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Abstract. Metagenomics studies microbial DNA of environmental samples. 
The sequencing tools produce a set of genome fragments providing a challenge 
for metagenomics to associate them with the corresponding phylogenetic group. 
To solve this problem there are binning methods, which are classified into two 
sequencing categories: similarity and composition. This paper proposes an 
iterative clustering method, which aim at achieving a low sensitivity of clusters. 
The approach consists of iteratively run k-means reducing the training data in 
each step. Selection of data for next iteration depends on the result obtained in 
the previous, which is based on the compactness measure. The final perfor-
mance clustering is evaluated according with the sensitivity of clusters. The  
results demonstrate that proposed model is better than the simple k-means for 
metagenome databases. 
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1 Introduction 

Metagenomics is a new science that combines different research field as genomics, 
bioinformatics and system biology. The objective of this field is to study genomes of 
many microbial organisms from a specific environment, which cannot be cultivated in 
laboratory. Understanding microbial communities’ structure is a challenge in different 
areas such as biomedical, agriculture, environmental and life sciences [1].  

The fast development of DNA sequencing techniques using different technologies 
generations, such as GS-FLX (454) /Roche, Solexa /Illumina, ABI SOLID /Applied 
Biosystems of second generation, and Helicos TSMS / Helicos BioSciences, Pacific 
BioSciences /Pacific BioSciences, of third generation; has led to new challenges in 
metagenomic studies [2]. Such studies are looking for identify the microorganisms in 
a sample to determine its metabolic functions [2]. Sequencing tools produce a puzzle 
of sequence fragments, which are known in this field with the name of reads (genome 
fragments). Following studies of the reads are performed, with the purpose of assem-
bling them by a process of overlapping using large sequences named contigs [3]. 
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There is an even bigger problem resulting from the contigs that is related with the 
ongoing assembly process to obtain the complete genome, because of the analysis of 
an environmental sample contained diverse individuals.  

Metagenomics also requires a binning process that allows contigs assignment of 
different species to their corresponding phylogenetic group. There are some methods 
of binning, which are classified into two sequencing categories: similarity and com-
position. Within this category it’s found different software such as BLAST [4] and 
Phylopythia [5]. MEGAN [6] is one of the most widely used binning methods based 
on similarity sequence, which assigns reads to taxa, based on BLAST results. These 
kinds of methods are supported by a database of known species genome and they use 
similarity techniques as alignment to find similar sequences. For this reason, binning 
algorithms based on similarity are very time consuming. On the other hand, binning 
methods based on composition sequence made analyzes of genomes features, such as 
GC content, codon usage or oligonucleotide frequencies to describe the sequences and 
find clusters that represent the different taxonomic groups. Other features commonly 
used are called k-mers and represent the characteristic of oligonucleotide frequency of 
fragments sequence with size k, so that to compare them with a reference set of com-
plete genomes [7]. The k-mer feature, with k=4, is widely used, also known as tetra-
nucleotide frequencies. For example, TETRA method yields a statistical analysis 
using tetranucleotide patterns based on the characteristic of the GC content [8]. 

Binning algorithms based on similarity need this kind of features to compare the 
sequences between each other and grouped them based on their similarity into differ-
ent clusters in order to seek the taxonomic groups in the data sample. Leading with 
this problem some author had been used different strategies; one of them is used clus-
tering methods.  In [9] a Self-Organizing Maps (SOM) method was used for  
efficiently cluster complex data using the oligonucleotide frequencies calculation. 
MetaCAA also is a clustering method based on tetranucleotides frequencies [3]. In 
[10] a comparison of some clustering methods is done. 

Binning methods using a complete genomes knowledge-based classifier are re-
ferred to supervised learning methods, while methods that do not depend on training 
data are referred to unsupervised learning methods. Unsupervised learning methods 
are focused on major classes of collected data and do not perform well with data sam-
ples that don’t have a significant population. On the other hand, supervised learning 
methods have a better performance in classifying the data of small populations [11]. 

