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Abstract. In qualitative spatial reasoning, there are three distinct properties for 
reasoning about spatial objects: connectivity, size, and direction. Reasoning 
over combinations of these properties can provide additional useful knowledge. 
To facilitate end-user spatial querying, it also is important to associate natural 
language with these relations. Some work has been done in this regard for line-
region and region-region topological relations in 2D, and very recent work has 
initiated the association between natural language, topology, and metrics for 3D 
objects. However, prior efforts have lacked rigorous analysis, expressive power, 
and completeness of the associated metrics. Herein we present new metrics to 
bridge the gap required for integration between topological connectivity and 
size information for spatial reasoning. The new set of metrics that we present 
should be useful for a variety of applications dealing with 3D objects.    

Keywords: Region Connection Calculus, Metrics, Spatial Reasoning, 
Qualitative Reasoning. 

1 Introduction 

Qualitative spatial reasoning is intrinsically useful even when information is 
imprecise or incomplete. The reasons are: (1) precise information may not be 
available or required, (2) detailed parameters may not be necessary before proceeding 
to decision making, and (3) complex decisions sometimes must be made in a 
relatively short period of time.  However, qualitative reasoning can result in 
ambiguous solutions due to incomplete or imprecise quantitative information. In 
RCC8 [1], [2], the regions have a well-defined interior, boundary, and exterior. The 
RCC8 relations are bivalent with true and false values. Mathematically defined and 
computer drawn objects are crisp and well-defined, whereas hand-drawn regions tend 
to have a vague boundary [3]. When regions are vague, the relations between regions 
can be vague also. That makes the possible values for relations to be true, false, or 
even ‘maybe.’ We may have an application where regions and relations are vague; in 
RCC8, regions and relations are crisp. While topology is sufficient to determine the 
spatial connectivity relations, it lacks the capability to determine the degree (or 
extent) of connectivity of such relations.  
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For example, in Fig. 1, for two objects A and B, the RCC8 proper overlap relation, 
PO(A,B), evaluates to true, yet it does not provide any information about the degree 
of connectivity; we do not know how much is the overlap — are they barely 
overlapping or are they are almost equal?  The usefulness of metrics lies in providing 
such additional information which can be quite critical for some applications.  

 

 
(a) (b) 

 

Fig. 1. RCC8 determines that there is an overlap between A and B, but it does not quantify the  
proper overlap whereas in (a)  they are barely overlapping, and in (b) they are almost equal 

 
Metrics are quantitative, whereas topology is qualitative and both together can 

supplement each other in terms of spatial knowledge. The metric refinements provide 
for quality of connectivity of each relation. The goal of this exposition is to bridge the 
gap between topology and size via metrics.  

The paper is organized as follows. Section 2 provides a brief mathematical 
background relevant to subsequent discussions in the paper. Section 3 explains the 
motivation for metrics. Section 4 discusses the development of our metrics, as well as 
the association between size and topology. Section 5 explains the association between 
connectivity, size and metrics. Section 6 gives the conclusion and future directions, 
followed by references in Section 7. 

2 Background 

2.1 Spatial Relations in General 

Historically, there are two approaches to topological region connection calculus, one 
is based on first order logic [1], and the second is based on the 9-intersection model 
[2].  Both of these approaches assume that regions are in 2D and the regions are crisp, 
and that relation membership values are true and false only. Metrics were used in 1D 
to differentiate relative terms of proximity like very close, close, far, and very far [4].   
Metrics were used to refine natural language and topological relationships for line-
region and region-region connectivity in 2D [5].  These approaches lack determining 
the strength of relation,  the combination of the connectivity and size information. 
Recently more attention has been directed to these issues in 2D [6] and in 3D [7].  
However, prior work has been deficient in rigorous analysis, expressive power, and 
completeness of the metrics. The complete set of metrics presented herein differs 
from the previous approaches in its completeness and enhanced expressiveness. 
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2.2 Mathematical Preliminaries 

R3 denotes the three-dimensional space endowed with a distance metric. Here the 
mathematical notions of subset, proper subset, equal sets, empty set (∅), union, 
intersection, universal complement, and relative complement are the same as those 
typically defined in set theory. The notions of neighborhood, open set, closed set, 
limit point, boundary, interior, exterior, and closure of sets are as in point-set 
topology. The interior, boundary, and exterior of any region are disjoint, and their 
union is the universe.  

