Single Pass, K-means, Buckshot, Fractionation, GAHC and STC algorithms are
compared. The results show that not only STC is faster than standard clustering
methods in this domain, but also STC is both feasible and potentially beneficial in
web document clustering.

Samiksha Goel, Arpita Sharma and Punam Bedi propose Cuckoo Search
Clustering Algorithm (CSCA). According to the results, the proposed algorithm is
validated on two real time remote sensing satellite- image datasets for extraction of
the water body. The CSCA uses Davies-Bouldin index (DBI) as fitness function.
Also a new method for generation of new cuckoos used in this algorithm is
introduced. The resulting algorithm is conceptually simpler because it takes less
parameter than other nature inspired algorithms and after some parameter tuning
yields very good results [9].

In [10], the Cuckoo Search Clustering Algorithm based on lévy flight is pro-
posed. In this algorithm, the new cuckoo solution is generated by lévy distribution.
The algorithm is applied in web document clustering area and tested with bench-
mark dataset. The result shows that the algorithm is effective.

As Cuckoo Search Algorithm, other swarm intelligence algorithms are applied in
clustering area. The Bees Algorithm is used in optimizing the document clustering
problem because the algorithm is able to perform global and local search simul-
taneously. The experiments show that the Bees algorithm outperforms the genetic

266 M.M. Zaw and E.E. Mon

algorithm and the K-means algorithm [11]. The authors also show the details of the
ACO documents clustering method and detail results of experiments [12]. The
experiments conclude that the ant algorithms can be successfully implemented in
text documents processing.

3 Web Document Clustering

Web document clustering is widely applicable in areas such as search engines, web
mining and information retrieval research areas. In most document clustering
methods, several pre-processing steps such as stop words removal and stemming
are performed on the given document set. Then, each document is represented by a
vector of frequencies of remaining terms within each document. Some document
clustering algorithms perform an extra pre-processing step such as term frequency
normalization in which the actual term frequency is divided by the overall fre-
quency of the term in the entire document set.

For clustering a document, the text content in a web document provides a lot of
information. There are many document clustering approaches frequently used in
document clustering field. They differ in many parts, depending on the types of
attributes they use to describe the documents, the similarity measure used, the
representation of the clusters etc. The different approaches can be categorized into
(i) text based clustering approach, (ii) link based clustering approach and (iii)
hybrid clustering approach. The text-based web document clustering approaches
characterize each document according its content, i.e. by using the words (or
sometimes phrases) contained in it. The basic idea is that if two documents contain
many common words then it is likely that two documents are very similar.

3.1 Preprocessing of the Web Document

If the system is a text-based web document clustering system, the preprocessing is
very similar to the preprocessing of the documents. Preprocessing consists of steps
that take as input a plain text document and output a set of tokens (which can be
single terms or n-grams) to be included in the vector model. Preprocessing consists
of tokenizing, stop word removal and stemming stages.

3.1.1 Tokenizing

Tokenizing means breaking a stream of text up into words, phrases, symbols or
other meaningful elements called tokens. Therefore, tokenizing forms words from a

Web Document Clustering by Using PSO-Based … 267

sequence of characters. The list of tokens is input for text mining. An example of
tokenization is:

Input Mozilla Firefox, Internet Explorer, and Google Chrome are famous web
browsers.

Output Mozilla Firefox Internet Explorer and Google Chrome are famous web
browsers

An instance of a sequence of characters in some particular document is defined
as a token. They are grouped together as a useful semantic unit for processing. The
class of all tokens containing the same character sequence is called a type. Then, a
term is a type in the IR system’s dictionary. The set of index terms could be entirely
distinct from the tokens. They could be semantic identifiers in taxonomy. In modern
IR systems, they are strongly related to the tokens in the document. However, they
are usually derived from them by various normalization processes rather than being
exactly the tokens that appear in the document [13].

3.1.2 Stop Words Removal

The extremely common words may appear in documents to be of little value in
helping to select documents matching a user need. These words are defined as stop
words. For example, all stop words are common words, such as a and the, are
removed from the text collection. The common way to determine a stop list is to
count the total number of times each term appears in the document collection. It is
called stop list. The members of the stop list are discarded during indexing. By
using the stop list, we can reduce the number of postings that a system has to store.
The stop words removal can reduce the index space, improve the response time and
improve effectiveness.

3.1.3 Stemming

Stemming refers to the mapping of word forms to stems or basic word forms. In
other words, stemming is the use of linguistic analysis to get the root form of a
word. Word forms can differ from stems due to morphological changes for gram-
matical reasons. Documents are going to contain different forms of a word, such as
play, played, and playing. Besides, words such as connect, connector, and con-
nection have similar meanings as they are families of derivationally related words.
In many situations, it seems as if we search for one of these words, it should return
documents that contain another word that has same meaning in the set. Both
stemming and lemmatization are used to reduce inflectional forms. For instance:

268 M.M. Zaw and E.E. Mon

Has, have, had ⇒ have

Bank, banks, bank’s ⇒ bank

Save, saving, saves, saved ⇒ save

This mapping of text will make the result like:
My mother has opened a saving account at KBZ bank. => my mother have open

a save account at KBZ bank.
However, the two words differ in their flavor. Stemming is a crude heuristic

process chopping off the ends of words in the hope of achieving this goal correctly
most of the time. It usually includes the removal of derivational affixes.

3.2 Vector Space Model Representation

Salton et al. [14] introduced, in the early seventies, a model for automatic indexing
and the vector space model has become the standard document model for document
clustering. In this model a document d can be defined as a set of terms {t1, …, tn}.
The importance or occurrence of each of these terms can be weighted by some
metric.

The vector space model is the best well-known and most widely used IR model.
In the vector space model, a document is represented as a weight vector. In a weight
vector, each component weight is computed based on TF or TF-IDF scheme. The
weight wij of term ti in document dj is no longer in {0, 1} as in the Boolean model.
But it can also be any number.

For Term Frequency (TF), the weight of a term ti in document dj is the number of
times that ti appears in document dj, defined by fij. Normalization can also be
performed as shown in Eq. (1).

However, the TF does not consider the situation where a term can appear in
many documents of the collection. This kind of term may not be discriminative.

So, TF-IDF is most widely used to weigh the term. In TFIDF, TF stands for the
term frequency and IDF is the inverse document frequency.

Let N be the total number of documents in the collection and dfi be the number
of documents in which term ti appears at least once. Let fij be the raw frequency
count of term ti in document dj. Then, the normalized term frequency (denoted by
tfij) of ti in dj is given by

tfij ¼ fij
max f1j; f2j; . . .; fjvjj

� � ð1Þ

where the maximum is computed over all terms that appear in document dj. If term
ti does not appear in dj then tfij = 0. |V| is the vocabulary size of the collection.

Web Document Clustering by Using PSO-Based … 269

The inverse document frequency, idfi, of term ti is given by:

idfi ¼ log
N
dfi

; ð2Þ

However, if a term appears in a large number of documents in the collection, it is
probablynot importantornotdiscriminative.ThefinalTF-IDF termweight isgivenby:

wij ¼ tfij � idfi: ð3Þ

3.3 Calculating Distance Values

A similarity/distance measure between two data points must be determined before
clustering. This measure defines the degree of closeness or separation of the target
objects. So, it should correspond to the characteristics that are believed to distin-
guish the clusters embedded in the data. In many cases, there is no measure that is a
universal best fit for all various kinds of clustering problems. These characteristics
depend on the data or the problem context at hand.

Moreover, choosing an appropriate similarity measure is also important for
cluster analysis, especially for a particular type of clustering algorithms. It is great
important to understand the effectiveness of different measures in helping to choose
the best one. In our algorithm, Cosine is chosen to measure the distance between the
center values and the documents.

3.3.1 Cosine Similarity

Accurate clustering should have a precise definition of the closeness between a pair
of objects, in terms of either their similarity or distance. A variety of similarity or
distance measures have been proposed and widely applied, such as cosine similarity.

When documents are represented in terms of term vectors, the similarity of two
documents can be defined as the correlation between the vectors. This is quantified
as the cosine of the angle between vector and it is also called cosine similarity.
Cosine similarity is one of the most popular similarity measure that has been
applied to text documents, such as in many information retrieval applications [15]
and clustering too [16].

Given two documents ta
! and tb

!, their cosine similarity is

SIMC !
ta
;!
tb

� �
¼

!
ta
�!

tb

j!
tb
j � j!

tb
j ð4Þ

where ta
! and tb

! are m-dimensional vectors over the term set T = {t1, …, tm}.

270 M.M. Zaw and E.E. Mon

Each dimension represents a term with its weight in the document, which is
non-negative. As a result, the cosine similarity is non-negative and bounded
between [0, 1].

As in theK-means algorithm, the PSO-basedCuckoo Search ClusteringAlgorithm
works with distance measures which basically aim to minimize the within-cluster
distances. Therefore, similaritymeasures do not directlyfit into the algorithm, because
smaller values mean dissimilarity. We need to apply a simple transformation to
convert the similarity measure to distance values. As cosine similarity is bounded in
[0, 1] and monotonic, D = 1 − SIM is taken as the corresponding distance value [3].

3.4 Clustering

After preprocessing and calculating the distance values, the system goes to the
clustering stage. In the clustering step, the clustering algorithms group a set of web
documents into subsets or clusters. The clustering algorithms’ goal is to create
clusters that are similar internally, but clearly different from each other. In other
words, documents within a cluster should be similar as much as possible and
documents in one cluster should be different as much as possible from documents in
other clusters.

The problem of clustering can be expressed as an optimization problem where
one tries to search the optimal centers that can be expressed the centroids of the
clusters that are quite from each other as much as possible. So, the optimization
algorithms are applied in clustering areas as the clustering algorithms for searching
optimal centroids.

4 Particle Swarm Optimization

Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for solving
optimization problems. Its inspiration is originally taken from the biological
examples such as swarming, flocking and herding phenomena in vertebrates [17].

