
Chapter 4
Concepts for Discretized Problems

4.1 Convergence of Minimizers

We consider an abstract finite-dimensional minimization problem that seeks a
minimizing function uh ∈ Ah for a functional

Ih(uh) =
∫

Ω

Wh(∇uh) dx,

where the indices h inAh and Wh refer to discretized versions of given counterparts
in the infinite-dimensional variational problem for minimizing

I (u) =
∫

Ω

W (∇u) dx

in the set of functions u ∈ A . Wewill often refer to the infinite-dimensional problem
as the continuous problem, but this does not imply a continuity property of the
functional or its integrand. The finite-dimensional problems will also be referred to
as discretized problems. We recall that it is sufficient for the existence of discrete
solutions to have coercivity and lower semicontinuity of Ih , while in the continuous
situation, coercivity and the strictly stronger notion of weak lower semicontinuity of
I are required.We discuss in this section the variational convergence ofminimization
problems and adopt concepts described in the textbook [5].

4.1.1 Failure of Convergence

A natural question to address is whether a family of discrete solutions (uh)h>0
converges to a minimizer u ∈ A for I with respect to some topology. Obviously,
this requires the existence of a minimizer u ∈ A for I and convergence of the entire
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86 4 Concepts for Discretized Problems

sequence of approximations requires uniqueness of the continuous solution, or a
certain selection principle contained in the discrete problems. Surprisingly, even if a
solution exists for the continuous problem, if the discretization is conforming in the
sense that Ah ⊂ A and Wh = W , and if the family (Ah)h>0 is dense in A , then
convergence of discrete solutions may fail entirely.

Example 4.1 (Lavrentiev phenomenon [9]) Let A be the set of all functions
v ∈ W 1,1(0, 1) satisfying v(0) = 0 and v(1) = 1 and consider

I (u) =
1∫

0

(
x − u3)2|u′|6 dx .

For h > 0 let Th be a triangulation of (0, 1), and define Ah = A ∩ S 1(Th). Then
the function u(x) = x1/3 is a minimizer for I in A , but for every h > 0, we have

0 = min
u∈A

I (u) < min
u∈A ∩W 1,∞(0,1)

I (u) ≤ min
uh∈Ah

I (uh).

In particular, the discrete minimal energies cannot converge to the right value. The
reason for this discrepancy is the incompatibility of the growth of the integrand of I
and the exponent of the employed Sobolev space in the definition of A .

The example shows that even the seemingly simple notion of convergence

min
uh∈Ah

Ih(uh) → inf
u∈A

I (u)

for h → 0 requires stronger arguments than just the density of the approximation
spaces. Once convergence is understood, a natural question to investigate is whether
a rate of convergence can be proved, i.e., whether there exists α > 0 with

| min
uh∈Ah

Ih(uh) − inf
u∈A

I (u)| ≤ chα.

Even if this is the case, it is not guaranteed that discrete solutions uh ∈ Ah converge
to a minimizer u ∈ A of I .

Example 4.2 (Lack of weak lower semicontinuity) Set A = W 1,4(0, 1) and let

I (u) =
1∫

0

(|u′|2 − 1
)2 + u4 dx .

For h > 0 let Th be a triangulation of (0, 1) of maximal mesh-size h and define
Ah = A ∩ S 1(Th). Then infu∈A I (u) = 0 and

| min
uh∈Ah

I (uh) − inf
u∈A

I (u)| ≤ ch4,



4.1 Convergence of Minimizers 87

and anyweakly convergent sequence of discreteminimizers (uh)h>0 satisfies uh ⇀ 0
in W 1,4(Ω) as h → 0. Due to the nonconvexity of the integrand, we have that u = 0
is not a minimizer for I , i.e., 0 < 1 = I (0).

4.1.2 Γ -Convergence of Discretizations

The concept ofΓ -convergence provides a concise framework to analyze convergence
of a sequence of energy functionals and its minimizers. In an abstract form we
consider a sequence of discrete minimization problems:

Minimize Ih(uh) in the set of functions uh ∈ Xh .

Here, every space Xh is assumed to be a subspace of a Banach space X and Ih is
allowed to attain the value +∞, so that constraints contained in Ah ⊂ Xh can be
incorporated in Ih . We formally extend the discrete problems to X by setting

Ih(u) =
{

Ih(u) if u ∈ Xh,

+∞ if u 
∈ Xh .

In the following, h > 0 stands for a sequence of positive real numbers that accumulate
at zero.

Definition 4.1 Let X be a Banach space, I : X → R ∪ {+∞}, and let (Ih)h>0 be
a sequence of functionals Ih : X → R ∪ {+∞}. We say that the sequence (Ih)h>0
Γ -converges to I as h → 0, denoted by Ih →Γ I , with respect to a given topology
ω on X if the following conditions hold:

(a) For every sequence (uh)h>0 ⊂ X with uh →ω u for some u ∈ X , we have that
lim infh→0 Ih(uh) ≥ I (u).

(b) For every u ∈ X there exists a sequence (uh)h>0 ⊂ X with uh →ω u and
Ih(uh) → I (u) as h → 0.

Remark 4.1 The first condition is called liminf-inequality and implies that I is a
lower bound for the sequence (Ih)h>0 in the limit h → 0. The second condition
guarantees that the lower bound is attained, and the involved sequence is called a
recovery sequence.

Unless otherwise stated, we consider the weak topology ω on X . For conforming
discretizations, i.e., if Ih(uh) = I (uh) for all uh ∈ Xh , of well-posed minimization
problems, a Γ -convergence result can be proved under moderate conditions.

Theorem 4.1 (Conforming discretizations) Assume that Ih(uh) = I (uh) for uh ∈
Xh and h > 0 and that the spaces (Xh)h>0 are dense in X with respect to the strong
topology of X. If I is weakly lower semicontinuous and strongly continuous, then we
have Ih →Γ I as h → 0 with respect to weak convergence in X.
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Proof Let (uh)h>0 ⊂ X and u ∈ X be such that uh ⇀ u as h → 0. To
prove the liminf-inequality, we note that Ih(uh) ≥ I (uh) and thus the weak lower
semicontinuity of I implies lim infh→0 Ih(uh) ≥ lim infh→0 I (uh) ≥ I (u). Toprove
that I (u) is attained for every u ∈ X , let (uh)h>0 be a sequence with uh ∈ Xh for
every h > 0 and uh → u in X . The strong continuity of I and Ih(uh) = I (uh) imply
that I (u) = limh→0 Ih(uh). �

The definition of Γ -convergence has remarkable consequences.

Proposition 4.1 (Γ -Convergence)

(i) If Ih →Γ I as h → 0, then I is weakly lower semicontinuous on X.
(ii) If Ih →Γ I as h → 0 and for every h > 0 there exists uh ∈ X such that
Ih(uh) ≤ infvh∈X Ih(vh)+ εh with εh → 0 as h → 0 and uh →ω u for some u ∈ X,
then Ih(uh) → I (u) and u is a minimizer for I .
(iii) If Ih →Γ I and G is ω-continuous on X, then Ih + G →Γ I + G.

Proof (i) Let (u j ) j∈N ⊂ X be a sequence with u j →ω u in X as j → ∞. For
every j ∈ N there exists a sequence (uh

j )h>0 such that uh
j →ω u j as h → 0

and Ih(uh
j ) → I (u j ). For every j ∈ N we may thus choose h j > 0, such that

|I (u j ) − Ih j (u
h j
j )| ≤ 1/j and u

h j
j →ω u as j → ∞. It follows that

I (u) ≤ lim inf
j→∞ Ih j

(
u

h j
j

) = lim inf
j→∞ I (u j ) − I (u j ) + Ih j

(
u

h j
j

) = lim inf
j→∞ I (u j ).

This proves the first statement.
(ii) If uh →ω u, then by condition (a) we have I (u) ≤ lim infh→0 Ih(uh). Moreover,
due to (b) for every v ∈ X , there exists (vh)h>0 ⊂ X with vh →ω v and Ih(vh) →
I (v) as h → 0. Therefore, I (uh) ≤ I (vh) + εh and

I (u) ≤ lim inf
h→0

Ih(uh) ≤ lim
h→0

(
Ih(vh) + εh

) = I (v),

i.e., u is a minimizer for I .
(iii) If G is ω-continuous, then G(uh) → G(u) whenever uh →ω u in X and the
Γ -convergence of Ih + G to I + G follows directly from Ih →Γ I . �

4.1.3 Examples of Γ -Convergent Discretizations

We discuss some examples of Γ -convergence. As above, we always extend a func-
tional Ih defined on a subspace Xh ⊂ X by the value +∞ to the whole space X .

Example 4.3 (Poisson problem) Let X = H1
D(Ω) and Xh = S 1

D(Th) for a regular
family of triangulations (Th)h>0 of Ω . For f ∈ L2(Ω) and g ∈ L2(ΓN), let

I (u) = 1

2

∫

Ω

|∇u|2 dx −
∫

Ω

f u dx −
∫

ΓN

gu ds
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and let Ih : H1
D(Ω) → R ∪ {+∞} coincide with I on S 1

D(Th). Since the Dirichlet
energy is weakly lower semicontinuous and strongly continuous, the linear lower-
order terms are weakly continuous on H1

D(Ω), and since the finite element spaces
are dense in H1

D(Ω), we verify that Ih →Γ I as h → 0. Nonhomogeneous Dirichlet
conditions can be included by considering the decomposition u = ũ + ũD with ũ ∈
H1
D(Ω). For minimizers u ∈ H2(Ω)∩ H1

D(Ω) of I and uh ∈ S 1
D(Th) of Ih , we have

∣∣I (u) − Ih(uh)
∣∣ ≤ ch.

A constant sequence of functionals can have a different Γ -limit.

Example 4.4 (Relaxation) For the sequence of functionals defined through X =
W 1,4(0, 1),

I (u) =
1∫

0

(|u′|2 − 1
)2 + u4 dx,

subspaces Xh = S 1(Th), and Ih = I on Xh , we have that Ih →Γ I ∗∗ in W 1,4(0, 1)
with the convexified functional

I ∗∗(u) =
1∫

0

(|u′|2 − 1
)2
+ + u4 dx,

where s+ = max{s, 0} for s ∈ R. Since the integrand of I ∗∗ is convex, the functional
is weakly lower semicontinuous. Using that Ih(uh) = I (uh) ≥ I ∗∗(uh) for all h > 0,
we deduce that lim infh→0 Ih(uh) ≥ I ∗∗(u) whenever uh ⇀ u in W 1,4(0, 1). To
prove that the lower bound is attained, we first consider the case that u ∈ W 1,4(Ω)

is piecewise affine, i.e., u = u H ∈ S 1(TH ) for some H > 0. For 0 < h < H we
then construct a function uh that nearly coincides with u H on elements TH ∈ TH for
which |u′

H |TH | ≥ 1. For elements with |u′
H |TH | ≤ 1 we use gradients u′

h ∈ {±1} on
TH in such a way that uh and u H nearly coincide at the endpoints of TH and differ by
at most h in the interior. Then I (uh) ≈ I ∗∗(u H ) and I (uh) → I ∗∗(u H ) as h → 0.
The construction is depicted in Fig. 4.1. The assertion for general u ∈ W 1,4(Ω)

follows from an approximation result and the strong continuity of I .

uH

uh

H h 1− 1

W ∗∗
W

Fig. 4.1 Construction of an oscillating function uh (solid line) with |u′
h | ≥ 1 that approximates

uH (dashed line) such that I (uh) ≈ I ∗∗(u H ) (left) in Example 4.4; the integrand W ∗∗ (solid line)
of I ∗∗ is the convex hull of the integrand W (dashed line) of I (right)
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A typical application of conforming discretizations of well-posed minimization
problems occurs in simulating hyperelastic materials.

