
Chapter 6
The Allen–Cahn Equation

6.1 Analytical Properties

The Allen–Cahn equation is a simple mathematical model for certain phase
separation processes. It also serves as a prototypical example for semilinear
parabolic partial differential equations. The presence of a small parameter that defines
the thickness of interfaces separating different phases makes the analysis challeng-
ing. Given u0 ∈ L2(Ω), ε > 0 and T > 0, we seek a function u : [0, T ] × Ω → R

that solves

∂t u − �u = −ε−2 f (u), u(0) = u0, ∂nu(t, ·)|∂Ω = 0,

for almost every t ∈ [0, T ] and with f = F ′ for a nonnegative function F ∈ C1(R)

satisfying F(±1) = 0, cf. Fig. 6.1. Unless otherwise stated, we always consider
F(s) = (s2 − 1)2/4 and f (s) = s3 − s but other choices are possible as well. We
always assume that |u0(x)| ≤ 1 for almost every x ∈ Ω . For this model problem
we will discuss aspects of its numerical approximation. For further details on mod-
eling aspects and the analytical properties of the Allen–Cahn and other phase-field
equations we refer the reader to the textbook [7] and the articles [1, 2, 4, 6, 10, 11].

The Allen–Cahn equation is the L2-gradient flow of the functional

Iε(u) = 1

2

∫

Ω

|∇u|2 dx + ε−2
∫

Ω

F(u) dx .

Solutions tend to decrease the energy and develop interfaces separating regions in
which it is nearly constant with values close to the minima of F . We refer to the
zero level set of the function u as the interface but note that this does not define a
sharp separation of the phases. More precisely, the phases are separated by a region
of width ε around the zero level set of u often called the diffuse interface.
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Fig. 6.1 Double well potential F(s) = (s2 − 1)2/4 and its derivative f (s) = s3 − s which is
monotone outside [−1, 1]; solutions develop time-dependent interfaces Γt that separate regions in
which u(t, ·) ≈ ±1

6.1.1 Existence and Regularity

The existence of a unique solution u follows, e.g., from a discretization in time and
a subsequent passage to a limit.

Theorem 6.1 (Existence) For every u0 ∈ L2(Ω) and T > 0 there exists a weak
solution u ∈ H1([0, T ]; H1(Ω)′)∩ L2([0, T ]; H1(Ω)) that satisfies u(0) = u0 and

〈∂t u, v〉 + (∇u,∇v) = −ε−2( f (u), v)

for almost every t ∈ [0, T ] and every v ∈ H1(Ω). If u0 ∈ H1(Ω), then we have
u ∈ H1([0, T ]; L2(Ω)) ∩ L∞([0, T ]; H1(Ω)) and

Iε(u(T ′)) +
T ′∫

0

‖∂t u‖2 dt ≤ Iε(u0)

for almost every T ′ ∈ [0, T ].
Proof The existence of a solution follows from an implicit discretization in time that
leads to a sequence of well-posed minimization problems. Straightforward a-priori
bounds, together with compact embeddings, then show the existence of a weak limit
that solves the weak formulation. If u0 ∈ H1(Ω), then we may formally choose
v = ∂t u to verify that

‖∂t u‖2 + d

dt

1

2
‖∇u‖2 = −ε−2 d

dt

∫

Ω

F(u) dx .

An integration over [0, T ] implies the asserted bound. This procedure can be rigor-
ously carried out for a time-discretized problem, and then the estimate also holds as
the time-step size tends to zero. �

Remarks 6.1 (i) Stationary states for the Allen–Cahn equation are the constant func-
tions u ≡ ±1 and u ≡ 0. The state u ≡ 0 is unstable.
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(ii) For Ω = R
d a stationary solution is given by u(x) = tanh(x · a/(

√
2ε)) for

all x ∈ R
d and an arbitrary vector a ∈ R

d . This characterizes the profile of typical
solutions for Allen–Cahn equations across interfaces.

Since the nonlinearity f is monotone outside the interval [−1, 1], solutions of the
Allen–Cahn equation satisfy a maximum principle.

Proposition 6.1 (Maximum principle and uniqueness) If u is a weak solution of the
Allen–Cahn equation and |u0(x)| ≤ 1 for almost every x ∈ Ω , then |u(t, x)| ≤ 1
for almost every (t, x) ∈ [0, T ] × Ω . Solutions with this property are unique.

Proof Let ũ ∈ H1([0, T ]; H1(Ω)′) ∩ L2([0, T ]; H1(Ω)) be the function obtained
by truncating u at ±1, i.e.,

ũ(t, x) = min{1,max{−1, u(t, x)}}

for almost every (t, x) ∈ [0, T ] × Ω . Then ∂t ũ = ∂t u, ∇ũ = ∇u, and f (̃u) = f (u)

in {(t, x) ∈ [0, T ] × Ω : |̃u(t, x)| < 1} and ∂t ũ = 0, ∇ũ = 0, and f (̃u) = 0
otherwise. The function ũ is therefore a weak solution of the Allen–Cahn equation.
If u − ũ �= 0, then either u ≥ ũ = 1 and

f (u) − f (̃u) ≥ f ′(̃u)(u − ũ) = f ′(1)(u − ũ) = 2(u − ũ)

or u ≤ ũ = −1 and

f (u) − f (̃u) ≤ f ′(̃u)(u − ũ) = f ′(−1)(u − ũ) = 2(u − ũ).

Altogether we find that almost everywhere in [0, T ] × Ω , we have

(
f (u) − f (̃u)

)
(u − ũ) ≥ 2|u − ũ|2.

The difference δ = u − ũ satisfies

(∂tδ, v) + (∇δ,∇v) = −ε−2( f (u) − f (̃u), v),

and for v = δ, we obtain

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 ≤ −2ε−2‖δ‖2.

With δ(0) = 0, it follows directly that δ = 0 in [0, T ]×Ω . If u1 and u2 are solutions
with |u1|, |u2| ≤ 1 in [0, T ] × Ω , then we have

| f (u1) − f (u2)| ≤ c f |u1 − u2|

almost everywhere in [0, T ] × Ω with c f = sups∈[−1,1] | f ′(s)|. The difference
δ = u1 − u2 satisfies
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(∂tδ, v) + (∇δ,∇v) = −ε−2( f (u1) − f (u2), v)

and the choice of v = δ leads to

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 ≤ c f ε

−2‖δ‖2.

An application of Gronwall’s lemma implies that u1 = u2. �

As for the linear heat equation, one can show that the solution is regular. The
corresponding bounds depend critically however on the small parameter ε > 0.

Theorem 6.2 (Regularity) If the Laplace operator is H2 regular in Ω and u0 ∈
H1(Ω), then u ∈ L∞([0, T ]; H2(Ω))∩ H2([0, T ]; H1(Ω)′)∩ H1([0, T ]; H2(Ω))

and there exists σ ≥ 0 such that

sup
t∈[0,T ]

‖u‖H2(Ω) +
( T∫

0

‖utt‖2H1(Ω)′ dt
)1/2 +

( T∫

0

‖ut‖2H2(Ω)
dt

)1/2 ≤ cε−σ .

If Iε(u0) ≤ c and ‖�u0‖ ≤ cε−2, then we may choose σ = 2.

Proof The proof follows with the arguments that are used to prove the corresponding
statements for the linear heat equation, cf. [8]. �

6.1.2 Stability Estimates

In the following stability result we assume that an approximate solution satisfies a
maximum principle. This is satisfied for certain numerical approximations and the
assumption can be weakened to a uniform L∞-bound. We recall that Gronwall’s
lemma states that if a nonnegative function y ∈ C([0, T ]) satisfies

y(T ′) ≤ A +
T ′∫

0

a(t)y(t) dt

for all T ′ ∈ [0, T ] with a nonnegative function a ∈ L1([0, T ]), then we have

y(T ′) ≤ A exp
( T∫

0

a dt
)
.