In metagenomics, supervised learning methods are more precise, but they are time 
consuming because of the amount of different organisms present in the sample. Re-
ducing organisms in the sample can improve their performance.  That means, if bin-
ning method using knowledge-based classifier gets a set of subsequences of the same 
organism as input, the process to find the specify organism is easier and faster. A 
previous clustering process can be a way to provide different groups as inputs for 
supervised learning methods of binning. However, the aim is to find a clustering me-
thod which builds pure clusters. That is, members of each cluster belong to the same 
organism. This doesn’t mean all subsequences of one organism are in the same  
cluster.  

This paper is focused on an unsupervised method for assignment of genomic frag-
ments into pure clusters based on composition sequence. Some of the widely-used  
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sequence-based measures, such as GC content nucleotides usage and k-mers frequen-
cies, have been used to represent the genomic fragments. Further, for clustering frag-
ments to cluster that represent the different genomes in the sample, a clustering itera-
tive process based on k-means is proposed. The method has several iterations in the 
subset of data with more “error”, that is the instances that belong to less compact 
clusters.  For each iteration of the method, the improvement of the compactness of 
clusters is shown. 

2 Methods and Data 

2.1 Data 

Assembled genomic sequences at contig level of different organisms including virus-
es, bacteria and eukaryotes were downloaded from the FTP site of the Sanger institute 
as is shown in table 1. 

Selected viral sequences include Influenza and Dengue virus genomes. Sixty four 
dengue genomes ranging from 10,785 to 10,392 bp and an average GC content of 
45.95%. Eight influenza genomic sequences that ranged between 2309 and 853 bp and 
an average GC content of 43.06%. No ambiguous “N” nucleotides were present in these 
contigs. 

Bacterial sequences come from Bacteroides dorei and Bifidobacterium longum. 
For B. dorei, a total of 1948 contigs that summed 6,771,958 bases was analyzed. The 
contig N50 calculated value was 11,054  bases and only 8 “N” ambiguous bases were 
present. The largest contigs have 83484 bases. For B. longum, a total of 2,377,370 
bases contained in 33 contigs that ranged between 580,034 and 540 bases were ana-
lyzed. The calculated contig N50 value was 154,900 and no ambiguous “N” bases 
were detected. The GC content was 42.3% for B. dorei  and  59.93% for B. longum. 

Table 1. Sequences and data source 

Organism Data source 
Aspergillus fumigatus ftp://ftp.sanger.ac.uk/pub/project/pathogens//A_fumigatus/AF.contigs.

031704 
Ascaris suum ftp://ftp.sanger.ac.uk/pub/project/pathogens//Ascaris/suum/genome/

assembly/contigs.fasta 
Dengue ftp://ftp.sanger.ac.uk/pub/project/pathogens//Dengue/Dengue.fasta 
Glossina ftp://ftp.sanger.ac.uk/pub/project/pathogens//Glossina/morsitans/As

semblies/tsetseGenome-v1.tar.gz 
Bacteroides dorei ftp://ftp.sanger.ac.uk/pub/project/pathogens//Bacteroides/dorei/D8/

454LargeContigs.fna 
Bifidobacterium 
longum 

ftp://ftp.sanger.ac.uk/pub/project/pathogens//Bifidobacterium/longu
m/454LargeContigs.fna 

Candida parasilopsis ftp://ftp.sanger.ac.uk/pub/project/pathogens//Candida/parapsilosis/c
ontigs/CPARA.contigs.fasta 

Influenza ftp://ftp.sanger.ac.uk/pub/project/pathogens//Influenza/Santiago_79
81_06.fasta 
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The selected eukaryotes included 2 fungi, 1 nematode and 1 insect. The analyzed 
fungi were the mold Aspergillus fumigatus and the yeast candida parasilopsis. A total 
of 29,416,758 bases of A. fumigatus were analyzed. Theses sequences were contained 
in 344 contigs that ranged between 2,962,289 and 1,001 bases. The calculated N50 
value was 1,120,772 bases and 3995 ambiguous “N” bases were detected. In the case 
of C. parasilopsis, a total of 13,265,923 bases contained in 1592 contigs were used. 
The calculated contig N50 value was 14,196 and the sizes ranged between 66,655 and 
1,003 bases. 2919 ambiguous “N” bases were counted. The GC content was 49.55% 
for A. fumigatus and 38.86% for C. parasilopsis. 

