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Chapter 1
Introduction

As Henri Poincaré once remarked, “solution of a mathematical
problem” is a phrase of indefinite meaning. Pure
mathematicians sometimes are satisfied with showing that the
nonexistence of a solution implies a logical contradiction, while
engineers might consider a numerical result as the only
reasonable goal. Such one-sided views seem to reflect human
limitations rather than objective values.

— Richard Courant, 1941

1.1 Differential Equations and Numerical Methods

Starting with the brachistochrone problem solved by Johann Bernoulli in the 17th
century, differential equations have become an indispensable tool to model, under-
stand, and solve real world problems. The general approach via the Euler—Lagrange
equations related to a variational principle and Euler’s method to approximately solve
differential equations discovered in the 18th century have provided a methodology
that is still the basis for the mathematical modeling and numerical solution of many
problems describing the behavior of solids and fluids. An important part of those
models is the Laplace equation which is the Euler—Lagrange equation for the Dirich-
let energy. The validity of the Dirichlet principle that postulates the existence of
minimizers and hence solutions of Euler—Lagrange equations led to a controversial
but constructive discussion in the 19th century. Important observations and objec-
tions from Cauchy, Riemann, Weierstral, Schwarz, Ritz, and many others resulted
in the birth of the calculus of variations and the finite element method. These math-
ematical concepts were led to concise mathematical theories by Hilbert and Courant
at the beginning of the 20th century.

The abstract investigation of function spaces with topologies, functionals, and
linear operators in the 20th century associated with deep theorems due to Banach
and others, led to formulating the direct method in the calculus of variations in an
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2 1 Introduction

abstract way. This enabled the study of challenging mathematical problems involv-
ing the efficient description of processes on nanoscales and to establishing rigorous
connections between classical models like three-dimensional elasticity and special
applications involving the deformation of lower-dimensional objects. The develop-
ment of functional analysis also had an impact in understanding numerical methods.
A milestone is the construction of compatible finite element spaces and the rigorous
analysis of problems involving linear constraints or higher-order derivatives within
the inf-sup condition as an application of the closed range theorem.

The development of mixed and adaptive finite element methods, multigrid and
domain decomposition algorithms, as well as wavelet and other compression tech-
niques, in combination with the rapidly increasing available computer power in the
last 50 years, have made it possible to compute forces acting on a bridge, turbu-
lences created by the flow of air around an airplane, or compression of digital objects
within minutes or seconds on personal computers. In parallel, the calculus of vari-
ations has become a powerful mathematical discipline that provides a framework
for the effective description of complicated phenomena, such as microstructures in
crystalline solids or the formation of cracks in materials with abstract mathematical
objects such as measures. The price of these impressive individual advances of ini-
tially closely linked disciplines has led to a separation from them. Many powerful
numerical techniques are difficult to analyze, while a lot of abstract analytical con-
cepts are hard to realize practically. This book aims at contributing towards closing
this gap.

1.2 Guidelines for the Development of Approximation
Schemes

The classical numerical analysis of approximation schemes for partial differential
equations exploits the concepts of stability and regularity. These are strong require-
ments that are available for certain classes of linear elliptic and parabolic equations.
In many modern applications, solutions may be neither unique nor regular, and stabil-
ity has to be formulated in a weaker sense. Possible concepts are weak convergence
methods and convergence of minimizers. These approaches avoid making unrealistic
regularity or uniqueness assumptions but justify rigorous approximation schemes.
Since this leads to asymptotic statements, the efficiency and practical accuracy of
these schemes then needs to be studied separately. We formulate some guidelines to
justify a numerical discretization scheme.

The discretization of a variational problem or partial differential equation called
a continuous problem typically leads to a family of finite-dimensional minimization
problems:

Minimize Iy, (u,) in the set of functions uj, € .27,
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or equations
Find u;, € ., such that Fj,(u,) =0

parametrized by a mesh-size 7 > 0. The main tasks in the development and
justification of discretizations are the following:

(a) Qualitative accuracy: A numerical solution u;, should capture the relevant features
of an exact solution u with a small number of degrees of freedom, e.g., if € is a
characteristic length scale of the problem under consideration, then the numerical
method should provide qualitatively correct solutions with a computational length
scale h =~ ¢/10.

(b) Efficient solution: There should exist an iterative and convergent method that
approximately solves the discrete formulation with a computational effort that scales
like a low-order polynomial in the number of degrees of freedom, e.g., a fixed-point
method or a gradient flow converges within a finite number of iterations and provides
an approximation of a discrete solution with a solution error comparable to a power
of h.

(c) Asymptotic convergence: A relevant quantity related to approximate solutions
should converge to a corresponding quantity for the continuous problem as 7 —
0, e.g., the approximate minimal energies I (uj) converge to inf,c . I (u), sub-
sequences of approximations converge to solutions of the continuous problem, or
certain quantities o, = X, (uj) converge to a meaningful quantity o as & — 0.

We investigate these requirements for certain prototypical nonlinear partial differ-
ential equations arising in the mathematical modeling of contact, phase transitions,
ferromagnetism, bending, microstructures, fracture, and plasticity. The related model
problems have in common that the regularity or uniqueness of solutions fails in gen-
eral, so that numerical schemes have to be carefully developed in order to meet
the aforementioned criteria. Short MATLAB implementations are included for most
of the investigated algorithms that allow for testing the dependence of the perfor-
mance on discretization parameters and for experimentally determining the typical
preasymptotic range of the methods to thereby judge their qualitative accuracy.

1.3 Analytical and Numerical Foundations

The contents of this monograph are divided into three parts. The first provides the
analytical framework for the considered model problems, collects the basic results
related to the finite element method, and formulates abstract concepts for the analysis
and solution of discretized problems. In the second part, the numerical solution of
classical nonlinear partial differential equations, such as problems with inequality
constraints, singularly perturbed parabolic equations, variational formulations with
smooth constraints, and problems involving higher-order derivatives are discussed.
In the third part, the approximation of solutions of nonstandard variational models is
discussed on the basis of nonconvex minimization problems, extended formulations
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Fig.1.1 Discrete minimal surface computed with a descent method (/eft) and solution of an obstacle
problem computed with a semismooth Newton iteration (right); the plots were produced with the
MATLAB routines min_surf .mand obstacle_newton.m

allowing for solutions with strong discontinuities, and nonsmooth, rate-independent
evolution problems.

The mathematical model problems studied in this book are introduced and briefly
described in the first chapter. All of them lead to minimization problems defined
in certain function spaces or to evolution problems that are gradient flows of func-
tionals. The basic techniques to study the existence and uniqueness of solutions can
be addressed in the direct method in the calculus of variations and the concept of
gradient or subdifferential flows that are described in Chap. 2. Chapter 3 introduces
the finite element method and its analysis for linear elliptic and parabolic problems.
Various auxiliary estimates such as inverse inequalities and density results as well as
error estimates in different norms are recalled. In Chap.4 general abstract methods
for analyzing discretized problems and their iterative solutions are formulated. Key
concepts are the variational convergence of discrete minimization problems to a cor-
responding continuous one, and the convergence of discretized partial differential
equations. The different performance of iterative solution methods is illustrated by
computing discrete minimal surfaces with large, unbounded gradients, as shown in
the left plot of Fig. 1.1.

1.4 Approximation of Classical Formulations

The obstacle problem is a classical mathematical model problem that serves to
understand inequality constraints in partial differential equations. The existence and
uniqueness of solutions, the justification of numerical schemes with a priori and a pos-
teriori error estimates, and the iterative solution with semismooth Newton methods
are discussed in Chap. 5. The right plot of Fig. 1.1 shows the numerical solution of a
two-dimensional obstacle problem with circular contact zone.

The evolution of an interface separating two phases of a substance is often based
on the introduction of a phase field variable. The corresponding dynamics are mod-
eled by the gradient flow of an energy functional with nonconvex lower-order terms
leading to semilinear parabolic partial differential equations involving a critical para-
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Fig. 1.2 Snapshots of a phase field variable in an Allen—Cahn evolution computed with a semi-
implicit approximation scheme; the numerical solution was obtained with the MATLAB program
ac_linearized_euler.m

meter that determines the width of the interfaces. Standard discretization methods
provide useful approximations but error estimates typically depend exponentially on
the inverse of the critical parameter. Chapter 6 provides an approach that leads to
robust error estimates. When the critical parameter tends to zero, a so-called sharp
interface model can be identified that determines the evolution of the interface in
terms of its geometric properties. Figure 1.2 shows snapshots of an evolution for
different times. The initial interface deforms into a sphere whose radius decreases
gradually and eventually collapses. This is a simplified model for the description of
certain melting processes.

The character of a problem changes significantly when a pointwise equality con-
straint is imposed, e.g., when a vector field attains its values in the zero level set of
a given function. This leads to the notion of harmonic maps which are discussed in
Chap. 7. Since neither uniqueness nor global regularity results are available, only the
accumulation of approximations with respect to a weak topology at exact solutions
can be shown. The pointwise constraint is imposed at the nodes of a triangulation
and various iterative methods that either preserve the constraint via properties of the
underlying partial differential equation or approximate it by a linearization and a sub-
sequent optional projection are discussed. Figure 1.3 displays views of a harmonic
map from a two-dimensional square into the two-dimensional unit sphere.

A dimension reduction from three-dimensional hyperelasticity in the bending
regime leads to the nonlinear Kirchhoff model for the description of large deforma-

7 z=
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Fig. 1.3 Discrete harmonic map into the unit sphere viewed from two different perspectives; the
iterative scheme realized in the MATLAB program hl_flow_hm.m led to the plots
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Fig. 1.4 Concentration of plastic strains in an elastoplastic compression experiment with small
hardening parameter; the numerical solution of the nonlinear, nonsmooth evolution problem was

computed with the MATLAB routine elastoplasticity.m
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Fig. 1.5 Isometric deformation of a flat rectangular strip (left) and stationary configuration of
the bending energy among closed surfaces with prescribed area and enclosed volume (right);
the solutions were computed with the MATLAB routines kirchhoff nonlinear.m and

willmore_helfrich_ flow.m

tions of two-dimensional objects, e.g., the bending of a sheet of paper. In the reduced
model, local angle and area relations are preserved by the deformation and this is
mathematically described by a pointwise isometry constraint which can be treated
with techniques developed for harmonic maps. The additional numerical difficulty
that higher-order derivatives have to be treated can be solved by employing finite ele-
ment methods that were originally developed for linear bending problems describing
small displacements. The resulting numerical scheme is provided in Chap. 8 and can
be employed to compute the Mdbius strip as the deformation of a flat strip of min-
imal bending energy subject to Dirichlet type boundary conditions at the ends of
the strip. The result of a simulation with only a few degrees of freedom is shown in
Fig.1.5. A closely related problem consists in minimizing the Willmore energy in
closed surfaces of a prescribed surface area and enclosed volume. Starting a gradient

flow with an oblate spheroid, the gradient flow becomes stationary at a discocyte
configuration that resembles the shape of a red blood cell. A low-order finite element

scheme produced the plot shown in Fig. 1.5.


http://dx.doi.org/10.1007/978-3-319-13797-1_8

1.5 Numerical Methods for Extended Formulations 7

Fig. 1.6 Direct numerical minimization of a nonconvex energy functional leading to mesh-
dependent oscillations on a coarse (left) and on a fine grid (right); the steepest descent method that
computed the local minimizers is realized in the MATLAB program energy_minimization.m

1.5 Numerical Methods for Extended Formulations

The third part of the monograph investigates problems that are in general ill-posed
within the classical framework of Sobolev spaces, e.g., provided by the direct method
in the calculus of variations when an energy functional is coercive and weakly lower
semicontinuous, and the underlying space is reflexive. Simple mathematical models
for crystalline phase transitions lead to nonconvex energy densities which violate the
semicontinuity requirement. Infimizing sequences still exist, but their accumulation
points are in general no minimizers. This phenomenon is related to the occurrence
of oscillations in the infimizing sequences that compensate for the nonconvexity of
the energy functional. The weak limits and statistical information about the oscilla-
tions, described by Young measures, are relevant quantities in applications and their
numerical approximation is discussed in Chap.9. Figure 1.6 shows the results of a
direct numerical approach based on minimizing the nonconvex energy functional
with a descent method. The numerical approximations develop oscillations whose
frequencies increase when the mesh is refined. The obtained configurations can-
not be expected to be global minimizers, making their practical relevance unclear.
Therefore, other approaches are required to obtain meaningful information.

Another reason for the failure of the direct method in the calculus of variations
is the nonreflexivity of the employed space. Applications in image processing and
and fracture mechanics motivate considering energy densities with linear growth and
extended function spaces need to be considered that allow for minimizers with strong
discontinuities. The appropriate discretization, error estimates, and iterative solution
methods for certain model problems are studied in Chap. 10. Figure 1.7 shows as
an application the denoising of an image obtained by minimizing an energy that
preserves the edges of the noisy image.

The focus of Chap.11 is on nonsmooth evolution problems occurring in the
mathematical modeling of elastoplastic material behavior. Viscous regularizations
of evolution problems are of limited practical use in applications. Instead, approxi-
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Fig. 1.7 Regularization of a noisy image (left) that preserves the edges of the image that are related
to large, maximal gradients in the numerical approximation (right); the configurations were obtained
with an iterative scheme realized in the MATLAB code tv_reg.m

mation schemes have to be developed which preserve the relevant property of rate-
independence. Error estimates for implicit discretizations of the evolution problem
in the case of kinematic and isotropic hardening are analyzed and their practical
realization is discussed. The result of a numerical simulation based on the provided
MATLAB codes displayed in Fig. 1.4 shows the tendency towards the development
of a slip band in a compression experiment with small hardening parameter.

1.6 Objectives and Acknowledgments

The purpose of this work is to enable advanced students and experienced researchers
to gain an entry into the numerical analysis of problems related to modern applications
in continuum mechanics. Every chapter in the second and third part of the book starts
with a review of the analytical properties of the model problem under consideration
and gives selected references to provide links to detailed explanations and proofs. The
main emphasis is on the development and analysis of approximation schemes that
meet the general criteria outlined above. MATLAB implementations of the schemes
that allow for a treatment of two- and three-dimensional problems are typically
discussed at the end of the chapters. The codes are available at http://extras.springer.
com/2015/978-3-319-13796-4. These implementations are meant to illustrate the
simplicity and efficiency of the proposed schemes and to serve as reference codes
that are easily accessible. Only a selected number of references is listed at the end
of every chapter that serve as entries into the large number of relevant contributions.

The presented material is the result of several years of research, inspiration from
numerous researchers’ work, and discussions with many colleagues. I am grateful to
Max Jensen, Martin Kruzik, Marijo Milicevic, Riidiger Miiller, Ricardo H. Nochetto,
Christoph Ortner, Alexis Papathanassopoulos, Andreas Prohl, Toma$§ Roubicek,
Patrick Schreier, Ulisse Stefanelli, and Mirjam Walloth for reading parts of the man-
uscript and giving me useful hints and comments.

Soren Bartels
Freiburg, September 2013
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Analytical and Numerical
Foundations



Chapter 2
Analytical Background

2.1 Variational Model Problems

We describe in this section some model problems that arise in the mathematical
description of certain phenomena in continuum mechanics. For justifications of the
models, the reader is referred to the textbooks [3, 5, 9, 11].

2.1.1 Deflection of a Membrane

We consider a membrane that occupies the domain £2 C R? and is clamped on its
boundary 3£2. The infinitesimal deflection due to a small vertical force f € L*(£2)
is described by the problem of minimizing the energy functional

I(u):%/Wulzdx—/fudx

2 2

in the set of functions u € H'(£2) with u|so = 0, cf. Fig.2.1. The first term in the
energy functional [ is the Dirichlet energy. The Lax—Milgram lemma guarantees
the existence of a unique solution that solves the corresponding Euler—Lagrange
equations which are given by the Poisson problem —Au = f in 2 and ulyp = 0.

2.1.2 Minimal Surfaces

A mathematical model for describing soap films follows from the hypothesis that
these minimize surface area. If the surface can be represented as the graph of a func-
tion u : 2 — R, this leads to the variational problem of minimizing the functional
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Fig. 2.1 Deflection of a
membrane

Fig. 2.2 Minimal surface D
described by a graph

I(u) = /(1 + | Vu»)'/? dx
2

in the set of functions u € W7 (£2) for some appropriate exponent p € [1, oc],
subject to the boundary condition u|3; = up. If one expects that |[Vu| < 1, then
the approximation (1 4+ |Vu(x)|*)!/? ~ 1 4+ (1/2)|Vu|? justifies using the Dirichlet
energy and p = 2 to compute solutions. In the general case, the right choice of p
is unclear and this is related to the limitations of the model which only applies to
situations in which the entire surface is described by a graph. In general this is not
true, and large unbounded gradients can occur in minimizing the energy related to
functions that do not belong to W7 (£2), cf. Fig.2.2.

2.1.3 Hyperelastic Materials

Many solid materials behave in an elastic way for a large range of forces, i.e., when
a force acts on the body it deforms and when the force stops acting, the body returns
to its reference configuration, e.g., the material behaves like a sponge or a network of
elastic springs, cf. Fig. 2.3. One can then justify that the actual deformation y : 2 —
R? of the body £2 C R3, due to a force f : £2 — R3, such as gravity minimizes an
energy functional of the form

I(y)=/W(Vy)dx—/f~ydx
2 22

Fig. 2.3 Hyperelastic ’
deformation of a beam %
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in the set of functions y € W17 (§2; R?) that satisfy boundary conditions y| ', =YD
on a subset I'p C 9S2. Various physical requirements limit possible choices of W,
e.g., since a body cannot be compressed arbitrarily, we require that W (F) — oo as
det F — 0 with det F > 0. Moreover, in the absence of a force, and for boundary
conditions defined by a rotation of the body, the rotation should also minimize the
energy, i.e., DW(R) = 0 for every R € SO(3). These two conditions imply that W
cannot be convex. If the body is only slightly displaced from its reference configura-
tion, i.e., y = id + u with the displacement u : 2 — R3 satisfying |Vu| < 1, then
with DW (1) = 0 we have the approximation

W(V[id + u]) ~ W) + %DZW(I)[Vu, Vul

which justifies replacing W (Vy) by the quadratic expression (1/2)CVu : Vu with
the elasticity tensor C = D*>W (I) and with A : B denoting the inner product of two
matrices. The resulting model of linear elasticity is important in many applications
where only small strains occur.

2.1.4 Obstacle Problems

When the deflection of an elastic membrane is restricted by an obstacle, then a
constraint has to be included in the above minimization problem, i.e., we seek u €
H'(£2) withu|yo = up, whichis a solution of the constrained minimization problem
defined by

1
I(M):§/|Vu|2dx—/fudx subject to u > x in §2.
2 2

It is not known in advance and depends on the force and the boundary conditions
where the membrane will touch the obstacle described by the function y . Therefore,
determining a free boundary that separates the contact zone ¢ = {x € 2 : u(x) =
x (x)} from the noncontact zone is part of the problem. A model situation is illustrated
in Fig. 2.4.

Fig. 2.4 Cross-section of l i i i
the constrained deflection of
a membrane
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Fig. 2.5 Unit length vector S
field that may describe the ST T
orientation of liquid crystal T
molecules g
ST

S

2.1.5 Harmonic Maps

A different type of constraint arises in modeling certain liquid crystals and ferro-
magnets. If the vector field u : £2 — R? describes the orientation of the rod-like
molecules of a liquid crystal or the magnetization of a ferromagnet, then it is natural
to impose the pointwise constraint |u(x)| = 1 in £2. In a greatly simplified setting,
we then consider the energy functional

1
I(u) = 5/ |Vu|? dx subject to [u(x)| = 1 in £2,
2

together with boundary conditions such as u |, = up. Solutions of this minimization
problem are called harmonic maps into the sphere. Such vector fields can have strong
singularities; a smooth unit-length vector field is depicted in Fig.2.5.

2.1.6 Phase-Field Models

Pointwise constraints in minimization problems are often included by adding a
penalty term to the energy functional, e.g., by considering

I(u) = l/|W|2dx+L/(|u|2— 1)? dx
2 4¢2
2 2

with a small parameter 0 < ¢ < 1. Deviations of the function u : £2 — R or the
vector field u : 2 — R3 from unit length are thus strongly penalized, but in general
minimizers will not satisfy |u| = 1 everywhere. In the case of a scalar function
u : £2 — R, this leads to the formation of an interface I' C 2 that separates regions
inwhichu ~ 1 andu ~ —1, cf. Fig. 2.6. The energy functional / with fixed & occurs
in modeling certain phase transition models and then the function u describes two
different phases, such as a solid and a liquid phase by the values £1 and the interface
vial' ={x € 2 : u(x) = 0}.
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Fig. 2.6 A function that
represents the phases in a T
binary phase separation
process
u~ —1

2.1.7 Plate Bending

When the thickness of a hyperelastic body 2 is small, e.g., if 2 = o x (—t/2,1/2)
with a plate thickness 0 < ¢ « 1, then the behavior of the body changes drastically.
In such situations it is desirable to treat the body as a two-dimensional object, i.e., to
consider an appropriate limit# — 0, described by the deformation of the mid-surface
w C R?. For alarge class of forces f and boundary conditions yp, the minimal value
of the three-dimensional energy minimization problem is proportional to > called the
bending regime, from which one then can rigorously derive a dimensionally reduced
model that describes the deformation y : @ — R3 of the mid-surface w via the
constrained energy functional

1 3
1*P(y) = §/|D2y|2dx—/f-ydx subject to Vy ' Vy = I in £
w w

together with the boundary conditions y|r, = yp and Vy|r, = Bp. The pointwise
constraint on the deformation gradient implies that y is an isometry, i.e., that locally,
length and angle relations are preserved. The model describes the deformation of a
sheet of paper or a piece of cloth, cf. Fig.2.7.

2.1.8 Crystalline Phase Transitions

For certain crystalline solids the structure of the crystal lattice is temperature-
dependent and this enables many important technical applications based on the
shape-memory effect. The underlying mechanism is that the crystal lattice is highly
symmetric, e.g., cubic, for temperatures above a transition temperature 6y and less
structured for low temperatures, e.g., tetragonal, cf. Fig.2.8. In the low-temperature
phase the material can be deformed easily, and in the high-temperature phase it is stiff

Fig. 2.7 Isometric
deformation of a thin elastic
sheet
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Fig. 2.8 Crystalline phase A

transition @

66

and tends to return to its reference configuration. If the less structured crystal lattice
is described by matrices Fp, ..., Fj € R3*3, then a simplified model for the elastic
deformation of the material below the transition temperature leads to minimizing the
energy functional

.....

The nonconvexity of the energy density W results in developing oscillations of the
deformation gradient Vy between the values Fi, ..., Fj. Due to the lack of a char-
acteristic length scale, the oscillations become arbitrarily rapid and a minimizer of
I may not exist. This fact requires that the model be appropriately modified in order
to capture relevant information about the macroscopic material behavior.

2.1.9 Free-Discontinuity Problems

Many modern applications, including image processing and damage or fracture of
materials, require describing certain quantities by discontinuous functions. One ap-
proach to their mathematical modeling is to consider a generalized, measure-valued
gradient, and this allows us to treat functions that are piecewise smooth with an ap-
propriate discontinuity set, e.g., the characteristic function of a square or a disk. In
order to regularize a given noisy image described by its gray values by a function
g : £2 — R while preserving its edges, the total-variation regularized model seeks
a function u : £2 — R that minimizes the functional

o 2
2

The second term in the energy functional makes sure that « is close to g, while the first
term prohibits certain oscillations, cf. Fig.2.9. For weakly differentiable functions
u € WH1(£2), the first term coincides with || V|| L1(s2)» butitis also finite for a large
class of discontinuous functions, e.g., if u = x4 is the characteristic function of a
set A C £2, then [, |Du| is the length of 9 A.
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Fig. 2.9 Denoising of a
perturbed image —

Fig. 2.10 Segmentation of
an image o O

2.1.10 Segmentation Models

Modeling a crack in a material typically requires an explicit description of the crack.
Similarly, the problem of detecting certain shapes in images can be described by
considering the unknown contour of objects as a separate variable in a model. A
simple model problem is defined by the Mumford—Shah functional

1 _ o
1K) =5 / Vul e+ 91K + Sl = 8120
2\k

Here, K C £2 is a closed subset and its (d — 1)-dimensional Hausdorff measure
-1 (K) is finite if K belongs to a class of certain lower-dimensional objects such
as unions of curves for d = 2. A minimizing function u € L?(£2) has to be weakly
differentiable in £2 \ K and close to g, but it may jump and have discontinuities across
K. The minimization problem detects contours in a given image g and identifies
objects as depicted in Fig.2.10.

