
Chapter 10
Free Discontinuities

10.1 Functions of Bounded Variation

Many important phenomena require the description of physical quantities with
discontinuous functions. Although Sobolev functions are not continuous in gen-
eral, they are too restrictive to admit functions with jumps across lower-dimensional
subsets. We introduce in this section the space of functions of bounded variations
and discuss its properties. The reader is referred to the textbooks [2, 4, 9] for details.

10.1.1 Derivatives of Discontinuous Functions

Functions in L1(Ω) define regular distributions and can be differentiated in the
distributional sense, i.e., given u ∈ L1(Ω), its distributional derivative is the linear
functional Du : C∞

c (Ω;Rd) → R defined by

〈Du, φ〉 = −
∫

Ω

u div φ dx

for every φ ∈ C∞
c (Ω;Rd).

Remark 10.1 For u ∈ L1(Ω) we have u ∈ W 1,1(Ω) if Du ∈ L1(Ω;Rd), i.e., if
there exists g ∈ L1(Ω;Rd) such that for all φ ∈ C∞

c (Ω;Rd), we have

〈Du, φ〉 =
∫

Ω

g · φ dx .

The space C0(Ω;Rm) denotes the completion of the space C∞
c (Ω;Rm) with

respect to the norm ‖v‖L∞(Ω) = supx∈Ω |v(x)| for v ∈ C∞
c (Ω;Rm), defined through
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298 10 Free Discontinuities

the Euclidean norm on Rm . It is a separable Banach space and its dual is denoted by
M (Ω;Rm). The elements inM (Ω;Rm) are throughRiesz’s representation theorem
identified with (vectorial) Radon measures; and the application of μ ∈ M (Ω;Rm)

to v ∈ C0(Ω;Rm) is denoted by

〈μ, φ〉 =
∫

Ω

φ dμ =
∫

Ω

φ(x) dμ(x).

If m = 1, we call μ a scalar Radon measure and write M (Ω) forM (Ω;Rm).

Examples 10.1 (i) Every f ∈ L1(Ω;Rm) defines a Radonmeasureμ f = f ⊗ dx ∈
M (Ω;Rm) through the Lebesgue integral

〈μ f , φ〉 =
∫

Ω

φ · f dx

for all φ ∈ C∞
c (Ω;Rm). This is a bounded linear functional on C0(Ω;Rm) since

〈μ f , φ〉 ≤ ‖ f ‖L1(Ω)‖φ‖L∞(Ω).

(ii) The Dirac distribution δx0 for x0 ∈ Ω defines a Radon measure inM (Ω)which,
for all φ ∈ C0(Ω) is given by

〈δx0 , φ〉 = φ(x0).

(iii) Given a union C = ∪�
i=1Γi of Lipschitz continuous curves Γi ⊂ Ω , i =

1, 2, . . . , n, and a function f ∈ L1(C;Rm), we define the Radon measure μ f C =
f ⊗ ds�C by setting for φ ∈ C0(Ω)

〈μ f C , φ〉 =
∫

C

φ f ds.

Definition 10.1 A function u ∈ L1(Ω) is said to be of bounded variation if its
distributional derivative defines a Radon measure, i.e., if there exists c ≥ 0 such that

〈Du, φ〉 = −
∫

Ω

u div φ dx ≤ c‖φ‖L∞(Ω)

for all φ ∈ C1
c (Ω;Rd). The minimal constant c ≥ 0 with this property is called total

variation of Du and is given by

|Du|(Ω) = sup
{

−
∫

Ω

u div φ dx : φ ∈ C1
c (Ω;Rn), ‖φ‖L∞(Ω) ≤ 1

}
.
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The space of all such functions is denoted BV(Ω) and called the space of functions
of bounded variation. It is equipped with the norm

‖u‖BV(Ω) = ‖u‖L1(Ω) + |Du|(Ω)

for all u ∈ BV(Ω).

We summarize some basic facts about the space BV(Ω).

Remarks 10.2 (i) The space BV(Ω) is a nonseparable Banach space.
(ii) We have that |Du|(Ω) is the operator norm of Du : C∞

c (Ω;Rd) → R.
(iii)We have W 1,1(Ω) ⊂ BV(Ω)with ‖u‖BV(Ω) = ‖u‖W 1,1(Ω) for all u ∈ W 1,1(Ω).
(vi) We have that u ∈ BV(Ω) if and only if there exists μ ∈ M (Ω;Rd) such that

∫

Ω

u div φ dx = −
∫

Ω

φ dμ

for all φ ∈ C1
c (Ω;Rd).

(v) If u ∈ BV(Ω) and Du = 0, then u is constant on every connected component of
Ω . Moreover, u �→ |Du|(Ω) is a seminorm on BV(Ω).
(vi) If u ∈ BV(Ω) and ψ : R → R is Lipschitz continuous with constant L , then
ψ ◦ u ∈ BV(Ω) with |D(ψ ◦ u)|(Ω) ≤ L|Du|(Ω).
(vii) If Ω = (a, b) ⊂ R

1 and u ∈ BV(Ω), then there exists ũ ∈ BV(Ω) with u = ũ
almost everywhere in Ω and

|Du|(Ω) = sup
a<x0<x1<···<xn<b

n∑
j=1

|̃u(x j ) − ũ(x j−1)|,

where the supremum is over all partitions a < x0 < x1 < · · · < xn < b with n ≥ 1.

Typical examples of functions in BV(Ω) that do not belong to W 1,1(Ω) are func-
tions that are piecewise weakly differentiable and jump across lower-dimensional
subsets.

Examples 10.2 (i) For Ω = (−1, 1) and u(x) = sign(x), we have

〈Du, φ〉 = −
∫

(−1,1)

uφ′ dx =
∫

(0,1)

φ′ dx −
∫

(0,1)

φ′ dx = 2φ(0)

for all φ ∈ C1
0(Ω), i.e., Du = 2δ0 and u ∈ BV(Ω) with |Du|(Ω) = 2.

(ii) For Ω ⊂ R
d and a Lipschitz domain E ⊂ Ω , the characteristic function u = χE

satisfies

〈DχE , φ〉 = −
∫

Ω

χE div φ dx = −
∫

E

div φ dx = −
∫

∂ E

φ · nE ds
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for all φ ∈ C1
0(Ω;Rd) with the outer unit normal nE on ∂ E , i.e., we have DχE =

−nE ⊗ ds�∂ E . This implies that |DχE |(Ω) = H d−1(∂ E) is the length or surface
area of ∂ E for d = 2 and d = 3, respectively.

Remarks 10.3 (i) If E ⊂ R
d , then E is said to be of finite perimeter in Ω if χE ∈

BV(Ω), and in this case |DχE |(Ω) is called the perimeter of E in Ω . The perimeter
generalizes the length or surface area of the boundary of a measurable set E ∩ Ω .
(ii) The coarea formula states that the total variation coincides with the integral of
the perimeters of the level sets of a function of bounded variation, i.e., we have that

|Du|(Ω) =
+∞∫

−∞
|Dχ{u>t}|(Ω) dt.

10.1.2 Properties of BV(Ω)

The space BV(Ω) is an extension of W 1,1(Ω) in the sense that W 1,1(Ω) ⊂ BV(Ω)

and ‖u‖W 1,1(Ω) = ‖u‖BV(Ω) for all u ∈ W 1,1(Ω). Since the set C∞(Ω) is dense
in W 1,1(Ω), we have that BV(Ω) is not the closure of C∞(Ω) with respect to the
norm in BV(Ω). In particular, convergence with respect to the norm in BV(Ω) or
equivalently strong convergence in BV(Ω) is a notion of convergence that is too
restrictive in applications.

Definition 10.2 (i) We say that the sequence (un)n∈N ⊂ BV(Ω) converges inter-
mediately or strictly to u ∈ BV(Ω) if un → u in L1(Ω) and |Dun|(Ω) → |Du|(Ω)

as n → ∞.
(ii) We say that (un)n∈N ⊂ BV(Ω) converges weakly to u ∈ BV(Ω) if un → u in
L1(Ω) and Dun ⇀∗ Du in M (Ω;Rd), i.e., 〈Dun, φ〉 → 〈Du, φ〉 as n → ∞ for
every φ ∈ C0(Ω;Rd).

Remarks 10.4 (i) The space BV(Ω) is the dual of a separable Banach space and
therefore a natural weak* topology on BV(Ω) exists. It coincides with the notion of
weak convergence introduced in the definition.
(ii) The weak topology in BV(Ω) in the sense of Banach spaces is difficult to char-
acterize due to the lack of an efficient characterization of BV(Ω)′.
(iii) For (un)n∈N ⊂ W 1,p(Ω) and 1 < p < ∞, we have that un → u in W 1,p(Ω)

for some u ∈ W 1,p(Ω) if and only if un ⇀ u and ‖un‖W 1,p(Ω) → ‖u‖W 1,p(Ω) as
n → ∞.

