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Chapter 1
Introduction

As Henri Poincaré once remarked, “solution of a mathematical
problem” is a phrase of indefinite meaning. Pure
mathematicians sometimes are satisfied with showing that the
nonexistence of a solution implies a logical contradiction, while
engineers might consider a numerical result as the only
reasonable goal. Such one-sided views seem to reflect human
limitations rather than objective values.

– Richard Courant, 1941

1.1 Differential Equations and Numerical Methods

Starting with the brachistochrone problem solved by Johann Bernoulli in the 17th
century, differential equations have become an indispensable tool to model, under-
stand, and solve real world problems. The general approach via the Euler–Lagrange
equations related to a variational principle andEuler’smethod to approximately solve
differential equations discovered in the 18th century have provided a methodology
that is still the basis for the mathematical modeling and numerical solution of many
problems describing the behavior of solids and fluids. An important part of those
models is the Laplace equation which is the Euler–Lagrange equation for the Dirich-
let energy. The validity of the Dirichlet principle that postulates the existence of
minimizers and hence solutions of Euler–Lagrange equations led to a controversial
but constructive discussion in the 19th century. Important observations and objec-
tions from Cauchy, Riemann, Weierstraß, Schwarz, Ritz, and many others resulted
in the birth of the calculus of variations and the finite element method. These math-
ematical concepts were led to concise mathematical theories by Hilbert and Courant
at the beginning of the 20th century.

The abstract investigation of function spaces with topologies, functionals, and
linear operators in the 20th century associated with deep theorems due to Banach
and others, led to formulating the direct method in the calculus of variations in an
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2 1 Introduction

abstract way. This enabled the study of challenging mathematical problems involv-
ing the efficient description of processes on nanoscales and to establishing rigorous
connections between classical models like three-dimensional elasticity and special
applications involving the deformation of lower-dimensional objects. The develop-
ment of functional analysis also had an impact in understanding numerical methods.
A milestone is the construction of compatible finite element spaces and the rigorous
analysis of problems involving linear constraints or higher-order derivatives within
the inf-sup condition as an application of the closed range theorem.

The development of mixed and adaptive finite element methods, multigrid and
domain decomposition algorithms, as well as wavelet and other compression tech-
niques, in combination with the rapidly increasing available computer power in the
last 50 years, have made it possible to compute forces acting on a bridge, turbu-
lences created by the flow of air around an airplane, or compression of digital objects
within minutes or seconds on personal computers. In parallel, the calculus of vari-
ations has become a powerful mathematical discipline that provides a framework
for the effective description of complicated phenomena, such as microstructures in
crystalline solids or the formation of cracks in materials with abstract mathematical
objects such as measures. The price of these impressive individual advances of ini-
tially closely linked disciplines has led to a separation from them. Many powerful
numerical techniques are difficult to analyze, while a lot of abstract analytical con-
cepts are hard to realize practically. This book aims at contributing towards closing
this gap.

1.2 Guidelines for the Development of Approximation
Schemes

The classical numerical analysis of approximation schemes for partial differential
equations exploits the concepts of stability and regularity. These are strong require-
ments that are available for certain classes of linear elliptic and parabolic equations.
Inmanymodern applications, solutionsmay be neither unique nor regular, and stabil-
ity has to be formulated in a weaker sense. Possible concepts are weak convergence
methods and convergence of minimizers. These approaches avoid making unrealistic
regularity or uniqueness assumptions but justify rigorous approximation schemes.
Since this leads to asymptotic statements, the efficiency and practical accuracy of
these schemes then needs to be studied separately. We formulate some guidelines to
justify a numerical discretization scheme.

The discretization of a variational problem or partial differential equation called
a continuous problem typically leads to a family of finite-dimensional minimization
problems:

Minimize Ih(uh) in the set of functions uh ∈ Ah
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or equations
Find uh ∈ Ah such that Fh(uh) = 0

parametrized by a mesh-size h > 0. The main tasks in the development and
justification of discretizations are the following:
(a)Qualitative accuracy:Anumerical solutionuh should capture the relevant features
of an exact solution u with a small number of degrees of freedom, e.g., if ε is a
characteristic length scale of the problem under consideration, then the numerical
method should provide qualitatively correct solutions with a computational length
scale h ≈ ε/10.
(b) Efficient solution: There should exist an iterative and convergent method that
approximately solves the discrete formulation with a computational effort that scales
like a low-order polynomial in the number of degrees of freedom, e.g., a fixed-point
method or a gradient flow converges within a finite number of iterations and provides
an approximation of a discrete solution with a solution error comparable to a power
of h.
(c) Asymptotic convergence: A relevant quantity related to approximate solutions
should converge to a corresponding quantity for the continuous problem as h →
0, e.g., the approximate minimal energies Ih(uh) converge to infu∈A I (u), sub-
sequences of approximations converge to solutions of the continuous problem, or
certain quantities σh = �h(uh) converge to a meaningful quantity σ as h → 0.

We investigate these requirements for certain prototypical nonlinear partial differ-
ential equations arising in the mathematical modeling of contact, phase transitions,
ferromagnetism, bending,microstructures, fracture, and plasticity. The relatedmodel
problems have in common that the regularity or uniqueness of solutions fails in gen-
eral, so that numerical schemes have to be carefully developed in order to meet
the aforementioned criteria. Short Matlab implementations are included for most
of the investigated algorithms that allow for testing the dependence of the perfor-
mance on discretization parameters and for experimentally determining the typical
preasymptotic range of the methods to thereby judge their qualitative accuracy.

1.3 Analytical and Numerical Foundations

The contents of this monograph are divided into three parts. The first provides the
analytical framework for the considered model problems, collects the basic results
related to the finite element method, and formulates abstract concepts for the analysis
and solution of discretized problems. In the second part, the numerical solution of
classical nonlinear partial differential equations, such as problems with inequality
constraints, singularly perturbed parabolic equations, variational formulations with
smooth constraints, and problems involving higher-order derivatives are discussed.
In the third part, the approximation of solutions of nonstandard variational models is
discussed on the basis of nonconvex minimization problems, extended formulations
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Fig. 1.1 Discreteminimal surface computedwith a descentmethod (left) and solution of an obstacle
problem computed with a semismooth Newton iteration (right); the plots were produced with the
Matlab routines min_surf.m and obstacle_newton.m

allowing for solutions with strong discontinuities, and nonsmooth, rate-independent
evolution problems.

The mathematical model problems studied in this book are introduced and briefly
described in the first chapter. All of them lead to minimization problems defined
in certain function spaces or to evolution problems that are gradient flows of func-
tionals. The basic techniques to study the existence and uniqueness of solutions can
be addressed in the direct method in the calculus of variations and the concept of
gradient or subdifferential flows that are described in Chap.2. Chapter 3 introduces
the finite element method and its analysis for linear elliptic and parabolic problems.
Various auxiliary estimates such as inverse inequalities and density results as well as
error estimates in different norms are recalled. In Chap.4 general abstract methods
for analyzing discretized problems and their iterative solutions are formulated. Key
concepts are the variational convergence of discrete minimization problems to a cor-
responding continuous one, and the convergence of discretized partial differential
equations. The different performance of iterative solution methods is illustrated by
computing discrete minimal surfaces with large, unbounded gradients, as shown in
the left plot of Fig. 1.1.

1.4 Approximation of Classical Formulations

The obstacle problem is a classical mathematical model problem that serves to
understand inequality constraints in partial differential equations. The existence and
uniqueness of solutions, the justification of numerical schemeswith a priori and a pos-
teriori error estimates, and the iterative solution with semismooth Newton methods
are discussed in Chap.5. The right plot of Fig. 1.1 shows the numerical solution of a
two-dimensional obstacle problem with circular contact zone.

The evolution of an interface separating two phases of a substance is often based
on the introduction of a phase field variable. The corresponding dynamics are mod-
eled by the gradient flow of an energy functional with nonconvex lower-order terms
leading to semilinear parabolic partial differential equations involving a critical para-

http://dx.doi.org/10.1007/978-3-319-13797-1_2
http://dx.doi.org/10.1007/978-3-319-13797-1_3
http://dx.doi.org/10.1007/978-3-319-13797-1_4
http://dx.doi.org/10.1007/978-3-319-13797-1_5
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Fig. 1.2 Snapshots of a phase field variable in an Allen–Cahn evolution computed with a semi-
implicit approximation scheme; the numerical solution was obtained with the Matlab program
ac_linearized_euler.m

meter that determines the width of the interfaces. Standard discretization methods
provide useful approximations but error estimates typically depend exponentially on
the inverse of the critical parameter. Chapter 6 provides an approach that leads to
robust error estimates. When the critical parameter tends to zero, a so-called sharp
interface model can be identified that determines the evolution of the interface in
terms of its geometric properties. Figure1.2 shows snapshots of an evolution for
different times. The initial interface deforms into a sphere whose radius decreases
gradually and eventually collapses. This is a simplified model for the description of
certain melting processes.

The character of a problem changes significantly when a pointwise equality con-
straint is imposed, e.g., when a vector field attains its values in the zero level set of
a given function. This leads to the notion of harmonic maps which are discussed in
Chap.7. Since neither uniqueness nor global regularity results are available, only the
accumulation of approximations with respect to a weak topology at exact solutions
can be shown. The pointwise constraint is imposed at the nodes of a triangulation
and various iterative methods that either preserve the constraint via properties of the
underlying partial differential equation or approximate it by a linearization and a sub-
sequent optional projection are discussed. Figure1.3 displays views of a harmonic
map from a two-dimensional square into the two-dimensional unit sphere.

A dimension reduction from three-dimensional hyperelasticity in the bending
regime leads to the nonlinear Kirchhoff model for the description of large deforma-

Fig. 1.3 Discrete harmonic map into the unit sphere viewed from two different perspectives; the
iterative scheme realized in theMatlab program h1_flow_hm.m led to the plots

http://dx.doi.org/10.1007/978-3-319-13797-1_6
http://dx.doi.org/10.1007/978-3-319-13797-1_7
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Fig. 1.4 Concentration of plastic strains in an elastoplastic compression experiment with small
hardening parameter; the numerical solution of the nonlinear, nonsmooth evolution problem was
computed with theMatlab routine elastoplasticity.m

Fig. 1.5 Isometric deformation of a flat rectangular strip (left) and stationary configuration of
the bending energy among closed surfaces with prescribed area and enclosed volume (right);
the solutions were computed with the Matlab routines kirchhoff_nonlinear.m and
willmore_helfrich_flow.m

tions of two-dimensional objects, e.g., the bending of a sheet of paper. In the reduced
model, local angle and area relations are preserved by the deformation and this is
mathematically described by a pointwise isometry constraint which can be treated
with techniques developed for harmonic maps. The additional numerical difficulty
that higher-order derivatives have to be treated can be solved by employing finite ele-
ment methods that were originally developed for linear bending problems describing
small displacements. The resulting numerical scheme is provided in Chap.8 and can
be employed to compute the Möbius strip as the deformation of a flat strip of min-
imal bending energy subject to Dirichlet type boundary conditions at the ends of
the strip. The result of a simulation with only a few degrees of freedom is shown in
Fig. 1.5. A closely related problem consists in minimizing the Willmore energy in
closed surfaces of a prescribed surface area and enclosed volume. Starting a gradient
flow with an oblate spheroid, the gradient flow becomes stationary at a discocyte
configuration that resembles the shape of a red blood cell. A low-order finite element
scheme produced the plot shown in Fig. 1.5.

http://dx.doi.org/10.1007/978-3-319-13797-1_8
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Fig. 1.6 Direct numerical minimization of a nonconvex energy functional leading to mesh-
dependent oscillations on a coarse (left) and on a fine grid (right); the steepest descent method that
computed the local minimizers is realized in theMatlab program energy_minimization.m

1.5 Numerical Methods for Extended Formulations

The third part of the monograph investigates problems that are in general ill-posed
within the classical framework of Sobolev spaces, e.g., provided by the direct method
in the calculus of variations when an energy functional is coercive and weakly lower
semicontinuous, and the underlying space is reflexive. Simple mathematical models
for crystalline phase transitions lead to nonconvex energy densities which violate the
semicontinuity requirement. Infimizing sequences still exist, but their accumulation
points are in general no minimizers. This phenomenon is related to the occurrence
of oscillations in the infimizing sequences that compensate for the nonconvexity of
the energy functional. The weak limits and statistical information about the oscilla-
tions, described by Young measures, are relevant quantities in applications and their
numerical approximation is discussed in Chap. 9. Figure1.6 shows the results of a
direct numerical approach based on minimizing the nonconvex energy functional
with a descent method. The numerical approximations develop oscillations whose
frequencies increase when the mesh is refined. The obtained configurations can-
not be expected to be global minimizers, making their practical relevance unclear.
Therefore, other approaches are required to obtain meaningful information.

Another reason for the failure of the direct method in the calculus of variations
is the nonreflexivity of the employed space. Applications in image processing and
and fracture mechanics motivate considering energy densities with linear growth and
extended function spaces need to be considered that allow for minimizers with strong
discontinuities. The appropriate discretization, error estimates, and iterative solution
methods for certain model problems are studied in Chap. 10. Figure1.7 shows as
an application the denoising of an image obtained by minimizing an energy that
preserves the edges of the noisy image.

The focus of Chap.11 is on nonsmooth evolution problems occurring in the
mathematical modeling of elastoplastic material behavior. Viscous regularizations
of evolution problems are of limited practical use in applications. Instead, approxi-

http://dx.doi.org/10.1007/978-3-319-13797-1_9
http://dx.doi.org/10.1007/978-3-319-13797-1_10
http://dx.doi.org/10.1007/978-3-319-13797-1_11
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Fig. 1.7 Regularization of a noisy image (left) that preserves the edges of the image that are related
to large,maximal gradients in the numerical approximation (right); the configurationswere obtained
with an iterative scheme realized in theMatlab code tv_reg.m

mation schemes have to be developed which preserve the relevant property of rate-
independence. Error estimates for implicit discretizations of the evolution problem
in the case of kinematic and isotropic hardening are analyzed and their practical
realization is discussed. The result of a numerical simulation based on the provided
Matlab codes displayed in Fig. 1.4 shows the tendency towards the development
of a slip band in a compression experiment with small hardening parameter.

1.6 Objectives and Acknowledgments

The purpose of this work is to enable advanced students and experienced researchers
to gain an entry into the numerical analysis of problems related tomodern applications
in continuummechanics. Every chapter in the second and third part of the book starts
with a review of the analytical properties of the model problem under consideration
and gives selected references to provide links to detailed explanations and proofs. The
main emphasis is on the development and analysis of approximation schemes that
meet the general criteria outlined above. Matlab implementations of the schemes
that allow for a treatment of two- and three-dimensional problems are typically
discussed at the end of the chapters. The codes are available at http://extras.springer.
com/2015/978-3-319-13796-4. These implementations are meant to illustrate the
simplicity and efficiency of the proposed schemes and to serve as reference codes
that are easily accessible. Only a selected number of references is listed at the end
of every chapter that serve as entries into the large number of relevant contributions.

The presented material is the result of several years of research, inspiration from
numerous researchers’ work, and discussions with many colleagues. I am grateful to
Max Jensen,Martin Kružík,MarijoMilicevic, RüdigerMüller, Ricardo H. Nochetto,
Christoph Ortner, Alexis Papathanassopoulos, Andreas Prohl, Tomaš Roubíček,
Patrick Schreier, Ulisse Stefanelli, and MirjamWalloth for reading parts of the man-
uscript and giving me useful hints and comments.

Sören Bartels
Freiburg, September 2013

http://extras.springer.com/2015/978-3-319-13796-4
http://extras.springer.com/2015/978-3-319-13796-4
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Chapter 2
Analytical Background

2.1 Variational Model Problems

We describe in this section some model problems that arise in the mathematical
description of certain phenomena in continuum mechanics. For justifications of the
models, the reader is referred to the textbooks [3, 5, 9, 11].

2.1.1 Deflection of a Membrane

We consider a membrane that occupies the domain Ω ⊂ R
2 and is clamped on its

boundary ∂Ω . The infinitesimal deflection due to a small vertical force f ∈ L2(Ω)

is described by the problem of minimizing the energy functional

I (u) = 1

2

∫

Ω

|∇u|2 dx −
∫

Ω

f u dx

in the set of functions u ∈ H1(Ω) with u|∂Ω = 0, cf. Fig. 2.1. The first term in the
energy functional I is the Dirichlet energy. The Lax–Milgram lemma guarantees
the existence of a unique solution that solves the corresponding Euler–Lagrange
equations which are given by the Poisson problem −�u = f in Ω and u|∂Ω = 0.

2.1.2 Minimal Surfaces

A mathematical model for describing soap films follows from the hypothesis that
these minimize surface area. If the surface can be represented as the graph of a func-
tion u : Ω → R, this leads to the variational problem of minimizing the functional

© Springer International Publishing Switzerland 2015
S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations,
Springer Series in Computational Mathematics 47,
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Fig. 2.1 Deflection of a
membrane

Fig. 2.2 Minimal surface
described by a graph

I (u) =
∫

Ω

(1 + |∇u|2)1/2 dx

in the set of functions u ∈ W 1,p(Ω) for some appropriate exponent p ∈ [1,∞],
subject to the boundary condition u|∂Ω = uD. If one expects that |∇u| � 1, then
the approximation (1+ |∇u(x)|2)1/2 ≈ 1+ (1/2)|∇u|2 justifies using the Dirichlet
energy and p = 2 to compute solutions. In the general case, the right choice of p
is unclear and this is related to the limitations of the model which only applies to
situations in which the entire surface is described by a graph. In general this is not
true, and large unbounded gradients can occur in minimizing the energy related to
functions that do not belong to W 1,p(Ω), cf. Fig. 2.2.

2.1.3 Hyperelastic Materials

Many solid materials behave in an elastic way for a large range of forces, i.e., when
a force acts on the body it deforms and when the force stops acting, the body returns
to its reference configuration, e.g., the material behaves like a sponge or a network of
elastic springs, cf. Fig. 2.3. One can then justify that the actual deformation y : Ω →
R
3 of the body Ω ⊂ R

3, due to a force f : Ω → R
3, such as gravity minimizes an

energy functional of the form

I (y) =
∫

Ω

W (∇ y) dx −
∫

Ω

f · y dx

Fig. 2.3 Hyperelastic
deformation of a beam
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in the set of functions y ∈ W 1,p(Ω;R3) that satisfy boundary conditions y|ΓD = yD
on a subset ΓD ⊂ ∂Ω . Various physical requirements limit possible choices of W ,
e.g., since a body cannot be compressed arbitrarily, we require that W (F) → ∞ as
det F → 0 with det F > 0. Moreover, in the absence of a force, and for boundary
conditions defined by a rotation of the body, the rotation should also minimize the
energy, i.e., DW (R) = 0 for every R ∈ SO(3). These two conditions imply that W
cannot be convex. If the body is only slightly displaced from its reference configura-
tion, i.e., y = id + u with the displacement u : Ω → R

3 satisfying |∇u| � 1, then
with DW (I ) = 0 we have the approximation

W (∇[id + u]) ≈ W (I ) + 1

2
D2W (I )[∇u,∇u]

which justifies replacing W (∇ y) by the quadratic expression (1/2)C∇u : ∇u with
the elasticity tensor C = D2W (I ) and with A : B denoting the inner product of two
matrices. The resulting model of linear elasticity is important in many applications
where only small strains occur.

2.1.4 Obstacle Problems

When the deflection of an elastic membrane is restricted by an obstacle, then a
constraint has to be included in the above minimization problem, i.e., we seek u ∈
H1(Ω)with u|∂Ω = uD,which is a solution of the constrainedminimization problem
defined by

I (u) = 1

2

∫

Ω

|∇u|2 dx −
∫

Ω

f u dx subject to u ≥ χ in Ω.

It is not known in advance and depends on the force and the boundary conditions
where the membrane will touch the obstacle described by the function χ . Therefore,
determining a free boundary that separates the contact zone C = {x ∈ Ω : u(x) =
χ(x)} from the noncontact zone is part of the problem.Amodel situation is illustrated
in Fig. 2.4.

Fig. 2.4 Cross-section of
the constrained deflection of
a membrane
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Fig. 2.5 Unit length vector
field that may describe the
orientation of liquid crystal
molecules

2.1.5 Harmonic Maps

A different type of constraint arises in modeling certain liquid crystals and ferro-
magnets. If the vector field u : Ω → R

3 describes the orientation of the rod-like
molecules of a liquid crystal or the magnetization of a ferromagnet, then it is natural
to impose the pointwise constraint |u(x)| = 1 in Ω . In a greatly simplified setting,
we then consider the energy functional

I (u) = 1

2

∫

Ω

|∇u|2 dx subject to |u(x)| = 1 in Ω,

togetherwith boundary conditions such as u|ΓD = uD. Solutions of thisminimization
problem are called harmonic maps into the sphere. Such vector fields can have strong
singularities; a smooth unit-length vector field is depicted in Fig. 2.5.

2.1.6 Phase-Field Models

Pointwise constraints in minimization problems are often included by adding a
penalty term to the energy functional, e.g., by considering

I (u) = 1

2

∫

Ω

|∇u|2 dx + 1

4ε2

∫

Ω

(|u|2 − 1)2 dx

with a small parameter 0 < ε � 1. Deviations of the function u : Ω → R or the
vector field u : Ω → R

3 from unit length are thus strongly penalized, but in general
minimizers will not satisfy |u| = 1 everywhere. In the case of a scalar function
u : Ω → R, this leads to the formation of an interface Γ ⊂ Ω that separates regions
in which u ≈ 1 and u ≈ −1, cf. Fig. 2.6. The energy functional I with fixed ε occurs
in modeling certain phase transition models and then the function u describes two
different phases, such as a solid and a liquid phase by the values±1 and the interface
via Γ = {x ∈ Ω : u(x) = 0}.



2.1 Variational Model Problems 15

Fig. 2.6 A function that
represents the phases in a
binary phase separation
process u ≈ 1

u ≈ −1

Γ

2.1.7 Plate Bending

When the thickness of a hyperelastic body Ω is small, e.g., if Ω = ω × (−t/2, t/2)
with a plate thickness 0 < t � 1, then the behavior of the body changes drastically.
In such situations it is desirable to treat the body as a two-dimensional object, i.e., to
consider an appropriate limit t → 0, described by the deformation of themid-surface
ω ⊂ R

2. For a large class of forces f and boundary conditions yD, the minimal value
of the three-dimensional energyminimization problem is proportional to t3 called the
bending regime, from which one then can rigorously derive a dimensionally reduced
model that describes the deformation y : ω → R

3 of the mid-surface ω via the
constrained energy functional

I 2D(y) = 1

2

∫

ω

|D2y|2 dx −
∫

ω

f̃ · y dx subject to ∇ y

⊥

∇ y = I in Ω

together with the boundary conditions y|ΓD = yD and ∇ y|ΓD = BD. The pointwise
constraint on the deformation gradient implies that y is an isometry, i.e., that locally,
length and angle relations are preserved. The model describes the deformation of a
sheet of paper or a piece of cloth, cf. Fig. 2.7.

2.1.8 Crystalline Phase Transitions

For certain crystalline solids the structure of the crystal lattice is temperature-
dependent and this enables many important technical applications based on the
shape-memory effect. The underlying mechanism is that the crystal lattice is highly
symmetric, e.g., cubic, for temperatures above a transition temperature θ0 and less
structured for low temperatures, e.g., tetragonal, cf. Fig. 2.8. In the low-temperature
phase thematerial can be deformed easily, and in the high-temperature phase it is stiff

Fig. 2.7 Isometric
deformation of a thin elastic
sheet
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Fig. 2.8 Crystalline phase
transition

θ0

and tends to return to its reference configuration. If the less structured crystal lattice
is described by matrices F1, . . . , FJ ∈ R

3×3, then a simplified model for the elastic
deformation of the material below the transition temperature leads to minimizing the
energy functional

I (y) =
∫

Ω

W (∇ y) dx with W (F) = min
j=1,...,J

1

2
|F − Fj |2.

The nonconvexity of the energy density W results in developing oscillations of the
deformation gradient ∇ y between the values F1, . . . , FJ . Due to the lack of a char-
acteristic length scale, the oscillations become arbitrarily rapid and a minimizer of
I may not exist. This fact requires that the model be appropriately modified in order
to capture relevant information about the macroscopic material behavior.

2.1.9 Free-Discontinuity Problems

Many modern applications, including image processing and damage or fracture of
materials, require describing certain quantities by discontinuous functions. One ap-
proach to their mathematical modeling is to consider a generalized, measure-valued
gradient, and this allows us to treat functions that are piecewise smooth with an ap-
propriate discontinuity set, e.g., the characteristic function of a square or a disk. In
order to regularize a given noisy image described by its gray values by a function
g : Ω → R while preserving its edges, the total-variation regularized model seeks
a function u : Ω → R that minimizes the functional

I (u) =
∫

Ω

|Du| + α

2
‖u − g‖2L2(Ω)

.

The second term in the energy functionalmakes sure that u is close to g, while the first
term prohibits certain oscillations, cf. Fig. 2.9. For weakly differentiable functions
u ∈ W 1,1(Ω), the first term coincides with ‖∇u‖L1(Ω), but it is also finite for a large
class of discontinuous functions, e.g., if u = χA is the characteristic function of a
set A ⊂ Ω , then

∫
Ω

|Du| is the length of ∂ A.
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Fig. 2.9 Denoising of a
perturbed image

Fig. 2.10 Segmentation of
an image

2.1.10 Segmentation Models

Modeling a crack in a material typically requires an explicit description of the crack.
Similarly, the problem of detecting certain shapes in images can be described by
considering the unknown contour of objects as a separate variable in a model. A
simple model problem is defined by the Mumford–Shah functional

I (u, K ) = 1

2

∫

Ω\K

|∇u|2 dx + H d−1(K ) + α

2
‖u − g‖2L2(Ω)

.

Here, K ⊂ Ω is a closed subset and its (d − 1)-dimensional Hausdorff measure
H d−1(K ) is finite if K belongs to a class of certain lower-dimensional objects such
as unions of curves for d = 2. A minimizing function u ∈ L2(Ω) has to be weakly
differentiable inΩ \K and close to g, but it may jump and have discontinuities across
K . The minimization problem detects contours in a given image g and identifies
objects as depicted in Fig. 2.10.

2.1.11 Elastoplasticity

The restoring force or stress σ of an elastic spring or rubber band of initial length �

that is elongated by an external loading with strain ε(u) = u′ is according toHooke’s
law given by σ = Cε(u) for a certain range of strains. When σ reaches a critical
value σy called yield stress, then the material behavior changes and a remaining,
plastic deformation occurs, i.e., after the experiment we observe that the length
�̃ of the rubber band is bigger than its initial length �. This is accompanied by a
change of the microstructural properties of the material, e.g., of the crystal lattice.
Mathematically, this can be described by the requirement that σ ∈ S = Bσy (0) and
that plastic material behavior occurs if σ ∈ ∂S. In this case an increasing strain
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D

CB

A

σ
σy

D
C
B

ε (u)

A

˜�

�

Fig. 2.11 Stress-strain relation for perfectly plastic material behavior; from A to B the material
behaves elastically, from B to C a plastic strain occurs leading to a remaining deformation, and
from C to D the elastic part of the deformation relaxes

ε(u) is compensated by a developing plastic strain p, i.e., σ = C(ε(u) − p). The
nonlinear stress-strain relation is depicted in Fig. 2.11.With the equilibrium of forces
in a quasistatic situation, the process is modeled by the equations

− div σ = f, ε(u) = C
−1σ + p,

.
p ∈ ∂ IS(σ )

with ∂ IS denoting the subdifferential of the indicator functional of S which is the
normal cone mapping related to the convex set S, i.e.,

∂ IS(σ ) =

⎧⎪⎨
⎪⎩

{0} if |σ | < σy,

{ασ : α ≥ 0} if |σ | = σy,

∅ if |σ | > σy .

This is a time-dependent formulation and after discretization in time, one is led to
solve for every time-step tk the minimization problem

I k(u, p) = σy

τ

∫

Ω

|p − pk−1| dx + 1

2

∫

Ω

|C1/2(ε(u) − p)|2 dx −
∫

Ω

f · u dx,

where pk−1 is the solution of the previous time step and subject to time-dependent
boundary conditions u|ΓD = uD(tk). In a more realistic description, deformations
that are pure compressions or tensions do not lead to plastic deformations and only
| dev(σ )| ≤ σy is required with the deviator dev A = A − (1/d)(tr A)I of a matrix
A ∈ R

d×d . Moreover, additional variables are included to describe the internal
properties of the material.

2.2 Existence of Minimizers

We discuss in this section sufficient and necessary conditions for the existence of
minimizers for energy functionals of the form
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I (u) =
∫

Ω

W (x, u(x),∇u(x)) dx

in a set of weakly differentiable admissible functions A ⊂ W 1,p(Ω;Rm) for a
bounded Lipschitz-domain Ω ⊂ R

d . The main idea is to develop an appropriate
generalization of the Bolzano–Weierstraß theorem to infinite-dimensional situations.
In particular, to deduce compactness properties of bounded sets, it is necessary to
workwithweak topologies and the usual continuity assumption is replaced by (weak)
lower semicontinuity. For further details and more general statements the reader is
referred to the textbooks [1, 4, 6, 10].

2.2.1 The Direct Method in the Calculus of Variations

We consider a functional F : X → R ∪ {+∞} defined on a real, reflexive Banach
space X and discuss the existence of minimizers of F .

Definition 2.1 The function F : X → R ∪ {+∞} is called weakly lower semicon-
tinuous if for every sequence (vn)n∈N ⊂ X and v ∈ X with vn ⇀ v as n → ∞, i.e.,
φ(vn) → φ(v) for every φ ∈ X ′, we have

F(v) ≤ lim inf
n→∞ F(vn).

The validity and the failure of the requirement are illustrated in Fig. 2.12.

Remarks 2.1 (i) The sequence (F(vn))n∈N ⊂ R ∪ {+∞} may be divergent and the
definition requires that F(v) be a lower bound for all accumulation points of the
sequence.
(ii) In infinite-dimensional spaces, weak lower semicontinuity is a stronger require-
ment than (strong) lower semicontinuity, i.e., F(v) ≤ lim infn→∞ F(vn) whenever
vn converges (strongly) to v. Mazur’s lemma implies that every convex, (strongly)
lower semicontinuous functional is weakly lower semicontinuous. In finite-dimen-
sional spaces the notions of weak and strong lower semicontinuity coincide.

To invoke the fact that according to the Eberlein–Šmuljan theorem every bounded
sequence in a reflexive Banach space has a weakly convergent subsequence, we need
to assume that the functional F grows outside of bounded sets.

Fig. 2.12 A function that is
lower semicontinuous (left)
and a function that is not
lower semicontinuous (right)
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Definition 2.2 The functional F : X → R∪{+∞} is called (weakly) coercive if for
every sequence (vn)n∈N ⊂ X with ‖vn‖ → ∞, we have F(vn) → ∞ as n → ∞.

The following theorem can be generalized in several directions. It is formulated
in a way that is applicable to many of the variational problems discussed above.

Theorem 2.1 (Direct method in the calculus of variations) Assume that F : X →
R∪{+∞} is weakly lower semicontinuous, coercive, bounded from below, and there
exists v0 ∈ X with F(v0) ∈ R. Then F has a minimizer.

Proof The proof follows in three steps.
Step1: Since F is bounded frombelow, there exists an infimizing sequence (vn)n∈N ⊂
X with limn→∞ F(vn) = infv′∈X F(v′).
Step 2: The assumed coercivity of F implies that the sequence (vn)n∈N is bounded and
therefore, using that X is reflexive, wemay extract a weakly convergent subsequence
(vnk )k∈N with weak limit v ∈ X .
Step 3: Due to the weak lower semicontinuity, we have F(v) ≤ lim infk→∞ F(vnk )

and therefore it follows that

F(v) ≤ lim inf
k→∞ F(vnk ) = lim

k→∞ F(vnk ),= inf
v′∈X

F(v′),

i.e., since F(v) ≥ infv′∈X F(v′) we have F(v) = infv′∈X F(v′) which proves the
theorem. �

Remark 2.2 If a variational problem is formulated on a subset A ⊂ X , then we need
to impose that A be weakly closed to ensure that the weak accumulation points of a
bounded sequence belong to A. This is equivalent to the condition that the indicator
functional IA : X → R ∪ {+∞}, defined by IA(v) = 0 for v ∈ A and IA(v) = +∞
otherwise, be weakly lower semicontinuous. By Mazur’s lemma, it suffices that A
be convex and closed.

Examples 2.1 (i) The Dirichlet energy I (u) = (1/2)
∫
Ω

|∇u|2 dx is weakly lower
semicontinuous since according to a binomial formula, we have

∫

Ω

|∇u|2 dx −
∫

Ω

|∇un|2 +
∫

Ω

|∇(u − un)|2 dx = 2
∫

Ω

∇u · ∇(u − un) dx,

and if un ⇀ u in H1(Ω), i.e.,
∫
Ω

∇u · ∇(u − un) dx → 0, this implies that I (u) ≤
lim infn→∞ I (un). The coercivity of I follows from a Poincaré inequality.
(ii) Simple examples such as Weierstraß’ example show that not every minimiza-
tion problem has a solution. By constructing an infimizing sequence consisting of
Lipschitz continuous functions, one can verify that the functional

I (y) =
∫

(−1,1)

(xy′(x))2 dx
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has no continuous minimizer subject to the boundary conditions y(−1) = −1 and
y(1) = 1 although I is weakly lower semicontinuous and bounded from below.
Similarly, one can show that there is no differentiable minimizer of

I (u) =
∫

(0,1)

(|u′(x)|2 − 1)2 dx +
∫

Ω

|u(x)|4 dx,

but I is coercive and bounded from below.

2.2.2 Sobolev Spaces

To investigate functionals that are defined as integrals of integrands applied to
functions and their derivatives, we always consider a bounded Lipschitz domain
Ω ⊂ R

d and recall that a function u ∈ L1(Ω) is called weakly differentiable if there
exists a vector field G ∈ L1(Ω;Rd) such that

∫

Ω

u div ϕ dx = −
∫

Ω

G · ϕ dx

for all smooth, compactly supported vector fields ϕ ∈ C∞
0 (Ω;Rd). We call G the

weak gradient of u and write ∇u = G. We then define

W 1,p(Ω;Rm) = {u = (u1, . . . , um) ∈ L p(Ω;Rm) :
∇u j ∈ L p(Ω;Rd), j = 1, 2, . . . , m},

which is a Banach space for the norm ‖u‖W 1,p = (‖u‖p
L p +‖∇u‖p

L p )
1/p. For a closed

subset ΓD ⊂ ∂Ω with positive surface measure, we set

W 1,p
D (Ω;Rm) = {v ∈ W 1,p(Ω;Rm) : v|ΓD = 0}

and write W 1,p
0 (Ω;Rm) if ΓD = ∂Ω . We recall some important facts about Sobolev

spaces. For p = 2, we have that W 1,2(Ω;Rm) is a Hilbert space denoted by
H1(Ω;Rm), and analogously H1

D(Ω;Rm) stands for W 1,2
D (Ω;Rm).

Remarks 2.3 (i) If p < d, then the embedding W 1,p(Ω;Rm) → Lq(Ω;Rm) is
continuous for 1 ≤ q ≤ p∗ with the Sobolev conjugate exponent p∗ = pd/(d − p),
i.e., ‖u‖Lq (Ω) ≤ c‖u‖W 1,p(Ω) for a constant c > 0 and every u ∈ W 1,p(Ω;Rm).
If p = d, then this is true for every 1 ≤ q < ∞. If p > d, then the embedding
W 1,p(Ω;Rm) → C(Ω;Rm) is continuous.
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(ii) The embeddings are compact, i.e., whenever u j ⇀ u in W 1,p(Ω;Rm), then
it follows that u j → u in Lq(Ω;Rm), provided that 1 ≤ q < p∗ if p > d and
1 ≤ q < ∞ if p = d and 1 ≤ q ≤ ∞ if p > d.
(iii) The subsetC∞(Ω;Rm)∩W 1,p(Ω;Rm) is dense and W 1,p(Ω;Rm) is separable
if 1 ≤ p < ∞. For 1 < p < ∞ the space W 1,p(Ω;Rm) is reflexive.
(iv) For 1 ≤ p ≤ ∞ there exists a bounded linear operator tr : W 1,p(Ω;Rm) →
L p(Ω;Rm) called the trace operator such that tr u = u|∂Ω for every u ∈ C(Ω;Rm).
We use the notation u|ΓD to denote the restriction of the trace to a subset ΓD of ∂Ω .
(v) For 1 ≤ p ≤ ∞, p′ = p/(p − 1), v ∈ W 1,p(Ω), and w ∈ W 1,p′

(Ω;Rd), we
have Green’s or the integration-by-parts formula

∫

Ω

v divw dx +
∫

Ω

∇v · w dx =
∫

∂Ω

tr(v) tr(w) · n ds,

where n denotes the outer unit normal to Ω on ∂Ω .
(vi)Poincaré inequalities bound the norm ‖u‖W 1,p for 1 ≤ p ≤ ∞ by the semi-norm
|u|W 1,p = ‖∇u‖L p for u ∈ W 1,p(Ω;Rm), i.e., ‖u‖W 1,p ≤ CP |u|W 1,p , provided that
u|ΓD = 0 for a closed set ΓD ⊂ ∂Ω with positive surface measure or

∫
Ω

u dx = 0.
(vii) The closure of the set C∞

0 (Ω;Rm) with respect to the norm ‖ · ‖W 1,p coincides

with the space W 1,p
0 (Ω;Rm) if 1 ≤ p < ∞.

(viii) For 1 ≤ p ≤ ∞, we have un ⇀ u in W 1,p(Ω;Rm) if and only if un → u in
L p(Ω;Rm) and ∇un ⇀ ∇u in L p(Ω;Rm) as n → ∞.

For k ≥ 2 the higher-order Sobolev spaces W k,p(Ω;Rm) are defined inductively,
i.e.,W k,p(Ω;Rm) = {v ∈ W 1,p(Ω;Rm) : ∇v ∈ W k−1,p(Ω;Rm×d)}. Amultiindex
notation is used to abbreviate higher order partial derivatives, i.e., for α ∈ N

d
0 , we

denote

∂αu = ∂ |α|u
∂xα1

1 ∂xα2
2 . . . ∂xαd

d

,

where |α| = α1 + α2 + · · · + αd . The k-th derivative of u is the vector containing
all weak partial derivatives of order k, i.e., Dku = (∂αu)|α|≤k . As above, we write
Hk(Ω;Rm) if p = 2.

2.2.3 Integral Functionals

For integral functionals defined on Sobolev spaces of scalar functions in W 1,p(Ω),
precise conditions on an integrand that imply weak lower semicontinuity are known.
For vector fields in spaces W 1,p(Ω;Rm), the conditions of the following theorem
are only sufficient.

Theorem 2.2 (Weak lower semicontinuity of integral functionals) Let 1 ≤ p < ∞
and assume that W : Rm×d → R is continuous with |W (A)| ≤ c(1+ |A|p). If W is
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convex, then the functional

I (u) =
∫

Ω

W (∇u) dx

is weakly lower semicontinuous on W 1,p(Ω;Rm). Conversely, if m = 1 and I is
weakly lower semicontinuous on W 1,p(Ω), then W is convex.

Proof (1) For a simpler proof we assume that W is convex and continuously differ-
entiable with |DW (A)| ≤ c′(1+|A|p−1). We then have W (B) ≥ W (A)+ DW (A) ·
(B − A) for all A, B ∈ R

m×d . Due to the estimate (a + b)s ≤ 2s−1(as + bs) for all
a, b ∈ R and s ≥ 1, we thus have for every u ∈ W 1,p(Ω;Rm) that

∫

Ω

|DW (∇u)|p/(p−1) dx ≤ c
∫

Ω

(1 + |∇u|p−1)p/(p−1) dx ≤ c
∫

Ω

(1 + |∇u|)p dx,

i.e., DW (∇u) ∈ L p′
(Ω;Rm×d). If un ⇀ u in W 1,p(Ω;Rm) as n → ∞, then we

have ∇(un − u) ⇀ 0 in L p(Ω;Rm×d). Using this in the estimate

∫

Ω

W (∇un) dx ≥
∫

Ω

W (∇u) dx +
∫

Ω

DW (∇u) · ∇(un − u) dx,

weobserve that the second termon the right-hand side converges to 0 as n → ∞. This
implies that lim infn→∞ I (un) ≥ I (u), i.e., that I isweakly lower semicontinuous.A
more general proofwhich avoids the assumption thatW is continuously differentiable
employs Mazur’s lemma.
(2) To prove the converse implication, we let A, B ∈ R

d , θ ∈ [0, 1], set F =
θ A + (1− θ)B, and define uF (x) = Fx for x ∈ Ω . We assume that for every ε > 0
there exists a function vε ∈ W 1,∞(Ω), such that ‖∇vε‖L∞(Ω) ≤ c independently of
ε, ‖vε − uF‖L∞(Ω) ≤ cε, and for Ωε

X = {x ∈ Ω : ∇vε(x) = X} with X ∈ {A, B}
we have

L d(Ωε
A) ≤ θL d(Ω) + cε, L d(Ωε

B) ≤ (1 − θ)L d(Ω) + cε,

L d(Ω \ (Ωε
A ∪ Ωε

B)) ≤ cε.

The construction of such a function will be discussed in the subsequent lemma. For
every n ∈ N, set εn = 1/n and let un = vεn . We then have

∫

Ω

W (∇un) dx = L d(Ω
1/n
A )W (A) + L d(Ω

1/n
B )W (B) +

∫

Ω\(Ω1/n
A ∪Ω

1/n
B )

W (∇un) dx

≤ θL d(Ω)W (A) + (1 − θ)L d(Ω)W (B) + c/n.
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Since un ⇀ uF in W 1,p(Ω) as n → ∞ and ∇uF = F in Ω we deduce with the
assumed weak lower semicontinuity of I that

L d(Ω)W (F) =
∫

Ω

W (∇uF ) dx ≤ lim inf
n→∞

∫

Ω

W (∇un) dx

≤ θL d(Ω)W (A) + (1 − θ)L d(Ω)W (B),

i.e., that W is convex. �

Remarks 2.4 (i) For integrands of the form W (x, u(x),∇u(x)) one needs to assume
that W is aCarathéodory function, i.e., that for all (s, A) ∈ R

m ×R
m×d , the mapping

x �→ W (x, s, A) is measurable and for almost every x ∈ Ω , the mapping (s, A) �→
W (x, s, A) is continuous. A sufficiency requirement for weak lower semicontinuity
is then in addition to certain growth conditions that A �→ W (x, s, A) be convex for
almost every x ∈ Ω and all s ∈ R

m .
(ii) The functional J (u) = ∫

Ω
j (x, u(x)) dx is weakly continuous on W 1,p(Ω;Rm)

if, e.g., | j (x, s)| ≤ a(x) + |s|q with a ∈ L1(Ω) and 1 ≤ q ≤ p∗, i.e., we have
J (un) → J (u) whenever un ⇀ u as n → ∞. Moreover, in this case we have that if
I : W 1,p(Ω;Rm) → R is weakly lower semicontinuous then I + J is also weakly
lower semicontinuous.
(iii) In the vectorial case m > 1, convexity is not a necessary condition. Sufficient
for weak lower semicontinuity is the weaker notion of polyconvexity which requires
that there exist a convex function Ŵ with W (A) = Ŵ (T (A)), where T (A) is the
vector that contains the determinants of all square submatrices of A, e.g., T (A) =
(A, det(A)) if d = m = 2. Necessary and sufficient for weak lower semicontinuity
on W 1,p(Ω;Rm) is quasiconvexity which requires that

W (A) ≤ inf
ϕ∈W 1,p

0 (Ω;Rm )

1

L d(Ω)

∫

Ω

W (A + ∇ϕ) dx,

i.e., that the affine function u(x) = Ax + b be minimal for I in the set of all
functions in W 1,p(Ω;Rm) satisfying the same affine boundary conditions. For m =
1, quasiconvexity is equivalent to convexity.

We next show in a more general setting how the function vε used in the proof of
Theorem 2.2 can be constructed.

Lemma 2.1 (Compatible gradients) Let A, B ∈ R
m×d with rank(B − A) = 1,

i.e., A − B = β ⊗ α for β ∈ R
m and α ∈ R

d with |α| = 1. Let θ ∈ [0, 1], set
F = θ A + (1 − θ)B, and define uF (x) = Fx for x ∈ Ω . For every ε > 0, there
exists a Lipschitz continuous function vε ∈ W 1,∞(Ω;Rm) such that vε = uF on ∂Ω ,
‖∇vε‖L∞(Ω) ≤ c, ‖vε − uF‖L∞(Ω) ≤ cε , and for Ωε

X = {x ∈ Ω : ∇vε(x) = X}
with X ∈ {A, B}, we have
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L d(Ωε
A) ≤ θL d(Ω) + cε, L d(Ωε

B) ≤ (1 − θ)L d(Ω) + cε,

L d(Ω \ (Ωε
A ∪ Ωε

B)) ≤ cε.

Proof By replacing A and B by A − F and B − F , we may assume that F = 0.
We define Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} and choose a cut-off function ηε ∈
W 1,∞(Ω) such that ηε|Ωε = 1, |∇ηε(x)| ≤ c/ε for almost every x ∈ Ω , and
ηε|∂Ω = 0. For x ∈ R

d we define

ṽε(x) = Ax − β

x ·α∫

0

χ̃(θ,1)(t/ε) dt

with the 1-periodic function χ̃ : R → R given by χ̃ |(0,θ) = 0 and χ̃ |(θ,1) = 1. The
function ṽε, for kε ≤ x · α ≤ (k + 1)ε with k ∈ Z, satisfies that

∇ ṽε(x) =
{

A if kε < x · α ≤ (k + θ)ε,

B if (k + θ)ε < x · α ≤ (k + 1)ε.

We finally set
vε = ηε̃vε

and, noting that ‖̃vε‖L∞(Ω) ≤ cε, we verify that this function satisfies the require-
ments of the lemma. The construction is depicted in Fig. 2.13. �

Remark 2.5 One can show that a nontrivial function u ∈ W 1,∞(Ω;Rm) with
∇u(x) ∈ {A, B} almost everywhere in Ω can only exist if rank(B − A) = 1.
The necessity of this condition follows from the continuity of the tangential gradient
along the interface Γ that separates regions of constant gradients.

ε 2ε 3ε 40 ε

Aε
1−θθ

ε Ω \Ωε

Fig. 2.13 The oscillating function ṽε for d = m = 1 with an average gradient 0 constructed in the
proof of Lemma 2.1 (left); the gradient of the function vε = ηε̃vε oscillates between the values A
and B away from the boundary (right)
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2.2.4 Existence and Properties of Minimizers

Certain generalizations of the weak lower semicontinuity results discussed above
imply the following existence result for minimization problems on Sobolev spaces.

Theorem 2.3 (Existence) Let 1 < p < ∞ and let W : Ω ×R
m ×R

m×d → R be a
Carathéodory function, such that W (x, s, A) ≥ a(x)+b|s|q +c|A|p for 1 ≤ q < p
and a ∈ L1(Ω), b, c > 0 for almost every x ∈ Ω , and all (s, A) ∈ R

m ×R
m×d , and

such that A �→ W (x, s, A) is quasiconvex for almost every x ∈ Ω and all s ∈ R
m.

Assume that there exists u0 ∈ W 1,p(Ω;Rm) with W (x, u0(x),∇u0(x)) ∈ L1(Ω).
Then there exists a minimizer u ∈ W 1,p(Ω) for

I (u) =
∫

Ω

W (x, u(x),∇u(x)) dx . (2.1)

Proof The result follows from the direct method in the calculus of variations and we
refer the reader to [4] for a complete proof. �

Remark 2.6 The existence result can be generalized in many directions. If b = 0
is allowed, then boundary conditions have to be imposed on a subset ΓD ⊂ ∂Ω to
guarantee coercivity of I .

Theorem 2.4 (Uniqueness) If the mapping (s, A) �→ W (x, s, A) is strictly convex
for almost every x ∈ Ω , i.e., if for distinct pairs (s1, A1), (s2, A2) ∈ R

m × R
m×d ,

we have

1

2
W (x, s1, A1) + 1

2
W (x, s2, A2) > W

(
x,

s1 + s2
2

,
A1 + A2

2

)
,

then there exists at most one minimizer of the functional I defined through W as
in (2.1).

Proof Suppose u1, u2 ∈ W 1,p(Ω;Rm) are distinctminimimzers of I . Then the strict
convexity of W implies that

1

2
I (u1) + 1

2
I (u2) > I

(u1 + u2

2

)
,

which contradicts the assumption that u1 and u2 are minimizers. �

As in finite-dimensional situations it is desirable to formulate necessary conditions
for minimizers. We restrict to the scalar case m = 1 and a simple form of the energy
density W .

Theorem 2.5 (Euler–Lagrange equations) Assume that W : Ω × R × R
d → R is

given by W (x, s, A) = W0(A) − f (x)s with f ∈ L p′
(Ω) and W0 ∈ C1(Rd) such

that |DW0(A)| ≤ c′(1 + |A|p−1) for all A ∈ R
d . If u ∈ W 1,p(Ω) minimizes I
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among functions in u0 + W 1,p
0 (Ω) for some u0 ∈ W 1,p(Ω) and 1 ≤ p < ∞, then

u solves the Euler–Lagrange equations

∫

Ω

DW0(∇u) · ∇v dx =
∫

Ω

f v dx

for all v ∈ W 1,p
0 (Ω).

Proof Let v ∈ W 1,p
0 (Ω) be fixed and consider the function ψ(r) = I (u + rv),

r ∈ R, which has a minimum at r = 0. For r �= 0 we have

1

r
(ψ(r) − ψ(0)) = 1

r
(I (u + rv) − I (u))

= 1

r

[ ∫

Ω

W0(∇(u + rv)) dx −
∫

Ω

f (u + rv) dx

−
∫

Ω

W0(∇u) dx +
∫

Ω

f u dx
]

= 1

r

∫

Ω

W (∇(u + rv)) − W0(∇u) dx −
∫

Ω

f v dx .

We define

Mr (x) = 1

r

(
W0(∇(u + rv)(x)) − W0(∇u(x))

)

and note that Mr (x) → DW0(∇u(x)) · ∇v(x) as r → 0 for almost every x ∈ Ω . To
pass to the limit of the integrals with Lebesgue’s dominated convergence theorem,
we aim at constructing an r -independent, integrable upper bound for Mr (x). We
consider 0 < r ≤ 1 and note that the fundamental theorem of calculus implies that

Mr (x) = 1

r

r∫

0

d

dt
W0(∇(u + tv)(x)) dt = 1

r

r∫

0

DW0(∇(u + rv)(x)) · ∇v(x) dt.

Incorporating the assumed upper bound for DW0, we have for t ∈ (0, r) that

|Mr (x)| ≤ c(1 + |∇u(x)|p−1 + |∇v(x)|p−1)|∇v(x)|

and it follows with Hölder’s inequality that the right-hand side belongs to L1(Ω).
We may therefore pass to the limit under the integral and have

1

r

(
I (u + rv) − I (u)) →

∫

Ω

DW (∇u) · ∇v dx −
∫

Ω

f v dx .
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Since r = 0 is minimal for ψ(r), it follows that the right-hand side is nonnegative.
Repeating the argument with v replaced by −v leads to the assertion. �

Remark 2.7 The strong form of the Euler–Lagrange equations follows from the
fundamental lemma in the calculus of variations which asserts that whenever we are
given g ∈ L1(Ω) with ∫

Ω

gϕ dx = 0

for all ϕ ∈ C∞
0 (Ω), then g = 0 almost everywhere in Ω . Therefore, we have

− div DW0(∇u) = f in Ω, u|∂Ω = u0|∂Ω.

More generally, for appropriate functions W , one can derive the partial differential
equation

− div
∂W

∂ A
(x, u(x),∇u(x)

) + ∂W

∂s
(x, u(x),∇u(x)

) = 0.

If W0 ∈ C1(Rd) is convex, then the Euler-Lagrange equations also define a
sufficient condition for optimality.

Theorem 2.6 (Sufficiency) Assume that the assumptions of Theorem 2.5 are satis-
fied and that W0 is convex. Suppose that u ∈ u0 + W 1,p

0 (Ω) satisfies

∫

Ω

DW0(∇u) · ∇v dx =
∫

Ω

f v dx

for all v ∈ W 1,p
0 (Ω). Then u is minimal for I for functions in u0 + W 1,p

0 (Ω).

Proof Let v ∈ W 1,p(Ω). Since W0 is convex and continuously differentiable, we
have

W0(∇(u + v)(x)) ≥ W0(∇u(x)) + DW0(∇u(x)) · ∇v(x)

for almost every x ∈ Ω . This and the Euler–Lagrange equations imply that

I (u + v) =
∫

Ω

W0(∇(u + v)) dx −
∫

Ω

f (u + v) dx

≥
∫

Ω

W0(∇u) dx +
∫

Ω

DW0(∇u) · ∇v dx −
∫

Ω

f u dx −
∫

Ω

f v dx

=
∫

Ω

W0(∇u) dx −
∫

Ω

f u dx = I (u),

i.e., u is minimal for I . �
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Remarks 2.8 (i) Regularity of minimizers, e.g., u ∈ H2(Ω), can be proved if the
boundary ofΩ isC2-regular and W is strongly convex, i.e., D2W (A)[B, B] ≥ c|B|2
for all A, B ∈ R

m×d and c > 0.
(ii) If the minimization problem involves a constraint, such as G(u(x)) = 0 for
almost every x ∈ Ω with a continuously differentiable function G : R

m → R,
then one can formally consider a saddle point problem to derive the Euler–Lagrange
equations, e.g., for W (A) = |A|2/2, the problem

inf
u∈H1

0 (Ω)

sup
λ∈Lq (Ω)

1

2

∫

Ω

|∇u|2 dx +
∫

Ω

λG(u) dx .

The optimality conditions are with g = DG given by

∫

Ω

∇u · ∇v dx +
∫

Ω

λg(u) · v dx = 0,
∫

Ω

μG(u) dx = 0

for all v ∈ H1
0 (Ω;R�) and all μ ∈ Lq(Ω). The unknown variable λ is the Lagrange

multiplier associated to the constraint G(u(x)) = 0 for almost every x ∈ Ω .
(iii) On the part ∂Ω \ ΓD where no Dirichlet boundary conditions u|ΓD = uD are
imposed, the homogeneous Neumann boundary conditions DW0(∇u) · n = 0 are
satisfied. Inhomogeneous Neumann conditions can be specified through a function
g ∈ Lq(ΓN;Rm) and a corresponding contribution to the energy functional, e.g.,

I (u) =
∫

Ω

W0(∇u(x)) dx −
∫

ΓN

gu ds.

(iv) The Euler–Lagrange equations define an operator L : W 1,p(Ω) → W 1,p(Ω)′
and we look for u ∈ W 1,p(Ω) with L(u) = b for a given right-hand side b ∈
W 1,p(Ω)′. Under certain monotonicity conditions on L , the existence of solutions
for this equation can be established with the help of discretizations and fixed-point
theorems. This is of importance when the partial differential equation is not related
to a minimization problem.

2.3 Gradient Flows

The direct method in the calculus of variations provides existence results for global
minimizers of functionals but its proof is nonconstructive. In practice, themost robust
methods to find stationary points are steepest descent methods. These can often be
regarded as discretizations of time-dependent problems. To understand the stability
and convergence properties of descent methods, it is important and insightful to
analyze the corresponding continuous problems. In finite-dimensional situations we
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may think of a function V : Rn → R and the ordinary differential equation

y′ = −∇V (y), y(0) = y0.

If V ∈ C2(Rn), then the Picard–Lindelöf theorem guarantees the existence of a
unique local solution y : (−T̂ , T̂ ) → R

n . Taking the inner product of the differential
equation with y′ and using the chain rule to verify ∇V (y(t)) · y′(t) = (V ◦ y)′ we
have after integration over (0, T ′)

T ′∫

0

|y′|2 dt + V (y(T ′)) = V (y(0)).

This is called an energy law and shows that the function t �→ V (y(t)) is decreasing.
Since the evolution becomes stationary if∇V (y(t)) = 0, this allows us to find critical
points of V with small energy. It is the aim of this section to justify gradient flows
for functionals on infinite-dimensional spaces. For more details on this subject, we
refer the reader to the textbooks [2, 6–8].

2.3.1 Differentiation in Banach Spaces

We consider a Banach space X and a functional I : X → R.

Definition 2.3 (a) We say that I is Gâteaux-differentiable at v0 ∈ X if for all h ∈ X
the limit

δ I (v0, h) = lim
s→0

I (v0 + sh) − I (v0)

s

exists and the mapping DI (v0) : X → R, h �→ δ I (v0, h) is linear and bounded.
(b) We say that I is Fréchet-differentiable at v0 ∈ X if there exist a bounded linear
operator A : X → R and a function ϕ : R → R with lims→0 ϕ(s)/s = 0 such that

I (v0 + h) − I (v0) = Ah + ϕ(‖h‖X ).

In this case we define DI (v0) = A.

Remark 2.9 If I is Gâteaux-differentiable at every point in a neighborhood of v0 and
DI is continuous at v0, then I is Fréchet-differentiable at v0.

The gradient of a functional is the Riesz representative of the Fréchet derivative
with respect to a given scalar product.

Definition 2.4 Let H be a Hilbert space such that X is continuously embedded in
H . If I is Fréchet-differentiable at v0 ∈ X with DI (v0) ∈ H ′, then the H-gradient
∇H I (v0) ∈ H is defined by
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(∇H I (v0), v)H = DI (v0)[v]

for all v ∈ H .

Example 2.2 For X = H1
0 (Ω) and I (u) = (1/2)

∫
Ω

|∇u|2 dx , we have

I (u + sv) − I (u) = 1

2

∫

Ω

|∇u|2 + 2s∇u · ∇v + s2|∇v|2 dx − 1

2

∫

Ω

|∇u|2 dx

= s
∫

Ω

∇u · ∇v dx + s2

2

∫

Ω

|∇v|2 dx

and I is Fréchet differentiable with DI (u)[v] = ∫
Ω

∇u · ∇v dx . For H = X =
H1
0 (Ω) with scalar product (v, w)H1

0
= ∫

Ω
∇v · ∇w dx , we thus have ∇H1

0
I (u) = u.

If u ∈ H2(Ω) ∩ H1
0 (Ω), then Green’s formula shows that

DI (u)[v] =
∫

Ω

∇u · ∇v dx =
∫

Ω

(−�u)v dx,

so that DI (u) is a bounded linear functional on L2(Ω). For H = L2(Ω) with scalar
product (v, w) = ∫

Ω
vw dx , we therefore have ∇L2 I (u) = −�u.

Remark 2.10 The Euler–Lagrange equations for I (u) = ∫
Ω

W (x, u,∇u) dx in the
strong form corresponds to a vanishing L2-gradient of I , i.e., ∇L2 I (u) = 0.

2.3.2 Bochner–Sobolev Spaces

For evolutionary partial differential equations we will consider functions u :
[0, T ] → X for a time interval [0, T ] ⊂ R. We assume that the Banach space
X is separable and say that u : [0, T ] → X is weakly measurable if, for all ϕ ∈ X ′,
the function t �→ 〈ϕ, u(t)〉 is Lebesgue measurable. In this case the Bochner integral

T∫

0

u(t) dt

is well defined with
∥∥ ∫ T

0 u(t) dt
∥∥

X ≤ ∫ T
0 ‖u(t)‖X dt . The duality pairing between

X and X ′ will be denoted by 〈·, ·〉.
Definition 2.5 For 1 ≤ p ≤ ∞, the Bochner space L p([0, T ]; X) consists of all
weakly measurable functions u : [0, T ] → X with ‖u‖L p([0,T ];X) < ∞, where
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‖u‖L p([0,T ];X) =
⎧⎨
⎩
esssupt∈[0,T ]‖u(t)‖X if p = ∞,( ∫
[0,T ]

‖u(t)‖p dt
)1/p if 1 ≤ p < ∞.

Remark 2.11 The space L p([0, T ]; X) is a Banach space when equipped with the
norm ‖ · ‖L p([0,T ];X).

Definition 2.6 For u ∈ L1([0, T ]; X) we say that w ∈ L1([0, T ]; X) is the gener-
alized derivative of u, denoted by u′ = w if for all φ ∈ C∞

c ((0, T )), we have

T∫

0

φ′(t)u(t) dt = −
T∫

0

φ(t)w(t) dt.

Remark 2.12 Since X is separable one can show that the generalized derivative u′
coincides with the weak derivative ∂t u defined by

T∫

0

〈u, ∂tφ〉 dt = −
T∫

0

〈∂t u, φ〉 dt

for all φ ∈ C1([0, T ]; X ′) with φ(0) = φ(T ) = 0.

Definition 2.7 The Sobolev–Bochner space W 1,p([0, T ]; X) consists of all func-
tions u ∈ L p([0, T ]; X) with u′ ∈ L p([0, T ]; X) and is equipped with the norm

‖u‖W 1,p([0,T ];X) =

⎧⎪⎨
⎪⎩
esssupt∈[0,T ](‖u(t)‖X + ‖u′(t)‖X ) if p = ∞,

( T∫
0

‖u(t)‖p
X + ‖u′(t)‖p

X dt
)1/p if 1 ≤ p < ∞.

We write H1([0, T ]; X) for W 1,2([0, T ]; X).

Remarks 2.13 (i) We have that W 1,p([0, T ]; X) is a Banach space for 1 ≤ p ≤ ∞.
If X is a Hilbert space and p = 2, then W 1,2([0, T ]; X) is a Hilbert space denoted
by H1([0, T ]; X).
(ii) For 1 ≤ p ≤ ∞ and u ∈ W 1,p([0, T ]; X), we have that u ∈ C([0, T ]; X) with
maxt∈[0,T ] ‖u(t)‖ ≤ c‖u‖W 1,p([0,T ];X).

Definition 2.8 If H is a separable Hilbert space that is identified with its dual H ′
and such that the inclusion X ⊂ H is dense and continuous, then (X, H, X ′) is called
a Gelfand or an evolution triple.

Remark 2.14 For a Gelfand triple (X, H, X ′) the duality pairing 〈ϕ, v〉 for ϕ ∈ X ′
and v ∈ X is regarded as a continuous extension of the scalar product on H , i.e., if
ϕ ∈ X ′ ∩ H ′, then

〈ϕ, v〉 = (ϕ, v)H .
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Below, we always consider an evolution triple (X, H, X ′). The Sobolev–Bochner
spaces then have the following important properties.

Remarks 2.15 (i) If u ∈ L p([0, T ]; X) with u′ ∈ L p′
([0, T ]; X ′), then u ∈

C([0, T ]; H) with maxt∈[0,T ] ‖u(t)‖H ≤ c(‖u‖L p([0,T ];X) + ‖u′‖L p′
([0,T ];X ′)) and

the integration-by-parts formula

(u(t2), v(t2))H − (u(t1), v(t1))H =
t2∫

t1

〈u′(t), v(t)〉 + 〈v′(t), u(t)〉 dt

holds for all v ∈ L p([0, T ]; X) with v′ ∈ L p′
([0, T ]; X) and t1, t2 ∈ [0, T ]. In

particular, we have
1

2

d

dt
‖u(t)‖2H = 〈u′(t), u(t)〉

for almost every t ∈ [0, T ].
(ii) If X is compactly embedded in H , 1 < p < ∞, and 1 < q ≤ ∞, then accord-
ing to the Aubin–Lions lemma the inclusion L p([0, T ]; X) ∩ W 1,q([0, T ]; X ′) ⊂
L p([0, T ]; H) is compact.
(iii) For 1 ≤ p < ∞ the space L p([0, T ]; X) is separable. In particular, if ( fn)n∈N ⊂
L p(I ) and (vn)n∈N ⊂ X are dense subsets, then span{ fnvm : n, m ∈ N} is dense in
L p(I ; X).
(iv) If g ∈ L p′

([0, T ]; X ′), then the mapping f �→ ∫ T
0 〈 f (t), g(t)〉 dt , defined

for every f ∈ L p([0, T ]; X), belongs to (L p([0, T ]; X))′ for 1 ≤ p ≤ ∞. If
1 < p < ∞, we have that L p([0, T ]; X) is reflexive provided that X is reflexive. In
particular, for 1 ≤ p < ∞ we have (L p([0, T ]; X))′ = L p′

([0, T ]; X ′).
(v) We have that L2(I ; H) is a Hilbert space.

2.3.3 Existence Theory for Gradient Flows

We consider a Fréchet-differentiable functional I : X → R with DI : X → X ′ and
we want to derive conditions that guarantee existence of solutions for the H -gradient
flow of I formally defined by

∂t u = −∇H I (u), u(0) = u0.

We always let (X, H, X ′) be an evolution triple and assume that an abstract Poincaré
inequality holds, i.e., that for a seminorm | · |X on X we have

‖u‖X ≤ cP (|u|X + ‖u‖H ).

for all u ∈ X .
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Definition 2.9 Given u0 ∈ H , we say that u ∈ L p([0, T ]; X) is a solution of the
H-gradient flow for I if u′ ∈ L p′

([0, T ]; X ′) and for almost every t ∈ [0, T ] and
every v ∈ X , we have that

〈u′(t), v〉 + DI (u)[v] = 0

and u(0) = u0.

Example 2.3 For I (u) = (1/2)
∫
Ω

|∇u|2 dx defined on H1
0 (Ω), the L2(Ω)-gradient

flow is the linear heat equation ∂t u − �u = 0.

We follow the Rothe method to construct solutions. This method consists of three
steps: First, we consider an implicit time discretization that replaces the time deriv-
ative by difference quotients and establishes the existence of approximations. In the
second step, a priori bounds that allow us to extract weakly convergent subsequences
of the approximations as the time-step size tends to zero are proved. Finally, we pass
to the limit and try to show that weak limits are solutions of the gradient flow.

Definition 2.10 The functional I : X → R is called semicoercive if there exist
s > 0, c1 > 0, and c2 ∈ R such that

I (v) ≥ c1|v|sX − c2‖v‖2H
for all v ∈ X .

Proposition 2.1 (Implicit Euler scheme) Assume that I is semicoercive and weakly
lower semicontinuous. Then for every τ > 0 with 4τc2 < 1 and k = 1, 2, . . . , K ,
K = �T/τ�, the functionals I k : X → R,

u �→ I k(u) = 1

2τ
‖u − uk−1‖2H + I (u),

with u0 = u0 have minimizers that satisfy

(dt u
k, v)H + DI (uk)[v] = 0

for all v ∈ X with the backward difference quotient dt uk = (uk − uk−1)/τ .

Proof Since I k is coercive, bounded from below, and weakly lower semicontinuous,
the direct method in the calculus of variations implies the existence of a minimum.
Since I and v �→ ‖v‖2H are Fréchet-differentiable, the minimizers satisfy the asserted
equations. �

Remarks 2.16 (i) More generally, one can consider a pseudomonotone operator A :
X → X ′ and look for a solution uk of the equation (dt uk, v)H + A(uk)[v] = 0 for
all v ∈ X .
(ii) We have that uk is uniquely defined if I k is strictly convex. This is often satisfied
for τ sufficiently small, i.e., if I is semiconvex.
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For the proof of the a priori bounds two important ingredients are required. The
first is based on the binomial formula 2(a − b)a = (a − b)2 + (a2 − b2) and shows
that

1

τ
(uk − uk−1, uk)H = 1

2τ
‖uk − uk−1‖2H + 1

2τ

(‖uk‖2H − ‖uk−1‖2H
)

for k = 1, 2, . . . , K . Equivalently, we have

(dt u
k, uk)H = τ

2
‖dt u

k‖2H + 1

2
dt‖uk‖2H

which is a discrete version of the identity 2〈u′, u〉 = (d/dt)‖u‖2H . The second
ingredient is the following discrete Gronwall lemma.

Lemma 2.2 (Discrete Gronwall lemma) Let (y�)�=0,1,...,L be a sequence of non-
negative real numbers such that for nonnegative real numbers a0, b0, b1, . . . , bL−1
and � = 0, 1, . . . , L, we have

y� ≤ a0 +
�−1∑
k=0

bk yk .

Then we have max�=0,1,...,L y� ≤ a0 exp
(∑�−1

k=0 bk
)
.

Proof The proof follows from an inductive argument. �

We also have to assume a coerciveness property for the mapping DI : X → X ′.

Definition 2.11 We say that DI : X → X ′ is semicoercive and bounded if there
exist p ∈ (1,∞), c′

1 > 0, c′
2 ∈ R, and c′

3 > 0 such that

DI (v)[v] ≥ c′
1|v|p

X − c′
2‖v‖2H

and
‖DI (v)‖X ′ ≤ c′

3(1 + ‖v‖p−1
X )

for all v ∈ X .

Proposition 2.2 (A priori bounds) Suppose that DI : X → X ′ is semicoercive and
bounded. If 4τc′

2 ≤ 1, then we have

max
�=0,1,...,K

‖u�‖H + τ

K∑
k=1

‖uk‖p
X + τ

K∑
k=1

‖dt u
k‖p′

X ′ + τ

K∑
k=1

‖DI (uk)‖p′
X ′ ≤ C0

with a constant C0 > 0 that depends on p, T , u0, cP , c′
1, c′

2, and c′
3.
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Proof Since (dt uk, v)H + DI (uk)[v] = 0 for all v ∈ X , we obtain by choosing
v = uk that

τ

2
‖dt u

k‖2H + 1

2
dt‖uk‖2H + c′

1|uk |p
X − c′

2‖uk‖2H ≤ (dt u
k, uk)H + DI (uk)[uk] = 0.

Multiplication by τ and summation over k = 1, 2, . . . , � for 1 ≤ � ≤ K lead to

1

2
‖u�‖2H + τ

�∑
k=1

τ

2
‖dt u

k‖2H + c′
1τ

�∑
k=1

|uk |p
X ≤ 1

2
‖u0‖2H + c′

2τ

�∑
k=1

‖uk‖2H ,

where we used the telescope effect τ
∑�

k=1 dt‖uk‖2H = ‖u�‖2H − ‖u0‖2H . Since the
second term on the left-hand side is nonnegative and since 4c′

2τ ≤ 1 so that we can
absorb c′

2τ‖u�‖2H on the left-hand side, we find that

1

4
‖u�‖2H + c′

1τ

�∑
k=1

|uk |p
X ≤ 1

2
‖u0‖2H + c′

2τ

�−1∑
k=1

‖uk‖2H .

For � = 0, 1, . . . , K , we set

y� = 1

4
‖u�‖2H + c′

1τ

�∑
k=1

|uk |p
X ,

a0 = (1/2)‖u0‖2H and b = 4c′
2τ so that

y� ≤ a0 +
�−1∑
k=1

byk

and we are in the situation to apply the discrete Gronwall lemma. This shows that

max
�=0,...,K

1

4
‖u�‖2H + c′

1τ

K∑
�=1

|uk |p
X ≤ 1

2
‖u0‖2H exp

(
4c′

2

K−1∑
k=1

τ
) ≤ 1

2
‖u0‖2H exp

(
4c′

2T )

and proves the bound for the first term on the left-hand side. The second bound
follows with the abstract Poincaré inequality ‖u‖X ≤ cP (|u|X + ‖u‖H ) and

‖uk‖p
X ≤ cp

P (|uk |X + ‖uk‖H )p ≤ cp
P2

p−1(|uk |p
X + cp

P‖uk‖p
H

)
.

For the third and fourth term on the left-hand side of the bound, we note that with
the boundedness of DI and (p − 1)p′ = p, it follows that
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τ

L∑
k=1

‖DI (uk)‖p′
X ′ ≤ τ(c′

3)
p′

K∑
k=1

(1 + ‖uk‖p−1
X )p′ ≤ τ(c′

3)
p′
2p′−1

K∑
k=1

(1 + ‖uk‖p
X ),

and the right-hand side is bounded according to the previous bounds. This proves
the fourth estimate and the third bound follows immediately since ‖dt uk‖X ′ =
‖DI (uk)‖X ′ due to the identity (dt uk, v) = −DI (uk)[v] for all v ∈ X . �

To identify the limits of the approximations we define interpolants of the approx-
imations (uk)k=0,...,K .

Definition 2.12 Given a time-step size τ > 0 and a sequence (uk)k=0,...,K ⊂ H for
K = �T/τ�, we set tk = kτ for k = 0, 1, . . . , K and define the piecewise constant
and piecewise affine interpolants uτ

−, u+
τ , ûτ : [0, T ] → H for t ∈ (tk−1, tk) by

u−
τ (t) = uk−1, u+

τ (t) = uk, ûτ (t) = t − tk−1

τ
uk + tk − t

τ
uk−1.

The construction of the interpolants is illustrated in Fig. 2.14.

Remarks 2.17 (i) We have ûτ ∈ W 1,∞([0, T ]; H) with û′
τ = dt uk on (tk−1, tk) for

k = 1, 2, . . . , K . Moreover, u+
τ , u−

τ ∈ L∞([0, T ]; H) and, e.g.,

‖u+
τ ‖p

L p([0,T ];X)
≤ τ

K∑
k=1

‖uk‖p
X

with equality if K τ = T .
(ii) We have u+

τ (t) − u−
τ (t) = τ û′

τ (t) and ûτ (t) = u−
τ (t) + (t − tk−1)̂u′

τ (t) =
u+

τ (t) − (tk − t )̂u′
τ (t) for almost every t ∈ (tk−1, tk).

(iii) If ‖û′
τ‖L1([0,T ];X ′) ≤ c for all τ > 0, then it follows that u+

τ − u−
τ → 0 and

ûτ − u±
τ → 0 in L1([0, T ]; X ′) as τ → 0. In particular, all interpolants have the

same limit if these exists.

Lemma 2.3 (Discrete evolution equation) With the interpolants of the approxima-
tions (uk)k=0,...,K , we have

(̂u′
τ (t), v)H + DI (u+

τ (t))[v] = 0

ttt

ûτ u+τ u−
τ

Fig. 2.14 Continuous interpolant ûτ (left) and piecewise constant interpolants u+
τ (middle) and u−

τ

(right)
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for all v ∈ X and almost every t ∈ [0, T ]. Moreover, we have for all τ > 0

‖u+
τ ‖L∞([0,T ];H)+‖u+

τ ‖L p([0,T ];X)+‖ûτ ‖W 1,p′
([0,T ];X ′)+‖DI (u+

τ )‖L p′
([0,T ];X ′) ≤ C0.

Proof The identity follows directly from (dt uk, v)H + DI (uk)[v] = 0 for k =
1, 2, . . . , K and all v ∈ X with the definitions of the interpolants ûτ and u+

τ . With
the triangle inequality and |t − tk | ≤ τ for t ∈ (tk−1, tk), we observe that

‖ûτ‖L p′
([0,T ];X ′) ≤ cP T 1/p′ ‖u+‖L∞([0,T ];H) + τ‖û′

τ‖L p′
([0,T ];X ′).

The a priori bounds of Proposition 2.2 together with, e.g.,

τ

K∑
k=1

‖uk‖p
X ≥

T∫

0

‖u+
τ ‖p

X dt,

where we used K τ ≥ T , imply the a priori bounds. �

The bounds for the interpolants allow us to select accumulation points.

Proposition 2.3 (Selection of a limit) Assume that X is compactly embedded in
H. Then there exist u ∈ L p([0, T ]; X) ∩ W 1,p′

([0, T ]; X ′) and ξ ∈ L p′
([0, T ]; X ′)

such that for a sequence (τn)n∈N of positive numbers with τn → 0 as n → ∞, we
have

ûτn , uτn ⇀∗ u in L∞([0, T ]; H),

ûτn , uτn ⇀ u in L p([0, T ]; X),

ûτn ⇀ u in W 1,p′
([0, T ]; X ′),

DI (u+
τn

) ⇀ ξ in L p′
([0, T ]; X ′).

We have u ∈ C([0, T ]; H) with u(0) = u0 and

〈u′(t), v〉 + 〈ξ(t), v〉 = 0

for almost every t ∈ [0, T ] and all v ∈ X. In particular, if ξ = DI (u), then u is a
solution of the H-gradient flow for I .

Proof For a sequence (τn)n∈N of positive numbers with τn → 0 as n → ∞, the
a priori bounds yield the existence of weak limits for an appropriate subsequence
which is not relabeled. Due to the bound for û′

τ , theweak limits coincide.Multiplying
the discrete evolution equation of Lemma 2.3 by φ ∈ C([0, T ]) and integrating the
resulting identity over [0, T ] we find that
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T∫

0

〈̂u′
τn

, φv〉 + DI (u+
τn

)[φv] dt = 0

for every v ∈ X . Since φv ∈ L p([0, T ]; X) we can pass to the limit n → ∞ in the
equation and obtain

T∫

0

〈u′, φv〉 + 〈ξ, φv〉 dt = 0.

Since this holds for every φ ∈ C([0, T ])we deduce the asserted equation. The map-
ping v �→v(0)defines a bounded linear operator L p([0, T ]; X)∩W 1,p′

([0, T ]; X ′) →
H which is weakly continuous. Since ûτn (0) = u0 for all n ∈ N, we deduce that
u(0) = u0. By continuous embeddingswe also have u ∈ C([0, T ]; H)which implies
the continuous attainment of the initial data. �

Remark 2.18 The assumed identity ξ = DI (u) in L p′
([0, T ]; X ′), i.e., the con-

vergence DI (u+
τn

) ⇀ DI (u) can in general only be established under additional
conditions on DI and requires special techniques from nonlinear functional analy-
sis, e.g., based on concepts of pseudomonotonicity.

Example 2.4 For F ∈ C1(R) with 0 ≤ F(s) ≤ cF (1+|s|2) and f (s) = F ′(s) such
that | f (s)| ≤ c′

F (1 + |s|), we consider

I (u) = 1

2

∫

Ω

|∇u|2 dx +
∫

Ω

F(u) dx .

Then, for X = H1
0 (Ω) and H = L2(Ω), the conditions of the previous propositions

are satisfied with p = 2 and

DI (u)[v] =
∫

Ω

∇u · ∇v dx +
∫

Ω

f (u)v dx .

Wehaveu+
τn

⇀ u∈L2([0, T ]; H1
0 (Ω)) so that∇u+

τn
⇀ ∇u in L2([0, T ]; L2(Ω;Rd))

and thus
T∫

0

∫

Ω

∇u+
τn

· ∇w dx dt →
T∫

0

∫

Ω

∇u · ∇w dx dt

for all w ∈ L2([0, T ]; H1
0 (Ω)). The compactness of the embedding

L2([0, T ]; H1
0 (Ω)) ∩ W 1,2([0, T ]; H1

0 (Ω)′) → L2([0, T ]; L2(Ω)) = L2([0, T ] × Ω)

in combination with the generalized dominated convergence theorem shows that
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T∫

0

∫

Ω

f (u+
τn

)w dx dt →
T∫

0

∫

Ω

f (u)w dx dt.

Altogether this proves that

T∫

0

DI (u+
τn

)[w] dt →
T∫

0

∫

Ω

∇u · ∇w dx dt +
T∫

0

∫

Ω

f (u)w dx dt,

i.e., ξ = DI (u).

Remarks 2.19 (i) For the semilinear heat equation ∂t u = �u− f (u) of Example 2.4,
one can establish the existence of a solution under more general conditions on f .
Moreover, one can prove stronger a priori bounds and the energy law

I (u(T ′)) +
T ′∫

0

‖u′(t)‖2L2(Ω)
dt ≤ I (u0)

for almost every T ′ ∈ [0, T ] provided u0 ∈ H1
0 (Ω). The key ingredient is the

convexity of I in the highest-order term.
(ii) An alternative method to establish the existence of solutions for gradient flows
is the Galerkin method which is based on a discretization in space. This leads to a
sequence of ordinary differential equations on finite-dimensional spaces and with
appropriate a priori bounds, one can then show under appropriate conditions that the
approximate solutions converge to a solution as the dimension tends to infinity.

2.3.4 Subdifferential Flows

The estimates for discretized gradient flows can be significantly improved if the
functional I is convex, since then we would have

I (uk) + DI (uk)[uk−1 − uk] ≤ I (uk−1).

In particular, choosing v = dt uk in the identity (dt uk, v)H + DI (uk)[v] = 0 gives

τ‖dt u
k‖2H + I (uk) ≤ I (uk−1)

and a summation over k yields the a priori bound I (uL)+τ
∑L

k=1 ‖dt uk‖2H ≤ I (u0).
With these observations it is possible to establish a theory for convex functionals that
are not differentiable. We always consider a Hilbert space H that is identified with
its dual.
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Fig. 2.15 Subdifferential of
the function x �→ |x | at
x = 0; the arrows
s1, s2, s3, s4 indicate
subgradients at 0 which are
the slopes of supporting
hyperplanes at 0

s4

s2
s1

|x|

s3

Definition 2.13 We say that a functional I : H → R ∪ {+∞} belongs to the class
Γ (H) if it is convex, lower semicontinuous, i.e., I (u) ≤ lim infn→∞ I (un)whenever
un → u in H as n → ∞, and proper, i.e., there exists u ∈ H with I (u) ∈ R.

We assume that I ∈ Γ (H) below.

Definition 2.14 The subdifferential ∂ I : H → 2H of I associates to every u ∈ H
the set

∂ I (u) = {v ∈ H : I (w) ≥ I (u) + (v, w − u)H for all w ∈ H}.

The elements in ∂ I (u) are called subgradients of I at u.

Example 2.5 For F(x) = |x |, x ∈ R, we have ∂ F(0) = [−1, 1], cf. Fig. 2.15.

Remarks 2.20 (i) The subdifferential ∂ I (u) consists of all slopes of affine functions
that are below I and that intersect the graph of I at u.
(ii) For all u1, u2 ∈ H and v1 ∈ ∂ I (u1), v2 ∈ ∂ I (u2) we have the monotonicity
estimate

(v1 − v2, u1 − u2)H ≥ 0.

(iii) We have 0 ∈ ∂ I (u) if and only if u ∈ H is a global minimum for I .
(iv) We have ∂ I (u) = {s} for s ∈ H if and only if I is Gâteaux-differentiable at u.
(v) For I, J ∈ Γ (H) we have ∂(I + J ) ⊂ ∂ I + ∂ J , and if there exists a point at
which I and J are finite and I or J is continuous, we have equality.

Theorem 2.7 (Resolvent operator) Let I ∈ Γ (H). For every w ∈ H and λ > 0
there exists a unique u ∈ H with

u + λ∂ I (u) � w.

This defines the resolvent operator u = Rλ(w) = (Id + λ∂ I )−1(w).

Proof For a short proof we make the simplifying but nonrestrictive assumption that

I (v) ≥ −c1 − c2‖v‖H .
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For λ > 0 and w ∈ H we consider the minimization problem defined through the
functional

Iλ,w(u) = 1

2λ
‖u − w‖2H + I (u) = 1

2λ
‖u‖2H − 1

λ
(u, w)H + 1

2λ
‖w‖2H + I (u).

The identity 2(a2 + b2) = (a + b)2 + (a − b)2 and the convexity of I show that for
u1, u2 ∈ H we have

1

2
Iλ,w(u1) + 1

2
Iλ,w(u2) − Iλ,w

(u1 + u2

2

)

= 1

8λ
‖u1 − u2‖2H + 1

2
I (u1) + 1

2
I (u2) − I

(u1 + u2

2

) ≥ 1

8λ

∥∥u1 − u2
∥∥2

H ,

i.e., Iλ,w is strictly convex. Thus, if Iλ,w has a minimizer, then it is unique. Moreover,
u ∈ H minimizes Iλ,w if and only if 0 ∈ ∂ Iλ,w(u) = (1/λ)(u−w)+∂ I (u). It remains
to show that there exists a minimizer. Since Iλ,w is convex and lower semicontinuous
it follows that I is weakly lower semicontinuous. We also have that Iλ,w is coercive
since two applications of Young’s inequality lead to

Iλ,w(v) ≥ 1

2λ
‖v‖2H − 1

λ
(v, w)H + 1

2λ
‖w‖2H − c1 − c2‖v‖H

≥ 1

4λ
‖v‖2H − 4

λ
‖w‖2H − c1 − 4λc22.

This estimate also proves the boundedness from below. The direct method in the
calculus of variations thus implies the existence of a minimizer. �

Definition 2.15 The Yosida regularization Aλ : H → H is for w ∈ H defined by
Aλ(w) = (1/λ)(w − Rλ(w)).

Remark 2.21 The resolvent operator satisfies limλ→0 Rλ(w) = w. We have that Aλ

is Lipschitz continuous with Lipschitz constant 2/λ and approximates ∂ I in the sense
that Aλ(w) ∈ ∂ I (Rλw).

The theorem about the resolvent operator implies that for a time-step size τ > 0
and an initial u0 ∈ H , there exists a unique sequence (uk)k=0,...,L ⊂ H with

dt u
k ∈ −∂ I (uk)

since this is equivalent to uk = Rτ (uk−1). We expect that as τ → 0 the approxima-
tions converge to a solution of the subdifferential flow

u′ ∈ −∂ I (u), u(0) = u0.

Related a priori bounds that permit a corresponding passage to a limit will be dis-
cussed in Chap.4.

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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Theorem 2.8 (Subdifferential flow, [2]) For every u0 ∈ H such that ∂ I (u0) �=
∅ and every T > 0, there exists a unique function u ∈ C([0, T ]; H) with u′ ∈
L∞([0, T ]; H) such that u(0) = u0, ∂ I (u(t)) �= ∅ for every t ∈ [0, T ], and

u′(t) ∈ −∂ I (u(t))

for almost every t ∈ [0, T ].
Proof The existence of a solution is established by considering for every λ > 0 the
problem

∂t uλ = −Aλ(uλ), uλ(0) = u0

and studying the limit λ → 0. Uniqueness of solutions follows from the convexity
of I , i.e., if u1 and u2 are solutions then the monotonicity property of I shows that

−(u′
1(t) − u′

2(t), u1(t) − u2(t))H ≥ 0

for almost every t ∈ [0, T ] and this implies that

1

2

d

dt
‖(u1 − u2)(t)‖2H = (u′

1(t) − u′
2(t), u1(t) − u2(t))H ≤ 0.

Since u1(0) = u2(0) we deduce that u1(t) = u2(t) for every t ∈ [0, T ]. �
Remarks 2.22 (i) Negative subgradients are in general no descent directions. For
the subdifferential flow one can however show that u′(t) = −∂0 I (u(t)) for almost
every t ∈ [0, T ], where ∂0 I (v) is the subgradient s ∈ ∂ I (v)with minimal norm, i.e.,
‖∂0 I (v)‖H = minr∈∂ I (v) ‖r‖H .
(ii) If ∂ I (u0) = ∅, then there exists a unique solution u ∈ C([0, T ]; H) such that
t1/2u′ ∈ L2([0, T ]; H).
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Chapter 3
FEM for Linear Problems

3.1 Interpolation with Finite Elements

We review in this section the basic framework for analyzing finite element methods.
We refer the reader to the textbooks and lecture notes [2, 3, 5, 6, 8–11] for further
details. A review of the historical development of the finite element method can be
found in [7].

3.1.1 Abstract Finite Elements

For a set T ⊂ R
d and an integer k ≥ 0, we let Pk(T ) denote the set of polynomials

of total degree less than or equal to k restricted to T .

Definition 3.1 A finite element is a triple (T, PT , KT ) consisting of a closed set
T ⊂ R

d , a space of polynomials PT with dim PT = R, and a set KT = {χ1, . . . , χR}
of linear functionals on C∞(T ) such that (a) if for q ∈ PT we have χ(q) = 0 for
all χ ∈ KT , then q = 0, (b) there exists m ≥ 1 with Pm−1(T ) ⊂ PT , and (c) there
exists p ∈ [1,∞] such that every χ ∈ KT extends to a bounded linear operator on
W m,p(T ).

Definition 3.2 Given a finite element (T, PT , KT ) and v ∈ W m,p(T ) the interpolant
IT v ∈ PT is the uniquely defined function in PT that satisfies χ(IT v) = χ(v) for all
χ ∈ KT .

Example 3.1 For a line segment, triangle, or tetrahedronT = conv{z0, z1, . . . , zd} ⊂
R

d , d = 1, 2, 3, respectively, set PT = P1(T ), KT = {χ0, χ1, . . . , χd} with
χ j (v) = v(z j ) for j = 0, 1, . . . , d and v ∈ C∞(T ). Then (T, PT , KT ) is a finite
element with m = 2 and p = 2 called a P1 element.

© Springer International Publishing Switzerland 2015
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46 3 FEM for Linear Problems

The properties of interpolants can be analyzed with the Bramble–Hilbert lemma.

Theorem 3.1 (Bramble–Hilbert lemma) Let 1 ≤ p < ∞ and let F : W m,p(T ) →
R be a bounded and quasisublinear functional, i.e., there exist c1, c2 > 0 such
that for all v, w ∈ W m,p(T ), we have |F(v)| ≤ c1‖v‖W m,p(T ) and |F(v + w)| ≤
c2(|F(v)| + |F(w)|) and assume that F vanishes on Pm−1(T ). Then there exists
c0 > 0 such that

|F(v)| ≤ c0c1c2|Dmv|L p(T )

for all v ∈ W m,p(T ).

Proof Let v ∈ W m,p(T ). For all q ∈ Pm−1(T ) we have that

|F(v)| ≤ c2|F(v − q)| ≤ c1c2‖v − q‖W m,p(T ).

There exists a uniquely defined q ∈ Pm−1(T ) satisfying
∫

T Dα(v − q) dx = 0
for all α ∈ N

d with |α| < m and a generalized Poincaré inequality implies the
estimate ‖v − q‖W m,p(T ) ≤ c0‖Dm(v − q)‖L p(T ). Since Dmq = 0 we deduce the
assertion. �
Corollary 3.1 (Interpolation stability) Let (T, PT , KT ) be a finite element and | · |S

a seminorm on W m,p(T ) with |v|S ≤ cS‖v‖W m,p(T ) for all v ∈ W m,p(T ). Then we
have

|v − IT v|S ≤ cS‖Dmv‖L p(T )

for all v ∈ W m,p(T ).

Proof We define F(v) = |v − IT v|S and note that F is sublinear. There exists a
uniquely defined dual basis (ψ1, . . . , ψR) ⊂ PT with χ j (ψk) = δ jk for 1 ≤ j, k ≤
R. We then have IT (v) = ∑R

j=1 χ j (v)ψ j and using |χ j (v)| ≤ cb‖v‖W m,p(T ) for all
v ∈ W m,p(T ) and j = 1, . . . , R, it follows that

|F(v)| ≤ |v|S + |IT v|S ≤ (cS + cb max
j=1,...,R

|ψ j |S)‖v‖W m,p(T ),

i.e., F is bounded. Obviously, F(q) = 0 for all q ∈ PT , and hence the conditions of
the Bramble–Hilbert lemma are satisfied. �

3.1.2 P1 Finite Elements

We consider a bounded, polyhedral Lipschitz domain Ω ⊂ R
d and a given partition

ΓD ∪ ΓN = ∂Ω .

Definition 3.3 A(conforming) triangulationTh ofΩ is a setTh = {T1, T2, . . . , TL}
of closed intervals, triangles, or tetrahedra for d = 1, 2, 3, respectively, called ele-
ments, such that Ω = ∪T ∈Th T and the intersection of distinct T1, T2 ∈ Th is either
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Fig. 3.1 Uniform conforming triangulation, nonconforming triangulation with a hanging node,
and locally refined conforming triangulation (from left to right)

Fig. 3.2 Diameter hT and
inner radius ρT of a triangle
T (left); affine transformation
from a reference element
(right)

hT

T ̂T

Φ T
T

empty or an entire subsimplex, and the sets ΓD and Γ N are matched exactly by the
union of sides of elements, cf. Fig. 3.1.

For an element T ∈ Th we set hT = diam(T ) and let ρT denote the diameter of
the largest ball contained in T , cf. Fig. 3.2. The importance of the Bramble–Hilbert
lemma lies in the scaling properties of the seminorm in W m,p(T ) with respect to
affine transformations.

Proposition 3.1 (Affine transformations) Let T̂ = conv{̂z0, ẑ1, . . . , ẑd}, where
ẑ0 = 0 and ẑ j = e j with canonical basis vectors e j ∈ R

d for j = 1, 2, . . . , d.
For a triangulation Th of Ω and every T ∈ Th, there exists an affine diffeomor-
phism ΦT : T̂ → T , ΦT (̂x) = Bx̂ + b, with

max
i, j=1,...,d

|bi j | ≤ chT , max
i, j=1,...,d

|b(−1)
i j | ≤ cρ−1

T

for the entries bi j and b(−1)
i j of B and B−1, i, j = 1, 2, . . . , d. For v ∈ W m,p(T )

and v̂ = v ◦ ΦT ∈ W m,p(T̂ ), we have

|v|W k,p(T ) ≤ cρ−k
T | det B|1/p |̂v|W k,p(T̂ ), |̂v|W k,p(T̂ ) ≤ ch−k

T | det B|−1/p|v|W k,p(T );

in particular |v − IT v|W k,p(T ) ≤ cI (hm
T /ρk

T )|v|W m,p(T ).

Proof The proof follows from the transformation formula

∫

T

|Dαv|p dx = | det DΦT |p
∫

T̂

|(Dαv) ◦ ΦT |p dx

and analogous identities for v̂. �
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hT1 hT2hT

T T1 T2ε ε

Fig. 3.3 A triangle that violates the minimum angle condition if ε/hT → 0 (left) and triangles
that satisfy the maximum angle condition even for ε/hT�

→ 0, � = 1, 2 (right)

Definition 3.4 A family of (conforming) triangulations (Th)h>0 is called (shape)
regular if there exists a constant c > 0 such that suph>0 supT ∈Th

hT /ρT ≤ c.

The index h in a family of triangulations (Th)h>0 usually refers to a characteristic
ormaximal size of the elements inTh , e.g., it is typically assumed thatmaxT ∈Th hT ≤
ch for all h > 0. Nevertheless, for a sequence of locally refined triangulations, we
may havemaxT ∈Th hT = maxT ′∈Th′ hT ′ for two different triangulationsTh andTh′ .
In this case h may refer to an average mesh-size.

Remark 3.1 For shape regularity, the minimum angle condition, requiring that the
angles of triangles be uniformly bounded from below by a positive number, is suf-
ficient. A weaker maximum angle condition is sufficient for a robust interpolation
estimate.

