
Chapter 7
Harmonic Maps

7.1 Analytical Properties

Harmonic maps are stationary points of the Dirichlet energy in the set of vector
fields that attain their values in a given target manifold, e.g., the unit sphere. Related
problems arise in various applications and the problem of computing harmonic maps
serves as a mathematical model problem for constrained minimization problems on
infinite-dimensional spaces. We will consider the case of computing harmonic maps
into the unit sphere Sm−1 = {s ∈ R

m : |s| = 1}, i.e., unit-length vector fields, but
notice that a large class of target manifolds can be treated with the same ideas. We
thus aim at approximating minimizers u ∈ A for

I (u) = 1

2

∫

Ω

|∇u|2 dx

with the set of admissible vector fields

A = {v ∈ H1(Ω;Rm) : |v(x)| = 1 for a.e. x ∈ Ω, v|ΓD = uD}.

The function uD ∈ L2(ΓD;Rm) on the nonempty set ΓD ⊂ ∂Ω is assumed to admit
an extension ũD ∈ H1(Ω;Rm) with |̃uD(x)| = 1 for almost every x ∈ Ω . We
briefly summarize the main properties of harmonic maps and refer the reader to the
textbooks [9, 12] for more details.

7.1.1 Existence and Nonuniqueness

The existence of minimizers is established by the direct method in the calculus of
variations.
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184 7 Harmonic Maps

Theorem 7.1 (Existence) There exists a minimizer u ∈ A .

Proof Since uD admits an extension to a unit-length vector field field ũD ∈ A there
exists an infimizing sequence (u j ) j∈N ⊂ A with lim j→∞ I (u j ) = infv∈A I (v).
Since u j − ũD ∈ H1

D(Ω;Rm), we have that (u j ) j∈N is bounded in H1(Ω;Rm).
A subsequence converges weakly to a vector field u ∈ H1(Ω;Rm) with u|ΓD =
uD. To show that u ∈ A we notice that the subsequence converges strongly in
L2(Ω;Rm), and hence there exists a further subsequence that converges pointwise
almost everywhere to u. Therefore, |u| = 1 almost everywhere in Ω , i.e., u ∈ A .
The weak lower semicontinuity of I implies that u is a minimizer. �

Remark 7.1 The proof shows that the set A is weakly closed.

The essential condition that A �= ∅ may be difficult to verify in practice even if
uD ∈ L2(ΓD;Rm) is smooth and satisfies |uD(x)| = 1 for almost every x ∈ ∂Ω .

Example 7.1 (Nonexistence) For Ω = B1(0) ⊂ R
2 and uD(x) = x there is no

function ũD ∈ H1(Ω;R2) with ũD|∂Ω = uD and |̃uD(x)| = 1 for almost every
x ∈ Ω . This is a consequence of the Hopf–Poincaré formula and Brouwer’s fixed
point theorem.

Due to the invariance of the Dirichlet energy under rotations, we cannot expect
harmonic maps to be unique.

Example 7.2 (Nonuniqueness) Let Ω = (0, 1), ΓD = ∂Ω = {0, 1}, m = 3, and let
u : (0, 1) → S2 be minimal for

I (u) = 1

2

1∫

0

|u′|2 dx

in the set of functions v ∈ A with v(0) = e and v(1) = −e for some e ∈ S2.
Then for every rotation Q ∈ SO(3) = {R ∈ R

3×3 : R

⊥

R = I3, det R = 1}
with Qe = e, we have that ũ = Qu is another minimizer. The harmonic maps
u1(x) = [cos(πx), 0, sin(πx)]

⊥

, x ∈ (0, 1), and u2 = Qu1, where Q ∈ R
3×3

realizes a rotation by π about the first coordinate axis, with identical Dirichlet energy
are shown in Fig. 7.1.

Fig. 7.1 Two harmonic maps onΩ = (0, 1)with the same boundary values and identical Dirichlet
energy; the length of the arrows is scaled for graphical purposes
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Remarks 7.2 (i) Harmonic maps can be approximated by penalizing the pointwise
constraint, e.g., considering for ε > 0 the Ginzburg–Landau regularization

Iε(u) = 1

2

∫

Ω

|∇u|2 dx + ε−2

4

∫

Ω

(|u|2 − 1)2 dx

and investigating the limiting behavior of minimizers (uε)ε>0 as ε → 0.
(ii) Formally, a harmonic map u and the Lagrange multiplier λ associated to the
length constraint define a saddle-point for the functional

L(u, λ) = 1

2

∫

Ω

|∇u|2 dx +
∫

Ω

λ(|u|2 − 1) dx .

7.1.2 Euler–Lagrange Equations and Nonregularity

The Euler–Lagrange equations define a nonlinear partial differential equation.

Theorem 7.2 (Euler–Lagrange equations) Let u ∈ A be stationary for the Dirichlet
energy. Then we have

(∇u,∇w) = (|∇u|2u, w)

for all w ∈ H1
D(Ω;Rm) ∩ L∞(Ω;Rm).

Proof Letw ∈ H1(Ω;Rm)∩L∞(Ω;Rm) and ε > 0be such that ε‖w‖L∞(Ω) ≤ 1/2.
We then have that |u(x) + rw(x)| ≥ 1/2 for almost every x ∈ Ω and every r ∈ R

with |r | ≤ ε. It follows that the map

ur (x) = u(x) + rw(x)

|u(x) + rw(x)|

belongs to H1(Ω;Rm) and satisfies |ur | = 1 in Ω and ur |ΓD = uD. Since u0 = u,
we have that the function t �→ I (ur ) is minimal at r = 0. We note that

d

dr

∣∣∣
r=0

ur = w − u(u · w).

A differentiation shows that

0 = d

dr

∣∣∣
r=0

I (ur ) =
d∑

�=1

∫

Ω

∂�u · ∂�

[
w − u(u · w)

]
dx

and the orthogonality (∂�u) · u = 0 for � = 1, 2, . . . , d implies the assertion. �
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Definition 7.1 Solutions u ∈ A of the Euler–Lagrange equation are called
harmonic maps (into the sphere).

Remark 7.3 The function λ = |∇u|2 ∈ L1(Ω) is the Lagrange multiplier associated
to the pointwise constraint |u(x)|2 = 1.

Solutions of the Euler–Lagrange equations are in general neither energy
minimizing nor regular.

Example 7.3 (Nonregularity) Let Ω = (−1, 1)3 and uD(x) = x/|x | for x ∈ ΓD =
∂Ω . Then u(x) = x/|x | for x ∈ Ω satisfies u ∈ A and is a harmonic map.Moreover
u is minimal for I in the set of vector fields in A .

Remarks 7.4 (i) For d = 2, harmonic maps are smooth.
(ii) If d = 3, then energy minimizing harmonic maps u are partially regular in
the sense that u is smooth in Ω \ S for a set S with H 1(S) = 0, e.g., a set of
points. Harmonic maps that are not globally energyminimizing can be discontinuous
everywhere.

7.1.3 Compactness

The lack of uniqueness and regularity of harmonic maps makes it difficult to quantify
stability properties. The weaker concept of compactness shows that accumulation
points of (almost) harmonicmaps are again harmonicmaps, i.e., that bounded subsets
of the set of harmonic maps are weakly compact. The key to this property is the
following equivalent characterization of harmonic maps. We restrict ourselves to the
case m = 3 for ease of presentation.

Lemma 7.1 (Equivalent characterization) Let m = 3. The function u ∈ A is a
harmonic map if and only if

(∇u,∇[u × φ]) =
d∑

�=1

(∂�u, u × ∂�φ) = 0

for all φ ∈ H1
D(Ω;R3) ∩ L∞(Ω;R3). This is the case if and only if

(∇u,∇w) = 0

for all w ∈ H1
D(Ω;R3) satisfying u · w = 0 almost everywhere in Ω .

Proof (i) Let u ∈ A be a harmonic map. Then the choice w = u × φ in the Euler–
Lagrange equations, the fact that u · (u × φ) = 0, and the identity

(∂�u, ∂�[u × φ]) = (∂�u, u × ∂�φ)
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for � = 1, 2, . . . , d imply the first characterization. The second one is an immediate
consequence of the Euler–Lagrange equations if w ∈ H1

D(Ω;R3) ∩ L∞(Ω;R3)

with w · u = 0 in Ω . A truncation argument shows that this is satisfied for all
w ∈ H1

D(Ω;R3) with w · u = 0 almost everywhere in Ω .
(ii) Assume that the first equation of the lemma is satisfied and let w ∈ H1

D(Ω;R3)∩
L∞(Ω;R3). Forφ = u×wwehave, due to the formula a×(b×c) = b(a ·c)−c(a ·b)

that
u × φ = u × (u × w) = (u · w)u − |u|2w = (u · w)u − w.