Examples 10.3 (i) For Ω = (−1, 1), let (un)n∈N ⊂ BV(Ω) be defined by un(x) =
nx if |x | ≤ 1/n and un(x) = sign(x) for |x | ≥ 1/n, cf. Fig. 10.1. We have that
un → u in L1(Ω) as n → ∞ for u(x) = sign(x) for all x ∈ Ω . Since |Dun|(Ω) =
‖∇un‖L1(Ω) = 2 for all n ∈ N and Du = 2δ0, we have |Dun|(Ω) → |Du|(Ω); that
is, the sequence (un)n∈N converges intermediately to u as n → ∞. Since (un)n∈N ⊂
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Fig. 10.1 Sequence of functions converging intermediately to u = sign but not strongly (left);
sequence of functions converging weakly to u = 1 but not intermediately (right)

W 1,1(Ω) but u �∈ W 1,1(Ω), the sequence does not converge strongly to u.
(ii) For Ω = (−1, 1) let (un)n∈N be defined by un(x) = n|x | if |x | ≤ 1/n and
un(x) = 1 for |x | ≥ 1/n, cf. Fig. 10.1. We have that (un)n∈N converges in L1(Ω) to
the constant function u = 1, but |Dun|(Ω) = 2 and |Du|(Ω) = 0 so that (un)n∈N
does not converge intermediately to u. Since 〈Dun, χ{|x |≤1/m}〉 = 0 for m ≤ n, it
follows that the sequence converges weakly to u.

An important property of the total variation is that it is lower semicontinuous with
respect to strong convergence in L1(Ω). The following theorem shows that this is
equivalent to weak lower semicontinuity in BV(Ω).

Theorem 10.1 (Weak lower semicontinuity) If (un)n∈N ⊂ BV(Ω) and u ∈ L1(Ω)

such that |Dun|(Ω) ≤ c for all n ∈ N and un → u in L1(Ω), then u ∈ BV(Ω)

with |Du|(Ω) ≤ lim infn→∞ |Dun|(Ω). Moreover, we have un ⇀ u in BV(Ω) as
n → ∞.

Smooth functions are not dense in BV(Ω) with respect to strong convergence but
with respect to intermediate convergence.

Theorem 10.2 (Approximation by smooth functions) The spaces C∞(Ω) and
C∞(Ω) ∩ BV(Ω) are dense in BV(Ω) with respect to intermediate convergence.

The following compactness result allows us to extract weakly convergent subse-
quences from bounded sequences in BV(Ω). This is the crucial difference between
the spaces BV(Ω) and W 1,1(Ω).

Theorem 10.3 (Compactness)Let (un)n∈N ⊂ BV(Ω) be a bounded sequence. Then
there exists a subsequence (un j ) j∈N and u ∈ BV(Ω) such that un j ⇀ u in BV(Ω)

as j → ∞.

The most important examples of functions in BV(Ω) are piecewise regular func-
tions that jump across an interface.

Proposition 10.1 (Piecewise regular functions) If Ω = Ω1 ∪ Ω2 and Ω1,Ω2 are
such that Ω1 ∩ Ω2 = ∅ and Σ = ∂Ω1 ∩ ∂Ω2 and u ∈ L1(Ω) such that u|Ω j ∈
W 1,1(Ω j ) for j = 1, 2, then u ∈ BV(Ω) with
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Du = ∇u ⊗ dx − �un� ⊗ ds�Σ

with the piecewise defined weak gradient ∇u|Ω j = ∇(u|Ω j ) and the jump �un� =
uΩ1nΩ1�Σ+uΩ2nΩ2�Σ across Σ with the outer unit normals nΩ j to Ω j for j = 1, 2.

Proof For φ ∈ C∞
c (Ω;Rd) a piecewise integration by parts with φ|∂Ω j \Σ = 0 for

j = 1, 2 shows that

∫

Ω

u div φ dx =
∫

Ω1

u div φ dx +
∫

Ω2

u div, φ dx

= −
∫

Ω1

(∇u) · φ dx −
∫

Ω2

(∇u) · φ dx +
∫

∂Ω1

uφ · nΩ1 ds

+
∫

∂Ω2

uφ · nΩ2 ds

= −
∫

Ω

(∇u) · φ dx +
∫

Σ

φ · �un� ds,

which proves the assertion. �

The proposition can be generalized which leads to the following characterization
of functions in BV(Ω).

Theorem 10.4 (Decomposition of Du) For every u ∈ BV(Ω) we have

Du = ∇u ⊗ dx − �un� ⊗ ds|Su + Cu,

where Su is a (d − 1)-dimensional jump set, ∇u ∈ L1(Ω) is the weak gradient in
the set Ω\Su, and Cu either vanishes or is a measure supported on a Cantor set of
vanishing d-dimensional Hausdorff measure that is zero for sets of finite (d − 1)-
dimensional Hausdorff measure. A point x ∈ Ω belongs to Su if there exists a unit
vector n ∈ R

d and distinct numbers a± ∈ R such that

lim
ε→0

|B±
ε (x, n) ∩ Ω|−1

∫

B±
ε (x,n)∩Ω

u(y) dy = a±,

where B±
ε (x, n) = {y ∈ Bε(x) : ±(y − x) · n > 0}, cf. Fig.10.2.

Some further important properties of BV(Ω) are listed below.

Remarks 10.5 (i) The embedding BV(Ω) → L p(Ω) is continuous for 1 ≤ p ≤
d/(d − 1) and compact for 1 ≤ p < d/(d − 1).
(ii) We have ‖u‖L p(Ω) ≤ c diam(Ω)|Du|(Ω) if u ∈ BV(Ω) with

∫
Ω

u dx = 0 and
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Fig. 10.2 Sets B±
ε (x, n) for

a point x ∈ Su where the
function u jumps from the
value a− to the value a+ in
the direction of n

x

B+
ε (x,n)

B−
ε (x,n)

n

Su

1 ≤ p ≤ d/(d − 1).
(iii) There exists a linear operator tr : BV(Ω) → L1(∂Ω) such that tr(u) = u|∂Ω

for all u ∈ BV(Ω) ∩ C(Ω). Moreover, we have the integration by parts formula

∫

Ω

φDu = −
∫

Ω

u div φ dx +
∫

∂Ω

tr(u)φ · n ds

for all u ∈ BV(Ω) and all φ ∈ C1(Ω;Rd). The operator tr is continuous with
respect to intermediate convergence in BV(Ω). It is not continuous with respect to
weak convergence in BV(Ω); for example for (un)n∈N ⊂ BV(0, 1) defined through
un(x) = nx for x ≤ 1/n and u(x) = 1 for x ≥ 1/n, we have un ⇀ u with u ≡ 1
but un(0) = 0 for all n ∈ N.

10.1.3 A Variational Model Problem on BV(Ω)

To understand the finite element approximation of variational problems involving
total variation, we consider, for given g ∈ L2(Ω) and α > 0, minimizing the
functional

I (u) = |Du|(Ω) + α

2

∫

Ω

(u − g)2 dx

as defined for u ∈ BV(Ω) ∩ L2(Ω). By the density of smooth functions we may
choose a bounded infimizing sequence (un)n∈N ⊂ W 1,1(Ω) ∩ L2(Ω). Due to the
lack of reflexivity or more generally an existing separable predual space, we cannot
extract a weakly convergent subsequence in W 1,1(Ω). Aweak limit of a subsequence
exists in the space BV(Ω) ∩ L2(Ω).

Theorem 10.5 (Existence) There exists a minimizer u ∈ BV(Ω) ∩ L2(Ω) for I .

Proof The functional I is bounded from below and the set of admissible functions
is nonempty, and hence there exists a bounded infimizing sequence (un)n∈N ⊂
BV(Ω) ∩ L2(Ω). Theorem10.3 guarantees the existence of a weakly convergent
subsequence (un j ) j∈N with weak limit u ∈ BV(Ω) and Theorem10.1 implies
I (u) ≤ lim inf j→∞ I (un j ), i.e., u is a minimizer for I . �
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Remark 10.6 The existence of solutions subject to Dirichlet boundary conditions
u|∂Ω = uD for uD ∈ L1(∂Ω) is difficult to establish due to the lack of weak
continuity of the trace operator.

The following stability result implies the uniqueness of minimizers.

Theorem 10.6 (Stability and uniqueness) For g1, g2 ∈ L2(Ω) let the functions
u1, u2 ∈ BV(Ω) ∩ L2(Ω) be minimizers of I with g replaced by g1 and g2, respec-
tively. We then have

‖u1 − u2‖ ≤ ‖g1 − g2‖.

In particular, minimizers are uniquely defined.

Proof We define the convex functionals F : BV(Ω) → R and G� : L2(Ω) → R,
� = 1, 2, by

F(u) = |Du|(Ω), G�(u) = (α/2)‖u − g�‖2

and set I� = F + G�. We extend F to L2(Ω) with the value +∞, and note that G�

is Fréchet differentiable with

δG�(u)[v] = α(u − g�, v)

for all v ∈ L2(Ω). Since F is convex, we have that its subdifferential is monotone,
i.e., for μ� ∈ ∂ F(u�), � = 1, 2, we have

(μ2 − μ1, u2 − u1) ≥ 0.

Noting that 0 ∈ ∂ I�(u�) we deduce that −δG�(u�) ∈ ∂ F(u�) for � = 1, 2, and
therefore ( − α(u2 − g2) + α(u1 − g1), u2 − u1

) ≥ 0.

This implies that
‖u2 − u1‖2 ≤ (u2 − u1, g2 − g1)

and an application of Hölder’s inequality proves the asserted bound. �
Due to a monotonicity property of the total variation, a maximum principle holds

for the minimization problem.