A set is connected if it cannot be represented as the union of disjoint open sets. For 
any non-empty bounded set A, we use symbols Ac, Ai, Ab, and Ae to represent the 
universal complement, interior (Int(A)), boundary (Bnd(A)), and exterior (Ext(A)) of 
a set A, respectively. Two regions A and B are equal if Ai == Bi, Ab == Bb, and Ae == 
Be are true. For our discussion, we assume that every region A is a non-empty, 
bounded, regular closed, connected set without holes; specifically, Ab is a closed 
curve in 2D, and a closed surface in 3D. 

2.3 Region Connection Calculus Spatial Relations 

Much of the foundational research on qualitative spatial reasoning concerns a region 
connection calculus (RCC) that describes 2D regions (i.e., topological space) by their 
possible relations to each other [1], [2]. Conceptually, for any two regions, there are 
three possibilities: (1) One is outside the other; this results in the RCC8 relation DC 
(disconnected) or EC (externally connected). (2) One overlaps across boundaries; this 
corresponds to the RCC8 relation PO (proper overlap). (3) One is inside the other; 
this results in topological relation EQ (equal) or PP (proper part). To make the 
relations jointly exhaustive and pairwise distinct (JEPD), there is a converse relation 
denoted by PPc (proper part converse), PPc(A,B) ≡ PP(B,A). For completeness, 
RCC8 decomposes proper part into two relations: TPP (tangential proper part) and 
NTPP (non-tangential Proper part). Similarly for PPc, RCC8 defines TPPc and 
NTPPc.  RCC8 can be formalized by using first order logic [1] or using the 9-
intersection model [2].  

 

Fig. 2. RCC8 Relations in 2D 
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Region connection calculus was designed for 2D [1], [2]; it was extended to 3D 
[8], [6]. In [5], metrics were used for associating line-region and region-region 
connectivity in 2D to natural language. The metrics were adapted from [5] for 
qualitative study of the dependency between metrics and topological relations, and 
between metrics and natural-language terms; conclusions then were drawn for 
association between the natural-language terms and topological connectivity RCC8 
terms [7].  However, the 2D metrics were adopted and adapted to 3D objects without 
any regard for viability or completeness. Herein we introduce new metrics and 
explore the degree of association between them in terms of strength of connectivity 
and relative size information.  

3 Motivation for Metrics 

In qualitative spatial reasoning, there are three distinct properties for reasoning about 
spatial objects: connection, dimension, and direction. Reasoning over combinations 
of these properties can provide additional useful knowledge. The prior efforts [5] 
have lacked rigorous analysis, expressive power, and completeness of the associated 
metrics. Revision of the metrics is required before we can begin to bridge the gap 
between topological connectivity and size information for automated spatial 
reasoning.  

We start with following example for motivation to study the degree (or extent) of 
spatial relations.  This example centers around one metric and one pair of objects; see 
Fig. 3 for concept illustration. Consider the interior volume of an object A, split by 
the interior volume of an object B; let this be denoted by metric, IVsIV(A,B). This 
metric calculates how much of A is part of B. Since sizes of objects can vary in units 
of measurement, it is more realistic to compare qualitative relative sizes for objects. 
Recall from section 2.2 that Ai represents the interior of A.  We define the relative 
(i.e., normalized) part of A in B by the equation,   

IVsIV (A, B) = volume(Ai ∩ Bi )

volume(Ai )
 

With this metric, let us see in what ways, the connectivity and size information are 
useful in spatial reasoning.  