2.1.11 Elastoplasticity

The restoring force or stress o of an elastic spring or rubber band of initial length ¢
that is elongated by an external loading with strain e(u) = u’ is according to Hooke’s
law given by 0 = Ce(u) for a certain range of strains. When o reaches a critical
value oy called yield stress, then the material behavior changes and a remaining,
glastic deformation occurs, i.e., after the experiment we observe that the length
£ of the rubber band is bigger than its initial length £. This is accompanied by a
change of the microstructural properties of the material, e.g., of the crystal lattice.
Mathematically, this can be described by the requirement that o € § = By, (0) and
that plastic material behavior occurs if o € 9S. In this case an increasing strain
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Fig. 2.11 Stress-strain relation for perfectly plastic material behavior; from A to B the material
behaves elastically, from B to C a plastic strain occurs leading to a remaining deformation, and
from C to D the elastic part of the deformation relaxes

e(u) is compensated by a developing plastic strain p, i.e., 0 = C(e(u) — p). The
nonlinear stress-strain relation is depicted in Fig. 2.11. With the equilibrium of forces
in a quasistatic situation, the process is modeled by the equations

—divoe=f, ew)=Clo+p, pedls(o)

with d/g denoting the subdifferential of the indicator functional of S which is the
normal cone mapping related to the convex set S, i.e.,

{0} if|o| <oy,
dls(0) = J{ao :a = 0} if o] =0y,
] if |o| > o,.

This is a time-dependent formulation and after discretization in time, one is led to
solve for every time-step #; the minimization problem

oy _ 1
Ik(u,p>=7)/|p—p" ‘|dx+5/|<C‘/2(e(u>—p>|2dx—/f-udx,
2 2 2

where p*~! is the solution of the previous time step and subject to time-dependent

boundary conditions u|r, = up(fx). In a more realistic description, deformations
that are pure compressions or tensions do not lead to plastic deformations and only
|dev(o)| < oy is required with the deviator dev A = A — (1/d)(tr A)I of a matrix
A € RY*4_Moreover, additional variables are included to describe the internal
properties of the material.

2.2 Existence of Minimizers

We discuss in this section sufficient and necessary conditions for the existence of
minimizers for energy functionals of the form



2.2 Existence of Minimizers 19

I(u) =/W(x,u(x),Vu(x))dx
Q

in a set of weakly differentiable admissible functions &/ C WLr(£2; R™) for a
bounded Lipschitz-domain 2 ¢ R?. The main idea is to develop an appropriate
generalization of the Bolzano—Weierstral} theorem to infinite-dimensional situations.
In particular, to deduce compactness properties of bounded sets, it is necessary to
work with weak topologies and the usual continuity assumption is replaced by (weak)
lower semicontinuity. For further details and more general statements the reader is
referred to the textbooks [1, 4, 6, 10].

2.2.1 The Direct Method in the Calculus of Variations

We consider a functional F' : X — R U {400} defined on a real, reflexive Banach
space X and discuss the existence of minimizers of F.

Definition 2.1 The function F : X — R U {+o00} is called weakly lower semicon-
tinuous if for every sequence (v;),cy C X and v € X withv, — vasn — oo, i.e.,
¢ (vy) = ¢(v) forevery ¢ € X', we have

F() < liminf F(v,).
n—oo

The validity and the failure of the requirement are illustrated in Fig.2.12.

Remarks 2.1 (i) The sequence (F(v;)),en C R U {400} may be divergent and the
definition requires that F'(v) be a lower bound for all accumulation points of the
sequence.

(i1) In infinite-dimensional spaces, weak lower semicontinuity is a stronger require-
ment than (strong) lower semicontinuity, i.e., F(v) < liminf,_, » F(v,) whenever
v, converges (strongly) to v. Mazur’s lemma implies that every convex, (strongly)
lower semicontinuous functional is weakly lower semicontinuous. In finite-dimen-
sional spaces the notions of weak and strong lower semicontinuity coincide.

To invoke the fact that according to the Eberlein—Smuljan theorem every bounded
sequence in a reflexive Banach space has a weakly convergent subsequence, we need
to assume that the functional F' grows outside of bounded sets.

Fig. 2.12 A function that is

lower semicontinuous (/eft)

and a function that is not

lower semicontinuous (right) 0—/;/ '\_/
- -
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Definition 2.2 The functional F : X — RU {400} is called (weakly) coercive if for
every sequence (V,),eN C X with ||v, || — oo, we have F(v,) — oo asn — o0.

The following theorem can be generalized in several directions. It is formulated
in a way that is applicable to many of the variational problems discussed above.

Theorem 2.1 (Direct method in the calculus of variations) Assume that F : X —
RU{+o0} is weakly lower semicontinuous, coercive, bounded from below, and there
exists vo € X with F(vg) € R. Then F has a minimizer.

Proof The proof follows in three steps.

Step 1: Since F is bounded from below, there exists an infimizing sequence (vy,),eN C
X with lim,,—, o F(v,) = infycx F(V').

Step 2: The assumed coercivity of F implies that the sequence (v;), cn is bounded and
therefore, using that X is reflexive, we may extract a weakly convergent subsequence
(Vi )ken With weak limit v € X.

Step 3: Due to the weak lower semicontinuity, we have F(v) < liminfy_ o F(vy,)
and therefore it follows that

F(v) < liminf F(v,) = lim F(v,),= inf F(),
k—00 k— 00 veX

i.e., since F(v) > inf,cx F(V') we have F(v) = inf,cx F (V') which proves the
theorem. O

Remark 2.2 1f a variational problem is formulated on a subset A C X, then we need
to impose that A be weakly closed to ensure that the weak accumulation points of a
bounded sequence belong to A. This is equivalent to the condition that the indicator
Sfunctional 14 : X — R U {400}, defined by I4(v) =0forv € A and I4(v) = 400
otherwise, be weakly lower semicontinuous. By Mazur’s lemma, it suffices that A
be convex and closed.

Examples 2.1 (i) The Dirichlet energy I (1) = (1/2) fg |Vu|? dx is weakly lower
semicontinuous since according to a binomial formula, we have

/qu|2dx—/|Vun|2+/|V(u—un)|2dx :2/Vu-V(u—un)dx,
2 2 2

2

and if u,, — u in HY(£2), i.e., f_Q Vu - V(u — u,)dx — 0, this implies that 7 (1) <
liminf,,_ & I (u5,). The coercivity of I follows from a Poincaré inequality.

(ii) Simple examples such as Weierstral3’ example show that not every minimiza-
tion problem has a solution. By constructing an infimizing sequence consisting of
Lipschitz continuous functions, one can verify that the functional

1(y) = / (xy(x))? dx

(=11
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has no continuous minimizer subject to the boundary conditions y(—1) = —1 and
y(1) = 1 although I is weakly lower semicontinuous and bounded from below.
Similarly, one can show that there is no differentiable minimizer of

1) = /(|u’(x>|2—1>2dx+/|u<x>|4dx,

0.1) 2

but / is coercive and bounded from below.

2.2.2 Sobolev Spaces

To investigate functionals that are defined as integrals of integrands applied to
functions and their derivatives, we always consider a bounded Lipschitz domain
2 C R? and recall that a function u € L' (£2) is called weakly differentiable if there
exists a vector field G € L1 (§2; R?) such that

/udivwdx:—/G~<pdx

2 2

for all smooth, compactly supported vector fields ¢ € C3°(£2; R9). We call G the
weak gradient of u and write Vu = G. We then define

WUP(Q2;R™) = {u = (uy,...,un) € LP(2; R™) :
Vuj e LP(2;RY), j=1,2,...,m},

which is a Banach space for the norm ||u ||y 1., = (|lu ||IZ,, +||Vu ||1L7,,)1/p. For a closed
subset Ip C 952 with positive surface measure, we set

WP (2;R™) = {v e WhP(2; R™) < v, = 0}

and write W(}’p (£2; R™) if I'h = 952. We recall some important facts about Sobolev
spaces. For p = 2, we have that W'2(£2; R™) is a Hilbert space denoted by
H'(£2; R™), and analogously ng(.Q; R™) stands for Wé’z(.Q; R™).

Remarks 2.3 (i) If p < d, then the embedding WP (2; R™) — L9(§2; R™) is
continuous for 1 < g < p* with the Sobolev conjugate exponent p* = pd/(d — p),
ie, llullLa2) < cllullwipg) for a constant ¢ > 0 and every u € whr(2: R™).
If p = d, then this is true for every | < g < oo. If p > d, then the embedding
WLlpP(2; R™) - C(£2; R™) is continuous.



22 2 Analytical Background

(ii) The embeddings are compact, i.e., whenever u; — u in WwLP(£2; R™), then
it follows that u; — u in L9(£2;R™), provided that 1 < ¢ < p*if p > d and
l<g<oxifp=dandl <g <o0if p >d.

(iii) The subset C®(£2; R™M)NW P (£2; R™) is dense and WP (£2; R™) is separable
if 1 < p <oo.Forl < p < oo the space whr(g; R™) is reflexive.

@iv) For 1 < p < oo there exists a bounded linear operator tr : wlr(Q; Rm) -
LP(§2; R™) called the trace operator such that tr u = u|yq forevery u € C(£2; R™).
We use the notation u|, to denote the restriction of the trace to a subset I'p of 952.
(W Forl < p<oo,p =p/(p—1),veW-P(Q2),andw € WP (2;R?), we
have Green’s or the integration-by-parts formula

/vdivwdx+/Vv~wdx:/tr(v)tr(w)~nds,

2 2 12

where n denotes the outer unit normal to 2 on 9S2.

(vi) Poincaré inequalities bound the norm ||u || 1, for 1 < p < oo by the semi-norm
[u|wip = |VullLr foru € Whr(Q2:R™), ie., llullwi.r < Cplulyr.p, provided that
u|r, = 0 for a closed set I'p C 052 with positive surface measure or f oudx =0.
(vii) The closure of the set Cgo (£2; R™) with respect to the norm || - || y1,» coincides
with the space Wé’p(.Q; R™)if 1 < p < 0.

(viii) For 1 < p < oo, we have u;, — u in Wl”’(.Q; R™) if and only if u,, — u in
L?(£2; R™) and Vu, — Vu in L?(£2; R™) asn — oo.

For k > 2 the higher-order Sobolev spaces wk.p (£2; R™) are defined inductively,
ie, WoP(2:R™) = {ve WhP(2; R™) : Vv € Wrk—L.P(2; R™*?)}. A multiindex
notation is used to abbreviate higher order partial derivatives, i.e., for « € Ng , we
denote

alely

= a4 g
dx; 0xy° ... 0x,

0%u

where || = o1 + @2 + - - - 4+ a4. The k-th derivative of u is the vector containing
all weak partial derivatives of order k, i.e., Dfu = (0%u)|a|<k- As above, we write
HK(Q2; R™)if p = 2.

2.2.3 Integral Functionals

For integral functionals defined on Sobolev spaces of scalar functions in W7 (£2),
precise conditions on an integrand that imply weak lower semicontinuity are known.
For vector fields in spaces WI’P(.Q; R™), the conditions of the following theorem
are only sufficient.

Theorem 2.2 (Weak lower semicontinuity of integral functionals) Let 1 < p < oo
and assume that W : R™*4 — R is continuous with |W (A)| < c¢(1 + |A|P). If W is
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convex, then the functional

I(u) =/W(Vu)dx
Q

is weakly lower semicontinuous on WP (2; R™). Conversely, if m = 1 and I is
weakly lower semicontinuous on WP (§2), then W is convex.

Proof (1) For a simpler proof we assume that W is convex and continuously differ-
entiable with [DW (A)| < ¢/(1+|A|P~"). We then have W (B) > W(A)+DW(A)-
(B— A) forall A, B € R"*4 Due to the estimate (a + b)* < 2°~1(a* + b*) for all
a,b € Rands > 1, we thus have for every u € WP (£2; R™) that

/|DW(Vu)|p/(P_1) dx < c/(l + | Vu|P~HP/P=D gy < c/(l + |Vu|)? dx,
2 2 2

i.e., DW(Vu) € L”,(.Q; R™*d) If u,, — u in WP(2; R™) as n — oo, then we
have V(u, — u) — 0in LP(£2; R"*9), Using this in the estimate

/W(Vun)dx > / W(Vu)dx + / DW(Vu) - V(u, —u) dx,
Q Q Q

we observe that the second term on the right-hand side converges to 0 asn — oo. This
implies thatliminf,_, o I (4,) > I (u),1i.e., that I is weakly lower semicontinuous. A
more general proof which avoids the assumption that W is continuously differentiable
employs Mazur’s lemma.

(2) To prove the converse implication, we let A, B € R4, 9 € [0, 1], set F =
0A+ (1 —0)B, and define up (x) = Fx for x € £2. We assume that for every ¢ > 0
there exists a function v, € W1 (£2), such that IVvellL(2) < c independently of
g, lve —urllL~w@) < ce,and for 2§ = {x € £ : Vv.(x) = X} with X € {A, B}
we have

2924 < 02YUR2) +ce, L9025 < (1 —0)LU(02) + ce,
L2\ (25U 2%)) < ce.

The construction of such a function will be discussed in the subsequent lemma. For
every n € N, set ¢, = 1/n and let u, = v¢,. We then have

/ W (Vi) dx = 242/ "YW (A) + 242" YW (B) + / W (Vi) dx
§2 avey"ualm

<021 QWA + (1 —0) LY Q2)W(B) +c/n.
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Since u, — up in WhHP(2) asn — oo and Vur = F in 2 we deduce with the
assumed weak lower semicontinuity of / that

LUYW(F) =/W(Vup)dx §linniiogf/W(Vu,,)dx

<0.LYWA) + (1 — )21 2)W(B),

i.e., that W is convex. O

Remarks 2.4 (i) For integrands of the form W (x, u(x), Vu(x)) one needs to assume
that W is a Carathéodory function, i.e., thatforall (s, A) € R" x R" xd the mapping
x — Wi(x, s, A) is measurable and for almost every x € 2, the mapping (s, A)
W(x, s, A) is continuous. A sufficiency requirement for weak lower semicontinuity
is then in addition to certain growth conditions that A — W (x, s, A) be convex for
almost every x € §2 and all s € R™.

(i1) The functional J (1) = f o J(x, u(x)) dx is weakly continuous on wWhr(Q; R™)
if, e.g., [j(x,s)] < a(x) + |s|? witha € Ll(.Q) and 1 < ¢ < p*, i.e., we have
J(u,) — J(u) whenever u,, — u as n — oo. Moreover, in this case we have that if
I:Whr(2; R™) — R is weakly lower semicontinuous then I + J is also weakly
lower semicontinuous.

(iii) In the vectorial case m > 1, convexity is not a necessary condition. Sufficient
for weak lower semicontinuity is the weaker notion of polyconvexity which requires
that there exist a convex function W with W(A) = W(T(A)), where T (A) is the
vector that contains the determinants of all square submatrices of A, e.g., T(A) =
(A, det(A)) if d = m = 2. Necessary and sufficient for weak lower semicontinuity
on WP (£2; R™) is quasiconvexity which requires that

W(A) < inf / W(A + Vo) dx,
(pEWI P(_Q Rm) g (.Q)

i.e., that the affine function u(x) = Ax + b be minimal for I in the set of all
functions in W17 (§2; R™) satisfying the same affine boundary conditions. For m =
1, quasiconvexity is equivalent to convexity.

We next show in a more general setting how the function v, used in the proof of
Theorem 2.2 can be constructed.

Lemma 2.1 (Compatible gradients) Ler A, B € R"™*? with rank(B — A) =
ie, A— B =BQaforB € R" and a € RY with ] = 1. Let 6 € [0, 1], set
F =0A + (1 —0)B, and define urp(x) = Fx for x € S2. For every ¢ > 0, there
exists a Lipschitz continuous function vy, € WL (2 R™) such that ve = up on 982,
VvellLoe 2y < ¢ lve —urllLoe) < ce, and for 25 = {x € £ : Vv.(x) = X}
with X € {A, B}, we have
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LU <0.L2UR2) + ce, L0285 < (1 —60).L9R) + ce,
LU\ (25U 25) < ce.

Proof By replacing A and B by A — F and B — F, we may assume that F' = 0.
We define 2, = {x € £ : dist(x, 0§2) > ¢} and choose a cut-off function n, €
W12 (2) such that Nele, = 1, IVne(x)| < c¢/e for almost every x € 2, and
nelao = 0. For x € RY we define

To(x) = Ax — B / o1 (t/e)dr
0

with the 1-periodic function ¥ : R — R given by x|0,0) = 0 and x|@,1) = 1. The
function Vg, for ke < x -a < (k + 1)e with k € Z, satisfies that

A ifke <x-a < (k+0)s,
Vve(x) = .
B if(k+60)<x-a=<(k+1e.
We finally set
Ve = NeVe

and, noting that [[V¢||z(2) < ce, we verify that this function satisfies the require-
ments of the lemma. The construction is depicted in Fig.2.13. (]

Remark 2.5 One can show that a nontrivial function u € W!*(£2:R™) with
Vu(x) € {A, B} almost everywhere in §2 can only exist if rank(B — A) = 1.
The necessity of this condition follows from the continuity of the tangential gradient
along the interface I" that separates regions of constant gradients.

‘. 2\@
0.1-6 = ‘
-~ l—

N /\/\/\/\
0 e 2 3  de

Fig. 2.13 The oscillating function v, for d = m = 1 with an average gradient 0 constructed in the
proof of Lemma 2.1 (left); the gradient of the function v, = 1,V oscillates between the values A
and B away from the boundary (right)
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2.2.4 Existence and Properties of Minimizers

Certain generalizations of the weak lower semicontinuity results discussed above
imply the following existence result for minimization problems on Sobolev spaces.

Theorem 2.3 (Existence) Let | < p < coandlet W : 2 x R" x R"*4 — R bea
Carathéodory function, such that W (x, s, A) > a(x)+bl|s|? +c|A|P for1 <g < p
anda € LY(2), b, ¢ > 0 for almost every x € 2, and all (s, A) € R" x R™%d gnd
such that A — W(x, s, A) is quasiconvex for almost every x € §2 and all s € R™.
Assume that there exists ug € WHP(82; R™) with W (x, ug(x), Vuo(x)) € L'(£2).
Then there exists a minimizer u € W7 (82) for

I(u) = / W(x, u(x), Vu(x)) dx. (2.1)
Q

Proof The result follows from the direct method in the calculus of variations and we
refer the reader to [4] for a complete proof. (I

Remark 2.6 The existence result can be generalized in many directions. If b = 0
is allowed, then boundary conditions have to be imposed on a subset I'H C 952 to
guarantee coercivity of 1.

Theorem 2.4 (Uniqueness) If the mapping (s, A) — W (x, s, A) is strictly convex
Jfor almost every x € £2, i.e., if for distinct pairs (s1, A1), (52, A2) € R™ x Rmxd,
we have

1 1 A A
W st AD + 3 W5, A) > W(x, 2 ;”, %)

then there exists at most one minimizer of the functional I defined through W as
in (2.1).

Proof Supposeui,uy € W Lr(82; R™) are distinct minimimzers of /. Then the strict

convexity of W implies that

1 1
S1) + S1(w) > 1(”1—;”2)

which contradicts the assumption that | and u» are minimizers. U

Asin finite-dimensional situations it is desirable to formulate necessary conditions
for minimizers. We restrict to the scalar case m = 1 and a simple form of the energy
density W.

Theorem 2.5 (Euler—Lagrange equations) Assume that W : 2 x R x RY — R is
given by W(x, s, A) = Wo(A) — f(x)s with f € LP (2) and Wy € C'(R?) such
that IDWo(A)| < /(1 4+ |A|P~Y) forall A € R If u € WYP(2) minimizes I
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among functions in ugy + Wol’p(.Q)for some ug € WHP(2) and 1 < p < oo, then
u solves the Euler-Lagrange equations

/DWO(Vu)~Vvdx=/fvdx
2

2
forallv e Wol’p(.Q).

Proof Letv € W(}’p(.Q) be fixed and consider the function ¥ (r) = I(u + rv),
r € R, which has a minimum at » = 0. For » # 0 we have

1 1
W) =) =~ +rv) — I (w)

:%[/WO(V(u—i—rv))dx—/f(u+rv)dx
2

2

—/Wo(Vu)dx+/fudx]
2

2

= %/ WV +rv)) — Wo(Vu)dx — / fvdx.
2

2
We define :
M"(x) = ;(WO(V(M + rv)(x)) — Wo(Vu(x)))

and note that M" (x) — DWp(Vu(x)) - Vv(x) as r — 0 for almost every x € £2. To
pass to the limit of the integrals with Lebesgue’s dominated convergence theorem,
we aim at constructing an r-independent, integrable upper bound for M" (x). We
consider 0 < r < 1 and note that the fundamental theorem of calculus implies that

M’ (x) = %/ %WO(V(M + ) (x))dt = %/DWO(V(M + ) (x)) - V(x) dr.
0 0

Incorporating the assumed upper bound for D W), we have for ¢ € (0, r) that
M7 (0] < e(1+ V)P~ + V)P~ H V()]

and it follows with Holder’s inequality that the right-hand side belongs to L!(£2).
We may therefore pass to the limit under the integral and have

%(I(u+rv)—1(u))—>/DW(Vu)~Vvdx—/fvdx.
2 2
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Since » = 0 is minimal for v (r), it follows that the right-hand side is nonnegative.
Repeating the argument with v replaced by —v leads to the assertion. ]

Remark 2.7 The strong form of the Euler-Lagrange equations follows from the
fundamental lemma in the calculus of variations which asserts that whenever we are

given g € L'(£2) with
/ggp dx =0
2

for all ¢ € Cgo (£2), then g = 0 almost everywhere in §2. Therefore, we have
—divDWo(Vu) = fin 2, ulse = uolse.

More generally, for appropriate functions W, one can derive the partial differential
equation

ow ow
—div a—A(x, u(x), Vu(x)) + K(x, u(x), Vu(x)) =0.
If Wo € C'(R?) is convex, then the Euler-Lagrange equations also define a

sufficient condition for optimality.

Theorem 2.6 (Sufficiency) Assume that the assumptions of Theorem 2.5 are satis-
fied and that Wy is convex. Suppose that u € ug + WOl "P(2) satisfies

/DWO(VM)~Vvdx=/fvdx

2 2

forallv e Wol’p(Q). Then u is minimal for I for functions in ug + Wol’p(.Q).

Proof Letv € WP (£2). Since Wy is convex and continuously differentiable, we
have
Wo(V(u +v)(x)) = Wo(Vu(x)) + DWo(Vu(x)) - Vv(x)

for almost every x € £2. This and the Euler—Lagrange equations imply that

I(u+v)=/W0(V(u+v))dx—/f(u+v)dx
Q Q

z/Wo(Vu)dx+/DW0(Vu)-Vvdx—/fudx—/fvdx
Q

2 2 2

=/W0(Vu)dx—/fudx=l(14),
2

2

i.e., u is minimal for . O
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Remarks 2.8 (i) Regularity of minimizers, e.g., u € H 2(.(2), can be proved if the
boundary of £2 is C2-regular and W is strongly convex, i.e., D>W (A)[B, B] > ¢|B|?
forall A, B € R"*4 and ¢ > 0.

(ii) If the minimization problem involves a constraint, such as G(u(x)) = 0 for
almost every x € §2 with a continuously differentiable function G : R" — R,
then one can formally consider a saddle point problem to derive the Euler-Lagrange
equations, e.g., for W(A) = |A|?/2, the problem

1
inf sup —/qulzdx+/kG(u)dx.
ueH; (2) neLd () P

The optimality conditions are with g = DG given by

/Vu-Vvdx+/kg(u)-vdx=0, //,LG(u)dxzo

2 2 2

forallv € Hj (£2; R®) and all & € L9(£2). The unknown variable A is the Lagrange
multiplier associated to the constraint G (#(x)) = 0 for almost every x € £2.

(iii) On the part 952 \ I'p where no Dirichlet boundary conditions ulr, = up are
imposed, the homogeneous Neumann boundary conditions DWo(Vu) - n = 0 are
satisfied. Inhomogeneous Neumann conditions can be specified through a function
g € L9(I'n; R™) and a corresponding contribution to the energy functional, e.g.,

1(u) :/Wo(Vu(x))dx—/guds.
Q

I'n

(iv) The Euler-Lagrange equations define an operator L : W-7(2) — WP (22)
and we look for u € W7 (£2) with L(u) = b for a given right-hand side b €
WP (£2)'. Under certain monotonicity conditions on L, the existence of solutions
for this equation can be established with the help of discretizations and fixed-point
theorems. This is of importance when the partial differential equation is not related
to a minimization problem.

2.3 Gradient Flows

The direct method in the calculus of variations provides existence results for global
minimizers of functionals but its proof is nonconstructive. In practice, the most robust
methods to find stationary points are steepest descent methods. These can often be
regarded as discretizations of time-dependent problems. To understand the stability
and convergence properties of descent methods, it is important and insightful to
analyze the corresponding continuous problems. In finite-dimensional situations we
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may think of a function V : R” — R and the ordinary differential equation

y ' ==VV(), y©0) =y.

If V e C?(R"), then the Picard—Lindelof theorem guarantees the existence of a
unique local solution y : (-T.T) > R". Taking the inner product of the differential
equation with y” and using the chain rule to verify VV (y(¢)) - y'(£) = (V o y)’ we
have after integration over (0, T")

T/
/ Iy [2dr + V(3(T") = V(y(0)).
0

This is called an energy law and shows that the function ¢ — V (y(¢)) is decreasing.
Since the evolution becomes stationary if VV (y(¢)) = 0, this allows us to find critical
points of V with small energy. It is the aim of this section to justify gradient flows
for functionals on infinite-dimensional spaces. For more details on this subject, we
refer the reader to the textbooks [2, 6-8].