Proposition 10.2 (Maximum principle) If g ∈ L∞(Ω), then the minimizer u ∈
BV(Ω) ∩ L2(Ω) for I satisfies u ∈ L∞(Ω) with ‖u‖L∞(Ω) ≤ ‖g‖L∞(Ω).

Proof Assume that g(x) ≤ g for almost every x ∈ Ω and given the minimizer
u ∈ BV(Ω) ∩ L2(Ω) for I , define ũ(x) = min{u(x), g} for x ∈ Ω . According
to Remark10.2 we have ũ ∈ BV(Ω) with |Dũ|(Ω) ≤ |Du|(Ω). Since also ‖ũ −
g‖ ≤ ‖u − g‖, we deduce that I (̃u) ≤ I (u). This implies u = ũ and u ≤ g. The
same argument shows that u ≥ g if g(x) ≥ g for almost every x ∈ Ω . Therefore
u ∈ L∞(Ω) with the asserted bound. �
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Useful information about the minimization of I is contained in the related dual
problem. To identify it, we note that by a completion of C∞

c (Ω;Rd) with respect to
the norm ‖p‖H(div;Ω) = ‖p‖ + ‖ div p‖, the total variation |Du|(Ω) of a function
u ∈ BV(Ω) ∩ L2(Ω) can equivalently be characterized as

|Du|(Ω) = sup
{

−
∫

Ω

u div p dx : p ∈ HN (div;Ω), |p| ≤ 1 in Ω
}
,

where

HN (div;Ω) = {p ∈ L2(Ω;Rd) : div p ∈ L2(Ω), p · n|∂Ω = 0}.

For the minimization problem defined through I , we thus have with the indicator
functional IK1(0) of the set

K1(0) = {p ∈ L2(Ω;Rd) : |p| ≤ 1 almost everywhere in Ω}

that

inf
u∈BV∩L2

I (u) = inf
u∈BV∩L2

|Du|(Ω) + α

2
‖u − g‖2

= inf
u∈BV∩L2

sup
p∈HN (div)

(
−

∫

Ω

u div p dx + α

2
‖u − g‖2 − IK1(0)(p)

)
.

This defines a saddle point problem with unknowns u and p. The dual problem is
obtained by eliminating u. For this we assume that the order of the infimum and
supremum can be interchanged, i.e.,

inf
u∈BV∩L2

I (u) = sup
p∈HN (div)

inf
u∈BV∩L2

(
− ∫

Ω

u div p dx + α
2 ‖u − g‖2 − IK1(0)(p)

)
.

A direct calculation shows that the solution u of the inner minimization problem is
for p ∈ HN (div;Ω) given by

u = g + α−1 div p,

and thus

inf
u∈BV∩L2

I (u) = sup
p∈HN (div)

− 1

2α
‖ div p + αg‖2 + 1

2α
‖αg‖2 − IK1(0)(p).

The maximization problem defined by the right-hand side is the dual problem. The
heuristic interchange of the infimum and the supremum can be rigorously justified
and leads to the following result.
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Proposition 10.3 (Strong duality) For p ∈ HN (div;Ω) define

D(p) = − 1

2α
‖ div p + αg‖2 + α

2
‖g‖2 − IK1(0)(p).

We have
inf

u∈BV(Ω)∩L2(Ω)
I (u) = sup

p∈HN (div;Ω)

D(p).

Moreover, there exists a solution p ∈ HN (div;Ω) that maximizes the functional D.

Proof The reader is referred to [12] for a proof of the result which is established by
showing that I is the Fenchel dual of D in the sense of [11]. �

Remark 10.7 Exchanging the order of the infimum and supremum always leads to
the weak duality principle infu I (u) ≥ supp D(p).

Proposition 10.4 The unique solution u ∈ BV(Ω) ∩ L2(Ω) of the minimization
problem defined by I and every solution p ∈ HN (div;Ω) of the maximization
problem defined by D correspond to a saddle point for the functional

L(u, p) = −
∫

Ω

u div p dx + α

2
‖u − g‖2 − IK1(0)(p)

and are related by

div p = α(u − g), Du ∈ ∂ IK1(0)(p),

where the inclusion is understood as

−(
u, div (q − p)

) ≤ 0

for all q ∈ HN (div;Ω) ∩ K1(0).

Proof The proof follows from standard arguments in convex optimization, cf.,
e.g., [11]. �

Remarks 10.8 (i) The inclusion Du ∈ ∂ IK1(0)(p) is formally equivalent to p ∈
∂|Du|. In particular, we have p = ∇u/|∇u| in regions where ∇u �= 0.
(ii) In the case of Dirichlet boundary conditions on ∂Ω , the space HN (div;Ω) is
replaced by H(div;Ω) = {p ∈ L2(Ω;Rd) : div p ∈ L2(Ω)}.

An explicit solution can be constructed in the case of Dirichlet boundary
conditions.

Example 10.4 Let r > 0 be such that Br (0) ⊂ Ω and define g = χBr (0). Then



10.1 Functions of Bounded Variation 307

u = max
{
0, 1 − d/(αr)

}
χBr (0)

is the minimizer for I subject to u|∂Ω = 0.

Proof Assume that d ≤ αr and define

p(x) =
{

−r−1x for |x | ≤ r,

−r x/|x |2 for |x | ≥ r.

Then p ∈ H(div;Ω) with div p = −(d/r)χBr (0) and |p| ≤ 1. Moreover, we have
u = (1/α) div p + g. Since p = −n on ∂ Br (0) we have for every q ∈ H(div;Ω)

with |q| ≤ 1 that

−(u, div(q − p)) = −(
1 − d/(αr)

) ∫

∂ Br (0)

(q − p) · n ds ≤ 0.

If d ≥ αr , we define

p(x) =
{

−(α/d)x for |x | ≤ r,

−(α/d)r2x/|x |2 for |x | ≥ r

and verify div p = −αχBr (0) = −αg, i.e., u = (1/α) div p + g = 0, and |p| ≤
αr/d ≤ 1. Since u = 0 the variational inclusion Du ∈ ∂ IK1(0)(p) is satisfied. �

10.2 Numerical Approximation

We discuss in this section the numerical approximation and iterative solution of the
minimization problem defined through the functional I , which for every function
u ∈ BV(Ω) ∩ L2(Ω) is given by

I (u) = |Du|(Ω) + α

2
‖u − g‖2

for α > 0 and g ∈ L2(Ω). The subsequent discussion is based on results
in [6–8, 10].

10.2.1 W1,1 Conforming Approximation

The finite element spaceS 1(Th) defines a subspace of BV(Ω) ∩ W 1,1(Ω). Due to
the density of smooth functions in BV(Ω) with respect to intermediate convergence,
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we can approximate functions in BV(Ω) by functions in S 1(Th). The following
lemma provides bounds on the approximation error. For ease of presentation we
restrict to the case d = 2.

Lemma 10.1 (Approximation of BV functions)Assume that Ω ⊂ R
2 is star-shaped

and let ε > 0. For every u ∈ BV(Ω) there exists uε,h ∈ S 1(Th) such that

‖∇uε,h‖L1(Ω) ≤ (1 + chε−1 + cε)|Du|(Ω),

and
‖uε,h − u‖L1(Ω) ≤ c(h2ε−1 + ε)|Du|(Ω).

If u ∈ L∞(Ω), then ‖uε,h‖L∞(Ω) ≤ ‖u‖L∞(Ω).

Proof Since C∞(Ω) is dense in BV(Ω) with respect to intermediate convergence
we may choose a function ũ ∈ C1(Ω), such that ‖ũ − u‖L1(Ω) ≤ cε|Du|(Ω)

and ‖∇ũ‖L1(Ω) ≤ (1 + ε)|Du|(Ω). Moreover, if u ∈ L∞(Ω), then we have that
‖ũ‖L∞(Ω) ≤ ‖u‖L∞(Ω). This allows us to assume u ∈ C1(Ω) in the following. We
suppose that Ω is star-shaped with respect to 0 and define the set Ω̂ε = (1 + ε)Ω

and the linear transformation φ : Ω̂ε → Ω , x̂ �→ x̂/(1 + ε). We set ûε = u ◦ φ.
and with a nonnegative convolution kernel ρε ∈ C∞(R2), we let uε = (̂uε ∗ ρε)|Ω
and define uε,h = Ihuε. To prove the estimates we first note that nodal interpolation
estimates guarantee

‖uε,h − uε‖L1(Ω) + h‖∇(uε,h − uε)‖ ≤ ch2‖D2uε‖L1(Ω).

Standard mollification arguments show that

‖uε − ûε‖L1(Ω) ≤ cε‖∇ûε‖L1(Ω̂ε)
,

ε‖D2uε‖L1(Ω) + ‖∇uε‖L1(Ω) ≤ ‖∇ûε‖L1(Ω̂ε)
.

A transformation argument and a direct calculation imply that

‖ûε − u‖L1(Ω) ≤ cε‖∇u‖L1(Ω),

‖∇ûε‖L1(Ω) ≤ (1 + ε)‖∇u‖L1(Ω).