Moreover, we have for � = 1, 2, . . . , d that

∂�[(u · w)u] = (∂�u · w)u + (u · ∂�w)u + (u · w)∂�u.

With ∂�u · u = 0 this implies that

0 =
d∑

�=1

[
(∂�u, (u · w)∂�u) − (∂�u, ∂�w)

] = (|∇u|2u, w) − (∇u,∇w)

which proves that u is a harmonic map.
(iii) Suppose that the second characterization is satisfied and let φ ∈ H1

D(Ω;R3) ∩
L∞(Ω;R3). The function w = u × φ satisfies u · w = 0 so that the first characteri-
zation holds. �

Remark 7.5 The condition that (∇u,∇w) = 0 for all w ∈ H1
D(Ω;R3) satisfying

u · w = 0 shows that u is stationary with respect to tangential perturbations.

The equivalent characterizations imply the following weak compactness result
which will serve as a guideline to prove convergence of numerical approximations.

Theorem 7.3 (Weak compactness) Let (R j ) j∈N ⊂ H1
D(Ω;R3)′ be a sequence of

functionals with ‖R j‖H1
D(Ω)′ → 0 as j → ∞, and assume that (u j ) j∈N ⊂ A is

such that
(∇u j ,∇w) = (|∇u j |2u j , w) + R j (w)

for every j ∈ N and all w ∈ H1
D(Ω;R3) ∩ L∞(Ω;R3). If u ∈ H1(Ω;R3) is such

that u j ⇀ u in H1(Ω;R3) as j → ∞, then we have u ∈ A and u is a harmonic
map.

Proof The weak closedness ofA implies that u ∈ A . For every φ ∈ H1
D(Ω;R3) ∩

C∞(Ω;R3) and j ∈ N, the choice ofw = u j ×φ yields, using ∂�u j ·(∂�u j ×φ) = 0,

d∑
�=1

(∂�u j , u j × ∂�φ) = R j (u j × φ).

Since u j → u in L2(Ω;R3) and ∂�u j ⇀ ∂�u in L2(Ω;R3), we have
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(∂�u j , u j × ∂�φ) = (∂�u j , u × ∂�φ) + (∂�u j , [u j − u] × ∂�φ)

→ (∂�u, u × ∂�φ)

as j → ∞ for � = 1, 2, . . . , d. EmployingR j → 0 in H1
D(Ω;R3)′ and that u j × φ

is bounded in H1
D(Ω;R3), we also have

R j (u j × φ) → 0

as j → ∞. Altogether we find that u satisfies

d∑
�=1

(∂�u, u × ∂�φ) = 0

for all φ ∈ H1
D(Ω;R3) ∩ C∞(Ω;R3). A density argument shows that this identity

holds for all φ ∈ H1
D(Ω;R3) ∩ L∞(Ω;R3) so that Lemma7.1 implies that u is a

harmonic map. �
Remarks 7.6 (i) The equivalent characterization of harmonic maps involving the
cross product allowed us to use that the product of aweakly and a strongly convergent
sequence is weakly convergent. We remark that the identification of the limit of the
square of a weakly convergent sequence is difficult in general and a passage to a limit
in the Euler–Lagrange equations for harmonic maps does not imply that the limit is
a harmonic map.
(ii) While the existence of harmonic maps into general target manifolds other than
the unit sphere can be established analogously, related compactness results are false
in general. For d = 2 and sufficiently smooth target manifolds, regularity and
compactness can be proved, cf. [11].

7.1.4 Harmonic Map Heat Flow

The harmonic map heat flow is the L2-gradient flow of the Dirichlet energy subject
to the unit length constraint and is given by

∂t u − �u = |∇u|2u, |u(t, ·)| = 1, u(0) = u0, u|ΓD = uD, ∂nu|ΓN = 0

for almost every t ∈ [0, T ]. To avoid very irregular solutions, it is important to
construct solutions that satisfy an energy law.

Theorem 7.4 (Existence) Given u0 ∈ H1(Ω;Rm) with |u0(x)| = 1 for almost
every x ∈ Ω , there exists u ∈ H1([0, T ]; L2(Ω;Rm)) ∩ L∞([0, T ]; H1(Ω;Rm))

such that |u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω , u(0) = u0,

(∂t u, w) + (∇u,∇w) = (|∇u|2u, w)
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for almost every t ∈ [0, T ] and all w ∈ H1
D(Ω;Rm) ∩ L∞(Ω;Rm), and

I (u(T ′)) +
T ′∫

0

‖∂t u‖2 dt ≤ I (u0)

for almost every T ′ ∈ [0, T ].
Proof The result follows from the convergence of numerical approximations proved
below. �

Remark 7.7 Uniqueness of solutions is known within the class of energy decreasing
solutions if d = 2.

Solutions of the harmonic map heat flow can develop singularities in finite time.

Example 7.4 (Finite-time blowup [8]) Let Ω = B1(0) ⊂ R
2, ΓD = ∂Ω , and

uD = u0|ΓD for u0 defined for b > 0 by

u0(x) = 1

|x |
(
x1 sin h(|x |), x2 sin h(|x |), |x | cos h(|x |))

for x ∈ Ω \ {0} and h(r) = br2. If and only if b ≥ π , the corresponding solution
of the harmonic map heat flow is singular in the sense that there exists Tc > 0 with
limt→Tc ‖∇u(t)‖L∞(Ω) = ∞.

7.2 Numerical Approximation

Wediscuss in this section the approximationof harmonicmaps andemploy arguments
from [1, 3, 5, 6, 10].

7.2.1 Discrete Harmonic Maps

It is straightforward to verify that the only polynomial vector fields that are pointwise
of unit length are constant vector fields. Therefore, the constraint cannot be imposed
almost everywhere onpolynomial finite element functions. The followingproposition
shows that it is sufficient to impose the constraint at the nodes of a triangulation,
cf. Fig. 7.2.

Proposition 7.1 (Nodal constraint) Let (Th)h>0 be a family of regular triangula-
tions of Ω ⊂ R

d and let (uh)h>0 ⊂ H1(Ω;Rm) be such that uh ∈ S 1(Th)m and
|uh(z)| = 1 for all z ∈ Nh and every h > 0. If uh ⇀ u in H1(Ω;Rm) for some
u ∈ H1(Ω;Rm), then we have |u(x)| = 1 for almost every x ∈ Ω .
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Fig. 7.2 The unit-length
constraint is only imposed at
the nodes of the
triangulation; the linearly
interpolated vector field may
violate the constraint
between two nodes

Proof We have Ih |uh |2 = 1 for every h > 0 and hence by nodal interpolation
estimates and D2uh |T = 0 for every T ∈ Th that

∥∥|uh |2 − 1
∥∥

L2(T )
= ∥∥|uh |2 − Ih |uh |2∥∥L2(T )

≤ ch2
T ‖D2|uh |2‖L2(T )

= ch2
T ‖|∇uh |2‖L2(T ) = ch2

T ‖∇uh‖L∞(T )‖∇uh‖L2(T ).

The inverse estimate ‖∇uh‖L∞(T ) ≤ ch−1
T ‖uh‖L∞(T ) = ch−1

T and a summation over
T ∈ Th imply ∥∥|uh |2 − 1

∥∥ ≤ ch‖∇uh‖

and prove that |uh | → 1 in L2(Ω) as h → 0. Since also |uh′ | → |u| as h′ → 0
almost everywhere in Ω for an appropriate subsequence h′ > 0, we deduce |u| = 1
in Ω . �

The proposition motivates minimizing the Dirichlet energy restricted to finite
element functions that satisfy the boundary conditions and the unit-length constraint
at the nodes of the underlying triangulation.

Theorem 7.5 (Discrete harmonic maps) Assume that ũD,h ∈ S 1(Th)m satisfies
|̃uD,h(z)| = 1 for all z ∈ Nh and uD,h = ũD,h |ΓD . There exists a minimizer uh ∈ Ah

for I in the set of discrete admissible vector fields

Ah = {vh ∈ S 1(Th)m : |vh(z)| = 1 for all z ∈ Nh, vh |ΓD = uD,h}.

The function uh ∈ Ah is stationary for I in the set of functions in Ah if and only if

(∇uh,∇wh) = 0

for all wh ∈ Fh[uh] with

Fh[uh] = {
wh ∈ S 1

D(Th)m : wh(z) · uh(z) = 0 for all z ∈ Nh
}
.

Proof The functional I is coercive and continuous onAh , and this implies the exis-
tence of a minimizer. To verify the second statement, let uh ∈ Ah be stationary
for I and let wh ∈ Fh[uh]. For every r ∈ R, we have that |uh(z) + rwh(z)|2 =
|uh(z)|2 + r2|wh(z)|2 ≥ 1 for all z ∈ Nh and we may define
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ur
h = Ih

( uh + rwh

|uh + rwh |
)

=
∑

z∈Nh

uh(z) + rwh(z)

|uh(z) + rwh(z)|ϕz .