2.3.1 Differentiation in Banach Spaces

We consider a Banach space X and a functional 7 : X — R.

Definition 2.3 (a) We say that I is Gdteaux-differentiable at vg € X ifforallh € X

the limit
I(vo + sh) — 1(vg)

N

81(vo, h) = lim

exists and the mapping DI (vg) : X — R, h +— 81 (vg, h) is linear and bounded.
(b) We say that I is Fréchet-differentiable at vy € X if there exist a bounded linear
operator A : X — R and a function ¢ : R — R with limg_,9 ¢(s)/s = 0 such that

I(vo+h) — I (vo) = Ah + ¢(||h] x).

In this case we define DI (vg) = A.

Remark 2.9 1f I is Gateaux-differentiable at every point in a neighborhood of vy and
D1 is continuous at vg, then I is Fréchet-differentiable at v.

The gradient of a functional is the Riesz representative of the Fréchet derivative
with respect to a given scalar product.

Definition 2.4 Let H be a Hilbert space such that X is continuously embedded in
H. If I is Fréchet-differentiable at vy € X with DI(vy) € H’', then the H-gradient
Vul(vo) € H is defined by
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(Va1(vo),v)u = DI(vo)[v]
forallve H.

Example 2.2 For X = Hj(£2) and I (u) = (1/2) [,, |Vu|* dx, we have

T+ sv) — 1 (u) = l/|vu|2+2sw.vv+s2|W|2dx—1/|vu|2dx
T2 2
2 2

2
:s/Vu-Vvdx+%/|Vv|2dx

2 2

and [ is Fréchet differentiable with DI (u)[v] = fQ Vu - Vvdx. For H = X =
H& (£2) with scalar product (v, w) Hl = fg Vv-Vwdx, we thus have VH(} I(u) = u.
If u € H*(£2) N H} (£2), then Green’s formula shows that

DI(uw)[v] = / Vu-Vvdx = /(—Au)v dx,
2

22

so that DI (u) is a bounded linear functional on L2(£2). For H = L2(§2) with scalar
product (v, w) = fg vw dx, we therefore have V21 (u) = —Au.

Remark 2.10 The Euler-Lagrange equations for /(1) = f o W(x,u, Vu) dx in the
strong form corresponds to a vanishing L?-gradient of 7, i.e., V2l (u) =0.

2.3.2 Bochner-Sobolev Spaces

For evolutionary partial differential equations we will consider functions u

[0,7] — X for a time interval [0, 7] C R. We assume that the Banach space
X is separable and say that u : [0, T] — X is weakly measurable if, for all ¢ € X',
the function ¢ — (¢, u(t)) is Lebesgue measurable. In this case the Bochner integral

T

/u(t)dt

0

is well defined with | [, u(r)dt|, < [ lu(@)llx dr. The duality pairing between
X and X’ will be denoted by (-, -).

Definition 2.5 For 1 < p < oo, the Bochner space LP ([0, T]; X) consists of all
weakly measurable functions u : [0, T] — X with [|u||1r0,7]:x) < 00, where
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esssup,cpo.rillu@lx if p=o00

lulleqo.ry:x) = ( [ llu@? dt)l/l’ if1 < p < oo.
[0,T]

Remark 2.11 The space L?([0, T']; X) is a Banach space when equipped with the
norm || - [[#(j0,71; x)-

Definition 2.6 For u € L'([0, T]; X) we say that w € L' ([0, T]; X) is the gener-
alized derivative of u, denoted by u’ = w if for all ¢ € C2°((0, T)), we have

T T
/q&/(t)u(t)dt = —/¢(t)w(t) dr.
0 0

Remark 2.12 Since X is separable one can show that the generalized derivative u’
coincides with the weak derivative d;u defined by

T T
/M Bt dr = /8[” ¢) dr
0 0

forall ¢ € C1([0, T1; X) with ¢(0) = ¢(T) = 0.

Definition 2.7 The Sobolev—Bochner space WP ([0, T]; X) consists of all func-
tions u € LP([0, T]; X) with u’ € LP([0, T]; X) and is equipped with the norm

esssup;ero, 71 (lu(®llx + Il @)lx) if p = o0

lullwioqorix =1, T ! .
W00 (g"uu(t)ué}Jr||u’<r)||§dr) /» if1 < p < oco.

We write H!([0, T]; X) for WL-2([0, T1; X).

Remarks 2.13 (i) We have that WP ([0, T]; X) is a Banach space for I < p < oo.
If X is a Hilbert space and p = 2, then W1'2([O, T]; X) is a Hilbert space denoted
by H' ([0, T]; X).

(@i)Forl < p<oocandu € WI’P([O, T1; X), we have that u € C([0, T]; X) with
maxeefo,7] lu@ Il < cllullwirgo ). x)-

Definition 2.8 If H is a separable Hilbert space that is identified with its dual H’

and such that the inclusion X C H is dense and continuous, then (X, H, X') is called
a Gelfand or an evolution triple.

Remark 2.14 For a Gelfand triple (X, H, X’) the duality pairing (¢, v) for ¢ € X’
and v € X is regarded as a continuous extension of the scalar product on H, i.e., if
¢ € X' N H', then

(. v) = (¢, V)H.
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Below, we always consider an evolution triple (X, H, X’). The Sobolev—Bochner
spaces then have the following important properties.

Remarks 2.15 (1) If u € LP([0,T]; X) with u’ € LP'([0,T]; X), then u €
C((0, T]; H) with maxepo, 7y lu() g =< clullrqo.rix) + 1wl Ly 0.7 x7)) and
the integration-by-parts formula

15}

(u(r2), v(©2))u — (u(t), v(t1)m = /(u’(t), V(D) + (V' (1), u(1)) dt

4l

holds for all v € L?([0, T]; X) with v € LP/([O, T];X)and t1,1p € [0,T]. In
particular, we have

57 MOl = W @), u®)

for almost every ¢ € [0, T'].

(ii) If X is compactly embedded in H, 1 < p < oo, and 1 < g < oo, then accord-
ing to the Aubin—Lions lemma the inclusion L? ([0, T]; X) N WH4([0, T]; X') C
LP([0, T]; H) is compact.

(iii) For I < p < oothe space L? ([0, T']; X) is separable. In particular, if ( f;,),en C
LP(I) and (v;),eN C X are dense subsets, then span{ f,,v,,, : n, m € N} is dense in
LP(I; X).

v) If g € L”,([O, T]; X'), then the mapping f +> fOT(f(t),g(t))dt, defined
for every f € LP([0, T]; X), belongs to (L”([0,T]; X)) for1 < p < oo. If
1 < p < 0o, we have that L? ([0, T']; X) is reflexive provided that X is reflexive. In
particular, for I < p < oo we have (L7 ([0, T1; X)) = L ([0, T]: X.

(v) We have that L2(I; H) is a Hilbert space.

2.3.3 Existence Theory for Gradient Flows

We consider a Fréchet-differentiable functional 7 : X — R with DI : X — X’ and
we want to derive conditions that guarantee existence of solutions for the H-gradient
flow of I formally defined by

oru = —Vgl(u), u(0) = uop.

We always let (X, H, X”) be an evolution triple and assume that an abstract Poincaré
inequality holds, i.e., that for a seminorm | - |x on X we have

lullx < cp(ulx + llullg)-

forallu € X.
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Definition 2.9 Given ug € H, we say that u € L?([0, T']; X) is a solution of the
H-gradient flow for I if u’ € LP ([0, T]; X’) and for almost every ¢ € [0, T] and
every v € X, we have that

(@' (0),v) + DI)[v] = 0

and u(0) = uy.

Example 2.3 ForI(u) = (1/2) [, |Vu|* dx defined on Hy (£2), the L*(£2)-gradient
flow is the linear heat equation d;u — Au = 0.

We follow the Rothe method to construct solutions. This method consists of three
steps: First, we consider an implicit time discretization that replaces the time deriv-
ative by difference quotients and establishes the existence of approximations. In the
second step, a priori bounds that allow us to extract weakly convergent subsequences
of the approximations as the time-step size tends to zero are proved. Finally, we pass
to the limit and try to show that weak limits are solutions of the gradient flow.

Definition 2.10 The functional 7 : X — R is called semicoercive if there exist
s > 0,c; > 0,and ¢y € R such that

) 2
1) = civly — e2lvlly

forallv € X.

Proposition 2.1 (Implicit Euler scheme) Assume that I is semicoercive and weakly
lower semicontinuous. Then for every T > O with4tcy < landk = 1,2,..., K,
K = [T/t], the functionals I* : X — R,

1 _
w 18) = ol = u G + 1),

with u® = ug have minimizers that satisfy
(du*, vy + DIV =0

for all v € X with the backward difference quotient d;u* = (uf — u*¥=1) /7.

Proof Since I kis coercive, bounded from below, and weakly lower semicontinuous,
the direct method in the calculus of variations implies the existence of a minimum.
Since [ and v ||v||%_1 are Fréchet-differentiable, the minimizers satisfy the asserted
equations. O

Remarks 2.16 (i) More generally, one can consider a pseudomonotone operator A :
X — X’ and look for a solution u* of the equation (diu*, V) + AWS)[v] = 0 for
allv e X.

(ii) We have that u* is uniquely defined if I* is strictly convex. This is often satisfied
for t sufficiently small, i.e., if I is semiconvex.



2.3 Gradient Flows 35

For the proof of the a priori bounds two important ingredients are required. The
first is based on the binomial formula 2(a — b)a = (a — b)? + (a* — b?) and shows
that

Vo 1k LT S ST S ST k=12
S —u ,M)H=2—T||M —u ”H+2_r(”u 7 — I ~"1i)

fork =1,2,..., K. Equivalently, we have
k  k i k2, 1 k2
(diu”, u")p = Elldzu I + Edzllu I
which is a discrete version of the identity 2(u’, u) = (d /dt)||u||%1. The second

ingredient is the following discrete Gronwall lemma.

Lemma 2.2 (Discrete Gronwall lemma) Let (yz)e:(),Lm, L be a sequence of non-
negative real numbers such that for nonnegative real numbers ag, by, by, ..., b1
and ¢ =0,1,..., L, we have

-1

¥ <ao+ Zbkyk-
k=0

Then we have max—o.1....1 y¢ < apexp (Zi;g) bk).
Proof The proof follows from an inductive argument. (]
We also have to assume a coerciveness property for the mapping DI : X — X'.

Definition 2.11 We say that DI : X — X' is semicoercive and bounded if there
exist p € (1,00), ¢} > 0,¢) € R, and ¢ > 0 such that

DIW)v] = | vl — vy

and X
IDIW)|x <A+ IvI% )

forallv € X.

Proposition 2.2 (A priori bounds) Suppose that DI : X — X' is semicoercive and
bounded. If 4tcy < 1, then we have

K K K
L k kyp' kv P
omax g+ Y N 4w D dit 7 3 IDT @R < Co
o k=1 k=1 k=1

with a constant Cy > 0 that depends on p, T, uo, cp, ¢, ¢y, and cf.
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Proof Since (d;u*,v)y + DIW*)[v] = 0 for all v € X, we obtain by choosing
k
v = u”® that

T 1
Endtukn%, + Ed,nu"n%, + e luk 1y — lluk I3 < @, uFy g + DTS W] = 0.

Multiplication by 7 and summation over k = 1,2, ..., ¢for 1 < ¢ < K lead to
1 - ‘ 1 £
ST+ 20 S M Wy + el 3 1% < Sl + e D 1,

k=1 k=1 k=1

where we used the telescope effect t Z£=1 d; |luk )%, = ||ut ||%{ — ||u0||%_1. Since the
second term on the left-hand side is nonnegative and since 4¢57 < 1 so that we can
absorb ¢}t [lut ||%{ on the left-hand side, we find that

14 -1
1 1
€2 ’ k\p 02 / k2
Z”u I+t E lu™ly < §||M 5 + cat E w115
k=1 k=1

For¢ =0,1,..., K, we set

4
1
£ )2 / k
yo=—lully+cr E 1%,

4
k=1
ap = (1/2)11u®]13, and b = 4c) 7 so that
-1
v <ag+ D byt
k=1

and we are in the situation to apply the discrete Gronwall lemma. This shows that
1 K 1 = 1
) k 02 02
max I e Dk < Sl exp (dch k§i1 v) < 5 Il exp (4c5T)

=1

and proves the bound for the first term on the left-hand side. The second bound
follows with the abstract Poincaré inequality ||u||x < cp(Ju|x + |lu|lx) and

k k k —1(},k k
1% < B ulx + 1uCIlm)? < 2P~ (1u"1g + cpllu®11g).-

For the third and fourth term on the left-hand side of the bound, we note that with
the boundedness of DI and (p — 1)p’ = p, it follows that



2.3 Gradient Flows 37

L K K
7 ’ —1 ’ / ! __
T D IDIW %, < T(e)” D (L4 Wb IETH7 < w27 D+ uf)1§).,

k=1 k=1 k=1

and the right-hand side is bounded according to the previous bounds. This proves
the fourth estimate and the third bound follows immediately since diuk |y =
| DI ") x due to the identity (d;u*, v) = —DI@*)[v] forallv € X. O

To identify the limits of the approximations we define interpolants of the approx-
imations (uk)k:o,,,,,K.

Definition 2.12 Given a time-step size T > 0 and a sequence (uk)k:(),w x C H for
K =[T/t],wesetty =kt fork =0,1,..., K and define the piecewise constant
and piecewise affine interpolants u, ~, u;” Uy :[0,T] - H fort € (tx—1, tx) by

_ _ ~ 1
ur(t)zuk ], uj(t):uk, u(t) = uk +

The construction of the interpolants is illustrated in Fig. 2.14.

Remarks 2.17 (i) We have i, € WH°([0, T1; H) with @, = d,u* on (t;_1, t) for
k=1,2,..., K. Moreover, u},u; € L*([0, T]; H) and, e.g.,

K
+P kP
[ PR 2 N I7ad
k=1

with equality if Kt =T.

(ii) We have uf (1) — u; (1) = tul(¢) and U (1) = u; (t) + (t — y—uL(t) =
uf (t) — (tp — t)ul,(¢) for almost every 1 € (tx—1, ty).

(i) If ||i7r||L1([0’T];X/) < cforall T > 0, then it follows that u}" — u; — 0 and
Uy — u;t — 01in L'([0, T]; X') as T — 0. In particular, all interpolants have the
same limit if these exists.

Lemma 2.3 (Discrete evolution equation) With the interpolants of the approxima-

.....

Fig. 2.14 Continuous interpolant 7, (left) and piecewise constant interpolants u;r (middle) and u;
(right)
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forallv € X and almost every t € [0, T]. Moreover, we have for all T > 0
oo go, 73 1)+l e o, 7330 + 1 1. o, 71 x0) HIPT @O Ly 0.71:x7) < Co-

Proof The identity follows directly from (d;u*,v)y + DI@W*)[v] = 0 for k =
1,2,..., K and all v € X with the definitions of the interpolants u; and uj‘ With
the triangle inequality and |t — ;| < 7 for ¢ € (tx—1, #x), we observe that

”74\1' ”LP/([O,T];X’) =< CPTl/p ||”+||L°°([O,T];H) + ‘L'||7,t\; ”LP/([O,T];X’)'

The a priori bounds of Proposition 2.2 together with, e.g.,

K T
kP p
eI = [t
k=1 5

where we used Kt > T, imply the a priori bounds. d
The bounds for the interpolants allow us to select accumulation points.

Proposition 2.3 (Selection of a limit) Assume that X is compactly embedded in
H. Then there existu € L?([0, T1; X) N W17 ([0, T1; X') and € € LP ([0, T]; X')
such that for a sequence (t,),cN of positive numbers with T, — 0 asn — 00, we
have

Ur,, ug, =~ u inL([0,T]; H),

Uy, Ug, =~ u in LP([0,T]; X),
U, — u in WHP'([0, T1; X',

DIWi) = & inL” ([0, T]; X').

We have u € C([0, T]; H) with u(0) = ug and

(W' (0),v) + (1), v) =0

for almost every t € [0, T] and all v € X. In particular, if ¢ = DI (u), then u is a
solution of the H-gradient flow for I.

Proof For a sequence (t,),cn of positive numbers with 7, — 0 as n — o0, the
a priori bounds yield the existence of weak limits for an appropriate subsequence
which is not relabeled. Due to the bound for u”,, the weak limits coincide. Multiplying
the discrete evolution equation of Lemma 2.3 by ¢ € C([0, T']) and integrating the
resulting identity over [0, T'] we find that
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@, . ¢v) + DI(u; )[pvldr =0

O\ﬂ

for every v € X. Since ¢v € LP ([0, T]; X) we can pass to the limit n — oo in the
equation and obtain
T
/ + (&, ¢v) dr
0

Since this holds for every ¢ € C([0, T']) we deduce the asserted equation. The map-
ping vi—v(0) defines a bounded linear operator L? ([0, T']; X)ﬂWl’P/([O, T); X)) —
H which is weakly continuous. Since #, (0) = ug for all n € N, we deduce that
u(0) = uo. By continuous embeddings we alsohave u € C([0, T]; H) whichimplies
the continuous attainment of the initial data. [l

Remark 2.18 The assumed identity § = DI (u) in L”/([O, T1; X'), i.e., the con-
vergence DI (u;’;) — DI (u) can in general only be established under additional
conditions on D/ and requires special techniques from nonlinear functional analy-
sis, e.g., based on concepts of pseudomonotonicity.

Example 2.4 For F € C'(R) with0 < F(s) < cp(1+]s|?) and f(s) = F'(s) such
that | f(s)| < c}(l + |s]), we consider

I(u) = 1/|Vu| dx+/F(u)dx.
2 2

Then, for X = H(} (£2) and H = L2($2), the conditions of the previous propositions
are satisfied with p = 2 and

Dl(u)[v]=/Vu~Vvdx+/f(u)vdx.
Q

2

Wehaveu] — ueL?([0, T]; Hj(2))sothat Vi — Vuin L*([0, T]; L*(£2; RY))

and thus
T T
//Vu;:-dexdte//Vu-Vdedt
0 2 0

2

forall w € L([0, T]; H(} (£2)). The compactness of the embedding
L*([0, T1; Hy (£2)) N W2([0, T1; Hy (2))) — L*([0, T1; L*(2)) = L*([0, T] x £2)

in combination with the generalized dominated convergence theorem shows that
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T

T
//f(u;)wdxdm//fm)wdxdt.
0 2

0 2

Altogether this proves that

T T
/D[(u+)[w dt—>//Vu-dexdt+//f(u)wdxdt,
0 0 2

ie,&=DI®u).

Remarks 2.19 (i) For the semilinear heat equation d;u = Au— f (u) of Example 2.4,
one can establish the existence of a solution under more general conditions on f.
Moreover, one can prove stronger a priori bounds and the energy law

T/

1(T") + / ' (0)]132) dt < 1 (uo)
0

for almost every T’ € [0, T] provided ugy € HO1 (£2). The key ingredient is the
convexity of I in the highest-order term.

(ii) An alternative method to establish the existence of solutions for gradient flows
is the Galerkin method which is based on a discretization in space. This leads to a
sequence of ordinary differential equations on finite-dimensional spaces and with
appropriate a priori bounds, one can then show under appropriate conditions that the
approximate solutions converge to a solution as the dimension tends to infinity.

2.3.4 Subdifferential Flows

The estimates for discretized gradient flows can be significantly improved if the
functional 7 is convex, since then we would have

1W®) + DI =) < 14,
In particular, choosing v = d;u* in the identity (di*, vy + DIWH[v] =0 gives
elld I3 + 1@ < 1@
and a summation over k yields the a priori bound 7 () +1 Z/l§:1 Il dyu* ||%1 < I uY).
With these observations it is possible to establish a theory for convex functionals that

are not differentiable. We always consider a Hilbert space H that is identified with
its dual.
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Fig. 2.15 Subdifferential of A
the function x — |x| at

x = 0; the arrows

S1, 82, 83, $4 indicate
subgradients at 0 which are
the slopes of supporting
hyperplanes at 0

Definition 2.13 We say that a functional / : H — R U {400} belongs to the class
I' (H) ifitis convex, lower semicontinuous,i.e., I (1) < liminf, _ » I (u,;) whenever
u, — uin H as n — oo, and proper, i.e., there exists u € H with I (u) € R.

We assume that / € I"(H) below.

Definition 2.14 The subdifferential 31 : H — 21 of I associates to every u € H
the set

ol(w)y={veH:Iw)>Iu)+ v,w—u)y forallw e H}.
The elements in 7 (u) are called subgradients of I at u.
Example 2.5 For F(x) = |x|, x € R, we have d F(0) = [—1, 1], cf. Fig.2.15.
Remarks 2.20 (i) The subdifferential 07 (1) consists of all slopes of affine functions
that are below I and that intersect the graph of I at u.
(ii) For all uy1,ur € H and vi € 01 (uy), vo € 9l (uy) we have the monotonicity

estimate
(vi —vo,u1 —u2)g > 0.

(iii)) We have 0 € 91 (1) if and only if u € H is a global minimum for /.

(iv) We have a1 (u) = {s} for s € H if and only if / is Gateaux-differentiable at u.
(v)For 1,J € I'(H) we have d(I + J) C 9l + dJ, and if there exists a point at
which 7 and J are finite and / or J is continuous, we have equality.

Theorem 2.7 (Resolvent operator) Let I € I'(H). For everyw € H and A > 0
there exists a unique u € H with

u—+ A0l (u) >w.

This defines the resolvent operator u = R; (w) = (Id + Ad1) " (w).

Proof For a short proof we make the simplifying but nonrestrictive assumption that

I(v) = —c1 —a2lvlim.
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For A > 0 and w € H we consider the minimization problem defined through the
functional

1 1
- —llull3; — (u, w)g + anwn%, + 1 (w).

1
Liw(@) = ol — w3+ Tu) = 5

The identity 2(a® + b%) = (a + b)* + (a — b)* and the convexity of I show that for
up, ur € H we have

1 1 +
21A w(tr) + = I)L w(uz) — I, w(u1 B M2)
1 1 up + un 1
87””1 142”%1"'51(”1)4‘51(“2)—1(7) 7““1—M2||H,

i.e., Iy is strictly convex. Thus, if I, ,, has a minimizer, then it is unique. Moreover,
u € H minimizes I, ,, ifandonlyifO € a1, ,,(u) = (1/1)(u—w)+091 (u).Itremains
to show that there exists a minimizer. Since 7, ,, is convex and lower semicontinuous
it follows that / is weakly lower semicontinuous. We also have that /, ,, is coercive
since two applications of Young’s inequality lead to

1 1
L) = —|vII3 — =, w)m + —||w||H —c1—olvin

2) A

4
> 4A —vli% — XIIWIIH — 1 — 4Ac3.

This estimate also proves the boundedness from below. The direct method in the
calculus of variations thus implies the existence of a minimizer. (]

Definition 2.15 The Yosida regularization A, : H — H is for w € H defined by
Ax(w) = (1/0)(w — Rp(w)).

Remark 2.21 The resolvent operator satisfies lim, .o Rj (w) = w. We have that A,
is Lipschitz continuous with Lipschitz constant 2 /A and approximates 0/ in the sense
that A, (w) € A1 (Ryw).

The theorem about the resolvent operator implies that for a time-step size T > 0
and an initial u® € H, there exists a unique sequence (uF)—o... L C H with

di* € =91 ")

since this is equivalent to u* = R, (u*~!). We expect that as T — 0 the approxima-
tions converge to a solution of the subdifferential flow

u' e =3I, u0) = uo.

Related a priori bounds that permit a corresponding passage to a limit will be dis-
cussed in Chap.4.
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Theorem 2.8 (Subdifferential flow, [2]) For every ug € H such that 91 (up) #
@ and every T > 0, there exists a unique function u € C([0,T]; H) with u' €
L*°([0, T1; H) such that u(0) = ug, o1 (u(t)) # @ for everyt € [0, T], and

u'(t) € =31 (u(t))

for almost every t € [0, T].

Proof The existence of a solution is established by considering for every A > 0 the
problem
drup = —Ax(un), ux(0) =ug

and studying the limit A — 0. Uniqueness of solutions follows from the convexity
of 1,i.e.,if uy and uy are solutions then the monotonicity property of / shows that

—(u) () — uy (1), ur(t) — us())g = 0

for almost every ¢ € [0, T'] and this implies that

1d
CP TR u) (Ol = @) (0) = ub (@), ur (1) — ua () < 0.

Since u1(0) = u»(0) we deduce that u1(t) = u(¢) forevery t € [0, T]. U

Remarks 2.22 (i) Negative subgradients are in general no descent directions. For
the subdifferential flow one can however show that u’(r) = —3°1 (u(¢)) for almost
every t € [0, T], where 997 (v) is the subgradient s € 9/ (v) with minimal norm, i.e.,

197 W)l = minyerey Il
(@ii) If 91 (up) = ¢, then there exists a unique solution u € C([0, T]; H) such that
120 e L2([0, T1; H).
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Chapter 3
FEM for Linear Problems

3.1 Interpolation with Finite Elements

We review in this section the basic framework for analyzing finite element methods.
‘We refer the reader to the textbooks and lecture notes [2, 3, 5, 6, 8-11] for further
details. A review of the historical development of the finite element method can be
found in [7].