The combination of the estimates proves the asserted bounds for the case u ∈
C1(Ω). The estimate ‖uε,h‖L∞(Ω) ≤ ‖u‖L∞(Ω) is a direct consequence of the
construction. �

Remarks 10.9 (i) For d ≥ 3 the same result can be proved by employing a quasi-
interpolation operator instead of the nodal interpolation operator.
(ii) The estimate of the lemma and Hölder’s inequality imply that for functions
u ∈ BV(Ω)∩L∞(Ω)we have infvh∈S 1(Th) ‖u−vh‖L p(Ω) ≤ ch1/p for 1 ≤ p < ∞.
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(iii) Optimizing the convergence rates of the estimates in the lemma simultaneously
for intermediate convergence leads to the choice ε = h1/2 and the suboptimal esti-
mate ‖u − uε,h‖L1(Ω) ≤ ch1/2.

Since the functional I is strongly convex, the distance of any function to the
minimum is controlled by the difference of the values of the functional.

Lemma 10.2 (Convexity) If u ∈ BV(Ω) ∩ L2(Ω) is the minimizer for I , then we
have

α

2
‖u − v‖2 ≤ I (v) − I (u)

for every v ∈ BV(Ω) ∩ L2(Ω).

Proof We define F : BV(Ω) → R and G : L2(Ω) → R by

F(u) = |Du|(Ω), G(u) = α

2
‖u − g‖2

and extend F by +∞ to L2(Ω). Then F is convex and G is strongly convex and
Fréchet differentiable with δG(u)[w] = α(u − g, w), i.e., we have

δG(u)[v − u] + α

2
‖u − v‖2 + G(u) = G(v)

for all u, v ∈ L2(Ω). Since u ∈ BV(Ω) ∩ L2(Ω) is a minimizer, we have

0 ∈ ∂ I (u) = ∂ F(u) + δG(u),

or equivalently −δG(u) ∈ ∂ F(u), i.e.,

−δG(u)[v − u] + F(u) ≤ F(v).

The strong convexity of G yields

α

2
‖u − v‖2 + G(u) − G(v) + F(u) ≤ F(v)

which proves the assertion. �

Theorem 10.7 (Error estimate) Assume that Ω ⊂ R
2 is star-shaped and g ∈

L∞(Ω). Let u ∈ BV(Ω) ∩ L2(Ω) and uh ∈ S 1(Th) be the minimizers for I
in the respective spaces. We then have

α

2
‖u − uh‖2 ≤ ch1/2.

Proof Lemma10.2 and the fact that I (uh) ≤ I (vh) for all vh ∈ S 1(Th) imply that
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α

2
‖u − uh‖2 ≤ I (uh) − I (u) ≤ I (vh) − I (u)

= ‖∇vh‖L1(Ω) − |Du|(Ω)

+ α

2

∫

Ω

(
(vh − g) − (u − g)

)(
(vh − g) + (u − g)

)
dx

≤ ‖∇vh‖L1(Ω) − |Du|(Ω) + α

2
‖vh − u‖L1(Ω)‖vh + u − 2g‖L∞(Ω).

For ε > 0 we let vh = uε,h ∈ S 1(Th) be an approximation of u as in Lemma10.1
and deduce that

α

2
‖u − uh‖2 ≤ c(hε−1 + ε)|Du|(Ω) + c(h2ε−1 + ε)|Du|(Ω).

With ε = h1/2 we find the asserted bound. �
Remarks 10.10 (i) Since for u ∈ BV(Ω)∩L2(Ω) the best approximation inS 1(Th)

satisfies infvh∈S 1(Th) ‖u − vh‖ ≤ h1/2, the convergence rate of the theorem is sub-
optimal. Numerical experiments indicate that the optimal convergence rate O(h1/2)

in L2(Ω) is in general not attained.
(ii) If Ω = (a, b) ⊂ R and the minimizer u ∈ BV(Ω) ∩ L2(Ω) is piecewise con-
tinuous, then we can employ the nodal interpolant vh = Ihu in the proof of the
theorem and noting that ‖∇Ihu‖ ≤ |Du|(Ω) and ‖u − Ihu‖L1(Ω) ≤ ch|Du|(Ω),
we obtain the quasi-optimal estimate ‖u − uh‖ ≤ ch1/2.

The best approximation result infvh∈S 1(Th) ‖u − vh‖L p(Ω) ≤ ch1/p for functions
u ∈ BV(Ω) ∩ L∞(Ω) can in general not be improved as the following example
shows.

Example 10.5 Let Ω = (−1, 1), Th a uniform triangulation of Ω with mesh-size
h > 0 such that z = 0 is a node of Th . For u = sign, we then have

inf
vh∈S 1(Th)

‖u − vh‖L p(Ω) ≥ ch1/p.

To prove this we show that the entire approximation error is concentrated at the
discontinuity at x = 0. We assume that there exists a minimal wh ∈ S 1(Th) which
is antisymmetric, i.e., we have wh(−x) = −wh(x) for x ∈ (0, 1) and wh(0) = 0.
Then the function wh is affine on (−h, h)with slope a/h ∈ R, cf. Fig. 10.3, for some
a ∈ R, and we have with the transformation y = x/h that

∫

(−h,h)

|u − wh |p dx = 2
∫

(0,h)

|1 − ax/h|p dx = 2h
∫

(0,1)

|1 − ay|p dy.

The value of the integral related to the minimizing choice of a is positive and inde-
pendent of h which implies that ‖u − wh‖L p(Ω) ≥ ch1/p.
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h− h

Fig. 10.3 The approximation of a discontinuous function with continuous, piecewise affine func-
tions leads to an error ‖u − wh‖L p(Ω) ≥ ch1/p (left); for the best approximation of u = sign in
S 1(Th) with respect to the L2 norm, the Gibb’s phenomenon occurs at the discontinuity (right)

10.2.2 Piecewise Constant Approximation

The set of piecewise constant finite element functionsL 0(Th) is a subset of BV(Ω).
It is straightforward to check that for a sequence of triangulations their union defines
a dense subset with respect to weak convergence. We will show that density with
respect to intermediate convergence fails and hence that the discretization of the
model problem with piecewise constant finite elements may not approximate the
right minimum.

Proposition 10.5 (Piecewise constant functions) For every uh ∈ L 0(Th) we have

|Duh |(Ω) =
∑

S∈Sh∩Ω

‖�uh�‖L1(S).

Proof The identity follows directly from an elementwise integration by parts. �

Proposition 10.6 (Nonapproximation) Let Ω = (−1/2, 1/2) × (0, 1) and let u ∈
BV(Ω) ∩ L∞(Ω) be, for x = (x1, x2) ∈ Ω , defined by u(x1, x2) = χ{x1<0}. For
each n ≥ 1 let Tn be the triangulation of Ω with maximal mesh-size hn = 1/n, as
shown in Fig.10.4. Then there is no sequence (un)n∈N ⊂ L1(Ω) with un ∈ L 0(Tn)

for all n ∈ N such that un → u in L1(Ω) and |Dun|(Ω) → |Du|(Ω) = 1 as
n → ∞.

Proof Let (un)n∈N be a sequence with un ∈ L 0(Tn) such that ‖un − u‖L1(Ω) → 0
and |Dun|(Ω) ≤ c for all n ∈ N. Given n ∈ N we define the sets Rn

j for j =
1, 2, . . . , n by

Rn
j = {(x1, x2) ∈ Ω : ( j − 1)/n < x2 < j/n}

and set Rn = Rn
1 . Let un ∈ L1(Rn) be the average of un over all strips, i.e., for

(x1, x2) ∈ Rn set

un(x1, x2) = 1

n

n∑
j=1

un(x1, x2 + j/n),
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R4
4

R4
3

R4
2

R2 = R2
1

R2
2

R4 = R4
1

1/ 2
1/ 4

u = 1 u = 1u = 0 u = 0

Fig. 10.4 Construction of triangulations Tn , n ∈ N, of Ω = (−1/2, 1/2) × (0, 1) on which
piecewise constant finite element functions are not dense in BV(Ω) with respect to intermediate
convergence; the jump set of the function u = χ{x1<0} is not resolved by the triangulations

and reflect un across the x1-axis, i.e., un(x1,−x2) = un(x1, x2) for (x1, x2) ∈ Rn .
We then define ũn ∈ L1(Ω) by periodically extending un with period 2/n in the
x2-direction. Then ũn ∈ L1(Ω) is continuous across the interfaces R

n
j ∩ R

n
j+1 for

j = 1, 2, . . . , n−1 andwe have ‖ũn −u‖L1(Rn
j )

= ‖un −u‖L1(Rn) and |Dũn|(Rn
j ) =

|Dun|(Rn) for j = 1, 2, . . . , n, where |Dun|(Rn) denotes the total variation of Dun

on Rn . With the triangle inequality we verify that

|Dũn|(Ω) = n|Dun|(Rn) ≤ |Dun|(Ω),

‖ũn − u‖L1(Ω) = n‖un − u‖L1(Rn) ≤ ‖un − u‖L1(Ω).

For every ε > 0 there exists N ∈ N such that ‖un − u‖L1(Ω) < ε for all n ≥ N , i.e.,

‖un − u‖L1(Rn) < ε/n.