6.1 Analytical Properties 157

Together with a Lipschitz estimate, this will be the main ingredient for the
following stability result. Due to its exponential dependence on ε−2, it is of limited
practical use.

Theorem 6.3 (Stability) Let u ∈ H1([0, T ]; H1(Ω)′) ∩ L∞([0, T ]; H1(Ω)) be
a weak solution of the Allen–Cahn equation with |u| ≤ 1 almost everywhere in
[0, T ] × Ω . Let ũ ∈ H1([0, T ]; H1(Ω)′) ∩ L2([0, T ]; H1(Ω)) satisfy |̃u| ≤ 1
almost everywhere in [0, T ] × Ω , and ũ(0) = ũ0, and solve

(∂t ũ, v) + (∇ũ,∇v) = −ε−2( f (̃u), v) + 〈R̃(t), v〉

for almost every t ∈ [0, T ], all v ∈ H1(Ω), with a functional R̃ ∈ L2([0, T ];
H1(Ω)′). Then we have

sup
t∈[0,T ]

‖u − ũ‖2+
T∫

0

‖∇(u − ũ)‖2 dt

≤ 2
(
‖u0 − ũ0‖2 +

T∫

0

‖R̃‖2H1(Ω)′ dt
)
exp

(
(1 + 2c f ε

−2)T
)
.

Proof With c f = sups∈B1(0) | f ′(s)|, we have

| f (s1) − f (s2)| ≤ c f |s1 − s2|

for all s1, s2 ∈ R. The difference δ = u − ũ satisfies

(∂tδ, v) + (∇δ,∇v) = −ε−2( f (u) − f (̃u), v
) − 〈R̃, v〉

for almost every t ∈ I and every v ∈ H1(Ω). For v = δ we find that

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 ≤ c f ε

−2‖δ‖2 + ‖R̃‖H1(Ω)′ ‖δ‖H1(Ω)

≤ c f ε
−2‖δ‖2 + 1

2
‖R̃‖2H1(Ω)′ + 1

2
(‖δ‖2 + ‖∇δ‖2)

≤ 1

2
(1 + 2c f ε

−2)‖δ‖2 + 1

2
‖R̃‖2H1(Ω)′ + 1

2
‖∇δ‖2.

Absorbing the term ‖∇δ‖2/2 on the left-hand side and integrating over (0, T ′)
lead to

‖δ(T ′)‖2 +
T ′∫

0

‖∇δ‖2 dt ≤ ‖δ(0)‖2 +
T∫

0

‖R̃‖2H1(Ω)′ dt + (1 + 2c f ε
−2)

T ′∫

0

‖δ‖2 dt.
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Defining A = ‖δ(0)‖2 + ∫ T
0 ‖R̃‖2

H1(Ω)′ dt , b = (1 + 2c f ε
−2), and setting

y(t) = ‖δ(t)‖2 +
t∫

0

‖∇δ‖2 ds,

we have y(T ′) ≤ A + a
∫ T ′
0 y(t) dt ; Gronwall’s lemma implies the estimate of the

theorem. �

Remark 6.2 The functional R̃ models the error introduced by a discretization of the
equation so that wemay assume that ‖R̃(t)‖2

H1(Ω)′ ≤ cε−ρ(hα +τβ) for amesh-size

h > 0 and a time-step size τ > 0, and parameters α, β, ρ > 0. If ‖u0 − ũ0‖2 ≤ hγ ,
then we obtain the error estimate

sup
t∈[0,T ]

‖u − ũ‖2 +
T∫

0

‖∇(u − ũ)‖2 dt ≤ cε−ρ(hα + τβ + hγ ) exp
(
(1+ 2c f ε

−2)T
)
.

Even for the moderate choice ε ≈ 10−1, the exponential factor is of the order 1040

and it is impossible to compensate this factor with small mesh- and time-step sizes
to obtain a useful error estimate. In practice even smaller values of ε are relevant.

To obtain an error estimate that does not depend exponentially on ε−1 and which
holds without assuming a maximum principle, refined arguments are necessary. The
following generalization of Gronwall’s lemma allows us to consider a superlinear
term.

Proposition 6.2 (Generalized Gronwall lemma) Suppose that the nonnegative func-
tions y1 ∈ C([0, T ]), y2, y3 ∈ L1([0, T ]), a ∈ L∞([0, T ]), and the real number
A ≥ 0 satisfy

y1(T
′) +

T ′∫

0

y2(t) dt ≤ A +
T ′∫

0

a(t)y1(t) dt +
T ′∫

0

y3(t) dt

for all T ′ ∈ [0, T ]. Assume that for B ≥ 0, β > 0, and every T ′ ∈ [0, T ], we have

T ′∫

0

y3(t) dt ≤ B
(

sup
t∈[0,T ′]

yβ
1 (t)

) T ′∫

0

(y1(t) + y2(t)) dt.

Set E = exp
( ∫ T

0 a(t) dt
)

and assume that 8AE ≤ (8B(1 + T )E)−1/β . We then
have
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sup
t∈[0,T ]

y1(t) +
T∫

0

y2(t) dt ≤ 8A exp
( T∫

0

a(s) ds
)
.

Proof We assume first that A > 0, set θ = 8AE , and define

Iθ = {
T ′ ∈ [0, T ] : Υ (T ′) = sup

t∈[0,T ′]
y1(t) +

T ′∫

0

y2(t) dt ≤ θ
}
.

Since y1(0) ≤ A < θ and since Υ is continuous and increasing, we have Iθ =
[0, TM ] for some 0 < TM ≤ T . For every T ′ ∈ [0, TM ] we have

y1(T
′) +

T ′∫

0

y2(t) dt ≤ A +
T ′∫

0

a(t)y1(t) dt + B sup
t∈[0,T ′]

yβ
1 (t)

T ′∫

0

(y1(t) + y2(t)) dt

≤ A +
T ′∫

0

a(t)y1(t) dt + B(1 + T )θ1+β.

An application of the classical Gronwall lemma, the condition on A, and the choice
of θ yield that for all T ′ ∈ [0, TM ], we have

y1(T
′) +

T ′∫

0

y2(t) dt ≤ (A + B(1 + T )θ1+β)E ≤ θ

4
.

This implies Υ (TM ) < θ , hence TM = T , and thus proves the lemma if A > 0. The
argument is illustrated in Fig. 6.2. If A = 0, then the above argument holds for every
θ > 0 and we deduce that y1(t) = y2(t) = 0 for all t ∈ [0, T ]. �

Remark 6.3 The differential equation underlying the generalized Gronwall lemma
has the structure y′ = y1+β . For β > 0, solutions become unbounded in finite time
depending on the initial data, e.g., for y′ = y2, we have y(t) = (tc − t)−1 with
tc = y−1

0 . Therefore, an assumption on A is unavoidable to obtain an estimate on the
entire interval [0, T ].

Fig. 6.2 Continuation
argument in the proof of the
generalized Gronwall lemma

T ′
0 TM T
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Two elementary properties of the function f are essential for an improved stability
result. These define a class of nonlinearities that can be treated with the same argu-
ments.

Lemma 6.1 (Controlled non-monotonicity) We have f ′(s) ≥ −1 and

(
f (s) − f (r)

)
(s − r) ≥ f ′(s)(s − r)2 − 3s(s − r)3

for all r, s ∈ R.

