
Chapter 8
Bending Problems

8.1 Mathematical Modeling

Bending describes the deformation of thin objects under small forces. Typically,
the object is neither stretched nor sheared, but large deformations occur. A simple
example is the deformation of a sheet of paper that is clamped on part of its boundary
and subject to a force such as gravity. Since curvatures are important to describe
such a behavior, the related mathematical models involve higher-order derivatives.
We discuss the derivation of such models and their properties. For further details we
refer to the textbooks [5, 6] and the seminal paper [10].

8.1.1 Bending Models

We consider a Lipschitz domain ω ⊂ R
2 representing the region occupied by a thin

plate, a body force f = (f1, f2, f3)

⊥

: ω → R
3 acting on it, and clamped boundary

conditions on the nonempty closed subset γD ⊂ ∂ω that prescribe the displacement
by a function uD and the rotation by a mapping ΦD on γD.

Definition 8.1 The nonlinear Kirchhoff model seeks a deformation u : ω → R
3

that minimizes the functional

IKi(u) = 1

2

∫

ω

|D2u|2 dx −
∫

ω

f · u dx,

subject to the isometry constraint (∇u)

⊥

∇u = I2 and the boundary conditions
u|γD = uD and ∇u|γD = ΦD.

The isometry constraint reflects the fact that pure bending theories do not allow
for a shearing or stretching of the plate. This limits the class of boundary conditions
that lead to nonempty sets of admissible deformations. In particular, the functionΦD
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218 8 Bending Problems

prescribes the normal, of the deformed surface on γD. The model sets no limitations
on the size of the deformation, but does not prohibit self-penetrations, i.e., it does
not enforce the surface parametrized by u be embedded. We will show below that
the isometry constraint allows us to replace the Frobenius norm of the Hessian by
the Euclidean norm of the Laplacian, i.e., |D2u| = |�u|, and that these expressions
coincide with the modulus of the mean curvature. For small displacements

φ = u − [id2, 0]

⊥

,

i.e., if |∇φ| � 1, the isometry constraint can be omitted and it suffices to consider
the vertical component w = u3 of the deformation. Typical large deformation and
small displacement situations are depicted in Fig. 8.1.

Definition 8.2 The linear Kichhoff model seeks a vertical displacement w : ω → R

that minimizes the functional

IKi
′
(w) = 1

2

∫

ω

|D2w|2 dx −
∫

ω

f3w dx

subject to the boundary conditions w|γD = 0 and ∇w|γD = 0, i.e., w belongs to the
set H2

D(ω) = {v ∈ H2(Ω) : v|γD = 0, ∇v|γD = 0}.
The linear Kirchhoff model is closely related to a model in which no second-order

derivatives occur. It may be regarded as an approximation of the linear Kirchhoff
model in which small shearing effects may occur. Mathematically, the second order
derivatives are replaced by an additional variable and the difference is penalized
with a penalty parameter, which may be regarded as a small artificial plate thickness.
Notice that the symmetric gradient of a gradient is the Hessian, i.e., ε(∇w) = D2w.

Definition 8.3 The linear Reissner–Mindlin model seeks for given t > 0 a vertical
displacement w : ω → R and a rotation θ : ω → R

3 that minimize the functional

IRM(w, θ) = t−2

2

∫

ω

|θ − ∇w|2 dx + 1

2

∫

ω

|ε(θ)|2 dx −
∫

ω

f3w dx,

Fig. 8.1 Large isometric deformation of a thin clamped plate (left) and small displacement
described by a linear model (right)
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where ε(θ) = [(∇θ)

⊥

+ (∇θ)]/2, subject to the boundary conditions w|γD = 0 and
θ |γD = 0.

A solution u of the nonlinear Kirchhoff model defines an open surface in R3 that
is parametrized by the deformation u. Since this surface is isometric to ω, we have
that the Gaussian curvature K vanishes, i.e., that the local length and angle relations
are preserved under the deformation. The mean curvature is given by H2 = |D2u|2
and this identity establishes a relation to a bending model that is used to describe the
deformation of fluid membranes such as cell surfaces. Here, the considered surfaces
are closed. The justification of the model is less clear than in the case of solids. In
particular, fluid membranes can undergo large shearing effects that are not seen by
its description as a surface.

Definition 8.4 The Willmore model seeks a closed surfaceM ⊂ R
3 that minimizes

the functional

IWi(M ) = 1

2

∫

M

H2 ds −
∫

M

K ds,

subject to constraints that the surface area ofM or that the volume enclosed byM
be prescribed.

The integral over the Gaussian curvature is a topological invariant and can be
neglected if a minimizer is sought in a fixed topology class. If the surface area and
the enclosed volume are prescribed, then the model is referred to as the Helfrich
model.

8.1.2 Relations to Hyperelasticity

In three-dimensional hyperelasticity, pure bending is characterized by a cubic scaling
of the energy with respect to the plate thickness t, i.e., that

It(ut) =
∫

Ωt

W (∇ut) dx −
∫

Ωt

ft · ut dx ∼ t3

for the optimal deformations ut ∈ H1(Ωt;R3) as t → 0 forΩt = ω×(−t/2, t/2) ⊂
R
3, such that ut |ΓD = id on ΓD = γD × (−t/2, t/2). This motivates considering

the rescaled energy functionals Ît = t−3It and investigating the limiting behavior
for t → 0 in the framework of Γ -convergence. We let ∇′ denote the gradient with
respect to the first two variables x′ = (x1, x2). The corresponding three-dimensional
objects are denoted ∇ = (∇′, ∂3) and x = (x′, x3).

Theorem 8.1 (Dimension reduction [10]) Let

W (F) = dist2
(
F, SO(3)

)
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for all F ∈ R
3×3 and SO(3) = {F ∈ R

3×3 : F

⊥

F = I3, det F = 1}. Set
f̂t(x′, x̂3) = t−2ft(x′, t̂x3) and assume f̂t → f in L2(Ω1;R3) and that f is inde-
pendent of x̂3 ∈ (−1, 1). Let (ut)t>0 be a sequence of minimizers for the sequence of
functionals (It)t>0, i.e., ut ∈ H1(Ωt;R3) with ut |ΓD = idΓD . Then the rescaled func-
tions û(x′, x̂3) = u(x′, t̂x3) converge in H1(Ω1;R3) to a function u ∈ H1(Ω1;R3).
This function is independent of x̂3, defines a parametrized surface with the first funda-
mental form g = (∇′u)

⊥

(∇′u) = I2 in Ω1, and satisfies u ∈ H2(Ω1;R3). Moreover,
it has the boundary values u|γD = [id, 0]

⊥

and ∇′u|γD = [I2, 0]

⊥

and minimizes

IKi(u) = 1

12

∫

ω

|h|2 dx′ −
∫

ω

f · u dx′,

with the normal b = ∂1u × ∂2u and the second fundamental form h = −(∇′b)

⊥

(∇′u),
in functions v ∈ H1(Ω1;R3), that are independent of x̂3, satisfy (∇′v)

⊥

(∇′v) = I2
in Ω1, and have the same boundary conditions as u. Conversely, every such mini-
mizer u of IKi is the limit of a sequence of rescaled minimizers of It and the minimal
energies converge to IKi(u).

Remarks 8.1 (i) We will show below that |h| = |D2u| for the Frobenius norms of
the second fundamental form and the Hessian of u.
(ii) The result also holds for isotropic, frame-indifferent energy densities W ∈
C2(Rn×n) with W (I3) = 0, and W (F) ≥ dist2

(
F, SO(3)

)
, cf. [10].

For a heuristic justification of the result, we follow [7] and consider the rescaled
energy functional

Ît(u) = t−3
∫

Ωt

W (∇u) dx

with W given by

W (F) = dist2
(
F, SO(3)

) = min
Q∈SO(3)

|F − Q|2.

We assume that the optimal deformation ut = u is of the form

u(x′, x3) = v(x′) + x3b(x′)

with t-independent vector fields v, b : ω → R
3 and b is normal to the surface

parametrized by v, i.e., ∂�v(x′) · b(x′) = 0 for � = 1, 2. This means that v is the
deformation of the middle surface ω and the segments normal to ω are mapped to
straight lines that are normal to the deformed surface, cf. the right plot of Fig. 8.2.
We have

∇u = [∇′v, b] + [x3∇′b, 0].

For matrices F ∈ R
3×3 in a neighborhood of SO(3), we use the approximation
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Fig. 8.2 Normal segments are mapped to straight line segments under the Reissner–Mindlin
hypotheses (left); the Kirchhoff–Love hypotheses require that the deformed segments be normal to
the deformed middle surface (right)

W (F) = dist2
(
F, SO(3)

) ≈ 1

4
|F

⊥

F − I3|2.

For a proof of this relation considerF = P+εG, whereP = πSO(3)(F) is the nearest-
neighbor projection of F onto SO(3) and G is normal to SO(3) at P. We may assume
that P = I3, which implies that G is symmetric. Then dist2

(
F, SO(3)

) = ε2|G|2 and
|F

⊥

F−I3|2 = ε2|G+G

⊥

|2+O(ε3) = 4ε2|G|2+O(ε3). Since Ît(u) = t−3It(u) ≤ C
and t is small, we expect that W (∇u) is small, i.e., that ∇u is close to SO(3) so that

Ît(u) ≈ t−3

4

∫

Ωt

∣∣(∇u)

⊥

∇u − I3
∣∣2 dx.

Noting (∇′v)

⊥

∇′b = (∇′b)

⊥

∇′v, we have

(∇u)
⊥

∇u =
[
(∇′v)

⊥
∇′v 0

0 |b|2
]
+ x3

[
2(∇′b)

⊥
∇′v (∇′b)

⊥
b

b
⊥

∇′b 0

]
+ x23

[
(∇′b)

⊥
∇′b0

0 0

]
.

With the abbreviations

ĝt = t−1((∇′v)

⊥

∇′v − I2
)
, h = −(∇′v)

⊥

∇′b, k = (∇′b)

⊥

b,

we obtain

Ît(u) ≈ t−3

4

∫

Ωt

∣∣∣
[

t̂gt 0
0 |b|2 − 1

]
+ x3

[ −2h (∇′b)

⊥

b
b

⊥

(∇′b) 0

]
+ x23

[
k 0
0 0

] ∣∣∣2 dx

= t−3

4

∫

Ωt

∣∣∣
[

t̂gt − 2x3h + x23k (∇′b)

⊥

b
b

⊥

(∇′b) |b|2 − 1

] ∣∣∣2 dx.