Example 3.2 We consider the triangulationsT1 andT2 displayed in Fig. 3.3 and the
function u(x1, x2) = 1− x21 for x = (x1, x2) ∈ R

2. For the triangulation T ε
1 = {T }

with
T = conv{(−1, 0), (1, 0), (0, ε)},

we have I1u(x1, x2) = x2/ε. For the triangulation T ε
2 = {T1, T2} with

T1 = conv{(−1, 0), (0, 0), (0, ε)}, T2 = conv{(0, 0), (1, 0), (0, ε)},

we have I2u(x1, x2) = 1 − |x1|.

Definition 3.5 For a triangulation Th , we let Nh denote the set of vertices of ele-
ments called nodes andSh to be the set of (d − 1)-dimensional sides of elements in
Th , i.e., endpoints of intervals, edges of triangles, or faces of tetrahedra if d = 1, 2, 3,
respectively.

The notation is illustrated in Fig. 3.4.

Definition 3.6 The P1-finite element space subordinated to a triangulation Th is
the space

S 1(Th) = {vh ∈ C(Ω) : vh |T ∈ P1(T ) for all T ∈ Th}.

The subset of functions inS 1(Th), satisfying homogeneous Dirichlet conditions on
a subset ΓD ⊂ ∂Ω , is defined as
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T ∈ h

S1,S2 ∈ h

z1,z2 ∈ h

Fig. 3.4 Element T ∈ Th , nodes z1, z2 ∈ Nh , and sides S1, S2 ∈ Sh (left), nodal basis functions
ϕz (middle), and supports ωz of nodal basis functions ϕz for different nodes z ∈ Nh (right)

S 1
D(Th) = S 1(Th) ∩ H1

D(Ω).

If ΓD = ∂Ω , we also writeS 1
0 (Th) instead ofS 1

D(Th). The nodal basis ofS 1(Th)

is the family (ϕz : z ∈ Nh) with functions ϕz ∈ S 1(Th) satisfying ϕz(y) = δzy for
all z, y ∈ Nh . The nodal interpolant of a function v ∈ C(Ω) is defined by

Ihv =
∑

z∈Nh

v(z)ϕz .

Theorem 3.2 (Nodal interpolation estimates) For a regular family of triangulations
(Th)h>0 such that maxT ∈Th hT ≤ ch and v ∈ W 2,p(Ω), we have that Ihv ∈
S 1(Th), and for every 1 ≤ p ≤ ∞ with p > d/2 if d ≥ 3, we have

h−1‖v − Ihv‖L p(Ω) + ‖∇(v − Ihv)‖L p(Ω) ≤ ch‖D2v‖W 2,p(Ω).

Moreover, if v|ΓD = 0, then Ihv|ΓD = 0.

Proof Estimates follow from the stability of interpolation and the transformation
estimates if 1 ≤ p < ∞. The case p = ∞ is treated directly using that functions in
W 1,∞(Ω) are Lipschitz continuous. �

Remark 3.2 For p = ∞ we also have ‖v − Ihv‖L∞(Ω) ≤ ch‖∇v‖L∞(Ω).

3.1.3 Projection and Quasi-Interpolation Operators

The nodal interpolation operator Ih can only be applied to continuous functions
and this is often too restrictive in practice. A way to avoid this is to regularize a
function by mollification, but this is also often not practical. The difficulties can be
circumvented by using projection and quasi-interpolation operators. We assume that
ΓD has positive surface measure.

Definition 3.7 The L2- and H1-projections of functions v ∈ L2(Ω) and w ∈
H1
D(Ω) are the uniquely defined functions Phv ∈ S 1(Th) and Qhw ∈ S 1

D(Th)

that satisfy
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∫

Ω

(Phv − v)φh dx = 0,
∫

Ω

∇(Qhw − w) · ∇ψh dx = 0

for all φh ∈ S 1(Th) and all ψh ∈ S 1
D(Th), respectively.

Remark 3.3 The operators Ph and Qh are linear and bounded as operators on L2(Ω)

and H1
D(Ω) with operator norm 1, respectively. They are equivalently characterized

by the best-approximation properties

‖v − Phv‖ = min
φ∈S 1(Th)

‖v − φ‖,
‖∇(w − Qhw)‖ = min

ψh∈S 1
D(Th)

‖∇(w − ψh)‖.

In the absence of Dirichlet boundary conditions, the H1-norm can be used instead
of the seminorm to define Qh .

Lemma 3.1 (Projection error) If w ∈ H2(Ω) ∩ H1
D(Ω), then we have

‖w − Phw‖ ≤ ch2‖D2w‖, ‖∇(w − Qhw)‖ ≤ ch‖D2w‖.

Proof The estimates follow from the best-approximation properties and estimates
for nodal interpolation. �

Remark 3.4 We will show below that under certain conditions on Ω , the Aubin–
Nitsche lemma implies ‖w − Qhw‖ ≤ ch2‖D2w‖.

The operators Ph and Qh can be applied to a large class of possibly discontin-
uous functions and their orthogonality property is important in many estimates. A
disadvantage is the global character of their construction. An intermediate solution
between interpolation and projection is provided by quasiinterpolants.

Definition 3.8 The Clément interpolant Jhv ∈ S 1
D(Th) of a function v ∈ L1(Ω)

is defined by Jhv = ∑
z∈Nh

vzϕz , where

vz =
{

|ωz |−1
∫
ωz

v dx if z ∈ Nh\ΓD,

0 if z ∈ Nh ∩ ΓD,

with the node patch ωz = suppϕz for every z ∈ Nh with diameter hz = diam(ωz).

Remark 3.5 The coefficients (vz)z∈Nh in the definition of Jhv are equivalently
defined by local projections onto constants, i.e., for every z ∈ Nh\ΓD we have that
vz is the unique minimum of the mapping c �→ ‖v − c‖2

L2(ωz)
.

Some local estimates are required to analyze the approximation properties ofJh .
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Lemma 3.2 (Local Poincaré inequality) There exists c > 0 such that for all z ∈ Nh

and v ∈ H1
D(Ω), we have

‖v − vz‖L2(ωz)
≤ chz‖∇v‖L2(ωz)

.

The constant c depends on the shapes of the sets (ωz : z ∈ Nh).

Proof Assume first that hz = 1. If z ∈ Nh\ΓD, then we have
∫
ωz

(v−vz) dx = 0 and
the Poincaré inequality implies that ‖v − vz‖L2(ωz)

≤ c‖∇v‖L2(ωz)
. If z ∈ Nh ∩ ΓD

then ωz ∩ΓD has positive surface measure and the estimate follows from Friedrichs’
inequality. A transformation argument shows the dependence on hz . �

Lemma 3.3 (Trace inequality) Let T ∈ Th and S ∈ Sh such that S ⊂ ∂T . There
exists c > 0 such that for all v ∈ H1(T ), we have

‖v‖L2(S) ≤ c
(
h−1/2

S ‖v‖L2(T ) + h1/2
S ‖∇v‖L2(T )

)
.

Proof The proof uses the density of smooth functions and a one-dimensional
integration-by-parts formula to express function values on S by integrals over line
segments in T . �

Remark 3.6 For a regular family of triangulations, there exists an h-independent
constant c > 0 such that c−1hT ≤ hz ≤ chT if z ∈ Nh and T ∈ Th with z ∈ T .
If the triangulations are nested, i.e., obtained by successive refinement, then only a
finite number of shapes of patches can occur.

Theorem 3.3 (Clément interpolation) There exists c > 0 such that for all v ∈
H1
D(Ω), we have

‖∇Jhv‖ + ‖h−1
T (v − Jhv)‖ + ‖h−1/2

S (v − Jhv)‖L2(∪Sh) ≤ c‖∇v‖,

where hT ∈ L∞(Ω) is defined by hT |T = hT and hS ∈ L∞(∪Sh) by hS |S =
diam(S) for every S ∈ Sh.

Proof The nodal basis functions form a partition of unity, i.e.,
∑

z∈Nh
ϕz = 1

almost everywhere in Ω , with finite overlap. Moreover, we have ‖ϕz‖L∞(ωz) = 1
and ‖∇ϕz‖L∞(ωz) ≤ ch−1

z for every z ∈ Nh . Using
∑

z∈Nh
∇ϕz = 0 and the local

Poincaré inequality, we have

‖∇Jhv‖2 =
∫

Ω

∑
z∈Nh

(vz − v)∇ϕz · ∇Jhv dx

≤
∑

z∈Nh

‖vz − v‖L2(ωz)
‖∇ϕz‖L∞(ωz)‖∇Jhv‖L2(ωz)

≤ c
∑

z∈Nh

‖∇v‖L2(ωz)
‖∇Jhv‖L2(ωz)
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≤ c
( ∑

z∈Nh

‖∇v‖2L2(ωz)

)1/2( ∑
z∈Nh

‖∇Jhv‖2L2(ωz)

)1/2

≤ c‖∇v‖‖∇Jhv‖

which is the first estimate. To prove the second estimate, we letψ ∈ L2(Ω) and note
that we have

∫

Ω

(v − Jhv)ψ dx =
∑

z∈Nh

∫

ωz

ϕz(v − vz)ψ dx

≤
∑

z∈Nh

‖ϕz‖L2(ωz)
‖v − vz‖L2(ωz)

‖ψ‖L2(ωz)

≤ c
( ∑

z∈Nh

‖∇v‖2L2(ωz)

)1/2( ∑
z∈Nh

hz‖ψ‖2L2(ωz)

)1/2

≤ c‖∇v‖‖hT ψ‖.

The choice of ψ = h−2
T (v − Jhv) implies the second estimate. With the trace

inequality we verify that for every S ∈ Sh with neighboring element TS ∈ Th , we
have

c−1h−1
S ‖v − Jhv‖2L2(S)

≤ h−1
S ‖v − Jhv‖2L2(TS)

+ hS‖∇(v − Jhv)‖2L2(TS)
.

A summation over S ∈ Sh combined with the first two estimates imply the esti-
mate. �

Remarks 3.7 (i) The Clément interpolant Jh is not a projection operator, i.e., in
general we haveJhvh �= vh for vh ∈ S 1

D(Th). Certain modifications of the operator
guarantee this property.
(ii) The constant in the theorem remains bounded for a regular family of nested
triangulations.
(iii) The Bramble–Hilbert lemma implies the local approximation estimate

‖v − J j v‖L2(T ) + h−1
T ‖∇(v − Jhv)‖L2(T ) ≤ ch2

T ‖D2v‖L2(ωT )

for v ∈ H2(ωT ) with ωT = ∪z∈Nh∩Th ωz .
(iv) The estimates remain valid for ΓD = ∅ and exponents p ∈ (1,∞).

3.1.4 Other Estimates

We collect some useful estimates for functions inS 1(Th).
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Lemma 3.4 (Norm equivalence) For every 1 ≤ p < ∞ there exists c > 0 such that
for all vh ∈ S 1(Th), we have

c−1‖vh‖L p(Ω) ≤
( ∑

z∈Nh

hd
z |vh(z)|p

)1/p ≤ c‖vh‖L p(Ω).

Moreover, we have ‖vh‖L∞(Ω) = maxz∈Nh |vh(z)| for every vh ∈ S 1(Th).

Proof For every T ∈ Th the expressions ‖vh‖L p(T ) and
(
hd

T

∑
z∈Nh∩T |vh(z)|p

)1/p

are norms on the finite-dimensional spaceS 1(Th)|T . Hence they are equivalent and
a transformation argument shows that the constant is independent of hT and hz . The
asserted estimate follows from a summation over T ∈ Th . �

Definition 3.9 A family of triangulations (Th)h>0 is called quasiuniform if there
exists c > 0 such that c−1h ≤ hT ≤ ch for all h > 0 and all T ∈ Th .

Lemma 3.5 (Inverse estimates) For vh ∈ S 1(Th) and 1 ≤ r, p ≤ ∞ we have

‖∇vh‖L p(T ) ≤ ch−1
T ‖vh‖L p(T )

and
‖vh‖L p(T ) ≤ chd(r−p)/(pr)

T ‖vh‖Lr (T ).

If the family (Th)h>0 is quasiuniform, then we have

‖∇vh‖L p(Ω) ≤ ch−1‖vh‖L p(Ω)

and
‖vh‖L p(Ω) ≤ chmin{0,d(r−p)/(pr)}‖vh‖Lr (Ω)

Proof To prove the first estimate, consider the space S 1(Th)|T /R, i.e., functions
vh ∈ S 1(Th) with

∫
T vh dx = 0. The expressions ‖∇vh‖L p(T ) and h−1

T ‖vh‖L p(T )

are equivalent norms on the finite-dimensional space S 1(Th)|T /R. Using the esti-
mate ‖vh − vh‖L p(T ) ≤ ‖vh‖L p(T ) for vh ∈ S 1

D(Th) and vh = |T |−1
∫

T vh dx , a
transformation argument proves the first estimate. A similar argument proves the
second estimate. The third estimate follows from a summation of the first estimate
over T ∈ Th and h−1

T ≤ ch−1 due to the assumed quasiuniformity of Th . To prove
the last estimate we first note that it follows directly from Hölder’s inequality if
p ≥ r . Otherwise, we use

(∑L
j=1 |x j |r

)1/r ≤ ( ∑L
j=1 |x j |p

)1/p for every L ∈ N

and x ∈ R
L and deduce that

( ∑
T ∈Th

‖vh‖p
Lr (T )

)1/p

≤
( ∑

T ∈Th

‖vh‖r
Lr (T )

)1/r

= ‖vh‖Lr (Ω).
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With the corresponding elementwise estimates, this implies the global estimate for
quasiuniform triangulations. �

Remark 3.8 For quasiuniform triangulations we also have the inverse estimate

‖vh‖L∞(Ω) ≤ ch1−d/2 log h−1‖vh‖W 1,2(Ω).

A proof follows from the Sobolev estimate ‖v‖L p(Ω) ≤ cp‖v‖W 1,q (Ω) for 1 ≤ q < d
and p = dq/(d − q), the choice of q = d − | log h|−1, and the inverse estimates of
the lemma.

The union of a family of finite element spaces
(
S 1(Th)

)
h>0 is dense in W 1,p(Ω)

for 1 ≤ p < ∞.

Lemma 3.6 (Density) For 1 ≤ p < ∞ and v ∈ W 1,p(Ω) there exists a sequence
(vh)h>0 ⊂ W 1,p(Ω) with vh ∈ S 1(Th) for every h > 0 such that vh → v in
W 1,p(Ω) as h → 0.

Proof Assume that 1 ≤ p < ∞with p > d/2 if d ≥ 3. The set C∞(Ω)∩ W 1,p(Ω)

is dense in W 1,p(Ω) and for ε > 0wemay choose vε ∈ C∞(Ω)∩W 1,p(Ω) such that
‖v−vε‖W 1,p(Ω) ≤ ε/2 and ‖D2vε‖L p(Ω) ≤ cε−1‖∇v‖L p(Ω). Setting vh = Ihvε, we
have ‖vh − vε‖W 1,p(Ω) ≤ h‖D2vε‖L p(Ω) and for h sufficiently small, it follows that

‖vh − v‖W 1,p(Ω) ≤ ε. If p ≤ d/2 we may use that ‖D2vε‖ ≤ cε−1−d/p′ ‖v‖W 1,p(Ω)

to verify the statement. �

With the density of finite element functions it follows that projections satisfy a
super-approximation property.

Corollary 3.2 (Super-approximation) For every v ∈ H1(Ω) we have ‖v − Phv‖ =
o(h) as h → 0, i.e., for every ε > 0 there exists h0 > 0 such that ‖v − Phv‖ ≤ εh
for all 0 < h ≤ h0.

Proof Let ε > 0. The difference v − Phv is orthogonal to the subspace S 1(Th) in
L2(Ω) and therefore we have

‖v − Phv‖2 =
∫

Ω

(v − Phv)(v − Phv − wh) dx

for all wh ∈ S 1
D(Th). Because of the previous lemma there exists h0 > 0 and

vh ∈ S 1(Th) such that ‖∇(v − vh)‖ ≤ ε for all 0 < h ≤ h0. With the choice of the
function wh = vh − Phv + Jh(v − vh) we have

‖v − Phv‖2 ≤ ‖v − Phv‖‖(v − vh) − Jh(v − vh)‖.

With the estimates for the Clément interpolant (generalized to the case ΓD = ∅) we
deduce
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‖(v − vh) − Jh(v − vh)‖ ≤ ch‖∇(v − vh)‖

and the combination of the estimates implies the statement. �

For a polynomial function, a Poincaré inequality holds if the function vanishes at
a single point.

Lemma 3.7 (Discrete Poincaré inequality) Let T ∈ Th, z ∈ T ∩ Nh, 1 ≤ p ≤ ∞,
and k ∈ N. There exists a constant cT > 0 that is independent of the diameter of T
such that for all vh ∈ Pk(T ) with vh(z) = 0, we have

‖vh‖L p(T ) ≤ chT ‖∇vh‖L p(T ).

Proof If k = 1, the proof follows from the fact that for x ∈ T , we have

vh(x) = vh(z) + ∇vh |T · (x − z).

If k ≥ 1, we argue by contradiction and let (w j
h) j∈N be a sequence in Pk(T )

such that w j
h(z) = 0 for all j ∈ N and 1 = ‖w j

h‖L p(T ) > jhT ‖∇w j
h‖L p(T ). The

bounded sequence (w j
h) j∈N has a convergent subsequence with limit wh ∈ Pk(T )

satisfying wh(z)= 0. The triangle inequality and an inverse estimate imply that
‖∇wh‖L p(T ) = 0, i.e., that wh is constant with value 0. This contradicts ‖wh‖L p(T ) =
lim j→∞ ‖w j

h‖L p(T ) = 1. Hence there exists a constant c > 0, so that the asserted
estimate holds. A scaling argument proves that c is independent of hT . �

3.2 Approximation of the Poisson Problem

Given a bounded, polyhedral Lipschitz domain Ω ⊂ R
d , a closed subset ΓD ⊂ ∂Ω

with positive surfacemeasure,uD ∈ C(ΓD)withuD = ũD|ΓD for some ũD ∈ H1(Ω),
g ∈ L2(ΓN), and f ∈ L2(Ω), we consider the boundary value problem

−�u = f in Ω, u|ΓD = uD, ∂nu|ΓN = g.

By decomposing u = ũ + ũD with ũ ∈ H1
D(Ω) and replacing f and g by f + �ũD

and g − ∂nũD, respectively, provided ũD ∈ H2(Ω) we may and will assume that
uD = 0 unless stated otherwise. Within this setting we review standard concepts for
the numerical analysis of finite element methods for the elliptic model problem, and
refer the reader to [2, 3, 11] for further details.
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3.2.1 Variational Formulation

The boundary value problem is the strong form of the Euler–Lagrange equations of
the minimization problem defined by the functional

I (u) = 1

2

∫

Ω

|∇u|2 dx −
∫

Ω

f u dx −
∫

ΓN

gu ds

for u ∈ H1
D(Ω), and the direct method in the calculus of variations implies the

existence of a unique solution u ∈ H1
D(Ω). The weak form of the Euler–Lagrange

equations states that a minimizer u ∈ H1
D(Ω) satisfies

∫

Ω

∇u · ∇v dx =
∫

Ω

f v dx +
∫

ΓD

gv ds

for all v ∈ H1
D(Ω). Equivalently, the Lax-Milgram lemma shows the existence of a

unique solution of theweak form of the Euler-Lagrange equations. For this, it suffices
to realize, with the help of Poincaré and Hölder inequalities, that the bilinear form
defined for v, w ∈ H1

D(Ω) by

a(v, w) =
∫

Ω

∇v · ∇w dx

is bounded and coercive on H1
D(Ω) × H1

D(Ω) and that the right-hand side of the
weak formulation defines a bounded linear functional on H1

D(Ω).

Theorem 3.4 (Existence and stability) There exists a unique minimizer u ∈ H1
D(Ω)

of the functional I which solves the weak form of the Euler–Lagrange equations and
satisfies

‖u‖H1(Ω) ≤ c(‖ f ‖ + ‖g‖L2(ΓN)).

The theorem implies that the solution operator is bounded as a mapping L2(Ω)×
L2(ΓN) → H1(Ω). In certain situations the solution operator attains its values in
H1
D(Ω) ∩ H2(Ω).

Definition 3.10 The Poisson problem with homogeneous Dirichlet boundary con-
ditions is called H2-regular if there exists a constant c > 0 such that

‖u‖H2(Ω) ≤ c(‖ f ‖ + ‖g‖L2(ΓN)).

Example 3.3 If Ω ⊂ R
2 is convex and ΓD = ∂Ω , then the Poisson problem is

H2-regular.
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3.2.2 Error Estimates

For a shape-regular but not necessarily quasiuniform family of conforming
triangulations, theGalerkin approximation of the Poisson problem is for every h > 0
defined as the minimizer of the energy functional I restricted to S 1

D(Th), or equiv-
alently as the unique function uh ∈ S 1

D(Th) that satisfies

∫

Ω

∇uh · ∇vh dx =
∫

Ω

f vh dx +
∫

ΓN

gvh ds

for all vh ∈ S 1
D(Th). Existence and uniqueness of uh are direct consequences of the

Lax–Milgram lemma. An important property of the Galerkin approximation uh ∈
S 1

D(Th) is that the approximation error u − uh satisfies the Galerkin orthogonality

∫

Ω

∇(u − uh) · ∇vh dx = 0

for all vh ∈ S 1
D(Th). The interpretation of this identity is that uh ∈ S 1

D(Th) is
the H1-projection of the exact solution u ∈ H1

D(Ω) onto the subspace S 1
D(Th). In

particular, it satisfies a (quasi-) best-approximation property or, more generally, the
conditions of Céa’s lemma are satisfied, i.e., we have

‖∇(u − uh)‖ ≤ inf
vh∈S 1

D(Th)

‖∇(u − vh)‖.

The density of finite element spaces in H1
D(Ω) implies convergence uh → u in

H1
D(Ω) as h → 0 and if u ∈ H2(Ω), we obtain a convergence rate.

Corollary 3.3 (Approximation error) If u ∈ H2(Ω) ∩ H1
D(Ω), then we have

‖∇(u − uh)‖ ≤ ch‖D2u‖.

Proof The error estimate follows from the best-approximation property and the nodal
interpolation estimates. �

Remarks 3.9 (i) The error estimate is special due to the fact that the approximation
uh is the H1-projection of the exact solution, i.e., uh = Qhu. Amore general concept
is based on a consistency property of the discretization and a stability estimate for
the numerical method.
(ii) For wh ∈ S 1

0 (Th) the discrete Laplace operator −�hwh ∈ S 1
0 (Th) is the

uniquely defined function that satisfies

(−�hwh, vh) = (∇vh,∇wh)
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for all wh ∈ S 1
0 (Th). In particular, if ΓD = ∂Ω , the Galerkin approximation

uh ∈ S 1
0 (Th) of the Poisson problem satisfies −�huh = Ph,0 f , where Ph,0 f

is the L2-projection of f onto S 1
0 (Th).

For the proof of optimal error estimates in L2(Ω), a stronger assumption than
u ∈ H2(Ω) is required, namely that the problem be H2-regular. In this case, the
unique weak solution z ∈ H1

D(Ω) of the Poisson problem

−�z = e in Ω, z|ΓD = 0, ∂nz = 0 on ΓN

with e = u − uh is a strong solution and satisfies ‖D2z‖ ≤ c‖e‖. Green’s formula
and Galerkin orthogonality yield that, for every zh ∈ S 1

D(Th), we have

∫

Ω

e2 dx =
∫

Ω

e(−�z) dx =
∫

Ω

∇e · ∇z dx =
∫

Ω

∇e · ∇(z − zh) dx .

With Hölder’s inequality, the assumed bound for ‖D2z‖, and the choice zh = Ihz
we find that

‖e‖2 ≤ ‖∇e‖‖∇(z − zh)‖
≤ ch‖∇e‖‖D2z‖ ≤ ch‖∇e‖‖e‖.

Incorporating the estimate ‖∇e‖ ≤ ch‖D2u‖ proves the following result.

Theorem 3.5 (Aubin–Nitsche lemma) If the Poisson problem is H2-regular, then

‖u − uh‖ ≤ ch2‖D2u‖.

Remarks 3.10 (i) The H1-error estimate can be written in the form ‖∇(u − uh)‖ ≤
c‖hT D2u‖ and motivates the use of a small local mesh-size where D2u is large.
Such a localization is only partially possible for the L2-error estimate.
(ii) By interpolating Green’s function associated to the Poisson problem on Ω ⊂ R

2

with ΓD = ∂Ω , one can show that if the Poisson problem is H2-regular, if Th is
quasiuniform, and if u ∈ C2(Ω), then we have

‖u − uh‖L∞(Ω) ≤ ch2(1 + | log h|)‖D2u‖L∞(Ω).

Weclose the discussion of approximation errorswith ana posteriori error estimate
that bounds the approximation error in H1(Ω) by computable quantities.

Definition 3.11 Given uh ∈ S 1(Th) and an interior side S ∈ Sh , i.e., S = T1 ∩ T2
for distinct T1, T2 ∈ Th , the jump of ∇uh across S in the normal direction to S is
defined as

�∇uh · nS� = ∇uh |T1 · nT1,S + ∇uh |T2 · nT2,S,
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T2
nT1,ST1

nT2,S
S

T1 T2 T1 T2

u2hu1h

Fig. 3.5 Interior edge S = T1 ∩ T2 and outer unit normals nT1,S and nT2,S on S (left); large and
small jumps of the gradients of functions u1

h and u2
h (right)

where nT�,S is the outer unit normal to T� on S for � = 1, 2, cf. Fig. 3.5.

Theorem 3.6 (A posteriori error estimate) We have

(1/c)‖∇(u − uh)‖ ≤ ( ∑
S∈Sh∩Ω

hS‖�∇uh · nS�‖2L2(S)

)1/2

+ ( ∑
T ∈Th

h2
T ‖ f + �uh |T ‖2L2(T )

)1/2

+ ( ∑
S∈Sh∩Γ N

hS‖g − ∂nuh‖2L2(S)

)1/2
.

Proof We abbreviate e = u − uh ∈ H1
D(Ω) and note that by Galerkin orthogonality

and the properties of the weak solution u, we have

‖∇e‖2 =
∫

Ω

f (e − Jhe) dx +
∫

ΓN

g(e − Jhe) ds −
∫

Ω

∇uh · ∇(e − Jhe) dx .

An elementwise application of Green’s formula and a rearrangement of integrals
over sides of elements imply that for every v ∈ H1

D(Ω), we have

−
∫

Ω

∇uh · ∇v dx =
∑

T ∈Th

( ∫

T

(�uh |T )v dx −
∫

∂T

(∇uh · nT )v ds
)

=
∑

T ∈Th

∫

T

(�uh |T )v dx −
∑

S∈Sh∩Ω

∫

S

�∇uh · nS�v ds

−
∫

ΓN

(∇uh · n)v ds.

With Hölder and Cauchy–Schwarz inequalities, combining previous estimates and
the choice of v = e − Jhe lead to
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‖∇e‖2 ≤ ( ∑
T ∈Th

h2
T ‖ f + �uh |T ‖2L2(T )

)1/2( ∑
T ∈Th

h−2
T ‖e − Jhe‖2L2(T )

)1/2

+ ( ∑
S∈Sh∩Γ N

hS‖g − ∂nuh‖2L2(S)

)1/2( ∑
S∈Sh∩Γ N

h−1
S ‖e − Jhe‖2L2(S)

)1/2

+ ( ∑
S∈Sh∩Ω

hS‖�∇uh · nS�‖2L2(S)

)1/2( ∑
S∈Sh∩Ω

h−1
S ‖e − Jhe‖2L2(S)

)1/2
.

The approximation properties of the Clément interpolant imply the assertion. �

Remarks 3.11 (i) Note that since uh |T is affine, we have �uh |T = 0 for every
T ∈ Th . The expression f + �uh |T has the interpretation of a residual.
(ii) A converse estimate can be proved up to higher-order terms. This is often called
efficiency while the estimate of the theorem is referred to as a reliability estimate.
Note that the estimate holds without regularity requirements on u.
(iii) The upper bound for the error is localizable and leads to strategies for local
refinement with quasioptimal convergence rates even if u �∈ H2(Ω).
(iv) The first term on the right-hand side of the estimate of Theorem3.6 measures the
distance of ∇uh to the space H(div;Ω), i.e., the space of square-integrable vector
fields that have a weak divergence that is also square-integrable.

3.2.3 Discrete Maximum Principle

The unique minimizer u ∈ H1(Ω) of the Dirichlet energy

I (u) = 1

2

∫

Ω

|∇u|2 dx,

subject to u|ΓD = uD, satisfies the maximum principle

max
x∈Ω

u(x) ≤ max
x∈ΓD

uD(x).

A variational proof of this estimate uses the fact that for every c ∈ R, the truncated
function Tcu(x) = min{c, u(x)} belongs to H1(Ω) with ‖∇Tcu‖ ≤ ‖∇u‖. For
m = maxx∈∂Ω uD(x) we have Tmu ≤ m, Tmu|ΓD = uD, and

I (Tmu) ≤ I (u).

Since u is minimal, we conclude that Tmu = u and u ≤ m in Ω . This argument
cannot be transferred directly to finite element approximations since the truncation
Tcuh of uh ∈ S 1(Th) is in general not contained inS 1(Th), cf. Fig. 3.6. Additional
conditions have to be imposed to guarantee a discrete version of the maximum
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c
Tcuh uc

h

uh uh
c

Fig. 3.6 Truncated finite element function Tcuh that does not belong to the finite element space
(left) and the function uc

h that is obtained by a truncation of the nodal values which belongs to the
finite element space (right); note that uc

h = Ih(Tcuh)

principle. The following result provides a discrete version of the estimate ‖∇(F ◦
v)‖ ≤ ‖DF‖L∞(R)‖∇v‖ for v ∈ H1(Ω) and a Lipschitz continuous function F ∈
W 1,∞(R).

Proposition 3.2 (Lipschitz stability) Assume that the triangulation Th of Ω is such
that the stiffness matrix satisfies

Azy =
∫

Ω

∇ϕz · ∇ϕy dx ≤ 0

for all distinct z, y ∈ Nh. Then for every vh ∈ S 1(Th)m, F ∈ W 1,∞(Rm;R�), and
vF

h = Ih(F ◦ v) ∈ S 1(Th)�, i.e.,

vF
h =

∑
z∈Nh

F(vh(z))ϕz,

we have
‖∇vF

h ‖ ≤ ‖DF‖L∞(Rm)‖∇vh‖.

Proof We set Azy = ∫
Ω

∇ϕz · ∇ϕy dx for all z, y ∈ Nh and note that Azy = Ayz

and for every y ∈ Nh , we have

∑
z∈Nh

Azy =
∑

z∈Nh

∫

Ω

∇ϕz · ∇ϕy dx = 0

due to the fact that
∑

y∈Nh
ϕy = 1 inΩ . For wh = ∑

z∈Nh
wzϕz with wz = wh(z) ∈

R
m for every z ∈ Nh , we thus have

‖∇wh‖2 =
∑

z,y∈Nh

Azywz · wy =
∑

z,y∈Nh

Azy(wz − wy) · wy

= 1

2

∑
z,y∈Nh

Azy(wz − wy) · wy + 1

2

∑
z,y∈Nh

Azy(wy − wz) · wz

= −1

2

∑
z,y∈Nh

Azy |wz − wy |2.
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Fig. 3.7 Interior edge
S = T1 ∩ T2 with opposite
angles α1 and α2

T2T1
Sα1

α2

Therefore, the Lipschitz continuity of F and Azy ≤ 0 for z �= y lead to

‖∇vF
h ‖2 = −1

2

∑
z,y∈Nh

Azy
∣∣F(vz) − F(vy)

∣∣2

≤ −1

2

∑
z,y∈Nh

Azy‖DF‖2L∞(Rm)|vz − vy |2 = ‖DF‖2L∞(Rm)‖∇vh‖2,

which proves the asserted estimate. �

Remarks 3.12 (i) If d = 2, then the conditions of the proposition are satisfied if and
only if Th is weakly acute, i.e., if every sum of two angles opposite to an interior
edge is bounded by π and every angle opposite to an edge on the boundary by π/2.
This follows from the relation

∫

T1∪T2

∇ϕz · ∇ϕy dx = −1

2
(cot α1 + cot α2) = −1

2

sin(α1 + α2)

sin(α1) sin(α2)

for neighboring triangles T1, T2 with common edge S = conv{z, y}, cf. Fig. 3.7.
(ii) If d = 3, then a sufficient condition for the proposition is that every angle between
two faces of a tetrahedron be bounded by π/2.
(iii) The conditions of the proposition imply that the finite element stiffness matrix
A = (Azy)z,y∈Nh is after elimination of rows and columns that correspond to nodes
on ΓD an M-matrix, i.e., that Ax ≥ 0 implies x ≥ 0 componentwise. This provides
an alternative way to prove the discrete maximum principle.

Corollary 3.4 (Discrete maximum principle) Assume that Th is such that
∫
Ω

∇ϕz ·
∇ϕy dx ≤ 0 for all distinct z, y ∈ Nh. Then, if uh ∈ S 1

D(Th) satisfies uh(z) = uD(z)
for all z ∈ Nh ∩ ΓD and is minimal for

I (uh) = 1

2

∫

Ω

|∇uh |2 dx

in the set of all such functions in S 1(Th), then we have

max
z∈Nh

uh(z) ≤ max
z∈Nh∩ΓD

uD(z).



3.2 Approximation of the Poisson Problem 63

Proof Set mh = maxz∈Nh∩ΓD uD(z) and note that the truncation operator Tmh :
R → R, s �→ min{s, mh} is Lipschitz continuous with constant ‖DTmh ‖L∞(R) = 1.
Thus, according to the previous proposition for ũh = Ih(Tmh ◦ uh), we have

I (̃uh) ≤ I (uh),

which implies ũh = uh and hence the asserted estimate. �

3.3 Approximation of the Heat Equation

We consider the linear heat equation which is for f ∈ L2([0, T ]; L2(Ω)), g ∈
L∞([0, T ]; L2(ΓN)), ũD ∈ L∞([0, T ]; H1(Ω)), and u0 ∈ L2(Ω) in a strong form
for t ∈ [0, T ] defined by

∂t u − �u = f in Ω, u(0) = u0, u|ΓD = ũD|ΓD , ∂nu|ΓN = g.

For simplicity, unless stated otherwise we restrict to the case ũD = 0 and g = 0.
Throughout this section we use the notation

ut = ∂t u = u′, utt = ∂2t u = u′′.

Moreover, we abbreviate the inner product in L2(Ω) by (·, ·) and use the Sobolev
space H1

D(Ω) equipped with the norm ‖∇ · ‖. This requires ΓD to have positive
surface measure, but the results below can be generalized to the case ΓD = ∅. More
general statements than the ones discussed below can be found in [12].

3.3.1 Variational Formulation

The discussion of gradient flowsmotivates the following definition of aweak solution
of the heat equation.

Definition 3.12 A function u ∈ H1([0, T ]; H1
D(Ω)′)∩L2([0, T ]; H1

D(Ω)) is called
a weak solution of the heat equation if u(0) = u0 and

〈ut (t), v〉 + (∇u(t),∇v) = ( f (t), v)

for almost every t ∈ [0, T ] and all v ∈ H1
D(Ω).

Remark 3.13 If f is time-independent, then the heat equation is the L2-gradient
flow of the convex, Fréchet-differentiable functional I : H1

D(Ω) → R given by
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I (u) = 1

2

∫

Ω

|∇u|2 dx −
∫

Ω

f u dx .

The discussion of subdifferential flows motivates that, for almost every T ′ ∈ [0, T ],
the energy inequality

I (u(T ′)) +
T ′∫

0

‖∂t u(t)‖2 dt ≤ I (u0)

is satisfied. This implies that a weak solution is unique and belongs to the space
H1([0, T ]; L2(Ω)) ∩ L∞([0, T ]; H1

D(Ω)) provided that I (u0) is finite.

Theorem 3.7 (Existence and regularity) There exists a unique weak solution u of the
heat equation. If u0 ∈ H1

D(Ω), then u ∈ H1([0, T ]; L2(Ω))∩ L∞([0, T ]; H1
D(Ω)).

If Ω is convex, ΓD = ∂Ω , u0 ∈ H3(Ω), f ∈ H1([0, T ]; L2(Ω)) ∩ L2([0, T ]; H2

(Ω)) and u0 ∈ H1
0 (Ω), u1=�u0− f (0) ∈ H1

0 (Ω), then we have ut ∈ L2([0, T ]; H2

(Ω)) and utt ∈ L2([0, T ]; L2(Ω)).

Proof (sketched) The first part of the theorem follows from the convexity of the
Dirichlet energy. The second part exploits the H2-regularity of the Laplace operator
and a differentiation of the heat equation, i.e., considering u′′ − �u′ = f ′. �

Remark 3.14 The homogeneous heat equation with f = 0 has a regularizing effect,
i.e., if ∂Ω is smooth, then for u0 ∈ L2(Ω), we have u(t) ∈ C∞(Ω) for every t > 0.
On the other hand, we have u(t) → u0 in L2(Ω) as t → 0. Constructing smooth
approximations of a function by mollification makes use of these properties. The
regularizing effect is also reflected in the fact that the underlying diffusion process is
irreversible. Mathematically, the time-reversed equation ut +�u = 0 in [0, T ]×Ω

with u(0) = u0 is ill-posed.

3.3.2 Semidiscrete in Time Approximation

We analyze various time-stepping schemes that will be the basis for fully discrete
approximation schemes. Throughout the following, for any sequence (ak)k=0,...,K ,
we use the backward difference quotient defined by

dt a
k = 1

τ
(ak − ak−1)

for k = 1, 2, . . . , K .

Lemma 3.8 (Difference calculus) Given sequences (ak)k=0,...,K and (bk)k=0,...,K
in a Hilbert space H, we have
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2(dt a
k, ak)H = dt‖ak‖2H + τ‖dt a

k‖2H .

Moreover, we have the discrete product rule dt (ak, bk)H = (dt ak, bk) + (ak−1,

dt bk)H and the summation-by-parts formula

τ

K∑
k=1

(
(dt a

k, bk)H + (ak−1, dt b
k)H

)
= (aK , bK )H − (a0, b0)H .

Proof The first identity follows from the binomial formula 2(a −b)a = (a2 −b2)+
(a − b)2. The second identity is equivalent to τdt (ak, bk)H = (ak − ak−1, bk)H +
(ak−1, bk − bk−1)H , and the third identity follows from a summation over k =
1, 2, . . . , K . �

The implicit Euler scheme leads to a sequence of equations that satisfy the con-
ditions of the Lax–Milgram lemma.

Algorithm 3.1 (Implicit Euler scheme) Given U 0 ∈ L2(Ω) and τ > 0, compute
for k = 1, 2, . . . , K with K = �T/τ� functions U k ∈ H1

D(Ω) such that

(dtU
k, v) + (∇U k,∇v) = ( f (tk), v)

for all v ∈ H1
D(Ω).

To bound the error between the exact solution and the approximations
(U k)k=0,...,K , we first investigate consistency of the scheme.

Proposition 3.3 (Consistency) Assume u ∈ C([0, T ]; H1
D(Ω)) and set uk = u(tk)

for k = 0, 1, . . . , K . If utt ∈ L2([0, T ]; H1
D(Ω)′), then we have

(dt u
k, v) + (∇uk,∇v) = ( f (tk), v) + Cτ (tk; v)

for all v ∈ H1
D(Ω) with functionals Cτ (tk) ∈ H1

D(Ω)′ satisfying

τ

K∑
k=1

‖Cτ (tk)‖2H1
D(Ω)′ ≤ cτ 2.

Proof Due to the assumed regularity we have

(dt u
k, v) + (∇uk,∇v) = (ut (tk), v) + (∇u(tk),∇v) + (dt u

k − ut (tk), v)

= ( f (tk), v) + (dt u
k − ut (tk), v)

for all v ∈ H1
D(Ω). The identity
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ut (tk) − dt u
k = 1

τ

tk∫

tk−1

d

ds

(
(s − tk−1)ut (s)

) − ut ds = 1

τ

tk∫

tk−1

(s − tk−1)utt ds

implies that for every v ∈ H1
D(Ω) with ‖∇v‖ ≤ 1, we have

Cτ (tk; v) = (dt u
k − ut (tk), v) = −1

τ

tk∫

tk−1

(s − tk−1)〈utt , v〉 ds

≤
(
τ−1

tk∫

tk−1

(s − tk−1)
2 ds

)1/2(
τ−1

tk∫

tk−1

‖utt‖2H1
D(Ω)′ ds

)1/2
.

We verify the estimate with
∫ tk

tk−1
(s − tk−1)

2 ds = τ 3/3. �

Together with a discrete stability estimate, this implies a bound for the approxi-
mation error.

Proposition 3.4 (Discrete stability) Suppose that the sequences (zk)k=0,...,K ⊂
H1
D(Ω) and (bk)k=1,...,K ⊂ H1

D(Ω)′ satisfy

(dt z
k, v) + (∇zk,∇v) = bk(v)

for k = 1, 2, . . . , K . Then

max
k=1,...,K

‖zk‖2 + τ

K∑
k=1

‖∇zk‖2 ≤ 2‖z0‖2 + 2τ
K∑

k=1

‖bk‖2H1
D(Ω)′ .

Proof Choosing v = zk , we find with Lemma3.8 that

dt

2
‖zk‖2 + τ

2
‖dt z

k‖2 + ‖∇zk‖2 = bk(z
k) ≤ 1

2
‖bk‖2H1

D(Ω)′ + 1

2
‖∇zk‖2.

Multiplication by τ and summation over k = 1, 2, . . . , L for 1 ≤ L ≤ K lead to

‖zL‖2 + τ

L∑
k=1

‖∇zk‖2 ≤ ‖z0‖2 +
L∑

k=1

‖bk‖2H1
D(Ω)′ .

This proves the claimed estimate. �

The combination of the last two propositions implies the following error estimate.

Theorem 3.8 (Error estimate) Under the assumptions of Proposition3.3 we have
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max
k=1,2,...,K

‖u(tk) − U k‖2 + τ

K∑
k=1

‖∇(u(tk) − U k)‖2 ≤ cτ 2.

Proof The error ek = uk − U k satisfies e0 = 0 and

(dt e
k, v) + (∇ek,∇v) = Cτ (tk; v)

for k = 1, 2, . . . , K . The discrete stability estimate and the bound for the functionals
Cτ (tk) lead to the estimate of the theorem. �
Remarks 3.15 (i) The assumption u ∈ C([0, T ]; H1

D(Ω)) allows us to insert the
sequence (uk)k=1,...,K defined by uk = u(tk) into the discrete scheme. Alternatively,
one can employ the local temporal averages uk = (1/τ)

∫ tk+τ/2
tk−τ/2 u(s) ds for k =

1, 2, . . . , K − 1 and u0 = u0.
(ii) By interpreting the heat equation as a gradient flow, a similar estimate can be
proved under the sole condition that −�u0 ∈ L2(Ω), cf. Theorem 4.7.

Under additional regularity assumptions, quadratic convergence with respect to τ

can be proved for a modified scheme. Given sequences (U k)k=0,...,K and (tk)k=0,...,K
we set for k = 1, 2, . . . , K

U k−1/2 = 1

2
(U k + U k−1), tk−1/2 = 1

2
(tk + tk−1).

Algorithm 3.2 (Crank–Nicolson scheme) GivenU 0 ∈ H1
D(Ω) and τ > 0, compute

for k = 1, 2, . . . , K with K = �T/τ� functions U k ∈ H1
D(Ω) such that

(dtU
k, v) + (∇U k−1/2,∇v) = ( f (tk−1/2), v)

for all v ∈ H1
D(Ω).

Remark 3.16 If u ∈ C3([0, T ] × Ω), then the Taylor expansions

u(tk) = u(tk−1/2) + (τ/2)ut (tk−1/2) + (τ 2/8)utt (tk−1/2) + O(τ 3),

u(tk−1) = u(tk−1/2) − (τ/2)ut (tk−1/2) + (τ 2/8)utt (tk−1/2) + O(τ 3)

show with uk = u(tk), k = 0, 1, . . . , K , that

dt u
k − ut (tk−1/2) = O(τ 2), ∇[uk−1/2 − u(tk−1/2)] = O(τ 2).

Therefore, we have

(dt u
k, v) + (∇uk−1/2,∇v) = ( f (tk−1/2), v) + C cn

τ (tk−1/2; v)

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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with

C cn
τ (tk−1/2; v) = (dt u

k − ut (tk−1/2), v) + (∇[uk−1/2 − u(tk−1/2)],∇v)

which satisfies ‖C cn
τ (tk−1/2)‖H1

D(Ω)′ = O(τ 2).

The explicit Euler scheme is always unstable in the semidiscrete setting, e.g., it
is undefined if f = 0 and �kU 0 �∈ L2(Ω) for some k with 1 ≤ k ≤ K .

Algorithm 3.3 (Explicit Euler scheme) Given U 0 ∈ H1(Ω) and τ > 0, compute
for k = 1, 2, . . . , K with K = �T/τ� functions U k ∈ H1

D(Ω) such that

(dtU
k, v) + (∇U k−1,∇v) = ( f (tk−1), v)

for all v ∈ H1
D(Ω).

3.3.3 Semidiscrete in Space Approximation

To understand the influence of a spatial discretization of the heat equation, we con-
sider the Galerkin method that defines a finite-dimensional system of ordinary dif-
ferential equations.

Algorithm 3.4 (Galerkin method) Given a triangulation Th of Ω and u0,h ∈
S 1(Th), find uh ∈ H1([0, T ];S 1

D(Th)) such that uh(0) = u0,h and

(∂t uh(t), vh) + (∇uh(t),∇vh) = ( f (t), vh)

for almost every t ∈ [0, T ] and all vh ∈ S 1
D(Th).

We proceed as before and consider the consistency error for an interpolant of u.
The obvious choice of the nodal interpolant Ihu(t) leads to

(∂tIhu, vh) + (∇Ihu,∇vh) = ( f (t), vh) + C̃h(t; vh)

with
C̃h(t; vh) = (∂t [Ihu − u], vh) + (∇[Ihu − u],∇vh).

For a sufficiently regular solution u, the first term on the right-hand side is of order
O(h2), while the second term is only of order O(h). The alternative choice Qhu(t)
with the H1-projection of u(t) ontoS 1

D(Th) is known as Wheeler’s trick and defines
functionals Ch(t; ·) via

Ch(t; vh) = (∂t [Qhu − u], vh) + (∇[Qhu − u],∇vh) = (∂t [Qhu − u], vh).



3.3 Approximation of the Heat Equation 69

Due to the Aubin–Nitsche lemma we have thatCh(t; vh) is of orderO(h2). We make
this observation precise in the following proposition.

Proposition 3.5 (Consistency) If the Laplace operator is H2-regular in Ω and ut ∈
L2([0, T ]; H2(Ω)) then we have

(∂t Qhu, vh) + (∇Qhu,∇vh) = ( f, vh) + Ch(t; vh)

with functionals Ch(t) ∈ H1
D(Ω)′ satisfying

T∫

0

‖Ch‖2
H1
D(Ω)′ dt ≤ ch4.

Proof The discussion above shows that it suffices to bound

Ch(t; vh) = (∂t (Qhu − u), vh).

Since Qh is bounded and linear we have ∂t Qhu = Qhut . With Theorem3.5 we
deduce that

‖Qhut − ut‖ ≤ ch2‖D2ut‖,

which holds for almost every t ∈ [0, T ] implies the result. �
An error estimate follows from a discrete stability estimate

Proposition 3.6 (Discrete stability) Suppose that zh ∈ H1([0, T ];S 1
D(Th)) and

bh ∈ L2([0, T ]; H1
D(Ω)′) satisfy

(∂t zh, vh) + (∇zh,∇vh) = bh(t; vh)

for almost every t ∈ [0, T ] and every vh ∈ S 1
D(Th). Then

sup
t∈[0,T ]

‖zh(t)‖2 +
T∫

0

‖∇zh‖2 dt ≤ 2‖zh(0)‖2 + 2

T∫

0

‖bh‖2
H1
D(Ω)′ dt.

Proof The choice of vh = zh(t) in the discrete equations immediately leads to the
estimate. �
Theorem 3.9 (Error estimate) Under the assumptions of Proposition3.5 and if
‖u0,h − Qhu0‖ ≤ ch2, we have

sup
t∈[0,T ]

‖(u − uh)(t)‖2 + h2

T∫

0

‖∇(u − uh)‖2 dt ≤ ch4.
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Proof The estimate for u − uh replaced by Qhu − uh is a direct consequence
of the consistency estimate and the discrete stability result. The triangle inequal-
ity and the estimates ‖u(t)− Qhu(t)‖+h‖∇(u(t)− Qhu(t))‖ ≤ ch2‖D2u(t)‖ then
imply the bound for u − uh . �

3.3.4 Fully Discrete Approximation

The explicit and implicit Euler scheme and the Crank–Nicolson scheme are special
cases of the following θ -midpoint scheme related to θ = 0, θ = 1, and θ = 1/2,
respectively.

Algorithm 3.5 (θ -midpoint scheme) Given θ ∈ [0, 1], a triangulation Th of Ω ,
and u0

h ∈ S 1(Th), compute for k = 1, 2, . . . , K with K = �T/τ� functions
uk

h ∈ S 1
D(Th) such that

(dt u
k
h, vh) + (∇[θuk

h + (1 − θ)uk−1
h ],∇vh) = ( f (θ tk + (1 − θ)tk−1), vh)

for all vh ∈ S 1
D(Th).

We have unconditional stability if θ ≥ 1/2 and conditional stability if θ < 1/2.
We let cinv > 0 be such that ‖∇vh‖ ≤ cinvh−1‖vh‖ for all vh ∈ S 1

D(Th) if Th is
quasiuniform.

Proposition 3.7 (Discrete stability) Suppose that the sequences (zk
h)k=0,...,K ⊂

S 1
D(Th) and (bk)k=0,...,K ⊂ H1

D(Ω)′ satisfy

(dt z
k
h, vh) + (∇[θ zk

h + (1 − θ)zk−1
h ],∇vh) = bk(vh)

for all vh ∈ S 1
D(Th). If θ ≥ 1/2, we have

max
k=1,...,K

‖zk
h‖2 + τ

K∑
k=1

‖∇[θ zk
h + (1 − θ)zk−1

h ]‖2 ≤ 2‖z0h‖2 + 2τ
K∑

k=1

‖bk‖2H1
D(Ω)′ .

Suppose that Th is quasiuniform and c2invτh−2 ≤ 1/2 if θ < 1/2. Then

max
k=1,...,K

1

2
‖zk

h‖2 + τ

K∑
k=1

‖∇zk
h‖2 = 2‖z0h‖2 + 2τ

K∑
k=1

‖bk‖2H1
D(Ω)′ .

Proof We abbreviate zk,θ
h = θ zk

h +(1−θ)zk−1
h and assume first that θ ≥ 1/2. Noting

zk,θ
h = (zk

h + zk−1
h )/2 + (θ − 1/2)τdt zk

h , the choice of vh = zk,θ
h yields
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dt

2
‖zk

h‖2 + (
θ − 1

2

)
τ‖dt z

k
h‖2 + ‖∇zk,θ

h ‖2 ≤ 1

2
‖bk‖2H1

D(Ω)′ + 1

2
‖∇zk,θ

h ‖2.

A summation over k = 1, 2, . . . , L for every 1 ≤ L ≤ K and multiplication by τ

imply the estimate. If θ < 1/2, then vh = zk
h and zk,θ

h = zk
h − (1 − θ)τdt zk

h lead to

dt

2
‖zk

h‖2 + τ

2
‖dt z

k
h‖2 + ‖∇zk

h‖2 = (1 − θ)
τ

2

(
dt‖∇zk

h‖2 + τ‖∇dt z
k
h‖2) + bk(z

k
h).

Summing over k = 1, 2, . . . , L , multiplying by τ , and estimating (1− θ) ≤ 1 show
that

1

2
‖zL

h ‖2 + τ 2

2

L∑
k=1

‖dt z
k
h‖2 + τ

2

L∑
k=1

‖∇zk
h‖2 ≤ 1

2
‖z0h‖2 + τ

2

L∑
k=1

‖bk‖2H1
D(Ω)′

+ τ

2

(‖∇zL
h ‖2 + τ 2

L∑
k=1

‖∇dt z
k
h‖2).

We incorporate the inverse estimates

‖∇dt z
k
h‖ ≤ cinvh−1‖dt z

k
h‖, ‖∇zL

h ‖ ≤ cinvh−1‖zL
h ‖

to verify the stability estimate for θ < 1/2. �

We verify the consistency of the numerical scheme only for the case θ = 1.

Proposition 3.8 (Consistency) If utt ∈ L2([0, T ]; L2(Ω)), ut∈L2([0, T ]; H2(Ω)),
θ = 1, and the Poisson problem is H2-regular, then we have for uk = u(tk) that

(dt Qhuk, vh) + (∇Qhuk,∇vh) = ( f (tk), vh) + Ch,τ (tk; vh)

with functionals Ch,τ (tk) ∈ H1
D(Ω)′ such that

k∑
k=1

‖Ch,τ (tk)‖2H1
D(Ω)′ ≤ c(τ 2 + h4).

Proof For k = 1, 2, . . . , K we have, using (∇(Qhuk − uk),∇vh) = 0, that

(dt Qhuk, vh) + (∇Qhuk,∇vh) = ( f (tk), vh) + (dt Qhuk − ∂t u(tk), vh)

= ( f (tk), vh) + Ch,τ (tk; vh).

Arguing as in the proof of Proposition3.3 and incorporating estimates for the
H1-projection, we find that the functional Ch(tk; v) satisfies for every v ∈ H1

D(Ω)

with ‖∇v‖ ≤ 1 the estimate
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Ch,τ (tk; v) = (dt Qhuk − dt u
k, v) + (dt u

k − ∂t u(tk), v)

= 1

τ

tk∫

tk−1

((Qh − 1)ut , v) ds + 1

τ

tk∫

tk−1

(s − tk−1)(utt , v) ds

≤ ch2
( tk∫

tk−1

‖D2ut‖2 dt
)1/2 + cτ

( tk∫

tk−1

‖utt‖2 dt
)1/2

.

This implies the asserted bound. �

Theorem 3.10 (Error estimate) Under the condition of Proposition3.8 we have

max
k=1,...,K

‖u(tk) − uk
h‖2 ≤ c(τ 2 + h4),

τ

K∑
k=1

‖∇[u(tk) − uk
h]‖2 ≤ c(τ 2 + h2).

Proof The estimate follows from the consistency result, the discrete stability, and the
triangle inequality together with approximation properties of the H1-projection. �

Remark 3.17 For the fully discrete Crank–Nicolson scheme corresponding to θ =
1/2, one can prove the error bound maxk=1,...,K ‖u(tk) − uk

h‖ ≤ c(τ 2 + h2) under
appropriate regularity conditions.

3.3.5 Discrete Maximum Principle

If f ≥ 0 in [0, T ] × Ω and u0 ≥ 0, then the solution of the heat equation is
nonnegative in [0, T ] × Ω . Closely related is the (weak) maximum principle which
states that if f = 0, then u attains its maximum on the boundary of [0, T ] × Ω .
For the semidiscrete scheme, which defines the approximation U k ∈ H1

D(Ω) as the
unique minimum of

I k(U ) = 1

2τ
‖U − U k−1‖2 + 1

2

∫

Ω

|∇U |2 dx,

we can argue by truncation as in the case of the Dirichlet energy. Letting mk−1 =
maxx∈Ω U k−1(x) and setting

Tmk−1U k(x) = min{U k(x), mk−1},
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we have
I k(Tmk−1U k) ≤ I k(U k)

and this implies Tmk−1U k = U k , i.e.,U k ≤ mk−1.An inductive argument implies that
maxk=0,...,K maxx∈Ω U k(x) ≤ maxx∈Ω U 0(x). We aim at using a similar argument
in the fully discrete situation. This requires a modification of the numerical scheme.

Definition 3.13 Given a triangulation Th of Ω , the discrete (or lumped) L2-inner
product is for v, w ∈ C(Ω) defined as

(v, w)h =
∫

Ω

Ih(vw) dx =
∑

z∈Nh

βzv(z)w(z)

with βz = ∫
Ω

ϕz dx for every z ∈ Nh . The corresponding discrete (or lumped)
(semi-) norm is for v ∈ C(Ω) defined by ‖v‖2h = (v, v)h .

Lemma 3.9 (Discrete inner product) For vh, wh ∈ S 1
D(Th) we have

‖vh‖ ≤ ‖vh‖h ≤ (d + 2)1/2‖vh‖

and
|(vh, wh)h − (vh, wh)| ≤ ch1+�‖∇vh‖‖∇�wh‖

for � ∈ {0, 1} and ∇0wh = wh and ∇1wh = ∇wh.

Proof For every T ∈ Th such that T = conv{z0, z1, . . . , zd} with z0, z1, . . . , zd ∈
T ∩ Nh a transformation argument shows for MT = |T |d!/(d + 2)! that

∫

T

ϕz j ϕzk dx = (1 + δ jk)MT ,

∫

T

Ih(ϕz j ϕzk ) dx = (d + 2)δ jk MT .

With these identities it follows that for vh |T = ∑d
j=0 a jϕz j , we have

M−1
T ‖vh‖2L2(T )

= 2
d∑

j=0

a2
j +

d∑
j,k=0
j �=k

a j ak ≤ (d + 2)
d∑

j=0

a2
j = M−1

T ‖vh‖2h,T ,

where we abbreviated
∫

T Ih(v2h) dx = ‖vh‖2h,T . Conversely, we have

M−1
T ‖vh‖2h,T ≤ 2(d + 2)

d∑
j=0

a2
j + (d + 2)

d∑
j,k=0
j �=k

a j ak = (d + 2)M−1
T ‖vh‖2L2(T )

.
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The estimates for nodal interpolation, together with an inverse inequality if d ≥ 3
and D2vh |T = 0, D2wh |T = 0, show that

∫

T

∣∣vhwh −Ih(vhwh)
∣∣ dx ≤ ch2

T

∫

T

|D2(vhwh)| dx ≤ ch2
T ‖∇vh‖L2(T )‖∇wh‖L2(T ).

A summation over all T ∈ Th proves the estimates for � = 1. To prove the
estimate for the case � = 0, we first employ the inverse estimate ‖∇wh‖L2(T ) ≤
ch−1

T ‖wh‖L2(T ) for every T ∈ Th . �

Remarks 3.18 (i) The discrete inner product has a stabilizing effect, e.g., for d = 1
we have for all vh ∈ S 1(Th) that

‖vh‖2h = ‖vh‖2 + 1

6

∑
T ∈Th

h2
T ‖∇vh‖2L2(T )

.

(ii) The discrete inner product allows for a localization of quantities since (v, ϕz)h =
βzv(z) for every v ∈ C(Ω) and every z ∈ Nh .
(iii) The use of the discrete inner product is also referred to as reduced integration.

A discretemaximumprinciple holds for themodified implicit Euler schemewhich
employs the discrete L2-inner product.

Theorem 3.11 (Discrete maximum principle) Assume that Th is weakly acute and
f ∈ C([0, T ] × Ω). Let (uk

h)k=0,...,K ∈ S 1
D(Th) satisfy

(dt u
k
h, vh)h + (∇uk

h,∇vh) = ( f (tk), vh)h

for k = 1, 2, . . . , K and all vh ∈ S 1
D(Th). If f ≥ 0 in [0, T ] × Ω and u0

h ≥ 0 in
Ω , then uk

h ≥ 0 in Ω for k = 1, 2, . . . , K . If f = 0, then

max
k=1,...,K

max
z∈Nh

uk
h(z) ≤ max

z∈Nh

u0
h(z).

Proof Assume that for 1 ≤ k ≤ K we have uk−1
h ≥ 0 and f (tk) ≥ 0. The function

uk
h is the unique minimizer of the functional

I k
h (uh) = 1

2τ
‖uh − uk−1

h ‖2h + 1

2

∫

Ω

|∇uh |2 dx −
∫

Ω

Ih[ f uh] dx

in the set of functions uh ∈ S 1
D(Th). We define the function ûk

h ∈ S 1
D(Th) through

the truncated nodal values ûk
h(z) = max{uk

h(z), 0} for all z ∈ Nh . Then ûk
h ≥ 0 in

Ω and
|̂uk

h(z) − uk−1
h (z)| ≤ |uk

h(z) − uk−1
h (z)|
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for all z ∈ Nh . Arguing as in the proof of Corollary3.4, we find I k
h (̂uk

h) ≤ I k
h (uk

h).
This implies uk

h = ûk
h and uk

h ≥ 0. If f = 0, we set mk−1
h = maxz∈Nh uk−1

h (z) and
define the function ũk

h ∈ S 1
D(Th) through the truncated nodal values

ũk
h(z) = min{uk

h(z), mk−1
h }.

Again, we have |̃uk
h(z)− uk−1

h (z)| ≤ |uk
h(z)− uk−1

h (z)| for all z ∈ Nh and I k
h (̃uk

h) ≤
I k
h (uk

h). Therefore uk
h = ũk

h ≤ mk−1
h and an inductive argument finishes the proof. �

Remarks 3.19 (i) The nonnegativity of the solutions can also be proved by noting
that the nontrivial nodal values Û k = (uk

h(z))z∈Nh\ΓD solve the linear systems of
equations

(M̂h + τ Â)Û k = M̂hÛ k−1 + τ M̂h F̂k

with the diagonal mass matrix M̂h related to the discrete inner product (·, ·)h and
the finite element stiffness matrix Â. The matrix Â is diagonally dominant and has
positive entries only on the diagonal because of the weak acuteness of the underlying
triangulation. Therefore, the matrix M̂h + τ Â is an M-matrix and its inverse has
nonnegative entries.
(ii) Approximations obtained with the Crank–Nicolson scheme do in general not
satisfy a maximum principle even if the discrete inner product is used.

3.3.6 A Posteriori Error Estimate

The schemes discussed above can easily be modified to allow for variable time
steps (τk)k=1,...,K and triangulations (T k

h )k=0,...,K . We then set tk = ∑k
j=1 τ j , k =

0, 1, . . . , K , assume that tK = T , and define

dt u
k
h = 1

τk
(uk

h − uk−1
h ), d̃t u

k
h = 1

τk
(uk

h − I k
h uk−1

h ),

with the nodal interpolant I k
h associated with S 1

D(T k
h ). For a sequence of approx-

imations (uk
h)k=0,...,K related to the time steps (tk)k=0,...,K and such that uk

h ∈
S 1

D(T k
h ), we define the continuous interpolant

ûh,τ (t, x) = t − tk−1

τk
uk

h(x) + tk − t

τk
uk−1

h (x)

for x ∈ Ω and t ∈ [tk−1, tk] and k = 1, 2, . . . , K .

Proposition 3.9 (Residual estimate) Assume that f ∈ C1([0, T ]; L2(Ω)). For k =
0, 1, . . . , K , let T k

h be a triangulation of Ω and assume that uk
h ∈ S 1

D(T k
h ) satisfies
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(d̃t u
k
h, vh) + (∇uk

h,∇vh) = ( f (tk), vh)

for k = 1, 2, . . . , K and all vh ∈ S 1
D(T k

h ). For almost every t ∈ [0, T ], define
Rh,τ (t) ∈ H1

D(Ω)′ by

Rh,τ (t; v) = (∂t ûh,τ (t), v) + (∇ûh,τ (t),∇v) − ( f (t), v)

for every v ∈ H1
D(Ω). For k = 1, 2, . . . , K and almost every t ∈ [tk−1, tk], we have

‖Rh,τ (t)‖2H1
D(Ω)′ ≤ c

(
η2space(tk) + η2time(tk) + η2coarse(tk) + η2data(tk)

)

with the space discretization residual

η2space(tk) =
∑

T ∈T k
h

h2
T ‖d̃t u

k
h − �uk

h − f (tk)‖2L2(T )

+
∑

S∈S k
h ∩Ω

hS‖�∇uk
h · nS�‖2L2(S)

+
∑

S∈S k
h ∩Γ N

hS‖∂nuk
h‖2L2(S)

,

the time discretization residual

η2time(tk) = ‖∇[uk−1
h − uk

h]‖2,

the mesh coarsening residual

η2coarse(tk) = τ−2
k ‖I k

h uk−1
h − uk−1

h ‖2,

and the data approximation residual

η2data(tk) = τ 2k sup
t∈[tk−1,tk ]

‖∂t f (t)‖2

Proof Let t ∈ (tk−1, tk) and v ∈ H1
D(Ω). Then ∂t ûh,τ (t) = dt uk

h and we have

Rh,τ (t; v) = (d̃t u
k
h, v) + (∇uk

h,∇v) − ( f (tk), v)

+ (∇[̂uh,τ (t) − uk
h],∇v) − ( f (t) − f (tk), v) + (d̃t u

k
h − dt u

k
h, v)

= (dt u
k
h, v − vh) + (∇uk

h,∇[v − vh]) − ( f (tk), v − vh)

+ (∇[̂uh,τ (t) − uk
h],∇v) − ( f (t) − f (tk), v)

+ 1

τk
(I k

h uk−1
h − uk−1

h , v)

= I + I I + . . . + V I.
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With vh = J k
h v ∈ S 1

D(T k
h ) and an elementwise integration-by-parts as in the proof

of Theorem3.6, the first three terms I + II + III on the right-hand side satisfy

I + II + III ≤ c η2space(tk)‖∇v‖.

The terms IV + V + VI are estimated with Hölder and Poincaré inequalities. �

Proposition 3.10 (Continuous stability) Assume that z ∈ H1([0, T ]; H1
D(Ω)′) ∩

L2([0, T ]; H1(Ω)) and b ∈ L2([0, T ]; H1
D(Ω)′) satisfy

〈∂t z, v〉 + (∇z,∇v) = b(v)

for almost every t ∈ [0, T ] and every v ∈ H1
D(Ω). We then have

sup
t∈[0,T ]

‖z(t)‖2 +
T∫

0

‖∇z‖2 dt ≤ 2‖z(0)‖2 + 2

T∫

0

‖b‖2
H1
D(Ω)′ dt.

Proof Theproof follows fromchoosing v = z(t) and integrating the resulting identity
over t ∈ [0, T ]. �

Theorem 3.12 (A posteriori error estimate)Under the conditions of Proposition3.9,
we have

sup
t∈[0,T ]

‖(u − ûh,τ )(t)‖2+
T∫

0

‖∇(u − ûh,τ )‖2 dt ≤ 2‖u0 − ûh,τ (0)‖2

+ 2c
K∑

k=1

τk
(
η2space(tk) + η2time(tk)

+ η2coarse(tk) + η2data(tk)
)
.

Proof The estimate follows froma straightforward combinationof the residual bound
and the continuous stability estimate. �

Remark 3.20 The theorem provides a computable upper bound for the approxima-
tion error. Since it is the sum of local quantities, it can be used to refine and coarsen
the mesh-size and the time-steps locally.

3.4 Implementation of the P1 Finite Element Method

We describe in this section a way of implementing the P1 finite element method.
Several ideas reported below are adopted from [1, 4].
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3.4.1 Poisson Problem

Wemake the following assumption on the data functions in order to assume an exact
and simple numerical integration. The influence of the approximation of possibly
discontinuous data functions by such functions can be analyzed within the Strang
lemmas.

Assumption 3.1 (Data approximation I) We assume that uD = ũD,h |ΓD for a func-
tion ũD,h ∈ S 1(Th) and f = fh and g = gh are piecewise constant.

We write the unknown function as uh = ũh + ũD,h and seek the uniquely defined
function ũh ∈ S 1

D(Th) that satisfies

∫

Ω

∇ũh · ∇vh dx =
∫

Ω

fhvh dx +
∫

ΓN

ghvh ds −
∫

Ω

∇ũD,h · ∇vh dx

for all vh ∈ S 1
D(Th). We let Ũ = (Ũy : y ∈ Kh) be the coefficients of ũh with

respect to the nodal basis restricted to the free nodesKh = Nh\ΓD. For every T ∈ Th

and every S ∈ Sh we let xT = (1/(d + 1))
∑

z∈Nh∩T z and xS = (1/d)
∑

z∈Nh∩S z
denote their midpoints and note that the corresponding one-point quadrature rules
are exact for affine functions. The discrete formulation is thus equivalent to the linear
system of equations

∑
y∈Kh

Ũy

∫

Ω

∇ϕy · ∇ϕz dx =
∑

T ∈Th

fh(xT )

∫

T

ϕz dx +
∑

S⊂Sh∩Γ N

gh(xS)

∫

S

ϕz ds

−
∑

y∈Nh

ũD,h(y)

∫

Ω

∇ϕy · ∇ϕz dx

for all z ∈ Kh , i.e., s̃Ũ = b̃ with a symmetric matrix s̃ ∈ R
#Kh×#Kh and b̃ ∈ R

#Kh .
The integrals that define thematrix and the vector on the right-hand side are computed
by decomposing the integral as a sum over elements, e.g.,

∫

Ω

∇ϕz · ∇ϕy dx =
∑

T ∈Th : z,y∈T

∫

T

∇ϕz · ∇ϕy dx .

The triangulation of Ω and the partition of the boundary ∂Ω are defined through
the arrays c4n, n4e, Db, and Nb that specify the coordinates of the nodes, the
vertices of the elements, and the vertices of the sides on ΓD and Γ N, respectively. In
particular, the nC × d array c4n defines the coordinates of the nodes and implicitly
an enumeration of the nodes. The nE × (d + 1) array n4e defines the elements
by specifying the positions of their vertices through their numbers. Similarly, the
nDb × d and nNb × d arrays Db and Nb define the vertices of the sides belonging



3.4 Implementation of the P1 Finite Element Method 79

z1

z4 z3

z2

T1

T2

Fig. 3.8 Triangulation of the unit square and corresponding arrays

to ΓD and Γ N, respectively. The arrays are displayed in Fig. 3.8 for a triangulation
consisting of two triangles and with four nodes.

Assumption 3.2 (Orientation) We assume that the list of elements defines an
ordering of the nodes of elements that induces a positive orientation of T , i.e.,
if T ≡ (z0, z1, . . . , zd) for T ∈ Th and z0, z1, . . . , zd ∈ Nh such that T =
conv{z0, z1, . . . , zd}, then the vectors τ� = z� − z0, � = 1, 2, . . . , d, satisfy

τ1 > 0, τ2 · τ⊥
1 > 0, τ3 · (τ1 × τ2) > 0

for d = 1, 2, 3, respectively.

To compute the system matrix s̃ and the vector b̃ on the right-hand side of the
linear system of equations stated above, we note some elementary identities for the
nodal basis functions.

Lemma 3.10 (Elementwise gradients) Let T ≡ (z0, z1, . . . , zd) with z0, z1, . . . , zd

∈ R
d and define

XT =
[
1 1 . . . 1
z0 z1 . . . zd

]
∈ R

(d+1)×(d+1).

We then have that the volume |T | is given by |T | = (1/d!) det XT , and with the
identity matrix Id ∈ R

d×d that

[∇ϕz0 |T , . . . ,∇ϕzd |T
] ⊥

= X−1
T

[
0
Id

]
.

Proof The proof follows from noting that the nodal basis function associated to z j

is for x ∈ T given by

ϕz j (x) = 1

d!|T | det
[
1 1 . . . 1
x z j+1 . . . z j+d

]
,

where subscripts are understood modulo d, together with Laplace’s formula and
Cramer’s rule. �

Some additional identities are required for computing the vector b̃.
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Lemma 3.11 (Right-hand side) For a side S = conv{z0, z1, . . . , zd−1} ∈ Sh, the
surface area |S| is given by

|S| =

⎧⎪⎨
⎪⎩
1 if d = 1,

|z1 − z0| if d = 2,

|(z2 − z0) × (z1 − z0)|/2 if d = 3.

Moreover, for T ∈ Th, S ∈ Sh, and z ∈ T ∩ S, we have

∫

T

ϕz dx = |T |
d + 1

,

∫

S

ϕz ds = |S|
d

.

Proof The proof of the formula for |S| follows from elementary geometric identities.
The integrals over T and S are computed with the help of an affine transformation
to a reference element. �

Figure3.9 shows aMatlab implementation of the P1method inwhich thematrix
s̃ corresponds to the arrays(fNodes,fNodes).We input the space dimension and
the number of refinements of a coarse triangulation. The routine red_refine.m
carries out the refinements of the triangulation by dividing every element into 2d

subelements. The operation sβ solves a linear system of equations and the command
sparse(I,J,X,nC,nC) assembles a sparse matrix s ∈ R

nC ×nC by specifying
its entries through lists I, J, X ∈ R

L and si j = ∑
�∈{1,...,L},I�=i, J�= j X�.

3.4.2 Heat Equation

For a simple implementation, different assumptions on the approximation of the data
functions are made for the implementation of the θ -midpoint scheme for the heat
equation.

Assumption 3.3 (Data approximation II) We assume that

u0 = u0,h ∈ S 1(Th), uD = uD,h ∈ C([0, T ];S 1(Th)),

f = fh ∈ C([0, T ];S 1(Th)), g = gh ∈ C([0, T ];S 1(Th)).

For a sequence (ak)k=0,...,K and θ ∈ [0, 1], we set ak,θ = θak + (1 − θ)ak−1.
The θ -midpoint scheme then computes the sequence (̃uk

h)k=0,...,K ⊂ S 1
D(Th) with

∫

Ω

dt ũ
k
hvh dx +

∫

Ω

∇ũk,θ
h · ∇vh dx = −

∫

Ω

dt u
k
D,hvh dx −

∫

Ω

∇uk,θ
D,h · ∇vh dx

+
∫

Ω

fh(tk,θ )vh dx +
∫

ΓN

gh(tk,θ )vh ds
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Fig. 3.9 Matlab implementation of the P1 finite element method for the Poisson problem
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Fig. 3.10 Matlab implementation of the θ-midpoint scheme in time and the P1 finite element
method in space for the heat equation

for all vh ∈ S 1
D(Th). We also set uk

D,h = uD(tk) for k = 0, 1, . . . , K . The nontrivial

coefficients Ũ k = (Ũ k
y : y ∈ Kh) of ũk

h satisfy the equation

∑
y∈Kh

Ũ k
y

(
τ−1

∫

Ω

ϕzϕy dx + θ

∫

Ω

∇ϕy · ∇ϕz dx
)

=
∑

y∈Kh

Ũ k−1
y

(
τ−1

∫

Ω

ϕyϕz dx − (1 − θ)

∫

Ω

∇ϕy · ∇ϕz dx
)

+
∑

y∈Nh

(
− dt u

k
D,h(y)

∫

Ω

ϕyϕz dx − uk,θ
D,h(z)

∫

Ω

∇ϕy · ∇ϕz dx
)

+
∑

y∈Nh

(
fh(tk,θ , y)

∫

Ω

ϕyϕz dx + gh(tk,θ , y)

∫

ΓN

ϕyϕz dx
)
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Fig. 3.11 Matlab routines that provide the P1finite element stiffness andmassmatrices according
to Lemmas3.10 and3.12; the index “lumped” refers to reduced integration
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for every z ∈ Kh . The implementation thus requires computing L2-inner products
of the nodal basis functions. These can be replaced by simplified discrete versions
based on numerical integration as introduced in Definition3.13.

Lemma 3.12 (Mass matrices) For T ∈ Th such that T = conv{z0, z1, . . . , zd}, we
have for 0 ≤ m, n ≤ d that

∫

T

ϕzm ϕzn dx = |T |(1 + δmn)

(d + 1)(d + 2)
,

∫

T

Ih[ϕzm ϕzn ] dx = |T |δmn

d + 1
.

For S ∈ Sh such that S = conv{z0, z1, . . . , zd−1} we have for 0 ≤ m, n ≤ d − 1
that ∫

S

ϕzm ϕzn dx = |S|(1 + δmn)

d(d + 1)
,

∫

S

Ih[ϕzm ϕzn ] dx = |S|δmn

d
.

Proof The identities follow from elementary calculations on a reference element and
a transformation to T . �

Figure3.10 displays a Matlab implementation of the θ -midpoint scheme. The
routines fe_matrices_bdy.m and fe_matrices.m displayed in Fig. 3.11
provide the stiffness and mass matrices. The parameter α in the code determines
the time-step size via τ = hα/4.
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Chapter 4
Concepts for Discretized Problems

4.1 Convergence of Minimizers

We consider an abstract finite-dimensional minimization problem that seeks a
minimizing function uh ∈ Ah for a functional

Ih(uh) =
∫

Ω

Wh(∇uh) dx,

where the indices h inAh and Wh refer to discretized versions of given counterparts
in the infinite-dimensional variational problem for minimizing

I (u) =
∫

Ω

W (∇u) dx

in the set of functions u ∈ A . Wewill often refer to the infinite-dimensional problem
as the continuous problem, but this does not imply a continuity property of the
functional or its integrand. The finite-dimensional problems will also be referred to
as discretized problems. We recall that it is sufficient for the existence of discrete
solutions to have coercivity and lower semicontinuity of Ih , while in the continuous
situation, coercivity and the strictly stronger notion of weak lower semicontinuity of
I are required.We discuss in this section the variational convergence ofminimization
problems and adopt concepts described in the textbook [5].

4.1.1 Failure of Convergence

A natural question to address is whether a family of discrete solutions (uh)h>0
converges to a minimizer u ∈ A for I with respect to some topology. Obviously,
this requires the existence of a minimizer u ∈ A for I and convergence of the entire
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sequence of approximations requires uniqueness of the continuous solution, or a
certain selection principle contained in the discrete problems. Surprisingly, even if a
solution exists for the continuous problem, if the discretization is conforming in the
sense that Ah ⊂ A and Wh = W , and if the family (Ah)h>0 is dense in A , then
convergence of discrete solutions may fail entirely.

Example 4.1 (Lavrentiev phenomenon [9]) Let A be the set of all functions
v ∈ W 1,1(0, 1) satisfying v(0) = 0 and v(1) = 1 and consider

I (u) =
1∫

0

(
x − u3)2|u′|6 dx .

For h > 0 let Th be a triangulation of (0, 1), and define Ah = A ∩ S 1(Th). Then
the function u(x) = x1/3 is a minimizer for I in A , but for every h > 0, we have

0 = min
u∈A

I (u) < min
u∈A ∩W 1,∞(0,1)

I (u) ≤ min
uh∈Ah

I (uh).

In particular, the discrete minimal energies cannot converge to the right value. The
reason for this discrepancy is the incompatibility of the growth of the integrand of I
and the exponent of the employed Sobolev space in the definition of A .

The example shows that even the seemingly simple notion of convergence

min
uh∈Ah

Ih(uh) → inf
u∈A

I (u)

for h → 0 requires stronger arguments than just the density of the approximation
spaces. Once convergence is understood, a natural question to investigate is whether
a rate of convergence can be proved, i.e., whether there exists α > 0 with

| min
uh∈Ah

Ih(uh) − inf
u∈A

I (u)| ≤ chα.

Even if this is the case, it is not guaranteed that discrete solutions uh ∈ Ah converge
to a minimizer u ∈ A of I .

Example 4.2 (Lack of weak lower semicontinuity) Set A = W 1,4(0, 1) and let

I (u) =
1∫

0

(|u′|2 − 1
)2 + u4 dx .

For h > 0 let Th be a triangulation of (0, 1) of maximal mesh-size h and define
Ah = A ∩ S 1(Th). Then infu∈A I (u) = 0 and

| min
uh∈Ah

I (uh) − inf
u∈A

I (u)| ≤ ch4,
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and anyweakly convergent sequence of discreteminimizers (uh)h>0 satisfies uh ⇀ 0
in W 1,4(Ω) as h → 0. Due to the nonconvexity of the integrand, we have that u = 0
is not a minimizer for I , i.e., 0 < 1 = I (0).

4.1.2 Γ -Convergence of Discretizations

The concept ofΓ -convergence provides a concise framework to analyze convergence
of a sequence of energy functionals and its minimizers. In an abstract form we
consider a sequence of discrete minimization problems:

Minimize Ih(uh) in the set of functions uh ∈ Xh .

Here, every space Xh is assumed to be a subspace of a Banach space X and Ih is
allowed to attain the value +∞, so that constraints contained in Ah ⊂ Xh can be
incorporated in Ih . We formally extend the discrete problems to X by setting

Ih(u) =
{

Ih(u) if u ∈ Xh,

+∞ if u 
∈ Xh .

In the following, h > 0 stands for a sequence of positive real numbers that accumulate
at zero.

Definition 4.1 Let X be a Banach space, I : X → R ∪ {+∞}, and let (Ih)h>0 be
a sequence of functionals Ih : X → R ∪ {+∞}. We say that the sequence (Ih)h>0
Γ -converges to I as h → 0, denoted by Ih →Γ I , with respect to a given topology
ω on X if the following conditions hold:

(a) For every sequence (uh)h>0 ⊂ X with uh →ω u for some u ∈ X , we have that
lim infh→0 Ih(uh) ≥ I (u).

(b) For every u ∈ X there exists a sequence (uh)h>0 ⊂ X with uh →ω u and
Ih(uh) → I (u) as h → 0.

Remark 4.1 The first condition is called liminf-inequality and implies that I is a
lower bound for the sequence (Ih)h>0 in the limit h → 0. The second condition
guarantees that the lower bound is attained, and the involved sequence is called a
recovery sequence.

Unless otherwise stated, we consider the weak topology ω on X . For conforming
discretizations, i.e., if Ih(uh) = I (uh) for all uh ∈ Xh , of well-posed minimization
problems, a Γ -convergence result can be proved under moderate conditions.

Theorem 4.1 (Conforming discretizations) Assume that Ih(uh) = I (uh) for uh ∈
Xh and h > 0 and that the spaces (Xh)h>0 are dense in X with respect to the strong
topology of X. If I is weakly lower semicontinuous and strongly continuous, then we
have Ih →Γ I as h → 0 with respect to weak convergence in X.
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Proof Let (uh)h>0 ⊂ X and u ∈ X be such that uh ⇀ u as h → 0. To
prove the liminf-inequality, we note that Ih(uh) ≥ I (uh) and thus the weak lower
semicontinuity of I implies lim infh→0 Ih(uh) ≥ lim infh→0 I (uh) ≥ I (u). Toprove
that I (u) is attained for every u ∈ X , let (uh)h>0 be a sequence with uh ∈ Xh for
every h > 0 and uh → u in X . The strong continuity of I and Ih(uh) = I (uh) imply
that I (u) = limh→0 Ih(uh). �

The definition of Γ -convergence has remarkable consequences.

Proposition 4.1 (Γ -Convergence)

(i) If Ih →Γ I as h → 0, then I is weakly lower semicontinuous on X.
(ii) If Ih →Γ I as h → 0 and for every h > 0 there exists uh ∈ X such that
Ih(uh) ≤ infvh∈X Ih(vh)+ εh with εh → 0 as h → 0 and uh →ω u for some u ∈ X,
then Ih(uh) → I (u) and u is a minimizer for I .
(iii) If Ih →Γ I and G is ω-continuous on X, then Ih + G →Γ I + G.

Proof (i) Let (u j ) j∈N ⊂ X be a sequence with u j →ω u in X as j → ∞. For
every j ∈ N there exists a sequence (uh

j )h>0 such that uh
j →ω u j as h → 0

and Ih(uh
j ) → I (u j ). For every j ∈ N we may thus choose h j > 0, such that

|I (u j ) − Ih j (u
h j
j )| ≤ 1/j and u

h j
j →ω u as j → ∞. It follows that

I (u) ≤ lim inf
j→∞ Ih j

(
u

h j
j

) = lim inf
j→∞ I (u j ) − I (u j ) + Ih j

(
u

h j
j

) = lim inf
j→∞ I (u j ).

This proves the first statement.
(ii) If uh →ω u, then by condition (a) we have I (u) ≤ lim infh→0 Ih(uh). Moreover,
due to (b) for every v ∈ X , there exists (vh)h>0 ⊂ X with vh →ω v and Ih(vh) →
I (v) as h → 0. Therefore, I (uh) ≤ I (vh) + εh and

I (u) ≤ lim inf
h→0

Ih(uh) ≤ lim
h→0

(
Ih(vh) + εh

) = I (v),

i.e., u is a minimizer for I .
(iii) If G is ω-continuous, then G(uh) → G(u) whenever uh →ω u in X and the
Γ -convergence of Ih + G to I + G follows directly from Ih →Γ I . �

4.1.3 Examples of Γ -Convergent Discretizations

We discuss some examples of Γ -convergence. As above, we always extend a func-
tional Ih defined on a subspace Xh ⊂ X by the value +∞ to the whole space X .

Example 4.3 (Poisson problem) Let X = H1
D(Ω) and Xh = S 1

D(Th) for a regular
family of triangulations (Th)h>0 of Ω . For f ∈ L2(Ω) and g ∈ L2(ΓN), let

I (u) = 1

2

∫

Ω

|∇u|2 dx −
∫

Ω

f u dx −
∫

ΓN

gu ds
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and let Ih : H1
D(Ω) → R ∪ {+∞} coincide with I on S 1

D(Th). Since the Dirichlet
energy is weakly lower semicontinuous and strongly continuous, the linear lower-
order terms are weakly continuous on H1

D(Ω), and since the finite element spaces
are dense in H1

D(Ω), we verify that Ih →Γ I as h → 0. Nonhomogeneous Dirichlet
conditions can be included by considering the decomposition u = ũ + ũD with ũ ∈
H1
D(Ω). For minimizers u ∈ H2(Ω)∩ H1

D(Ω) of I and uh ∈ S 1
D(Th) of Ih , we have

∣∣I (u) − Ih(uh)
∣∣ ≤ ch.

A constant sequence of functionals can have a different Γ -limit.

Example 4.4 (Relaxation) For the sequence of functionals defined through X =
W 1,4(0, 1),

I (u) =
1∫

0

(|u′|2 − 1
)2 + u4 dx,

subspaces Xh = S 1(Th), and Ih = I on Xh , we have that Ih →Γ I ∗∗ in W 1,4(0, 1)
with the convexified functional

I ∗∗(u) =
1∫

0

(|u′|2 − 1
)2
+ + u4 dx,

where s+ = max{s, 0} for s ∈ R. Since the integrand of I ∗∗ is convex, the functional
is weakly lower semicontinuous. Using that Ih(uh) = I (uh) ≥ I ∗∗(uh) for all h > 0,
we deduce that lim infh→0 Ih(uh) ≥ I ∗∗(u) whenever uh ⇀ u in W 1,4(0, 1). To
prove that the lower bound is attained, we first consider the case that u ∈ W 1,4(Ω)

is piecewise affine, i.e., u = u H ∈ S 1(TH ) for some H > 0. For 0 < h < H we
then construct a function uh that nearly coincides with u H on elements TH ∈ TH for
which |u′

H |TH | ≥ 1. For elements with |u′
H |TH | ≤ 1 we use gradients u′

h ∈ {±1} on
TH in such a way that uh and u H nearly coincide at the endpoints of TH and differ by
at most h in the interior. Then I (uh) ≈ I ∗∗(u H ) and I (uh) → I ∗∗(u H ) as h → 0.
The construction is depicted in Fig. 4.1. The assertion for general u ∈ W 1,4(Ω)

follows from an approximation result and the strong continuity of I .

uH

uh

H h 1− 1

W ∗∗
W

Fig. 4.1 Construction of an oscillating function uh (solid line) with |u′
h | ≥ 1 that approximates

uH (dashed line) such that I (uh) ≈ I ∗∗(u H ) (left) in Example 4.4; the integrand W ∗∗ (solid line)
of I ∗∗ is the convex hull of the integrand W (dashed line) of I (right)
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A typical application of conforming discretizations of well-posed minimization
problems occurs in simulating hyperelastic materials.

Example 4.5 (Hyperelasticity) Let A = {y ∈ W 1,p(Ω;Rd) : y|ΓD = ỹD|ΓD} for
1 ≤ p < ∞ and ỹD ∈ W 1,p(Ω;Rd). Assume that W : Rd×d → R is continuous
and quasiconvex with

−c1 + c2|F |p ≤ W (F) ≤ c1 + c2|F |p.

Then for f ∈ L p′
(Ω;Rd) and g ∈ L p′

(ΓN;Rd), the functional

I (y) =
∫

Ω

W (∇ y) dx −
∫

Ω

f · y dx −
∫

ΓN

g · y ds

is weakly lower semicontinuous and coercive on W 1,p(Ω;Rd). Moreover, if the
sequence (y j ) j∈N ⊂ W 1,p(Ω;Rd) converges strongly to y ∈ W 1,p(Ω;Rd) then
we have ∇ y jk (x) → ∇ y(x) for almost every x ∈ Ω for a subsequence (y jk )k∈N,
and the generalized dominated convergence theorem implies

∫

Ω

W (∇ y jk ) dx →
∫

Ω

W (∇ y) dx,

i.e., up to subsequences I is strongly continuous and this is sufficient to establish
Γ -convergence. For piecewise affine boundary data yD, we have that Ah = A ∩
S 1(Th)d is nonempty and the density of finite element spaces implies Ih →Γ I
for conforming discretizations. More generally, it suffices to consider convergent
approximations ỹD,h of ỹD.

The abstract convergence theory allows us to include nonlinear constraints.

Example 4.6 (Harmonic maps) Assume that uD ∈ C(ΓD;Rm) is such that

A = {u ∈ H1(Ω;Rm) : u|ΓD = uD, |u(x)| = 1 f.a.e. x ∈ Ω}
is nonempty and for a triangulation Th of Ω with nodes Nh , set

Ah = {uh ∈ S 1(Th)m : u(z) = uD(z) f.a. z ∈ Nh∩ΓD, |uh(z)| = 1 f.a. z ∈ Nh},
i.e., Ah 
⊂ A . We then consider the minimization of the Dirichlet energy I on Ah

and A , respectively, which defines minimization problems with functionals Ih and
I on H1(Ω;Rm), respectively. To show that Ih →Γ I in H1(Ω;Rm) we note that
the liminf-inequality follows from the weak lower semicontinuity of I , together with
the fact that if uh ⇀ u in W 1,2(Ω;Rm) with uh ∈ Ah for every h > 0, then
u ∈ A . The latter implication follows from a nodal interpolation result, together
with elementwise inverse estimates, i.e.,

‖|uh |2 − 1‖ = ‖|uh |2 − Ih |uh |2‖ ≤ ch‖uh‖‖∇uh‖.
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Therefore, |uh′(x)| → 1 for almost every x ∈ Ω and a subsequence h′ > 0 so that
|u(x)| = 1 for almost every x ∈ Ω . We assume that uD is sufficiently regular, so
that a similar argument shows u|ΓD = uD. To prove the attainment of I , we note
that due to the density of smooth unit-length vector fields in A , we may assume
u ∈ A ∩ H2(Ω;Rm) and define uh = Ihu ∈ Ah . Then uh → u in H1(Ω;Rm)

and Ih(uh) → I (u) as h → 0.

Remark 4.2 In general, smooth constrained vector fields are not dense in sets of
weakly differentiable constrained vector fields, cf., e.g., [18].

For practical purposes it is often desirable to modify a given functional.

Example 4.7 (Total variation minimization) For X = W 1,1(Ω) we consider

I (u) =
∫

Ω

|∇u| dx;

and given a family of triangulations (Th)h>0 of Ω and uh ∈ S 1(Th), we define for
β > 0 the regularized functionals

Ih(uh) =
∫

Ω

(hβ + |∇uh |2)1/2 dx .

If uh ⇀ u in W 1,1(Ω), then the liminf-inequality follows from the weak lower
semicontinuity of I on W 1,1(Ω) and the fact that Ih(uh) ≥ I (uh) for every h > 0.
To verify that I (u) is attained for every u ∈ W 1,1(Ω) in the limit h → 0, we note
that the density of finite element spaces in W 1,1(Ω) allows us to consider a sequence
(uh)h>0 ⊂ W 1,1(Ω) with uh ∈ S 1(Th) for every h > 0 and uh → u ∈ W 1,1(Ω)

as h → 0. The estimate (a2 + b2)1/2 ≤ |a| + |b| implies that

(hβ + |∇uh |2)1/2 − |∇u| ≤ hβ/2 + |∇uh | − |∇u|,

and for a subsequence we have ((h′)α + |∇uh′ |2)1/2 → |∇u| almost everywhere in
Ω . The generalized dominated convergence theorem implies that Ih′(uh′) → I (u)

as h′ → 0. With Proposition 4.1, this also implies the Γ -convergence of discretiza-
tions of

I (u) =
∫

Ω

|∇u| dx + α

2
‖u − g‖2

for g ∈ L2(Ω). Due to the lack of reflexivity of W 1,1(Ω) this is not sufficient to
deduce the existence of minimizers for I , i.e., we cannot deduce the existence of
weak limits of (subsequences) of a bounded sequence. For this, the larger space
BV (Ω) ∩ L2(Ω) has to be considered. A corresponding Γ -convergence result
follows analogously with the density of W 1,1(Ω) in BV (Ω) with respect to an
appropriate notion of convergence.
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4.1.4 Error Control for Strongly Convex Problems

For Banach spaces X and Y , a bounded linear operator Λ : X → Y , and convex,
lower-semicontinuous, proper functionals F : X → R ∪ {+∞} and G : Y →
R ∪ {+∞}, we consider the problem of finding u ∈ X with

I (u) = inf
v∈X

I (v), I (v) = F(v) + G(Λv).

The Fenchel conjugates F∗ : X ′ → R ∪ {+∞} and G∗ : Y ′ → R ∪ {+∞} are the
convex, lower-semicontinuous, proper functionals defined by

F∗(w) = sup
v∈X

〈w, v〉 − F(v), G∗(q) = sup
p∈Y

〈q, p〉 − G(p)

for w ∈ X ′ and q ∈ Y ′, respectively. We assume that Y is reflexive, so that
G = G∗∗. Then, the property of the formal adjoint operator Λ′ : Y ′ → X ′, that
〈Λv, q〉 = 〈v,Λ′q〉, and the general relation infv supq H(v, q) ≥ supq infv H(v, q)

for an arbitrary function H : X × Y ′ → R ∪ {+∞} yield
inf

v
I (v) = inf

v
F(v) + G∗∗(Λv) = inf

v
sup

q
F(v) + 〈v,Λ′q〉 − G∗(q)

≥ sup
q

inf
v

F(v) + 〈v,Λ′q〉 − G∗(q) = sup
q

inf
v

F(v) − 〈v,−Λ′q〉 − G∗(q)

= sup
q

(
− sup

v
〈v,−Λ′q〉 − F(v) − G∗(q)

)
= sup

q
−F∗(−Λ′q) − G∗(q).