For every z ∈ Nh a Taylor expansion at r = 0 shows that

ur
h(z) = uh(z) + rwh(z) + r2ξh(z)

for a function ξh ∈ S 1
D(Th)m . Therefore, if uh is stationary for I , we have

0 = lim
r→0

1

r

(
I (ur

h) − I (uh)
) = (∇uh,∇wh).

Conversely, assume that (∇uh,∇wh) = 0 for all wh ∈ Fh[uh]. If (ur
h)r∈(−ε,ε) is a

continuously differentiable path in Ah with w0
h = uh , then we have

ur
h = uh + rwh + φ(r)ξh

with a vector field ξh ∈ S 1
D(Th)m , a function φ such that φ(r)/r → 0 as r → 0,

and wh ∈ S 1
D(Th)m defined by

wh(z) = d

dr

∣∣∣
r=0

wr
h(z).

Since |ur
h(z)|2 = 1 for every z ∈ Nh and r ∈ (−ε, ε), we have wh(z) · uh(z) = 0

for all z ∈ Nh , i.e., wh ∈ Fh[uh]. This implies

I (ur
h) = I (uh) + r(∇uh,∇wh) + φ(r)(∇uh,∇ξh) + I (rwh + φ(r)ξh)

and thus, using (∇uh,∇wh) = 0, we have
(
I (ur

h) − I (uh)
)
/r → 0 as r → 0, i.e.,

r �→ I (ur
h) is stationary at r = 0. �

The theorem motivates the following definition.

Definition 7.2 A function uh ∈ Ah is called a discrete harmonic map if

(∇uh,∇wh) = 0

for all wh ∈ Fh[uh].
Remark 7.8 The space of admissible test functions Fh[uh] may be regarded as the
tangent space ofAh at uh . In particular, a discrete harmonicmap is stablewith respect
to discrete tangential perturbations.

The compactness result of Theorem7.3 implies the convergence of discrete
harmonic maps as h → 0. For ease of presentation we again restrict to the case
m = 3. The perturbation functionals Rh in the following theorem model an inexact
solution of the discrete problems.
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Theorem 7.6 (Discrete compactness) Let (uh)h>0 ⊂ H1(Ω;R3) be a bounded
sequence of almost discrete harmonic maps associated to the sequence (Th)h>0,
i.e., for every h > 0, we have uh ∈ Ah and there exists Rh ∈ H1

D(Ω;R3)′ with

(∇uh,∇wh) = Rh(wh)

for all wh ∈ Fh[uh]. If Rh → 0 in H1
D(Ω;Rm)′ and uD,h → uD in L2(ΓD) as

h → 0, then every weak accumulation point of (uh)h>0 is a harmonic map.

Proof Let u ∈ H1(Ω;R3) be a weak accumulation point of the sequence (uh)h>0
and without loss of generality, assume that the entire sequence converges weakly to
u, i.e., uh ⇀ u in H1(Ω;R3) as h → 0. Proposition7.1 shows that |u| = 1 almost
everywhere in Ω . Moreover, the weak continuity of the trace operator implies that
u|ΓD = uD. Given φ ∈ C∞(Ω;R3) ∩ H1

D(Ω;R3), set wh = Ih(uh × φ). Then
wh ∈ S 1

D(Th)3 with wh(z) · uh(z) = 0 for all z ∈ Nh . An element-wise nodal
interpolation estimate and D2uh |T = 0 for every T ∈ Th show that

‖∇(wh − uh × φ)‖L2(T ) ≤ chT ‖D2(uh × φ)‖L2(T )

≤ chT
(‖∇uh‖L2(T )‖∇φ‖L∞(T ) + ‖uh‖L∞(T )‖∇φ‖L2(T )

)
.

This implies that ‖∇wh‖ ≤ c and wh − uh × w → 0 in H1(Ω;R3) as h → 0.
Therefore, we have

Rh(wh) = (∇uh,∇wh) = (∇uh,∇[uh × φ]) + (∇uh,∇[wh − uh × φ])

with
(∇uh,∇[wh − uh × φ]) → 0

as h → 0. For the other term on the right-hand side, we have

d∑
�=1

(∂�uh, ∂�[uh × φ]) =
d∑

�=1

(∂�uh, uh × ∂�φ)

and since uh → u in L2(Ω;R3) and ∇uh ⇀ ∇u in L2(Ω;R3×3) as h → 0, we
deduce that

0 = lim
h→0

(∇uh,∇[uh × φ]) =
d∑

�=1

(∂�u, u × ∂�φ).

This proves that u is a harmonic map. �
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7.2.2 Iterative Computation

The iterative computation of discrete harmonic maps is based on the computation of
tangential corrections that define a new approximation after a node-wise projection
onto the unit sphere. The following algorithm may be regarded as a discrete version
of the H1-flow for harmonic maps which is formally defined as

(∇∂t u,∇w) = −(∇u,∇w) + (|∇u|2u, w).

For w with w · u = 0, the second term on the right-hand side disappears. Moreover,
we have ∂t u ·u = 0 if |u(t, x)| = 1 for almost every (t, x) ∈ [0, T ]×Ω .We employ a
semi-implicit discretization of this problem to compute approximations vk

h of ∂t u(tk)
to find discrete harmonic maps with bounded energy. In particular, the linearized
constraint will be treated explicitly, which leads to linear systems of equations in
every time-step. The approach is illustrated in Fig. 7.3.

Algorithm 7.1 (Discrete H1-flow [1]) Let u0
h ∈ Ah , θ ∈ [0,1], and τ > 0 and define

the sequence (uk
h)k=0,1,... ⊂ Ah by computing vk

h ∈ Fh[uk−1
h ] such that

(∇vk
h,∇wh) + (∇[uk−1

h + θτvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ] and setting

uk
h =

∑
z∈Nh

uk−1
h (z) + τvk

h(z)

|uk−1
h (z) + τvk

h(z)|ϕz

until ‖∇vk
h‖ ≤ εstop.

Proposition 7.2 (Termination I) Assume that Th is weakly acute. The iterates
(uk

h)k=0,1,... ⊂ Ah of Algorithm7.1 are well defined and satisfy

1

2
‖∇uL

h ‖2 + (2 + 2τθ − τ)
τ

2

L∑
k=1

‖∇vk
h‖2 ≤ 1

2
‖∇u0

h‖2

Fig. 7.3 The iteration of
Algorithm7.1 computes
corrections vk

h in the tangent
space of the unit sphere at
the current iterate uk−1

h and
then employs a projection
onto the unit sphere to define
the update uk

h

ukh(z)

vkh(z)

vkh(z)

uk−1
h (z)
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for every L ≥ 1. In particular, if τ(1 − 2θ) ≤ 2, then the iteration terminates and
the output u∗

h ∈ Ah satisfies

(∇u∗
h,∇wh) = Rh(wh)

for all wh ∈ Fh[u∗
h] and ‖Rh‖H1

D(Ω;Rm )′ ≤ (1 + θτ)εstop.

Proof Given uk−1
h ∈ Ah , the spaceFh[uk−1

h ] is a closed subspace ofS 1
D(Th)m and

the Lax–Milgram lemma implies the existence of a uniquely defined vk
h ∈ Fh[uk−1

h ]
with

(∇vk
h,∇wh) + (∇[uk−1

h + θτvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ]. Since |uk−1

h (z)| = 1 and vk
h(z) · uk−1

h (z) = 0 for all z ∈ Nh ,
we have |uk−1

h (z) + τvk
h(z)| ≥ 1 and uk

h ∈ Ah is well defined. The mapping

F : s �→
{

s/|s| if |s| ≥ 1,

s if |s| ≤ 1

is Lipschitz continuous with ‖DF‖L∞(Rm) = 1 so that Proposition 3.2 implies

‖∇uk
h‖ ≤ ‖∇(uk−1

h + τvk
h)‖.

The choice of wh = vk
h in the equation of Algorithm7.1 and the formula 2τ(a +

θτb)b = (a + τb)2 − a2 + τ 2(2θ − 1)b2 show that

‖∇vk
h‖2 + 1

2τ
‖∇(uk−1

h + τvk
h)‖2 − 1

2τ
‖∇uk−1

h ‖2 + τ

2
(2θ − 1)‖∇vk

h‖2 = 0.

A combination with the bound for ‖∇uk
h‖ and a multiplication by τ , together with a

summation over k = 1, 2, . . . , L , imply

1

2
‖∇uL

h ‖2 + (2 + 2τθ − τ)
τ

2

L∑
k=1

‖∇vk
h‖2 ≤ 1

2
‖∇u0

h‖2.