(1) RCC8 Topological Relation: Suppose that for objects A and B in Fig. 3, we 
have IVsIV(B,A) = 1.  This implies B is a proper part of A, PP(B,A), which is an 
RCC8 qualitative connectivity relation.  Without the metric, in general, this relation is 
computed by using the 9-intersection model involving various pairwise intersections 
before arriving at this conclusion [2], [6]. The metric provides this information much 
more quickly and efficiently. 

(2) Size Relations: In Fig. 3, suppose IVsIV(B,A) = 0.1, which implies that 10% of 
B is part of A. From step (1), IVsIV(A,B) = 1, B is a proper part of A.  Therefore, B is 
much smaller than A for the size relation (i.e., A is much bigger than B).  In general, 
if IVsIV(A,B) < IVsIV(B,A), then A is larger than B in size (i.e., or B is smaller than 
A). Thus the metric is a useful tool for qualitative size comparison of pairs of objects. 
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(3) Cardinal Direction Relations: We will concentrate on steps (1) and (2) in this 
paper. The detailed discussion of directions metrics is beyond the scope of this 
exposition; the reader may consult [9].  The direction metric in [9] determines that B 
is in the northeast of part of A. With this directional knowledge, it means that in 
addition to B being a tangential proper part of A, TPP(B,A), tangency is in the NE 
direction.  

 

Fig. 3. Object B is a proper part of A, B is much smaller than A in size, and B is in the 
northeast relative to A. The grid is generated by grid lines for A and B, where the minimum-
bounding rectangle is composed of horizontal and vertical gridlines. 

Thus we see that B is a proper part of A, and B is much smaller than A. Moreover 
B is a tangential proper of A and is located in the northeast part of A.  

For an example of the need and usefulness of the metrics, see Section 5, how 
metrics measure the degree of connectivity strengthening the toplogical classification 
tree.  

4 Introduction to Metrics 

Quantitative metrics are defined to determine the extent of connectivity of the 
topological relations between pairs of objects in 3D. The metrics are normalized so 
that the metric values are constrained to [0,1]. The metrics also allow for qualitative 
reasoning with the spatial objects in determining their topological relations between 
objects. As seen in Fig. 3., a metric can be used to derive the qualitative size of the 
overlap. The overlap relation, PO(A,B), is symmetric, but the overlap metric 
IVsIV(A,B) is anti-symmetric. The metric values are also sensitive to the location of 
the objects in addition to topological connectivity, see Fig. 1.  

For the purposes of precisely defining the metrics herein, we will need two 
additional topological concepts in addition to the traditional interior, exterior, and 
boundary parts of an object (or region). The classical boundary of an object A is 
denoted by Ab; for fuzzy regions, the boundary interior neighborhood (Bin) is denoted 
by Abi and the boundary exterior neighborhood (Bex) is denoted by Abe.  We give the 
complete details of these concepts in Section 4.2; an application can selectively use 
the kind of boundary information available. The exterior and interior boundary 
neighborhoods even may be combined into one fuzzy/thick boundary which is 
denoted by Abt and defined as Abt ≡ Abi∪Abe.  
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Based on these five region parameters, the 9-Intersection table expands to a 25-
Intersection table; see Table 1. For 9-intersection, there are 29=512 possible 
combinations out of which only eight are physically realizable; see Fig. 2.  Similarly 
out of 225 possible combinations derivable from the five region parameters, only a few 
are physically possible. The possible relations using metrics are as crisp as for 
bivalent 9-intersection values, see Section 5.  

4.1 Volume Considerations 

For 3D regions, the volume of a region is a positive quantity, as is the volume 
enclosed by a cube or a sphere.  The classical crisp boundary of a 3D object is 2D, the 
volume of a 2D region in a plane or space is zero. Topological relations are predicates 
that represent the existence of a relation between two objects; metrics measure the 
strength of the relation or degree of connectivity. 