Example 4.5 (Hyperelasticity) Let A = {y ∈ W 1,p(Ω;Rd) : y|ΓD = ỹD|ΓD} for
1 ≤ p < ∞ and ỹD ∈ W 1,p(Ω;Rd). Assume that W : Rd×d → R is continuous
and quasiconvex with

−c1 + c2|F |p ≤ W (F) ≤ c1 + c2|F |p.

Then for f ∈ L p′
(Ω;Rd) and g ∈ L p′

(ΓN;Rd), the functional

I (y) =
∫

Ω

W (∇ y) dx −
∫

Ω

f · y dx −
∫

ΓN

g · y ds

is weakly lower semicontinuous and coercive on W 1,p(Ω;Rd). Moreover, if the
sequence (y j ) j∈N ⊂ W 1,p(Ω;Rd) converges strongly to y ∈ W 1,p(Ω;Rd) then
we have ∇ y jk (x) → ∇ y(x) for almost every x ∈ Ω for a subsequence (y jk )k∈N,
and the generalized dominated convergence theorem implies

∫

Ω

W (∇ y jk ) dx →
∫

Ω

W (∇ y) dx,

i.e., up to subsequences I is strongly continuous and this is sufficient to establish
Γ -convergence. For piecewise affine boundary data yD, we have that Ah = A ∩
S 1(Th)d is nonempty and the density of finite element spaces implies Ih →Γ I
for conforming discretizations. More generally, it suffices to consider convergent
approximations ỹD,h of ỹD.

The abstract convergence theory allows us to include nonlinear constraints.

Example 4.6 (Harmonic maps) Assume that uD ∈ C(ΓD;Rm) is such that

A = {u ∈ H1(Ω;Rm) : u|ΓD = uD, |u(x)| = 1 f.a.e. x ∈ Ω}
is nonempty and for a triangulation Th of Ω with nodes Nh , set

Ah = {uh ∈ S 1(Th)m : u(z) = uD(z) f.a. z ∈ Nh∩ΓD, |uh(z)| = 1 f.a. z ∈ Nh},
i.e., Ah 
⊂ A . We then consider the minimization of the Dirichlet energy I on Ah

and A , respectively, which defines minimization problems with functionals Ih and
I on H1(Ω;Rm), respectively. To show that Ih →Γ I in H1(Ω;Rm) we note that
the liminf-inequality follows from the weak lower semicontinuity of I , together with
the fact that if uh ⇀ u in W 1,2(Ω;Rm) with uh ∈ Ah for every h > 0, then
u ∈ A . The latter implication follows from a nodal interpolation result, together
with elementwise inverse estimates, i.e.,

‖|uh |2 − 1‖ = ‖|uh |2 − Ih |uh |2‖ ≤ ch‖uh‖‖∇uh‖.
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Therefore, |uh′(x)| → 1 for almost every x ∈ Ω and a subsequence h′ > 0 so that
|u(x)| = 1 for almost every x ∈ Ω . We assume that uD is sufficiently regular, so
that a similar argument shows u|ΓD = uD. To prove the attainment of I , we note
that due to the density of smooth unit-length vector fields in A , we may assume
u ∈ A ∩ H2(Ω;Rm) and define uh = Ihu ∈ Ah . Then uh → u in H1(Ω;Rm)

and Ih(uh) → I (u) as h → 0.

Remark 4.2 In general, smooth constrained vector fields are not dense in sets of
weakly differentiable constrained vector fields, cf., e.g., [18].

For practical purposes it is often desirable to modify a given functional.

Example 4.7 (Total variation minimization) For X = W 1,1(Ω) we consider

I (u) =
∫

Ω

|∇u| dx;

and given a family of triangulations (Th)h>0 of Ω and uh ∈ S 1(Th), we define for
β > 0 the regularized functionals

Ih(uh) =
∫

Ω

(hβ + |∇uh |2)1/2 dx .

If uh ⇀ u in W 1,1(Ω), then the liminf-inequality follows from the weak lower
semicontinuity of I on W 1,1(Ω) and the fact that Ih(uh) ≥ I (uh) for every h > 0.
To verify that I (u) is attained for every u ∈ W 1,1(Ω) in the limit h → 0, we note
that the density of finite element spaces in W 1,1(Ω) allows us to consider a sequence
(uh)h>0 ⊂ W 1,1(Ω) with uh ∈ S 1(Th) for every h > 0 and uh → u ∈ W 1,1(Ω)

as h → 0. The estimate (a2 + b2)1/2 ≤ |a| + |b| implies that

(hβ + |∇uh |2)1/2 − |∇u| ≤ hβ/2 + |∇uh | − |∇u|,

and for a subsequence we have ((h′)α + |∇uh′ |2)1/2 → |∇u| almost everywhere in
Ω . The generalized dominated convergence theorem implies that Ih′(uh′) → I (u)

as h′ → 0. With Proposition 4.1, this also implies the Γ -convergence of discretiza-
tions of

I (u) =
∫

Ω

|∇u| dx + α

2
‖u − g‖2

for g ∈ L2(Ω). Due to the lack of reflexivity of W 1,1(Ω) this is not sufficient to
deduce the existence of minimizers for I , i.e., we cannot deduce the existence of
weak limits of (subsequences) of a bounded sequence. For this, the larger space
BV (Ω) ∩ L2(Ω) has to be considered. A corresponding Γ -convergence result
follows analogously with the density of W 1,1(Ω) in BV (Ω) with respect to an
appropriate notion of convergence.
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4.1.4 Error Control for Strongly Convex Problems

For Banach spaces X and Y , a bounded linear operator Λ : X → Y , and convex,
lower-semicontinuous, proper functionals F : X → R ∪ {+∞} and G : Y →
R ∪ {+∞}, we consider the problem of finding u ∈ X with

I (u) = inf
v∈X

I (v), I (v) = F(v) + G(Λv).

The Fenchel conjugates F∗ : X ′ → R ∪ {+∞} and G∗ : Y ′ → R ∪ {+∞} are the
convex, lower-semicontinuous, proper functionals defined by

F∗(w) = sup
v∈X

〈w, v〉 − F(v), G∗(q) = sup
p∈Y

〈q, p〉 − G(p)

for w ∈ X ′ and q ∈ Y ′, respectively. We assume that Y is reflexive, so that
G = G∗∗. Then, the property of the formal adjoint operator Λ′ : Y ′ → X ′, that
〈Λv, q〉 = 〈v,Λ′q〉, and the general relation infv supq H(v, q) ≥ supq infv H(v, q)

for an arbitrary function H : X × Y ′ → R ∪ {+∞} yield
inf

v
I (v) = inf

v
F(v) + G∗∗(Λv) = inf

v
sup

q
F(v) + 〈v,Λ′q〉 − G∗(q)

≥ sup
q

inf
v

F(v) + 〈v,Λ′q〉 − G∗(q) = sup
q

inf
v

F(v) − 〈v,−Λ′q〉 − G∗(q)

= sup
q

(
− sup

v
〈v,−Λ′q〉 − F(v) − G∗(q)

)
= sup

q
−F∗(−Λ′q) − G∗(q).

This motivates considering the dual problem which consists in finding p ∈ Y ′ with

D(p) = sup
q∈Y ′

D(q), D(q) = −F∗(−Λ′q) − G∗(q).

We assume that F or G is strongly convex, so that there exist αF , αG ≥ 0 with
max{αF , αG} > 0, so that for all q1, q2 ∈ Y and v1, v2 ∈ X , we have

G
(
(q1 + q2)/2

) + αG‖q2 − q1‖2Y ≤ 1

2

(
G(q1) + G(q2)

)
,

F
(
(v1 + v2)/2

) + αF‖v2 − v1‖2X ≤ 1

2

(
F(v1) + F(v2)

)
.

By convexity, the estimates hold with αG = αF = 0. The primal and dual optimiza-
tion problems are related by the weak complementarity principle

I (u) = inf
v∈X

I (v) ≥ sup
q∈Y ∗

D(q) = D(p).

We say that strong duality applies if equality holds. Our final ingredient for the error
estimate is a characterization of the optimality of the solution of the primal problem.
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For some αI ≥ 0 and all w ∈ ∂ I (u), we have that

〈w, v − u〉 + αI ‖v − u‖2X ≤ I (v) − I (u)

and u is optimal if and only if 0 ∈ ∂ I (u). We assume in the following that αF > 0
or αI > 0, so that I has a unique minimizer u ∈ X .

Theorem 4.2 (Error control [16]) Assume that max{αF , αG , αI } > 0 and let u ∈ X
be the unique minimizer for I .

(i) For a minimizer uh ∈ Xh for I restricted to a subspace Xh ⊂ X, we have the
a priori error estimate

αG‖Λ(u − uh)‖2Q + (αF + αI /4)‖u − uh‖2X ≤ inf
wh∈Xh

1

2

(
I (wh) − I (u)

)
.

(ii) For an arbitrary approximation ũh ∈ X of u, we have the a posteriori error
estimate

αG‖Λ(u − ũh)‖2Q + (αF + αI /4)‖u − ũh‖2X ≤ inf
q∈Y ′

1

2

(
I (̃uh) − D(q)

)
.

Proof The convexity estimates imply that

αG‖Λ(u − v)‖2Q + αF‖u − v‖2X ≤ 1

2

(
I (v) + I (u)

) − I
(
(v + u)/2

)
.

The optimality of u shows that we have

I (u) + αI ‖u − (u + v)/2‖2X ≤ I
(
(u + v)/2

)
.

It follows that

αG‖Λ(u − v)‖2Q + αF‖u − v‖2X ≤ 1

2

(
I (v) − I (u)

) − αI ‖((u − v)/2‖2X .

If uh ∈ Xh is minimal in Xh , then the identity I (uh) = infwh∈Xh I (wh) implies
the a priori estimate. The weak complementarity principle I (u) ≥ D(q) yields the
a posteriori estimate. �

Remarks 4.3 (i) If strong duality holds, i.e., if I (u) = D(p), then the estimate of
the theorem is sharp in the sense that the right-hand side vanishes if v = u and q
solves the dual problem.
(ii) Sufficient conditions for strong duality are provided by von Neumann’s minimax
theorem, e.g., that F and G∗ are convex, lower semicontinuous, and coercive.

Example 4.8 For the Poisson problem −�u = f in Ω , u|∂Ω = 0, we have
X = H1

0 (Ω), Y = L2(Ω;Rd), Λ = ∇, G(Λv) = (1/2)
∫
Ω

|∇v|2 dx , and
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F(v) = − ∫
Ω

f v dx . It follows that F∗(w) = I{− f }(w), G∗(q) = (1/2)
∫
Ω

|q|2 dx ,

Λ′ = − div : L2(Ω;Rd) → H1
0 (Ω)∗.