Particle Swarm Optimization is a population based stochastic optimization
technique. It can be used to find an optimal, or near optimal, solution to a numerical
and qualitative problem. In the PSO algorithm, birds in a flock are symbolically
described as particles. These particles can be considered as simple agents that are
“flying” through a problem space. A problem space in PSO can contain many
dimensions to model the problem space. A particle’s location in the multi-dimen-
sional problem space can be defined as one solution for the problem. When a
particle moves to a new location, it generates a different solution. This solution is
then evaluated by a fitness function. The fitness value provides a quantitative value
of the solution’s utility.

Web Document Clustering by Using PSO-Based … 271

At each generation of movement, the particle changes the velocity and direction
when it moves along each dimension of the problem space. It is the particle’s
personal experience combined with its neighbors’ experience in which each particle
moves through a problem space. For every generation, the particle’s new location is
computed by adding the particle’s current velocity V-vector to its location X-vector.
The personal best position of ith particle is the best position visited by the particle
and is denoted as pbest. Let f be the objective function and the personal best of
particle at time step t is updated as

pbesti t þ 1ð Þ ¼ f xð Þ ¼
pbesti tð Þ; if f xi t þ 1ð Þð Þ� f pbesti tð Þð Þ;
xi t þ 1ð Þ; if f xi t þ 1ð Þð Þ\f pbesti tð Þð Þ:

(
ð5Þ

Moreover, each particle knows the best pbest among all the particles and this is
defined as gbest. The global best is updated based on best known position of the
swarm using Eq. (6) [18].

gbest tð Þ 2 fpbest0; pbest1; . . .; pbestkg ¼ minfpbest0 tð Þ; . . .; pbestkðtÞg ð6Þ

By considering pbest, gbest and the velocity of each particle the update rule for
their position is as the following equations:

Vtþ1 ¼ Wt � Vt þ c1 � rand1 � pbest � xtð Þ þ c2 � rand2 � ðgbest � xtÞ; ð7Þ

Xtþ1 ¼ Xt þ Vtþ1: ð8Þ

• Xt is the particle current location.
• c1 and c2 are two positive acceleration constants.
• d is the number of dimensions of the problem space.
• rand1, rand2 are random values in the range of (0, 1).
• w is called the constriction coefficient.

5 Cuckoo Search

Cuckoo Search is a meta-heuristic algorithm inspired by some species of a bird
family called Cuckoo because they have their special lifestyle and aggressive
reproduction strategy [18]. Cuckoos are fascinating birds, not only because they can
make the beautiful sounds, but also because their reproduction strategy is aggres-
sive. Cuckoo birds never build their own nests. These species lay their eggs in the
nests of other host birds. They have the amazing abilities like selecting the recently
spawned nests and removing existing eggs that increase hatching probability of
their eggs. Cuckoo birds carefully mimic the color and pattern of the eggs of host

272 M.M. Zaw and E.E. Mon

birds. So, the host takes care of the eggs presuming that the eggs are its own.
However, when the host knows that the egg is not their own egg, they throw out the
discovered alien eggs or build their new nests in new locations. The cuckoo
breeding analogy is used to develop new design optimization algorithm. A set of
host nests describes a generation. Each nest carries an egg (solution). The quality of
the solutions is improved by generating a new solution from an existing solution
and modifying certain characteristics.

1. Each cuckoo lays one egg at a time, and dumps it in randomly chosen nest.
2. The best nests with high quality of eggs will carry over to the next generations.
3. The number of available host nests is fixed, and the egg laid by a cuckoo is

discovered by the host bird with a probability pa [0, 1]. In this case, the host bird
can either throw the egg away or abandon the nest, and build a completely new
nest.

The algorithm considers both local search and global search. This algorithm uses
a balanced combination of a local random walk and the global explorative random
walk. This combination is controlled by a switching parameter pa. The local ran-
dom walk is as follows:

xtþ1
i ¼ xti þ as� H pa � �ð Þ � ðxtj � xtkÞ ð9Þ

• xtj and xtk are two different solutions selected randomly by random permutation.
• H(u) is a Heaviside function.
• ∊ is a random number drawn from a uniform distribution and s is the step size.

On the other hand, the global random walk is carried out by using Lévy flights.
When generating new solutions x(t+1) for, say cuckoo i, a Lévy flight is per-

formed using the following equation:

Xðtþ1Þ
i ¼ xti þ aLðs; kÞ; ð10Þ

where

L s; kð Þ ¼ kCðkÞ sinðpk=2Þ
p

1
s1þk

; ðs � s0 [0Þ; ð11Þ

Here, α is the step size scaling factor and α > 0. It should be related to the scales of
the problem of interest. In most cases, α = O(L/10) is used where L is the char-
acteristic scale of the problem of interest. In some cases, α = O(L/100) can be more
effective and avoid flying too far. The above equation is essentially the stochastic
equation for a random walk. In general, a random walk is a Markov chain in which
next status/location is only dependent on the current location (the first term in the
above equation) and the transition probability (the second term). However, a

Web Document Clustering by Using PSO-Based … 273

substantial fraction of the new solutions should be generated by far field random-
ization and their locations should be far enough from the current best solution; this
will be sure that the system will not be trapped in a local optimum [19, 20].

6 PSO-Based Cuckoo Search Clustering Algorithm

In this section, we explore the details of proposed algorithm. As mentioned in
Sect. 5, the nature of cuckoo birds is that they do not raise their own eggs and never
build their own nests, instead they lay their eggs in the nests of other host birds. So,
the main strength of cuckoo search is to replace not so good solutions and to carry
successful solutions to the next generation. As cuckoo eggs replace worse solutions,
the next generation carries the good solutions and cuckoo solutions are important.
Cuckoo birds need to look for a better place for their eggs.

In the PSO algorithm, the particles can be considered as simple agents “flying”
through a problem space. The studies show that the PSO has more chance to “fly”
into the better solution areas more quickly, so it can discover reasonable quality
solution much faster than other evolutionary algorithms.

In the PSO based Cuckoo Search Clustering Algorithm, the cuckoo lays their
eggs in a place determined by PSO solution. The goal is to replace not so good
solution, the main idea of Cuckoo Search, with PSO solutions in which particles
can fly into better solutions.

In the context of clustering, a single host nest represents a cluster centroid
vectors. That is, each host nest Xi, is constructed as follows:

Xi ¼ ðmi1; . . .;mij; . . .mikÞ; ð12Þ

• mij refers to the j-th cluster centroid vector of the i-th host nest.
• k denotes the number of cluster centroids (as provided by the user), i.e. the

number of clusters to be formed.

An initial solution of each host nest is randomly generated. Figure 3 is an
example of the encoding of the single host nest in initial population for n dimen-
sional space. Let n = 2, k = 3, the string of this particle represents three cluster
centers [(0.7,2.7), (1.8,3.2) and (2.6,0.8)] (Fig. 3).

The algorithm is shown as follows. In our algorithm, it is assumed that each nest
contains one egg.

Step 1 Initialize positions of vector X of all host nests randomly.
Step 2 For each host nest, assign the document to the nearest cluster by using

Cosine Distance.
Step 3 Evaluate the fitness of each host nest by using Eq. (16).
Step 4 Update pbest and gbest using Eqs. (5) and (6).

274 M.M. Zaw and E.E. Mon

Step 5 Replace all worse nests by Cuckoo Eggs produced by using Eqs. (7) and
(8).

Step 6 A fraction pa of worse nests are abandoned and new ones are built
randomly.

Step 7 Keep the best solution (or nests with quality solutions).
Step 8 Rank the solution and find the current best.
Step 9 Repeat Step 2 to Step 8 until a stop criterion is satisfied or a predefined

number of iterations are completed.
Step 10 Consider the clustering Solution represented by best solution.

The alien eggs discovery is preformed for each component of each solution in
terms of probability matrix such as:

Pij ¼ 1 if rand\pa
0 if rand� pa

;

�
ð13Þ

where rand is a random number in [0, 1] interval and pa is the discovering prob-
ability. Existing eggs are replaced considering quality by the newly generated ones
from their current positions through random walks with random step size.

stepsize ¼ rand � nest randperm nð Þ; :ð Þ � nest randperm nð Þ; :ð Þð Þ ð14Þ

new nest ¼ nest þ stepsize: � P; ð15Þ

where randperm is the random permutation function used for different rows per-
mutation applied on nests matrix and P is the probability matrix. The system design
is as shown in Fig. 4.

Fig. 3 Example of a host nest with 3 centriods

Web Document Clustering by Using PSO-Based … 275

The documents to be clustered are collected first. The proposed method includes
two phases: preprocessing phase and clustering phase.

In the preprocessing phase, each document will be tokenized and the stop words
such as a, an, the etc., will be removed. The features from remaining words will be
represented in Vector Space Model with their TFIDF weight values.

In the clustering phase, the distance from the centroids to the other documents
will be measured by Cosine distance measure. The documents to the nearest center
will go to this cluster. For next center selection, the old center is moved to the new
center by PSO based Cuckoo Solutions. This means that the Cuckoo will find the
better PSO position to lay their eggs. This clustering process will be performed for a
defined number of criteria. The algorithm will finally produce the user-defined
number of document clusters.

7 Experimental Evaluation

7.1 Evaluation Measures

The clustering algorithms aim to optimize some target function. But it is not clear
whether this target function always divides the data into clusters according to the
true nature of the data. The model cab not be fully representative or biased in some
negative way. Sometimes, the documents express a greater depth than the algorithm
can cover and the algorithm cannot cover the greater depth of the documents.

Fig. 4 System design

276 M.M. Zaw and E.E. Mon

In the unsupervised clustering, evaluation methods evaluate the internal structure
of the clustering. The density of the clusters can be calculated by calculating the
cohesion of each cluster by using some distance function. Arguably a good clus-
tering should provide dense clusters. Alternatively, the average separation between
clusters can be measured. A good clustering should provide a good separation
between internal and external objects.

So, we need to measure the cluster quality as a result of the clustering algorithm.
In this chapter, the cluster quality is measured by fitness values and F-measure.