This yields that‖∇vK
h ‖ ≤ ε for K ≥ 0 sufficiently large and the functionsu∗

h = uK−1
h

and v∗
h = vK

h satisfy

(∇u∗
h,∇wh) = −(1 + θτ)(∇v∗

h,∇wh)

for all wh ∈ Fh[u∗
h]. Setting Rh(w) = −(1 + θτ)(∇v∗

h,∇w) for w ∈ H1
D(Ω;Rm)

proves the assertion. �
Remarks 7.9 (i) The proof of the proposition shows that we have the local energy
decay property ‖∇uk

h‖ ≤ ‖∇uk−1
h ‖ for all k ≥ 1.

http://dx.doi.org/10.1007/978-3-319-13797-1_3
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Fig. 7.4 A triangulation Th
that is weakly acute if and
only if β ≥ 1/2

z3 z4 z5

z9 z8 z7

z10 z6 β
z2z1

1

(ii) Note that for all choices of θ the large step size τ = 1 leads to a stable and
convergent iterative scheme.

The acuteness property is necessary in general to guarantee that the projection
step is stable in the sense that ‖∇uk

h‖ ≤ ‖∇[uk−1
h + τvk

h]‖.
Proposition 7.3 (Necessity of acuteness) For β > 0, let Th be the triangulation
of Ω = (0, 1) × (0, β) shown in Fig.7.4, and let τ > 0. Let uh ∈ S 1(Th)m and
vh ∈ Fh[uh], be defined by uh(z j ) = e1 and vh(z j ) = 0 for j = 3, 4, . . . , 10, and

uh(z1) = e1, uh(z2) = −e1,

vh(z1) = −(s/τ)e2, vh(z2) = 0,

where s = 1/2 − β and e� denotes the �-th canonical basis vector in R
m. Then for

Pũh ∈ S 1(Th)m defined with ũh = uh + τvh by

Pũh(z) = ũh(z)

|̃uh(z)|
for all z ∈ Nh, we have ‖∇ Pũh‖ ≤ ‖∇ũh‖ if and only if Th is weakly acute, i.e., if
and only if β ≥ 1/2.

Proof Since |̃uh(z)| ≥ 1 for all z ∈ Nh , Proposition 3.2 implies that ‖∇ Pũh‖ ≤
‖∇ũh‖ if Th is weakly acute and this is the case if and only if β ≥ 1/2. Suppose
that β < 1/2. Then with the entries A jk , j, k = 1, 2, . . . , 10, of the stiffness matrix
and the identity ũh(z j ) = Pũh(z j ) for j = 2, 3, 4, . . . , 10, the representation of
‖∇wh‖2 in terms of the nodal values of wh and the entries of A, cf. the proof of
Proposition3.2, we have that

δ2 = ‖∇ũh‖2 − ‖∇ Pũh‖2 = −1

2

10∑
j,k=1

A jk
(|̃uh(z j ) − ũh(zk)|2

− |Pũh(z j ) − Pũh(zk)|2
)

= −
10∑
j=2

A1 j
(|̃uh(z j ) − ũh(z1)|2

http://dx.doi.org/10.1007/978-3-319-13797-1_3
http://dx.doi.org/10.1007/978-3-319-13797-1_3
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− |Pũh(z j ) − Pũh(z1)|2
)
.

We have |̃uh(z1) − ũh(z2)|2 = 4 + s2 and |̃uh(z j ) − ũh(z1)|2 = s2 and

t21 = |Pũh(z1) − Pũh(z2)|2 = 2 + 2/(1 + s2)1/2,

t22 = |Pũh(z j ) − Pũh(z2)|2 = 2 − 2/(1 + s2)1/2

for j = 3, 4, . . . , 10. Since
∑10

j=1 A1 j = 0 we have
∑10

j=3 A1 j = −A11 − A22 and
hence

δ2 = (s2 − t22 )(A11 + A12) − A12(4 + s2 − t21 )

= A11(s
2 − t22 ) − A12(4 + t22 − t21 ).

Direct calculations show that

A11 = (12β2 + 5)/(4β), A12 = (1 − 4β2)/(4β).

With φ(s) = (1 + s2)1/2 − 1 − s2/2 and β2 = 1/4 − s + s2 we verify that

4β(1 + s2)1/2δ2 = (
12β2 + 5

)(
s4/2 + s2φ(s) − 2φ(s)

) − (
1 − 4β2)(2s2 + 4φ(s)

)
= (

8 − 12s + 12s2
)(

s4/2 + s2φ(s) − 2φ(s)
)

− 16(s − s2)
(
s2/2 + φ(s)

)
= −8s3 + 12s4 − 6s5 + 6s6 + φ(s)

( − 16s − 12s3 + 12s4
)

= −6s3(1 − 2s) − 6s5(1 − s) + 4sφ(s)
(
2 − 3s2 + 3s3

)
− 2

(
s3 + 8φ(s)

)
.

Since 0 < s < 1/2 and φ(s) < 0, the first three terms on the right-hand side are
negative. The estimate −s4/8 ≤ φ(s) implies that the last term on the right-hand
side is nonpositive. This shows δ < 0 if β < 1/2 and proves the assertion. �

7.2.3 Projection-Free Iteration

The acuteness condition of Proposition7.2 is restrictive if d = 3 but allows for large
step sizes. In the continuous situationwe have that the identity u ·∂t u = 0 implies that
the initial length is preserved. In the discrete setting a semi-implicit discretization
of this orthogonality leads to approximations that violate the constraint when the
projection step is omitted, cf. Fig. 7.5.

Algorithm 7.2 (H1-flow without projection) Let u0
h ∈ Ah , τ > 0, and define the

sequence (uk
h)k=0,1,... ⊂ S 1(Th)m by computing vk

h ∈ Fh[uk−1
h ] such that
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Fig. 7.5 Omitting the
projection step in the
semi-implicit H1-flow leads
to approximations that
violate the unit-length
constraint; the corresponding
error in L1(Ω) is
independent of the number
of iterations and controlled
by the step size

v1h(z)

v2h(z)

u0h(z)

v3h(z)

u1h(z)

u2h(z)

(∇vk
h,∇wh) + (∇[uk−1

h + τvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ] and setting

uk
h = uk−1

h + τvk
h

until ‖∇vk
h‖ ≤ εstop.

The following proposition shows that the violation of the constraint is independent
of the number of iterations and controlled by the step size.

Proposition 7.4 (Termination II) The iterates (uk
h)k=0,1,... ⊂ S 1(Th)m of

Algorithm7.2 satisfy uk
h |ΓD = uD,h for k = 0, 1, . . . and

1

2
‖∇uL

h ‖2 + (2 + τ)
τ

2

L∑
k=1

‖∇vk
h‖2 = 1

2
‖∇u0

h‖2

for every L ≥ 1. Moreover, we have every L ≥ 1 that

∥∥Ih
[|uL

h |2] − 1
∥∥

L1(Ω)
≤ cτ‖∇u0

h‖2.

Proof Due to the Lax–Milgram lemma the iteration is well-defined and the choice
wk

h = vk+1
h shows, using the formula 2τ(a + τb)b = (a + τb)2 − a2 + τ 2b2, that

2 + τ

2
‖∇vk

h‖2 + 1

2τ
‖∇uk

h‖2 − 1

2τ
‖∇uk−1

h ‖2 = 0

which implies the first asserted estimate. For every z ∈ Nh , we have

|uk
h(z)|2 − 1 = |uk−1

h (z)|2 + τ 2|vk
h(z)|2 − 1

and inductively with |u0
h(z)| = 1, we find that

|uL
h (z)|2 − 1 = τ 2

L∑
k=1

|vk
h(z)|2.
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The discrete norm equivalences of Lemma 3.4 yield

(1/c)
∥∥Ih

[|uL
h |2] − 1

∥∥
L1(Ω)

≤
∑

z∈Nh

hd
z

∣∣|uL
h (z)|2 − 1

∣∣

≤ τ 2
L∑

k=1

∑
z∈Nh

hd
z |vk

h(z)|2 ≤ cτ 2
L∑

k=1

‖vk
h‖2.

Poincaré’s inequality and the first estimate of the proposition imply

∥∥Ih
[|uL

h |2] − 1
∥∥

L1(Ω)
≤ cτ 2

L∑
k=1

‖∇vk
h‖2 ≤ cτ‖∇u0

h‖2,

which proves the proposition. �

We conclude the discussion with a lemma which shows that the approximate
treatment of the constraint at the nodes implies that it is satisfied by accumulation
points in the limit (h, τ ) → 0.

Lemma 7.2 (Constraint approximation) If (uh)h>0 is a bounded sequence in H1(Ω;
R

m) such that uh ∈ S 1(Th)m for all h > 0, uh → u in L2(Ω;Rm) for some
u ∈ H1(Ω;Rm) as h → 0, and

‖Ih
[|uh |2] − 1‖L1(Ω) → 0

as h → 0, then we have |u|2 = 1 almost everywhere in Ω .