We thus have

1

2

(
(q1+q2)/2

)2− 1

4
(q2

1 +q2
2 ) = 1

8
(q2

1 +2q1q2+q2
2 −2q2

1 −2q2
2 ) = −1

8
(q1−q2)

2,

so that αG = 1/8 and

1

2
q2
1 − 1

2
q2
2 − q1(q1 − q2) = −1

2
q2
1 − 1

2
q2
2 + q1q2 = −1

2
(q1 − q2)

2,

i.e., αI = 1/2. Moreover, we have αF = 0.

(i) Incorporating the definition of the exact weak solution, the abstract a priori esti-
mate of Theorem 4.2 provides the bound

1

2
‖∇(u − uh)‖2 ≤ 1

2

∫

Ω

|∇wh |2 −
∫

Ω

f wh dx − 1

2

∫

Ω

|∇u|2 +
∫

Ω

f u dx

= 1

2
‖∇(u − wh)‖2 +

∫

Ω

∇u · ∇(u − wh) dx +
∫

Ω

f (u − wh) dx

= 1

2
‖∇(u − wh)‖2,

which implies the best-approximation property

‖∇(u − uh)‖ ≤ inf
wh∈Xh

‖∇(u − wh)‖.

(ii) Letting η2(v, q) denote the right-hand side of the a posteriori error estimate of
Theorem 4.2, we have

2η2(v, q) = −
∫

Ω

f v dx + I{− f }(div q) + 1

2

∫

Ω

|∇v|2 dx + 1

2

∫

Ω

|q|2 dx

=
∫

Ω

(div q)v dx + 1

2
‖∇v‖2 + 1

2
‖q‖2 = 1

2
‖∇v − q‖2,

provided that − div q = f . The theorem thus implies

‖∇(u − v)‖ ≤ inf− div q= f
‖∇v − q‖.
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4.2 Approximation of Equilibrium Points

The Euler–Lagrange equations related to a minimization problem typically seek a
function u ∈ X such that

F(u)[v] = (v)

for all v ∈ X with a possibly nonlinear operator F : X → X ′ and a linear functional
 ∈ X ′. Various other mathematical problems that may not be related to a minimiza-
tion problem can also be formulated in this abstract form. A natural discretization
employs subspaces Xh ⊂ X and seeks uh ∈ Xh with

Fh(uh)[vh] = h(vh)

for all vh ∈ Xh . Here, Fh : Xh → X ′
h and h ∈ X ′

h are approximations of F
and  that result from a discretization, e.g., via numerical integration. The important
question to address is whether numerical solutions (uh)h>0 for a sequence of finite-
dimensional subspaces Xh converge in an appropriate sense to a solution of the
infinite-dimensional problem. We assume that the finite-dimensional space Xh is
equipped with the norm of X . The corresponding dual spaces X ′

h and X ′ are related
by the inclusion X ′|Xh ⊂ X ′

h . Topics related to the contents of this section can be
found in the textbooks [3, 11].

4.2.1 Failure of Convergence

The following examples show that unjustified regularity assumptions can lead to the
failure of convergence to the correct object. The following examples are taken from[6].

Example 4.9 (Maxwell’s equations) ForΩ ⊂ R
2 set X = H0(curl;Ω)∩H(div;Ω),

where

H0(curl;Ω) = {v ∈ L2(Ω;R2) : curl v ∈ L2(Ω;R2), v · t = 0 on ∂Ω}
with curl v = ∂1v2 − ∂2v1 for v = (v1, v2) and t : ∂Ω → R

2 a unit tangent. For
f ∈ L2(Ω;R2), consider the problem of finding u ∈ X such that

(curl u, curl v) + (div u, div v) = ( f, v)

for all v ∈ X . The existence and uniqueness of a solution follows from the
Lax–Milgram lemma. A discretization of this problem is obtained by choosing
Xh = S 1(Th)2 ∩ X and computing uh ∈ Xh such that

(curl uh, curl vh) + (div uh, div vh) = ( f, vh)

for all vh ∈ Xh . This defines a convergent numerical scheme if Ω is convex. If Ω is
nonconvex, then H1(Ω;R2)∩ X is a closed proper subspace of X , cf. [8] for details,
and convergence uh → u as h → 0 fails in general.
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A similar effect occurs for higher-order problems.

Example 4.10 (Biharmonic equation) The biharmonic equation

�2u = f inΩ, u = �u = 0 on ∂Ω

formally corresponds to the weak formulation that seeks u ∈ H2(Ω) ∩ H1
0 (Ω) with

∫

Ω

D2u : D2v dx =
∫

Ω

f v dx

for all v ∈ H2(Ω) ∩ H1
0 (Ω) We denote the unique weak solution of the variational

formulation by u = (�2)−1 f . A natural discretization of the problem is based on
an operator splitting which is obtained by introducing z = −�u and solving the
Poisson problems

− �z = f inΩ, z = 0 on ∂Ω,

− �u = z inΩ, u = 0 on ∂Ω.

We have z = (−�)−1 f and u = (−�)−1z = (−�)−2 f . UnlessΩ is convex so that
�u ∈ H1

0 (Ω) we do not have (�2)−1 f = (−�)−2 f , and convergence of related
numerical methods will fail in general.

Failure of convergence may also be related to the lack of uniqueness of a solution
as in the case of degenerately monotone problems.

Example 4.11 (Degenerate monotonicity) For σ(F) = DW ∗∗(F) for F ∈ R
d and

W ∗∗(F) = (|F |2 − 1)2+, there are infinitely many functions u ∈ W 1,4
0 (Ω) satisfying

F(u)[v] = ∫
Ω

σ(∇u) · ∇v dx = 0 for all v ∈ W 1,4
0 (Ω).

4.2.2 Abstract Error Estimates

We sketch below the classical concept that consistency and stability imply the con-
vergence of numerical approximations, provided that appropriate regularity results
are available. Dual to this is an approach that leads to computable upper bounds for
the approximation error and which avoids regularity assumptions entirely.

Theorem 4.3 (Abstract a priori error estimate) Let u ∈ X satisfy F(u) =  and
assume that for an interpolant ihu ∈ Xh and a consistency functional Ch(u) ∈ X ′

h,
we have

Fh(ihu)[vh] − h(vh) = Ch(u; vh)

for all vh ∈ Xh. Assume that we have discrete stability in the sense that for all
zh ∈ Xh and bh ∈ X ′

h, the implication

∀ vh ∈ Xh Fh(zh)[vh] = bh(vh) =⇒ ‖zh‖X ≤ cS,h‖bh‖X ′
h
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holds. Then, if Fh : Xh → X ′
h is linear, there exists a unique solution uh ∈ Xh with

‖uh − ihu‖X ≤ cS,h‖Ch(u)‖X ′
h
.

Proof Discrete stability implies that Fh : Xh → X ′
h is a bijection and hence there

exists a unique uh ∈ Xh with Fh(uh) = 0. Since Fh(ihu−uh) = Fh(ihu)−Fh(uh) =
Fh(ihu) − h = Ch(u) we deduce the estimate. �

Remark 4.4 We say that a discretization is consistent of order β ≥ 0, given the regu-
larity u ∈ Z ⊂ X if ‖Ch(u)‖X ′

h
≤ chβ . This implies convergence of approximations

with rate β.

A similar abstract concept leads to a posteriori error estimates for many linear
problems.

Theorem 4.4 (Abstract a posteriori error estimate) Let uh ∈ Xh and define the
residual Rh(uh) ∈ X ′ through

Rh(uh; v) = F(uh)[v] − (v)

for all v ∈ X. Assume that we have the continuous stability result that for all z ∈ X
and b ∈ X ′, the implication

∀ v ∈ X F(z)[v] = b(v) =⇒ ‖z‖X ≤ cS‖b‖X ′

holds. If u ∈ X satisfies F(u) =  and if F is linear, then u is unique with

‖u − uh‖X ≤ cS‖Rh(uh)‖X ′ .

Proof The difference u − uh satisfies F(u − uh)[v] = Rh(uh; v) for all v ∈ X , and
the stability result implies the error estimate and the uniqueness property. �

Example 4.12 (Poisson problem) Let u ∈ H1
D(Ω) be theweak solution of−�u = f

in Ω , u|ΓD = 0, and ∂νu|ΓN = g, i.e., we have F(u) =  with

F(u)[v] =
∫

Ω

∇u · ∇v dx, (v) =
∫

Ω

f v dx +
∫

ΓN

gv ds.

The lowest-order finite elementmethod seeks uh ∈ S 1
D(Th)with F(uh)[vh] = (vh)

for all vh ∈ S 1
D(Th).

(i) Inserting an interpolant ihu ∈ S 1
D(Th) in the discrete formulation leads to

Ch(u; vh) = F(ihu)[vh] − (vh) =
∫

Ω

∇[ihu − u] · ∇vh dx
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for all vh ∈ S 1
D(Th). We have ‖Ch(u)‖S 1

D(Th)′ ≤ ch‖D2u‖ if u ∈ H2(Ω)∩ H1
D(Ω)

and ihu = Ihu is the nodal interpolant of u. If zh ∈ S 1
D(Th) and bh ∈ S 1

D(Th)′
are such that ∫

Ω

∇zh · ∇vh dx = bh(vh)

for all vh ∈ S 1
D(Th), then the choice of vh = zh shows the discrete stability estimate

‖∇zh‖ ≤ ‖bh‖S 1
D(Th)′ . Therefore, Theorem 4.3 implies the error estimate

‖∇(uh − Ihu)‖L2(Ω) ≤ ch‖D2u‖L2(Ω).

(ii) Let uh ∈ S 1
D(Th) and define

Rh(uh; v) = F(uh)[v] − (v) =
∫

Ω

∇uh · ∇v dx −
∫

Ω

f v dx −
∫

ΓN

gv ds

for all v ∈ H1
D(Ω). Noting the stability estimate ‖∇z‖ ≤ ‖b‖X ′ for z ∈ H1

D(Ω) and
b ∈ H1

D(Ω)′ with ∫

Ω

∇z · ∇v dx = b(v)

for all v ∈ H1
D(Ω), Theorem 4.4 implies the error estimate

‖∇(u − uh)‖L2(Ω) ≤ ‖Rh(uh)‖X ′ .

If uh satisfies F(uh)[vh] = 0 for all vh ∈ S 1
D(Th), we have the Galerkin

orthogonality F(u − uh)[vh] = 0 for all vh ∈ S 1
D(Th) and ‖Rh(uh)‖X ′ ≤ cη(uh)

with a computable quantity η(uh), cf. Theorem 3.6.

The concepts can be generalized to the class of strongly monotone operators.

Definition 4.2 The operator F : X → X ′ is called strongly monotone if there exists
an increasing bijection χ : [0,∞) → [0,∞) with

χ(‖u − v‖X ) ≤ 〈F(u) − F(v), u − v〉X

‖u − v‖X

for all u, v ∈ X .

We consider a conforming discretization of a strongly monotone problem in the
following theorem.

Theorem 4.5 (Monotone problems) Assume that u ∈ X and uh ∈ Xh satisfy

F(u)[v] = (v), F(uh)[vh] = (vh)

http://dx.doi.org/10.1007/978-3-319-13797-1_3
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for all v ∈ X and vh ∈ Xh, respectively, and let Ch(u) and Rh(uh) for an interpo-
lation operator ih be defined by

Ch(u; vh) = F(ihu)[vh] − (vh), Rh(uh; v) = F(uh)[v] − (v)

for all vh ∈ Xh and v ∈ X, respectively. Then we have the a priori and a posteriori
error estimates

χ(‖ihu − uh‖X ) ≤ ‖Ch(u)‖X ′
h
, χ(‖u − uh‖X ) ≤ ‖Rh(uh)‖X ′ .