7.1.1 Fitness Measure

The fitness equation in Eq. (16) is used for the fitness value calculation and in the
evaluation of the cluster quality. It indicates the value of the average distance
between documents and the cluster centroid to which they belong. This is known as
ADVDC value. It can be assumed that the smaller the ADVDC value, the more
compact the clustering solution is.

The fitness value is measured by the equation below:

f ¼
PNc

i¼1

Ppi
j¼1

dðoi;mijÞ
pi

� �
Nc

; ð16Þ

• mij denotes the jth document vector, which belongs to cluster i.
• Oi is the centroid vector of ith cluster.
• d(oi, mij) is the distance between document mij and the cluster centroid Oi.
• Pi tends for the document number, which belongs to cluster Ci.
• Nc stands for the cluster number.

7.1.2 Precision, Recall and F-Measure

Some metrics such as recall and precision come from Information Retrieval.
We can interpret a clustering as a retrieved set document given a query. Recall
is defined as the proportion of relevant documents retrieved to all of relevant
documents. Precision can be defined as the proportion of retrieved and relevant
documents to all of the retrieved documents [21].

To calculate precision and recall, true positive, true negative, false positive and
false negative need to be defined. We must first decide whether or not to assign the
two documents to the same cluster given their calculated similarity. A true positive
(TP) is the decision in which two similar documents are assigned to the same
cluster. A true negative (TN) assignment is when two dissimilar documents are
assigned to two different clusters. If two dissimilar documents are assigned to the

Web Document Clustering by Using PSO-Based … 277

same cluster we have a false positive (FP) and two similar documents to different
clusters we have a false negative (FN).

Precision Pð Þ ¼ TP=ðTPþ FPÞ; ð17Þ

Recall Rð Þ ¼ TP=ðTPþ FNÞ; ð18Þ

F � measure Fð Þ ¼ 2 � P � R=Pþ R: ð19Þ

7.2 Performance Evaluation

For the experimental set up of the proposed system, we use 7-sector benchmark
dataset. The web documents are randomly drawn from the datasets and then
clustered. The system is implemented with Java language. The platform’s specifi-
cations used for the tests is: Intel(R) core(TM) i3 processor with 4 GB RAM.

7.2.1 Parameters and Their Specifications

The standard parameters in PSO-based Cuckoo Search Clustering Algorithm are pa,
wstart, wend, c1 and c2. We choose pa = 0.3 for Cuckoo Search. For the PSO
movement of Cuckoo, the acceleration coefficient constants c1 and c2 are set to 1.4.
Typically w(t) is reduced linearly, from wstart to wend, each iteration, a good starting
point is to set wstart to 0.9 and wend to 0.4.

w tð Þ ¼ Tmax � tð Þ � wstart � wendð Þ
Tmax

þ wend : ð20Þ

The numbers of host nests are tested for 10, 15, 20 and 25. The parameter pa is
tested for 0.15, 0.2, 0.25, 0.3 and 0.35. With pa = 0.3, the algorithm executes the
best fitness value in early iterations. So, 0.3 is selected as the pa value of our
algorithm.

From our simulations, we found that it is suitable for n = 15 and pa = 0.3. The
tested pa values and its cluster quality are as shown in Table 1.

Table 1 Cluster qualities with different pa values

pa 0.15 0.2 0.25 0.3 0.35

Cluster quality 0.675 ± 0.647 0.641 ± 0.629 0.649 ± 0.636 0.631 ± 0.617 0.661 ± 0.638

278 M.M. Zaw and E.E. Mon

7.2.2 Results and Discussion

The fitness values are recorded for 10 runs. If the fitness value is fixed then it shows
the optimal solution. For each simulation, the centroids vector for clustering is
randomly initialized.

The F-measure values are average of 100 simulations. Higher F-measures show
the high accuracy. 150, 300, 450, 600 and 750 web documents are randomly
selected from the dataset and are then clustered respectively. The results are shown
in Fig. 5. It shows that the cluster accuracy increases according to the no of
documents.

The fitness values of the algorithm over 10 runs are as shown in Fig. 6.

Fig. 6 Average fitness values

Fig. 5 Average F-measure

Web Document Clustering by Using PSO-Based … 279

In Fig. 6, we can know that PSO-based Cuckoo Search algorithm can find the
optimal solution in early iterations. But, according to experiments, a large dataset
will require more iteration to achieve optimal results.

The randomly selected web documents are then clustered into 2 clusters, 3
clusters, 4 clusters and 5 clusters respectively. The results are shown in Fig. 7.
When 300 documents of 2 categories are clustered, it achieves the F-measure of
0.76. When the 750 documents are clustered into 5 clusters, it gains the F-measure
of 0.53. The F-measure for 2 clusters is relatively high but, it decreases when the
number of clusters increases.

8 Conclusion and Future Work

The PSO-based Cuckoo Search Clustering Algorithm is proposed and applied in
web document clustering area. From the experimental results, we can see that the
cluster quality and f-measure values obtained are good. So, we can conclude that
the PSO-based Cuckoo Search Clustering Algorithm can perform well in web
document clustering area. For future work, it can be suggested that the clustering
accuracy for more number of clusters can be improved by means of semantic
clustering with the help of word net, ontology or Wikipedia. Furthermore, the PSO
based Cuckoo Search Clustering algorithm can be applied in other clustering areas.
And it can also be compared to other swarm intelligence clustering algorithms.

Fig. 7 F-measures over different number of clusters

280 M.M. Zaw and E.E. Mon

References

1. Oikonomakou, N., Vazirgiannis, M.: A review of web document clustering approaches
2. Schenker, A., Last, M., Bunke, H., Kandel, A.: Clustering Of Web Documents Using a Graph

Model (2003)
3. Huang, A.: Similarity Measures for Text Document Clustering, NZCSRSC 2008.

Christchurch, New Zealand (2008)
4. Sridevi, K., Umarani, R., Selvi, V.: An analysis of web document clustering algorithms. Int.

J. Sci. Technol. India (2011)
5. van der Merwe, D.W., Engelhrecht, A.P.: Data Clustering Using Particle Swarm Optimization,

Evolutionary Computation 2003 Congress, IEEE, New York, Dec 2003
6. Ye, F., Chen, C.Y.: Alternative KPSO-clustering algorithm. Tamkang J. Sci. Eng. 8(2), 165–

174 (2005)
7. Cui, X., Potok, T.E.: Document clustering using particle swarm optimization. In: Proceedings

of Swarm Intelligence Symposium (2005)
8. Zamir, O., Etzioni, O.: Web document clustering: a feasibility demonstration. In: Proceedings

of 21st Annals Int’l ACM SIGIR Conference, pp. 46–54 (1998)
9. Goel, S., Sharma, A., Bedi, P.: Cuckoo Search Clustering Algorithm: A Novel Strategy of

Biomimicry, World Congress on Information and Communication Technologies. IEEE
publication, New York (2011)

10. Zaw, M.M., Mon, E.E.: Web document clustering using cuckoo search clustering algorithm
based on levy flight. Int. J. Innov. Appl. Stud. 4(1), 182–188 (2013)

11. AbdelHamid, N.M., Abdel Halim, M.B., Waleed Fakhr, M.: Bees algorithm-based document
clustering. In: The 6th International Conference on Information Technology (2013)

12. Machnik, L.: Documents clustering method based on ants algorithms. In: Proceedings of the
International Multi Conference on Computer Science and Information Technology, pp. 123–
130 (2006)

13. Christopher, D.M., Prabhakar, R., Hinrich, S.: An Introductio to Information Retrieval, 1st
edn. Cambridge University Press, Cambridge (2008)

14. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Comm. ACM
18(11), 613–620 (1975)

15. Yates, R.B., Neto, B.R.: Modern Information Retrieval. Addison-Wesley, New York (1999)
16. Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In:

Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (1999)

17. Nedjah, N., Mourelle, L.M.: Swarm Intelligent Systems. Springer, New York (2006)
18. Settles, M.: An introduction to particle swarm optimization, 7 Nov 2005
19. Yang, X.S., Deb, S.: Cuckoo Search via Lévy Flights. In: Proceedings of World Congress on

Nature and Biologically Inspired Algorithms, pp. 210–214. IEEE publication, New York
(2009)

20. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Num.
Opt. 1(4), 330–343 (2010)

21. Andrews O.N., Edward, A.F.: Recent Developments in Document Custering, Technical
Report, Computer Science, Virginia Tech (2007)

Web Document Clustering by Using PSO-Based … 281

Geometrically Nonlinear Analysis
of Trusses Using Particle Swarm
Optimization

Rasim Temür, Yusuf Sait Türkan and Yusuf Cengiz Toklu

Abstract Particle swarm optimization (PSO) algorithm is a heuristic optimization
technique based on colony intelligence, developed through inspiration from social
behaviors of bird flocks and fish schools. It is widely used in problems in which the
optimal value of an objective function is searched. Geometrically nonlinear analysis
of trusses is a problem of this kind. The deflected shape of the truss where potential
energy value is minimal is known to correspond to the stable equilibrium position
of the system analyzed. The objective of this study is to explore the success of PSO
using this minimum total potential energy principle, in finding good solutions to
geometrically nonlinear truss problems. For this purpose analyses are conducted on
three structures, two plane trusses and a space truss. The results obtained show that
in case of using 20 or more particles, PSO produces very good and robust solutions.