Proof Two applications of the triangle inequality show that

‖|u|2 − 1‖L1(Ω)

≤ ‖|u|2 − |uh |2‖L1(Ω) + ‖|uh |2 − Ih
[|uh |2]‖L1(Ω) + ‖Ih

[|uh |2] − 1‖L1(Ω).

Due to the assumptions of the lemma we have that the third term on the right-hand
side tends to zero as h → 0. Since

‖|u|2 − |uh |2‖L1(Ω) ≤ ‖u − uh‖‖u + uh‖

we have that also the first term on the right-hand side vanishes as h → 0. We use
Hölder’s inequality and a nodal interpolation estimate to verify that for every T ∈ Th ,
we have

‖|uh |2 − Ih
[|uh |2]‖L1(T ) ≤ chd/2

T ‖|uh |2 − Ih
[|uh |]‖L2(T )

≤ chd/2
T h2

T ‖D2|uh |2‖L2(T ) ≤ ch2
T ‖∇uh‖2L2(T )

.

http://dx.doi.org/10.1007/978-3-319-13797-1_3
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With a summation over T ∈ Th we deduce for the second term that

‖|uh |2 − Ih
[|uh |2]‖L1(Ω) ≤ ch2‖∇uh‖2.

Since the upper bound vanishes as h → 0, this implies that |u|2 = 1. �

7.2.4 Other Target Manifolds

The ideas outlined above can be generalized to approximate harmonic maps into tar-
get manifolds other than the unit sphere. We letM ⊂ R

m be an (m −1)-dimensional
C2-submanifold and let TpM denote the tangent space at p ∈ M . Moreover, we let
πM : Uδ(M ) → M be the nearest neighbor projection onto M which is uniquely
defined in a neighborhood Uδ(M ) = {q ∈ R

m : dist(p,M ) < δ} of M for some
δ > 0. The functionπM satisfies |πM (q)−q| = inf p∈M |p−q| for all q ∈ Uδ(M ).
IfM = ∂C for a convex set C ⊂ R

m , then πM is well defined in Rm \ C .

Definition 7.3 Given ũD,h ∈ S 1(Th)m with ũD,h(z) ∈ M for all z ∈ Nh set

Ah = {uh ∈ S 1(Th)m : uh |ΓD = ũD,h |ΓD and uh(z) ∈ M for all z ∈ Nh
}

and for uh ∈ Ah , let

Fh[uh] = {
vh ∈ S 1

D(Th)m : vh(z) ∈ Tuh(z)M for all z ∈ Nh
}
.

With these definitionswe candefine the followinggeneralization ofAlgorithm7.1.

Algorithm 7.3 (H1-flow for general target manifolds) Let u0
h ∈ Ah and τ > 0 and

define the sequence (uk
h)k=0,1,... ∈ Ah by computing vk

h ∈ Fh[uk−1
h ] such that

(∇vk
h,∇wh) + (∇[uk−1

h + τvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ] and setting

uk
h =

∑
z∈Nh

πM
(
uk−1

h (z) + τvk
h(z)

)
ϕz

until ‖∇vk
h‖ ≤ εstop.

Remarks 7.10 (i) Well-posedness of the algorithm requires that τ be sufficiently
small so that uk−1

h (z) + τvk
h(z) ∈ Uδ(M ) for all z ∈ Nh , cf. Fig. 7.6. If M = ∂C

for a convex set C , then this is always satisfied.
(ii) A stability proof employs an expansion of πM and the fact that DπM (s)|TsM =
idTsM provided that M is a C3-submanifold.
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=U ( )

uk−1
h (z)

vkh(z)
uk−1
h (z)

vkh(z)

Fig. 7.6 The projection of uk−1
h (z)+τvk

h(z) onto the target manifold is in general only well defined
within a tubular neighborhood ofM in the case of nonconvex manifolds and a step-size restriction
needs to be imposed (left); for boundaries of convex sets no restriction on the step size is required
(right)

(iii) The projection step can be omitted if an appropriate version of a shifted tangent
space is available, e.g., ifM = g−1({0}) for an appropriate function g : Rm → R.

7.2.5 Practical Realization

The implementation of Algorithm7.1 requires working with discrete vector fields
uh ∈ S 1(Th)m which are given by

uh =
∑

z∈Nh

uzϕz

with coefficients uz = uh(z) ∈ R
m for all z ∈ Nh . The function uh will be identified

with the vector U ∈ R
mL defined by

U =

⎡
⎢⎢⎢⎣

uz1
uz2
...

uzL

⎤
⎥⎥⎥⎦ ∈ R

mL

with L = #Nh . The constraint uh(z) · vh(z) = 0 for all z ∈ Nh for a vector
field vh ∈ S 1(Th)m is then equivalently imposed by BU V = 0 with the matrix
BU ∈ R

L×L defined through

BU =

⎡
⎢⎢⎢⎣

u

⊥

z1 0
0 u

⊥

z2 0

0
. . . 0
0 u

⊥

zL

⎤
⎥⎥⎥⎦
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so that BU V = [uz1 · vz1 , uz2 · vz2 , . . . , uzL · vzL ]

⊥

. The solution of the linearly
constrained linear problems is based on the fact that we have

BU V = 0, W

⊥

Sm V = W

⊥

b for all W ∈ ker B

if and only if there exists � ∈ R
L such that

[
Sm B

⊥

U
BU 0

] [
V
�

]
=

[
b
0

]
,

where Sm is the P1 finite element stiffness matrix for vector fields with m compo-
nents. AMatlab implementation is shown in Fig. 7.7.

7.3 Approximation of Constrained Evolution Problems

The iterative schemes discussed above are discrete H1-gradient flows for harmonic
maps and can be modified to provide approximations of the L2-gradient flow
of harmonic maps. We show that this leads to convergent approximations of the
harmonic map heat flow. In addition to this we analyze discretizations that preserve
the constraint without an explicit correction of the iterates. We also discuss the appli-
cation of the developed techniques to a hyperbolic problem. The presentation is based
on results from [2, 4, 7].

7.3.1 Harmonic Map Heat Flow

The harmonic map heat flow is the L2-gradient flow for the Dirichlet energy that
is constrained to unit-length vector fields. In the strong form it seeks a function
u : [0, T ] × Ω → R

m such that |u| = 1 in [0, T ] × Ω and

∂t u − �u = |∇u|2u, u|ΓD = uD, ∂nu|ΓN = 0, u(0) = u0,

where ΓD may be empty. The following proposition provides useful equivalent char-
acterizations for the practically relevant case m = 3.

Proposition 7.5 (Equivalent formulations) The following formulations are equiva-
lent for a function u ∈ H1([0, T ]; L2(Ω;R3))∩ L∞([0, T ]; H1(Ω;R3)) satisfying
|u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω:
(i) For almost every t ∈ [0, T ] and every w ∈ H1

D(Ω;R3) ∩ L∞(Ω;R3), we have

(∂t u, w) + (∇u,∇w) = (|∇u|2u, w).
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Fig. 7.7 Iterative approximation of harmonic maps into the sphere S2 incorporating a projection
step which can be deactivated by uncommenting the command u = tu;
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(ii) For almost every t ∈ [0, T ] and every w ∈ H1
D(Ω;R3) with w(x) · u(t, x) = 0

for almost every x ∈ Ω , we have

(∂t u, w) + (∇u,∇w) = 0.

(iii) For almost every t ∈ [0, T ] and every φ ∈ H1
D(Ω;R3) ∩ L∞(Ω;R3), we have

(∂t u, φ) − (∇u,∇[u × (u × φ)]) = 0.

Proof The proof is similar to the proof of Lemma7.1. Assume that formulation (i)
is satisfied. If w(x) · u(x, t) = 0, then the right-hand side vanishes and a truncation
argument shows that formulation (ii) holds. Using the identity w = u × (u × φ) =
u(u ·φ)−φ implies the equivalence of (i) and (iii). Finally, (iii) follows from choosing
w = u × (u × φ) in (ii) and noting that ∂t u · u = 0. �

Remark 7.11 The equivalence of (i) and (ii) can also be established for functions
with values in Rm with m �= 3.

7.3.2 Semi-implicit, Linear Schemes

The L2-flow of harmonic maps can be approximated by replacing the H1-inner
product in Algorithm7.1 by the L2-inner product. As in that algorithm, the projection
step can be omitted leading to a violation of the unit length constraint that is controlled
by the step size independently of the number of iterations or time steps. As above
we denote

Ah = {
vh ∈ S 1(Th)m : |vh(z)| = 1 for all z ∈ Nh, vh |ΓD = uD,h

}

and given any uh ∈ S 1(Th)m , we denote

Fh[uh] = {
vh ∈ S 1

D(Th)m : vh(z) · uh(z) = 0 for all z ∈ Nh
}
.

Here and throughout the following the set ΓD may be empty.