The analyzed nematode was Ascaris suum. A total of 527,713,826 bases contained 
in 138,557 contigs were analyzed. The contig N50 value was 8,524 and the count of 
ambiguous “N” was 7,668. The GC content was 37.89%. 

The insect genomic sequences belong to Glossina morsitans fly. A total of 
363,109,041 bases contained in 24,072 contigs that ranged between 538224 and 101 
bases. The calculated contig N50 value was 49,769 and no ambiguous “N” bases were 
detected. The GC content was 34.12%. 

2.2 Features 

For the experiment some features were selected: 

• GC: G + C content 
 

 

 
 where A, T, G and C are the count of different nucleotides in the sequence. 
 

• Nucleotide frequencies:  Number of occurrences of A, T, G and C in the 
sequence. It was normalized by the size of the sequence. 

• Codon frequencies: Number of each possible codon in the sequence. It 
was normalized by the total of codons (64 codons) 

• k-mer (k=4): are represented for the 256 possible tetranucleotides. It was 
compute as the number of each tetranucleotide and normalized with the 
total of tetranucleotides in the sequence. 

Features were used in all combinations, producing 15 databases. 

2.3 K-means 

K-means is one of the most popular clustering methods, despite the problem to esti-
mate the parameter k (number of cluster). This algorithm finds a set of k centroids, 
and associates each instance in the data to the nearest centroid, based on a distance 
function [12]. Here we proposed a clustering method based on k-means.  

Euclidean (Equation 1) and Cosine (Equation 2) distance were used to compare the 
sequences.  
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Where X and Y are the instance to compare, with dimension N (features number), 
and xi and yi denote the ith feature of X and Y respectively.  

For the implementation of the clustering method, we used Weka [13], which is a 
free machine learning package that has implemented k-means. Furthermore, it has the 
advantage that it is easy to add a new clustering method.  

3 Iterative Clustering Method 

The process of clustering is based on the following steps: 

Step 1: Select a tentative k, preferably a higher value than expected. Run k-means 
with the data. 

Step 2: After getting the first set of clusters, they are evaluated based on measures of 
compactness and separation of clusters. Clusters with low separation between theirs 
centroids are merged into one. By other hand the compactness is used to divide the 
database, this means that clusters with low compactness are used to build the new 
database to repeat the clustering process returning to step 1. 

Step 3:  Once the process is stable, that means the compactness and separation are 
lower than a threshold, the last step is to minimize, if possible, the number of clusters. 
Clusters evaluation is repeated, for all clusters resulted of each iteration of k-means.  

At the beginning of the process if necessary select the appropriated features and 
distance measure. For this problem we use the sensitivity of clusters to evaluate them. 

In short, the general idea of this clustering method is seek clusters with a high sen-
sitivity. In metagenomics the aim to assign the sequences to a phylum is associated 
with the sensitivity taking into account the phylum that best represents each cluster. 
That means the sensitivity is measured focus on the percentage that represents each 
organism in each cluster.  

3.1 Performance Measures 

There are some measures in the literature to assess performance of clusters. Here we 
use measures based on the pairwise difference of between and within-cluster dis-
tances. These measures are used to evaluate the cluster in each step of the proposed 
method and join similar clusters. 
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Furthermore, to assess the performance of clustering we focused on the final com-
position of the cluster, that is the number of different groups, and the purity of clus-
ters, understanding by "pure cluster" a cluster with genomic fragments that belong to 
only one organism. Considering that clustering in metagenomics is a way to reduce 
the time-consumer of methods based on similarity of sequences it is more important 
getting clusters with a predominance of a phylogenetic group. Keeping this in mind, 
we use binomial estimator (equation 3) as a measure of sensitivity to evaluate the 
results. Although, this measure is used for binary problem, here we suppose the pre-
dominant sequences in each cluster as the positive, and the other as negative.  The 
sensitivity is computed for each cluster meaning a range of pureness. The general 
sensitivity is computed by the average of all cluster sensitivity.  