Keywords Particle swarm optimization � Structural analysis � Truss systems �
Nonlinear analysis � Potential energy � TPO/MA

R. Temür
Department of Civil Engineering, Faculty of Engineering, Istanbul University,
34320 Istanbul, Turkey
e-mail: temur@istanbul.edu.tr

Y.S. Türkan
Open and Distance Education Faculty, Istanbul University,
34452 Istanbul, Turkey
e-mail: ysturkan@istanbul.edu.tr

Y.C. Toklu (&)
Department of Civil Engineering, Faculty of Engineering,
Bilecik Seyh Edebali University, 11210 Bilecik, Turkey
e-mail: cengiz.toklu@bilecik.edu.tr

© Springer International Publishing Switzerland 2015
X.-S. Yang (ed.), Recent Advances in Swarm Intelligence and Evolutionary Computation,
Studies in Computational Intelligence 585, DOI 10.1007/978-3-319-13826-8_15

283

1 Introduction

Metaheuristic algorithms are a class of computational methods for solving opti-
mization problems, inspired by nature, biological and social processes, music,
physics, etc. These algorithms aim to find optimum value of objective functions
which is defined uniquely for a particular problem by improving randomly formed
solution sets using random numbers and certain rules. Some examples of these
methods are genetic algorithms, simulated annealing, harmony search, ant colony
optimization algorithm and particle swarm optimization algorithm.

Particle swarm optimization algorithm (PSO) was inspired by behaviors of bird
flocking and fish schooling, and it is a heuristic optimization technique based on
swarm intelligence successfully applied to various nonlinear NP-hard problems [1].
One of these problems is the geometrically nonlinear analysis of trusses.

Structural systems are in stable equilibrium phase when total potential energy is
relatively minimum [2]. Based on this consideration, equilibrium configurations of
structures can be determined by search algorithms looking for the minimization of the
total potential energy of the system [3]. If the search algorithms are meta-heuristic,
then the method applied becomes Total Potential Optimization using Metaheuristic
Algorithms (TPO/MA). In TPO/MA method, total potential energy equation is
written down based on deformation parameters of structural system, and deformation
parameters minimizing total potential energy value are obtained by using heuristic
algorithms. In trusses whose load case, geometry, cross-section and material prop-
erties are known, deformation parameters become joint coordinates. Since strain
energy in the members can be expressed easily for finite deformations and for non-
linear materials, this method becomes applicable to nonlinear cases too [3].

2 Problem Formulation

In analysis of structural systems, total potential energy of a structure can be com-
puted by Eq. (1).

U eð Þ ¼ Z
V

e eð ÞdV �
XNP

i¼1

Pi � ui ð1Þ

In this equation, e corresponds to strain, Pi corresponds to external loads, ui
corresponds to joint displacements relating to external loads, NP is the number of
loads acting on the system, V is volume of the structural element and e eð Þ corre-
sponds to strain energy.

284 R. Temür et al.

e eð Þ ¼ Ze

0

r eð Þde ð2Þ

e eð Þ value can be computed by using Eq. (2). The relation between stress ðrÞ and
strain (e) can be nonlinear as well as linear.

Initial coordinates and length of ij truss structural element (Fig. 1) are defined to
be ðxi; yi; ziÞ and ðxj; yj; zjÞ and L(0) (Eq. (3)), respectively. Final coordinates and
length of element after the load are ðui; vi;wiÞ and ðuj; vj;wjÞ and L(c) (Eq. (4)),
respectively.

L 0ð Þ ¼
ffi
ðxj � xiÞ2 þ ðyj � yiÞ2 þ ðzj � ziÞ2

q
ð3Þ

L cð Þ ¼
ffi
ðxj � xi þ uj � uiÞ2 þ ðyj � yi þ vj � viÞ2 þ ðzj � zi þ wj � wiÞ2

q
ð4Þ

Length change of member is DL cð Þ ¼ L cð Þ � Lð0Þ. Strain value of a member
can be computed by using Eq. (5).

e cð Þ ¼ DLðcÞ=Lð0Þ ð5Þ

For linear elastic cases, the stress–strain relation simply becomes r ¼ E � e
where E is the modulus of elasticity of the material. In this case Eq. (2) degenerates
to e ¼ E � e cð Þ2=2.

The energy formed by internal forces of elements in structural system is obtained
by multiplying strain energy and member volume. The energy formed by external
forces can be computed by multiplying the point where force is applied and dis-
placement along direction of force. Noting that Aj is the cross-section area of the
member j and Lj is the length of the member j, the total potential energy of a
structural system, can be obtained by Eq. (6) [3].

i j

i

j

x,u

y,v

z,w

ui

vi

wi

uj

v j

w j

Fig. 1 Deformation of a
space truss structural element

Geometrically Nonlinear Analysis of Trusses … 285

U eð Þ ¼
XNm

j¼1

ej � Aj � Lj �
XNP

i¼1

Pi � ui ð6Þ

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) developed by Eberhart and Kennedy [1], is
based on a simulation of social behaviors of bird and fish swarms. PSO is inspired
by the ability of swarm cooperation to work as a whole in finding their food source
in a large area. The search for food and sanctuary whose places are not known by
swarm is resembled to the search for mathematical solutions to engineering prob-
lems. Individuals of the swarm are called as ‘‘particles’’. Such significant social
behavior of the particles within the swarm can be used in PSO algorithm.
Accordingly, particles;

– are prone to go to best position among the positions where they have been
before,

– follow the particle which is nearest to the target in swarm,
– have variable velocities for field scanning.

These behaviors form the basis of PSO algorithm. In particle swarm optimiza-
tion, optimum value is searched with experiences of the individuals constituting the
colony and sharing in between these individuals. In search process; every individual
takes into account the experience of other individuals which constitute the swarm as
well as makes use of its previous experiences.

In PSO algorithm every particle has to remember its coordinates, velocity, and
best position it has obtained so far. In what way its velocity and direction will
change each time while searching the target is related to its current position, best
positions of its neighbors, and best position of itself. PSO algorithm is initialized
with a group of random particles and each particle represents a possible solution.
The best position related with the best fitness value of the particle is called personal
best or local best. The best position among all particles in the swarm is stated as
global best.

PSO process starts by assigning random positions to the particles (Fig. 2).
Velocity of each particle is calculated using velocity equation; and their positions in
the next step are obtained by using their initial positions and velocities. Velocity and
positions of the particles are updated at each iteration. Velocity vector of the particle
is calculated considering best position of the particle in the past (Xlbest) and the
position of the particle which is nearest to the target (the best solution) in the swarm,
as given in Eq. (7). New position of the particle i ðXtþ1

i Þ is obtained by summation of
current position of the particle Xt

i and particle velocity Vtþ1
i (Eq. 8) [5, 6].

286 R. Temür et al.

Vtþ1
i ¼ Vt

i þ c1 � rt1 � Xlbest � Xt
i

� �þ c2 � rt2 � ðGgbest � Xt
i Þ ð7Þ

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð8Þ

In these equations, parameters are denoted as follows:
Vtþ1
i Velocity of the particle;

Vi Previous velocity of the particle;
Xi Current position of the particle;
t Number of iterations;
r1; r2 Random numbers regularly distributed in the interval of {0;1}
c1; c2 Constants of acceleration;
Xlbest Best position of the particle in the past, local best;
Xgbest Position of the particle that is nearest to target in swarm, global best

In PSO algorithm each particle updates its position considering individual
(personal-local) best position “Xlbest” and social global best “Xgbest” position. If a
particle’s current position is better than its previous best position then local best
value is changed. The best solution of the objective function (fitness value) is also
recorded and updated in each iteration. This loop continues until a predetermined
condition is met. Exhibition of a sample iteration in the particle swarm optimization
was presented in Fig. 3. The particle reaches to Xtþ1

i position from Xt
i position after

this iteration.
Shi and Eberhart [7] obtained the formula given below by adding inertia weight

“w” to the formula which is used in calculation of velocity vector (Eq. 9).

Vtþ1
i ¼ w:Vt

i þ c1 � rt1 � Xlbest � Xt
i

� �þ c2 � rt2 � ðXgbest � Xt
i Þ ð9Þ

Parameter “w” controls the influence of the previous velocity. It was proposed
that inertia weight should take a value in the interval of {0.9; 1.2} for the algorithms
to give better results [7]. Other parameters in the equation are extremely important

Initialize location and velocity of each particle
repeat

for each particle
evaluate objective function / at the particles location

endfor
for each particle

update the personal best position
endfor
update the global best position
for each particle
update the velocity
compute the new location of the particle
endfor

until stopping criterion is met

Fig. 2 Pseudo Code of PSO
algorithm [4]

Geometrically Nonlinear Analysis of Trusses … 287

for the equilibrium in between exploration and exploitation. Parameter “c1” which
is one of the acceleration constants contributes to obtain a faster solution by
focusing on local best position (solution) of the particle. Other constant that is “c2”
provides obtaining a better position in a larger field by evaluating best positions of
all particles in the swarm.

In the search within solution space; “r1; r2 ” which are random values prevent to
be caught by the potential loops around local best values. Therefore; probability of
finding global best or an approximate value to the global best is increased.

In some cases, velocity vector may take undesired values and converge to
infinity by growing up excessively. To be able to prevent this situation; specifying
minimum and maximum limits for velocity vectors is a method which is frequently
applied in the searches.

If Vtþ1
i [Vup; Vtþ1

i ¼ Vup ð10Þ

If Vtþ1
i \Vlow Vtþ1

i ¼ Vlow ð11Þ

The values that velocity vector may take are shown in Eqs. (10)–(11) in case of
the velocity vector exceeds maximum and minimum limits. The values that velocity
vector may take in case of it exceeds the defined values are denoted as “Vlow” and
“Vup”.

4 Implementation of PSO Algorithm

To carry out geometrically nonlinear analysis of truss structural systems in this
study, joint displacements were defined to be unknowns in PSO algorithm. Based
on this procedure, random displacements were defined for every freedom in
structural system, and rules of PSO algorithm and the velocity equation in Eq. (9)
were used. Lower and upper limits were defined for particle velocities. The lowest

Fig. 3 Exhibition of particle
swarm optimization

288 R. Temür et al.

velocity for particles was limited to Vlow = 0.003 and the highest velocity for
particles was limited to Vup = 0.5. When a velocity value that is out of limits in the
velocity equation was obtained, that value was shifted to the closest velocity limit.
Similarly, wlow ¼ 0:001 and wup ¼ 0:7 values were used for inertia weight. Inertia
weight decreases linearly through iterations from the upper value to the lower value.
By this way, velocity is reduced in each iteration, which contributes to more sen-
sitive obtainment of joint displacements. Velocity coefficients were determined to
be c1 ¼ c2 ¼ 2. Total potential energy equation given in Eq. (6) was defined to be
the objective function in PSO. The solution set, where total potential energy value
of structural system is observed to be minimum in the end of iterations, is accepted
to be the final solution.