To guarantee that this expression is bounded t-independently, we need to impose the
condition |b|2 = 1, and with the resulting identity b

⊥

∇′b = 0, we deduce that

Ît(u) ≈ t−3

4

∫

Ωt

∣∣t̂gt − 2x3h + x23k
∣∣2 dx.



222 8 Bending Problems

By carrying out the integration with respect to x3, we obtain

Ît(u) ≈ 1

4

∫

ω

|̂gt |2 + 1

3
|h|2 + t2

5 · 24 |k|2 + t

6
ĝt : k dx′.

Again, to obtain a t-independent limit, we need that ĝt = 0. Neglecting the term
involving the factor t2, this leads to the reduced, t-independent functional

Ît(u) = 1

12

∫

ω

|h|2 dx′,

subject to the pointwise constraint (∇′v)

⊥

∇′v = I2. We finally remark that for
forces described by functions ft that are independent of x3 and such that t−2ft → f
in L2(ω;R3) as t → 0, we find with the assumed expansion u(x) = v(x′) + x3b(x′)
that

t−3
∫

Ωt

ft · u dx = t−3
∫

Ωt

ft · v dx + t−3

t/2∫

−t/2

∫

ω

x3b · ft dx′ dx3

= t−2
∫

Ωt

ft · v dx →
∫

ω

f · v dx′

as t → 0.

8.1.3 Relations to Linear Elasticity

Linear elasticity employs a geometric linearization defined through the symmetric
gradient

ε(φ) = 1

2

(
(∇φ)

⊥

+ ∇φ
) ≈ 1

2

(
(∇u)

⊥

∇u − I3
)

for small displacements φ = u − id3 : Ω → R
3 with Ω ⊂ R

3. The energy density
W is approximated by the quadratic expression

W (∇u) ≈ 1

2
D2W (I3)[∇φ,∇φ] = 1

2
D2W (I3)[ε(φ), ε(φ)],

provided W is isotropic and frame-indifferent, using that W (I3) = 0, and
DW̃ (I3) = 0. For homogeneous materials it follows that with the Lamé constants
λ,μ we have for every symmetric matrix E ∈ R

3×3 with C = D2W (I3) that
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CE = 2μE + λ(tr E)I3.

The related minimization problem looks for φ : Ω → R
3 to be minimal for the

Navier–Lamé functional

INL(φ) = 1

2

∫

Ω

Cε(φ) : ε(φ) dx −
∫

Ω

f̂ · φ dx,

subject to φ|ΓD = 0. For thin plates Ωt = ω × (−t/2, t/2) with Dirichlet boundary
ΓD = γD × (−t/2, t/2) for γD ⊂ ∂ω, often the following assumptions are made to
obtain a dimensionally reduced model. The different assumptions are illustrated in
Fig. 8.2.

Assumption 8.1 (Reissner–Mindlin hypotheses) (1) Points on the middle surface
are only displaced in the vertical direction, i.e., φ1(x′, 0) = φ2(x′, 0) = 0 for all
x′ ∈ ω.
(2) The vertical displacement does not depend on x3, i.e., φ3(x′, x3) = w(x′).
(3) Segments that are normal to the middle surface are linearly deformed, i.e.,
φ(x′, x3) = φ(x′, 0) − x3θ̂ (x′) for all (x′, x3) ∈ Ωt .

The assumption implies that the minimizer for INL is given by

φ(x′, x3) =
[−x3θ(x′)

w(x′)

]

with the rotation θ : ω → R
2 and the vertical displacement w : ω → R.

Assumption 8.2 (Kirchhoff–Love hypotheses) In addition to the Reissner–Mindlin
hypotheses, assume that segments that are normal to the middle surface are mapped
linearly and isometrically to segments that are normal to the deformedmiddle surface,
i.e., φ(x′, x3) = φ(x′, 0) − x3θ̂ (x′) for all (x′, x3) ∈ Ωt with

θ̂ (x′, 0) = (1 + |∇′w|2)−1/2
[∇′w

0

]
≈

[∇′w
0

]
.

Note that φ is the displacement, so that the third component of the normal vector θ̂
disappears. The additional assumption implies that the solution of the linearly elastic
problem is given by

φ(x′, x3) =
[−x3∇′w(x′)

w(x′)

]

for the vertical displacement w : ω → R.

Proposition 8.1 (Linear bending) Assume that ft is independent of x3 and set f3 =
t−2ft,3. Suppose that CE = E for all symmetric matrices E ∈ R

3×3. Let φ ∈
H1
D(Ωt;R3) be the minimizer of the three-dimensional elasticity functional INL with
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Ω = Ωt and f̂ = ft . Up to a change of constants we have:
(i) Under the Reissner–Mindlin hypotheses the pair (w, θ) ∈ H1

D(ω) × H1
D(ω;R2)

that specifies φ solves the linear Reissner–Mindlin model.
(ii) Under the Kirchhoff–Love hypotheses the function w ∈ H2

D(ω) that specifies φ

solves the linear Kirchhoff model.

Proof In the case of the Reissner–Mindlin hypotheses we have

ε′(φ) = 1

2

[−x3∇′θ −θ

(∇′w)

⊥

0

]
+ 1

2

[−x3(∇′θ)

⊥

∇′w
−θ

⊥

0

]
=

[ −x3ε′(θ) (∇′w − θ)/2
(∇′w − θ)

⊥

/2 0

]
.

Therefore, due to the assumption CE = E,

Cε′(φ) : ε′(φ) = x23 |ε′(θ)|2 + 1

2
|∇′w − θ |2.

An integration over Ωt = ω × (−t/2, t/2) shows that

1

2

∫

Ωt

Cε′(ϕ) : ε′(ϕ) dx = t3

24

∫

ω

|ε′(θ)|2 dx′ + t

4

∫

ω

|∇′w − θ |2 dx′.

Since ft is independent of x3, we have

∫

Ωt

ft · ϕ dx =
∫

ω

t/2∫

−t/2

(−x3)θ · ft,12 dx3 dx′ +
∫

ω

t/2∫

−t/2

wft,3 dx3 dx′ = t
∫

ω

ft,3w dx′.

Hence,

t−3INL(ϕ) = 1

24

∫

ω

|ε(θ)|2 dx′ + t−2

4

∫

ω

|∇w − θ |2 dx′ −
∫

ω

f3w dx′.

For the Kirchhoff hypothesis, this simplifies to IKi
′
due to the identities ∇′w = θ

and ε′(∇′w) = ∇′∇′w. �

Remark 8.2 If CE = 2μE + λ(tr E)I3 is considered then the assumption that for
σ = Cε(φ) we have σ33 = 0 has to be included.

8.1.4 Properties of Isometries

Given a surface M parametrized by u : ω → R
3 the first and second fundamental

forms g, h : ω → R
2×2 are given by
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g = (∂iu · ∂ju)1≤i,j≤2 = (∇u)

⊥

∇u,

h = −(∂ib · ∂ju)1≤i,j≤2 = −(∇b)

⊥

∇u = b

⊥

D2u,

where b = ∂1u × ∂2u/|∂1u × ∂2u| is a unit normal to M . The parametrization is
assumed to be an immersion, so that the tangent vectors ∂1u and ∂2u are linearly
independent everywhere in ω. The first and second fundamental form are interpreted
as bilinear forms on the tangent space TM in terms of the coefficients of the family
of bases

(
∂1u(x), ∂2u(x)

)
x∈ω

. It follows that g is a symmetric and positive definite
matrix for every x ∈ ω that defines a metric on the tangent space of M . The Gauss
and mean curvature are the determinant and the trace of the Weingarten map

s = −hg−1

and given by

K = det s = det h

det g
, H = tr s = −h : det′ g

det g
,

respectively. The Weingarten map measures variations of the normal b and is inter-
preted as a linear mapping on the tangent space. The second fundamental form is
the bilinear form associated with s. We refer the reader to Sect. 8.4 for a detailed
discussion.

Definition 8.5 The parametrization u : ω → R
3 is called isometry if g(x) = I2 for

every x ∈ ω.

Proposition 8.2 Suppose that u : ω → R
3 is a C2-isometry. Then ∂i∂ju · ∂ku = 0,

K = 0, and
|D2u| = |�u| = |h| = |H|,

where | · | denotes the Frobenius norm on the respective spaces.

Proof We first note that for 1 ≤ i, j ≤ 2, we have 0 = ∂i(∂ju · ∂ju) = 2∂i∂ju · ∂ju.
To show that we also have ∂2i u · ∂ju = 0 for i = j, we note 0 = ∂i(∂i · ∂ju) =
∂2i u · ∂ju + ∂iu · ∂i∂ju, i.e., ∂2i u · ∂ju = −∂iu · ∂i∂ju = 0. Hence, we have

∂i∂ju · ∂ku = 0

for i, j, k = 1, 2, i.e., the Christoffel symbols of the second kind vanish. As a con-
sequence of Gauss’ theorem, cf. Lemma 8.3, we have K = 0. Moreover, we deduce
that −�u = βb and since (−�u) · b = tr(−h) = H, we have β = H. The
vectors (∂1u, ∂2u, b) form an orthonormal basis of R3 for every x ∈ ω, so that
|∂i∂ju| = |∂i∂ju · b| and hence

|D2u|2 =
2∑

i,j=1

|∂i∂ju · b|2 = |h|2.
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Moreover, we have

|h|2 = |s|2 = (tr s)2 − 2 det s = H2 − 2K = H2,

which proves the assertion. �
Remark 8.3 Since isometries in H2(ω;R3) can be approximated by isometries in
C2(ω;R3) in the norm of H2(ω;R3), the results of the proposition also hold for
isometries u ∈ H2(ω;R3), cf. [12].