Algorithm 7.4 (Discrete L2-flow with optional projection) Let u0
h ∈ Ah , θ ∈ [0,1],

and τ > 0 and define the sequence (uk
h)k=0,...,K ⊂ S 1(Th)m for K = �T/τ� by

computing for k = 1, 2, . . . , K the function vk
h ∈ Fh[uk−1

h ] such that

(vk
h, wh) + (∇[uk−1

h + θτvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ] and setting ũk

h = uk−1
h + τvk

h and
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uk
h = ũk

h or uk
h =

∑
z∈Nh

ũk
h(z)

|̃uk
h(z)|ϕz .

We discuss the stability properties of the algorithm for the case θ = 1.

Proposition 7.6 (Stability) Let (uk
h)k=0,...,K ⊂ S 1(Th)m be the iterates of

Algorithm7.4 for θ = 1.
(i) If the projection is omitted, then we have vk

h = dt uk
h for k = 1, 2, . . . , K and for

L = 1, 2, . . . , K

1

2
‖∇uL

h ‖2 + τ

L∑
k=1

(τ

2
‖∇dt u

k
h‖2 + ‖dt u

k
h‖2

)
= 1

2
‖∇u0

h‖2,
∥∥Ih

[|uL
h |2] − 1

∥∥
L1(Ω)

≤ c0τ.

(ii) If the projection step is included and if Th is weakly acute, then uk
h ∈ Ah for

k = 0, 1, . . . , K and for every L = 1, 2, . . . , K , we have

1

2
‖∇uL

h ‖2 + τ

L∑
k=1

(τ

2
‖∇vk

h‖2 + ‖vk
h‖2

)
≤ 1

2
‖∇u0

h‖2,

τ

L∑
k=1

‖vk
h − dt u

k
h‖L1(Ω) ≤ c0τ.

Proof The well-posedness of Algorithm7.4 follows as in the case of Algorithm7.1
with the help of the Lax–Milgram lemma and the fact that |̃uk

h(z)| ≥ 1 for all k ≥ 1
and z ∈ Nh .
(i) Assume that the projection step in Algorithm7.4 is omitted. We then have vk

h =
dt uk

h and the choice of wh = dt uk
h yields

‖dt u
k
h‖2 + dt

2
‖∇uk

h‖2 + τ

2
‖∇dt u

k
h‖2 = 0.

A summation over k = 1, 2, . . . , L and multiplication by τ prove the stability
estimate. For all z ∈ Nh and k = 1, 2, . . . , L , we have

|uk
h(z)|2 = |uk−1

h (z) + τdt u
k
h(z)|2 = |uk−1

h (z)|2 + τ 2|dt u
k
h(z)|2

and inductively it follows with |u0
h(z)| = 1 that

|uL
h (z)|2 − 1 = τ 2

L∑
k=1

|dt u
k
h(z)|2.
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Multiplication by hd
z the norm equivalences of Lemma 3.4, and the stability estimate

imply, as in the proof of Proposition7.4, that

∥∥Ih
[|uL

h |2] − 1
∥∥

L1(Ω)
≤ cτ 2

L∑
k=1

‖dt u
k
h‖2 ≤ cτ‖∇u0

h‖2.

(ii) If the projection step is included, then the choice of wh = vk
h shows that

‖vk
h‖2 + 1

2τ

(‖∇(uk−1
h + τvk

h)‖2 − ‖∇uk−1
h ‖2) + τ

2
‖vk

h‖2 = 0.

Since Th is weakly acute and uk
h(z) = F

(̃
uk

h(z)
)
for all z ∈ Nh with the

Lipschitz continuous mapping F(s) = s/|s| for |s| ≥ 1 and F(s) = s otherwise,
Proposition 3.2 implies as in the proof of Proposition7.2 that

‖∇uk
h‖ ≤ ‖∇[uk−1

h + τvk
h]‖.

With this, a summation over k = 1, 2, . . . , L , and a multiplication by τ , the previous
identity implies the asserted stability estimate. To prove the estimate for the difference
vk

h − dt uk
h , let z ∈ Nh . Then

τ
(
dt u

k
h(z) − vk

h(z)
) = uk

h(z) − (
uk−1

h (z) + τvk
h(z)

) = ũk
h(z)

|̃uk
h(z)| − ũk

h(z).

With the identity ∣∣∣s − s

|s|
∣∣∣ =

∣∣∣ s

|s|
∣∣∣ ∣∣|s| − 1

∣∣ = ∣∣|s| − 1
∣∣

for every s ∈ R
m , it follows that

τ
∣∣dt u

k
h(z) − vk

h(z)
∣∣ = ∣∣|̃uk

h(z)| − 1
∣∣ = ∣∣|uk−1

h (z) + τvk
h(z)| − 1

∣∣.
The relations uk−1

h (z) · vk
h(z) = 0 and |uk−1

h (z)| = 1 and the estimate (1+ s2)1/2 ≤
1 + s2/2 imply that

|uk−1
h (z) + τvk

h(z)| = (
1 + τ 2|vk

h(z)|2)1/2 ≤ 1 + τ 2|vk
h(z)|2/2.

A combination of the estimates and a summation over z ∈ Nh yield

∑
z∈Nh

hd
z |dt u

k
h(z) − vk

h(z)| ≤ τ
∑

z∈Nh

hd
z |vk

h(z)|2.

Norm equivalences and the stability result imply the asserted estimate. �

http://dx.doi.org/10.1007/978-3-319-13797-1_3
http://dx.doi.org/10.1007/978-3-319-13797-1_3
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Remark 7.12 Under the conditions of Proposition7.6we have the local energy decay
property ‖∇uk

h‖ ≤ ‖∇uk−1
h ‖ for all k ≥ 1.

The stability estimates provide a priori bounds for the numerical approximations
which allow us to pass to the limits for appropriate interpolants. Given the iterates
(uk

h)k=0,...,K of Algorithm7.4 we define the interpolants ûh,τ : [0, T ] × Ω → R
m ,

u±
h,τ : [0, T ] × Ω → R

m and v−
h,τ : [0, T ] × Ω → R

m for t ∈ (tk−1, tk) with
tk = kτ and x ∈ Ω by

ûh,τ (t, x) = tk − t

τ
uk−1

h (x) + t − tk−1

τ
uk

h(x),

u−
h,τ (t, x) = uk−1

h (x), u+
h,τ (t, x) = uk

h(x),

v+
h,τ (t, x) = vk

h(x).

For ease of presentation, we again restrict the presentation to the case m = 3.

Theorem 7.7 (Convergence) Suppose that ΓD = ∅, u0
h → u0 in H1(Ω;R3)

as h → 0, and that Th is weakly acute for every h > 0 if the projection
step is carried out. Then every accumulation point of the sequence (u+

h,τ )h,τ>0 in

L∞([0, T ]; H1(Ω;R3)) as (h, τ ) → 0 is a weak solution of the harmonic map heat
flow.

Proof Step 1: Selection of a weak limit.The stability bounds of Proposition7.6 imply
that the sequences (u+

h,τ )h,τ>0 and (v+
h,τ )h,τ>0 are uniformly bounded in the spaces

L∞([0, T ]; H1(Ω;R3)) and L2([0, T ]; L2(Ω;R3)), respectively, so that after the
extraction of a subsequence which is not relabeled, we have the existence of u ∈
L∞([0, T ]; H1(Ω;R3)) and v ∈ L2([0, T ]; L2(Ω;R3)) with

u±
h,τ ⇀∗ u in L∞([0, T ]; H1(Ω;R3)),

v+
h,τ ⇀ v in L2([0, T ]; L2(Ω;R3))

as (h, τ ) → 0. Since v+
h,τ − ∂t ûh,τ → 0 in L2([0, T ]; L1(Ω;R3)) as τ → 0 we

deduce that u ∈ H1([0, T ]; L2(Ω;R3)) and v = ∂t u.
Step 2: Verification of the energy law. From the stability bounds we have for almost
every T ′ ∈ [0, T ] up to a subsequence that ∇u+

h,τ (T
′, ·) ⇀ ∇u(T ′, ·). The weak

lower semicontinuity of norms induced by inner products shows that

1

2
‖∇u(T ′)‖2 +

T ′∫

0

‖∂t u‖2 dt ≤ 1

2
‖∇u0‖2

for almost every T ′ ∈ [0, T ].
Step 3: Unit-length constraint. An interpolation estimate and D2uh,τ |R = 0 for all
elements R ∈ Th yield for every t ∈ [0, T ] that
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∥∥Ih
[|u+

h,τ |2
] − |u+

h,τ |2
∥∥

L1(R)
≤ c|R|1/2h2

R

∥∥D2|u+
h,τ |2

∥∥
L2(R)

≤ c|R|1/2h2
R‖∇u+

h,τ‖2L4(R)

= ch2
R |R|∣∣∇uh,τ |R

∣∣2 ≤ ch2
R‖∇u+

h,τ‖2L2(R)
.