3.1.1 Abstract Finite Elements

For a set T C R? and an integer k > 0, we let P;(T') denote the set of polynomials
of total degree less than or equal to & restricted to 7.

Definition 3.1 A finite element is a triple (T, Pr, K1) consisting of a closed set
T Cc RY, a space of polynomials Pr withdim Py = R,andaset K7 = {x1, ..., Xr}
of linear functionals on C°°(T) such that (a) if for ¢ € Pr we have x(q) = 0 for
all x € K7, then g = 0, (b) there exists m > 1 with P,,_1(T) C Pr, and (c) there
exists p € [1, oo] such that every x € K7 extends to a bounded linear operator on
WP (T).

Definition 3.2 Given a finiteelement (7', Py, K1) andv € WP (T) the interpolant
ITv € Pr is the uniquely defined function in Py that satisfies x (I7v) = x (v) for all
x € Kr.

Example 3.1 Foraline segment, triangle, or tetrahedron T = conv{zo, 21, ..., 24} C
RY, d = 1,2, 3, respectively, set Pr = Pi(T), K1 = {x0, x1,---, xa} with
xjw) =v(zj)for j =0,1,...,d and v € C°°(T). Then (T, Pr, K7) is a finite
element with m = 2 and p = 2 called a P1 element.
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The properties of interpolants can be analyzed with the Bramble—Hilbert lemma.

Theorem 3.1 (Bramble—Hilbert lemma) Let 1 < p < coand let F : WP (T) —
R be a bounded and quasisublinear functional, i.e., there exist c1,cy > 0 such
that for all v,w € W™P(T), we have |F(v)| < ctl[vllwmrry and |F(v +w)| <
ca(|[FW)| + |F(w)|) and assume that F vanishes on Py,—1(T). Then there exists
co > 0 such that

[F(v)| < cocre2| D™ vILe(ry

forallv e W™P(T).
Proof Letv € WP (T). Forall g € P,,—1(T) we have that

[FW)| <l F(v —g)| < cre2llv — qllwmr ().

There exists a uniquely defined ¢ € P,_1(T) satisfying fT D*(v —g)dx =0
for all « € N? with |a| < m and a generalized Poincaré inequality implies the
estimate |[v — g|lwm.rry < collD™ (v — @) |lLr(1)- Since D™g = 0 we deduce the
assertion. O

Corollary 3.1 (Interpolation stability) Let (T, Pr, Kt) be a finite element and | - | g
a seminorm on WP (T) with |v|s < csl|[vIlwm.r ) for allv € W™P(T). Then we
have

v —Irvls < csl D" vLr(r)

forallv e W™P(T).

Proof We define F(v) = |v — Irv|s and note that F' is sublinear. There exists a
uniquely defined dual basis (Y1, ..., ¥gr) C Pr with x; () =djx for1 < j, k <

R. We then have I7(v) = Zle Xxj(¥; and using | x; (V)| < cp|[vliwm.p(7) for all
ve WnP(T)yand j = 1,..., R, it follows that

,,,,,

i.e., F' is bounded. Obviously, F(g) = 0 for all ¢ € Pr, and hence the conditions of
the Bramble—Hilbert lemma are satisfied. O

3.1.2 P1 Finite Elements

We consider a bounded, polyhedral Lipschitz domain £2 ¢ R? and a given partition
IpUIN =0%2.

Definition 3.3 A (conforming) triangulation Jj, of 2 isaset 9, = {T1, T», ..., T1}
of closed interval_s, triangles, or tetrahedra for d = 1, 2, 3, respectively, called ele-
ments, such that 2 = Uy g, T and the intersection of distinct 71, 1> € T, is either
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Fig. 3.1 Uniform conforming triangulation, nonconforming triangulation with a hanging node,
and locally refined conforming triangulation (from left to right)

Fig. 3.2 Diameter h7 and

inner radius pr of a triangle @
T (left); affine transformation T
from a reference element ( hr

(right) ‘4

empty or an entire subsimplex, and the sets I and 'y are matched exactly by the
union of sides of elements, cf. Fig.3.1.

For an element T € .7}, we set hy = diam(T') and let pr denote the diameter of
the largest ball contained in T, cf. Fig.3.2. The importance of the Bramble—Hilbert
lemma lies in the scaling properties of the seminorm in W"?(T) with respect to
affine transformations.

Proposition 3.1 (Affine transformations) Let T = conv{zo, Z1, ..., 24}, where
20 = 0 and Zj = ej with canonical basis vectors ej € RY for j = 1,2,...,d.

For a triangulation T of 2 and every T € T, there exists an affine diffeomor-
phism @7 : T — T, @7(xX) = BX + b, with

max |b;i| <ch
el d| l]I_ T

(=D -1
max |b;. <c
i,j=1,..., i, j l,...,dl t = Pr

L=

for the entries b;; and bf;l) of B and Bl i, j=12,...,d Forve W"P(T)
andV =vo ®dr € W””p(?), we have

—k 1/pry = —k -1
Vlwerry < cpr'1det BIYP Blyin gy, Pl < chy' | det BITYPvlyep )

in particular |v — Itv|yipry < cI(h’;’/,o];)|v|Wm,p(T).

Proof The proof follows from the transformation formula

/lD“vlpdxz |detDcDT|p/|(D“v)ocDT|pdx
T T

and analogous identities for V. O
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SI T EI T | T

hT hT] hTz

Fig. 3.3 A triangle that violates the minimum angle condition if ¢/hy — 0 (left) and triangles
that satisfy the maximum angle condition even for &/ hy, — 0, £ =1, 2 (right)

Definition 3.4 A family of (conforming) triangulations ()50 is called (shape)
regular if there exists a constant ¢ > 0 such that sup;,. o suprc g hr/pr < c.

The index £ in a family of triangulations (.7},);,~¢ usually refers to a characteristic
or maximal size of the elements in .7}, e.g., itis typically assumed that maxyc 7 At <
ch for all 1 > 0. Nevertheless, for a sequence of locally refined triangulations, we
may have maxre 7, hr = maxyc g, hy for two different triangulations Ty and Ty .
In this case & may refer to an average mesh-size.

Remark 3.1 For shape regularity, the minimum angle condition, requiring that the
angles of triangles be uniformly bounded from below by a positive number, is suf-
ficient. A weaker maximum angle condition is sufficient for a robust interpolation
estimate.

Example 3.2 We consider the triangulations 7] and .% displayed in Fig. 3.3 and the
function u(x, x2) = 1 —xl2 for x = (x1, x2) € R2. For the triangulation T =T}
with

T = conv{(—1,0), (1, 0), (0, &)},

we have Zju(xy, x3) = x»/e. For the triangulation .Zf = {T1, T»} with
T1 = conv{(—1,0), (0,0), (0, &)}, T2 =conv{(0,0), (1,0), (0, &)},

we have SHu(xy, x2) =1 — |xq].

Definition 3.5 For a triangulation ., we let .4}, denote the set of vertices of ele-
ments called nodes and %}, to be the set of (d — 1)-dimensional sides of elements in
Ty, i.e., endpoints of intervals, edges of triangles, or faces of tetrahedraifd = 1, 2, 3,
respectively.

The notation is illustrated in Fig. 3.4.

Definition 3.6 The P 1-finite element space subordinated to a triangulation .7, is
the space o
ST = vy, € C(R2) :vplr € P(T) forall T € F).

The subset of functions in .71 (.%,), satisfying homogeneous Dirichlet conditions on
a subset I'p C 052, is defined as
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T €.,
21,22 €M
517526«5”;/

Fig. 3.4 Element T € 9, nodes z1, 22 € 4}, and sides S, S2 € %, (left), nodal basis functions
@, (middle), and supports w, of nodal basis functions ¢, for different nodes z € .45, (right)

IB(Th) = S (Th) N HE(R2).

If I'p = 352, we also write .7} (7},) instead of .7} (7). The nodal basis of /' (J)
is the family (¢, : z € .4},) with functions ¢, € .#'(%,) satisfying ¢, (y) = &y for
all z, y € A},. The nodal interpolant of a function v € C(£2) is defined by

Iy = Z v(2)@;.
€M,

Theorem 3.2 (Nodal interpolation estimates) For a regular family of triangulations
(T)h>0 such that maxre g ht < ch and v € WZP(£2), we have that I,y €
YTy, and for every 1 < p < oo with p > d/2 ifd > 3, we have

A=y — Il + IV = I)llLr@) < chlID*ly2p(g)-

Moreover, if vy, =0, then Zpv|r, = 0.

Proof Estimates follow from the stability of interpolation and the transformation
estimates if 1 < p < oo. The case p = oo is treated directly using that functions in
W1 (82) are Lipschitz continuous. [l

Remark 3.2 For p = oo we also have ||[v — Zv|1x@) < chl|VV| o).

3.1.3 Projection and Quasi-Interpolation Operators

The nodal interpolation operator .#, can only be applied to continuous functions
and this is often too restrictive in practice. A way to avoid this is to regularize a
function by mollification, but this is also often not practical. The difficulties can be
circumvented by using projection and quasi-interpolation operators. We assume that
IDp has positive surface measure.

Definition 3.7 The L?- and H'-projections of functions v € L*(£2) and w €
Hﬁ(.Q) are the uniquely defined functions Ppv € .#'(.7;,) and Qpw € 5’5(%)
that satisfy
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/(th—v)d)hdx:O, /V(Qhw—w)'vwhdsz

2 ko)

for all ¢, € .71 () and all ¥, € 5’5(%), respectively.

Remark 3.3 The operators P, and Q, are linear and bounded as operators on L2(2)
and Hﬁ(.Q) with operator norm 1, respectively. They are equivalently characterized
by the best-approximation properties

lv—Puwvll= min_|v—all,
o\ (Th)

IVow — Qpw)ll = min _ [[V(w —yp)|.
vnesH ()

In the absence of Dirichlet boundary conditions, the H I_norm can be used instead
of the seminorm to define Qj,.

Lemma 3.1 (Projection error) Ifw € H 22N Hé([.?), then we have
lw— Pywll < ch*ID*wll, IV(w— Qpw)ll < ch|D*w].

Proof The estimates follow from the best-approximation properties and estimates
for nodal interpolation. ]

Remark 3.4 We will show below that under certain conditions on §2, the Aubin—
Nitsche lemma implies ||[w — Qpw|| < ch?| D*wl|.

The operators P, and Q) can be applied to a large class of possibly discontin-
uous functions and their orthogonality property is important in many estimates. A
disadvantage is the global character of their construction. An intermediate solution
between interpolation and projection is provided by quasiinterpolants.

Definition 3.8 The Clément interpolant Zv € 5”6(%) of a function v € L'(£2)
is defined by Zhv = > 4, V.9, Where

_ lo |7 [ vdx if z e M\ID,
o if ze 4 NIp,

with the node patch w, = supp ¢, for every z € .4}, with diameter h, = diam(w,).

Remark 3.5 The coefficients (v;),c 4; in the definition of _¢j,v are equivalently
defined by local projections onto constants, i.e., for every z € .43\ I'p we have that
v, is the unique minimum of the mapping ¢ — ||v — c||%2 ()"

Some local estimates are required to analyze the approximation properties of _7j,.
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Lemma 3.2 (Local Poincaré inequality) There exists ¢ > O such that for all 7 € N,
andv € H]%(.Q), we have

v =2, = chzlVVIL2(0,)-

The constant ¢ depends on the shapes of the sets (w; : 7 € Np).

Proof Assume firstthath, = 1.1f z € 43\ Ip, then we have fw” (v—v;)dx =0and
the Poincaré inequality implies that ||v — v, ”Lz(wz) < c||Vv||Lzsz). Ifze AN Ip
then w, N I'p has positive surface measure and the estimate follows from Friedrichs’
inequality. A transformation argument shows the dependence on /. ]

Lemma 3.3 (Trace inequality) Let T € 9, and S € .}, such that S C 9T. There
exists ¢ > 0 such that for all v € H'(T), we have

—1/2 1/2
Wl 2gs) < c(hs IVl + R 219V L2cry)-

Proof The proof uses the density of smooth functions and a one-dimensional
integration-by-parts formula to express function values on S by integrals over line
segments in 7. 0

Remark 3.6 For a regular family of triangulations, there exists an A-independent
constant ¢ > O such that c"'hy < h, < chrifz € N, and T € J, withz € T.
If the triangulations are nested, i.e., obtained by successive refinement, then only a
finite number of shapes of patches can occur.

Theorem 3.3 (Clément interpolation) There exists ¢ > 0 such that for all v €
Hﬁ(.Q), we have

_ —1/2
IV _Zwvll + Ilh v = 2l + ”hy/ O = Illzug,) = clvvll,

where h € L°(82) is defined by h |t = hr and h» € L*®(U%),) by h »|s =
diam(S) for every S € .7},.

Proof The nodal basis functions form a partition of unity, i.e., > _. VAZES
almost everywhere in §2, with finite overlap. Moreover, we have [|¢;|lzxw,) = 1
and |V llLe@w,) < chz’1 for every z € A},. Using ZZEL% V@, = 0 and the local
Poincaré inequality, we have

IV _Zwvll* = / > W=V, V_gvdx

o €M

< D0 e = Vi) Vel Lo @ IV 2l 12w,
zeM,

< ¢ D> IVl IV Invl 2
zeMp
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1/2 1/2
<o 2 I93,) (2 IV,

zeM, zeM,
< WV 2wl

which is the first estimate. To prove the second estimate, we let ¥ € L?(£2) and note
that we have

/<v— Iimpde= " /qoz(v—vzwfdx
2

€M,

< D ezl 1V = vell 220 1V 112200

zeM,
1/2 1/2
<o 2 i) (2 A, )
7€M, zeM,
< clVollih 7.

The choice of ¥ = h_yz(v — _Z»v) implies the second estimate. With the trace
inequality we verify that for every S € ., with neighboring element Ts € 9}, we
have

15 —1 —1
MY = Iwvlitacsy < s v = Zuvligacg, +hsIVO = 2l

A summation over S € .%}, combined with the first two estimates imply the esti-
mate. (]

Remarks 3.7 (i) The Clément interpolant ¢} is not a projection operator, i.e., in
general we have _Zj,v;, # v, forvy, € Yg(%). Certain modifications of the operator
guarantee this property.

(i) The constant in the theorem remains bounded for a regular family of nested
triangulations.

(ii1) The Bramble—Hilbert lemma implies the local approximation estimate

v = _Zivll2qy +hp IV = _Zi)ll 2y < chF 1DV 120y

for v € H?(wr) with wr = U,c_g; 1.7, @:.
(iv) The estimates remain valid for Ip = ¢ and exponents p € (1, 00).

3.1.4 Other Estimates

We collect some useful estimates for functions in .7! (.%},).
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Lemma 3.4 (Norm equivalence) For every 1 < p < oo there exists ¢ > 0 such that
forall v, € #Y(F), we have

B 1/p
cHvallLre) < ( > h?lvh(Z)I”) = clvaliLr(e)-
€M,

Moreover, we have ||vy || L (@) = maX c_y;, [vi(2)| for every vy, € LY.

Proof Forevery T € ), the expressions ||[vy||»(r) and (7% > e hinT |vh(z)|1’)1/p
are norms on the finite-dimensional space .71 (.7,)|7. Hence they are equivalent and
a transformation argument shows that the constant is independent of 47 and /. The
asserted estimate follows from a summation over T € .7,. ([l

Definition 3.9 A family of triangulations (7)o is called quasiuniform if there
exists ¢ > 0 such that ¢~ 1 < hrt <chforallh >0andall T € 9,

Lemma 3.5 (Inverse estimates) For v, € .#1(9},) and 1 < r, p < oo we have

-1
IVvillLery < chy lvallLeer)

and

d(r—
villLery < ChT(r p)/(pr)”"h”L’(T)-

If the family ()0 is quasiuniform, then we have

IVvillLr @) < ch ™ vallLece)

and

IvillLec2)y < ch™nOAC=P/ PO}y,

(£2)

Proof To prove the first estimate, consider the space .#!(.7,)|7 /R, i.e., functions
v, € () with fT v dx = 0. The expressions || Vv, ||Lr(ry and h;l IvillLery
are equivalent norms on the finite-dimensional space .1 (.7,)|7 /R. Using the esti-
mate ||[vy, — VpllLecry < Ivalleeer) for vy € S5 () and vy, = |T|7! [ vpdx, a
transformation argument proves the first estimate. A similar argument proves the
second estimate. The third estimate follows from a summation of the first estimate
over T € .9, and h;l < ch™! due to the assumed quasiuniformity of .7,. To prove
the last estimate we first note that it follows directly from Holder’s inequality if
p > r. Otherwise, we use (ZJL-zl |xj|r)l/r < (Zf’:] |xj|1’)]/p for every L € N
and x € RE and deduce that

1/p 1/r
( > ||vh||§,m) < ( > ||w,||2rm) = Ivallr -

TeI, Te7,
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With the corresponding elementwise estimates, this implies the global estimate for
quasiuniform triangulations. O

Remark 3.8 For quasiuniform triangulations we also have the inverse estimate
1-d/2 —1
Wallze@) < ch' =" logh™ vallwi2g).

A proof follows from the Sobolev estimate ||V Lr(2) < cplvliwrae) forl < g <d

and p = dq/(d — q), the choice of ¢ = d — | logh|~!, and the inverse estimates of
the lemma.

The union of a family of finite element spaces (5” 1 (ﬂh)) =0 s densein whr(2)
forl < p < .

Lemma 3.6 (Density) For 1 < p < ocoandv € WP (2) there exists a sequence
=0 C WLP(Q) with vy, € SV (F,) for every h > 0 such that v, — v in
wWhP(2)ash — 0.

Proof Assumethat1 < p < oo with p > d/2ifd > 3. The set C*(2)NW!P(£2)
isdensein W7 (£2) andfore > 0 we may choose v, € C®(2)NW!P(£2) such that
lv—vellwirey < &e/2and ”Dng”LP(Q) < cs‘l||Vv||Lp(g).Settingvh = Ipve, we
have [[vy = vellwi.p (@) < h|| D%v, lr () and for i sufficiently small, it follows that
Ivi = Viwiog) < & If p < d/2 we may use that [| D>ve || < ce™ =/ |yl y1p g
to verify the statement.

With the density of finite element functions it follows that projections satisfy a
super-approximation property.

Corollary 3.2 (Super-approximation) For every v € H'(£2) we have ||v — Ppv| =
o(h) as h — 0, i.e., for every ¢ > 0 there exists hg > 0 such that ||v — Ppv| < eh
forall0 < h < hy.

Proof Let & > 0. The difference v — P,v is orthogonal to the subspace .’1(.7;) in
LZ(SZ) and therefore we have

v — Ppvl? = /(v — Pyv)(v — Py —wy) dx
2

for all wy,, € yﬁ(%). Because of the previous lemma there exists 49 > 0 and
vy € .1(F,) such that Vv —=wvp)| <eforall 0 < h < hy. With the choice of the
function wy, = vy — Ppv + _Z (v — vj,) we have

v = Puvl® < llv = Povllll v = vi) = 2 = wi)l.

With the estimates for the Clément interpolant (generalized to the case I'p = @) we
deduce
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IV =vi) = IZn(v —vi)ll < chV(v —vp)
and the combination of the estimates implies the statement. ]

For a polynomial function, a Poincaré inequality holds if the function vanishes at
a single point.

Lemma 3.7 (Discrete Poincaré inequality) Let T € 9, z € TN M, 1 < p < 00,
and k € N. There exists a constant ct > 0 that is independent of the diameter of T
such that for all v, € Py (T) with vj,(z) = 0, we have

WrllLrry < chrlIVvpllLe(r)-

Proof If k = 1, the proof follows from the fact that for x € T, we have
vi(x) = vp(2) + Vvplr - (x — 2).

If £k > 1, we argue by contradiction and let (w{;) jeN be a sequence in P (T)
such that wil(z) =0 fpr all j e Nand 1 = ||w;l||Lp(T) > th||VWil”L”(T)~ The
bounded sequence (wljl) jeN has a convergent subsequence with limit w, € P (T)
satisfying wp(z) =0. The triangle inequality and an inverse estimate imply that
IVwpllLrry =0, i.e., that wy, is constant with value 0. This contradicts [[wy |l r (1) =

lim; ||w{l llr(ry =1. Hence there exists a constant ¢ > 0, so that the asserted
estimate holds. A scaling argument proves that ¢ is independent of A 7. (]

3.2 Approximation of the Poisson Problem

Given a bounded, polyhedral Lipschitz domain £2 C R?, a closed subset I, C 92
with positive surface measure, up € C(I'p) withup = up|, forsomeup € H! (£2),
g € L2 (IN), and f € L?(£2), we consider the boundary value problem

—Au=finf2, ulp, =up, dulry =g

By decomposing u = & + up withu € Hﬁ(.Q) and replacing f and g by f + Aup
and g — d,uip, respectively, provided #p € H?(£2) we may and will assume that
up = 0 unless stated otherwise. Within this setting we review standard concepts for
the numerical analysis of finite element methods for the elliptic model problem, and
refer the reader to [2, 3, 11] for further details.



56 3 FEM for Linear Problems

3.2.1 Variational Formulation

The boundary value problem is the strong form of the Euler—Lagrange equations of
the minimization problem defined by the functional

I(u):%/Wulzdx—/fudx—/guds

Q 2 '

for u € Hé(.Q), and the direct method in the calculus of variations implies the
existence of a unique solution u € Hﬁ(.Q). The weak form of the Euler—Lagrange
equations states that a minimizer u € H]%(.Q) satisfies

/Vu~Vvdx:/fvdx+/gvds

Q2 2 I'p

forall v € Hs(.Q). Equivalently, the Lax-Milgram lemma shows the existence of a
unique solution of the weak form of the Euler-Lagrange equations. For this, it suffices
to realize, with the help of Poincaré and Holder inequalities, that the bilinear form
defined for v, w € HI])(.Q) by

a(v,w) =/Vv~dex
Q

is bounded and coercive on H]é (£2) x H]%(Q) and that the right-hand side of the
weak formulation defines a bounded linear functional on Hﬁ(.Q).

Theorem 3.4 (Existence and stability) There exists a unique minimizer u € Hﬁ (£2)
of the functional I which solves the weak form of the Euler—Lagrange equations and
satisfies

lall iy < eQLF I+ gl 2r)-

The theorem implies that the solution operator is bounded as a mapping L?(£2) x
L%(I'n) — H!(£). In certain situations the solution operator attains its values in
HL(2) N HX(R2).

Definition 3.10 The Poisson problem with homogeneous Dirichlet boundary con-
ditions is called H2-regular if there exists a constant ¢ > 0 such that

lull 2@y < cUlf I+ 118l L2 ()

Example 3.3 1If 2 C R? is convex and I = 982, then the Poisson problem is
H?-regular.
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3.2.2 Error Estimates

For a shape-regular but not necessarily quasiuniform family of conforming
triangulations, the Galerkin approximation of the Poisson problem is for every 4 > 0
defined as the minimizer of the energy functional [ restricted to yDl (), or equiv-
alently as the unique function uy € (5’])1(%) that satisfies

/Vuh-Vvhdx=/fvhdx+/gvhds
2

2 N

forall vy, € YDI (). Existence and uniqueness of uy, are direct consequences of the
Lax—Milgram lemma. An important property of the Galerkin approximation u;, €
YS(%) is that the approximation error u — uy, satisfies the Galerkin orthogonality

/V(u—uh)-Vvhdxzo
Q

for all vj, € YDI(%). The interpretation of this identity is that u; € yPl(%) is
the H 1—projection of the exact solution u € H]é (§2) onto the subspace .7 (.7;). In
particular, it satisfies a (quasi-) best-approximation property or, more generally, the
conditions of Céa’s lemma are satisfied, i.e., we have

IV —up)l < inf V(@ —vp)l.
e ()

The density of finite element spaces in H]é(.Q) implies convergence u;, — u in
Hﬁ(.Q) as h — 0 andif u € H?(£2), we obtain a convergence rate.

Corollary 3.3 (Approximation error) Ifu € H 22N Hé([.?), then we have
IV — up)ll < ch|| D?ul.

Proof The error estimate follows from the best-approximation property and the nodal
interpolation estimates. (]

Remarks 3.9 (i) The error estimate is special due to the fact that the approximation
up, is the H'-projection of the exact solution, i.e., u, = Qju. A more general concept
is based on a consistency property of the discretization and a stability estimate for
the numerical method.

(ii) For wy, € 5”01 () the discrete Laplace operator —A,wy, € ,5”01 () is the
uniquely defined function that satisfies

(=Apwp,vi) = (Vvp, Vwy)
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for all w, € ,5’01(%). In particular, if Ip = 042, the Galerkin approximation
up € yol(,%,) of the Poisson problem satisfies —Aju, = Py of, where P, of
is the L>-projection of f onto 5’01 ().