In order to implement PSO algorithm into problem of analysis of truss structural
systems, a software application written in Visual Basic 2012 was developed.

5 Numerical Examples

In this study, analyses of three different truss structural systems in literature were
performed by using PSO algorithm. Five different particle numbers such as 5, 10,
20, 30 and 40 were used in analyses. Results of analyses were given in comparison
with results of previous studies.

5.1 Example 1: 2 Bar Plane Truss

In 2-bar truss structure which is depicted in Fig. 4 [8–10], all members charac-
terized by the cross-sectional area A = 9,677 mm2 and modulus of elasticity
E = 68,941 N/mm2.

Load-displacement diagram obtained by 10 different P load is given in Fig. 5.
The system behavior under loads applied on the system is geometrically nonlinear
according to results of analysis by FEM (Fig. 5). Results of analysis carried out by
PSO algorithm suggest that the system has geometrically nonlinear behavior. PSO
analysis performed with different number of particles gave the same results.
Examining energy values presented in Table 1, energy values found by PSO match
up with FEM nonlinear results.

5.2 Example 2: 6 Bar Plane Truss

Within the scope of this study, the examined plane truss structure sample is the
system with 6 bar elements solved first by Toklu [3]. The geometry of the system is

Geometrically Nonlinear Analysis of Trusses … 289

presented in Fig. 6. All members have modulus of elasticity of 200,000 N/mm2.
Cross-sectional area of elements with numbers 1, 5 and 6 is 200 mm2; cross-
sectional area of elements with numbers 2, 3 and 4 is 100 mm2. The magnitude of
P force affecting on joint number 4 is 150 kN.

659.9 mm

P

19
0.

5
m

m

x

y

Fig. 4 Bar plane truss system
[8, 10]

0

3200

6400

9600

12800

16000

19200

22400

25600

28800

32000

0 10 20 30 40 50 60

P
[k

N
]

Joint Displacements [mm]

FEM Linear

FEM Nonlinear

PSO

Fig. 5 Load-displacement
diagram of two-bar plane
truss structural system

Table 1 Energy values of
2-bar plane truss structural
system

P [kN] Total potential energy [kNm]

PSO FEM nonlinear FEM linear

3,200 −5.93 −5.93 −5.93

6,400 −24.11 −24.11 −24.07

9,600 −55.17 −55.17 −54.93

12,800 −99.83 −99.83 −98.95

16,000 −159.00 −159.00 −156.81

19,200 −233.77 −233.77 −228.73

22,400 −325.52 −325.52 −315.66

25,600 −436.10 −436.10 −420.58

28,800 −568.12 −568.12 −535.55

32,000 −725.72 −725.72 −669.33

290 R. Temür et al.

The system, which has four degrees of freedom, was analyzed by local search
(LS) algorithm, genetic algorithm (GA), ant colony algorithm (ACO), harmony
search (HS) and finite elements method (FEM). In the first of these studies, that
gave way to the method Total Potential Optimization using Metaheuristic Algo-
rithms (TPO/MA), LS was applied for determination of the deflected shape of the
system, taking into account various material properties and the effect of failed
members [3]. In the second study, GA was applied to minimize the energy of the
system using a binary coded system with 10 digits, and considering the probabilities
of cross-over and mutation as 0.7 and 0.1, respectively [11]. In ACO application for
solving this truss, 1 member force is considered as the principal unknown of the
problem, which is then determined so as to make the total energy a minimum [12].
The HS solution of the problem is performed by following the rules of TPO/MA,
using 5, 10, and 20 vectors, with classical HS parameters HMCR = 0.9 and
par = 0.4 [13]. In the same study FEM solutions are also given obtained by linear
and nonlinear applications.

Displacements and total potential energy values achieved by PSO analysis were
compared with LS, GA, ACO, HS and FEM results (Table 2).

Examining total potential energy amounts presented in Table 2, it is seen that
results obtained by PSO algorithm are matching with results obtained by LS, GA,
HS, ACO and FEM Nonlinear. The reason why energy values obtained by FEM
linear are greater compared to other analysis is that the system has geometrically
nonlinear behavior under current loads.

1

P
2

3

4

5

6

3000 mm

(1)

(2)

(3)
(5)

(4)

40
00

 m
m

40
00

 m
m

x

yFig. 6 6-bar plane truss
system [3]

Geometrically Nonlinear Analysis of Trusses … 291

T
ab

le
2

A
na
ly
si
s
re
su
lts

of
6-
ba
r
pl
an
e
tr
us
s
st
ru
ct
ur
e
sy
st
em

by
di
ff
er
en
t
m
et
ho

ds

FE
M

L
S
[3
]

G
A

[1
1]

A
C
O

[1
2]

H
S
[1
3]

PS
O

L
in
ea
r

N
on

lin
ea
r

Jo
in
t
di
sp
la
ce
m
en
ts
[m

m
]

u4
14

.1
50

14
.1
20

14
.1
2

–
14

.1
2

14
.1
18

14
.1
2

v4
2.
84

3
2.
82

8
2.
83

–
2.
83

2.
83

0
2.
83

u5
0.
30

0
0.
30

2
0.
30

–
0.
30

0.
30

4
0.
30

v5
2.
30

9
2.
31

7
2.
32

–
2.
32

2.
31

9
2.
32

M
em

be
r
fo
rc
es

[N
]

1
49

,7
25

.1
3

49
,8
10

.2
5

49
,8
11

51
,0
15

.0
49

,8
11

49
,7
89

.1
8

49
,8
11

2
94

,3
31

.3
3

94
,1
40

.0
9

94
,1
42

94
,1
40

.6
94

,1
42

94
,1
31

.5
8

94
,1
42

3
−
6,
66

9.
14

−
6,
68

8.
40

−
6,
68

8
−
6,
55

2.
8

−
6,
68

8
−
6,
68

7.
50

−
6,
68

8

4
43

,0
55

.9
9

42
,9
73

.5
9

42
,9
74

42
,0
29

.5
42

,9
74

42
,9
77

.9
7

42
,9
74

5
4,
00

1.
49

4,
03

4.
16

4,
03

5
3,
96

3.
8

4,
03

5
4,
07

4.
45

4,
03

5

6
5,
33

5.
31

5,
35

1.
45

5,
35

2
5,
28

4.
3

5,
35

2
5,
35

4.
77

5,
35

2

T
ot
al

po
te
nt
ia
l
en
er
gy

[k
N
m
]

−
1.
05

97
27

−
1.
05

97
35

−
1.
05

97
35

−
1.
05

60
−
1.
05

97
35

−
1.
05

97
34

−
1.
05

97
35

292 R. Temür et al.

Analysis with different particle numbers resulted in equal energy values. The
same energy values were obtained as a result of using particle numbers ranging
between 5 and 40. On the other hand, there are not considerable differences among
total potential energy values which change depending on number of iterations
(Fig. 7). Change of displacement values in PSO analysis depending on iteration
number is given in Fig. 8.

5.3 Example 3: 25 Bar Space Truss

The truss structure system used in PSO algorithm analysis includes 25 bar elements,
10 joints and 4 fixed bearings [14]. In the system whose geometry is presented in
Fig. 9, modulus of elasticity of members is 200,000 N/mm2 and cross-sectional area
of members is 10 mm2. The system was analyzed considering 3 different load cases.

Loading 1:
at joint 1, Py = 80 kN and Pz = −20 kN
at joint 2, Py = −80 kN and Pz = −20 kN

-1.2E+6

-1.0E+6

-8.0E+5

-6.0E+5

-4.0E+5

-2.0E+5

0.0E+0

0 10 20 30 40 50 60 70 80 90 100T
o

ta
l P

o
te

n
ti

al
 E

n
ee

rg
y

[k
N

m
]

Iteration

5 Particles

10 Particles

20 Particles

30 Particles

40 Particles

Fig. 7 Change of total potential energy amounts in analysis carried out in the 6-bar truss with
different particle numbers

-2

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

Jo
in

t D
is

p
la

ce
m

en
ts

 [m
m

]

Iteration

u(4)
v(4)
u(5)
v(5)

Fig. 8 Change of
displacements in the analysis
of 6-bar plane truss structure
system with 20 particles

Geometrically Nonlinear Analysis of Trusses … 293

Loading 2:
at joint 1, Py = 800 kN and Pz = −200 kN
at joint 2, Py = −800 kN and Pz = −200 kN
Loading 3:
at joint 1, Py = 800 kN, Pz = 800 kN and Pz = −200 kN

Displacement and member force values obtained as a result of analysis by HS,
FEM Nonlinear [13] and PSO methods by using these loads were presented in
Tables 3 and 4. There are differences in values of displacement and member force
but total potential energy values are equal. Percentages of differences in analysis
results are limited to 0.44 % for displacements and 0.13 % for member forces
(Table 5).

In order to determine effects of particle quantities on results of analyses, change
of total potential energy amount depending on iteration number was examined for
three loading cases. According to results of Loading 1 in Fig. 10, same energy
values were obtained for all number of particles. As number of particles increase,
number of iterations to find final solution decreases.

According to results of Loading 2 in Fig. 11, equal potential energy values were
obtained by analysis carried out with 10, 20, 30 and 40 particles. Higher energy
level was observed in the analysis with 5 particles.