8.2 Approximaton of Linear Bending Models

We discuss in this section numerical methods for the approximation of the linear
Kirchhoff and the linear Reissner–Mindlinmodel. Finite elementmethods for dimen-
sionally reduced models have to be carefully developed to avoid so-called locking
effects. This describes the phenomenon that deformations obtained by numerical
computation are too small in comparison to the true deformation. In particular, mem-
brane locking is the inability of a finite element method to capture bending effects
without stretching while shear locking refers to the problem that a finite element
method is too stiff to describe certain in-plane deformations due to the occurrence of
a small parameter. Another effect that occurs in the description of thin elastic struc-
tures is theBabuška paradox that states that if a domain is approximated by polygons,
then the numerical solutions may fail to converge to the correct solution. We follow
closely the presentation of [5] and refer the reader to [4] for further aspects.

8.2.1 Discrete Kirchhoff Triangles

To avoid an H2-conforming finite element method for the linear Kirchhoff model,
we employ a nonconforming discretization that is based on the construction of a
discrete gradient operator

∇h : Wh → Θh

with H1-conforming finite element spaces Wh ⊂ H1(ω) and Θh ⊂ H1(ω;R2).
These are for a regular triangulation Th of ω defined as

Wh = {wh ∈ C(ω) : wh|T ∈ Pred
3 (T) for all T ∈ Th,

∇wh continuous at all z ∈ Nh},
Θh = {θh ∈ C(ω) : θh|T ∈ P2(T) for all T ∈ Th}.

Here, Pk(T) for every T ∈ Th denotes the set of polynomials of total degree less
or equal to k ≥ 0 restricted to T . The superscript in Pred

3 means that one degree of
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h
Wh h

Fig. 8.3 Schematic description of the elementwise reduced cubic finite element space Wh (left)
and the space of elementwise quadratic vector fields Θh (right)

freedom is eliminated, i.e., with the center of mass xT = (1/3)
∑

z∈Nh∩T z of T ,

Pred
3 (T) = {

p ∈ P3(T) : p(xT ) = 1

3

∑
z∈Nh∩T

[
p(z) + ∇p(z) · (xT − z)

]}
.

The degrees of freedom in Wh are the function values and the derivatives at the
vertices of the elements, cf. Fig. 8.3. For w ∈ H3(ω), we define the nodal interpolant
Ĩ 3

h w ∈ Wh by the conditions Ĩ 3
h w(z) = w(z) and ∇Ĩ 3

h w(z) = ∇w(z) for all
z ∈ Nh.

Definition 8.6 The discrete gradient operator ∇h : Wh → Θh is for wh ∈ Wh the
uniquely defined function θh = ∇hwh ∈ Θh with

θh(z) = ∇wh(z) for all z ∈ Nh,

θh(zS) · nS = 1

2

(∇wh(z
1
S) + ∇wh(z

2
S)

) · nS for all S ∈ Sh,

θh(zS) · tS = ∇wh(zS) · tS for all S ∈ Sh,

where, for all sides S ∈ Sh, the orthonormal vectors nS, tS ∈ R
2 are chosen such

that nS is normal to S, z1S, z2S ∈ Nh are the endpoints of S, and zS = (z1S + z2S)/2 is
the midpoint of S. For w ∈ H3(Ω), we set ∇hw = ∇hĨ

3
h w.

Remark 8.4 For every S ∈ Sh we have

∇hwh(zS) = 1

2

[(∇wh(z
1
S) + ∇wh(z

2
S)

) · nS
]
nS + [∇wh(zS) · tS

]
tS.

The following lemma shows that∇h may be regarded as an interpolation operator
on the space of gradients of functions in H3(ω). We let γD ⊂ ∂ω be closed and of
positive surface measure and define γN = ∂ω \ γD.

Lemma 8.1 (Properties of ∇h [5]) (i) There exists c1 > 0 such that for all wh ∈ Wh
and T ∈ Th, we have for � = 0, 1 that

c−1
1 ‖∇�+1wh‖L2(T) ≤ ‖∇�∇hwh‖L2(T) ≤ c1‖∇�+1wh‖L2(T),
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where ∇1 = ∇ and ∇0 = I.
(ii) There exists c2 > 0 such that for all w ∈ H3(ω) and T ∈ Th, we have

‖∇hw − ∇w‖L2(T) + hT ‖∇∇hw − D2w‖L2(T) ≤ c2h2T ‖D3w‖L(T).

(iii) There exists c3 > 0 such that for all wh ∈ Wh and T ∈ Th, we have

‖∇hwh − ∇wh‖L2(T) ≤ c3hT ‖D2wh‖L2(T).

(iv) The mapping wh �→ ‖∇∇hwh‖ defines a norm on

Wh,D = {
wh ∈ Wh : wh(z) = 0, ∇wh(z) = 0 for all z ∈ Nh ∩ γD

}
,

and we have wh|γD = 0 and ∇wh|γD = 0 for all wh ∈ Wh,D.

Proof (i) Both expressions define semi-norms and we show that ∇�+1wh = 0 if and
only if ∇�∇hwh = 0 for all wh ∈ Wh. Assume that ∇hwh|T = cT for some cT ∈ R

2.
Then ∇wh(z) = cT for all z ∈ Nh ∩ T and ∇wh(zS) = cT for all S ∈ Sh ∩ T .
Thus, the cubic polynomials wh|S are affine for all S ∈ Sh ∩ ∂T , and also the
function wh|∂T is affine. Due to the elementwise constraint in the definition of Wh,
it follows that wh|T is affine and thus ∇wh = cT . If conversely ∇wh|T = cT , then
also ∇hwh|T = cT . Hence, the expressions ‖∇�+1wh‖L2(T) and ‖∇�∇hwh‖L2(T) are
equivalent semi-norms on Wh|T and a scaling argument proves the first assertion.
(ii) Since ∇hw|T is affine if ∇w|T is affine, the Bramble–Hilbert lemma yields the
interpolation estimate

‖θ − θh‖L2(T) + hT ‖∇(θ − θh)‖L2(T) ≤ ch2T ‖D2θ‖L2(T)

for θ = ∇w ∈ H2(ω) and θh = ∇hw.
(iii) The estimate is a consequence of (ii) and the inverse estimate ‖D3wh‖L2(T) ≤
ch−1

T ‖D2wh‖L2(T).
(iv) If wh(z) = 0 and ∇hwh(z) = 0 for all z ∈ Nh ∩ γD then, since wh|S is a cubic
polynomial for every S ∈ Sh, it follows that wh|γD = 0 and ∇hwh|γD = 0. Assume
that ‖∇∇hwh‖ = 0. Then, since∇hwh|γD = 0 we deduce by Poincaré inequality that
∇hwh = 0 in ω. With (i) and wh|γD = 0 we find wh = 0 in ω. �

The interpolation estimates allow us to prove the following error estimate.

Theorem 8.2 (Error estimate) Assume that w ∈ H2
D(ω) ∩ H3(ω) is the solution of

the linear Kirchhoff model, i.e.,

(D2w, D2v) = (f , v)

for all v ∈ H2
D(ω) and let wh ∈ Wh,D solve

(∇∇hwh,∇∇hvh) = (f , vh)
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for all vh ∈ Wh,D. Then we have

‖D2w − ∇∇hwh‖ ≤ ch‖w‖H3(ω).

Proof The Lax–Milgram lemma and Lemma 8.1(iv) imply the existence of unique
solutions w ∈ H2

D(ω) and wh ∈ Wh,D. The assumption w ∈ H3(ω), the boundary
condition (D2w)n|γN = 0, an integration by parts, and the identities div D2 = �∇ =
∇� show, that for all v ∈ H2

D(ω), we have

(f , v) = (D2w, D2v) = −(∇�w,∇v)

and this identity holds for all v ∈ H1
D(ω). Therefore, for vh ∈ Wh,D it follows that

(∇∇hw,∇∇hvh) = (D2w,∇∇hvh) + (∇[∇hw − ∇w],∇∇hvh)

= −(∇�w,∇hvh) + (∇[∇hw − ∇w],∇∇hvh)

= −(∇�w,∇vh) − (∇�w, [∇hvh − ∇vh])
+ (∇[∇hw − ∇w],∇∇hvh).

Recalling that ∇hw = ∇hĨ
3

h w and incorporating the discrete and continuous for-
mulations, this yields that

‖∇∇h[w − wh]‖2 = (∇∇hw,∇∇h[w − wh]) − (∇∇hwh,∇∇h[w − wh])
= (f , Ĩ 3

h w − wh) + (∇�w,∇h[w − wh] − ∇[Ĩ 3
h w − wh])

+ (∇[∇hw − ∇w],∇∇h[w − wh]) − (f , Ĩ 3
h w − wh)

= (∇�w,∇h[w − wh] − ∇[Ĩ 3
h w − wh])

+ (∇[∇hw − ∇w],∇∇h[w − wh]).

For the first term on the right-hand side we have by Lemma 8.1(i) and (iii) that

(∇�w,∇h[w − wh] − ∇[Ĩ 3
h w − wh]) ≤ ch‖∇�w‖‖∇∇h[w − wh]‖.

The second term is estimated with the help of Lemma 8.1(ii), i.e.,

(∇[∇hw − ∇w],∇∇h[w − wh]) ≤ ch‖D3w‖‖∇∇h[w − wh]‖

The combination of the last three estimates, the triangle inequality, and the bound
‖D2w − ∇∇hw‖ ≤ ch‖D3w‖ of Lemma 8.1(ii) prove the assertion. �
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8.2.2 Realization

For the implementation of the discrete Kirchhoff triangle, we identify functions wh ∈
Wh and θh ∈ Θh with vectors W ∈ R

3L and Θ ∈ R
2(L+M), where L = nC = #Nh

and M = nS = #Sh, defined by

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wh(z1)
∇wh(z1)
wh(z2)

∇wh(z2)
...

wh(zL)

∇wh(zL)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wz1
δwz1
wz2
δwz2

...

wzL

δwzL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θh(z1)
θh(z2)

...

θh(zL)

θh(zS1) − (
θh(z1S1) + θh(z2S1)

)
/2

θh(zS2 ) − (
θh(z1S2 ) + θh(z2S2 )

)
/2

...

θh(zSM ) − (
θh(z1SM

) + θh(z2SM
)
)
/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θz1
θz2
...

θzL

θS1
θS2
...