This motivates considering the dual problem which consists in finding p ∈ Y ′ with

D(p) = sup
q∈Y ′

D(q), D(q) = −F∗(−Λ′q) − G∗(q).

We assume that F or G is strongly convex, so that there exist αF , αG ≥ 0 with
max{αF , αG} > 0, so that for all q1, q2 ∈ Y and v1, v2 ∈ X , we have

G
(
(q1 + q2)/2

) + αG‖q2 − q1‖2Y ≤ 1

2

(
G(q1) + G(q2)

)
,

F
(
(v1 + v2)/2

) + αF‖v2 − v1‖2X ≤ 1

2

(
F(v1) + F(v2)

)
.

By convexity, the estimates hold with αG = αF = 0. The primal and dual optimiza-
tion problems are related by the weak complementarity principle

I (u) = inf
v∈X

I (v) ≥ sup
q∈Y ∗

D(q) = D(p).

We say that strong duality applies if equality holds. Our final ingredient for the error
estimate is a characterization of the optimality of the solution of the primal problem.
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For some αI ≥ 0 and all w ∈ ∂ I (u), we have that

〈w, v − u〉 + αI ‖v − u‖2X ≤ I (v) − I (u)

and u is optimal if and only if 0 ∈ ∂ I (u). We assume in the following that αF > 0
or αI > 0, so that I has a unique minimizer u ∈ X .

Theorem 4.2 (Error control [16]) Assume that max{αF , αG , αI } > 0 and let u ∈ X
be the unique minimizer for I .

(i) For a minimizer uh ∈ Xh for I restricted to a subspace Xh ⊂ X, we have the
a priori error estimate

αG‖Λ(u − uh)‖2Q + (αF + αI /4)‖u − uh‖2X ≤ inf
wh∈Xh

1

2

(
I (wh) − I (u)

)
.

(ii) For an arbitrary approximation ũh ∈ X of u, we have the a posteriori error
estimate

αG‖Λ(u − ũh)‖2Q + (αF + αI /4)‖u − ũh‖2X ≤ inf
q∈Y ′

1

2

(
I (̃uh) − D(q)

)
.

Proof The convexity estimates imply that

αG‖Λ(u − v)‖2Q + αF‖u − v‖2X ≤ 1

2

(
I (v) + I (u)

) − I
(
(v + u)/2

)
.

The optimality of u shows that we have

I (u) + αI ‖u − (u + v)/2‖2X ≤ I
(
(u + v)/2

)
.

It follows that

αG‖Λ(u − v)‖2Q + αF‖u − v‖2X ≤ 1

2

(
I (v) − I (u)

) − αI ‖((u − v)/2‖2X .

If uh ∈ Xh is minimal in Xh , then the identity I (uh) = infwh∈Xh I (wh) implies
the a priori estimate. The weak complementarity principle I (u) ≥ D(q) yields the
a posteriori estimate. �

Remarks 4.3 (i) If strong duality holds, i.e., if I (u) = D(p), then the estimate of
the theorem is sharp in the sense that the right-hand side vanishes if v = u and q
solves the dual problem.
(ii) Sufficient conditions for strong duality are provided by von Neumann’s minimax
theorem, e.g., that F and G∗ are convex, lower semicontinuous, and coercive.

Example 4.8 For the Poisson problem −�u = f in Ω , u|∂Ω = 0, we have
X = H1

0 (Ω), Y = L2(Ω;Rd), Λ = ∇, G(Λv) = (1/2)
∫
Ω

|∇v|2 dx , and
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F(v) = − ∫
Ω

f v dx . It follows that F∗(w) = I{− f }(w), G∗(q) = (1/2)
∫
Ω

|q|2 dx ,

Λ′ = − div : L2(Ω;Rd) → H1
0 (Ω)∗.

We thus have

1

2

(
(q1+q2)/2

)2− 1

4
(q2

1 +q2
2 ) = 1

8
(q2

1 +2q1q2+q2
2 −2q2

1 −2q2
2 ) = −1

8
(q1−q2)

2,

so that αG = 1/8 and

1

2
q2
1 − 1

2
q2
2 − q1(q1 − q2) = −1

2
q2
1 − 1

2
q2
2 + q1q2 = −1

2
(q1 − q2)

2,

i.e., αI = 1/2. Moreover, we have αF = 0.

(i) Incorporating the definition of the exact weak solution, the abstract a priori esti-
mate of Theorem 4.2 provides the bound

1

2
‖∇(u − uh)‖2 ≤ 1

2

∫

Ω

|∇wh |2 −
∫

Ω

f wh dx − 1

2

∫

Ω

|∇u|2 +
∫

Ω

f u dx

= 1

2
‖∇(u − wh)‖2 +

∫

Ω

∇u · ∇(u − wh) dx +
∫

Ω

f (u − wh) dx

= 1

2
‖∇(u − wh)‖2,

which implies the best-approximation property

‖∇(u − uh)‖ ≤ inf
wh∈Xh

‖∇(u − wh)‖.

(ii) Letting η2(v, q) denote the right-hand side of the a posteriori error estimate of
Theorem 4.2, we have

2η2(v, q) = −
∫

Ω

f v dx + I{− f }(div q) + 1

2

∫

Ω

|∇v|2 dx + 1

2

∫

Ω

|q|2 dx

=
∫

Ω

(div q)v dx + 1

2
‖∇v‖2 + 1

2
‖q‖2 = 1

2
‖∇v − q‖2,

provided that − div q = f . The theorem thus implies

‖∇(u − v)‖ ≤ inf− div q= f
‖∇v − q‖.
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4.2 Approximation of Equilibrium Points

The Euler–Lagrange equations related to a minimization problem typically seek a
function u ∈ X such that

F(u)[v] = 
(v)

for all v ∈ X with a possibly nonlinear operator F : X → X ′ and a linear functional

 ∈ X ′. Various other mathematical problems that may not be related to a minimiza-
tion problem can also be formulated in this abstract form. A natural discretization
employs subspaces Xh ⊂ X and seeks uh ∈ Xh with

Fh(uh)[vh] = 
h(vh)

for all vh ∈ Xh . Here, Fh : Xh → X ′
h and 
h ∈ X ′

h are approximations of F
and 
 that result from a discretization, e.g., via numerical integration. The important
question to address is whether numerical solutions (uh)h>0 for a sequence of finite-
dimensional subspaces Xh converge in an appropriate sense to a solution of the
infinite-dimensional problem. We assume that the finite-dimensional space Xh is
equipped with the norm of X . The corresponding dual spaces X ′

h and X ′ are related
by the inclusion X ′|Xh ⊂ X ′

h . Topics related to the contents of this section can be
found in the textbooks [3, 11].

4.2.1 Failure of Convergence

The following examples show that unjustified regularity assumptions can lead to the
failure of convergence to the correct object. The following examples are taken from[6].

Example 4.9 (Maxwell’s equations) ForΩ ⊂ R
2 set X = H0(curl;Ω)∩H(div;Ω),

where

H0(curl;Ω) = {v ∈ L2(Ω;R2) : curl v ∈ L2(Ω;R2), v · t = 0 on ∂Ω}
with curl v = ∂1v2 − ∂2v1 for v = (v1, v2) and t : ∂Ω → R

2 a unit tangent. For
f ∈ L2(Ω;R2), consider the problem of finding u ∈ X such that

(curl u, curl v) + (div u, div v) = ( f, v)

for all v ∈ X . The existence and uniqueness of a solution follows from the
Lax–Milgram lemma. A discretization of this problem is obtained by choosing
Xh = S 1(Th)2 ∩ X and computing uh ∈ Xh such that

(curl uh, curl vh) + (div uh, div vh) = ( f, vh)

for all vh ∈ Xh . This defines a convergent numerical scheme if Ω is convex. If Ω is
nonconvex, then H1(Ω;R2)∩ X is a closed proper subspace of X , cf. [8] for details,
and convergence uh → u as h → 0 fails in general.
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A similar effect occurs for higher-order problems.

Example 4.10 (Biharmonic equation) The biharmonic equation

�2u = f inΩ, u = �u = 0 on ∂Ω

formally corresponds to the weak formulation that seeks u ∈ H2(Ω) ∩ H1
0 (Ω) with

∫

Ω

D2u : D2v dx =
∫

Ω

f v dx

for all v ∈ H2(Ω) ∩ H1
0 (Ω) We denote the unique weak solution of the variational

formulation by u = (�2)−1 f . A natural discretization of the problem is based on
an operator splitting which is obtained by introducing z = −�u and solving the
Poisson problems

− �z = f inΩ, z = 0 on ∂Ω,

− �u = z inΩ, u = 0 on ∂Ω.

We have z = (−�)−1 f and u = (−�)−1z = (−�)−2 f . UnlessΩ is convex so that
�u ∈ H1

0 (Ω) we do not have (�2)−1 f = (−�)−2 f , and convergence of related
numerical methods will fail in general.

Failure of convergence may also be related to the lack of uniqueness of a solution
as in the case of degenerately monotone problems.

Example 4.11 (Degenerate monotonicity) For σ(F) = DW ∗∗(F) for F ∈ R
d and

W ∗∗(F) = (|F |2 − 1)2+, there are infinitely many functions u ∈ W 1,4
0 (Ω) satisfying

F(u)[v] = ∫
Ω

σ(∇u) · ∇v dx = 0 for all v ∈ W 1,4
0 (Ω).

4.2.2 Abstract Error Estimates

We sketch below the classical concept that consistency and stability imply the con-
vergence of numerical approximations, provided that appropriate regularity results
are available. Dual to this is an approach that leads to computable upper bounds for
the approximation error and which avoids regularity assumptions entirely.

Theorem 4.3 (Abstract a priori error estimate) Let u ∈ X satisfy F(u) = 
 and
assume that for an interpolant ihu ∈ Xh and a consistency functional Ch(u) ∈ X ′

h,
we have

Fh(ihu)[vh] − 
h(vh) = Ch(u; vh)

for all vh ∈ Xh. Assume that we have discrete stability in the sense that for all
zh ∈ Xh and bh ∈ X ′

h, the implication

∀ vh ∈ Xh Fh(zh)[vh] = bh(vh) =⇒ ‖zh‖X ≤ cS,h‖bh‖X ′
h
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holds. Then, if Fh : Xh → X ′
h is linear, there exists a unique solution uh ∈ Xh with

‖uh − ihu‖X ≤ cS,h‖Ch(u)‖X ′
h
.

Proof Discrete stability implies that Fh : Xh → X ′
h is a bijection and hence there

exists a unique uh ∈ Xh with Fh(uh) = 0. Since Fh(ihu−uh) = Fh(ihu)−Fh(uh) =
Fh(ihu) − 
h = Ch(u) we deduce the estimate. �

Remark 4.4 We say that a discretization is consistent of order β ≥ 0, given the regu-
larity u ∈ Z ⊂ X if ‖Ch(u)‖X ′

h
≤ chβ . This implies convergence of approximations

with rate β.

A similar abstract concept leads to a posteriori error estimates for many linear
problems.

Theorem 4.4 (Abstract a posteriori error estimate) Let uh ∈ Xh and define the
residual Rh(uh) ∈ X ′ through

Rh(uh; v) = F(uh)[v] − 
(v)

for all v ∈ X. Assume that we have the continuous stability result that for all z ∈ X
and b ∈ X ′, the implication

∀ v ∈ X F(z)[v] = b(v) =⇒ ‖z‖X ≤ cS‖b‖X ′

holds. If u ∈ X satisfies F(u) = 
 and if F is linear, then u is unique with

‖u − uh‖X ≤ cS‖Rh(uh)‖X ′ .

Proof The difference u − uh satisfies F(u − uh)[v] = Rh(uh; v) for all v ∈ X , and
the stability result implies the error estimate and the uniqueness property. �

Example 4.12 (Poisson problem) Let u ∈ H1
D(Ω) be theweak solution of−�u = f

in Ω , u|ΓD = 0, and ∂νu|ΓN = g, i.e., we have F(u) = 
 with

F(u)[v] =
∫

Ω

∇u · ∇v dx, 
(v) =
∫

Ω

f v dx +
∫

ΓN

gv ds.

The lowest-order finite elementmethod seeks uh ∈ S 1
D(Th)with F(uh)[vh] = 
(vh)

for all vh ∈ S 1
D(Th).

(i) Inserting an interpolant ihu ∈ S 1
D(Th) in the discrete formulation leads to

Ch(u; vh) = F(ihu)[vh] − 
(vh) =
∫

Ω

∇[ihu − u] · ∇vh dx
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for all vh ∈ S 1
D(Th). We have ‖Ch(u)‖S 1

D(Th)′ ≤ ch‖D2u‖ if u ∈ H2(Ω)∩ H1
D(Ω)

and ihu = Ihu is the nodal interpolant of u. If zh ∈ S 1
D(Th) and bh ∈ S 1

D(Th)′
are such that ∫

Ω

∇zh · ∇vh dx = bh(vh)

for all vh ∈ S 1
D(Th), then the choice of vh = zh shows the discrete stability estimate

‖∇zh‖ ≤ ‖bh‖S 1
D(Th)′ . Therefore, Theorem 4.3 implies the error estimate

‖∇(uh − Ihu)‖L2(Ω) ≤ ch‖D2u‖L2(Ω).

(ii) Let uh ∈ S 1
D(Th) and define

Rh(uh; v) = F(uh)[v] − 
(v) =
∫

Ω

∇uh · ∇v dx −
∫

Ω

f v dx −
∫

ΓN

gv ds

for all v ∈ H1
D(Ω). Noting the stability estimate ‖∇z‖ ≤ ‖b‖X ′ for z ∈ H1

D(Ω) and
b ∈ H1

D(Ω)′ with ∫

Ω

∇z · ∇v dx = b(v)

for all v ∈ H1
D(Ω), Theorem 4.4 implies the error estimate

‖∇(u − uh)‖L2(Ω) ≤ ‖Rh(uh)‖X ′ .

If uh satisfies F(uh)[vh] = 0 for all vh ∈ S 1
D(Th), we have the Galerkin

orthogonality F(u − uh)[vh] = 0 for all vh ∈ S 1
D(Th) and ‖Rh(uh)‖X ′ ≤ cη(uh)

with a computable quantity η(uh), cf. Theorem 3.6.

The concepts can be generalized to the class of strongly monotone operators.

Definition 4.2 The operator F : X → X ′ is called strongly monotone if there exists
an increasing bijection χ : [0,∞) → [0,∞) with

χ(‖u − v‖X ) ≤ 〈F(u) − F(v), u − v〉X

‖u − v‖X

for all u, v ∈ X .

We consider a conforming discretization of a strongly monotone problem in the
following theorem.

Theorem 4.5 (Monotone problems) Assume that u ∈ X and uh ∈ Xh satisfy

F(u)[v] = 
(v), F(uh)[vh] = 
(vh)

http://dx.doi.org/10.1007/978-3-319-13797-1_3
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for all v ∈ X and vh ∈ Xh, respectively, and let Ch(u) and Rh(uh) for an interpo-
lation operator ih be defined by

Ch(u; vh) = F(ihu)[vh] − 
(vh), Rh(uh; v) = F(uh)[v] − 
(v)

for all vh ∈ Xh and v ∈ X, respectively. Then we have the a priori and a posteriori
error estimates

χ(‖ihu − uh‖X ) ≤ ‖Ch(u)‖X ′
h
, χ(‖u − uh‖X ) ≤ ‖Rh(uh)‖X ′ .

Proof We have

‖ihu − uh‖X χ(‖ihu − uh‖X ) ≤ 〈F(ihu) − F(uh), ihu − uh〉 = Ch(u; ihu − uh)

and

‖u − uh‖X χ(‖u − uh‖X ) ≤ 〈F(u) − F(uh), u − uh〉 = −Rh(uh; u − uh).

Dividing by ‖ihu − uh‖X and ‖u − uh‖X , respectively, yields the estimates. �
Example 4.13 (p-Laplacian) The p-Laplacian− div(|∇u|p−2∇u) is identified with
the functional F : W 1,p

D (Ω) → W 1,p
D (Ω)′ defined by

F(u)[v] =
∫

Ω

|∇u|p−2∇u · ∇v dx

for u, v ∈ W 1,p
D (Ω). The functional F is the Fréchet derivative F = DI of

I (u) = 1

p

∫

Ω

|∇u|p dx .

If p ≥ 2, then F is monotone with χ(s) = αs p−1 for all s ≥ 0 and some α > 0.
The functional is locally Lipschitz continuous in the sense that

‖F(u) − F(v)‖
W 1,p

D (Ω)′ ≤ M(‖∇u‖L p(Ω) + ‖∇v‖L p(Ω))
p−2‖∇(u − v)‖L p(Ω)

for a constant M ∈ R and u, v ∈ W 1,p
D (Ω). This estimate implies the consistency of

conforming discretizations, e.g., with S 1
D(Th), and we obtain the error estimate

α‖∇(ihu − uh)‖p−1
L p(Ω) ≤ M‖∇(u − ihu)‖L p(Ω);

thus ‖∇(u − uh)‖L p(Ω) ≤ ch1/(p−1) if u ∈ W 2,p(Ω) ∩ W 1,p
D (Ω).

If the operator F fails to be monotone but has a regular Fréchet derivative in
the neighborhood of a solution, then a local error estimate follows from the implicit
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function theorem. For ease of presentation andwithout loss of generality, we consider
the homogeneous problem F(u) = 0.

Theorem 4.6 (Local error estimate [10]) Suppose that F : X → X ′ is continuous
and u ∈ X satisfies F(u) = 0. Assume that there exist constants c1, c2, c3, ε > 0
with c2 < c1 such that

‖F(u) − F(v)‖X ′ ≤ c0‖u − v‖X ,

‖DF(v)−1‖L(X ′,X) ≤ c−1
1 ,

‖DF(v) − DF(w)‖L(X,X ′) ≤ c2‖v − w‖X

for all v, w ∈ Bε(u). Let ihu ∈ Xh be an interpolant of u such that c0‖ihu − u‖X ≤
(c1 − c2)ε. Then there exists a unique uh ∈ Xh with F(uh) = 0 and ‖u − uh‖X ≤ ε.

Proof The assumptions of the theorem imply that

‖F(ihu)‖X ′ = ‖F(ihu) − F(u)‖X ′ ≤ c0‖u − ihu‖X .

A quantitative version of the implicit function theorem, cf. [2], implies the existence
of a unique uh ∈ Xh with the asserted properties. �

Example 4.14 (Semilinear diffusion) The theorem implies error estimates for the
approximation of the semilinear equation

−�u + f (u) = 0 in Ω, u = 0 on ∂Ω,

provided that f ′ and a solution u ∈ H1
0 (Ω) are such that the operator −� + f ′(v)id

is invertible for all v ∈ Bε(u) for some ε > 0. It is sufficient for this that f ′ > −c−2
P

with the smallest constant cP > 0, such that ‖w‖ ≤ cP‖∇w‖ for all w ∈ H1
0 (Ω).

The following proposition generalizes the Lax–Milgram and the Céa lemma to
bilinear forms that are not elliptic.

Proposition 4.2 (Generalized Lax–Milgram and Céa lemma [1, 13]) Let X, Y be
Hilbert spaces, a : X × Y → R a continuous bilinear form with continuity constant
M, and 
 ∈ Y ′. Assume that there exists α > 0 such that

sup
v∈Y\{0}

a(u, v)

‖v‖Y
≥ α‖u‖X

for all u ∈ X and that for all v ∈ Y\{0}, there exists u ∈ Y with a(u, v) 
= 0. Then
there exists a unique u ∈ X with

a(u, v) = 
(v)

for all v ∈ Y and ‖u‖X ≤ α−1‖
‖Y ′ . If Xh ⊂ X and Yh ⊂ Y are such that the above
conditions are satisfied with X and Y replaced by Xh and Yh, respectively, then there
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exists a unique uh ∈ Xh with
a(uh, vh) = 
(vh)

for all vh ∈ Yh, and we have

‖u − uh‖X ≤ (1 + α−1M) inf
wh∈Xh

‖u − wh‖X .

Proof Identifying the bilinear form a with the operator A : X → Y ′, we see that A
is injective, i.e., Au = 0 for u ∈ X implies u = 0. Noting that

α‖u j − uk‖X ≤ sup
v∈Y\{0}

〈A(u j − uk), v〉
‖v‖Y

≤ ‖Au j − Auk‖Y ′

proves that the range of A is closed. If v ∈ Y is such that 〈Au, v〉 = 0 for all u ∈ X ,
then the assumptions imply v = 0. Hence, the closed range theorem yields that the
range of A is Y ′ and it follows that A is bijective, i.e., there exists a unique u ∈ X with
Au = 
. The estimate for ‖u‖X is an immediate consequence of the assumptions.
The same arguments show that the operator Ah : Xh → Y ′

h is an isomorphism and
hence there exists a unique uh ∈ Xh with the asserted properties. Let wh ∈ Xh , and
for every vh ∈ Xh define


̃(vh) = a(u − wh, vh).

Then there exists a unique zh ∈ Xh with a(zh, vh) = 
̃(vh) and ‖zh‖X ≤ α−1‖
̃‖Y ′
h
.

Since a(uh, vh) = a(u, vh) it follows that zh = uh − wh , and hence

‖uh − wh‖X ≤ α−1M‖u − wh‖.
The triangle inequality implies the asserted estimate. �

Example 4.15 (Helmholtz equation) Let ω ∈ R and a : H1
0 (Ω) × H1

0 (Ω) → R be
for u, v ∈ H1

0 (Ω) defined by

a(u, v) = (∇u,∇v) − ω2(u, v),

which corresponds to the partial differential equation −�u − ω2u = f in Ω with
boundary condition u|∂Ω = 0. If ω2 is not an eigenvalue of −�, then a satisfies
the conditions of the proposition. To prove this, note that (−�)−1 : L2(Ω) →
H1
0 (Ω) ⊂ L2(Ω) is selfadjoint and compact with trivial kernel, so that there exists

a complete orthonormal system (u j ) j∈N ⊂ L2(Ω) of eigenfunctions of (−�)−1,
i.e., for every j ∈ N we have −�u j = λ j u j with positive eigenvalues (λ j ) j∈N
that do not accumulate at zero. We have λ−1

j (∇u j ,∇uk) = (u j , uk) = δ jk for

all j, k ∈ N. Given u = ∑
j∈N α j u j ∈ H1

0 (Ω), define v = ∑
j∈N σ jα j u j with

σ j = sign(‖∇u j‖2 − ω2‖u j‖2). Then

a(u, v) =
∑
j∈N

σ jα
2
j

(‖∇u j‖2 − ω2‖u j‖2
) ≥ min

j∈N
|λ j − ω2|

λ j
‖∇u‖2
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and with ‖∇u‖ = ‖∇v‖, we deduce that

sup
v∈H1

0 (Ω)

a(u, v)

‖∇v‖ ≥ cH ‖∇u‖.

The second condition of the proposition is a direct consequence of the requirement
that ω2 is not an eigenvalue of −�.

Remark 4.5 Proposition 4.2 is important for the analysis of saddle-point prob-
lems; the seminal paper [7] provides conditions that imply the assumptions of the
proposition.

4.2.3 Abstract Subdifferential Flow

The subdifferential flow of a convex and lower semicontinuous functional I : H →
R∪{+∞} arises as an evolutionary model in applications, and can be used as a basis
for numerical schemes to minimize I . The corresponding differential equation seeks
u : [0, T ] → H , such that u(0) = u0 and

∂t u ∈ −∂ I (u),

i.e., u(0) = u0 and
(−∂t u, v − u)H + I (u) ≤ I (v)

for almost every t ∈ [0, T ] and every v ∈ H . An implicit discretization of this
nonlinear evolution equation is equivalent to a sequence of minimization problems
involving aquadratic term.We recall thatdt uk = (uk−uk−1)/τ denotes the backward
difference quotient.

Theorem 4.7 (Semidiscrete scheme [15, 17]) Assume that I ≥ 0 and for u0 ∈ H
let (uk)k=1,...,K ⊂ H be minimizers for

I k
τ (w) = 1

2τ
‖w − uk−1‖2H + I (w)

for k = 1, 2, . . . , K . For L = 1, 2, . . . , K , we have

I (uL) + τ

L∑
k=1

‖dt u
k‖2H ≤ I (u0).

With the computable quantities

Ek = −τ‖dt u
k‖2H − I (uk) + I (uk−1)
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and the affine interpolant ûτ : [0, T ] → H of the sequence (uk)k=0,...,K we have
the a posteriori error estimate

max
t∈[0,T ] ‖u − û‖2H ≤ ‖u0 − u0‖2H + τ

L∑
k=1

Ek .

We have the a priori error estimate

max
k=0,...,K

‖u(tk) − uk‖2H ≤ ‖u0 − u0‖2H + τ I (u0),

and under the condition ∂ I (u0) 
= ∅, the improved variant

max
k=0,...,K

‖u(tk) − uk‖2H ≤ ‖u0 − u0‖2H + τ 2‖∂o I (u0)‖2H ,

where ∂o I (u0) ∈ H denotes the element of minimal norm in ∂ I (u0).

Proof The direct method in the calculus of variations yields that for k = 1, 2, . . . , K ,
there exists a unique minimizer uk ∈ H for I k

τ , and we have dt uk ∈ −∂ I (uk), i.e.,

(−dt u
k, v − uk)H + I (uk) ≤ I (v)

for all v ∈ H ; the choice of v = uk−1 implies that

−Ek = τ‖dt u
k‖2H + I (uk) − I (uk−1) ≤ 0

with 0 ≤ Ek ≤ −τdt I (uk). A summation over k = 1, 2, . . . , L yields the asserted
stability estimate. If ûτ is the piecewise affine interpolant of (uk)k=0,...,K associated
to the time steps tk = kτ , k = 0, 1, . . . , K , and u+

τ is such that u+
τ |(tk−1,tk ) = uk for

k = 1, 2, . . . and tk = kτ , then we have

(−∂t ûτ , v − u+
τ )H + I (u+

τ ) ≤ I (v)

for almost every t ∈ [0, T ] and all v ∈ H . In introducing

Cτ (t) = (−∂t ûτ , u+
τ − ûτ )H − I (u+

τ ) + I (̂uτ )

we have
(−∂t ûτ , v − ûτ )H + I (̂uτ ) ≤ I (v) + Cτ (t).

The choice of v = u in this inequality and v = ûτ in the continuous evolution
equation yield

d

dt

1

2
‖u − û‖2H = (−∂t [u − ûτ ], ûτ − u)H ≤ Cτ (t).
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Noting ûτ − u+
τ = (t − tk)∂t ûτ for t ∈ (tk−1, tk) and using the convexity of I , i.e.,

I (̂uτ ) ≤ tk − t

τ
I (uk−1) + t − tk−1

τ
I (uk),

we verify for t ∈ (tk−1, tk) using u+
τ = uk that

Cτ (t) ≤ (t − tk)‖∂t ûτ‖2H − I (u+
τ ) + tk − t

τ
I (uk−1) + t − tk−1

τ
I (uk) = tk − t

τ
Ek .

With Ek ≤ −τdt I (uk) and I ≥ 0 we deduce that

tL∫

0

Cτ (t) dt ≤ τ

L∑
k=1

Ek ≤ −τ 2
L∑

k=1

dt I (uk) = −τ
(
I (uL) − I (u0)

) ≤ τ I (u0),

which implies the a posteriori and the first a priori error estimate. Assume that
∂ I (u0) 
= ∅ and define u−1 ∈ H so that dt u0 = (u0 − u−1)/τ = −∂o I (u0), i.e.,
the discrete evolution equation also holds for k = 0,

(−dt u
0, v − u0)H + I (u0) ≤ I (v)

for all v ∈ H . Choosing v = uk in the equation for dt uk−1, k = 1, 2, . . . , K , we
observe that

(−dt u
k−1, uk − uk−1)H + I (uk−1) ≤ I (uk),

i.e., −τdt I (uk) ≤ τ(dt uk, dt uk−1)H , and it follows that

Ek = −τ(dt u
k, dt u

k)H − τdt I (uk) ≤ −τ(dt u
k, dt u

k)H + τ(dt u
k−1, dt u

k)H

= −τ 2(d2
t uk, dt u

k)H = −τ 2
dt

2
‖dt u

k‖2H − τ 3

2
‖d2

t uk‖2H ≤ −τ 2
dt

2
‖dt u

k‖2H .

This implies that

tL∫

0

Cτ (t) dt ≤ τ

L∑
k=1

Ek ≤ τ 2

2
‖dt u

0‖2H = τ 2

2
‖∂o I (u0)‖2H ,

which proves the improved a priori error estimate. �

Remarks 4.6 (i) The condition ∂ I (u0) 
= ∅ is restrictive in many applications.
(ii) Subdifferential flows ∂t u ∈ −∂ I (u), i.e., Lu � 0 for Lu = ∂t u + v with
v ∈ ∂ I (u), and with a convex functional I : H → R ∪ {+∞} define monotone
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problems in the sense that

(
Lu1 − Lu2, u1 − u2

)
H = (∂t (u1 − u2) + (v1 − v2), u1 − u2

)
H

≥ (
∂t (u1 − u2), u1 − u2

)
H = 1

2

d

dt
‖u1 − u2‖2H

for u1, u2 and v1, v2 with vi ∈ ∂ I (ui ), i = 1, 2.
(iii) If I : H → R ∪ {+∞} is strongly monotone in the sense that (u1 − u2,

v1 − v2)H ≥ α‖u1 − u2‖2H whenever v
 ∈ ∂ I (u
), 
 = 1, 2, and if there exists a
solution u ∈ H of the stationary inclusion v = 0 ∈ ∂ I (u), then we have u(t) → u
as t → ∞. A proof follows from the estimate

1

2

d

dt
‖u − u‖2H = −(v − v, u − u)H ≤ −α‖u − u‖2H ,

where v = −∂t u ∈ ∂ I (u), and an application of Gronwall’s lemma.

4.2.4 Weak Continuity Methods

Let (uh)h>0 ⊂ X be a bounded sequence in the reflexive, separable Banach space X
such that there exists a weak limit u ∈ X of a subsequence that is not relabeled, i.e.,
we have uh ⇀ u as h → 0. For an operator F : X → X ′, we define the sequence
(ξh)h>0 ⊂ X ′ through ξh = F(uh), and if the sequence is bounded in X ′, then
there exists ξ ∈ X ′, such that for a further subsequence (ξh)h>0 which again is not
relabeled, we have ξh ⇀∗ ξ . The important question is now whether we have weak
continuity in the sense that

F(u) = ξ.

Notice that weak continuity is a strictly stronger notion of continuity than strong con-
tinuity. For partial differential equations, this property is calledweak precompactness
of the solution set of the homogeneous equation, i.e., if (u j ) j∈N is a sequence with
F(u j ) = 0 for all j ∈ N and u j ⇀ u as j → ∞ then we may deduce that F(u) = 0.
Such implications may also be regarded as properties of weak stability since they
imply that if F(u j ) = r j with ‖r j‖X ′ ≤ ε j and ε j → 0 as j → ∞, then we have
F(u) = 0 for every accumulation point of the sequence (u j ) j∈N.

Theorem 4.8 (Discrete compactness)For every h > 0 let uh ∈ Xh solve Fh(uh)= 0.
Assume that Fh(uh) ∈ X ′ with ‖F(uh)‖X ′ ≤ c for all h > 0 and F is weakly contin-
uous on X, i.e., F(u j )[v] → F(u)[v] for all v ∈ X whenever u j ⇀ u in X. Suppose
that for every bounded sequence (wh)h>0 ⊂ X with wh ∈ Xh for all h > 0, we have

‖F(wh) − Fh(wh)‖X ′
h

→ 0
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as h → 0 and (Xh)h>0 is dense in X with respect to strong convergence. If
(uh)h>0 ⊂ X is bounded, then there exists a subsequence (uh′)h′>0 and u ∈ X
such that uh ⇀ u in X and F(u) = 0.

Proof After extraction of a subsequence, wemay assume that uh ⇀ u in X as h → 0
for some u ∈ X . Fixing v ∈ X and using Fh(uh)[vh] = 0 for every vh ∈ Xh , we
have

F(uh)[v] = F(uh)[v − vh] + F(uh)[vh] − Fh(uh)[vh].

For a sequence (vh)h>0 ⊂ X with vh ∈ Xh for every h > 0 and vh → v in X , we
find that

|F(uh)[v − vh]| ≤ ‖F(uh)‖X ′ ‖v − vh‖X → 0

as h → 0. The sequences (uh)h>0 and (vh)h>0 are bounded in X and thus

|F(uh)[vh] − Fh(uh)[vh]| ≤ ‖F(uh) − Fh(uh)‖X ′
h
‖vh‖X → 0

as h → 0. Together with the weak continuity of F we find that

F(u)[v] = lim
h→0

F(uh)[v] = 0.

Since v ∈ X was arbitrary this proves the theorem. �

The crucial part in the theorem is the weak continuity of the operator F . We
include an example of an operator related to a constrained nonlinear partial differ-
ential equation that fulfills this requirement.

Example 4.16 (Harmonic maps) Let (u j ) j∈N ⊂ H1(Ω;R3) be a bounded sequence
such that |u j (x)| = 1 for all j ∈ N and almost every x ∈ Ω . Assume that for every
j ∈ N and all v ∈ H1(Ω;R3) ∩ L∞(Ω;R3), we have

F(u j )[v] =
∫

Ω

∇u j · ∇v dx −
∫

Ω

|∇u j |2u j · v dx = 0.

The choice of v = u j × w shows that we have

F̃(u j )[w] =
∫

Ω

∇u j · ∇(u j × w) dx = 0

for all w ∈ H1(Ω;R3)∩ L∞(Ω;R3). Using ∂ku j · ∂k(u j × w) = ∂ku j · (u j × ∂kw)

for k = 1, 2, . . . , d, we find that

F̃(u j )[w] =
d∑

k=1

∫

Ω

∂ku j · (u j × ∂kw) dx = 0.
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If u j ⇀ u in H1
D(Ω;R3), then u j → u in L2(Ω;R3) and thus, for every fixed

w ∈ C∞(Ω;R3), we can pass to the limit and find that

F̃(u)[w] = 0.

Since up to a subsequence we have u j (x) → u(x) for almost every x ∈ Ω , we
verify that |u(x)| = 1 for almost every x ∈ Ω . A density result shows that this holds
for all w ∈ H1(Ω;R3) ∩ L∞(Ω;R3). Reversing the above argument by choosing
w = u × v and employing the identity a × (b × c) = (b · a)c − (c · a)b shows that
F(u)[v] = 0 for all v ∈ H1(Ω;R3) ∩ L∞(Ω;R3).

A general concept for weak continuity is based on the notion of pseudomonotonicity.

Example 4.17 (Pseudomonotone operators) The operator F : X → X ′ is a pseudo-
monotone operator if it is bounded, i.e., ‖F(u)‖X ′ ≤ c(1 + ‖u‖s

X ) for some s ≥ 0,
and whenever u j ⇀ u in X , we have the implication that

lim sup
j→∞

F(u j )[u j − u] ≤ 0 =⇒ F(u)[u − v] ≤ lim inf
j→∞ F(u j )[u j − v].

For such an operator we have that if F(uh)[vh] = 
(vh) for all vh ∈ Xh with a
strongly dense family of subspaces (Xh)h>0 and uh ⇀ u as h → 0, then F(u) = 
.
To verify this, let v ∈ X and (vh)h>0 with vh ∈ Xh such that vh → u and note that

lim sup
h→0

F(uh)[uh − u] = lim sup
h→0

F(uh)[uh − vh] + F(uh)[vh − u]

= lim sup
h→0


(uh − vh) + F(uh)[vh − u] = 0.

Pseudomonotonicity yields for every vh′ ∈ ∪h>0Xh that

F(u)[u − vh′ ] ≤ lim inf
h→0

F(uh)[uh − vh′ ] = lim
h→0


(uh − vh′) = 
(u − vh′).

With the density of (Xh)h>0 in X , we conclude that F(u)[u − v] ≤ 
(u − v) for all
v ∈ X and with v = u ± w, we find that F(u)[w] = 
(w) for all w ∈ X .

Remarks 4.7 (i) Radially continuous bounded operators are pseudomonotone.
Here, radial continuity means that t �→ F(u + tv)[v] is continuous for t ∈ R

and all u, v ∈ X . These operators allow us to apply Minty’s trick to deduce from
the inequality 
(u − v) − F(v)[u − v] ≥ 0 for all v ∈ X that F(u) = 
. To prove
this implication, note that with v = u + εw, we find that 
(w) − F(u + εw)[w] ≤ 0
and by radial continuity for ε → 0, it follows that 
(w) − F(u)[w] ≤ 0 and hence
F(u) = 
.
(ii) Pseudomonotone operators are often of the form F = F1 + F2 with a monotone
operator F1 and a weakly continuous operator F2, e.g., a lower-order term described
by F2.
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Example 4.18 (Quasilinear diffusion) The concept of pseudomonotonicity applies
to the quasilinear elliptic equation

− div
(|∇u|p−2∇u

) + g(u) = f in Ω, u|∂Ω = 0 on ∂Ω,

with g ∈ C(R) such that |g(s)| ≤ c(1 + |s|r−1) and 1 < p < d, r < dp/(d − p).

4.3 Solution of Discrete Problems

Wediscuss in this section the practical solution of discretizedminimization problems
of the form

Minimize Ih(uh) =
∫

Ω

W (∇uh) + g(uh) dx among uh ∈ Ah .

In particular, we investigate four model situations with smooth and nonsmooth inte-
grands and smooth and nonsmooth constraints included in A . The iterative algo-
rithms are based on an approximate solution of the discrete Euler–Lagrange equa-
tions. More general results can be found in the textbooks [4, 12].

4.3.1 Smooth, Unconstrained Minimization

Suppose that
Ah = {uh ∈ S 1(Th)m : uh |ΓD = uD,h}

and Ih is defined as above with functions W ∈ C1(Rm×d) and g ∈ C1(Rm). The
case ΓD = ∅ is not generally excluded in the following. A necessary condition for a
minimizer uh ∈ Ah is that for all vh ∈ S 1

D(Th)m , we have

Fh(uh)[vh] =
∫

Ω

DW (∇uh) · ∇vh + Dg(uh) · vh dx = 0.

Steepest descent methods successively lower the energy by minimizing in descent
directions defined through an appropriate gradient.

Algorithm 4.1 (Descent method) Let (·, ·)H be a scalar product on S 1
D(Th)m and

μ ∈ (0, 1/2). Given u0
h ∈ Ah, compute the sequence (u j

h) j=0,1,... via u j+1
h =

u j
h + α j d

j
h with d j

h ∈ S 1
D(Th)m such that

(d j
h , vh)H = −Fh(u j

h)[vh]
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for all vh ∈ S 1
D(Th)m and either the fixed step-size

α j = τ

or the line-search minimum which seeks the maximal α j ∈ {2−
, 
 ∈ N0} such that

Ih(u j
h + α j d

j
h ) ≤ Ih(u j

h) − μα j‖d j
h ‖2H .

Stop the iteration if ‖α j d
j

h ‖H ≤ εstop.

Remarks 4.8 (i) Since Ih is continuously differentiable, the descent method
decreases the energy in every step. This follows from

d

dα
Ih(u j

h + αd j
h )

∣∣∣
α=0

= DIh(u j
h)[d j

h ] = Fh(u j
h)[d j

h ] = −‖d j
h ‖2H ,

i.e., the continuous function ϕ(α) = Ih(u j
h + αd j

h ) is strictly decreasing for α ∈
[0, δ]. The existence of α j > 0 that satisfies the Armijo–Goldstein condition of
Algorithm 4.1 follows from expanding

Ih(u j
h + αd j

h ) = Ih(u j
h) − α‖d j

h ‖2H + O(α2)

provided that W and g are sufficiently smooth so that Ih ∈ C2(Xh).
(ii) The scalar product (·, ·)H acts like a preconditioner for Fh , i.e., we have u j+1

h =
u j

h − τ X−1
H Fh(u j

h) with respect to an appropriate basis. In particular, the descent
method may be regarded as a fixed-point iteration.
(iii) Larger step sizes are typically possible for implicit or semi-implicit versions of
the descent method, i.e., by considering a fixed step-size and the modified equation

(d j
h , vh)H + F̃h(u j

h + τd j
h , u j

h)[vh] = 0

for all vh ∈ S 1
D(Th)m and with a function F̃h such that F̃h(uh, uh) = Fh(uh). If

Fh(uh) = Gh(uh) + Th(uh) with a linear or monotone operator Gh , then a natural
choice is F̃h(uh, ũh) = Gh(uh) + Th (̃uh). Generally, large time steps are possible
when monotone terms are treated implicitly and antimonotone terms explicitly.
(iv) If Xh = Vh × Wh and Ih(uh) = Jh(φh, ψh) is separately convex, i.e., the map-
pings vh �→ Jh(vh, ψh) andwh �→ Jh(φh, wh) are convex for all (φh, ψh) ∈ Vh×Wh ,
a decoupled, semi-implicit gradient flow discretization is unconditionally stable.
Given the initial (φ0

h , ψ0
h ) ∈ Vh × Wh , consider the iteration

(dtφ
j+1
h , vh)Vh + δ1 Jh(φ

j+1
h , ψ

j
h )[vh] = 0,

(dtψ
j+1

h , wh)Wh + δ2 Jh(φ
j+1
h , ψ

j+1
h )[wh] = 0,
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where δ1 Jh and δ2 Jh denote the Fréchet derivatives of Jh with respect to the first
and second argument, respectively. The choices vh = dtφ

j+1
h , wh = dtψ

j+1
h and the

separate convexity of J lead to

‖dtφ
j+1
h ‖2Vh

+ ‖dtψ
j+1

h ‖2Wh
= −δ1 Jh(φ

j+1
h , ψ

j
h )[dtφ

j+1
h ]

− δ2 Jh(φ
j+1
h , ψ

j+1
h )[dtψ

j+1
h ]

≤ τ−1(Jh(φ
j
h , ψ

j
h ) − Jh(φ

j+1
h , ψ

j
h )

)

+ τ−1(Jh(φ
j+1
h , ψ

j
h ) − Jh(φ

j+1
h , ψ

j+1
h )

)

= −dt Jh(φ
j+1
h , ψ

j+1
h ),

which implies the unconditional stability of the scheme.

Theorem 4.9 (Convex functionals) Assume that Ih is convex and bounded from
below and Fh is Lipschitz continuous, i.e., there exists cF ≥ 0 such that

‖Fh(wh) − Fh(vh)‖X ′
h

≤ cF‖wh − vh‖X

for all wh, vh ∈ Xh. Let ch > 0 be such that ‖vh‖X ≤ ch‖vh‖H for all vh ∈ Xh.
Then the steepest descent method with fixed step-size τ > 0 such that τcF ch ≤ 1/2
terminates within a finite number of iterations, and for all J ≥ 0, we have

Ih(u J+1
h ) + (τ/2)

J∑
j=0

‖d j
h ‖2H ≤ Ih(u0

h).

Proof The convexity of Ih implies that

Fh(u j+1
h )[u j+1

h − u j
h] + Ih(u j

h) ≥ Ih(u j+1
h ).

Using that τd j
h = u j+1

h − u j
h and choosing vh = τd j

h in the discrete scheme leads to

Ih(u j+1
h ) − Ih(u j

h) + τ‖d j
h ‖2H ≤ (d j

h , d j
h )H + τ Fh(u j+1

h )[d j
h ]

= (d j
h , d j

h )H − Fh(u j
h)[d j

h ]
+ τ

(
Fh(u j

h) − Fh(u j+1
h )

)[d j
h ]

= τ
(
Fh(u j

h) − Fh(u j+1
h )

)[d j
h ] ≤ cF chτ 2‖d j

h ‖2H .

Therefore, if τcF ch ≤ 1/2 we deduce the estimate from a summation over j =
0, 1, . . . , J . The estimate implies that d j

h → 0 as j → ∞ so that ‖τd j
h ‖H ≤ εstop

for j sufficiently large. �
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Remarks 4.9 (i) The arguments of the proof of the theorem show that the implicit
version of the descent method, defined by (d j

h , vh)H + Fh(u j
h + τd j

h )[vh] = 0 for
every vh ∈ S 1

D(Th), is unconditionally convergent, but requires the solution of
nonlinear systems of equations in every time step.
(ii) For nonconvex functionals, the iteration typically converges to a local minimum
of Ih . Theoretically, the iteration may stop at a saddle point or local maximum.

To formulate the Newton method for solving the equation Fh(uh) = 0 in X ′
h we

assume that W ∈ C2(Rm×d) and g ∈ C2(Rm). The Newton schememay be regarded
as an explicit descent method with a variable metric defined by the second variation
of the energy functional Ih , i.e.,

DFh(uh)[wh, vh] =
∫

Ω

D2W (∇uh)[∇wh,∇vh] + D2g(uh)[wh, vh] dx

for uh, vh, wh ∈ S 1
D(Th)m .

Algorithm 4.2 (Newton method)Given u0
h ∈ Ah, compute the sequence (u j

h) j=0,1,...

via u j+1
h = u j

h + α j d
j

h with d j
h ∈ S 1

D(Th)m such that

DFh(u j
h)[d j

h , vh] = −Fh(u j
h)[vh]

for all vh ∈ S 1
D(Th)m and α j > 0 with either the optimal step-size α j = 1, a fixed

damping parameter α j = τ < 1, or a line search minimum α j as in Algorithm 4.1.

Stop the iteration if ‖α j d
j

h ‖H ≤ εstop for a norm ‖ · ‖H on S 1
D(Th)m.

The convergence of the Newton iteration will be discussed in a more general
context below in Sect. 4.3.3.

Remark 4.10 As opposed to the descent method, the Newton iteration can in general
only be expected to converge locally. Under certain conditions the Newton scheme
converges quadratically in a neighborhood of a solution. Optimal results can be
obtained by combining the globally but slowly convergent descent method with the
locally but rapidly convergent Newton method. Since the convergence of the Newton
method is often difficult to establish and requires W and g to be sufficiently regular,
developing globally convergent schemes is important to construct reliable numerical
methods.

Example 4.19 For the approximation of minimal surfaces that are presented by
graphs of functions over Ω , we consider

Ih(uh) =
∫

Ω

(1 + |∇uh |2)1/2 dx
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and note that for uh ∈ Ah = {vh ∈ S 1(Th) : vh |ΓD = uD,h} and vh, wh ∈ S 1
D(Th)

we have

Fh(uh)[vh] =
∫

Ω

∇uh · ∇vh

(1 + |∇uh |2)1/2 dx

and

DFh(uh)[wh, vh] =
∫

Ω

∇wh · ∇vh

(1 + |∇uh |2)1/2 −
(∇uh · ∇vh

)(∇uh · ∇wh
)

(1 + |∇uh |2)3/2 dx .

Figure4.2 displays a combinedMatlab implementation of the Newton iteration and
the descent method with line search. The Newton method fails to provide meaning-
ful approximations for moderate perturbations of the nodal interpolant of the exact
solution as a starting value.

4.3.2 Smooth Constrained Minimization

We next consider the case that the set of admissible functions includes a pointwise
constraint, which is imposed at the nodes of a triangulation, i.e., for G ∈ C(Rm), we
have

Ah = {uh ∈ S 1(Th)m : uh |ΓD = uD,h, G
(
uh(z)

) = 0 for all z ∈ Nh}.

The identityG
(
uh(z)

) = 0 for all z ∈ Nh is equivalent to the conditionIh G(uh) = 0.
We always assume in the following that Ah 
= ∅, i.e., that the function uD,h is com-
patible with the constraint. Moreover, we assume G ∈ C1(Rm) with DG(s) 
= 0
for every s ∈ M = G−1({0}) so that M ⊂ R

m is an (m − 1)-dimensional C1-
submanifold. The Euler–Lagrange equations of the discrete minimization problem

Ih(uh) =
∫

Ω

W (∇uh) dx

in the set of all functions uh ∈ Ah can then be formulated as follows.

Proposition 4.3 (Optimality conditions) The function uh ∈ Ah is stationary for Ih

in Ah if and only if
Fh(uh)[wh] = 0

for all wh ∈ TuhAh, where the discrete tangent space TuhAh ofAh at uh is defined by

TuhAh = {wh ∈ S 1
D(Th)m : DG(uh(z))wh(z) = 0 forall z ∈ Nh\ΓD}.
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Fig. 4.2 Matlab routine for the computation of discrete minimal surfaces with the Newton and
the steepest descent scheme



114 4 Concepts for Discretized Problems

Proof We let ϕh : (−ε, ε) → Ah be a continuously differentiable function with
ϕh(0) = uh . We then have that wh = ϕ′

h(0) ∈ TuhAh and

0 = d

dt
Ih(ϕh(t))

∣∣∣∣
t=0

= DIh(uh)[wh].

Conversely, for every wh ∈ TuhAh there exists a function ϕh(t) as above. �
Remark 4.11 An equivalent characterization of stationary points is the existence of
a Lagrange multiplier λh ∈ S 1

D(Th) such that for all vh ∈ S 1
D(Th)m , we have

Fh(uh)[vh] + (λh DG(uh), vh)h = 0.

We propose the following descent scheme for the iterative solution of the con-
strained problem. It may be regarded as a semi-implicit discretization of an H -
gradient flow. In particular, the problems that have to be solved at every step of the
iteration are linear if Fh is linear.

Algorithm 4.3 (Constrained descent method) Let (·, ·)H be a scalar product on
S 1

D(Th)m and given u0
h ∈ Ah, compute the sequence (u j

h) j=0,1,... via u j+1
h =

u j
h + τd j

h with d j
h ∈ T

u j
h
Ah such that

(d j
h , vh)H + Fh(u j

h + τd j
h )[vh] = 0

for all vh ∈ T
u j

h
Ah. Stop the iteration if ‖d j

h ‖H ≤ εstop.

Remark 4.12 If Fh is linear, then the solution of an iteration is equivalent to the
solution of a linear system of equations of the form

[
X H + τ S dG

⊥

dG 0

] [
D j

h

Λ
j
h

]
=

[−SU j
h

0

]
,

where D j
h , U j

h , and Λ
j
h are vectors that contain the nodal values of the functions d j

h ,

u j
h , and λ

j
h , respectively, and X H , S, and dGh are matrices that represent the scalar

product (·, ·)H , the bilinear form Fh(uh)[vh], and the linearized constraint defined
by DG.

The iterates (u j
h) j=0,1,... will in general not satisfy the constraint IhG(u j

h) = 0
but under moderate conditions, the violation of the constraint is small. We recall the
notation ‖v‖2h = ∫

Ω
Ih[v2] dx for v ∈ C(Ω).

Theorem 4.10 (Constrained convex minimization) Assume that G ∈ C2(Rm) with
‖D2G‖L∞(Rm) ≤ c, Ih is convex, u0

h ∈ Ah, and ‖vh‖h ≤ c‖vh‖H for all vh ∈
S 1

D(Th)m. For all J ≥ 0 we have

Ih(u J+1
h ) + τ

J∑
j=0

‖d j
h ‖2H ≤ Ih(u0

h),
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and for every j = 1, 2, . . ., the bound

‖IhG(u j+1
h )‖L1(Ω) ≤ cτ Ih(u0

h).

The algorithm terminates after a finite number of iterations.

Proof The convexity of Ih implies that

Ih(u j
h + τd j

h ) + Fh(uh + τd j
h )[u j

h − (u j
h + τd j

h )] ≤ Ih(u j
h).

With the choice of vh = τd j
h in the algorithm and the relation u j+1

h = u j
h + τd j

h ,
this leads to

Ih(u j+1
h ) − Ih(u j

h) ≤ τ Fh(u j+1
h )[d j

h ] = −τ‖d j
h ‖2H .

A summation over j = 0, 1, . . . , J proves the energy law. A Taylor expansion shows
that for every z ∈ Nh\ΓD, we have for some ξ

j
z ∈ R

m that

G(u j+1
h (z)) = G(u j

h(z)) + τ DG(u j
h(z)) · d j

h (z) + τ 2

2
d j

h (z)

⊥

D2G(ξ
j

z )d j
h (z).

Noting DG(u j
h(z)) · d j

h (z) = 0 and G(u0
h(z)) = 0, we deduce by induction that

G(u J+1
h (z)) = τ 2

2

J∑
j=0

d j
h (z)

⊥

D2G(ξ
j

z )d j
h (z).

Since D2G is uniformly bonded we have with βz = ∫
Ω

ϕz dx that

‖IhG(u j+1
h )‖L1(Ω) ≤

∑
z∈N

βz |G(u j
h(z))| ≤ cτ 2

J∑
j=0

∑
z∈N

βz |d j
h (z)|2

= cτ 2
J∑

j=0

‖d j
h ‖2h .

A combination with the energy law implies the bound for ‖IhG(u j+1
h )‖L1(Ω). The

convergence of the iteration follows from the convergence of the sum of norms of
the correction vectors d j

h . �

Remark 4.13 In order to satisfy the constraint exactly, the algorithm can be aug-
mented by defining the new iterates through the projection

u j+1
h (z) = πM

(
u j

h(z) + τd j
h (z)

)
,
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where πM : Uδ(M) → M is the nearest neighbor projection onto M = G−1({0})
that is defined in a tubular neighborhoodUδ(M) of M for some δ > 0 if M ∈ C2. The
step-size τ > 0 has to be sufficiently small in order to guarantee the well-posedness
of the iteration.

Example 4.20 (Harmonic maps) Minimizing the Dirichlet energy in the set

Ah = {uh ∈ S 1(Th)m : uh |ΓD = uD,h, |uh(z)| = 1 for all z ∈ Nh}

corresponds to the situation of Theorem 4.10 with G(s) = |s|2−1 and M = Sm−1 =
{s ∈ R

m : |s| = 1}. In particular, we have DG(s) = 2s and ‖D2G‖L∞(Rm) = 2m1/2.
The discrete tangent spaces are given by

TuhAh = {wh ∈ S 1
D(Th)m : uh(z) · wh(z) = 0 for all z ∈ Nh\ΓD}.

The nearest neighbor projection πS2 is for s ∈ R
m\{0} defined by πS2(s) = s/|s|.

4.3.3 Nonsmooth Equations

We consider an abstract equation of the form

Fh(uh)[vh] = 0

for all vh ∈ Xh with a continuous operator Fh : Xh → Yh that may not be con-
tinuously differentiable. The goal is to formulate conditions that allow us to prove
convergence of an appropriate generalization of the Newton method. We let Xh and
Yh be Banach spaces in the following, and assume that Xh is equipped with the
norm of a Banach space X . We let L(Xh, Yh) denote the space of continuous linear
operators Ah : Xh → Yh and let ‖Ah‖L(Xh ,YH ) be the corresponding operator norm.

Definition 4.3 We say that Fh : Xh → Yh is Newton differentiable at vh ∈ Xh if
there exists ε > 0 and a function Gh : Bε(vh) → L(Xh, Yh) such that

lim
wh→0

‖Fh(vh + wh) − Fh(vh) − Gh(vh + wh)[wh]‖Yh

‖wh‖X
= 0.

The function Gh is called the Newton derivative of Fh at vh .

Remark 4.14 Notice that in contrast to the definition of the classical derivative,
here the derivative is evaluated at the perturbed point vh + wh . This is precisely
the expression that arises in the convergence analysis of the classical Newton
iteration.

Examples 4.21 (i) If Fh : Xh → Yh is continuously differentiable in a neighbor-
hood of vh ∈ Xh , then Fh is Newton differentiable at vh with Newton derivative
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Gh = DFh , i.e., we have

∥∥Fh(vh + wh) − Fh(vh) − G(vh + wh)[wh]∥∥Yh
≤ ∥∥Fh(vh + wh) − Fh(vh)

− DFh(vh)[wh]∥∥Yh
+ ∥∥(

DFh(vh) − DF(vh + wh)
)[wh]∣∣Yh

and the right-hand side converges faster to 0 than ‖wh‖X as wh → 0.
(ii) If Xh is a Hilbert space the function Fh(v) = ‖v‖X , v ∈ Xh , is Newton differen-
tiable with

Gh(v) =
{

v/|v| if v 
= 0,

ξ if v = 0,

where ξ ∈ Xh with ‖ξ‖X ≤ 1 is arbitrary.
(iii) The function Fh : R → R, s �→ max{0, s}, is Newton differentiable with
Newton derivative Gh(s) = 0 for s < 0, Gh(0) = δ for arbitrary δ ∈ [0, 1], and
G(s) = 1 for s > 0.
(iv) If 1 ≤ p < q ≤ ∞, the mapping

Fh : Lq(Ω) → L p(Ω), v �→ max{0, v(x)}

is Newton differentiable with the Newton derivative Gh(vh) for Gh as above. For
p = q this is false.

The semismooth Newton method is similar to the classical Newton iteration but
employs the Newton derivative instead of the classical derivative.

Algorithm 4.4 (Semismooth Newton method)Given u0
h ∈ Xh, compute the sequence

(u j
h) j=0,1,... via u j+1

h = u j
h + d j

h with d j
h ∈ S 1

D(Th)m such that

Gh(u j
h)[d j

h , vh] = −Fh(u j
h)[vh]

for all vh ∈ S 1
D(Th)m. Stop the iteration if ‖d j

h ‖H ≤ εstop for a norm ‖ · ‖H on
S 1

D(Th)m.

Theorem 4.11 (Superlinear convergence) Suppose that Fh(uh) = 0 and Fh : Xh →
Yh is Newton differentiable at uh, such that the linear mapping G (̃uh) : Xh → Yh

is invertible with ‖G−1
h (̃uh)‖L(Yh ,Xh) ≤ M for every ũh ∈ Bε(uh) with some ε > 0.

Then the semismooth Newton method converges superlinearly to uh if u0
h is sufficiently

close to uh, i.e., for every η > 0, there exists J ≥ 0 such that for all j ≥ J , we have

‖u j+1
h − uh‖X ≤ η‖u j

h − uh‖X .

Proof Noting d j
h = −Gh(u j

h)−1Fh(u j
h), we have

u j+1
h − uh = u j

h − G−1
h (u j

h)Fh(u j
h) − uh
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= u j
h − uh − G−1

h (u j
h)

(
Fh(u j

h) − Fh(uh)
)

= −G−1
h (u j

h)
(
Fh(u j

h) − Fh(uh) − Gh(u j
h)(u j

h − uh)
)
.

Writing u j+1
h = uh + w j+1

h , we have

‖w j+1
h ‖X ≤ ‖G−1

h (uh + w j
h)‖L(Yh ,Xh)‖Fh(uh + w j

h) − Fh(uh)

− Gh(uh + w j
h)w j

h‖Yh

≤ Mϕ(‖w j
h‖X )

with a function ϕ(s) satisfying ϕ(s)/s → 0 as s → 0. If ‖w0
h‖X is sufficiently

small, e.g., ‖w0
h‖X ≤ ε/(Mθ) with θ = maxs∈[0,1] ϕ(s), then we inductively find

u j
h ∈ Bε(uh) for all j ≥ 0 and ‖w j

h‖X → 0 as j → ∞. For J ≥ 0 such that

φ(‖w j
h‖X ) ≤ (η/M)‖w j

h‖X for all j ≥ J , we verify the estimate of the theorem. �

Remark 4.15 If Fh is twice continuously differentiable so that Gh = DFh is locally
Lipschitz continuous and ‖DF−1

h (̃uh)‖L(Yh ,Xh) ≤ M , then Algorithm 4.4 coincides
with the classical Newton iteration which is locally and quadratically convergent.

4.3.4 Nonsmooth, Strongly Convex Minimization

For Banach spaces X and Y , proper, convex, and lower semicontinuous functionals
G : X → R ∪ {+∞}, F : Y → R ∪ {+∞}, and a bounded, linear operator
Λ : X → Y , we consider the saddle-point problem

inf
u∈X

sup
p∈Y ′

〈Λu, p〉 − F∗(p) + G(u) = inf
u∈X

sup
p∈Y ′

L(u, p).

The pair (u, p) is a saddle point for L if and only if

Λu ∈ ∂ F∗(p), −Λ′ p ∈ ∂G(u),

where Λ′ : Y ′ → X ′ denotes the formal adjoint of Λ. The related primal and dual
problem consist in the minimization of the functionals

I (u) = F(Λu) + G(u), D(p) = −F∗(p) − G∗(−Λ′ p).

We have I (u)− D(p) ≥ 0 for all (u, p) ∈ X × Y ′ with equality if and only if (u, p)

is a saddle point for L . We assume in the following that X and Y are Hilbert spaces
and identify them with their duals. The descent and ascent flows ∂t u = −∂u L(u, p)

and ∂t p = ∂p L(u, p), respectively, motivate the following algorithm. Further details
about related nonsmooth minimization problems can be found in [14].
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Algorithm 4.5 (Primal-dual iteration) Let (u0, p0) ∈ X × Y and set dt u0 = 0.
Compute the sequences (u j ) j=0,1,... and (p j ) j=0,1,... by iteratively solving the
equations

ũ j+1 = u j + τdt u
j ,

− dt p j+1 + Λũ j+1 ∈ ∂ F∗(p j+1),

− dt u
j+1 − Λ′ p j+1 ∈ ∂G(u j+1).

Stop the iteration if ‖u j+1 − u j‖X ≤ εstop.

Remark 4.16 The equations in Algorithm 4.5 are equivalent to the variational
inequalities

〈−dt u
j+1 − Λ′ p j+1, v − u j+1〉X ≤ G(v) − G(u j+1) − α

2
‖v − u j+1‖2X ,

〈−dt p j+1 + Λũ j+1, q − p j+1〉Y ≤ F∗(q) − F∗(p j+1)

for all (v, q) ∈ X × Y . Here, α > 0 if G is uniformly convex.

We prove convergence of Algorithm 4.5 assuming that α > 0. We abbreviate by
‖Λ‖ the operator norm ‖Λ‖L(X,Y ).

Theorem 4.12 (Convergence) Let (u, p) be a saddle point for L. If τ‖Λ‖ ≤ 1, we
have for every J ≥ 0 that

1 − τ‖Λ‖
2

‖p − pJ+1‖2Y + 1

2
‖u − u J+1‖2X+τ

J∑
j=0

α

2
‖u − u j+1‖2X

≤ 1

2
‖p − p0‖2Y + 1

2
‖u − u0‖2X .

In particular, the iteration of Algorithm 4.5 terminates.

Proof We denote δ
j+1
u = u − u j+1 and δ

j+1
p = p − p j+1 in the following. Using

that dtδ
j+1
u = −dt u j+1 and dtδ

j+1
p = −dt p j+1, we find that

Υ ( j + 1) = dt

2

(‖δ j+1
p ‖2Y + ‖δ j+1

u ‖2X
) + τ

2

(‖dtδ
j+1
u ‖2X + ‖dtδ

j+1
p ‖2Y

) + α

2
‖δ j+1

u ‖2X

= 〈dtδ
j+1
p , δ

j+1
p 〉Y + 〈dtδ

j+1
u , δ

j+1
u 〉X + α

2
‖δ j+1

u ‖2X

= −〈dt p j+1, p − p j+1〉Y − 〈dt u
j+1, u − u j+1〉X + α

2
‖u − u j+1‖2X .



120 4 Concepts for Discretized Problems

The equations for dt p j+1 and dt u j+1 of Algorithm 4.5 and their equivalent charac-
terization in Remark 4.16 lead to

Υ ( j + 1) ≤ F∗(p) − F∗(p j+1) − 〈Λũ j+1, p − p j+1〉Y

+ G(u) − G(u j+1) + 〈Λ′ p j+1, u − u j+1〉X

= [〈Λu, p j+1〉Y − F∗(p j+1) + G(u)
]

− [〈Λu j+1, p〉Y − F∗(p) + G(u j+1)
] + 〈Λu j+1, p〉Y

− 〈Λũ j+1, p − p j+1〉Y − 〈Λ′ p j+1, u j+1〉Y .

The definitions of F∗∗ = F and G∗ imply that

〈Λu, p j+1〉Y − F∗(p j+1) ≤ F(Λu),

−〈u j+1,Λ′ p〉X − G(u j+1) ≤ G∗(−Λ′ p).

These estimates and the identity u j+1 − ũ j+1 = τ 2d2
t u j+1 = −τ 2d2

t δ
j+1
u allow us

to deduce that

Υ ( j + 1) ≤ F(Λu) + G(u) + F∗(p) + G∗(−Λ′ p)

+ 〈Λu j+1, p〉Y − 〈Λũ j+1, p − p j+1〉Y − 〈Λ′ p j+1, u j+1〉X

= I (u) − D(p) − τ 2〈Λd2
t δ

j+1
u , δ

j+1
p 〉Y .

We use I (u) − D(p) = 0 to derive the estimate

Υ ( j + 1) ≤ −τ 2〈Λd2
t δ

j+1
u , δ

j+1
p 〉Y .

A summation of the estimate over j = 0, 1, . . . , J and multiplication by τ lead to

1

2

(‖δ J+1
p ‖2Y + ‖δ J+1

u ‖2X
) + τ 2

2

J∑
j=0

(‖dtδ
j+1
u ‖2X + ‖dtδ

j+1
p ‖2Y

) + α

2

J∑
j=0

‖δ j+1
u ‖2X

≤ 1

2

(‖δ0p‖2Y + ‖δ0u‖2X
) − τ 3

J∑
j=0

〈Λd2
t δ

j+1
u , δ

j+1
p 〉.

A summation by parts, −dtδ
0
u = dt u0 = 0, and Young’s inequality show that

− τ 3
J∑

j=0

〈Λd2
t δ

j+1
u , δ

j+1
p 〉Y = τ 3

J∑
j=0

〈Λdtδ
j
u , dtδ

j+1
p 〉Y + τ 2〈Λdtδ

j
u , δ

j
p〉Y |J+1

j=0

≤ τ 2

2

( J∑
j=0

τ 2‖Λdtδ
j
u‖2Y + ‖dtδ

j+1
p ‖2Y

)
+ τ‖Λ‖

2
‖δ J+1

p ‖2Y + τ 3

2‖Λ‖‖Λdtδ
J+1
u ‖2Y .

A combination of the estimates proves the theorem. �
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Remarks 4.17 (i) The assumption that a saddle point exists implies that primal and
dual problem are related by a strong duality principle.
(ii) If F is strongly convex and G is only convex, then the roles of u and p have to
be exchanged to ensure convergence.
(iii) The algorithm may be regarded as an inexact Uzawa algorithm. The classical
Uzawamethod corresponds to omitting dt u j+1, i.e., solving the equation−Λ′ p j+1 ∈
∂G(u j+1) for u j+1 at every step of the algorithm.
(iv) Algorithm 4.5 is practical if the proximity operators r = (1 + τ∂ F∗)−1q and
w = (1 + τ∂G)−1v can be easily evaluated, i.e., if the unique minimizers of

w �→ 1

2τ
‖w − v‖2X + G(w), r �→ 1

2τ
‖r − q‖2Y + F∗(r),

are directly accessible. This is the case for quadratic functionals and indicator func-
tionals.

Example 4.22 In the case of the discretized Poisson problem with X = S 1
0 (Th),

we may choose Y = L 0(Th)d , Λ = ∇,

F(ph) = 1

2

∫

Ω

|ph |2 dx, G(uh) =
∫

Ω

f uh dx,

and exchange the roles of uh and ph . Letting Ph,0 f denote the L2 projection onto
S 1

0 (Th), the iteration reads

p̃ j+1
h = p j

h + τdt p j+1
h ,

−dt u
j+1
h + divh p̃ j+1

h = Ph f,

−dt p j+1
h + ∇u j+1

h = p j+1
h .

The discrete divergence operator divh : L 0(Th)d → S 1
0 (Th) is for every elemen-

twise constant vector field qh ∈ L 0(Th)d defined by (divh qh, vh) = −(qh,∇vh)

for all vh ∈ S 1
0 (Th). Convergence holds if τ‖∇‖ ≤ 1, where ‖∇‖ ≤ ch−1.

4.3.5 Nested Iteration

The semismooth and classical Newton method can only be expected to converge if
the starting value u0

h is sufficiently close to the discrete solution uh . The radius of
the ball around uh which contains such starting values may depend critically on the
mesh-size in the sense that it becomes smaller when the mesh is refined. Such a
behavior reflects the problem that the Newton scheme may not be well-defined for
the underlying continuous formulation. When a sequence of refined triangulations
is used, the corresponding finite element spaces are nested, and one may use an
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approximate solution computed on a coarse grid to define a starting value for the
iteration process on the finer grid. Besides providing a method to construct feasible
starting values, this approach can also significantly reduce the computational effort.

Algorithm 4.6 (Nested iteration) Let (T
)
=0,...,L be a sequence of triangulations
withS 1(T
−1) ⊂ S 1(T
) for 
 = 1, 2, . . . , L. Set 
 = 0and choose u0


 ∈ S 1(T
).
(i) Iteratively approximate a solution u
 ∈ S 1(T
) of F
(u
) = 0 using the starting
value u0


 to obtain an approximate solution u∗

 ∈ S 1(T
).

(ii) Stop if 
 = L. Otherwise set u0

+1 = u∗


 , 
 → 
 + 1, and continue with (i).

We make the ideas more precise for a red-green-blue refinement method. The
definition is easily generalized to other refinement methods such as newest-vertex
bisection.

Definition 4.4 We say thatTh is a refinement of the triangulationTH ifS 1(TH ) ⊂
S 1(Th) and for every node zh ∈ Nh we either have zh ∈ NH or there exist nodes
zH
1 , zH

2 ∈ NH with zh = (zH
1 + zH

2 )/2, cf. Fig. 4.3.

Lemma 4.1 (Prolongation) Let Th be a refinement of the triangulation TH . Given
u H ∈ S 1(TH ), we have uh = u H ∈ S 1(Th) with nodal values uh(zh) = u H (zh)

for every zh ∈ NH ⊂ Nh and uh(zh) = (u H (zH
1 ) + u H (zH

2 ))/2 for every zh ∈
Nh\NH and zh

1 , zh
2 ∈ NH with zh = (zH

1 + zH
2 )/2. In particular, there exists a

linear prolongation operator

Pr1H→h : RNH → R
Nh ,

(
u H (zH )

)
zH ∈NH

�→ (
u H (zh)

)
zh∈Nh

for every u H ∈ S 1(TH ).

Proof The assertion of the lemma follows from the fact that the function uh is affine
on every one-dimensional subsimplex in the triangulation. �
Remarks 4.18 (i) The superscript 1 in Pr1H→h corresponds to affine functions. Anal-
ogously, there exists a linear operator Pr0H→h that maps the values of an elementwise
constant function on TH to the values of the function represented on Th .
(ii) Matrices that realize the linear mappings of the nodal or elementwise values are
provided by the routine red_refine.m.
(iii) Nested iterations are the simplest version of a multigrid scheme. In more general
versions, grid transfer from a fine to a coarse grid called restriction is required. This
is often realized with the adjoint operators, i.e., with the transposed matrices.
(iv) For nonnested finite element spaces the grid transfer can be realized with inter-
polation or projection operators.

Fig. 4.3 The nodes of the
refined triangulation are
either existing nodes (dots)
or midpoints of bisected
edges (circles)

H h
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Part II
Approximation of Classical

Formulations



Chapter 5
The Obstacle Problem

5.1 Analytical Properties

We discuss in this section analytical properties of the obstacle problem which is the
prototypical example of a convexminimization problemwith an inequality constraint
that leads to a variational inequality. Throughout this chapter, for f ∈ L2(Ω), g ∈
L2(ΓN), and χ ∈ H1(Ω)with χ ≤ 0 on ΓD, we consider the problem of minimizing
the functional

I (u) = 1

2

∫

Ω

|∇u|2 dx −
∫

Ω

f u dx −
∫

ΓN

gu ds

in the set of functions u ∈ K defined by the convex set

K = {v ∈ H1
D(Ω) : v ≥ χ almost everywhere in Ω}.

The model problem is illustrated in Fig. 5.1. We show that minimizers for this con-
strained minimization problem are unique and have certain regularity properties.
For more general statements and other minimization problems with inequality con-
straints, we refer the reader to the textbooks [4, 6, 7].

In addition to the general assumption regarding homogeneousDirichlet conditions
on ΓD, justified by the splitting u = ũ + ũD with the unknown ũ ∈ H1

D(Ω) and the
extension ũD ∈ H1(Ω) of uD, we will often consider the case g = 0 on ΓN. This is
justified by requiring that ∂nũD = g on ΓN.

5.1.1 Existence and Uniqueness

We apply the direct method in the calculus of variations to establish the existence of
a solution. The main ingredients for the proof are the strict convexity and continuity
of I that imply the weak lower semicontinuity and weak closedness of K .

© Springer International Publishing Switzerland 2015
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128 5 The Obstacle Problem

Fig. 5.1 Deflection u of a
membrane due to a force f
and constrained by a
constant obstacle χ

0

f

x
u

Theorem 5.1 (Well posedness) There exists a unique minimizer u ∈ K for I .

Proof The functional I is weakly lower semicontinuous on H1
D(Ω). Its boundedness

from below follows from Hölder’s inequality, i.e.,

I (u) ≥ 1

2
‖∇u‖2 − ‖ f ‖‖u‖ − ‖g‖L2(ΓN)‖u‖L2(ΓN).

With the Poincaré inequality ‖u‖ ≤ cP‖∇u‖, the trace inequality ‖u‖L2(ΓN) ≤
cT ‖∇u‖, and Young’s inequality, we deduce that

I (u) ≥ 1

2
‖∇u‖2 − 2c2P‖ f ‖2 − 1

8
‖∇u‖2 − 2c2T ‖g‖2L2(ΓN)

− 1

8
‖∇u‖2

≥ 1

4
‖∇u‖2 − 2c2P‖ f ‖2 − 2c2T ‖g‖2L2(ΓN)

.

This proves that I is coercive and bounded from below on H1
D(Ω). Since the function

ũ = max{0, χ} satisfies ũ ∈ K there exists an infimizing sequence (u j ) j∈N ⊂ K
with lim j→∞ I (u j ) = infv∈K I (v). The coercivity of I shows that this sequence is
bounded and hence there exists a weakly convergent subsequence (u jk )k∈N ⊂ K
and a weak limit u ∈ H1

D(Ω). To show that u ∈ K we notice that by the compact
embedding of H1

D(Ω) into L2(Ω) we have u jk → u in L2(Ω), and for a further
subsequence that u jk�

(x) → u(x) for almost every x ∈ Ω . Since u j (x) ≥ χ(x) for
every j ∈ N and almost every x ∈ Ω we conclude that u ≥ χ almost everywhere in
Ω . The weak lower semicontinuity of I shows that

I (u) ≤ lim inf
k→∞ I (u jk ) = lim

j→∞ I (u j ) = inf
v∈K

I (v).

Thus, u ∈ K is a solution for the minimization problem. To show that the minimizer
is unique, we let u1, u2 ∈ K be minimizers and notice that by the convexity of K ,
we have (u1 + u2)/2 ∈ K and

1

2
I (u1) + 1

2
I (u2) − I

(u1 + u2

2

) = 1

8
‖∇(u1 − u2)‖2.

If u1 
= u2, then the right-hand side is positive which leads to the contradiction
I
(
(u1 + u2)/2

)
<

(
I (u1) + I (u2)

)
/2. Therefore, I has a unique minimizer. �
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5.1.2 Equivalent Formulations

We want to formulate optimality conditions for a minimizer u ∈ K of the obstacle
problem. Due to the convexity of K , we have for every v ∈ K and t ∈ [0, 1] that
u + t (v − u) ∈ K with

I (u) ≤ I
(
u + t (v − u)

)
.

Setting φ(t) = I
(
u + t (v − u)

)
we have that φ is increasing on [0, 1] and thus its

right-sided derivative at 0 is nonnegative. More precisely, for t > 0 we have

0 ≤ t−1(I
(
u + t (v − u)

) − I (u)
)

= 1

2t

∫

Ω

|∇(u + t (v − u))|2 dx − 1

2t

∫

Ω

|∇u|2 dx

−
∫

Ω

f (v − u) dx −
∫

ΓN

g(v − u) ds

=
∫

Ω

∇u · ∇(v − u) dx + t

2

∫

Ω

|∇(v − u)|2 dx

−
∫

Ω

f (v − u) dx −
∫

ΓN

g(v − u) ds.

Considering the limit t → 0 we find that the variational inequality

∫

Ω

∇u · ∇(v − u) dx ≥
∫

Ω

f (v − u) dx +
∫

ΓN

g(v − u) ds

holds for all v ∈ K . The arguments also show that this formulation is a sufficient
characterization of a minimizer. If the variational inequality is satisfied, then we have
for every v ∈ K that

I (u) − I (v) ≤
∫

Ω

∇u · ∇(u − v) dx −
∫

Ω

f (u − v) dx −
∫

ΓN

g(u − v) ds ≤ 0,

i.e., u ∈ K is minimal for I. An alternative characterization of the solution employs
the indicator functional IK : H1

D(Ω) → R ∪ {+∞} defined by

IK (v) =
{
0 for v ∈ K ,

+∞ for v 
∈ K .
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We then include the constraint u ∈ K in the minimization problem by considering
the functional

Ĩ (u) = I (u) + IK (u)

on H1
D(Ω). A minimizer u ∈ H1

D(Ω) for Ĩ satisfies u ∈ K and is a minimizer for
I in K . One verifies directly that Ĩ is a convex functional which is weakly lower
semicontinuous. With

∂ Ĩ (u) = {μ ∈ H1
D(Ω)′ : 〈μ, v − u〉 ≤ Ĩ (v) − Ĩ (u) for all v ∈ H1

D(Ω)}

we have that u ∈ K is a minimizer for Ĩ if and only if 0 ∈ ∂ Ĩ (u). Since I is Fréchet
differentiable we have

0 ∈ DI (u) + ∂ IK (u).

Equivalently, there exists a Lagrange multiplier λ ∈ ∂ IK (u) such that 0 =
DI (u)[w] + 〈λ, w〉 for all w ∈ H1

D(Ω). This means that

0 =
∫

Ω

∇u · ∇w dx −
∫

Ω

f w dx −
∫

ΓN

gw ds + 〈λ, w〉

for all w ∈ H1
D(Ω). With v = u + φ ∈ K for every φ ∈ H1

D(Ω) with φ ≥ 0 in Ω ,
we deduce from the variational inequality above that

〈λ, φ〉 = −
∫

Ω

∇u · ∇φ dx +
∫

Ω

f φ dx +
∫

ΓN

gφ ds ≤ 0,

i.e., that λ ≤ 0 in the distributional sense. The variational inequality is an equality
in the set {x ∈ Ω : u(x) > χ(x)} and therefore supp λ ⊂ {x ∈ Ω : u(x) = χ(x)}.
We summarize the observations in the following theorem.

Theorem 5.2 (Variational inequality) A function u ∈ K is the unique minimizer for
I for functions in K if and only if

∫

Ω

∇u · ∇(v − u) dx ≥
∫

Ω

f (v − u) dx +
∫

ΓN

g(v − u) ds

for all v ∈ K . This is satisfied if and only if there exists λ ∈ H1
D(Ω)′ with supp λ ⊂

{x ∈ Ω : u(x) = χ(x)} and λ ≤ 0 such that

∫

Ω

∇u · ∇w dx + 〈λ, w〉 =
∫

Ω

f w dx +
∫

ΓN

gw ds

for all w ∈ H1
D(Ω).
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Proof The equivalence of the variational inequality and the minimization problem
has been discussed above. That the variational inequality implies the equation with
the Lagrange multiplier follows by defining λ as above. The converse implication is
a consequence of the fact that v − u ≥ 0 in the set {x ∈ Ω : u(x) = χ(x)} for every
v ∈ K . �

The region inwhich the solution u is in contactwith the obstacleχ is of importance
in many applications.

Definition 5.1 For the solution of the obstacle problem we define the contact zone
or coincidence set by

C = {x ∈ Ω : u(x) = χ(x)}.

The boundary ∂C ∩ Ω is called the free boundary.

Remarks 5.1 (i) By choosing λ ∈ H1
D(Ω) such that (∇λ,∇w) = 〈λ, w〉 for all

w ∈ H1
D(Ω), and setting λ̃ = −	λ and λ̃N = ∂nλ, we find that the strong form of

the obstacle problem reads

−	u+λ̃ = f, u ≥ χ, λ̃, λ̃N ≤ 0, supp λ̃ ⊂ C , ∂nu|ΓN +λ̃N|ΓN = g, u|ΓD = 0.

(ii) In the complement of the contact zone we have −	u = f and the Lagrange
multiplier is supported in C in the sense that 〈λ, w〉 = 0 if suppw ⊂ C c.
(iii) We have the complementarity principle

(	u + f )(u − χ) = 0,

i.e., we have u = χ or −	u = f almost everywhere in Ω .

5.1.3 Regularity

It is not obvious that solutions of the obstacle problem obey higher regularity
properties. In one-dimensional situations, continuity of the derivative of the solu-
tion, i.e., u ∈ H2(Ω), can be verified directly.

Proposition 5.1 (One-dimensional regularity) Let Ω = (a, b) ⊂ R, χ ∈ H2(a, b),
f ∈ L2(a, b), and u ∈ H1

0 (a, b) be such that u ≥ χ in (a, b) and

b∫

a

u′(v − u)′ dx ≥
b∫

a

f (v − u) dx

for all v ∈ H1
0 (a, b) with v ≥ χ in (a, b). Then u ∈ H2(a, b).
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Proof We have that u = χ in C and −u′′ = f in C c. It thus suffices to consider a
point xc ∈ ∂C and show that u′ is continuous at xc. By definition there exists ε > 0
such that u(xc − y) = χ(xc − y) and u(xc + y) > χ(xc + y) either for all−ε < y ≤ 0
or for all 0 ≤ y < ε. Without loss of generality we consider the latter situation. For
every nonnegative function φ ∈ C1(Ω) with suppφ ⊂ Bε(xc), we have u + φ ≥ χ

and thus

0 ≤
xc+ε∫

xc−ε

u′φ′ dx −
xc+ε∫

xc−ε

f φ dx

= −
xc∫

xc−ε

χ ′′φ dx −
xc∫

xc−ε

f φ dx + (
χ ′(xc) − u′(xc)

)
φ(xc).

Since φ ≥ 0 is arbitrary, we find that u′(xc) ≤ χ ′(xc) by taking the limit ε → 0.
The nonnegative, continuous function δ = u −χ satisfies δ(xc) = 0 and δ′(xc) ≤ 0.
Thus, we have δ′(xc) = 0, i.e., u′(xc) = χ ′(xc) which implies that u′ is continuous
at xc. �

Example 5.1 For Ω = (−1, 1), χ(x) = 1 − 4x2/3, it follows that the minimizer
u ∈ H1

0 (Ω) for I (u) = ∫ 1
−1 |u′(x)|2 dx with u ≥ χ is given by

u(x) =
{
1 − 4x2/3 for |x | ≤ 1/2,

(4/3)(1 − |x |) for |x | ≥ 1/2,

cf. Fig. 5.2. In particular, C = [−1/2, 1/2]. We note that u ∈ H2(Ω)\H3(Ω).

A similar result holds in higher-dimensional situations.

Theorem 5.3 (Regularity [1]) If ΓD = ∂Ω , χ ∈ H2(Ω), χ |∂Ω ≤ 0, and Ω is
convex, then u ∈ H2(Ω).

u

x

Fig. 5.2 Solution u of a one-dimensional obstacle problem with obstacle χ ; the slopes of the
obstacle and the displacement coincide at the boundary of the contact zone C
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5.1.4 Penalization

Penalty methods provide an attractive way to include constraints in a minimization
problem and approximate the original formulation by a sequence of continuous,
Fréchet-differentiable functionals. In particular, standard algorithms like descent
methods can be used for an approximate solution of the functionals. The main idea
is to penalize a constraint violation, e.g., via

Iε(u) = 1

2

∫

Ω

|∇u|2 dx −
∫

Ω

f u dx −
∫

ΓN

gu ds + ε−2

2

∫

Ω

(u − χ)2− dx,

where ε > 0 is a small penalty parameter and (s)− = min{s, 0} for s ∈ R. A
violation of the constraint u −χ ≥ 0 thus leads to a large contribution to the energy.
In general the minimizer uε ∈ H1

D(Ω) will not satisfy uε ≥ χ , so that a penetration
of the obstacle occurs. We include an estimate for the difference u − uε and the
penetration error for a simplified situation.

Theorem 5.4 (Nonconforming penalization) Let ΓD = ∂Ω and χ = 0 and assume
that the solution u ∈ K of the obstacle problem satisfies u ∈ H2(Ω). For the unique
minimizer uε ∈ H1

0 (Ω) of the penalized functional Iε, we have

2‖∇(u − uε)‖2 + ε−2‖u−
ε ‖2 ≤ ε2‖ f + 	u‖2,

where u−
ε (x) = min{uε(x), 0} for almost every x ∈ Ω .

Proof The existence of a unique minimizer uε ∈ H1
0 (Ω) follows from the direct

method in the calculus of variations and the strict convexity of Iε. The minimizer
satisfies

(∇uε,∇w) + ε−2(u−
ε , w) = ( f, w)

for all w ∈ H1
0 (Ω). We set u+

ε = uε − u−
ε and note that u+

ε ≥ 0 in Ω . With the
variational inequality satisfied by u and the equation satisfied by uε, we find that

‖∇(u − uε)‖2 = (∇u,∇[u − u+
ε ]) + (∇u,∇[u+

ε − uε]) − (∇uε,∇[u − uε])
≤ ( f, u − u+

ε ) + (∇u,∇[u+
ε − uε]) − ( f, u − uε)

+ ε−2(u−
ε , u − uε)

= ( f, u−
ε ) − (∇u,∇u−

ε ) + ε−2(u−
ε , u − uε).

We note that (u−
ε , u+

ε ) = 0 and (u−
ε , u) ≤ 0 since u ≥ 0 so that

ε−2(u−
ε , u − uε) ≤ −ε−2‖u−

ε ‖2.
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Green’s identity and Hölder and Young inequalities lead to

‖∇(u − uε)‖2 + ε−2‖u−
ε ‖2 ≤ ( f, u−

ε ) − (∇u,∇u−
ε )

= ( f + 	u, u−
ε ) ≤ ε2

2
‖ f + 	u‖2 + ε−2

2
‖u−

ε ‖2.

This proves the asserted estimate. �
Todefine a penaltymethod that provides a family of approximations (uε)ε>0 ⊂ K ,

i.e., with uε ≥ χ in Ω for every ε > 0, we choose a Lipschitz continuous function
θ ∈ W 1,∞(R) with

θ ′ ≥ 0, 0 ≤ θ ≤ 1, θ(t) = 0 for all t ≤ 0.

We assume that θ(t) → 1 as t → +∞ with rate 1/t , i.e., there exists cθ > 0 with

1 − θ(t) ≤ cθ t−1

for all t > 0. Possible choices are θ(t) = t/(1 + t) or θ(t) = (2/π) arctan(t).

Theorem 5.5 (Conformingpenalization)Let g = 0 onΓN and define θε(t) = θ(t/ε)
for every t ∈ R and ε > 0. Let ξ ∈ L2(Ω) be a nonnegative function such that
ξ ≥ (−	χ − f )+ and ξ ≥ ∂nχ on ΓN in the sense that

(∇χ,∇φ) − ( f, φ) ≤ (ξ, φ)

for all φ ∈ H1
D(Ω) with φ ≥ 0 in Ω . There exists a unique function uε ∈ H1

D(Ω)

such that
(∇uε,∇w) + ([θε(uε − χ) − 1]ξ, w) = ( f, w)

for all w ∈ H1
D(Ω) that satisfies uε ≥ χ and

‖∇(u − uε)‖2 ≤ εcθ‖ξ‖L1(Ω)

Proof Given Θε ∈ C1(R) with Θ ′
ε = θε we have that Θε is convex and there exists

a unique minimizer uε ∈ H1
D(Ω) of the functional

Iε(u) = 1

2

∫

Ω

|∇u|2 dx +
∫

Ω

Θε(u − χ) ξ dx −
∫

Ω

( f + ξ)u dx .

The minimizer uε ∈ H1
D(Ω) solves the Euler–Lagrange equations

(∇uε,∇w) + ([θε(uε − χ) − 1]ξ, w) = ( f, w)
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for all w ∈ H1
D(Ω). Due to the assumption on ξ we have

‖∇(χ − uε)
+‖2 = (∇[χ − uε],∇[χ − uε]+)

= (∇χ,∇[χ − uε]+) − ( f, (χ − uε)
+) − (ξ, (χ − uε)

+)

+ (ξθε(u − χ), (χ − uε)
+)

≤ (ξθε(uε − χ), (χ − uε)
+) = 0.

The last identity follows from the fact that almost everywhere in Ω we have either
uε < χ ; then θε(uε − χ) = 0 or χ ≤ uε and then (χ − uε)

+ = 0. This proves that
uε ≥ χ in Ω and hence uε ∈ K . The variational inequality satisfied by u ∈ K and
the Euler–Lagrange equations fulfilled by uε ∈ H1

D(Ω) show that

‖∇(u − uε)‖2 ≤ ( f, u − uε) + (ξθε(uε − χ), u − uε) − ( f + ξ, u − uε)

= ([θε(uε − χ) − 1]ξ, u − uε) ≤ ([θε(uε − χ) − 1]ξ, χ − uε),

where we used θε ≤ 1, ξ ≥ 0, and u ≥ χ in the last estimate. Since

s
(
1 − θε(s)

) = ε(s/ε)
(
1 − θ(s/ε)

) ≤ εcθ

we deduce the asserted bound. �

Remark 5.2 The conforming penalization method is practical only if χ ∈ H2(Ω).

5.1.5 Dual Formulation

We write the obstacle problem as the formally unconstrained minimization of the
functional

I (u) = 1

2

∫

Ω

|∇u|2 dx −
∫

Ω

f u dx + IK +
0
(u − χ)

with the indicator functional IK +
0
of the set

K +
0 = {v ∈ H1

D(Ω) : v ≥ 0 in Ω}.

With Λ : H1
D(Ω) → L2(Ω;Rd), u �→ ∇u, this can be abstractly written as

I (u) = F(Λu) + G(u)

and the dual formulation consists in the maximization of (cf. Sect. 4.1.4)

p �→ D(p) = −F∗(p) − G∗(−Λ′ p)

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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in the set of functions p ∈ L2(Ω;Rd). Here, Λ′ is the formal adjoint operator Λ′ =
∇′ : L2(Ω;Rd) → H1

D(Ω)′ defined by 〈∇′ p, v〉 = (p,∇v) for all v ∈ H1
D(Ω). We

have F∗ = F and for μ ∈ H1
D(Ω)′

G∗(μ) = sup
u∈H1

D(Ω)

〈μ + f, u〉 − IK +
0
(u − χ) = sup

u∈H1
D(Ω)

〈μ + f, u + χ〉 − IK +
0
(u)

= 〈μ + f, χ〉 + I ∗
K +
0
(μ + f ) = 〈μ + f, χ〉 + IK −

0
(μ + f ),

where we used a simple calculation to imply I ∗
K +
0

= IK −
0
with

K −
0 = {μ ∈ H1

D(Ω)′ : μ ≤ 0}.

The dual problem thus seeks a maximizing function p ∈ L2(Ω;Rd) for

D(p) = −1

2

∫

Ω

|p|2 dx − 〈χ,−∇′ p + f 〉 − IK −
0
(−∇′ p + f ).

In the case ΓD = ∂Ω we have ∇′ = − div. The choice p = ∇u shows that we have
strong duality.

Theorem 5.6 (Strong duality) Let ΓD = ∂Ω . Then p = ∇u is maximal for q �→
D(q) in the set of functions q ∈ L2(Ω;Rd) and we have

I (u) = inf
v∈H1

D(Ω)

I (v) = sup
q∈L2(Ω;Rd )

D(q) = D(p).

Proof For a functional Φ : X × Y → R ∪ {+∞} and x ∈ X we have

sup
y∈Y

Φ(x, y) ≥ sup
y∈Y

inf
x∈X

Φ(x, y),

and hence infx∈X supy∈Y Φ(x, y) ≥ supy∈Y infx∈X Φ(x, y). This allows us to
deduce that

I (u) = inf
v∈H1

D(Ω)

I (v) = inf
v∈H1

D(Ω)

sup
q∈L2(Ω;Rd )

(q,∇v) − 1

2

∫

Ω

|q|2 dx + G(v)

≥ sup
q∈L2(Ω;Rd )

inf
v∈H1

D(Ω)

−(div q, v) − 1

2

∫

Ω

|q|2 dx + G(v)

= sup
q∈L2(Ω;Rd )

(−1)
(

sup
v∈H1

D(Ω)

(div q, v) + 1

2

∫

Ω

|q|2 dx − G(v)
)

= sup
q∈L2(Ω;Rd )

−G∗(div q) − 1

2

∫

Ω

|q|2 dx

= sup
q∈L2(Ω;Rd )

D(q).
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The direct method in the calculus of variations shows that there exists a unique
minimizer for −D in L2(Ω;Rd). For p = ∇u we have, using div p + f ≤ 0,

D(p) = 1

2

∫

Ω

|∇u|2 dx − (p,∇u) − (χ, div p + f )

= 1

2

∫

Ω

|∇u|2 dx + (div p + f, u) − ( f, u) − (χ, div p + f )

= 1

2

∫

Ω

|∇u|2 dx − ( f, u) + (u − χ, div p + f ).

The complementarity conditions show that (u − χ, div p + f ) = 0 and hence
D(p) = I (u). �

5.2 Finite Element Approximation

Given a finite element space that is a subspace of H1
D(Ω), it appears natural to restrict

the variational formulation to the discrete space. While this leads to convergence in
approximating the exact solution, the practical computation is difficult in general
since treating the constraint uh ≥ χ may be inefficient in practice. The discretization
of penalized formulations allows us to use standard solvers for discrete problems but
often leads to suboptimal results when the obstacle or the solution is not regular. A
more efficient approach is to approximate the obstacle in the finite element space
by a function χh and to solve the discrete variational inequality by imposing the
constraint on the degrees of freedom which often implies that uh ≥ χh holds almost
everywhere. We present in this section a priori and a posteriori error estimates for
approximating the obstacle problem with finite elements and refer the reader to the
textbooks [3, 4] for further details.

5.2.1 Abstract Error Analysis

For a Banach space X , a continuous and coercive bilinear form a : X × X → R, a
closed convex set K ⊂ X , and a bounded linear functional � : X → R, we let u ∈ K
denote the uniquely defined function in K with

a(u, v − u) ≥ �(v − u)

for all v ∈ K . For a subspace Xh ⊂ X and a closed convex set Kh ⊂ Xh , we let
uh ∈ Kh be the unique solution of
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a(uh, vh − uh) ≥ �(vh − uh)

for all vh ∈ Kh . Notice that herewe do not impose the conformity condition Kh ⊂ K .
We define the operator A : X → X ′ for every v ∈ X by

〈Av, w〉 = a(v, w)

for all w ∈ X .