(1)

(2)

(3)

(6)
(5)

(4)

(7)

(8)

(9)

(10)

2000 mm

x

z

y

1

2

34

5

6

7

8
9

10

11

12

13

14
15

16

17

18

19

20
21

22
23

24

25

2000 mm

25
00

m
m

25
00

m
m

5000 mm
5000 mm

5000 mm

Fig. 9 25-bar space truss system

294 R. Temür et al.

T
ab

le
3

T
he

di
sp
la
ce
m
en
ts
of

25
-b
ar

sp
ac
e
tr
us
s
sy
st
em

by
di
ff
er
en
t
m
et
ho

ds

L
oa
di
ng

1
L
oa
di
ng

2
L
oa
di
ng

3

H
S
[1
3]

FE
M

no
nl
in
ea
r

PS
O

H
S
[1
3]

FE
M

no
nl
in
ea
r

PS
O

H
S
[1
3]

FE
M

no
nl
in
ea
r

PS
O

Jo
in
t
di
sp
la
ce
m
en
ts

[m
m
]

u(
1)

−
0.
07
6

0.
00
0

0.
06

1,
25
7.
53
3

1,
26
1.
10
1

1,
26
0.
63

2,
52
2.
41
2

2,
52
2.
97
4

2,
52
1.
86

v(
1)

37
.9
10

37
.8
47

38
.0
1

−
52
7.
50
9

−
52
8.
82
3

−
52
9.
80

1,
84
0.
28
3

1,
84
0.
85
6

1,
83
9.
88

w
(1
)

−
37
.2
14

−
37
.1
99

−
37
.2
7

−
45
5.
54
8

−
45
6.
66
7

−
45
5.
35

−
3,
07
8.
90
0

−
3,
08
3.
14
6

−
3,
07
6.
40

u(
2)

−
0.
06
4

0.
00
0

0.
06

−
1,
26
4.
62
0

−
1,
26
1.
10
1

−
1,
26
1.
15

2,
43
7.
30
0

2,
44
1.
25
5

2,
43
5.
57

v(
2)

−
37
.7
66

−
37
.8
47

−
37
.6
8

52
9.
73
9

52
8.
82
3

52
9.
20

2,
52
2.
97
1

2,
52
3.
14
8

2,
52
2.
31

w
(2
)

−
37
.1
53

−
37
.1
99

−
37
.1
6

−
45
7.
90
5

−
45
6.
66
7

−
45
5.
38

−
1,
43
5.
85
7

−
1,
44
1.
61
1

−
1,
43
3.
56

u(
3)

0.
89
2

0.
86
7

0.
86

−
48
.8
58

−
48
.6
10

−
47
.5
0

−
39
3.
94
0

−
39
4.
61
0

−
39
3.
83

v(
3)

−
1.
73
1

−
1.
74
4

−
1.
73

−
28
8.
34
4

−
28
8.
31
3

−
28
7.
03

−
37
1.
21
1

−
37
1.
34
4

−
37
1.
22

w
(3
)

−
16
.3
42

−
16
.3
92

−
16
.4
5

−
36
2.
12
0

−
36
2.
74
3

−
36
1.
33

−
90
4.
67
5

−
90
5.
21
8

−
90
3.
69

u(
4)

0.
92
4

0.
86
7

0.
88

−
20
3.
10
7

−
20
2.
75
0

−
20
3.
19

57
9.
07
4

57
9.
03
9

57
9.
02

v(
4)

1.
75
0

1.
74
4

1.
76

−
29
6.
61
9

−
29
6.
79
2

−
29
5.
57

19
8.
92
7

19
9.
08
8

19
8.
35

w
(4
)

−
16
.3
55

−
16
.3
92

−
16
.3
8

−
67
.5
35

−
68
.4
66

−
68
.8
4

44
.9
72

44
.4
23

45
.4
5

u(
5)

−
0.
82
2

−
0.
86
7

−
0.
85

48
.7
74

48
.6
10

47
.1
0

1,
01
3.
81
2

1,
01
5.
30
3

1,
01
2.
54

v(
5)

1.
75
1

1.
74
4

1.
78

28
8.
71
4

28
8.
31
3

28
6.
57

1,
03
7.
32
9

1,
03
8.
58
0

1,
03
6.
29

w
(5
)

−
16
.4
02

−
16
.3
92

−
16
.3
5

−
36
3.
58
3

−
36
2.
74
3

−
36
1.
26

−
35
3.
06
9

−
35
6.
17
9

−
35
1.
08

u(
6)

−
0.
84
4

−
0.
86
7

−
0.
87

20
2.
23
2

20
2.
75
0

20
2.
95

40
7.
34
7

40
8.
34
8

40
6.
51

v(
6)

−
1.
74
6

−
1.
74
4

−
1.
70

29
7.
25
9

29
6.
79
2

29
5.
18

80
2.
63
7

80
3.
16
0

80
2.
21

w
(6
)

−
16
.4
30

−
16
.3
92

−
16
.4
0

−
69
.1
86

−
68
.4
66

−
68
.6
7

−
36
.6
22

−
36
.6
88

−
36
.6
8

E
ne
rg
y
[k
N
m
]

−
3.
76
45

−
3.
76
45

−
3.
76
45

−
1,
44
4.
6

−
1,
44
4.
6

−
14
44
.6

−
2,
86
0.
5

−
2,
86
0.
5

−
2,
86
0.
5

Geometrically Nonlinear Analysis of Trusses … 295

T
ab

le
4

T
he

m
em

be
r
fo
rc
es

of
25

-b
ar

sp
ac
e
tr
us
s
sy
st
em

by
di
ff
er
en
t
m
et
ho

ds

L
oa
di
ng

1
L
oa
di
ng

2
L
oa
di
ng

3

H
S
[1
3]

FE
M

no
nl
in
ea
r

PS
O

H
S
[1
3]

FE
M

no
nl
in
ea
r

PS
O

H
S
[1
3]

FE
M

no
nl
in
ea
r

PS
O

M
em

be
r
fo
rc
es

[k
N
]

1
75
.6
76

75
.6
93

75
.6
90

69
2.
59
0

69
2.
49
6

69
1.
62
7

10
7.
64
0

10
6.
57
8

10
7.
69
1

2
3.
91
5

3.
89
3

3.
90
2

−
33
4.
40
8

−
33
4.
60
7

−
33
4.
67
7

27
3.
60
3

27
4.
28
8

27
3.
43
2

3
3.
88
3

3.
89
3

3.
86
9

73
.0
46

72
.7
64

73
.2
31

−
31
0.
37
2

−
31
0.
68
6

−
31
0.
66
0

4
3.
89
0

3.
89
3

3.
89
8

72
.3
43

72
.7
64

73
.2
45

24
7.
02
3

24
6.
39
4

24
7.
50
1

5
3.
88
5

3.
89
3

3.
88
1

−
33
4.
71
1

−
33
4.
60
7

−
33
4.
76
1

−
70
.5
32

−
70
.0
15

−
70
.5
74

6
−
13
.8
44

−
13
.8
83

−
13
.8
79

27
5.
29
4

27
4.
67
5

27
5.
04
9

−
10
.1
72

−
10
.6
77

−
10
.1
10

7
−
13
.8
75

−
13
.8
83

−
13
.8
74

−
18
9.
13
7

−
18
9.
23
3

−
18
9.
51
9

35
9.
30
1

35
9.
44
9

35
9.
21
9

8
−
13
.8
99

−
13
.8
83

−
13
.9
09

−
18
9.
27
9

−
18
9.
23
3

−
18
9.
29
1

18
7.
01
4

18
7.
70
0

18
6.
59
9

9
−
13
.8
94

−
13
.8
83

−
13
.9
07

27
3.
92
7

27
4.
67
6

27
5.
00
3

47
1.
84
4

47
2.
05
9

47
1.
76
0

10
1.
73
6

1.
73
4

1.
73
0

−
13
2.
53
5

−
13
2.
73
2

−
13
2.
99
8

−
11
0.
99
3

−
11
1.
42
6

−
11
1.
05
2

11
1.
74
5

1.
73
4

1.
73
0

−
13
2.
86
8

−
13
2.
73
2

−
13
2.
94
8

−
18
0.
27
5

−
18
0.
52
3

−
17
9.
69
6

12
−
3.
48
2

−
3.
48
9

−
3.
49
0

35
.6
18

35
.7
67

35
.6
18

−
26
.9
08

−
26
.8
11

−
26
.8
21

13
−
3.
49
7

−
3.
48
9

−
3.
48
0

35
.7
98

35
.7
67

35
.7
81

−
10
6.
78
9

−
10
6.
79
8

−
10
6.
81
9

14
−
3.
37
6

−
3.
39
5

−
3.
41
3

−
52
.2
94

−
52
.3
46

−
51
.8
83

−
26
0.
64
1

−
26
0.
94
0

−
26
0.
42
7

15
−
3.
41
2

−
3.
39
5

−
3.
40
2

−
12
5.
33
9

−
12
5.
27
7

−
12
5.
18
9

−
23
7.
25
0

−
23
7.
64
7

−
23
6.
90
4

16
−
3.
36
6

−
3.
39
5

−
3.
38
5

−
12
5.
14
3

−
12
5.
27
7

−
12
5.
36
8

23
8.
85
0

23
8.
74
1

23
8.
85
1

17
−
3.
41
2

−
3.
39
5

−
3.
38
5

−
52
.5
09

−
52
.3
46

−
51
.8
25

−
17
7.
59
7

−
17
8.
35
9

−
17
7.
04
6

18
−
4.
65
7

−
4.
65
6

−
4.
66
0

11
6.
22
6

11
6.
02
5

11
5.
58
7

−
12
5.
78
3

−
12
5.
97
8

−
12
5.
45
7

19
−
4.
64
3

−
4.
65
6

−
4.
66
4

−
17
4.
65
1

−
17
4.
82
2

−
17
4.
27
3

−
24
8.
09
1

−
24
8.
09
3

−
24
7.
94
4

20
−
4.
65
4

−
4.
65
6

−
4.
65
6

−
17
5.
12
1

−
17
4.
82
2

−
17
4.
14
2

−
19
0.
07
8

−
19
0.
71
7

−
18
9.
73
2

21
−
4.
66
2

−
4.
65
6

−
4.
64
3

11
5.
94
6

11
6.
02
5

11
5.
45
0

33
2.
33
5

33
2.
66
5

33
2.
07
4

22
−
7.
37
8

−
7.
36
7

−
7.
38
5

−
46
.7
76

−
46
.1
68

−
45
.8
34

−
52
.5
49

−
52
.2
85

−
52
.7
44

23
−
7.
35
5

−
7.
36
7

−
7.
39
7

−
54
.9
25

−
55
.2
64

−
55
.4
29

−
10
6.
70
7

−
10
6.
57
9

−
10
6.
43
6

24
−
7.
36
5

−
7.
36
7

−
7.
36
1

−
45
.5
81

−
46
.1
68

−
45
.9
18

−
50
.7
52

−
50
.9
60

−
50
.6
97

25
−
7.
35
8

−
7.
36
7

−
7.
33
3

−
55
.4
21

−
55
.2
64

−
55
.7
00

54
2.
04
5

54
2.
08
2

54
1.
87
6

296 R. Temür et al.

In Fig. 12, where results of analyses regarding to Loading 3 were presented,
shows that energy values obtained by using 20, 30 and 40 particles were equal,
while energy values obtained by using 5 and 10 particles were slightly higher.