The metric IVsIV(A,B) can be used to determine the extent of overlap A∩B 
relative to A, whereas the metric IVsIV(B,A) determines the extent of overlap A∩B 
relative to B.  For ease and consistency, the metrics are always normalized with 
respect to the first parameter of the metric function. Recall from section 3 that this 
metric IVsIV(A,B) is not symmetric. This metric represents the amount of overlap 
relative to first argument of the metric.  

For practical applications, the first parameter is never the exterior volume of an 
object, because the exterior of a bounded object is unbounded with infinite volume. It 
is also observed that since volume(A) = volume(A∩B) + volume(A∩Be), then 
IVsIV(A,Be) = 1- IVsIV(A,B).    

4.2 Boundary Considerations 

The boundary neighborhood is the region within some small positive radius of the 
boundary.  This is useful for regions with vague boundary.  There are two types of 
neighborhoods, the boundary interior neighborhood, Abi,  and the boundary exterior 
neighborhood, Abe; see Fig. 4. By combining the two, we can create a thick boundary 
for vague regions. 

 

Fig. 4. (a) A 3D object, (b) the exterior neighborhood of the boundary of the object, and (c) the 
interior neighborhood of the boundary of the object 

Several metrics are designed for cases where the boundary is vague; these are 
discussed in Section 4.6.1 and 4.6.2. To compensate for an accurate crisp boundary, 
an application-dependent small neighborhood is used to account for the thickness of 
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the boundary. For the 3D object shown in Fig. 4(a), let the boundary interior 
neighborhood of Ab of some radius r>0, be denoted by Abi or NIr(A

b) , i.e.,  Abi ≡ 
NIr(A

b) (Fig. 4(b)), and let the boundary exterior neighborhood of Ab of some radius 
r>0, be denoted by Abe or NEr(A

b), i.e.,  Abe ≡ NEr(A
b); see Fig. 4(c). The smaller the 

value of r, the less the ambiguity in the object boundary. We denote the qualitative 
interior neighborhood by ΔIA and exterior neighborhood by ΔEA without specific 
reference to r, as ΔIA≡ Abi and ΔEA ≡Abe in the equations that follow in this paper. 

Many times in geographical information system (GIS) applications the region’s 
exact boundary is not available. Thus the problem in spatial domains becomes that of 
how to identify and represent these objects. In such analyses, the external 
connectedness would be resolved by using metric BexsBex and examining whether 
the value BexsBex(A,B) < min(r1,r2) (instead of BsB(A,B)=0 ) where the objects have 
boundary exterior r1- and r2-neighborhoods for thick boundaries of objects.  

In fact, some applications may need only one r-neighborhood (the combination of 
r1-interior and r2-exterior neighborhood along a vague boundary), while others may 
need two separate neighborhoods as in [5]. The value of r= min(r1,r2) is specified by 
the application. In general, for numerical calculations, it is approximately one percent 
of the sum of the radii of two spheres. Intuitively, r accounts for the minimum 
thickness of the boundary for the object.  

4.3 Intersection Consideration in General 

All the metrics and topological relations involve intersections (see Table 1) between a 
pair of objects. An intersection between a pair of objects may be interior to interior 
(i.e., 3D), or boundary to boundary (neighborhood), which may be turn out to be 2D, 
or 1D or even 0D. Metrics measure the quantitative values for topological relations. 
The intersection of 3D objects may remain 3D, as in the case of PO(A,B).  If the 
intersection such as Ai∩Bi exists, then we can calculate the volume of the 3D 
intersection Ai∩Bi, which is practical. But if the boundary is 2D, the volume of the 
boundary is zero, which does not provide any useful information. The intersection 
between two 3D objects may also be 3D, 2D, 1D, or even 0D. Since intersection is a 
significant component of topological relations, we can extract useful information from 
intersections of lower dimensional components also.  We can calculate the area of a 
2D object (e.g., A∩Bb may be a 2D surface), and surface area can provide essential 
information for relations EC(A,B), TPP(A,B), and TPPc(A,B). For example, if two 
cubes touch face to face, they intersect in a surface; the volume of intersection will be 
zero, but surface area will be positive, which can still provide a measure of how close 
the objects are to each other.  So we will need metrics that accommodate 2D surface 
area also.  Sometimes intersection is a curve or a line segment, in which case we can 
analyze the strength of the relation from the length of the segment. Consequently, we 
also need metrics that handle the length of edge intersection. For a single point 
intersection (degenerate line segment), the volume of a point is zero, as are the area 
and length of a single point. 
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4.4 Space Partitioning  