For the proof of optimal error estimates in L?(£2), a stronger assumption than
u € H?(£2) is required, namely that the problem be H’-regular. In this case, the
unique weak solution z € H];(.Q) of the Poisson problem

—Az=ein$2, z|lp, =0, 9z=0o0nI\N

with e = u — uy, is a strong solution and satisfies | D2z|| < c|le||. Green’s formula
and Galerkin orthogonality yield that, for every z; € 5’6 (1), we have

/ezdx=/e(—Az)dx:/Ve~Vzdx=/Ve-V(Z—Zh)dx.

2 2 2 2

With Holder’s inequality, the assumed bound for || D2z||, and the choice z;, = %z
we find that

lel> < [IVellllV(z = zn)l|
< ch||Vell| D*z|| < ch||Vell|le]l.

Incorporating the estimate || Ve|| < ch||Du)| proves the following result.

Theorem 3.5 (Aubin—Nitsche lemma) If the Poisson problem is H 2_regular, then
llu — unll < ch*|D?ul.

Remarks 3.10 (i) The H!-error estimate can be written in the form IV(u—up)| <
c|lh 7 D?u|| and motivates the use of a small local mesh-size where D?u is large.
Such a localization is only partially possible for the L2-error estimate.

(ii) By interpolating Green’s function associated to the Poisson problem on £2 C R?
with I'p = 952, one can show that if the Poisson problem is H 2—regular, if Z, is
quasiuniform, and if u € C?(£2), then we have

lu — upllLoo@y < ch*(1 + |log hl) | Dull 1 (g)-

We close the discussion of approximation errors with an a posteriori error estimate
that bounds the approximation error in H'!(£2) by computable quantities.

Definition 3.11 Given uj, € .'(.7,) and an interior side S € .%, i.e., S = T\ N T
for distinct T7, T» € 9, the jump of Vuy, across S in the normal direction to S is
defined as

[Vup -ns] = Vuplr, - nry s + Vuplr, - no,. s,
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- 1 2
u u
nr.s h h
2
L I n

Fig. 3.5 Interior edge S = 71 N T and outer unit normals ny, s and nr, s on S (left); large and
small jumps of the gradients of functions u,ll and u%l (right)

where nr, s is the outer unit normal to 7y on S for £ = 1, 2, cf. Fig.3.5.

Theorem 3.6 (A posteriori error estimate) We have

WIV@—ul < (D, hsl[Vun - ns]12a5) "

Se. NN
1/2
+ (D0 WIS+ Al i)
Te7,
1/2
+( D hsllg = daunldag) .
SG-_V;,QFN

Proof We abbreviate e = u —uy, € HI])(.Q) and note that by Galerkin orthogonality
and the properties of the weak solution #, we have

||Ve||2=/f(e—/he)dx—l—/g(e—/he)ds—/Vuh-V(e—/he)dx.
2

N 2

An elementwise application of Green’s formula and a rearrangement of integrals
over sides of elements imply that for every v € HI;(.Q), we have

—/Vuh -Vvdx = z (/(Auh|T)vdx —/(Vuh ~nT)vds)
aT

Q TG,% T
= Z /(Auh|r)vdx— z /[[Vuh~ns]]vds
TE«% T SE,%,QQ S
—/(Vuh -n)vds.
In

With Holder and Cauchy—Schwarz inequalities, combining previous estimates and
the choice of v = e — _#e lead to
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IVel? < (D h3IF + Dunlr2a) (D hllle = FhelZaip)

Te, Te,
2 172 -1 2 172
+( D hsllg=duunliag) T DL hyle— Fuellia)
Se. NN Se. NN
1/2 - 1/2
+( D hslllVun-nsl1220)2 (D h5tle — FnellZagg) .
Se. N Se. N
The approximation properties of the Clément interpolant imply the assertion. (]

Remarks 3.11 (i) Note that since u,|r is affine, we have Auy|r = 0 for every
T € 7). The expression f + Auy|r has the interpretation of a residual.

(ii) A converse estimate can be proved up to higher-order terms. This is often called
efficiency while the estimate of the theorem is referred to as a reliability estimate.
Note that the estimate holds without regularity requirements on .

(ii1) The upper bound for the error is localizable and leads to strategies for local
refinement with quasioptimal convergence rates even if u ¢ H>(£2).

(iv) The first term on the right-hand side of the estimate of Theorem 3.6 measures the
distance of Vuy, to the space H (div; §2), i.e., the space of square-integrable vector
fields that have a weak divergence that is also square-integrable.

3.2.3 Discrete Maximum Principle

The unique minimizer u € H'(2) of the Dirichlet energy

1 2
I(U)ZE |Vu|~ dx,
Q

subject to u|ry, = up, satisfies the maximum principle
max u(x) < max up(x).
xes xelp

A variational proof of this estimate uses the fact that for every ¢ € R, the truncated
function T.u(x) = min{c, u(x)} belongs to H'(£2) with |VT.u| < ||Vul. For
m = maxyey Up(x) we have T,,u < m, T,,u|r, = up, and

I(Tpu) < I(u).

Since u is minimal, we conclude that 7,u = u and u < m in §2. This argument
cannot be transferred directly to finite element approximations since the truncation
T.up, of uy, € .#1(.7,) is in general not contained in .#’! (.7},), cf. Fig. 3.6. Additional
conditions have to be imposed to guarantee a discrete version of the maximum
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Fig. 3.6 Truncated finite element function 7.u), that does not belong to the finite element space
(left) and the function uj, that is obtained by a truncation of the nodal values which belongs to the
finite element space (right); note that uj, = %, (Tcup)

principle. The following result provides a discrete version of the estimate ||V (F o
VI Z IIDF|l gV for v € H'(£2) and a Lipschitz continuous function F €
WLR(R).

Proposition 3.2 (Lipschitz stability) Assume that the triangulation 9}, of 2 is such

that the stiffness matrix satisfies

Azyz/Vgoz-Vgoydx <0
2

for all distinct z, y € Np,. Then for every v, € . (F)", F € WL (R™; RY), and
v}f = 7 (F ov) € YT ie,

vi = D> Fn(2)e:.
zeM,

we have
IVV | < IDF |l oo qrmy [ Vvall.

Proof We set Ay, = fg Vo, - Voydx forall z, y € 4, and note that A, = Ay,
and for every y € .4}, we have

ZAZyz Z/V@Z-wadsz

7€M, €M

due to the fact that ZyEJ%, @y =1in2.Forwy, =3 5 wep; withw, = w(z) €
R™ for every z € .4}, we thus have

1wl = D7 Agwe-wy= D Ay(wz —wy) - wy

2.yeM 2, yeM,
1 1
) Z Azy(Wz_Wy)'Wy"'E Z Agy(Wy —wz) - wy
z,yeM z,yeNM,

1
= D Agylws —wy

2,yeM
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Fig. 3.7 Interior edge o
S = Ty N T, with opposite o »
angles ;] and o A

Therefore, the Lipschitz continuity of F" and A, < 0 for z # y lead to

1 2
IVViIP = =5 D Ag|Fa) = Fvy)l
z,yeM,

1 ) ) ) .
=< _z z Azy”DF”Loc(Rm)h/z - Vyl = ”DF”LOO(RW)”VVh” ,
z.yeM,

which proves the asserted estimate. O

Remarks 3.12 (i) If d = 2, then the conditions of the proposition are satisfied if and
only if .7}, is weakly acute, i.e., if every sum of two angles opposite to an interior
edge is bounded by 7 and every angle opposite to an edge on the boundary by /2.
This follows from the relation

1 sin(a; + a2)

1
Vg, - Vo, dx = ——(cot taz) =—3
/ @Yz - Vgy dx 2(co o1 + coter) 2 sin(a) sin(a?)

TWJT»

for neighboring triangles 77, 7> with common edge S = conv{z, y}, cf. Fig.3.7.
(i1) If d = 3, then a sufficient condition for the proposition is that every angle between
two faces of a tetrahedron be bounded by /2.

(ii1) The conditions of the proposition imply that the finite element stiffness matrix
A = (Azy); ye.w, 1s after elimination of rows and columns that correspond to nodes
on I'p an M-matrix, i.e., that Ax > 0 implies x > 0 componentwise. This provides
an alternative way to prove the discrete maximum principle.

Corollary 3.4 (Discrete maximum principle) Assume that ), is such that |, o Vo -
Vo, dx < Oforalldistinctz, y € Ny Then, ifuy, € yﬁ(%)satisﬁes un(z) = up(z)
forall z € A, N I'p and is minimal for

1 2
I(up) = 3 |Vup|*dx
2

in the set of all such functions in LYT), then we have

max up(z) < max up(z).
€0 ZE:/%,(‘\FD
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Proof Set m;, = max;c 4;,nr, up(z) and note that the truncation operator T,,, :
R — R, s — min{s, m;} is Lipschitz continuous with constant || DT, ||z ®r) = 1.
Thus, according to the previous proposition for u, = (T}, o uy), we have

I(up) < 1(up),

which implies u;, = uj;, and hence the asserted estimate. O

3.3 Approximation of the Heat Equation

We consider the linear heat equation which is for f € L2([0, T1; L*(£2)), g €
L®([0, T); L>(IN)), up € L*®([0, T1; H'(£2)), and ug € L?(£2) in a strong form
for ¢ € [0, T] defined by

du—Au= fin2, u) =uwuo, ulrp, =uplrp, hitln =g

For simplicity, unless stated otherwise we restrict to the case up = 0 and g = 0.
Throughout this section we use the notation

/ "
U= o =1u', u[,zalzuzu.

Moreover, we abbreviate the inner product in Lz(.Q) by (-, -) and use the Sobolev
space HI])(.Q) equipped with the norm ||V - ||. This requires I to have positive
surface measure, but the results below can be generalized to the case Ip = {J. More
general statements than the ones discussed below can be found in [12].

3.3.1 Variational Formulation

The discussion of gradient flows motivates the following definition of a weak solution
of the heat equation.

Definition 3.12 A functionu € H'([0, T; HJ(£2))NL?([0, T1; HL(£2)) is called
a weak solution of the heat equation if u(0) = ug and

(ur (1), v) + (Vu(t), Vv) = (f (1), v)
for almost every ¢t € [0, T] and all v € H];(.Q).

Remark 3.13 If f is time-independent, then the heat equation is the L2-gradient
flow of the convex, Fréchet-differentiable functional 7 : HS(.Q) — R given by
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I(u):%/|Vu|2dx—/fudx.
2 2

The discussion of subdifferential flows motivates that, for almost every T’ € [0, T1,
the energy inequality

T/

Iw(T") +/I|3ru(t)||2dt < I'(uo)
0

is satisfied. This implies that a weak solution is unique and belongs to the space
H([0, T1; L2($2)) N L>([0, T1; HY($2)) provided that 1 (u) is finite.

Theorem 3.7 (Existence and regularity) There exists a unique weak solution u of the
heat equation. If ug € Hé(S?), thenu € H'([0, T1; L2(£2)) N L>®([0, T']; Hé(.Q)).
If 2 is convex, I'p = 382, ug € H>(2), f € H'([0, T]; L>(22)) N L?([0, T]; H?
(2)) andug € H} (2), u1=Auo— f(0) € H} (£2), thenwe haveu, € L*([0, T; H?
(£2)) and uy; € L*([0, T1; L*(£2)).

Proof (sketched) The first part of the theorem follows from the convexity of the
Dirichlet energy. The second part exploits the H2-regularity of the Laplace operator
and a differentiation of the heat equation, i.e., considering u” — Au’ = f”. O

Remark 3.14 The homogeneous heat equation with f = 0 has a regularizing effect,
i.e., if 352 is smooth, then for ug € L%(£2), we have u(r) € C*°(£2) for everyt > 0.
On the other hand, we have u(f) — ug in L2(§2) as r — 0. Constructing smooth
approximations of a function by mollification makes use of these properties. The
regularizing effect is also reflected in the fact that the underlying diffusion process is
irreversible. Mathematically, the time-reversed equation u; + Au = 0in [0, T] x £2
with u(0) = ug is ill-posed.

3.3.2 Semidiscrete in Time Approximation

We analyze various time-stepping schemes that will be the basis for fully discrete

we use the backward difference quotient defined by
k_ Lok ok
dia" = —(@a" —a“"")
T

fork=1,2,...,K.

Lemma 3.8 (Difference calculus) Given sequences (a¥)i—o.... x and (bk)kzo,,,,, K
in a Hilbert space H, we have
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k _k k2 k2
2dia”,a )y =dilla” Iy + tlidia” |-

Moreover, we have the discrete product rule d,(a*, b¥)y = (d,a*, b*) + (a1,
d;b*) y and the summation-by-parts formula

K
> (@at by + @ dibhn) = @ 65— @ ),
k=1

Proof The first identity follows from the binomial formula 2(a — b)a = (@*=bp3)+
(a — b)2. The second identity is equivalent to td; (a*, by = (@* — a1, bhy +
(ak_l, bk — bk_l) H, and the third identity follows from a summation over k =
1,2,..., K. O

The implicit Euler scheme leads to a sequence of equations that satisfy the con-
ditions of the Lax—Milgram lemma.

Algorithm 3.1 (Implicit Euler scheme) Given U® € L?(£2) and T > 0, compute
fork =1,2,..., K with K = | T/t ] functions U* € H}}(£2) such that

@ U*,v) + (VU*, Vv) = (f (1), v)

forallv e H) ().

To bound the error between the exact solution and the approximations
PP
w k)k_o K, we first investigate consistency of the scheme.

.....

Proposition 3.3 (Consistency) Assume u € C([0, T'1; Hﬁ(Q)) and set u* = u(ty)
fork=0,1,...,K. Ifuy € L*([0, T1; H.(£2)), then we have

(e, v) + (Vb Vv) = (f @), v) + G (1 v)
forallv e HI])(.Q) with functionals € (ty) € Hﬁ(.Q)’ satisfying
K
2 NG WG, o) < T
k=1

Proof Due to the assumed regularity we have

(dil®, v) + (Vu*, Vv) = (), v) + (Vu(t), Vv) + (dil® — u (1), v)
= (f (1), v) + (deul" — ur (1), v)

for all v € H})(£2). The identity
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73 Tk

1 d 1
it —dt = = [ 56 = o) —urds = = [ 6= o ds
T ds T

f—1 -1

implies that for every v € Hé(.Q) with |[Vv| < 1, we have

(1 v) = (du® — uy (1), v) = /(s — tr—1) (g, v) ds
th—
1/2
! /<s o’ ds) / ey gy 05)
We verify the estimate with fzik,l (s —te_1)?>ds = 73/3. O

Together with a discrete stability estimate, this implies a bound for the approxi-
mation error.

Proposition 3.4 (Discrete stability) Suppose that the sequences (zk)kzo ,,,,, Kk C
HY\(82) and (b)i=1....x C H(82)' satisfy
(d 2", v) + (VZF, Vv) = be(v)
fork=1,2,..., K. Then
K
(max 7 ; IVZ411* < 2llzol1* + 27 Z 1Bel3 o -
Proof Choosing v = z*, we find with Lemma 3.8 that
dr k2, T k)2 ky2 k 1 ky2
EIIZ I~ + EHdtZ 7+ IVZH" = br(2") = IIkaIH L2y EIIVZ .
Multiplication by 7 and summation over k = 1,2, ..., Lfor 1 < L < K lead to
L L
107 47 DIV IP < 002+ D el -
k=1 k=1
This proves the claimed estimate. (]

The combination of the last two propositions implies the following error estimate.

Theorem 3.8 (Error estimate) Under the assumptions of Proposition3.3 we have
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K
1) — U2 Vut) — UH|? < et
(max o) = UY] +r]§n () = UM < et

Proof The error ek = uF — U* satisfies ¢ = 0 and
(dre*, v) + (Vek, Vv) = Cr (; v)

fork = 1,2, ..., K. The discrete stability estimate and the bound for the functionals
%> (1) lead to the estimate of the theorem. O

Remarks 3.15 (i) The assumption u € C([0, T]; Hﬁ(.Q)) allows us to insert the
sequence (M) k=1 k defined by uk = u(t) into the discrete scheme. Alternatively,
one can employ the local temporal averages u* = (1/1) f,ikj—://zz u(s)ds for k =
1,2,...,K —1and u® = uo.

(ii) By interpreting the heat equation as a gradient flow, a similar estimate can be
proved under the sole condition that —Aug € L2(£2), cf. Theorem 4.7.

.....

Under additional regularity assumptions, quadratic convergence with respect to
can be proved for a modified scheme. Given sequences (U FY=0....x and (tt)k=0,...K
wesetfork=1,2,..., K

_ 1 - !
Uk 1/2=5(Uk—|—Uk b, tk71/2=§(fk+fk—1)-

Algorithm 3.2 (Crank-Nicolson scheme) Given U° € H}(£2) and T > 0, compute
fork =1,2,..., K with K = | T/t functions U* € Hll)(.Q) such that

@ U*,v) + (VU2 W) = (f(tk—12), v)

forallv e H) ().
Remark 3.16 Tfu € C3([0, T] x £2), then the Taylor expansions

u(te) = ulte—172) + (t/2u(te—12) + (0% /8)ur (te—12) + O(z%),
uti—1) = ulte—172) — (t/2)ur(tx—12) + (% /8)us (tx—1,2) + O(z)

show with u* = u(z), k =0, 1, ..., K, that
dil" —u (1) = 0T, VT2 —u(te_1p)] = O(?).
Therefore, we have

(dud*,v) + (Vu* =12 9v) = (F(te12), v) + G (k-1 /25 v)
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with

CM (k123 V) = (du’ — up(t—172), v) + (V2 —ute_12)1, Vv)
which satisfies | 67" (t-1/2) | g1 2y = 0(7?).

The explicit Euler scheme is always unstable in the semidiscrete setting, e.g., it
is undefined if f = 0 and ARUO & Lz(.Q) for some k with1 <k < K.

Algorithm 3.3 (Explicit Euler scheme) Given U Oec HY(£2)and t > 0, compute
fork =1,2,..., K with K = |T /7 functions U* € HI%(.Q) such that

(dU*,v) + (VU v = (f(te-1), v)

forallv e H) ().

3.3.3 Semidiscrete in Space Approximation

To understand the influence of a spatial discretization of the heat equation, we con-
sider the Galerkin method that defines a finite-dimensional system of ordinary dif-
ferential equations.

Algorithm 3.4 (Galerkin method) Given a triangulation .73, of £2 and ug; €
SN, find up, € H'([0, TT; 73 (Fh)) such that uj, (0) = ug , and

O (2), vi) + Vup(t), Vvp) = (f (1), vi)
for almost every ¢ € [0, T] and all v;, € Yg(ﬂh).

We proceed as before and consider the consistency error for an interpolant of u.
The obvious choice of the nodal interpolant .#,u(t) leads to

(0 It vir) + (V. Igu, V) = (f (1), vi) + Gn(t; vi)

with _
Gr(t;vi) = Oi[Ihu —ul, vi) + (V[Fpu —ul, V).

For a sufficiently regular solution u, the first term on the right-hand side is of order
O (h?), while the second term is only of order &'(h). The alternative choice Qju(t)
with the H l-projection of u(t) onto YDI () is known as Wheeler’s trick and defines
functionals %7, (¢; -) via

Gr(t;vi) = (0:[Qnu — ul, vp) + (V[Qpu — ul, Vvi) = (0;[Qnu — ul, vp).
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Due to the Aubin—Nitsche lemma we have that &, (¢; v;,) is of order &' (h?). We make
this observation precise in the following proposition.

Proposition 3.5 (Consistency) If the Laplace operator is H*-regular in 2 and u; €
L2([0, T1; H*(2)) then we have

0: Qnu, vi) + (VQpu, Vvp) = (f, vi) + Cn(t; vi)

with functionals € (t) € Hﬁ(.Q)’ satisfying

T
2 4
0

Proof The discussion above shows that it suffices to bound

Cn (15 vi) = (0 (Qnu — u), vp).

Since Qj, is bounded and linear we have d; Qpu = Qpu;. With Theorem3.5 we
deduce that
1Qnuts — ;|| < ch?||Dull,
which holds for almost every ¢ € [0, T] implies the result. ]
An error estimate follows from a discrete stability estimate
Proposition 3.6 (Discrete stability) Suppose that z, € H'([0, T1; 3 () and
by € L3([0, T1; HL(£2)') satisfy
(O¢zn, vi) + (Vzn, Vvp) = by (t; vi)

for almost every t € [0, T] and every vj, € yDl(%). Then

T T
sup ||Zh<r>||2+/||Vzh||2dr s2||Zh<0>||2+2/||bh||§,1(m,dr.
te[0,7T] o 0 D

Proof The choice of v, = z;(¢) in the discrete equations immediately leads to the
estimate. U

Theorem 3.9 (Error estimate) Under the assumptions of Proposition3.5 and if
luo.n — Quuoll < ch?, we have

T
sup | (u — up) (1) +h2/ IV (u — up)||* dr < ch®.
tel0,T] 0
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Proof The estimate for u — uyj, replaced by Qpu — uy is a direct consequence
of the consistency estimate and the discrete stability result. The triangle inequal-
ity and the estimates ||u () — Qpu () ||+ ||V (u(t) — Qpu(t))|| < ch?||D%u(r)| then
imply the bound for u — uy,. (]

3.3.4 Fully Discrete Approximation

The explicit and implicit Euler scheme and the Crank—Nicolson scheme are special
cases of the following 6-midpoint scheme related to & = 0,0 = 1, and 0 = 1/2,
respectively.

Algorithm 3.5 (0-midpoint scheme) Given 6 € [0, 1], a triangulation .7}, of £2,
and u2 e (%), compute for k = 1,2,..., K with K = |T/z| functions
u',‘l € 5%(%) such that

(duk, vi) + (V[Oub + (1 = 0)u} ™, Vo) = (F @1 + (1 — O)t5—1), vi)

for all v, € YS(%).

We have unconditional stability if & > 1/2 and conditional stability if 8 < 1/2.
We let ciny > 0 be such that || Vv, || < cinvh ™ |lval for all v, € YDI(%) if F, is
quasiuniform.

Proposition 3.7 (Discrete stability) Suppose that the sequences (z’;l)kzo ,,,,, k C
ST and (bp)k=0,...x C HL(R)' satisfy

(drzh. vi) + (V02§ + (1 — 0)2; "1, V) = be(vn)

forallvy, € SY(T). If0 > 1/2, we have

K K

k2 k ooy k=192 02 2

(ax 17 7 D IVI0z), + (1 =07, 117 = 205017 +27 3 1Bkl o

k=1 k=1
Suppose that J), is quasiuniform and ciznvrh_2 <1/2if0 < 1/2. Then

1 K K

k2 kjy2 _ 02 2
max llz I+ >0 IV = 200 + 20 3Bl o

k=1,...,
k=1 k=1

Proof We abbreviate zﬁ’g = QZﬁ +(1 —0)zﬁ71 and assume first that & > 1/2. Noting

zl,{,’e = (Zl,i + z’;’l)/Z + (6 — 1/2)7,’d,Z’Z, the choice of v, = ZIZ’Q yields



3.3 Approximation of the Heat Equation 71

di k2 1 k2 ko2 1 2 L k6,2
E”Zh” +(9—§)T||dtzh|| + IV, N7 < §||bk||Hé(m/+§||VZh .

A summation over k = 1,2, ..., L forevery 1 < L < K and multiplication by t

imply the estimate. If < 1/2, then vy = z§ and z;"’ = z¥ — (1 — 6)7d,zf lead to

d T T
3’||zﬁ||2 + End,zinz +IVEIE=qa - e)z(dtnw’mﬁ + TV, Z5 1) + b ().

Summing over k = 1,2, ..., L, multiplying by 7, and estimating (1 — ) < 1 show
that

L L L
Lo, T k2 T k2 2 Lo T 2
e IP + = Dol + 5 > IVzIP < Szl + 5 D bl o)
k=1 k=1 k=1
- L
+E(nw,fnz+r22||w,z§||2).
k=1
We incorporate the inverse estimates

Kk —1y gk L —1yL
IVdizyll < civh ™ dizp Il IVZy I < cinvh™ Nz |l

to verify the stability estimate for 6 < 1/2. ]
We verify the consistency of the numerical scheme only for the case 6 = 1.

Proposition 3.8 (Consistency) Ifu;; € L2([0, T1; L2(£2)), u,L2([0, T1; H2(£2)),
0 = 1, and the Poisson problem is H>-regular, then we have for u* = u(t) that

(d Qnu*, vi) + (VQuu*, Vo) = (f (W), vi) + Cie (115 vi)
with functionals 6}, () € Hﬁ(.Q)’ such that
k
2 2 4
D NG @l o) < e + 1.
k=1
Proof Fork = 1,2, ..., K we have, using (V(Qnu* — u*), Vv,) = 0, that

(d; Qnuu*, vi) + (V Qi Vvn) = (f (), vi) + (dy Qu — dyutx), vi)
= (f (), vi) + Chz (5 vi)-
Arguing as in the proof of Proposition3.3 and incorporating estimates for the

H'-projection, we find that the functional %, (#; v) satisfies for every v € HI%(.Q)
with | V| < 1 the estimate
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G (k3 v) = (d Quu* — drul®, v) + (drul® — du(te), v)

tx 13
1 1

= /((Qh — Du,v)ds + z /(s — tk—1)(ugr, v) ds
Th—1 1

- k—1

tx 13
12 12
5ch2(/ ||D2u,||2dt) +cr(/ ||u,,||2dt) .
th—1 k-1

This implies the asserted bound. O

Theorem 3.10 (Error estimate) Under the condition of Proposition3.8 we have

Jmax ) = |? < e + i),

K

T D IVIu(t) — upll? < c(x® + h?).
k=1

Proof The estimate follows from the consistency result, the discrete stability, and the
triangle inequality together with approximation properties of the H !-projection. [J

Remark 3.17 For the fully discrete Crank—Nicolson scheme corresponding to 6 =
1/2, one can prove the error bound maxy—1 . x |[u(tx) — uft | < c(z? + h?) under
appropriate regularity conditions.