Remark 5.3 If X is a Hilbert space, then the existence and uniqueness of a solution
u ∈ K canbe establishedby showing that themappingTθ : u �→ PK (u−θ R(Au−�))

is a contraction for θ sufficiently small. Here, PK : X → K is the orthogonal
projection onto K and R : X ′ → X is the Riesz representation operator.

Theorem 5.7 (Error estimate) Let H be a Hilbert space such that X is continuously
embedded into H and 〈φ, v〉 = (φ, v)H if φ ∈ H ⊂ X ′ for all v ∈ X. With the
coercivity and continuity constants α, M > 0 of a, we have

α

2
‖u − uh‖2X ≤ inf

v∈K , vh∈Kh
‖Au − �‖X ′

(‖uh − v‖X + ‖u − vh‖X
) + M2

2α
‖u − vh‖2X .

If Au − � ∈ H, then

α

2
‖u − uh‖2X ≤ inf

v∈K , vh∈Kh
‖Au − �‖H

(‖uh − v‖H + ‖u − vh‖H
) + M2

2α
‖u − vh‖2X .

Proof The coercivity of a implies that for arbitrary v ∈ K and vh ∈ Kh we have

α‖u − uh‖2X ≤ a(u − uh, u − uh) = a(u, u) − a(u, uh) − a(uh, u) + a(uh, uh)

≤ a(u, v) + �(u − v) − a(u, uh) + a(uh, vh)

+ �(uh − vh) − a(uh, u)

= a(u, v − uh) + a(uh, vh − u)

+ �(u − v) + �(uh − vh)

= a(u, v − uh) + a(u, vh − u) + �(u − v)

+ �(uh − vh) + a(uh − u, vh − u)

= 〈Au − �, v − uh〉 + 〈Au − �, vh − u〉
+ a(uh − u, vh − u).

This implies the first error estimate. The second estimate follows from the bound

〈Au − �, v − uh〉 − 〈Au − �, vh − u〉 ≤ ‖Au − �‖H
(‖v − uh‖H + ‖u − vh‖H

)

provided that Au − � ∈ H . �
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Remark 5.4 If the method is conforming in the sense that Kh ⊂ K , then the terms
‖uh − v‖X and ‖uh − v‖H disappear in the estimates.

5.2.2 Application to P1-FEM

For a triangulation Th of Ω and χ ∈ H1(Ω) ∩ C(Ω) with χ ≤ 0 on ΓD, we set
χh = Ihχ and define

Kh = {vh ∈ S 1
D(Th) : vh ≥ χh}.

The condition uh ∈ Kh is, for uh ∈ S 1
D(Th), equivalent to uh(z) ≥ χh(z) = χ(z)

for all z ∈ Nh . If χ is not continuous, then a possible definition of the discrete
obstacle is χh = Jhχ with the Clément interpolant Jh : L1(Ω) → S 1(Th).
Throughout the following we assume that u ∈ H1

D(Ω) satisfies u ≥ χ in Ω and

(∇u,∇[v − u]) ≥ ( f, v − u)

for all v ∈ H1
D(Ω) with v ≥ χ . Correspondingly, we let uh ∈ S 1

D(Th) be the unique
function that satisfies uh ≥ χh and

(∇uh,∇[vh − uh]) ≥ ( f, vh − uh)

for all vh ∈ S 1
D(Th) with vh ≥ χh .

Proposition 5.2 (Convergence) Assume that χh → χ in H1(Ω) as h → 0. Then
we have uh → u as h → 0.

Proof Due to the density of the finite element spaces in H1
D(Ω), there exists a

sequence (wh)h>0 ⊂ H1
D(Ω) such that wh ∈ S 1

D(Th) for every h > 0 and wh → u
in H1(Ω) as h → 0. Noting that a standard mollification of the nonnegative function
u − χ provides a nonnegative function (u − χ)ε = uε − χε with smooth regular-
izations uε, χε such that uε → u and χε → χ in H1(Ω) as ε → 0. We may thus
define vh = Ih(u − χ)ε + χh = Ihuε − Ihχε + χh ∈ Kh as an approximation of
u in Kh . An approximation of uh in K is given by v = uh + (χ − χh)+ ≥ χ . For
these choices the first estimate of Theorem5.7 yields the bound

‖∇(u − uh)‖2 ≤ c
(‖∇(χ − χh)+‖ + ‖∇(u − Ihuε)‖ + ‖∇(Ihχε − χh)‖).

Inserting χ in the term involving χε shows that the right-hand side converges to 0 as
(ε, h) → 0. �

Theorem 5.8 (Error estimate) If χ, u ∈ H2(Ω) and χh = Ihχ , then

‖∇(u − uh)‖2 ≤ ch2‖	u + f ‖(‖D2χ‖ + ‖D2u‖) + ch2‖D2u‖2.
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Proof For vh = Ihu we have vh ≥ χh and for v = uh + (χ − χh)+ we have v ≥ χ .
Choosing these functions in the second estimate of Theorem5.7 with H = L2(Ω)

and incorporating nodal interpolation estimates prove the error estimate. �

5.2.3 A Posteriori Error Analysis

Weconsider the solutions u ∈ K and uh ∈ Kh of the continuous and discrete obstacle
problem with homogeneous boundary conditions on the entire boundary ΓD = ∂Ω ,
i.e., u ∈ K = {v ∈ H1

0 (Ω) : v ≥ χ} satisfies

(∇u,∇[v − u]) ≥ ( f, v − u)

for all v ∈ K , while uh ∈ Kh = {vh ∈ S 1
0 (Th) : vh ≥ χh} satisfies for all vh ∈ Kh

(∇uh,∇[vh − uh]) ≥ ( f, vh − uh).

Wefollow the arguments of [2, 8] and recall the definition of the discrete inner product
(v, w)h = ∫

Ω
Ih[vw] dx = ∑

z∈Nh
βzv(z)w(z) for v, w ∈ C(Ω) and βz = ∫

Ω
ϕz dx

for all z ∈ Nh .

Lemma 5.1 (Discrete Lagrange multiplier) Let λh ∈ S 1
0 (Th) be defined by

(λh, wh)h = ( f, wh) − (∇uh,∇wh)

for all wh ∈ S 1
0 (Th). Then we have λh ≤ 0 and (λh, uh − χh)h = 0.

Proof Given z ∈ Nh let αz ∈ R be such that uh(z) + αz ≥ χh(z). The discrete
variational inequality with vh = uh + αzϕz and wh = αzϕz in the definition of λh

imply with βz = ∫
Ω

ϕz dx > 0 that

αzβzλh(z) = αz
(
( f, ϕz) − (∇uh,∇ϕz)

) ≤ 0,

in particular, (∇uh,∇ϕz) − ( f, ϕz) = 0 if uh(z) > χh(z). �

Lemma 5.2 (Attachment) Let z ∈ Nh\∂Ω and assume that wh ∈ S 1
0 (Th) is such

that wh |ωz ≤ 0 and wh(z) = 0. Then

‖wh‖L2(ωz)
≤ chz

∑
S∈Sh ,z∈S

h1/2
S ‖�∇wh · nS�‖L2(S).

Proof Assume that the right-hand side vanishes. Then ∇wh |ωz is constant on ωz

and wh |ωz is affine. The conditions wh(z) = 0 and wh |ωz ≤ 0 on ωz imply that
‖wh‖L2(ωz)

= 0. Both sides of the asserted estimate define seminorms onS 1
0 (Th)|ωz
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and we thus deduce the result if hz = 1. A scaling argument proves the estimate in
the general case. �

The lemmas allow us to prove the following error estimate.

Theorem 5.9 (Residual estimate) Assume that χh = χ , ΓD = ∂Ω , and let fT =
|T |−1

∫
T f dx for every T ∈ Th. We have

(1/c)‖∇(u − uh)‖2 ≤
∑

T ∈Th

h2
T ‖ f + 	uh − λh‖2L2(T )

+
∑

T ∈Th

h2
T ‖ fT − f ‖2L2(T )

+
∑

S∈Sh∩Ω

hS‖�∇uh · nS�‖2L2(S)

+
∑

S∈S F B
h ∩Ω

hS‖�∇(χh − uh) · nS�‖2L2(S)

with the skeleton of the discrete free boundary S F B
h defined as

S F B
h = {S ∈ Sh : z1 ∈ Nh ∩ S, uh(z1) = χh(z1), z2 ∈ Nh ∩ ωz1 , uh(z2) > χh(z2)}.

Proof Abbreviating e = u − uh and employing the quasi-interpolation operatorJh

we have, since uh ∈ K ,

‖∇ e‖2 ≤ ( f, e) − (∇uh,∇[e − Jhe]) − ( f,Jhe) + (λh,Jhe)h

= ( f, e − Jhe) − (∇uh,∇[e − Jhe]) + (λh,Jhe)h

= ( f − λh, e − Jhe) − (∇uh,∇[e − Jhe]) + (λh, e)

− (λh,Jhe) + (λh,Jhe)h .

The first two terms are treated as in the case of the Poisson problem, with an inte-
gration by parts, elementwise. The last two terms are controlled with the properties
of the discrete inner product by

(λh,Jhe) − (λh,Jhe)h ≤ c
∑

T ∈Th

h2
T ‖∇λh‖L2(T )‖∇Jhe‖L2(T )

≤ c
( ∑

T ∈Th

h4
T ‖∇(λh − fT )‖2L2(T )

)1/2‖∇Jhe‖

≤ c
( ∑

T ∈Th

h2
T ‖λh + 	uh − fT ‖2L2(T )

)1/2‖∇Jhe‖.

To estimate the term (λh, e) let T ∈ Th .
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(i) If T ∩∂Ω 
= ∅, then withωT = ∪z∈Nh∩T ωz , a Poincaré inequality, and an inverse
estimate, we have

∫

T

eλh dx ≤ ch2
T ‖∇λh‖L2(T )‖∇e‖L2(ωT ) ≤ chT ‖λh − fT ‖L2(T )‖∇e‖L2(ωT ).

(ii) If χh < uh or χh = uh on T , then λh = 0 or e ≥ 0 on T , respectively, implies

∫

T

eλh dx ≤ 0.

(iii) If T ∩ ∂Ω = ∅ and there exist z1, z2 ∈ Nh ∩ T with uh(z1) = χh(z1) and
uh(z2) > χh(z2), then we have λh(z2) = 0. Using that 0 ≤ χh − uh ≤ u − uh ,
λh ≤ 0, and uh(z1) − χh(z1) = 0, we find with Lemma5.2 that

∫

T

eλh dx ≤
∫

T

(χh − uh)λh dx ≤ hT ‖∇λh‖L2(T )‖χh − uh‖L2(T )

≤ chT ‖λh − fT ‖L2(T )

∑
S∈Sh ,z1∈S

h1/2
S ‖�∇(χh − uh) · nS�‖L2(S).

A combination of the estimates implies the theorem. �

Remark 5.5 A related local lower bound for the error has been derived in [8].

We incorporate an a posteriori error estimate that is based on duality arguments
as in the abstract setting of Theorem4.2. In the stated form it is of limited practical
use but reveals that optimality conditions are an important part in a posteriori error
estimation. The result does not assume that uh is a discrete minimizer.

Theorem 5.10 (Functional estimate) Assume ΓD = ∂Ω and let uh ∈ K . For every
p̂h ∈ H(div;Ω) such that div p̂h + f ≤ 0 in Ω , we have

‖∇(u − uh)‖2 ≤ ‖∇uh − p̂h‖2 + (χ − uh, f + div p̂h).

Proof The abstract a posteriori error estimate for nonsmooth, strongly convex opti-
mization problems shows, with D as in Theorem5.6, that

1

4
‖∇(u − uh)‖2 ≤ 1

2

(
I (uh) − D( p̂h)

)

for every p̂h ∈ L2(Ω;Rd). With Green’s formula, uh ∈ K , and div p̂h + f ≤ 0 we
infer

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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I (uh) − D( p̂h) = 1

2

∫

Ω

|∇uh |2 dx −
∫

Ω

f uh dx + 1

2

∫

Ω

| p̂h |2 dx

+
∫

Ω

χ(div p̂h + f ) dx

= 1

2

∫

Ω

|∇uh |2 dx −
∫

Ω

p̂h · ∇uh dx + 1

2

∫

Ω

| p̂h |2 dx

+
∫

Ω

(χ − uh)( f + div p̂h) dx .

This proves the error estimate. �

5.3 Iterative Solution Methods

We discuss a locally superlinearly convergent and a globally convergent iteration
method. These can be combined to obtain a globally convergent method that has
fast convergence properties in an appropriate neighborhood of the discrete solution.
The interpretation of the primal-dual active set strategy as a semi-smooth Newton
method is due to [5].

5.3.1 Semismooth Newton Iteration

The finite element discretization of the obstacle problem leads to a finite-dimensional
minimization problem of the form

Minimize U �→ 1

2
U

⊥

AU − B

⊥

U subject to U ≥ Z

with a positive-definite matrix A ∈ R
L×L . Here, the vectorial inequality U ≥ Z is

understood component-wise. Arguing as in the infinite-dimensional situation this is
equivalent to finding (U,Λ) ∈ R

L × R
L such that

AU + Λ = B, U ≥ Z , Λ ≤ 0, Λi (U − Z)i = 0, i = 1, 2, . . . , L .

As above we consider the component-wise operation min{0, Y } for a vector Y ∈ R
L

in the following.
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Lemma 5.3 (Complementarity function) The optimality conditions are satisfied if
and only if

AU + Λ = B, C (U,Λ) = Λ − min{0,Λ + c(U − Z)} = 0,

where c > 0 is an arbitrary positive number.

Proof Suppose that the optimality conditions are satisfied and fix 1 ≤ i ≤ L . If
Λi = 0, then Ui ≥ Zi implies Ci (U,Λ) = 0. If Λi < 0, then Ui = Zi and
Λi − min{0,Λi } = 0, i.e., Ci (U,Λ) = 0. Assume conversely that C (U,Λ) = 0
and fix 1 ≤ i ≤ L . If Λi + c(Ui − Zi ) < 0, then 0 = Ci (U,Λ) = Λi − Λi +
c(Ui − Zi ) = c(Ui − Zi ), i.e., Ui = Zi and Λi < 0. If Λi + c(Ui − Zi ) ≥ 0, then
0 = Ci (U,Λ) = Λi and Ui ≥ Zi . �

The lemma motivates defining F : RL × R
L → R

L × R
L by

F(U,Λ) =
[

F1(U,Λ)

F2(U,Λ)

]
=

[
AU + Λ − B
C (U,Λ)

]

and compute (U,Λ) with F(U,Λ) = 0. For a set A ⊂ {1, 2, . . . , L} we define
IA ∈ R

L×L for 1 ≤ i, j ≤ L by

(IA )i j =
{
1 if i = j and i ∈ A ,

0 otherwise.

We denote A c = {1, 2, . . . , L}\A and note that IA + IA c = IL is the identity
matrix in RL×L .

Theorem 5.11 (Newton differentiability) The function F is Newton-differentiable
at every (U,Λ) ∈ R

L × R
L and with the set

A = {1 ≤ i ≤ L : Λi + c(Ui − Zi ) < 0}

we have

DF(U,Λ) =
[

DF1(U,Λ)

DF2(U,Λ)

]
=

[
A IL

−cIA IA c

]
.

In particular, DF(U,Λ) is regular and the semismooth Newton scheme for the iter-
ative solution of F(U,Λ) = 0 is well-defined and locally superlinearly convergent.

Proof ANewton derivative of themapping x �→ min{x, 0} is given by x �→ χR<0(x)

with χR<0(x) = 1 if x < 0, and χR<0(x) = 0 if x ≥ 0; this implies that F is Newton-
differentiable with Newton derivative DF . Assume that DF(U,Λ)[V, W ]

⊥

= 0.
Then the equation DF2(U,Λ)[V, W ]

⊥

= 0 yields V |A = 0 and W |A c = 0.
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The identity DF1(U,Λ)[V, W ]

⊥

= 0 then gives (AV )|A c = 0, and together with
V |A = 0 implies (AV )

⊥

V = 0. Since A is positive definite, we deduce that V = 0.
From DF1(U,Λ)[V, W ]

⊥

= 0 we then also find that W |A = 0. �

One step of the semismooth Newton scheme

DF(Ũ , Λ̃)[δU, δΛ]

⊥

= −F(Ũ , Λ̃)

for a given iterate Ũ , Λ̃ ∈ R
L is equivalent to

[
A IL

−cIÃ IÃ c

] [
δU
δΛ

]
= −

[
AŨ + Λ̃ − B

Λ̃ − min{0, Λ̃ + c(Ũ − Z)}
]

,

where Ã = {1 ≤ i ≤ L : Λ̃i + c(Ũi − Zi ) < 0}. This system can be written as

A(Ũ + δU ) + (Λ̃ + δΛ) = B, (Λ̃ + δΛ)Ã c = 0, (Ũ + δU )|Ã = Z |Ã .

The semismooth Newton scheme can thus be formulated in the following formwhich
is a version of a primal-dual active set method.

Algorithm 5.1 (Primal-dual active set method) Let (U 0,Λ0) ∈ R
L ×R

L and c > 0
and compute (U k,Λk)k=0,1,... via

Ak = {1 ≤ i ≤ L : Λk
i + c(U k

i − Zi ) < 0}

and [
A IL

IAk IA c
k

] [
U k+1

Λk+1

]
=

[
B

IAk Z

]
.

Stop the iteration if |||U k+1 − U k ||| ≤ εstop.

Remarks 5.6 (i) The algorithm converges superlinearly if (U 0,Λ0) is sufficiently
close to the solution (U,Λ), cf. Theorem4.11. Since the Newton-differentiability
onlyholds infinite-dimensional situations anddeteriorates as thedimension increases,
the condition on the initial guess becomes more critical for increasing dimensions.
(ii) The degrees of freedom related to the entries Λ|A c

k
can be eliminated from the

linear system of equations in the algorithm.
(iii) Since only a finite number of active sets are possible, the algorithm terminates
within a finite number of iterations at the exact solution.
(iv) Global convergence of the algorithm and monotonicity U k+1 ≥ U k ≥ Z for
k ≥ 2 can be proved if A is an M-matrix.
(v) Classical active set strategies define Ak = {1 ≤ i ≤ L : U k

i ≤ Zk
i } which

corresponds to a formal limit c → ∞.

TheMatlab code displayed in Fig. 5.3 realizes the primal-dual active set method
for the obstacle problem. The solution uh is replaced by the sum ũh + ũD,h with a

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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Fig. 5.3 Matlab implementation of the semismooth Newton method for the obstacle problem

function ũD,h that satisfies Dirichlet boundary conditions. The unknown function ũh

satisfies the constraint ũh ≥ χ̃h = χh − ũD,h and homogeneous Dirichlet conditions.
The function ũD,h also serves as an initial guess for the semismoothNewton iteration.

5.3.2 Global Primal-Dual Method

The discretized obstacle problem can be formulated as aminimization of themapping

uh �→ I (uh) = F(∇uh) + G(uh)
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with the functionals

F(∇uh) = 1

2

∫

Ω

|∇uh |2 dx

and with fh ∈ S 1
D(Th) defined through ( fh, vh)h = ( f, vh) for all vh ∈ S 1

D(Th),

G(uh) = −( fh, uh)h + IK +
0
(uh − χh).

We equip the space S 1
D(Th) and the space of element-wise constant vector fields

L 0(Th)d with the inner products (·, ·)h and (·, ·), respectively. This allows us to iden-
tify them with their duals. The formal adjoint operator ∇′ : L 0(Th)d → S 1

D(Th)

of ∇ : S 1
D(Th) → L 0(Th)d is denoted by − div0h and defined via

(− div0h ph, vh)h = (ph,∇vh)

for all ph ∈ L 0(Th)d and vh ∈ S 1
D(Th). We define a discrete subdifferential of

G by

∂hG(uh) = {vh ∈ S 1
D(Th) : (vh, wh −uh)h + G(uh) ≤ G(wh) f.a. wh ∈ S 1

D(Th)}.

Within this setting we reformulate the minimization problem as a saddle-point
problem.

Proposition 5.3 (Saddle-point formulation) The unique minimizer uh ∈ S 1
D(Th)

of I defines a saddle point (uh,∇uh) ∈ S 1
D(Th) × L 0(Th)d for the functional

L : S 1
D(Th) × L 0(Th)d → R defined by

L(vh, qh) = (qh,∇vh) − F∗(qh) + G(vh),

where F∗(qh) = (1/2)
∫
Ω

|qh |2 dx, i.e., with ph = ∇uh we have

L(uh, qh) ≤ L(uh, ph) ≤ L(vh, ph)

for all (vh, qh) ∈ S 1
D(Th) × L 0(Th).

Proof We first note that for ph ∈ L 0(Th)d , we have

F(ph) = 1

2

∫

Ω

|ph |2 dx = sup
qh∈L 0(Th)d

(ph, qh) − F∗(qh)

and qh = ph is maximal on the right-hand side. This shows that L(uh, ph) ≥
L(uh, qh) for all qh ∈ L 0(Th)d . Since uh is optimal, i.e., 0 ∈ ∂ F(∇uh)+ ∂hG(uh)

and F is strongly convex, we have for all vh ∈ S 1
D(Th)



148 5 The Obstacle Problem

1

2
‖∇(uh − vh)‖2 + I (uh) ≤ I (vh).

Therefore, employing ph = ∇uh ,

L(vh, ph) = I (vh) − 1

2
‖∇vh‖2 + (∇vh, ph) − 1

2
‖ph‖2

= I (vh) − 1

2
‖∇vh − ph‖2 ≥ I (uh) = L(uh, ph).

This proves the proposition. �

The global iterative scheme realizes a subdifferential flow for the functional L;
in particular, we use the iteration

dt u
k
h ∈ −∂v,h L(uk

h, p̃k
h) = div0h p̃k

h − ∂hG(uk
h),

dt pk
h ∈ ∂q L(uk

h, pk
h) = ∇uk

h − ∂ F∗(pk
h) = ∇uk

h − pk
h,

where the discrete subdifferential ∂hG is given by

∂hG(uh) = − fh + ∂h IK +
0
(uh − χh).

The inclusion of the iteration characterizes the unique minimizer uk
h ∈ S 1

D(Th) of

uh �→ 1

2τ
‖uh − uk−1

h − τ(div0h p̃k
h + fh)‖2h + IK +

0
(uh − χh)

in the set of functions uh ∈ S 1
D(Th). Straightforward considerations imply that

uk
h(z) = max{χh(z), uk−1

h (z) + τ(div0h p̃k
h + fh)(z)}

for every z ∈ Nh\ΓD. The equation for dt pk
h of the iteration is equivalent to

pk
h = (1 + τ)−1(pk−1

h + τ∇uk
h

)
.

The proposed algorithm is a modified version of the abstract primal-dual strategy of
Algorithm4.5 in the sense that the extrapolation is done in the variable ph in which
strong convexity holds.

Algorithm 5.2 (Primal-dual iteration) Let u0
h ∈ S 1

D(Th), p0h ∈ L 0(Th)d , and
τ > 0 and define dt p0h = 0. Compute the sequences (uk

h)k=0,1,... ⊂ S 1
D(Th) and

(pk
h)k=0,1,... ⊂ L 0(Th)d via p̃k

h = pk−1
h + τdt pk−1

h ,

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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uk
h(z) = max{χh(z), uk−1

h (z) + τ(div0h p̃k
h + fh)(z)}

for all z ∈ Nh\ΓD, and

pk
h = (1 + τ)−1(pk−1

h + τ∇uk
h

)
.

Stop if ‖dt pk
h‖ ≤ εstop.

The following theorem shows that the iteration converges for every choice of
(u0

h, p0h).

Theorem 5.12 (Convergence) Let uh ∈ S 1
D(Th) be the unique minimizer for Ih

and set ph = ∇uh ∈ L 0(Th)d . If τ ≤ ch with c > 0 sufficiently small, then the
iteration of Algorithm5.2 satisfies

τ 2

2

L∑
k=1

(‖dt u
k
h‖2h + ‖dt pk

h‖2) + τ

L∑
k=1

‖ph − pk
h‖2 ≤ ‖ph − p0h‖2 + ‖uh − u0

h‖2h .

In particular, ‖dt pk
h‖, ‖dt uk

h‖h → 0 as k → ∞ and pk
h → ph as k → ∞. Moreover,

uk
h → uh as k → ∞.

Proof The inclusion and equation satisfied by the iterates, i.e.,

−dt u
k
h + div0h p̃k

h ∈ ∂hG(uk
h), −dt pk

h + ∇uk
h = pk

h

imply upon testing with uh − uk
h and ph − pk

h , respectively, that

dt

2

(‖ph − pk
h‖2 + ‖uh − uk

h‖2h
) + τ

2

(‖dt u
k
h‖2h + ‖dt pk

h‖2) + 1

2
‖ph − pk

h‖2

= −(dt pk
h, ph − pk

h) − (dt u
k
h, uh − uk

h)h + 1

2
‖ph − pk

h‖2

≤ F∗(ph) − F∗(pk
h) − (∇uk

h, ph − pk
h) + G(uh) − G(uk

h)

+ (− div0h p̃k
h, uh − uk

h)h

= [
(∇uh, pk

h) − F∗(pk
h) + G(uh)

] − [
(∇uk

h, ph) − F∗(ph) + G(uk
h)

]

+ (∇uk
h, pk

h) − (∇uh, pk
h) + (− div0h p̃k

h, uh − uk
h)h

= L(uh, pk
h) − L(uk

h, ph) + ( p̃k
h − pk

h,∇[uh − uk
h]).
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Since (uh, ph) is a saddle-point for Lh , we have Lh(uh, pk
h) ≤ Lh(uh, ph) ≤

Lh(uk
h, ph). With this and p̃k

h − pk
h = −τ 2d2

t pk
h , we deduce that

1

2

(‖ph − pL
h ‖2 + ‖uh − uL

h ‖2h
) + τ 2

2

L∑
k=1

(‖dt u
k
h‖2h + ‖dt pk

h‖2) + τ

2

L∑
k=1

‖ph − pk
h‖2

≤ τ 3
L∑

k=1

(−d2
t pk

h, ∇[uh − uk
h]) + 1

2

(‖ph − p0h‖2 + ‖uh − u0
h‖2h

)
.

To bound the sum on the right-hand side, we use summation by parts, dt p0h = 0,
Young’s inequality, and an inverse estimate to verify that

τ 3
L∑

k=1

(d2
t pk

h,∇[uh − uk
h]) = τ 3

L∑
k=1

(dt pk−1
h ,∇dt u

k
h) + τ 2(dt pk

h,∇[uh − uk
h])|L

k=0

≤ τ 2

4

( L∑
k=1

4τ 2‖∇dt u
k
h‖2 + ‖dt pk−1

h ‖2
)

+ τ 2

4
‖dt pL

h ‖2 + τ 2‖∇(uh − uL
h )‖2

≤ τ 2

4

( L∑
k=1

‖dt u
k
h‖2h + ‖dt pk−1

h ‖2
)

+ τ 2

4
‖dt pL

h ‖2

+ 1

4
‖uh − uL

h ‖2h,

where we assumed that τ ≤ ch with c such that 2τ‖∇vh‖ ≤ ‖vh‖h for all vh ∈
S 1

D(Th). This proves the estimate of the theoremand implies that dt uk
h → 0, dt pk

h →
0, and pk

h → ph as k → ∞. Since ∇uk
h − pk

h → 0 it follows that uk
h → uh . �

TheMatlab code displayed in Fig. 5.4 realizes this scheme. The employed rou-
tine comp_gradient.m computes the element-wise constant gradient of a P1
function. The routine discrete_divergence.m provides a matrix that com-
putes div0h qh for a vector field qh ∈ L 0(Th)d .
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Fig. 5.4 Matlab implementation of the globally convergent primal-dual method for the obstacle
problem
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Chapter 6
The Allen–Cahn Equation

6.1 Analytical Properties

The Allen–Cahn equation is a simple mathematical model for certain phase
separation processes. It also serves as a prototypical example for semilinear
parabolic partial differential equations. The presence of a small parameter that defines
the thickness of interfaces separating different phases makes the analysis challeng-
ing. Given u0 ∈ L2(Ω), ε > 0 and T > 0, we seek a function u : [0, T ] × Ω → R

that solves

∂t u − �u = −ε−2 f (u), u(0) = u0, ∂nu(t, ·)|∂Ω = 0,

for almost every t ∈ [0, T ] and with f = F ′ for a nonnegative function F ∈ C1(R)

satisfying F(±1) = 0, cf. Fig. 6.1. Unless otherwise stated, we always consider
F(s) = (s2 − 1)2/4 and f (s) = s3 − s but other choices are possible as well. We
always assume that |u0(x)| ≤ 1 for almost every x ∈ Ω . For this model problem
we will discuss aspects of its numerical approximation. For further details on mod-
eling aspects and the analytical properties of the Allen–Cahn and other phase-field
equations we refer the reader to the textbook [7] and the articles [1, 2, 4, 6, 10, 11].

The Allen–Cahn equation is the L2-gradient flow of the functional

Iε(u) = 1

2

∫

Ω

|∇u|2 dx + ε−2
∫

Ω

F(u) dx .

Solutions tend to decrease the energy and develop interfaces separating regions in
which it is nearly constant with values close to the minima of F . We refer to the
zero level set of the function u as the interface but note that this does not define a
sharp separation of the phases. More precisely, the phases are separated by a region
of width ε around the zero level set of u often called the diffuse interface.

© Springer International Publishing Switzerland 2015
S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations,
Springer Series in Computational Mathematics 47,
DOI 10.1007/978-3-319-13797-1_6
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s

u ≈ −1

u ≈ +1
F(s)

s

f (s)
t

Fig. 6.1 Double well potential F(s) = (s2 − 1)2/4 and its derivative f (s) = s3 − s which is
monotone outside [−1, 1]; solutions develop time-dependent interfaces Γt that separate regions in
which u(t, ·) ≈ ±1

6.1.1 Existence and Regularity

The existence of a unique solution u follows, e.g., from a discretization in time and
a subsequent passage to a limit.

Theorem 6.1 (Existence) For every u0 ∈ L2(Ω) and T > 0 there exists a weak
solution u ∈ H1([0, T ]; H1(Ω)′)∩ L2([0, T ]; H1(Ω)) that satisfies u(0) = u0 and

〈∂t u, v〉 + (∇u,∇v) = −ε−2( f (u), v)

for almost every t ∈ [0, T ] and every v ∈ H1(Ω). If u0 ∈ H1(Ω), then we have
u ∈ H1([0, T ]; L2(Ω)) ∩ L∞([0, T ]; H1(Ω)) and

Iε(u(T ′)) +
T ′∫

0

‖∂t u‖2 dt ≤ Iε(u0)

for almost every T ′ ∈ [0, T ].
Proof The existence of a solution follows from an implicit discretization in time that
leads to a sequence of well-posed minimization problems. Straightforward a-priori
bounds, together with compact embeddings, then show the existence of a weak limit
that solves the weak formulation. If u0 ∈ H1(Ω), then we may formally choose
v = ∂t u to verify that

‖∂t u‖2 + d

dt

1

2
‖∇u‖2 = −ε−2 d

dt

∫

Ω

F(u) dx .

An integration over [0, T ] implies the asserted bound. This procedure can be rigor-
ously carried out for a time-discretized problem, and then the estimate also holds as
the time-step size tends to zero. �

Remarks 6.1 (i) Stationary states for the Allen–Cahn equation are the constant func-
tions u ≡ ±1 and u ≡ 0. The state u ≡ 0 is unstable.
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(ii) For Ω = R
d a stationary solution is given by u(x) = tanh(x · a/(

√
2ε)) for

all x ∈ R
d and an arbitrary vector a ∈ R

d . This characterizes the profile of typical
solutions for Allen–Cahn equations across interfaces.

Since the nonlinearity f is monotone outside the interval [−1, 1], solutions of the
Allen–Cahn equation satisfy a maximum principle.

Proposition 6.1 (Maximum principle and uniqueness) If u is a weak solution of the
Allen–Cahn equation and |u0(x)| ≤ 1 for almost every x ∈ Ω , then |u(t, x)| ≤ 1
for almost every (t, x) ∈ [0, T ] × Ω . Solutions with this property are unique.

Proof Let ũ ∈ H1([0, T ]; H1(Ω)′) ∩ L2([0, T ]; H1(Ω)) be the function obtained
by truncating u at ±1, i.e.,

ũ(t, x) = min{1,max{−1, u(t, x)}}

for almost every (t, x) ∈ [0, T ] × Ω . Then ∂t ũ = ∂t u, ∇ũ = ∇u, and f (̃u) = f (u)

in {(t, x) ∈ [0, T ] × Ω : |̃u(t, x)| < 1} and ∂t ũ = 0, ∇ũ = 0, and f (̃u) = 0
otherwise. The function ũ is therefore a weak solution of the Allen–Cahn equation.
If u − ũ �= 0, then either u ≥ ũ = 1 and

f (u) − f (̃u) ≥ f ′(̃u)(u − ũ) = f ′(1)(u − ũ) = 2(u − ũ)

or u ≤ ũ = −1 and

f (u) − f (̃u) ≤ f ′(̃u)(u − ũ) = f ′(−1)(u − ũ) = 2(u − ũ).

Altogether we find that almost everywhere in [0, T ] × Ω , we have

(
f (u) − f (̃u)

)
(u − ũ) ≥ 2|u − ũ|2.

The difference δ = u − ũ satisfies

(∂tδ, v) + (∇δ,∇v) = −ε−2( f (u) − f (̃u), v),

and for v = δ, we obtain

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 ≤ −2ε−2‖δ‖2.

With δ(0) = 0, it follows directly that δ = 0 in [0, T ]×Ω . If u1 and u2 are solutions
with |u1|, |u2| ≤ 1 in [0, T ] × Ω , then we have

| f (u1) − f (u2)| ≤ c f |u1 − u2|

almost everywhere in [0, T ] × Ω with c f = sups∈[−1,1] | f ′(s)|. The difference
δ = u1 − u2 satisfies
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(∂tδ, v) + (∇δ,∇v) = −ε−2( f (u1) − f (u2), v)

and the choice of v = δ leads to

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 ≤ c f ε

−2‖δ‖2.

An application of Gronwall’s lemma implies that u1 = u2. �

As for the linear heat equation, one can show that the solution is regular. The
corresponding bounds depend critically however on the small parameter ε > 0.

Theorem 6.2 (Regularity) If the Laplace operator is H2 regular in Ω and u0 ∈
H1(Ω), then u ∈ L∞([0, T ]; H2(Ω))∩ H2([0, T ]; H1(Ω)′)∩ H1([0, T ]; H2(Ω))

and there exists σ ≥ 0 such that

sup
t∈[0,T ]

‖u‖H2(Ω) +
( T∫

0

‖utt‖2H1(Ω)′ dt
)1/2 +

( T∫

0

‖ut‖2H2(Ω)
dt

)1/2 ≤ cε−σ .

If Iε(u0) ≤ c and ‖�u0‖ ≤ cε−2, then we may choose σ = 2.

Proof The proof follows with the arguments that are used to prove the corresponding
statements for the linear heat equation, cf. [8]. �

6.1.2 Stability Estimates

In the following stability result we assume that an approximate solution satisfies a
maximum principle. This is satisfied for certain numerical approximations and the
assumption can be weakened to a uniform L∞-bound. We recall that Gronwall’s
lemma states that if a nonnegative function y ∈ C([0, T ]) satisfies

y(T ′) ≤ A +
T ′∫

0

a(t)y(t) dt

for all T ′ ∈ [0, T ] with a nonnegative function a ∈ L1([0, T ]), then we have

y(T ′) ≤ A exp
( T∫

0

a dt
)
.
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Together with a Lipschitz estimate, this will be the main ingredient for the
following stability result. Due to its exponential dependence on ε−2, it is of limited
practical use.

Theorem 6.3 (Stability) Let u ∈ H1([0, T ]; H1(Ω)′) ∩ L∞([0, T ]; H1(Ω)) be
a weak solution of the Allen–Cahn equation with |u| ≤ 1 almost everywhere in
[0, T ] × Ω . Let ũ ∈ H1([0, T ]; H1(Ω)′) ∩ L2([0, T ]; H1(Ω)) satisfy |̃u| ≤ 1
almost everywhere in [0, T ] × Ω , and ũ(0) = ũ0, and solve

(∂t ũ, v) + (∇ũ,∇v) = −ε−2( f (̃u), v) + 〈R̃(t), v〉

for almost every t ∈ [0, T ], all v ∈ H1(Ω), with a functional R̃ ∈ L2([0, T ];
H1(Ω)′). Then we have

sup
t∈[0,T ]

‖u − ũ‖2+
T∫

0

‖∇(u − ũ)‖2 dt

≤ 2
(
‖u0 − ũ0‖2 +

T∫

0

‖R̃‖2H1(Ω)′ dt
)
exp

(
(1 + 2c f ε

−2)T
)
.

Proof With c f = sups∈B1(0) | f ′(s)|, we have

| f (s1) − f (s2)| ≤ c f |s1 − s2|

for all s1, s2 ∈ R. The difference δ = u − ũ satisfies

(∂tδ, v) + (∇δ,∇v) = −ε−2( f (u) − f (̃u), v
) − 〈R̃, v〉

for almost every t ∈ I and every v ∈ H1(Ω). For v = δ we find that

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 ≤ c f ε

−2‖δ‖2 + ‖R̃‖H1(Ω)′ ‖δ‖H1(Ω)

≤ c f ε
−2‖δ‖2 + 1

2
‖R̃‖2H1(Ω)′ + 1

2
(‖δ‖2 + ‖∇δ‖2)

≤ 1

2
(1 + 2c f ε

−2)‖δ‖2 + 1

2
‖R̃‖2H1(Ω)′ + 1

2
‖∇δ‖2.

Absorbing the term ‖∇δ‖2/2 on the left-hand side and integrating over (0, T ′)
lead to

‖δ(T ′)‖2 +
T ′∫

0

‖∇δ‖2 dt ≤ ‖δ(0)‖2 +
T∫

0

‖R̃‖2H1(Ω)′ dt + (1 + 2c f ε
−2)

T ′∫

0

‖δ‖2 dt.
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Defining A = ‖δ(0)‖2 + ∫ T
0 ‖R̃‖2

H1(Ω)′ dt , b = (1 + 2c f ε
−2), and setting

y(t) = ‖δ(t)‖2 +
t∫

0

‖∇δ‖2 ds,

we have y(T ′) ≤ A + a
∫ T ′
0 y(t) dt ; Gronwall’s lemma implies the estimate of the

theorem. �

Remark 6.2 The functional R̃ models the error introduced by a discretization of the
equation so that wemay assume that ‖R̃(t)‖2

H1(Ω)′ ≤ cε−ρ(hα +τβ) for amesh-size

h > 0 and a time-step size τ > 0, and parameters α, β, ρ > 0. If ‖u0 − ũ0‖2 ≤ hγ ,
then we obtain the error estimate

sup
t∈[0,T ]

‖u − ũ‖2 +
T∫

0

‖∇(u − ũ)‖2 dt ≤ cε−ρ(hα + τβ + hγ ) exp
(
(1+ 2c f ε

−2)T
)
.

Even for the moderate choice ε ≈ 10−1, the exponential factor is of the order 1040

and it is impossible to compensate this factor with small mesh- and time-step sizes
to obtain a useful error estimate. In practice even smaller values of ε are relevant.

To obtain an error estimate that does not depend exponentially on ε−1 and which
holds without assuming a maximum principle, refined arguments are necessary. The
following generalization of Gronwall’s lemma allows us to consider a superlinear
term.

Proposition 6.2 (Generalized Gronwall lemma) Suppose that the nonnegative func-
tions y1 ∈ C([0, T ]), y2, y3 ∈ L1([0, T ]), a ∈ L∞([0, T ]), and the real number
A ≥ 0 satisfy

y1(T
′) +

T ′∫

0

y2(t) dt ≤ A +
T ′∫

0

a(t)y1(t) dt +
T ′∫

0

y3(t) dt

for all T ′ ∈ [0, T ]. Assume that for B ≥ 0, β > 0, and every T ′ ∈ [0, T ], we have

T ′∫

0

y3(t) dt ≤ B
(

sup
t∈[0,T ′]

yβ
1 (t)

) T ′∫

0

(y1(t) + y2(t)) dt.

Set E = exp
( ∫ T

0 a(t) dt
)

and assume that 8AE ≤ (8B(1 + T )E)−1/β . We then
have
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sup
t∈[0,T ]

y1(t) +
T∫

0

y2(t) dt ≤ 8A exp
( T∫

0

a(s) ds
)
.

Proof We assume first that A > 0, set θ = 8AE , and define

Iθ = {
T ′ ∈ [0, T ] : Υ (T ′) = sup

t∈[0,T ′]
y1(t) +

T ′∫

0

y2(t) dt ≤ θ
}
.

Since y1(0) ≤ A < θ and since Υ is continuous and increasing, we have Iθ =
[0, TM ] for some 0 < TM ≤ T . For every T ′ ∈ [0, TM ] we have

y1(T
′) +

T ′∫

0

y2(t) dt ≤ A +
T ′∫

0

a(t)y1(t) dt + B sup
t∈[0,T ′]

yβ
1 (t)

T ′∫

0

(y1(t) + y2(t)) dt

≤ A +
T ′∫

0

a(t)y1(t) dt + B(1 + T )θ1+β.

An application of the classical Gronwall lemma, the condition on A, and the choice
of θ yield that for all T ′ ∈ [0, TM ], we have

y1(T
′) +

T ′∫

0

y2(t) dt ≤ (A + B(1 + T )θ1+β)E ≤ θ

4
.

This implies Υ (TM ) < θ , hence TM = T , and thus proves the lemma if A > 0. The
argument is illustrated in Fig. 6.2. If A = 0, then the above argument holds for every
θ > 0 and we deduce that y1(t) = y2(t) = 0 for all t ∈ [0, T ]. �

Remark 6.3 The differential equation underlying the generalized Gronwall lemma
has the structure y′ = y1+β . For β > 0, solutions become unbounded in finite time
depending on the initial data, e.g., for y′ = y2, we have y(t) = (tc − t)−1 with
tc = y−1

0 . Therefore, an assumption on A is unavoidable to obtain an estimate on the
entire interval [0, T ].

Fig. 6.2 Continuation
argument in the proof of the
generalized Gronwall lemma

T ′
0 TM T
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Two elementary properties of the function f are essential for an improved stability
result. These define a class of nonlinearities that can be treated with the same argu-
ments.

Lemma 6.1 (Controlled non-monotonicity) We have f ′(s) ≥ −1 and

(
f (s) − f (r)

)
(s − r) ≥ f ′(s)(s − r)2 − 3s(s − r)3

for all r, s ∈ R.

Proof The lemma follows from the identities f ′(s) = 3s2 − 1, f ′′(s) = 6s, and
f ′′′(s) = 6 together with a Taylor expansion of f . �

The controlled non-monotonicity of f avoids the use of a Lipschitz estimate.
To estimate the resulting term involving f ′, we employ the smallest eigenvalue of
the linearization of the mapping u �→ −�u + f (u(t)), i.e., of the linear operator
v �→ −�v + f ′(u(t))v.

Definition 6.1 For u ∈ L∞([0, T ]; H1(Ω)) let the principal eigenvalue λAC:
[0, T ] → R of the linearized Allen–Cahn operator for t ∈ [0, T ] be defined by

λAC(t) = − inf
v∈H1(Ω)\{0}

‖∇v‖2 + ε−2
(

f ′(u(t))v, v
)

‖v‖2 .

Remarks 6.4 (i) As in the theory of ordinary differential equations, the principal
eigenvalue contains information about the stability of the evolution.
(ii) If |u(t)| ≤ 1 in Ω , then we have −λAC(t) ≥ c2P − 1 − c f ε

−2 with the Poincaré
constant cP = supv∈H1(Ω)\{0} ‖v‖/‖v‖H1(Ω) and c f = sups∈[−1,1] | f ′(s)|. There-
fore, λAC(t) ≤ 1 + ε−2. The evolution is stable as long as λAC(t) ≤ c for an
ε-independent constant c > 0, and becomes unstable for λAC(t) � 1.
(iii) For the stable stationary states u(t) ≡ ±1, the choice of v ≡ 1 shows that we
have λAC(t) = −2ε−2 ≤ 0, while for the unstable stationary state u(t) ≡ 0 we have
λAC(t) = ε−2.
(iv) As long as the curvature of the interface Γt = {x ∈ Ω : u(t, x) = 0} is bounded
ε-independently, one can show that λAC(t) is bounded ε-independently, cf. [4].

The generalized Gronwall lemma, the controlled non-monotonicity, and the prin-
cipal eigenvalue λAC can be used for an improved stability analysis. We first use the
non-monotonicity in the equation for the difference δ = u − ũ tested by δ, i.e.,

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 = −ε−2( f (u) − f (̃u), u − ũ

) − 〈R̃, δ〉
≤ −ε−2( f ′(u)(u − ũ), u − ũ

)
+ 3ε−2‖u‖L∞(Ω)‖u − ũ‖3L3(Ω)

− 〈R̃, δ〉.
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The definition of λAC(t) implies that

−λAC‖δ‖2 ≤ ‖∇δ‖2 + ε−2( f ′(u)δ, δ
)

and the combination of the two estimates proves that

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 ≤ λAC‖δ‖2 + ‖∇δ‖2 + 3ε−2‖u‖L∞(Ω)‖δ‖3L3(Ω)

+ 〈R̃, δ〉.

By slightly refining the argument we may apply the generalized Gronwall lemma to
this equation. In the following theorem we employ the principal eigenvalue defined
by an approximate solution to the Allen–Cahn equation. This is in the spirit of
a posteriori error estimation to obtain a computable bound for the approximation
error. It follows the concept that all information about the problem is extracted from
the approximate solution.

Theorem 6.4 (Robust stability) Let 0 < ε ≤ 1 and u ∈ H1([0, T ]; H1(Ω)′) ∩
L2([0, T ]; H1(Ω)) be the weak solution of the Allen–Cahn equation. Given a func-
tion ũ ∈ H1([0, T ]; H1(Ω)′)∩ L2([0, T ]; H1(Ω)) define R̃ ∈ L2([0, T ]; H1(Ω)′)
through

〈R̃(t), v〉 = 〈∂t ũ, v〉 + (∇ũ,∇v) + ε−2( f (̃u), v)

for almost every t ∈ [0, T ] and all v ∈ H1(Ω). Suppose that η0, η1 ∈ L2([0, T ])
are such that for almost every t ∈ [0, T ] and all v ∈ H1(Ω), we have

〈R̃(t), v〉 ≤ η0(t)‖v‖ + η1(t)‖∇v‖.

Assume that λ̃AC ∈ L1([0, T ]) is a function such that for almost every t ∈ (0, T ),
we have

−̃λAC(t) ≤ inf
v∈H1(Ω)\{0}

‖∇v‖2 + ε−2( f ′(̃u(t))v, v)

‖v‖2 ,

and set μλ(t) = 2
(
2 + (1 − ε2)̃λAC(t)

)+
. Define

η2AC = ‖(u − ũ)(0)‖2 +
T∫

0

(η20 + ε−2η21) dt

and assume that

ηAC ≤ ε4
(
6cS‖ũ‖L∞([0,T ];L∞(Ω))(1 + T )

)−1
(
8 exp

( T∫

0

μλ(t) dt
))−3/2

,
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then

sup
s∈[0,T ]

‖u − ũ‖2 + ε2

T∫

0

‖∇(u − ũ)‖2 dt ≤ 8η2AC exp
( T∫

0

μλ(t) dt
)
.

Proof The difference δ = u − ũ satisfies

〈∂tδ, v〉 + (∇δ,∇v) = −ε−2( f (u) − f (̃u), v) − 〈R̃, v〉

for almost every t ∈ [0, T ] and all v ∈ H1(Ω). Choosing v = δ, using the assumed
bound for R̃, noting Lemma6.1, and using Young’s inequality we find

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 = −〈R̃, δ〉 − ε−2( f (u) − f (̃u), δ)

≤ η0‖δ‖ + η1‖∇δ‖ − ε−2( f ′(̃u)δ, δ) + 3ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)

≤ 1

4
η20 + ‖δ‖2 + ε−2

2
η21 + ε2

2
‖∇δ‖2 − (1 − ε2)ε−2( f ′(̃u)δ, δ)

− ( f ′(̃u)δ, δ) + 3ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)
.

The assumption on λ̃AC(t) shows that

−̃λAC(t)‖δ‖2 ≤ ‖∇δ‖2 + ε−2( f ′(̃u)δ, δ).

Multiplying this estimate by 1 − ε2 and using f ′(̃u) ≥ −1, we derive the bound

1

2

d

dt
‖δ‖2 + ‖∇δ‖2 ≤ 1

4
η20 + ‖δ‖2 + ε−2

2
η21 + ε2

2
‖∇δ‖2 + (1 − ε2)̃λAC‖δ‖2

+ (1 − ε2)‖∇δ‖2 + ‖δ‖2 + 3ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)

≤ 1

4
η20 + 1

2
ε−2η21 + (2 + (1 − ε2)̃λAC)‖δ‖2

+ (
1 − ε2

2

)‖∇δ‖2 + 3ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)
,

which leads to

d

dt
‖δ‖2 + ε2‖∇δ‖2 ≤ η20 + ε−2η21 + μλ‖δ‖2 + 6ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)

.

Hölder’s inequality and the Sobolev estimate ‖v‖2
L4(Ω)

≤ cS‖v‖2
H1(Ω)

for v ∈
H1(Ω) yield that
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‖δ‖3L3(Ω)
=

∫

Ω

|δ||δ|2 dx ≤ ‖δ‖‖δ‖2L4(Ω)
≤ cS‖δ‖(‖δ‖2 + ‖∇δ‖2). (6.1)

An integration of the last two estimates over [0, T ′] shows that we are in the situation
of Proposition6.2 with

y1(t) = ‖δ(t)‖2, y2(t) = ε2‖∇δ(t)‖2, y3(t) = 6ε−2‖ũ‖L∞(Ω)‖δ‖3L3(Ω)
,

and A = η2AC, B = 6ε−4‖ũ‖L∞([0,T ];L∞(Ω))cS , β = 1/2, and E = exp
( ∫ T

0 μλ dt
)
.

The proposition thus implies the assertion. �

Remarks 6.5 (i) The robust stability result can be proved for a class of nonlinearities
f satisfying the estimates of Lemma6.1.
(ii) If the exponential factor is bounded by a polynomial in ε−1, then we have
improved the stability result of Theorem6.3. We discuss this question below.

6.1.3 Mean Curvature Flow

The Allen–Cahn equation is closely related to the mean curvature flow that seeks for
a given hypersurface M0 ⊂ R

d , a family of hypersurfaces (Mt )t∈[0,T ] such that

V = −d − 1

2
H on Mt

for every t ∈ [0, T ]. Here, V is the normal velocity of points on the surface and H
is the mean curvature. For a family of spheres

(
(∂ BR(t)(0)

)
t∈[0,T ] centered at 0 with

positive radii R : [0, T ] → R, we have

V (t) = R′(t), H(t) = 1

(d − 1)R(t)
.

The family of spheres thus solves the mean curvature flow if

R′ = − 1

2R
,

i.e., if R(t) = (Tc − t)1/2, where Tc = R(0)2. This equation has a blowup structure
and the solution only exists in the interval [0, Tc), cf. Fig. 6.3. To understand the
stability of the evolution, we linearize the right-hand side operator ψ(R) = 1/(2R)

of the differential equation at the solution R(t) and obtain

−λMCF(t) = −1

2R(t)2
= −1

2(Tc − t)
.
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R(t)
R(0)

t

Tc

Fig. 6.3 A family of spheres that solve the mean curvature flow within [0, Tc); at t = Tc the
surfaces collapse

We thus see that λMCF is unbounded at t = Tc when the surfaces collapse. This
reflects the occurrence of large unbounded normal velocities. Nevertheless, for every
T ′ < Tc, we have

T ′∫

0

λMCF(t) dt = −1

2

(
log(Tc − T ′) − log Tc

)
.

Assuming that λMCF ≈ λAC, we will deduce below heuristically that the expo-
nential dependence of the stability estimate in Theorem6.4 is moderate. To under-
stand the relation between the Allen–Cahn equation and the mean curvature flow let
(Mt )t∈[0,T ] be a family of surfaces that solve themean curvature flow.Weassume that
for every t ∈ [0, T ], we have Mt = ∂Ωt for a simply connected domain Ωt ⊂ R

d

and let dM (t, ·) be the signed distance function to Mt that is negative inside Ωt .
Given a trajectory φ : [0, T ] → R

d of a point x0 = φ(0) ∈ M0, i.e., we have
φ(t) ∈ Mt for all t ∈ [0, T ], its normal velocity given by

V (t, φ(t)) = n(t, φ(t)) · φ′(t).

Since dM (t, φ(t)) = 0 for all t ∈ [0, T ] it follows with n(t, x) = ∇dM (t, x) for
every x ∈ Mt that

0 = ∂t dM (t, φ(t)) + ∇dM (t, φ(t)) · φ′(t),

i.e., V (t, x) = −∂t dM (t, x) for every x ∈ Mt . Noting that D2dM = D(∇dM )

is the shape operator it follows that for the mean curvature we have (d − 1)H =
tr(D2dM ) = �dM . With V = −H we deduce that ∂t dM − �dM = 0 on Mt .
The function ψ(z) = tanh(z/

√
2) satisfies −ψ ′′(z)+ f (ψ(z)) = 0, and this implies

that for

v(t, x) = ψ
(dM (t, x)

ε

)
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we have

vt − �v + ε−2 f (v) = ε−1(∂t dM − �dM
)
ψ ′(dM /ε

) − ε−2(ψ ′′(dM /ε
)

+ f
(
ψ

(
dM /ε

)))
= ε−1(∂t dM − �dM

)
ψ ′(dM /ε

)
.

Since ∂t dM − �dM = 0 onMt , we deduce that if dM is sufficiently smooth, then
the function g = ∂t dM − �dM grows linearly in a neighborhood of Mt , i.e., we
have |∂t dM − �dM | ≤ c|dM |. Noting that the function ψ satisfies |zψ ′(z)| ≤ c,
we find that

∣∣ε−1(∂t dM − �dM )ψ ′(dM /ε
)∣∣ ≤ c

∣∣(dM /ε
)
ψ ′(dM /ε

)∣∣ ≤ c.

Therefore, the function v(t, x) = ψ(dM (t, x)/ε) solves the dominant terms of the
Allen–Cahn equation ∂t u −�u = −ε−2 f (u) and serves as an approximation of the
solution in a neighborhood of width ε of the interface Γt . The profile is illustrated in
Fig. 6.4. More details can be found in [5].

6.1.4 Topological Changes

Themean curvature flow provides a good approximation of the Allen–Cahn equation
in the sense that v(x, t) = ψ(dist(x,Mt )/ε) nearly solves the Allen–Cahn equation;
the family Γt = {x ∈ Ω : u(x, t) = 0} is a good approximation of a solution for the
mean curvature flow. These approximations are valid as long as the interfacesMt or
Γt do not undergo topological changes, i.e., as long asMt orΓt does neither split nor
have parts of it disappear. This is closely related to the stability of the solution that
is measured by the principal eigenvalue λAC(t). It can be shown and it follows from
the discussion of the mean curvature flow above, that λAC is bounded from above
independently of ε as long as the interface Γt is smooth and has bounded curvature.
When an interface collapses, large, unbounded velocities occur and the eigenvalue

+1

−1−1

t

u ≈ +1

u ≈− 1

−

Fig. 6.4 A typical configuration of a solution of the Allen–Cahn equation (left) and a solution
restricted to a line in the domain (middle) together with a magnification of the interface (right)
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λAC attains the upper bound λAC ∼ ε−2. This however only occurs on a time-interval
of length comparable to ε2, the characteristic time scale for the Allen–Cahn equation.
Due to this fact, we have for the temporal integral of the principal eigenvalue that
occurs in the stability analysis

T∫

0

λAC(t) dt ∼ 1 + (# topological changes) log(ε−1).

The logarithmic contribution results from the transition regions in which λAC grows
like (Tc − t)−1 for a topological change at t = Tc. Integrating this quantity up to the
time Tc − ε2, where λAC has nearly reached its maximum, reveals that

Tc−ε2∫

Tc−1

λAC(t) dt ∼ 1

2

Tc−ε2∫

Tc−1

(Tc − t)−1 dt ∼ log(ε−1).

The logarithmic growth in ε−1 of the integrated eigenvalue is precisely what is
affordable in the estimate of Theorem6.4 to avoid an exponential dependence on ε−1

and instead obtain an algebraic dependence. A typical behavior of the eigenvalue is
depicted in Fig. 6.5.

6.1.5 Mass Conservation

The Allen–Cahn equation describes phase transition processes in which the volume
fractions of the phases may change and the only stationary configurations represent

t

AC(t)

2 2

−2

1

Fig. 6.5 Two topological changes in an evolution defined by the Allen–Cahn equation; the topo-
logical changes are accompanied by extreme principal eigenvalues; the eigenvalue increases like
(Tc − t)−1 before a topological change occurs at Tc
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single phases. This corresponds, e.g., to melting processes. In order to model phase
separation processes in which the volume fractions are preserved, a constraint has
to be incorporated or a fourth order evolution has to be considered. The latter is the
H−1-gradient flow of the energy Iε, where H−1(Ω) = X ′

0 is the dual of the space
X0 = {v ∈ H1(Ω) : ∫

Ω
v dx = 0}, i.e.,

(∂t u, v)−1 = −(∇u,∇v) − ε−2( f (u), v).

Here, the inner product (v, w)−1 is for v, w ∈ H−1(Ω) defined by

(v, w)−1 =
∫

Ω

∇(−�−1v) · ∇(−�−1w) dx,

where −�−1v and �−1w ∈ X0 are the unique solutions of the Poisson problem

−�u = f in Ω, ∂nu|∂Ω = 0

with vanishing mean for the right-hand sides f = v and f = w, respectively. In the
strong form the gradient flow reads

∂t u = −�φ, φ = �u − ε−2 f (u),

together with homogeneous Neumann boundary conditions on ∂Ω for u and φ and
initial conditions for u. The variable φ is the chemical potential and the system is
called the Cahn–Hilliard equation which can be analyzed with the techniques dis-
cussed above. Mass conservation is a consequence of the fact that ∂t u has vanishing
integral mean. Solutions do not obey a maximum principle but satisfy certain
L∞-bounds.

6.2 Error Analysis

In this section we discuss error estimates for numerical approximations of the Allen–
Cahn equation obtained with the implicit Euler scheme. The stability result of Theo-
rem6.4 is already formulated in the spirit of an a posteriori error analysis. We discuss
results from [3, 8, 9].

6.2.1 Residual Estimate

We include an estimate for the residual of an approximation obtainedwith the implicit
Euler scheme. The result can be modified to control the error of other approximation
schemes.
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Proposition 6.3 (Residual bounds) Let 0 = t0 < t1 < · · · < tK ≤ T and τk =
tk − tk−1, k = 1, 2, . . . , K , and (Tk)k=0,...,K a sequence of regular triangulations of
Ω . Suppose that (uk

h)k=0,...,K ⊂ H1(Ω), for k = 1, 2, . . . , K and all vh ∈ S 1(Tk),
satisfies

τ−1
k (uk

h − Ikuk−1
h , vh) + (∇uk

h,∇vh) = −ε−2( f (uk
h), vh),

where Ik denotes the nodal interpolation operator related to S 1(Tk). Let uh,τ ∈
H1([0, T ]; H1(Ω)) be the piecewise linear interpolation in time of (uk

h)k=0,...,K and
define R ∈ L2(I ; H1(Ω)′) for t ∈ [0, T ] and v ∈ H1(Ω) by

〈R(t), v〉 = (∂t uh,τ , v) + (∇uh,τ ,∇v) + ε−2( f (uh,τ ), v).

For almost every t ∈ [tk−1, tk] and all v ∈ H1(Ω) we have

〈R(t), v〉 ≤ (ηk
time′ + ηk

coarse)‖v‖ + (CC�η
k
space + ηk

time)‖∇v‖,

where ρk = ‖uk
h‖L∞(Ω) + ‖uk−1

h ‖L∞(Ω),

ηk
space =

( ∑
T ∈T k

h

h2
T ‖τ−1

k (uk
h − Ikuk−1

h ) − �Tk uk
h + ε−2 f (uk

h)‖2L2(T )

)1/2

+
( ∑

S∈S k
h ∩Ω

hS‖�∇uk
h · nS�‖2L2(S)

)1/2 +
( ∑

S∈S k
h ∩∂Ω

hS‖∇uk
h · n‖2L2(S)

)1/2
,

and

ηk
time′ = ε−2‖ f ′‖L∞(Bρk )‖uk−1

h − uk
h‖,

ηk
time = ‖∇(uk−1

h − uk
h)‖,

ηk
coarse = τ−1

k ‖Ikuk−1
h − uk−1

h ‖.

Proof For almost every t ∈ (tk−1, tk), k = 1, 2, . . . , K , and all v ∈ H1(Ω), we have
by definition of R that

〈R(t), v〉 = τ−1
k (uk

h − uk−1
h , v) + (∇uh,τ (t),∇v) + ε−2( f (uh,τ (t)), v)

= τ−1
k (uk

h − Ikuk−1
h , v) + (∇uk

h,∇v) + ε−2( f (uk
h), v)

+ (∇(uh,τ (t) − uk
h),∇v) + ε−2( f (uh,τ (t)) − f (uk

h), v)

+ τ−1
k (Ikuk−1

h − uk−1
h , v)

= I + II + · · · + VI.

Since the sum of the first three terms vanishes for all v ∈ S 1(Tk), we may insert
the Clément interpolantJkv ∈ S 1(Tk) of v. An element-wise integration by parts
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and estimates for the Clément interpolant lead to

I + II + III = 〈rk
h , v − Jkv〉 ≤ CC�η

k
space‖∇v‖.

A repeated application of Hölder’s inequality, the identity

f (uh,τ (t)) − f (uk
h) =

( 1∫

0

f ′(ruh,τ (t) + (1 − r)uk
h) dr

)
(uh,τ (t) − uk

h),

and the linearity of uh,τ in t lead to

IV + V ≤ ‖∇(uh,τ (t) − uk
h)‖‖∇v‖ + ε−2‖ f ′‖L∞(Bρk )‖uh,τ (t) − uk

h‖‖v‖
≤ ηk

time′ ‖v‖ + ηk
time‖∇v‖.

A further application of Hölder’s inequality proves

V I ≤ τ−1
k ‖Ikuk−1

h − uk−1
h ‖‖v‖ = ηk

coarse‖v‖.

A combination of the estimates leads to the asserted bound. �
In combination with Theorem6.4 we obtain the following a posteriori error

estimate. It bounds the approximation error in terms of computable quantities
provided that the error estimator is sufficiently small and depends exponentially
only on the temporal average of the principal eigenvalue defined by the numerical
approximation.

Theorem 6.5 (A posteriori error estimate) Assume that we are in the setting of
Proposition6.3 and suppose that λh

AC ∈ L1([0, T ]) is a function, such that for almost
every t ∈ (0, T ), we have

−λh
AC(t) ≤ inf

v∈H1(Ω)\{0}
‖∇v‖2 + ε−2( f ′(uh,τ (t))v, v)

‖v‖2 ,

and set μλ(t) = 2(2 + (1 − ε2)λh
AC(t))+. Define η�(t) = ηk

� for t ∈ (tk−1, tk),
k = 1, 2, . . . , K , and � ∈ {time′, time, space, coarse} and let

η2AC = ‖(u − u0
h)(0)‖2 +

T∫

0

(η2time′ + η2coarse + ε−2η2time + ε−2η2space) dt.

If

ηAC ≤ ε4
(
6cS‖uh,τ‖L∞([0,T ];L∞(Ω))(1 + T )

)−1
(
8 exp

( T∫

0

μλ(t) dt
))−3/2

,
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then we have

sup
s∈[0,T ]

‖u − uh,τ‖2 + ε2

T∫

0

‖∇(u − uh,τ )‖2 dt ≤ 8η2 exp
( T∫

0

μλ(t) dt
)
.

Proof The theorem is an immediate consequence of Proposition6.3 and Theo-
rem6.4. �

6.2.2 A Priori Error Analysis

To derive a robust a priori error estimate for a semidiscrete in time approximation
scheme, we try to follow the arguments used in the stability analysis of Theorem6.3
with exchanged roles of the exact solution and its numerical approximation. As
above we avoid the use of a Lipschitz estimate for the nonlinearity, and instead
employ a linearization. The non-monotonicity of the resulting equation is controlled
by a cubic term. The linearization allows us to incorporate the principal eigenvalue
that is assumed to be well-behaved in the sense that a discrete integral grows only
logarithmically in ε−1.

Proposition 6.4 (Discrete stability) Given τ > 0 let (U k)k=0,...,K ⊂ H1(Ω) be
such that

(dtU
k, v) + (∇U k,∇v) = −ε−2( f (U k), v)

for k = 1, 2, . . . , K and all v ∈ H1(Ω). We then have

Iε(u
L) + (2 − 2τε−2)

τ

2

K∑
k=1

‖dtU
k‖2 ≤ Iε(u

0)

for every 1 ≤ L ≤ K . Moreover, if ‖U 0‖L∞(Ω) ≤ 1, then ‖U k‖L∞(Ω) ≤ 1 for
k = 1, 2, . . . , K .

Proof The mean value theorem shows that for every x ∈ Ω there exists a number
ξx such that

f (U k)dtU
k = dt F(U k) + τ

2
f ′(ξx )(dtU

k)2.

Using that f ′(ξx ) ≥ −1 and choosing v = dtU k , we deduce that

‖dtU
k‖2 + dt

2
‖∇U k‖2 + τ

2
‖∇dtU

k‖2 + dtε
−2

∫

Ω

F(U k) dx − τε−2

2
‖dtU

k‖2 ≤ 0.
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Multiplication by τ and summation over k = 1, 2, . . . , L imply the assertion. A
truncation argument and the characterization of U k as the minimum of a functional
I k
ε show that ‖U k‖L∞(Ω) ≤ 1 provided that U 0 has this property. �

Proposition 6.5 (Consistency) Assume that the weak solution of the Allen–Cahn
equation satisfies u ∈ C([0, T ]; H1(Ω)) and u ∈ H2([0, T ]; H1(Ω)′) with

T∫

0

‖utt‖2H1(Ω)′ dt ≤ cε−2σ .

For uk = u(tk), k = 0, 1, . . . , K , we have

(dt u
k, v) + (∇uk,∇v) = −ε−2( f (uk), v) + Cτ (tk; v)

for all v ∈ H1(Ω) with consistency functionals Cτ (tk) satisfying

τ

K∑
k=1

‖Cτ (tk)‖2H1(Ω)′ ≤ cτ 2ε−2σ .

We have σ = 2 if I (u0) ≤ c.

Proof Noting that

(dt u
k, v) + (∇uk,∇v) + ε−2( f (uk), v) = (dt u

k − ∂t u(tk), v) = Cτ (tk; v)

for all v ∈ H1(Ω), arguing as in the case of the linear heat equation, and incorporating
Theorem6.2 proves the asserted bound. �

The following lemma is a generalization of the classical discrete Gronwall lemma
which states that if

yL ′ ≤ A + τ

L ′∑
k=1

ak yk

for 0 ≤ L ′ ≤ L and if τak ≤ 1/2 for k = 1, 2, . . . , L , then we have

sup
k=0,...,L

yk ≤ 2A exp
(
2τ

L∑
k=1

ak

)
.

The condition akτ ≤ 1/2 is required to absorb the term aL ′ yL ′
.

Lemma 6.2 (Generalized discrete Gronwall lemma) Let τ > 0 and suppose that
the nonnegative real sequences (yk

� )k=0,...,K , � = 1, 2, 3, (ak)k=0,...,K , and the real
number A ≥ 0 satisfy
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yL
1 + τ

L∑
k=1

yk
2 ≤ A + τ

L∑
k=1

ak yk
1 + τ

L−1∑
k=1

yk
3

for all L = 0, 1, . . . , K , supk=1,...,K τak ≤ 1/2, and K τ ≤ T . Assume that for
B ≥ 0, β > 0, and every L = 1, 2, . . . , K , we have

τ

L−1∑
k=1

yk
3 ≤ B

(
sup

k=1,...,L−1
(yk

1 )
β
)
τ

L−1∑
k=1

(yk
1 + yk

2 ).

Set E = exp
(
2τ

∑K
k=1 ak

)
and assume that 8AE ≤ (8B(1 + T )E)−1/β . Then

sup
k=0,...,K

yk
1 + τ

K∑
k=1

yk
2 ≤ 8A exp

(
2τ

K∑
k=1

ak

)
.

Proof Set θ = 8AE . We proceed by induction and suppose that

sup
k=0,...,L−1

yk
1 + τ

L−1∑
k=1

yk
2 ≤ θ.

This is satisfied for L = 1. For every L ′ = 1, 2, . . . , L , we then have due to the
assumptions of the lemma that

yL ′
1 + τ

L ′∑
k=1

yk
2 ≤ A + τ

L ′∑
k=1

ak yk
1 + B

(
sup

k=1,2,...,L ′−1
(yk

1 )
β
)
τ

L ′−1∑
k=1

(yk
1 + yk

2 )

≤ A + τ

L ′∑
k=1

ak yk
1 + B(1 + T )θ1+β.

The classical discrete Gronwall lemma, the condition on A, and the estimate θβ ≤
(8B(1 + T )E)−1 prove that for all L ′ = 1, 2, . . . , L , we have

yL ′
1 + τε2

L ′∑
k=1

yk
2 ≤ 2(A + B(1 + T )θ1+β)E ≤ θ

2
.

This completes the inductive argument and proves the lemma. �

The a priori bounds and the generalized discreteGronwall lemma lead to a robust a
priori error estimate under an assumption on the principal eigenvalue that ismotivated
by analytical considerations.
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Theorem 6.6 (A priori error estimate) Assume ε ≤ 1, Iε(u0) ≤ c0, and that there
are c1 > 0, κ ≥ 0 with

τ

K∑
k=1

λ+
AC(tk) ≤ c1 + log ε−κ .

Then there exists a constant c2 > 0 such that if τ ≤ c2ε7+6κ , we have

sup
k=1,...,K

‖u(tk) − U k‖2 + τε2
K∑

k=1

‖∇(u(tk) − U k)‖2 ≤ cτ 2ε−6−4κ .

Proof Denoting uk = u(tk) the error ek = uk − U k satisfies the identity

(dt e
k, v) + (∇ek,∇v) = −ε−2( f (uk) − f (U k), v) + Cτ (tk, v)

for all v ∈ H1(Ω). Lemma6.1, the definition of λAC(tk), and ‖uk‖L∞(Ω) ≤ 1 imply
that

−ε−2( f (uk) − f (U k), ek) ≤ −ε−2( f ′(uk)ek, ek) + 3ε−2‖uk‖L∞(Ω)‖ek‖3L3(Ω)

= −(1 − ε2)ε−2( f ′(uk)ek, ek) − ( f ′(uk)ek, ek)

+ 3ε−2‖ek‖3L3(Ω)

≤ (1 − ε2)λAC(tk)‖ek‖2 + (1 − ε)‖∇ek‖2
+ ‖ek‖2 + 3ε−2‖ek‖3L3(Ω)

.

Hence, for the choice of v = ek , we find that

1

2
dt‖ek‖2 + τ

2
‖dt e

k‖2 + ‖∇ek‖2 = Cτ (tk, ek) − ε−2( f (uk) − f (U k), ek)

≤ ε−2

2
‖Cτ (tk)‖2H1(Ω)′ + ε2

2
‖ek‖2 + ε2

2
‖∇ek‖2

+ (1 − ε2)λAC(tk)‖ek‖2 + (1 − ε2)‖∇ek‖2
+ ‖ek‖2 + 3ε−2‖ek‖3L3(Ω)

.

Using (a + b)3 ≤ 4(a3 + b3) and τ‖dt ek‖L∞(Ω) ≤ 4 we find that

‖ek‖3L3(Ω)
≤ 4

(‖ek−1‖3L3(Ω)
+ τ 3‖dt e

k‖3L3(Ω)

) ≤ 4‖ek−1‖3L3(Ω)
+ 16τ 2‖dt e

k‖2.

If τ is sufficiently small so that 48τε−2 ≤ 1/2, then the combination of the last two
estimates implies

dt‖ek‖2+ε2‖∇ek‖2 ≤ ε−2‖Cτ (tk)‖2H1(Ω)′ +μk
λ‖ek‖2+48ε−2‖ek−1‖3L3(Ω)

, (6.2)
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where μk
λ = 2(2 + λ+

AC(tk)). We set

yk
1 = ‖ek‖2, yk

2 = ε2‖∇ek‖2, yk
3 = 48ε−2‖ek‖3L3(Ω)

.

Noting that e0 = 0 and

‖ek−1‖3L3(Ω)
≤ ‖ek−1‖‖ek−1‖2L4(Ω)

≤ cS‖ek−1‖(‖ek−1‖2 + ‖∇ek−1‖2), (6.3)

we find by summation of (6.2) and (6.3) over k = 1, 2, . . . , L that we are in the
situation of Lemma6.2 with

A = ε−2τ

K∑
k=1

‖Cτ (tk)‖2H1(Ω)′ , E = exp
(
2τ

K∑
k=1

μk
λ

)
, B = 48ε−4cS,

and β = 1/2. Therefore,

sup
k=0,...,K

‖ek‖2 + ε2τ

K∑
k=1

‖∇ek‖2 ≤ 8AE,

provided that 8AE ≤ (8B(1+ T )E)−2. Since according to Proposition6.5 we have
A ≤ cτ 2ε−6, this is satisfied if cBτ 2ε−6E ≤ (8B(1 + T )E)−2. With the assumed
bound for the discrete integral of λ+

AC, we deduce that

E ≤ exp(8T ) exp
(
4τ

K∑
k=1

λ+
AC (tk)

)
≤ cEε−4κ .

Therefore, the condition τ 2 ≤ cε14ε12κ implies the assertion. �

Remarks 6.6 (i) If utt ∈ L2([0, T ]; L2(Ω)), then the bound for A in the proof can
be improved and the conditions of the theorem can be weakened.
(ii) An a priori error analysis for a fully discrete approximation follows the same
strategy by decomposing the error u(tk)−uk

h as (u(tk)− Qhu(tk))+ (Qhu(tk)−uk
h)

with the H1-projection Qh , cf. [8].

6.3 Practical Realization

We discuss in this section alternatives to the implicit Euler scheme and include an
estimate for the approximation of the principal eigenvalue that is needed to compute
the a posteriori error bound.
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6.3.1 Time-Stepping Schemes

The implicit Euler scheme requires the solution of a nonlinear system of equations
in every time step and is stable under the condition τ ≤ 2ε2. We consider various
semi-implicit approximation schemes defined by approximating the nonlinear term
avoiding some of these limitations.

Algorithm 6.1 (Semi-implicit approximation) Given u0
h ∈ S 1(Th), τ > 0, and a

continuous function G : R × R → R let the sequence (uk
h)k=0,...,K be defined by

(dt u
k
h, vh) + (∇uk

h,∇vh) + ε−2(G(uk
h, uk−1

h ), vh
) = 0

for all vh ∈ S 1(Th).

The function G is assumed to provide a consistent approximation of the nonlinear
function f in the sense that G(s, s) = f (s).

Examples 6.1 (i) The (fully) implicit Euler scheme corresponds to

G impl(uk, uk−1) = f (uk).

(ii) The choice of
Gexpl(uk, uk−1) = f (uk−1)

realizes an explicit treatment of the nonlinearity.
(iii) Carrying out one iteration of a Newton scheme in every time step of the implicit
Euler scheme with initial guess uk−1

h corresponds to the linearization

G lin(uk, uk−1) = f (uk−1) + f ′(uk−1)(uk − uk−1).

(iv) A Crank–Nicolson type treatment of the nonlinear term is

Gcn(uk, uk−1) =
⎧⎨
⎩

F(uk) − F(uk−1)

uk − uk−1 if uk �= uk−1,

f (uk) if uk = uk−1.

We have Gcn(uk, uk−1) = (1/4)(uk + uk−1)((uk)2 + (uk−1)2 − 2).
(v) The decomposition F = Fcx + Fcv of F(uk−1) = ((uk)2 − 1)2/4 into a convex
part Fcx (uk−1) = ((uk)4 + 1)/4 and a concave part Fcv(uk−1) = −(1/2)(uk−1)2

leads with the derivatives f cx and f cv of Fcx and Fcv, respectively, to the definition

Gcxcv(uk, uk−1) = f cx (uk) + f cv(uk−1).
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Remarks 6.7 (i)Only the explicit and linearized treatment of the nonlinear term leads
to linear systems of equations in every time step. The convex-concave decomposition
leads to monotone systems of equations.
(ii) The best compromise for stability and linearity appears to be the linearized
treatment of the nonlinear term.
(iii) The decomposition of F into convex and concave parts corresponds to the general
concept to treat monotone terms implicitly and anti-monotone terms explicitly.
(iv) Numerical integration simplifies the nonlinearities, i.e., for all z, y ∈ Nh , we
have (

G(uk
h, uk−1

h )ϕz, ϕy
)

h = G(uk
h(z), uk−1

h (z))βzδzy

with βz = ∫
Ω

ϕz , so that the corresponding contribution to the systemmatrix is given
by a diagonal matrix.
(v) The numerical schemes have different numerical dissipation properties.

The stability of the different semi-implicit Euler schemes is a consequence of
the following proposition. We omit a discussion of the explicit treatment of the
nonlinearity since this is experimentally found to be unstable even for τ ∼ ε2.

Proposition 6.6 (Semi-implicit Euler schemes) Given uk, uk−1 ∈ R and τ > 0, we
set dt uk = (uk − uk−1)/τ . We have

G impl(uk, uk−1)dt u
k ≥ dt F(uk) − τ

2
|dt u

k |2,
Gcn(uk, uk−1)dt u

k = dt F(uk),

Gcxcv(uk, uk−1)dt u
k ≥ dt F(uk),

and if |uk |, |uk−1| ≤ 1, then

G lin(uk, uk−1)dt u
k ≥ dt F(uk) − 7τ

2
|dt u

k |2.

In particular, the implicit Euler scheme is stable if τ ≤ 2ε2, the semi-implicit Euler
scheme with Crank–Nicolson type treatment of the nonlinear term is unconditionally
stable, the semi-implicit Euler scheme with decomposed treatment of the nonlinearity
is unconditionally stable, and the semi-implicit Euler scheme with a linearized
treatment of the nonlinear term is stable if a discrete maximum principle holds and
τ ≤ (2/7)ε2, i.e., under these conditions we have for the solutions of the respective
semi-implicit Euler schemes that

Iε(u
L
h ) ≤ Iε(u

0
h)

for all L ≥ 0.
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Proof A Taylor expansion shows that for some ξ ∈ R, we have

F(uk−1) = F(uk) + f (uk)(uk−1 − uk) + 1

2
f ′(ξ)(uk−1 − uk)2.

Since f ′(ξ) ≥ −1 we deduce after division by τ that

f (uk)dt u
k = dt F(uk) + τ

2
f ′(ξ)(dt u

k)2 ≥ dt F(uk) − τ

2
|dt u

k |2

and this implies the bound for G impl. Assuming that |uk |, |uk−1| ≤ 1, a similar
argument with f ′′(s) = 6s shows with some ζ ∈ [−1, 1] that
(

f (uk−1) + f ′(uk−1)(uk − uk−1)
)
(uk − uk−1)

= f (uk)(uk − uk−1) − 1

2
f ′′(ζ )(uk − uk−1)3 ≥ f (uk)(uk − uk−1) − 6(uk − uk−1)2

and with the previous estimate we deduce that

G lin(uk, uk−1)dt u
k ≥ dt F(uk) − 7τ

2
|dt u

k |2.

If dt uk �= 0, then

Gcn(uk, uk−1)(uk − uk−1) = F(uk) − F(uk−1) = τdt F(uk),

and if dt uk = 0, then Gcn(uk, uk−1)dt uk = 0 = τdt F(uk) which implies the
asserted identity for Gcn. For the convex function Fcx and its derivative f cx , we
have

f cx (uk)(uk−1 − uk) + Fcx (uk) ≤ Fcx (uk−1).

Analogously, for the convex function −Fcv and its derivative − f cv, we have

− f cv(uk−1)(uk − uk−1) − Fcv(uk−1) ≤ −Fcv(uk).

The combination of the two estimates proves that

Gcxcv(uk, uk−1)dt u
k = f cx (uk)dt u

k + f cv(uk−1)dt u
k ≥ dt Fcx (uk) + dt Fcv(uk).

The stability of the related schemes now follows from the choice of vh = dt uk
h in the

semi-implicit Euler scheme, i.e.,

‖dt u
k
h‖2 + dt

2
‖∇uk

h‖2 + τ

2
‖∇dt u

k
h‖2 + ε−2(G(uk

h, uk−1
h ), dt u

k
h

) = 0,
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togetherwith a summation over k = 1, 2, . . . , L , and the corresponding lower bounds
for G(uk

h, uk−1
h ). �

6.3.2 Computation of the Eigenvalue

The a posteriori error estimate of Theorem6.5 requires a lower bound for the principal
eigenvalue of the linearized Allen–Cahn operator with respect to the approximate
solution, i.e., a function λh

AC such that

−λh
AC(t) ≤ inf

v∈H1(Ω)\{0}
‖∇v‖2 + ε−2( f ′(uh,τ (t))v, v)

‖v‖2 .

To approximate the infimum on the right-hand side, we replace the space H1(Ω) by
S 1(Th). We fix a time t in the following and let −Λ ∈ R be the infimum at time t ,
i.e., there exists w ∈ H1(Ω) with ‖w‖ = 1 and

−Λ(w, v) = (∇w,∇v) + ε−2(phw, v)

for all v ∈ H1(Ω) and with ph = f ′(uh,τ (t)).

Proposition 6.7 (Eigenvalue approximation) Let (Λh, wh) ∈ R×S 1(Th) be such
that

−Λh(wh, vh) = (∇wh,∇vh) + ε−2(phwh, vh)

for all vh ∈ S 1(Th). Assume that the Laplace operator with homogeneous Neumann
boundary conditions is H2-regular in Ω in the sense that ‖D2v‖ ≤ c�‖�v‖ for all
v ∈ H2(Ω) with ∂nv = 0 on ∂Ω and suppose that ‖ph‖L∞(Ω) ≤ c0. Then there
exists c1 > 0 such that if h ≤ c1ε, we have

0 ≤ Λ − Λh ≤ cε−4h2.

Proof In the following we occasionally replace the function ph by qh = ph +
‖ph‖L∞(Ω) which corresponds to a shift of −Λ and −Λh by ‖ph‖L∞(Ω) but allows
us to use qh ≥ 0. The fact that S 1(Th) ⊂ H1(Ω) implies that we have −Λ ≤
−Λh . Since wh is minimal for vh �→ ‖∇vh‖2 + ε−2(phvh, vh) among functions
vh ∈ S 1(Th) with ‖vh‖ = 1 with minimum −Λh and since −Λ = ‖∇w‖2 +
ε−2(phw, w), we have

0 ≤ Λ − Λh ≤ −(∇w,∇w) − ε−2(qhw, w) + ‖∇vh‖2 + ε−2(qhvh, vh)

≤ 2(∇vh,∇[vh − w]) + 2ε−2(qhvh, vh − w).
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We note −Λ ≤ ε−2‖ph‖L∞(Ω) and conclude with −�w = −Λw − ε−2 phw that

‖∇w‖ ≤ cε−1, ‖D2w‖ ≤ c‖�w‖ ≤ cε−2.

We incorporate the H1-projection Qhw ∈ S 1(Th) defined by

(∇Qhw,∇ yh) + (Qhw, yh) = (∇w,∇ yh) + (w, yh)

for all yh ∈ S 1(Th) which satisfies the estimates

h‖w − Qhw‖ + ‖∇(w − Qhw)‖ ≤ ch2‖D2w‖.

We suppose that h ≤ cε is such that

∣∣1 − ‖Qhw‖∣∣ ≤ ‖w − Qhw‖ ≤ ch2ε−2 ≤ 1

2
.

Choosing vh = Qhw/‖Qhw‖ and noting

‖∇Qhw‖ + ‖Qhw‖ ≤ ‖∇w‖ + ‖w‖ ≤ cε−1

we find that

(∇vh,∇[vh − w]) = ‖Qhw‖−2((∇Qhw,∇[Qhw − w]) + (∇Qhw,∇[w − ‖Qhw‖w]))
= ‖Qhw‖−2((Qhw, Qhw − w) + (1 − ‖Qhw‖)(∇Qhw,∇w)

)
≤ ch2ε−2(1 + ε−2).

Analogously, we have

(qhvh, vh − w) = ‖Qhw‖−2((Qhw, Qhw − w) + (Qhw, w − ‖Qhw‖w)
)

= ‖Qhw‖−2((Qhw, Qhw − w) + (1 − ‖Qhw‖)(Qhw, w)
)

≤ ch2ε−2.

A combination of the estimates implies the asserted error bound. �

The discrete eigenvalue problem can be recast as the problem of finding a vector
W ∈ R

L with W

⊥

mW = 1 and

(−Λ + cshift)mW = (s + ε−2m p + cshiftm)W = Y W

with the mass matrix m, the stiffness matrix s, the weighted mass matrix m p, and an
arbitrary constant cshift . For cshift = ε−2‖ph‖L∞(Ω) + 1, we have that the symmetric
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matrices m and Y = s + ε−2m p + cshiftm are positive definite, and we may use the
following vector iteration with Rayleigh-quotient approximation to approximate Λ.

Algorithm 6.2 (Vector iteration) Given W0 ∈ R
L such that W

⊥

0 mW0 = 1, compute
the sequence Λ j , j = 0, 1, 2, . . . via Λ0 = (W 0)

⊥

Y W 0 and

W̃ j+1 = Y −1(mW j ), W j+1 = W̃ j+1

(
(W̃ j+1)

⊥

mW̃ j+1
)1/2

and
−Λ j+1 + cshift = (W j+1)

⊥

Y W j+1.

Stop the iteration if |Λ j+1 − Λ j | ≤ εstop.

Remark 6.8 The iteration converges to the smallest eigenvalue provided that the
initial vector W0 is not orthogonal to the corresponding eigenspace.

6.3.3 Implementation

The Matlab code shown in Fig. 6.6 realizes the semi-implicit Euler scheme with
linearized treatment of the nonlinear term and computes the principal eigenvalue
defined by the approximate solution in every time step. We used the discrete inner
product (·, ·)h to simplify the computation of some matrices, i.e., we use the formu-
lations

(dt u
k
h, vh) + (∇uk

h,∇vh) + ε−2( f ′(uk−1
h )uk

h, vh)h

= −ε−2( f (uk−1
h ), vh)h + ε−2( f ′(uk−1

h )uk−1
h , vh)h

and
−λh

AC(tk)(wh, vh) = (∇wh,∇vh) + ε−2( f ′(uk
h)wh, vh)h

for all vh ∈ S 1(Th) to find uk
h ∈ S 1(Th) and an approximation of the eigenpair

(−λh
AC(tk), wh).
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Fig. 6.6 Implementation of the linearized implicit Euler scheme with numerical integration for
the Allen–Cahn equation and computation of the eigenvalue in each time step
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Chapter 7
Harmonic Maps

7.1 Analytical Properties

Harmonic maps are stationary points of the Dirichlet energy in the set of vector
fields that attain their values in a given target manifold, e.g., the unit sphere. Related
problems arise in various applications and the problem of computing harmonic maps
serves as a mathematical model problem for constrained minimization problems on
infinite-dimensional spaces. We will consider the case of computing harmonic maps
into the unit sphere Sm−1 = {s ∈ R

m : |s| = 1}, i.e., unit-length vector fields, but
notice that a large class of target manifolds can be treated with the same ideas. We
thus aim at approximating minimizers u ∈ A for

I (u) = 1

2

∫

Ω

|∇u|2 dx

with the set of admissible vector fields

A = {v ∈ H1(Ω;Rm) : |v(x)| = 1 for a.e. x ∈ Ω, v|ΓD = uD}.

The function uD ∈ L2(ΓD;Rm) on the nonempty set ΓD ⊂ ∂Ω is assumed to admit
an extension ũD ∈ H1(Ω;Rm) with |̃uD(x)| = 1 for almost every x ∈ Ω . We
briefly summarize the main properties of harmonic maps and refer the reader to the
textbooks [9, 12] for more details.

7.1.1 Existence and Nonuniqueness

The existence of minimizers is established by the direct method in the calculus of
variations.
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184 7 Harmonic Maps

Theorem 7.1 (Existence) There exists a minimizer u ∈ A .

Proof Since uD admits an extension to a unit-length vector field field ũD ∈ A there
exists an infimizing sequence (u j ) j∈N ⊂ A with lim j→∞ I (u j ) = infv∈A I (v).
Since u j − ũD ∈ H1

D(Ω;Rm), we have that (u j ) j∈N is bounded in H1(Ω;Rm).
A subsequence converges weakly to a vector field u ∈ H1(Ω;Rm) with u|ΓD =
uD. To show that u ∈ A we notice that the subsequence converges strongly in
L2(Ω;Rm), and hence there exists a further subsequence that converges pointwise
almost everywhere to u. Therefore, |u| = 1 almost everywhere in Ω , i.e., u ∈ A .
The weak lower semicontinuity of I implies that u is a minimizer. �

Remark 7.1 The proof shows that the set A is weakly closed.

The essential condition that A �= ∅ may be difficult to verify in practice even if
uD ∈ L2(ΓD;Rm) is smooth and satisfies |uD(x)| = 1 for almost every x ∈ ∂Ω .

Example 7.1 (Nonexistence) For Ω = B1(0) ⊂ R
2 and uD(x) = x there is no

function ũD ∈ H1(Ω;R2) with ũD|∂Ω = uD and |̃uD(x)| = 1 for almost every
x ∈ Ω . This is a consequence of the Hopf–Poincaré formula and Brouwer’s fixed
point theorem.

Due to the invariance of the Dirichlet energy under rotations, we cannot expect
harmonic maps to be unique.

Example 7.2 (Nonuniqueness) Let Ω = (0, 1), ΓD = ∂Ω = {0, 1}, m = 3, and let
u : (0, 1) → S2 be minimal for

I (u) = 1

2

1∫

0

|u′|2 dx

in the set of functions v ∈ A with v(0) = e and v(1) = −e for some e ∈ S2.
Then for every rotation Q ∈ SO(3) = {R ∈ R

3×3 : R

⊥

R = I3, det R = 1}
with Qe = e, we have that ũ = Qu is another minimizer. The harmonic maps
u1(x) = [cos(πx), 0, sin(πx)]

⊥

, x ∈ (0, 1), and u2 = Qu1, where Q ∈ R
3×3

realizes a rotation by π about the first coordinate axis, with identical Dirichlet energy
are shown in Fig. 7.1.

Fig. 7.1 Two harmonic maps onΩ = (0, 1)with the same boundary values and identical Dirichlet
energy; the length of the arrows is scaled for graphical purposes
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Remarks 7.2 (i) Harmonic maps can be approximated by penalizing the pointwise
constraint, e.g., considering for ε > 0 the Ginzburg–Landau regularization

Iε(u) = 1

2

∫

Ω

|∇u|2 dx + ε−2

4

∫

Ω

(|u|2 − 1)2 dx

and investigating the limiting behavior of minimizers (uε)ε>0 as ε → 0.
(ii) Formally, a harmonic map u and the Lagrange multiplier λ associated to the
length constraint define a saddle-point for the functional

L(u, λ) = 1

2

∫

Ω

|∇u|2 dx +
∫

Ω

λ(|u|2 − 1) dx .

7.1.2 Euler–Lagrange Equations and Nonregularity

The Euler–Lagrange equations define a nonlinear partial differential equation.

Theorem 7.2 (Euler–Lagrange equations) Let u ∈ A be stationary for the Dirichlet
energy. Then we have

(∇u,∇w) = (|∇u|2u, w)

for all w ∈ H1
D(Ω;Rm) ∩ L∞(Ω;Rm).

Proof Letw ∈ H1(Ω;Rm)∩L∞(Ω;Rm) and ε > 0be such that ε‖w‖L∞(Ω) ≤ 1/2.
We then have that |u(x) + rw(x)| ≥ 1/2 for almost every x ∈ Ω and every r ∈ R

with |r | ≤ ε. It follows that the map

ur (x) = u(x) + rw(x)

|u(x) + rw(x)|

belongs to H1(Ω;Rm) and satisfies |ur | = 1 in Ω and ur |ΓD = uD. Since u0 = u,
we have that the function t �→ I (ur ) is minimal at r = 0. We note that

d

dr

∣∣∣
r=0

ur = w − u(u · w).

A differentiation shows that

0 = d

dr

∣∣∣
r=0

I (ur ) =
d∑

�=1

∫

Ω

∂�u · ∂�

[
w − u(u · w)

]
dx

and the orthogonality (∂�u) · u = 0 for � = 1, 2, . . . , d implies the assertion. �
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Definition 7.1 Solutions u ∈ A of the Euler–Lagrange equation are called
harmonic maps (into the sphere).

Remark 7.3 The function λ = |∇u|2 ∈ L1(Ω) is the Lagrange multiplier associated
to the pointwise constraint |u(x)|2 = 1.

Solutions of the Euler–Lagrange equations are in general neither energy
minimizing nor regular.

Example 7.3 (Nonregularity) Let Ω = (−1, 1)3 and uD(x) = x/|x | for x ∈ ΓD =
∂Ω . Then u(x) = x/|x | for x ∈ Ω satisfies u ∈ A and is a harmonic map.Moreover
u is minimal for I in the set of vector fields in A .

Remarks 7.4 (i) For d = 2, harmonic maps are smooth.
(ii) If d = 3, then energy minimizing harmonic maps u are partially regular in
the sense that u is smooth in Ω \ S for a set S with H 1(S) = 0, e.g., a set of
points. Harmonic maps that are not globally energyminimizing can be discontinuous
everywhere.

7.1.3 Compactness

The lack of uniqueness and regularity of harmonic maps makes it difficult to quantify
stability properties. The weaker concept of compactness shows that accumulation
points of (almost) harmonicmaps are again harmonicmaps, i.e., that bounded subsets
of the set of harmonic maps are weakly compact. The key to this property is the
following equivalent characterization of harmonic maps. We restrict ourselves to the
case m = 3 for ease of presentation.