θSM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Nh = {z1, z2, . . . , zL} and Sh = {S1, S2, . . . , SM}. For the coefficient of θh
related to a side S ∈ Sh, we subtract half of the values of θh at the corresponding
endpoints z1S and z2S since we use the hierarchical basis

(
ϕz1 , ϕz2 , . . . , ϕzL , ϕS1 , ϕS2 , . . . ϕSM

)

of the space S 2(Th) = {vh ∈ C(ω) : vh|T ∈ P2(T) for all T ∈ Th} given by the
nodal basis (ϕz1 , ϕz2 , . . . , ϕzL ) of S 1(Th) and the functions ϕS = 4ϕz1S

ϕz2S
for all

S ∈ Sh. A straightforward calculation shows that, for a function wh ∈ Pred
3 (T), we

have that wh|S is cubic for every side S ⊂ ∂T with

(∇wh(zS)
) · tS = 3

2|S|
(
wh(z

2
S) − wh(z

1
S)

) − 1

4

(∇wh(z
1
S) + ∇wh(z

2
S)

) · tS

with |S| = |z2S − z1S| and z2S − z1S = |S|tS . Since (nS, tS) are orthonormal vectors it
follows for θh = ∇hwh that

θh(zS) = (∇wh(zS) · tS
)
tS + [1

2

(∇wh(z
1
S) + ∇wh(z

2
S)

) · nS
]
nS

= (∇wh(zS) · tS
)
tS + 1

2

(∇wh(z
1
S) + ∇wh(z

2
S)

)

− [1
2

(∇wh(z
1
S) + ∇wh(z

2
S)

) · tS
]
tS

= 3

2|S|
(
wh(z

2
S) − wh(z

1
S)

)
tS − 3

4

[(∇wh(z
1
S) + ∇wh(z

2
S)

) · tS
]
tS

+ 1

2

(∇wh(z
1
S) + ∇wh(z

2
S)

)
.
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Since θh(z
j
S) = ∇wh(z

j
S), j = 1, 2, the corresponding coefficient is given by

θS = θh(zS) − (
θh(z

1
S) + θh(z

2
S)

)
/2

= 3

2|S|
(
wh(z

2
S) − wh(z

1
S)

)
tS − 3

4

[(∇wh(z
1
S) + ∇wh(z

2
S)

) · tS
]
tS.

With these identifications, the discrete gradient operator can be represented by a
matrix Dh ∈ R

2(L+M)×3L. For a single element T = conv{z1, z2, z3} with sides
S1 = conv{z2, z3}, S2 = conv{z3, z1}, and S3 = conv{z1, z2}, we have

⎡
⎢⎢⎢⎢⎢⎢⎣

θz1
θz2
θz3
θS1
θS2
θS3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I2 0 0 0 0
0 0 0 I2 0 0
0 0 0 0 0 I2
0 0 t̃S1 T̃S1 −̃tS1 T̃S1

t̃S2 T̃S2 0 0 −̃tS2 T̃S2
t̃S3 T̃S3 −̃tS3 T̃S3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

wz1
δwz1
wz2
δwz2
wz3
δwz3

⎤
⎥⎥⎥⎥⎥⎥⎦

where T̃S�
= −(3/4)tS�

t

⊥

S�
and t̃S�

= −(3/(2|S�|))tS�
. For a simpler implementation

we approximated the right-hand side using numerical integration, i.e.,

∫

ω

f3wh dx ≈
∫

ω

Ih[f3wh] dx

which is computed with the lumped mass matrix. Figure8.5 displays an implemen-
tation of the approximation of the linear Kirchhoff model with the discrete Kirchhoff
triangle. The M × 2 field n4s provides an enumeration of the edges and defines
their endpoints. The field s4e has dimension nE × 3, nE = #Th, and contains the
global numbers of the sides of the elements in Th, where the convention that the
jth edge of T is opposite to the jth node of T is used, cf. Fig. 8.4. These arrays are
provided by the subroutine sides. The stiffness matrix of the P2 finite element
space with respect to the hierarchical basis defined above is provided by the routine
fe_matrix_p2.m.

Fig. 8.4 Local enumeration
of the sides of a triangle
every side is associated to
the opposite node

z2z1 S3

z3

S1
S2
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Fig. 8.5 Matlab routine for the approximation of the linear Kirchhoff model with Kirchhoff
triangles

8.2.3 Reissner–Mindlin Plate

The linear Reissner–Mindlin model seeks a pair (w, θ) ∈ H1
D(ω) × H1

D(ω;R2) such
that (

ε(θ), ε(ψ)
) + t−2(θ − ∇w, ψ − ∇η) = (f , η)

for all (ψ, η) ∈ H1
D(ω;R2)×H1

D(ω). The corresponding strong form of the problem
reads as
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− div ε(θ) + t−2(θ − ∇w) = 0 in ω, θ |γD = 0, ∂nθ |γN = 0,

t−2 div (θ − ∇w) = f in ω, w|γD = 0, (θ − ∇w) · n|γN = 0

with γN = ∂ω \ γD. The problem can be simplified by employing a Helmholtz
decomposition of θ − ∇w. For a function p ∈ H1(ω) we write

Curl p = (∇p)⊥ = [−∂2p, ∂1p]

⊥

.

Proposition 8.3 (Equivalent formulation)Assume that ω is simply connected. There
exist uniquely defined functions r ∈ H1

D(ω) and p ∈ H1(ω) with
∫
ω

p dx = 0 and
Curl p · n|γN = 0, such that t−2(θ −∇w) = −∇r −Curl p. The function r ∈ H1

D(ω)

satisfies
(∇r,∇η) = (f , η)

for all η ∈ H1
D(ω). The pair (θ, p) is uniquely defined by the equations

(
ε(θ), ε(ψ)

) − (Curl p, ψ) = (∇r, ψ),

(θ,Curl q) − t2(Curl p,Curl q) = 0

for all (ψ, q) ∈ H1
D(ω;R2)×H1(ω) with Curl q ·n|γN = 0. The function w ∈ H1

D(ω)

satisfies
(∇w,∇v) = (θ,∇v) + t2(∇r,∇v)

for all v ∈ H1
D(ω).

Proof Let r ∈ H1
D(ω) be the unique solution of

(∇r,∇η) = (f , η) = −t−2(θ − ∇w,∇η)

for all η ∈ H1
D(ω). Since F = t−2(θ − ∇w) + ∇r satisfies div F = 0 in ω and since

F · n|γN = 0, there exists a uniquely defined function p ∈ H1(ω) with
∫
ω

p dx = 0,
Curl p · n = 0 on γN, and F = −Curl p, cf., e.g., [11]. For all η ∈ H1

D(ω), we then
have

(Curl p,∇η) =
∫

∂ω

η Curl p · n ds = 0.

The equations now follow from the weak formulation of the linear Reissner–Mindlin
model and the identity that defines Curl p. �

The equations derived in the proposition show that the solution of the linear
Reissner-Mindlin model can be computed by successively solving three problems.
The first and the third formulations that define r and w are Poisson problems, while
the second one defines the pair (θ, p) through a saddle-point problem with a penalty
term that is qualitatively equivalent to the Stokes problem. In particular, the inf-sup
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condition is satisfied and the solution operator is bounded t-independently. This
implies the robust solvability of the Reissner–Mindlin model, provided that the
finite element spaces used for the approximation of (θ, p) satisfy a discrete inf-
sup condition. A possible choice is the so-called mini-element, which is the lowest
order conforming polynomial element for the Stokes problem. To guarantee that a
discrete Helmholtz decomposition is available, the variables r and w then need to be
approximated in the nonconforming Crouzeix–Raviart finite element space, cf. [1]
for related details and optimal, t-independent error estimates.

8.3 Approximation of the Nonlinear Kirchhoff Model

The linear Kirchhoff model may be regarded as a simplification of the nonlinear
Kirchhoff model in the case of small displacements. We generalize in this section the
finite element method based on discrete Kirchhoff triangles for the linear model to
the nonlinear one that describes large bending deformations. The proposed method
uses techniques developed in [3].

8.3.1 Discretization

We employ the spaces Wh and Θh introduced for the approximation of the linear
Kirchhoff model. The fact that the gradient of a function in Wh is continuous at
vertices of elements allows us to impose the isometry constraint at those points. We
thus consider the minimization problem defined by

IKih (uh) = 1

2

∫

ω

|∇∇huh|2 dx −
∫

ω

f · uh dx

subject to uh ∈ Ah = {
vh ∈ W 3

h , [∇vh(z)]

⊥

∇vh(z) = I2 for all z ∈ Nh,

vh(z) = uD(z), ∇vh(z) = ΦD(z) for all z ∈ Nh ∩ γD
}
.

For the vector field uh ∈ W 3
h , the approximate gradient∇huh is obtained by applying

∇h to each component of uh. We suppose that the boundary data uD and ΦD are
compatible in the sense that for a function ũD ∈ H2(ω;R3) with (∇ũD)

⊥

∇ũD = I2
in ω, we have uD = ũD|γD and ΦD = ∇ũD|γD. We also assume that uD and ΦD can
be approximated with arbitrary accuracy by nodal interpolation on γD, i.e.,

∥∥uD − Ih̃uD|γD
∥∥

L2(γD)
+ ∥∥ΦD − Ih∇ũD|γD

∥∥
L2(γD)

→ 0

as h → 0. For analyzing convergence of the numerical scheme, we assume that there
exists a solution of the nonlinear Kirchhoff model that is smooth or which can be
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approximated by smooth isometries. This assumption is not a restriction because of
corresponding density results in [12].

Theorem 8.3 (Approximation) Assume that there exists a minimizer u ∈ A with

A = {v ∈ H2(ω;R3) : (∇v)

⊥

∇v = I2, v|γD = uD, ∇v|γD = ΦD}

for the nonlinear Kirchhoff model which can be approximated in H2(ω;R3) by
functions v ∈ A ∩ H3(ω;R3). For every h > 0 there exists a minimizer uh ∈ W 3

h of
IKih . If (uh)h>0 is a sequence of minimizers, then ‖∇uh‖ ≤ C, for all h > 0, and every
accumulation point u ∈ H1(ω;R3) of the sequence is a strong accumulation point,
belongs to H2(ω;R3), satisfies (∇u)

⊥

∇u = I2 almost everywhere in ω, u|γD = uD,
and ∇u|γD = ΦD, and is a minimizer for IKi.