Proof The lemma follows from the identities f ′(s) = 3s2 − 1, f ′′(s) = 6s, and
f ′′′(s) = 6 together with a Taylor expansion of f . �

The controlled non-monotonicity of f avoids the use of a Lipschitz estimate.
To estimate the resulting term involving f ′, we employ the smallest eigenvalue of
the linearization of the mapping u �→ −�u + f (u(t)), i.e., of the linear operator
v �→ −�v + f ′(u(t))v.

Definition 6.1 For u ∈ L∞([0, T ]; H1(Ω)) let the principal eigenvalue λAC:
[0, T ] → R of the linearized Allen–Cahn operator for t ∈ [0, T ] be defined by

λAC(t) = − inf
v∈H1(Ω)\{0}

‖∇v‖2 + ε−2
(

f ′(u(t))v, v
)

‖v‖2 .

Remarks 6.4 (i) As in the theory of ordinary differential equations, the principal
eigenvalue contains information about the stability of the evolution.
(ii) If |u(t)| ≤ 1 in Ω , then we have −λAC(t) ≥ c2P − 1 − c f ε

−2 with the Poincaré
constant cP = supv∈H1(Ω)\{0} ‖v‖/‖v‖H1(Ω) and c f = sups∈[−1,1] | f ′(s)|. There-
fore, λAC(t) ≤ 1 + ε−2. The evolution is stable as long as λAC(t) ≤ c for an
ε-independent constant c > 0, and becomes unstable for λAC(t) � 1.
(iii) For the stable stationary states u(t) ≡ ±1, the choice of v ≡ 1 shows that we
have λAC(t) = −2ε−2 ≤ 0, while for the unstable stationary state u(t) ≡ 0 we have
λAC(t) = ε−2.
(iv) As long as the curvature of the interface Γt = {x ∈ Ω : u(t, x) = 0} is bounded
ε-independently, one can show that λAC(t) is bounded ε-independently, cf. [4].

The generalized Gronwall lemma, the controlled non-monotonicity, and the prin-
cipal eigenvalue λAC can be used for an improved stability analysis. We first use the
non-monotonicity in the equation for the difference δ = u − ũ tested by δ, i.e.,

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 = −ε−2( f (u) − f (̃u), u − ũ

) − 〈R̃, δ〉
≤ −ε−2( f ′(u)(u − ũ), u − ũ

)
+ 3ε−2‖u‖L∞(Ω)‖u − ũ‖3L3(Ω)

− 〈R̃, δ〉.
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The definition of λAC(t) implies that

−λAC‖δ‖2 ≤ ‖∇δ‖2 + ε−2( f ′(u)δ, δ
)

and the combination of the two estimates proves that

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 ≤ λAC‖δ‖2 + ‖∇δ‖2 + 3ε−2‖u‖L∞(Ω)‖δ‖3L3(Ω)

+ 〈R̃, δ〉.

By slightly refining the argument we may apply the generalized Gronwall lemma to
this equation. In the following theorem we employ the principal eigenvalue defined
by an approximate solution to the Allen–Cahn equation. This is in the spirit of
a posteriori error estimation to obtain a computable bound for the approximation
error. It follows the concept that all information about the problem is extracted from
the approximate solution.

Theorem 6.4 (Robust stability) Let 0 < ε ≤ 1 and u ∈ H1([0, T ]; H1(Ω)′) ∩
L2([0, T ]; H1(Ω)) be the weak solution of the Allen–Cahn equation. Given a func-
tion ũ ∈ H1([0, T ]; H1(Ω)′)∩ L2([0, T ]; H1(Ω)) define R̃ ∈ L2([0, T ]; H1(Ω)′)
through

〈R̃(t), v〉 = 〈∂t ũ, v〉 + (∇ũ,∇v) + ε−2( f (̃u), v)

for almost every t ∈ [0, T ] and all v ∈ H1(Ω). Suppose that η0, η1 ∈ L2([0, T ])
are such that for almost every t ∈ [0, T ] and all v ∈ H1(Ω), we have

〈R̃(t), v〉 ≤ η0(t)‖v‖ + η1(t)‖∇v‖.

Assume that λ̃AC ∈ L1([0, T ]) is a function such that for almost every t ∈ (0, T ),
we have

−̃λAC(t) ≤ inf
v∈H1(Ω)\{0}

‖∇v‖2 + ε−2( f ′(̃u(t))v, v)

‖v‖2 ,

and set μλ(t) = 2
(
2 + (1 − ε2)̃λAC(t)

)+
. Define

η2AC = ‖(u − ũ)(0)‖2 +
T∫

0

(η20 + ε−2η21) dt

and assume that

ηAC ≤ ε4
(
6cS‖ũ‖L∞([0,T ];L∞(Ω))(1 + T )

)−1
(
8 exp

( T∫

0

μλ(t) dt
))−3/2

,
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then

sup
s∈[0,T ]

‖u − ũ‖2 + ε2

T∫

0

‖∇(u − ũ)‖2 dt ≤ 8η2AC exp
( T∫

0

μλ(t) dt
)
.

Proof The difference δ = u − ũ satisfies

〈∂tδ, v〉 + (∇δ,∇v) = −ε−2( f (u) − f (̃u), v) − 〈R̃, v〉

for almost every t ∈ [0, T ] and all v ∈ H1(Ω). Choosing v = δ, using the assumed
bound for R̃, noting Lemma6.1, and using Young’s inequality we find

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 = −〈R̃, δ〉 − ε−2( f (u) − f (̃u), δ)

≤ η0‖δ‖ + η1‖∇δ‖ − ε−2( f ′(̃u)δ, δ) + 3ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)

≤ 1

4
η20 + ‖δ‖2 + ε−2

2
η21 + ε2

2
‖∇δ‖2 − (1 − ε2)ε−2( f ′(̃u)δ, δ)

− ( f ′(̃u)δ, δ) + 3ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)
.

The assumption on λ̃AC(t) shows that

−̃λAC(t)‖δ‖2 ≤ ‖∇δ‖2 + ε−2( f ′(̃u)δ, δ).

Multiplying this estimate by 1 − ε2 and using f ′(̃u) ≥ −1, we derive the bound

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 ≤ 1

4
η20 + ‖δ‖2 + ε−2

2
η21 + ε2

2
‖∇δ‖2 + (1 − ε2)̃λAC‖δ‖2

+ (1 − ε2)‖∇δ‖2 + ‖δ‖2 + 3ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)

≤ 1

4
η20 + 1

2
ε−2η21 + (2 + (1 − ε2)̃λAC)‖δ‖2

+ (
1 − ε2

2

)‖∇δ‖2 + 3ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)
,

which leads to

d

dt
‖δ‖2 + ε2‖∇δ‖2 ≤ η20 + ε−2η21 + μλ‖δ‖2 + 6ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)

.

Hölder’s inequality and the Sobolev estimate ‖v‖2
L4(Ω)

≤ cS‖v‖2
H1(Ω)

for v ∈
H1(Ω) yield that
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‖δ‖3L3(Ω)
=

∫

Ω

|δ||δ|2 dx ≤ ‖δ‖‖δ‖2L4(Ω)
≤ cS‖δ‖(‖δ‖2 + ‖∇δ‖2). (6.1)

An integration of the last two estimates over [0, T ′] shows that we are in the situation
of Proposition6.2 with

y1(t) = ‖δ(t)‖2, y2(t) = ε2‖∇δ(t)‖2, y3(t) = 6ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)
,

and A = η2AC, B = 6ε−4‖ũ‖L∞([0,T ];L∞(Ω))cS , β = 1/2, and E = exp
( ∫ T

0 μλ dt
)
.