In order to measure consistency of analysis by PSO algorithm, 100 independent
analysis were performed for each loading case. The maximum and the minimum
total potential energy values, average of total potential energy values and their
standard deviations were given in Table 6. When average and standard deviation

Table 5 Comparison of PSO and FEM Nonlinear analysis results of 25-bar space truss structural
system

Parameter Diff. (%) FEM nonlinear PSO

Loading 1 v2 0.44 37.847 mm 37.680 mm

f1 0.004 75.693 kN 75.690 kN

Loading 2 u1 0.04 1,261.101 mm 1,260.630 mm

f1 0.13 692.496 kN 691.627 kN

Loading 3 w1 0.22 3,083.146 mm 3,076.40 mm

f25 0.04 542.082 kN 541.876 kN

-4

-3

-2

-1

0

0 100 200 300 400 500 600 700 800 900 1000

T
o

ta
l P

o
te

n
ti

al
 E

n
er

g
y

[k
N

m
]

Iteration

5 Particles
10 Particles
20 Particles
30 Particles
40 Particles

Fig. 10 Change of total potential energy amounts in analyses carried out in the 25-bar space truss
with different particle numbers for Loading 1

-1.6E+3

-1.4E+3

-1.2E+3

-1.0E+3

-8.0E+2

-6.0E+2

-4.0E+2

-2.0E+2

0.0E+0

2.0E+2

0 5000 10000 15000 20000

T
o

ta
l P

o
te

n
ti

al
 E

n
er

g
y

[k
N

m
]

Iteration

5 Particles
10 Particles
20 Particles
30 Particles
40 Particles

Fig. 11 Change of total potential energy amounts in analyses carried out in the 25-bar space truss
with different particle numbers for Loading 2

Geometrically Nonlinear Analysis of Trusses … 297

values were examined, it was seen that analysis carried out with 20, 30 and 40
particles gave consistent results for all load cases. Usage of 5 particles for Loading
2 and usage of 5 and 10 particles for Loading 3 did not result in minimum energy
levels. Also, their standard deviations were slightly higher.

When change of standard deviation was examined in analysis with 20, 30 and 40
particles, bars with higher contribution to potential energy amount had lower
standard deviation, and bars with lower contribution to potential energy amount had
slightly higher standard deviation (Fig. 13).

T
o

ta
l P

o
te

n
ti

al
 E

n
er

g
y

[k
N

m
]

-3.5E+3

-3.0E+3

-2.5E+3

-2.0E+3

-1.5E+3

-1.0E+3

-5.0E+2

0.0E+0

0 10000 20000 30000 40000 50000
Iteration

5 Particles
10 Particles
20 Particles
30 Particles
40 Particles

Fig. 12 Change of total potential energy amounts in analyses carried out in the 25-bar space truss
with different particle numbers for Loading 3

Table 6 Statistical evaluation of 100 independent analyses by PSO algorithm

Particle Total potential energy [kNm]

Max Min Aver. St. Dev.

Loading 1 5 −3.70726 −3.76451 −3.76388 5.69 × 10−3

10 −3.76447 −3.76451 −3.7645 9.06 × 10−6

20 −3.76449 −3.76451 −3.7645 7.57 × 10−6

30 −3.76449 −3.76451 −3.76451 5.19 × 10−6

40 −3.76449 −3.76451 −3.76451 4.84 × 10−6

Loading 2 5 −1,125.1 −1,439.12 −1,368.99 58.15

10 −1,444.56 −1,444.57 −1,444.57 1.05 × 10−3

20 −1,444.57 −1,444.57 −1,444.57 0.50 × 10−3

30 −1,444.57 −1,444.57 −1,444.57 0.54 × 10−3

40 −1,444.57 −1,444.57 −1,444.57 0.56 × 10−3

Loading 3 5 −1,142.41 −1,849.26 −1,536.61 155.09

10 −2,707.84 −2,860.47 −2,843.86 25.46

20 −2,860.47 −2,860.48 −2,860.48 2.19 × 10−3

30 −2,860.47 −2,860.48 −2,860.48 1.75 × 10−3

40 −2,860.48 −2,860.48 −2,860.48 1.23 × 10−3

298 R. Temür et al.

6 Discussion and Conclusion

Two plane and one space truss structure systems with different geometries were
examined. In analysis conducted by TPO/MA method, particle swarm optimization
algorithm was used. Velocity of particles was limited to Vlow = 0.003 as minimum
and Vup = 0.5 as maximum. wlow = 0.001 and wup = 0.7 values were used for inertia
weight. Velocity coefficients were set as c1 = c2 = 2. Analyses with 5, 10, 20, 30 and
40 particles were conducted so as to determine the influence of number of particles
on analysis results. The computations have shown that results with 20 and more
particles match with those obtained by other methods. Additionally, it was seen that
standard deviations of results with 20 and more particles is lower and more con-
sistent in 100 independent analyses with each number of particles. Energy levels of
results with 5 and 10 particles were determined to be greater than energy levels of
results with other numbers of particles and by other methods. Besides, standard
deviation values were also higher. Therefore, it is suggested that 20 or higher
number of particles are to be used in analysis of truss structural systems by PSO
method.

By definition, the results of analyses represent nonlinear behavior of the struc-
tural system since the method used in this study is based on energy principles.
According to results obtained in this study, PSO algorithm gives acceptable results
in geometrical nonlinear analysis of truss structural system by TPO/MA method
when it is compared to GA, LS, HS algorithms and finite elements method.

0.000

0.005

0.010

0.015

0.020

0.025

0 0.2

(a)

(b)

0.4 0.6 0.8 1N
o

rm
al

iz
ed

 S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Normalized Joint Displacements [Abs. Value]

0.000

0.004

0.008

0.012

0.016

0.020

0 0.2 0.4 0.6 0.8 1N
o

rm
al

iz
ed

 S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Normalized Member Forces [Abs. Value]

Fig. 13 Normalized standard
deviations in 100 independent
runs for the 25-bar space truss
under Loading 1, solutions
with 20, 30 and 40 particles
a normalized joint
displacements b normalized
member forces

Geometrically Nonlinear Analysis of Trusses … 299

References

1. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of
the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan
(1995). doi:10.1109/MHS.1995.494215

2. Oden, J.T.: Mechanics of Elastic Structures. McGraw-Hill, New York (1967)
3. Toklu, Y.C.: Nonlinear analysis of trusses through energy minimization. Comput. Struct. 82

(20–21), 1581–1589 (2004). doi:10.1016/j.compstruc.2004.05.008
4. Merkle, D., Middendorf, M.: Swarm Intelligence. In: Burke, E.K., Kendall, H. (eds.) Search

Methodologies Introductory Tutorials in Optimization and Decision Support Techniques,
p. 417. Springer, New York (2005)

5. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings IEEE International
Conference on Neural Networks, November–December 1995, vol. 4, p. 1942. Perth, Australia
(1995). doi:10.1109/ICNN.1995.488968

6. Ortakcı, Y., Göloğlu, C.: Determination of cluster numbers via particle swarm optimization.
In: Proceedings of 14th Conference on Academic Information 1–3 February 2012, Usak
University, Usak, Turkey, pp. 335–341 (2012)

7. Shi, Y.H., Eberhart, R.C.: (1998) A modified particle swarm optimizer. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 69–73. doi:10.1109/ICEC.1998.699146

8. Mises, R.V.: Über die stabilitätsprobleme der elastizitätstheorie. ZAMM-J Appl. Math. Mech./
Z. für Angew Math. und Mechanik 3(6), 406–422 (1923). doi:10.1002/zamm.19230030602

9. Mises, R.V., Ratzersdorfer, J.: Die knicksicherheit von fachwerken. ZAMM-J. Appl. Math.
Mech./Z. für Angew. Math. und Mechanik 5(3), 218–235 (1925). doi:10.1002/zamm.
19250050305

10. Kondoh, K., Atluri, S.N.: Influence of local buckling on global instability: Simplified, large
deformation, post-buckling analyses of plane trusses. Comput. Struct. 21(4), 613–627 (1985).
doi:10.1016/0045-7949(85)90140-3

11. Kaveh, A., Rahami, H.: Nonlinear analysis and optimal design of structures via force method
and genetic algorithm. Comput. Struct. 84(12), 770–778 (2006). doi:10.1016/j.compstruc.
2006.02.004

12. Kaveh, A., Hassani, M.: Ant colony algorithms for nonlinear analysis and optimal design of
structures. Int. J. Optim. Civil Eng. 1(4), 571–595 (2011)

13. Toklu, Y.C., Bekdaş, G., Temur, R.: Analysis of trusses by total potential optimization method
coupled with harmony search. Struct. Eng. Mech. 45(2), 183–199 (2013). doi:10.12989/sem.
2013.45.2.183

14. Venkayya, V.B.: Design of optimum structures. Comput. Struct. 1(1–2), 265–309 (1971).
doi:10.1016/0045-7949(71)90013-7