Each object divides the 3D space into three parts: interior, boundary and exterior.  
The interior and exterior of the object are 3D parts of space, and the boundary of the 
object is 2D. The intersection between two 3D objects can be 3D, or a 2D surface, or 
a 1D curve, or a line segment, or even 0D (i.e., a point).  In many geographical 
applications, regions may not have a well-defined boundary.  For example, the 
shoreline boundary of lake is not fixed. If the lake is surrounded with a road, the road 
can serve as the boundary for practical purposes.  We need to compensate for the blur 
in the boundary. Consequently we utilize two additional topological regions: 
Boundary inner neighborhood (Bin) and Boundary exterior neighborhood (Bex). They 
can be used to measure how close the objects are from boundary to boundary. The 
thick boundary becomes a 3D object rather than a 2D object, so the volume 
calculation for boundary becomes meaningful.  For non-intersecting objects, it can be 
used to account for the distance between them, and for the tangential proper part 
relation between objects A and B, TPP(A, B), it can measure how close is inner object 
A is from the outer object boundary Bbe. Thus the terms Boundary interior 
neighborhood (Bin) and Boundary exterior neighborhood (Bex) for an object A 
account for the fuzziness, Abt ≡ Abi∪Abe, in the boundary description or thickness of 
the boundary; see Fig. 4.  

4.5 25-Intersections 

To keep full generality available to the end-user, an object space can be defined in 
terms of five parts: interior, boundary, exterior, boundary interior neighborhood, and 
boundary exterior neighborhood.  As descriptive as we can be for symbols to be close 
to natural language: we use Int(A) for Ai the interior of A, Ext(A) for Ae the exterior 
of A, Bnd(A) for Ab the boundary of A, Bin(A) for Abi the boundary interior 
neighborhood A, and Bex(A) for Abe the boundary exterior neighborhood of the 
boundary of A. This will lead to a 25-intersection table where the boundary can be a 
crisp boundary Ab, or a thick boundary Abt ≡Abi∪Abe ; see Table 1 for all 25 
combinations of intersections. 

Table 1. 25-Intersection table 

 

Now Bnd(A) represents the crisp boundary of A, if any, whereas Bin(A) and 
Bex(A) account for the crisp representations of the vague boundary. There are 225 
possible 25-intersection vectors in all.  However, all the vectors are not physically 
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realizable.  For example, all entries in any row in Table 1 cannot be true 
simultaneously, and all entries in any column in Table 1 cannot be true 
simultaneously.  Another use of the metrics is to see, for the proper part relation 
between A and B, PP(A,B), how far the inner object A is from the inner boundary 
neighborhood of the outer object, Bbi. A commonly used predicate for determining 
connectivity between crisp regions is boundary-boundary intersection, Ab∩Bb.  We 
must be mindful that space now is portioned into five parts instead of three parts. It is 
clear that Ai, Ae are open sets, and Ab is a closed set. For spatial reasoning, when Abi 
Abe are used, they are semi-open, semi-closed sets — open towards Ab and closed 
towards inside of Abi and outside of Abe.   