The proposition thus implies the assertion. �

Remarks 6.5 (i) The robust stability result can be proved for a class of nonlinearities
f satisfying the estimates of Lemma6.1.
(ii) If the exponential factor is bounded by a polynomial in ε−1, then we have
improved the stability result of Theorem6.3. We discuss this question below.

6.1.3 Mean Curvature Flow

The Allen–Cahn equation is closely related to the mean curvature flow that seeks for
a given hypersurface M0 ⊂ R

d , a family of hypersurfaces (Mt )t∈[0,T ] such that

V = −d − 1

2
H on Mt

for every t ∈ [0, T ]. Here, V is the normal velocity of points on the surface and H
is the mean curvature. For a family of spheres

(
(∂ BR(t)(0)

)
t∈[0,T ] centered at 0 with

positive radii R : [0, T ] → R, we have

V (t) = R′(t), H(t) = 1

(d − 1)R(t)
.

The family of spheres thus solves the mean curvature flow if

R′ = − 1

2R
,

i.e., if R(t) = (Tc − t)1/2, where Tc = R(0)2. This equation has a blowup structure
and the solution only exists in the interval [0, Tc), cf. Fig. 6.3. To understand the
stability of the evolution, we linearize the right-hand side operator ψ(R) = 1/(2R)

of the differential equation at the solution R(t) and obtain

−λMCF(t) = −1

2R(t)2
= −1

2(Tc − t)
.
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R(t)
R(0)

t

Tc

Fig. 6.3 A family of spheres that solve the mean curvature flow within [0, Tc); at t = Tc the
surfaces collapse

We thus see that λMCF is unbounded at t = Tc when the surfaces collapse. This
reflects the occurrence of large unbounded normal velocities. Nevertheless, for every
T ′ < Tc, we have

T ′∫

0

λMCF(t) dt = −1

2

(
log(Tc − T ′) − log Tc

)
.

Assuming that λMCF ≈ λAC, we will deduce below heuristically that the expo-
nential dependence of the stability estimate in Theorem6.4 is moderate. To under-
stand the relation between the Allen–Cahn equation and the mean curvature flow let
(Mt )t∈[0,T ] be a family of surfaces that solve themean curvature flow.Weassume that
for every t ∈ [0, T ], we have Mt = ∂Ωt for a simply connected domain Ωt ⊂ R

d

and let dM (t, ·) be the signed distance function to Mt that is negative inside Ωt .
Given a trajectory φ : [0, T ] → R

d of a point x0 = φ(0) ∈ M0, i.e., we have
φ(t) ∈ Mt for all t ∈ [0, T ], its normal velocity given by

V (t, φ(t)) = n(t, φ(t)) · φ′(t).

Since dM (t, φ(t)) = 0 for all t ∈ [0, T ] it follows with n(t, x) = ∇dM (t, x) for
every x ∈ Mt that

0 = ∂t dM (t, φ(t)) + ∇dM (t, φ(t)) · φ′(t),

i.e., V (t, x) = −∂t dM (t, x) for every x ∈ Mt . Noting that D2dM = D(∇dM )

is the shape operator it follows that for the mean curvature we have (d − 1)H =
tr(D2dM ) = �dM . With V = −H we deduce that ∂t dM − �dM = 0 on Mt .
The function ψ(z) = tanh(z/

√
2) satisfies −ψ ′′(z)+ f (ψ(z)) = 0, and this implies

that for

v(t, x) = ψ
(dM (t, x)

ε

)
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we have

vt − �v + ε−2 f (v) = ε−1(∂t dM − �dM
)
ψ ′(dM /ε

) − ε−2(ψ ′′(dM /ε
)

+ f
(
ψ

(
dM /ε

)))
= ε−1(∂t dM − �dM

)
ψ ′(dM /ε

)
.

Since ∂t dM − �dM = 0 onMt , we deduce that if dM is sufficiently smooth, then
the function g = ∂t dM − �dM grows linearly in a neighborhood of Mt , i.e., we
have |∂t dM − �dM | ≤ c|dM |. Noting that the function ψ satisfies |zψ ′(z)| ≤ c,
we find that

∣∣ε−1(∂t dM − �dM )ψ ′(dM /ε
)∣∣ ≤ c

∣∣(dM /ε
)
ψ ′(dM /ε

)∣∣ ≤ c.

Therefore, the function v(t, x) = ψ(dM (t, x)/ε) solves the dominant terms of the
Allen–Cahn equation ∂t u −�u = −ε−2 f (u) and serves as an approximation of the
solution in a neighborhood of width ε of the interface Γt . The profile is illustrated in
Fig. 6.4. More details can be found in [5].

6.1.4 Topological Changes

Themean curvature flow provides a good approximation of the Allen–Cahn equation
in the sense that v(x, t) = ψ(dist(x,Mt )/ε) nearly solves the Allen–Cahn equation;
the family Γt = {x ∈ Ω : u(x, t) = 0} is a good approximation of a solution for the
mean curvature flow. These approximations are valid as long as the interfacesMt or
Γt do not undergo topological changes, i.e., as long asMt orΓt does neither split nor
have parts of it disappear. This is closely related to the stability of the solution that
is measured by the principal eigenvalue λAC(t). It can be shown and it follows from
the discussion of the mean curvature flow above, that λAC is bounded from above
independently of ε as long as the interface Γt is smooth and has bounded curvature.
When an interface collapses, large, unbounded velocities occur and the eigenvalue

+1

−1−1

t

u ≈ +1

u ≈− 1

−

Fig. 6.4 A typical configuration of a solution of the Allen–Cahn equation (left) and a solution
restricted to a line in the domain (middle) together with a magnification of the interface (right)
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λAC attains the upper bound λAC ∼ ε−2. This however only occurs on a time-interval
of length comparable to ε2, the characteristic time scale for the Allen–Cahn equation.
Due to this fact, we have for the temporal integral of the principal eigenvalue that
occurs in the stability analysis

T∫

0

λAC(t) dt ∼ 1 + (# topological changes) log(ε−1).

The logarithmic contribution results from the transition regions in which λAC grows
like (Tc − t)−1 for a topological change at t = Tc. Integrating this quantity up to the
time Tc − ε2, where λAC has nearly reached its maximum, reveals that

Tc−ε2∫

Tc−1

λAC(t) dt ∼ 1

2

Tc−ε2∫

Tc−1

(Tc − t)−1 dt ∼ log(ε−1).

The logarithmic growth in ε−1 of the integrated eigenvalue is precisely what is
affordable in the estimate of Theorem6.4 to avoid an exponential dependence on ε−1

and instead obtain an algebraic dependence. A typical behavior of the eigenvalue is
depicted in Fig. 6.5.

6.1.5 Mass Conservation

The Allen–Cahn equation describes phase transition processes in which the volume
fractions of the phases may change and the only stationary configurations represent

t

AC(t)

2 2

−2

1

Fig. 6.5 Two topological changes in an evolution defined by the Allen–Cahn equation; the topo-
logical changes are accompanied by extreme principal eigenvalues; the eigenvalue increases like
(Tc − t)−1 before a topological change occurs at Tc
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single phases. This corresponds, e.g., to melting processes. In order to model phase
separation processes in which the volume fractions are preserved, a constraint has
to be incorporated or a fourth order evolution has to be considered. The latter is the
H−1-gradient flow of the energy Iε, where H−1(Ω) = X ′

0 is the dual of the space
X0 = {v ∈ H1(Ω) : ∫

Ω
v dx = 0}, i.e.,

(∂t u, v)−1 = −(∇u,∇v) − ε−2( f (u), v).