Proof By Lemma 8.1 (iii) we have that ‖∇∇huh‖ is a norm and this implies that IKih
has a minimizer. Because of the assumptions on the boundary data, it follows by
Poincaré inequality andLemma8.1 (i) that ‖∇uh‖ ≤ C and ‖∇∇huh‖ ≤ C for all h >

0. Let u ∈ H1(ω;R3) and z ∈ H1(ω;R3×2) be such that for a subsequence (which is
not relabeled), we have uh ⇀ u in H1(ω;R3) and ∇huh ⇀ z in H1(ω;R3×2). With
Lemma 8.1 we verify that ‖∇huh − ∇uh‖ ≤ ch‖∇∇huh‖ and this yields ∇u = z,
in particular u ∈ H2(ω;R3). The attainment of the boundary data follows from
continuity properties of the trace operators and the fact that

‖uh − Ihuh‖ + ‖∇huh − Ih∇huh‖ → 0

as h → 0. A nodal interpolation estimate and an inverse estimate yield that for every
T ∈ Th, we have

∥∥(∇uh
) ⊥

∇uh − I2
∥∥

L1(T)
≤ ch2T

∥∥D2[(∇uh
) ⊥

∇uh
]∥∥

L1(T)

≤ ch2T
(‖D3uh‖L2(T)‖∇uh‖L2(T) + ‖D2uh‖2L2(T)

)
≤ chT

(‖D2uh‖L2(T)‖∇uh‖L2(T) + ‖D2uh‖2L2(T)

)
.

A summation over all T ∈ Th together with the fact that ∇uh converges strongly to
∇u implies that (∇u)

⊥

∇u = I2 almost everywhere in ω. To verify that u minimizes
IKi, we first note that by weak lower semicontinuity of the L2 norm, we have

‖D2u‖ = ‖∇z‖ ≤ lim inf
h→0

‖∇∇huh‖

and ∫

ω

uh · f dx →
∫

ω

u · f dx.

This proves that
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IKi(u) ≤ lim inf
h→0

IKih (uh).

To show that the minimal energy is attained let ũ ∈ A be a minimizing isometry for
IKi. Due to the assumed approximability of ũ by smooth isometries, we may assume
that ũ ∈ H3(ω;R3). We define ũh = Ĩ 3

h ũ ∈ Ah and note with Lemma 8.1(ii) that

‖∇h̃uh − ∇ũ‖ + h‖∇∇h̃uh − D2̃u‖ ≤ ch2‖̃u‖H3(ω)

which implies the attainment of the minimal energy. �

8.3.2 Iterative Minimization

Our iterative scheme for the practical solution of the discretized minimization prob-
lem realizes a discrete H2-gradient flow of the energy functional with a linearization
of the nodal isometry constraint about the current iterate. For this, it is important
to realize that for the employed finite element space Wh, the nodal values of the
discrete deformation

(
uh(z) : z ∈ Nh

)
and its gradient

(∇uh(z) : z ∈ Nh
)
are

mutually independent variables in the minimization problem.

Algorithm 8.1 (Discrete H2-isometry-flow) Let τ > 0 and u0h ∈ W 3
h be such that

[∇u0h(z)
] ⊥

∇u0h(z) = I2

for all z ∈ Nh and u0h(z) = uD(z) and ∇hu0h(z) = ΦD(z) for all z ∈ Nh ∩ γD. For
k = 1, 2, . . ., define

Fh[uk−1
h ]

= {
wh ∈ W 3

h,D : [∇wh(z)]

⊥

∇uk−1
h (z) + [∇uk−1

h (z)]

⊥

∇wh(z) = 0 f.a. z ∈ Nh
}

and compute uk
h = uk−1

h + τdtuk
h with dtuk

h ∈ Fh[uk−1
h ] satisfying

(∇∇hdtu
k
h,∇∇hwh

) + α
(∇∇h(u

k−1
h + τdtu

k
h),∇∇hwh

) = (
f , wh

)

for all wh ∈ Fh[uk−1
h ]. Stop the iteration if ‖∇∇hdtuk

h‖ ≤ εstop.

The iterates (uk
h)k=0,1,... will in general not satisfy the nodal isometry constraint

exactly, but the violation is independent of the number of iterations and controlled
by the step size τ .

Theorem 8.4 (Iteration) The iterates (uk
h)k=0,1,... of Algorithm 8.1 are well defined

and satisfy

IKih (uk
h) + τ

2
‖∇∇hdtu

k
h‖2 ≤ IKih (uk−1

h ).
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Moreover, we have

‖Ih
[
(∇uk

h)

⊥

∇uk
h

] − I2‖L1(ω) ≤ Cτ IKih (u0h).

Proof The existence of a unique dtuk
h ∈ Fh[uk−1

h ] in every step of the iteration
follows from the fact that the bilinear form (vh, wh) �→ (∇∇hvh,∇∇hwh

)
defines

a coercive and continuous bilinear form on Fh[uk−1
h ], cf. Lemma 8.1(iv). Upon

choosing wh = dtuk
h, we find that

∥∥∇∇hdtu
k
h

∥∥2 + 1

2
dt

∥∥∇∇huk
h

∥∥2 + τ

2

∥∥∇∇hdtu
k
h

∥∥2 = (
f , dtu

k
h

)

and this proves the energy decreasing property. Using uk
h = uk−1

h + τdtuk
h, we have

(∇uk
h

) ⊥

∇uk
h = (∇uk−1

h

) ⊥

∇uk−1
h + τ

(∇dtu
k
h

) ⊥

∇uk−1
h

+ τ
(∇uk−1

h

) ⊥

∇dtu
k
h + τ 2

(∇dtu
k
h

) ⊥

∇dtu
k
h.

Since dtuk
h ∈ Fh[uk−1

h ], the sum of the second and third term on the right-hand side
vanishes at every z ∈ Nh and an inductive argument, together with the assumptions
on u0h, leads to

∣∣[∇uL
h (z)

] ⊥
∇uL

h (z) − I2
∣∣ ≤ τ 2

L∑
k=1

∣∣∇dtu
k
h(z)

∣∣2.

A discrete norm equivalence and a local inverse inequality imply the assertion. �

8.3.3 Realization

The implementation of Algorithm 8.1 is based on the realization of the discrete
Kirchhoff triangle for the linear problem. We also employ quadrature to discretize
the forcing term which we assume to act only in the vertical direction. This implies
that only the nodal values

(
uh(z) : z ∈ Nh

)
and

(∇uh(z) : z ∈ Nh
)
are needed for

the implementation, in particular, no evaluation of uh in the interior of elements in
Th is required. If S2 is the stiffness matrix related to piecewise quadratic vector fields
with six components, D realizes the operator ∇h : W 3

h → Θ3
h , and Bk−1 encodes the

constraints and boundary conditions defined in the spaceFh[uk−1
h ], then one step of

the discrete gradient flow leads to the linear system of equations

[
(1 + ατ)D

⊥

S2D B

⊥

k−1
Bk−1 0

] [
dtUk

�

]
=

[−αD

⊥

S2D Uk−1 + τF
0

]
.
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Fig. 8.6 Approximation of the nonlinear Kirchhoff model with discrete Kirchhoff triangles
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The matrix D

⊥

S2D is generated as in the case of the linear model and provided
by the routine dkt_matrix.m. The initial deformation is assumed to satisfy the
boundary conditions which may be inhomogeneous. We refer to the implementation
displayed in Fig. 8.6 for details.

8.4 Willmore Flow

We discuss in this section numerical methods for approximating the Willmore flow.
This is the L2-gradient flow of the Willmore energy which is defined on closed sur-
faces inR3. To compute the evolution equation, we review concepts from differential
geometry to differentiate quantities on surfaces and tomeasure variations of surfaces.
The reader is referred to the textbooks [13, 14] for further details. The numerical
schemes are based on results in [2, 8, 9].

8.4.1 Tangential Differentiation and Curvature

LetM ⊂ R
3 be a surface, i.e., an orientable two-dimensional C2-submanifoldM in

R
3, with continuous unit normal n : M → R

3. For scalar functions f : M → R and
vector fields F : M → R

3 on M that admit continuously differentiable extensions
f̃ : U (M ) → R and F̃ : U (M ) → R

3 to an open neighborhood of M , we define
the tangential gradient and the tangential divergence by

∇M f = ∇ f̃ − (n · ∇ f̃ )n, divM F = div F̃ − n

⊥

DF̃n.

The operators satisfy the product rule

divM (fF) = ∇M f · F + f divM F.

The tangential gradient∇M F of a vector fieldF is thematrixwhose i-th row coincides
with the transpose of the tangential gradient of the i-th component ofF. TheLaplace–
Beltrami operator is defined as

�M f = divM ∇M f .

For a local parametrization u : ω → R
3 of M , the tangent vectors ∂�u, � = 1, 2,

are linearly independent and define a unit normal b = ±∂1u × ∂2u/|∂1u × ∂2u|,
cf. Fig. 8.7. We assume in the following that the sign is chosen so that b = n ◦ u. The
first fundamental form is the matrix g with entries

gij = ∂iu · ∂ju.
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u

1u

2u
b

Fig. 8.7 Local parametrization of a surface by a mapping u : ω → R
3; the partial derivatives ∂1u

and ∂2u of u define a basis of the tangent space for every point on the image of u; their normalized
cross product defines a unit normal b to the surface

It defines a metric on the tangent space of M , e.g., the length of a tangent vector
α1∂1u + α2∂2u is given by the square root of α · (gα). The matrix g is symmetric
and positive definite everywhere in ω; and we let g−1 = (gij) be its inverse and
g−1/2 = (g(−1/2)

ij ) the symmetric and positive definite square root of g−1.

Proposition 8.4 (Differential operators on M ) We have

(∇M f ) ◦ u =
2∑

i,j=1

gij∂j(f ◦ u)∂iu, (divM F) ◦ u =
2∑

i,j=1

gij∂j(F ◦ u) · ∂iu.

If F = ∑2
i=1 Fi∂iu is tangential or F = ∇M f , then

(divM F) ◦ u = (det g)−1/2
2∑

i=1

∂i
(
Fi ◦ u(det g)1/2

)
,

(�M f ) ◦ u = (det g)−1/2
2∑

i,j=1

∂i
(
(det g)1/2gij∂j(f ◦ u)

)
.