4.6 Metrics  

Here we complete the development of the remaining metrics; an application may 
selectively use the metrics applicable to the problem at hand. Conventionally, a 4-
intersection [6] (BndBnd, IntBnd, BndInt, IntInt) is sufficient for crisp 3D data. Some 
applications may need Bex and Bin separately [5], while fuzzy logic applications may 
need to combine Bex and Bin into one Bnd [6].  For all 25 intersections (see Table 1) 
the metrics are defined by normalizing the intersections. There are 25 possible 
pairswise intersections to be considered in the metrics. For one pair of objects, there 
are eight distinct versions {(A,B), (A,Be), (Ae,B), (Ae,Be), (B,A), (B,Ae), (Be,A), 
(Be,Ae)} as input arguments for which a metric value may be computed.  That is, the 
domain for each metric consists of eight distinct pairs corresponding to each input 
pair of objects A and B.  Since metrics are normalized, some metrics may not be 
realizable; for example, IVsIV cannot be defined for the combinations {(Ae,B), 
(Ae,Be), (Be,A), (Be,Ae)} because the corresponding metrics involve infinity. In fact, 
five of the metrics are impossible (not realizable); see Table 2. Here we will identify 
the possible (realizable) 20 metrics. 

Since the metrics are not symmetric, the converse metrics can be obtained by 
switching arguments A and B (e.g., the converse of IVsIV(A,B) is IVsIV(B,A)). To 
make the list of metrics exhaustive, we can append suffix c to the name to indicate the 
converse metric when needed. Table 2 lists directly possible and impossible metrics, 
which are developed in Sections 4.6.1 and 4.6.2. 

Table 2. Complete list of metrics corresponding to 25 intersections in Table 1. 20 metrics are 
viable and 5 metrics are not possible. 
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Next we define 20 viable metrics and show their connection with the RCC8 
topological relations and size relations on 3D objects only. First we look at the two 
metrics together: IVsIV(A,B) and IVsEV(A,B) which measure how much space one 
object shares with the other object. We have already defined interior volume split by 
interior volume, IVsIV(A,B), earlier in the motivation discussion, Section 3. 

4.6.1   Anatomy of Volume Metrics  
Recall, interior volume splitting (IVsIV) computes the scaled (normalized) part of one 
object that is split by the interior of the other object. It measures how much of A is 
part of B.  The boundary of a 3D object is 2D. Here boundary does not matter, as the 
volume of the boundary is zero.  Exterior volume splitting (IVsEV) describes the 
proportion of one object’s interior that is split by the other object’s exterior. The 
exterior volume splitting (IVsEV) is defined by 

IVsEV (A, B) = volume(Ai ∩ Be )

volume(Ai )
 

It measures how much A is away from B. Again, boundary does not matter. 
Observe that volume(A) = volume(A∩B) + volume(A∩Be), and hence IVsEV(A,B) = 
1- IVsIV(A,B).  The metric value is between 0 and 1, inclusive. If the metric value 
IVsIV(A,B) = 0, the objects are disjoint or externally connected. If the metric value 
IVsIV(A,B) > 0, then this value indicates two things. First, Ai∩Bi ≠ ∅.  Usually, the 
truth value of Ai∩Bi is established by considering the intersection of the boundaries 
of two objects (extensive computation takes place because the objects are represented 
with boundary information only). Here the metric value IVsIV(A,B) > 0, so we can 
quickly determine the truth value of  Ai∩Bi. Secondly, the actual value of the metric 
IVsIV(A,B) measures what relative portion of object, A is common with object B; the 
larger the value of the metric, the larger the commonality and conversely.  Let  

x = volume(Ai ∩ Bi )

volume(Ai )
*100   y = volume(Bi ∩ Ai )

volume(Bi )
*100  

This can directly answer queries such as object A has x percent in common with B, 
whereas object B has y percent in common with A. If x=y=0, then the objects are 
either externally connected or disjoint, but this metric alone does not tell how far apart 
they are.  In order to determine that, we simply compute the distance between the 
centers to differentiate between DC and EC. The metric does embody knowledge 
about which object is larger. 