Here, the inner product (v, w)−1 is for v, w ∈ H−1(Ω) defined by

(v, w)−1 =
∫

Ω

∇(−�−1v) · ∇(−�−1w) dx,

where −�−1v and �−1w ∈ X0 are the unique solutions of the Poisson problem

−�u = f in Ω, ∂nu|∂Ω = 0

with vanishing mean for the right-hand sides f = v and f = w, respectively. In the
strong form the gradient flow reads

∂t u = −�φ, φ = �u − ε−2 f (u),

together with homogeneous Neumann boundary conditions on ∂Ω for u and φ and
initial conditions for u. The variable φ is the chemical potential and the system is
called the Cahn–Hilliard equation which can be analyzed with the techniques dis-
cussed above. Mass conservation is a consequence of the fact that ∂t u has vanishing
integral mean. Solutions do not obey a maximum principle but satisfy certain
L∞-bounds.

6.2 Error Analysis

In this section we discuss error estimates for numerical approximations of the Allen–
Cahn equation obtained with the implicit Euler scheme. The stability result of Theo-
rem6.4 is already formulated in the spirit of an a posteriori error analysis. We discuss
results from [3, 8, 9].

6.2.1 Residual Estimate

We include an estimate for the residual of an approximation obtainedwith the implicit
Euler scheme. The result can be modified to control the error of other approximation
schemes.
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Proposition 6.3 (Residual bounds) Let 0 = t0 < t1 < · · · < tK ≤ T and τk =
tk − tk−1, k = 1, 2, . . . , K , and (Tk)k=0,...,K a sequence of regular triangulations of
Ω . Suppose that (uk

h)k=0,...,K ⊂ H1(Ω), for k = 1, 2, . . . , K and all vh ∈ S 1(Tk),
satisfies

τ−1
k (uk

h − Ikuk−1
h , vh) + (∇uk

h,∇vh) = −ε−2( f (uk
h), vh),

where Ik denotes the nodal interpolation operator related to S 1(Tk). Let uh,τ ∈
H1([0, T ]; H1(Ω)) be the piecewise linear interpolation in time of (uk

h)k=0,...,K and
define R ∈ L2(I ; H1(Ω)′) for t ∈ [0, T ] and v ∈ H1(Ω) by

〈R(t), v〉 = (∂t uh,τ , v) + (∇uh,τ ,∇v) + ε−2( f (uh,τ ), v).

For almost every t ∈ [tk−1, tk] and all v ∈ H1(Ω) we have

〈R(t), v〉 ≤ (ηk
time′ + ηk

coarse)‖v‖ + (CC�η
k
space + ηk

time)‖∇v‖,

where ρk = ‖uk
h‖L∞(Ω) + ‖uk−1

h ‖L∞(Ω),

ηk
space =

( ∑
T ∈T k

h

h2
T ‖τ−1

k (uk
h − Ikuk−1

h ) − �Tk uk
h + ε−2 f (uk

h)‖2L2(T )

)1/2

+
( ∑

S∈S k
h ∩Ω

hS‖�∇uk
h · nS�‖2L2(S)

)1/2 +
( ∑

S∈S k
h ∩∂Ω

hS‖∇uk
h · n‖2L2(S)

)1/2
,

and

ηk
time′ = ε−2‖ f ′‖L∞(Bρk )‖uk−1

h − uk
h‖,

ηk
time = ‖∇(uk−1

h − uk
h)‖,

ηk
coarse = τ−1

k ‖Ikuk−1
h − uk−1

h ‖.

Proof For almost every t ∈ (tk−1, tk), k = 1, 2, . . . , K , and all v ∈ H1(Ω), we have
by definition of R that

〈R(t), v〉 = τ−1
k (uk

h − uk−1
h , v) + (∇uh,τ (t),∇v) + ε−2( f (uh,τ (t)), v)

= τ−1
k (uk

h − Ikuk−1
h , v) + (∇uk

h,∇v) + ε−2( f (uk
h), v)

+ (∇(uh,τ (t) − uk
h),∇v) + ε−2( f (uh,τ (t)) − f (uk

h), v)

+ τ−1
k (Ikuk−1

h − uk−1
h , v)

= I + II + · · · + VI.

Since the sum of the first three terms vanishes for all v ∈ S 1(Tk), we may insert
the Clément interpolantJkv ∈ S 1(Tk) of v. An element-wise integration by parts
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and estimates for the Clément interpolant lead to

I + II + III = 〈rk
h , v − Jkv〉 ≤ CC�η

k
space‖∇v‖.

A repeated application of Hölder’s inequality, the identity

f (uh,τ (t)) − f (uk
h) =

( 1∫

0

f ′(ruh,τ (t) + (1 − r)uk
h) dr

)
(uh,τ (t) − uk

h),

and the linearity of uh,τ in t lead to

IV + V ≤ ‖∇(uh,τ (t) − uk
h)‖‖∇v‖ + ε−2‖ f ′‖L∞(Bρk )‖uh,τ (t) − uk

h‖‖v‖
≤ ηk

time′ ‖v‖ + ηk
time‖∇v‖.

A further application of Hölder’s inequality proves

V I ≤ τ−1
k ‖Ikuk−1

h − uk−1
h ‖‖v‖ = ηk

coarse‖v‖.

A combination of the estimates leads to the asserted bound. �
In combination with Theorem6.4 we obtain the following a posteriori error

estimate. It bounds the approximation error in terms of computable quantities
provided that the error estimator is sufficiently small and depends exponentially
only on the temporal average of the principal eigenvalue defined by the numerical
approximation.

Theorem 6.5 (A posteriori error estimate) Assume that we are in the setting of
Proposition6.3 and suppose that λh

AC ∈ L1([0, T ]) is a function, such that for almost
every t ∈ (0, T ), we have

−λh
AC(t) ≤ inf

v∈H1(Ω)\{0}
‖∇v‖2 + ε−2( f ′(uh,τ (t))v, v)

‖v‖2 ,

and set μλ(t) = 2(2 + (1 − ε2)λh
AC(t))+. Define η�(t) = ηk

� for t ∈ (tk−1, tk),
k = 1, 2, . . . , K , and � ∈ {time′, time, space, coarse} and let

η2AC = ‖(u − u0
h)(0)‖2 +

T∫

0

(η2time′ + η2coarse + ε−2η2time + ε−2η2space) dt.

If

ηAC ≤ ε4
(
6cS‖uh,τ‖L∞([0,T ];L∞(Ω))(1 + T )

)−1
(
8 exp

( T∫

0

μλ(t) dt
))−3/2

,
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then we have

sup
s∈[0,T ]

‖u − uh,τ‖2 + ε2

T∫

0

‖∇(u − uh,τ )‖2 dt ≤ 8η2 exp
( T∫

0

μλ(t) dt
)
.

Proof The theorem is an immediate consequence of Proposition6.3 and Theo-
rem6.4. �

6.2.2 A Priori Error Analysis

To derive a robust a priori error estimate for a semidiscrete in time approximation
scheme, we try to follow the arguments used in the stability analysis of Theorem6.3
with exchanged roles of the exact solution and its numerical approximation. As
above we avoid the use of a Lipschitz estimate for the nonlinearity, and instead
employ a linearization. The non-monotonicity of the resulting equation is controlled
by a cubic term. The linearization allows us to incorporate the principal eigenvalue
that is assumed to be well-behaved in the sense that a discrete integral grows only
logarithmically in ε−1.

Proposition 6.4 (Discrete stability) Given τ > 0 let (U k)k=0,...,K ⊂ H1(Ω) be
such that

(dtU
k, v) + (∇U k,∇v) = −ε−2( f (U k), v)

for k = 1, 2, . . . , K and all v ∈ H1(Ω). We then have

Iε(u
L) + (2 − 2τε−2)

τ

2

K∑
k=1

‖dtU
k‖2 ≤ Iε(u

0)

for every 1 ≤ L ≤ K . Moreover, if ‖U 0‖L∞(Ω) ≤ 1, then ‖U k‖L∞(Ω) ≤ 1 for
k = 1, 2, . . . , K .