.....

3.3.5 Discrete Maximum Principle

If f >0in[0,T] x £2 and ug > 0, then the solution of the heat equation is
nonnegative in [0, T] x §2. Closely related is the (weak) maximum principle which
states that if f = 0O, then u attains its maximum on the boundary of [0, T'] x 2.
For the semidiscrete scheme, which defines the approximation U* e Hé(.Q) as the
unique minimum of

1 _ 1
W) = - U - vt 1||2+5/|VU|2c1x,
2

we can argue by truncation as in the case of the Dirichlet energy. Letting m*~! =

max,eo U1 (x) and setting

T, -1 U (x) = min{U* (x), m*1},
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we have
15T, 1 UY < 1RUF)

and this implies T,,x—1 U* = U, i.e., U* < m*~!. Aninductive argument implies that
maxk—o,... Kk MaXyep U* (x) < maxyep Uo (x). We aim at using a similar argument
in the fully discrete situation. This requires a modification of the numerical scheme.

Definition 3.13 Given a_triangulation I, of §2, the discrete (or lumped) L2-inner
product is for v, w € C(£2) defined as

v, W —/ﬂh(VW) dr = D" Bv(@w(2)
€M,

with g, = | o 9 dx for every z € 4. The corresponding discrete (or lumped)
(semi-) norm is for v € C(£2) defined by [[v]|? = (v, V)p.

Lemma 3.9 (Discrete inner product) For vy, wy, € YS(%) we have
vall < Ivalln < (d +2)"?{lvall

and
| Wi — v wi) | < R Vv [ VoWl

for € € {0, 1} and VOowy, = wy, and V'wy, = Vwy,.

Proof For every T € ., such that T = conv{zg, 21, ..., 24} With 29, 21, ..., 24 €
T N A}, a transformation argument shows for My = |T'|d!/(d + 2)! that

/goz,gou dx = (1 4+ 8;0) Mr, /fh(goz_,%k)dx — (d +2)8 ;M.
T T

With these identities it follows that for vj |7 = Z?:o aje;;, we have

My ||w1||Lzm—2Za + Z ajay < <d+2>2a Mz vl 7

Jj. k=0
J#Fk

where we abbreviated fT 7 (v%) dx = ||v ||i r- Conversely, we have

d d
M7 vl r <2@+2) D a5 +(d+2) D ajar = d +2M7 vl 72
j=0 Jj k=0

J#k



74 3 FEM for Linear Problems

The estimates for nodal interpolation, together with an inverse inequality if d > 3
and D?vy, |7 = 0, D?>wy,|7 = 0, show that

/ v — i ()| dx < ch / D2 (wi)| dx < 3 19l 2 19w L2

A summation over all T € 9}, proves the estimates for £ = 1. To prove the
estimate for the case ¢ = 0, we first employ the inverse estimate |Vwp|lz27) <

ch;1 Iwnll L2¢ry for every T € . (I

Remarks 3.18 (i) The discrete inner product has a stabilizing effect, e.g., ford = 1
we have for all v, € .#1(.7},) that

vl = Ivall® + = 2 RNV VRIS 2 7 -
TeZ,

(ii) The discrete inner product allows for a localization of quantities since (v, ¢;), =
B;v(z) for every v € C(£2) and every z € .
(iii) The use of the discrete inner product is also referred to as reduced integration.

A discrete maximum principle holds for the modified implicit Euler scheme which
employs the discrete L>-inner product.

Theorem 3.11 (Discrete maximum principle) Assume that I, is weakly acute and
feC(0,T] x £2). Let (uﬁ)k:() K € Yg(%) satisfy

.....

(dyuk v + (Vuk, Vo) = (F @), vidn

fork =1,2,....,K and allvy, € S3(T). If f = 0in[0,T] x 2 and u)) > 0 in
2, thenuk > 0in Q2 fork =1,2,..., K. If f =0, then

max max u (z) < max u (z)
k=1,..., K ze M, h 7€M, h

Proof Assume that for 1 < k < K we have u’,ifl > 0 and f(#x) > 0. The function
u’]fl is the unique minimizer of the functional

I;If(uh)=—||uh—u N2 4= /lVMhIZdX—/fh Sfupld

in the set of functions uy, € YDl(%). We define the function ﬁ’fl € YDl(%) through

the truncated nodal values fi’,‘l(z) = max{u’,fl(z), 0} for all z € .4}. Then ﬁkh > 0in
£2 and
ity (2) — ujy " (@] < Jup(2) — ujy ' ()]
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for all z € _4},. Arguing as in the proof of Corollary 3.4, we find I,’f (i?’,‘l) < I,’f (u’;l).
This implies u/,; = 72’;1 and uﬁ >0.If f =0, we set mffl = max;c_y uﬁfl(z) and
define the function ﬁ’; 1S YDl(%) through the truncated nodal values

ik (z) = minfub (z), m ')

Again, we have Iiﬁ (z) — uf] ()] < Iul,‘l(z) - ulfl (z)| forall z € A3 and I{f(ii’,‘l) <
k—1

I}]f(uﬁ). Therefore u’,‘l = ii’,‘l <m; " and an inductive argument finishes the proof. [
Remarks 3.19 (1) The nonnegativity of the solutions can also be proved by noting
that the nontrivial nodal values U* = (u’;,(z))Ze M\Ip solve the linear systems of
equations R L L L

(M), + tAYU* = MU*" + M, F*

with the diagonal mass matrix M, related to the discrete inner product (-, -), and
the finite element stiffness matrix A. The matrix A is diagonally dominant and has
positive entries only on the diagonal because of the weak acuteness of the underlying
triangulation. Therefore, the matrix Mh + TA is an M-matrix and its inverse has
nonnegative entries.

(i) Approximations obtained with the Crank—Nicolson scheme do in general not
satisfy a maximum principle even if the discrete inner product is used.

3.3.6 A Posteriori Error Estimate

The schemes discussed above can easily be modified to allow for variable time

steps (Tk)k=1....x and triangulations (Zlk)kzowlg. We then set t; = Z';zl Tj, k=

0,1,..., K, assume that fx = T, and define
dt =~k — ™, A =~k — Ak,
Tk Tk

with the nodal interpolant f,{‘ associated with YS (ﬂhk). For a sequence of approx-

,,,,,

YS (ﬂhk), we define the continuous interpolant

up,c(t,x) = ———u;(x) + u,  (x)
T T

forx € 2andt € [tr_1,k]andk =1,2,..., K.

Proposition 3.9 (Residual estimate) Assume that f € C'([0, T]; L*(2)). Fork =
0,1,..., K, let Zlk be a triangulation of 2 and assume that u];l € Yg(%f‘) satisfies
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(dul, vi) + (Vub, Vo) = (fF), vi)

fork = 1,2,...,K and all vy, € YS(%[‘). For almost every t € [0, T], define
Pn,o (1) € H)(2) by

Pp,(t;v) = (B, (1), v) + (Vip, (1), Vv) = (f (1), v)
for everyv € H]g(.Q). Fork =1,2,..., K and almost every t € [ty—1, tx], we have
”‘%]’l,f(t)”i]]l)(g)/ S C(nszpace(tk) + ntzlme(tk) + ngoa_rse(tk) + ngdta(tk))

with the space discretization residual

Mopace () = D Wl — Aujy = F0) 7,
Teﬂhk

+ > hsl[VuynsliGag + D hsloaugliia,
Sesfng SesfnTx

the time discretization residual
Mime () = V0~ = w1117,
the mesh coarsening residual
ngoarse(tk) = Tk_znfhku;_l - uz_l ||27
and the data approximation residual

Mg (t) = T¢ sup 3 f ()]
tE(tg—1,1]

Proof Lett € (tx—1, tx) and v € HJ(£2). Then 8,11), . () = d,u and we have

Rop.o(t;v) = (dyuk ,v) + (Vuk, V) — (F (1), v)
+ (V[in, o (t) — uk1, Vo) — (F(0) = £(1), v) + (duk — duub, v)
= (dpuk, v —vp) + (Vuk, Vv =) = (f (), v — i)
+ (Vin,c (1) — uk1, Vo) — (f(6) — f(1), V)
1 _ _
+ T—k(f,fu’,; —uf=t )

=I+I1l+...+VL
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Withv, = 7, f S yDl (Zlk) and an elementwise integration-by-parts as in the proof
of Theorem 3.6, the first three terms I + II + III on the right-hand side satisfy

I+ 1+ 1< endee )V

The terms IV + V 4 VI are estimated with Holder and Poincaré inequalities. [

Proposition 3.10 (Continuous stability) Assume that z € H'([0, T1; H&(.Q)/ )N
L([0, T1; H'(22)) and b € L*([0, T1; HY(2)') satisfy

(0¢z,v) + (Vz, Vv) = b(v)

for almost every t € [0, T] and every v € HI%(.Q). We then have

sup [|z(0)]|* +/||VZ|| dl<2||Z(0)||2'|'2/||b|| ,d
1€0.7] Hp(2)

Proof The proof follows from choosing v = z(¢) and integrating the resulting identity
overt € [0, T]. O

Theorem 3.12 (A posteriori error estimate) Under the conditions of Proposition3.9,
we have

swHW—%Q@Wf/WW—WﬂVmSMw—Wﬁmw
t€[0,T]

K

+2¢ Z T (nfpace(tk) + Nime ()
k=1

+ ngoarse () + Uﬁata (tk))-

Proof The estimate follows from a straightforward combination of the residual bound
and the continuous stability estimate. (I

Remark 3.20 The theorem provides a computable upper bound for the approxima-
tion error. Since it is the sum of local quantities, it can be used to refine and coarsen
the mesh-size and the time-steps locally.

3.4 Implementation of the P1 Finite Element Method

We describe in this section a way of implementing the P1 finite element method.
Several ideas reported below are adopted from [1, 4].
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3.4.1 Poisson Problem

‘We make the following assumption on the data functions in order to assume an exact
and simple numerical integration. The influence of the approximation of possibly
discontinuous data functions by such functions can be analyzed within the Strang
lemmas.

Assumption 3.1 (Data approximation I) We assume that up = up |, for a func-
tion up ; € . Y(Z,) and f = f;, and g = g, are piecewise constant.

We write the unknown function as u, = uj + up , and seek the uniquely defined
function uj, € 5”5(%) that satisfies

/Viih -V, dx =/fhvh dx +/ghvh ds —/V’IZD,h -V, dx

2 2 I'N 2

for all v, € yg(%). We let U = (ﬁy © y € ) be the coefficients of uy with
respect to the nodal basis restricted to the free nodes ¢, = A \Ip.Forevery T € 9,
and every S € ., we letxp = (1/(d + 1)) Zze:/%,ﬂT zand xg = (1/d) Zzef/%,ms z
denote their midpoints and note that the corresponding one-point quadrature rules
are exact for affine functions. The discrete formulation is thus equivalent to the linear
system of equations

Z /Vﬁov Vo, dx = Z fh(xT)/q’z dx + Z gh(xS)/‘/)z ds

yEHK 0 TeJ, Sc. NN
- > ip h(Y)/V‘/’) Vo, dx
yeM

forall z € %, i.e.,5U = b witha symmetric matrix s € R*¥hx# %0 and b € R¥¥h
The integrals that define the matrix and the vector on the right-hand side are computed
by decomposing the integral as a sum over elements, e.g.,

/Vgoz -Voydx = z /Vq)z - Vo, dx.
) TeTy:z,yeT T

The triangulation of §2 and the partition of the boundary 952 are defined through
the arrays c4n, nde, Db, and Nb that specify the coordinates of the nodes, the
vertices of the elements, and the vertices of the sides on I'p and T, respectively. In
particular, the n¢ x d array c4n defines the coordinates of the nodes and implicitly
an enumeration of the nodes. The ng x (d + 1) array nde defines the elements
by specifying the positions of their vertices through their numbers. Similarly, the
npp X d and nyp x d arrays Db and Nb define the vertices of the sides belonging
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Q=(0,1)% I ={0,1} x {0}, [k =9\ I, Z“ s
Ip)
cédn [0,0;1,0;1,1;0,11;
nde [1,2,3;1,3,41;
Db = [1,2]; T
Nb [2,3;3,4;4,171;
V4 S0 Y Y Y 22

Fig. 3.8 Triangulation of the unit square and corresponding arrays

to I'p and I\, respectively. The arrays are displayed in Fig. 3.8 for a triangulation
consisting of two triangles and with four nodes.

Assumption 3.2 (Orientation) We assume that the list of elements defines an
ordering of the nodes of elements that induces a positive orientation of 7, i.e.,
if T = (zo,21,...,2q) for T € 9, and z9,21,...,2¢ € A such that T =
conv{zop, 21, . . - , Zd}, then the vectors 1y = z¢ — 20, £ = 1,2, ..., d, satisfy

71 > 0, rz-rf‘>0, 3 (11 Xx10) >0

ford =1, 2, 3, respectively.

To compute the system matrix 5 and the vector b on the right-hand side of the
linear system of equations stated above, we note some elementary identities for the
nodal basis functions.

Lemma 3.10 (Elementwise gradients) Let T = (2o, 21, - - - » 2q) With 20, 21, - - - 2d

e RY and define
Xp = Ll pa@tnx@a+n
2021 .- 2d

We then have that the volume |T| is given by |T| = (1/d!) det X7, and with the
identity matrix 1; € R4 that

T ~110
[V(pZO'Ts'-"Vngd'T] =XT1 |:Idi|

Proof The proof follows from noting that the nodal basis function associated to z;
is for x € T given by

1 1 1 ... 1
. = —dt ’
(sz(x) d‘|T| € [x Zj+] Z]«I»d]

where subscripts are understood modulo d, together with Laplace’s formula and
Cramer’s rule. ]

Some additional identities are required for computing the vector b.
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Lemma 3.11 (Right-hand side) For a side S = conv{zg, 21, ...,2d—1} € “h, the
surface area |S| is given by

1 I;f‘d:17
[S| = 1 lz1 — zol if d=2,
[(z2 —z0) X (z1 —20)|/2 if d =3.

Moreover, forT € 9, S € %, andz € T N S, we have

/ dx=ﬂ / ds=@
Pz d+1 Pz 4

T N

Proof The proof of the formula for | S| follows from elementary geometric identities.
The integrals over 7' and S are computed with the help of an affine transformation
to a reference element. (]

Figure 3.9 shows a MATLAB implementation of the P 1 method in which the matrix
s corresponds to the array s ( £Nodes, £Nodes) . We input the space dimension and
the number of refinements of a coarse triangulation. The routine red_refine.m
carries out the refinements of the triangulation by dividing every element into 2¢
subelements. The operation sf solves a linear system of equations and the command
sparse (I,J,X,nC,nC) assembles a sparse matrix s € R"¢*"C by specifying

,,,,,

3.4.2 Heat Equation

For a simple implementation, different assumptions on the approximation of the data
functions are made for the implementation of the 6-midpoint scheme for the heat
equation.

Assumption 3.3 (Data approximation II) We assume that

uo = uo € (), up = upy € C([0, TT; L (T)),
f=/freCq0,TLES(Th), g=gneCUO, T ().

For a sequence (@®)i=o....x and 6 € [0, 1], we set a*? = Ga* + (1 — O)a*~!.
The 6-midpoint scheme then computes the sequence (ﬁ];l) k=0...k C YS(%) with

/d,ii];lvh dx + / Vﬁi’a Vv, dx = —/d,u]f)yhvh dx — / Vulf)”&h -V, dx
Q Q 2 2

~I—/fh(tk,9)Vh dx+/gh(lk,9)Vh ds
2

I'n
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function pl_poisson (d, red)

for j = 1:nE
X_T = [ones(l,d+1);cd4n(nde(j,:),:)"']1;
grads_T = X_T\[zeros(l,d);eye(d)];
vol_T = det (X_T)/factorial(d);

mp_T = sum(c4n(nde(j,:),:),1)/(d+1);
for m = 1:d+1
b(nde(j,m)) = b(nde(j,m))+(1/(d+1))*vol_Txf (mp_T);
for n = 1:d+1
ctr = ctr+l; I(ctr) = nde(j,m); J(ctr) = nde(j,n);
X (ctr) = vol_Txgrads_T(m, :)x*grads_T(n,:)"';
end
end

end
s = sparse(I,J,X,nC,nC);
for j = 1:nNb

function val = f(x); val = 1;
function val = g(x); val =1
function val = u_D(x); val = sin(2+pixx(:,1));

;

[c4n,n4d4e,Db,Nb] = triang_cube (d);
for j = l:red
[cd4n,nde,Db,Nb,Pr0,Prl] = red_refine(c4n,nde,Db,Nb);
end
[nC,d] = size(c4n); nE = size(nde,l); nNb = size(Nb,1);
dNodes = unique (Db); fNodes = setdiff (1:nC,dNodes) ;
u = zeros(nC,1); tu_D = zeros(nC,1l); b = zeros(nC,1);
ctr = 0; ctr_max = (d+1) "2*nE;
I = zeros(ctr_max,1); J = zeros(ctr_max,1l); X = zeros(ctr_max,1);

if d ==
vol_S = 1;
elseif d ==
vol_S = norm(c4n(Nb(j,1),:)-c4n(Nb(3,2),:));
elseif d == 3
vol_S = norm(cross (c4n(Nb(j,3),:)-c4n(Nb(j,1),:),
c4n (Nb (3,2),:)-c4n(Nb(j,1),:)),2)/2;
end
mp_S = sum(cd4n(Nb(j,:),:),1)/d;
for k = 1:d
b(Nb(j,k)) = b(Nb(7j,k))+(1/d)*vol_S*g(mp_S);
end
end
for j = 1:nC
tu_D(j) = u_D(c4n(j,:));
end
b = b-s*tu_D; u(fNodes) = s (fNodes, fNodes) \b (fNodes); u = u+tu_D;
if d ==
plot (c4n(nde),u(nde));
elseif d ==
trisurf (nde,cd4n(:,1),cd4n(:,2),u);
elseif d ==
trisurf ([Db;Nb],cd4n(:,1),c4n(:,2),c4n(:,3),u);
end

Fig. 3.9 MATLAB implementation of the P1 finite element method for the Poisson problem

81
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function pl_theta_heat (d, red)
T = 10; theta = 1/2; alpha = 1;

[c4n,nde,Db,Nb] = triang_cube(d);
for j = l:red
[cd4n,nde,Db,Nb,Pr0,Prl] = red_refine(c4n,nde,Db,Nb);
end
nC = size(cdn,1l);

dNodes = unique (Db); fNodes = setdiff (1:nC,dNodes);
h = 27 (-red); tau = h"alpha/4; K = floor(T/tau);
u_old = u_0(cd4n)-u_D(0,cdn); u_new = zeros(nC,1);
[s,m,m_lumped,vol_T] = fe_matrices(c4dn,nde);
[m_Nb,m Nb_lumped] = fe_matrices_bdy (c4n,Nb);

for k = 1:K

t_k = kxtau; t_k_theta = (k-1l+theta)*tau;

dt_u_D = (1/tau)* (u_D(t_k,cdn)-u_D (t_k-tau,cdn));
u_D_k_theta = theta*u_D(t_k,cdn)+ (1-theta)*u_D (t_k-tau,cédn);
b = (1/tau)*m*u_old-m*dt_u_D

-sxu_D_k_theta-(l-theta) *sxu_old
+m*f (t_k_theta, cd4n) +m_Nb*g (t_k_theta, c4n);

X = (1/tau) *m+thetaxs;
u_new (fNodes) = X (fNodes, fNodes) \b (fNodes) ;
show_pl (c4n,n4e,Db,Nb,u_new+u_D (t_k, c4n)); drawnow;
u_old = u_new;
end
function val = f(t,x); val = ones(size(x,1),1);
function val = u_0(x); val = sin(2xpi*x(:,1));
function val = u_D(t,x); val = min(t, .2)*sin(2xpixx(:,1));
function val = g(t,x); val = zeros(size(x,1),1);

Fig. 3.10 MATLAB implementation of the 6-midpoint scheme in time and the P1 finite element
method in space for the heat equation

forallvy, € YS(%). We also set u’]‘)’h =up(ty) fork =0,1, ..., K. The nontrivial
coefficients U* = ((7;‘ 1y € ) of ﬁ’,‘l satisfy the equation

Z ﬁﬁ(r‘1/<p1¢y d)C—i—@/V(py~V<pZ dx)

e Q2 Q
> 6§—1(r—1/¢y¢zdx—(1 —9)/Vg0y~V(pde)
yeHty Q Q
+ Z (—dlugh(y)/goy(pz dx —u]f)”@h(z)/VgOngoz dx)
yGJ% Q Q

+ Z (fh(tk,e,y) / Pype dx + gn(teo, y) / Pyp: dx)
yeti 2 I'n
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function [s,m,m_lumped,vol_T] = fe_matrices (c4n,nde)
[nC,d] = size(cdn); nE = size(nde,l);
m_loc = (ones(d+l,d+1)+eye(d+1))/ ((d+1)* (d+2));
ctr = 0; ctr_max = (d+1) "2*nE;
I = zeros(ctr_max,1l); J = zeros(ctr_max,1);
X_s = zeros(ctr_max,1l); X_m = zeros(ctr_max,1);
m_lumped_diag = zeros(nC,1); vol_T = zeros(ng,1);
for j = 1:nE

X_T = [ones(l,d+1);cd4n(nde(Jj,:),:)"'1;

grads_T = X_T\[zeros(l,d);eye(d)];

vol_T(3j) = det (X_T)/factorial (d)

for m = 1:d+1

for n = 1:d+1

’

ctr = ctr+l; I(ctr) = nde(j,m); J(ctr) = nde(j,n);
X_s(ctr) = vol_T(j)+*grads_T(m, :)+grads_T(n,:)"';
X_m(ctr) = vol_T(j)*m_loc(m,n);
end
m_lumped_diag(nde(j,m)) = m_lumped_diag(nde(j,m))
+vol_T(j)/ (d+1);
end
end
s = sparse(I,J,X_s,nC,nC); m = sparse(I,J,X_m,nC,nC);

m_lumped = diag(m_lumped_diag);

function [m_bdy,m_lumped_bdy] = fe_matrices_bdy (c4n,bdy)
[nC,d] = size(cdn); n_bdy = size(bdy,1);

M_loc_bdy = (eye(d)+ones(d,d))/ ((d+1)*d);

ctr = 0; ctr_max = d"2xn_bdy;

I = zeros(ctr_max,1); J = zeros(ctr_max,1);

X_m_bdy = zeros(ctr_max,1);

m_lumped_bdy_diag = zeros(nC,1);
for j = 1:n_bdy

m_bdy = sparse(I,J,X_m_bdy,nC,nC);
m_lumped_bdy = diag(m_lumped_bdy_diag);

if d ==
vol_S = 1;
elseif d == 2
vol_S = sqgrt (sum((c4n(bdy(j,2),:)-cé4n(bdy(j,1),:))."2,2));
elseif d == 3
vol_S = sqgrt (sum(cross (c4n (bdy(j,3),:)—-cd4n(bdy(j,1),:),
cdn(bdy (3,2),:)-c4n(bdy (j,1),:))."2,2))/2;
end
for m = 1:d
for n = 1:d
ctr = ctr+l; I(ctr) = bdy(j,m); J(ctr) = bdy(j,n);
X_m_bdy(ctr) = vol_S*M_loc_bdy(m,n);
end
m_lumped_bdy_diag(bdy (j,m)) =
m_lumped_bdy_diag (bdy (j,m))+vol_S/d;
end
end

Fig.3.11 MATLAB routines that provide the P 1 finite element stiffness and mass matrices according

to Lemmas 3.10 and 3.12; the index “lumped” refers to reduced integration
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for every z € .#,. The implementation thus requires computing L>-inner products
of the nodal basis functions. These can be replaced by simplified discrete versions
based on numerical integration as introduced in Definition 3.13.