4.6.2   Anatomy of Boundary Metrics  
Recall, for the 3D object shown in Fig. 4(a), Abe is the boundary exterior 
neighborhood of Ab with some radius  (Fig. 4(b)), and Abi is the boundary interior 
neighborhood of Ab with some radius; see Fig. 4(c). The value of the radius is 
application-dependent. We use the qualitative interior and exterior neighborhood 
without specific reference to r, as ΔIA ≡ Abi  and ΔEA ≡ Abe  in the following 
equations. 
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Considering the interior neighborhood of an object, we define the closeness to 
interior volume (BinsIV) as follows:   

BinsIV (A, B) = volume(Δ I A∩ Bi )

volume(ΔI A)
 

This metric contributes to the overall degree of relations of PO, EQ, TPP, and TPPc. 
Similarly, we can consider the exterior neighborhood of an object, and can define a 

metric for exterior volume closeness (BexsIV) as by replacing ΔI(A) by ΔE(A). This 
metric is a measure of how much of the exterior neighborhood of Ab is aligned with 
the interior of B. This metric is useful for the degree of relations of PO, EQ, TPP, and 
TPPc. 

Similarly the metrics for the exterior of B are defined for completeness as follows: 

BinsEV (A, B) = volume(Δ I A∩ Be )

volume(Δ I A)
 

BexsEV(A,B)  is defined by replacing ΔI(A) by ΔE(A). Boundary-boundary 
intersection is an integral predicate for distinguishing RCC8 relations. Similarly, for 
quantitative metrics, it can be important to consider how much of the inside and 
outside of the boundary neighborhood of one object is shared with the boundary 
neighborhood of the other object.  

BinsBin(A,B) is designed to measure how much of the Interior Neighborhood of A 
is split by the Interior Neighborhood of B. This metric is useful for fuzzy regions with 
fuzzy interior boundary. 

BinsBin(A, B) = volume(Δ I A∩ ΔI B)

volume(Δ I A)
 

BexsBin(A,B) is designed to measure how much of the Exterior Neighborhood of 
A is split by the Interior Neighborhood of B. This metric may be useful when the 
region is vague around both sides of the boundary. 

BinsBex(A,B) is defined by replacing ΔI(A) by ΔE(A) and is designed to measure 
how much of the Interior Neighborhood of A is split by the Exterior Neighborhood of 
B, It is useful to analyze topological relations DC and EC.  

BinsBex(A, B) = volume(Δ I A∩ ΔEB)

volume(Δ I A)
 

BexsBex(A,B) is designed to measure how much of the Exterior Neighborhood of 
A is split by the Exterior Neighborhood of B. This metric is useful for fuzzy regions, 
if BexsBex(A,B) = 0 then we can narrow down the candidates of possible relations 
between A and B to DC, NTPP, and NTPPc.  

BexsBex(A, B) = volume(ΔE A ∩ΔEB)

volume(ΔE A)
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We define several splitting metrics to specifically examine the proportion of the 
boundary of one object that is split by the volume, boundary neighborhoods, and 
boundary of the other object; we denote these metrics accordingly for boundary 
splitting. It should be noted that there are five versions of the equations for this 
metric. First, the boundary may be the thick boundary composite neighborhood 
(interior and exterior), in which case it is a volume. If the boundary is a simple 
boundary, it’s a 2D area.  Therefore, for numerator calculations, we will be 
calculating Ab∩B as either a volume or an area. It also is possible that Ab∩B is an 
edge (a curve or a line segment). For example, for two cubes, a cube edge may 
intersect the face of the cube as a line segment or an edge of another cube in a line 
segment, or even as a single point (i.e., a degenerate line segment). If Ab∩B is an 
edge, we calculate edge length. For denominator, volume(Ab)  and area(Ab) are self-
evident depending on whether we have a thick or simple boundary. However, 
length(Ab) calls for an explanation. In the numerator, when length(Ab∩B) is 
applicable, then this intersection is part of an edge in Ab;  length(Ab) is computed as 
the length of the enclosing edge. These metrics are defined and described below. The 
converses of the metrics can be derived similarly. 