Lemma 7.1 (Equivalent characterization) Let m = 3. The function u ∈ A is a
harmonic map if and only if

(∇u,∇[u × φ]) =
d∑

�=1

(∂�u, u × ∂�φ) = 0

for all φ ∈ H1
D(Ω;R3) ∩ L∞(Ω;R3). This is the case if and only if

(∇u,∇w) = 0

for all w ∈ H1
D(Ω;R3) satisfying u · w = 0 almost everywhere in Ω .

Proof (i) Let u ∈ A be a harmonic map. Then the choice w = u × φ in the Euler–
Lagrange equations, the fact that u · (u × φ) = 0, and the identity

(∂�u, ∂�[u × φ]) = (∂�u, u × ∂�φ)
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for � = 1, 2, . . . , d imply the first characterization. The second one is an immediate
consequence of the Euler–Lagrange equations if w ∈ H1

D(Ω;R3) ∩ L∞(Ω;R3)

with w · u = 0 in Ω . A truncation argument shows that this is satisfied for all
w ∈ H1

D(Ω;R3) with w · u = 0 almost everywhere in Ω .
(ii) Assume that the first equation of the lemma is satisfied and let w ∈ H1

D(Ω;R3)∩
L∞(Ω;R3). Forφ = u×wwehave, due to the formula a×(b×c) = b(a ·c)−c(a ·b)

that
u × φ = u × (u × w) = (u · w)u − |u|2w = (u · w)u − w.

Moreover, we have for � = 1, 2, . . . , d that

∂�[(u · w)u] = (∂�u · w)u + (u · ∂�w)u + (u · w)∂�u.

With ∂�u · u = 0 this implies that

0 =
d∑

�=1

[
(∂�u, (u · w)∂�u) − (∂�u, ∂�w)

] = (|∇u|2u, w) − (∇u,∇w)

which proves that u is a harmonic map.
(iii) Suppose that the second characterization is satisfied and let φ ∈ H1

D(Ω;R3) ∩
L∞(Ω;R3). The function w = u × φ satisfies u · w = 0 so that the first characteri-
zation holds. �

Remark 7.5 The condition that (∇u,∇w) = 0 for all w ∈ H1
D(Ω;R3) satisfying

u · w = 0 shows that u is stationary with respect to tangential perturbations.

The equivalent characterizations imply the following weak compactness result
which will serve as a guideline to prove convergence of numerical approximations.

Theorem 7.3 (Weak compactness) Let (R j ) j∈N ⊂ H1
D(Ω;R3)′ be a sequence of

functionals with ‖R j‖H1
D(Ω)′ → 0 as j → ∞, and assume that (u j ) j∈N ⊂ A is

such that
(∇u j ,∇w) = (|∇u j |2u j , w) + R j (w)

for every j ∈ N and all w ∈ H1
D(Ω;R3) ∩ L∞(Ω;R3). If u ∈ H1(Ω;R3) is such

that u j ⇀ u in H1(Ω;R3) as j → ∞, then we have u ∈ A and u is a harmonic
map.

Proof The weak closedness ofA implies that u ∈ A . For every φ ∈ H1
D(Ω;R3) ∩

C∞(Ω;R3) and j ∈ N, the choice ofw = u j ×φ yields, using ∂�u j ·(∂�u j ×φ) = 0,

d∑
�=1

(∂�u j , u j × ∂�φ) = R j (u j × φ).

Since u j → u in L2(Ω;R3) and ∂�u j ⇀ ∂�u in L2(Ω;R3), we have
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(∂�u j , u j × ∂�φ) = (∂�u j , u × ∂�φ) + (∂�u j , [u j − u] × ∂�φ)

→ (∂�u, u × ∂�φ)

as j → ∞ for � = 1, 2, . . . , d. EmployingR j → 0 in H1
D(Ω;R3)′ and that u j × φ

is bounded in H1
D(Ω;R3), we also have

R j (u j × φ) → 0

as j → ∞. Altogether we find that u satisfies

d∑
�=1

(∂�u, u × ∂�φ) = 0

for all φ ∈ H1
D(Ω;R3) ∩ C∞(Ω;R3). A density argument shows that this identity

holds for all φ ∈ H1
D(Ω;R3) ∩ L∞(Ω;R3) so that Lemma7.1 implies that u is a

harmonic map. �
Remarks 7.6 (i) The equivalent characterization of harmonic maps involving the
cross product allowed us to use that the product of aweakly and a strongly convergent
sequence is weakly convergent. We remark that the identification of the limit of the
square of a weakly convergent sequence is difficult in general and a passage to a limit
in the Euler–Lagrange equations for harmonic maps does not imply that the limit is
a harmonic map.
(ii) While the existence of harmonic maps into general target manifolds other than
the unit sphere can be established analogously, related compactness results are false
in general. For d = 2 and sufficiently smooth target manifolds, regularity and
compactness can be proved, cf. [11].

7.1.4 Harmonic Map Heat Flow

The harmonic map heat flow is the L2-gradient flow of the Dirichlet energy subject
to the unit length constraint and is given by

∂t u − �u = |∇u|2u, |u(t, ·)| = 1, u(0) = u0, u|ΓD = uD, ∂nu|ΓN = 0

for almost every t ∈ [0, T ]. To avoid very irregular solutions, it is important to
construct solutions that satisfy an energy law.

Theorem 7.4 (Existence) Given u0 ∈ H1(Ω;Rm) with |u0(x)| = 1 for almost
every x ∈ Ω , there exists u ∈ H1([0, T ]; L2(Ω;Rm)) ∩ L∞([0, T ]; H1(Ω;Rm))

such that |u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω , u(0) = u0,

(∂t u, w) + (∇u,∇w) = (|∇u|2u, w)
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for almost every t ∈ [0, T ] and all w ∈ H1
D(Ω;Rm) ∩ L∞(Ω;Rm), and

I (u(T ′)) +
T ′∫

0

‖∂t u‖2 dt ≤ I (u0)

for almost every T ′ ∈ [0, T ].
Proof The result follows from the convergence of numerical approximations proved
below. �

Remark 7.7 Uniqueness of solutions is known within the class of energy decreasing
solutions if d = 2.

Solutions of the harmonic map heat flow can develop singularities in finite time.

Example 7.4 (Finite-time blowup [8]) Let Ω = B1(0) ⊂ R
2, ΓD = ∂Ω , and

uD = u0|ΓD for u0 defined for b > 0 by

u0(x) = 1

|x |
(
x1 sin h(|x |), x2 sin h(|x |), |x | cos h(|x |))

for x ∈ Ω \ {0} and h(r) = br2. If and only if b ≥ π , the corresponding solution
of the harmonic map heat flow is singular in the sense that there exists Tc > 0 with
limt→Tc ‖∇u(t)‖L∞(Ω) = ∞.

7.2 Numerical Approximation

Wediscuss in this section the approximationof harmonicmaps andemploy arguments
from [1, 3, 5, 6, 10].

7.2.1 Discrete Harmonic Maps

It is straightforward to verify that the only polynomial vector fields that are pointwise
of unit length are constant vector fields. Therefore, the constraint cannot be imposed
almost everywhere onpolynomial finite element functions. The followingproposition
shows that it is sufficient to impose the constraint at the nodes of a triangulation,
cf. Fig. 7.2.

Proposition 7.1 (Nodal constraint) Let (Th)h>0 be a family of regular triangula-
tions of Ω ⊂ R

d and let (uh)h>0 ⊂ H1(Ω;Rm) be such that uh ∈ S 1(Th)m and
|uh(z)| = 1 for all z ∈ Nh and every h > 0. If uh ⇀ u in H1(Ω;Rm) for some
u ∈ H1(Ω;Rm), then we have |u(x)| = 1 for almost every x ∈ Ω .
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Fig. 7.2 The unit-length
constraint is only imposed at
the nodes of the
triangulation; the linearly
interpolated vector field may
violate the constraint
between two nodes

Proof We have Ih |uh |2 = 1 for every h > 0 and hence by nodal interpolation
estimates and D2uh |T = 0 for every T ∈ Th that

∥∥|uh |2 − 1
∥∥

L2(T )
= ∥∥|uh |2 − Ih |uh |2∥∥L2(T )

≤ ch2
T ‖D2|uh |2‖L2(T )

= ch2
T ‖|∇uh |2‖L2(T ) = ch2

T ‖∇uh‖L∞(T )‖∇uh‖L2(T ).

The inverse estimate ‖∇uh‖L∞(T ) ≤ ch−1
T ‖uh‖L∞(T ) = ch−1

T and a summation over
T ∈ Th imply ∥∥|uh |2 − 1

∥∥ ≤ ch‖∇uh‖

and prove that |uh | → 1 in L2(Ω) as h → 0. Since also |uh′ | → |u| as h′ → 0
almost everywhere in Ω for an appropriate subsequence h′ > 0, we deduce |u| = 1
in Ω . �

The proposition motivates minimizing the Dirichlet energy restricted to finite
element functions that satisfy the boundary conditions and the unit-length constraint
at the nodes of the underlying triangulation.

Theorem 7.5 (Discrete harmonic maps) Assume that ũD,h ∈ S 1(Th)m satisfies
|̃uD,h(z)| = 1 for all z ∈ Nh and uD,h = ũD,h |ΓD . There exists a minimizer uh ∈ Ah

for I in the set of discrete admissible vector fields

Ah = {vh ∈ S 1(Th)m : |vh(z)| = 1 for all z ∈ Nh, vh |ΓD = uD,h}.

The function uh ∈ Ah is stationary for I in the set of functions in Ah if and only if

(∇uh,∇wh) = 0

for all wh ∈ Fh[uh] with

Fh[uh] = {
wh ∈ S 1

D(Th)m : wh(z) · uh(z) = 0 for all z ∈ Nh
}
.

Proof The functional I is coercive and continuous onAh , and this implies the exis-
tence of a minimizer. To verify the second statement, let uh ∈ Ah be stationary
for I and let wh ∈ Fh[uh]. For every r ∈ R, we have that |uh(z) + rwh(z)|2 =
|uh(z)|2 + r2|wh(z)|2 ≥ 1 for all z ∈ Nh and we may define
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ur
h = Ih

( uh + rwh

|uh + rwh |
)

=
∑

z∈Nh

uh(z) + rwh(z)

|uh(z) + rwh(z)|ϕz .

For every z ∈ Nh a Taylor expansion at r = 0 shows that

ur
h(z) = uh(z) + rwh(z) + r2ξh(z)

for a function ξh ∈ S 1
D(Th)m . Therefore, if uh is stationary for I , we have

0 = lim
r→0

1

r

(
I (ur

h) − I (uh)
) = (∇uh,∇wh).

Conversely, assume that (∇uh,∇wh) = 0 for all wh ∈ Fh[uh]. If (ur
h)r∈(−ε,ε) is a

continuously differentiable path in Ah with w0
h = uh , then we have

ur
h = uh + rwh + φ(r)ξh

with a vector field ξh ∈ S 1
D(Th)m , a function φ such that φ(r)/r → 0 as r → 0,

and wh ∈ S 1
D(Th)m defined by

wh(z) = d

dr

∣∣∣
r=0

wr
h(z).

Since |ur
h(z)|2 = 1 for every z ∈ Nh and r ∈ (−ε, ε), we have wh(z) · uh(z) = 0

for all z ∈ Nh , i.e., wh ∈ Fh[uh]. This implies

I (ur
h) = I (uh) + r(∇uh,∇wh) + φ(r)(∇uh,∇ξh) + I (rwh + φ(r)ξh)

and thus, using (∇uh,∇wh) = 0, we have
(
I (ur

h) − I (uh)
)
/r → 0 as r → 0, i.e.,

r �→ I (ur
h) is stationary at r = 0. �

The theorem motivates the following definition.

Definition 7.2 A function uh ∈ Ah is called a discrete harmonic map if

(∇uh,∇wh) = 0

for all wh ∈ Fh[uh].
Remark 7.8 The space of admissible test functions Fh[uh] may be regarded as the
tangent space ofAh at uh . In particular, a discrete harmonicmap is stablewith respect
to discrete tangential perturbations.

The compactness result of Theorem7.3 implies the convergence of discrete
harmonic maps as h → 0. For ease of presentation we again restrict to the case
m = 3. The perturbation functionals Rh in the following theorem model an inexact
solution of the discrete problems.
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Theorem 7.6 (Discrete compactness) Let (uh)h>0 ⊂ H1(Ω;R3) be a bounded
sequence of almost discrete harmonic maps associated to the sequence (Th)h>0,
i.e., for every h > 0, we have uh ∈ Ah and there exists Rh ∈ H1

D(Ω;R3)′ with

(∇uh,∇wh) = Rh(wh)

for all wh ∈ Fh[uh]. If Rh → 0 in H1
D(Ω;Rm)′ and uD,h → uD in L2(ΓD) as

h → 0, then every weak accumulation point of (uh)h>0 is a harmonic map.

Proof Let u ∈ H1(Ω;R3) be a weak accumulation point of the sequence (uh)h>0
and without loss of generality, assume that the entire sequence converges weakly to
u, i.e., uh ⇀ u in H1(Ω;R3) as h → 0. Proposition7.1 shows that |u| = 1 almost
everywhere in Ω . Moreover, the weak continuity of the trace operator implies that
u|ΓD = uD. Given φ ∈ C∞(Ω;R3) ∩ H1

D(Ω;R3), set wh = Ih(uh × φ). Then
wh ∈ S 1

D(Th)3 with wh(z) · uh(z) = 0 for all z ∈ Nh . An element-wise nodal
interpolation estimate and D2uh |T = 0 for every T ∈ Th show that

‖∇(wh − uh × φ)‖L2(T ) ≤ chT ‖D2(uh × φ)‖L2(T )

≤ chT
(‖∇uh‖L2(T )‖∇φ‖L∞(T ) + ‖uh‖L∞(T )‖∇φ‖L2(T )

)
.

This implies that ‖∇wh‖ ≤ c and wh − uh × w → 0 in H1(Ω;R3) as h → 0.
Therefore, we have

Rh(wh) = (∇uh,∇wh) = (∇uh,∇[uh × φ]) + (∇uh,∇[wh − uh × φ])

with
(∇uh,∇[wh − uh × φ]) → 0

as h → 0. For the other term on the right-hand side, we have

d∑
�=1

(∂�uh, ∂�[uh × φ]) =
d∑

�=1

(∂�uh, uh × ∂�φ)

and since uh → u in L2(Ω;R3) and ∇uh ⇀ ∇u in L2(Ω;R3×3) as h → 0, we
deduce that

0 = lim
h→0

(∇uh,∇[uh × φ]) =
d∑

�=1

(∂�u, u × ∂�φ).

This proves that u is a harmonic map. �
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7.2.2 Iterative Computation

The iterative computation of discrete harmonic maps is based on the computation of
tangential corrections that define a new approximation after a node-wise projection
onto the unit sphere. The following algorithm may be regarded as a discrete version
of the H1-flow for harmonic maps which is formally defined as

(∇∂t u,∇w) = −(∇u,∇w) + (|∇u|2u, w).

For w with w · u = 0, the second term on the right-hand side disappears. Moreover,
we have ∂t u ·u = 0 if |u(t, x)| = 1 for almost every (t, x) ∈ [0, T ]×Ω .We employ a
semi-implicit discretization of this problem to compute approximations vk

h of ∂t u(tk)
to find discrete harmonic maps with bounded energy. In particular, the linearized
constraint will be treated explicitly, which leads to linear systems of equations in
every time-step. The approach is illustrated in Fig. 7.3.

Algorithm 7.1 (Discrete H1-flow [1]) Let u0
h ∈ Ah , θ ∈ [0,1], and τ > 0 and define

the sequence (uk
h)k=0,1,... ⊂ Ah by computing vk

h ∈ Fh[uk−1
h ] such that

(∇vk
h,∇wh) + (∇[uk−1

h + θτvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ] and setting

uk
h =

∑
z∈Nh

uk−1
h (z) + τvk

h(z)

|uk−1
h (z) + τvk

h(z)|ϕz

until ‖∇vk
h‖ ≤ εstop.

Proposition 7.2 (Termination I) Assume that Th is weakly acute. The iterates
(uk

h)k=0,1,... ⊂ Ah of Algorithm7.1 are well defined and satisfy

1

2
‖∇uL

h ‖2 + (2 + 2τθ − τ)
τ

2

L∑
k=1

‖∇vk
h‖2 ≤ 1

2
‖∇u0

h‖2

Fig. 7.3 The iteration of
Algorithm7.1 computes
corrections vk

h in the tangent
space of the unit sphere at
the current iterate uk−1

h and
then employs a projection
onto the unit sphere to define
the update uk

h

ukh(z)

vkh(z)

vkh(z)

uk−1
h (z)



194 7 Harmonic Maps

for every L ≥ 1. In particular, if τ(1 − 2θ) ≤ 2, then the iteration terminates and
the output u∗

h ∈ Ah satisfies

(∇u∗
h,∇wh) = Rh(wh)

for all wh ∈ Fh[u∗
h] and ‖Rh‖H1

D(Ω;Rm )′ ≤ (1 + θτ)εstop.

Proof Given uk−1
h ∈ Ah , the spaceFh[uk−1

h ] is a closed subspace ofS 1
D(Th)m and

the Lax–Milgram lemma implies the existence of a uniquely defined vk
h ∈ Fh[uk−1

h ]
with

(∇vk
h,∇wh) + (∇[uk−1

h + θτvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ]. Since |uk−1

h (z)| = 1 and vk
h(z) · uk−1

h (z) = 0 for all z ∈ Nh ,
we have |uk−1

h (z) + τvk
h(z)| ≥ 1 and uk

h ∈ Ah is well defined. The mapping

F : s �→
{

s/|s| if |s| ≥ 1,

s if |s| ≤ 1

is Lipschitz continuous with ‖DF‖L∞(Rm) = 1 so that Proposition 3.2 implies

‖∇uk
h‖ ≤ ‖∇(uk−1

h + τvk
h)‖.

The choice of wh = vk
h in the equation of Algorithm7.1 and the formula 2τ(a +

θτb)b = (a + τb)2 − a2 + τ 2(2θ − 1)b2 show that

‖∇vk
h‖2 + 1

2τ
‖∇(uk−1

h + τvk
h)‖2 − 1

2τ
‖∇uk−1

h ‖2 + τ

2
(2θ − 1)‖∇vk

h‖2 = 0.

A combination with the bound for ‖∇uk
h‖ and a multiplication by τ , together with a

summation over k = 1, 2, . . . , L , imply

1

2
‖∇uL

h ‖2 + (2 + 2τθ − τ)
τ

2

L∑
k=1

‖∇vk
h‖2 ≤ 1

2
‖∇u0

h‖2.

This yields that‖∇vK
h ‖ ≤ ε for K ≥ 0 sufficiently large and the functionsu∗

h = uK−1
h

and v∗
h = vK

h satisfy

(∇u∗
h,∇wh) = −(1 + θτ)(∇v∗

h,∇wh)

for all wh ∈ Fh[u∗
h]. Setting Rh(w) = −(1 + θτ)(∇v∗

h,∇w) for w ∈ H1
D(Ω;Rm)

proves the assertion. �
Remarks 7.9 (i) The proof of the proposition shows that we have the local energy
decay property ‖∇uk

h‖ ≤ ‖∇uk−1
h ‖ for all k ≥ 1.

http://dx.doi.org/10.1007/978-3-319-13797-1_3
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Fig. 7.4 A triangulation Th
that is weakly acute if and
only if β ≥ 1/2

z3 z4 z5

z9 z8 z7

z10 z6 β
z2z1

1

(ii) Note that for all choices of θ the large step size τ = 1 leads to a stable and
convergent iterative scheme.

The acuteness property is necessary in general to guarantee that the projection
step is stable in the sense that ‖∇uk

h‖ ≤ ‖∇[uk−1
h + τvk

h]‖.
Proposition 7.3 (Necessity of acuteness) For β > 0, let Th be the triangulation
of Ω = (0, 1) × (0, β) shown in Fig.7.4, and let τ > 0. Let uh ∈ S 1(Th)m and
vh ∈ Fh[uh], be defined by uh(z j ) = e1 and vh(z j ) = 0 for j = 3, 4, . . . , 10, and

uh(z1) = e1, uh(z2) = −e1,

vh(z1) = −(s/τ)e2, vh(z2) = 0,

where s = 1/2 − β and e� denotes the �-th canonical basis vector in R
m. Then for

Pũh ∈ S 1(Th)m defined with ũh = uh + τvh by

Pũh(z) = ũh(z)

|̃uh(z)|
for all z ∈ Nh, we have ‖∇ Pũh‖ ≤ ‖∇ũh‖ if and only if Th is weakly acute, i.e., if
and only if β ≥ 1/2.

Proof Since |̃uh(z)| ≥ 1 for all z ∈ Nh , Proposition 3.2 implies that ‖∇ Pũh‖ ≤
‖∇ũh‖ if Th is weakly acute and this is the case if and only if β ≥ 1/2. Suppose
that β < 1/2. Then with the entries A jk , j, k = 1, 2, . . . , 10, of the stiffness matrix
and the identity ũh(z j ) = Pũh(z j ) for j = 2, 3, 4, . . . , 10, the representation of
‖∇wh‖2 in terms of the nodal values of wh and the entries of A, cf. the proof of
Proposition3.2, we have that

δ2 = ‖∇ũh‖2 − ‖∇ Pũh‖2 = −1

2

10∑
j,k=1

A jk
(|̃uh(z j ) − ũh(zk)|2

− |Pũh(z j ) − Pũh(zk)|2
)

= −
10∑
j=2

A1 j
(|̃uh(z j ) − ũh(z1)|2

http://dx.doi.org/10.1007/978-3-319-13797-1_3
http://dx.doi.org/10.1007/978-3-319-13797-1_3
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− |Pũh(z j ) − Pũh(z1)|2
)
.

We have |̃uh(z1) − ũh(z2)|2 = 4 + s2 and |̃uh(z j ) − ũh(z1)|2 = s2 and

t21 = |Pũh(z1) − Pũh(z2)|2 = 2 + 2/(1 + s2)1/2,

t22 = |Pũh(z j ) − Pũh(z2)|2 = 2 − 2/(1 + s2)1/2

for j = 3, 4, . . . , 10. Since
∑10

j=1 A1 j = 0 we have
∑10

j=3 A1 j = −A11 − A22 and
hence

δ2 = (s2 − t22 )(A11 + A12) − A12(4 + s2 − t21 )

= A11(s
2 − t22 ) − A12(4 + t22 − t21 ).

Direct calculations show that

A11 = (12β2 + 5)/(4β), A12 = (1 − 4β2)/(4β).

With φ(s) = (1 + s2)1/2 − 1 − s2/2 and β2 = 1/4 − s + s2 we verify that

4β(1 + s2)1/2δ2 = (
12β2 + 5

)(
s4/2 + s2φ(s) − 2φ(s)

) − (
1 − 4β2)(2s2 + 4φ(s)

)
= (

8 − 12s + 12s2
)(

s4/2 + s2φ(s) − 2φ(s)
)

− 16(s − s2)
(
s2/2 + φ(s)

)
= −8s3 + 12s4 − 6s5 + 6s6 + φ(s)

( − 16s − 12s3 + 12s4
)

= −6s3(1 − 2s) − 6s5(1 − s) + 4sφ(s)
(
2 − 3s2 + 3s3

)
− 2

(
s3 + 8φ(s)

)
.

Since 0 < s < 1/2 and φ(s) < 0, the first three terms on the right-hand side are
negative. The estimate −s4/8 ≤ φ(s) implies that the last term on the right-hand
side is nonpositive. This shows δ < 0 if β < 1/2 and proves the assertion. �

7.2.3 Projection-Free Iteration

The acuteness condition of Proposition7.2 is restrictive if d = 3 but allows for large
step sizes. In the continuous situationwe have that the identity u ·∂t u = 0 implies that
the initial length is preserved. In the discrete setting a semi-implicit discretization
of this orthogonality leads to approximations that violate the constraint when the
projection step is omitted, cf. Fig. 7.5.

Algorithm 7.2 (H1-flow without projection) Let u0
h ∈ Ah , τ > 0, and define the

sequence (uk
h)k=0,1,... ⊂ S 1(Th)m by computing vk

h ∈ Fh[uk−1
h ] such that
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Fig. 7.5 Omitting the
projection step in the
semi-implicit H1-flow leads
to approximations that
violate the unit-length
constraint; the corresponding
error in L1(Ω) is
independent of the number
of iterations and controlled
by the step size

v1h(z)

v2h(z)

u0h(z)

v3h(z)

u1h(z)

u2h(z)

(∇vk
h,∇wh) + (∇[uk−1

h + τvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ] and setting

uk
h = uk−1

h + τvk
h

until ‖∇vk
h‖ ≤ εstop.

The following proposition shows that the violation of the constraint is independent
of the number of iterations and controlled by the step size.

Proposition 7.4 (Termination II) The iterates (uk
h)k=0,1,... ⊂ S 1(Th)m of

Algorithm7.2 satisfy uk
h |ΓD = uD,h for k = 0, 1, . . . and

1

2
‖∇uL

h ‖2 + (2 + τ)
τ

2

L∑
k=1

‖∇vk
h‖2 = 1

2
‖∇u0

h‖2

for every L ≥ 1. Moreover, we have every L ≥ 1 that

∥∥Ih
[|uL

h |2] − 1
∥∥

L1(Ω)
≤ cτ‖∇u0

h‖2.

Proof Due to the Lax–Milgram lemma the iteration is well-defined and the choice
wk

h = vk+1
h shows, using the formula 2τ(a + τb)b = (a + τb)2 − a2 + τ 2b2, that

2 + τ

2
‖∇vk

h‖2 + 1

2τ
‖∇uk

h‖2 − 1

2τ
‖∇uk−1

h ‖2 = 0

which implies the first asserted estimate. For every z ∈ Nh , we have

|uk
h(z)|2 − 1 = |uk−1

h (z)|2 + τ 2|vk
h(z)|2 − 1

and inductively with |u0
h(z)| = 1, we find that

|uL
h (z)|2 − 1 = τ 2

L∑
k=1

|vk
h(z)|2.
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The discrete norm equivalences of Lemma 3.4 yield

(1/c)
∥∥Ih

[|uL
h |2] − 1

∥∥
L1(Ω)

≤
∑

z∈Nh

hd
z

∣∣|uL
h (z)|2 − 1

∣∣

≤ τ 2
L∑

k=1

∑
z∈Nh

hd
z |vk

h(z)|2 ≤ cτ 2
L∑

k=1

‖vk
h‖2.

Poincaré’s inequality and the first estimate of the proposition imply

∥∥Ih
[|uL

h |2] − 1
∥∥

L1(Ω)
≤ cτ 2

L∑
k=1

‖∇vk
h‖2 ≤ cτ‖∇u0

h‖2,

which proves the proposition. �

We conclude the discussion with a lemma which shows that the approximate
treatment of the constraint at the nodes implies that it is satisfied by accumulation
points in the limit (h, τ ) → 0.

Lemma 7.2 (Constraint approximation) If (uh)h>0 is a bounded sequence in H1(Ω;
R

m) such that uh ∈ S 1(Th)m for all h > 0, uh → u in L2(Ω;Rm) for some
u ∈ H1(Ω;Rm) as h → 0, and

‖Ih
[|uh |2] − 1‖L1(Ω) → 0

as h → 0, then we have |u|2 = 1 almost everywhere in Ω .

Proof Two applications of the triangle inequality show that

‖|u|2 − 1‖L1(Ω)

≤ ‖|u|2 − |uh |2‖L1(Ω) + ‖|uh |2 − Ih
[|uh |2]‖L1(Ω) + ‖Ih

[|uh |2] − 1‖L1(Ω).

Due to the assumptions of the lemma we have that the third term on the right-hand
side tends to zero as h → 0. Since

‖|u|2 − |uh |2‖L1(Ω) ≤ ‖u − uh‖‖u + uh‖

we have that also the first term on the right-hand side vanishes as h → 0. We use
Hölder’s inequality and a nodal interpolation estimate to verify that for every T ∈ Th ,
we have

‖|uh |2 − Ih
[|uh |2]‖L1(T ) ≤ chd/2

T ‖|uh |2 − Ih
[|uh |]‖L2(T )

≤ chd/2
T h2

T ‖D2|uh |2‖L2(T ) ≤ ch2
T ‖∇uh‖2L2(T )

.

http://dx.doi.org/10.1007/978-3-319-13797-1_3
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With a summation over T ∈ Th we deduce for the second term that

‖|uh |2 − Ih
[|uh |2]‖L1(Ω) ≤ ch2‖∇uh‖2.

Since the upper bound vanishes as h → 0, this implies that |u|2 = 1. �

7.2.4 Other Target Manifolds

The ideas outlined above can be generalized to approximate harmonic maps into tar-
get manifolds other than the unit sphere. We letM ⊂ R

m be an (m −1)-dimensional
C2-submanifold and let TpM denote the tangent space at p ∈ M . Moreover, we let
πM : Uδ(M ) → M be the nearest neighbor projection onto M which is uniquely
defined in a neighborhood Uδ(M ) = {q ∈ R

m : dist(p,M ) < δ} of M for some
δ > 0. The functionπM satisfies |πM (q)−q| = inf p∈M |p−q| for all q ∈ Uδ(M ).
IfM = ∂C for a convex set C ⊂ R

m , then πM is well defined in Rm \ C .

Definition 7.3 Given ũD,h ∈ S 1(Th)m with ũD,h(z) ∈ M for all z ∈ Nh set

Ah = {uh ∈ S 1(Th)m : uh |ΓD = ũD,h |ΓD and uh(z) ∈ M for all z ∈ Nh
}

and for uh ∈ Ah , let

Fh[uh] = {
vh ∈ S 1

D(Th)m : vh(z) ∈ Tuh(z)M for all z ∈ Nh
}
.

With these definitionswe candefine the followinggeneralization ofAlgorithm7.1.

Algorithm 7.3 (H1-flow for general target manifolds) Let u0
h ∈ Ah and τ > 0 and

define the sequence (uk
h)k=0,1,... ∈ Ah by computing vk

h ∈ Fh[uk−1
h ] such that

(∇vk
h,∇wh) + (∇[uk−1

h + τvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ] and setting

uk
h =

∑
z∈Nh

πM
(
uk−1

h (z) + τvk
h(z)

)
ϕz

until ‖∇vk
h‖ ≤ εstop.

Remarks 7.10 (i) Well-posedness of the algorithm requires that τ be sufficiently
small so that uk−1

h (z) + τvk
h(z) ∈ Uδ(M ) for all z ∈ Nh , cf. Fig. 7.6. If M = ∂C

for a convex set C , then this is always satisfied.
(ii) A stability proof employs an expansion of πM and the fact that DπM (s)|TsM =
idTsM provided that M is a C3-submanifold.
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=U ( )

uk−1
h (z)

vkh(z)
uk−1
h (z)

vkh(z)

Fig. 7.6 The projection of uk−1
h (z)+τvk

h(z) onto the target manifold is in general only well defined
within a tubular neighborhood ofM in the case of nonconvex manifolds and a step-size restriction
needs to be imposed (left); for boundaries of convex sets no restriction on the step size is required
(right)

(iii) The projection step can be omitted if an appropriate version of a shifted tangent
space is available, e.g., ifM = g−1({0}) for an appropriate function g : Rm → R.

7.2.5 Practical Realization

The implementation of Algorithm7.1 requires working with discrete vector fields
uh ∈ S 1(Th)m which are given by

uh =
∑

z∈Nh

uzϕz

with coefficients uz = uh(z) ∈ R
m for all z ∈ Nh . The function uh will be identified

with the vector U ∈ R
mL defined by

U =

⎡
⎢⎢⎢⎣

uz1
uz2
...

uzL

⎤
⎥⎥⎥⎦ ∈ R

mL

with L = #Nh . The constraint uh(z) · vh(z) = 0 for all z ∈ Nh for a vector
field vh ∈ S 1(Th)m is then equivalently imposed by BU V = 0 with the matrix
BU ∈ R

L×L defined through

BU =

⎡
⎢⎢⎢⎣

u

⊥

z1 0
0 u

⊥

z2 0

0
. . . 0
0 u

⊥

zL

⎤
⎥⎥⎥⎦
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so that BU V = [uz1 · vz1 , uz2 · vz2 , . . . , uzL · vzL ]

⊥

. The solution of the linearly
constrained linear problems is based on the fact that we have

BU V = 0, W

⊥

Sm V = W

⊥

b for all W ∈ ker B

if and only if there exists � ∈ R
L such that

[
Sm B

⊥

U
BU 0

] [
V
�

]
=

[
b
0

]
,

where Sm is the P1 finite element stiffness matrix for vector fields with m compo-
nents. AMatlab implementation is shown in Fig. 7.7.

7.3 Approximation of Constrained Evolution Problems

The iterative schemes discussed above are discrete H1-gradient flows for harmonic
maps and can be modified to provide approximations of the L2-gradient flow
of harmonic maps. We show that this leads to convergent approximations of the
harmonic map heat flow. In addition to this we analyze discretizations that preserve
the constraint without an explicit correction of the iterates. We also discuss the appli-
cation of the developed techniques to a hyperbolic problem. The presentation is based
on results from [2, 4, 7].

7.3.1 Harmonic Map Heat Flow

The harmonic map heat flow is the L2-gradient flow for the Dirichlet energy that
is constrained to unit-length vector fields. In the strong form it seeks a function
u : [0, T ] × Ω → R

m such that |u| = 1 in [0, T ] × Ω and

∂t u − �u = |∇u|2u, u|ΓD = uD, ∂nu|ΓN = 0, u(0) = u0,

where ΓD may be empty. The following proposition provides useful equivalent char-
acterizations for the practically relevant case m = 3.

Proposition 7.5 (Equivalent formulations) The following formulations are equiva-
lent for a function u ∈ H1([0, T ]; L2(Ω;R3))∩ L∞([0, T ]; H1(Ω;R3)) satisfying
|u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω:
(i) For almost every t ∈ [0, T ] and every w ∈ H1

D(Ω;R3) ∩ L∞(Ω;R3), we have

(∂t u, w) + (∇u,∇w) = (|∇u|2u, w).
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Fig. 7.7 Iterative approximation of harmonic maps into the sphere S2 incorporating a projection
step which can be deactivated by uncommenting the command u = tu;
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(ii) For almost every t ∈ [0, T ] and every w ∈ H1
D(Ω;R3) with w(x) · u(t, x) = 0

for almost every x ∈ Ω , we have

(∂t u, w) + (∇u,∇w) = 0.

(iii) For almost every t ∈ [0, T ] and every φ ∈ H1
D(Ω;R3) ∩ L∞(Ω;R3), we have

(∂t u, φ) − (∇u,∇[u × (u × φ)]) = 0.

Proof The proof is similar to the proof of Lemma7.1. Assume that formulation (i)
is satisfied. If w(x) · u(x, t) = 0, then the right-hand side vanishes and a truncation
argument shows that formulation (ii) holds. Using the identity w = u × (u × φ) =
u(u ·φ)−φ implies the equivalence of (i) and (iii). Finally, (iii) follows from choosing
w = u × (u × φ) in (ii) and noting that ∂t u · u = 0. �

Remark 7.11 The equivalence of (i) and (ii) can also be established for functions
with values in Rm with m �= 3.

7.3.2 Semi-implicit, Linear Schemes

The L2-flow of harmonic maps can be approximated by replacing the H1-inner
product in Algorithm7.1 by the L2-inner product. As in that algorithm, the projection
step can be omitted leading to a violation of the unit length constraint that is controlled
by the step size independently of the number of iterations or time steps. As above
we denote

Ah = {
vh ∈ S 1(Th)m : |vh(z)| = 1 for all z ∈ Nh, vh |ΓD = uD,h

}

and given any uh ∈ S 1(Th)m , we denote

Fh[uh] = {
vh ∈ S 1

D(Th)m : vh(z) · uh(z) = 0 for all z ∈ Nh
}
.

Here and throughout the following the set ΓD may be empty.

Algorithm 7.4 (Discrete L2-flow with optional projection) Let u0
h ∈ Ah , θ ∈ [0,1],

and τ > 0 and define the sequence (uk
h)k=0,...,K ⊂ S 1(Th)m for K = �T/τ� by

computing for k = 1, 2, . . . , K the function vk
h ∈ Fh[uk−1

h ] such that

(vk
h, wh) + (∇[uk−1

h + θτvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ] and setting ũk

h = uk−1
h + τvk

h and



204 7 Harmonic Maps

uk
h = ũk

h or uk
h =

∑
z∈Nh

ũk
h(z)

|̃uk
h(z)|ϕz .

We discuss the stability properties of the algorithm for the case θ = 1.

Proposition 7.6 (Stability) Let (uk
h)k=0,...,K ⊂ S 1(Th)m be the iterates of

Algorithm7.4 for θ = 1.
(i) If the projection is omitted, then we have vk

h = dt uk
h for k = 1, 2, . . . , K and for

L = 1, 2, . . . , K

1

2
‖∇uL

h ‖2 + τ

L∑
k=1

(τ

2
‖∇dt u

k
h‖2 + ‖dt u

k
h‖2

)
= 1

2
‖∇u0

h‖2,
∥∥Ih

[|uL
h |2] − 1

∥∥
L1(Ω)

≤ c0τ.

(ii) If the projection step is included and if Th is weakly acute, then uk
h ∈ Ah for

k = 0, 1, . . . , K and for every L = 1, 2, . . . , K , we have

1

2
‖∇uL

h ‖2 + τ

L∑
k=1

(τ

2
‖∇vk

h‖2 + ‖vk
h‖2

)
≤ 1

2
‖∇u0

h‖2,

τ

L∑
k=1

‖vk
h − dt u

k
h‖L1(Ω) ≤ c0τ.

Proof The well-posedness of Algorithm7.4 follows as in the case of Algorithm7.1
with the help of the Lax–Milgram lemma and the fact that |̃uk

h(z)| ≥ 1 for all k ≥ 1
and z ∈ Nh .
(i) Assume that the projection step in Algorithm7.4 is omitted. We then have vk

h =
dt uk

h and the choice of wh = dt uk
h yields

‖dt u
k
h‖2 + dt

2
‖∇uk

h‖2 + τ

2
‖∇dt u

k
h‖2 = 0.

A summation over k = 1, 2, . . . , L and multiplication by τ prove the stability
estimate. For all z ∈ Nh and k = 1, 2, . . . , L , we have

|uk
h(z)|2 = |uk−1

h (z) + τdt u
k
h(z)|2 = |uk−1

h (z)|2 + τ 2|dt u
k
h(z)|2

and inductively it follows with |u0
h(z)| = 1 that

|uL
h (z)|2 − 1 = τ 2

L∑
k=1

|dt u
k
h(z)|2.
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Multiplication by hd
z the norm equivalences of Lemma 3.4, and the stability estimate

imply, as in the proof of Proposition7.4, that

∥∥Ih
[|uL

h |2] − 1
∥∥

L1(Ω)
≤ cτ 2

L∑
k=1

‖dt u
k
h‖2 ≤ cτ‖∇u0

h‖2.

(ii) If the projection step is included, then the choice of wh = vk
h shows that

‖vk
h‖2 + 1

2τ

(‖∇(uk−1
h + τvk

h)‖2 − ‖∇uk−1
h ‖2) + τ

2
‖vk

h‖2 = 0.

Since Th is weakly acute and uk
h(z) = F

(̃
uk

h(z)
)
for all z ∈ Nh with the

Lipschitz continuous mapping F(s) = s/|s| for |s| ≥ 1 and F(s) = s otherwise,
Proposition 3.2 implies as in the proof of Proposition7.2 that

‖∇uk
h‖ ≤ ‖∇[uk−1

h + τvk
h]‖.

With this, a summation over k = 1, 2, . . . , L , and a multiplication by τ , the previous
identity implies the asserted stability estimate. To prove the estimate for the difference
vk

h − dt uk
h , let z ∈ Nh . Then

τ
(
dt u

k
h(z) − vk

h(z)
) = uk

h(z) − (
uk−1

h (z) + τvk
h(z)

) = ũk
h(z)

|̃uk
h(z)| − ũk

h(z).

With the identity ∣∣∣s − s

|s|
∣∣∣ =

∣∣∣ s

|s|
∣∣∣ ∣∣|s| − 1

∣∣ = ∣∣|s| − 1
∣∣

for every s ∈ R
m , it follows that

τ
∣∣dt u

k
h(z) − vk

h(z)
∣∣ = ∣∣|̃uk

h(z)| − 1
∣∣ = ∣∣|uk−1

h (z) + τvk
h(z)| − 1

∣∣.
The relations uk−1

h (z) · vk
h(z) = 0 and |uk−1

h (z)| = 1 and the estimate (1+ s2)1/2 ≤
1 + s2/2 imply that

|uk−1
h (z) + τvk

h(z)| = (
1 + τ 2|vk

h(z)|2)1/2 ≤ 1 + τ 2|vk
h(z)|2/2.

A combination of the estimates and a summation over z ∈ Nh yield

∑
z∈Nh

hd
z |dt u

k
h(z) − vk

h(z)| ≤ τ
∑

z∈Nh

hd
z |vk

h(z)|2.

Norm equivalences and the stability result imply the asserted estimate. �

http://dx.doi.org/10.1007/978-3-319-13797-1_3
http://dx.doi.org/10.1007/978-3-319-13797-1_3
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Remark 7.12 Under the conditions of Proposition7.6we have the local energy decay
property ‖∇uk

h‖ ≤ ‖∇uk−1
h ‖ for all k ≥ 1.

The stability estimates provide a priori bounds for the numerical approximations
which allow us to pass to the limits for appropriate interpolants. Given the iterates
(uk

h)k=0,...,K of Algorithm7.4 we define the interpolants ûh,τ : [0, T ] × Ω → R
m ,

u±
h,τ : [0, T ] × Ω → R

m and v−
h,τ : [0, T ] × Ω → R

m for t ∈ (tk−1, tk) with
tk = kτ and x ∈ Ω by

ûh,τ (t, x) = tk − t

τ
uk−1

h (x) + t − tk−1

τ
uk

h(x),

u−
h,τ (t, x) = uk−1

h (x), u+
h,τ (t, x) = uk

h(x),

v+
h,τ (t, x) = vk

h(x).

For ease of presentation, we again restrict the presentation to the case m = 3.

Theorem 7.7 (Convergence) Suppose that ΓD = ∅, u0
h → u0 in H1(Ω;R3)

as h → 0, and that Th is weakly acute for every h > 0 if the projection
step is carried out. Then every accumulation point of the sequence (u+

h,τ )h,τ>0 in

L∞([0, T ]; H1(Ω;R3)) as (h, τ ) → 0 is a weak solution of the harmonic map heat
flow.

Proof Step 1: Selection of a weak limit.The stability bounds of Proposition7.6 imply
that the sequences (u+

h,τ )h,τ>0 and (v+
h,τ )h,τ>0 are uniformly bounded in the spaces

L∞([0, T ]; H1(Ω;R3)) and L2([0, T ]; L2(Ω;R3)), respectively, so that after the
extraction of a subsequence which is not relabeled, we have the existence of u ∈
L∞([0, T ]; H1(Ω;R3)) and v ∈ L2([0, T ]; L2(Ω;R3)) with

u±
h,τ ⇀∗ u in L∞([0, T ]; H1(Ω;R3)),

v+
h,τ ⇀ v in L2([0, T ]; L2(Ω;R3))

as (h, τ ) → 0. Since v+
h,τ − ∂t ûh,τ → 0 in L2([0, T ]; L1(Ω;R3)) as τ → 0 we

deduce that u ∈ H1([0, T ]; L2(Ω;R3)) and v = ∂t u.
Step 2: Verification of the energy law. From the stability bounds we have for almost
every T ′ ∈ [0, T ] up to a subsequence that ∇u+

h,τ (T
′, ·) ⇀ ∇u(T ′, ·). The weak

lower semicontinuity of norms induced by inner products shows that

1

2
‖∇u(T ′)‖2 +

T ′∫

0

‖∂t u‖2 dt ≤ 1

2
‖∇u0‖2

for almost every T ′ ∈ [0, T ].
Step 3: Unit-length constraint. An interpolation estimate and D2uh,τ |R = 0 for all
elements R ∈ Th yield for every t ∈ [0, T ] that
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∥∥Ih
[|u+

h,τ |2
] − |u+

h,τ |2
∥∥

L1(R)
≤ c|R|1/2h2

R

∥∥D2|u+
h,τ |2

∥∥
L2(R)

≤ c|R|1/2h2
R‖∇u+

h,τ‖2L4(R)

= ch2
R |R|∣∣∇uh,τ |R

∣∣2 ≤ ch2
R‖∇u+

h,τ‖2L2(R)
.

In the case of no projection we have

‖|Ih[u+
h,τ (t, ·)|2] − 1‖L1(Ω) ≤ cτ,

while for the scheme including the projection step we have, cf. the proof of
Proposition7.1,

‖|u+
h,τ (t, ·)|2 − 1‖ ≤ ch‖∇u+

h (t, ·)‖.

The triangle inequality yields that |u+
h,τ | → 1 in L1([0, T ] × Ω) in both cases, i.e.,

that |u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω .
Step 4: Attainment of initial data. The weak continuity of the trace operator and
u0

h → u0 in L2(Ω;R3) as h → 0 prove u(0, ·) = u0.
Step 5: Passage to the limit in the equation. It remains to show that the function u
solves the partial differential equation. For this, we choose ϕ ∈ L2([0, T ]; C∞(Ω;
R
3)) and define w(h,τ ) = u−

h,τ × ϕ and

wh,τ = Ih
[
u−

h,τ × ϕ
]
.

For this function we have u−
h,τ (t, z) · wh,τ (t, z) = 0 for almost every t ∈ [0, T ] and

every z ∈ Nh . Moreover, we have using D2uh,τ |R = 0 for all elements R ∈ Th that

‖∇(w(h,τ ) − wh,τ )‖L2(R) ≤ ch R‖D2[u−
h,τ × ϕ]‖L2(R)

≤ h R
(‖∇uh,τ‖L2(R)‖∇ϕ‖L2(R) + ‖uh,τ‖L2(R)‖D2ϕ‖L2(R)

)
.

A summation over R ∈ Th shows that wh,τ − wh,τ → 0 in L∞([0, T ]; H1(Ω;R3))

as (h, τ ) → 0. The equation of Algorithm7.4 yields

(v+
h,τ , wh,τ ) + (∇[u−

h,τ + τv+
h,τ ],∇wh,τ ) = 0

for almost every t ∈ [0, T ]. Due to Lemma7.6 we have that τ 1/2v+
h,τ is uniformly

bounded in L2([0, T ]; H1(Ω;R3)) and hence the term

T∫

0

(τ (∇v+
h,τ ,∇wh,τ ) dt ≤ τ 1/2

( T∫

0

τ‖∇v+
h,τ‖2 dt

)1/2( T∫

0

‖∇w+
h,τ‖2 dt

)1/2

converges to 0 as (h, τ ) → 0. We write
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T∫

0

(∇u−
h,τ ,∇wh,τ ) dt =

T∫

0

(∇u−
h,τ ,∇w(h,τ )) dt +

T∫

0

(∇u−
h,τ ,∇[wh,τ − w(h,τ )]) dt

and note that the second term on the right-hand side converges to 0 as (h, τ ) → 0,
while for the first term on the right-hand side we have

T∫

0

(∇u−
h,τ ,∇w(h,τ )) dt =

T∫

0

d∑
�=1

(∂�u−
h,τ , ∂�[u−

h,τ × ϕ]) dt

=
T∫

0

d∑
�=1

(∂�u−
h,τ , u × ∂�ϕ) dt

+
T∫

0

d∑
�=1

(∂�u−
h,τ , [u−

h,τ − u] × ∂�ϕ) dt.

This implies that for (h, τ ) → 0, we have

T∫

0

(∇[u−
h,τ + τv+

h,τ ],∇wh,τ ) dt →
T∫

0

(∇u,∇[u × ϕ]) dt.

Finally, we verify that

T∫

0

(v+
h , wh,τ ) dt =

T∫

0

(v+
h , u × ϕ) + (v+

h , [uh − u] × ϕ) + (v+
h , wh,τ − w(h,τ ) dt

→
T∫

0

(∂t u, u × ϕ) dt

as (h, τ ) → 0. Altogether we have proved that u satisfies

T∫

0

(∂t u, u × ϕ) + (∇u,∇[u × ϕ]) dt = 0

for all ϕ ∈ L2([0, T ]; C∞(Ω;R3)). Choosing ϕ(t, x) = ρ(t)w(x) we deduce that

(∂t u, u × w) + (∇u,∇[u × w]) dt = 0
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for all w ∈ C∞(Ω;R3). A density argument proves that this is satisfied for every
w ∈ H1(Ω;R3) ∩ L∞(Ω;R3). For φ ∈ H1(Ω;R3) ∩ L∞(Ω;R3) and w = u × φ,
we verify with the identities u × (u × φ) = (u · φ)u − φ and ∂t u · u = 0 that

−(∂t u, φ) + (∇u,∇[u × (u × φ)]) = 0

for almost every t ∈ [0, T ]. According to Proposition7.5 this implies that u is a weak
solution of the harmonic map heat flow. �

7.3.3 Constraint Preservation

The third characterization of solutions of the harmonic map heat flow in Proposi-
tion7.5 reads in the strong form that

∂t u + u × (u × �u) = 0;

this reveals a symplectic structure and implies that the L2-flow of harmonic maps
is constraint preserving, i.e., if |u0(x)| = 1 for almost every x ∈ Ω , then we have
|u(t, x)| = 1 for almost every (t, x) ∈ [0, T ]×Ω . We consider the case ΓD = ∅ for
ease of presentation.

Lemma 7.3 (Constraint preservation) Let u ∈ L∞([0, T ]; H1(Ω;R3)) satisfy
∂t u ∈ L2([0, T ]; L2(Ω;R3)) and u(0, ·) = u0 with u0 such that |u0(x)| = 1
for almost every x ∈ Ω . Assume that

(∂t u, φ) + (∇u,∇[u × (u × φ)]) = 0

for almost every t ∈ [0, T ] and every φ ∈ H1(Ω;R3) ∩ L∞(Ω;R3). Then we have
|u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω .

Proof Let ρ ∈ C∞(Rn) be a nonnegative function with ‖ρ‖L1(B1(0)) = 1 and
supp ρ ⊂ B1(0). Given ε > 0, set ρε(x) = ρ(x/ε) for x ∈ Ω . For x0 ∈ Ω the
choice of φ = ρε(· − x0)u implies that

d

dt

1

2
(|u(t, ·)|2 ∗ ρε)(x0) = (∂t u, ρεu) = 0,

i.e., (|u(T ′, ·)|2 ∗ ρε)(x0) = (|u0(·)|2 ∗ ρε)(x0) for every T ′ ∈ [0, T ]. Noting that
(|u(t, ·)|2 ∗ ρε)(x0) → |u(t, x0)| as ε → 0 implies the assertion. �

The lemma motivates the development of numerical schemes that preserve the
length-constraint in a discrete sense. For the Crank–Nicolson type discretization of
the strong form

dt u
k + uk−1/2 × (uk−1/2 × �uk−1/2) = 0
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we observe that testing with uk−1/2 = (uk + uk−1)/2 formally yields the length-
preservation property

dt |uk |2 = 0.

To obtain this property for a fully discrete scheme, reduced integration has to be
incorporated. We define the discrete Laplacian �̃huh ∈ S 1(Th)3 of a function
uh ∈ S 1(Th)3 by

(�̃huh, vh)h = −(∇uh,∇vh)

for all vh ∈ S 1(Th)3.

Algorithm 7.5 (Constraint-preserving iteration) Let u0
h ∈ S 1(Th)3 with

|u0
h(z)| = 1 for all z ∈ Nh and τ > 0 and define the sequence (uk

h)k=0,...,K ⊂
S 1(Th)3 such that

(dt u
k
h, φh)h + (uk−1/2

h × [uk−1/2
h × �̃huk−1/2

h ], φh)h = 0

for all φh ∈ S 1(Th)3.

To establish the well-posedness of the algorithm, we note that a corollary of
Brouwer’s fixed-point theorem states that if Φ : R

n → R
n is continuous with

Φ(s) · s ≥ 0 for all s ∈ R
n with |s| ≥ R for some R ∈ R, then there exists s∗ ∈ R

n

with |s∗| ≤ R and Φ(s∗) = 0.

Proposition 7.7 (Stability and constraint preservation) There exists a sequence
(uk

h)k=0,...,K ⊂ S 1(Th)3 that solves the scheme of Algorithm7.5. We have
|uk

h(z)| = 1 for k = 0, 1, . . . , K and

1

2
‖∇uL

h ‖2 + τ

L∑
k=1

‖dt u
k
h‖2 ≤ 1

2
‖∇u0

h‖2.

Proof Let k ≥ 1 and define Φh : S 1(Th)3 → S 1(Th)3 by

Φh(vh) = 2

τ
(vh − uk−1

h ) + Ih
[
vh × (vh × �̃hvh)

]
.

The function Φh is continuous and the Cauchy–Schwarz inequality, employing that
(Ihwh, vh)h = (wh, vh)h for all vh, wh ∈ S 1(Th)3, proves that

(Φh(vh), vh)h = 2

τ
(vh − uk−1

h , vh)h ≥ 1

τ
‖vh‖2h − 1

τ
‖uk−1

h ‖2h,

i.e., (Φh(vh), vh)h ≥ 0 for all vh ∈ S 1(Th)3 with ‖vh‖h ≥ ‖uk−1
h ‖h . Brouwer’s

fixed-point theorem thus implies that there exists rk
h ∈ S 1(Th)3 with Φh(rk

h ) = 0
or equivalently that uk

h = 2rk
h − uk−1

h solves
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0 = dt u
k
h + Ih

[
uk−1/2

h × (uk−1/2
h × �̃huk−1/2

h )
]
,

i.e.,
(dt u

k
h, wh)h + (uk−1/2

h × [uk−1/2
h × �̃huk−1/2

h ], wh)h = 0

for all wh ∈ S 1(Th)3. For z ∈ Nh and the function wh = [uk−1/2
h (z)]ϕz , the

properties of the discrete inner product imply that

βzdt |uk
h(z)|2 = βzdt u

k
h(z) · uk−1/2

h (z) = (dt u
k
h, ϕzuk−1/2

h )h

= (uk−1/2
h × [uk−1/2

h × �̃huk−1/2
h ], ϕzuk−1/2

h )h

= βz
(
uk−1/2

h (z) × [uk−1/2
h (z) × �̃huk−1/2

h (z)]) · uk−1/2
h (z) = 0,

i.e., |uk
h(z)| = |uk−1

h (z)|, and inductively the assumption |u0
h(z)| = 1 implies

|uk
h(z)| = 1. For wh = �̃huk−1/2

h , we obtain

dt‖∇uk
h‖2h + ∥∥uk−1/2

h × �̃huk−1/2
h

∥∥2
h

= (∇dt u
k
h,∇uk−1/2

h ) − (uk−1/2
h × [uk−1/2

h × �̃huk−1/2
h ], �̃uk−1/2

h )h

= −(dt u
k
h, �̃huk−1/2

h ) − (uk−1/2
h × [uk−1/2

h × �̃huk−1/2
h ], �̃uk−1/2

h )h = 0.

The choice of wh = dt uk
h shows that

‖dt u
k
h‖2h = −(uk−1/2

h × �̃huk−1/2
h , uk−1/2

h × dt u
k
h)h

≤ ‖uk−1/2
h × �̃huk−1/2

h ‖h‖uk−1/2
h × dt u

k
h‖h

and with |uk−1/2
h (z)| ≤ 1 for every z ∈ Nh , we deduce ‖dt uk

h‖ ≤ ‖uk−1/2
h ×

�̃huk−1/2
h ‖h . A combination of the last two estimates, multiplication by τ , and a

summation over k = 1, 2, . . . , L thus prove the asserted bound. �

Remarks 7.13 (i) The stability bound implies unconditional convergence to a weak
solution of the harmonic map heat flow.
(ii) The existence of the iterates in Algorithm7.5 was established by Brouwer’s fixed
point theorem which is nonconstructive and in fact the iterates may not be uniquely
defined. If τ ≤ ch2

min, the following linear iteration is constraint-preserving and

converges to the uniquely defined function uk−1/2
h . Set r0h = uk−1

h and define the
sequence (r�

h)�=0,1,... ⊂ S 1(Th)3 via

2

τ
(r�

h , φh)h + (r�
h × [r�−1

h × �̃hr�−1
h ], φh)h = 2

τ
(uk−1

h , φh)h

for all φh ∈ S 1(Th)3.
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7.3.4 Approximation of Wave Maps

Wave maps are solutions of the wave equation subject to a pointwise unit-length
constraint. They solve the partial differential equation

∂2t u − �u = λu

in [0, T ] × Ω with a Lagrange multiplier λ : [0, T ] × Ω → R associated to the
constraint |u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω and subject to the
boundary condition ∂nu = 0 on [0, T ] × ∂Ω and the initial conditions u(0, ·) = u0
and ∂t u(0, ·) = u1.Qualitatively, similar partial differential equations arise in general
relativity and particle physics. Wave maps may also be regarded as harmonic maps
on [0, T ] × Ω for the Dirichlet energy defined with the Minkowski metric on the
R
1+d time-space domain, i.e., they are stationary for

Ig(u) = 1

2

T∫

0

∫

Ω

|Du|2g dt dx

with Du = (∂t u,∇u) and |v|2g = −v20 + v21 + · · · v2d for v ∈ R
d+1. An important

feature of solutions for the wave map equation is the energy conservation property
that the mapping

t �→ I
(
u(t, ·), ∂t u(t, ·)) = 1

2

∫

Ω

|∂t u(t, ·)|2 dx + 1

2

∫

Ω

|∇u(t, ·)|2 dx

is constant as a function of t ∈ [0, T ].
Definition 7.4 Given u0 ∈ H1(Ω;Rm) and u1 ∈ L2(Ω;Rm), a wave map is a
function u : [0, T ] × Ω → R

m such that
(a) u ∈ H1([0, T ]; L2(Ω;Rm)) ∩ L2([0, T ]; H1(Ω;Rm)),
(b) |u(t, x)| = 1 for almost every (t, x) ∈ [0, T ] × Ω ,
(c) for all w ∈ C∞

c ([0, T ); C∞(Ω;Rm)) with u(t, x) · w(t, x) = 0 for almost every
(t, x) ∈ [0, T ] × Ω , we have

−
T∫

0

(∂t u, ∂t w) + (∇u,∇w) dt = (u1, w(0)),

(d) the initial data u0 is attained continuously by u as t → 0 in H1(Ω;Rm),
(e) for almost every T ′ ∈ [0, T ], we have

I
(
u(T ′, ·), ∂t u(T ′, ·)) ≤ I (u0, u1).
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The algorithm for approximating wave maps is a modification of Algorithm7.4
for the approximation of the harmonic map heat flow. The setsAh andFh[uk−1

h ] are
defined as above.

Algorithm 7.6 (Wave map approximation) Let u0
h, v0h ∈ S 1(Th)m with |u0

h(z)| = 1
for all z ∈ Nh and τ > 0 and define the sequence (uk

h)k=0,...,K ⊂ S 1(Th)m for
K = �T/τ� by computing vk

h ∈ Fh[uk−1
h ] such that

(dt v
k
h, wh) + (∇[uk−1

h + τvk
h],∇wh) = 0

for all wh ∈ Fh[uk−1
h ] and setting with ũh = uk−1

h + τvk
h

uk
h = ũk

h or uk
h =

∑
z∈Nh

ũk
h(z)

|̃uk
h(z)|ϕz .

We have the following stability result.

Proposition 7.8 (Stability) (i) If no projection is carried out, then vk
h = dt uk

h for
k = 1, 2, . . . , K and for L = 1, 2, . . . , K , we have

1

2
‖vL

h ‖2 + 1

2
‖∇uL

h ‖2 + τ 2

2

L∑
k=1

(‖dt v
k
h‖2 + ‖∇vk

h‖2) = 1

2
‖v0h‖2 + 1

2
‖∇u0

h‖2,
∥∥Ih

[|uL
h |2] − 1

∥∥
L1(Ω)

≤ c0τ.

(ii) If a projection is carried out in every step of the algorithm and if Th is weakly
acute, then we have |uk

h(z)| = 1 for k = 0, 1, . . . , K and all z ∈ Nh, and for
L = 1, 2, . . . , K that

1

2
‖vL

h ‖2 + 1

2
‖∇uL

h ‖2 + τ 2

2

L∑
k=1

(‖dt v
k
h‖2 + ‖∇vk

h‖2) ≤ 1

2
‖v0h‖2 + 1

2
‖∇u0

h‖2,

‖vL
h − dt u

L
h ‖L1(Ω) ≤ c0τ.
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Fig. 7.8 Matlab realization of Algorithm7.6 for the approximation of wave maps
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Proof The choice of wh = vk
h yields

dt

2
‖vk

h‖2 + τ

2
‖dt v

k
h‖2 + 1

2τ

(‖∇[uk−1
h + τvk

h]‖2 − ‖∇uk−1
h ‖2) + τ

2
‖∇vk

h‖2 = 0.

In the case of no projection, we have uk−1
h + τvk

h = uk
h , and a summation over

k = 1, 2, . . . , L implies the stability bound. If uk
h is obtained through a projection,

then it follows as in the proof of Proposition7.6 that ‖∇uk
h‖ ≤ ‖∇[uk−1

h + τvk
h]‖,

and again a summation over k = 1, 2, . . . , L implies the stability bound. The other
estimates follow as in the proof of Proposition7.6. �

Remark 7.14 The stability bounds imply the convergence of approximations to a
wave map.

Figure7.8 displays a Matlab realization of Algorithm7.6 that is based on the
implementation of Algorithm7.1.
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Chapter 8
Bending Problems

8.1 Mathematical Modeling

Bending describes the deformation of thin objects under small forces. Typically,
the object is neither stretched nor sheared, but large deformations occur. A simple
example is the deformation of a sheet of paper that is clamped on part of its boundary
and subject to a force such as gravity. Since curvatures are important to describe
such a behavior, the related mathematical models involve higher-order derivatives.
We discuss the derivation of such models and their properties. For further details we
refer to the textbooks [5, 6] and the seminal paper [10].

8.1.1 Bending Models

We consider a Lipschitz domain ω ⊂ R
2 representing the region occupied by a thin

plate, a body force f = (f1, f2, f3)

⊥

: ω → R
3 acting on it, and clamped boundary

conditions on the nonempty closed subset γD ⊂ ∂ω that prescribe the displacement
by a function uD and the rotation by a mapping ΦD on γD.

Definition 8.1 The nonlinear Kirchhoff model seeks a deformation u : ω → R
3

that minimizes the functional

IKi(u) = 1

2

∫

ω

|D2u|2 dx −
∫

ω

f · u dx,

subject to the isometry constraint (∇u)

⊥

∇u = I2 and the boundary conditions
u|γD = uD and ∇u|γD = ΦD.

The isometry constraint reflects the fact that pure bending theories do not allow
for a shearing or stretching of the plate. This limits the class of boundary conditions
that lead to nonempty sets of admissible deformations. In particular, the functionΦD
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218 8 Bending Problems

prescribes the normal, of the deformed surface on γD. The model sets no limitations
on the size of the deformation, but does not prohibit self-penetrations, i.e., it does
not enforce the surface parametrized by u be embedded. We will show below that
the isometry constraint allows us to replace the Frobenius norm of the Hessian by
the Euclidean norm of the Laplacian, i.e., |D2u| = |�u|, and that these expressions
coincide with the modulus of the mean curvature. For small displacements

φ = u − [id2, 0]

⊥

,

i.e., if |∇φ| � 1, the isometry constraint can be omitted and it suffices to consider
the vertical component w = u3 of the deformation. Typical large deformation and
small displacement situations are depicted in Fig. 8.1.

Definition 8.2 The linear Kichhoff model seeks a vertical displacement w : ω → R

that minimizes the functional

IKi
′
(w) = 1

2

∫

ω

|D2w|2 dx −
∫

ω

f3w dx

subject to the boundary conditions w|γD = 0 and ∇w|γD = 0, i.e., w belongs to the
set H2

D(ω) = {v ∈ H2(Ω) : v|γD = 0, ∇v|γD = 0}.
The linear Kirchhoff model is closely related to a model in which no second-order

derivatives occur. It may be regarded as an approximation of the linear Kirchhoff
model in which small shearing effects may occur. Mathematically, the second order
derivatives are replaced by an additional variable and the difference is penalized
with a penalty parameter, which may be regarded as a small artificial plate thickness.
Notice that the symmetric gradient of a gradient is the Hessian, i.e., ε(∇w) = D2w.

Definition 8.3 The linear Reissner–Mindlin model seeks for given t > 0 a vertical
displacement w : ω → R and a rotation θ : ω → R

3 that minimize the functional

IRM(w, θ) = t−2

2

∫

ω

|θ − ∇w|2 dx + 1

2

∫

ω

|ε(θ)|2 dx −
∫

ω

f3w dx,

Fig. 8.1 Large isometric deformation of a thin clamped plate (left) and small displacement
described by a linear model (right)



8.1 Mathematical Modeling 219

where ε(θ) = [(∇θ)

⊥

+ (∇θ)]/2, subject to the boundary conditions w|γD = 0 and
θ |γD = 0.

A solution u of the nonlinear Kirchhoff model defines an open surface in R3 that
is parametrized by the deformation u. Since this surface is isometric to ω, we have
that the Gaussian curvature K vanishes, i.e., that the local length and angle relations
are preserved under the deformation. The mean curvature is given by H2 = |D2u|2
and this identity establishes a relation to a bending model that is used to describe the
deformation of fluid membranes such as cell surfaces. Here, the considered surfaces
are closed. The justification of the model is less clear than in the case of solids. In
particular, fluid membranes can undergo large shearing effects that are not seen by
its description as a surface.

Definition 8.4 The Willmore model seeks a closed surfaceM ⊂ R
3 that minimizes

the functional

IWi(M ) = 1

2

∫

M

H2 ds −
∫

M

K ds,

subject to constraints that the surface area ofM or that the volume enclosed byM
be prescribed.

The integral over the Gaussian curvature is a topological invariant and can be
neglected if a minimizer is sought in a fixed topology class. If the surface area and
the enclosed volume are prescribed, then the model is referred to as the Helfrich
model.

8.1.2 Relations to Hyperelasticity

In three-dimensional hyperelasticity, pure bending is characterized by a cubic scaling
of the energy with respect to the plate thickness t, i.e., that

It(ut) =
∫

Ωt

W (∇ut) dx −
∫

Ωt

ft · ut dx ∼ t3

for the optimal deformations ut ∈ H1(Ωt;R3) as t → 0 forΩt = ω×(−t/2, t/2) ⊂
R
3, such that ut |ΓD = id on ΓD = γD × (−t/2, t/2). This motivates considering

the rescaled energy functionals Ît = t−3It and investigating the limiting behavior
for t → 0 in the framework of Γ -convergence. We let ∇′ denote the gradient with
respect to the first two variables x′ = (x1, x2). The corresponding three-dimensional
objects are denoted ∇ = (∇′, ∂3) and x = (x′, x3).

Theorem 8.1 (Dimension reduction [10]) Let

W (F) = dist2
(
F, SO(3)

)
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for all F ∈ R
3×3 and SO(3) = {F ∈ R

3×3 : F

⊥

F = I3, det F = 1}. Set
f̂t(x′, x̂3) = t−2ft(x′, t̂x3) and assume f̂t → f in L2(Ω1;R3) and that f is inde-
pendent of x̂3 ∈ (−1, 1). Let (ut)t>0 be a sequence of minimizers for the sequence of
functionals (It)t>0, i.e., ut ∈ H1(Ωt;R3) with ut |ΓD = idΓD . Then the rescaled func-
tions û(x′, x̂3) = u(x′, t̂x3) converge in H1(Ω1;R3) to a function u ∈ H1(Ω1;R3).
This function is independent of x̂3, defines a parametrized surface with the first funda-
mental form g = (∇′u)

⊥

(∇′u) = I2 in Ω1, and satisfies u ∈ H2(Ω1;R3). Moreover,
it has the boundary values u|γD = [id, 0]

⊥

and ∇′u|γD = [I2, 0]

⊥

and minimizes

IKi(u) = 1

12

∫

ω

|h|2 dx′ −
∫

ω

f · u dx′,

with the normal b = ∂1u × ∂2u and the second fundamental form h = −(∇′b)

⊥

(∇′u),
in functions v ∈ H1(Ω1;R3), that are independent of x̂3, satisfy (∇′v)

⊥

(∇′v) = I2
in Ω1, and have the same boundary conditions as u. Conversely, every such mini-
mizer u of IKi is the limit of a sequence of rescaled minimizers of It and the minimal
energies converge to IKi(u).

Remarks 8.1 (i) We will show below that |h| = |D2u| for the Frobenius norms of
the second fundamental form and the Hessian of u.
(ii) The result also holds for isotropic, frame-indifferent energy densities W ∈
C2(Rn×n) with W (I3) = 0, and W (F) ≥ dist2

(
F, SO(3)

)
, cf. [10].

For a heuristic justification of the result, we follow [7] and consider the rescaled
energy functional

Ît(u) = t−3
∫

Ωt

W (∇u) dx

with W given by

W (F) = dist2
(
F, SO(3)

) = min
Q∈SO(3)

|F − Q|2.

We assume that the optimal deformation ut = u is of the form

u(x′, x3) = v(x′) + x3b(x′)

with t-independent vector fields v, b : ω → R
3 and b is normal to the surface

parametrized by v, i.e., ∂�v(x′) · b(x′) = 0 for � = 1, 2. This means that v is the
deformation of the middle surface ω and the segments normal to ω are mapped to
straight lines that are normal to the deformed surface, cf. the right plot of Fig. 8.2.
We have

∇u = [∇′v, b] + [x3∇′b, 0].

For matrices F ∈ R
3×3 in a neighborhood of SO(3), we use the approximation
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Fig. 8.2 Normal segments are mapped to straight line segments under the Reissner–Mindlin
hypotheses (left); the Kirchhoff–Love hypotheses require that the deformed segments be normal to
the deformed middle surface (right)

W (F) = dist2
(
F, SO(3)

) ≈ 1

4
|F

⊥

F − I3|2.

For a proof of this relation considerF = P+εG, whereP = πSO(3)(F) is the nearest-
neighbor projection of F onto SO(3) and G is normal to SO(3) at P. We may assume
that P = I3, which implies that G is symmetric. Then dist2

(
F, SO(3)

) = ε2|G|2 and
|F

⊥

F−I3|2 = ε2|G+G

⊥

|2+O(ε3) = 4ε2|G|2+O(ε3). Since Ît(u) = t−3It(u) ≤ C
and t is small, we expect that W (∇u) is small, i.e., that ∇u is close to SO(3) so that

Ît(u) ≈ t−3

4

∫

Ωt

∣∣(∇u)

⊥

∇u − I3
∣∣2 dx.

Noting (∇′v)

⊥

∇′b = (∇′b)

⊥

∇′v, we have

(∇u)
⊥

∇u =
[
(∇′v)

⊥
∇′v 0

0 |b|2
]
+ x3

[
2(∇′b)

⊥
∇′v (∇′b)

⊥
b

b
⊥

∇′b 0

]
+ x23

[
(∇′b)

⊥
∇′b0

0 0

]
.

With the abbreviations

ĝt = t−1((∇′v)

⊥

∇′v − I2
)
, h = −(∇′v)

⊥

∇′b, k = (∇′b)

⊥

b,

we obtain

Ît(u) ≈ t−3

4

∫

Ωt

∣∣∣
[

t̂gt 0
0 |b|2 − 1

]
+ x3

[ −2h (∇′b)

⊥

b
b

⊥

(∇′b) 0

]
+ x23

[
k 0
0 0

] ∣∣∣2 dx

= t−3

4

∫

Ωt

∣∣∣
[

t̂gt − 2x3h + x23k (∇′b)

⊥

b
b

⊥

(∇′b) |b|2 − 1

] ∣∣∣2 dx.

To guarantee that this expression is bounded t-independently, we need to impose the
condition |b|2 = 1, and with the resulting identity b

⊥

∇′b = 0, we deduce that

Ît(u) ≈ t−3

4

∫

Ωt

∣∣t̂gt − 2x3h + x23k
∣∣2 dx.
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By carrying out the integration with respect to x3, we obtain

Ît(u) ≈ 1

4

∫

ω

|̂gt |2 + 1

3
|h|2 + t2

5 · 24 |k|2 + t

6
ĝt : k dx′.

Again, to obtain a t-independent limit, we need that ĝt = 0. Neglecting the term
involving the factor t2, this leads to the reduced, t-independent functional

Ît(u) = 1

12

∫

ω

|h|2 dx′,

subject to the pointwise constraint (∇′v)

⊥

∇′v = I2. We finally remark that for
forces described by functions ft that are independent of x3 and such that t−2ft → f
in L2(ω;R3) as t → 0, we find with the assumed expansion u(x) = v(x′) + x3b(x′)
that

t−3
∫

Ωt

ft · u dx = t−3
∫

Ωt

ft · v dx + t−3

t/2∫

−t/2

∫

ω

x3b · ft dx′ dx3

= t−2
∫

Ωt

ft · v dx →
∫

ω

f · v dx′

as t → 0.

8.1.3 Relations to Linear Elasticity

Linear elasticity employs a geometric linearization defined through the symmetric
gradient

ε(φ) = 1

2

(
(∇φ)

⊥

+ ∇φ
) ≈ 1

2

(
(∇u)

⊥

∇u − I3
)

for small displacements φ = u − id3 : Ω → R
3 with Ω ⊂ R

3. The energy density
W is approximated by the quadratic expression

W (∇u) ≈ 1

2
D2W (I3)[∇φ,∇φ] = 1

2
D2W (I3)[ε(φ), ε(φ)],

provided W is isotropic and frame-indifferent, using that W (I3) = 0, and
DW̃ (I3) = 0. For homogeneous materials it follows that with the Lamé constants
λ,μ we have for every symmetric matrix E ∈ R

3×3 with C = D2W (I3) that
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CE = 2μE + λ(tr E)I3.

The related minimization problem looks for φ : Ω → R
3 to be minimal for the

Navier–Lamé functional

INL(φ) = 1

2

∫

Ω

Cε(φ) : ε(φ) dx −
∫

Ω

f̂ · φ dx,

subject to φ|ΓD = 0. For thin plates Ωt = ω × (−t/2, t/2) with Dirichlet boundary
ΓD = γD × (−t/2, t/2) for γD ⊂ ∂ω, often the following assumptions are made to
obtain a dimensionally reduced model. The different assumptions are illustrated in
Fig. 8.2.

Assumption 8.1 (Reissner–Mindlin hypotheses) (1) Points on the middle surface
are only displaced in the vertical direction, i.e., φ1(x′, 0) = φ2(x′, 0) = 0 for all
x′ ∈ ω.
(2) The vertical displacement does not depend on x3, i.e., φ3(x′, x3) = w(x′).
(3) Segments that are normal to the middle surface are linearly deformed, i.e.,
φ(x′, x3) = φ(x′, 0) − x3θ̂ (x′) for all (x′, x3) ∈ Ωt .

The assumption implies that the minimizer for INL is given by

φ(x′, x3) =
[−x3θ(x′)

w(x′)

]

with the rotation θ : ω → R
2 and the vertical displacement w : ω → R.

Assumption 8.2 (Kirchhoff–Love hypotheses) In addition to the Reissner–Mindlin
hypotheses, assume that segments that are normal to the middle surface are mapped
linearly and isometrically to segments that are normal to the deformedmiddle surface,
i.e., φ(x′, x3) = φ(x′, 0) − x3θ̂ (x′) for all (x′, x3) ∈ Ωt with

θ̂ (x′, 0) = (1 + |∇′w|2)−1/2
[∇′w

0

]
≈

[∇′w
0

]
.

Note that φ is the displacement, so that the third component of the normal vector θ̂
disappears. The additional assumption implies that the solution of the linearly elastic
problem is given by

φ(x′, x3) =
[−x3∇′w(x′)

w(x′)

]

for the vertical displacement w : ω → R.

Proposition 8.1 (Linear bending) Assume that ft is independent of x3 and set f3 =
t−2ft,3. Suppose that CE = E for all symmetric matrices E ∈ R

3×3. Let φ ∈
H1
D(Ωt;R3) be the minimizer of the three-dimensional elasticity functional INL with



224 8 Bending Problems

Ω = Ωt and f̂ = ft . Up to a change of constants we have:
(i) Under the Reissner–Mindlin hypotheses the pair (w, θ) ∈ H1

D(ω) × H1
D(ω;R2)

that specifies φ solves the linear Reissner–Mindlin model.
(ii) Under the Kirchhoff–Love hypotheses the function w ∈ H2

D(ω) that specifies φ

solves the linear Kirchhoff model.

Proof In the case of the Reissner–Mindlin hypotheses we have

ε′(φ) = 1

2

[−x3∇′θ −θ

(∇′w)

⊥

0

]
+ 1

2

[−x3(∇′θ)

⊥

∇′w
−θ

⊥

0

]
=

[ −x3ε′(θ) (∇′w − θ)/2
(∇′w − θ)

⊥

/2 0

]
.

Therefore, due to the assumption CE = E,

Cε′(φ) : ε′(φ) = x23 |ε′(θ)|2 + 1

2
|∇′w − θ |2.

An integration over Ωt = ω × (−t/2, t/2) shows that

1

2

∫

Ωt

Cε′(ϕ) : ε′(ϕ) dx = t3

24

∫

ω

|ε′(θ)|2 dx′ + t

4

∫

ω

|∇′w − θ |2 dx′.

Since ft is independent of x3, we have

∫

Ωt

ft · ϕ dx =
∫

ω

t/2∫

−t/2

(−x3)θ · ft,12 dx3 dx′ +
∫

ω

t/2∫

−t/2

wft,3 dx3 dx′ = t
∫

ω

ft,3w dx′.

Hence,

t−3INL(ϕ) = 1

24

∫

ω

|ε(θ)|2 dx′ + t−2

4

∫

ω

|∇w − θ |2 dx′ −
∫

ω

f3w dx′.

For the Kirchhoff hypothesis, this simplifies to IKi
′
due to the identities ∇′w = θ

and ε′(∇′w) = ∇′∇′w. �

Remark 8.2 If CE = 2μE + λ(tr E)I3 is considered then the assumption that for
σ = Cε(φ) we have σ33 = 0 has to be included.

8.1.4 Properties of Isometries

Given a surface M parametrized by u : ω → R
3 the first and second fundamental

forms g, h : ω → R
2×2 are given by
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g = (∂iu · ∂ju)1≤i,j≤2 = (∇u)

⊥

∇u,

h = −(∂ib · ∂ju)1≤i,j≤2 = −(∇b)

⊥

∇u = b

⊥

D2u,

where b = ∂1u × ∂2u/|∂1u × ∂2u| is a unit normal to M . The parametrization is
assumed to be an immersion, so that the tangent vectors ∂1u and ∂2u are linearly
independent everywhere in ω. The first and second fundamental form are interpreted
as bilinear forms on the tangent space TM in terms of the coefficients of the family
of bases

(
∂1u(x), ∂2u(x)

)
x∈ω

. It follows that g is a symmetric and positive definite
matrix for every x ∈ ω that defines a metric on the tangent space of M . The Gauss
and mean curvature are the determinant and the trace of the Weingarten map

s = −hg−1

and given by

K = det s = det h

det g
, H = tr s = −h : det′ g

det g
,

respectively. The Weingarten map measures variations of the normal b and is inter-
preted as a linear mapping on the tangent space. The second fundamental form is
the bilinear form associated with s. We refer the reader to Sect. 8.4 for a detailed
discussion.

Definition 8.5 The parametrization u : ω → R
3 is called isometry if g(x) = I2 for

every x ∈ ω.

Proposition 8.2 Suppose that u : ω → R
3 is a C2-isometry. Then ∂i∂ju · ∂ku = 0,

K = 0, and
|D2u| = |�u| = |h| = |H|,

where | · | denotes the Frobenius norm on the respective spaces.

Proof We first note that for 1 ≤ i, j ≤ 2, we have 0 = ∂i(∂ju · ∂ju) = 2∂i∂ju · ∂ju.
To show that we also have ∂2i u · ∂ju = 0 for i 
= j, we note 0 = ∂i(∂i · ∂ju) =
∂2i u · ∂ju + ∂iu · ∂i∂ju, i.e., ∂2i u · ∂ju = −∂iu · ∂i∂ju = 0. Hence, we have

∂i∂ju · ∂ku = 0

for i, j, k = 1, 2, i.e., the Christoffel symbols of the second kind vanish. As a con-
sequence of Gauss’ theorem, cf. Lemma 8.3, we have K = 0. Moreover, we deduce
that −�u = βb and since (−�u) · b = tr(−h) = H, we have β = H. The
vectors (∂1u, ∂2u, b) form an orthonormal basis of R3 for every x ∈ ω, so that
|∂i∂ju| = |∂i∂ju · b| and hence

|D2u|2 =
2∑

i,j=1

|∂i∂ju · b|2 = |h|2.
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Moreover, we have

|h|2 = |s|2 = (tr s)2 − 2 det s = H2 − 2K = H2,

which proves the assertion. �
Remark 8.3 Since isometries in H2(ω;R3) can be approximated by isometries in
C2(ω;R3) in the norm of H2(ω;R3), the results of the proposition also hold for
isometries u ∈ H2(ω;R3), cf. [12].

8.2 Approximaton of Linear Bending Models

We discuss in this section numerical methods for the approximation of the linear
Kirchhoff and the linear Reissner–Mindlinmodel. Finite elementmethods for dimen-
sionally reduced models have to be carefully developed to avoid so-called locking
effects. This describes the phenomenon that deformations obtained by numerical
computation are too small in comparison to the true deformation. In particular, mem-
brane locking is the inability of a finite element method to capture bending effects
without stretching while shear locking refers to the problem that a finite element
method is too stiff to describe certain in-plane deformations due to the occurrence of
a small parameter. Another effect that occurs in the description of thin elastic struc-
tures is theBabuška paradox that states that if a domain is approximated by polygons,
then the numerical solutions may fail to converge to the correct solution. We follow
closely the presentation of [5] and refer the reader to [4] for further aspects.

8.2.1 Discrete Kirchhoff Triangles

To avoid an H2-conforming finite element method for the linear Kirchhoff model,
we employ a nonconforming discretization that is based on the construction of a
discrete gradient operator

∇h : Wh → Θh

with H1-conforming finite element spaces Wh ⊂ H1(ω) and Θh ⊂ H1(ω;R2).
These are for a regular triangulation Th of ω defined as

Wh = {wh ∈ C(ω) : wh|T ∈ Pred
3 (T) for all T ∈ Th,

∇wh continuous at all z ∈ Nh},
Θh = {θh ∈ C(ω) : θh|T ∈ P2(T) for all T ∈ Th}.

Here, Pk(T) for every T ∈ Th denotes the set of polynomials of total degree less
or equal to k ≥ 0 restricted to T . The superscript in Pred

3 means that one degree of
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h
Wh h

Fig. 8.3 Schematic description of the elementwise reduced cubic finite element space Wh (left)
and the space of elementwise quadratic vector fields Θh (right)

freedom is eliminated, i.e., with the center of mass xT = (1/3)
∑

z∈Nh∩T z of T ,

Pred
3 (T) = {

p ∈ P3(T) : p(xT ) = 1

3

∑
z∈Nh∩T

[
p(z) + ∇p(z) · (xT − z)

]}
.

The degrees of freedom in Wh are the function values and the derivatives at the
vertices of the elements, cf. Fig. 8.3. For w ∈ H3(ω), we define the nodal interpolant
Ĩ 3

h w ∈ Wh by the conditions Ĩ 3
h w(z) = w(z) and ∇Ĩ 3

h w(z) = ∇w(z) for all
z ∈ Nh.

Definition 8.6 The discrete gradient operator ∇h : Wh → Θh is for wh ∈ Wh the
uniquely defined function θh = ∇hwh ∈ Θh with

θh(z) = ∇wh(z) for all z ∈ Nh,

θh(zS) · nS = 1

2

(∇wh(z
1
S) + ∇wh(z

2
S)

) · nS for all S ∈ Sh,

θh(zS) · tS = ∇wh(zS) · tS for all S ∈ Sh,

where, for all sides S ∈ Sh, the orthonormal vectors nS, tS ∈ R
2 are chosen such

that nS is normal to S, z1S, z2S ∈ Nh are the endpoints of S, and zS = (z1S + z2S)/2 is
the midpoint of S. For w ∈ H3(Ω), we set ∇hw = ∇hĨ

3
h w.

Remark 8.4 For every S ∈ Sh we have

∇hwh(zS) = 1

2

[(∇wh(z
1
S) + ∇wh(z

2
S)

) · nS
]
nS + [∇wh(zS) · tS

]
tS.

The following lemma shows that∇h may be regarded as an interpolation operator
on the space of gradients of functions in H3(ω). We let γD ⊂ ∂ω be closed and of
positive surface measure and define γN = ∂ω \ γD.

Lemma 8.1 (Properties of ∇h [5]) (i) There exists c1 > 0 such that for all wh ∈ Wh
and T ∈ Th, we have for � = 0, 1 that

c−1
1 ‖∇�+1wh‖L2(T) ≤ ‖∇�∇hwh‖L2(T) ≤ c1‖∇�+1wh‖L2(T),
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where ∇1 = ∇ and ∇0 = I.
(ii) There exists c2 > 0 such that for all w ∈ H3(ω) and T ∈ Th, we have

‖∇hw − ∇w‖L2(T) + hT ‖∇∇hw − D2w‖L2(T) ≤ c2h2T ‖D3w‖L(T).

(iii) There exists c3 > 0 such that for all wh ∈ Wh and T ∈ Th, we have

‖∇hwh − ∇wh‖L2(T) ≤ c3hT ‖D2wh‖L2(T).

(iv) The mapping wh �→ ‖∇∇hwh‖ defines a norm on

Wh,D = {
wh ∈ Wh : wh(z) = 0, ∇wh(z) = 0 for all z ∈ Nh ∩ γD

}
,

and we have wh|γD = 0 and ∇wh|γD = 0 for all wh ∈ Wh,D.

Proof (i) Both expressions define semi-norms and we show that ∇�+1wh = 0 if and
only if ∇�∇hwh = 0 for all wh ∈ Wh. Assume that ∇hwh|T = cT for some cT ∈ R

2.
Then ∇wh(z) = cT for all z ∈ Nh ∩ T and ∇wh(zS) = cT for all S ∈ Sh ∩ T .
Thus, the cubic polynomials wh|S are affine for all S ∈ Sh ∩ ∂T , and also the
function wh|∂T is affine. Due to the elementwise constraint in the definition of Wh,
it follows that wh|T is affine and thus ∇wh = cT . If conversely ∇wh|T = cT , then
also ∇hwh|T = cT . Hence, the expressions ‖∇�+1wh‖L2(T) and ‖∇�∇hwh‖L2(T) are
equivalent semi-norms on Wh|T and a scaling argument proves the first assertion.
(ii) Since ∇hw|T is affine if ∇w|T is affine, the Bramble–Hilbert lemma yields the
interpolation estimate

‖θ − θh‖L2(T) + hT ‖∇(θ − θh)‖L2(T) ≤ ch2T ‖D2θ‖L2(T)

for θ = ∇w ∈ H2(ω) and θh = ∇hw.
(iii) The estimate is a consequence of (ii) and the inverse estimate ‖D3wh‖L2(T) ≤
ch−1

T ‖D2wh‖L2(T).
(iv) If wh(z) = 0 and ∇hwh(z) = 0 for all z ∈ Nh ∩ γD then, since wh|S is a cubic
polynomial for every S ∈ Sh, it follows that wh|γD = 0 and ∇hwh|γD = 0. Assume
that ‖∇∇hwh‖ = 0. Then, since∇hwh|γD = 0 we deduce by Poincaré inequality that
∇hwh = 0 in ω. With (i) and wh|γD = 0 we find wh = 0 in ω. �

The interpolation estimates allow us to prove the following error estimate.

Theorem 8.2 (Error estimate) Assume that w ∈ H2
D(ω) ∩ H3(ω) is the solution of

the linear Kirchhoff model, i.e.,

(D2w, D2v) = (f , v)

for all v ∈ H2
D(ω) and let wh ∈ Wh,D solve

(∇∇hwh,∇∇hvh) = (f , vh)
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for all vh ∈ Wh,D. Then we have

‖D2w − ∇∇hwh‖ ≤ ch‖w‖H3(ω).

Proof The Lax–Milgram lemma and Lemma 8.1(iv) imply the existence of unique
solutions w ∈ H2

D(ω) and wh ∈ Wh,D. The assumption w ∈ H3(ω), the boundary
condition (D2w)n|γN = 0, an integration by parts, and the identities div D2 = �∇ =
∇� show, that for all v ∈ H2

D(ω), we have

(f , v) = (D2w, D2v) = −(∇�w,∇v)

and this identity holds for all v ∈ H1
D(ω). Therefore, for vh ∈ Wh,D it follows that

(∇∇hw,∇∇hvh) = (D2w,∇∇hvh) + (∇[∇hw − ∇w],∇∇hvh)

= −(∇�w,∇hvh) + (∇[∇hw − ∇w],∇∇hvh)

= −(∇�w,∇vh) − (∇�w, [∇hvh − ∇vh])
+ (∇[∇hw − ∇w],∇∇hvh).

Recalling that ∇hw = ∇hĨ
3

h w and incorporating the discrete and continuous for-
mulations, this yields that

‖∇∇h[w − wh]‖2 = (∇∇hw,∇∇h[w − wh]) − (∇∇hwh,∇∇h[w − wh])
= (f , Ĩ 3

h w − wh) + (∇�w,∇h[w − wh] − ∇[Ĩ 3
h w − wh])

+ (∇[∇hw − ∇w],∇∇h[w − wh]) − (f , Ĩ 3
h w − wh)

= (∇�w,∇h[w − wh] − ∇[Ĩ 3
h w − wh])

+ (∇[∇hw − ∇w],∇∇h[w − wh]).

For the first term on the right-hand side we have by Lemma 8.1(i) and (iii) that

(∇�w,∇h[w − wh] − ∇[Ĩ 3
h w − wh]) ≤ ch‖∇�w‖‖∇∇h[w − wh]‖.

The second term is estimated with the help of Lemma 8.1(ii), i.e.,

(∇[∇hw − ∇w],∇∇h[w − wh]) ≤ ch‖D3w‖‖∇∇h[w − wh]‖

The combination of the last three estimates, the triangle inequality, and the bound
‖D2w − ∇∇hw‖ ≤ ch‖D3w‖ of Lemma 8.1(ii) prove the assertion. �
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8.2.2 Realization

For the implementation of the discrete Kirchhoff triangle, we identify functions wh ∈
Wh and θh ∈ Θh with vectors W ∈ R

3L and Θ ∈ R
2(L+M), where L = nC = #Nh

and M = nS = #Sh, defined by

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wh(z1)
∇wh(z1)
wh(z2)

∇wh(z2)
...

wh(zL)

∇wh(zL)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wz1
δwz1
wz2
δwz2

...

wzL

δwzL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θh(z1)
θh(z2)

...

θh(zL)

θh(zS1) − (
θh(z1S1) + θh(z2S1)

)
/2

θh(zS2 ) − (
θh(z1S2 ) + θh(z2S2 )

)
/2

...

θh(zSM ) − (
θh(z1SM

) + θh(z2SM
)
)
/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θz1
θz2
...

θzL

θS1
θS2
...

θSM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Nh = {z1, z2, . . . , zL} and Sh = {S1, S2, . . . , SM}. For the coefficient of θh
related to a side S ∈ Sh, we subtract half of the values of θh at the corresponding
endpoints z1S and z2S since we use the hierarchical basis

(
ϕz1 , ϕz2 , . . . , ϕzL , ϕS1 , ϕS2 , . . . ϕSM

)

of the space S 2(Th) = {vh ∈ C(ω) : vh|T ∈ P2(T) for all T ∈ Th} given by the
nodal basis (ϕz1 , ϕz2 , . . . , ϕzL ) of S 1(Th) and the functions ϕS = 4ϕz1S

ϕz2S
for all

S ∈ Sh. A straightforward calculation shows that, for a function wh ∈ Pred
3 (T), we

have that wh|S is cubic for every side S ⊂ ∂T with

(∇wh(zS)
) · tS = 3

2|S|
(
wh(z

2
S) − wh(z

1
S)

) − 1

4

(∇wh(z
1
S) + ∇wh(z

2
S)

) · tS

with |S| = |z2S − z1S| and z2S − z1S = |S|tS . Since (nS, tS) are orthonormal vectors it
follows for θh = ∇hwh that

θh(zS) = (∇wh(zS) · tS
)
tS + [1

2

(∇wh(z
1
S) + ∇wh(z

2
S)

) · nS
]
nS

= (∇wh(zS) · tS
)
tS + 1

2

(∇wh(z
1
S) + ∇wh(z

2
S)

)

− [1
2

(∇wh(z
1
S) + ∇wh(z

2
S)

) · tS
]
tS

= 3

2|S|
(
wh(z

2
S) − wh(z

1
S)

)
tS − 3

4

[(∇wh(z
1
S) + ∇wh(z

2
S)

) · tS
]
tS

+ 1

2

(∇wh(z
1
S) + ∇wh(z

2
S)

)
.
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Since θh(z
j
S) = ∇wh(z

j
S), j = 1, 2, the corresponding coefficient is given by

θS = θh(zS) − (
θh(z

1
S) + θh(z

2
S)

)
/2

= 3

2|S|
(
wh(z

2
S) − wh(z

1
S)

)
tS − 3

4

[(∇wh(z
1
S) + ∇wh(z

2
S)

) · tS
]
tS.