For each n ≥ N there exist distinct triangles T 1+, T 2+, T 1−, T 2− ∈ Tn ∩ Rn with
un|T 1+∪T 2+ ≥ 1− 4ε and un|T 1−∪T 2− ≤ 4ε since otherwise ‖un − u‖L1(Rn) ≥ ε/n. The

triangle inequality along disjoint paths of neighboring elements connecting T j
− and

T j
+ for j = 1, 2, respectively, yields that

(1 − 8ε)
√
2/n ≤ (hn/

√
2)

(∣∣un|T 1− − un|T 1+
∣∣ + ∣∣un|T 2− − un|T 2+

∣∣)

≤
∑

S∈Sh∩Rn

‖�un�‖L1(S) = |Dun|(Rn)

and hence |Dun|(Ω) ≥ |Dũn|(Ω) ≥ (1 − 8ε)
√
2 for all n ≥ N , i.e., we have that

|Dun|(Ω) �→ 1 = |Du|(Ω) as n → ∞. �
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10.2.3 Iterative Solution

To develop an iterative solution method for the nondifferentiable minimization prob-
lem,we first state optimality conditions for theminimization of I inS 1(Th). For this
we note that the minimization of I can be equivalently expressed as a saddle-point
problem; that is, due to the fact that ∇uh is elementwise constant for uh ∈ S 1(Th)

we have

inf
uh∈S 1(Th)

∫

Ω

|∇uh | dx + α

2
‖uh − g‖2 = inf

uh∈S 1(Th)
sup

ph∈L 0(Th)d

∫

Ω

ph · ∇uh dx

+ α

2
‖uh − g‖2 − IK1(0)(ph)

= inf
uh∈S 1(Th)

sup
ph∈L 0(Th)d

Lh(uh, ph),

where IK1(0) is the indicator functional of the set K1(0) = {p ∈ L∞(Ω;Rd) : |p| ≤
1 a.e. in Ω}.
Lemma 10.3 (Optimality) The function uh ∈ S 1(Th) minimizes I in S 1(Th) if
and only if there exists ph ∈ L 0(Th)d with |ph | ≤ 1 in Ω such that

(ph,∇vh) = −α(uh − g, vh), (∇uh, qh − ph) ≤ 0

for all (vh, qh) ∈ S 1(Th) × L 0(Th)d with |qh | ≤ 1 in Ω .

Proof The existence of a saddle point (uh, ph) ∈ S 1(Th)×L 0(Th)d follows from
the fact that the Lagrangian function Lh is a lower-semicontinuous, proper, convex-
concave function, cf., e.g., [14] for details. The equations are the corresponding
Kuhn–Tucker optimality conditions, i.e.,

0 = δuh Lh(uh, ph), 0 ∈ ∂ph Lh(uh, ph),

wherewe note that ξh ∈ ∂ IK1(0)(ph) for ξh ∈ L 0(Th)d and ph ∈ L 0(Th)d ∩K1(0),
i.e.,

(ξh, qh − ph) + IK1(0)(ph) ≤ IK1(0)(qh)

for all qh ∈ L 0(Th)d , if and only if

(ξh, qh − ph) ≤ 0

for all qh ∈ L 0(Th)d ∩ K1(0). �
To find a saddle point for Lh we use a descent flow with respect to uh and an

ascent flow with respect to ph , i.e.,

∂t uh = −δuh Lh(uh, ph), ∂t ph ∈ ∂ph Lh(uh, ph).
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With an appropriate time-discretization and a discrete inner product (·, ·)h,s on
S 1(Th) that may differ from the L2 inner product, this motivates the following
iteration which specifies the abstract primal-dual iteration of Algorithm 4.5.

Algorithm 10.1 (Primal-dual iteration) Let (·, ·)h,s be an inner product onS 1(Th),
τ > 0, (u0

h, p0h) ∈ S 1(Th) × L 0(Th)d , set dt u0
h = 0, and for k = 0, 1, . . . with

ũk
h = uk−1

h + τdt u
k−1
h solve the equations

(−dt pk
h + ∇ũk

h, qh − pk
h) ≤ 0,

(dt u
k
h, vh)h,s + (pk

h,∇vh) + α(uk
h − g, vh) = 0

subject to |pk
h | ≤ 1 in Ω for all (vh, qh) ∈ S 1(Th)×L 0(Th)d with |qh | ≤ 1 in Ω .

Stop the iteration if ‖dt uk
h‖h,s ≤ εstop.

Remark 10.11 Notice that pk
h is the unique minimizer of the mapping

qh �→ 1

2τ
‖qh − pk−1

h ‖2 − (qh,∇ũk
h) + IK1(0)(qh)

and given by the truncation operation

pk
h = (

pk−1
h + τ∇ũk

h

)
/max{1, |pk−1

h + τ∇ũk
h |}

which can be computed elementwise.

The iterates of Algorithm10.1 converge to a stationary point if τ is sufficiently
small.

Proposition 10.7 (Convergence) Let uh ∈ S 1(Th) be minimal for I in S 1(Th)

and define

θ = sup
vh∈S 1(Th)\{0}

‖∇vh‖
‖vh‖h,s

.

If τθ ≤ 1, then the iterates of Algorithm10.1 converge to uh in the sense that they
satisfy for every N ≥ 1

τ

N∑
k=1

(
(1− τ 2θ2)

τ

2
‖dt u

k
h‖2h,s + α‖uh − uk

h‖2
)

≤ 1

2

(‖uh − u0
h‖2h,s + ‖ph − p0h‖2).

Proof Let ph ∈ L 0(Th)d be as in Lemma10.3. Upon choosing vh = uh − uk
h and

qh = ph in Algorithm10.1, we find that

dt

2

(‖uh − uk
h‖2h,s + ‖ph − pk

h‖2) + τ

2

(‖dt u
k
h‖2h,s + ‖dt pk

h‖2) + α‖uh − uk
h‖2

= −(dt u
k
h, uh − uk

h)h,s − (dt pk
h, ph − pk

h) + α‖uh − uk
h‖2

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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≤ (pk
h,∇(uh − uk

h)) + α(uk
h − g, uh − uk

h) − (ph − pk
h,∇ũk

h) + α‖uh − uk
h‖2.

Using that

(uk
h − g, uh − uk

h) + ‖uh − uk
h‖2 = (uh − g, uh − uk

h)

and choosing qh = pk
h in Lemma10.3, we deduce that

dt

2

(‖uh − uk
h‖2h,s + ‖ph − pk

h‖2) + τ

2

(‖dt u
k
h‖2h,s + ‖dt pk

h‖2) + α‖uh − uk
h‖2

= (pk
h,∇(uh − uk

h)) − (ph − pk
h,∇ũk

h) + α(uh − g, uh − uk
h)

= (pk
h,∇(uh − uk

h)) − (ph − pk
h,∇ũk

h) − (ph,∇(uh − uk
h))

= (ph − pk
h,∇(uk

h − ũk
h)) + (pk

h − ph,∇uh)

≤ (ph − pk
h,∇(uk

h − ũk
h)) = τ 2(ph − pk

h,∇d2
t uk

h),

where we used uk
h −ũk

h = τ 2d2
t uk

h in the last identity.Multiplication by τ , summation
over k = 1, 2, . . . , K , discrete integration by parts, Young’s inequality, and dt u0

h = 0
show that for the right-hand side we have

τ 3
K∑

k=1

(ph − pk
h,∇d2

t uk
h) = τ 3

K∑
k=1

(dt pk
h,∇dt u

k−1
h ) + τ 2(ph − pk

h,∇dt u
k
h)

∣∣K
k=0

≤ τ 2

2

( K∑
k=1

τ 2‖∇dt u
k−1
h ‖2 + ‖dt pk

h‖2
)

+ 1

2
‖ph − pK

h ‖2 + τ 4

2
‖∇dt u

K
h ‖2

≤ τ 2

2

( K∑
k=1

τ 2θ2‖dt u
k−1
h ‖2h,s + ‖dt pk

h‖2
)

+ 1

2
‖ph − pK

h ‖2 + τ 4θ2

2
‖dt u

K
h ‖2h,s .

Due to the assumption τθ ≤ 1 we may absorb the terms of the right-hand side and
conclude that

1

2
‖uh − uK

h ‖2h,s + τ

K∑
k=1

τ

2
(1 − τθ2)‖dt u

k
h‖2 + τ

K∑
k=1

α‖uh − uk
h‖2

≤ 1

2

(‖uh − u0
h‖2h,s + ‖ph − p0h‖2).

This proves the theorem. �
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Remark 10.12 Notice that we cannot expect convergence pn
h → ph since ph is not

unique in general, e.g., if ∇uh |T = 0 for some T ∈ Th .

Useful choices of the inner product (·, ·)h,s are weighted combinations of the
inner product in L2(Ω) and the semi-inner product in H1(Ω).

Proposition 10.8 (Discrete inner products) For s ∈ [0, 1] and vh, wh ∈ S 1(Th)

define
(vh, wh)h,s = (vh, wh) + h(1−s)/s

min (∇vh,∇wh),

where h(1−s)/s
min = 0 for s = 0. We then have ‖∇vh‖ ≤ ch−min{1,(1−s)/(2s)}

min ‖vh‖h,s

for all vh ∈ S 1(Th) with c = 1 if s > 0.

Proof If s > 0, then we have by definition of ‖vh‖2h,s = (vh, vh)h,s that

‖∇vh‖2 ≤ h−(1−s)/s
min ‖vh‖2h,s

for all vh ∈ S 1(Th). For s ≥ 0 the inverse estimate ‖∇vh‖ ≤ ch−1
min‖vh‖, valid for

all vh ∈ S 1(Th), implies the assertion. �

To fully justify the choice of the scalar products (·, ·)h,s for s > 0, we have
to show that the right-hand side in the estimate of Proposition10.7 is bounded
h-independently. For s ≤ 1/2 this is guaranteed by the following lemma if the
sequence (uh)h>0 of finite element approximations is uniformly bounded in the set
W 1,1(Ω) ∩ L∞(Ω).