300 R. Temür et al.

http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1016/j.compstruc.2004.05.008
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/ICEC.1998.699146
http://dx.doi.org/10.1002/zamm.19230030602
http://dx.doi.org/10.1002/zamm.19250050305
http://dx.doi.org/10.1002/zamm.19250050305
http://dx.doi.org/10.1016/0045-7949(85)90140-3
http://dx.doi.org/10.1016/j.compstruc.2006.02.004
http://dx.doi.org/10.1016/j.compstruc.2006.02.004
http://dx.doi.org/10.12989/sem.2013.45.2.183
http://dx.doi.org/10.12989/sem.2013.45.2.183
http://dx.doi.org/10.1016/0045-7949(71)90013-7

	Preface
	Contents
	Contributors
	1 Swarm Intelligence and Evolutionary Computation: Overview and Analysis
	Abstract
	1 Introduction
	2 Swarm Intelligence, Adaptation and Diversity
	2.1 The Essence of an Algorithm
	2.2 Particle Swarm Optimization
	2.3 Some Recent SI-Based Algorithms
	2.3.1 Firefly Algorithm
	2.3.2 Cuckoo Search
	2.3.3 Bat Algorithm
	2.3.4 Flower Algorithm

	2.4 Other Evolutionary Algorithms
	2.4.1 Differential Evolution
	2.4.2 Harmony Search
	2.4.3 Other Algorithms

	3 Adaptation and Diversity
	4 Self-Tuning Algorithms
	4.1 Parameter Tuning
	4.2 Framework for Self-Tuning Algorithms
	4.3 A Multiobjective View
	4.4 Self-Tuning Framework
	4.5 Self-Tuning Firefly Algorithm

	5 Convergence Analysis
	5.1 Global Convergence of Cuckoo Search
	5.2 Convergence of the Bat Algorithm

	6 Discussions and Open Problems
	References

	2 Globally Convergent Hybridization of Particle Swarm Optimization Using Line Search-Based Derivative-Free Techniques
	Abstract
	1 Introduction
	2 Stable and Unstable Trajectories for PSO
	3 Issues on Assessing Parameters in PSO
	4 PSO and Stationarity
	5 Preliminaries on the Line Search-Based Method Adopted
	6 A Hybrid Algorithm
	7 Numerical Results
	8 Conclusions
	Acknowledgments
	References

	3 Fireflies in the Fruits and Vegetables: Combining the Firefly Algorithm with Goal Programming for Setting Optimal Osmotic Dehydration Parameters of Produce
	Abstract
	1 Introduction
	2 Functional Form and Mathematical Model of the Osmotic Dehydration Process
	3 A Goal Programming Formulation for Setting Osmotic Dehydration Parameters
	4 A Goal Programming, Firefly Algorithm-Driven Optimization Approach
	5 Mathematical Model and Optimization of Mushroom Dehydration
	6 Conclusions
	References

	4 Hybrid Metaheuristic Algorithms: Past, Present, and Future
	Abstract
	1 Introduction
	2 Hybrid Algorithms
	2.1 The Past
	2.2 The Present
	2.3 The Future

	3 Motivations for Hybridization
	4 Taxonomy of Hybrid Algorithms
	4.1 Collaborative Hybrids
	4.2 Integrative Hybrids

	5 Disadvantages and Challenges of Hybrid Algorithms
	5.1 Naming Convention
	5.2 Complexity of Hybrid Algorithm
	5.3 Computational Speed

	6 Examples of Hybrid Algorithms
	7 Recommendations for Future Developments
	8 Conclusions
	Acknowledgments
	References

	5 Binary Flower Pollination Algorithm and Its Application to Feature Selection
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Flower Pollination Algorithm
	2.1.1 Binary Flower Pollination Algorithm

	2.2 Optimum-Path Forest Classifier

	3 Methodology
	3.1 Datasets
	3.2 Nature-Inspired Metaheuristic Algorithms
	3.3 Experimental Setup

	4 Experimental Results
	5 Conclusions
	References

	6 Bat Algorithm Application for the Single Row Facility Layout Problem
	Abstract
	1 Introduction
	2 Formulations of Single Row Facility Layout Problem
	3 Solution Methods for SRFLP
	3.1 Exact Solution Methods
	3.2 Heuristics and Metaheuristics in SRFLP

	4 Bat Algorithm
	5 BA Application on SRFLP
	6 Conclusion
	References

	7 Discrete Cuckoo Search Applied to Job Shop Scheduling Problem
	Abstract
	1 Introduction
	2 Job Shop Scheduling Problem
	2.1 Scheduling Problem Variants
	2.1.1 Flow Shop
	2.1.2 Flexible Flow Shop
	2.1.3 Job Shop
	2.1.4 Flexible Job Shop
	2.1.5 Open Shop

	2.2 Schedule Classes
	2.3 Problem Representation
	2.4 JSSP Graphical Modelling
	2.4.1 Disjunctive Graph
	2.4.2 Gantt Diagram

	3 Discrete Cuckoo Search for JSSP
	3.1 Cuckoo Search
	3.2 Discrete Cuckoo Search
	3.3 JSSP Solution
	3.4 Moving in Space

	4 Experimental Results
	5 Conclusion
	References

	8 Cuckoo Search and Bat Algorithm Applied to Training Feed-Forward Neural Networks
	Abstract
	1 Introduction
	2 Artificial Neural Networks
	3 Cuckoo Search Algorithm
	4 Bat Algorithm
	5 Modified Bat Algorithm
	6 Experimental Results
	6.1 Benchmark Problems
	6.2 Parameter Settings
	6.3 Discussion and Analysis

	7 Conclusion
	Acknowledgments
	References

	9 The Potential of the Firefly Algorithm for Damage Localization and Stiffness Identification
	Abstract
	1 Introduction
	2 The Firefly Algorithm Approach
	3 The Formulation of the Objective Function
	4 The Numerical Example
	5 Finite Element Analyses
	6 Identification of the Stiffness Matrix via FA
	6.1 A Preliminary Study on the Undamaged Configuration
	6.2 Damage Localization Analyses

	7 Conclusions
	Acknowledgments
	References

	10 Synthesizing Cross-Ambiguity Functions Using the Improved Bat Algorithm
	Abstract
	1 Introduction
	2 L00E9vy Probability Distribution
	2.1 L00E9vy Distribution
	2.2 L00E9vy Flight Based Metaheuristic Algorithms

	3 Improved Bat Algorithm
	3.1 Motion of the Bats
	3.2 Variation of Loudness and Pulse Rates

	4 Problem Formulation
	4.1 Proposed Approach
	4.2 Parameter Settings
	4.3 Calculation of L00E9vy Step Size
	4.4 Selection of Scaling Factor

	5 Numerical Results
	5.1 Example 1
	5.2 Example 2
	5.3 Example 3
	5.4 Example 4

	6 Conclusions

	11 Sustainable Building Design: A Review on Recent Metaheuristic Methods
	Abstract
	1 Introduction
	1.1 World Energy Consumption
	1.2 Sustainable Building Design

	2 Overview of Existing Meta-Heuristic Algorithms
	2.1 Classifications
	2.2 Application of Some Selected Algorithms to Design Sustainable Buildings
	2.2.1 Harmony Search
	2.2.2 Genetic Algorithm
	2.2.3 Particle Swarm Optimization
	2.2.4 Ant Colony Optimization
	2.2.5 Evolutionary Programming

	3 Conclusions
	References

	12 Firefly Algorithm for Flow Shop Optimization
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Flow Shop Scheduling
	2.2 Firefly Algorithm

	3 Problem Definition
	3.1 Makespan (Cmax)
	3.2 Mean Flow Time (\overline{f})
	3.3 Mean Tardiness (\overline{T})
	3.4 Number of Tardy Jobs (NT)
	3.5 Objective Function

	4 Firefly Algorithm
	4.1 Attractiveness of a Firefly
	4.2 Distance Between Two Fireflies
	4.3 Movement of a Firefly
	4.4 Discrete Firefly Algorithm (DFA)
	4.5 Implementation of the DFA for Flow Shop Scheduling Problems
	4.5.1 Solution Representation
	4.5.2 Population Initialization
	4.5.3 Solution Updation

	5 Computational Results
	6 Conclusions
	References

	13 Evaluation of Harmony Search and Differential Evolution Optimization Algorithms on Solving the Booster Station Optimization Problems in Water Distribution Networks
	Abstract
	1 Introduction
	2 Harmony Search (HS) Algorithm
	3 Differential Evolution (DE) Algorithm
	4 Problem Formulation
	5 Numerical Applications
	5.1 Application 1: Evaluation of HS Based Optimization Model
	5.2 Application 2: Evaluation of DE Based Optimization Model

	6 Conclusions
	Acknowledgments
	References

	14 Web Document Clustering by Using PSO-Based Cuckoo Search Clustering Algorithm
	Abstract
	1 Introduction
	2 Literature Review
	3 Web Document Clustering
	3.1 Preprocessing of the Web Document
	3.1.1 Tokenizing
	3.1.2 Stop Words Removal
	3.1.3 Stemming

	3.2 Vector Space Model Representation
	3.3 Calculating Distance Values
	3.3.1 Cosine Similarity

	3.4 Clustering

	4 Particle Swarm Optimization
	5 Cuckoo Search
	6 PSO-Based Cuckoo Search Clustering Algorithm
	7 Experimental Evaluation
	7.1 Evaluation Measures
	7.1.1 Fitness Measure
	7.1.2 Precision, Recall and F-Measure

	7.2 Performance Evaluation
	7.2.1 Parameters and Their Specifications
	7.2.2 Results and Discussion

	8 Conclusion and Future Work
	References

	15 Geometrically Nonlinear Analysis of Trusses Using Particle Swarm Optimization
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Particle Swarm Optimization
	4 Implementation of PSO Algorithm
	5 Numerical Examples
	5.1 Example 1: 2 Bar Plane Truss
	5.2 Example 2: 6 Bar Plane Truss
	5.3 Example 3: 25 Bar Space Truss

	6 Discussion and Conclusion
	References