In particular, the operators are independent of the extensions.

Proof Weoccasionally omit the compositionwithu, e.g.,wewrite∇M f for (∇M f )◦u.
For k = 1, 2 we have

(∇M f ) · ∂ku = ∇ f̃ · ∂ku = ∂k (̃f ◦ u) = ∂k(f ◦ u)

and (∇M f ) · n = 0. Since

( 2∑
i,j=1

gij∂j(f ◦ u)∂iu
)

· ∂ku =
2∑

i,j=1

gijgik∂j(f ◦ u) =
2∑

j=1

δjk∂j(f ◦ u) = ∂k(f ◦ u)

and since the sum on the right-hand side of the first asserted identity is orthogonal
to n, we deduce the formula for ∇M f . With Vi = ∑2

j=1 g(−1/2)
ij ∂ju for i = 1, 2, the

vectors (V1, V2, b) define an orthonormal basis in R3, i.e.,
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Vi · Vk =
2∑

j,�=1

g(−1/2)
ij g(−1/2)

k�
∂ju · ∂�u =

2∑
j,�=1

g(−1/2)
ij g(−1/2)

k�
gj� = δik

and Vi · b = 0 for i = 1, 2. With this we have

div F̃ = tr DF̃ =
2∑

i=1

V

⊥

i DF̃Vi + b

⊥

DF̃b,

and hence by definition of divM

divM F =
2∑

i,j,k=1

g(−1/2)
ij g(−1/2)

ik (∂ju)

⊥

DF̃∂ku =
2∑

j,k=1

gjk∂j(F ◦ u) · ∂ku

which is the second identity. Assume now that F is tangential so that F ◦ u =∑2
i=1 Fi∂iu with uniquely defined functions Fi : ω → R. It then follows that

divM F =
2∑

i,j,k=1

gij(∂jFk∂ku + Fk∂j∂ku) · ∂iu

=
2∑

i,j,k=1

gij(∂jFkgik + Fk∂j∂ku · ∂iu)

=
2∑

k=1

(
∂kFk +

2∑
i,j=1

gijFk(∂k∂ju · ∂iu)
)
.

Since g−1 is symmetric, g−1 = (det g)−1 det ′g, and 2∂k(det g)1/2 = (det g)−1/2

det ′g : ∂kg, we have for k = 1, 2 that

2∑
i,j=1

gij(∂k∂ju · ∂iu) = 1

2

2∑
i,j=1

gij∂kgij = (det g)−1/2∂k(det g)1/2.

The combination of the last two equations shows that

divM F =
2∑

k=1

(
∂kFk + Fk(det g)−1/2∂k(det g)1/2

)
,

which is the asserted identity. The identity for the Laplace–Beltrami operator now
follows from the characterization of ∇M . �
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Example 8.1 For the parametrization u(θ, φ) = r(sin θ sin φ, sin θ cosφ, cos θ) of
the sphere Sr ⊂ R

3 with radius r > 0, we have det g(θ, φ) = r4 sin2 θ and �Sr f =
(r2 sin θ)−1

[
∂θ (sin θ∂θ f ) + (sin θ)−1∂2φ f

]
.

Remark 8.5 The representation F = ∑2
i=1(Vi, F)Vi = ∑2

i,j=1 gij(F · ∂iu)∂ju of a
tangential vector field F with the orthonormal vectors (V1, V2) constructed in the
proof of Proposition 8.4 yields the Weingarten equation ∂kb = −∑2

i,j=1 gijhki∂ju
with the coefficients hki of the second fundamental form defined below.

To define a measure of curvature, we let c : (−ε, ε) → M be a C2 curve in M
with |c′(t)| = 1 for all t ∈ (−ε, ε) and consider the quantity κ = c′′ · (n ◦ c). Since
c′ · (n ◦ c) = 0 we have

κ = −c′ · (n ◦ c)′ = −c′ · (∇M n c′).
We call ∇M n the shape operator which is closely related to the second fundamental
form defined through the symmetric matrix

hij = −∂ib · ∂ju = b · ∂i∂ju.

The mapping induced by ∇M n is also called the Weingarten map.

Proposition 8.5 (Shape operator) The matrix ∇M n is symmetric and defines a self-
adjoint linear operator on the tangent space of M into itself and is in the basis
(∂1u, ∂2u) given by the generally nonsymmetric matrix s = −hg−1.

Proof For i = 1, 2, 3 we have (∇M ni) · n = 0 and hence (∇M n)n = 0. The identity
|n|2 = 1 implies that n

⊥

(∇M n) = 0. Therefore, ∇M n defines an endomorphism
on the tangent space of M ; and for i = 1, 2 there exist sij, j = 1, 2, such that
(∇M n)∂iu = ∑2

j=1 sij∂ju, i.e.,

2∑
j=1

sij∂ju · ∂ku = (∇M n∂iu) · ∂ku = ∂i(n ◦ u) · ∂ku = ∂ib · ∂ku = −hik

and hence with ∂ju · ∂ku = gjk we deduce sg = −h. The identity also implies the
symmetry of ∇M n. �

The principal curvatures ofM are the eigenvalues of the self-adjoint symmetric
operator∇M n restricted to the tangent space ofM and are denoted by κ1 and κ2. The
eigenvectors corresponding to κ1 and κ2 are called directions of principal curvature.
The possibly nonsymmetric matrix s has the eigenvalues κ1 and κ2 and the mean and
Gauss curvature are defined as

H = tr s = κ1 + κ2, K = det s = κ1κ2,
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Fig. 8.8 Ellipsoidal surface with κ1 < 0, κ2 < 0 (left), hyperbolic surface with κ1 < 0, κ2 > 0
(middle), and parabolic surface with κ1 = 0, κ2 > 0 (right) relative to the unit normal n = e3

respectively. We have that |∇M n|2 = s

⊥

: s = tr(s2) = κ2
1 +κ2

2 = (tr s)2−2 det s =
H2 − 2K . We also note the identities H = −h : g−1 = tr(−hg−1).

Remark 8.6 The sign of H depends on the choice of the unit normal, whereas K
is independent of the sign of ±n. The definition implies κ1, κ2 ≥ 0 if M is locally
convex with respect to the chosen unit normal. Themean curvatureH is often defined
as (1/2) tr s = (κ1 + κ2)/2.

Typical local shapes of two-dimensional surfaces are given in the following
example and are shown in Fig. 8.8.

Example 8.2 Consider a local parametrization of a surface that is given by the graph
of the function f : ω → R, i.e., u(x) = (

x, f (x)
)
. Also assume that 0 ∈ ω with

∇f (0) = 0. Noting ∂iu = ei for i = 1, 2, and b = e3, g = I , and h = b ·∂i∂ju = D2f ,
we find that s = −hg−1 = −D2f at x = 0.

Proposition 8.6 (Mean curvature) We have

divM n = H, −�M idM = Hn,

where idM : M → R
3 denotes the identity on M , i.e., idM (p) = p for all p ∈ M

and �M is applied to every component of idM .

Proof With the characterization of divM of Proposition 8.4, we have

divM n =
m∑

i,j=1

gij∂j(n ◦ u) · ∂iu = −
2∑

i,j=1

gijhij = − tr(hg−1) = tr s.

We have ∇M idM = I − nn

⊥

and thus −�M idi
M = divM (nin) = niH. �

We have the following generalized integration-by-parts formula.

Proposition 8.7 (Integration-by-parts) For a vector field F : M → R
3 and a

compactly supported function ϕ : M → R, we have

∫

M

∇M ϕ · F ds = −
∫

M

ϕ divM F ds +
∫

M

H(F · n)ϕ ds.



244 8 Bending Problems

Proof Weassume thatϕ belongs to a coordinate chart parametrized by u and consider
the vector fieldG = ϕF onM .We setG = Gtan+Gnor withGnor = γ n for γ = G·n.
Then Gtan = ∑2

i=1 Gi∂iu and Proposition 8.4 and an integration-by-parts inR2 yield

∫

M

divM Gtan ds =
2∑

i=1

∫

ω

∂i(Gi(det g)1/2) dx

=
∫

ω

div
(
(det g)1/2[G1, G2]

)
dx = 0.

The product rule and (∇M γ ) · n = 0 show that

∫

M

divM Gnor ds =
∫

M

γ divM n ds =
∫

M

γ H ds =
∫

M

(G · n)H ds.

The combination of the identities and an application of the product rule prove the
asserted formula. �

Remark 8.7 If ϕ does not vanish on the boundary of M , then the boundary term∫
∂M ϕF · μ dt with the conormal μ = τ × n, where τ is the tangent on ∂ω, has to
be included on the right-hand side.

8.4.2 Normal Variations

For a surfaceM ⊂ R
3 with unit normal n and a function φ : M → R, we consider

for −ε < t < ε the normal variations of M defined by

Mt = {q ∈ R
3 : q = p + tϕ(p)n(p), p ∈ M },

cf. Fig. 8.9. ThenM0 = M and for sufficiently small ε > 0, the setsMt are surfaces
in R3. If u : ω → R

3 is a local parametrization ofM , then

ut = u + t(φ ◦ u)(n ◦ u)

Fig. 8.9 Normal variation of
a surface defined by a scalar
function φ

n

t = + t n
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is a local parametrization of Mt . For a function ft : Mt → R we denote f = f0 and
define

δf (p) = lim
t→0

t−1(ft(p) − f0(p)
)

for p ∈ M . The proposition below studies the changes of geometric quantities on
the surfacesMt and employs Gauss’ equation and an equivalent characterization of
the Laplace–Beltrami operator stated in the following lemma.

Lemma 8.2 (Christoffel symbols) With the Christoffel symbols of the first kind
Γij,m = ∂i∂ju · ∂mu and of the second kind Γ k

ij = ∑2
m=1 gkmΓij,m, we have Gauss’

equation and a representation of the Laplace–Beltrami operator, i.e.,

∂i∂ju =
2∑

k=1

Γ k
ij ∂ku + hijb, �M φ =

2∑
i,j

gij
(
∂i∂jφ −

2∑
k=1

Γ k
ij ∂kφ

)
.