With these identifications, the discrete gradient operator can be represented by a
matrix Dh ∈ R

2(L+M)×3L. For a single element T = conv{z1, z2, z3} with sides
S1 = conv{z2, z3}, S2 = conv{z3, z1}, and S3 = conv{z1, z2}, we have

⎡
⎢⎢⎢⎢⎢⎢⎣

θz1
θz2
θz3
θS1
θS2
θS3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I2 0 0 0 0
0 0 0 I2 0 0
0 0 0 0 0 I2
0 0 t̃S1 T̃S1 −̃tS1 T̃S1

t̃S2 T̃S2 0 0 −̃tS2 T̃S2
t̃S3 T̃S3 −̃tS3 T̃S3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

wz1
δwz1
wz2
δwz2
wz3
δwz3

⎤
⎥⎥⎥⎥⎥⎥⎦

where T̃S�
= −(3/4)tS�

t

⊥

S�
and t̃S�

= −(3/(2|S�|))tS�
. For a simpler implementation

we approximated the right-hand side using numerical integration, i.e.,

∫

ω

f3wh dx ≈
∫

ω

Ih[f3wh] dx

which is computed with the lumped mass matrix. Figure8.5 displays an implemen-
tation of the approximation of the linear Kirchhoff model with the discrete Kirchhoff
triangle. The M × 2 field n4s provides an enumeration of the edges and defines
their endpoints. The field s4e has dimension nE × 3, nE = #Th, and contains the
global numbers of the sides of the elements in Th, where the convention that the
jth edge of T is opposite to the jth node of T is used, cf. Fig. 8.4. These arrays are
provided by the subroutine sides. The stiffness matrix of the P2 finite element
space with respect to the hierarchical basis defined above is provided by the routine
fe_matrix_p2.m.

Fig. 8.4 Local enumeration
of the sides of a triangle
every side is associated to
the opposite node

z2z1 S3

z3

S1
S2
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Fig. 8.5 Matlab routine for the approximation of the linear Kirchhoff model with Kirchhoff
triangles

8.2.3 Reissner–Mindlin Plate

The linear Reissner–Mindlin model seeks a pair (w, θ) ∈ H1
D(ω) × H1

D(ω;R2) such
that (

ε(θ), ε(ψ)
) + t−2(θ − ∇w, ψ − ∇η) = (f , η)

for all (ψ, η) ∈ H1
D(ω;R2)×H1

D(ω). The corresponding strong form of the problem
reads as
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− div ε(θ) + t−2(θ − ∇w) = 0 in ω, θ |γD = 0, ∂nθ |γN = 0,

t−2 div (θ − ∇w) = f in ω, w|γD = 0, (θ − ∇w) · n|γN = 0

with γN = ∂ω \ γD. The problem can be simplified by employing a Helmholtz
decomposition of θ − ∇w. For a function p ∈ H1(ω) we write

Curl p = (∇p)⊥ = [−∂2p, ∂1p]

⊥

.

Proposition 8.3 (Equivalent formulation)Assume that ω is simply connected. There
exist uniquely defined functions r ∈ H1

D(ω) and p ∈ H1(ω) with
∫
ω

p dx = 0 and
Curl p · n|γN = 0, such that t−2(θ −∇w) = −∇r −Curl p. The function r ∈ H1

D(ω)

satisfies
(∇r,∇η) = (f , η)

for all η ∈ H1
D(ω). The pair (θ, p) is uniquely defined by the equations

(
ε(θ), ε(ψ)

) − (Curl p, ψ) = (∇r, ψ),

(θ,Curl q) − t2(Curl p,Curl q) = 0

for all (ψ, q) ∈ H1
D(ω;R2)×H1(ω) with Curl q ·n|γN = 0. The function w ∈ H1

D(ω)

satisfies
(∇w,∇v) = (θ,∇v) + t2(∇r,∇v)

for all v ∈ H1
D(ω).

Proof Let r ∈ H1
D(ω) be the unique solution of

(∇r,∇η) = (f , η) = −t−2(θ − ∇w,∇η)

for all η ∈ H1
D(ω). Since F = t−2(θ − ∇w) + ∇r satisfies div F = 0 in ω and since

F · n|γN = 0, there exists a uniquely defined function p ∈ H1(ω) with
∫
ω

p dx = 0,
Curl p · n = 0 on γN, and F = −Curl p, cf., e.g., [11]. For all η ∈ H1

D(ω), we then
have

(Curl p,∇η) =
∫

∂ω

η Curl p · n ds = 0.

The equations now follow from the weak formulation of the linear Reissner–Mindlin
model and the identity that defines Curl p. �

The equations derived in the proposition show that the solution of the linear
Reissner-Mindlin model can be computed by successively solving three problems.
The first and the third formulations that define r and w are Poisson problems, while
the second one defines the pair (θ, p) through a saddle-point problem with a penalty
term that is qualitatively equivalent to the Stokes problem. In particular, the inf-sup
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condition is satisfied and the solution operator is bounded t-independently. This
implies the robust solvability of the Reissner–Mindlin model, provided that the
finite element spaces used for the approximation of (θ, p) satisfy a discrete inf-
sup condition. A possible choice is the so-called mini-element, which is the lowest
order conforming polynomial element for the Stokes problem. To guarantee that a
discrete Helmholtz decomposition is available, the variables r and w then need to be
approximated in the nonconforming Crouzeix–Raviart finite element space, cf. [1]
for related details and optimal, t-independent error estimates.

8.3 Approximation of the Nonlinear Kirchhoff Model

The linear Kirchhoff model may be regarded as a simplification of the nonlinear
Kirchhoff model in the case of small displacements. We generalize in this section the
finite element method based on discrete Kirchhoff triangles for the linear model to
the nonlinear one that describes large bending deformations. The proposed method
uses techniques developed in [3].

8.3.1 Discretization

We employ the spaces Wh and Θh introduced for the approximation of the linear
Kirchhoff model. The fact that the gradient of a function in Wh is continuous at
vertices of elements allows us to impose the isometry constraint at those points. We
thus consider the minimization problem defined by

IKih (uh) = 1

2

∫

ω

|∇∇huh|2 dx −
∫

ω

f · uh dx

subject to uh ∈ Ah = {
vh ∈ W 3

h , [∇vh(z)]

⊥

∇vh(z) = I2 for all z ∈ Nh,

vh(z) = uD(z), ∇vh(z) = ΦD(z) for all z ∈ Nh ∩ γD
}
.

For the vector field uh ∈ W 3
h , the approximate gradient∇huh is obtained by applying

∇h to each component of uh. We suppose that the boundary data uD and ΦD are
compatible in the sense that for a function ũD ∈ H2(ω;R3) with (∇ũD)

⊥

∇ũD = I2
in ω, we have uD = ũD|γD and ΦD = ∇ũD|γD. We also assume that uD and ΦD can
be approximated with arbitrary accuracy by nodal interpolation on γD, i.e.,

∥∥uD − Ih̃uD|γD
∥∥

L2(γD)
+ ∥∥ΦD − Ih∇ũD|γD

∥∥
L2(γD)

→ 0

as h → 0. For analyzing convergence of the numerical scheme, we assume that there
exists a solution of the nonlinear Kirchhoff model that is smooth or which can be
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approximated by smooth isometries. This assumption is not a restriction because of
corresponding density results in [12].

Theorem 8.3 (Approximation) Assume that there exists a minimizer u ∈ A with

A = {v ∈ H2(ω;R3) : (∇v)

⊥

∇v = I2, v|γD = uD, ∇v|γD = ΦD}

for the nonlinear Kirchhoff model which can be approximated in H2(ω;R3) by
functions v ∈ A ∩ H3(ω;R3). For every h > 0 there exists a minimizer uh ∈ W 3

h of
IKih . If (uh)h>0 is a sequence of minimizers, then ‖∇uh‖ ≤ C, for all h > 0, and every
accumulation point u ∈ H1(ω;R3) of the sequence is a strong accumulation point,
belongs to H2(ω;R3), satisfies (∇u)

⊥

∇u = I2 almost everywhere in ω, u|γD = uD,
and ∇u|γD = ΦD, and is a minimizer for IKi.

Proof By Lemma 8.1 (iii) we have that ‖∇∇huh‖ is a norm and this implies that IKih
has a minimizer. Because of the assumptions on the boundary data, it follows by
Poincaré inequality andLemma8.1 (i) that ‖∇uh‖ ≤ C and ‖∇∇huh‖ ≤ C for all h >

0. Let u ∈ H1(ω;R3) and z ∈ H1(ω;R3×2) be such that for a subsequence (which is
not relabeled), we have uh ⇀ u in H1(ω;R3) and ∇huh ⇀ z in H1(ω;R3×2). With
Lemma 8.1 we verify that ‖∇huh − ∇uh‖ ≤ ch‖∇∇huh‖ and this yields ∇u = z,
in particular u ∈ H2(ω;R3). The attainment of the boundary data follows from
continuity properties of the trace operators and the fact that

‖uh − Ihuh‖ + ‖∇huh − Ih∇huh‖ → 0

as h → 0. A nodal interpolation estimate and an inverse estimate yield that for every
T ∈ Th, we have

∥∥(∇uh
) ⊥

∇uh − I2
∥∥

L1(T)
≤ ch2T

∥∥D2[(∇uh
) ⊥

∇uh
]∥∥

L1(T)

≤ ch2T
(‖D3uh‖L2(T)‖∇uh‖L2(T) + ‖D2uh‖2L2(T)

)
≤ chT

(‖D2uh‖L2(T)‖∇uh‖L2(T) + ‖D2uh‖2L2(T)

)
.

A summation over all T ∈ Th together with the fact that ∇uh converges strongly to
∇u implies that (∇u)

⊥

∇u = I2 almost everywhere in ω. To verify that u minimizes
IKi, we first note that by weak lower semicontinuity of the L2 norm, we have

‖D2u‖ = ‖∇z‖ ≤ lim inf
h→0

‖∇∇huh‖

and ∫

ω

uh · f dx →
∫

ω

u · f dx.

This proves that
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IKi(u) ≤ lim inf
h→0

IKih (uh).

To show that the minimal energy is attained let ũ ∈ A be a minimizing isometry for
IKi. Due to the assumed approximability of ũ by smooth isometries, we may assume
that ũ ∈ H3(ω;R3). We define ũh = Ĩ 3

h ũ ∈ Ah and note with Lemma 8.1(ii) that

‖∇h̃uh − ∇ũ‖ + h‖∇∇h̃uh − D2̃u‖ ≤ ch2‖̃u‖H3(ω)

which implies the attainment of the minimal energy. �

8.3.2 Iterative Minimization

Our iterative scheme for the practical solution of the discretized minimization prob-
lem realizes a discrete H2-gradient flow of the energy functional with a linearization
of the nodal isometry constraint about the current iterate. For this, it is important
to realize that for the employed finite element space Wh, the nodal values of the
discrete deformation

(
uh(z) : z ∈ Nh

)
and its gradient

(∇uh(z) : z ∈ Nh
)
are

mutually independent variables in the minimization problem.

Algorithm 8.1 (Discrete H2-isometry-flow) Let τ > 0 and u0h ∈ W 3
h be such that

[∇u0h(z)
] ⊥

∇u0h(z) = I2

for all z ∈ Nh and u0h(z) = uD(z) and ∇hu0h(z) = ΦD(z) for all z ∈ Nh ∩ γD. For
k = 1, 2, . . ., define

Fh[uk−1
h ]

= {
wh ∈ W 3

h,D : [∇wh(z)]

⊥

∇uk−1
h (z) + [∇uk−1

h (z)]

⊥

∇wh(z) = 0 f.a. z ∈ Nh
}

and compute uk
h = uk−1

h + τdtuk
h with dtuk

h ∈ Fh[uk−1
h ] satisfying

(∇∇hdtu
k
h,∇∇hwh

) + α
(∇∇h(u

k−1
h + τdtu

k
h),∇∇hwh

) = (
f , wh

)

for all wh ∈ Fh[uk−1
h ]. Stop the iteration if ‖∇∇hdtuk

h‖ ≤ εstop.

The iterates (uk
h)k=0,1,... will in general not satisfy the nodal isometry constraint

exactly, but the violation is independent of the number of iterations and controlled
by the step size τ .

Theorem 8.4 (Iteration) The iterates (uk
h)k=0,1,... of Algorithm 8.1 are well defined

and satisfy

IKih (uk
h) + τ

2
‖∇∇hdtu

k
h‖2 ≤ IKih (uk−1

h ).
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Moreover, we have

‖Ih
[
(∇uk

h)

⊥

∇uk
h

] − I2‖L1(ω) ≤ Cτ IKih (u0h).

Proof The existence of a unique dtuk
h ∈ Fh[uk−1

h ] in every step of the iteration
follows from the fact that the bilinear form (vh, wh) �→ (∇∇hvh,∇∇hwh

)
defines

a coercive and continuous bilinear form on Fh[uk−1
h ], cf. Lemma 8.1(iv). Upon

choosing wh = dtuk
h, we find that

∥∥∇∇hdtu
k
h

∥∥2 + 1

2
dt

∥∥∇∇huk
h

∥∥2 + τ

2

∥∥∇∇hdtu
k
h

∥∥2 = (
f , dtu

k
h

)

and this proves the energy decreasing property. Using uk
h = uk−1

h + τdtuk
h, we have

(∇uk
h

) ⊥

∇uk
h = (∇uk−1

h

) ⊥

∇uk−1
h + τ

(∇dtu
k
h

) ⊥

∇uk−1
h

+ τ
(∇uk−1

h

) ⊥

∇dtu
k
h + τ 2

(∇dtu
k
h

) ⊥

∇dtu
k
h.

Since dtuk
h ∈ Fh[uk−1

h ], the sum of the second and third term on the right-hand side
vanishes at every z ∈ Nh and an inductive argument, together with the assumptions
on u0h, leads to

∣∣[∇uL
h (z)

] ⊥
∇uL

h (z) − I2
∣∣ ≤ τ 2

L∑
k=1

∣∣∇dtu
k
h(z)

∣∣2.

A discrete norm equivalence and a local inverse inequality imply the assertion. �

8.3.3 Realization

The implementation of Algorithm 8.1 is based on the realization of the discrete
Kirchhoff triangle for the linear problem. We also employ quadrature to discretize
the forcing term which we assume to act only in the vertical direction. This implies
that only the nodal values

(
uh(z) : z ∈ Nh

)
and

(∇uh(z) : z ∈ Nh
)
are needed for

the implementation, in particular, no evaluation of uh in the interior of elements in
Th is required. If S2 is the stiffness matrix related to piecewise quadratic vector fields
with six components, D realizes the operator ∇h : W 3

h → Θ3
h , and Bk−1 encodes the

constraints and boundary conditions defined in the spaceFh[uk−1
h ], then one step of

the discrete gradient flow leads to the linear system of equations

[
(1 + ατ)D

⊥

S2D B

⊥

k−1
Bk−1 0

] [
dtUk

�

]
=

[−αD

⊥

S2D Uk−1 + τF
0

]
.
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Fig. 8.6 Approximation of the nonlinear Kirchhoff model with discrete Kirchhoff triangles
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The matrix D

⊥

S2D is generated as in the case of the linear model and provided
by the routine dkt_matrix.m. The initial deformation is assumed to satisfy the
boundary conditions which may be inhomogeneous. We refer to the implementation
displayed in Fig. 8.6 for details.

8.4 Willmore Flow

We discuss in this section numerical methods for approximating the Willmore flow.
This is the L2-gradient flow of the Willmore energy which is defined on closed sur-
faces inR3. To compute the evolution equation, we review concepts from differential
geometry to differentiate quantities on surfaces and tomeasure variations of surfaces.
The reader is referred to the textbooks [13, 14] for further details. The numerical
schemes are based on results in [2, 8, 9].

8.4.1 Tangential Differentiation and Curvature

LetM ⊂ R
3 be a surface, i.e., an orientable two-dimensional C2-submanifoldM in

R
3, with continuous unit normal n : M → R

3. For scalar functions f : M → R and
vector fields F : M → R

3 on M that admit continuously differentiable extensions
f̃ : U (M ) → R and F̃ : U (M ) → R

3 to an open neighborhood of M , we define
the tangential gradient and the tangential divergence by

∇M f = ∇ f̃ − (n · ∇ f̃ )n, divM F = div F̃ − n

⊥

DF̃n.

The operators satisfy the product rule

divM (fF) = ∇M f · F + f divM F.

The tangential gradient∇M F of a vector fieldF is thematrixwhose i-th row coincides
with the transpose of the tangential gradient of the i-th component ofF. TheLaplace–
Beltrami operator is defined as

�M f = divM ∇M f .

For a local parametrization u : ω → R
3 of M , the tangent vectors ∂�u, � = 1, 2,

are linearly independent and define a unit normal b = ±∂1u × ∂2u/|∂1u × ∂2u|,
cf. Fig. 8.7. We assume in the following that the sign is chosen so that b = n ◦ u. The
first fundamental form is the matrix g with entries

gij = ∂iu · ∂ju.



240 8 Bending Problems

u

1u

2u
b

Fig. 8.7 Local parametrization of a surface by a mapping u : ω → R
3; the partial derivatives ∂1u

and ∂2u of u define a basis of the tangent space for every point on the image of u; their normalized
cross product defines a unit normal b to the surface

It defines a metric on the tangent space of M , e.g., the length of a tangent vector
α1∂1u + α2∂2u is given by the square root of α · (gα). The matrix g is symmetric
and positive definite everywhere in ω; and we let g−1 = (gij) be its inverse and
g−1/2 = (g(−1/2)

ij ) the symmetric and positive definite square root of g−1.

Proposition 8.4 (Differential operators on M ) We have

(∇M f ) ◦ u =
2∑

i,j=1

gij∂j(f ◦ u)∂iu, (divM F) ◦ u =
2∑

i,j=1

gij∂j(F ◦ u) · ∂iu.

If F = ∑2
i=1 Fi∂iu is tangential or F = ∇M f , then

(divM F) ◦ u = (det g)−1/2
2∑

i=1

∂i
(
Fi ◦ u(det g)1/2

)
,

(�M f ) ◦ u = (det g)−1/2
2∑

i,j=1

∂i
(
(det g)1/2gij∂j(f ◦ u)

)
.

In particular, the operators are independent of the extensions.

Proof Weoccasionally omit the compositionwithu, e.g.,wewrite∇M f for (∇M f )◦u.
For k = 1, 2 we have

(∇M f ) · ∂ku = ∇ f̃ · ∂ku = ∂k (̃f ◦ u) = ∂k(f ◦ u)

and (∇M f ) · n = 0. Since

( 2∑
i,j=1

gij∂j(f ◦ u)∂iu
)

· ∂ku =
2∑

i,j=1

gijgik∂j(f ◦ u) =
2∑

j=1

δjk∂j(f ◦ u) = ∂k(f ◦ u)

and since the sum on the right-hand side of the first asserted identity is orthogonal
to n, we deduce the formula for ∇M f . With Vi = ∑2

j=1 g(−1/2)
ij ∂ju for i = 1, 2, the

vectors (V1, V2, b) define an orthonormal basis in R3, i.e.,
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Vi · Vk =
2∑

j,�=1

g(−1/2)
ij g(−1/2)

k�
∂ju · ∂�u =

2∑
j,�=1

g(−1/2)
ij g(−1/2)

k�
gj� = δik

and Vi · b = 0 for i = 1, 2. With this we have

div F̃ = tr DF̃ =
2∑

i=1

V

⊥

i DF̃Vi + b

⊥

DF̃b,

and hence by definition of divM

divM F =
2∑

i,j,k=1

g(−1/2)
ij g(−1/2)

ik (∂ju)

⊥

DF̃∂ku =
2∑

j,k=1

gjk∂j(F ◦ u) · ∂ku

which is the second identity. Assume now that F is tangential so that F ◦ u =∑2
i=1 Fi∂iu with uniquely defined functions Fi : ω → R. It then follows that

divM F =
2∑

i,j,k=1

gij(∂jFk∂ku + Fk∂j∂ku) · ∂iu

=
2∑

i,j,k=1

gij(∂jFkgik + Fk∂j∂ku · ∂iu)

=
2∑

k=1

(
∂kFk +

2∑
i,j=1

gijFk(∂k∂ju · ∂iu)
)
.

Since g−1 is symmetric, g−1 = (det g)−1 det ′g, and 2∂k(det g)1/2 = (det g)−1/2

det ′g : ∂kg, we have for k = 1, 2 that

2∑
i,j=1

gij(∂k∂ju · ∂iu) = 1

2

2∑
i,j=1

gij∂kgij = (det g)−1/2∂k(det g)1/2.

The combination of the last two equations shows that

divM F =
2∑

k=1

(
∂kFk + Fk(det g)−1/2∂k(det g)1/2

)
,

which is the asserted identity. The identity for the Laplace–Beltrami operator now
follows from the characterization of ∇M . �
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Example 8.1 For the parametrization u(θ, φ) = r(sin θ sin φ, sin θ cosφ, cos θ) of
the sphere Sr ⊂ R

3 with radius r > 0, we have det g(θ, φ) = r4 sin2 θ and �Sr f =
(r2 sin θ)−1

[
∂θ (sin θ∂θ f ) + (sin θ)−1∂2φ f

]
.

Remark 8.5 The representation F = ∑2
i=1(Vi, F)Vi = ∑2

i,j=1 gij(F · ∂iu)∂ju of a
tangential vector field F with the orthonormal vectors (V1, V2) constructed in the
proof of Proposition 8.4 yields the Weingarten equation ∂kb = −∑2

i,j=1 gijhki∂ju
with the coefficients hki of the second fundamental form defined below.

To define a measure of curvature, we let c : (−ε, ε) → M be a C2 curve in M
with |c′(t)| = 1 for all t ∈ (−ε, ε) and consider the quantity κ = c′′ · (n ◦ c). Since
c′ · (n ◦ c) = 0 we have

κ = −c′ · (n ◦ c)′ = −c′ · (∇M n c′).
We call ∇M n the shape operator which is closely related to the second fundamental
form defined through the symmetric matrix

hij = −∂ib · ∂ju = b · ∂i∂ju.

The mapping induced by ∇M n is also called the Weingarten map.

Proposition 8.5 (Shape operator) The matrix ∇M n is symmetric and defines a self-
adjoint linear operator on the tangent space of M into itself and is in the basis
(∂1u, ∂2u) given by the generally nonsymmetric matrix s = −hg−1.

Proof For i = 1, 2, 3 we have (∇M ni) · n = 0 and hence (∇M n)n = 0. The identity
|n|2 = 1 implies that n

⊥

(∇M n) = 0. Therefore, ∇M n defines an endomorphism
on the tangent space of M ; and for i = 1, 2 there exist sij, j = 1, 2, such that
(∇M n)∂iu = ∑2

j=1 sij∂ju, i.e.,

2∑
j=1

sij∂ju · ∂ku = (∇M n∂iu) · ∂ku = ∂i(n ◦ u) · ∂ku = ∂ib · ∂ku = −hik

and hence with ∂ju · ∂ku = gjk we deduce sg = −h. The identity also implies the
symmetry of ∇M n. �

The principal curvatures ofM are the eigenvalues of the self-adjoint symmetric
operator∇M n restricted to the tangent space ofM and are denoted by κ1 and κ2. The
eigenvectors corresponding to κ1 and κ2 are called directions of principal curvature.
The possibly nonsymmetric matrix s has the eigenvalues κ1 and κ2 and the mean and
Gauss curvature are defined as

H = tr s = κ1 + κ2, K = det s = κ1κ2,
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Fig. 8.8 Ellipsoidal surface with κ1 < 0, κ2 < 0 (left), hyperbolic surface with κ1 < 0, κ2 > 0
(middle), and parabolic surface with κ1 = 0, κ2 > 0 (right) relative to the unit normal n = e3

respectively. We have that |∇M n|2 = s

⊥

: s = tr(s2) = κ2
1 +κ2

2 = (tr s)2−2 det s =
H2 − 2K . We also note the identities H = −h : g−1 = tr(−hg−1).

Remark 8.6 The sign of H depends on the choice of the unit normal, whereas K
is independent of the sign of ±n. The definition implies κ1, κ2 ≥ 0 if M is locally
convex with respect to the chosen unit normal. Themean curvatureH is often defined
as (1/2) tr s = (κ1 + κ2)/2.

Typical local shapes of two-dimensional surfaces are given in the following
example and are shown in Fig. 8.8.

Example 8.2 Consider a local parametrization of a surface that is given by the graph
of the function f : ω → R, i.e., u(x) = (

x, f (x)
)
. Also assume that 0 ∈ ω with

∇f (0) = 0. Noting ∂iu = ei for i = 1, 2, and b = e3, g = I , and h = b ·∂i∂ju = D2f ,
we find that s = −hg−1 = −D2f at x = 0.

Proposition 8.6 (Mean curvature) We have

divM n = H, −�M idM = Hn,

where idM : M → R
3 denotes the identity on M , i.e., idM (p) = p for all p ∈ M

and �M is applied to every component of idM .

Proof With the characterization of divM of Proposition 8.4, we have

divM n =
m∑

i,j=1

gij∂j(n ◦ u) · ∂iu = −
2∑

i,j=1

gijhij = − tr(hg−1) = tr s.

We have ∇M idM = I − nn

⊥

and thus −�M idi
M = divM (nin) = niH. �

We have the following generalized integration-by-parts formula.

Proposition 8.7 (Integration-by-parts) For a vector field F : M → R
3 and a

compactly supported function ϕ : M → R, we have

∫

M

∇M ϕ · F ds = −
∫

M

ϕ divM F ds +
∫

M

H(F · n)ϕ ds.
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Proof Weassume thatϕ belongs to a coordinate chart parametrized by u and consider
the vector fieldG = ϕF onM .We setG = Gtan+Gnor withGnor = γ n for γ = G·n.
Then Gtan = ∑2

i=1 Gi∂iu and Proposition 8.4 and an integration-by-parts inR2 yield

∫

M

divM Gtan ds =
2∑

i=1

∫

ω

∂i(Gi(det g)1/2) dx

=
∫

ω

div
(
(det g)1/2[G1, G2]

)
dx = 0.

The product rule and (∇M γ ) · n = 0 show that

∫

M

divM Gnor ds =
∫

M

γ divM n ds =
∫

M

γ H ds =
∫

M

(G · n)H ds.

The combination of the identities and an application of the product rule prove the
asserted formula. �

Remark 8.7 If ϕ does not vanish on the boundary of M , then the boundary term∫
∂M ϕF · μ dt with the conormal μ = τ × n, where τ is the tangent on ∂ω, has to
be included on the right-hand side.

8.4.2 Normal Variations

For a surfaceM ⊂ R
3 with unit normal n and a function φ : M → R, we consider

for −ε < t < ε the normal variations of M defined by

Mt = {q ∈ R
3 : q = p + tϕ(p)n(p), p ∈ M },

cf. Fig. 8.9. ThenM0 = M and for sufficiently small ε > 0, the setsMt are surfaces
in R3. If u : ω → R

3 is a local parametrization ofM , then

ut = u + t(φ ◦ u)(n ◦ u)

Fig. 8.9 Normal variation of
a surface defined by a scalar
function φ

n

t = + t n
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is a local parametrization of Mt . For a function ft : Mt → R we denote f = f0 and
define

δf (p) = lim
t→0

t−1(ft(p) − f0(p)
)

for p ∈ M . The proposition below studies the changes of geometric quantities on
the surfacesMt and employs Gauss’ equation and an equivalent characterization of
the Laplace–Beltrami operator stated in the following lemma.

Lemma 8.2 (Christoffel symbols) With the Christoffel symbols of the first kind
Γij,m = ∂i∂ju · ∂mu and of the second kind Γ k

ij = ∑2
m=1 gkmΓij,m, we have Gauss’

equation and a representation of the Laplace–Beltrami operator, i.e.,

∂i∂ju =
2∑

k=1

Γ k
ij ∂ku + hijb, �M φ =

2∑
i,j

gij
(
∂i∂jφ −

2∑
k=1

Γ k
ij ∂kφ

)
.

Proof We have ∂i∂ju · n = hij and hence there exist αk
ij with

∂i∂ju · ∂�u =
2∑

k=1

αk
ij∂ku · ∂�u =

2∑
k=1

αk
ijgk�,

i.e., αm
ij = ∑2

�=1 g�m(∂i∂ju) ·∂�u. This implies the representation of ∂i∂ju. According
to Proposition 8.4 we have

�M φ =
2∑

i,j,�,m=1

gij∂j
(
g�m∂mφ∂�u

) · ∂iu

=
2∑

i,j,�,m=1

gij[∂jg
�m∂mφ∂�u + g�m(∂j∂mφ)∂�u + g�m∂mφ(∂j∂�u)

] · ∂iu

=
2∑

i,j,�,m=1

gij[∂jg
�m∂mφg�i + g�m(∂j∂mφ)g�i + g�m∂mφΓj�,i

]
.

Using 0 = ∂j
∑2

r=1(g
�rgrm) = ∑2

r=1(∂jg�rgrm + g�r∂jgrm), we find that ∂jg�m =
−∑2

r,k=1 g�r∂jgrkgkm and noting ∂jgrk = Γjr,k + Γjk,r , i.e.,

∂jg
�m = −

2∑
r,k=1

g�r(Γjr,k + Γjk,r)g
km,

shows that �M φ equals
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2∑
i,j,�,m=1

gij[ −
2∑

r,k=1

g�r(Γjr,k + Γjk,r)g
km∂mφg�i + g�m(∂j∂mφ)g�i + g�m∂mφΓj�,i

]

=
2∑

i,j=1

gij[ −
2∑

k,m=1

(Γji,k + Γjk,i)g
km∂mφ + ∂j∂iφ +

2∑
�,m=1

g�m∂mφΓj�,i
]

=
2∑

i,j=1

gij[∂j∂iφ −
2∑

k,m=1

gkmΓij,k∂mφ
]
.

This implies the asserted formula for �M φ. �

A consequence of this is Gauss’ theorema egregium which is stated below for
isometric parametrizations, cf. Proposition 8.2.

Lemma 8.3 (Gauss curvature for isometries) Assume that Γij,k = ∂i∂ju · ∂ku = 0
for all 1 ≤ i, j, k ≤ 2. Then K = 0.

Proof Using ∂2(∂
2
1u) = ∂1(∂1∂2u) and the identities ∂i∂ju = hijb, Lemma 8.2 shows

that
0 = ∂2(h11b) − ∂1(h12b) = (∂2h11 − ∂1h12)b + h11∂2n − h12∂1n.

The Weingarten equations ∂kb = −∑2
i,j=1 gijhki∂ju, cf. Remark 8.5, imply that for

the tangential part of the identity, we have

0 = −h11

2∑
i,j=1

gijh2i∂ju + h12

2∑
i,j=1

gijh1i∂ju = −
2∑

i,j=1

gij(h11h2i − h12h1i)∂ju.

The contributions to the sum vanish for i = 1 and hence

0 = −(det h)

2∑
j=1

g2j∂ju.

Since ∂1u and ∂2u are linearly independent, this implies det h = 0 and K = 0. �

Proposition 8.8 (Normal variations of geometric quantities) For 1 ≤ i, j ≤ 2 we
have

δgij = −2φhij, δg−1
ij = 2φ

2∑
k,�=1

gikhk�g�j, δ(det g)1/2 = φH(det g)1/2

and
δn = −∇M φ, δH = −�M φ − |s|2.
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Proof We identify φ with the function φ ◦ u and write b = n ◦ u. We also omit the
dependence on t in the following. Noting ∂ib · b = 0, we have

gt
ij = ∂iut · ∂jut = gij + tφ

(
∂iu · ∂jb + ∂ju · ∂ib

) + t2∂iφ∂jφ + t2φ2∂ib · ∂jb,

which implies δgij = −2φhij. With g−1g = I2 we find that δg−1 = −g−1(δg)g−1

and hence

δgij = −
2∑

k,�=1

gik(δgk�)g
�j = 2φ

2∑
k,�=1

gikhk�g�j.

The relations (det g)−1 det ′g = g−1 and g−1 : h = −H imply

δ(det g)1/2 = 1

2
(det g)−1/2(det ′g) : δg = 1

2
(det g)1/2g−1 : δg

= −φ(det g)1/2g−1 : h = φ(det g)1/2H.

Using b · ∂iu = 0, we deduce δb · ∂iu + b · δ∂iu = 0 and with δ∂iu = φ∂ib + (∂iφ)b
and b · ∂ib = 0, it follows that δb · ∂iu = −∂iφ. Since 0 = δ|b|2 = 2δb · b, we have
that there exist α1, α2 with δb = α1∂1u + α2∂2u. Noting

2∑
i=1

αi∂iu · ∂ku = δb · ∂ku = −∂kφ

we find that αi = −∑2
j=1 gij∂jφ which implies

δb = −
2∑

i,j=1

gij∂jφ∂iu,

and this expression coincides with −∇M φ. It remains to compute δH. For this we
first compute δhij. Noting

δ∂i∂ju = (∂i∂jφ)b + ∂iφ∂jb + ∂jφ∂ib + φ∂i∂jb,

and using b · ∂i∂jb = −∂ib · ∂jb, we have

b · (δ∂i∂ju) = ∂i∂jφ − φ∂ib · ∂jb.

The Weingarten equation ∂kb = ∑2
i,j=1 gijhki∂ju leads to

∂ib · ∂jb =
2∑

�,m,r,s=1

g�mhi�grshjr∂mu · ∂su =
2∑

r,s=1

grshishrj.
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The formula for δb and Gauss’ equation show that

δb · (∂i∂ju) = −( 2∑
k,�=1

gk�∂�φ∂ku
) · ( 2∑

m=1

Γ m
ij ∂mu

) = −
2∑

�=1

Γ �
ij ∂�φ.

We thus have

δhij = (δb) · ∂i∂ju + b · (δ∂i∂ju) = −
2∑

�=1

Γ �
ij ∂�φ + ∂i∂jφ − φ

2∑
k,�=1

gk�hi�hkj

and

2∑
i,j=1

gijδhij =
2∑

i,j=1

gij
(
∂i∂jφ −

2∑
�=1

Γ �
ij ∂�φ

)
− φ

2∑
i,j,k,�=1

gijgk�hi�hkj

= �M φ − φ|s|2.

For the mean curvature we find that

δH = −δ

2∑
i,j=1

gijhij

= −
2∑

i,j=1

(
(δgij)hij + gij(δhij)

)

= −2φ
2∑

i,j,k,�=1

gikhk�g�jhij − �M φ + φ|s|2

= −2φ|s|2 − �M φ + φ|s|2.

This proves the proposition. �

We finally derive variations for functionals measuring the surface area and the
enclosed volume by a surface. The variation of a functionalG defined onC2-surfaces
is the limit

δG (M )[φ] = lim
t→0

t−1(G (Mt) − G (M0)
)

for a surfaceM that is perturbed in the normal direction with a function φ as above.

Proposition 8.9 (Variations of area and volume functional) For M = ∂Ω define

A (M ) =
∫

M

1 ds, V (M ) =
∫

Ω

1 dξ = 1

3

∫

M

s · n ds.
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We have

δA (M )[φ] =
∫

M

Hφ ds, δV (M )[φ] = 1

3

∫

M

(1 + H)φ ds.

Proof The first identity is a direct consequence of Proposition 8.8. The second iden-
tity follows from idMt · n = tφ. �

8.4.3 Variation of the Willmore Functional

The normal variations of geometric quantities allow us to characterize stationary
surfaces for the Willmore functional and to define related evolution problems. For a
closed surfaceM ⊂ R

3, the bending energy is given by the Willmore functional

W (M ) = 1

2

∫

M

H2 ds.

The following theorem characterizes critical points of the functional.

Theorem 8.5 (Euler–Lagrange equations) For a normal variation of M defined by
a function φ : M → R, we have

δW (M )[φ] =
∫

M

(−�M H)φ − |∇M n|2Hφ + 1

2
H3φ ds,

where |∇M n|2 = H2 − 2K.

Proof We assume that φ is supported in a coordinate chart. We then have

δ
1

2

∫

M

H2 ds = 1

2
δ

∫

ω

H2(det g)1/2 dx

=
∫

ω

H(δH)(det g)1/2 + 1

2
H2δ(det g)1/2 dx

=
∫

ω

H(−�M φ − φ|s|2)(det g)1/2 + 1

2
φH3(det g)1/2 dx

=
∫

M

H(−�M φ) − φH|s|2 + 1

2
φH3 ds.

Noting |s|2 = |∇M n|2 = H2 − 2K and integrating-by-parts proves the theorem. �
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Definition 8.7 For a family of surfaces (Mt)t∈[0,T ] and a family of points on the
surfaces given by a differentiable function c : [0, T ] → R

3 with c(t) ∈ Mt for all
t ∈ [0, T ] we define the normal velocity of Mt at q0 = c(t0) by

V (q0, t0) = c′(t0) · n(q0).

We let

(φ,ψ)Mt =
∫

Mt

φψ ds

denote the L2 inner product on Mt .

Definition 8.8 (i)A family of surfaces (Mt)t∈[0,T ] evolves according to theWillmore
flow if

(V (t), φ)Mt = −δW (Mt)[φ]

for all t ∈ [0, T ] and all φ ∈ C∞(Mt).
(ii) A family of surfaces (Mt)t∈[0,T ] evolves according to the Helfrich flow if there
exist λ,μ : [0, T ] → R such that

(V (t), φ)Mt = −δW (Mt)[φ] + λ(t)δA (Mt)[φ] + μ(t)δV (Mt)[φ]

for all t ∈ [0, T ] and all φ ∈ C∞(Mt) and the mappings t �→ A (Mt) and t �→
V (Mt) are constant.

Remark 8.8 The existence of solutions for the Willmore and Helfrich flow is only
understood in special situations, e.g., when the initial surface M0 is a small pertur-
bation of a sphere.

8.4.4 Discretization of the Laplace–Beltrami Operator

For a surface M ⊂ R
3, let Mh be an approximate surface that is the union of

flat triangles in the triangulation Th with vertices Nh ⊂ R
3, cf. Fig. 8.10. The

elementwise constant unit normal nh on Mh defines the tangential gradient of a
function vh ∈ S 1(Th) via

Fig. 8.10 Triangulated
surface (left) and
construction of an auxiliary
tetrahedron with the
auxiliary node
z̃T = xT + |T |1/2nT (right)

z̃T
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∇Mh vh = Ph∇ ṽh = (
I − nh ⊗ nh

)∇ ṽh,

where ṽh is an arbitrary extension of vh to R
3, e.g., by introducing for each triangle

T ∈ Th the auxiliary node z̃T = xT +|T |1/2nh|T , cf. Fig. 8.10, and setting ṽh (̃zT ) = 0.
The Laplace–Beltrami operator on a surface M leads to a Poisson problem on M
of the form

−�M u = f on M , u = uD on γD,h, ∇Mh u · μh = g on γN,h,

where μh is the conormal on ΓN,h ⊂ ∂Mh. A discrete approximation seeks uh ∈
S 1(Th) such that uh|γD,h = uD,h

∫

Mh

∇Mh uh · ∇Mh vh ds =
∫

Mh

f vh ds +
∫

γN,h

ghvh dt

for all vh ∈ S 1(Th) with vh|γD,h = 0. If γD,h = ∅, then the condition ∫
Mh

uh ds = 0
is imposed. TheMatlab code displayed in Fig. 8.11 realizes the numerical scheme
for the Laplace–Beltrami operator.

8.4.5 A Numerical Scheme for the Willmore Flow

We recall that the Willmore flow for a given initial surfaceM0 ⊂ R
3 seeks a family

of surfaces (Mt)t∈[0,T ] that solve the equation

V = �M H + H|∇M n|2 − 1

2
H3,

where V is the normal velocity of (Mt)t∈[0,T ], n a unit normal onMt , andH themean
curvature ofMt . For the position vector X : Mt → R

3 onM , we have V = (∂tX) ·n
and Hn = −�M idM . To discretize the evolution equation we consider a time step
tk ∈ [0, T ] and assume that we are given a triangulation T k

h that defines the closed
polyhedral surface M k

h with unit normal nk
h ∈ L 0(Th)

3. We also suppose that
ñk

h ∈ S 1(T k
h )3 and Hk

h ∈ S 1(T k
h ) approximate the unit normal n and the mean

curvature of a smooth approximation of M k
h . To define the new surface M k+1

h , we
compute a mapping

Xk+1
h : M k

h → R
3
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Fig. 8.11 Matlab routine for the approximation of the Poisson problem on a surface
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Fig. 8.12 Deformation
Xk+1

h : M k
h → R

3 of a
surface M k

h that defines the

new surface M k+1
h

k
h

Xk+1
h k+1

h

that defines M k+1
h = Xk+1

h (M k
h ), cf. Fig. 8.12. A function or vector field on M k

h is

identified with a function on M k+1
h via the parametrization Xk+1

h . The vector field

Xk+1
h ∈ S 1(T k

h )3 is obtained by the following semi-implicit discretization of the
Willmore flow from [2].

Algorithm 8.2 (DiscreteWillmore flow) For a discrete surface M 0
h , functions ñ0h ∈

S 1(T 0
h )3 and H0

h = A 0
h divM 0

h
ñ0h. and a step size τ > 0, compute the sequence

(M k
h )k=0,...,K via M k+1

h = Xk+1
h (M k

h ), where Xk+1
h ∈ S 1(T k

h )3 and Hk+1
h ∈

S 1(T k
h ) solve

1

τ

(
Xk+1

h − idM k
h
, vhñk

h

)
k,h + (∇M k

h
Hk+1

h ,∇M k
h

vh
)
k + 1

2

(|Hk
h |2Hk+1

h , vh
)
k,h

= (
Hk

hA
k

h |∇M k
h

ñk
h|2, vh

)
k,h,

(
Hk+1

h ñk
h, Yh

)
k,h − (∇M k

h
Xk+1

h ,∇M k
h

Yh
)
k = 0

for all vh ∈ S 1(T k
h ) and Yh ∈ S 1(T k

h )3, and set ñk+1
h = A k+1

h nk+1
h . Stop the

iteration if ‖vk+1
h ‖h,k ≤ εstop for V k+1

h = (Xk+1
h − idM k

h
)/τ and vk+1

h = V k+1
h · ñk

h.

The averaging operator A k
h : L1(M k

h ) → S 1(T k
h ) is defined through

A k
h v(z) = 1

|ωz|
∑

T∈T k
h , z∈T

|T | v|T , |ωz| =
∑

T∈T k
h , z∈T

|T |,

and the inner product (·, ·)k,h is for v, w ∈ C(M k
h ) defined by

(v, w)k,h =
∫

M k
h

I k
h [vw] dx.

Remark 8.9 The precise stability and convergence properties of Algorithm 8.2 are
not known. The algorithm has an equidistribution property in the sense that it equidis-
tributes the nodes of the discrete surface which avoids mesh irregularities. Details
are discussed in [2].
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According to Proposition 8.9 it suffices to impose that

∫

M

V ds =
∫

M

V H ds = 0

to guarantee that the surface area and the enclosed volume are preserved. This leads
to an identity for the associated Lagrange multipliers in the evolution equation, i.e.,

V = �M H + H|∇M n|2 − 1

2
H3 + λH + μ.

Testing the equation with a constant function and withH −H , whereH is the integral
mean of H, leads to

μ = 1

|M |
∫

M

−H|∇M n|2 + 1

2
H3 − λH ds,

λ =
∫
M

( − H|∇M n|2 + 1
2H3

)
(H − H) + |∇M H|2 ds∫

M (H − H)2 ds
.

To incorporate the constraints in Algorithm 8.2, the term λH is discretized implic-
itly if λ ≥ 0 and explicitly otherwise. The Matlab implementation displayed in
Fig. 8.14 requires the bilinear forms

(ϕ�
z , ϕy)k,h, (∇ϕz,∇ϕy)k, (∇ϕ�

z ,∇ϕm
y )k,

(ϕ�
z , nϕy)k,h, (ϕzA

k
h |∇M k

h
ñk

h|2, ϕy)k,h, (|Hk
h |2ϕz, ϕy)k,h,

for pairs of nodes z, y ∈ N k
h and associated scalar nodal basis functions ϕz, ϕy ∈

S 1(Th)
k and vectorial nodal basis functions ϕ�

z = ϕze� and ϕm
y = ϕyem with

the canonical basis vectors e�, em ∈ R
3. The representing matrices are encoded

in the arrays m, s, S, M_n, m_w provided by the routine shown in Fig. 8.13
while the last one is directly computed and stored in the array m_H. The routine
willmore_matrices.m also computes an approximation of the mean curvature
through Hk

h = A k
h (divM k

h
ñk

h).
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Fig. 8.13 Matrices required in the implementation of the Willmore and the Helfrich flow
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Fig. 8.14 Numerical approximation of the Willmore and the Helfrich flow
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Chapter 9
Nonconvexity and Microstructure

9.1 Analytical Properties

We discuss in this section features of minimization problems for energy functionals
of the form

I(u) =
∫

Ω

W(∇u) dx −
∫

Ω

f · u dx −
∫

ΓN

g · u ds

with a continuous but nonconvex energy density W : Rm×d → R that is assumed
to be nonnegative and to satisfy a p-growth condition for some p > 1. Although the
functional I is coercive and bounded from below, the direct method in the calculus
of variations cannot be applied due to the lack of weak lower semicontinuity of I
for which convexity or quasiconvexity is required. In fact, infimizing sequences that
are bounded exist but the energy functional may have no minimizers. Two natural
questions arise:

• Do the weak limits of infimizing sequences solve a well-posed modified problem
and can these be approximated numerically?

• Do the infimizing sequences contain information that explain the failure of weak
lower semicontinuity and are these accessible?

It turns out that the weak limits of infimizing sequences are exactly the minimizers
of the functional Iqc that is obtained from I by replacing W by its quasiconvex
envelope. Since I is strongly continuous, the failure of weak lower semicontinuity is
precisely related to the occurrence of oscillations that prohibit strong convergence.
These oscillations are physically meaningful and of importance in applications. They
can be efficiently described in a statistical sense with the help of measure-valued
mappings. The ill-posed minimization of I may result from neglecting a higher order
term in a well-posed minimization problem, e.g., in

Iε(u) = ε

2
‖D2u‖2 +

∫

Ω

W(∇u) dx −
∫

Ω

f · u dx −
∫

Ω

g · u ds

© Springer International Publishing Switzerland 2015
S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations,
Springer Series in Computational Mathematics 47,
DOI 10.1007/978-3-319-13797-1_9
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262 9 Nonconvexity and Microstructure

with a small parameter ε > 0. The motivation for this is that the scale introduced
by ε is too small to be resolved by numerical solution methods. Due to the noncon-
vexity of W , the gradient ∇u oscillates between different values, describing certain
microstructures. The quadratic term involving theHessian of u controls the frequency
of these oscillations. When this term is neglected the oscillations become arbitrarily
fast leading to infimizing sequences that are not strongly convergent. We discuss
these effects in simplified model situations and refer the reader to the textbooks
[8, 15], the survey articles [13, 14], and the seminal paper [2] for further details.

9.1.1 A Scalar Model Problem

Most of the problems related to nonconvex energy minimization become apparent
for scalar and even one-dimensional problems. For Ω ⊂ R

d we first consider the
functional

I(u) =
∫

Ω

W(∇u) dx

with the energy density W : Rd → R defined for F ∈ R
d by

W(F) = 1

4
(|F|2 − 1)2,

the set of admissible functions

A = {u ∈ W1,4(Ω) : u|ΓD = uD}

for a possibly empty set ΓD ⊂ ∂Ω , and a function uD = ũD|ΓD for some ũD ∈
W1,4(Ω). We note that the convex hull W∗∗ of W is for F ∈ R

d given by

W∗∗(F) =
{

W(F) for |F| ≥ 1,

0 for |F| ≤ 1.

The convex hull W∗∗ is the largest convex function below W and is obtained by
computing twice the Fenchel conjugate of W , cf. Fig. 9.1.

W W ∗∗

Fig. 9.1 Function W(F) = (|F|2 − 1)2/4 and its convex hull W∗∗(F) that coincides with W for
|F| ≥ 1 and vanishes otherwise
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The following proposition discusses the existence of solutions and infimizing
sequences for affine boundary conditions. These play a special role in the relaxation
of nonconvex minimization problems.

Proposition 9.1 (Affineboundary conditions)ForΓD = ∂Ω and the affine boundary
condition ũD(x) = F · x, for F ∈ R

d and x ∈ Ω , the functional I has the unique
minimizer u = ũD ∈ A satisfying I(u) = |Ω|W∗∗(F) = |Ω|W(F) if |F| ≥ 1. If
|F| < 1, we have infu∈A I(u) = |Ω|W∗∗(F) < |Ω|W(F) and there exists a bounded
infimizing sequence (uj)j∈N ⊂ A ∩ W1,∞(Ω) with ‖uj − ũD‖L∞(Ω) → 0.

Proof The proof follows from the observation that W is convex only in R
d \ B1(0)

in the sense that

DW(F) · (G − F) + W(F) ≤ W(G)

holds for all G ∈ R
d if and only if |F| ≥ 1. If |F| ≥ 1, then due to the above

inequality the function u(x) = F · x satisfies for every v ∈ A

∫

Ω

W(∇u) dx ≤
∫

Ω

W(∇v) dx +
∫

Ω

DW(∇u) · ∇(u − v) dx.

Since ∇u = F is constant and (u − v)|∂Ω = 0, we have

∫

Ω

DW(∇u) · ∇(u − v) dx = 0.

Therefore, u is a minimizer with I(u) = |Ω|W(F) = |Ω|W∗∗(F). If |F| < 1,
we claim that there exists a sequence (uj)j∈N ⊂ A such that I(uj) → 0 as
j → ∞. To construct the sequence (uj)j∈N, we note that there exist F1, F2 ∈ R

d and
θ ∈ (0, 1) with |F1| = |F2| = 1 and F = θF1 + (1 − θ)F2. For j ∈ N we define
ũj ∈ W1,∞(Rd) by

ũj(x) = F1 · x +
(F2−F1)·x∫

0

χ̃(θ,1)(js) ds,

where χ̃(θ,1) : R → R is the one-periodic extension of the characteristic function
χ(θ,1) : (0, 1) → {0, 1} of the interval (θ, 1). Figure9.2 illustrates the construction.

For every j ≥ 1 the function ũj satisfies

∇ũj(x) = F1 + χ̃(θ,1)
(
j(F2 − F1) · x

)
(F2 − F1)

=
{

F1 if k ≤ j(F2 − F1) · x ≤ k + θ, k ∈ Z,

F2 if k + θ ≤ j(F2 − F − 1) · x ≤ k + 1, k ∈ Z,
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Fig. 9.2 Function ũj whose
gradient oscillates between
F1 and F2 on a length scale
1/j with volume fractions θ

and 1 − θ

/ j

F2 − F1

(1− )/ j

ũ j = F2
ũ j = F1

i.e., ∇ũj oscillates between the values F1 and F2 with frequency j and volume
fractions θ and (1 − θ), respectively. If x · (F2 − F1) = k/j for an integer k, then a
change of variables shows that

ũj(x) = F1 · x + 1

j

j(F2−F1)·x∫

0

χ̃θ (t) dt = F1 · x + k

j
(1 − θ) = F · x.

Hence, the function ũj − ũD vanishes on the lines Lk = {x ∈ Ω : (F2−F1) ·x = k/j}
and a Poincaré inequality with ‖∇uj‖L∞(Ω) ≤ 1 implies that

‖̃uj − ũD‖L∞(Ω) ≤ 1/j.

To define functions (uj)j∈N that satisfy the boundary condition uj(x) = F · x

for x ∈ ∂Ω , we choose nonnegative cut-off functions φj ∈ W1,∞
0 (Ω) with

‖∇φj‖L∞(Ω) ≤ j, ‖φ‖L∞(Ω) ≤ 1, and φj(x) = 1 if dist(x, ∂Ω) > 1/j. We then set

uj = (1 − φj )̃uD + φj̃uj.

We have ‖uj − ũD‖L∞(Ω) ≤ c/j. Since ∇uj(x) ∈ {F1, F2} for dist(x, ∂Ω) > 1/j and
|∇uj(x)| ≤ c for dist(x, ∂Ω) ≤ 1/j, it follows that I(uj) ≤ c/j as required.Moreover,
we have that (uj)j∈N is bounded inW1,∞(Ω) and uj → ũD inL∞(Ω) as j → ∞. �

For affine boundary conditions with |F| < 1 nonuniqueness and nonexistence of
solutions can occur.

Proposition 9.2 (Nonuniqueness and nonexistence) For F = 0 and α ≥ 0 the
functional

Ĩ(u) = I(u) + α

2
‖u‖2

has no solution if α > 0 and infinitely many solutions if α = 0.

Proof Wehave Ĩ ≥ 0.According to Proposition9.1 there exists a sequence (uj)j∈N ⊂
W1,4(Ω) with I(uj) → 0 and ‖uj‖L∞(Ω) → 0 as j → ∞. If u ∈ W1,4(Ω) is a
minimizer for Ĩ , then we have I(u) = 0 and (α/2)‖u‖2 = 0. In particular, I(u) = 0
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implies that |∇u| = 1 almost everywhere. If α > 0 this leads to a contradiction. If
α = 0,wenote that there exist infinitelymany functionsu ∈ W1,∞(Ω)with |∇u| = 1
and u|∂Ω = 0, e.g., solutions of the Eikonal equations on subsets of Ω . �

The characterization of the infimal energy for affine boundary conditions leads to
the rigorous justification of the convexified problem.

Theorem 9.1 (Scalar relaxation) The convexified functional

Icx(u) =
∫

Ω

W∗∗(∇u) dx

has a minimizer u ∈ A . The minimizers are exactly the weak limits of infimizing
sequences for I in A .

Proof (sketchted) For ease of presentation we assume that ũD is piecewise affine.
The existence of aminimizer u ∈ A follows from the direct method in the calculus of
variations and it remains to construct an infimizing sequence that approximates u. For
this, let (Th)h>0 be a sequence of triangulations of Ω such that ũD ∈ S 1(Th) for all
h > 0. Due to the density of finite element spaces inW1,4(Ω), there exists a sequence
(uh)h>0 ⊂ W1,4

D (Ω) with uh ∈ S 1(Th) and uh → u in W1,4(Ω) as h → 0. Since
Icx is strongly continuous on W1,4(Ω), there exists for every ε > 0 a number h0 > 0
such that Icx(uh) ≤ Icx(u) + ε for all 0 < h < h0. For every h > 0 and T ∈ Th,
we have that uh|T is affine and according to Proposition9.1 there exists a sequence
(uT ,j)j∈N ⊂ W1,∞(T) such that uT ,j|∂T = uh|∂T , ‖uh − uT ,j‖L∞(T) → 0, and

|T |W∗∗(∇uh|T ) = lim
j→∞

∫

T

W(∇uT ,j) dx.

Given ε > 0 we may thus choose for every T ∈ Th a function uT ∈ W1,∞(T) with
uT |∂T = uh|∂T and

|T |W∗∗(∇uh|T ) ≤
∫

T

W(∇uT ) dx + ε/|Ω|.

The function ũε ∈ L∞(Ω), defined by ũε|T = uT for all T ∈ Th, satisfies
ũε ∈ W1,∞(Ω) and

Icx(u) ≤ Icx(uh) ≤ I (̃uε) ≤ Icx(uh) + ε ≤ Icx(u) + 2ε

provided h < h0. This proves that the minimizer u for Icx is the weak limit of an
infimizing sequence for I . Conversely, if (uj)j∈N ⊂ A is an infimizing sequence for
I with weak limit u ∈ A , then we have

Icx(u) ≤ lim inf
j→∞ Icx(uj) ≤ lim inf

j→∞ I(uj).
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According to the first implication there exists an infimizing sequence (̃uj)j∈N for I
such that I (̃uj) → Icx(u) as j → ∞. Hence we have Icx(u) = lim inf j→∞ I(uj). �
Remark 9.1 The theorem implies that for the constant sequence (Ij)j∈N with Ij = I
for all j ∈ N we have Ij →Γ Icx as j → ∞ with respect to weak convergence in
W1,4(Ω). Weakly continuous low-order terms can be incorporated in the result.

9.1.2 General Relaxation Result

The discussion of the model problem for a scalar function reveals that the nonex-
istence of minimizers is related to the nonconvexity of the energy density W and
the development of oscillations in infimizing sequences. In particular, infimizing
sequences do not converge strongly but satisfy for Lipschitz domains ω ⊂ R

d

lim inf
j→∞

1

|ω|
∫

ω

W(∇uj) dx = W∗∗(F),

provided that ∇uj ⇀ F in Lp(ω;Rd) as j → ∞. While this is always true for
scalar problems, when vectorial problems are considered the right-hand side is only
a lower bound whichmay be strict. This motivates defining the quasiconvex envelope
for F ∈ R

m×d by

Wqc(F) = inf
v∈W1,∞

0 (ω;Rm)

1

|ω|
∫

ω

W(F + ∇v) dx.

The definition implies that for quasiconvex energy densities, affine functions are
solutions of the corresponding minimization problem subject to their own boundary
conditions and this yields that corresponding energy functionals are weakly lower
semicontinuous on W1,p(Ω;Rm) provided a p-growth condition is satisfied. Analo-
gous to the scalar case, one can prove the following theorem.

Theorem 9.2 (General relaxation [8]) Let W : R
m×d → R be continuous with

c1(|F|p − 1) ≤ W(F) ≤ c2(|F|p + 1) for 1 < p < ∞ and all F ∈ R
m×d. Given

f ∈ Lp′
(Ω;Rm), g ∈ Lp′

(ΓN;Rm), and ũD ∈ W1,p(Ω;Rm), the functional

Iqc(u) =
∫

Ω

Wqc(∇u) dx −
∫

Ω

f · u dx −
∫

ΓN

g · u ds

has a minimizer u ∈ A = {v ∈ W1,p(Ω;Rm) : v|ΓD = ũD|ΓD}. The minimizers are
exactly the weak limits of infimizing sequences for the corresponding functional I. If
d = 1 or m = 1, then we have Wqc = W∗∗.

The reason for the discrepancy Wqc 
= W∗∗ is that for given matrices F1, F2 ∈
R

m×d , there exists a nonconstant function v ∈ W1,∞(Ω;Rm) with ∇v ∈ {F1, F2}
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almost everywhere in Ω if and only if F1 and F2 are compatible in the sense that
rank(F2 − F1) = 1. This is always satisfied if d = 1 or m = 1. An efficient
characterization of quasiconvex envelopes is an important open problem.

9.1.3 Statistical Description of Oscillations

The discussion of the model problem for a scalar function implies that

W(∇vj) ⇀∗ W∗∗(F) (9.1)

in L∞(Ω) for an infimizing sequence (vj)j∈N ⊂ W1,∞(Ω) for I subject to affine
boundary conditions described by F ∈ R

d . We also saw that ∇vj 
→ ∇v in general.
In particular, we have that

φ(∇vj) ⇀∗ φ(F)

in L∞(Ω) only holds in general if φ is continuous and ∇vj → ∇v = F or if φ is
affine. For appropriate growth conditions, we have

W∗∗(F) =
d+1∑
i=1

θiW(Fi) (9.2)

with convex coefficients (θi)i=1,...,d+1 and (Fi)i=1,...,d+1 ⊂ R
d . It appears natural

to expect a relation between the infimizing sequence in (9.1) and the convex combi-
nation that defines W∗∗(F) in (9.2). We recall that the gradients of the constructed
infimizing sequence (vj)j∈N oscillate between the valuesF1 andF2 with volume frac-
tions θ and 1−θ . Thus, the family (θi, Fi)i=1,...,d+1 provides a statistical description
of the oscillations in an infimizing sequence (vj)j∈N. Conversely, it is desirable to
extract the convex combination from the infimizing sequence. For this, we notice
that we may identify the convex combination with the probability measure

μ =
d+1∑
i=1

θiδFi

with the Dirac measures δFi , i = 1, 2, . . . , d + 1, i.e., for every continuous function
φ ∈ C(Rd) we have

〈μ, φ〉 =
d+1∑
i=1

θiφ(Fi).

We may also identify the sequence (∇vj)j∈N with the sequence of families of mea-

sures μj : x �→ μ
j
x defined for j ∈ N and x ∈ Ω by

μj
x = δ∇vj(x).
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It turns out that within an appropriate space we have the convergence μj ⇀∗ μ as
j → ∞. For the special case of affine boundary conditions, the limiting probability
measure is spatially constant. In general, if the weak limit of the infimizing sequence
is not affine, then the corresponding measure also depends on x ∈ Ω . In the special
situation that ∇vj → ∇v strongly in L∞(Ω), then the limiting family of probability
measures is given by μx = δ∇v(x) for almost every x ∈ Ω . The precise mathematical
framework for these considerations is provided by a fundamental theorem for which
the following definition is required.

Definition 9.1 Let C0(R
m×d) = {φ ∈ C(Rm×d) : lim|F|→∞ φ(F) = 0} be

equipped with the norm ‖φ‖L∞(Rm×d) = supF∈Rm×d |φ(F)|. A functional μ ∈
C0(R

m×d)′ is called probability measure if

〈μ, φ〉 =
∫

Rm×d

φ(F) dμ(F) ≥ 0

for all φ ∈ C0(R
m×d) with φ ≥ 0 and 〈μ, 1〉 = 1.

This framework enables the following compactness result.

Theorem 9.3 (Fundamental theorem on Young measures [1, 16]) Let (zj)j∈N be a
bounded sequence in Lp(Ω;Rm×d). Then there exists a subsequence (zjk )k∈N and
a family of probability measures, μ = (μx)x∈Ω on R

m×d called generated Young
measure such that x �→ 〈φ,μx〉 is measurable for every φ ∈ C0(R

m×d), and if
ψ ∈ C(Rm×d) and the sequence x �→ ψ(zjk (x)) is weakly convergent in L1(Ω), then
the weak limit is x �→ 〈ψ,μx〉.
Proof (sketched) The sequence (zj)j∈N is identified with the sequence (μj)j∈N of
probability measures μj = (δzj(x))x∈Ω . This defines a bounded sequence in the
space L∞

w∗(Ω; C0(R
m×d)′) of weakly-* measurable, essentially bounded mapsΩ →

C0(R
m×d)′. By establishing the duality relation

L1(Ω; C0(R
m×d))′ = L∞

w∗(Ω; C0(R
m×d)′)

the first assertion is a consequence of the Banach–Alaoglu–Bourbaki theorem. The
identification of the limit of ψ(zjk ) for ψ ∈ C(Rm×d) is based on technical approxi-
mations. �

A Young measure generated by a weakly convergent sequence (zj)j∈N allows us
to characterize accumulation points of sequences (φ ◦ zj)j∈N, e.g., for W(∇vj) with
zj = ∇vj for all j ∈ N. An important open problem related to the characteriza-
tion of quasiconvexity is the identification of Young measures that are generated by
sequences of gradients. In particular, we have that for every F ∈ R

m×d there exists
a homogeneous Young measure generated by gradients such that

Wqc(F) = 〈W , μ〉,
∫

Rm×d

A dμ = F.
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This identity provides a way to reconstruct information about microstructure from
the relaxed problem defined by the functional Iqc.

Example 9.1 For the sequence (̃uj)j∈N defined for j ∈ N and x ∈ Ω by ũj(x) = F1+∫ (F2−F1)·x
0 χ̃θ (js) ds we have that the gradients (∇ũj)j∈N generate the homogeneous
Young measure x �→ μx = θδF1 + (1 − θ)δF2 .

9.2 Direct and Relaxed Numerical Minimization

Wediscuss in this section the numerical treatment ofminimization problems that lead
to the development of oscillations, i.e., the construction of infimizing sequences by
numerical minimization, and the approximation of the weak limits via the numerical
solution of the relaxed functional. We discuss results from [5–7, 11].

9.2.1 A Lower Bound

The definition of the quasiconvex envelope of an energy density motivates investiga-
tion of the numerical approximation of minimization problems with affine boundary
conditions.While this provides conceptually a way to find the quasiconvex envelope,
it turns out that the convergence of the energies is slow in general, due to the formation
of oscillations. The following result from [7] is generalized here to the case p ≥ 1.

Theorem 9.4 (Lower bound [7]) Let d = 2, 1 ≤ p < ∞, set F1 = [0, 1]

⊥

,
F2 = [0,−1]

⊥

, and for F ∈ R
2 define

W(F) = min{|F − F1|p, |F − F2|p}.
For a positive integer N and h = 1/N let Th be the triangulation of Ω = (0, 1)2

depicted in Fig.9.3. If uh ∈ S 1
0 (Th) is such that for 0 < α ≤ p, we have

I(uh) =
∫

Ω

W(∇uh) dx ≤ c1hα,

Fig. 9.3 Triangulation for
the derivation of the lower
bound (left) and
configuration of triangles at
the point z0 considered in the
proof of Theorem9.4 (right)

x0 xk xN−1

h

T1

T2 z2

z1

T0

xk

[a j,b j]

[a j+1,b j+1]

z0
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then, provided h is sufficiently small, we have

I(uh) ≥ c′
1h1−α/p.

In particular, we have α ≤ p/(p + 1).

Proof (a) Throughout the proof we fix 0 < δ < 1/5 independently of h, set xk = kh
for k = 0, 1, . . . , N − 1, and let Kk be the number of elements T ∈ Th with
T ⊂ [xk, xk+1] × [0, 1] and min�=1,2 |∇uh|T − F�| > δ. For every element with this
property we have W(∇uh|T ) ≥ δp and therefore using N = h−1,

I(uh) ≥
N−1∑
k=0

Kkδ
ph2/4 ≥ ch min

k=0,...,N−1
Kk .

This implies the asserted bound provided that Kk ≥ ch−α/p for k = 0, 1, . . . ,
N − 1. To prove this estimate, we fix 0 ≤ k ≤ N − 1 in the following.
(b) We let 0 ≤ Jk ≤ N and [aj, bj], j = 1, 2, . . . , Jk , be maximal intervals such that
all T ∈ Th with T ⊂ [xk, xk+1] × [0, 1] and an entire edge on xk × [aj, bj] satisfy
either |∇uh|T −F1| ≤ δ or |∇uh|T −F2| ≤ δ. Therefore, we have either ∂yuh ≥ 1−δ

on xk ×[aj, bj] or ∂yuh ≤ −1+ δ on xk ×[aj, bj] for j = 1, 2, . . . , Jk . If Jk = 0, then
Kk ≥ h−1 ≥ h−α/p so that we may assume Jk ≥ 1 in the following. If s �→ uh(xk, s)
has a zero ξj ∈ [aj, bj] or otherwise with ξj = aj, we have

|uh(xk, s)| ≥
s∫

ξj

|∂2uh(xk, r)| dr ≥ (1 − δ)|ξj − s|.

The convexity of r �→ rp+1 implies that

bj∫

aj

|uh(xk, s)|p ds ≥ (1 − δ)p

bj∫

aj

|ξj − s|p ds ≥ (1 − δ)p

p + 1

1

2p
(b − a)p+1.

With this we deduce that

1∫

0

|uh(xk, s)|p ds ≥ c
Jk∑

j=1

(bj − aj)
p+1 ≥ c

1

Jp
k

( Jk∑
j=1

(bj − aj)
)p+1

.

A one-dimensional integration argument, uh|∂Ω = 0, and Jensen’s inequality prove

1∫

0

|uh(xk, s)|p ds ≤
∫

Ω

∣∣∂1uh
∣∣p dx.
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Noting |∂1uh(x)|p ≤ W(∇uh) and 1− ∑Jk
j=1(bj − aj) ≤ Kkh, the assumption Kkh ≤

1/2 implies that

I(uh) ≥
1∫

0

|uh(xk, s)|p ds ≥ c2J−p
k . (9.3)

(c) We want to show that Jk ≤ Kk + 1. Since this is true for Jk = 1, we assume
Jk ≥ 2 in the following. For two subsequent intervals [aj, bj] and [aj+1, bj+1] such
that bj < aj+1, there is an element T0 ∈ Th with T0 ⊂ [xk, xk+1] × [0, 1] such
that an entire edge belongs to xk × [bj, aj+1] and

∣∣∇uh|T0 − F�

∣∣ > δ, � = 1, 2. If
bj = aj+1, then there exist elements T1, T2 ⊂ [xk, xk+1]× [0, 1], such that T1 has an
entire edge on [aj, bj] and T2 has an entire edge on [aj+1, bj+1] and

∣∣∇uh|T�
−F�

∣∣ ≤ δ

or
∣∣∇uh|T�

+ F�

∣∣ ≤ δ for � = 1, 2. For the vertices z� ∈ Nh ∩ T�, � = 1, 2, not
belonging to xk × [0, 1] and the vertex z0 = (xk, aj), we have

uh(z1) = uh(z0) + (h/
√
2)∇uh|T1 · [1, 1]

⊥

,

uh(z2) = uh(z0) + (h/
√
2)∇uh|T2 · [1,−1]

⊥

.

On the triangle T0 = conv{z0, z1, z2} as in the right plot of Fig. 9.3 we thus have

∂yuh|T0 = (uh(z2) − uh(z1)/h

= (∂xuh|T2 − ∂xuh|T1)/
√
2 − (∂yuh|T1 + ∂yuh|T2)/

√
2

and
∣∣∂yuh|T0

∣∣ ≤ 2
√
2δ < 4δ. This implies that

∣∣∇uh|T0 − F�

∣∣ > δ for � = 1, 2.
We have thus shown that between all subsequent intervals [aj, bj] and [aj+1, bj+1],
j = 1, 2, . . . , Jk − 1, there exists an element T0 with

∣∣∇uh|T0 − F�

∣∣ > δ for � = 1, 2
and this proves Jk ≤ Kk + 1.
(d) We show that if h is sufficiently small so that h1−α/p ≤ (c1/c2)1/p/2, then we
may deduce that

(c1/c2)
1/ph−α/p ≤ Kk + 1.

Suppose that the conclusion is wrong. Then

(Kk + 1)h < (c2/c1)
1/ph1−α/p ≤ 1/2

so that (9.3), Jk ≤ Kk + 1, and c1hα < c2(Kk + 1)−p lead to the contradiction

c1hα ≥ I(uh) ≥ c2(Kk + 1)−p > c1hα.

This proves the theorem. �

Remark 9.2 On special sequences of triangulations the minimal discrete energy can
decay significantly faster with h.
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9.2.2 Upper Bounds

To show that the lower bound for the discrete energy minimization is sharp, we
consider throughout the energy functional

I(u) =
∫

Ω

W(∇u) dx

for u ∈ W1,p
0 (Ω) and the energy density for 1 ≤ p < ∞ and F ∈ R

2 defined by

W(F) = min{|F − F1|p, |F − F2|p}
with F1 = [0, 1]

⊥

and F2 = [0,−1]

⊥

.

Theorem 9.5 (Coarse upper bound) Given Ω ⊂ R
2 and a quasiuniform triangula-

tion Th of Ω , we have
min

uh∈S 1
0 (Th)

I(uh) ≤ c1h1/2.

Proof We define a function ũ ∈ W1,∞(R2) that is one-periodic in ỹ by

ũ(̃x, ỹ) =
{̃

y − k for k ∈ Z and k ≤ ỹ ≤ k + 1/2,

1/2 − (̃y − k) for k ∈ Z and k + 1/2 ≤ ỹ ≤ k + 1

and set for 0 < α ≤ 1 and (x, y) ∈ Ω

uα(x, y) = hα ũ(h−αx, h−αy).

The function uα satisfies ∇uα ∈ {F1, F2} and ‖uα‖L∞(Ω) ≤ hα/2. For 0 < β ≤ 1
and (x, y) ∈ Ω , we define

φβ(x, y) = min{h−β dist((x, y), ∂Ω), 1}
which satisfies φβ |∂Ω = 0, φβ(x, y) = 1 for (x, y) ∈ Ω with dist((x, y), ∂Ω) ≥ hβ ,
and ‖∇ψβ‖L∞(Ω) ≤ ch−β . For the continuous function u = ψβuα , we have u|∂Ω =
0, |∇u(x, y)| ≤ chα−β for (x, y) ∈ Uhβ (∂Ω) = {(x, y) ∈ Ω : dist((x, y), ∂Ω) < hβ}
and ∇u(x, y) ∈ {F1, F2}, otherwise, cf. Fig. 9.4.

The nodal interpolant uh = Ihu satisfies
∣∣∇uh|T

∣∣ ≤ c‖∇u‖L∞(T) for every T ∈
Th. We have that ∇uh|T = F� for � ∈ {1, 2} and hence W(∇uh|T ) = 0 for T ∈ Th if

Fig. 9.4 Construction of a
finite element function with
low energy and typical
triangles

uh = F1

| uh| ≤ c

uh = F2
| uh| ≤ c(1+h − )

h
h
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T does not intersect Uhβ (∂Ω) or a line Lk = {(x, y) ∈ Ω : y = khα} for some k ∈ Z.
The number of such lines inΩ is proportional toh−α and the number of triangles inter-
secting such a line is bounded by ch−1. Therefore, we deduce, using |T | ≤ ch2, that

I(uh) ≤
∫

Uhβ

W(∇uh) dx +
∑

k∈Z,T∈Th:T∩Lk 
=∅
|T |W(∇uh|T ) ≤ c(hβ + hα + h1−α).

For β = 1 and α = 1/2 we obtain the asserted bound. �

The bound of the previous theorem is sharp for p = 1 but can be improved if
p > 1. To provide a proof for this, we restrict for ease of presentation to the case
Ω = (0, 4) × (0, 1) and laminates that are parallel to the x-axis. The main idea is
to construct a function that oscillates on a coarse scale in the interior of Ω and on a
finer scale in a neighborhood of the boundary, cf. Fig. 9.5. According to Theorem9.4
the estimate is optimal in the sense that there exists a sequence of triangulations for
which it cannot be improved. The following result is based on ideas from [11] and
was derived in a more general setting in [5].

Theorem 9.6 (Sharp upper bound) Let p > 1 and Th be a quasiuniform triangula-
tion of Ω = (0, 4) × (0, 1). We have

min
uh∈S 1

0 (Th)

I(uh) ≤ c1hp/(p+1).

Proof We define the function ũ ∈ W1,∞((0, 1) × R) for (̃x, ỹ) ∈ (0, 1)2 by

ũ(̃x, ỹ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ỹ for 0 ≤ y ≤ (1 + x̃)/8,

(1 + x̃)/4 − ỹ for (1 + x̃)/8 ≤ ỹ ≤ (3 + x̃)/8,

−1/2 + ỹ for (3 + x̃)/8 ≤ ỹ ≤ (5 − x̃)/8,

−(1 + x̃)/4 + (1 − ỹ) for (5 − x̃)/8 ≤ ỹ ≤ (7 − x̃)/8,

ỹ − 1 for (7 − x̃)/8 ≤ ỹ ≤ 1

r0r−1

h

r−30 r−J
2−Jh

r−2

Fig. 9.5 Improved construction of a finite element function with low energy employing multiple
scales
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and extend ũ periodically in ỹ, i.e., ũ(̃x, k + ỹ) = ũ(̃x, ỹ). Notice that ũ(0, y) =
ũ(1, 2y). Given r > 1, we letψ : [r−1, 1] → [0, 1] be the linear, increasing bijection
and set û(̂x, ŷ) = ũ(ψ(̂x), ŷ) for (̂x, ŷ) ∈ [r−1, 1] × R. We then define

u(x, y) =

⎧⎪⎨
⎪⎩

hα û(1, y/hα) for x ∈ [1, 2],
(hα/2j )̂u(rjx, 2jy/hα) for x ∈ [r−(j+1), r−j], 0 ≤ j ≤ J − 1,

(hα/2J )̂u(1, 2Jy/hα) for x ∈ [0, r−J ].
For x ∈ [2, 4] we set u(x, y) = u(4 − x, y). We assume that h−α ∈ Z, so that
the interval [0, 1] is exactly partitioned into intervals of length hα and we have
u(x, 0) = u(x, 1) = 0 for all x ∈ [0, 4]. The construction of the function u is
depicted in Fig. 9.5.

With

∂xu = ±hα(r/2)j ∂̂xû(rjx, 2jy/hα), ∂yu = ∂̂ŷu(rjx, 2jy/hα).

It follows that

∇u =
{

F1 in the white region,

F2 + O
(
hα(r/2)j

)[1, 0] ⊥

in the gray region.

The specification of α, r, and J below will guarantee that hα(r/2)j ≤ c for j =
0, 1, . . . , J . We define φβ(x, y) = min{h−βx, 1} and set

uh = Ih[φβu].
For (x, y) ∈ Ω with x ≤ hδ we then have |∇uh| ≤ c(1 + 2−Jhα−β). The energy
Ij(uh) in the region [r−(j+1)r−j] is the sum of the following contributions:

• For 2jh−α interfaces of length r−j separating regions of constant gradients, we get
for h−1r−j many triangles of area h2 on which |∇uh| ≤ c

Ij
interfaces ≤ c2jh−αh−1r−jh2 = c(2/r)jh1−α.

• In a region of area r−j in which ∇uh = F2 + O
(
(hα(r/2)j

)[1, 0] ⊥

, we obtain

Ij
branching ≤ cr−j(hα(r/2)j)p = cr−j(1−p)2−jp = c(rp−1/2p)jhαp.

We note that in the boundary region [0, hβ ] × [0, 1], we have the contribution
Iboundary ≤ chβ(1 + 2−Jhα−β).

Altogether we have

I(uh) ≤ chβ(1 + 2−Jhα−β) + c
J∑

j=0

(
(2/r)jh1−α + (rp−1/2p)j(1−p)hαp).
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We choose 2 < r < 2p/(p−1), β = p/(p + 1), α = 1/(p + 1), and J as the smallest
integer with J ≥ log2(h

α−β) = log2 h(1−p)/(p+1)) so that 2−Jhα ≤ hβ = hp/(p+1).
The choices imply the asserted bound provided hα(r/2)J ≤ c. Since (r/2)J ≤
(21/(p−1))J ≤ (hα−β)1/(1−p) = h−1/(p+1) = h−α this is guaranteed. �
Remarks 9.3 (i) The result justifies the interpretation of the scale introduced by the
discretization as a scale related to a surface energy term.
(ii) The growth parameter p > 1 determines the amount of energy stored in interfaces.

9.2.3 Failure of Direct Minimization

The restriction of a coercive and continuous but nonconvex energy functional I to
a finite-dimensional subspace leads to the existence of discrete minimizers which
define an infimizing sequence as the dimension increases. The problematic analytical
properties of the continuous problem are however reflected in the fact that it seems
impossible to find global minimizers of the discrete problems due to the occurrence
of many local minimizers and large energy barriers between them. The following
theorem proves, in a simple model situation, that the number of local minimizers in
neighborhoods of decreasing diameter of global minimizers grows exponentially and
the separating relative energy barriers increase linearly with the number of degrees
of freedom. The statement is a simplified version of a result from [6].

Theorem 9.7 (Local minimizers) Let Th be the uniform partition of Ω = (0, 1)
with mesh-size h = 1/N for an even integer N, and for uh ∈ S 1(Th) define

I(uh) = 1

4

1∫

0

(|u′
h|2 − 1

)2 dx + 1

2

1∫

0

u2h dx.

(i) The minimizers u±
h ∈ S 1(Th) of I satisfy I(u±

h ) ≤ Ih = h2/24 and are given by

u±
h |Tj (x) = ±(−1)ja(x − xj)

for x ∈ Tj = [(j−1)h, jh], xj = (j−1/2)h, j = 1, 2, . . . , N, and a = (1−h2/12)1/2,
cf. Fig.9.6.
(ii) For uh ∈ {u+

h , u−
h } there exist 2N/2 distinct local minimizers (u�,∗

h )�=1,...,2N/2 ⊂
S 1(Th) with ‖u�,∗

h − uh‖ < 2h and I(u�,∗
h ) ≤ 4Ih, � = 1, 2, . . . , 2N/2.

(iii) For every continuous path ϕ : [0, 1] → S 1(Th) connecting two of those local
minimizers we have maxt∈[0,1] I(ϕ(t)) ≥ 6NIh.

Proof (i) We minimize the energy on every element over affine functions and then
assemble the elementwise minimizers to a function in S 1(Th). For the element
Tj = xj +[−h/2, h/2] and uh|Tj (x) = a(x −xj)+b, we have the energy contribution
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ITj (uh) = 1

4

∫

Tj

(
(u′

h)
2 − 1

)2 dx + 1

2

∫

Tj

u2h dx = h

4
(a2 − 1)2 + h3

24
a2 + h

2
b2.

A straightforward optimization shows that a2 = 1 − h2/12 and b = 0 and implies
that ITj (uh) = (h3/24)(1 − h2/12). The functions u±

h ∈ S 1(Th) are obtained by
alternating the slopes ±a and these are the only minimizers of I .
(ii) Given uh ∈ {u±

h } and 1 ≤ k ≤ N/2, we modify uh on Rk = T2k−1 ∪ T2k by
defining ũh ∈ S 1(Th) through ũh = uh in (0, 1) \ Rk and ũ′

h|T2k−1 = u′
h|T2k and

ũ′
h|T2k = u′

h|T2k−1 , cf. Fig. 9.6. To compute I (̃uh), we note that the first part of the
energy remains unchanged while the second one is increased. We have

1

2

∫

Rk

ũ2h − u2h dx = h3

4
a2,

∫

Rk

(̃uh − uh)
2 dx = 7h3

6
a2,

i.e., I (̃uh) ≤ I(uh) + h3/4 and ‖uh − ũh‖2 ≤ (7/6)h3. For every interval Rk , k =
1, 2, . . . , N/2,wemayeithermodifyuh as aboveor leaveuh unchangedwhichdefines
2N/2 distinct functions (u�

h)�=1,...,2N/2 ⊂ S 1(Th) with I(u�
h) ≤ Ih + (N/2)(h3/4) =

4Ih and ‖uh − u�
h‖2 ≤ (7/12)h2. For � = 1, 2, . . . , 2N/2, we let u�,∗

h ∈ S 1(Th) be
the minimizer for I within the closure of the set

Xh(u
�
h) = {vh ∈ S 1(Th) : sign(v′

h) = sign((u�
h)

′) a.e. in (0, 1)}.

We have that |(u�,∗
h )′| ≥ 1/

√
3 since otherwise I(u�,∗

h ) ≥ (1/9)h which contradicts

I(u�,∗
h ) ≤ 4Ih. Since W ′′(s) ≥ 0 for W = (s2 − 1)2/4 and s ∈ R

2 \ B1/
√
3(0), we

have that I is strongly convex on the line segment that connects u�
h and u�,∗

h . Using

DI(u�,∗
h )[vh] = 0 for all vh ∈ S 1(Th) we verify that

1

2
‖u�,∗

h − u�
h‖2 ≤ I(u�

h) − I(u�,∗
h ) ≤ 4Ih − Ih.

The triangle inequality yields ‖uh − u�,∗
h ‖ < 2h.

u−
h ũh

Fig. 9.6 Global discrete minimizer u−
h (left) and modified function ũh obtained by exchanging the

slopes of u−
h on two adjacent elements (right)
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(iii) If ϕ : [0, 1] → S 1(Th) connects two of the above local minimizers, then there
exists an element T such that their derivatives have different signs on T ∈ Th, e.g.,
ϕ(0)′|T > 0 and ϕ(1)′|T < 0, and for some t∗ ∈ [0, 1], it follows that ϕ(t∗)′|T = 0
and hence I(ϕ(t∗)) ≥ h/4 = 6h−1Ih. �

9.2.4 Approximation of the Relaxed Problem

The results on the numerical minimization of the energy functional I with nonconvex
energy density show that optimal finite element functions have complicated structures
and are, due to the occurrence of local minimizers, difficult to compute. Relaxation
theory motivates to discretize the functionals Iqc in which W is replaced by its
quasiconvex envelope. It can be shown that Wqc is continuous and satisfies the same
growth conditions as W , so that we assume Wqc ∈ C(Rm×d) with

c1(|F|p − 1) ≤ Wqc(F) ≤ c2(|F|p + 1)

for some 1 < p < ∞, constants c1, c2 > 0, and all F ∈ R
m×d . To establish the

convergence of finite element minimizers of related energy functionals, it suffices to
prove Γ -convergence in the absence of low-order terms and boundary conditions,
i.e., to consider

Iqc(v) =
∫

Ω

Wqc(∇v) dx

for v ∈ W1,p(Ω;Rm).

Theorem 9.8 (Convergence) Let (Th)h>0 be a sequence of triangulations of Ω and
for h > 0 and v ∈ W1,p(Ω;Rm), set

Iqc
h (v) =

{
Iqc(v) if v ∈ S 1(Th)

m,

+∞ if v ∈ W1,p(Ω;Rm) \ S 1(Th)
m.

We then have Iqc
h →Γ Iqc as h → 0 with respect to weak convergence in

W1,p(Ω;Rm).

Proof We have Iqc(v) ≤ Iqc
h (v) for all v ∈ W1,p(Ω;Rm) and all h > 0 and that

Iqc is weakly lower semi-continuous, so that it suffices to show that for every
v ∈ W1,p(Ω;Rm) there exists a sequence (vh)h>0 ⊂ W1,p(Ω;Rm) such that
vh ∈ S 1(Th)

m for every h > 0 and vh ⇀ v in W1,p(Ω;Rm) as h → 0 and

Iqc
h (vh) → Iqc(v)

as h → 0. Due to the density of the finite element spaces in W1,p(Ω;Rm), there
exists a sequence of finite element functions (vh)h>0 ⊂ W1,p(Ω;Rm) with vh → v
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inW1,p(Ω;Rm) as h → 0. Thus,∇vh → ∇v in Lp(Ω;Rm×d) and for a subsequence
we have the pointwise convergence ∇vh′(x) → ∇v(x) for almost every x ∈ Ω as
h′ → 0. Therefore, the continuity of Wqc implies Wqc(∇vh′) → Wqc(∇v) almost
everywhere inΩ as h → 0. From the growth conditions satisfied by Wqc, we deduce
that |Wqc(∇vh)| ≤ c2(1+|∇vh|p). The generalized dominated convergence theorem
thus implies that Iqc(vh′) → Iqc(v) as h′ → 0. �
Remarks 9.4 (i) Dirichlet boundary conditions are included in the result by consid-
ering the restriction of Iqc to the space ũD,h + S 1

D(Th)
m for a sequence of approxi-

mations ũD,h ∈ S 1(Th)
m satisfying ũD,h → ũD in W1,p(Ω;Rm) as h → 0.

(ii) The same Γ -convergence result can be proved for the functionals Ih that
are obtained by restricting the non-quasiconvex functional I to S 1(Th)

m, i.e.,
Ih →Γ Iqc. The practical minimization of Iqc

h is however expected to be signifi-
cantly simpler than the minimization of Ih, although Iqc

h does in general not define a
convex minimization problem.

For scalar problems corresponding to m = 1 or in other special situations, we
have Wqc = W∗∗ with the convex hull W∗∗ of W . In this case an error estimate can
be proved. We use the fact that for a convex functional Φ : Rm×d → R, we have

F ∈ ∂Φ∗(S) ⇐⇒ S ∈ ∂Φ(F) (9.4)

for all S, F ∈ R
m×d which may be interpreted as [∂Φ∗]−1 = ∂Φ. We note that we

also have Φ∗∗∗ = Φ∗. We say that ∂Φ∗ is strongly monotone if

c∗|S1 − S2|2 ≤ 〈S1 − S2, F1 − F2〉

for some c∗ > 0 and all S1, S2, F1, F2 ∈ R
m×d with F� ∈ ∂Φ∗(S�) for � = 1, 2,

cf. Fig. 9.7 for an illustration.

Theorem 9.9 (Convex relaxation) Assume that Wqc = W∗∗, p = 2, ∂W∗ is strongly
monotone, and W∗∗ ∈ C1(Rm×d) with

|DW∗∗(F)| ≤ c′
f (|F| + 1)

for all F ∈ R
m×d. Let α ≥ 0, u0, f ∈ L2(Ω;Rm), and g ∈ L2(ΓN;Rm) and suppose

that u ∈ W1,2
D (Ω;Rm) and uh ∈ S 1

D(Th)
m are minimal for

W W ∗∗W ∗

Fig. 9.7 Function W(F) = min{|F − 1|2/2, |F + 1|2/2}, its convex hull W∗∗(F) that vanishes in
B1(0) and the conjugate W∗(S) = W∗∗∗(S) = |S|2/2+ |S| with strongly monotone subdifferential
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I∗∗(v) =
∫

Ω

W∗∗(∇v) dx + α

2
‖v − u0‖2 −

∫

Ω

f · v dx −
∫

Ω

g · v ds

in the sets of all v ∈ W1,p
D (Ω;Rm) and v ∈ S 1

D(Th)
m, respectively. With σ =

DW∗∗(∇u) and σh = DW∗∗(∇uh), we have

c∗‖σ − σh‖ + α‖u − uh‖ ≤ inf
vh∈S 1(Th)m

(‖∇(u − vh)‖ + α‖u − vh‖
)
.

Proof Due to the assumptions on W∗∗, we have that the discrete and continuous
minimizers u and uh satisfy the corresponding Euler–Lagrange equations, i.e.,

∫

Ω

DW∗∗(∇u) · ∇v dx + α

∫

Ω

(u − u0) · v dx =
∫

Ω

fv dx +
∫

ΓN

gv ds

for all v ∈ W1,p
D (Ω;Rm) and

∫

Ω

DW∗∗(∇uh) · ∇vh dx + α

∫

Ω

(uh − u0) · vh dx =
∫

Ω

fvh dx +
∫

ΓN

gvh ds

for all vh ∈ S 1
D(Th)

m. Since S 1
D(Th)

m ⊂ W1,2
D (Ω;Rm), we deduce the Galerkin

orthogonality, abbreviating σ = DW∗∗(∇u) and σh = DW∗∗(∇uh),

∫

Ω

(σ − σh) · ∇vh dx + α

∫

Ω

(u − uh) · vh dx = 0

for all vh ∈ S 1
D(Th)

m. The equivalence (9.4) applied to σ = DW∗∗(∇u) and
σh = DW∗∗(∇uh) proves ∇u ∈ ∂W∗(σ ) and ∇uh ∈ ∂W∗(σh), so that the strong
monotonicity of ∂W∗ yields the estimate

c∗|σ − σh|2 ≤ (σ − σh) · ∇(u − uh)

almost everywhere in Ω . This implies that

c∗‖σ − σh‖2 + α‖u − uh‖2 ≤
∫

Ω

(σ − σh) · ∇(u − uh) dx

+ α

∫

Ω

(u − uh) · (u − uh) dx.
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Galerkin orthogonality allows replacing uh by an arbitrary function vh ∈ S 1
D(Th)

m

on the right-hand side, and an application of Hölder’s inequality leads to the asserted
estimate. �

Remarks 9.5 (i) The stresses σ and σh are uniquely defined even if u and uh are
non-unique.
(ii) The condition W∗∗ ∈ C1(Rm×d) and the bound for |DW∗∗(F)| follow from a
quadratic growth condition and imply that W∗∗∗ = W∗ is strictly convex.
(iii) A corresponding a posteriori error estimate follows analogously.

9.2.5 Iterative Minimization

To find stationary points with low energy for the functional

I(uh) =
∫

Ω

W(∇uh) dx

with a nonconvex or convex energy density in the set of all uh ∈ S 1(Th) with
uh|ΓD = uD, we employ a descent method with line search. We recall that the
Armijo–Goldstein criterion guarantees that for 0 < μ < 1/2, uh ∈ S 1(Th), and
dh ∈ S 1

D(Th) satisfying

(∇dh,∇vh) = −δI(uh)[vh]
for all vh ∈ S 1

D(Th), there exists a number α′ > 0 such that with ‖∇dh‖2 =
−δI(uh)[dh] we have

I(uh + αdh) ≤ I(uh) − μα‖∇dh‖2.
for all α ∈ (0, α′).

Algorithm 9.1 (Descent method) Choose 0 < μ < 1/2 and εstop > 0. Let u0h ∈
S 1(Th) with uh|ΓD = uD and compute a sequence (uj

h)j=0,1,... ⊂ S 1(Th) via

uj+1
h = uj

h + αjd
j
h with dj

h ∈ S 1
D(Th), such that

(∇dj
h,∇vh) = −δI(uj

h)[vh] = −
∫

Ω

DW(∇uj
h) · ∇vh dx

for all vh ∈ S 1
D(Th) and the maximal αj ∈ {2−� : � ∈ N0} satisfying

I(uj
h + αjd

j
h) ≤ I(uj

h) − μαjδI(uj
h)[dj

h].

Stop the iteration if ‖∇dj
h‖ ≤ εstop.

A Matlab realization of Algorithm9.1 is displayed in Fig. 9.8.
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Fig. 9.8 Matlab routine that realizes a descent method for the minimization of the energy func-
tional I(u) = ∫

Ω
W(∇u) dxwithW(F) = (1/p)|F−F1|p/2|F−F2|p/2 subject to the affine boundary

condition u(x) = Fx for x ∈ ΓD
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Remark 9.6 The algorithm can also be applied to the convexified problem. For that
problem it is also desirable to use a Newton iteration. This is however problematic
due to the fact that the convex envelope W∗∗ is typically only degenerately convex
in the sense that D2W∗∗ may vanish. To avoid related problems stabilizing quadratic
terms are often added in the energy minimization.

9.3 Approximation of Semi-convex Envelopes

The relaxed problem defined by the energy functional Iqc provides a well-posed
reformulation of the original minimization problem and allows us to reconstruct
information about the occurrence of microstructures. The essential ingredient is the
knowledge of the quasiconvex envelope Wqc of the energy density W which can be
computed explicitly only in special situations. Its numerical approximation is difficult
since no efficient characterization of quasiconvexity is known and the definition of
Wqc as aminimization problem causes severe numerical difficulties. Upper and lower
bounds for Wqc are known and these are accessible numerically. We discuss their
approximation and consider throughout the case m = d and a continuous function
W : Rd×d → R that satisfies

c1(|F|p − 1) ≤ W(F) ≤ c2(|F|p + 1)

for all F ∈ R
d×d with constants c1, c2 > 0 and a number p ≥ 1. We follow ideas

from [3, 4, 9].

9.3.1 Upper and Lower Bounds for Wqc

A lower bound for the quasiconvex envelope is defined by the polyconvex envelope,
cf. [8].

Definition 9.2 The polyconvex envelope Wpc ofW is the largest polyconvex function
Wpc : Rd×d → R with Wpc ≤ W .

We recall that a polyconvex function is convex in the minors, i.e., in the determi-
nants of square submatrices. This implies that the polyconvex envelope is the largest
function Ŵ ◦T below W with a convex function Ŵ : Rτd → R and the minors vector
T : Rd×d → R

τd given by

T(F) =
{

(F, det F) ∈ R
5 if d = 2,

(F, det F̂11, . . . , det F̂33, det F) ∈ R
19 if d = 3,

where the matrices F̂ij are obtained from F by deleting the ith row and jth column.
The function Wpc can equivalently be characterized through a constrained nonlinear
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minimization problem, i.e., for F ∈ R
d×d , we have

Wpc(F) = inf
{ τd+1∑

�=1

θ�W(A�) : A� ∈ R
d×d , θ� ≥ 0

τd+1∑
�=1

θ� = 1
τd+1∑
�=1

θ�T(A�) = T(F)
}
.