Proof We have

‖ihu − uh‖X χ(‖ihu − uh‖X ) ≤ 〈F(ihu) − F(uh), ihu − uh〉 = Ch(u; ihu − uh)

and

‖u − uh‖X χ(‖u − uh‖X ) ≤ 〈F(u) − F(uh), u − uh〉 = −Rh(uh; u − uh).

Dividing by ‖ihu − uh‖X and ‖u − uh‖X , respectively, yields the estimates. �
Example 4.13 (p-Laplacian) The p-Laplacian− div(|∇u|p−2∇u) is identified with
the functional F : W 1,p

D (Ω) → W 1,p
D (Ω)′ defined by

F(u)[v] =
∫

Ω

|∇u|p−2∇u · ∇v dx

for u, v ∈ W 1,p
D (Ω). The functional F is the Fréchet derivative F = DI of

I (u) = 1

p

∫

Ω

|∇u|p dx .

If p ≥ 2, then F is monotone with χ(s) = αs p−1 for all s ≥ 0 and some α > 0.
The functional is locally Lipschitz continuous in the sense that

‖F(u) − F(v)‖
W 1,p

D (Ω)′ ≤ M(‖∇u‖L p(Ω) + ‖∇v‖L p(Ω))
p−2‖∇(u − v)‖L p(Ω)

for a constant M ∈ R and u, v ∈ W 1,p
D (Ω). This estimate implies the consistency of

conforming discretizations, e.g., with S 1
D(Th), and we obtain the error estimate

α‖∇(ihu − uh)‖p−1
L p(Ω) ≤ M‖∇(u − ihu)‖L p(Ω);

thus ‖∇(u − uh)‖L p(Ω) ≤ ch1/(p−1) if u ∈ W 2,p(Ω) ∩ W 1,p
D (Ω).

If the operator F fails to be monotone but has a regular Fréchet derivative in
the neighborhood of a solution, then a local error estimate follows from the implicit
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function theorem. For ease of presentation andwithout loss of generality, we consider
the homogeneous problem F(u) = 0.

Theorem 4.6 (Local error estimate [10]) Suppose that F : X → X ′ is continuous
and u ∈ X satisfies F(u) = 0. Assume that there exist constants c1, c2, c3, ε > 0
with c2 < c1 such that

‖F(u) − F(v)‖X ′ ≤ c0‖u − v‖X ,

‖DF(v)−1‖L(X ′,X) ≤ c−1
1 ,

‖DF(v) − DF(w)‖L(X,X ′) ≤ c2‖v − w‖X

for all v, w ∈ Bε(u). Let ihu ∈ Xh be an interpolant of u such that c0‖ihu − u‖X ≤
(c1 − c2)ε. Then there exists a unique uh ∈ Xh with F(uh) = 0 and ‖u − uh‖X ≤ ε.

Proof The assumptions of the theorem imply that

‖F(ihu)‖X ′ = ‖F(ihu) − F(u)‖X ′ ≤ c0‖u − ihu‖X .

A quantitative version of the implicit function theorem, cf. [2], implies the existence
of a unique uh ∈ Xh with the asserted properties. �

Example 4.14 (Semilinear diffusion) The theorem implies error estimates for the
approximation of the semilinear equation

−�u + f (u) = 0 in Ω, u = 0 on ∂Ω,

provided that f ′ and a solution u ∈ H1
0 (Ω) are such that the operator −� + f ′(v)id

is invertible for all v ∈ Bε(u) for some ε > 0. It is sufficient for this that f ′ > −c−2
P

with the smallest constant cP > 0, such that ‖w‖ ≤ cP‖∇w‖ for all w ∈ H1
0 (Ω).

The following proposition generalizes the Lax–Milgram and the Céa lemma to
bilinear forms that are not elliptic.

Proposition 4.2 (Generalized Lax–Milgram and Céa lemma [1, 13]) Let X, Y be
Hilbert spaces, a : X × Y → R a continuous bilinear form with continuity constant
M, and  ∈ Y ′. Assume that there exists α > 0 such that

sup
v∈Y\{0}

a(u, v)

‖v‖Y
≥ α‖u‖X

for all u ∈ X and that for all v ∈ Y\{0}, there exists u ∈ Y with a(u, v) 
= 0. Then
there exists a unique u ∈ X with

a(u, v) = (v)

for all v ∈ Y and ‖u‖X ≤ α−1‖‖Y ′ . If Xh ⊂ X and Yh ⊂ Y are such that the above
conditions are satisfied with X and Y replaced by Xh and Yh, respectively, then there
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exists a unique uh ∈ Xh with
a(uh, vh) = (vh)

for all vh ∈ Yh, and we have

‖u − uh‖X ≤ (1 + α−1M) inf
wh∈Xh

‖u − wh‖X .

Proof Identifying the bilinear form a with the operator A : X → Y ′, we see that A
is injective, i.e., Au = 0 for u ∈ X implies u = 0. Noting that

α‖u j − uk‖X ≤ sup
v∈Y\{0}

〈A(u j − uk), v〉
‖v‖Y

≤ ‖Au j − Auk‖Y ′

proves that the range of A is closed. If v ∈ Y is such that 〈Au, v〉 = 0 for all u ∈ X ,
then the assumptions imply v = 0. Hence, the closed range theorem yields that the
range of A is Y ′ and it follows that A is bijective, i.e., there exists a unique u ∈ X with
Au = . The estimate for ‖u‖X is an immediate consequence of the assumptions.
The same arguments show that the operator Ah : Xh → Y ′

h is an isomorphism and
hence there exists a unique uh ∈ Xh with the asserted properties. Let wh ∈ Xh , and
for every vh ∈ Xh define

̃(vh) = a(u − wh, vh).

Then there exists a unique zh ∈ Xh with a(zh, vh) = ̃(vh) and ‖zh‖X ≤ α−1‖̃‖Y ′
h
.

Since a(uh, vh) = a(u, vh) it follows that zh = uh − wh , and hence

‖uh − wh‖X ≤ α−1M‖u − wh‖.
The triangle inequality implies the asserted estimate. �

Example 4.15 (Helmholtz equation) Let ω ∈ R and a : H1
0 (Ω) × H1

0 (Ω) → R be
for u, v ∈ H1

0 (Ω) defined by

a(u, v) = (∇u,∇v) − ω2(u, v),

which corresponds to the partial differential equation −�u − ω2u = f in Ω with
boundary condition u|∂Ω = 0. If ω2 is not an eigenvalue of −�, then a satisfies
the conditions of the proposition. To prove this, note that (−�)−1 : L2(Ω) →
H1
0 (Ω) ⊂ L2(Ω) is selfadjoint and compact with trivial kernel, so that there exists

a complete orthonormal system (u j ) j∈N ⊂ L2(Ω) of eigenfunctions of (−�)−1,
i.e., for every j ∈ N we have −�u j = λ j u j with positive eigenvalues (λ j ) j∈N
that do not accumulate at zero. We have λ−1

j (∇u j ,∇uk) = (u j , uk) = δ jk for

all j, k ∈ N. Given u = ∑
j∈N α j u j ∈ H1

0 (Ω), define v = ∑
j∈N σ jα j u j with

σ j = sign(‖∇u j‖2 − ω2‖u j‖2). Then

a(u, v) =
∑
j∈N

σ jα
2
j

(‖∇u j‖2 − ω2‖u j‖2
) ≥ min

j∈N
|λ j − ω2|

λ j
‖∇u‖2
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and with ‖∇u‖ = ‖∇v‖, we deduce that

sup
v∈H1

0 (Ω)

a(u, v)

‖∇v‖ ≥ cH ‖∇u‖.

The second condition of the proposition is a direct consequence of the requirement
that ω2 is not an eigenvalue of −�.

Remark 4.5 Proposition 4.2 is important for the analysis of saddle-point prob-
lems; the seminal paper [7] provides conditions that imply the assumptions of the
proposition.

4.2.3 Abstract Subdifferential Flow

The subdifferential flow of a convex and lower semicontinuous functional I : H →
R∪{+∞} arises as an evolutionary model in applications, and can be used as a basis
for numerical schemes to minimize I . The corresponding differential equation seeks
u : [0, T ] → H , such that u(0) = u0 and

∂t u ∈ −∂ I (u),

i.e., u(0) = u0 and
(−∂t u, v − u)H + I (u) ≤ I (v)

for almost every t ∈ [0, T ] and every v ∈ H . An implicit discretization of this
nonlinear evolution equation is equivalent to a sequence of minimization problems
involving aquadratic term.We recall thatdt uk = (uk−uk−1)/τ denotes the backward
difference quotient.

Theorem 4.7 (Semidiscrete scheme [15, 17]) Assume that I ≥ 0 and for u0 ∈ H
let (uk)k=1,...,K ⊂ H be minimizers for

I k
τ (w) = 1

2τ
‖w − uk−1‖2H + I (w)

for k = 1, 2, . . . , K . For L = 1, 2, . . . , K , we have

I (uL) + τ

L∑
k=1

‖dt u
k‖2H ≤ I (u0).

With the computable quantities

Ek = −τ‖dt u
k‖2H − I (uk) + I (uk−1)
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and the affine interpolant ûτ : [0, T ] → H of the sequence (uk)k=0,...,K we have
the a posteriori error estimate

max
t∈[0,T ] ‖u − û‖2H ≤ ‖u0 − u0‖2H + τ

L∑
k=1

Ek .

We have the a priori error estimate

max
k=0,...,K

‖u(tk) − uk‖2H ≤ ‖u0 − u0‖2H + τ I (u0),

and under the condition ∂ I (u0) 
= ∅, the improved variant

max
k=0,...,K

‖u(tk) − uk‖2H ≤ ‖u0 − u0‖2H + τ 2‖∂o I (u0)‖2H ,

where ∂o I (u0) ∈ H denotes the element of minimal norm in ∂ I (u0).

Proof The direct method in the calculus of variations yields that for k = 1, 2, . . . , K ,
there exists a unique minimizer uk ∈ H for I k

τ , and we have dt uk ∈ −∂ I (uk), i.e.,

(−dt u
k, v − uk)H + I (uk) ≤ I (v)

for all v ∈ H ; the choice of v = uk−1 implies that

−Ek = τ‖dt u
k‖2H + I (uk) − I (uk−1) ≤ 0

with 0 ≤ Ek ≤ −τdt I (uk). A summation over k = 1, 2, . . . , L yields the asserted
stability estimate. If ûτ is the piecewise affine interpolant of (uk)k=0,...,K associated
to the time steps tk = kτ , k = 0, 1, . . . , K , and u+

τ is such that u+
τ |(tk−1,tk ) = uk for

k = 1, 2, . . . and tk = kτ , then we have

(−∂t ûτ , v − u+
τ )H + I (u+

τ ) ≤ I (v)

for almost every t ∈ [0, T ] and all v ∈ H . In introducing

Cτ (t) = (−∂t ûτ , u+
τ − ûτ )H − I (u+

τ ) + I (̂uτ )

we have
(−∂t ûτ , v − ûτ )H + I (̂uτ ) ≤ I (v) + Cτ (t).