In the case of no projection we have

‖|Ih[u+
h,τ (t, ·)|2] − 1‖L1(Ω) ≤ cτ,

while for the scheme including the projection step we have, cf. the proof of
Proposition7.1,

‖|u+
h,τ (t, ·)|2 − 1‖ ≤ ch‖∇u+

h (t, ·)‖.

The triangle inequality yields that |u+
h,τ | → 1 in L1([0, T ] × Ω) in both cases, i.e.,

that |u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω .
Step 4: Attainment of initial data. The weak continuity of the trace operator and
u0

h → u0 in L2(Ω;R3) as h → 0 prove u(0, ·) = u0.
Step 5: Passage to the limit in the equation. It remains to show that the function u
solves the partial differential equation. For this, we choose ϕ ∈ L2([0, T ]; C∞(Ω;
R
3)) and define w(h,τ ) = u−

h,τ × ϕ and

wh,τ = Ih
[
u−

h,τ × ϕ
]
.

For this function we have u−
h,τ (t, z) · wh,τ (t, z) = 0 for almost every t ∈ [0, T ] and

every z ∈ Nh . Moreover, we have using D2uh,τ |R = 0 for all elements R ∈ Th that

‖∇(w(h,τ ) − wh,τ )‖L2(R) ≤ ch R‖D2[u−
h,τ × ϕ]‖L2(R)

≤ h R
(‖∇uh,τ‖L2(R)‖∇ϕ‖L2(R) + ‖uh,τ‖L2(R)‖D2ϕ‖L2(R)

)
.

A summation over R ∈ Th shows that wh,τ − wh,τ → 0 in L∞([0, T ]; H1(Ω;R3))

as (h, τ ) → 0. The equation of Algorithm7.4 yields

(v+
h,τ , wh,τ ) + (∇[u−

h,τ + τv+
h,τ ],∇wh,τ ) = 0

for almost every t ∈ [0, T ]. Due to Lemma7.6 we have that τ 1/2v+
h,τ is uniformly

bounded in L2([0, T ]; H1(Ω;R3)) and hence the term

T∫

0

(τ (∇v+
h,τ ,∇wh,τ ) dt ≤ τ 1/2

( T∫

0

τ‖∇v+
h,τ‖2 dt

)1/2( T∫

0

‖∇w+
h,τ‖2 dt

)1/2

converges to 0 as (h, τ ) → 0. We write
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T∫

0

(∇u−
h,τ ,∇wh,τ ) dt =

T∫

0

(∇u−
h,τ ,∇w(h,τ )) dt +

T∫

0

(∇u−
h,τ ,∇[wh,τ − w(h,τ )]) dt

and note that the second term on the right-hand side converges to 0 as (h, τ ) → 0,
while for the first term on the right-hand side we have

T∫

0

(∇u−
h,τ ,∇w(h,τ )) dt =

T∫

0

d∑
�=1

(∂�u−
h,τ , ∂�[u−

h,τ × ϕ]) dt

=
T∫

0

d∑
�=1

(∂�u−
h,τ , u × ∂�ϕ) dt

+
T∫

0

d∑
�=1

(∂�u−
h,τ , [u−

h,τ − u] × ∂�ϕ) dt.

This implies that for (h, τ ) → 0, we have

T∫

0

(∇[u−
h,τ + τv+

h,τ ],∇wh,τ ) dt →
T∫

0

(∇u,∇[u × ϕ]) dt.

Finally, we verify that

T∫

0

(v+
h , wh,τ ) dt =

T∫

0

(v+
h , u × ϕ) + (v+

h , [uh − u] × ϕ) + (v+
h , wh,τ − w(h,τ ) dt

→
T∫

0

(∂t u, u × ϕ) dt

as (h, τ ) → 0. Altogether we have proved that u satisfies

T∫

0

(∂t u, u × ϕ) + (∇u,∇[u × ϕ]) dt = 0

for all ϕ ∈ L2([0, T ]; C∞(Ω;R3)). Choosing ϕ(t, x) = ρ(t)w(x) we deduce that

(∂t u, u × w) + (∇u,∇[u × w]) dt = 0
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for all w ∈ C∞(Ω;R3). A density argument proves that this is satisfied for every
w ∈ H1(Ω;R3) ∩ L∞(Ω;R3). For φ ∈ H1(Ω;R3) ∩ L∞(Ω;R3) and w = u × φ,
we verify with the identities u × (u × φ) = (u · φ)u − φ and ∂t u · u = 0 that

−(∂t u, φ) + (∇u,∇[u × (u × φ)]) = 0

for almost every t ∈ [0, T ]. According to Proposition7.5 this implies that u is a weak
solution of the harmonic map heat flow. �

7.3.3 Constraint Preservation

The third characterization of solutions of the harmonic map heat flow in Proposi-
tion7.5 reads in the strong form that

∂t u + u × (u × �u) = 0;

this reveals a symplectic structure and implies that the L2-flow of harmonic maps
is constraint preserving, i.e., if |u0(x)| = 1 for almost every x ∈ Ω , then we have
|u(t, x)| = 1 for almost every (t, x) ∈ [0, T ]×Ω . We consider the case ΓD = ∅ for
ease of presentation.

Lemma 7.3 (Constraint preservation) Let u ∈ L∞([0, T ]; H1(Ω;R3)) satisfy
∂t u ∈ L2([0, T ]; L2(Ω;R3)) and u(0, ·) = u0 with u0 such that |u0(x)| = 1
for almost every x ∈ Ω . Assume that

(∂t u, φ) + (∇u,∇[u × (u × φ)]) = 0

for almost every t ∈ [0, T ] and every φ ∈ H1(Ω;R3) ∩ L∞(Ω;R3). Then we have
|u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω .

Proof Let ρ ∈ C∞(Rn) be a nonnegative function with ‖ρ‖L1(B1(0)) = 1 and
supp ρ ⊂ B1(0). Given ε > 0, set ρε(x) = ρ(x/ε) for x ∈ Ω . For x0 ∈ Ω the
choice of φ = ρε(· − x0)u implies that

d

dt

1

2
(|u(t, ·)|2 ∗ ρε)(x0) = (∂t u, ρεu) = 0,

i.e., (|u(T ′, ·)|2 ∗ ρε)(x0) = (|u0(·)|2 ∗ ρε)(x0) for every T ′ ∈ [0, T ]. Noting that
(|u(t, ·)|2 ∗ ρε)(x0) → |u(t, x0)| as ε → 0 implies the assertion. �

The lemma motivates the development of numerical schemes that preserve the
length-constraint in a discrete sense. For the Crank–Nicolson type discretization of
the strong form

dt u
k + uk−1/2 × (uk−1/2 × �uk−1/2) = 0
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we observe that testing with uk−1/2 = (uk + uk−1)/2 formally yields the length-
preservation property

dt |uk |2 = 0.

To obtain this property for a fully discrete scheme, reduced integration has to be
incorporated. We define the discrete Laplacian �̃huh ∈ S 1(Th)3 of a function
uh ∈ S 1(Th)3 by

(�̃huh, vh)h = −(∇uh,∇vh)

for all vh ∈ S 1(Th)3.

Algorithm 7.5 (Constraint-preserving iteration) Let u0
h ∈ S 1(Th)3 with

|u0
h(z)| = 1 for all z ∈ Nh and τ > 0 and define the sequence (uk

h)k=0,...,K ⊂
S 1(Th)3 such that

(dt u
k
h, φh)h + (uk−1/2

h × [uk−1/2
h × �̃huk−1/2

h ], φh)h = 0

for all φh ∈ S 1(Th)3.

To establish the well-posedness of the algorithm, we note that a corollary of
Brouwer’s fixed-point theorem states that if Φ : R

n → R
n is continuous with

Φ(s) · s ≥ 0 for all s ∈ R
n with |s| ≥ R for some R ∈ R, then there exists s∗ ∈ R

n

with |s∗| ≤ R and Φ(s∗) = 0.

Proposition 7.7 (Stability and constraint preservation) There exists a sequence
(uk

h)k=0,...,K ⊂ S 1(Th)3 that solves the scheme of Algorithm7.5. We have
|uk

h(z)| = 1 for k = 0, 1, . . . , K and

1

2
‖∇uL

h ‖2 + τ

L∑
k=1

‖dt u
k
h‖2 ≤ 1

2
‖∇u0

h‖2.

Proof Let k ≥ 1 and define Φh : S 1(Th)3 → S 1(Th)3 by

Φh(vh) = 2

τ
(vh − uk−1

h ) + Ih
[
vh × (vh × �̃hvh)

]
.