Lemma 10.4 (Discrete interpolation estimate) For every vh ∈ S 1(Th) we have

hmin‖∇vh‖2L2(Ω)
≤ c‖vh‖L∞(Ω)‖∇vh‖L1(Ω).

Proof For T ∈ Th , an integration byparts on T togetherwith the fact thatΔvh |T = 0,
implies that

hT

∫

T

|∇vh |2 dx = hT

∫

∂T

vh∇vh · nT ds ≤ hT |∂T |‖vh‖L∞(T )|T |−1‖∇vh‖L1(T ).

Noting hT |∂T | ≤ c|T |, a summation over T ∈ Th implies the assertion. �

Remark 10.13 To obtain approximations with residuals that are bounded indepen-
dently of the parameter s, the stopping criterion

sup
vh∈S 1(Th)

(dt uk
h, vh)h,s

‖vh‖ ≤ εstop

should be used.
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10.2.4 Realization

The Matlab code displayed in Fig. 10.5 is an implementation of the primal dual
method of Algorithm10.1 with the scalar product (·, ·)h,1/2 defined in Proposition
10.8 and the corresponding choice τ = h1/2/10. It computes the update of pk−1

h via
the elementwise operation

pk
h = pk−1

h + τ∇ũk−1
h

max{1, |pk−1
h + τ∇ũk−1

h |}
and the linear system of equations

(dt u
k
h, vh)h,s + (pk

h,∇vh) = −α(uk
h − g, vh)

for all vh ∈ S 1(Th). The second term on the left-hand side is represented by the
matrix with the entries

(χT e�,∇ϕz) = |T | ∂�ϕz |T
for all T ∈ Th , � = 1, 2, . . . , d, and z ∈ Nh which is assembled in the routine
mixed_matrix.

10.2.5 A Posteriori Error Control

We apply the abstract framework for a posteriori error estimates for strongly con-
vex minimization problems of Theorem4.2 to control the approximation error in
the numerical minimization of I . The estimate states that the distance of an arbi-
trary approximation to the minimizer is controlled by the primal-dual gap. The dual
functional is for p ∈ HN (div;Ω) given by

D(p) = − 1

2α
‖ div p + αg‖2 + α

2
‖g‖2 − IK1(0)(p),

and we have D(q) ≤ I (u) for every q ∈ HN (div;Ω) with equality for a solution of
the dual problem.

Theorem 10.8 (A posteriori error estimate) Let u ∈ BV(Ω) ∩ L2(Ω) be the mini-
mizer for I . Then for every uh ∈ S 1(Th) and p̂h ∈ HN (div;Ω) with | p̂h | ≤ 1, we
have

α

2
‖u − uh‖2 ≤ ‖∇uh‖L1(Ω) −

∫

Ω

∇uh · p̂h dx + 1

2α
‖ div p̂h − α(uh − g)‖2.

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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Fig. 10.5 Matlab realization of Algorithm10.1 for the iterativeminimization of the total variation
regularization problem



10.2 Numerical Approximation 319

Proof We recall from Lemma10.2 that

α

2
‖u − uh‖2 ≤ I (uh) − I (u).

Incorporating the duality principle I (u) ≥ D( p̂h) for all p̂h ∈ HN (div;Ω), we
deduce that

α

2
‖u − uh‖2 ≤ ‖∇uh‖L1(Ω) + α

2
‖uh − g‖2 + 1

2α
‖ div p̂h +αg‖2 − α

2
‖g‖2 + IK1(0)( p̂h).

We assume that | p̂h | ≤ 1 in Ω and with straightforward calculations deduce that

α

2
‖u − uh‖2 ≤ ‖∇uh‖L1(Ω) + 1

2α
‖ div p̂h − α(uh − g)‖2

+
∫

Ω

uh(div p̂h + αg) dx + α

2
‖uh − g‖2 − α

2
‖g‖2 − α

2
‖uh‖2

= ‖∇uh‖L1(Ω) + 1

2α
‖ div p̂h − α(uh − g)‖2 +

∫

Ω

uh div p̂h dx .

An integration by parts proves the asserted estimate. �

Remarks 10.14 (i) The error estimate is sharp in the sense that if u = uh and p̂h = p
solves the dual problem, then the right-hand side vanishes.
(ii) The practical application requires us to compute a conforming approximate
solution of the dual problem. The piecewise constant approximation provided by
Algorithm 10.1 in general does not satisfy p̂h ∈ HN (div;Ω).
(iii) The error estimate gives rise to the nonnegative refinement indicators

ηT (uh, p̂h) = ‖∇uh‖L1(T ) −
∫

T

∇uh · p̂h dx + 1

2α
‖ div p̂h − α(uh − g)‖2L2(T )

for uh ∈ S 1(Th) and p̂h ∈ HN (div;Ω) with | p̂h | ≤ 1. Noting the optimality
condition div p = α(u − g) and the duality relation

|Du|(Ω) = −
∫

Ω

u div p dx

for an exact solution (u, p) ∈ (
BV(Ω) ∩ L2(Ω)

) × HN (div;Ω) with |p| ≤ 1 in Ω ,
the refinement indicators have the interpretation of a residual.
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10.2.6 Regularized Minimization

In some situations a regularized treatment of the functional I provides accurate
approximations and in this case a semi-implicit discretization of the corresponding
gradient flow defines a useful iterative scheme. We define the regularized functional
Iδ for δ > 0 by

Iδ(u) =
∫

Ω

|∇u|δ dx + α

2
‖u − g‖2

for u ∈ W 1,1(Ω) ∩ L2(Ω) and with |p|δ = (|p|2 + δ2)1/2 for every p ∈ R
d .

Algorithm 10.2 (Semi-implicit, regularized L2-flow) Given δ > 0, τ > 0, and
u0

h ∈ S 1(Th) compute the sequence (uk
h)k=0,1,... by solving

(dt u
k
h, vh) + (|∇uk−1

h |−1
δ ∇uk

h,∇vh) = −α(uk
h − g, vh)

for all vh ∈ S 1(Th). Stop if ‖dt uk
h‖ ≤ εstop.

Remark 10.15 Thechoice vh = uk
h shows that the iteration is unconditionallyweakly

stable in the sense that

dt

2
‖uk

h‖2 + τ

2
‖dt u

k
h‖2 + ∥∥|∇uk−1

h |−1/2
δ ∇uk

h

∥∥2 + α

2
‖uk

h‖2 ≤ α

2
‖g‖2

for all k ≥ 1. In order to obtain accurate approximations, the step size should be
chosen so that τ ≤ chmin. This scaling leads to practically strongly stable approxi-
mation schemes for δ > 0 in the sense that the regularized energy Iδ decreases.

If δ ≤ ch1/2, we have the same error estimates as for the unregularized
approximation.

Proposition 10.9 (Regularized approximation) Let u ∈ BV(Ω) ∩ L2(Ω) be the
minimizer for I and let uδ,h ∈ S 1(Th) be minimal for

Iδ(vh) =
∫

Ω

|∇vh |δ dx + α

2
‖vh − g‖2

in the set of functions vh ∈ S 1(Th). If δ ≤ ch1/2, then we have

α

2
‖u − uδ,h‖2 ≤ ch1/2.

Proof We first note that for every p ∈ R
d we have

|p| ≤ |p|δ ≤ |p| + δ.
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With Lemma10.2 and the fact that uδ,h is minimal for Iδ in S 1(Th) it follows for
every vh ∈ S 1(Th) that

α

2
‖u − uδ,h‖2 ≤ I (uδ,h) − I (u) ≤ Iδ(uδ,h) − I (u) ≤ Iδ(vh) − I (u)

= Iδ(vh) − I (vh) + I (vh) − I (u) ≤ δ|Ω| + I (vh) − I (u).

With vh = uε,h , as in Lemma10.1 for ε = h1/2, we deduce the asserted bound. �

Remark 10.16 An alternative definition for |p|δ is given by

|p|δ =
{

|p| if |p| ≥ δ,

(|p|2 + δ2)/2 if |p| ≤ δ.

Figure10.6 displays an implementation of Algorithm10.2. The weighted stiffness
matrix is computed in the routine fe_matrices_weighted which provides for
elementwise constant functions a, b : Ω → R the matrices with entries

sa,zy =
∫

Ω

a ∇ϕz · ∇ϕy dx, mb,zy =
∫

Ω

b ϕzϕy dx

for z, y ∈ Nh .

10.2.7 Total Variation Flow

The total variation arises in various mathematical models describing evolution prob-
lems by subdifferential flows. The evolution problems are also often the basis for
numerical minimization algorithms. An implicit discretization leads to the following
algorithm.

Algorithm 10.3 (Subdifferential flow) Given u0
h ∈ S 1(Th) and τ > 0, compute

the sequence (uk
h)k=0,...,K ⊂ S 1(Th) by minimizing for k = 1, 2, . . . , K the

functionals

I k
τ,h(wh) = 1

2τ
‖wh − uk−1

h ‖2 + I (wh)

in the set of functions wh ∈ S 1(Th).

The scheme may be regarded as an implicit Euler method and is unconditionally
stable.