The choice of v = u in this inequality and v = ûτ in the continuous evolution
equation yield

d

dt

1

2
‖u − û‖2H = (−∂t [u − ûτ ], ûτ − u)H ≤ Cτ (t).
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Noting ûτ − u+
τ = (t − tk)∂t ûτ for t ∈ (tk−1, tk) and using the convexity of I , i.e.,

I (̂uτ ) ≤ tk − t

τ
I (uk−1) + t − tk−1

τ
I (uk),

we verify for t ∈ (tk−1, tk) using u+
τ = uk that

Cτ (t) ≤ (t − tk)‖∂t ûτ‖2H − I (u+
τ ) + tk − t

τ
I (uk−1) + t − tk−1

τ
I (uk) = tk − t

τ
Ek .

With Ek ≤ −τdt I (uk) and I ≥ 0 we deduce that

tL∫

0

Cτ (t) dt ≤ τ

L∑
k=1

Ek ≤ −τ 2
L∑

k=1

dt I (uk) = −τ
(
I (uL) − I (u0)

) ≤ τ I (u0),

which implies the a posteriori and the first a priori error estimate. Assume that
∂ I (u0) 
= ∅ and define u−1 ∈ H so that dt u0 = (u0 − u−1)/τ = −∂o I (u0), i.e.,
the discrete evolution equation also holds for k = 0,

(−dt u
0, v − u0)H + I (u0) ≤ I (v)

for all v ∈ H . Choosing v = uk in the equation for dt uk−1, k = 1, 2, . . . , K , we
observe that

(−dt u
k−1, uk − uk−1)H + I (uk−1) ≤ I (uk),

i.e., −τdt I (uk) ≤ τ(dt uk, dt uk−1)H , and it follows that

Ek = −τ(dt u
k, dt u

k)H − τdt I (uk) ≤ −τ(dt u
k, dt u

k)H + τ(dt u
k−1, dt u

k)H

= −τ 2(d2
t uk, dt u

k)H = −τ 2
dt

2
‖dt u

k‖2H − τ 3

2
‖d2

t uk‖2H ≤ −τ 2
dt

2
‖dt u

k‖2H .

This implies that

tL∫

0

Cτ (t) dt ≤ τ

L∑
k=1

Ek ≤ τ 2

2
‖dt u

0‖2H = τ 2

2
‖∂o I (u0)‖2H ,

which proves the improved a priori error estimate. �

Remarks 4.6 (i) The condition ∂ I (u0) 
= ∅ is restrictive in many applications.
(ii) Subdifferential flows ∂t u ∈ −∂ I (u), i.e., Lu � 0 for Lu = ∂t u + v with
v ∈ ∂ I (u), and with a convex functional I : H → R ∪ {+∞} define monotone
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problems in the sense that

(
Lu1 − Lu2, u1 − u2

)
H = (∂t (u1 − u2) + (v1 − v2), u1 − u2

)
H

≥ (
∂t (u1 − u2), u1 − u2

)
H = 1

2

d

dt
‖u1 − u2‖2H

for u1, u2 and v1, v2 with vi ∈ ∂ I (ui ), i = 1, 2.
(iii) If I : H → R ∪ {+∞} is strongly monotone in the sense that (u1 − u2,

v1 − v2)H ≥ α‖u1 − u2‖2H whenever v ∈ ∂ I (u),  = 1, 2, and if there exists a
solution u ∈ H of the stationary inclusion v = 0 ∈ ∂ I (u), then we have u(t) → u
as t → ∞. A proof follows from the estimate

1

2

d

dt
‖u − u‖2H = −(v − v, u − u)H ≤ −α‖u − u‖2H ,

where v = −∂t u ∈ ∂ I (u), and an application of Gronwall’s lemma.

4.2.4 Weak Continuity Methods

Let (uh)h>0 ⊂ X be a bounded sequence in the reflexive, separable Banach space X
such that there exists a weak limit u ∈ X of a subsequence that is not relabeled, i.e.,
we have uh ⇀ u as h → 0. For an operator F : X → X ′, we define the sequence
(ξh)h>0 ⊂ X ′ through ξh = F(uh), and if the sequence is bounded in X ′, then
there exists ξ ∈ X ′, such that for a further subsequence (ξh)h>0 which again is not
relabeled, we have ξh ⇀∗ ξ . The important question is now whether we have weak
continuity in the sense that

F(u) = ξ.

Notice that weak continuity is a strictly stronger notion of continuity than strong con-
tinuity. For partial differential equations, this property is calledweak precompactness
of the solution set of the homogeneous equation, i.e., if (u j ) j∈N is a sequence with
F(u j ) = 0 for all j ∈ N and u j ⇀ u as j → ∞ then we may deduce that F(u) = 0.
Such implications may also be regarded as properties of weak stability since they
imply that if F(u j ) = r j with ‖r j‖X ′ ≤ ε j and ε j → 0 as j → ∞, then we have
F(u) = 0 for every accumulation point of the sequence (u j ) j∈N.

Theorem 4.8 (Discrete compactness)For every h > 0 let uh ∈ Xh solve Fh(uh)= 0.
Assume that Fh(uh) ∈ X ′ with ‖F(uh)‖X ′ ≤ c for all h > 0 and F is weakly contin-
uous on X, i.e., F(u j )[v] → F(u)[v] for all v ∈ X whenever u j ⇀ u in X. Suppose
that for every bounded sequence (wh)h>0 ⊂ X with wh ∈ Xh for all h > 0, we have

‖F(wh) − Fh(wh)‖X ′
h

→ 0
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as h → 0 and (Xh)h>0 is dense in X with respect to strong convergence. If
(uh)h>0 ⊂ X is bounded, then there exists a subsequence (uh′)h′>0 and u ∈ X
such that uh ⇀ u in X and F(u) = 0.

Proof After extraction of a subsequence, wemay assume that uh ⇀ u in X as h → 0
for some u ∈ X . Fixing v ∈ X and using Fh(uh)[vh] = 0 for every vh ∈ Xh , we
have

F(uh)[v] = F(uh)[v − vh] + F(uh)[vh] − Fh(uh)[vh].

For a sequence (vh)h>0 ⊂ X with vh ∈ Xh for every h > 0 and vh → v in X , we
find that

|F(uh)[v − vh]| ≤ ‖F(uh)‖X ′ ‖v − vh‖X → 0

as h → 0. The sequences (uh)h>0 and (vh)h>0 are bounded in X and thus

|F(uh)[vh] − Fh(uh)[vh]| ≤ ‖F(uh) − Fh(uh)‖X ′
h
‖vh‖X → 0

as h → 0. Together with the weak continuity of F we find that

F(u)[v] = lim
h→0

F(uh)[v] = 0.

Since v ∈ X was arbitrary this proves the theorem. �

The crucial part in the theorem is the weak continuity of the operator F . We
include an example of an operator related to a constrained nonlinear partial differ-
ential equation that fulfills this requirement.

Example 4.16 (Harmonic maps) Let (u j ) j∈N ⊂ H1(Ω;R3) be a bounded sequence
such that |u j (x)| = 1 for all j ∈ N and almost every x ∈ Ω . Assume that for every
j ∈ N and all v ∈ H1(Ω;R3) ∩ L∞(Ω;R3), we have

F(u j )[v] =
∫

Ω

∇u j · ∇v dx −
∫

Ω

|∇u j |2u j · v dx = 0.

The choice of v = u j × w shows that we have

F̃(u j )[w] =
∫

Ω

∇u j · ∇(u j × w) dx = 0

for all w ∈ H1(Ω;R3)∩ L∞(Ω;R3). Using ∂ku j · ∂k(u j × w) = ∂ku j · (u j × ∂kw)

for k = 1, 2, . . . , d, we find that

F̃(u j )[w] =
d∑

k=1

∫

Ω

∂ku j · (u j × ∂kw) dx = 0.
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If u j ⇀ u in H1
D(Ω;R3), then u j → u in L2(Ω;R3) and thus, for every fixed

w ∈ C∞(Ω;R3), we can pass to the limit and find that

F̃(u)[w] = 0.

Since up to a subsequence we have u j (x) → u(x) for almost every x ∈ Ω , we
verify that |u(x)| = 1 for almost every x ∈ Ω . A density result shows that this holds
for all w ∈ H1(Ω;R3) ∩ L∞(Ω;R3). Reversing the above argument by choosing
w = u × v and employing the identity a × (b × c) = (b · a)c − (c · a)b shows that
F(u)[v] = 0 for all v ∈ H1(Ω;R3) ∩ L∞(Ω;R3).

A general concept for weak continuity is based on the notion of pseudomonotonicity.

Example 4.17 (Pseudomonotone operators) The operator F : X → X ′ is a pseudo-
monotone operator if it is bounded, i.e., ‖F(u)‖X ′ ≤ c(1 + ‖u‖s

X ) for some s ≥ 0,
and whenever u j ⇀ u in X , we have the implication that

lim sup
j→∞

F(u j )[u j − u] ≤ 0 =⇒ F(u)[u − v] ≤ lim inf
j→∞ F(u j )[u j − v].

For such an operator we have that if F(uh)[vh] = (vh) for all vh ∈ Xh with a
strongly dense family of subspaces (Xh)h>0 and uh ⇀ u as h → 0, then F(u) = .
To verify this, let v ∈ X and (vh)h>0 with vh ∈ Xh such that vh → u and note that

lim sup
h→0

F(uh)[uh − u] = lim sup
h→0

F(uh)[uh − vh] + F(uh)[vh − u]

= lim sup
h→0

(uh − vh) + F(uh)[vh − u] = 0.

Pseudomonotonicity yields for every vh′ ∈ ∪h>0Xh that

F(u)[u − vh′ ] ≤ lim inf
h→0

F(uh)[uh − vh′ ] = lim
h→0

(uh − vh′) = (u − vh′).

With the density of (Xh)h>0 in X , we conclude that F(u)[u − v] ≤ (u − v) for all
v ∈ X and with v = u ± w, we find that F(u)[w] = (w) for all w ∈ X .

Remarks 4.7 (i) Radially continuous bounded operators are pseudomonotone.
Here, radial continuity means that t �→ F(u + tv)[v] is continuous for t ∈ R

and all u, v ∈ X . These operators allow us to apply Minty’s trick to deduce from
the inequality (u − v) − F(v)[u − v] ≥ 0 for all v ∈ X that F(u) = . To prove
this implication, note that with v = u + εw, we find that (w) − F(u + εw)[w] ≤ 0
and by radial continuity for ε → 0, it follows that (w) − F(u)[w] ≤ 0 and hence
F(u) = .
(ii) Pseudomonotone operators are often of the form F = F1 + F2 with a monotone
operator F1 and a weakly continuous operator F2, e.g., a lower-order term described
by F2.
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Example 4.18 (Quasilinear diffusion) The concept of pseudomonotonicity applies
to the quasilinear elliptic equation

− div
(|∇u|p−2∇u

) + g(u) = f in Ω, u|∂Ω = 0 on ∂Ω,

with g ∈ C(R) such that |g(s)| ≤ c(1 + |s|r−1) and 1 < p < d, r < dp/(d − p).

4.3 Solution of Discrete Problems

Wediscuss in this section the practical solution of discretizedminimization problems
of the form

Minimize Ih(uh) =
∫

Ω

W (∇uh) + g(uh) dx among uh ∈ Ah .

In particular, we investigate four model situations with smooth and nonsmooth inte-
grands and smooth and nonsmooth constraints included in A . The iterative algo-
rithms are based on an approximate solution of the discrete Euler–Lagrange equa-
tions. More general results can be found in the textbooks [4, 12].