Lemma 3.12 (Mass matrices) For T € 9, such that T = conv{zg, z1, ..., 24}, we
have for 0 < m,n < d that
/(p 0. dx = ATIA A+ bmn) /fh oo o _ T 18mn
Zm ¥Zn (d+1)(d+2) Zm Zn d+1
T
For S € %}, such that S = conv{zg, 21, ..., 24—1} we have for 0 < m,n < d — 1
that ISICL+ 8n) 1518
dy = ——— "7 /ﬂ dx = —/ 2,
/@Zm@ln X dd+ 1) w9z, 92,1 dx P
S N

Proof The identities follow from elementary calculations on a reference element and
a transformation to 7. ]

Figure 3.10 displays a MATLAB implementation of the #-midpoint scheme. The
routines fe_matrices_bdy.m and fe_matrices.m displayed in Fig.3.11
provide the stiffness and mass matrices. The parameter « in the code determines
the time-step size via T = h® /4.
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Chapter 4
Concepts for Discretized Problems

4.1 Convergence of Minimizers

We consider an abstract finite-dimensional minimization problem that seeks a
minimizing function u;, € 47, for a functional

Ih(uh)=/Wh(Vuh)dx,
7)

where the indices /4 in .7, and W}, refer to discretized versions of given counterparts
in the infinite-dimensional variational problem for minimizing

I(u) = / W (Vu) dx
2

in the set of functions u € 7. We will often refer to the infinite-dimensional problem
as the continuous problem, but this does not imply a continuity property of the
functional or its integrand. The finite-dimensional problems will also be referred to
as discretized problems. We recall that it is sufficient for the existence of discrete
solutions to have coercivity and lower semicontinuity of /5, while in the continuous
situation, coercivity and the strictly stronger notion of weak lower semicontinuity of
I are required. We discuss in this section the variational convergence of minimization
problems and adopt concepts described in the textbook [5].

4.1.1 Failure of Convergence

A natural question to address is whether a family of discrete solutions (up)x~0
converges to a minimizer u € ./ for I with respect to some topology. Obviously,
this requires the existence of a minimizer u € .2/ for I and convergence of the entire
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86 4 Concepts for Discretized Problems

sequence of approximations requires uniqueness of the continuous solution, or a
certain selection principle contained in the discrete problems. Surprisingly, even if a
solution exists for the continuous problem, if the discretization is conforming in the
sense that @, C o/ and W, = W, and if the family (7,);~0 is dense in .27, then
convergence of discrete solutions may fail entirely.

Example 4.1 (Lavrentiev phenomenon [9]) Let o/ be the set of all functions
ve whlo, 1) satisfying v(0) = 0 and v(1) = 1 and consider

1

I(u):/(x—u3)2|u/|6dx.

0

For h > 0 let .7}, be a triangulation of (0, 1), and define <%, = &/ N.#'(.%},). Then

the function u(x) = x1/ 3 is a minimizer for / in <7, but for every h > 0, we have
0= min /(u) < min I(u) < min I (up).
uesd/ ue/ NW1.20(0,1) up €

In particular, the discrete minimal energies cannot converge to the right value. The
reason for this discrepancy is the incompatibility of the growth of the integrand of 1
and the exponent of the employed Sobolev space in the definition of ..

The example shows that even the seemingly simple notion of convergence

min I, (up) — 1nf I (u)
up €

for h — 0 requires stronger arguments than just the density of the approximation
spaces. Once convergence is understood, a natural question to investigate is whether
a rate of convergence can be proved, i.e., whether there exists « > 0 with

| min I (up) — 1nf I(u)| < ch”.
Up €Iy

Even if this is the case, it is not guaranteed that discrete solutions u;, € .7, converge
to a minimizer u € &7 of I.

Example 4.2 (Lack of weak lower semicontinuity) Set o = W4(0, 1) and let

1

(1) =/(|u’|2 —1)" +utdx.

0

For h > 0 let .7, be a triangulation of (0, 1) of maximal mesh-size 4 and define
o = o/ N.SV(F}). Then inf ey I (1) = 0 and

| min I (up)— 1nf I(w)| < ch*,
up €,
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and any weakly convergent sequence of discrete minimizers (uj,)~o satisfiesu;, — 0
in WI4(£2) as h — 0. Due to the nonconvexity of the integrand, we have that u = 0
is not a minimizer for /,i.e., 0 < 1 = 1(0).

4.1.2 TI'-Convergence of Discretizations

The concept of I"-convergence provides a concise framework to analyze convergence
of a sequence of energy functionals and its minimizers. In an abstract form we
consider a sequence of discrete minimization problems:

Minimize I, (uy,) in the set of functions uj, € Xj.

Here, every space X, is assumed to be a subspace of a Banach space X and I is
allowed to attain the value +00, so that constraints contained in .2, C X} can be
incorporated in ;. We formally extend the discrete problems to X by setting
In(w) if ue Xy,
In(u) = .
+oo if u ¢ Xp.

Inthe following, 2 > 0 stands for a sequence of positive real numbers that accumulate
at zero.

Definition 4.1 Let X be a Banach space, I : X — R U {400}, and let (I,)5~0 be
a sequence of functionals I : X — R U {+o00}. We say that the sequence (I)p~0
I'-converges to I as h — 0, denoted by I, —!" I, with respect to a given topology
w on X if the following conditions hold:

(a) For every sequence (up)p~0 C X with up —® u for some u € X, we have that
liminfy_q I (up) > I (u).

(b) For every u € X there exists a sequence (up)n~0 C X with up, —“ u and
In(up) — I(u)ash — 0.

Remark 4.1 The first condition is called liminf-inequality and implies that [ is a
lower bound for the sequence (Ij,);~¢ in the limit ~ — 0. The second condition
guarantees that the lower bound is attained, and the involved sequence is called a
recovery sequence.

Unless otherwise stated, we consider the weak topology @ on X. For conforming
discretizations, i.e., if I (up) = I (up,) for all u, € Xj, of well-posed minimization
problems, a I"-convergence result can be proved under moderate conditions.

Theorem 4.1 (Conforming discretizations) Assume that I, (uy) = I(uy) for uy €
X and h > 0 and that the spaces (X1,)p=0 are dense in X with respect to the strong
topology of X. If I is weakly lower semicontinuous and strongly continuous, then we
have I, =T I as h — 0 with respect to weak convergence in X.
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Proof Let (up)p-=0 C X and u € X be such that u, — u as h — 0. To
prove the liminf-inequality, we note that I (#;,) > I(up) and thus the weak lower
semicontinuity of / implies lim inf,_, ¢ I, (up,) > liminfy,_.o I (u) > I(u).Toprove
that 7 (u) is attained for every u € X, let (up);~0 be a sequence with u;, € Xy for
every h > 0and u;, — u in X. The strong continuity of / and I;, (u;,) = I (uj,) imply
that I (1) = limy_q I (up). (Il

The definition of I"-convergence has remarkable consequences.
Proposition 4.1 (I"-Convergence)

W) If I, =T I ash — 0, then I is weakly lower semicontinuous on X.

G) If Iy =7 I as h — 0 and for every h > 0 there exists u, € X such that
In(up) <inf, ex Ip(vy) +¢&, withey, — Oash — Oanduy, —© u for someu € X,
then I, (up) — I(u) and u is a minimizer for I.

(iii) If I, -1 I and G is w-continuous on X, then I + G =1 I + G.

w

Proof (i) Let (uj)jen C X be a sequence with u; —
every j € N there exists a sequence (u?)h>0 such that ui‘ —® ujash — 0

uin X as j — oo. For

and I, (u?) — I(uj). For every j € N we may thus choose #; > 0, such that

[ (uj)— Ihj(u?j)| < 1/j and ui” —® y as j — oo. It follows that
I () < liminf I, (u’?-’) = liminf 7 (u;) — I (u;) + I, (L/ff) = liminf 7 (u;).
jooo M j—oo I j—00

This proves the first statement.

@i1) If up, —® u, then by condition (a) we have I (u) < liminf;_, o I; (u;). Moreover,
due to (b) for every v € X, there exists (v4)p~0 C X with vy, = v and I},(vj)) —
I(v) as h — 0. Therefore, I (up) < I(v;,) + €, and

I(u) < li;?l_jgf In(up) < }}1_1)1%) (Invn) + 1) = 1(v),

i.e., u is a minimizer for /.
(i) If G is w-continuous, then G(uy) — G(u) whenever u;, —“ u in X and the
I'-convergence of I, + G to I + G follows directly from I, —T 1. O

4.1.3 Examples of I'-Convergent Discretizations

We discuss some examples of I'-convergence. As above, we always extend a func-
tional /;, defined on a subspace X;, C X by the value 4-oo to the whole space X.

Example 4.3 (Poisson problem) Let X = H]é(.Q) and X = 5’5(%) for a regular
family of triangulations (.7},),~¢ of £2. For f € L%(£2) and g€ L2(IN), let

I(u):%/Wulzdx—/fudx—/guds
Q

2 N
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and let [j, : Hé(.Q) — R U {400} coincide with I on ,VDI(%). Since the Dirichlet
energy is weakly lower semicontinuous and strongly continuous, the linear lower-
order terms are weakly continuous on HI%(.Q), and since the finite element spaces
are dense in Hé(ﬂ), we verify that I, — I as h — 0. Nonhomogeneous Dirichlet
conditions can be included by considering the decomposition u = u + up with u €
HJ\(£2). For minimizers u € H*(2)NH}\(2) of I andu, € .7} () of I, we have

|[1Gu) = In(un)| < ch.
A constant sequence of functionals can have a different I"-limit.

Example 4.4 (Relaxation) For the sequence of functionals defined through X =
w4, ),
1

1(u)=/(|u’|2— 1)* + u* dx,

0

subspaces X, = SN T), and I, = I on Xj,, we have that I, — 1 1**in W14(0, 1)
with the convexified functional

1
') = / (|u’|2 - l)i +u*dx,
0

where s = max{s, 0} fors € R. Since the integrand of /** is convex, the functional
is weakly lower semicontinuous. Using that I, (uy,) = I (up,) > I**(uy,) forallh > 0,
we deduce that liminf,_o I (up) > I (u) whenever u;, — u in W40, 1). To
prove that the lower bound is attained, we first consider the case that u € W1'4(S2)
is piecewise affine, i.e., u = uy € Yl(%q) for some H > 0. For0 < h < H we
then construct a function uj, that nearly coincides with u 7 on elements Ty € Jp for
which |u'y |7, | > 1. For elements with |u’, |7, | < 1 we use gradients u), € {41} on
Ty in such a way that uj, and u i nearly coincide at the endpoints of Ty and differ by
at most £ in the interior. Then I (uy,) ~ I**(uy) and I (up) — ™ (ugy) as h — 0.
The construction is depicted in Fig.4.1. The assertion for general u € W*(£2)
follows from an approximation result and the strong continuity of /.

Fig. 4.1 Construction of an oscillating function uj, (solid line) with |u}l| > 1 that approximates
ug (dashed line) such that I (up) ~ I (upg) (left) in Example 4.4; the integrand W** (solid line)
of I** is the convex hull of the integrand W (dashed line) of I (right)
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A typical application of conforming discretizations of well-posed minimization
problems occurs in simulating hyperelastic materials.

Example 4.5 (Hyperelasticity) Let o7 = {y € W'P(2;R?) : y|r, = Iplry,) for
1<p<ooandyp € whp(2; Rd). Assume that W : R9*4 — R is continuous
and quasiconvex with

—c1+ 2|FIP < W(F) <c1 4+l FIP.

Then for f € LP' (£2; R9) and g € L? (I'v; RY), the functional

I(y)=/W<Vy>dx—/f-ydx—/g-yds
2 2

IN

is weakly lower semicontinuous and coercive on W' 7 (§2; R?). Moreover, if the
sequence (yj)jeN C Whr(2; RY) converges strongly to y € W17 (£2; R?) then
we have Vy; (x) — Vy(x) for almost every x € £2 for a subsequence (y, )keN,
and the generalized dominated convergence theorem implies

/W(Vyjk)dxe/W(Vy)dx,
2 Q

i.e., up to subsequences / is strongly continuous and this is sufficient to establish
I'-convergence. For piecewise affine boundary data yp, we have that o, = &/ N
()¢ is nonempty and the density of finite element spaces implies I;, —! I
for conforming discretizations. More generally, it suffices to consider convergent
approximations yp j, of yp.

The abstract convergence theory allows us to include nonlinear constraints.

Example 4.6 (Harmonic maps) Assume that up € C(Ip; R™) is such that
o ={ueHY(2;R™) :ulp, =up, |u(x)| =1 fae. x € 2}
is nonempty and for a triangulation .7, of £2 with nodes .4, set
Ay = {up € LNT)™ :uz) = up(z) fa. z € MNIp, lup(z) =1 fa. z € M),

i.e., @, ¢ /. We then consider the minimization of the Dirichlet energy I on .7},
and o7, respectively, which defines minimization problems with functionals 7, and
I on H'(£2; R™), respectively. To show that I;, =" I in H'(§2; R™) we note that
the liminf-inequality follows from the weak lower semicontinuity of I, together with
the fact that if u;, — u in W1’2(.Q; R™) with u, € 7, for every h > 0, then
u € /. The latter implication follows from a nodal interpolation result, together
with elementwise inverse estimates, i.e.,

2 2 2
unl™ = 1 = lunl™ = Iplunl”| < chlluplIVugll.
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Therefore, |u; (x)| — 1 for almost every x € £2 and a subsequence 4’ > 0 so that
lu(x)| = 1 for almost every x € £2. We assume that up is sufficiently regular, so
that a similar argument shows u|r, = up. To prove the attainment of /, we note
that due to the density of smooth unit-length vector fields in <7, we may assume
u € o N H*(2; R™) and define u, = Fju € <. Then up, — u in H'(2; R™)
and I (up) — I(u) ash — 0.

Remark 4.2 In general, smooth constrained vector fields are not dense in sets of
weakly differentiable constrained vector fields, cf., e.g., [18].

For practical purposes it is often desirable to modify a given functional.

Example 4.7 (Total variation minimization) For X = w1(£2) we consider

I(u) = / |Vu|dx;

2

and given a family of triangulations (.73)p~0 of £2 and uj, € . I (1), we define for
B > 0 the regularized functionals

In(up) = /(hﬂ + | Vup[H)'? dx.
2

If u, — uin WH1(£2), then the liminf-inequality follows from the weak lower
semicontinuity of / on WL 1(£2) and the fact that ), (up) > I (u,) for every h > 0.
To verify that I (u) is attained for every u € W'-!(£2) in the limit # — 0, we note
that the density of finite element spaces in W1 (£2) allows us to consider a sequence
(upn=0 C Wh(2) with u, € #1(7,) forevery h > Oand up, — u € Wh(22)
as h — 0. The estimate (a> + b%)'/? < |a| + |b| implies that

(h? 4+ 1VupHV? = |\ Vu| < hP? 4 |Vuy| — |Vul,

and for a subsequence we have ((h')% + |Vuy|?)!/? — |Vu| almost everywhere in
£2. The generalized dominated convergence theorem implies that I (uy) — I (u)
as i’ — 0. With Proposition 4.1, this also implies the I"-convergence of discretiza-
tions of

(0%
Iw) = / |Vul dx + =l — gl
2

for g € L?(£2). Due to the lack of reflexivity of WL1(£2) this is not sufficient to
deduce the existence of minimizers for 7, i.e., we cannot deduce the existence of
weak limits of (subsequences) of a bounded sequence. For this, the larger space
BV (£2) N LZ(Q) has to be considered. A corresponding I -convergence result
follows analogously with the density of W!!(£2) in BV (£2) with respect to an
appropriate notion of convergence.
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4.1.4 Error Control for Strongly Convex Problems

For Banach spaces X and Y, a bounded linear operator A : X — Y, and convex,
lower-semicontinuous, proper functionals F : X — RU{4+oo}and G : ¥ —
R U {400}, we consider the problem of finding u € X with

I(u) = in;f( I(v), I(v) =FW)+ G(Av).

The Fenchel conjugates F* : X' — R U {4+00} and G* : Y/ — R U {400} are the
convex, lower-semicontinuous, proper functionals defined by

F*(w) = sup(w,v) — F(v), G*(¢q) = sup(q, p) — G(p)
veX peY

for w € X' and ¢ € Y/, respectively. We assume that Y is reflexive, so that
G = G™**. Then, the property of the formal adjoint operator A" : ¥/ — X', that
(Av, g) = (v, A’q), and the general relation inf, sup, H(v, q) > sup, inf, H(v, q)
for an arbitrary function H : X x Y/ — R U {+o0} yield

inf I (v) = inf F(v) + G**(Av) = inf sup F(v) + (v, A'q) — G*(q)
v 1% 14
q

> supinf F(v) + (v, A'q) — G*(q) = supinf F(v) — (v, —A'q) — G*(q)
g Vv g Vv

= sup (= sup(v, —A'q) — F(v) = G*(g)) = sup—F*(=A'g) = G*(@).
q v q

This motivates considering the dual problem which consists in finding p € ¥’ with

D(p) = sup D(q), D(q) = —F*(=A'q) — G*(9).
qey’

We assume that F or G is strongly convex, so that there exist oy, g > 0 with
max{ar, ag} > 0, so that for all g1, g2 € Y and v{, v2 € X, we have

A
| =] =

G((q1 +q2)/2) +acllgr — qilly < = (G(g) + G(g2)),

F(v1 +v2)/2) + aplva —vill% < 5 (F1) + F(n)).

2

By convexity, the estimates hold with g = o = 0. The primal and dual optimiza-
tion problems are related by the weak complementarity principle

I(u) = inf I(v) > sup D(q) = D(p).
veX gey*

We say that strong duality applies if equality holds. Our final ingredient for the error
estimate is a characterization of the optimality of the solution of the primal problem.
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For some «; > 0 and all w € 01 (1), we have that
(w, v —u) +arlv—ully <10)— 1)

and u is optimal if and only if 0 € 9/ («). We assume in the following that «r > 0
or oy > 0, so that I has a unique minimizer u € X.

Theorem 4.2 (Error control [16]) Assume that max{ar, ag, ar} > Oandletu € X
be the unique minimizer for I.

(i) For a minimizer up € Xy, for I restricted to a subspace X, C X, we have the
a priori error estimate

. 1
aG | A —up)lp + (ap +ar/Mlu —uplly < inf = (Iwp) — I@W)).
wheXy 2

(ii) For an arbitrary approximation uy € X of u, we have the a posteriori error
estimate

~ ~ NP S
oG A — )G + (@r +ar/4)|u— Tl < inf (1)~ D(g)).
q
Proof The convexity estimates imply that

1
aG | A =)y +arllu —v|% < ST + 1) = 1(0+w)/2).
The optimality of u shows that we have
T +agllu — @ +v)/21% < (@ +v)/2).

It follows that
2 2 1 2
agllA(u =Wy +arlu—viy < E(I(V) —T(w) —arll((w—v)/2].

If up € Xy is minimal in Xy, then the identity I (u;) = inf,,,cx, I (wy,) implies
the a priori estimate. The weak complementarity principle 7 (1) > D(q) yields the
a posteriori estimate. (]

Remarks 4.3 (i) If strong duality holds, i.e., if I(u) = D(p), then the estimate of
the theorem is sharp in the sense that the right-hand side vanishes if v = u and ¢
solves the dual problem.

(ii) Sufficient conditions for strong duality are provided by von Neumann’s minimax
theorem, e.g., that F and G* are convex, lower semicontinuous, and coercive.

Example 4.8 For the Poisson problem —Au = f in £2, ulse = 0, we have
X = H(2),Y = L2(2;RY), A = V, G(A) = (1/2) [, |Vv[*dx, and



94 4 Concepts for Discretized Problems
F(v) = — [, fvdx. It follows that F*(w) = I(_ sy(w), G*(q) = (1/2) [,, Iq]* dx,
A= —div: L*(2;RY) — HJ(2)*.

We thus have
(@+/2) — 2@ +ad) = (@} + 20102+ 43~ 27 ~203) = —< (@1 —2)?
3 911492 4 q1 7492 3 q1 T 2919245 — 244 q3 3 q1—q2)",

so that g = 1/8 and

1 2 1 2 1 2 1 2 _ 1 2
3491 ~ 5% q1(q1 — q2) = 54 2q2+q1qz— 2(611 q2)°,

i.e., oy = 1/2. Moreover, we have o = 0.

(i) Incorporating the definition of the exact weak solution, the abstract a priori esti-
mate of Theorem 4.2 provides the bound

1 1 1
EHV(M—Mh)HZS 5/|VWh|2—/fthX—§/|VM|2+/f”dx
2 2 2 2

= %uvm —wp)|I? +/w - V(u — wy) dx +/f(u — wp) dx
2 2
= l||V<u—w;1>||2,
2

which implies the best-approximation property

IV —up)l < inf [V —wp).
wpeXy

(i) Letting n%(v, ¢) denote the right-hand side of the a posteriori error estimate of
Theorem 4.2, we have

1 1
272 (v, q) = —/fvdx—i—l{_f}(div q)+§/|Vv|2dx+§/|q|2dx
2 2 2

/(d' vd +1||V ||2+1|| I 1I|V I?
= 1 — — = — — .
v q)vdx > v 2q > v—gq

2

provided that — div ¢ = f. The theorem thus implies

V(u — < inf Vv —gq]|.
IV (u V)II__dilvnq:fII v—qll
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4.2 Approximation of Equilibrium Points

The Euler—Lagrange equations related to a minimization problem typically seek a

function # € X such that
F)[v] = €(v)

for all v € X with a possibly nonlinear operator F : X — X’ and a linear functional
£ € X'. Various other mathematical problems that may not be related to a minimiza-
tion problem can also be formulated in this abstract form. A natural discretization
employs subspaces X, C X and seeks u;, € Xj with

Fy(up)lvi] = €p(vp)

for all v, € Xj. Here, F;, : X;, — X;l and ¢;, € X;l are approximations of F
and ¢ that result from a discretization, e.g., via numerical integration. The important
question to address is whether numerical solutions (up,),~0 for a sequence of finite-
dimensional subspaces Xj converge in an appropriate sense to a solution of the
infinite-dimensional problem. We assume that the finite-dimensional space X, is
equipped with the norm of X. The corresponding dual spaces X} and X' are related
by the inclusion X'|y, C X),. Topics related to the contents of this section can be
found in the textbooks [3, 11].

4.2.1 Failure of Convergence

The following examples show that unjustified regularity assumptions can lead to the
failure of convergence to the correct object. The following examples are taken from [6].

Example 4.9 (Maxwell’s equations) For §2 C RZset X = Hy(curl; 2)NH (div; £2),
where

Ho(curl; 2) = {v € L*(£2;R?) : curl v € L>(£2; R?), v-t = 0on 92}

with curl v = 9jvy — dpvy forv = (vi,w) and ¢t : 02 — R? a unit tangent. For
fe Lz(.Q; Rz), consider the problem of finding # € X such that

(curl u, curlv) + (div u, divv) = (f,v)

for all v € X. The existence and uniqueness of a solution follows from the
Lax—Milgram lemma. A discretization of this problem is obtained by choosing
Xy =.Y(7)?*N X and computing u, € X, such that

(curl up, curl vy) + (div uy, div vy) = (f, vi)

for all v, € Xj,. This defines a convergent numerical scheme if £2 is convex. If £2 is
nonconvex, then H!(£2; R2)N X is a closed proper subspace of X, cf. [8] for details,
and convergence uy — u as h — 0 fails in general.
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A similar effect occurs for higher-order problems.

Example 4.10 (Biharmonic equation) The biharmonic equation
Au=fin®2, u=Au=0 ondf2

formally corresponds to the weak formulation that seeks u € H2(£2) N HO1 (£2) with

/Dzu:Dzvdxz/fvdx
9}

2

forallve H 2(.Q) N HO1 (£2) We denote the unique weak solution of the variational
formulation by u = (A?)~! f. A natural discretization of the problem is based on
an operator splitting which is obtained by introducing z = —Au and solving the
Poisson problems

—Az=finf2, z=00nds2,
—Au=2zin$2, u=00nds2.

We have z = (—A)_lf andu = (—A)~" 1z = (—A)_Qf. Unless £2 is convex so that
Au € H& (£2) we do not have (A2)_1f = (—A)_2f, and convergence of related
numerical methods will fail in general.

Failure of convergence may also be related to the lack of uniqueness of a solution
as in the case of degenerately monotone problems.

Example 4.11 (Degenerate monotonicity) For o (F) = DW**(F) for F € R? and
W*(F) = (|F|* — l)i, there are infinitely many functions u € W(;A(.Q) satisfying
Fu)v] = f_Q o(Vu) - Vvdx =0forallv e W01’4(.Q).

4.2.2 Abstract Error Estimates

We sketch below the classical concept that consistency and stability imply the con-
vergence of numerical approximations, provided that appropriate regularity results
are available. Dual to this is an approach that leads to computable upper bounds for
the approximation error and which avoids regularity assumptions entirely.

Theorem 4.3 (Abstract a priori error estimate) Let u € X satisfy F(u) = € and
assume that for an interpolant inu € X, and a consistency functional €, (u) € X,

we have
Fp(ipu)[vp] — £1(vp) = Ch(u; vi)

for all vy, € Xj,. Assume that we have discrete stability in the sense that for all
zn € Xp and by, € X, the implication

Vvn € Xp FnG)lvel =brn(vi) = lzallx = csullbnlly;,
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holds. Then, if F, : X, — X;l is linear, there exists a unique solution uy € Xp, with
lun — inulx < cs.nlCh@)lx; -

Proof Discrete stability implies that Fj, : X;, — X is a bijection and hence there
existsaunique u, € X, with Fj,(up,) = 0. Since Fj, (ipu—up) = Fp(ipu)— Fp(up) =
Fp,(inu) — £, = 65 (u) we deduce the estimate. O

Remark 4.4 We say that a discretization is consistent of order 8 > 0, given the regu-
larityu € Z C X if |6, (w) || x) < chP . This implies convergence of approximations
with rate S.