Proposition 10.10 (Stability) Assume that I : L2(Ω) → R ∪ {+∞} is convex and
lower-semicontinuous. For L = 1, 2, . . . , K we have
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Fig. 10.6 Matlab realization of the semi-implicit gradient flow discretization of the regularized
total variation functional Iδ defined in Algorithm10.2
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I (uL
h ) + τ

L∑
k=1

‖dt u
k
h‖2 ≤ I (u0

h).

Proof The existence of the iterates follows from the direct method in the calculus
of variations, and the strong convexity of I k

τ,h implies their uniqueness. For k =
1, 2, . . . , K we have 0 ∈ ∂ I k

τ,h(uk
h), i.e., −dt uk

h ∈ ∂ I (uk
h) and hence for all vh ∈

S 1(Th)

(−dt u
k
h, vh − uk

h) + I (uk
h) ≤ I (vh).

The choice vh = uk−1
h yields

τ‖dt u
k
h‖2 + τdt I (uk

h) ≤ 0

and a summation over k = 1, 2, . . . , L implies the stability estimate. �

We next bound the difference between the fully discrete and semi-discrete
approximations, i.e., we estimate the difference uk

h − uk , where (uk)k=0,1,...,K is
the sequence of minimizers for the functionals

I k
τ (w) = 1

2τ
‖w − uk−1‖2 + I (w)

with an initial u0 = u0 ∈ L2(Ω). For ease of presentation we restrict to the case
I (u) = |Du|(Ω).

Proposition 10.11 (Partial error estimate) Let I (u) = |Du|(Ω) for u ∈ BV(Ω)

and assume that u0 ∈ BV(Ω) ∩ L∞(Ω). For L = 1, 2, . . . , K we have

‖uL
h − uL‖2 ≤ ‖u0

h − u0‖2 + ch1/3.

The constant c ≥ 0 depends on T , |Du0|(Ω), ‖∇u0
h‖L1(Ω), and ‖u0‖L∞(Ω).

Proof We let (uk)k=0,...,K ⊂ BV(Ω) ∩ L2(Ω) be the solution of the semi-discrete
scheme with initial value u0 = u0. Then, for k = 1, 2, . . . , K and all v ∈ BV(Ω) ∩
L2(Ω) we have

(−dt u
k, v − uk) + I (uk) ≤ I (v).

For k = 1, 2, . . . , K , and all vh ∈ S 1(Th) we have

(−dt u
k
h, vh − uk

h) + I (uk
h) ≤ I (vh).

Choosing v = uk
h we deduce that

(dt [uk − uk
h], uk − uk

h) + I (uk) − I (vh) ≤ (dt u
k
h, vh − uk),
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i.e.,

dt

2
‖uk − uk

h‖2 + τ

2
‖dt (u

k − uk
h)‖2 ≤ I (vh) − I (uk) + ‖dt u

k
h‖‖vh − uk‖.

For ε > 0 we let vh = uk
ε,h be as in Lemma10.1 so that

I (vh) − I (uk) ≤ c(ε + hε−1)I (uk)

and

‖vh −uk‖2 ≤ ‖vh −uk‖L1(Ω)‖vh −uk‖L∞(Ω) ≤ c(h2ε−1+ε)|Duk |(Ω)‖uk‖L∞(Ω).

Arguing as in Proposition10.2, we have ‖uk‖L∞(Ω) ≤ ‖u0‖L∞(Ω) for k =
1, 2, . . . , K . The construction of uk

ε,h in Lemma10.1 guarantees that ‖vh‖L∞(Ω) ≤
‖uk‖L∞(Ω). As in the proof of Proposition10.10, we find that the semi-discrete
scheme is energy-decreasing, i.e., we have |Duk |(Ω) ≤ |Du0|(Ω) for k =
1, 2, . . . , K , and hence

|Duk |(Ω) + τ

L∑
k=1

‖dt u
k‖2 ≤ |Du0|(Ω) = c0.

Incorporating also the estimate from Proposition10.10, it follows from a summation
over k = 1, 2, . . . , L that

1

2
‖uL

h − uL‖2 ≤ 1

2
‖u0

h − u0‖2 + τ

L∑
k=1

(|Dvh |(Ω) − |Duk |(Ω)
)

+
(
τ

L∑
k=1

‖dt u
k
h‖2

)1/2(
τ

L∑
k=1

‖vh − uk‖2
)1/2

≤ 1

2
‖u0

h − u0‖2 + cT (ε + hε−1)c0

+ cT 1/2c1/20 ‖u0‖1/2L∞(Ω)(h
2ε−1 + ε)1/2.

Choosing ε = h2/3 leads to the assertion. �

The combination of Proposition10.11 with the abstract error estimate for implicit
discretizations of subdifferential flows of Theorem4.7 leads to the following error
estimate.

Theorem 10.9 (Error estimate) Assume that u0 ∈ BV(Ω) ∩ L∞(Ω) and u0
h ∈

S 1(Th) is such that ‖u0 − u0
h‖ ≤ h1/6 and |Du0

h |(Ω) ≤ c for all h > 0. We then
have

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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max
k=1,...,K

‖u(tk) − uk
h‖ ≤ c(τ 1/2 + h1/6).

Proof The assertion is a direct consequence of the abstract error estimate for implicit
discretizations of subdifferential flows of Theorem4.7 and Proposition10.11. �

Remarks 10.17 (i) The upper bound can be improved to τ + h1/4 provided that
∂ I (u0) �= ∅ and ‖dt uk

h‖L∞(Ω) ≤ c for k = 1, 2, . . . , K .
(ii) In the case of Dirichlet boundary conditions and d = 1, any monotone function
u ∈ BV(Ω) is stationary for I , whereas only the affine interpolant of the boundary
data is stationary for the regularized functional Iδ .

10.3 Segmentation

We discuss in this section the numerical approximation of segmentation problems.
The considered simple model problems detect edges in certain images and serve
as bases for the development of models that describe damage and fracture in solid
mechanics. We refer the reader to [5, 9] for further details.

10.3.1 The Mumford–Shah Functional

The Mumford–Shah functional detects certain edges in an image g : Ω → R by
minimizing the functional

I (u, K ) = α

2

∫

Ω\K

|∇u|2 dx + βH d−1(K ) + γ

2

∫

Ω\K

(u − g)2 dx

in closed sets K ⊂ Ω and functions u ∈ H1(Ω\K ) with given parameters
α, β, γ > 0. For a minimizing pair (u, K ) the (d − 1)-dimensional Hausdorff mea-
sureH d−1(K ) has to be finite, e.g., K is the union of curves or surfaces for d = 2 or
d = 3, respectively, and H d−1 is the corresponding surface measure. The function
u approximates the data g and may jump across the set K . Establishing the existence
of minimizing pairs is a difficult task, since the unknowns u and K are different
objects and the Hausdorff measure is not lower semicontinuous.

Example 10.6 For k ∈ N recursively define Sk ⊂ [0, 1] through S0 = [0, 1/2] and

Sk = (1/2)Sk−1 ∪ (1/2)
(
Sk−1 + 1/2

) = ∪2k−1
�=0 2−(k+1)[2�, 2� + 1]

e.g., S1 = [0, 1/4] ∪ [2/4, 3/4]. Then the sequence (Sk)k∈N converges to S = [0, 1]
with respect to the Hausdorff metric

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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dH (K , L) = inf{ε > 0 : K ⊂ Uε(L), L ⊂ Uε(K )},

whereUε(K ) = {x ∈ R
d : dist(x, K ) < ε}. SinceH d−1(S) = 1 andH d−1(Sk) =

1/2 for all k ∈ N, we conclude that the mapping K �→ H d−1(K ) is not lower
semicontinuous with respect to the Hausdorff metric.

The main idea to establish the existence of solutions is to consider functions
of bounded variation and to identify K with the discontinuity set Su of a function
u ∈ BV(Ω). We recall that the distributional derivative of u ∈ BV(Ω) permits the
decomposition

Du = ∇u ⊗ dx − �un� ⊗ ds|Su + Cu

with a vector field ∇u ∈ L1(Ω;Rd) and the discontinuity set Su of finite (d − 1)-
dimensional Hausdorff measure. The Cantor part Cu is in general supported on a
set of infinite (d − 1)-dimensional Hausdorff measure. If Cu = 0, it is natural to
consider

I ′(u) = α

2

∫

Ω

|∇u|2 dx + βH d−1(Su) + γ

2

∫

Ω

(u − g)2 dx .

The functions u ∈ BV(Ω) with Cu = 0 are called special functions of bounded
variation and the set of all such functions is denoted SBV(Ω), i.e.,

SBV(Ω) = {u ∈ BV(Ω) : Cu = 0}.

Sequences (u j ) j∈N ⊂ SBV(Ω) ∩ L∞(Ω) that are uniformly bounded in L∞(Ω)

and for which we have ∇u j ∈ L2(Ω) for every j ∈ N, such that the expression

∫

Ω

|∇u j |2 dx + H d−1(Su j )

is uniformly bounded, provide convergent subsequences (u jk )k∈N with limit u ∈
SBV(Ω), i.e., we have that u jk → u almost everywhere in Ω , ∇u jk ⇀ ∇u in
L2(Ω), and

H d−1(Su) ≤ lim inf
k→∞ H d−1(Su jk

).

This compactness property implies the following existence result.