4.3.1 Smooth, Unconstrained Minimization

Suppose that
Ah = {uh ∈ S 1(Th)m : uh |ΓD = uD,h}

and Ih is defined as above with functions W ∈ C1(Rm×d) and g ∈ C1(Rm). The
case ΓD = ∅ is not generally excluded in the following. A necessary condition for a
minimizer uh ∈ Ah is that for all vh ∈ S 1

D(Th)m , we have

Fh(uh)[vh] =
∫

Ω

DW (∇uh) · ∇vh + Dg(uh) · vh dx = 0.

Steepest descent methods successively lower the energy by minimizing in descent
directions defined through an appropriate gradient.

Algorithm 4.1 (Descent method) Let (·, ·)H be a scalar product on S 1
D(Th)m and

μ ∈ (0, 1/2). Given u0
h ∈ Ah, compute the sequence (u j

h) j=0,1,... via u j+1
h =

u j
h + α j d

j
h with d j

h ∈ S 1
D(Th)m such that

(d j
h , vh)H = −Fh(u j

h)[vh]
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for all vh ∈ S 1
D(Th)m and either the fixed step-size

α j = τ

or the line-search minimum which seeks the maximal α j ∈ {2−,  ∈ N0} such that

Ih(u j
h + α j d

j
h ) ≤ Ih(u j

h) − μα j‖d j
h ‖2H .

Stop the iteration if ‖α j d
j

h ‖H ≤ εstop.

Remarks 4.8 (i) Since Ih is continuously differentiable, the descent method
decreases the energy in every step. This follows from

d

dα
Ih(u j

h + αd j
h )

∣∣∣
α=0

= DIh(u j
h)[d j

h ] = Fh(u j
h)[d j

h ] = −‖d j
h ‖2H ,

i.e., the continuous function ϕ(α) = Ih(u j
h + αd j

h ) is strictly decreasing for α ∈
[0, δ]. The existence of α j > 0 that satisfies the Armijo–Goldstein condition of
Algorithm 4.1 follows from expanding

Ih(u j
h + αd j

h ) = Ih(u j
h) − α‖d j

h ‖2H + O(α2)

provided that W and g are sufficiently smooth so that Ih ∈ C2(Xh).
(ii) The scalar product (·, ·)H acts like a preconditioner for Fh , i.e., we have u j+1

h =
u j

h − τ X−1
H Fh(u j

h) with respect to an appropriate basis. In particular, the descent
method may be regarded as a fixed-point iteration.
(iii) Larger step sizes are typically possible for implicit or semi-implicit versions of
the descent method, i.e., by considering a fixed step-size and the modified equation

(d j
h , vh)H + F̃h(u j

h + τd j
h , u j

h)[vh] = 0

for all vh ∈ S 1
D(Th)m and with a function F̃h such that F̃h(uh, uh) = Fh(uh). If

Fh(uh) = Gh(uh) + Th(uh) with a linear or monotone operator Gh , then a natural
choice is F̃h(uh, ũh) = Gh(uh) + Th (̃uh). Generally, large time steps are possible
when monotone terms are treated implicitly and antimonotone terms explicitly.
(iv) If Xh = Vh × Wh and Ih(uh) = Jh(φh, ψh) is separately convex, i.e., the map-
pings vh �→ Jh(vh, ψh) andwh �→ Jh(φh, wh) are convex for all (φh, ψh) ∈ Vh×Wh ,
a decoupled, semi-implicit gradient flow discretization is unconditionally stable.
Given the initial (φ0

h , ψ0
h ) ∈ Vh × Wh , consider the iteration

(dtφ
j+1
h , vh)Vh + δ1 Jh(φ

j+1
h , ψ

j
h )[vh] = 0,

(dtψ
j+1

h , wh)Wh + δ2 Jh(φ
j+1
h , ψ

j+1
h )[wh] = 0,
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where δ1 Jh and δ2 Jh denote the Fréchet derivatives of Jh with respect to the first
and second argument, respectively. The choices vh = dtφ

j+1
h , wh = dtψ

j+1
h and the

separate convexity of J lead to

‖dtφ
j+1
h ‖2Vh

+ ‖dtψ
j+1

h ‖2Wh
= −δ1 Jh(φ

j+1
h , ψ

j
h )[dtφ

j+1
h ]

− δ2 Jh(φ
j+1
h , ψ

j+1
h )[dtψ

j+1
h ]

≤ τ−1(Jh(φ
j
h , ψ

j
h ) − Jh(φ

j+1
h , ψ

j
h )

)

+ τ−1(Jh(φ
j+1
h , ψ

j
h ) − Jh(φ

j+1
h , ψ

j+1
h )

)

= −dt Jh(φ
j+1
h , ψ

j+1
h ),

which implies the unconditional stability of the scheme.

Theorem 4.9 (Convex functionals) Assume that Ih is convex and bounded from
below and Fh is Lipschitz continuous, i.e., there exists cF ≥ 0 such that

‖Fh(wh) − Fh(vh)‖X ′
h

≤ cF‖wh − vh‖X

for all wh, vh ∈ Xh. Let ch > 0 be such that ‖vh‖X ≤ ch‖vh‖H for all vh ∈ Xh.
Then the steepest descent method with fixed step-size τ > 0 such that τcF ch ≤ 1/2
terminates within a finite number of iterations, and for all J ≥ 0, we have

Ih(u J+1
h ) + (τ/2)

J∑
j=0

‖d j
h ‖2H ≤ Ih(u0

h).

Proof The convexity of Ih implies that

Fh(u j+1
h )[u j+1

h − u j
h] + Ih(u j

h) ≥ Ih(u j+1
h ).

Using that τd j
h = u j+1

h − u j
h and choosing vh = τd j

h in the discrete scheme leads to

Ih(u j+1
h ) − Ih(u j

h) + τ‖d j
h ‖2H ≤ (d j

h , d j
h )H + τ Fh(u j+1

h )[d j
h ]

= (d j
h , d j

h )H − Fh(u j
h)[d j

h ]
+ τ

(
Fh(u j

h) − Fh(u j+1
h )

)[d j
h ]

= τ
(
Fh(u j

h) − Fh(u j+1
h )

)[d j
h ] ≤ cF chτ 2‖d j

h ‖2H .

Therefore, if τcF ch ≤ 1/2 we deduce the estimate from a summation over j =
0, 1, . . . , J . The estimate implies that d j

h → 0 as j → ∞ so that ‖τd j
h ‖H ≤ εstop

for j sufficiently large. �



4.3 Solution of Discrete Problems 111

Remarks 4.9 (i) The arguments of the proof of the theorem show that the implicit
version of the descent method, defined by (d j

h , vh)H + Fh(u j
h + τd j

h )[vh] = 0 for
every vh ∈ S 1

D(Th), is unconditionally convergent, but requires the solution of
nonlinear systems of equations in every time step.
(ii) For nonconvex functionals, the iteration typically converges to a local minimum
of Ih . Theoretically, the iteration may stop at a saddle point or local maximum.

To formulate the Newton method for solving the equation Fh(uh) = 0 in X ′
h we

assume that W ∈ C2(Rm×d) and g ∈ C2(Rm). The Newton schememay be regarded
as an explicit descent method with a variable metric defined by the second variation
of the energy functional Ih , i.e.,

DFh(uh)[wh, vh] =
∫

Ω

D2W (∇uh)[∇wh,∇vh] + D2g(uh)[wh, vh] dx

for uh, vh, wh ∈ S 1
D(Th)m .

Algorithm 4.2 (Newton method)Given u0
h ∈ Ah, compute the sequence (u j

h) j=0,1,...

via u j+1
h = u j

h + α j d
j

h with d j
h ∈ S 1

D(Th)m such that

DFh(u j
h)[d j

h , vh] = −Fh(u j
h)[vh]

for all vh ∈ S 1
D(Th)m and α j > 0 with either the optimal step-size α j = 1, a fixed

damping parameter α j = τ < 1, or a line search minimum α j as in Algorithm 4.1.

Stop the iteration if ‖α j d
j

h ‖H ≤ εstop for a norm ‖ · ‖H on S 1
D(Th)m.

The convergence of the Newton iteration will be discussed in a more general
context below in Sect. 4.3.3.

Remark 4.10 As opposed to the descent method, the Newton iteration can in general
only be expected to converge locally. Under certain conditions the Newton scheme
converges quadratically in a neighborhood of a solution. Optimal results can be
obtained by combining the globally but slowly convergent descent method with the
locally but rapidly convergent Newton method. Since the convergence of the Newton
method is often difficult to establish and requires W and g to be sufficiently regular,
developing globally convergent schemes is important to construct reliable numerical
methods.

Example 4.19 For the approximation of minimal surfaces that are presented by
graphs of functions over Ω , we consider

Ih(uh) =
∫

Ω

(1 + |∇uh |2)1/2 dx
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and note that for uh ∈ Ah = {vh ∈ S 1(Th) : vh |ΓD = uD,h} and vh, wh ∈ S 1
D(Th)

we have

Fh(uh)[vh] =
∫

Ω

∇uh · ∇vh

(1 + |∇uh |2)1/2 dx

and

DFh(uh)[wh, vh] =
∫

Ω

∇wh · ∇vh

(1 + |∇uh |2)1/2 −
(∇uh · ∇vh

)(∇uh · ∇wh
)

(1 + |∇uh |2)3/2 dx .

Figure4.2 displays a combinedMatlab implementation of the Newton iteration and
the descent method with line search. The Newton method fails to provide meaning-
ful approximations for moderate perturbations of the nodal interpolant of the exact
solution as a starting value.

4.3.2 Smooth Constrained Minimization

We next consider the case that the set of admissible functions includes a pointwise
constraint, which is imposed at the nodes of a triangulation, i.e., for G ∈ C(Rm), we
have

Ah = {uh ∈ S 1(Th)m : uh |ΓD = uD,h, G
(
uh(z)

) = 0 for all z ∈ Nh}.

The identityG
(
uh(z)

) = 0 for all z ∈ Nh is equivalent to the conditionIh G(uh) = 0.
We always assume in the following that Ah 
= ∅, i.e., that the function uD,h is com-
patible with the constraint. Moreover, we assume G ∈ C1(Rm) with DG(s) 
= 0
for every s ∈ M = G−1({0}) so that M ⊂ R

m is an (m − 1)-dimensional C1-
submanifold. The Euler–Lagrange equations of the discrete minimization problem

Ih(uh) =
∫

Ω

W (∇uh) dx

in the set of all functions uh ∈ Ah can then be formulated as follows.

Proposition 4.3 (Optimality conditions) The function uh ∈ Ah is stationary for Ih

in Ah if and only if
Fh(uh)[wh] = 0

for all wh ∈ TuhAh, where the discrete tangent space TuhAh ofAh at uh is defined by

TuhAh = {wh ∈ S 1
D(Th)m : DG(uh(z))wh(z) = 0 forall z ∈ Nh\ΓD}.
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Fig. 4.2 Matlab routine for the computation of discrete minimal surfaces with the Newton and
the steepest descent scheme
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Proof We let ϕh : (−ε, ε) → Ah be a continuously differentiable function with
ϕh(0) = uh . We then have that wh = ϕ′

h(0) ∈ TuhAh and

0 = d

dt
Ih(ϕh(t))

∣∣∣∣
t=0

= DIh(uh)[wh].