The function Φh is continuous and the Cauchy–Schwarz inequality, employing that
(Ihwh, vh)h = (wh, vh)h for all vh, wh ∈ S 1(Th)3, proves that

(Φh(vh), vh)h = 2

τ
(vh − uk−1

h , vh)h ≥ 1

τ
‖vh‖2h − 1

τ
‖uk−1

h ‖2h,

i.e., (Φh(vh), vh)h ≥ 0 for all vh ∈ S 1(Th)3 with ‖vh‖h ≥ ‖uk−1
h ‖h . Brouwer’s

fixed-point theorem thus implies that there exists rk
h ∈ S 1(Th)3 with Φh(rk

h ) = 0
or equivalently that uk

h = 2rk
h − uk−1

h solves
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0 = dt u
k
h + Ih

[
uk−1/2

h × (uk−1/2
h × �̃huk−1/2

h )
]
,

i.e.,
(dt u

k
h, wh)h + (uk−1/2

h × [uk−1/2
h × �̃huk−1/2

h ], wh)h = 0

for all wh ∈ S 1(Th)3. For z ∈ Nh and the function wh = [uk−1/2
h (z)]ϕz , the

properties of the discrete inner product imply that

βzdt |uk
h(z)|2 = βzdt u

k
h(z) · uk−1/2

h (z) = (dt u
k
h, ϕzuk−1/2

h )h

= (uk−1/2
h × [uk−1/2

h × �̃huk−1/2
h ], ϕzuk−1/2

h )h

= βz
(
uk−1/2

h (z) × [uk−1/2
h (z) × �̃huk−1/2

h (z)]) · uk−1/2
h (z) = 0,

i.e., |uk
h(z)| = |uk−1

h (z)|, and inductively the assumption |u0
h(z)| = 1 implies

|uk
h(z)| = 1. For wh = �̃huk−1/2

h , we obtain

dt‖∇uk
h‖2h + ∥∥uk−1/2

h × �̃huk−1/2
h

∥∥2
h

= (∇dt u
k
h,∇uk−1/2

h ) − (uk−1/2
h × [uk−1/2

h × �̃huk−1/2
h ], �̃uk−1/2

h )h

= −(dt u
k
h, �̃huk−1/2

h ) − (uk−1/2
h × [uk−1/2

h × �̃huk−1/2
h ], �̃uk−1/2

h )h = 0.

The choice of wh = dt uk
h shows that

‖dt u
k
h‖2h = −(uk−1/2

h × �̃huk−1/2
h , uk−1/2

h × dt u
k
h)h

≤ ‖uk−1/2
h × �̃huk−1/2

h ‖h‖uk−1/2
h × dt u

k
h‖h

and with |uk−1/2
h (z)| ≤ 1 for every z ∈ Nh , we deduce ‖dt uk

h‖ ≤ ‖uk−1/2
h ×

�̃huk−1/2
h ‖h . A combination of the last two estimates, multiplication by τ , and a

summation over k = 1, 2, . . . , L thus prove the asserted bound. �

Remarks 7.13 (i) The stability bound implies unconditional convergence to a weak
solution of the harmonic map heat flow.
(ii) The existence of the iterates in Algorithm7.5 was established by Brouwer’s fixed
point theorem which is nonconstructive and in fact the iterates may not be uniquely
defined. If τ ≤ ch2

min, the following linear iteration is constraint-preserving and

converges to the uniquely defined function uk−1/2
h . Set r0h = uk−1

h and define the
sequence (r�

h)�=0,1,... ⊂ S 1(Th)3 via

2

τ
(r�

h , φh)h + (r�
h × [r�−1

h × �̃hr�−1
h ], φh)h = 2

τ
(uk−1

h , φh)h

for all φh ∈ S 1(Th)3.
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7.3.4 Approximation of Wave Maps

Wave maps are solutions of the wave equation subject to a pointwise unit-length
constraint. They solve the partial differential equation

∂2t u − �u = λu

in [0, T ] × Ω with a Lagrange multiplier λ : [0, T ] × Ω → R associated to the
constraint |u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω and subject to the
boundary condition ∂nu = 0 on [0, T ] × ∂Ω and the initial conditions u(0, ·) = u0
and ∂t u(0, ·) = u1.Qualitatively, similar partial differential equations arise in general
relativity and particle physics. Wave maps may also be regarded as harmonic maps
on [0, T ] × Ω for the Dirichlet energy defined with the Minkowski metric on the
R
1+d time-space domain, i.e., they are stationary for

Ig(u) = 1

2

T∫

0

∫

Ω

|Du|2g dt dx

with Du = (∂t u,∇u) and |v|2g = −v20 + v21 + · · · v2d for v ∈ R
d+1. An important

feature of solutions for the wave map equation is the energy conservation property
that the mapping

t �→ I
(
u(t, ·), ∂t u(t, ·)) = 1

2

∫

Ω

|∂t u(t, ·)|2 dx + 1

2

∫

Ω

|∇u(t, ·)|2 dx

is constant as a function of t ∈ [0, T ].
Definition 7.4 Given u0 ∈ H1(Ω;Rm) and u1 ∈ L2(Ω;Rm), a wave map is a
function u : [0, T ] × Ω → R

m such that
(a) u ∈ H1([0, T ]; L2(Ω;Rm)) ∩ L2([0, T ]; H1(Ω;Rm)),
(b) |u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω ,
(c) for all w ∈ C∞

c ([0, T ); C∞(Ω;Rm)) with u(t, x) · w(t, x) = 0 for almost every
(t, x) ∈ [0, T ] × Ω , we have

−
T∫

0

(∂t u, ∂t w) + (∇u,∇w) dt = (u1, w(0)),

(d) the initial data u0 is attained continuously by u as t → 0 in H1(Ω;Rm),
(e) for almost every T ′ ∈ [0, T ], we have

I
(
u(T ′, ·), ∂t u(T ′, ·)) ≤ I (u0, u1).
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The algorithm for approximating wave maps is a modification of Algorithm7.4
for the approximation of the harmonic map heat flow. The setsAh andFh[uk−1

h ] are
defined as above.

Algorithm 7.6 (Wave map approximation) Let u0
h, v0h ∈ S 1(Th)m with |u0

h(z)| = 1
for all z ∈ Nh and τ > 0 and define the sequence (uk

h)k=0,...,K ⊂ S 1(Th)m for
K = �T/τ� by computing vk

h ∈ Fh[uk−1
h ] such that

(dt v
k
h, wh) + (∇[uk−1

h + τvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ] and setting with ũh = uk−1

h + τvk
h

uk
h = ũk

h or uk
h =

∑
z∈Nh

ũk
h(z)

|̃uk
h(z)|ϕz .

We have the following stability result.

Proposition 7.8 (Stability) (i) If no projection is carried out, then vk
h = dt uk

h for
k = 1, 2, . . . , K and for L = 1, 2, . . . , K , we have

1

2
‖vL

h ‖2 + 1

2
‖∇uL

h ‖2 + τ 2

2

L∑
k=1

(‖dt v
k
h‖2 + ‖∇vk

h‖2) = 1

2
‖v0h‖2 + 1

2
‖∇u0

h‖2,
∥∥Ih

[|uL
h |2] − 1

∥∥
L1(Ω)

≤ c0τ.

(ii) If a projection is carried out in every step of the algorithm and if Th is weakly
acute, then we have |uk

h(z)| = 1 for k = 0, 1, . . . , K and all z ∈ Nh, and for
L = 1, 2, . . . , K that

1

2
‖vL

h ‖2 + 1

2
‖∇uL

h ‖2 + τ 2

2

L∑
k=1

(‖dt v
k
h‖2 + ‖∇vk

h‖2) ≤ 1

2
‖v0h‖2 + 1

2
‖∇u0

h‖2,

‖vL
h − dt u

L
h ‖L1(Ω) ≤ c0τ.



214 7 Harmonic Maps

Fig. 7.8 Matlab realization of Algorithm7.6 for the approximation of wave maps
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Proof The choice of wh = vk
h yields

dt

2
‖vk

h‖2 + τ

2
‖dt v

k
h‖2 + 1

2τ

(‖∇[uk−1
h + τvk

h]‖2 − ‖∇uk−1
h ‖2) + τ

2
‖∇vk

h‖2 = 0.

In the case of no projection, we have uk−1
h + τvk

h = uk
h , and a summation over

k = 1, 2, . . . , L implies the stability bound. If uk
h is obtained through a projection,

then it follows as in the proof of Proposition7.6 that ‖∇uk
h‖ ≤ ‖∇[uk−1

h + τvk
h]‖,

and again a summation over k = 1, 2, . . . , L implies the stability bound. The other
estimates follow as in the proof of Proposition7.6. �

Remark 7.14 The stability bounds imply the convergence of approximations to a
wave map.

Figure7.8 displays a Matlab realization of Algorithm7.6 that is based on the
implementation of Algorithm7.1.
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