Proof We have ∂i∂ju · n = hij and hence there exist αk
ij with

∂i∂ju · ∂�u =
2∑

k=1

αk
ij∂ku · ∂�u =

2∑
k=1

αk
ijgk�,

i.e., αm
ij = ∑2

�=1 g�m(∂i∂ju) ·∂�u. This implies the representation of ∂i∂ju. According
to Proposition 8.4 we have

�M φ =
2∑

i,j,�,m=1

gij∂j
(
g�m∂mφ∂�u

) · ∂iu

=
2∑

i,j,�,m=1

gij[∂jg
�m∂mφ∂�u + g�m(∂j∂mφ)∂�u + g�m∂mφ(∂j∂�u)

] · ∂iu

=
2∑

i,j,�,m=1

gij[∂jg
�m∂mφg�i + g�m(∂j∂mφ)g�i + g�m∂mφΓj�,i

]
.

Using 0 = ∂j
∑2

r=1(g
�rgrm) = ∑2

r=1(∂jg�rgrm + g�r∂jgrm), we find that ∂jg�m =
−∑2

r,k=1 g�r∂jgrkgkm and noting ∂jgrk = Γjr,k + Γjk,r , i.e.,

∂jg
�m = −

2∑
r,k=1

g�r(Γjr,k + Γjk,r)g
km,

shows that �M φ equals
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2∑
i,j,�,m=1

gij[ −
2∑

r,k=1

g�r(Γjr,k + Γjk,r)g
km∂mφg�i + g�m(∂j∂mφ)g�i + g�m∂mφΓj�,i

]

=
2∑

i,j=1

gij[ −
2∑

k,m=1

(Γji,k + Γjk,i)g
km∂mφ + ∂j∂iφ +

2∑
�,m=1

g�m∂mφΓj�,i
]

=
2∑

i,j=1

gij[∂j∂iφ −
2∑

k,m=1

gkmΓij,k∂mφ
]
.

This implies the asserted formula for �M φ. �

A consequence of this is Gauss’ theorema egregium which is stated below for
isometric parametrizations, cf. Proposition 8.2.

Lemma 8.3 (Gauss curvature for isometries) Assume that Γij,k = ∂i∂ju · ∂ku = 0
for all 1 ≤ i, j, k ≤ 2. Then K = 0.

Proof Using ∂2(∂
2
1u) = ∂1(∂1∂2u) and the identities ∂i∂ju = hijb, Lemma 8.2 shows

that
0 = ∂2(h11b) − ∂1(h12b) = (∂2h11 − ∂1h12)b + h11∂2n − h12∂1n.

The Weingarten equations ∂kb = −∑2
i,j=1 gijhki∂ju, cf. Remark 8.5, imply that for

the tangential part of the identity, we have

0 = −h11

2∑
i,j=1

gijh2i∂ju + h12

2∑
i,j=1

gijh1i∂ju = −
2∑

i,j=1

gij(h11h2i − h12h1i)∂ju.

The contributions to the sum vanish for i = 1 and hence

0 = −(det h)

2∑
j=1

g2j∂ju.

Since ∂1u and ∂2u are linearly independent, this implies det h = 0 and K = 0. �

Proposition 8.8 (Normal variations of geometric quantities) For 1 ≤ i, j ≤ 2 we
have

δgij = −2φhij, δg−1
ij = 2φ

2∑
k,�=1

gikhk�g�j, δ(det g)1/2 = φH(det g)1/2

and
δn = −∇M φ, δH = −�M φ − |s|2.
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Proof We identify φ with the function φ ◦ u and write b = n ◦ u. We also omit the
dependence on t in the following. Noting ∂ib · b = 0, we have

gt
ij = ∂iut · ∂jut = gij + tφ

(
∂iu · ∂jb + ∂ju · ∂ib

) + t2∂iφ∂jφ + t2φ2∂ib · ∂jb,

which implies δgij = −2φhij. With g−1g = I2 we find that δg−1 = −g−1(δg)g−1

and hence

δgij = −
2∑

k,�=1

gik(δgk�)g
�j = 2φ

2∑
k,�=1

gikhk�g�j.

The relations (det g)−1 det ′g = g−1 and g−1 : h = −H imply

δ(det g)1/2 = 1

2
(det g)−1/2(det ′g) : δg = 1

2
(det g)1/2g−1 : δg

= −φ(det g)1/2g−1 : h = φ(det g)1/2H.

Using b · ∂iu = 0, we deduce δb · ∂iu + b · δ∂iu = 0 and with δ∂iu = φ∂ib + (∂iφ)b
and b · ∂ib = 0, it follows that δb · ∂iu = −∂iφ. Since 0 = δ|b|2 = 2δb · b, we have
that there exist α1, α2 with δb = α1∂1u + α2∂2u. Noting

2∑
i=1

αi∂iu · ∂ku = δb · ∂ku = −∂kφ

we find that αi = −∑2
j=1 gij∂jφ which implies

δb = −
2∑

i,j=1

gij∂jφ∂iu,

and this expression coincides with −∇M φ. It remains to compute δH. For this we
first compute δhij. Noting

δ∂i∂ju = (∂i∂jφ)b + ∂iφ∂jb + ∂jφ∂ib + φ∂i∂jb,

and using b · ∂i∂jb = −∂ib · ∂jb, we have

b · (δ∂i∂ju) = ∂i∂jφ − φ∂ib · ∂jb.

The Weingarten equation ∂kb = ∑2
i,j=1 gijhki∂ju leads to

∂ib · ∂jb =
2∑

�,m,r,s=1

g�mhi�grshjr∂mu · ∂su =
2∑

r,s=1

grshishrj.
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The formula for δb and Gauss’ equation show that

δb · (∂i∂ju) = −( 2∑
k,�=1

gk�∂�φ∂ku
) · ( 2∑

m=1

Γ m
ij ∂mu

) = −
2∑

�=1

Γ �
ij ∂�φ.

We thus have

δhij = (δb) · ∂i∂ju + b · (δ∂i∂ju) = −
2∑

�=1

Γ �
ij ∂�φ + ∂i∂jφ − φ

2∑
k,�=1

gk�hi�hkj

and

2∑
i,j=1

gijδhij =
2∑

i,j=1

gij
(
∂i∂jφ −

2∑
�=1

Γ �
ij ∂�φ

)
− φ

2∑
i,j,k,�=1

gijgk�hi�hkj

= �M φ − φ|s|2.

For the mean curvature we find that

δH = −δ

2∑
i,j=1

gijhij

= −
2∑

i,j=1

(
(δgij)hij + gij(δhij)

)

= −2φ
2∑

i,j,k,�=1

gikhk�g�jhij − �M φ + φ|s|2

= −2φ|s|2 − �M φ + φ|s|2.

This proves the proposition. �

We finally derive variations for functionals measuring the surface area and the
enclosed volume by a surface. The variation of a functionalG defined onC2-surfaces
is the limit

δG (M )[φ] = lim
t→0

t−1(G (Mt) − G (M0)
)

for a surfaceM that is perturbed in the normal direction with a function φ as above.

Proposition 8.9 (Variations of area and volume functional) For M = ∂Ω define

A (M ) =
∫

M

1 ds, V (M ) =
∫

Ω

1 dξ = 1

3

∫

M

s · n ds.
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We have

δA (M )[φ] =
∫

M

Hφ ds, δV (M )[φ] = 1

3

∫

M

(1 + H)φ ds.

Proof The first identity is a direct consequence of Proposition 8.8. The second iden-
tity follows from idMt · n = tφ. �

8.4.3 Variation of the Willmore Functional

The normal variations of geometric quantities allow us to characterize stationary
surfaces for the Willmore functional and to define related evolution problems. For a
closed surfaceM ⊂ R

3, the bending energy is given by the Willmore functional

W (M ) = 1

2

∫

M

H2 ds.

The following theorem characterizes critical points of the functional.

Theorem 8.5 (Euler–Lagrange equations) For a normal variation of M defined by
a function φ : M → R, we have

δW (M )[φ] =
∫

M

(−�M H)φ − |∇M n|2Hφ + 1

2
H3φ ds,

where |∇M n|2 = H2 − 2K.

Proof We assume that φ is supported in a coordinate chart. We then have

δ
1

2

∫

M

H2 ds = 1

2
δ

∫

ω

H2(det g)1/2 dx

=
∫

ω

H(δH)(det g)1/2 + 1

2
H2δ(det g)1/2 dx

=
∫

ω

H(−�M φ − φ|s|2)(det g)1/2 + 1

2
φH3(det g)1/2 dx

=
∫

M

H(−�M φ) − φH|s|2 + 1

2
φH3 ds.

Noting |s|2 = |∇M n|2 = H2 − 2K and integrating-by-parts proves the theorem. �
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Definition 8.7 For a family of surfaces (Mt)t∈[0,T ] and a family of points on the
surfaces given by a differentiable function c : [0, T ] → R

3 with c(t) ∈ Mt for all
t ∈ [0, T ] we define the normal velocity of Mt at q0 = c(t0) by

V (q0, t0) = c′(t0) · n(q0).

We let

(φ,ψ)Mt =
∫

Mt

φψ ds

denote the L2 inner product on Mt .

Definition 8.8 (i)A family of surfaces (Mt)t∈[0,T ] evolves according to theWillmore
flow if

(V (t), φ)Mt = −δW (Mt)[φ]

for all t ∈ [0, T ] and all φ ∈ C∞(Mt).
(ii) A family of surfaces (Mt)t∈[0,T ] evolves according to the Helfrich flow if there
exist λ,μ : [0, T ] → R such that

(V (t), φ)Mt = −δW (Mt)[φ] + λ(t)δA (Mt)[φ] + μ(t)δV (Mt)[φ]

for all t ∈ [0, T ] and all φ ∈ C∞(Mt) and the mappings t �→ A (Mt) and t �→
V (Mt) are constant.

Remark 8.8 The existence of solutions for the Willmore and Helfrich flow is only
understood in special situations, e.g., when the initial surface M0 is a small pertur-
bation of a sphere.