Conversely, for every wh ∈ TuhAh there exists a function ϕh(t) as above. �
Remark 4.11 An equivalent characterization of stationary points is the existence of
a Lagrange multiplier λh ∈ S 1

D(Th) such that for all vh ∈ S 1
D(Th)m , we have

Fh(uh)[vh] + (λh DG(uh), vh)h = 0.

We propose the following descent scheme for the iterative solution of the con-
strained problem. It may be regarded as a semi-implicit discretization of an H -
gradient flow. In particular, the problems that have to be solved at every step of the
iteration are linear if Fh is linear.

Algorithm 4.3 (Constrained descent method) Let (·, ·)H be a scalar product on
S 1

D(Th)m and given u0
h ∈ Ah, compute the sequence (u j

h) j=0,1,... via u j+1
h =

u j
h + τd j

h with d j
h ∈ T

u j
h
Ah such that

(d j
h , vh)H + Fh(u j

h + τd j
h )[vh] = 0

for all vh ∈ T
u j

h
Ah. Stop the iteration if ‖d j

h ‖H ≤ εstop.

Remark 4.12 If Fh is linear, then the solution of an iteration is equivalent to the
solution of a linear system of equations of the form

[
X H + τ S dG

⊥

dG 0

] [
D j

h

Λ
j
h

]
=

[−SU j
h

0

]
,

where D j
h , U j

h , and Λ
j
h are vectors that contain the nodal values of the functions d j

h ,

u j
h , and λ

j
h , respectively, and X H , S, and dGh are matrices that represent the scalar

product (·, ·)H , the bilinear form Fh(uh)[vh], and the linearized constraint defined
by DG.

The iterates (u j
h) j=0,1,... will in general not satisfy the constraint IhG(u j

h) = 0
but under moderate conditions, the violation of the constraint is small. We recall the
notation ‖v‖2h = ∫

Ω
Ih[v2] dx for v ∈ C(Ω).

Theorem 4.10 (Constrained convex minimization) Assume that G ∈ C2(Rm) with
‖D2G‖L∞(Rm) ≤ c, Ih is convex, u0

h ∈ Ah, and ‖vh‖h ≤ c‖vh‖H for all vh ∈
S 1

D(Th)m. For all J ≥ 0 we have

Ih(u J+1
h ) + τ

J∑
j=0

‖d j
h ‖2H ≤ Ih(u0

h),
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and for every j = 1, 2, . . ., the bound

‖IhG(u j+1
h )‖L1(Ω) ≤ cτ Ih(u0

h).

The algorithm terminates after a finite number of iterations.

Proof The convexity of Ih implies that

Ih(u j
h + τd j

h ) + Fh(uh + τd j
h )[u j

h − (u j
h + τd j

h )] ≤ Ih(u j
h).

With the choice of vh = τd j
h in the algorithm and the relation u j+1

h = u j
h + τd j

h ,
this leads to

Ih(u j+1
h ) − Ih(u j

h) ≤ τ Fh(u j+1
h )[d j

h ] = −τ‖d j
h ‖2H .

A summation over j = 0, 1, . . . , J proves the energy law. A Taylor expansion shows
that for every z ∈ Nh\ΓD, we have for some ξ

j
z ∈ R

m that

G(u j+1
h (z)) = G(u j

h(z)) + τ DG(u j
h(z)) · d j

h (z) + τ 2

2
d j

h (z)

⊥

D2G(ξ
j

z )d j
h (z).

Noting DG(u j
h(z)) · d j

h (z) = 0 and G(u0
h(z)) = 0, we deduce by induction that

G(u J+1
h (z)) = τ 2

2

J∑
j=0

d j
h (z)

⊥

D2G(ξ
j

z )d j
h (z).

Since D2G is uniformly bonded we have with βz = ∫
Ω

ϕz dx that

‖IhG(u j+1
h )‖L1(Ω) ≤

∑
z∈N

βz |G(u j
h(z))| ≤ cτ 2

J∑
j=0

∑
z∈N

βz |d j
h (z)|2

= cτ 2
J∑

j=0

‖d j
h ‖2h .

A combination with the energy law implies the bound for ‖IhG(u j+1
h )‖L1(Ω). The

convergence of the iteration follows from the convergence of the sum of norms of
the correction vectors d j

h . �

Remark 4.13 In order to satisfy the constraint exactly, the algorithm can be aug-
mented by defining the new iterates through the projection

u j+1
h (z) = πM

(
u j

h(z) + τd j
h (z)

)
,
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where πM : Uδ(M) → M is the nearest neighbor projection onto M = G−1({0})
that is defined in a tubular neighborhoodUδ(M) of M for some δ > 0 if M ∈ C2. The
step-size τ > 0 has to be sufficiently small in order to guarantee the well-posedness
of the iteration.

Example 4.20 (Harmonic maps) Minimizing the Dirichlet energy in the set

Ah = {uh ∈ S 1(Th)m : uh |ΓD = uD,h, |uh(z)| = 1 for all z ∈ Nh}

corresponds to the situation of Theorem 4.10 with G(s) = |s|2−1 and M = Sm−1 =
{s ∈ R

m : |s| = 1}. In particular, we have DG(s) = 2s and ‖D2G‖L∞(Rm) = 2m1/2.
The discrete tangent spaces are given by

TuhAh = {wh ∈ S 1
D(Th)m : uh(z) · wh(z) = 0 for all z ∈ Nh\ΓD}.

The nearest neighbor projection πS2 is for s ∈ R
m\{0} defined by πS2(s) = s/|s|.

4.3.3 Nonsmooth Equations

We consider an abstract equation of the form

Fh(uh)[vh] = 0

for all vh ∈ Xh with a continuous operator Fh : Xh → Yh that may not be con-
tinuously differentiable. The goal is to formulate conditions that allow us to prove
convergence of an appropriate generalization of the Newton method. We let Xh and
Yh be Banach spaces in the following, and assume that Xh is equipped with the
norm of a Banach space X . We let L(Xh, Yh) denote the space of continuous linear
operators Ah : Xh → Yh and let ‖Ah‖L(Xh ,YH ) be the corresponding operator norm.

Definition 4.3 We say that Fh : Xh → Yh is Newton differentiable at vh ∈ Xh if
there exists ε > 0 and a function Gh : Bε(vh) → L(Xh, Yh) such that

lim
wh→0

‖Fh(vh + wh) − Fh(vh) − Gh(vh + wh)[wh]‖Yh

‖wh‖X
= 0.

The function Gh is called the Newton derivative of Fh at vh .

Remark 4.14 Notice that in contrast to the definition of the classical derivative,
here the derivative is evaluated at the perturbed point vh + wh . This is precisely
the expression that arises in the convergence analysis of the classical Newton
iteration.

Examples 4.21 (i) If Fh : Xh → Yh is continuously differentiable in a neighbor-
hood of vh ∈ Xh , then Fh is Newton differentiable at vh with Newton derivative
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Gh = DFh , i.e., we have

∥∥Fh(vh + wh) − Fh(vh) − G(vh + wh)[wh]∥∥Yh
≤ ∥∥Fh(vh + wh) − Fh(vh)

− DFh(vh)[wh]∥∥Yh
+ ∥∥(

DFh(vh) − DF(vh + wh)
)[wh]∣∣Yh

and the right-hand side converges faster to 0 than ‖wh‖X as wh → 0.
(ii) If Xh is a Hilbert space the function Fh(v) = ‖v‖X , v ∈ Xh , is Newton differen-
tiable with

Gh(v) =
{

v/|v| if v 
= 0,

ξ if v = 0,

where ξ ∈ Xh with ‖ξ‖X ≤ 1 is arbitrary.
(iii) The function Fh : R → R, s �→ max{0, s}, is Newton differentiable with
Newton derivative Gh(s) = 0 for s < 0, Gh(0) = δ for arbitrary δ ∈ [0, 1], and
G(s) = 1 for s > 0.
(iv) If 1 ≤ p < q ≤ ∞, the mapping

Fh : Lq(Ω) → L p(Ω), v �→ max{0, v(x)}

is Newton differentiable with the Newton derivative Gh(vh) for Gh as above. For
p = q this is false.

The semismooth Newton method is similar to the classical Newton iteration but
employs the Newton derivative instead of the classical derivative.

Algorithm 4.4 (Semismooth Newton method)Given u0
h ∈ Xh, compute the sequence

(u j
h) j=0,1,... via u j+1

h = u j
h + d j

h with d j
h ∈ S 1

D(Th)m such that

Gh(u j
h)[d j

h , vh] = −Fh(u j
h)[vh]

for all vh ∈ S 1
D(Th)m. Stop the iteration if ‖d j

h ‖H ≤ εstop for a norm ‖ · ‖H on
S 1

D(Th)m.

Theorem 4.11 (Superlinear convergence) Suppose that Fh(uh) = 0 and Fh : Xh →
Yh is Newton differentiable at uh, such that the linear mapping G (̃uh) : Xh → Yh

is invertible with ‖G−1
h (̃uh)‖L(Yh ,Xh) ≤ M for every ũh ∈ Bε(uh) with some ε > 0.

Then the semismooth Newton method converges superlinearly to uh if u0
h is sufficiently

close to uh, i.e., for every η > 0, there exists J ≥ 0 such that for all j ≥ J , we have

‖u j+1
h − uh‖X ≤ η‖u j

h − uh‖X .

Proof Noting d j
h = −Gh(u j

h)−1Fh(u j
h), we have

u j+1
h − uh = u j

h − G−1
h (u j

h)Fh(u j
h) − uh
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= u j
h − uh − G−1

h (u j
h)

(
Fh(u j

h) − Fh(uh)
)

= −G−1
h (u j

h)
(
Fh(u j

h) − Fh(uh) − Gh(u j
h)(u j

h − uh)
)
.

Writing u j+1
h = uh + w j+1

h , we have

‖w j+1
h ‖X ≤ ‖G−1

h (uh + w j
h)‖L(Yh ,Xh)‖Fh(uh + w j

h) − Fh(uh)

− Gh(uh + w j
h)w j

h‖Yh

≤ Mϕ(‖w j
h‖X )

with a function ϕ(s) satisfying ϕ(s)/s → 0 as s → 0. If ‖w0
h‖X is sufficiently

small, e.g., ‖w0
h‖X ≤ ε/(Mθ) with θ = maxs∈[0,1] ϕ(s), then we inductively find

u j
h ∈ Bε(uh) for all j ≥ 0 and ‖w j

h‖X → 0 as j → ∞. For J ≥ 0 such that

φ(‖w j
h‖X ) ≤ (η/M)‖w j

h‖X for all j ≥ J , we verify the estimate of the theorem. �

Remark 4.15 If Fh is twice continuously differentiable so that Gh = DFh is locally
Lipschitz continuous and ‖DF−1

h (̃uh)‖L(Yh ,Xh) ≤ M , then Algorithm 4.4 coincides
with the classical Newton iteration which is locally and quadratically convergent.

4.3.4 Nonsmooth, Strongly Convex Minimization

For Banach spaces X and Y , proper, convex, and lower semicontinuous functionals
G : X → R ∪ {+∞}, F : Y → R ∪ {+∞}, and a bounded, linear operator
Λ : X → Y , we consider the saddle-point problem

inf
u∈X

sup
p∈Y ′

〈Λu, p〉 − F∗(p) + G(u) = inf
u∈X

sup
p∈Y ′

L(u, p).