Theorem 10.10 (Existence [1]) If g ∈ L∞(Ω), then the functional I ′ has a min-
imizer u ∈ SBV(Ω) ∩ L∞(Ω). The pair (u, K ) with K = Su ∩ Ω minimizes the
Mumford–Shah functional in pairs (u, K ) consisting of a closed set K ⊂ Ω with
H d−1(K ) < ∞ and u ∈ W 1,2(Ω\K ).
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B

C
A

Fig. 10.7 Typical vertices of the singularity set K in the minimization of the Mumford–Shah
functional; vertices are either points on the boundary where K intersects ∂Ω perpendicularly (A),
triple pointswhere three smooth segments intersectwith equal angles (B), or endpoints of curves (C)

Precise characterizations of the singularity set K are available.

Remark 10.18 Assume d = 2 and a minimizing pair (u, K ) is such that K is the
finite union of C1,1 curves. Then every vertex of K is either (a) A point on ∂Ω

where K and ∂Ω intersect perpendicularly, (b) A point in Ω at which three C1,1

curves intersect with angles 2π/3, or (c) A point inΩ at which a C1,1 curve ends, cf.
Fig. 10.7. The technical results follow from contradictions and local modifications
to lower the energy.

10.3.2 Regularization of I ′(u)

It is difficult to approximate the Mumford–Shah functional directly with finite ele-
mentmethods since the singularity sets of discontinuous, piecewise polynomial finite
element functions are subsets of the skeleton of the underlying triangulation which
is in general too restrictive to approximate a given curve. An approach to regular-
izing the Mumford–Shah functional is to describe the set K by the zero level set
Γφ = φ−1({0}) of a function φ : Ω → R and noting that the Hausdorff measure of
Γφ is approximated by the Modica–Mortola type length functional Lε, i.e.,

H d−1(Γφ) ≈ Lε(Γφ) = ε

2

∫

Ω

|∇φ|2 dx + 1

2ε

∫

Ω

(φ − 1)2 dx .

This relation follows from Young’s inequality together with the transformation w =
(φ − 1)2, i.e., |∇w| = 2|φ − 1||∇φ|. We have

Lε(Γφ) = ε

2

∫

Ω

|∇φ|2 dx + 1

2ε

∫

Ω

(φ−1)2 dx ≥
∫

Ω

|∇φ||φ−1| dx = 1

2

∫

Ω

|∇w| dx .

We assume that Γφ is a smooth curve and, for every r ∈ Γφ , denote by nr the unit
normal to Γφ at r . With the tubular neighborhood
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Γφ,ε = {x ∈ Ω : x = r + tnr , |t | ≤ ε}

of Γφ we have

Lε(Γφ) ≥ 1

2

∫

Γφ,ε

|∇w| dx ≥ 1

2

∫

Γφ

ε∫

−ε

|∇w · nr | dt dr.

Assuming that Lε(Γφ) remains bounded as ε → 0, the function φ approaches
the value 1 away from Γφ for ε sufficiently small, so that we may assume that
w = (φ − 1)2 ≈ 0 in Ω\Γφ,ε. The integral of the modulus of the derivative of w in
normal direction to Γφ is then approximately 2 and we obtain

Lε(Γφ) ≥
∫

Γφ

1 ds = H d−1(Γφ).

These observations motivate us to consider the Ambrosio–Tortorelli approximation
of theMumford–Shah functional in which Lε approximatesH d−1(Su) and enforces
φ to be close to one, while a term φ2|∇u|2 favors φ ≈ 0 to permit large, unbounded
gradients of u.

Theorem 10.11 (Regularization [3]) For (u, φ) ∈ H1(Ω) × H1(Ω) and ε > 0,
define the Ambrosio–Tortorelli functional

ATε(u, φ) = α

2

∫

Ω

(φ2 + ε2)|∇u|2 dx

+ β
(ε

2

∫

Ω

|∇φ|2 dx + 1

2ε

∫

Ω

(φ − 1)2 dx
)

+ γ

2

∫

Ω

(u − g)2 dx

and extend ATε with value +∞ to L1(Ω) × L1(Ω). Then, as ε → 0, we have that
ATε →Γ I ′′ with respect to strong convergence in L1(Ω) × L1(Ω), and where
I ′′(u, φ) = I ′(u) if (u, φ) ∈ SBV(Ω) × L1(Ω) with φ = 1 almost everywhere and
I ′′(u, φ) = +∞ otherwise, i.e., I ′(u) = I ′′(u, 1) for all u ∈ SBV(Ω).

10.3.3 Numerical Approximation of ATε

The functional ATε can be directly discretized with H1-conforming finite element
methods; that is, given ε > 0 and a triangulationTh ofΩ , we consider the separately
convex functional
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ATε,h(uh, φh) = α

2

∫

Ω

(φ2
h + ε2)|∇uh |2 dx

+ β
(ε

2

∫

Ω

|∇φh |2 dx + 1

2ε

∫

Ω

(φh − 1)2 dx
)

+ γ

2

∫

Ω

(uh − g)2 dx

for (uh, φh) ∈ S 1(Th). Extending AT ε,h by+∞ on L1(Ω)2\S 1(Th)2, the density
of S 1(Th) in L1(Ω) leads to a Γ -convergence result as in Theorem10.11. The
iterative solution of AT ε,h is based on a semi-implicit discretization of a gradient
flow with respect to φh . This leads to two uncoupled equations in every step of
the iteration. We let P0v ∈ L 0(Th) denote the elementwise average of a function
v ∈ L1(Ω).

Algorithm 10.4 (Semi-implicit gradient flow for AT ε,h) Given τ > 0 and φ0
h ∈

S 1(Th), define the sequence (uk
h, φk

h)k=1,2,... by solving for k = 1, 2, . . . the
equations

α((|P0φ
k−1
h |2 + ε2)∇uk

h,∇vh) + γ (uk
h − g, vh) = 0,

(dtφ
k
h, wh) + α(|∇uk

h |2φk
h, wh) + βε(∇φk

h ,∇wh) + β

ε
(φk

h − 1, wh) = 0

for all (vh, wh) ∈ S 1(Th) × S 1(Th). Stop the iteration if ‖dtφ
k
h‖ ≤ εstop.

In the implementation of the scheme shown in Fig. 10.8 we used the parameter
β = 1.

10.3.4 The Perona–Malik Equation

The Perona–Malik equation is a nonlinear parabolic partial differential equation that
denoises an image g for a parameter λ > 0 through

∂t u − div
( ∇u

(1 + |∇u|2/λ2)2
)

= 0, ∂nu(t, ·) = 0, u(0) = g.

The diffusion coefficient a(|∇u|) = (1+|∇u|2/λ2)−2 is small in regions where |∇u|
is large and this leads to a preservation of edges in the images that are characterized
by large gradients. In the remaining regions where |∇u| ≤ c, the diffusion coefficient
a(|∇u|) is larger and causes a smoothing of u away from the edges. This leads to a
simultaneous denoising and steepening of edges, but analytically to the problem that
the equation is of backward and forward parabolic type, so that the well-posedness of
the initial boundary value problem is false in general. The equation has an interesting
relation to the Mumford–Shah model, i.e., to its Ambrosio–Tortorelli regularization,
described in [13]. An implicit discretization in time of the Perona–Malik equation
leads to the problem of determining uk such that
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Fig. 10.8 Matlab realization of Algorithm10.4 for the iterative minimization of the Ambrosio–
Tortorelli regularization of the Mumford–Shah functional

div
( ∇uk

(1 + |∇uk |2/λ2)2
)

= 1

τ
(uk − uk−1). (10.1)

The Euler–Lagrange equations of the Ambrosio–Tortorelli functional AT ε define the
pair (u, φ) via

α div
(
(φ2 + ε2)∇u

) = γ (u − g),

αε|∇u|2φ − βε2Δφ + β(φ − 1) = 0.

Neglecting terms with a factor ε2, we find that

φ = 1

1 + (α/β)ε|∇u|2
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and

div
( ∇u(

1 + (α/β)ε|∇u|2)2
)

= γ

α
(u − g). (10.2)

For k = 1 and u0 = g in (10.1) and, e.g., α = λ−1/2, β = ε, and γ = α/τ in (10.2),
the partial differential equations coincide. The practical solution of the Perona–Malik
equation is based on a semi-implicit discretization of the equation.

Algorithm 10.5 (Semi-implicit Perona–Malik equation) Given τ > 0 and gh ∈
S 1(Th), define the sequence (uk

h)k=0,1,... by setting u0
h = gh and solving for k =

1, 2, . . . the equations

(dt u
k
h, vh) +

( ∇uk
h

(1 + |∇uk−1
h |2/λ2)2 ,∇vh

)
= 0

for all vh ∈ S 1(Th). Stop the iteration if ‖dt uk
h‖ ≤ εstop.

An implementation of the scheme is shown in Fig. 10.9.

Fig. 10.9 Matlab realization of the semi-implicit discretization of the Perona–Malik equation
specified in Algorithm10.5
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Remarks 10.19 (i) A stability proof for the iteration is expected to require restrictive
conditions on the step size τ . Practically, the iteration provides satisfactory results for
τ ≤ ch. Difficulties in the numerical analysis reflect the fact that no general existence
theory for the Perona–Malik equation is available and in fact solutions may fail to
exist due to occurring backward diffusion.
(ii) An alternative choice for the diffusion coefficient in the Perona–Malik equation
is a(s) = e−s2/λ2 .
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