Proof The mean value theorem shows that for every x ∈ Ω there exists a number
ξx such that

f (U k)dtU
k = dt F(U k) + τ

2
f ′(ξx )(dtU

k)2.

Using that f ′(ξx ) ≥ −1 and choosing v = dtU k , we deduce that

‖dtU
k‖2 + dt

2
‖∇U k‖2 + τ

2
‖∇dtU

k‖2 + dtε
−2

∫

Ω

F(U k) dx − τε−2

2
‖dtU

k‖2 ≤ 0.
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Multiplication by τ and summation over k = 1, 2, . . . , L imply the assertion. A
truncation argument and the characterization of U k as the minimum of a functional
I k
ε show that ‖U k‖L∞(Ω) ≤ 1 provided that U 0 has this property. �

Proposition 6.5 (Consistency) Assume that the weak solution of the Allen–Cahn
equation satisfies u ∈ C([0, T ]; H1(Ω)) and u ∈ H2([0, T ]; H1(Ω)′) with

T∫

0

‖utt‖2H1(Ω)′ dt ≤ cε−2σ .

For uk = u(tk), k = 0, 1, . . . , K , we have

(dt u
k, v) + (∇uk,∇v) = −ε−2( f (uk), v) + Cτ (tk; v)

for all v ∈ H1(Ω) with consistency functionals Cτ (tk) satisfying

τ

K∑
k=1

‖Cτ (tk)‖2H1(Ω)′ ≤ cτ 2ε−2σ .

We have σ = 2 if I (u0) ≤ c.

Proof Noting that

(dt u
k, v) + (∇uk,∇v) + ε−2( f (uk), v) = (dt u

k − ∂t u(tk), v) = Cτ (tk; v)

for all v ∈ H1(Ω), arguing as in the case of the linear heat equation, and incorporating
Theorem6.2 proves the asserted bound. �

The following lemma is a generalization of the classical discrete Gronwall lemma
which states that if

yL ′ ≤ A + τ

L ′∑
k=1

ak yk

for 0 ≤ L ′ ≤ L and if τak ≤ 1/2 for k = 1, 2, . . . , L , then we have

sup
k=0,...,L

yk ≤ 2A exp
(
2τ

L∑
k=1

ak

)
.

The condition akτ ≤ 1/2 is required to absorb the term aL ′ yL ′
.

Lemma 6.2 (Generalized discrete Gronwall lemma) Let τ > 0 and suppose that
the nonnegative real sequences (yk

� )k=0,...,K , � = 1, 2, 3, (ak)k=0,...,K , and the real
number A ≥ 0 satisfy
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yL
1 + τ

L∑
k=1

yk
2 ≤ A + τ

L∑
k=1

ak yk
1 + τ

L−1∑
k=1

yk
3

for all L = 0, 1, . . . , K , supk=1,...,K τak ≤ 1/2, and K τ ≤ T . Assume that for
B ≥ 0, β > 0, and every L = 1, 2, . . . , K , we have

τ

L−1∑
k=1

yk
3 ≤ B

(
sup

k=1,...,L−1
(yk

1 )
β
)
τ

L−1∑
k=1

(yk
1 + yk

2 ).

Set E = exp
(
2τ

∑K
k=1 ak

)
and assume that 8AE ≤ (8B(1 + T )E)−1/β . Then

sup
k=0,...,K

yk
1 + τ

K∑
k=1

yk
2 ≤ 8A exp

(
2τ

K∑
k=1

ak

)
.

Proof Set θ = 8AE . We proceed by induction and suppose that

sup
k=0,...,L−1

yk
1 + τ

L−1∑
k=1

yk
2 ≤ θ.

This is satisfied for L = 1. For every L ′ = 1, 2, . . . , L , we then have due to the
assumptions of the lemma that

yL ′
1 + τ

L ′∑
k=1

yk
2 ≤ A + τ

L ′∑
k=1

ak yk
1 + B

(
sup

k=1,2,...,L ′−1
(yk

1 )
β
)
τ

L ′−1∑
k=1

(yk
1 + yk

2 )

≤ A + τ

L ′∑
k=1

ak yk
1 + B(1 + T )θ1+β.

The classical discrete Gronwall lemma, the condition on A, and the estimate θβ ≤
(8B(1 + T )E)−1 prove that for all L ′ = 1, 2, . . . , L , we have

yL ′
1 + τε2

L ′∑
k=1

yk
2 ≤ 2(A + B(1 + T )θ1+β)E ≤ θ

2
.

This completes the inductive argument and proves the lemma. �

The a priori bounds and the generalized discreteGronwall lemma lead to a robust a
priori error estimate under an assumption on the principal eigenvalue that ismotivated
by analytical considerations.
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Theorem 6.6 (A priori error estimate) Assume ε ≤ 1, Iε(u0) ≤ c0, and that there
are c1 > 0, κ ≥ 0 with

τ

K∑
k=1

λ+
AC(tk) ≤ c1 + log ε−κ .

Then there exists a constant c2 > 0 such that if τ ≤ c2ε7+6κ , we have

sup
k=1,...,K

‖u(tk) − U k‖2 + τε2
K∑

k=1

‖∇(u(tk) − U k)‖2 ≤ cτ 2ε−6−4κ .

Proof Denoting uk = u(tk) the error ek = uk − U k satisfies the identity

(dt e
k, v) + (∇ek,∇v) = −ε−2( f (uk) − f (U k), v) + Cτ (tk, v)

for all v ∈ H1(Ω). Lemma6.1, the definition of λAC(tk), and ‖uk‖L∞(Ω) ≤ 1 imply
that

−ε−2( f (uk) − f (U k), ek) ≤ −ε−2( f ′(uk)ek, ek) + 3ε−2‖uk‖L∞(Ω)‖ek‖3L3(Ω)

= −(1 − ε2)ε−2( f ′(uk)ek, ek) − ( f ′(uk)ek, ek)

+ 3ε−2‖ek‖3L3(Ω)

≤ (1 − ε2)λAC(tk)‖ek‖2 + (1 − ε)‖∇ek‖2
+ ‖ek‖2 + 3ε−2‖ek‖3L3(Ω)

.

Hence, for the choice of v = ek , we find that

1

2
dt‖ek‖2 + τ

2
‖dt e

k‖2 + ‖∇ek‖2 = Cτ (tk, ek) − ε−2( f (uk) − f (U k), ek)

≤ ε−2

2
‖Cτ (tk)‖2H1(Ω)′ + ε2

2
‖ek‖2 + ε2

2
‖∇ek‖2

+ (1 − ε2)λAC(tk)‖ek‖2 + (1 − ε2)‖∇ek‖2
+ ‖ek‖2 + 3ε−2‖ek‖3L3(Ω)

.

Using (a + b)3 ≤ 4(a3 + b3) and τ‖dt ek‖L∞(Ω) ≤ 4 we find that

‖ek‖3L3(Ω)
≤ 4

(‖ek−1‖3L3(Ω)
+ τ 3‖dt e

k‖3L3(Ω)

) ≤ 4‖ek−1‖3L3(Ω)
+ 16τ 2‖dt e

k‖2.