If the condition
∑τd+1

�=1 θ�T(A�) = T(F) is simplified to
∑τd+1

�=1 θ�A� = F, then we
obtain the convex envelopeW∗∗(F). In particular, we haveW∗∗(F) ≤ Wpc(F). Since
polyconvexity implies weak lower semicontinuity of integral functionals, it provides
a lower bound for the quasiconvex envelope. An upper bound is defined through the
rank-one convex envelope.

Definition 9.3 The rank-one convex envelope Wrc of W is the largest function Wrc :
R

d×d → R such that Wrc ≤ W and t �→ W(F + t ab

⊥

) is convex for all F ∈ R
d×d

and a, b ∈ R
d .

To identify Wrc as an upper bound for Wqc(F), we recall that this quantity is
defined by the minimization problem

Wqc(F) = inf
v∈W1,∞

0 (ω)

|ω|−1
∫

ω

W(F + ∇v) dx.

By the strong continuity of the integral functional, an infimizing sequence has to
develop oscillations to decrease the value below W(F). Functions of the form

uε(x) = F1x + a

b·x∫

0

χ̃(θ,1)(ε
−1s) ds

for ε > 0 which are appropriately truncated at the boundary oscillate between gra-
dients F1 and F2 = F1 + ab

⊥

so that

Wqc(F) ≤ θW(F1) + (1 − θ)W(F2)

provided that θF1+(1−θ)F2 = F. ThematricesF1 andF2 differ by a rank-onematrix
and the process can be repeated by replacing F1 and F2 by convex combinations
F1 = θ1F11+(1−θ1)F12 andF2 = θ2F21+(1−θ2)F22, provided thatF12−F11 and
F22 − F21 are rank-one matrices. This process is illustrated in Fig. 9.9 and motivates
defining the lamination-convex envelope W�c as the pointwise limit limk→∞ Wk of
the recursively constructed functions (Wk)k∈N with W0 = W and Wk+1 for k ≥ 0
and F ∈ R

d×d defined by

Wk+1(F) = inf
{
θWk(F1) + (1 − θ)Wk(F2) : θ ∈ [0, 1], F1, F2 ∈ R

d×d,

θF1 + (1 − θ)F2 = F, rank(F2 − F1) = 1
}
.
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F11 F12

F

F1 F2

F1
F2 F11

F2

F12

Fig. 9.9 Successive lamination by replacing gradients by convex combinations of rank-one con-
nected matrices

A result in [12] shows that this provides an equivalent characterization of Wrc,
i.e., W�c = Wrc. In particular, in the iterative process above, the function W is
successively convexified along rank-one lines.

The functions W , Wqc, Wpc, W∗∗, and Wrc are related by the inequalities

W∗∗ ≤ Wpc ≤ Wqc ≤ Wrc ≤ W .

In general all of these inequalities are strict. We remark that only W∗∗, Wpc, Wqc

define weakly lower semicontinuous minimization problems. An important feature
of Wrc is its physical interpretation that the energy is lowered by iterated laminates.

Example 9.2 ([10]) Given F1, F2 ∈ R
d×d , let

W(F) = min{W1(F), W2(F)}
with Wj(F) = |F − Fj|2/2 for F ∈ R

d×d and j = 1, 2. Then

Wqc(F) =
{

W(F) for |W1(F) − W2(F)| ≥ λ/2,

W2(F) − (W2(F) − W1(F) + λ/2)2/(2λ) for |W1(F) − W2(F)| ≤ λ/2,

where λ is the largest eigenvalue of (F2 − F1)

⊥

(F2 − F1). We have W∗∗ 
= Wpc =
Wqc = Wrc = W1. The identity W∗∗ = Wrc holds if and only if rank(F2 − F1) = 1.

Below, we denote by Ks for s ≥ 0, the set

Ks = {F ∈ R
d×d : |F|∞ ≤ s}

with |F|∞ = max1≤i,j≤d |Fij|. The following assumptions simplify the convergence
proofs of the numerical methods for the approximation of Wpc and Wrc.

Assumption 9.1 (Convexity and monotonicity)

(i) There exists a convex function g : Rd×d → R such that W ≥ g and W = g in
R

d×d \ Ks for some s > 0.
(ii) For all F ∈ ∂Ks and a, b ∈ R

d , such that F + t ab

⊥


∈ Ks for all t > 0, the
function t �→ W(F + t ab

⊥

) is increasing for t > 0.
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The first part of the assumption implies that W∗∗ = Wpc = Wqc = Wrc = W
in Rd×d \ Ks. We remark that this is not satisfied in Example9.2 but the subsequent
results can be appropriatelymodified. Themethods described belowcompute discrete
homogeneous Young measures μ

pc
δ and μrc

δ , such that Wpc(F) ≈ 〈W , μ
pc
δ 〉 and

Wrc(F) ≈ 〈W , μrc
δ 〉 with a mesh-size δ > 0. The Young measures μrc

δ will be a
gradient Young measures.

9.3.2 Approximation of Wpc

To define an approximation of Wpc we note that the infimum in the minimization
problem that defines Wpc(F) remains unchanged if τd + 1 is replaced by a number
N ≥ τd + 1, cf. [8]. We then restrict the matrices A�, � = 1, 2, . . . , N , to belong to
the grid of nodesNδ,r defined for a uniform grid size δ > 0 and a radius r = Nδ for
an integer N > 0 by

Nδ,r = δZd×d ∩ Kr,

cf. Fig. 9.10. ToNδ,r we associate the triangulationTδ,r of Kr that consists of cubes
of edge length δ and with vertices inNδ,r . The spaceS 1(Tδ,r) is the set of all con-
tinuous functions on Kr that equal a polynomial of partial degree-one on every cube
inTδ,r .We let (ϕA)A∈Nδ,r be the nodal basis ofS

1(Tδ,r) andIδ,r the corresponding
nodal interpolation operator.

For F ∈ Kr and N ⊂ Nδ,r we then consider the optimization problem

Wpc
N (F) = inf

{ ∑
A∈N

θAW(A) : θA ≥ 0,
∑

A∈N
θA = 1

∑
A∈N

θAT(A) = T(F)
}
.

In this problem the only degrees of freedom are the convex coefficients (θA)A∈N
that are associated to the fixed nodes A ∈ N ⊂ R

d×d . The problem is thus a
linear optimization problem with inequality and equality constraints. To show that
the optimization problem Wpc

N (F) has a solution, it suffices to construct a feasible

r

F11F01

F00

F0 F1

F10

F

f1 1− f1

1− f2

f2

Fig. 9.10 Grid points Nδ,r = δZd×d ∩ Kr (left); successive decomposition of a matrix F ∈
R

d×d ∩[0, 1]d×d along coordinate axes into a convex combination of the vertices of [0, 1]d×d (right)
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vector (θA)A∈N . This is based on the fact that minors are affine along rank-one lines,
e.g., along the coordinate axes.

Lemma 9.1 (Rank-one affinity) Let A ∈ R
n×n, n = 1, 2, . . . , d, and 1 ≤ i, j ≤ n.

For Eij = eie

⊥

j ∈ R
n×n with the canonical basis vectors ei, ej ∈ R

n and t ∈ R, we
have

det(A + tEij) = det A + (−1)i+j t det Âij.

Proof An expansion of the determinant of A + tEij according to Laplace’s rule with
respect to the ith row proves the assertion. �

Lemma 9.2 (Local rank-one decomposition) Let F ∈ [0, 1]d×d and (Ek)k=1,...,2d2

be the matrices in {0, 1}d×d. There exist convex coefficients (ρk)k=1,...,2d2 with

T(F) =
2d2∑
i=1

ρkT(Ek).

For 1 ≤ k ≤ 2d2
we have ρk = ϕk(F).

Proof We identify the matrix F with the vector (fk)k=1,...,d2 via f(i−1)d+j = (F)ij,
1 ≤ i, j ≤ d. The decomposition of F is constructed in a hierarchical way in d2

steps. In the first step we write

F = (1 − f1)F0 + f1F1,

where F0 and F1 coincide with F in all components except for the first one in which
F0 vanishes and F1 has the value 1. Notice that F1 − F0 = e1e

⊥

1 , so that according
to Lemma9.1 we have

T(F) = (1 − f1)T(F0) + f1T(F1).

In the second step, we write

F0 = (1 − f2)F00 + f2F01, F1 = (1 − f2)F11 + f2F11,

where the matrices F00, F01 and F10, F11 coincide with F0 and F1 except for the
second entries, respectively, where F00, F10 vanish and F01, F11 have the entry 1.
The decomposition is sketched in the right plot of Fig. 9.10. Noting that F11 −F01 =
F01 − F00 = e

⊥

1 e2 we have

T(F) = (1 − f1)
[
(1 − f2)T(F00) + f2T(F01)

] + f1
[
(1 − f2)T(F11) + f2T(F11)

]
.

Repeating this procedure we obtain after d2 steps a decomposition of F with the
asserted properties. �
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Theorem 9.10 (Approximation) Let W ∈ C1,α(Rd×d) and F ∈ Kr and assume that

Wpc(F) =
τd+1∑
�=1

θ�W(A�)

with a feasible family (θ�, A�)
τd+1
�=1 ⊂ [0, 1] × Kr. Then the optimization problem

Wpc
Nδ,r

(F) has a solution, and we have

0 ≤ Wpc
Nδ,r

(F) − Wpc(F) ≤ cδ1+α|DW |C0,α(Kr)
,

where |DW |C0,α(Kr)
= supF1,F2∈Kr

|DW(F1) − DW(F2)|/|F1 − F2|α .

Proof Lemma9.2 implies for � = 1, 2, . . . , τd + 1 that

T(A�) =
∑

A∈Nδ,r

ϕA(A�)T(A).

Therefore, setting θA = ∑τd+1
�=1 θ�ϕA(A�) we have

T(F) =
∑

A∈Nδ,r

θAT(A)

and
∑

A∈Nδ,r
θA = 1, cf. Fig. 9.11. Hence, (θA)A∈Nδ,r defines a feasible vector for

the optimization problem, and we have

Wpc
Nδ,r

(F) ≤
∑

A∈Nδ,r

θAW(A) =
τd+1∑
�=1

θ�

∑
A∈Nδ,r

ϕA(A�)W(A) =
τd+1∑
�=1

θ�IδW(A�).

Since Wpc(F) ≤ Wpc
Nδ,r

(F), the interpolation estimate

‖IδW − W‖L∞(Kr(0)) ≤ cδ1+α|DW |C0,α(Kr(0))

implies the assertion. �

A ∈ ,r,
+1

�=1 A(A�) �= 0

F = +1
�=1 �A�

A�, � = 1,2, ..., +1

Fig. 9.11 Interpolation of the polyconvex envelope on the gridNδ,r ; only the nodal basis functions
corresponding to the filled dots contribute to the interpolation
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Remarks 9.7 (i) The bound A� ∈ Kr , � = 1, 2, . . . , τd + 1, can be guaranteed with
growth properties of W if p > d. Otherwise it follows from Carathéodory’s theorem.
(ii) The C1,α-regularity ofW is only needed in a neighborhood of the region in which
Wpc = W .

9.3.3 Adaptive Computation of Wpc
δ,r

The discretization of Wpc(F) defines an optimization problem with many unknowns
and its direct implementation appears difficult and inefficient. In particular, only
τd + 1 many matrices are needed in the continuous situation and only these matrices
have to be approximated locally. The following optimality conditions characterize
the relevant nodes A ∈ N .

Proposition 9.3 (Maximum principle) The feasible family (θA)A∈N ⊂ [0, 1] is
optimal in Wpc

δ,r(F) if and only if there exists λN ∈ R
τd such that

λN · T(A) − W(A) ≤
∑

A′∈N
θA′

(
λN · T(A′) − W(A′)

) = λN · T(F) − Wpc
δ,r(F)

for all A ∈ N . If θA > 0 for A ∈ N , then equality holds.

Proof The Karush-Kuhn-Tucker optimality conditions state that the feasible vector
(θA)A∈N solves the optimization problem if and only if there exist λN ∈ R

τd ,
λ′
N ∈ R, and (μA)A∈N ⊂ R with μA ≤ 0 for all A ∈ N such that μAθA = 0 for

all A ∈ N and

∑
A′∈N

ρA′W(A′) −
∑

A′∈N
ρA′λN · T(A′) − λ′

N

∑
A′∈N

ρA′ +
∑

A′∈N
ρA′μA′ = 0

for all (ρA)A∈N ⊂ R. GivenA ∈ N set ρA = θA−1 and ρA′ = θA′ forA′ ∈ N \{A}.
It follows that

λN · T(A) − W(A) ≤
∑

A′∈N
θA′

(
λN · T(A′) − W(A′)

)

and the equality of the right-hand side toλN (F)−Wpc
N (F) follows from thedefinition

of the optimization problem. Conversely, assume that (θA)A∈N is feasible and the
condition of the proposition is satisfied. Then, the Karush-Kuhn-Tucker conditions
are satisfied with

−μA =
∑

A′∈N
θA′

(
λN · T(A′) − W(A′)

) − λN · T(A) + W(A) ≥ 0,
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λ′
N =

( ∑
A′∈N

W(A′) −
∑

A′∈N
λN · T(A′) +

∑
A′∈N

μA′
)
/
( ∑

A′∈N
1
)
.

The complementarity condition μAθA = 0 for all A ∈ N and the specification of
μA show that if θA > 0, then μA = 0 and equality holds. �

Remarks 9.8 (i) Employing the continuous analogue of Proposition9.3, i.e., that the
map A �→ λ ·T(A)−Wpc(A) is maximal for A = F, i.e., 0 = λ ·DF(F)−DWpc(F),
it follows that the quantity λN · DT(F) approximates DWpc(F).
(ii) If p > d and θA > 0, then the estimate T(A) · λN ≤ cT |λN ||A|d implies that
c1|A|p −c1−cT |λN ||A|d ≤ |λN ||T(F)|+c1 and shows that |A| ≤ r′ with a number
r′ > 0 that depends on F and λN .

Proposition9.3motivates an iterative active set strategywith small subsets ofNδ,r

for the practical solution of Wpc
Nδ,r

(F) and a local refinement of the grid.

Proposition 9.4 (Active set prediction)

(i) Let λ̃N ∈ R
τd and εAS > 0 and set

M = {
A ∈ N : λ̃N · T(A) − W(A) ≥ max

A′∈N
(̃
λN · T(A′) − W(A′)

) − εAS
}
.

If supA∈Nδ,r
|(λN − λ̃N ) · T(A)| ≤ εAS/2, then we have Wpc

N (F) = Wpc
M .

(ii) Let (θA)A∈Nδ,r be optimal for Wpc
Nδ,r

(F) and define for M > 0

Zδ = {
A ∈ Nδ,r : λNδ,r · T(A) − W(A) ≤ λNδ,r · T(F) − Wpc

δ,r(F) − δM},
Ẑδ/2 = {

A ∈ Nδ/2,r : there existsA′ ∈ Zδ with |A′ − A| ≤ δ
}
.

If (θ ′
A)A∈Nδ/2,r is optimal for Wpc

Nδ/2,r
(F) with Lagrange-multiplier λNδ/2,r , then we

have
∑

A∈Ẑδ/2
θ ′

A ≤ M−1ηr for ηr = |W |C0,1(Kr(0)) + |T |C0,1(Kr(0))|λNδ,r |.

Proof (i) If for a solution (θA)A∈Nδ,r of the optimization problem Wpc
N (F) and A ∈

N , we have θA > 0, then we deduce with Proposition9.3 that

λN · T(A) − W(A) = λN · T(F) − Wpc
Nδ,r

(F),

and it follows that

λ̃N · T(A) − W(A) ≥ λN · T(A) − W(A) − εAS/2

= λN · T(F) − Wpc
Nδ,r

(F) − εAS/2

= max
A′∈N

λN · T(A′) − W(A′) − εAS/2

≥ max
A′∈N

λ̃N · T(A′) − W(A′) − εAS.

This implies that A ∈ M .
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(ii) If A ∈ Ẑδ/2 and A′ ∈ Zδ are such that |A − A′| ≤ δ, then we have

W(A) ≥ Wpc
Nδ,r

(F) + λNδ,r · (
T(A) − T(F)

) + δM − δηr .

For A ∈ Nδ/2,r \ Ẑδ/2 the same estimate holds without δM. If (θA)A∈Nδ/2,r is optimal
in the definition of Wpc

δ/2,r(F), then

Wpc
δ/2,r(F) =

∑
A∈Nδ/2,r

θAW(A) ≥ Wpc
δ,r(F) − δηr +

∑
A∈Z ′

θ ′
AMδ

and since Wpc
δ,r(F) ≥ Wpc

δ/2,r(F) this proves the second assertion. �

Theproposition leads to the following algorithm inwhich the active set is predicted
and iteratively enlarged until the maximum principle holds. Once a solution has been
found the grid is refined locally.

Algorithm 9.2 (Iterative approximation of Wpc(F)) Let r > 0, M > 0, and L be
a positive integer and set δ = r, λ̃ = 0, N = Nδ,r , and εAS = 1. Until δ = 2−Lr
repeat the following steps.

(i) Set

Nactive = {
A ∈ N : λ̃ · T(A) − W(A) ≥ max

A′∈N
(̃
λ · T(A′) − W(A′)

) − εAS
}

and add further nodes toNactive to ensure feasibility.
(ii) Solve the optimization problem Wpc

Nactive
and check the maximum principle on

N . If this is not satisfied, then increase εAS and continue with (i).
(iii) Refine the grid locally around those nodesA ∈ N forwhichλN ·T(A)−W(A) >

λN ·T(F)−Wpc
N (F)−δM to obtain a new setN ⊂ Nδ/2,r , set δ = δ/2 and εAS = δ,

and continue with (i).

Figure9.12 displays an implementation inMatlab of the algorithm. The optimal-
ity conditions are checked up to a tolerance δ2. The time-consuming generation of
the grid inRd×d and its local refinement and coarsening are realized in the C-routines
grid_gen.c and loc_grid_ref.c.

9.3.4 Approximation of Wrc

To approximate the upper bound Wrc for Wqc, we choose as in the approximation
of the polyconvex envelope the grid Nδ,r = δZd×d ∩ Kr for parameters δ > 0 and
r = Nδ for a positive integer N . We employ a set of discrete rank-one matrices that
are identified with pairs of vectors in the set

R1
δ,r = {(aδ, bδ) ∈ δZd × δZd : |aδ| ≤ 2dr, 1 − dδ ≤ |bδ| ≤ 1 + dδ}.

With this set the iterative algorithm reads as follows.
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Fig. 9.12 Matlab realization of the iterative scheme for the computation of the polyconvex enve-
lope
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Algorithm 9.3 (Rank-one convexification) Given 0 < δ ≤ r set W0
δ = Iδ,rW and

define for k = 0, 1, . . . the function Wk+1
δ ∈ S 1(Tδ,r) for every F ∈ Nδ,r by

Wk+1
δ (F) = inf

{ ∑
�∈Z

θ�Wk
δ (F + δ�aδb

⊥

δ ) : (aδ, bδ) ∈ R1
δ,r , θ� ≥ 0,

∑
�∈Z

θ�

[
1
�

]
=

[
1
0

] }
,

where Wk
δ is extended by +∞ outside Kr . Stop if ‖Wk+1

δ − Wk
δ ‖L∞(Kr) ≤ εstop.

Remarks 9.9 (i) The algorithm realizes a successive discrete convexification along
rank-one lines. In particular, the infimum in the definition of Wk+1

δ (F) is attained
with two points, i.e., there exist (aδ, βδ) ∈ R1

δ,r , θ ∈ [0, 1], and �1, �2 ∈ Z such that
θ�1 + (1 − θ�2) = 0 and

Wk+1
δ (F) = θWk

δ (F + δ�1aδb

⊥

δ ) + (1 − θ)Wk
δ (F + δ�2aδb

⊥

δ ).

(ii) The one-dimensional convexification in the algorithm can be realized as follows:
Let (fj)j=0,...,L be a sequence of function values associated with grid points xj =
x0 + hj. Set g0 = f0 and f1 = g1. Then for j ≥ 2, 3, . . . set gj = fj if

gj − gj−1

xj − xj−1
≥ gj−1 − gj−2

xj−1 − xj−2
.

Otherwise determine the smallest integer k ≤ j − 2 with

gj − gj−k

xj − xj−k
<

gj−k − gj−k−1

xj−k − xj−k−1

and replace gj−m, m = 1, 2, . . . , k, by

gj−m = gj−k + (xj−k+m − xj−k)
gj − gj−k

xj − xj−k
.

Points lying above the convex envelope can be eliminated from the list and this allows
for a realization of the strategy with complexity O(L), cf. Fig. 9.13.

Fig. 9.13 The iterates in the approximation of the rank-one convex envelope are obtained by
discrete convexification along rank-one directions; function values between grid points are obtained
by interpolation
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Lemma 9.3 (Iterative lamination) Suppose that Assumption9.1 holds.
(i) For every F ∈ Ks there exist F1, F2 ∈ Ks and θ ∈ [0, 1] such that rank
(F2 − F1) = 1 and Wk+1(F) = θWk(F1) + (1 − θ)Wk(F2).
(ii) We have |Wk|C0,1(Ks)

≤ |W |C0,1(Ks)
for all k ≥ 0.

Proof (i) Due to Assumption9.1 we have W = Wk = g in R
d×d \ Ks for every

k ≥ 0. Let ε > 0 and θ̃Wk(F̃1) + (1 − θ̃ )Wk(F̃2) ≤ Wk+1(F) + ε for feasible
matrices F̃1, F̃2.Wewant to show thatwe can decrease the value by choosingmatrices
F1, F2 ∈ Ks. With G = F̃2 − F̃1, we have F̃1 = F − (1 − θ̃ )G and F̃2 = F + θ̃G.
Choosing α ≤ 1 − θ̃ and β ≤ θ̃ such that F1 = F − αG and F2 = F + βG satisfy
F1, F2 ∈ ∂Ks, we have Wk(F�) ≤ Wk(F̃�) for � = 1, 2 and with θ = α/(α +β) that
F = θF1+(1−θ)F2.Noting thatF� = μ�F̃1+(1−μ�)F̃2 for � = 1, 2 andμ� ∈ [0, 1]
and Wk(F�) ≤ μ�Wk(F̃1) + (1 − μ�)Wk(F̃2) shows θWk(F1) + (1 − θ)Wk(F2) ≤
θ̃Wk(F̃1) + (1 − θ̃ )Wk(F̃2) which implies the assertion.
(ii) Let F, G ∈ Ks and assume that Wk+1(F) ≤ Wk+1(G). Let θ ∈ [0, 1] and
F1, F2 ∈ Ks be such that F = θF1 + (1−θ)F2, rank(F2 −F1) = 1, and Wk+1(F) =
θWk(F1) + (1 − θ)Wk(F2). With Gj = Fj + (G − F), j = 1, 2, we have that
Wk+1(G) ≤ θWk(G1) + (1 − θ)Wk(G2) and therefore

Wk+1(G) − Wk+1(F) ≤ θWk(G1) + (1 − θ)Wk(G2) − θWk(F1)

+ (1 − θ)Wk(F2) ≤ |Wk|C0,1(Ks)
|F − G|.

If Wk+1(F) ≥ Wk+1(G), then the same estimate follows by interchanging the role
of G and F. An inductive argument proves the statement. �

Theorem 9.11 (Approximation of Wrc) Assume that W ∈ C0,1(Rd×d) such that
Assumption9.1 holds and Wrc = WK for some K ≥ 0. There exists a constant
c1 > 0 such that if δ and r satisfy s ≤ r − c1δ, then we have

‖WK
δ − Wrc‖L∞(Kr) ≤ Kcδ|W |C0,1(Kr)

.

Proof We show that for all k ≥ 0, we have

‖Wk+1
δ − Wk+1‖L∞(Kr) ≤ cδ |Wk|C0,1(Kr)

+ ‖Wk
δ − Wk‖L∞(Kr)

which implies the assertion by incorporating Lemma9.3 and the interpolation esti-
mate ‖W0

δ − W‖L∞(Kr)) ≤ cδ|W |C0,1(Kr)
. We consider the case k = 0 and abbreviate

W0
δ = Wδ and W0 = W . The general case follows analogously. Let W̃1

δ be defined
for F ∈ Kr by

W̃1
δ (F) = inf

{ ∑
�∈Z

θ�W̃(F + δ�a

⊥

δ bδ) : (aδ, bδ) ∈ R1
δ,r, θ� ≥ 0,

∑
�∈Z

θ�(1, �) = (1, 0)
}
,

where W̃ = W on Kr and W̃ = +∞ otherwise. Suppose that W̃1
δ (F) ≤ W1

δ (F) and
let (aδ, bδ) ∈ R1

δ and (θ�)�∈Z be optimal in the definition of W̃1
δ (F). Then
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|W1
δ (F) − W̃1

δ (F)| ≤
∑
�∈Z

θ�

(
Wδ(F + δ�a

⊥

δ bδ) − W(F + δ�a

⊥

δ bδ)
)

≤ ‖W − Wδ‖L∞(Kr).

If W̃1
δ (F) ≥ W1

δ (F), then the same estimate follows from interchanging the roles
of W̃1

δ (F) and W1
δ (F). It remains to bound the difference |W̃1

δ (F) − W1(F)|. If
F ∈ Kr \ Ks, we have W1(F) = W(F) and since W1(F) ≤ W̃1

δ (F) ≤ W(F) also
W̃1

δ (F). Otherwise, if F ∈ Ks, let F1, F2 ∈ Ks, a, b ∈ R
d , and θ ∈ [0, 1], such that

F2 − F1 = ab

⊥

, |b| = 1, F = θF1 + (1 − θ)F2, and

W1(F) = θW(F1) − (1 − θ)W(F2).

We note that |a| = |F2 − F1| ≤ 2d1/2s, and for

aδ = δ�a/δ�, bδ = δ�b/δ�

we deduce that |aδ| ≤ |a| + d1/2δ ≤ 2d1/2r. and 1− d1/2δ ≤ |bδ| ≤ 1+ d1/2δ. We
define

�1 = −�(1 − θ)/δ�, �2 = �θ/δ�,

and if �1 = �2 = 0, then we set θ�1 = θ and θ�2 = 1 − θ . Otherwise let

θ�1 = �2

|�1| + �2
, θ�2 = 1 − θ�1 .

It follows that |θ�1 − θ | ≤ 2δ if δ ≤ 1/2 and we have θ�1�1 + θ�2�2 = 0 and
θ�2 − (1− θ) = −(θ�1 − θ). We have thus constructed a feasible pair (aδ, bδ) ∈ R1

δ,r

and coefficients (θ�)�∈Z for the definition of W̃1
δ (F). Employing W1(F) ≤ W̃1

δ (F)

and F1 = F − (1 − θ)ab

⊥

, F2 = F + θab

⊥

, a repeated application of the triangle
inequality shows that

|W1(F) − W̃1
δ (F)| ≤ θ�1W(F − δ�1aδb

⊥

δ ) + θ�2W(F + δ�2aδb

⊥

δ )

− θW(F1) − (1 − θ)W(F2)

= θ�1

[
W(F − δ�1aδb

⊥

δ ) − W(F − (1 − θ)ab

⊥

)
]

+ θ�2

[
W(F + δ�2aδb

⊥

δ ) + W(F + θab

⊥

)
]

+ (θ�1 − θ)
[
W(F1) − W(F2)

]
≤ cδ|W |C0,1(Kr)

.

This implies the assertion. �

Remark 9.10 With Lemma9.2 one can show that the iterates (Wk
δ )k=0,1,... provide

reliable upper bounds for Wrc, i.e., Wk
δ ≥ Wrc for all k ≥ 0.
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Chapter 10
Free Discontinuities

10.1 Functions of Bounded Variation

Many important phenomena require the description of physical quantities with
discontinuous functions. Although Sobolev functions are not continuous in gen-
eral, they are too restrictive to admit functions with jumps across lower-dimensional
subsets. We introduce in this section the space of functions of bounded variations
and discuss its properties. The reader is referred to the textbooks [2, 4, 9] for details.

10.1.1 Derivatives of Discontinuous Functions

Functions in L1(Ω) define regular distributions and can be differentiated in the
distributional sense, i.e., given u ∈ L1(Ω), its distributional derivative is the linear
functional Du : C∞

c (Ω;Rd) → R defined by

〈Du, φ〉 = −
∫

Ω

u div φ dx

for every φ ∈ C∞
c (Ω;Rd).

Remark 10.1 For u ∈ L1(Ω) we have u ∈ W 1,1(Ω) if Du ∈ L1(Ω;Rd), i.e., if
there exists g ∈ L1(Ω;Rd) such that for all φ ∈ C∞

c (Ω;Rd), we have

〈Du, φ〉 =
∫

Ω

g · φ dx .

The space C0(Ω;Rm) denotes the completion of the space C∞
c (Ω;Rm) with

respect to the norm ‖v‖L∞(Ω) = supx∈Ω |v(x)| for v ∈ C∞
c (Ω;Rm), defined through
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the Euclidean norm on Rm . It is a separable Banach space and its dual is denoted by
M (Ω;Rm). The elements inM (Ω;Rm) are throughRiesz’s representation theorem
identified with (vectorial) Radon measures; and the application of μ ∈ M (Ω;Rm)

to v ∈ C0(Ω;Rm) is denoted by

〈μ, φ〉 =
∫

Ω

φ dμ =
∫

Ω

φ(x) dμ(x).

If m = 1, we call μ a scalar Radon measure and write M (Ω) forM (Ω;Rm).

Examples 10.1 (i) Every f ∈ L1(Ω;Rm) defines a Radonmeasureμ f = f ⊗ dx ∈
M (Ω;Rm) through the Lebesgue integral

〈μ f , φ〉 =
∫

Ω

φ · f dx

for all φ ∈ C∞
c (Ω;Rm). This is a bounded linear functional on C0(Ω;Rm) since

〈μ f , φ〉 ≤ ‖ f ‖L1(Ω)‖φ‖L∞(Ω).

(ii) The Dirac distribution δx0 for x0 ∈ Ω defines a Radon measure inM (Ω)which,
for all φ ∈ C0(Ω) is given by

〈δx0 , φ〉 = φ(x0).

(iii) Given a union C = ∪�
i=1Γi of Lipschitz continuous curves Γi ⊂ Ω , i =

1, 2, . . . , n, and a function f ∈ L1(C;Rm), we define the Radon measure μ f C =
f ⊗ ds�C by setting for φ ∈ C0(Ω)

〈μ f C , φ〉 =
∫

C

φ f ds.

Definition 10.1 A function u ∈ L1(Ω) is said to be of bounded variation if its
distributional derivative defines a Radon measure, i.e., if there exists c ≥ 0 such that

〈Du, φ〉 = −
∫

Ω

u div φ dx ≤ c‖φ‖L∞(Ω)

for all φ ∈ C1
c (Ω;Rd). The minimal constant c ≥ 0 with this property is called total

variation of Du and is given by

|Du|(Ω) = sup
{

−
∫

Ω

u div φ dx : φ ∈ C1
c (Ω;Rn), ‖φ‖L∞(Ω) ≤ 1

}
.
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The space of all such functions is denoted BV(Ω) and called the space of functions
of bounded variation. It is equipped with the norm

‖u‖BV(Ω) = ‖u‖L1(Ω) + |Du|(Ω)

for all u ∈ BV(Ω).

We summarize some basic facts about the space BV(Ω).

Remarks 10.2 (i) The space BV(Ω) is a nonseparable Banach space.
(ii) We have that |Du|(Ω) is the operator norm of Du : C∞

c (Ω;Rd) → R.
(iii)We have W 1,1(Ω) ⊂ BV(Ω)with ‖u‖BV(Ω) = ‖u‖W 1,1(Ω) for all u ∈ W 1,1(Ω).
(vi) We have that u ∈ BV(Ω) if and only if there exists μ ∈ M (Ω;Rd) such that

∫

Ω

u div φ dx = −
∫

Ω

φ dμ

for all φ ∈ C1
c (Ω;Rd).

(v) If u ∈ BV(Ω) and Du = 0, then u is constant on every connected component of
Ω . Moreover, u �→ |Du|(Ω) is a seminorm on BV(Ω).
(vi) If u ∈ BV(Ω) and ψ : R → R is Lipschitz continuous with constant L , then
ψ ◦ u ∈ BV(Ω) with |D(ψ ◦ u)|(Ω) ≤ L|Du|(Ω).
(vii) If Ω = (a, b) ⊂ R

1 and u ∈ BV(Ω), then there exists ũ ∈ BV(Ω) with u = ũ
almost everywhere in Ω and

|Du|(Ω) = sup
a<x0<x1<···<xn<b

n∑
j=1

|̃u(x j ) − ũ(x j−1)|,

where the supremum is over all partitions a < x0 < x1 < · · · < xn < b with n ≥ 1.

Typical examples of functions in BV(Ω) that do not belong to W 1,1(Ω) are func-
tions that are piecewise weakly differentiable and jump across lower-dimensional
subsets.

Examples 10.2 (i) For Ω = (−1, 1) and u(x) = sign(x), we have

〈Du, φ〉 = −
∫

(−1,1)

uφ′ dx =
∫

(0,1)

φ′ dx −
∫

(0,1)

φ′ dx = 2φ(0)

for all φ ∈ C1
0(Ω), i.e., Du = 2δ0 and u ∈ BV(Ω) with |Du|(Ω) = 2.

(ii) For Ω ⊂ R
d and a Lipschitz domain E ⊂ Ω , the characteristic function u = χE

satisfies

〈DχE , φ〉 = −
∫

Ω

χE div φ dx = −
∫

E

div φ dx = −
∫

∂ E

φ · nE ds
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for all φ ∈ C1
0(Ω;Rd) with the outer unit normal nE on ∂ E , i.e., we have DχE =

−nE ⊗ ds�∂ E . This implies that |DχE |(Ω) = H d−1(∂ E) is the length or surface
area of ∂ E for d = 2 and d = 3, respectively.

Remarks 10.3 (i) If E ⊂ R
d , then E is said to be of finite perimeter in Ω if χE ∈

BV(Ω), and in this case |DχE |(Ω) is called the perimeter of E in Ω . The perimeter
generalizes the length or surface area of the boundary of a measurable set E ∩ Ω .
(ii) The coarea formula states that the total variation coincides with the integral of
the perimeters of the level sets of a function of bounded variation, i.e., we have that

|Du|(Ω) =
+∞∫

−∞
|Dχ{u>t}|(Ω) dt.

10.1.2 Properties of BV(Ω)

The space BV(Ω) is an extension of W 1,1(Ω) in the sense that W 1,1(Ω) ⊂ BV(Ω)

and ‖u‖W 1,1(Ω) = ‖u‖BV(Ω) for all u ∈ W 1,1(Ω). Since the set C∞(Ω) is dense
in W 1,1(Ω), we have that BV(Ω) is not the closure of C∞(Ω) with respect to the
norm in BV(Ω). In particular, convergence with respect to the norm in BV(Ω) or
equivalently strong convergence in BV(Ω) is a notion of convergence that is too
restrictive in applications.

Definition 10.2 (i) We say that the sequence (un)n∈N ⊂ BV(Ω) converges inter-
mediately or strictly to u ∈ BV(Ω) if un → u in L1(Ω) and |Dun|(Ω) → |Du|(Ω)

as n → ∞.
(ii) We say that (un)n∈N ⊂ BV(Ω) converges weakly to u ∈ BV(Ω) if un → u in
L1(Ω) and Dun ⇀∗ Du in M (Ω;Rd), i.e., 〈Dun, φ〉 → 〈Du, φ〉 as n → ∞ for
every φ ∈ C0(Ω;Rd).

Remarks 10.4 (i) The space BV(Ω) is the dual of a separable Banach space and
therefore a natural weak* topology on BV(Ω) exists. It coincides with the notion of
weak convergence introduced in the definition.
(ii) The weak topology in BV(Ω) in the sense of Banach spaces is difficult to char-
acterize due to the lack of an efficient characterization of BV(Ω)′.
(iii) For (un)n∈N ⊂ W 1,p(Ω) and 1 < p < ∞, we have that un → u in W 1,p(Ω)

for some u ∈ W 1,p(Ω) if and only if un ⇀ u and ‖un‖W 1,p(Ω) → ‖u‖W 1,p(Ω) as
n → ∞.

Examples 10.3 (i) For Ω = (−1, 1), let (un)n∈N ⊂ BV(Ω) be defined by un(x) =
nx if |x | ≤ 1/n and un(x) = sign(x) for |x | ≥ 1/n, cf. Fig. 10.1. We have that
un → u in L1(Ω) as n → ∞ for u(x) = sign(x) for all x ∈ Ω . Since |Dun|(Ω) =
‖∇un‖L1(Ω) = 2 for all n ∈ N and Du = 2δ0, we have |Dun|(Ω) → |Du|(Ω); that
is, the sequence (un)n∈N converges intermediately to u as n → ∞. Since (un)n∈N ⊂
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Fig. 10.1 Sequence of functions converging intermediately to u = sign but not strongly (left);
sequence of functions converging weakly to u = 1 but not intermediately (right)

W 1,1(Ω) but u �∈ W 1,1(Ω), the sequence does not converge strongly to u.
(ii) For Ω = (−1, 1) let (un)n∈N be defined by un(x) = n|x | if |x | ≤ 1/n and
un(x) = 1 for |x | ≥ 1/n, cf. Fig. 10.1. We have that (un)n∈N converges in L1(Ω) to
the constant function u = 1, but |Dun|(Ω) = 2 and |Du|(Ω) = 0 so that (un)n∈N
does not converge intermediately to u. Since 〈Dun, χ{|x |≤1/m}〉 = 0 for m ≤ n, it
follows that the sequence converges weakly to u.

An important property of the total variation is that it is lower semicontinuous with
respect to strong convergence in L1(Ω). The following theorem shows that this is
equivalent to weak lower semicontinuity in BV(Ω).

Theorem 10.1 (Weak lower semicontinuity) If (un)n∈N ⊂ BV(Ω) and u ∈ L1(Ω)

such that |Dun|(Ω) ≤ c for all n ∈ N and un → u in L1(Ω), then u ∈ BV(Ω)

with |Du|(Ω) ≤ lim infn→∞ |Dun|(Ω). Moreover, we have un ⇀ u in BV(Ω) as
n → ∞.

Smooth functions are not dense in BV(Ω) with respect to strong convergence but
with respect to intermediate convergence.

Theorem 10.2 (Approximation by smooth functions) The spaces C∞(Ω) and
C∞(Ω) ∩ BV(Ω) are dense in BV(Ω) with respect to intermediate convergence.

The following compactness result allows us to extract weakly convergent subse-
quences from bounded sequences in BV(Ω). This is the crucial difference between
the spaces BV(Ω) and W 1,1(Ω).

Theorem 10.3 (Compactness)Let (un)n∈N ⊂ BV(Ω) be a bounded sequence. Then
there exists a subsequence (un j ) j∈N and u ∈ BV(Ω) such that un j ⇀ u in BV(Ω)

as j → ∞.

The most important examples of functions in BV(Ω) are piecewise regular func-
tions that jump across an interface.

Proposition 10.1 (Piecewise regular functions) If Ω = Ω1 ∪ Ω2 and Ω1,Ω2 are
such that Ω1 ∩ Ω2 = ∅ and Σ = ∂Ω1 ∩ ∂Ω2 and u ∈ L1(Ω) such that u|Ω j ∈
W 1,1(Ω j ) for j = 1, 2, then u ∈ BV(Ω) with
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Du = ∇u ⊗ dx − �un� ⊗ ds�Σ

with the piecewise defined weak gradient ∇u|Ω j = ∇(u|Ω j ) and the jump �un� =
uΩ1nΩ1�Σ+uΩ2nΩ2�Σ across Σ with the outer unit normals nΩ j to Ω j for j = 1, 2.

Proof For φ ∈ C∞
c (Ω;Rd) a piecewise integration by parts with φ|∂Ω j \Σ = 0 for

j = 1, 2 shows that

∫

Ω

u div φ dx =
∫

Ω1

u div φ dx +
∫

Ω2

u div, φ dx

= −
∫

Ω1

(∇u) · φ dx −
∫

Ω2

(∇u) · φ dx +
∫

∂Ω1

uφ · nΩ1 ds

+
∫

∂Ω2

uφ · nΩ2 ds

= −
∫

Ω

(∇u) · φ dx +
∫

Σ

φ · �un� ds,

which proves the assertion. �

The proposition can be generalized which leads to the following characterization
of functions in BV(Ω).

Theorem 10.4 (Decomposition of Du) For every u ∈ BV(Ω) we have

Du = ∇u ⊗ dx − �un� ⊗ ds|Su + Cu,

where Su is a (d − 1)-dimensional jump set, ∇u ∈ L1(Ω) is the weak gradient in
the set Ω\Su, and Cu either vanishes or is a measure supported on a Cantor set of
vanishing d-dimensional Hausdorff measure that is zero for sets of finite (d − 1)-
dimensional Hausdorff measure. A point x ∈ Ω belongs to Su if there exists a unit
vector n ∈ R

d and distinct numbers a± ∈ R such that

lim
ε→0

|B±
ε (x, n) ∩ Ω|−1

∫

B±
ε (x,n)∩Ω

u(y) dy = a±,

where B±
ε (x, n) = {y ∈ Bε(x) : ±(y − x) · n > 0}, cf. Fig.10.2.

Some further important properties of BV(Ω) are listed below.

Remarks 10.5 (i) The embedding BV(Ω) → L p(Ω) is continuous for 1 ≤ p ≤
d/(d − 1) and compact for 1 ≤ p < d/(d − 1).
(ii) We have ‖u‖L p(Ω) ≤ c diam(Ω)|Du|(Ω) if u ∈ BV(Ω) with

∫
Ω

u dx = 0 and
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Fig. 10.2 Sets B±
ε (x, n) for

a point x ∈ Su where the
function u jumps from the
value a− to the value a+ in
the direction of n

x

B+
ε (x,n)

B−
ε (x,n)

n

Su

1 ≤ p ≤ d/(d − 1).
(iii) There exists a linear operator tr : BV(Ω) → L1(∂Ω) such that tr(u) = u|∂Ω

for all u ∈ BV(Ω) ∩ C(Ω). Moreover, we have the integration by parts formula

∫

Ω

φDu = −
∫

Ω

u div φ dx +
∫

∂Ω

tr(u)φ · n ds

for all u ∈ BV(Ω) and all φ ∈ C1(Ω;Rd). The operator tr is continuous with
respect to intermediate convergence in BV(Ω). It is not continuous with respect to
weak convergence in BV(Ω); for example for (un)n∈N ⊂ BV(0, 1) defined through
un(x) = nx for x ≤ 1/n and u(x) = 1 for x ≥ 1/n, we have un ⇀ u with u ≡ 1
but un(0) = 0 for all n ∈ N.

10.1.3 A Variational Model Problem on BV(Ω)

To understand the finite element approximation of variational problems involving
total variation, we consider, for given g ∈ L2(Ω) and α > 0, minimizing the
functional

I (u) = |Du|(Ω) + α

2

∫

Ω

(u − g)2 dx

as defined for u ∈ BV(Ω) ∩ L2(Ω). By the density of smooth functions we may
choose a bounded infimizing sequence (un)n∈N ⊂ W 1,1(Ω) ∩ L2(Ω). Due to the
lack of reflexivity or more generally an existing separable predual space, we cannot
extract a weakly convergent subsequence in W 1,1(Ω). Aweak limit of a subsequence
exists in the space BV(Ω) ∩ L2(Ω).

Theorem 10.5 (Existence) There exists a minimizer u ∈ BV(Ω) ∩ L2(Ω) for I .

Proof The functional I is bounded from below and the set of admissible functions
is nonempty, and hence there exists a bounded infimizing sequence (un)n∈N ⊂
BV(Ω) ∩ L2(Ω). Theorem10.3 guarantees the existence of a weakly convergent
subsequence (un j ) j∈N with weak limit u ∈ BV(Ω) and Theorem10.1 implies
I (u) ≤ lim inf j→∞ I (un j ), i.e., u is a minimizer for I . �
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Remark 10.6 The existence of solutions subject to Dirichlet boundary conditions
u|∂Ω = uD for uD ∈ L1(∂Ω) is difficult to establish due to the lack of weak
continuity of the trace operator.

The following stability result implies the uniqueness of minimizers.

Theorem 10.6 (Stability and uniqueness) For g1, g2 ∈ L2(Ω) let the functions
u1, u2 ∈ BV(Ω) ∩ L2(Ω) be minimizers of I with g replaced by g1 and g2, respec-
tively. We then have

‖u1 − u2‖ ≤ ‖g1 − g2‖.

In particular, minimizers are uniquely defined.

Proof We define the convex functionals F : BV(Ω) → R and G� : L2(Ω) → R,
� = 1, 2, by

F(u) = |Du|(Ω), G�(u) = (α/2)‖u − g�‖2

and set I� = F + G�. We extend F to L2(Ω) with the value +∞, and note that G�

is Fréchet differentiable with

δG�(u)[v] = α(u − g�, v)

for all v ∈ L2(Ω). Since F is convex, we have that its subdifferential is monotone,
i.e., for μ� ∈ ∂ F(u�), � = 1, 2, we have

(μ2 − μ1, u2 − u1) ≥ 0.

Noting that 0 ∈ ∂ I�(u�) we deduce that −δG�(u�) ∈ ∂ F(u�) for � = 1, 2, and
therefore ( − α(u2 − g2) + α(u1 − g1), u2 − u1

) ≥ 0.

This implies that
‖u2 − u1‖2 ≤ (u2 − u1, g2 − g1)

and an application of Hölder’s inequality proves the asserted bound. �
Due to a monotonicity property of the total variation, a maximum principle holds

for the minimization problem.

Proposition 10.2 (Maximum principle) If g ∈ L∞(Ω), then the minimizer u ∈
BV(Ω) ∩ L2(Ω) for I satisfies u ∈ L∞(Ω) with ‖u‖L∞(Ω) ≤ ‖g‖L∞(Ω).

Proof Assume that g(x) ≤ g for almost every x ∈ Ω and given the minimizer
u ∈ BV(Ω) ∩ L2(Ω) for I , define ũ(x) = min{u(x), g} for x ∈ Ω . According
to Remark10.2 we have ũ ∈ BV(Ω) with |Dũ|(Ω) ≤ |Du|(Ω). Since also ‖ũ −
g‖ ≤ ‖u − g‖, we deduce that I (̃u) ≤ I (u). This implies u = ũ and u ≤ g. The
same argument shows that u ≥ g if g(x) ≥ g for almost every x ∈ Ω . Therefore
u ∈ L∞(Ω) with the asserted bound. �
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Useful information about the minimization of I is contained in the related dual
problem. To identify it, we note that by a completion of C∞

c (Ω;Rd) with respect to
the norm ‖p‖H(div;Ω) = ‖p‖ + ‖ div p‖, the total variation |Du|(Ω) of a function
u ∈ BV(Ω) ∩ L2(Ω) can equivalently be characterized as

|Du|(Ω) = sup
{

−
∫

Ω

u div p dx : p ∈ HN (div;Ω), |p| ≤ 1 in Ω
}
,

where

HN (div;Ω) = {p ∈ L2(Ω;Rd) : div p ∈ L2(Ω), p · n|∂Ω = 0}.

For the minimization problem defined through I , we thus have with the indicator
functional IK1(0) of the set

K1(0) = {p ∈ L2(Ω;Rd) : |p| ≤ 1 almost everywhere in Ω}

that

inf
u∈BV∩L2

I (u) = inf
u∈BV∩L2

|Du|(Ω) + α

2
‖u − g‖2

= inf
u∈BV∩L2

sup
p∈HN (div)

(
−

∫

Ω

u div p dx + α

2
‖u − g‖2 − IK1(0)(p)

)
.

This defines a saddle point problem with unknowns u and p. The dual problem is
obtained by eliminating u. For this we assume that the order of the infimum and
supremum can be interchanged, i.e.,

inf
u∈BV∩L2

I (u) = sup
p∈HN (div)

inf
u∈BV∩L2

(
− ∫

Ω

u div p dx + α
2 ‖u − g‖2 − IK1(0)(p)

)
.

A direct calculation shows that the solution u of the inner minimization problem is
for p ∈ HN (div;Ω) given by

u = g + α−1 div p,

and thus

inf
u∈BV∩L2

I (u) = sup
p∈HN (div)

− 1

2α
‖ div p + αg‖2 + 1

2α
‖αg‖2 − IK1(0)(p).

The maximization problem defined by the right-hand side is the dual problem. The
heuristic interchange of the infimum and the supremum can be rigorously justified
and leads to the following result.
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Proposition 10.3 (Strong duality) For p ∈ HN (div;Ω) define

D(p) = − 1

2α
‖ div p + αg‖2 + α

2
‖g‖2 − IK1(0)(p).

We have
inf

u∈BV(Ω)∩L2(Ω)
I (u) = sup

p∈HN (div;Ω)

D(p).

Moreover, there exists a solution p ∈ HN (div;Ω) that maximizes the functional D.

Proof The reader is referred to [12] for a proof of the result which is established by
showing that I is the Fenchel dual of D in the sense of [11]. �

Remark 10.7 Exchanging the order of the infimum and supremum always leads to
the weak duality principle infu I (u) ≥ supp D(p).

Proposition 10.4 The unique solution u ∈ BV(Ω) ∩ L2(Ω) of the minimization
problem defined by I and every solution p ∈ HN (div;Ω) of the maximization
problem defined by D correspond to a saddle point for the functional

L(u, p) = −
∫

Ω

u div p dx + α

2
‖u − g‖2 − IK1(0)(p)

and are related by

div p = α(u − g), Du ∈ ∂ IK1(0)(p),

where the inclusion is understood as

−(
u, div (q − p)

) ≤ 0

for all q ∈ HN (div;Ω) ∩ K1(0).

Proof The proof follows from standard arguments in convex optimization, cf.,
e.g., [11]. �

Remarks 10.8 (i) The inclusion Du ∈ ∂ IK1(0)(p) is formally equivalent to p ∈
∂|Du|. In particular, we have p = ∇u/|∇u| in regions where ∇u �= 0.
(ii) In the case of Dirichlet boundary conditions on ∂Ω , the space HN (div;Ω) is
replaced by H(div;Ω) = {p ∈ L2(Ω;Rd) : div p ∈ L2(Ω)}.

An explicit solution can be constructed in the case of Dirichlet boundary
conditions.

Example 10.4 Let r > 0 be such that Br (0) ⊂ Ω and define g = χBr (0). Then
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u = max
{
0, 1 − d/(αr)

}
χBr (0)

is the minimizer for I subject to u|∂Ω = 0.

Proof Assume that d ≤ αr and define

p(x) =
{

−r−1x for |x | ≤ r,

−r x/|x |2 for |x | ≥ r.

Then p ∈ H(div;Ω) with div p = −(d/r)χBr (0) and |p| ≤ 1. Moreover, we have
u = (1/α) div p + g. Since p = −n on ∂ Br (0) we have for every q ∈ H(div;Ω)

with |q| ≤ 1 that

−(u, div(q − p)) = −(
1 − d/(αr)

) ∫

∂ Br (0)

(q − p) · n ds ≤ 0.

If d ≥ αr , we define

p(x) =
{

−(α/d)x for |x | ≤ r,

−(α/d)r2x/|x |2 for |x | ≥ r

and verify div p = −αχBr (0) = −αg, i.e., u = (1/α) div p + g = 0, and |p| ≤
αr/d ≤ 1. Since u = 0 the variational inclusion Du ∈ ∂ IK1(0)(p) is satisfied. �

10.2 Numerical Approximation

We discuss in this section the numerical approximation and iterative solution of the
minimization problem defined through the functional I , which for every function
u ∈ BV(Ω) ∩ L2(Ω) is given by

I (u) = |Du|(Ω) + α

2
‖u − g‖2

for α > 0 and g ∈ L2(Ω). The subsequent discussion is based on results
in [6–8, 10].

10.2.1 W1,1 Conforming Approximation

The finite element spaceS 1(Th) defines a subspace of BV(Ω) ∩ W 1,1(Ω). Due to
the density of smooth functions in BV(Ω) with respect to intermediate convergence,
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we can approximate functions in BV(Ω) by functions in S 1(Th). The following
lemma provides bounds on the approximation error. For ease of presentation we
restrict to the case d = 2.

Lemma 10.1 (Approximation of BV functions)Assume that Ω ⊂ R
2 is star-shaped

and let ε > 0. For every u ∈ BV(Ω) there exists uε,h ∈ S 1(Th) such that

‖∇uε,h‖L1(Ω) ≤ (1 + chε−1 + cε)|Du|(Ω),

and
‖uε,h − u‖L1(Ω) ≤ c(h2ε−1 + ε)|Du|(Ω).

If u ∈ L∞(Ω), then ‖uε,h‖L∞(Ω) ≤ ‖u‖L∞(Ω).

Proof Since C∞(Ω) is dense in BV(Ω) with respect to intermediate convergence
we may choose a function ũ ∈ C1(Ω), such that ‖ũ − u‖L1(Ω) ≤ cε|Du|(Ω)

and ‖∇ũ‖L1(Ω) ≤ (1 + ε)|Du|(Ω). Moreover, if u ∈ L∞(Ω), then we have that
‖ũ‖L∞(Ω) ≤ ‖u‖L∞(Ω). This allows us to assume u ∈ C1(Ω) in the following. We
suppose that Ω is star-shaped with respect to 0 and define the set Ω̂ε = (1 + ε)Ω

and the linear transformation φ : Ω̂ε → Ω , x̂ �→ x̂/(1 + ε). We set ûε = u ◦ φ.
and with a nonnegative convolution kernel ρε ∈ C∞(R2), we let uε = (̂uε ∗ ρε)|Ω
and define uε,h = Ihuε. To prove the estimates we first note that nodal interpolation
estimates guarantee

‖uε,h − uε‖L1(Ω) + h‖∇(uε,h − uε)‖ ≤ ch2‖D2uε‖L1(Ω).

Standard mollification arguments show that

‖uε − ûε‖L1(Ω) ≤ cε‖∇ûε‖L1(Ω̂ε)
,

ε‖D2uε‖L1(Ω) + ‖∇uε‖L1(Ω) ≤ ‖∇ûε‖L1(Ω̂ε)
.

A transformation argument and a direct calculation imply that

‖ûε − u‖L1(Ω) ≤ cε‖∇u‖L1(Ω),

‖∇ûε‖L1(Ω) ≤ (1 + ε)‖∇u‖L1(Ω).

The combination of the estimates proves the asserted bounds for the case u ∈
C1(Ω). The estimate ‖uε,h‖L∞(Ω) ≤ ‖u‖L∞(Ω) is a direct consequence of the
construction. �

Remarks 10.9 (i) For d ≥ 3 the same result can be proved by employing a quasi-
interpolation operator instead of the nodal interpolation operator.
(ii) The estimate of the lemma and Hölder’s inequality imply that for functions
u ∈ BV(Ω)∩L∞(Ω)we have infvh∈S 1(Th) ‖u−vh‖L p(Ω) ≤ ch1/p for 1 ≤ p < ∞.
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(iii) Optimizing the convergence rates of the estimates in the lemma simultaneously
for intermediate convergence leads to the choice ε = h1/2 and the suboptimal esti-
mate ‖u − uε,h‖L1(Ω) ≤ ch1/2.

Since the functional I is strongly convex, the distance of any function to the
minimum is controlled by the difference of the values of the functional.

Lemma 10.2 (Convexity) If u ∈ BV(Ω) ∩ L2(Ω) is the minimizer for I , then we
have

α

2
‖u − v‖2 ≤ I (v) − I (u)

for every v ∈ BV(Ω) ∩ L2(Ω).

Proof We define F : BV(Ω) → R and G : L2(Ω) → R by

F(u) = |Du|(Ω), G(u) = α

2
‖u − g‖2

and extend F by +∞ to L2(Ω). Then F is convex and G is strongly convex and
Fréchet differentiable with δG(u)[w] = α(u − g, w), i.e., we have

δG(u)[v − u] + α

2
‖u − v‖2 + G(u) = G(v)

for all u, v ∈ L2(Ω). Since u ∈ BV(Ω) ∩ L2(Ω) is a minimizer, we have

0 ∈ ∂ I (u) = ∂ F(u) + δG(u),

or equivalently −δG(u) ∈ ∂ F(u), i.e.,

−δG(u)[v − u] + F(u) ≤ F(v).

The strong convexity of G yields

α

2
‖u − v‖2 + G(u) − G(v) + F(u) ≤ F(v)

which proves the assertion. �

Theorem 10.7 (Error estimate) Assume that Ω ⊂ R
2 is star-shaped and g ∈

L∞(Ω). Let u ∈ BV(Ω) ∩ L2(Ω) and uh ∈ S 1(Th) be the minimizers for I
in the respective spaces. We then have

α

2
‖u − uh‖2 ≤ ch1/2.

Proof Lemma10.2 and the fact that I (uh) ≤ I (vh) for all vh ∈ S 1(Th) imply that
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α

2
‖u − uh‖2 ≤ I (uh) − I (u) ≤ I (vh) − I (u)

= ‖∇vh‖L1(Ω) − |Du|(Ω)

+ α

2

∫

Ω

(
(vh − g) − (u − g)

)(
(vh − g) + (u − g)

)
dx

≤ ‖∇vh‖L1(Ω) − |Du|(Ω) + α

2
‖vh − u‖L1(Ω)‖vh + u − 2g‖L∞(Ω).

For ε > 0 we let vh = uε,h ∈ S 1(Th) be an approximation of u as in Lemma10.1
and deduce that

α

2
‖u − uh‖2 ≤ c(hε−1 + ε)|Du|(Ω) + c(h2ε−1 + ε)|Du|(Ω).

With ε = h1/2 we find the asserted bound. �
Remarks 10.10 (i) Since for u ∈ BV(Ω)∩L2(Ω) the best approximation inS 1(Th)

satisfies infvh∈S 1(Th) ‖u − vh‖ ≤ h1/2, the convergence rate of the theorem is sub-
optimal. Numerical experiments indicate that the optimal convergence rate O(h1/2)

in L2(Ω) is in general not attained.
(ii) If Ω = (a, b) ⊂ R and the minimizer u ∈ BV(Ω) ∩ L2(Ω) is piecewise con-
tinuous, then we can employ the nodal interpolant vh = Ihu in the proof of the
theorem and noting that ‖∇Ihu‖ ≤ |Du|(Ω) and ‖u − Ihu‖L1(Ω) ≤ ch|Du|(Ω),
we obtain the quasi-optimal estimate ‖u − uh‖ ≤ ch1/2.

The best approximation result infvh∈S 1(Th) ‖u − vh‖L p(Ω) ≤ ch1/p for functions
u ∈ BV(Ω) ∩ L∞(Ω) can in general not be improved as the following example
shows.

Example 10.5 Let Ω = (−1, 1), Th a uniform triangulation of Ω with mesh-size
h > 0 such that z = 0 is a node of Th . For u = sign, we then have

inf
vh∈S 1(Th)

‖u − vh‖L p(Ω) ≥ ch1/p.

To prove this we show that the entire approximation error is concentrated at the
discontinuity at x = 0. We assume that there exists a minimal wh ∈ S 1(Th) which
is antisymmetric, i.e., we have wh(−x) = −wh(x) for x ∈ (0, 1) and wh(0) = 0.
Then the function wh is affine on (−h, h)with slope a/h ∈ R, cf. Fig. 10.3, for some
a ∈ R, and we have with the transformation y = x/h that

∫

(−h,h)

|u − wh |p dx = 2
∫

(0,h)

|1 − ax/h|p dx = 2h
∫

(0,1)

|1 − ay|p dy.

The value of the integral related to the minimizing choice of a is positive and inde-
pendent of h which implies that ‖u − wh‖L p(Ω) ≥ ch1/p.
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h− h

Fig. 10.3 The approximation of a discontinuous function with continuous, piecewise affine func-
tions leads to an error ‖u − wh‖L p(Ω) ≥ ch1/p (left); for the best approximation of u = sign in
S 1(Th) with respect to the L2 norm, the Gibb’s phenomenon occurs at the discontinuity (right)

10.2.2 Piecewise Constant Approximation

The set of piecewise constant finite element functionsL 0(Th) is a subset of BV(Ω).
It is straightforward to check that for a sequence of triangulations their union defines
a dense subset with respect to weak convergence. We will show that density with
respect to intermediate convergence fails and hence that the discretization of the
model problem with piecewise constant finite elements may not approximate the
right minimum.

Proposition 10.5 (Piecewise constant functions) For every uh ∈ L 0(Th) we have

|Duh |(Ω) =
∑

S∈Sh∩Ω

‖�uh�‖L1(S).

Proof The identity follows directly from an elementwise integration by parts. �

Proposition 10.6 (Nonapproximation) Let Ω = (−1/2, 1/2) × (0, 1) and let u ∈
BV(Ω) ∩ L∞(Ω) be, for x = (x1, x2) ∈ Ω , defined by u(x1, x2) = χ{x1<0}. For
each n ≥ 1 let Tn be the triangulation of Ω with maximal mesh-size hn = 1/n, as
shown in Fig.10.4. Then there is no sequence (un)n∈N ⊂ L1(Ω) with un ∈ L 0(Tn)

for all n ∈ N such that un → u in L1(Ω) and |Dun|(Ω) → |Du|(Ω) = 1 as
n → ∞.

Proof Let (un)n∈N be a sequence with un ∈ L 0(Tn) such that ‖un − u‖L1(Ω) → 0
and |Dun|(Ω) ≤ c for all n ∈ N. Given n ∈ N we define the sets Rn

j for j =
1, 2, . . . , n by

Rn
j = {(x1, x2) ∈ Ω : ( j − 1)/n < x2 < j/n}

and set Rn = Rn
1 . Let un ∈ L1(Rn) be the average of un over all strips, i.e., for

(x1, x2) ∈ Rn set

un(x1, x2) = 1

n

n∑
j=1

un(x1, x2 + j/n),
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R4
4

R4
3

R4
2

R2 = R2
1

R2
2

R4 = R4
1

1/ 2
1/ 4

u = 1 u = 1u = 0 u = 0

Fig. 10.4 Construction of triangulations Tn , n ∈ N, of Ω = (−1/2, 1/2) × (0, 1) on which
piecewise constant finite element functions are not dense in BV(Ω) with respect to intermediate
convergence; the jump set of the function u = χ{x1<0} is not resolved by the triangulations

and reflect un across the x1-axis, i.e., un(x1,−x2) = un(x1, x2) for (x1, x2) ∈ Rn .
We then define ũn ∈ L1(Ω) by periodically extending un with period 2/n in the
x2-direction. Then ũn ∈ L1(Ω) is continuous across the interfaces R

n
j ∩ R

n
j+1 for

j = 1, 2, . . . , n−1 andwe have ‖ũn −u‖L1(Rn
j )

= ‖un −u‖L1(Rn) and |Dũn|(Rn
j ) =

|Dun|(Rn) for j = 1, 2, . . . , n, where |Dun|(Rn) denotes the total variation of Dun

on Rn . With the triangle inequality we verify that

|Dũn|(Ω) = n|Dun|(Rn) ≤ |Dun|(Ω),

‖ũn − u‖L1(Ω) = n‖un − u‖L1(Rn) ≤ ‖un − u‖L1(Ω).

For every ε > 0 there exists N ∈ N such that ‖un − u‖L1(Ω) < ε for all n ≥ N , i.e.,

‖un − u‖L1(Rn) < ε/n.

For each n ≥ N there exist distinct triangles T 1+, T 2+, T 1−, T 2− ∈ Tn ∩ Rn with
un|T 1+∪T 2+ ≥ 1− 4ε and un|T 1−∪T 2− ≤ 4ε since otherwise ‖un − u‖L1(Rn) ≥ ε/n. The

triangle inequality along disjoint paths of neighboring elements connecting T j
− and

T j
+ for j = 1, 2, respectively, yields that

(1 − 8ε)
√
2/n ≤ (hn/

√
2)

(∣∣un|T 1− − un|T 1+
∣∣ + ∣∣un|T 2− − un|T 2+

∣∣)

≤
∑

S∈Sh∩Rn

‖�un�‖L1(S) = |Dun|(Rn)

and hence |Dun|(Ω) ≥ |Dũn|(Ω) ≥ (1 − 8ε)
√
2 for all n ≥ N , i.e., we have that

|Dun|(Ω) �→ 1 = |Du|(Ω) as n → ∞. �
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10.2.3 Iterative Solution

To develop an iterative solution method for the nondifferentiable minimization prob-
lem,we first state optimality conditions for theminimization of I inS 1(Th). For this
we note that the minimization of I can be equivalently expressed as a saddle-point
problem; that is, due to the fact that ∇uh is elementwise constant for uh ∈ S 1(Th)

we have

inf
uh∈S 1(Th)

∫

Ω

|∇uh | dx + α

2
‖uh − g‖2 = inf

uh∈S 1(Th)
sup

ph∈L 0(Th)d

∫

Ω

ph · ∇uh dx

+ α

2
‖uh − g‖2 − IK1(0)(ph)

= inf
uh∈S 1(Th)

sup
ph∈L 0(Th)d

Lh(uh, ph),

where IK1(0) is the indicator functional of the set K1(0) = {p ∈ L∞(Ω;Rd) : |p| ≤
1 a.e. in Ω}.
Lemma 10.3 (Optimality) The function uh ∈ S 1(Th) minimizes I in S 1(Th) if
and only if there exists ph ∈ L 0(Th)d with |ph | ≤ 1 in Ω such that

(ph,∇vh) = −α(uh − g, vh), (∇uh, qh − ph) ≤ 0

for all (vh, qh) ∈ S 1(Th) × L 0(Th)d with |qh | ≤ 1 in Ω .

Proof The existence of a saddle point (uh, ph) ∈ S 1(Th)×L 0(Th)d follows from
the fact that the Lagrangian function Lh is a lower-semicontinuous, proper, convex-
concave function, cf., e.g., [14] for details. The equations are the corresponding
Kuhn–Tucker optimality conditions, i.e.,

0 = δuh Lh(uh, ph), 0 ∈ ∂ph Lh(uh, ph),

wherewe note that ξh ∈ ∂ IK1(0)(ph) for ξh ∈ L 0(Th)d and ph ∈ L 0(Th)d ∩K1(0),
i.e.,

(ξh, qh − ph) + IK1(0)(ph) ≤ IK1(0)(qh)

for all qh ∈ L 0(Th)d , if and only if

(ξh, qh − ph) ≤ 0

for all qh ∈ L 0(Th)d ∩ K1(0). �
To find a saddle point for Lh we use a descent flow with respect to uh and an

ascent flow with respect to ph , i.e.,

∂t uh = −δuh Lh(uh, ph), ∂t ph ∈ ∂ph Lh(uh, ph).
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With an appropriate time-discretization and a discrete inner product (·, ·)h,s on
S 1(Th) that may differ from the L2 inner product, this motivates the following
iteration which specifies the abstract primal-dual iteration of Algorithm 4.5.

Algorithm 10.1 (Primal-dual iteration) Let (·, ·)h,s be an inner product onS 1(Th),
τ > 0, (u0

h, p0h) ∈ S 1(Th) × L 0(Th)d , set dt u0
h = 0, and for k = 0, 1, . . . with

ũk
h = uk−1

h + τdt u
k−1
h solve the equations

(−dt pk
h + ∇ũk

h, qh − pk
h) ≤ 0,

(dt u
k
h, vh)h,s + (pk

h,∇vh) + α(uk
h − g, vh) = 0

subject to |pk
h | ≤ 1 in Ω for all (vh, qh) ∈ S 1(Th)×L 0(Th)d with |qh | ≤ 1 in Ω .

Stop the iteration if ‖dt uk
h‖h,s ≤ εstop.

Remark 10.11 Notice that pk
h is the unique minimizer of the mapping

qh �→ 1

2τ
‖qh − pk−1

h ‖2 − (qh,∇ũk
h) + IK1(0)(qh)

and given by the truncation operation

pk
h = (

pk−1
h + τ∇ũk

h

)
/max{1, |pk−1

h + τ∇ũk
h |}

which can be computed elementwise.

The iterates of Algorithm10.1 converge to a stationary point if τ is sufficiently
small.

Proposition 10.7 (Convergence) Let uh ∈ S 1(Th) be minimal for I in S 1(Th)

and define

θ = sup
vh∈S 1(Th)\{0}

‖∇vh‖
‖vh‖h,s

.

If τθ ≤ 1, then the iterates of Algorithm10.1 converge to uh in the sense that they
satisfy for every N ≥ 1

τ

N∑
k=1

(
(1− τ 2θ2)

τ

2
‖dt u

k
h‖2h,s + α‖uh − uk

h‖2
)

≤ 1

2

(‖uh − u0
h‖2h,s + ‖ph − p0h‖2).

Proof Let ph ∈ L 0(Th)d be as in Lemma10.3. Upon choosing vh = uh − uk
h and

qh = ph in Algorithm10.1, we find that

dt

2

(‖uh − uk
h‖2h,s + ‖ph − pk

h‖2) + τ

2

(‖dt u
k
h‖2h,s + ‖dt pk

h‖2) + α‖uh − uk
h‖2

= −(dt u
k
h, uh − uk

h)h,s − (dt pk
h, ph − pk

h) + α‖uh − uk
h‖2

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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≤ (pk
h,∇(uh − uk

h)) + α(uk
h − g, uh − uk

h) − (ph − pk
h,∇ũk

h) + α‖uh − uk
h‖2.

Using that

(uk
h − g, uh − uk

h) + ‖uh − uk
h‖2 = (uh − g, uh − uk

h)

and choosing qh = pk
h in Lemma10.3, we deduce that

dt

2

(‖uh − uk
h‖2h,s + ‖ph − pk

h‖2) + τ

2

(‖dt u
k
h‖2h,s + ‖dt pk

h‖2) + α‖uh − uk
h‖2

= (pk
h,∇(uh − uk

h)) − (ph − pk
h,∇ũk

h) + α(uh − g, uh − uk
h)

= (pk
h,∇(uh − uk

h)) − (ph − pk
h,∇ũk

h) − (ph,∇(uh − uk
h))

= (ph − pk
h,∇(uk

h − ũk
h)) + (pk

h − ph,∇uh)

≤ (ph − pk
h,∇(uk

h − ũk
h)) = τ 2(ph − pk

h,∇d2
t uk

h),

where we used uk
h −ũk

h = τ 2d2
t uk

h in the last identity.Multiplication by τ , summation
over k = 1, 2, . . . , K , discrete integration by parts, Young’s inequality, and dt u0

h = 0
show that for the right-hand side we have

τ 3
K∑

k=1

(ph − pk
h,∇d2

t uk
h) = τ 3

K∑
k=1

(dt pk
h,∇dt u

k−1
h ) + τ 2(ph − pk

h,∇dt u
k
h)

∣∣K
k=0

≤ τ 2

2

( K∑
k=1

τ 2‖∇dt u
k−1
h ‖2 + ‖dt pk

h‖2
)

+ 1

2
‖ph − pK

h ‖2 + τ 4

2
‖∇dt u

K
h ‖2

≤ τ 2

2

( K∑
k=1

τ 2θ2‖dt u
k−1
h ‖2h,s + ‖dt pk

h‖2
)

+ 1

2
‖ph − pK

h ‖2 + τ 4θ2

2
‖dt u

K
h ‖2h,s .

Due to the assumption τθ ≤ 1 we may absorb the terms of the right-hand side and
conclude that

1

2
‖uh − uK

h ‖2h,s + τ

K∑
k=1

τ

2
(1 − τθ2)‖dt u

k
h‖2 + τ

K∑
k=1

α‖uh − uk
h‖2

≤ 1

2

(‖uh − u0
h‖2h,s + ‖ph − p0h‖2).

This proves the theorem. �
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Remark 10.12 Notice that we cannot expect convergence pn
h → ph since ph is not

unique in general, e.g., if ∇uh |T = 0 for some T ∈ Th .

Useful choices of the inner product (·, ·)h,s are weighted combinations of the
inner product in L2(Ω) and the semi-inner product in H1(Ω).

Proposition 10.8 (Discrete inner products) For s ∈ [0, 1] and vh, wh ∈ S 1(Th)

define
(vh, wh)h,s = (vh, wh) + h(1−s)/s

min (∇vh,∇wh),

where h(1−s)/s
min = 0 for s = 0. We then have ‖∇vh‖ ≤ ch−min{1,(1−s)/(2s)}

min ‖vh‖h,s

for all vh ∈ S 1(Th) with c = 1 if s > 0.

Proof If s > 0, then we have by definition of ‖vh‖2h,s = (vh, vh)h,s that

‖∇vh‖2 ≤ h−(1−s)/s
min ‖vh‖2h,s

for all vh ∈ S 1(Th). For s ≥ 0 the inverse estimate ‖∇vh‖ ≤ ch−1
min‖vh‖, valid for

all vh ∈ S 1(Th), implies the assertion. �

To fully justify the choice of the scalar products (·, ·)h,s for s > 0, we have
to show that the right-hand side in the estimate of Proposition10.7 is bounded
h-independently. For s ≤ 1/2 this is guaranteed by the following lemma if the
sequence (uh)h>0 of finite element approximations is uniformly bounded in the set
W 1,1(Ω) ∩ L∞(Ω).

Lemma 10.4 (Discrete interpolation estimate) For every vh ∈ S 1(Th) we have

hmin‖∇vh‖2L2(Ω)
≤ c‖vh‖L∞(Ω)‖∇vh‖L1(Ω).

Proof For T ∈ Th , an integration byparts on T togetherwith the fact thatΔvh |T = 0,
implies that

hT

∫

T

|∇vh |2 dx = hT

∫

∂T

vh∇vh · nT ds ≤ hT |∂T |‖vh‖L∞(T )|T |−1‖∇vh‖L1(T ).

Noting hT |∂T | ≤ c|T |, a summation over T ∈ Th implies the assertion. �

Remark 10.13 To obtain approximations with residuals that are bounded indepen-
dently of the parameter s, the stopping criterion

sup
vh∈S 1(Th)

(dt uk
h, vh)h,s

‖vh‖ ≤ εstop

should be used.
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10.2.4 Realization

The Matlab code displayed in Fig. 10.5 is an implementation of the primal dual
method of Algorithm10.1 with the scalar product (·, ·)h,1/2 defined in Proposition
10.8 and the corresponding choice τ = h1/2/10. It computes the update of pk−1

h via
the elementwise operation

pk
h = pk−1

h + τ∇ũk−1
h

max{1, |pk−1
h + τ∇ũk−1

h |}
and the linear system of equations

(dt u
k
h, vh)h,s + (pk

h,∇vh) = −α(uk
h − g, vh)

for all vh ∈ S 1(Th). The second term on the left-hand side is represented by the
matrix with the entries

(χT e�,∇ϕz) = |T | ∂�ϕz |T
for all T ∈ Th , � = 1, 2, . . . , d, and z ∈ Nh which is assembled in the routine
mixed_matrix.

10.2.5 A Posteriori Error Control

We apply the abstract framework for a posteriori error estimates for strongly con-
vex minimization problems of Theorem4.2 to control the approximation error in
the numerical minimization of I . The estimate states that the distance of an arbi-
trary approximation to the minimizer is controlled by the primal-dual gap. The dual
functional is for p ∈ HN (div;Ω) given by

D(p) = − 1

2α
‖ div p + αg‖2 + α

2
‖g‖2 − IK1(0)(p),

and we have D(q) ≤ I (u) for every q ∈ HN (div;Ω) with equality for a solution of
the dual problem.

Theorem 10.8 (A posteriori error estimate) Let u ∈ BV(Ω) ∩ L2(Ω) be the mini-
mizer for I . Then for every uh ∈ S 1(Th) and p̂h ∈ HN (div;Ω) with | p̂h | ≤ 1, we
have

α

2
‖u − uh‖2 ≤ ‖∇uh‖L1(Ω) −

∫

Ω

∇uh · p̂h dx + 1

2α
‖ div p̂h − α(uh − g)‖2.

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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Fig. 10.5 Matlab realization of Algorithm10.1 for the iterativeminimization of the total variation
regularization problem
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Proof We recall from Lemma10.2 that

α

2
‖u − uh‖2 ≤ I (uh) − I (u).

Incorporating the duality principle I (u) ≥ D( p̂h) for all p̂h ∈ HN (div;Ω), we
deduce that

α

2
‖u − uh‖2 ≤ ‖∇uh‖L1(Ω) + α

2
‖uh − g‖2 + 1

2α
‖ div p̂h +αg‖2 − α

2
‖g‖2 + IK1(0)( p̂h).

We assume that | p̂h | ≤ 1 in Ω and with straightforward calculations deduce that

α

2
‖u − uh‖2 ≤ ‖∇uh‖L1(Ω) + 1

2α
‖ div p̂h − α(uh − g)‖2

+
∫

Ω

uh(div p̂h + αg) dx + α

2
‖uh − g‖2 − α

2
‖g‖2 − α

2
‖uh‖2

= ‖∇uh‖L1(Ω) + 1

2α
‖ div p̂h − α(uh − g)‖2 +

∫

Ω

uh div p̂h dx .

An integration by parts proves the asserted estimate. �

Remarks 10.14 (i) The error estimate is sharp in the sense that if u = uh and p̂h = p
solves the dual problem, then the right-hand side vanishes.
(ii) The practical application requires us to compute a conforming approximate
solution of the dual problem. The piecewise constant approximation provided by
Algorithm 10.1 in general does not satisfy p̂h ∈ HN (div;Ω).
(iii) The error estimate gives rise to the nonnegative refinement indicators

ηT (uh, p̂h) = ‖∇uh‖L1(T ) −
∫

T

∇uh · p̂h dx + 1

2α
‖ div p̂h − α(uh − g)‖2L2(T )

for uh ∈ S 1(Th) and p̂h ∈ HN (div;Ω) with | p̂h | ≤ 1. Noting the optimality
condition div p = α(u − g) and the duality relation

|Du|(Ω) = −
∫

Ω

u div p dx

for an exact solution (u, p) ∈ (
BV(Ω) ∩ L2(Ω)

) × HN (div;Ω) with |p| ≤ 1 in Ω ,
the refinement indicators have the interpretation of a residual.
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10.2.6 Regularized Minimization

In some situations a regularized treatment of the functional I provides accurate
approximations and in this case a semi-implicit discretization of the corresponding
gradient flow defines a useful iterative scheme. We define the regularized functional
Iδ for δ > 0 by

Iδ(u) =
∫

Ω

|∇u|δ dx + α

2
‖u − g‖2

for u ∈ W 1,1(Ω) ∩ L2(Ω) and with |p|δ = (|p|2 + δ2)1/2 for every p ∈ R
d .

Algorithm 10.2 (Semi-implicit, regularized L2-flow) Given δ > 0, τ > 0, and
u0

h ∈ S 1(Th) compute the sequence (uk
h)k=0,1,... by solving

(dt u
k
h, vh) + (|∇uk−1

h |−1
δ ∇uk

h,∇vh) = −α(uk
h − g, vh)

for all vh ∈ S 1(Th). Stop if ‖dt uk
h‖ ≤ εstop.

Remark 10.15 Thechoice vh = uk
h shows that the iteration is unconditionallyweakly

stable in the sense that

dt

2
‖uk

h‖2 + τ

2
‖dt u

k
h‖2 + ∥∥|∇uk−1

h |−1/2
δ ∇uk

h

∥∥2 + α

2
‖uk

h‖2 ≤ α

2
‖g‖2

for all k ≥ 1. In order to obtain accurate approximations, the step size should be
chosen so that τ ≤ chmin. This scaling leads to practically strongly stable approxi-
mation schemes for δ > 0 in the sense that the regularized energy Iδ decreases.

If δ ≤ ch1/2, we have the same error estimates as for the unregularized
approximation.

Proposition 10.9 (Regularized approximation) Let u ∈ BV(Ω) ∩ L2(Ω) be the
minimizer for I and let uδ,h ∈ S 1(Th) be minimal for

Iδ(vh) =
∫

Ω

|∇vh |δ dx + α

2
‖vh − g‖2

in the set of functions vh ∈ S 1(Th). If δ ≤ ch1/2, then we have

α

2
‖u − uδ,h‖2 ≤ ch1/2.

Proof We first note that for every p ∈ R
d we have

|p| ≤ |p|δ ≤ |p| + δ.
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With Lemma10.2 and the fact that uδ,h is minimal for Iδ in S 1(Th) it follows for
every vh ∈ S 1(Th) that

α

2
‖u − uδ,h‖2 ≤ I (uδ,h) − I (u) ≤ Iδ(uδ,h) − I (u) ≤ Iδ(vh) − I (u)

= Iδ(vh) − I (vh) + I (vh) − I (u) ≤ δ|Ω| + I (vh) − I (u).

With vh = uε,h , as in Lemma10.1 for ε = h1/2, we deduce the asserted bound. �

Remark 10.16 An alternative definition for |p|δ is given by

|p|δ =
{

|p| if |p| ≥ δ,

(|p|2 + δ2)/2 if |p| ≤ δ.

Figure10.6 displays an implementation of Algorithm10.2. The weighted stiffness
matrix is computed in the routine fe_matrices_weighted which provides for
elementwise constant functions a, b : Ω → R the matrices with entries

sa,zy =
∫

Ω

a ∇ϕz · ∇ϕy dx, mb,zy =
∫

Ω

b ϕzϕy dx

for z, y ∈ Nh .

10.2.7 Total Variation Flow

The total variation arises in various mathematical models describing evolution prob-
lems by subdifferential flows. The evolution problems are also often the basis for
numerical minimization algorithms. An implicit discretization leads to the following
algorithm.

Algorithm 10.3 (Subdifferential flow) Given u0
h ∈ S 1(Th) and τ > 0, compute

the sequence (uk
h)k=0,...,K ⊂ S 1(Th) by minimizing for k = 1, 2, . . . , K the

functionals

I k
τ,h(wh) = 1

2τ
‖wh − uk−1

h ‖2 + I (wh)

in the set of functions wh ∈ S 1(Th).

The scheme may be regarded as an implicit Euler method and is unconditionally
stable.

Proposition 10.10 (Stability) Assume that I : L2(Ω) → R ∪ {+∞} is convex and
lower-semicontinuous. For L = 1, 2, . . . , K we have
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Fig. 10.6 Matlab realization of the semi-implicit gradient flow discretization of the regularized
total variation functional Iδ defined in Algorithm10.2
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I (uL
h ) + τ

L∑
k=1

‖dt u
k
h‖2 ≤ I (u0

h).

Proof The existence of the iterates follows from the direct method in the calculus
of variations, and the strong convexity of I k

τ,h implies their uniqueness. For k =
1, 2, . . . , K we have 0 ∈ ∂ I k

τ,h(uk
h), i.e., −dt uk

h ∈ ∂ I (uk
h) and hence for all vh ∈

S 1(Th)

(−dt u
k
h, vh − uk

h) + I (uk
h) ≤ I (vh).

The choice vh = uk−1
h yields

τ‖dt u
k
h‖2 + τdt I (uk

h) ≤ 0

and a summation over k = 1, 2, . . . , L implies the stability estimate. �

We next bound the difference between the fully discrete and semi-discrete
approximations, i.e., we estimate the difference uk

h − uk , where (uk)k=0,1,...,K is
the sequence of minimizers for the functionals

I k
τ (w) = 1

2τ
‖w − uk−1‖2 + I (w)

with an initial u0 = u0 ∈ L2(Ω). For ease of presentation we restrict to the case
I (u) = |Du|(Ω).

Proposition 10.11 (Partial error estimate) Let I (u) = |Du|(Ω) for u ∈ BV(Ω)

and assume that u0 ∈ BV(Ω) ∩ L∞(Ω). For L = 1, 2, . . . , K we have

‖uL
h − uL‖2 ≤ ‖u0

h − u0‖2 + ch1/3.

The constant c ≥ 0 depends on T , |Du0|(Ω), ‖∇u0
h‖L1(Ω), and ‖u0‖L∞(Ω).

Proof We let (uk)k=0,...,K ⊂ BV(Ω) ∩ L2(Ω) be the solution of the semi-discrete
scheme with initial value u0 = u0. Then, for k = 1, 2, . . . , K and all v ∈ BV(Ω) ∩
L2(Ω) we have

(−dt u
k, v − uk) + I (uk) ≤ I (v).

For k = 1, 2, . . . , K , and all vh ∈ S 1(Th) we have

(−dt u
k
h, vh − uk

h) + I (uk
h) ≤ I (vh).

Choosing v = uk
h we deduce that

(dt [uk − uk
h], uk − uk

h) + I (uk) − I (vh) ≤ (dt u
k
h, vh − uk),
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i.e.,

dt

2
‖uk − uk

h‖2 + τ

2
‖dt (u

k − uk
h)‖2 ≤ I (vh) − I (uk) + ‖dt u

k
h‖‖vh − uk‖.

For ε > 0 we let vh = uk
ε,h be as in Lemma10.1 so that

I (vh) − I (uk) ≤ c(ε + hε−1)I (uk)

and

‖vh −uk‖2 ≤ ‖vh −uk‖L1(Ω)‖vh −uk‖L∞(Ω) ≤ c(h2ε−1+ε)|Duk |(Ω)‖uk‖L∞(Ω).

Arguing as in Proposition10.2, we have ‖uk‖L∞(Ω) ≤ ‖u0‖L∞(Ω) for k =
1, 2, . . . , K . The construction of uk

ε,h in Lemma10.1 guarantees that ‖vh‖L∞(Ω) ≤
‖uk‖L∞(Ω). As in the proof of Proposition10.10, we find that the semi-discrete
scheme is energy-decreasing, i.e., we have |Duk |(Ω) ≤ |Du0|(Ω) for k =
1, 2, . . . , K , and hence

|Duk |(Ω) + τ

L∑
k=1

‖dt u
k‖2 ≤ |Du0|(Ω) = c0.

Incorporating also the estimate from Proposition10.10, it follows from a summation
over k = 1, 2, . . . , L that

1

2
‖uL

h − uL‖2 ≤ 1

2
‖u0

h − u0‖2 + τ

L∑
k=1

(|Dvh |(Ω) − |Duk |(Ω)
)

+
(
τ

L∑
k=1

‖dt u
k
h‖2

)1/2(
τ

L∑
k=1

‖vh − uk‖2
)1/2

≤ 1

2
‖u0

h − u0‖2 + cT (ε + hε−1)c0

+ cT 1/2c1/20 ‖u0‖1/2L∞(Ω)(h
2ε−1 + ε)1/2.

Choosing ε = h2/3 leads to the assertion. �

The combination of Proposition10.11 with the abstract error estimate for implicit
discretizations of subdifferential flows of Theorem4.7 leads to the following error
estimate.

Theorem 10.9 (Error estimate) Assume that u0 ∈ BV(Ω) ∩ L∞(Ω) and u0
h ∈

S 1(Th) is such that ‖u0 − u0
h‖ ≤ h1/6 and |Du0

h |(Ω) ≤ c for all h > 0. We then
have

http://dx.doi.org/10.1007/978-3-319-13797-1_4


10.2 Numerical Approximation 325

max
k=1,...,K

‖u(tk) − uk
h‖ ≤ c(τ 1/2 + h1/6).

Proof The assertion is a direct consequence of the abstract error estimate for implicit
discretizations of subdifferential flows of Theorem4.7 and Proposition10.11. �

Remarks 10.17 (i) The upper bound can be improved to τ + h1/4 provided that
∂ I (u0) �= ∅ and ‖dt uk

h‖L∞(Ω) ≤ c for k = 1, 2, . . . , K .
(ii) In the case of Dirichlet boundary conditions and d = 1, any monotone function
u ∈ BV(Ω) is stationary for I , whereas only the affine interpolant of the boundary
data is stationary for the regularized functional Iδ .

10.3 Segmentation

We discuss in this section the numerical approximation of segmentation problems.
The considered simple model problems detect edges in certain images and serve
as bases for the development of models that describe damage and fracture in solid
mechanics. We refer the reader to [5, 9] for further details.

10.3.1 The Mumford–Shah Functional

The Mumford–Shah functional detects certain edges in an image g : Ω → R by
minimizing the functional

I (u, K ) = α

2

∫

Ω\K

|∇u|2 dx + βH d−1(K ) + γ

2

∫

Ω\K

(u − g)2 dx

in closed sets K ⊂ Ω and functions u ∈ H1(Ω\K ) with given parameters
α, β, γ > 0. For a minimizing pair (u, K ) the (d − 1)-dimensional Hausdorff mea-
sureH d−1(K ) has to be finite, e.g., K is the union of curves or surfaces for d = 2 or
d = 3, respectively, and H d−1 is the corresponding surface measure. The function
u approximates the data g and may jump across the set K . Establishing the existence
of minimizing pairs is a difficult task, since the unknowns u and K are different
objects and the Hausdorff measure is not lower semicontinuous.

Example 10.6 For k ∈ N recursively define Sk ⊂ [0, 1] through S0 = [0, 1/2] and

Sk = (1/2)Sk−1 ∪ (1/2)
(
Sk−1 + 1/2

) = ∪2k−1
�=0 2−(k+1)[2�, 2� + 1]

e.g., S1 = [0, 1/4] ∪ [2/4, 3/4]. Then the sequence (Sk)k∈N converges to S = [0, 1]
with respect to the Hausdorff metric

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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dH (K , L) = inf{ε > 0 : K ⊂ Uε(L), L ⊂ Uε(K )},

whereUε(K ) = {x ∈ R
d : dist(x, K ) < ε}. SinceH d−1(S) = 1 andH d−1(Sk) =

1/2 for all k ∈ N, we conclude that the mapping K �→ H d−1(K ) is not lower
semicontinuous with respect to the Hausdorff metric.

The main idea to establish the existence of solutions is to consider functions
of bounded variation and to identify K with the discontinuity set Su of a function
u ∈ BV(Ω). We recall that the distributional derivative of u ∈ BV(Ω) permits the
decomposition

Du = ∇u ⊗ dx − �un� ⊗ ds|Su + Cu

with a vector field ∇u ∈ L1(Ω;Rd) and the discontinuity set Su of finite (d − 1)-
dimensional Hausdorff measure. The Cantor part Cu is in general supported on a
set of infinite (d − 1)-dimensional Hausdorff measure. If Cu = 0, it is natural to
consider

I ′(u) = α

2

∫

Ω

|∇u|2 dx + βH d−1(Su) + γ

2

∫

Ω

(u − g)2 dx .

The functions u ∈ BV(Ω) with Cu = 0 are called special functions of bounded
variation and the set of all such functions is denoted SBV(Ω), i.e.,

SBV(Ω) = {u ∈ BV(Ω) : Cu = 0}.

Sequences (u j ) j∈N ⊂ SBV(Ω) ∩ L∞(Ω) that are uniformly bounded in L∞(Ω)

and for which we have ∇u j ∈ L2(Ω) for every j ∈ N, such that the expression

∫

Ω

|∇u j |2 dx + H d−1(Su j )

is uniformly bounded, provide convergent subsequences (u jk )k∈N with limit u ∈
SBV(Ω), i.e., we have that u jk → u almost everywhere in Ω , ∇u jk ⇀ ∇u in
L2(Ω), and

H d−1(Su) ≤ lim inf
k→∞ H d−1(Su jk

).

This compactness property implies the following existence result.

Theorem 10.10 (Existence [1]) If g ∈ L∞(Ω), then the functional I ′ has a min-
imizer u ∈ SBV(Ω) ∩ L∞(Ω). The pair (u, K ) with K = Su ∩ Ω minimizes the
Mumford–Shah functional in pairs (u, K ) consisting of a closed set K ⊂ Ω with
H d−1(K ) < ∞ and u ∈ W 1,2(Ω\K ).
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B

C
A

Fig. 10.7 Typical vertices of the singularity set K in the minimization of the Mumford–Shah
functional; vertices are either points on the boundary where K intersects ∂Ω perpendicularly (A),
triple pointswhere three smooth segments intersectwith equal angles (B), or endpoints of curves (C)

Precise characterizations of the singularity set K are available.

Remark 10.18 Assume d = 2 and a minimizing pair (u, K ) is such that K is the
finite union of C1,1 curves. Then every vertex of K is either (a) A point on ∂Ω

where K and ∂Ω intersect perpendicularly, (b) A point in Ω at which three C1,1

curves intersect with angles 2π/3, or (c) A point inΩ at which a C1,1 curve ends, cf.
Fig. 10.7. The technical results follow from contradictions and local modifications
to lower the energy.

10.3.2 Regularization of I ′(u)

It is difficult to approximate the Mumford–Shah functional directly with finite ele-
mentmethods since the singularity sets of discontinuous, piecewise polynomial finite
element functions are subsets of the skeleton of the underlying triangulation which
is in general too restrictive to approximate a given curve. An approach to regular-
izing the Mumford–Shah functional is to describe the set K by the zero level set
Γφ = φ−1({0}) of a function φ : Ω → R and noting that the Hausdorff measure of
Γφ is approximated by the Modica–Mortola type length functional Lε, i.e.,

H d−1(Γφ) ≈ Lε(Γφ) = ε

2

∫

Ω

|∇φ|2 dx + 1

2ε

∫

Ω

(φ − 1)2 dx .

This relation follows from Young’s inequality together with the transformation w =
(φ − 1)2, i.e., |∇w| = 2|φ − 1||∇φ|. We have

Lε(Γφ) = ε

2

∫

Ω

|∇φ|2 dx + 1

2ε

∫

Ω

(φ−1)2 dx ≥
∫

Ω

|∇φ||φ−1| dx = 1

2

∫

Ω

|∇w| dx .

We assume that Γφ is a smooth curve and, for every r ∈ Γφ , denote by nr the unit
normal to Γφ at r . With the tubular neighborhood
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Γφ,ε = {x ∈ Ω : x = r + tnr , |t | ≤ ε}

of Γφ we have

Lε(Γφ) ≥ 1

2

∫

Γφ,ε

|∇w| dx ≥ 1

2

∫

Γφ

ε∫

−ε

|∇w · nr | dt dr.

Assuming that Lε(Γφ) remains bounded as ε → 0, the function φ approaches
the value 1 away from Γφ for ε sufficiently small, so that we may assume that
w = (φ − 1)2 ≈ 0 in Ω\Γφ,ε. The integral of the modulus of the derivative of w in
normal direction to Γφ is then approximately 2 and we obtain

Lε(Γφ) ≥
∫

Γφ

1 ds = H d−1(Γφ).

These observations motivate us to consider the Ambrosio–Tortorelli approximation
of theMumford–Shah functional in which Lε approximatesH d−1(Su) and enforces
φ to be close to one, while a term φ2|∇u|2 favors φ ≈ 0 to permit large, unbounded
gradients of u.