BsIV(A,B) measures the Boundary of A split by the Interior Volume of B. 

BsIV (A, B) = volume(Ab ∩ Bi )

volume(Ab )
or

area(Ab ∩ Bi )

area(Ab )
or

length(Ab ∩ Bi )

length(Ab )
 

BsEV(A,B) is defined by replacing Bi by Be and measures the Boundary of A split 
by the Exterior Volume of B.  BsBin(A,B) is defined by replacing Bi by ΔI(B) and 
measures  the Boundary of A split by the Interior Neighborhood of B.  BsBex(A,B) is 
defined by replacing Bi by ΔE(B) and measures  the Boundary of A split by the 
Exterior Neighborhood of B.  BsB(A,B) is defined by replacing Bi by Bb and 
measures the Boundary of A split by the Boundary of B. 

This metric is again directly applicable to computing Ab∩Bb which is used to 
distinguish many of the RCC8 relations. This subsequently allows us to narrow down 
the candidates of possible relations between A and B  to DC, NTPP, and NTPPc. 

For crisp regions, we have an interior, boundary, and exterior.  For vague regions, 
we have boundary interior and exterior neighborhoods. The smaller the radius for 
boundary neighborhoods, the smaller the ambiguity in the object boundary.  For 
consistency, we can combine the interior and exterior neighborhoods into one, which 
we call a thick boundary.  For a thick boundary, the object has three disjoint crisp 
parts: the interior, the thick boundary, and the exterior.  Now we can reason with 
these parts similar to how we use crisp regions for determining the spatial relations.  

5 Connectivity, Size and Metrics 

If the regions are crisp, we can use the 9-intersection model for determining 
connectivity relations for 2D connectivity knowledge [2], and for relative size 
information we use the 3D metrics from Section 4. The relative size of objects and 
boundary is obtained by using volume metrics IVsIV, IVsB, and boundary-related 
BsB metrics.  Metrics measure the degree of connectivity; for example, for the proper 
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overlap relation PO(A,B), IVsIV metrics help to determine the relative extent of 
overlap of each object.  In Section 4 we discussed which metrics are specific to each 
of the connectivity relations.  If one or both regions are vague, we can use metrics to 
create a thick boundary, Abt ≡ Abi∪Abe, by using the interior and exterior 
neighborhoods. Again we have, crisp interior Ai, exterior Ae, and thick boundary Abt.  
By using the 9-Intersection model on Ai, Ae, and Abt, we can derive the connectivity, 
degree of connectivity, and relative size information for vague regions. Other 
applications such as natural language and topological association [5] can use 
appropriate combinations of these topological parts. Fig. 5 provides a visual summary 
of: (1) what metrics are required to classify each topological relation, and (2) the 
contribution (0/+) each metric has with regards to the overall quality of the relation. 
This tree can be used to classify crisp relations. Similarly, a tree could be generated 
for vague regions with appropriate metrics from the set of 20 metrics. 

 

Fig. 5. Tree for the metrics required for classification and the contribution (0/+) of the 
respective metrics to the overall quality of classification 

6 Conclusion and Future Directions 

Herein we presented an exhaustive set of metrics for use with both crisp and vague 
regions, and showed how each metric is linked to RCC8 relations for 3D objects. Our 
metrics are systematically defined and are more expressive (consistent with natural 
language) than previously published efforts. Further, we showed the association 
between our metrics and the topology and size of objects. This work should be useful 
for a variety of applications dealing with automated spatial reasoning in 3D. In the 
future, we plan to use these metrics to associate natural language terminology with 3D 
region connection calculus including occlusion considerations. Also we will explore 
the applications of these metrics between heterogeneous dimension objects, Om∈Rm 
and On∈Rn for m, n ∈{1,2,3}. 
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