If τ is sufficiently small so that 48τε−2 ≤ 1/2, then the combination of the last two
estimates implies

dt‖ek‖2+ε2‖∇ek‖2 ≤ ε−2‖Cτ (tk)‖2H1(Ω)′ +μk
λ‖ek‖2+48ε−2‖ek−1‖3L3(Ω)

, (6.2)
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where μk
λ = 2(2 + λ+

AC(tk)). We set

yk
1 = ‖ek‖2, yk

2 = ε2‖∇ek‖2, yk
3 = 48ε−2‖ek‖3L3(Ω)

.

Noting that e0 = 0 and

‖ek−1‖3L3(Ω)
≤ ‖ek−1‖‖ek−1‖2L4(Ω)

≤ cS‖ek−1‖(‖ek−1‖2 + ‖∇ek−1‖2), (6.3)

we find by summation of (6.2) and (6.3) over k = 1, 2, . . . , L that we are in the
situation of Lemma6.2 with

A = ε−2τ

K∑
k=1

‖Cτ (tk)‖2H1(Ω)′ , E = exp
(
2τ

K∑
k=1

μk
λ

)
, B = 48ε−4cS,

and β = 1/2. Therefore,

sup
k=0,...,K

‖ek‖2 + ε2τ

K∑
k=1

‖∇ek‖2 ≤ 8AE,

provided that 8AE ≤ (8B(1+ T )E)−2. Since according to Proposition6.5 we have
A ≤ cτ 2ε−6, this is satisfied if cBτ 2ε−6E ≤ (8B(1 + T )E)−2. With the assumed
bound for the discrete integral of λ+

AC, we deduce that

E ≤ exp(8T ) exp
(
4τ

K∑
k=1

λ+
AC (tk)

)
≤ cEε−4κ .

Therefore, the condition τ 2 ≤ cε14ε12κ implies the assertion. �

Remarks 6.6 (i) If utt ∈ L2([0, T ]; L2(Ω)), then the bound for A in the proof can
be improved and the conditions of the theorem can be weakened.
(ii) An a priori error analysis for a fully discrete approximation follows the same
strategy by decomposing the error u(tk)−uk

h as (u(tk)− Qhu(tk))+ (Qhu(tk)−uk
h)

with the H1-projection Qh , cf. [8].

6.3 Practical Realization

We discuss in this section alternatives to the implicit Euler scheme and include an
estimate for the approximation of the principal eigenvalue that is needed to compute
the a posteriori error bound.
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6.3.1 Time-Stepping Schemes

The implicit Euler scheme requires the solution of a nonlinear system of equations
in every time step and is stable under the condition τ ≤ 2ε2. We consider various
semi-implicit approximation schemes defined by approximating the nonlinear term
avoiding some of these limitations.

Algorithm 6.1 (Semi-implicit approximation) Given u0
h ∈ S 1(Th), τ > 0, and a

continuous function G : R × R → R let the sequence (uk
h)k=0,...,K be defined by

(dt u
k
h, vh) + (∇uk

h,∇vh) + ε−2(G(uk
h, uk−1

h ), vh
) = 0

for all vh ∈ S 1(Th).

The function G is assumed to provide a consistent approximation of the nonlinear
function f in the sense that G(s, s) = f (s).

Examples 6.1 (i) The (fully) implicit Euler scheme corresponds to

G impl(uk, uk−1) = f (uk).

(ii) The choice of
Gexpl(uk, uk−1) = f (uk−1)

realizes an explicit treatment of the nonlinearity.
(iii) Carrying out one iteration of a Newton scheme in every time step of the implicit
Euler scheme with initial guess uk−1

h corresponds to the linearization

G lin(uk, uk−1) = f (uk−1) + f ′(uk−1)(uk − uk−1).

(iv) A Crank–Nicolson type treatment of the nonlinear term is

Gcn(uk, uk−1) =
⎧⎨
⎩

F(uk) − F(uk−1)

uk − uk−1 if uk �= uk−1,

f (uk) if uk = uk−1.

We have Gcn(uk, uk−1) = (1/4)(uk + uk−1)((uk)2 + (uk−1)2 − 2).
(v) The decomposition F = Fcx + Fcv of F(uk−1) = ((uk)2 − 1)2/4 into a convex
part Fcx (uk−1) = ((uk)4 + 1)/4 and a concave part Fcv(uk−1) = −(1/2)(uk−1)2

leads with the derivatives f cx and f cv of Fcx and Fcv, respectively, to the definition

Gcxcv(uk, uk−1) = f cx (uk) + f cv(uk−1).
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Remarks 6.7 (i)Only the explicit and linearized treatment of the nonlinear term leads
to linear systems of equations in every time step. The convex-concave decomposition
leads to monotone systems of equations.
(ii) The best compromise for stability and linearity appears to be the linearized
treatment of the nonlinear term.
(iii) The decomposition of F into convex and concave parts corresponds to the general
concept to treat monotone terms implicitly and anti-monotone terms explicitly.
(iv) Numerical integration simplifies the nonlinearities, i.e., for all z, y ∈ Nh , we
have (

G(uk
h, uk−1

h )ϕz, ϕy
)

h = G(uk
h(z), uk−1

h (z))βzδzy

with βz = ∫
Ω

ϕz , so that the corresponding contribution to the systemmatrix is given
by a diagonal matrix.
(v) The numerical schemes have different numerical dissipation properties.

The stability of the different semi-implicit Euler schemes is a consequence of
the following proposition. We omit a discussion of the explicit treatment of the
nonlinearity since this is experimentally found to be unstable even for τ ∼ ε2.

Proposition 6.6 (Semi-implicit Euler schemes) Given uk, uk−1 ∈ R and τ > 0, we
set dt uk = (uk − uk−1)/τ . We have

G impl(uk, uk−1)dt u
k ≥ dt F(uk) − τ

2
|dt u

k |2,
Gcn(uk, uk−1)dt u

k = dt F(uk),

Gcxcv(uk, uk−1)dt u
k ≥ dt F(uk),

and if |uk |, |uk−1| ≤ 1, then

G lin(uk, uk−1)dt u
k ≥ dt F(uk) − 7τ

2
|dt u

k |2.

In particular, the implicit Euler scheme is stable if τ ≤ 2ε2, the semi-implicit Euler
scheme with Crank–Nicolson type treatment of the nonlinear term is unconditionally
stable, the semi-implicit Euler scheme with decomposed treatment of the nonlinearity
is unconditionally stable, and the semi-implicit Euler scheme with a linearized
treatment of the nonlinear term is stable if a discrete maximum principle holds and
τ ≤ (2/7)ε2, i.e., under these conditions we have for the solutions of the respective
semi-implicit Euler schemes that

Iε(u
L
h ) ≤ Iε(u

0
h)

for all L ≥ 0.
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Proof A Taylor expansion shows that for some ξ ∈ R, we have

F(uk−1) = F(uk) + f (uk)(uk−1 − uk) + 1

2
f ′(ξ)(uk−1 − uk)2.

Since f ′(ξ) ≥ −1 we deduce after division by τ that

f (uk)dt u
k = dt F(uk) + τ

2
f ′(ξ)(dt u

k)2 ≥ dt F(uk) − τ

2
|dt u

k |2

and this implies the bound for G impl. Assuming that |uk |, |uk−1| ≤ 1, a similar
argument with f ′′(s) = 6s shows with some ζ ∈ [−1, 1] that
(

f (uk−1) + f ′(uk−1)(uk − uk−1)
)
(uk − uk−1)

= f (uk)(uk − uk−1) − 1

2
f ′′(ζ )(uk − uk−1)3 ≥ f (uk)(uk − uk−1) − 6(uk − uk−1)2

and with the previous estimate we deduce that

G lin(uk, uk−1)dt u
k ≥ dt F(uk) − 7τ

2
|dt u

k |2.