 

    
 (3) 

 
Each cluster is labeled with the organism which has the greatest number of se-

quences inside. The organism belonging to one cluster with different label is consi-
dered wrong. The sensitivity can be computed by cluster and average the results of 
other clusters.  

4 Results and Discussion 

In this paper a clustering method based on repeating a classical clustering algorithm 
(k-means algorithm) consecutively by a set of data composed of the “bad” clusters is 
proposed. A cluster is considered “bad” when its compactness is low. 

A metagenome database built from 8 different organisms is used to evaluate the 
method.  

Some different attributes are used to describe the sequences: GC content, nucleo-
tides frequencies, codon frequencies and tetranucleotides. 

Euclidean and Cosine distances were used for the k-means algorithms. 
The first step was to select the best features to describe the data. This selection was 

focused on the result of a k-means with k between 5 and 15. The estimation was only 
based on the sensitivity of clusters. As explained before, our aim is to obtain pure 
clusters despite some organism can be divided in different clusters. Later, these clus-
ters of genomic fragments can be classified using a supervised algorithm easier and 
faster.  It is more important to have clusters with only one organism than to group 
genomic fragments of the same organisms together. For this reason the sensitivity, 
which here represents the percentage of the predominant organisms in each cluster, is 
a good measure for clustering.  

The best result was obtained with k=15, tetranucleotides as features and Cosine 
distance. Figure 1 shows this result. The left part of the figure represents the number 
of clusters, the organisms assigned and the number of fragments associated with each 
organism. It can be seen most of clusters have a percentage relative to the predomi-
nant organism superior of 90%. The sensitivity was 92.85%, nevertheless the organ-
ism are very scattered. 



 Iterative Clustering Method for Metagenomic Sequences 151 

 

Once selected the representation of data and the parameters of the k-means we test 
the proposed method. Starting from the result obtained before we go to the step 2 in 
order to evaluate the different clusters to merge closer clusters and separate clusters 
less compact for the next step. The process was repeated five times until to achieve 
the stability of the model. 

 

Fig. 1. Results of classical k-means with tetranucleotides frequencies as features 

Final result is better compared with the first one (simple k-means). Figure 2 shows 
the results of the last step of the model yielding a 99.1% of sensitivity of the clusters, 
which results are in the range of 87.14 and 100%. The error of misassigned sequences 
is 5.516%. 
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With a more deep analysis of the results, we can see that ascaris suum, bacte-
rioides_dorei, bifidobacterium_longum are completely grouped in clusters 0, 3 and 10 
respectively.  Aspergillus_fumigatus is grouped into 4 different clusters, but has two 
clusters complete for it. Dengue is divided into two groups. Glossina and Candida are 
more partitioned, although, Glossina leads all the clusters to which it belongs. The 
worst result is for Influenza because it is never recognized and separated of the rest 
organism, though its fragments are grouped together in the same cluster. 

 

Fig. 2. Results of the proposed clustering method 

In short, the results presented by the iterative use of k-means are superior of the on-
ly one running of k-means. By the application of metagenomics means an advantage 
this kind of group, although the patterns are divided in different group. Taking into 
account this, the error of the model based on the count of sequence misassigned is 
0.045. 
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This paper is not intended to show the best clustering method for metagenomics, 
but rather to show a promising method to bear in mind for this area. 

This iterative algorithm can be used with other base clustering method such as 
SOM or Expectation Maximization. In future work we expect compare the proposed 
method with other base methods and other metagenome databases. 

5 Conclusions 

In this paper we present an approach based on the iterative application of k-means to 
pattern that belongs to “bad” cluster. The classification of cluster is focused on valida-
tion measures of the compactness and separation cluster.  The proposed method is 
applied to a metagenome dataset composed of 8 different organisms. The result 
achieved by the proposed method, in line with the objective of obtaining clusters with 
high sensitivity, outperforms result obtained with a simple k-means. Taking into ac-
count the error, the proposed method improves the purity of clusters by 5.471%. The 
results presented here do not mean that the method described here is better than other 
clustering methods for any metagenomic problem, but it is a promising method to 
bear in mind. 

Other clustering methods can be used as the base for the proposed algorithm. This 
proposed method can also be applied to other metagenome databases.  
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