8.4.4 Discretization of the Laplace–Beltrami Operator

For a surface M ⊂ R
3, let Mh be an approximate surface that is the union of

flat triangles in the triangulation Th with vertices Nh ⊂ R
3, cf. Fig. 8.10. The

elementwise constant unit normal nh on Mh defines the tangential gradient of a
function vh ∈ S 1(Th) via

Fig. 8.10 Triangulated
surface (left) and
construction of an auxiliary
tetrahedron with the
auxiliary node
z̃T = xT + |T |1/2nT (right)

z̃T
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∇Mh vh = Ph∇ ṽh = (
I − nh ⊗ nh

)∇ ṽh,

where ṽh is an arbitrary extension of vh to R
3, e.g., by introducing for each triangle

T ∈ Th the auxiliary node z̃T = xT +|T |1/2nh|T , cf. Fig. 8.10, and setting ṽh (̃zT ) = 0.
The Laplace–Beltrami operator on a surface M leads to a Poisson problem on M
of the form

−�M u = f on M , u = uD on γD,h, ∇Mh u · μh = g on γN,h,

where μh is the conormal on ΓN,h ⊂ ∂Mh. A discrete approximation seeks uh ∈
S 1(Th) such that uh|γD,h = uD,h

∫

Mh

∇Mh uh · ∇Mh vh ds =
∫

Mh

f vh ds +
∫

γN,h

ghvh dt

for all vh ∈ S 1(Th) with vh|γD,h = 0. If γD,h = ∅, then the condition ∫
Mh

uh ds = 0
is imposed. TheMatlab code displayed in Fig. 8.11 realizes the numerical scheme
for the Laplace–Beltrami operator.

8.4.5 A Numerical Scheme for the Willmore Flow

We recall that the Willmore flow for a given initial surfaceM0 ⊂ R
3 seeks a family

of surfaces (Mt)t∈[0,T ] that solve the equation

V = �M H + H|∇M n|2 − 1

2
H3,

where V is the normal velocity of (Mt)t∈[0,T ], n a unit normal onMt , andH themean
curvature ofMt . For the position vector X : Mt → R

3 onM , we have V = (∂tX) ·n
and Hn = −�M idM . To discretize the evolution equation we consider a time step
tk ∈ [0, T ] and assume that we are given a triangulation T k

h that defines the closed
polyhedral surface M k

h with unit normal nk
h ∈ L 0(Th)

3. We also suppose that
ñk

h ∈ S 1(T k
h )3 and Hk

h ∈ S 1(T k
h ) approximate the unit normal n and the mean

curvature of a smooth approximation of M k
h . To define the new surface M k+1

h , we
compute a mapping

Xk+1
h : M k

h → R
3
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Fig. 8.11 Matlab routine for the approximation of the Poisson problem on a surface
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Fig. 8.12 Deformation
Xk+1

h : M k
h → R

3 of a
surface M k

h that defines the

new surface M k+1
h

k
h

Xk+1
h k+1

h

that defines M k+1
h = Xk+1

h (M k
h ), cf. Fig. 8.12. A function or vector field on M k

h is

identified with a function on M k+1
h via the parametrization Xk+1

h . The vector field

Xk+1
h ∈ S 1(T k

h )3 is obtained by the following semi-implicit discretization of the
Willmore flow from [2].

Algorithm 8.2 (DiscreteWillmore flow) For a discrete surface M 0
h , functions ñ0h ∈

S 1(T 0
h )3 and H0

h = A 0
h divM 0

h
ñ0h. and a step size τ > 0, compute the sequence

(M k
h )k=0,...,K via M k+1

h = Xk+1
h (M k

h ), where Xk+1
h ∈ S 1(T k

h )3 and Hk+1
h ∈

S 1(T k
h ) solve

1

τ

(
Xk+1

h − idM k
h
, vhñk

h

)
k,h + (∇M k

h
Hk+1

h ,∇M k
h

vh
)
k + 1

2

(|Hk
h |2Hk+1

h , vh
)
k,h

= (
Hk

hA
k

h |∇M k
h

ñk
h|2, vh

)
k,h,

(
Hk+1

h ñk
h, Yh

)
k,h − (∇M k

h
Xk+1

h ,∇M k
h

Yh
)
k = 0

for all vh ∈ S 1(T k
h ) and Yh ∈ S 1(T k

h )3, and set ñk+1
h = A k+1

h nk+1
h . Stop the

iteration if ‖vk+1
h ‖h,k ≤ εstop for V k+1

h = (Xk+1
h − idM k

h
)/τ and vk+1

h = V k+1
h · ñk

h.

The averaging operator A k
h : L1(M k

h ) → S 1(T k
h ) is defined through

A k
h v(z) = 1

|ωz|
∑

T∈T k
h , z∈T

|T | v|T , |ωz| =
∑

T∈T k
h , z∈T

|T |,

and the inner product (·, ·)k,h is for v, w ∈ C(M k
h ) defined by

(v, w)k,h =
∫

M k
h

I k
h [vw] dx.

Remark 8.9 The precise stability and convergence properties of Algorithm 8.2 are
not known. The algorithm has an equidistribution property in the sense that it equidis-
tributes the nodes of the discrete surface which avoids mesh irregularities. Details
are discussed in [2].
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According to Proposition 8.9 it suffices to impose that

∫

M

V ds =
∫

M

V H ds = 0

to guarantee that the surface area and the enclosed volume are preserved. This leads
to an identity for the associated Lagrange multipliers in the evolution equation, i.e.,

V = �M H + H|∇M n|2 − 1

2
H3 + λH + μ.

Testing the equation with a constant function and withH −H , whereH is the integral
mean of H, leads to

μ = 1

|M |
∫

M

−H|∇M n|2 + 1

2
H3 − λH ds,

λ =
∫
M

( − H|∇M n|2 + 1
2H3

)
(H − H) + |∇M H|2 ds∫

M (H − H)2 ds
.

To incorporate the constraints in Algorithm 8.2, the term λH is discretized implic-
itly if λ ≥ 0 and explicitly otherwise. The Matlab implementation displayed in
Fig. 8.14 requires the bilinear forms

(ϕ�
z , ϕy)k,h, (∇ϕz,∇ϕy)k, (∇ϕ�

z ,∇ϕm
y )k,

(ϕ�
z , nϕy)k,h, (ϕzA

k
h |∇M k

h
ñk

h|2, ϕy)k,h, (|Hk
h |2ϕz, ϕy)k,h,

for pairs of nodes z, y ∈ N k
h and associated scalar nodal basis functions ϕz, ϕy ∈

S 1(Th)
k and vectorial nodal basis functions ϕ�

z = ϕze� and ϕm
y = ϕyem with

the canonical basis vectors e�, em ∈ R
3. The representing matrices are encoded

in the arrays m, s, S, M_n, m_w provided by the routine shown in Fig. 8.13
while the last one is directly computed and stored in the array m_H. The routine
willmore_matrices.m also computes an approximation of the mean curvature
through Hk

h = A k
h (divM k

h
ñk

h).
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Fig. 8.13 Matrices required in the implementation of the Willmore and the Helfrich flow
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Fig. 8.14 Numerical approximation of the Willmore and the Helfrich flow



References 257

References

1. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner-Mindlin
plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989). http://dx.doi.org/10.1137/0726074

2. Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric approximation ofWillmore flow and related
geometric evolution equations. SIAM J. Sci. Comput. 31(1), 225–253 (2008). http://dx.doi.org/
10.1137/070700231

3. Bartels, S.: Approximation of large bending isometries with discrete Kirchhoff triangles. SIAM
J. Numer. Anal. 51(1), 516–525 (2013). http://dx.doi.org/10.1137/110855405

4. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer
Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

5. Braess, D.: Finite Elements, 3rd edn. Cambridge University Press, Cambridge (2007)
6. Ciarlet, P.G.: Mathematical Elasticity. Vol. II: Theory of Plates, Studies in Mathematics and

Its Applications, vol. 27. North-Holland Publishing, Amsterdam (1997)
7. Conti, S.: Derivation of nonlinear plate models (2009). personal communication
8. Dziuk,G.: Finite elements for theBeltrami operator on arbitrary surfaces. In: PartialDifferential

Equations andCalculus ofVariations. LectureNotes inMath., vol. 1357, pp. 142–155. Springer,
Berlin (1988). http://dx.doi.org/10.1007/BFb0082865

9. Dziuk, G.: Computational parametric Willmore flow. Numer. Math. 111(1), 55–80 (2008).
http://dx.doi.org/10.1007/s00211-008-0179-1

10. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of
nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11),
1461–1506 (2002). http://dx.doi.org/10.1002/cpa.10048

11. Girault, V., Raviart, P.A.: Finite ElementMethods for Navier-Stokes Equations, Springer Series
in Computational Mathematics, vol. 5. Springer, Berlin (1986)

12. Hornung, P.:ApproximatingW 2,2 isometric immersions.C.R.Math.Acad. Sci. Paris346(3–4),
189–192 (2008). http://dx.doi.org/10.1016/j.crma.2008.01.001

13. Kühnel, W.: Differential Geometry. Student Mathematical Library, vol. 16. American Mathe-
matical Society, Providence (2002)

14. Willmore, T.J.: Riemannian geometry. Oxford Science Publications. The Clarendon Press,
Oxford University Press, New York (1993)

http://dx.doi.org/10.1137/0726074
http://dx.doi.org/10.1137/070700231
http://dx.doi.org/10.1137/070700231
http://dx.doi.org/10.1137/110855405
http://dx.doi.org/10.1007/BFb0082865
http://dx.doi.org/10.1007/s00211-008-0179-1
http://dx.doi.org/10.1002/cpa.10048
http://dx.doi.org/10.1016/j.crma.2008.01.001

	8 Bending Problems
	8.1 Mathematical Modeling
	8.1.1 Bending Models
	8.1.2 Relations to Hyperelasticity
	8.1.3 Relations to Linear Elasticity
	8.1.4 Properties of Isometries

	8.2 Approximaton of Linear Bending Models
	8.2.1 Discrete Kirchhoff Triangles
	8.2.2 Realization
	8.2.3 Reissner--Mindlin Plate

	8.3 Approximation of the Nonlinear Kirchhoff Model
	8.3.1 Discretization
	8.3.2 Iterative Minimization
	8.3.3 Realization

	8.4 Willmore Flow
	8.4.1 Tangential Differentiation and Curvature
	8.4.2 Normal Variations
	8.4.3 Variation of the Willmore Functional
	8.4.4 Discretization of the Laplace--Beltrami Operator
	8.4.5 A Numerical Scheme for the Willmore Flow

	References