The pair (u, p) is a saddle point for L if and only if

Λu ∈ ∂ F∗(p), −Λ′ p ∈ ∂G(u),

where Λ′ : Y ′ → X ′ denotes the formal adjoint of Λ. The related primal and dual
problem consist in the minimization of the functionals

I (u) = F(Λu) + G(u), D(p) = −F∗(p) − G∗(−Λ′ p).

We have I (u)− D(p) ≥ 0 for all (u, p) ∈ X × Y ′ with equality if and only if (u, p)

is a saddle point for L . We assume in the following that X and Y are Hilbert spaces
and identify them with their duals. The descent and ascent flows ∂t u = −∂u L(u, p)

and ∂t p = ∂p L(u, p), respectively, motivate the following algorithm. Further details
about related nonsmooth minimization problems can be found in [14].
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Algorithm 4.5 (Primal-dual iteration) Let (u0, p0) ∈ X × Y and set dt u0 = 0.
Compute the sequences (u j ) j=0,1,... and (p j ) j=0,1,... by iteratively solving the
equations

ũ j+1 = u j + τdt u
j ,

− dt p j+1 + Λũ j+1 ∈ ∂ F∗(p j+1),

− dt u
j+1 − Λ′ p j+1 ∈ ∂G(u j+1).

Stop the iteration if ‖u j+1 − u j‖X ≤ εstop.

Remark 4.16 The equations in Algorithm 4.5 are equivalent to the variational
inequalities

〈−dt u
j+1 − Λ′ p j+1, v − u j+1〉X ≤ G(v) − G(u j+1) − α

2
‖v − u j+1‖2X ,

〈−dt p j+1 + Λũ j+1, q − p j+1〉Y ≤ F∗(q) − F∗(p j+1)

for all (v, q) ∈ X × Y . Here, α > 0 if G is uniformly convex.

We prove convergence of Algorithm 4.5 assuming that α > 0. We abbreviate by
‖Λ‖ the operator norm ‖Λ‖L(X,Y ).

Theorem 4.12 (Convergence) Let (u, p) be a saddle point for L. If τ‖Λ‖ ≤ 1, we
have for every J ≥ 0 that

1 − τ‖Λ‖
2

‖p − pJ+1‖2Y + 1

2
‖u − u J+1‖2X+τ

J∑
j=0

α

2
‖u − u j+1‖2X

≤ 1

2
‖p − p0‖2Y + 1

2
‖u − u0‖2X .

In particular, the iteration of Algorithm 4.5 terminates.

Proof We denote δ
j+1
u = u − u j+1 and δ

j+1
p = p − p j+1 in the following. Using

that dtδ
j+1
u = −dt u j+1 and dtδ

j+1
p = −dt p j+1, we find that

Υ ( j + 1) = dt

2

(‖δ j+1
p ‖2Y + ‖δ j+1

u ‖2X
) + τ

2

(‖dtδ
j+1
u ‖2X + ‖dtδ

j+1
p ‖2Y

) + α

2
‖δ j+1

u ‖2X

= 〈dtδ
j+1
p , δ

j+1
p 〉Y + 〈dtδ

j+1
u , δ

j+1
u 〉X + α

2
‖δ j+1

u ‖2X

= −〈dt p j+1, p − p j+1〉Y − 〈dt u
j+1, u − u j+1〉X + α

2
‖u − u j+1‖2X .
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The equations for dt p j+1 and dt u j+1 of Algorithm 4.5 and their equivalent charac-
terization in Remark 4.16 lead to

Υ ( j + 1) ≤ F∗(p) − F∗(p j+1) − 〈Λũ j+1, p − p j+1〉Y

+ G(u) − G(u j+1) + 〈Λ′ p j+1, u − u j+1〉X

= [〈Λu, p j+1〉Y − F∗(p j+1) + G(u)
]

− [〈Λu j+1, p〉Y − F∗(p) + G(u j+1)
] + 〈Λu j+1, p〉Y

− 〈Λũ j+1, p − p j+1〉Y − 〈Λ′ p j+1, u j+1〉Y .

The definitions of F∗∗ = F and G∗ imply that

〈Λu, p j+1〉Y − F∗(p j+1) ≤ F(Λu),

−〈u j+1,Λ′ p〉X − G(u j+1) ≤ G∗(−Λ′ p).

These estimates and the identity u j+1 − ũ j+1 = τ 2d2
t u j+1 = −τ 2d2

t δ
j+1
u allow us

to deduce that

Υ ( j + 1) ≤ F(Λu) + G(u) + F∗(p) + G∗(−Λ′ p)

+ 〈Λu j+1, p〉Y − 〈Λũ j+1, p − p j+1〉Y − 〈Λ′ p j+1, u j+1〉X

= I (u) − D(p) − τ 2〈Λd2
t δ

j+1
u , δ

j+1
p 〉Y .

We use I (u) − D(p) = 0 to derive the estimate

Υ ( j + 1) ≤ −τ 2〈Λd2
t δ

j+1
u , δ

j+1
p 〉Y .

A summation of the estimate over j = 0, 1, . . . , J and multiplication by τ lead to

1

2

(‖δ J+1
p ‖2Y + ‖δ J+1

u ‖2X
) + τ 2

2

J∑
j=0

(‖dtδ
j+1
u ‖2X + ‖dtδ

j+1
p ‖2Y

) + α

2

J∑
j=0

‖δ j+1
u ‖2X

≤ 1

2

(‖δ0p‖2Y + ‖δ0u‖2X
) − τ 3

J∑
j=0

〈Λd2
t δ

j+1
u , δ

j+1
p 〉.

A summation by parts, −dtδ
0
u = dt u0 = 0, and Young’s inequality show that

− τ 3
J∑

j=0

〈Λd2
t δ

j+1
u , δ

j+1
p 〉Y = τ 3

J∑
j=0

〈Λdtδ
j
u , dtδ

j+1
p 〉Y + τ 2〈Λdtδ

j
u , δ

j
p〉Y |J+1

j=0

≤ τ 2

2

( J∑
j=0

τ 2‖Λdtδ
j
u‖2Y + ‖dtδ

j+1
p ‖2Y

)
+ τ‖Λ‖

2
‖δ J+1

p ‖2Y + τ 3

2‖Λ‖‖Λdtδ
J+1
u ‖2Y .

A combination of the estimates proves the theorem. �



4.3 Solution of Discrete Problems 121

Remarks 4.17 (i) The assumption that a saddle point exists implies that primal and
dual problem are related by a strong duality principle.
(ii) If F is strongly convex and G is only convex, then the roles of u and p have to
be exchanged to ensure convergence.
(iii) The algorithm may be regarded as an inexact Uzawa algorithm. The classical
Uzawamethod corresponds to omitting dt u j+1, i.e., solving the equation−Λ′ p j+1 ∈
∂G(u j+1) for u j+1 at every step of the algorithm.
(iv) Algorithm 4.5 is practical if the proximity operators r = (1 + τ∂ F∗)−1q and
w = (1 + τ∂G)−1v can be easily evaluated, i.e., if the unique minimizers of

w �→ 1

2τ
‖w − v‖2X + G(w), r �→ 1

2τ
‖r − q‖2Y + F∗(r),

are directly accessible. This is the case for quadratic functionals and indicator func-
tionals.

Example 4.22 In the case of the discretized Poisson problem with X = S 1
0 (Th),

we may choose Y = L 0(Th)d , Λ = ∇,

F(ph) = 1

2

∫

Ω

|ph |2 dx, G(uh) =
∫

Ω

f uh dx,

and exchange the roles of uh and ph . Letting Ph,0 f denote the L2 projection onto
S 1

0 (Th), the iteration reads

p̃ j+1
h = p j

h + τdt p j+1
h ,

−dt u
j+1
h + divh p̃ j+1

h = Ph f,

−dt p j+1
h + ∇u j+1

h = p j+1
h .

The discrete divergence operator divh : L 0(Th)d → S 1
0 (Th) is for every elemen-

twise constant vector field qh ∈ L 0(Th)d defined by (divh qh, vh) = −(qh,∇vh)

for all vh ∈ S 1
0 (Th). Convergence holds if τ‖∇‖ ≤ 1, where ‖∇‖ ≤ ch−1.

4.3.5 Nested Iteration

The semismooth and classical Newton method can only be expected to converge if
the starting value u0

h is sufficiently close to the discrete solution uh . The radius of
the ball around uh which contains such starting values may depend critically on the
mesh-size in the sense that it becomes smaller when the mesh is refined. Such a
behavior reflects the problem that the Newton scheme may not be well-defined for
the underlying continuous formulation. When a sequence of refined triangulations
is used, the corresponding finite element spaces are nested, and one may use an
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approximate solution computed on a coarse grid to define a starting value for the
iteration process on the finer grid. Besides providing a method to construct feasible
starting values, this approach can also significantly reduce the computational effort.

Algorithm 4.6 (Nested iteration) Let (T)=0,...,L be a sequence of triangulations
withS 1(T−1) ⊂ S 1(T) for  = 1, 2, . . . , L. Set  = 0and choose u0

 ∈ S 1(T).
(i) Iteratively approximate a solution u ∈ S 1(T) of F(u) = 0 using the starting
value u0

 to obtain an approximate solution u∗
 ∈ S 1(T).

(ii) Stop if  = L. Otherwise set u0
+1 = u∗

 ,  →  + 1, and continue with (i).

We make the ideas more precise for a red-green-blue refinement method. The
definition is easily generalized to other refinement methods such as newest-vertex
bisection.

Definition 4.4 We say thatTh is a refinement of the triangulationTH ifS 1(TH ) ⊂
S 1(Th) and for every node zh ∈ Nh we either have zh ∈ NH or there exist nodes
zH
1 , zH

2 ∈ NH with zh = (zH
1 + zH

2 )/2, cf. Fig. 4.3.

Lemma 4.1 (Prolongation) Let Th be a refinement of the triangulation TH . Given
u H ∈ S 1(TH ), we have uh = u H ∈ S 1(Th) with nodal values uh(zh) = u H (zh)

for every zh ∈ NH ⊂ Nh and uh(zh) = (u H (zH
1 ) + u H (zH

2 ))/2 for every zh ∈
Nh\NH and zh

1 , zh
2 ∈ NH with zh = (zH

1 + zH
2 )/2. In particular, there exists a

linear prolongation operator

Pr1H→h : RNH → R
Nh ,

(
u H (zH )

)
zH ∈NH

�→ (
u H (zh)

)
zh∈Nh

for every u H ∈ S 1(TH ).

Proof The assertion of the lemma follows from the fact that the function uh is affine
on every one-dimensional subsimplex in the triangulation. �
Remarks 4.18 (i) The superscript 1 in Pr1H→h corresponds to affine functions. Anal-
ogously, there exists a linear operator Pr0H→h that maps the values of an elementwise
constant function on TH to the values of the function represented on Th .
(ii) Matrices that realize the linear mappings of the nodal or elementwise values are
provided by the routine red_refine.m.
(iii) Nested iterations are the simplest version of a multigrid scheme. In more general
versions, grid transfer from a fine to a coarse grid called restriction is required. This
is often realized with the adjoint operators, i.e., with the transposed matrices.
(iv) For nonnested finite element spaces the grid transfer can be realized with inter-
polation or projection operators.

Fig. 4.3 The nodes of the
refined triangulation are
either existing nodes (dots)
or midpoints of bisected
edges (circles)

H h
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