Theorem 10.11 (Regularization [3]) For (u, φ) ∈ H1(Ω) × H1(Ω) and ε > 0,
define the Ambrosio–Tortorelli functional

ATε(u, φ) = α

2

∫

Ω

(φ2 + ε2)|∇u|2 dx

+ β
(ε

2

∫

Ω

|∇φ|2 dx + 1

2ε

∫

Ω

(φ − 1)2 dx
)

+ γ

2

∫

Ω

(u − g)2 dx

and extend ATε with value +∞ to L1(Ω) × L1(Ω). Then, as ε → 0, we have that
ATε →Γ I ′′ with respect to strong convergence in L1(Ω) × L1(Ω), and where
I ′′(u, φ) = I ′(u) if (u, φ) ∈ SBV(Ω) × L1(Ω) with φ = 1 almost everywhere and
I ′′(u, φ) = +∞ otherwise, i.e., I ′(u) = I ′′(u, 1) for all u ∈ SBV(Ω).

10.3.3 Numerical Approximation of ATε

The functional ATε can be directly discretized with H1-conforming finite element
methods; that is, given ε > 0 and a triangulationTh ofΩ , we consider the separately
convex functional
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ATε,h(uh, φh) = α

2

∫

Ω

(φ2
h + ε2)|∇uh |2 dx

+ β
(ε

2

∫

Ω

|∇φh |2 dx + 1

2ε

∫

Ω

(φh − 1)2 dx
)

+ γ

2

∫

Ω

(uh − g)2 dx

for (uh, φh) ∈ S 1(Th). Extending AT ε,h by+∞ on L1(Ω)2\S 1(Th)2, the density
of S 1(Th) in L1(Ω) leads to a Γ -convergence result as in Theorem10.11. The
iterative solution of AT ε,h is based on a semi-implicit discretization of a gradient
flow with respect to φh . This leads to two uncoupled equations in every step of
the iteration. We let P0v ∈ L 0(Th) denote the elementwise average of a function
v ∈ L1(Ω).

Algorithm 10.4 (Semi-implicit gradient flow for AT ε,h) Given τ > 0 and φ0
h ∈

S 1(Th), define the sequence (uk
h, φk

h)k=1,2,... by solving for k = 1, 2, . . . the
equations

α((|P0φ
k−1
h |2 + ε2)∇uk

h,∇vh) + γ (uk
h − g, vh) = 0,

(dtφ
k
h, wh) + α(|∇uk

h |2φk
h, wh) + βε(∇φk

h ,∇wh) + β

ε
(φk

h − 1, wh) = 0

for all (vh, wh) ∈ S 1(Th) × S 1(Th). Stop the iteration if ‖dtφ
k
h‖ ≤ εstop.

In the implementation of the scheme shown in Fig. 10.8 we used the parameter
β = 1.

10.3.4 The Perona–Malik Equation

The Perona–Malik equation is a nonlinear parabolic partial differential equation that
denoises an image g for a parameter λ > 0 through

∂t u − div
( ∇u

(1 + |∇u|2/λ2)2
)

= 0, ∂nu(t, ·) = 0, u(0) = g.

The diffusion coefficient a(|∇u|) = (1+|∇u|2/λ2)−2 is small in regions where |∇u|
is large and this leads to a preservation of edges in the images that are characterized
by large gradients. In the remaining regions where |∇u| ≤ c, the diffusion coefficient
a(|∇u|) is larger and causes a smoothing of u away from the edges. This leads to a
simultaneous denoising and steepening of edges, but analytically to the problem that
the equation is of backward and forward parabolic type, so that the well-posedness of
the initial boundary value problem is false in general. The equation has an interesting
relation to the Mumford–Shah model, i.e., to its Ambrosio–Tortorelli regularization,
described in [13]. An implicit discretization in time of the Perona–Malik equation
leads to the problem of determining uk such that
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Fig. 10.8 Matlab realization of Algorithm10.4 for the iterative minimization of the Ambrosio–
Tortorelli regularization of the Mumford–Shah functional

div
( ∇uk

(1 + |∇uk |2/λ2)2
)

= 1

τ
(uk − uk−1). (10.1)

The Euler–Lagrange equations of the Ambrosio–Tortorelli functional AT ε define the
pair (u, φ) via

α div
(
(φ2 + ε2)∇u

) = γ (u − g),

αε|∇u|2φ − βε2Δφ + β(φ − 1) = 0.

Neglecting terms with a factor ε2, we find that

φ = 1

1 + (α/β)ε|∇u|2
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and

div
( ∇u(

1 + (α/β)ε|∇u|2)2
)

= γ

α
(u − g). (10.2)

For k = 1 and u0 = g in (10.1) and, e.g., α = λ−1/2, β = ε, and γ = α/τ in (10.2),
the partial differential equations coincide. The practical solution of the Perona–Malik
equation is based on a semi-implicit discretization of the equation.

Algorithm 10.5 (Semi-implicit Perona–Malik equation) Given τ > 0 and gh ∈
S 1(Th), define the sequence (uk

h)k=0,1,... by setting u0
h = gh and solving for k =

1, 2, . . . the equations

(dt u
k
h, vh) +

( ∇uk
h

(1 + |∇uk−1
h |2/λ2)2 ,∇vh

)
= 0

for all vh ∈ S 1(Th). Stop the iteration if ‖dt uk
h‖ ≤ εstop.

An implementation of the scheme is shown in Fig. 10.9.

Fig. 10.9 Matlab realization of the semi-implicit discretization of the Perona–Malik equation
specified in Algorithm10.5
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Remarks 10.19 (i) A stability proof for the iteration is expected to require restrictive
conditions on the step size τ . Practically, the iteration provides satisfactory results for
τ ≤ ch. Difficulties in the numerical analysis reflect the fact that no general existence
theory for the Perona–Malik equation is available and in fact solutions may fail to
exist due to occurring backward diffusion.
(ii) An alternative choice for the diffusion coefficient in the Perona–Malik equation
is a(s) = e−s2/λ2 .
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Chapter 11
Elastoplasticity

11.1 Modeling and Analytical Properties

We discuss in this section the mathematical description of elastoplastic material
behavior. We follow the textbooks [5, 9] and the survey article [7].

11.1.1 One-Dimensional Plastic Effects

Mathematical elasticity is based on the Hookean principle that a deformation of an
elastic body is accompanied by a restoring interior force that pulls the body back
into its reference configuration when an outer force stops acting. The starting point
of elastoplasticity is that only a bounded range of restoring forces are possible, and
when a limit is reached, microstructural changes in the crystal lattice occur that lead
to remaining, plastic deformations. A typical example is the elongation of a rubber
band or copper wire beyond a critical value that leads to a permanent lengthening of
the band or wire. To specify some basic principles, we consider a one-dimensional
wire that is regarded as a chain of elements consisting of springs and frictional
devices, as depicted in Fig. 11.1.

If one end of the band is fixed and the other end is displaced, a change of length
occurs, which causes a restoring force that is proportional to the relative change in
length, i.e., to the strain, as long as it is below the friction coefficient.When the restor-
ing force reaches the value of the friction coefficient, the frictional device starts to
glide and a plastic strain compensates the increasing total strain while the stress rem-
ains constant. The rate of change of the plastic strain has the same sign as the stress.

Example 11.1 Suppose that a wire occupies the region Ω = (0, 1) and its left end
is fixed while its right end is displaced gradually by uD(t). The deformation of the
wire is then given by y(t, x) = x(1 + uD(t)). The corresponding displacement
is u(t, x) = xuD(t) and the strain is given by ∂x u(t, x) = uD(t). The restoring
force or stress σ is proportional to ∂x u, i.e., σ = C∂x u as long as the magnitude
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Fig. 11.1 Plastic material behavior interpreted as a combination of springs and frictional devices
(left); an analogy is the pulling of a mass over a dry surface with an elastic rope (right)

of σ is below the critical value σy , i.e., |σ | ≤ σy . When this value is reached, a
plastic strain develops while the stress remains constant, i.e., σ = C(∂x u − p) and
p = max{0, uD(t) − C

−1σy}. The evolution of p is described by the requirements
that

.
p = 0 as long as |σ | < σy and

.
p is proportional to σ when |σ | = σy .

11.1.2 Hypotheses of Multi-dimensional Elastoplasticity

We consider an object made of a metal or more generally of a ductile material that
occupies the domain Ω ⊂ R

3 on which a body force f : [0, T ] × Ω :→ R
3 and a

surface traction g : [0, T ] × ΓN → R
3 are acting. The corresponding displacement

u : Ω → R
3 is required to vanish on the boundary ΓD = ∂Ω\ΓN. Assuming that

only small deformations occur, these can be described by the symmetric gradient
ε(u) = (∇u

⊥

+ ∇u)/2 called strain. The corresponding restoring force is denoted
by the symmetric stress tensor σ ∈ R

3×3
sym , and as long as σ belongs to a set of

admissible forces, we have the linear relation σ = Cε(u). In a quasi-stationary
situation, we have the equilibrium of forces

− div σ = f in Ω, σn = g on ΓN.

When strains occur that lead to inadmissible stresses, another variable is required
and this is the plastic strain

p = ε(u) − C
−1σ = ε(u) − e.

The variable p is a symmetric tensor and assuming that uniform compressions are
entirely elastic, one imposes the plastic incompressibility condition that p is trace-
free. When plastic material behavior occurs, the material properties often change,
and this is described by an internal variable ξ ∈ R

m , e.g., the proportionality rela-
tion between stress and strain may change. In particular, it is observed that the
set of admissible stresses increases when plasticity occurs or that the center of the
set of admissible stresses is shifted. These effects are called isotropic and kinematic
hardening, respectively. Situations inwhich no hardening occurs and the set of admis-
sible stresses remains unchanged are referred to as perfect plasticity. Considering an
isothermal and rate-independent situation, the fundamental laws of thermodynamics
allow us to deduce the existence of a free energy of the form

φ(e, ξ) = φe(e) + φ p(ξ).
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Moreover, the additive decomposition ε(u) = e + p can be justified from thermo-
dynamical considerations. In the simplest linear setting we may assume that

φ(e, ξ) = 1

2
e : Ce + 1

2
ξ : Hξ

with symmetric and positive definite tensorsC : Rd×d
sym → R

d×d
sym andH : Rm → R

m .
With this, the stress tensor is defined as σ = ∂eφ(e, ξ) = Ce and we define the
conjugate forcesχ = −∂ξφ(e, ξ) = −Hξ . The pairsΣ = (σ, χ) and P = (p, ξ) are
called generalized stress and generalized plastic strain, respectively. The hypothesis
of maximal plastic work reads as

Σ · .P ≥ T · .P
for all admissible generalized stresses T ∈ S. This is equivalent to the Prandtl–Reuss

normality rule or flow rule
.
P ∈ NS(Σ) with the normal cone NS(Σ) of the set S

at Σ . In particular, the rate of change of the plastic strain vanishes if Σ belongs
to the interior of S called elastic domain. The boundary of S is called the yield
surface. A yield function is a function Φ that defines the set of admissible stresses
as S = {Σ : Φ(Σ) ≤ 0} and determines the yield surface as the zero level set of
Φ. The modeling of a yield function is typically based on the formulation of a yield
criterion that determines when plastic material behavior sets in and popular choices
are the von Mises and the Tresca criteria, which model that plasticity occurs when
certain shear stresses exceed a given threshold parameter.

Figure11.2 illustrates different plasticity models by corresponding hysteresis
curves, i.e., stress-strain relations, in a cyclic loading-unloading experiment. Up to
time t1, the strain ε increases and the stress σ is proportional to ε until the yield stress
σy is reached. Then plastic material behavior occurs and while the strain increases,

t2t1 t3

uD(t)

uD(t)

t

ε ε ε

s s s

Sχ(t)

Sχ(t2)

Sχ(t1) Sχ(t1)

Sχ(t2)

Fig. 11.2 Sets of admissible stresses Sχ(t) = {σ ∈ R
d×d
sym : Φ(σ, χ(t)) ≤ 0} for given internal

forces χ(t) and hysteresis curves for different hardening models in a cyclic loading-unloading
experiment; the stress-strain relations show different hysteresis effects for perfect plasticity (second
column), kinematic hardening (third column), and isotropic hardening (fourth column)
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the stress remains constant in the case of perfect plasticity or continuous to increase
with a different rate in the case of kinematic or isotropic hardening. This is accom-
panied by a change of the internal variable or equivalently the set of admissible
stresses. When the direction of loading changes, an elastic unloading takes place
until the boundary of the modified set of admissible stresses is reached. Practically,
the experiment is carried out by extending a thin wire by a prescribed amount and
measuring the required force.

11.1.3 Mathematical Model

Based on the previous discussion we formulate the isothermal, quasi-static elasto-
plasticmodel problemwith Prandtl–Reuss flow rule. For a bounded domainΩ ⊂ R

d ,
ΓD ⊂ ∂Ω , ΓN = ∂Ω \ΓD and f : [0, T ]×Ω → R

d and g : [0, T ]×ΓN → R
d , we

seek (u, p, ξ) : [0, T ] × Ω → R
d × R

d×d
sym × R

m with (u, p, ξ)(0) = (u0, p0, ξ0)
such that

− div σ = f, (
.
p,
.
ξ) ∈ ∂ IS(σ, χ),

σn|ΓN = g, σ = C(ε(u) − p),

u|ΓD = 0, χ = −Hξ.

Inhomogeneous Dirichlet boundary conditions are assumed to be included in the
right-hand side. The subdifferential of the indicator functional IS of S evaluated

at Σ coincides with the normal cone NS(Σ) and the condition
.
P ∈ ∂ IS(Σ) is

equivalent to Σ ∈ ∂ I ∗
S (
.
P) with the support functional I ∗

S of S. The inclusion can
thus be equivalently formulated by requiring that

σ : (q − .p) + χ · (ζ − .ξ) + I ∗
S

(.
p,
.
ξ
) ≤ I ∗

S (q, ζ )

is satisfied for all (q, ζ ) ∈ R
d×d
sym × R

m . To derive a weak formulation, we set

Y = H1
D(Ω;Rd) × L2(Ω;Rd×d

sym ) × L2(Ω;Rm)

and define the bilinear formA : Y × Y → R for y = (u, p, ξ) and w = (v, q, ζ ) by

A (y, w) =
∫

Ω

C(ε(u) − p) : (ε(v) − q) + Hξ · ζ dx

and the linear form


(w) =
∫

Ω

f · v dx +
∫

ΓN

g · v ds.
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The variational inequality can be written as (σ, χ) ∈ ∂ψ(
.
p,
.
ξ) with the dissipation

functional ψ : Y → R ∪ {+∞} defined for w = (v, q, ζ ) by

ψ(w) =
∫

Ω

I ∗
S (q, ζ ) dx .

The model problem is now formally equivalent to finding y : [0, T ] → Y such that
y(0) = y0 and

A (y, w − .y) + ψ(w) − ψ(
.
z) ≥ 
(w − .y)

for all w ∈ Y and all t ∈ [0, T ]. A proof follows from choosing w = (±v + .u, 0, 0)
to deduce the weak formulation of the equilibrium of forces and w = (

.
u, q, ξ) to

verify a weak form of the flow rule.

11.1.4 Flow Rules and Coercivity

A yield function that realizes the von Mises yield criterion and describes kinematic
and isotropic hardening simultaneously is given by

Φ(σ, α, β) = | dev(σ + β)| − σy(1 + α+)

with dev σ = σ − (1/d) tr σ and α+ = max{α, 0} for a generalized stress vector
Σ = (σ, α, β) ∈ R

d×d
sym ×R×R

d×d
sym with a yield stress σy > 0. The set of admissible

stresses is defined as

S = {Σ ∈ R
d×d
sym × R × R

d×d
sym : Φ(Σ) ≤ 0}.

Note that here the internal variable ξ is identified with the pair (a, b) ∈ R × R
m×m
sym

and the variable χ is given by (α, β) = −H(a, b). The support functional I ∗
S for S

can be computed explicitly.

Lemma 11.1 (General support functional) For
.
P = (

.
p,
.
a,
.
b) ∈ R

d×d
sym ×R×R

d×d
sym

we have

I ∗
S (
.
P) =

{
σy |.p| if tr

.
p = 0,

.
b = .p, σy |.p| ≤ −.a,

+∞ otherwise.

Proof By definition of I ∗
S (
.
P) we have

I ∗
S (
.
p,
.
a,
.
b) = sup

(σ,α,β)∈S

.
p : σ + .a α + .b : β.

If tr
.
p �= 0, we choose (σ, α, β) = (r Id , 0, 0), i.e., dev σ = 0, for arbitrary r ∈ R

and deduce that I ∗
S (
.
p,
.
a,
.
b) = ∞. If

.
p �= .b, we choose σ = r(

.
p − .b), β = −σ ,
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and α = 0 to deduce that I ∗
S (
.
p,
.
a,
.
b) = ∞. If σy |.p| > −.a, we choose σ =

σy(1 + r)
.
p/|.p|, β = 0, and α = r for r ≥ 0 so that

I ∗
S (
.
p,
.
a,
.
b) ≥ σy(1 + r)|.p| + .ar ≥ σy |.p| + (σy |.p| + .a)r

which is unbounded as r → ∞. We may thus assume
.
p = .

b and tr
.
p = 0, i.e.,.

p = dev
.
p, and σy |.p| ≤ −.a in the following. For every α ≥ 0, the maximal

trace-free choice for σ and β is given by σ = −β = (1 + α)(σy/2)
.
p/|.p| so that

IS(
.
p,
.
a,
.
b) = sup

α≥0
(1 + α)σy |.p| + α

.
a = sup

α≥0
σy |.p| + (σy |.p| + .a)α = σy |.p|

since σy |.p| + .a ≤ 0. �
Special cases of the flow rule are the following.

Examples 11.2 (i) Perfect plasticity corresponds to

Φ(σ) = | dev(σ )| − σy

and the variables (α, β) and (a, b) can be eliminated from the problem.
(ii) Linear isotropic hardening corresponds to

Φ(σ, α) = | dev(σ )| − σy(1 + α+)

and the variables β and b can be eliminated from the problem.
(iii) Kinematic hardening corresponds to

Φ(σ, β) = | dev(σ + β)| − σy

and the variables α and a can be eliminated from the problem. The variable β =
−Hkinb is called back stress and can be replaced by −Hkin p, noting that

.
p = .b on

dom ψ and assuming p(0) = b(0).

In the case of linear kinematic or isotropic hardening, we have that the bilinear
form A is coercive on the domain of ψ , i.e., on

dom ψ = {w ∈ Y : ψ(w) < ∞},
where ψ(w) = ∫

Ω
I ∗

S (q, ζ ) dx for w = (v, q, ζ ) ∈ Y .

Proposition 11.1 (Coercivity) Assume that for ξ = (a, b) ∈ R × R
d×d
sym , we have

Hξ : ξ = Hisoa2 + Hkinb : b

such that either Hiso or Hkin is positive definite. If Hiso = 0 or Hkin = 0, then a or
b is eliminated from the problem, respectively. If Hkin �= 0, then the variables p and
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b are identified. With this convention the bilinear form

A (y, w) = 1

2

∫

Ω

C
(
ε(u) − p

) : (
ε(v) − q

)
dx + 1

2

∫

Ω

aHisoe + b : Hkin f dx

for y, w ∈ Y and y = (u, p, a, b) and w = (v, q, e, f ) is coercive on the
domain of ψ .

Proof Young’s inequality and the positive definiteness of C imply that

‖C1/2(ε(u) − p
)‖2 ≥ (1 − δ−1)cC‖ε(u)‖2 + (1 − δ)cC‖p‖2.

Since I ∗
S is only finite if p = b and σy |p| ≤ a almost everywhere in Ω , we have

‖Hisoa‖2 + ‖Hkinb‖2 ≥ ciso‖a‖2 + ckin‖b‖2
≥ max{ciso/σy, ckin}‖p‖2 = cH‖p‖2.

Upon choosing δ = 1+ cH/(2cC) and using Korn’s inequality ‖u‖H1(Ω) ≤ c‖ε(u)‖
the combination of the estimates proves the assertion. �

Remarks 11.1 (i) More generally, it suffices to assume thatH is positive definite and
that ‖p‖ ≤ c‖ξ‖ on the domain of ψ to guarantee that A is coercive on dom ψ .
(ii) For kinematic hardening, we identify p = b and then have thatA is coercive on
the entire space Y = H1

D(Ω;Rd) × L2(Ω;Rd×d
sym ).

(iii) Coercivity does not hold in the case of perfect plasticity when Hiso = 0 and
Hkin = 0.
(iv) The von Mises yield criterion | dev(σ + β)| ≤ σy(1 + α+) is also called J2-
plasticity since it is based on the second deviatoric stress invariant.
(v) The Tresca yield criterion is based on the maximum shear stress σshear =
max1≤i, j≤d |σi − σ j | with the principal stresses σ1, σ2, . . . , σd .

The functional ψ(w) = ∫
Ω

I ∗
S (q, ζ ) dx for w = (v, q, ζ ) is homogeneous of

degree one, i.e., we have
ψ(γ w) = γψ(w)

for all w ∈ Y and γ ≥ 0. This property has important implications that can be
verified by straightforward computations.

Lemma 11.2 (Degree-one homogeneity)Let ψ : Y → R∪{+∞} be convex, proper,
lower semicontinuous, and homogeneous of degree one.

(i) With C∗ = ∂ψ(0) we have ∂ψ(w) ⊂ C∗ for all w ∈ Y , 0 ∈ C∗, and

ψ = I ∗
C∗ .

(ii) For all w ∈ Y such that ∂ψ(w) �= ∅, we have 〈s, w〉 = ψ(w) for all s ∈ ∂ψ(w).
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11.1.5 Equivalent Formulations and Existence

In the mathematical description of plastic material behavior, inertial terms were
neglected in the equilibrium equation leading to a quasi-stationary evolution prob-
lem. Practically, this means that the time-scale of the considered experiment is sig-
nificantly larger than the internal time scales of a particular material.Mathematically,
this induces a rate-independence of the problem in the sense that if y : [0, T ] → Y
solves the problem subject to the load 
 : [0, T ] → Y ′, and γ : [0, T ′] → [0, T ]
is an increasing reparametrization of the time interval, then y ◦ γ : [0, T ′] → Y
solves the problem defined by the load 
 ◦ γ . In the elastoplastic model problem
this is satisfied since the functional ψ is homogeneous of degree one. This particular
property of the problem allows for different notions of solutions. We discuss them in
an abstract framework and consider a Hilbert space Y , a continuous and symmetric
bilinear form A : Y × Y → R, a function 
 ∈ W 1,∞([0, T ]; Y ′), and we define the
energy functional

E (t, y) = 1

2
A (y, y) − 〈
(t), y〉.

A dissipation functional is defined by a proper, convex, lower semicontinuous func-
tional ψ : Y → R ∪ {+∞} that is degree-one homogeneous. We assume that A is
coercive on dom ψ and let y0 ∈ Y be some initial data.

Definition 11.1 The (primal) evolutionary variational inequality or primal problem
seeks y : [0, T ] → Y such that y(0) = y0 and

A
(
y(t), w − .y(t)

) − 〈
(t), w − .y(t)〉 + ψ(w) − ψ
(.
y(t)

) ≥ 0

for all w ∈ Y and t ∈ [0, T ].
Associating the operator A : Y → Y ′ to the bilinear form A , the evolutionary

variational inequality is equivalent to the inclusion

−Ay + 
 ∈ ∂ψ
(.
y
)
.

The degree-one homogeneity ofψ implies thatψ = I ∗
C∗ with the indicator functional

IC∗ of the set C∗ = ∂ψ(0). Convex duality relations thus yield that we have the
equivalent inclusion .

y ∈ ∂ IC∗(−Ay + 
).

Setting Σ = 
− Ay and noting
.
y = A−1(

.

− .Σ) lead to the following formulation.

Definition 11.2 The dual evolutionary variational inequality or dual problem seeks
Σ : [0, T ] → C∗ such that Σ(0) = 
(0) − Ay0 and

〈Σ − Υ, A−1(
.
Σ − .
)〉 ≥ 0

for all Υ ∈ C∗ and all t ∈ [0, T ].
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Choosingw = αŵ in the primal problem and considering the limit α → ∞ shows
that we have

A (y, ŵ) + ψ(ŵ) ≥ 〈
, ŵ〉.

The choice w = 0 yields

A (y,
.
y) + ψ(

.
y) ≤ 〈
, .y〉.

The first inequality implies that, for every t ∈ [0, T ], the element y(t) is a global
minimizer for the mapping

ŷ �→ E (t, ŷ) + ψ
(
ŷ − y(t)

)
.

The choice ŵ = .y(t) and a combination of the inequalities leads to the identity

A (y,
.
y) = 〈
, .y〉 + ψ(

.
y).

Therefore, we have

d

dt
E

(
t, y

) = ∂tE
(
t, y

) + 〈∂yE
(
t, y

)
,
.
y〉 = ∂tE

(
t, y

) − ψ
(.
y
)
.

These observations justify the third definition of a solution for the evolution problem.

Definition 11.3 The energetic formulation seeks y : [0, T ] → Y such that y(0) =
y0 and the global stability and global energy balance equations

E
(
t, y(t)

) ≤ E
(
t, ŷ(t)

) + ψ
(
ŷ − y(t)

)
,

E
(
t, y(t)

) +
t∫

0

ψ
(.
y(s)

)
ds = E

(
0, y(0)

) −
t∫

0

〈.
(s), y(s)〉 ds

hold for all ŷ ∈ Y and all t ∈ [0, T ].
An advantage of the energetic formulation is that no derivatives of E or ψ are

involved. The global energy balance states that dissipated energy in the time interval
[0, t] equals the difference of the change in the stored energy and the power of external
forces. Solutions for rate-independent evolution problems can be constructed by an
implicit discretization in time, which leads to incremental minimization problems
defined by the functionals

ŷ �→ I k
τ (ŷ) = E (tk, ŷ) + ψ(ŷ − yk−1).

By establishing appropriate a priori bounds and carrying out a passage to a limit, one
can prove the following theorem.
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Theorem 11.1 (Existence and uniqueness) If 
 ∈ W 1,∞([0, T ]; Y ′), A is coercive
on dom ψ , and 
(0) − Ay0 ∈ C∗, then the energetic formulation and the primal
problem have a unique solution y ∈ W 1,∞([0, T ]; Y ).

Proof (sketched) We recall that the variational inequality is equivalent to the inclu-
sion

.
y ∈ ∂ IC∗(−Ay+
) and, assuming for simplicity thatA is coercive on the entire

space, we introduce the variable z = y − A−1
. Then
.
z ∈ ∂ I ∗

C∗(−Az) + A−1
.

. The

operator v �→ ∂ IC∗(−Av) is maximally monotone and Theorem 2.8 implies the exis-
tence of a unique solution provided ∂ IC∗(−Az0) �= ∅, i.e.,−Ay0+
(0) ∈ C∗. �

A stability and uniqueness result follows from the primal formulation.

Remark 11.2 Let y1, y2 ∈ W 1,∞([0, T ]; Y )be solutions subject to the loads 
1, 
2 ∈
W 1,∞([0, T ]; Y ′), respectively.We then have α‖.y j‖L∞([0,T ];Y ) ≤ Λ j , j = 1, 2, and

α2‖y1 − y2‖2L∞([0,T ];Y ) ≤ α‖y1(0) − y2(0)‖2A + (Λ1 + Λ2)

T∫

0

‖
1 − 
2‖Y ′ dt,

whereα is the coercivity constant ofA ,‖y‖2A =A (y, y), andΛ j = ‖.
 j‖L∞([0,T ];Y ′)
for j = 1, 2.

The theorem implies the existence of a unique solution of the primal problem in
the case of positive hardening. Existence of solutions for perfect plasticity and for
the dual formulation require additional assumptions.

Remarks 11.3 (i) Although the dual problem is formally equivalent to the primal
problem, existence theories require imposing a safe-load assumption, i.e., that there
exists a regular stress in the elastic domain that compensates the given loads. The
assumption can be proved for individual cases of isotropic and kinematic hardening,
cf. [6].
(ii) The existence of solutions for perfect plasticity can be established under a suitable
safe-load assumption and within the space of bounded deformations B D(Ω), i.e.,
deformations u ∈ L1(Ω;Rd) such that the symmetric part ε(u) of the distributional
gradient Du is a bounded Radonmeasure. The solutions can be obtained as vanishing
hardening limits, cf. [3, 4, 6].

11.2 Approximation of Rate-Independent Evolutions

For a Hilbert space Y , a symmetric, continuous bilinear form A : Y × Y → R,
a convex, proper, lower-semicontinuous functional ψ : Y → R ∪ {+∞}, and a
function 
 ∈ W 2,∞([0, T ]; Y ′), we consider the evolution problem

A (y, v − .y) − 〈
(t), v − .y〉 + ψ(v) − ψ(
.
y) ≥ 0

http://dx.doi.org/10.1007/978-3-319-13797-1_2


11.2 Approximation of Rate-Independent Evolutions 343

for all v ∈ Y , t ∈ [0, T ], subject to the initial condition y(0) = y0. We assume
that ψ is homogeneous of degree one and A is coercive on Y so that there exists a
unique solution y ∈ W 1,∞([0, T ]; Y ). With the bilinear form A , we associate the
invertible, bounded linear operator A : Y → Y ′. The formulation is then equivalent
to the inclusion −Ay + 
 ∈ ∂ψ(

.
y). The norm induced by A is denoted by ‖ · ‖A

and the norm in Y by ‖ · ‖. We follow ideas from [2, 7].

11.2.1 Time-Incremental Minimization

An implicit discretization of the evolution problem can be formulated as a sequence
of minimization problems.

Algorithm 11.1 (Implicit discretization) Given y0 ∈ Y and τ > 0, set tk = kτ ,
k = 0, 1, . . . , K , and let (yk)k=1,...,K ⊂ Y be a sequence of minimizers for the
functionals

I k
τ (w) = ψ(w − yk−1) + 1

2
A (w, w) − 〈
(tk), w〉.

The iterates of the algorithm are uniquely defined.

Proposition 11.2 (Existence of semi-discrete iterates) For k = 1, 2, . . . , K , there
exists a unique minimizer yk ∈ Y for I k

τ , and we have

A (yk, v − dt yk) − 〈
(tk), v − dt yk〉 + ψ(v) − ψ(dt yk) ≥ 0

for all v ∈ Y . In particular, −Ayk + 
(tk) ∈ C∗ for k = 1, 2, . . . , K .

Proof The existence of aminimizer in every time step follows from the directmethod
in the calculus of variations, and we have 0 ∈ ∂ I k

τ (yk), i.e.,

0 ∈ Ayk − 
(tk) + ∂ψ(yk − yk−1)

and this implies that −Ayk + 
(tk) ∈ C∗ and the variational inequality by incor-
porating the degree-one homogeneity of ψ . Uniqueness follows from the
coercivity of A . �

Noting that ψ = I ∗
C∗ for C∗ = ∂ψ(0), the transformation z = −y + A−1
 shows

that the evolution problem is equivalent to the inclusion −.z ∈ ∂ IC∗(Az) − A−1
.

.

Similarly, the transformation zk = −yk +A−1
k shows that the variational inequality
of the proposition is equivalent to the inclusion −dt zk ∈ ∂ IC∗(Azk) − A−1dt


k . We

abbreviate r = A−1
.

 and rk = A−1dt
(tk) in the following and apply the abstract

strategy of Theorem 4.7 to the rate-independent evolution problem.

http://dx.doi.org/10.1007/978-3-319-13797-1_4
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Theorem 11.2 (Auxiliary error estimate) Suppose that z ∈ W 1,∞([0, T ]; Y )

satisfies
−.z + r ∈ ∂ IC∗(Az)

and the sequence (zk)k=0,...,K ⊂ Y is such that z(0) = z0, Azk ∈ C∗ for k =
0, 1, . . . , K , and

−dt z
k + rk ∈ ∂ IC∗(Azk)

for k = 1, 2, . . . , K . With the piecewise affine interpolant ẑτ : [0, T ] → Y of the
approximations (zk)k=0,...,K , we have

sup
t∈[0,T ]

‖z − ẑτ‖A ≤ τ
(‖r0‖A + cT ‖r‖W 1,∞([0,T ];Y )

)
.

Proof (i) We first note that the discrete inclusion is equivalent to the variational
inequality

〈−dt z
k + rk, v − Azk〉 ≤ 0

for all v ∈ C∗. With the choice v = Azk−1 we define

−Ek = τ‖dt z
k‖2A − τ 〈rk, Adt z

k〉 ≤ 0

and note that
‖dt z

k‖A ≤ ‖rk‖A .

(ii) We let z+
τ : [0, T ] → Y be the piecewise constant function satisfying z+

τ (t) = zk

if tk−1 < t ≤ tk . Similarly, r+
τ : [0, T ] → Y ′ denotes the piecewise constant

interpolant of (rk)k=1,...,K . We have

〈−∂t ẑτ + r+, v − Az+
τ 〉 ≤ 0

for all v ∈ C∗. Defining

Cτ (t) = 〈−∂t ẑτ + r+, Az+
τ − Âzτ 〉,

we find
〈−∂t ẑτ + r, v − Âzτ 〉 ≤ Cτ (t) + 〈r − r+

τ , v − Âzτ 〉.

(iii) Noting the equation for z, i.e.,

〈−∂t z + r, v − Az〉 ≤ 0

and choosing v = Az and v = Âzτ in the equations for ẑτ and z, respectively, and
adding the inequalities, we find that

1

2

d

dt
‖z − ẑτ‖2A ≤ Cτ (t) + T

2
‖r − r+

τ ‖2A + 1

2T
sup

t∈[0,T ]
‖z − ẑτ‖2A .
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Using that z+
τ − ẑτ = −(t − tk)dt zk for t ∈ [tk−1, tk] we have

Cτ (t) = (t − tk)‖dt z
k‖2A − (t − tk)〈rk, Adt z

k〉 = t − tk
τ

(−Ek) ≤ Ek .

We also note that ‖r − r+
τ ‖A ≤ τ supt∈[0,T ] ‖.r‖A . An integration over the interval

[0, t∗], where t∗ ∈ [0, T ] corresponds to the maximum of
t �→ ‖z − ẑτ‖A , and z(0) = z0 show that

1

2
sup

t∈[0,T ]
‖z − ẑτ‖2A ≤ τ

K∑
k=1

Ek + τ 2
T 2

2
sup

t∈[0,T ]
‖.r‖2A .

(iv) We note that the equation for zk−1 with k ≥ 2 reads as

〈−dt z
k−1 + rk−1, v − Azk−1〉 ≤ 0.

By defining z−1, so that −dt z0 + r0 = 0, and noting that 0 ∈ ∂0 IC∗(Az0), this
variational inequality also holds with k = 1. The choice v = Azk yields

〈−dt z
k−1 + rk−1, Adt z

k〉 ≤ 0.

With the definition of Ek we deduce that

Ek = −τ 〈dt z
k + rk, Adt z

k〉
≤ −τ 〈dt z

k − rk, Adt z
k〉 + τ 〈dt z

k−1 − rk−1, Adt z
k〉

= −τ 2〈d2
t zk − dtr

k, Adt z
k〉

= −τ 2
dt

2
‖dt z

k‖2A − τ 3

2
‖d2

t zk‖2A + τ 2〈dtr
k, Adt z

k〉

≤ −τ 2
dt

2
‖dt z

k‖2A + τ 2‖dtr
k‖A ‖dt z

k‖A

≤ −τ 2
dt

2
‖dt z

k‖2A + τ 2 sup
t∈[0,T ]

‖.r‖A ‖r‖A ,

where we used ‖dt zk‖A ≤ ‖rk‖A and ‖dtrk‖A ≤ supt∈[0,T ] ‖.r‖A . A summation
of Ek over k = 1, 2, . . . , K yields

τ

K∑
k=1

Ek ≤ τ 2

2
‖dt z

0‖2A + cτ 2T ‖r‖2W 1,∞([0,T ];Y ′).

This implies the assertion. �
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Remark 11.4 The proof of the theorem provides the computable a posteriori error
estimate

sup
t∈[0,T ]

‖z − ẑ‖2A ≤ 2τ
K∑

k=1

Ek + τ 3
K∑

k=1

sup
t∈[tk−1,tk ]

‖.r‖2A .

The theorem implies an error estimate for the approximation of the original
formulation.

Corollary 11.1 (Time discretization) Assume that y0 ∈ Y satisfies −Ay0 + 
(0) ∈
∂ψ(0)and that we have 
 ∈ W 2,∞([0, T ]; Y ′). For the solution y ∈ W 1,∞([0, T ]; Y )

of the evolutionary variational inequality with y(0) = y0 and the piecewise affine
interpolant ŷτ ∈ W 1,∞([0, T ]; Y ) of the iterates (yk)k=0,...,K of Algorithm 11.1 such
that y0 = y0, we have

sup
t∈[0,T ]

‖y − ŷτ‖ ≤ cτ.

Example 11.3 The error estimate applies to kinematic hardening. Recalling that in
this case we have with the identification p = b and thus β = −Hkin p that

A (y, w) =
∫

Ω

C(ε(u) − p) : (ε(v) − q) + Hkin p : q dx

for y = (u, p) and w = (v, q). Hence, with σ = C(ε(u) − p) we have that
Ay = (− div σ,−σ + Hkin p). We recall that ψ(y) = σy |p|0, where |p|0 = |p|
if tr p = 0 and |p|0 = +∞ otherwise, and


(t, w) =
∫

Ω

f (t) · v dx +
∫

ΓN

g(t) · v ds.

With σ0 = σ(0) the compatibility condition−Ay0+
(0) ∈ ∂ψ(0) is thus equivalent
to div σ0 + f (0) = 0 in Ω , σ0n = g on ΓN, and σ0 − Hkin p0 ∈ σy∂| · |0, that is,
| dev(σ0 − Hkin p0)| = | dev(σ0 + β0)| ≤ σy .

Remark 11.5 The error estimate also holds for a spatially discrete version of the
problem. In this case Y is replaced by a finite-dimensional subspace Yh ⊂ Y and the
subdifferential is defined with respect to this space.

11.2.2 Discretization in Space

Wenext investigate the error introduced by a spatial discretization. For thiswe assume
that we are given a finite-dimensional subspace Yh ⊂ Y and let PA ,h : Y → Yh
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denote the orthogonal projection onto Yh with respect toA ; that is, for z ∈ Y we let
PA ,hz ∈ Yh be such that

A (PA ,hz − z, vh) = 0

for all vh ∈ Yh . We assume that there exists a bounded linear operatorJh : Y → Yh

such that Jhz ∈ dom ψ whenever z ∈ dom ψ .

Proposition 11.3 (Space discretization) Let y ∈ W 1,∞([0, T ]; Y ) be the solution of
the primal problem and let yh ∈ W 1,∞([0, T ]; Y ) be the uniquely defined function
yh : [0, T ] → Yh satisfying yh(0) = y0h = PA ,h y0 and

A (yh, vh − .yh) − 〈
(t), vh − .yh〉 + ψ(vh) − ψ(
.
yh) ≥ 0

for all vh ∈ Yh and t ∈ [0, T ]. Assume that there exists cψ such that

|ψ(v) − ψ(w)| ≤ cψ‖v − w‖

for all v, w ∈ dom ψ . We then have

sup
t∈[0,T ]

‖y − yh‖2 ≤ c

T∫

0

‖(1 − Jh)
.
y‖ dt + ‖(1 − PA ,h)y0‖2.

Proof The existence of the spatially discrete solution follows as in the continuous
case.We choose v = .yh and add the discrete formulation to the continuous variational
inequality to verify that

A
(
yh,
.
y− .yh)+A (y,

.
yh − .y)+A (yh, vh − .y)−〈
(t), vh − .y〉+ψ(vh)−ψ(

.
y) ≥ 0.

The choice vh = Jh
.
y yields

A (yh − y,
.
yh − .y) ≤ −〈
(t),Jh

.
y − .y〉 + ψ(Jh

.
y) − ψ(

.
y) + A (yh,Jh

.
y − .y)

≤ (‖
(t)‖ + cψ + cA ‖yh‖)‖.y − Jh
.
y‖.

We thus have

1

2

d

dt
‖y − yh‖2A ≤ (‖
(t)‖ + cψ + cA ‖yh‖)‖.y − Jh

.
y‖

which implies the asserted estimate. �

Remarks 11.6 (i) For a sequence of dense subspaces (Yh)h>0, the estimate of the
proposition implies the convergence yh → y as h → 0 providedJh has appropriate
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approximation properties. Related convergence rates under regularity assumptions
on
.
y are discussed in Example 11.4.

(ii) For kinematic hardening, the condition on the operator Jh means that for
(̃uh, p̃h) = Jh(u, p) we have tr p̃h = 0 if tr p = 0. This can be guaranteed by
employing averaging operators for the definition of p̃h . The proof of the proposition
simplifies if we can choose Jh = PA ,h .

11.2.3 Fully Discrete Approximation

The combination of the estimates for the semi-discrete schemes allows us to derive
an error estimate for fully discrete approximations. These are obtained with the
following algorithm.

Algorithm 11.2 (Fully discrete iteration) Given y0h ∈ Yh and τ > 0, let (yk
h)k=1,...,K

be a sequence of minimizers yk
h ∈ Yh for the functionals

I k
τ,h(wh) = ψ

(
wh − yk−1

h ) + 1

2
A (wh, wh) − 〈
(tk), wh〉.

The iterates of the algorithm are uniquely defined and satisfy a discrete variational
inequality.

Proposition 11.4 (Existence of fully discrete approximations) There exists a unique
discrete solution (yk

h)k=0,...,K and we have

A (yk
h , vh − dt yk

h) − 〈
(tk), vh − dt yk
h 〉 + ψ(vh) − ψ(dt yk

h) ≥ 0

for k = 1, 2, . . . , K and all vh ∈ Yh. If −Ay0 + 
(0) ∈ ∂ψ(0) and y0h = PA ,h y0,
then we have

max
k=1,...,K

‖dt yk
h‖ ≤ c‖
‖W 1,∞([0,T ];Y ′).

Proof The derivation of the variational inequality is analogous to the proof of
Proposition11.2. The assumption on y0 and the definition of y0h imply that

−A (y0h , vh) + 〈
(0), vh〉 = −A (y0, vh) + 〈
(0), vh〉 ≤ ψ(vh)

and by setting y−1
h = y0h , i.e., dt y0h = 0 the variational inequality also holds for

k = 0. To prove the estimate we note that the choice vh = 0 yields

A (yk
h , dt yk

h) ≤ 〈
(tk), dt yk
h〉 − ψ(dt yk

h),

while the choice vh = dt yk
h + dt yk−1

h in the equation for yk−1
h leads to

−A (yk−1
h , dt yk

h) ≤ −〈
(tk−1), dt yk
h〉 + ψ(dt yk

h + dt yk−1
h ) − ψ(dt yk−1

h ).
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Adding the two inequalities shows that

τA (dt yk
h , dt yk

h) ≤ 〈τdt
(tk), dt yk
h〉 + ψ(dt yk

h + dt yk−1
h ) − ψ(dt yk

h) − ψ(dt yk−1
h )

≤ τ sup
t∈[tk ,tk−1]

‖.
‖Y ′ ‖dt yk
h‖,

where we used the convexity and degree-one homogeneity of ψ . �

Given the sequence of approximations (yk
h)k=0,...,K , we let ŷh,τ ∈ W 1,∞

([0, T ]; Y ) denote its piecewise affine interpolant in time. The combination of the
estimates for the semi-discrete schemes implies the following error estimate.

Theorem 11.3 (Fully discrete approximations) Given the sequence of approxima-
tions (yk

h)k=0,...,K ∈ Yh such that y0h = PA ,h y0, we have for its piecewise affine
interpolant ŷh,τ that

sup
t∈[0,T ]

‖y − ŷh,τ‖2 ≤ c
(
τ 2 +

T∫

0

‖(1 − Jh)
.
y‖ dt + ‖(1 − PA ,h)y0‖2

)
.

Proof We let yh ∈ W 1,∞([0, T ]; Y ) be the solution of the semi-discrete approxima-
tion in space, and notice that according to Proposition 11.3 we have

sup
t∈[0,T ]

‖y − yh‖2 ≤ c

T∫

0

‖(1 − Jh)
.
y‖ dt + ‖(1 − PA ,h)y0‖2.

The fully discrete scheme is interpreted as a temporal discretization of the semi-
discrete scheme in space and the arguments of the proof of Theorem 11.2 lead to the
estimate

sup
t∈[0,T ]

‖yh − ŷh,τ‖ ≤ cτ.

The combination of the two estimates implies the estimate of the theorem. �

Examples 11.4 (i) For kinematic hardening, we may eliminate the internal variables
and have Y = H1

D(Ω;Rd) × L2(Ω;Rd×d) and y = (u, p) ∈ Y . Assuming that
u ∈ W 1,1([0, T ]; H2(Ω;Rd)) and p ∈ W 1,1([0, T ]; H1(Ω;Rd×d)), we obtain
with the subspace Yh = S 1

D(Th)d ×L 0(Th)d×d , the convergence rateO(τ +h1/2).
More realistic regularity assumptions suggest the convergence rate O(τ + h1/4−δ)

for arbitrary δ > 0.
(ii) If 
 and ψ are of lower order, e.g., 
 ∈ W 2,∞([0, T ]; L2(Ω;Rd)′) and ψ :
L2(Ω;Rd×d) → R ∪ {+∞}, and Y is elliptic on H1

D(Ω;Rd) × H1(Ω;Rd×d),
e.g., in the case of gradient plasticity, then no regularity is required to deduce the
convergence rate O(τ + h1/2) for lowest order conforming finite elements.
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11.2.4 A Posteriori Error Control

A basis for full a posteriori error control is a characterization of the solution of the
evolution problem as the unique minimizer of an appropriate functional. The key
ingredient for this is the Fenchel duality relation

ψ(y) + ψ∗(y′) ≥ 〈y, y′〉

in which equality holds if and only if y ∈ ∂ψ∗(y′) and y′ ∈ ∂ψ(y).

Proposition 11.5 (Minimization property [10]) The function y ∈ W 1,1([0, T ]; Y )

satisfies
−Ay + 
 ∈ ∂ψ(

.
y), y(0) = y0

if and only if F(y) = 0 for the nonnegative functional

F(z) =
T∫

0

ψ(
.
z) + ψ∗(
 − Az) − 〈
 − Az,

.
z〉 dt + χ

(
z(0) − y0

)

defined for z ∈ W 1,1([0, T ]; Y ) and with χ(w) = (1/2)〈Aw, w〉 + ‖w‖2.

Proof The Fenchel duality relation implies that F(z) ≥ 0. If F(y) = 0, then it also
implies that −Ay + 
 ∈ ∂ψ(

.
y) and y(0) = y0 is an immediate consequence. The

converse implication follows analogously. �
Theorem 11.4 (A posteriori error control [10]) For y ∈ W 1,1([0, T ]; Y ) with
F(y) = 0 and every v ∈ W 1,1([0, T ]; Y ), we have

1

4
sup

t∈[0,T ]
‖y − v‖2A ≤ F(v).

Proof For s ∈ [0, T ] we define

Fs(z) =
s∫

0

ψ(
.
z) + ψ∗(
 − Az) − 〈
 − Az,

.
z〉 dt + χ

(
z(0) − y0

)
.

Noting that (d/dt)‖z‖2A = 2〈Az,
.
z〉 and incorporating the definition of χ implies

that

Fs(z) =
s∫

0

ψ(
.
z) + ψ∗(
 − Az) − 〈
, .z〉 dt

+ 1

2

(‖z(s)‖2A − ‖z(0)‖2A
) + χ

(
z(0) − y0

)
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=
s∫

0

ψ(
.
z) + ψ∗(
 − Az) − 〈
, .z〉 dt

+ 1

2

(‖z(s)‖2A + ‖y0‖2A
) − 〈Az(0), y0〉 + ‖z(0) − y0‖2.

This shows that Gs(z) = Fs(z) − ‖z(s)‖2A /2 is convex and hence Fs is the sum
of a convex and a quadratic function. For θ ∈ [0, 1] and v, w ∈ W 1,1([0, T ]; Y ) and
z = θv + (1 − θ)w, we thus deduce that

0 ≤ Fs(z) = Gs(z) + 1

2
‖z(s)‖2A

≤ θGs(v) + (1 − θ)Gs(w) + 1

2
‖θv(s) + (1 − θ)w(s)‖2A .

Incorporating the formula

θφ(v) + (1 − θ)φ(w) − φ(θv + (1 − θ)w) = θ(1 − θ)φ(v − w)

for φ(v) = ‖v‖2A /2 implies the estimate

θ(1 − θ)

2
sup

s∈[0,T ]
‖v − w‖2A ≤ θ F(v) + (1 − θ)F(w).

For θ = 1/2 and w = y we deduce the asserted estimate. �

Example 11.5 Consider kinematic hardening with the variable y = (u, p) and let
ŷ = (̂u, p̂) be an admissible function, i.e., ψ∗(
 − Aŷ) = IC∗(
 − Aŷ) = 0 for all
t ∈ [0, T ]. Assume that ŷ is piecewise affine in time with respect to the time steps
(tk)k=0,...,K and let (̂uk, p̂k) = (̂u(tk), p̂(tk)) and τk = tk − tk−1. We then have

sup
t∈[0,T ]

‖y − ŷ‖2A ≤ 4
K∑

k=1

τkη
2
k (̂u, p̂)

with

η2k (̂u, p̂) =
∫

Ω

σy |dt p̂k | − f (tk) · dt û
k + C

(
ε(̂uk) − p̂k) : (

ε(dt û
k) − dt p̂k) dx,

where f (tk) = τ−1
k

∫ tk
tk−1

f (t) dt . The admissible function ŷ can be constructed in a
post-processing procedure from a typically inadmissible finite element approxima-
tion ŷh,τ and the triangle inequality leads to a computable estimate for the approxi-
mation error ‖y− ŷh,τ‖. Lowest order approximations satisfy the stress admissibility
condition σh ∈ K exactly, but in general not the equilibrium condition− div σh = f .
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11.3 Numerical Solution

The numerical solution of the nonlinear system of equations related to a time step
in the implicit discretization of quasi-static elastoplastic evolution problems can be
formulated as a nonlinear displacement problem. The key to this reformulation is a
pointwise solution of the discretized flow rule that leads to a formula for the stress
field in terms of the displacement. We employ ideas from [1, 8, 9].

11.3.1 Solution of the Discretized Flow Rule

For a step size τ > 0, an implicit discretization of the flow rule reads as

Σk ∈ ∂ I ∗
S (dt Pk)

with the generalized stress Σk = (σ k, χk), the generalized plastic strain Pk =
(pk, ξ k), and the backward difference quotient dt Pk = (Pk − Pk−1)/τ . We recall
that we have the relations

χk = −Hξ k, σ k = C(ε(uk) − pk).

The following proposition shows that for the generalized plastic strain Pk−1, the
generalized stress Σk−1 from a previous time step, and a trial strain ε(uk) that
may be a guess of the true displacement in the k-th time step, the corresponding
generalized stress Σk is pointwise uniquely determined by the flow rule and defines
Pk , cf. Fig. 11.3.

Proposition 11.6 (Return map) Given arbitrary Pk−1, Σk−1, and ε(uk), there exist
uniquely defined Σk and Pk such that

Σk ∈ ∂ I ∗
S (dt Pk).

The field Σk is the best approximation of Σ̃k = (τCdtε(uk) + σ k−1, χk−1) in S
with respect to the scalar product 〈(σ, χ), (p, ζ )〉 = (σ : C−1 p + χ : H−1ζ )/τ .

˜Σ k

Σ k

Σ k −1
S

Fig. 11.3 For given Pk−1,Σk−1, and ε(uk) the elastic trial stress Σ̃k = (τCdtε(uk)+σ k−1, χk−1)

is projected onto the set S to obtain an admissible stress Σk ∈ ∂ I ∗
S (dt Pk)
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Proof We note dt pk = dtε(uk)−C
−1dtσ

k = dtε(uk)+τ−1
C

−1σ k−1−τ−1
C

−1σ k

and dtξ
k = −H

−1dtχ
k = τ−1

H
−1χk−1−τ−1

H
−1χk . Hence, the inclusion dt Pk ∈

∂ IS(Σ
k) is equivalent to

−τ−1
[
C

−1 0
0 H

−1

] (
Σk −

[
τCdtε(uk) + σ k−1

χk−1

] )
∈ ∂ IS(Σk).

This implies the assertion. �

The proposition shows that given Σk−1 and uk−1, which uniquely define Pk−1,
there exists a well-defined map

Ŝ k : uk �→ Σk,

so that the flow rule is satisfied with Pk determined by Σk and uk . For the von
Mises yield criterion we derive an explicit formula for the operator Ŝ k . An essential
ingredient for this is the following lemma in which we employ the functional

| · |0 : Rd×d
sym → R ∪ {+∞}, .

p �→
{

|.p| if tr
.
p = 0,

+∞ otherwise.

We assume that
CE = λ(tr E)Id + 2μE

for E ∈ R
d×d
sym and constants λ,μ > 0.

Lemma 11.3 (Explicit solution [1]) Let B ∈ R
d×d
sym and

.
p ∈ R

d×d
sym with tr

.
p = 0,

and η, r ≥ 0 be such that

z = B − τ(C + 2η)
.
p ∈ ∂r | · |0(.p).

Then .
p = (| dev B| − r)+

2τ(μ + η)

dev B

| dev B| .

Proof The inclusion is equivalent to z : (q − .p) + r |.p|0 ≤ r |q|0. If .p = 0, we have
z : q ≤ r |q| and deduce | dev z| = | dev B| ≤ r . If

.
p �= 0, then dev z = r

.
p/|.p| and

using C
.
p = 2μ

.
p, we find that

dev B − 2(μ + η)
.
p = r

.
p

|.p|

which implies | dev B| = 2(μ + η)|.p| + r and 2|.p| = (| dev B| − r)/(μ + η). Since.
p and dev B are parallel, we deduce the asserted formula. �
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We solve the discretized flow rule explicitly for the yield function Φ(σ, α, β) =
| dev(σ + β)| − σy(1 + α+) and the corresponding support functional of the set of
admissible stresses

I ∗
S (
.
P) =

{
σy |.p| if tr

.
p = 0,

.
b = .p, σy |.p| ≤ −.a,

+∞ otherwise,

cf. Lemma 11.1. We assume the constitutive relations

α = −Hisoa, β = −Hkinb

such that Hkin is a multiple of the identity.

Proposition 11.7 (General von Mises flow rule) Assume that (pk−1, ak−1, bk−1)

with tr pk−1 = 0, bk−1 = pk−1, and ak−1 ≤ 0 are given. For arbitrary uk, define
Ak = C

(
ε(uk) − pk−1

)
. Then with

dt pk =
(| dev Ak − Hkin pk−1| − σy(1 − Hisoak−1)

)
+

2τ(μ + Hisoσ 2
y + Hkin)

dev Ak − Hkin pk−1

| dev Ak − Hkin pk−1|

and dt (ak, bk) = (−σy |dt pk |, dt pk) = −dt (Hisoα
k,Hkinβ

k) and σ k = Ak −
τCdt pk we have

Σk ∈ ∂ I ∗
S (dt Pk).

Proof We omit the superscript k and abbreviate
.
P = dt Pk and P ′ = Pk−1 in the

following. The inclusion Σ ∈ ∂ I ∗
S (
.
P) states that

.
P is a minimizer for the mapping

Γ : .P �→ I ∗
S (
.
P) − Σ : .P = I ∗

S (
.
p,
.
a,
.
b) − σ : .p − α

.
a − β : .b.

The identities (α, β) = −(Hisoa,Hkinb) and a = a′ + τ
.
a, b = b′ + τ

.
b lead to

Γ (
.
p,
.
a,
.
b) = I ∗

S (
.
p,
.
a,
.
b) − σ : .p + Hisoa

.
a + Hkinb : .b

= I ∗
S (
.
p,
.
a,
.
b) − σ : .p + Hisoa′.a + τHiso

.
a2 + Hkinb′ : .b + τHkin

.
b : .b.

We note that I ∗
S is finite only if

.
p = .b, so that we may eliminate

.
b and b′, i.e., we

may consider minimizing

Γ ′(.p,
.
a) = I ∗

S (
.
p,
.
a,
.
p) − σ : .p + Hisoa′.a + τHiso

.
a2 + Hkin p′ : .p + τHkin

.
p : .p.

Given
.
p, the functional I ∗

S is finite only if σy |.p|0 ≤ −.a. Noting a′ ≤ 0 and
.
a ≤ 0,

show that given
.
p, the optimal value of

.
a for Γ ′(.p,

.
a) subject to

.
a ≤ −σy |.p|0 is .a =

−σy |.p|0. Noting I ∗
S (
.
p,
.
a,
.
p) = σy |.p|0, we may thus restrict to the minimization of

Γ ′′(.p) = σy |.p|0 −σ : .p −Hisoσya′|.p|0 + τHisoσ
2
y |.p|20 +Hkin p′ : .p + τHkin

.
p : .p.
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For a minimizer, we have

0 ∈ −σ + 2τHisoσ
2
y
.
p + Hkin p′ + 2τHkin

.
p + ∂(σy − Hisoσya′)| · |0(.p).

Writing σ = A − τC
.
p we have

A − Hkin p′ − τ(C + 2Hisoσ
2
y + 2τHkin)

.
p ∈ ∂σy(1 − Hisoa′)| · |0(.p).

Lemma 11.3 implies the asserted formula for
.
p. �

The formula of the proposition defines the stress function S k : uk �→ σ k via

Ŝ k(uk) =
⎡
⎣S k(uk)

I k
1 (uk)

I k
2 (uk)

⎤
⎦ =

⎡
⎣C

(
ε(uk) − pk−1

) − τCdt pk

−Hiso(ak−1 − τσy |dt pk |)
−Hkin(bk−1 + τdt pk)

⎤
⎦ .

For the special cases of perfect plasticity and linear isotropic andkinematic hardening,
the formula for the stress σ k = S k(uk) can be simplified.We recall the abbreviation
Ak = C

(
ε(uk) − pk−1

)
.

Examples 11.6 (i) For perfect plasticity we have

S k(uk) = Ak − (| dev Ak | − σy)+
dev Ak

| dev Ak | .

(ii) For isotropic hardening we have

S k(uk) = Ak − (| dev Ak | − σy(1 − Hisoak−1))+
1 + Hisoσ 2

y /μ

dev Ak

| dev Ak | .

(iii) For kinematic hardening we have

S k(uk) = Ak − (| dev Ak − Hkin pk−1| − σy)+
1 + Hkin/μ

dev Ak − Hkin pk−1

| dev Ak − Hkin pk−1| .

Remarks 11.7 (i) The operator S k can be written as

S k(uk) = Ak − 2μτdt pk

with

dt pk = (1/r)
(| dev Ak + Mk−1| − sk−1)

+
dev Ak + Mk−1

| dev Ak + Mk−1|

for Mk = −Hkin pk−1, sk−1 = σy(1 − Hisoak−1), and r = 2μτ(1 + Hkin/μ +
Hisoσ

2
y /μ). Notice that Mk−1 is deviatoric, i.e., Mk−1 = dev Mk−1.
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(ii) If max{Hiso,Hkin} > 0, then the mapping S k is Lipschitz continuous and
strongly monotone.

A time step of the discretized elastoplastic evolution problem can now be formu-
lated in terms of displacement.

Corollary 11.2 (Displacement formulation) The tuple

(uk, pk, ak, bk) ∈ H1(Ω;Rd) × L2(Ω;Rd×d
sym ) × L2(Ω) × L2(Ω;Rd×d)

satisfies uk |ΓD = 0,
∫

Ω

C
(
ε(uk) − pk) : ε(v) dx =

∫

Ω

f (tk) · v dx +
∫

ΓN

g(tk) · v ds

for all v ∈ H1(Ω;Rd) with v|ΓD = 0, and

Σk =
⎡
⎣C

(
ε(uk) − pk

)
αk

βk

⎤
⎦ ∈ ∂ IS(dt Pk) = ∂ IS

⎛
⎝

⎡
⎣dt pk

dt ak

dt bk

⎤
⎦

⎞
⎠

if and only if
∫

Ω

S k(uk) : ∇v dx =
∫

Ω

f (tk) · v dx +
∫

ΓN

g(tk) · v dx

for all v ∈ H1(Ω;Rd) with v|ΓD = 0 and (pk, ak, bk) are defined according to
Proposition 11.7.

Remark 11.8 Notice that the stress functionS k only depends on ∇uk , i.e., we may
writeS k(uk) = S k(∇uk).

11.3.2 Newton Method for Nonlinear Elasticity

Given a stress function S : Rd×d → R
d×d , we consider the iterative solution and

implementation of the problem of finding uh ∈ S 1(T )d such that M(z)uh(z) =
uD(z) for all z ∈ N ∩ ΓD and

∫

Ω

S (∇uh) : ∇vh dx =
∫

Ω

f · vh dx +
∫

ΓN

g · vh ds

for all vh ∈ S 1(T )d with M(z)vh(z) = 0 for all z ∈ N ∩ ΓD. The matrix field
M : ΓD → R

d×d allows us to impose Dirichlet conditions on individual components
of the vector field uh on ΓD, or to formulate gliding boundary conditions.
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M x u x

M x u x

( , 1) =

[

0 0
0 1

]

, D( , 1) =

[

0
]

( , 0) =

[

1 0
0 1

]

, D( , 0) =

[

0
0

]W
w

Fig. 11.4 Partial Dirichlet boundary conditions and full Dirichlet boundary conditions specified
by a matrix field M and a vector field uD

Example 11.7 ConsiderΩ = (0, 5)×(0, 1) and theDirichlet conditionsu|[2,5]×{0} =
0 and u2|[0,3]×{1} = ω for a displacement field u = (u1, u2). This is equivalent to
requiring Mu = uD on ΓD with M and uD specified in Fig. 11.4.

The application of the Newton scheme to the nonlinear system of equations leads
to the following algorithm.

Algorithm 11.3 (Newton scheme for nonlinear elasticity) Let u0
h ∈ S 1(T )d with

M(z)u0
h(z) = uD(z) for all z ∈ N ∩ ΓD. Define the sequence (u


h)
=0,1,... by
computing for 
 = 1, 2, . . . , a function u


h ∈ S 1(T )d with M(z)u

h(z) = uD(z) for

all z ∈ N ∩ ΓD and
∫

Ω

DS (∇u
−1
h )[∇u


h] : ∇vh dx =
∫

Ω

DS (∇u
−1
h )[∇u
−1

h ] : ∇vh dx

−
∫

Ω

S (∇u
−1
h ) : ∇vh dx

+
∫

Ω

f · vh dx +
∫

ΓN

g · vh ds

for all vh ∈ S 1(T )d with M(z)vh(z) = 0 for all z ∈ N ∩ ΓD. Stop the iteration if
‖∇(u


h −u
−1
h )‖DS (u
−1

h )
≤ εstop for ‖wh‖2DS (uh)

= ∫
Ω

DS (∇uh)[∇wh] : ∇wh dx .

We employ the basis (ψ(z,p) = epϕz : z ∈ N , p = 1, 2, . . . , d) of S 1(T )d

with the canonical basis vectors ep ∈ R
d , p = 1, 2, . . . , d. Given a vector field

uh ∈ S 1(T )d with coefficient vectorU ∈ R
d L with L = #N , we define the vector

F(U ) ∈ R
d L [

F(U )
]
(z,p)

=
∫

Ω

S (∇uh) : ∇ψ(z,p) dx

for z ∈ N and 1 ≤ p ≤ d. Similarly, we define the matrix DF(U ) ∈ R
d L×d L by

[
DF(U )

]
(z,p),(y,q)

=
∫

Ω

DS (∇uh)[∇ψ(z,p)] : ∇ψ(y,q) dx
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for z, y ∈ N and 1 ≤ p, q ≤ d. The full-rank matrix B is obtained by arranging
the d × d matrices M(z) for all z ∈ N ∩ΓD on the diagonal of a matrix B̂, and then
deleting vanishing rows. Similarly, we arrange the vectors uD(z) ∈ R

d , z ∈ N ∩ΓD,
in a vector Ŵ and then delete the entries corresponding to deleted rows in B̂ to obtain
a vector W . With these definitions, a step of the Newton iteration can be rewritten as

[
DF(U 
−1) BT

B 0

] [
U 


Λ

]
=

[
DF(U 
−1)U 
−1 − F(U 
−1)

W

]
.

In our implementation a matrix A ∈ R
d×d is identified with a vector Ã ∈ R

d2
via

Ai j = Ã(i−1)d+ j , i.e.,

A =
⎡
⎢⎣

a1 · · · ad
...

. . .
...

a(d−1)d+1 · · · ad2

⎤
⎥⎦ ∼ Ã = [a1, a2, . . . , ad2 ]

⊥

.

TheMatlab codes displayed in Figs. 11.5 and 11.6 realize Algorithm 11.3. The
code in Fig. 11.5 is an implementation of the Newton iteration and the routine dis-
played in Fig. 11.6 computes the required matrix DF(uh) and vector F(uh) for
an iteration step in the Newton scheme. The routine also provides the stress field
σh = S (∇uh). In the implementation, the elementwise constant Jacobian matrix
∇uh is contained in the array Du whose dimension is #T × d2. In a loop over all
elements in T , the elementwise contributions to the matrix DF(uh) and the vector
F(uh) are computed, where the arrays D_psi_1 and D_psi_2 represent gradi-
ents of elements in the basis of S 1(Th)d . The routines element_geometry.m
and side_geometry.m compute elementwise gradients of basis functions and
volumes and midpoints of elements and sides, respectively.

11.3.3 Implementation of Elastoplasticity

The Matlab routine for solving the quasi-stationary elastoplastic model problem
displayed in Fig. 11.7 is based on the displacement formulation of Corollary 11.2 of
a time step in the implicit discretization of the problem. We consider the k-th time
step of the discretized elastoplastic evolution problem in the following. According to
Remark 11.7, the nonlinear stress functionS k(u) = S k(∇u) is for a displacement
field u and A = C(ε(u) − pk−1) given by

S k(∇u) = A − 2μτdt pk

with

dt pk = 1

2μτr

(| dev A + Mk−1| − sk−1)
+

dev A + Mk−1

| dev A + Mk−1| .
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Fig. 11.5 Newton scheme for the solution of the nonlinear elasticity problem as in Algorithm 11.3

The derivative with respect to u is for v and B = Cε(v) given by

DS k(∇u)[∇v] = B

if | dev A + Mk−1| < sk−1 and

DS k(∇u)[∇v] = B − 1

r

(| dev A + Mk−1| − sk−1) dev B

| dev A + Mk−1|
+ sk−1

r
(dev A + Mk−1) : dev B

dev A + Mk−1

| dev A + Mk−1|3
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Fig. 11.6 Finite element matrices and vectors required in the Newton iteration of Algorithm 11.3
with stress function defined through the energy density W (E) = |E |4/40 + |E |2/2
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Fig. 11.7 The implicit discretization of the elastoplastic evolution problem leads to a nonlinearly
elastic problem in every time step that is solved with a Newton iteration; the defined material
parameters model realistic steel

otherwise. We use global variables to avoid long arguments of function calls. This
enables us to use the routine that assembles the matrices for the Newton scheme with
the stress function S k . The routine nonlinear_fe_matrices_plast.m is
thus a copyof the routinenonlinear_fe_matrices.m inwhich the subroutines,
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Fig. 11.8 Implementation of the stress function S k(∇u) for general von Mises plasticity and its
derivative DS k(∇u)[∇v]; the index j refers to the corresponding element in the triangulation

defining the stress and its derivative, have been eliminated. These are replaced by the
functions displayed in Fig. 11.8. The argument j in the calls of the stress function
and its derivative in the assembly of the matrices allows us to access the elementwise
values of globally defined fields in the subroutines. We remark that the variables β
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and b are eliminated from the problem in the implementation via the identities p = b
and β = −Hkinb.
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Appendix A
Auxiliary Routines

A.1 Triangulations

A.1.1 Domains in R
d

Triangulations of some domains in R
d are provided by the routines displayed in

Figs. A.1 and A.2. The routine triang_cube.m defines a coarse triangulation of
the d-dimensional unit cube for d = 1, 2, 3 with a partition of the boundary into
Dirichlet and Neumann parts specified by

Ω = (0, 1)d , ΓD = ∂Ω ∩ (
R

d−1 × {0}), ΓN = ∂Ω \ ΓD.

A uniform triangulation of a two-dimensional strip with side lengths L ∈ N and 1
into 2L right isosceles triangles and the Dirichlet part of the boundary consisting of
the ends of the strip, i.e.,

Ω = (0, L) × (0, 1), ΓD = {0, L} × [0, 1], ΓN = ∂Ω \ ΓD,

is computed in the routine triang_strip.m. The routine triang_beam.m
defines a uniform partition of the two- or three-dimensional beam

Ω = (0, L) × (0, 1)d−1

with variable integer length L > 0. The boundary is partitioned according to

ΓD = {
(x1, . . . , xd) ∈ ∂Ω : (x1, xd) ∈ [0, 3] × {1} or (x1, xd) ∈ [2, L] × {0}}

and ΓN = ∂Ω \ ΓD. Figure A.2 shows the Matlab code triang_ring.m that
provides an approximate triangulation of the annulusΩ=B2(0)\B1(0)withDirichlet
boundary ΓD = ∂Ω and empty Neumann boundary ΓN = ∅. The triangulation is
obtained from a triangulation of the unit square via the parametrization

© Springer International Publishing Switzerland 2015
S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations,
Springer Series in Computational Mathematics 47,
DOI 10.1007/978-3-319-13797-1

365
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Fig. A.1 Generation of triangulations of the cube Ω = (0, 1)d (top), the strip Ω = (0, L)× (0, 1)
for L ∈ N (middle), and the beam Ω = (0, L) × (0, 1)d−1 for L ∈ N (bottom)
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Fig. A.2 Generation of an approximate triangulation of the annulus B2(0) \ B1(0)

f : (0, 1) × [0, 1] → B2(0) \ B1(0), (r, φ) �→ (r + 1)
(
cos(2πφ), sin(2πφ)

)
.

Multiply occurring nodes in the image of the triangulation are eliminated with the
help of theMatlab command unique.

A.1.2 Hypersurfaces in R
3

Discrete surfaces, i.e., unions of flat triangles in R
3, that define Lipschitz con-

tinuous submanifolds in R
3 are computed in the Matlab routines displayed in

Fig. A.3. Starting with a triangulation of the boundary of the cube [−1, 1]3/√3,
an approximation of the unit sphere is obtained by alternatingly projecting the nodes
onto the unit sphere and refining the triangulation. This is realized in the program
triang_sphere.m. An approximation of the two-dimensional torus Tr,R with
radii 0 < r < R is computed in the routine triang_torus.m which employs the
transformation f : [0, 2π ]2 → R

3 defined by

f (u, v) = [(R + r cos(v)) cos(u), (R + r cos(v)) sin(u), r sin(v)]

⊥

.

The surface is closed and the boundary parts ΓD and ΓN are empty.
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Fig. A.3 Discrete surfaces defined by approximate triangulations of the unit sphere (top) and the
torus with radii 0 < r < R (bottom)

A.2 Grid Refinement

Coarse triangulations can be refined with the Matlab routine red_refine.m
displayed in Figs. A.4 and A.5. The refinement procedure partitions every
d-dimensional simplex into 2d subsimplices by bisecting its one-dimensional sub-
simplices and appropriately connecting new nodes as illustrated in Figs. A.6 andA.7.
The routine also providesmatrices that allow for computing the coefficients of a given
finite element function on the coarse triangulation with respect to the nodal basis on
the refined triangulation by amatrix vector multiplication. For continuous, piecewise
affine functions this is realizedwith thematrixP1 and for elementwise constant func-
tions with the matrix P0. For triangulations of hypersurfaces inR3, the same strategy
can be used to refine a given simplicial approximation of a surface, cf. Fig. A.8. The
code red_refine_surf.m shown in Fig. A.9 is a straightforward modification
of the routine red_refine.m that incorporates the additional coordinates of the
nodes. A postprocessing procedure that projects the newly created nodes onto a given
surface can be incorporated to increase the accuracy of the approximation.
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Fig. A.4 Matlab implementation of a uniform refinement procedure that partitions every simplex
into 2d subsimplices (continued in Fig. A.5)
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Fig. A.5 Matlab implementation of a uniform refinement procedure that partitions every simplex
into 2d subsimplices (continued from Fig. A.4)

Fig. A.6 Partitioning of
one- and two-dimensional
simplices to define refined
triangulations

Fig. A.7 Partitioning of the
three-dimensional simplex to
define refined triangulations
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Fig. A.8 Uniform refinement of a triangulation of a discrete surface

Fig. A.9 Matlab implementation of a uniform refinement procedure for simplicial surfaces in
R
3; every flat triangle in R

3 is partitioned into 4 subtriangles
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A.3 Visualization

A.3.1 Displaying Commands

Table A.1 lists some Matlab commands which plot functions and manipulate a
figure. Detailed explanations are available from Matlab’s help function.

A.3.2 Functions and Vector Fields

The routines shown in Fig. A.10 visualize functions and vector fields that are continu-
ous and piecewise affine. The first routineshow_p1.m displays the domainΩ ⊂ R

d

that is colored by the values of the scalar finite element function uh : Ω → R. The
command drawnow enforces an immediate update of graphical output which is
required when evolution problems are solved numerically. Three-dimensional vec-
tor fields uh : Ω → R

3 on domainsΩ ⊂ R
d with d = 1, 2, 3 are visualized with the

routine show_p1_field.m. A deformed domain defined by uh(Ω) for Ω ⊂ R
d

and uh : Ω → R
d is displayed with the program show_p1_def.m. An optional

elementwise constant quantity defines a coloring of the deformed domain. Parame-
trized surfaces in R

3 defined by a mapping uh : Ω → R
3 are visualized with the

routine show_p1_para.m. Discrete surfaces defined by unions of flat triangles
together with continuous, elementwise affine functions on the surface are plotted
with theMatlab code show_p1_surf.m displayed in Figs. A.11.

Table A.1 Matlab commands that generate and manipulate plots and figures

plot, plot3 Plots a polygonal curve in R
2 or R3

trimesh Displays a triangulation in R
2

tetramesh Displays a triangulation in R
3

trisurf Shows the graph of a scalar function on a triangulation (d=2)

quiver, quiver3 Plots a two- or three-dimensional vector field

clf Clears a figure

drawnow Updates a figure

axis Sets the axes in a figure including the color range (optional)

axis square Equal scaling of axes

axis on/off Switches coordinate axes on or off

colorbar Displays a color bar

subplot Shows several plots in one figure

view Changes the perspective

colormap Chooses a color scale
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Fig. A.10 Matlab routines that visualize a scalar quantity uh : Ω → R (first), a vector field uh :
Ω → R

3 (second), a deformation uh : Ω → R
d (third), or a parametrized surface uh : Ω → R

3

(fourth routine)

Fig. A.11 Matlab routine that displays a discrete surface colored by a scalar quantity

A.4 Various Routines

A.4.1 Finite Element Gradient

The function comp_gradient.m shown in Fig. A.12 computes the elementwise
constant gradient of a given continuous, elementwise affine function represented in
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Fig. A.12 Computation of the elementwise vectorial values of the gradient of a P1 function

terms of its nodal values, i.e., the routine computes for a given function uh ∈ S 1(Th)

the matrix [∇uh |T1 ,∇uh |T2 , . . . ,∇uh |TM

] ⊥

∈ R
#Th×d .

A.4.2 Element and Side Geometry

Given the local coordinates

ZT = [z1, z2, . . . , zd+1]

⊥

∈ R
(d+1)×d , ZS = [z1, z2, . . . , zd ]

⊥

∈ R
d×d

of an element or a side the Matlab routines geometry_element.m and
geometry_side.m displayed in Fig. A.13 compute the corresponding midpoint

Fig. A.13 Determination of the midpoint and volume (surface area) of elements and sides; for
elements (top) the gradients of the nodal basis functions associated to an element are provided
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Fig. A.14 Elementwise affine, continuous regularization of an elementwise constant function by
computing local averages

Fig. A.15 Nodal patch used
to compute an average of a
discontinuous function

and volume or surface area. In the case of an element, also the gradients of the nodal
basis functions restricted to the element are provided.

A.4.3 Averaged Quantities

Given a discrete surface and an elementwise constant scalar quantity vh , a contin-
uous, elementwise affine approximation Ah[vh] of vh is computed in the routine
average_quant_surf.m shown in Fig. A.14. The function Ah[vh] is repre-
sented in the nodal basis by its nodal values that are defined by

Ah[vh](z) =
∫
ωz

vh ds∫
ωz

1 ds
,

for all nodes z ∈ Nh and with the support ωz of the nodal basis function associated
to z, cf. Figs. A.15.

A.4.4 Minors

For a list of matrices in R
d×d , d = 2, 3, that are identified with vectors in R

d2
, the

routine minors.m displayed in Fig. A.16 computes the nontrivial minors of the
matrices, i.e., for a matrix S ∈ R

d×d , the determinant of S, if d = 2 and the vector
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Fig. A.16 Computation of the nontrivial minors of a list of d × d matrices that are identified with
vectors in R

d2
for d = 2, 3

(det S11, det S21, . . . det S33, det S)

if d = 3, where Si j ∈ R
2×2 denotes the matrix that is obtained by deleting the i-th

row and j-th column of S.

A.4.5 Standard Finite Element Matrices

The routine fe_matrices_weighted.m shown in Fig. A.17 for elementwise
constant functions ah, bh : Ω → R computes theNh ×Nh matrices with the entries

∫
Ω

ah∇ϕz · ∇ϕy dx,

∫
Ω

bhϕzϕy dx

for pairs of nodes (z, y) ∈ Nh × Nh . For a triangle T with nodes z1, z2, z3, a basis
of the space of polynomials of maximal degree 2 on T is given by the functions

(ψ1, ψ2, . . . , ψ6) = (
ϕz1, ϕz2 , ϕz3 , 4ϕz2ϕz3 , 4ϕz3ϕz1 , 4ϕz2ϕz3

)
,

cf. Fig. A.18. The elementwise defined functions can be assembled to obtain a basis
of the finite element space S 2(Th). The routine fe_matrix_p2.m, shown in
Fig. A.19 computes the corresponding stiffness matrix.



Appendix A: Auxiliary Routines 377

Fig. A.17 Computation of weighted P1 finite element mass and stiffness matrix

Fig. A.18 Typical
hierarchical basis functions
in the P2 finite element
method with elementwise
quadratic functions

A.4.6 Special Finite Element Matrices

The routine nonlinear_fe_matrices_plast.m shown in Fig. A.20 com-
putes, for a stress function S : Rd×d → R

d×d and a given deformation uh : Ω →
R

d , the vector

F(uh)[epϕz] =
∫

Ω

S (∇uh) : ∇(epϕz) dx −
∫

Ω

f · (epϕz) dx −
∫

ΓN

g · (epϕz) ds

for p = 1, 2, . . . , d and z ∈ Nh , the matrix

DF(uh)[epϕz, eqϕy] =
∫

Ω

DS (∇uh)[∇(epϕz),∇(eqϕy)] dx

for 1 ≤ p, q ≤ d and z, y ∈ Nh , and the stress field σh = S (∇uh). The routine is
a reduced version of the Matlab program nonlinear_fe_matrices.m. The
system matrix related to the discrete Kirchhoff element used for bending problems
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Fig. A.19 Computation the P2 stiffness matrix

encodes the inner product

(vh, wh) �→
∫

Ω

∇∇hvh : ∇∇hwh dx

for all vh, wh ∈ Wh . The representing matrix with respect to an appropriate nodal
basis of the finite element space Wh ⊂ H1(Ω) is assembled in theMatlab routine
fe_matrix_dkt.m shown in Fig. A.21 using the P2 finite element stiffness
matrix computed with the routine fe_matrix_p2.m displayed in Fig. A.19.
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Fig. A.20 Vector, matrix, and stress field required in the solution of a nonlinear displacement
problem; the nonlinear stress function and its derivative for a time step in elastoplasticity are
provided by the routines stress.m and stress_derivative.m
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Fig. A.21 System matrix for discrete Kirchhoff triangles

Fig. A.22 Subgrid Nδ,r ⊂ R
d×d (left) and its local refinement obtained by adding atoms locally

around existing ones (right)

A.5 Grids in R
d×d

A.5.1 Uniform Grids

The performance ofMatlab is suboptimal when large or iterated loops are required.
This is the case in the generation of the grid K ∞

r ∩ δZd×d in the d2-dimensional
space of matrices (Fig. A.22). To improve the performance this is realized in the
C routine grid_gen.c shown in Fig. A.23. It employs the interface Mex that
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Fig. A.23 C routine grid_gen.c that generates the grid K ∞
r ∩ δZd×d ; the program is incorpo-

rated intoMatlab with the interfaceMex



382 Appendix A: Auxiliary Routines

Fig. A.24 C routine loc_grid_ref.c that locally adds new atoms to a given set of atoms
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provides a simple way to incorporate C code in Matlab. The routine is compiled
under Matlab with the command

mex grid_gen.c;

For this the gnu C compiler gcc has to be selected using the Matlab command
mex -setup. The routine can then be used within Matlab with the command

atoms = grid_gen(delta,r,d);

The nodes of the grid are referred to as atoms.

A.5.2 Local Refinement

A grid or subgrid Nδ,r ⊂ K ∞
r ∩ δZd×d can be refined locally by adding atoms in

the neighborhoods of existing ones, i.e., by replacing every atom s ∈ Nδ,r by the set
of atoms

s + δ

2
{0, 1}d×d ,

cf. Fig. A.22 for a schematic description. This is implemented in the C program
loc_grid_ref.c shown in Fig. A.24 that also employs the interface Mex . It is
incorporated inMatlab with the command

atoms_new = loc_grid_ref(delta/2,atoms,d);
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Frequently Used Notation

Real numbers, vectors, and matrices

Z Integers
N, N0 Positive and nonnegative integers
R Real numbers
[s, t], (s, t) Closed and open interval
R

d d-dimensional Euclidean vector space
R

n×m Vector space of n by m matrices
Br (x), Br Open ball of radius r centered at x or at the origin
Kr (x), Kr Closed ball of radius r centered at x or at the origin
A ⊂ B A is a subset of B or A = B
a, A (Column) vector and matrix
a

⊥

, A

⊥

Transpose of a vector or matrix
| · | Euclidean length or Frobenius-norm
a · b = a

⊥

b Scalar product of vectors a and b

a ⊗ b = ab

⊥

Dyadic product of vectors a and b
a × b Cross product of vectors a, b ∈ R

3

a ⊥ b a is perpendicular to b
A : B Inner product of matrices A and B
trA Trace of the matrix A
IL L × L identity matrix
Sm−1 Unit sphere in R

m

SO(n) Group of special orthogonal matrices
[x, y]

⊥

, (x, y) Vectors with entries x and y[
x1 x2
y1 y2

]
Matrix with entries x1, x2, y1, y2
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Sets, domains, and functionals

Ω Bounded Lipschitz domain in R
d , d = 2, 3

n Outer unit normal on ∂Ω

ΓD Dirichlet boundary, closed subset of ∂Ω

ΓN Neumann boundary, ΓN = ∂Ω \ ΓD
[0, T ] Time interval
A Set of admissible functions or vector fields
I Energy functional
W Energy density

Linear spaces and operators

id Identity operator
ker Kernel of an operator
X, Y Banach spaces
‖ · ‖X Norm in X
X ′ Linear bounded functionals Λ : X → R

〈φ, x〉 Duality pairing of φ ∈ X ′ and x ∈ X
‖ · ‖X ′ Operator norm in X ′
L(X, Y ) Bounded linear operators Λ : X → Y
‖ · ‖L(X,Y ) Operator norm in L(X, Y )

Λ′ Adjoint of Λ ∈ L(X, Y )

H Hilbert space
(x, y)H Inner product of x and y in a Hilbert space H

Differential operators

∂i , ∂xi ,
∂

∂xi
Partial derivative with respect to the i-th component

∇ Gradient of a function
div Divergence of a vector field
D, D2 Total derivative and Hessian of a function
∂x , ∂y, ∂t , ∂α Partial derivatives
∂nu Normal derivative ∇u · n on ∂Ω

ut , u′ Partial derivative with respect to t
ε(u) Symmetric gradient of a displacement
� Laplace operator
δ Fréchet derivative of a functional
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Function spaces

Ck(A;Rm) k-times continuously differentiable vector fields
C∞

c (Ω;Rm) Compactly supported, smooth vector fields
C0(Ω;Rm) Closure of C∞

c (Ω;Rm) with respect to maximum norm
L p(Ω;Rm) Functions whose p-th power is Lebesgue integrable
W k,p(Ω;Rm) k-times weakly differentiable vector fields
W k,p

D (Ω;Rm) Vector fields in W k,p(Ω;Rm) vanishing on ΓD or ∂Ω

Hk(Ω;Rm) Sobolev space W k,2(Ω;Rm)

W k,p([0, T ]; X) Sobolev-Bochner space of X -valued functions
HN (div; Ω) Vector fields with square integrable divergence
BV (Ω) Functions of bounded variation
SBV (Ω) Special functions of bounded variation
‖ · ‖, (·, ·) Norm and inner product in L2(Ω;Rm)

|Du|(Ω) Total variation of the distributional derivative of u

Convex analysis

Γ (H) Convex, proper, lower semicontinuous functionals on H
domψ Domain of the functional ψ
∂ F Subdifferential of F ∈ Γ (H)

F∗ Fenchel conjugate of F
IC Indicator functional of the convex set C
I Convex functional
D Dual of a convex functional I

Modes of convergence

→ Strong convergence
⇀, ⇀∗ Weak and weak* convergence
→Γ Γ -convergence

Finite differences

τ Step size
dt Backward difference quotient
tk , tk+1/2 Time steps kτ and (k + 1/2)τ
uk , uk+1/2 Approximations associated to time steps
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Finite element spaces

h, hmin Maximal and minimal diameter of elements in Th
hT , hS, hz Local mesh-sizes
N or Nh Nodes that define vertices of elements
T or Th Set of elements that define a triangulation
S or Sh Sides of elements in a triangulation
T or R Element in a triangulation
z, S Node, side
ϕz Nodal basis function
ωz Patch of a node
Pk(T ) Polynomials of maximal degree k restricted to T
L 0(Th) Th-elementwise constant functions
S 1(Th) Continuous, Th-elementwise affine functions
S 1

D(Th), S 1
0 (Th) Functions in S 1(Th) vanishing on ΓD or ∂Ω

I or Ih Nodal interpolation operator on Th
(v, w)h Discrete inner product (mass lumping)
βz Integral of nodal basis function ϕz
Jh Clément quasi-interpolant
�∇uh · nS� Jump of ∇uh across S in direction of nS

Ph L2-projection onto a discrete subspace
Qh H1-projection onto a discrete subspace

Other notation

c, C, C ′, C ′′, c1, c2, . . . Mesh-size independent, generic constants
dx , ds Volume and surface element for Lebesgue measure
dt Lebesgue integral with respect to time variable
A Closure of a set A
|A| Volume or surface area of a set A ⊂ R

d

diam(A) Diameter of the set A
χA Characteristic function of a set A
δx Dirac measure supported at x
δi j Kronecker symbol
O(t), o(t) Landau symbols
supp f Support of a function f
C Consistency term
R Residual functional
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Matlab routines

d Space dimension
red Number of uniform refinements
c4n List of coordinates of nodes
n4e List of elements
Db, Nb Lists of sides on ΓD and ΓN
dNodes Nodes belonging to ΓD
fNodes Nodes not belonging to ΓD

nC, nE, nDb, nNb Number of nodes, elements and sides on ΓD and Γ N
s, m, m_lumped P1 stiffness, mass, and lumped mass matrix
m_Nb, m_Nb_lumped Exact and discrete inner products on ΓN
vol_T Areas or volumes of elements
grads_T Elementwise gradients of nodal basis functions
mp_T Midpoints of elements
tau Step size
I, J, X Lists to generate a sparse matrix



Index

Symbols
H1-projection, 49
H2-regularity, 56
L2-projection, 49
Γ -convergence, 87, 88

A
Active set method, 145, 290
Admissible stresses, 334
Allen–Cahn equation, 153
Ambrosio–Tortorelli functional, 328
Angle condition, 48
A posteriori error estimate, 58, 77, 97
A priori error estimate, 57, 66, 69, 72, 96,

100, 102
Aubin–Lions lemma, 33
Aubin-Nitsche lemma, 58

B
Backward difference quotient, 34
Bending, 217
Best-approximation, 57
Bochner space, 31
Bounded variation, 298
Bramble–Hilbert lemma, 46

C
Céa’s lemma, 57
Céa’s lemma, generalized, 100
Cahn–Hilliard equation, 167
Carathéodory function, 24
Chemical potential, 167
Christoffel symbols, 245
Clément interpolant, 50

Coercivity, 20, 34, 35
Coincidence zone, 131
Compact embedding, 22
Compactness, 105, 187, 301
Compatible gradients, 24
Complementarity, 92, 131, 144
Consistency, 65, 175
Constrained descent method, 114
Constraint preservation, 209
Contact zone, 13, 131
Continuous problem, 85
Crank–Nicolson scheme, 67

D
Deformation, 12
Degree-one homogeneity, 339
Density, 22, 54
Descent method, 108, 280
Deviator, 18
Difference calculus, 64
Diffuse interface, 153
Dirac measure, 298
Direct method, 20
Dirichlet boundary conditions, 29
Dirichlet energy, 11
Discrete compactness, 105
Discrete gradient, 227
Discrete Gronwall lemma, 35
Discrete Gronwall lemma, generalized, 171
Discrete harmonic map, 191
Discrete inner product, 73, 316
Discrete maximum principle, 62, 74
Discrete product rule, 65
Discretized problem, 85
Displacement, 13
Dissipation functional, 337
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Distributional derivative, 297
Divergence, 239
Duality, 136, 306

E
Efficiency, 60
Eigenvalue, 178
Elastic domain, 335
Elasticity tensor, 13
Elements, 46
Embedding, 21
Energetic formulation, 341
Energy law, 30
Euler–Lagrange equations, 11, 27, 185, 249
Evolution triple, 32
Explicit Euler scheme, 68

F
Fenchel conjugate, 92
Finite element, 45
Flow rule, 335
Fréchet-differentiable, 30
Free boundary, 13, 131
Free nodes, 78
Fundamental form, 224, 239, 242
Fundamental lemma, 28

G
Gâteaux-differentiable, 30
Galerkin approximation, 57
Galerkin method, 68
Galerkin orthogonality, 57
Gauss curvature, 225, 242
Gauss’ equation, 245
Gelfand triple, 32
Generalized derivative, 32
Geometric linearization, 222
Gradient, 30
Gradient flow, 34
Green’s formula, 22
Gronwall lemma, generalized, 158

H
Harmonic map, 14, 183, 186
Heat equation, 63
Helfrich flow, 250
Helfrich model, 219
Helmholtz equation, 101
Hooke’s law, 17

I
Implicit Euler scheme, 34, 65
Indicator functional, 20, 129
Integration-by-parts, 22, 33, 243
Interface, 14
Intermediate convergence, 300
Interpolant, 45
Inverse estimate, 53
Isometry, 15, 217, 225, 246
Isotropic hardening, 334

J
Jump, 58

K
Kinematic hardening, 334
Kirchhoff model, 217

L
Lagrange multiplier, 29, 130, 140
Lamination-convex envelope, 283
Laplace–Beltrami operator, 239
Lax–Milgram lemma, 56
Lax–Milgram lemma, generalized, 100
Linear elasticity, 13
Locking, 226
Lumping, 73

M
Mass matrix, 84
Maximum principle, 60, 155, 288, 304
Mean curvature, 225, 242
Mean curvature flow, 163
Midpoint scheme, 70
Monotonicity, 41, 98
Mumford–Shah functional, 17, 325

N
Navier–Lamé equations, 223
Nested iteration, 122
Neumann boundary condition, 29
Newton derivative, 116, 144
Newton differentiable, 116
Newton method, 111, 357
Nodal basis, 49
Nodal interpolant, 49
Nodes, 48
Noncontact zone, 13
Nonconvexity, 16
Norm equivalence, 53
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Normal variation, 246
Normal velocity, 250

O
Obstacle problem, 13, 127
Optimality conditions, 112, 306, 313

P
Patch, 50
Penalization, 133, 134
Penalty parameter, 133
Penalty term, 14
Penetration, 133
Perfect plasticity, 334
Perimeter, 300
Perona–Malik equation, 329
Phase transition, 14
Plastic strain, 18, 334, 335
Poincaré inequality, 22, 51, 55
Poisson problem, 11, 55
Polyconvex, 24
Polyconvex envelope, 282
Primal-dual iteration, 119, 148, 314
Principal curvature, 242
Principal eigenvalue, 160
Probability measure, 268
Prolongation, 122
Proper, 41
Pseudomonotone, 107

Q
Quasiconvex, 24
Quasiconvex envelope, 266
Quasiuniform, 53

R
Radon measure, 298
Rank-one convex envelope, 283
Rate-independence, 340
Reduced integration, 74
Refinement, 122
Regular triangulation, 48
Reissner–Mindlin model, 218
Relaxation, 265, 266
Reliability, 60
Residual estimate, 76
Resolvent, 41
Return map, 352
Rothe method, 34

S
Saddle point, 118, 147

Semismooth Newton method, 117
Separability, 22
Shape operator, 242
Shape-memory effect, 15
Sobolev-Bochner space, 32
Stiffness matrix, 61
Strain, 17, 334
Stress, 17, 335
Strict convergence, 300
Strict convexity, 26, 42
Strong convexity, 29, 92
Strong duality, 92, 93
Strong monotonicity, 98, 278
Subdifferential, 41
Subdifferential flow, 42, 321
Summation-by-parts, 65
Support functional, 337

T
Tangential gradient, 239
Theorema egregium, 246
Topological change, 165
Total variation, 16, 298
Trace inequality, 51
Trace operator, 22
Transformation, 47
Transition temperature, 15
Triangulation, 46

V
Variational inequality, 129, 130
Vector iteration, 180
Von Mises criterion, 337

W
Wave map, 212
Weak acuteness, 62, 195
Weak differentiability, 21
Weak gradient, 21
Weak lower semicontinuity, 19, 23, 301
Weingarten equation, 242
Weingarten map, 225, 242
Wheeler’s trick, 68
Willmore energy, 219, 249
Willmore flow, 250

Y
Yield stress, 17, 335
Yield surface, 335
Yosida regularization, 42
Young measure, 268
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