If dt uk �= 0, then

Gcn(uk, uk−1)(uk − uk−1) = F(uk) − F(uk−1) = τdt F(uk),

and if dt uk = 0, then Gcn(uk, uk−1)dt uk = 0 = τdt F(uk) which implies the
asserted identity for Gcn. For the convex function Fcx and its derivative f cx , we
have

f cx (uk)(uk−1 − uk) + Fcx (uk) ≤ Fcx (uk−1).

Analogously, for the convex function −Fcv and its derivative − f cv, we have

− f cv(uk−1)(uk − uk−1) − Fcv(uk−1) ≤ −Fcv(uk).

The combination of the two estimates proves that

Gcxcv(uk, uk−1)dt u
k = f cx (uk)dt u

k + f cv(uk−1)dt u
k ≥ dt Fcx (uk) + dt Fcv(uk).

The stability of the related schemes now follows from the choice of vh = dt uk
h in the

semi-implicit Euler scheme, i.e.,

‖dt u
k
h‖2 + dt

2
‖∇uk

h‖2 + τ

2
‖∇dt u

k
h‖2 + ε−2(G(uk

h, uk−1
h ), dt u

k
h

) = 0,
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togetherwith a summation over k = 1, 2, . . . , L , and the corresponding lower bounds
for G(uk

h, uk−1
h ). �

6.3.2 Computation of the Eigenvalue

The a posteriori error estimate of Theorem6.5 requires a lower bound for the principal
eigenvalue of the linearized Allen–Cahn operator with respect to the approximate
solution, i.e., a function λh

AC such that

−λh
AC(t) ≤ inf

v∈H1(Ω)\{0}
‖∇v‖2 + ε−2( f ′(uh,τ (t))v, v)

‖v‖2 .

To approximate the infimum on the right-hand side, we replace the space H1(Ω) by
S 1(Th). We fix a time t in the following and let −Λ ∈ R be the infimum at time t ,
i.e., there exists w ∈ H1(Ω) with ‖w‖ = 1 and

−Λ(w, v) = (∇w,∇v) + ε−2(phw, v)

for all v ∈ H1(Ω) and with ph = f ′(uh,τ (t)).

Proposition 6.7 (Eigenvalue approximation) Let (Λh, wh) ∈ R×S 1(Th) be such
that

−Λh(wh, vh) = (∇wh,∇vh) + ε−2(phwh, vh)

for all vh ∈ S 1(Th). Assume that the Laplace operator with homogeneous Neumann
boundary conditions is H2-regular in Ω in the sense that ‖D2v‖ ≤ c�‖�v‖ for all
v ∈ H2(Ω) with ∂nv = 0 on ∂Ω and suppose that ‖ph‖L∞(Ω) ≤ c0. Then there
exists c1 > 0 such that if h ≤ c1ε, we have

0 ≤ Λ − Λh ≤ cε−4h2.

Proof In the following we occasionally replace the function ph by qh = ph +
‖ph‖L∞(Ω) which corresponds to a shift of −Λ and −Λh by ‖ph‖L∞(Ω) but allows
us to use qh ≥ 0. The fact that S 1(Th) ⊂ H1(Ω) implies that we have −Λ ≤
−Λh . Since wh is minimal for vh �→ ‖∇vh‖2 + ε−2(phvh, vh) among functions
vh ∈ S 1(Th) with ‖vh‖ = 1 with minimum −Λh and since −Λ = ‖∇w‖2 +
ε−2(phw, w), we have

0 ≤ Λ − Λh ≤ −(∇w,∇w) − ε−2(qhw, w) + ‖∇vh‖2 + ε−2(qhvh, vh)

≤ 2(∇vh,∇[vh − w]) + 2ε−2(qhvh, vh − w).
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We note −Λ ≤ ε−2‖ph‖L∞(Ω) and conclude with −�w = −Λw − ε−2 phw that

‖∇w‖ ≤ cε−1, ‖D2w‖ ≤ c‖�w‖ ≤ cε−2.

We incorporate the H1-projection Qhw ∈ S 1(Th) defined by

(∇Qhw,∇ yh) + (Qhw, yh) = (∇w,∇ yh) + (w, yh)

for all yh ∈ S 1(Th) which satisfies the estimates

h‖w − Qhw‖ + ‖∇(w − Qhw)‖ ≤ ch2‖D2w‖.

We suppose that h ≤ cε is such that

∣∣1 − ‖Qhw‖∣∣ ≤ ‖w − Qhw‖ ≤ ch2ε−2 ≤ 1

2
.

Choosing vh = Qhw/‖Qhw‖ and noting

‖∇Qhw‖ + ‖Qhw‖ ≤ ‖∇w‖ + ‖w‖ ≤ cε−1

we find that

(∇vh,∇[vh − w]) = ‖Qhw‖−2((∇Qhw,∇[Qhw − w]) + (∇Qhw,∇[w − ‖Qhw‖w]))
= ‖Qhw‖−2((Qhw, Qhw − w) + (1 − ‖Qhw‖)(∇Qhw,∇w)

)
≤ ch2ε−2(1 + ε−2).

Analogously, we have

(qhvh, vh − w) = ‖Qhw‖−2((Qhw, Qhw − w) + (Qhw, w − ‖Qhw‖w)
)

= ‖Qhw‖−2((Qhw, Qhw − w) + (1 − ‖Qhw‖)(Qhw, w)
)

≤ ch2ε−2.

A combination of the estimates implies the asserted error bound. �

The discrete eigenvalue problem can be recast as the problem of finding a vector
W ∈ R

L with W

⊥

mW = 1 and

(−Λ + cshift)mW = (s + ε−2m p + cshiftm)W = Y W

with the mass matrix m, the stiffness matrix s, the weighted mass matrix m p, and an
arbitrary constant cshift . For cshift = ε−2‖ph‖L∞(Ω) + 1, we have that the symmetric
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matrices m and Y = s + ε−2m p + cshiftm are positive definite, and we may use the
following vector iteration with Rayleigh-quotient approximation to approximate Λ.

Algorithm 6.2 (Vector iteration) Given W0 ∈ R
L such that W

⊥

0 mW0 = 1, compute
the sequence Λ j , j = 0, 1, 2, . . . via Λ0 = (W 0)

⊥

Y W 0 and

W̃ j+1 = Y −1(mW j ), W j+1 = W̃ j+1

(
(W̃ j+1)

⊥

mW̃ j+1
)1/2

and
−Λ j+1 + cshift = (W j+1)

⊥

Y W j+1.

Stop the iteration if |Λ j+1 − Λ j | ≤ εstop.

Remark 6.8 The iteration converges to the smallest eigenvalue provided that the
initial vector W0 is not orthogonal to the corresponding eigenspace.

6.3.3 Implementation

The Matlab code shown in Fig. 6.6 realizes the semi-implicit Euler scheme with
linearized treatment of the nonlinear term and computes the principal eigenvalue
defined by the approximate solution in every time step. We used the discrete inner
product (·, ·)h to simplify the computation of some matrices, i.e., we use the formu-
lations

(dt u
k
h, vh) + (∇uk

h,∇vh) + ε−2( f ′(uk−1
h )uk

h, vh)h

= −ε−2( f (uk−1
h ), vh)h + ε−2( f ′(uk−1

h )uk−1
h , vh)h

and
−λh

AC(tk)(wh, vh) = (∇wh,∇vh) + ε−2( f ′(uk
h)wh, vh)h

for all vh ∈ S 1(Th) to find uk
h ∈ S 1(Th) and an approximation of the eigenpair

(−λh
AC(tk), wh).
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Fig. 6.6 Implementation of the linearized implicit Euler scheme with numerical integration for
the Allen–Cahn equation and computation of the eigenvalue in each time step
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