A similar abstract concept leads to a posteriori error estimates for many linear
problems.

Theorem 4.4 (Abstract a posteriori error estimate) Let u, € Xj and define the
residual X%y, (uy) € X' through

Fn(up; v) = Fup)vl —£(v)

forall v € X. Assume that we have the continuous stability result that for all z € X
and b € X', the implication

VveX F(lvl=b(v) = lzlix <cslbllx
holds. If u € X satisfies F(u) = £ and if F is linear, then u is unique with

lu —unlix < csllZnun)lix

Proof The difference u — uy, satisfies F(u — up)[v] = % (up; v) forallv € X, and
the stability result implies the error estimate and the uniqueness property. (]

Example 4.12 (Poisson problem) Letu € H&(.Q ) be the weak solution of —Au = f
in 2,u|r, =0, and dyu|r, = g, 1.e., we have F(u) = £ with

F(u)[v]:/Vu-Vvdx, E(v):/fvdx+/gvds.
2

Q I'n

The lowest-order finite element method seeks u, € YS (Fp) with F (up)[vy] = £(vp)
for all v, € YS(%).

(1) Inserting an interpolant iyu € YS(%) in the discrete formulation leads to

Cn(u; vp) = Fipuw)vp] — £(vy) = / Vlipu —u] - Vv, dx
2
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and ipu = Sju is the nodal interpolant of u. If z;, € YS(%) and by, € yg(%)’
are such that

forallv, € .71 (7)). We have 16h @1l 517y < ch||D?u| ifu € H*(2)NHL(£2)

/VZh -V dx = by (vy)
2

forall v, € 5”6(9;1), then the choice of v, = zj, shows the discrete stability estimate
IVzull < llbn ”yﬁ(%)" Therefore, Theorem 4.3 implies the error estimate

IV — In)ll 2y < chlD?ull 20

(ii) Let uy, € YS(%) and define

%h(uh;v)=F(uh)[v]—E(v)=/Vuh~Vvdx—/fvdx—/gvds
Q

2 In
forallv € HI%(.Q). Noting the stability estimate | Vz|| < ||b] x for z € HI%(.Q) and
b € HL(£2)' with
/Vz -Vvdx = b(v)

2

forallv e Hs(.Q), Theorem 4.4 implies the error estimate
IV —un)llp22) < 120 n)llx -

If uy, satisfies F(up)[vy] = O for all v, € 5’5(%), we have the Galerkin
orthogonality F(u — up)[vy] = 0 for all v, € YDI(%) and || Zn(up) |l x < cn(up)
with a computable quantity 1 (uy,), cf. Theorem 3.6.

The concepts can be generalized to the class of strongly monotone operators.
Definition 4.2 The operator F : X — X' is called strongly monotone if there exists

an increasing bijection x : [0, co) — [0, oo) with

(Fu) — F(v),u —v)x

llu —vilx

xUlu =vix) =

forall u,v € X.

We consider a conforming discretization of a strongly monotone problem in the
following theorem.

Theorem 4.5 (Monotone problems) Assume that u € X and uj, € Xy, satisfy

Fu)vl =£v),  Fup)lval =€)
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forallv € X and v, € Xy, respectively, and let 6}, (u) and %y (uy) for an interpo-
lation operator iy, be defined by

Cn(usvp) = Flpw) vl — i),  Zn(up;v) = Fup)vl — £(v)

forallvy, € X, andv € X, respectively. Then we have the a priori and a posteriori
error estimates

X linu —upllx) < 1Ch@)lix; . xlu —unlx) < 120 wn)llx-
Proof We have

linw — upllx x Ninu —upllx) < (F@pu) — F(up), inu — up) = Cp(u; inu — up)

and
lu —unllx x(lu —upllx) < (Fu) — FQup), u —up) = —Zpup; u —up).

Dividing by ||ipu — up|lx and ||u — up|| x, respectively, yields the estimates. ([l

Example 4.13 (p-Laplacian) The p-Laplacian — div(|Vu|? —2Vu) is identified with
the functional F : W];’p (2) - Wé’p (£2)' defined by

Fwv] = / [Vu|P~2Vu - Vvdx
2

foru,v e W];’p (£2). The functional F is the Fréchet derivative F = DI of

1
I(u) = —/ |Vul|P dx.
p
2

If p > 2, then F is monotone with x (s) = asP~ ! forall s > 0 and some o > O.
The functional is locally Lipschitz continuous in the sense that

IE@) = FOllyir gy = MUVullLr) + IVvliLe@)? IV @ = ) lrg)

foraconstant M € Rand u, v € W]])’p (£2). This estimate implies the consistency of
conforming discretizations, e.g., with 5”1% (91), and we obtain the error estimate

. —1 .
|V (pu = un)ll} iy < MIV @ = inu) o2y

thus |V (u — up)|lLr@) < ch/®P=D ifu e W2P(£2)N Wg*”(sz).

If the operator F' fails to be monotone but has a regular Fréchet derivative in
the neighborhood of a solution, then a local error estimate follows from the implicit
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function theorem. For ease of presentation and without loss of generality, we consider
the homogeneous problem F'(u) = 0.

Theorem 4.6 (Local error estimate [10]) Suppose that F : X — X' is continuous
and u € X satisfies F(u) = 0. Assume that there exist constants cy, c2,c3,& > 0
with ¢co < ¢y such that

|F @) — FOWIx < collu—vlx,
IDF) L x) < Cl_l,
IDF(v) — DFW)llLx,x) < c2llv —wllx
forallv,w € By (u). Let inu € Xj, be an interpolant of u such that collipu — ul|x <

(c1 —c2)e. Then there exists a unique uy, € Xp with F(up) = 0and |lu —up|x <e.

Proof The assumptions of the theorem imply that
I FGr)llx = I1F(pu) — F)llx < collu — inullx.

A quantitative version of the implicit function theorem, cf. [2], implies the existence
of a unique u;, € X with the asserted properties. (]

Example 4.14 (Semilinear diffusion) The theorem implies error estimates for the
approximation of the semilinear equation

—Au+ f(u)=01in 2, u =0 on 952,

provided that f” and a solution u € HO1 (£2) are such that the operator —A + f7(v)id

is invertible for all v € B, («) for some & > 0. It is sufficient for this that f’ > —c;z
with the smallest constant cp > 0, such that |w| < cp||Vw| forall w € Hol(.Q).

The following proposition generalizes the Lax—Milgram and the Céa lemma to
bilinear forms that are not elliptic.

Proposition 4.2 (Generalized Lax—Milgram and Céa lemma [1, 13]) Let X, Y be
Hilbert spaces, a : X x Y — R a continuous bilinear form with continuity constant
M, and £ € Y'. Assume that there exists a > 0 such that

a(u,v)

S
vervioy IIvlly

> allullx

forallu € X and that for all v € Y\{0}, there exists u € Y with a(u,v) # 0. Then
there exists a unique u € X with

a(u,v) = L)

forallv € Y and |lullx < o "€|y. If X, C X and Y}, C Y are such that the above
conditions are satisfied with X and Y replaced by Xy, and Y}, respectively, then there
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exists a unique up € Xy, with
a(up, vp) = €(vp)

forall v, € Yy, and we have

1 .
lu —unllx <A +a M) inf |lu—wplx.
wpeXp

Proof Identifying the bilinear form a with the operator A : X — Y’, we see that A
is injective, i.e., Au = 0 for u € X implies u = 0. Noting that

(A(uj — ug),v)
alluj —ugllx < sup —L "2

< Auj — Aug|ly
ver\{0} Ivily

proves that the range of A is closed. If v € Y is such that (Au,v) = Oforallu € X,
then the assumptions imply v = 0. Hence, the closed range theorem yields that the
range of A is Y’ and it follows that A is bijective, i.e., there exists aunique u € X with
Au = £. The estimate for ||u| x is an immediate consequence of the assumptions.
The same arguments show that the operator A, : X; — Y, is an isomorphism and
hence there exists a unique u;, € X with the asserted properties. Let wy, € X}, and
for every vy € X, define

Evp) = alu —wp, vp).

Then there exists a unique zj, € X, with a(zp, vi) = £(vp) and ||zl x <« ||Z||Y}4.
Since a(uy, vy) = a(u, vy) it follows that z;, = u, — wy,, and hence

len — wallx < &= Mu —wy.
The triangle inequality implies the asserted estimate. ]

Example 4.15 (Helmholtz equation) Let w € R and a : Hé (£2) x HO1 (£2) - Rbe
foru, v € H}(£2) defined by

a(u,v) = (Vu, Vv) — a)z(u, V),

which corresponds to the partial differential equation —Au — w?u = f in £2 with
boundary condition u|y = 0. If @? is not an eigenvalue of —A, then a satisfies
the conditions of the proposition. To prove this, note that (=AM L2(2) —
HO1 (£2) C L*(£2) is selfadjoint and compact with trivial kernel, so that there exists
a complete orthonormal system (u;) jen C L%(2) of eigenfunctions of (=A)~L
i.e., for every j € N we have —Auj; = Aju; with positive eigenvalues (4;) jeN
that do not accumulate at zero. We have A;I(Vuj, Vup) = (uj,ux) = dji for
all j,k € N. Given u = 3 ;.yoju; € Hj($2), define v = 3 yoja,u; with
oj =sign(|Vu;||*> — w?|lu;||?). Then

%) — @?|
|| Vu|?

2 2 2 2 : .
a,v) =Y oje;(IIVu,|* = o*|lu;|*) = min ———
jeN ’ jeN )\J
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and with || Vu|| = || Vv||, we deduce that

a(u,v)
[Vvll

> cyllVul.
veH (£2) |

The second condition of the proposition is a direct consequence of the requirement
that w? is not an eigenvalue of —A.

Remark 4.5 Proposition 4.2 is important for the analysis of saddle-point prob-
lems; the seminal paper [7] provides conditions that imply the assumptions of the
proposition.

4.2.3 Abstract Subdifferential Flow

The subdifferential flow of a convex and lower semicontinuous functional 7 : H —
R U {400} arises as an evolutionary model in applications, and can be used as a basis
for numerical schemes to minimize /. The corresponding differential equation seeks
u [0, T] — H, such that u(0) = ug and

du € —dl(u),

i.e., u(0) = ug and
(=0, v—uw)g +1(u) < I(v)

for almost every ¢ € [0, 7] and every v € H. An implicit discretization of this
nonlinear evolution equation is equivalent to a sequence of minimization problems
involving a quadratic term. We recall that d;u* = (u* —u*~1) /7 denotes the backward
difference quotient.

Theorem 4.7 (Semidiscrete scheme [15, 17]) Assume that I > 0 and for u e H
let (uk)kzl k C H be minimizers for

.....

1 _
¥ w) = o= uF N2+ T (w)

fork=1,2,...,K.ForL=1,2,..., K, we have
L
I@hy + 1> k)| < 1.
k=1
With the computable quantities

& = —tlldu I3 — 1) + 1
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and the affine interpolant u, : [0, T] — H of the sequence (uk)k=o,,,.,1( we have
the a posteriori error estimate

L

~12 0,2
max flu — @3 < lluo — u®l} + 1> .
1€[0.7] P

We have the a priori error estimate

k2 042 0
max u(t) —u gy < lluo —ully + 1),

yeees

and under the condition 1 (u®) # W, the improved variant

k2 02 2 0y12
Cmaxut) — b1 < fuo — I, + <2 10°1 @),

where 3°1 (u®) € H denotes the element of minimal norm in 91 (u®).

Proof The direct method in the calculus of variations yields thatfork = 1,2, ..., K,
there exists a unique minimizer uk e H for If, and we have dtuk e =3l (Wh), ie.,

(—du*, v — Yy + 15y < 1(v)

k—

for all v € H; the choice of v = u*~! implies that

—& = tldi* 1} + 1) — 1*") <0

with 0 < & < —rdtl(uk). A summation over k = 1, 2, ..., L yields the asserted
stability estimate. If i, is the piecewise affine interpolant of (uk )k=0.....x associated
to the time steps #x = k7, k =0, 1,..., K, and u} is such that u}|(,_, ) = u* for

k=1,2,...and 1y = kt, then we have
(=3, v—ul)y +1wl) < 1)
for almost every ¢t € [0, T] and all v € H. In introducing
G (1) = (=0, uy —ue)y — 1wl + 1 ()

we have
(_atﬁr, V= ﬁr)H + I(ﬁr) < I1(v)+E:(1).

The choice of v = u in this inequality and v = %; in the continuous evolution
equation yield

d 1 . PO
Th L 0% = (=0, [u — @), i — )y < € (1)
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Noting u; — uj = (t — tx)d;uy fort € (tx_1, tx) and using the convexity of 7, i.e.,
I(,) < —1( =ty DR gk,
we verify for t € (t_1, t) using u} = u* that

&

o) < (0 — ol 13 — 1w + =Lkt + 12 - it gy =

With &, < —td, I (u*) and I > 0 we deduce that
/% ()dr < rzgk —IZZd 1@y = =t (1" — 1) < 1),
k=1 k=1
which implies the a posteriori and the first a priori error estimate. Assume that

a1 (") # @ and define u~! € H so that d;u® = W’ —u=")/r = —8°1 W), ie.,
the discrete evolution equation also holds for k = 0,

(—d®, v —u®) g + 1) < 1)
for all v € H. Choosing v = uk in the equation for du*' k=1,2,...,K, we
observe that
(—d* " =Yy + 1Y < Twh),
ie., —td,l(uk) < t(d,uk, d,uk_l)H, and it follows that
& = —t(du*, di*) g — vdi 1 (") < —v(@di*, did) g + T d* T di) g

d 73 d
2,42 k k 2% k2 2 k2 2% k2
=—t°(d;u", diu" )y = —7 3||dtu IIH—glldtu Iy < -t 3||dtu %

This implies that
i L T2 T2
[Gwa =y 6 = Thaai = S,
o 2 2

which proves the improved a priori error estimate. ([

Remarks 4.6 (i) The condition 97 (u”) # ¢ is restrictive in many applications.
(i1) Subdifferential flows o;u € —dI(u), i.e., Lu > 0 for Lu = 0;u + v with
v € dI(u), and with a convex functional / : H — R U {400} define monotone
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problems in the sense that
(Luy — Lug, uy — uz) ;= 3 (uy — uz) + (vi —v2), uy —uz)

> (0, (ur — u2), up —uz) = %%Ilm — w3
for uy, ur and vy, vp withv; € 01 (u;),i =1, 2.
(i) If 7 : H — R U {400} is strongly monotone in the sense that (1] — uz,
Vi —V2)H > ofjuy — u2||%1 whenever vy € 91 (uy), £ = 1,2, and if there exists a
solution # € H of the stationary inclusion v = 0 € 9/ (u), then we have u(t) — u
as t — 00. A proof follows from the estimate

L =Tl =~ = Fou— T = —alu — 7
S —uly =—0—=vV.u—my = —afu—ul}y,
where v = —0;u € 9/ (u), and an application of Gronwall’s lemma.

4.2.4 Weak Continuity Methods

Let (#5)n>0 C X be a bounded sequence in the reflexive, separable Banach space X
such that there exists a weak limit u € X of a subsequence that is not relabeled, i.e.,
we have uj, — u as h — 0. For an operator F : X — X', we define the sequence
n)nso C X' through &, = F(up), and if the sequence is bounded in X’, then
there exists & € X, such that for a further subsequence (&;);~0 which again is not
relabeled, we have &, —* &. The important question is now whether we have weak
continuity in the sense that

F(u) =¢.

Notice that weak continuity is a strictly stronger notion of continuity than strong con-
tinuity. For partial differential equations, this property is called weak precompactness
of the solution set of the homogeneous equation, i.e., if () jeN is a sequence with
F(uj) =0forall j e Nandu; — uas j — oo then we may deduce that F'(u) = 0.
Such implications may also be regarded as properties of weak stability since they
imply that if F'(u;) = r; with ||rj|lx» < &; and ¢; — 0 as j — o0, then we have
F(u) = 0 for every accumulation point of the sequence (u;) jenN.

Theorem 4.8 (Discrete compactness) Foreveryh > Oletuy € Xy, solve Fj,(up) =0.
Assume that F,(up,) € X' with | F(up)||x < cforallh > 0and F is weakly contin-
uous on X, i.e., F(u;)[v] — Fu)[v]forallv € X wheneveruj — u in X. Suppose
that for every bounded sequence (wp)p~o C X withwy, € Xy, forall h > 0, we have

IEwn) — Fn(wn)llx; — 0
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as h — 0 and (Xp)p=o is dense in X with respect to strong convergence. If
(up)n=0 C X is bounded, then there exists a subsequence (up)p~o and u € X
such that up, — u in X and F (u) = 0.

Proof After extraction of a subsequence, we may assume thatu, — uin X ash — 0
for some u € X. Fixing v € X and using Fj,(up)[vy] = 0 for every v, € X, we
have

Fup)vl = Fup)lv — vpl + Fup)va] — Fp(up)[val.

For a sequence (vy)p=0 C X with v, € X, forevery h > 0 and v, — v in X, we
find that
[E@p)lv —vpll < IF@p)llxlv—vallx = 0

as h — 0. The sequences (up,)p~0 and (v),~0 are bounded in X and thus

|Fup)lvi] = FnQup)vall < | Fn) = Fa(up)llx; vellx — 0
as h — 0. Together with the weak continuity of F' we find that

F]= lim F(up)[v] =0.

Since v € X was arbitrary this proves the theorem. O

The crucial part in the theorem is the weak continuity of the operator . We
include an example of an operator related to a constrained nonlinear partial differ-
ential equation that fulfills this requirement.

Example 4.16 (Harmonic maps) Let (u) jen C H 1(£2; R?) be a bounded sequence
such that |u;(x)| = 1 for all j € N and almost every x € §2. Assume that for every
jeNandallv e H(£2; R?) N L®(£2; R?), we have

F(uj)v] Z/Vuj - Vvdx —/|Vuj|2uj -vdx = 0.
2 Q
The choice of v = u; x w shows that we have

F(uj)wl Z/VMJ-V(MJ' x w)dx =0
2
forallw € H'(2; R®) NL>($2; R®). Using g1 - 3 (uj x w) = duj - (uj x dw)
fork=1,2,...,d, we find that

d
Fuj)wl = Z/aku,- (uj x w)dx = 0.

k=1
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If uj — win H(2; R3), then u; — u in L*(£22; R?) and thus, for every fixed
weC °°(§; R3), we can pass to the limit and find that

F(u)[w] = 0.

Since up to a subsequence we have u;(x) — u(x) for almost every x € £2, we
verify that |u(x)| = 1 for almost every x € £2. A density result shows that this holds
forall w € H'(£2; R®) N L®°(£2; R3). Reversing the above argument by choosing
w = u x v and employing the identity a x (b x ¢) = (b - a)c — (c - a)b shows that
Fw)[vl=0forallv e H'(£22;: R3) N L®(2: R3).

A general concept for weak continuity is based on the notion of pseudomonotonicity.

Example 4.17 (Pseudomonotone operators) The operator F : X — X' is a pseudo-
monotone operator if it is bounded, i.e., | F(u)|x' < c(1 + |lull%y) for some s > 0,
and whenever u; — u in X, we have the implication that

limsup F(uj)[u; —u] <0 = F@)|u—v]<liminf F(u;)[u; —v].
j—o0

j—o00

For such an operator we have that if F'(uj)[vy] = £€(vy) for all v, € X; with a
strongly dense family of subspaces (Xp,);~0 and up, — u ash — 0, then F(u) = £.
To verify this, let v € X and (v,)p~0 With v;, € X}, such that v, — u and note that

lim sup F(up)[up — u] = limsup F (up)[up — vp] + F(up)[vy — ul
h—0 h—0

= limsup €(up — vy) + F(up)[vy, —u] =0.
h—0

Pseudomonotonicity yields for every vy, € Uy~ 0X), that
Fw)[u — vy] < liminf F(up){up — vyl = Iim L(up — viy) = £(u — vy).
h—0 h—0

With the density of (X),~0 in X, we conclude that F (u)[u — v] < £(u — v) for all
v € X and with v = u + w, we find that F (u)[w] = £(w) forallw € X.

Remarks 4.7 (i) Radially continuous bounded operators are pseudomonotone.
Here, radial continuity means that t +— F(u + tv)[v] is continuous for t € R
and all u,v € X. These operators allow us to apply Minty’s trick to deduce from
the inequality £(u — v) — F(v)[u —v] > O for all v € X that F(u) = £. To prove
this implication, note that with v = u + ew, we find that £(w) — F(u 4+ ew)[w] <0
and by radial continuity for ¢ — 0, it follows that £(w) — F(u)[w] < 0 and hence
Fu) =¢.

(ii) Pseudomonotone operators are often of the form F = F| + F, with a monotone
operator F and a weakly continuous operator F3, e.g., a lower-order term described
by F>.
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Example 4.18 (Quasilinear diffusion) The concept of pseudomonotonicity applies
to the quasilinear elliptic equation

—div (|Vul?"2Vu) + gw) = f in 2, ulse =0 on 32,

with g € C(R) such that [g(s)| < c(1+|s|" D and 1 < p <d,r <dp/(d — p).

4.3 Solution of Discrete Problems

We discuss in this section the practical solution of discretized minimization problems
of the form

Minimize I (uy) = / W(Vup) + g(up) dx among uj € <.
Q

In particular, we investigate four model situations with smooth and nonsmooth inte-
grands and smooth and nonsmooth constraints included in <. The iterative algo-
rithms are based on an approximate solution of the discrete Euler—Lagrange equa-
tions. More general results can be found in the textbooks [4, 12].

4.3.1 Smooth, Unconstrained Minimization

Suppose that
oty = {up € S (T)" unlry = up.p)

and 1, is defined as above with functions W € C!(R”*?) and g € CL(R™). The
case Ip = ¥ is not generally excluded in the following. A necessary condition for a
minimizer uy € <, is that for all v;, € 5’6(%)’", we have

Fn(un) vl = / DW(Vup) - Vvp + Dglup) - vy dx = 0,
2

Steepest descent methods successively lower the energy by minimizing in descent
directions defined through an appropriate gradient.

Algorithm 4.1 (Descent method) Let (-, -)g be a scalar product on YS(%)’" and
uw € (0,1/2). Given ug € o), compute the sequence (u{l)j:(),lw via ufl'H =

ufl + ozjd,{ with d}{ € YS(%)’” such that

(], viyg = —Fy(u})vi]
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forallvy, € ,YDI(%)’" and either the fixed step-size
Olj =T
or the line-search minimum which seeks the maximal o € {27¢, ¢ € Ny} such that
In(uj, + ojd]) < Iy(ui) — perjlld] 1.

Stop the iteration if ||Oljd}jl lz < &stop-

Remarks 4.8 (i) Since [, is continuously differentiable, the descent method
decreases the energy in every step. This follows from

Elh(u{, + adj) o = DI, (up)d)] = Fy(up)ld; 1 = —|\dj |7

i.e., the continuous function ¢(a) = I (ui + ozd,{ ) is strictly decreasing for o €
[0, 8]. The existence of a; > O that satisfies the Armijo—Goldstein condition of
Algorithm 4.1 follows from expanding

Ll +adly = L)) — «lld! |13 + 0@

provided that W and g are sufficiently smooth so that I, € C (X h). _
(i1) The scalar product (-, -) i acts like a preconditioner for Fj, i.e., we have u{lH =

u{l —1X ;Il Fy (u;,) with respect to an ap.propr.iate basis. In particular, the descent
method may be regarded as a fixed-point iteration.

(iii) Larger step sizes are typically possible for implicit or semi-implicit versions of
the descent method, i.e., by considering a fixed step-size and the modified equation

(!, viye + Fpul +td), ul)vi] = 0

for all v;, € YS(%)’” and with a function fh such that ﬁh(uh, up) = Fp(up). If
Fp(un) = Gp(up) + Th(up) with a linear or monotone operator Gy, then a natural
choice is Fj(up, up) = Gp(up) + Ty (uy). Generally, large time steps are possible
when monotone terms are treated implicitly and antimonotone terms explicitly.

av) If Xp, = V), x Wy, and I (up) = Jn(¢n, Y1) is separately convex, i.e., the map-
pings vy, +— Jy(vi, ¥p) andwy, — Jp(¢p, wy) are convex for all (¢p, ¥y,) € Vi x Wy,
a decoupled, semi-implicit gradient flow discretization is unconditionally stable.
Given the initial (¢>2, 1//,?) € Vi, x Wy, consider the iteration

i v, + 1@ vl = o,

@i wiw, + 820w (@i it Hiwal = 0,
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where §1J;, and 8, J; denote the Fréchet derivatives of J_h with respect to the first
and second argument, respectively. The choices v;, = d,qbé“, wy = d; w,{ +1 and the
separate convexity of J lead to

Ide] 13, + ey I3, = —81an (el wDldig] T
O AR A (C AT
@l v — In@] )
@l — el vl th)
= —dtfh«p”‘ with.
which implies the unconditional stability of the scheme.

Theorem 4.9 (Convex functionals) Assume that Iy, is convex and bounded from
below and Fy, is Lipschitz continuous, i.e., there exists cp > 0 such that

1Fnwh) = Fnvn)llx; < crllwn —vallx

for all wy, vy, € Xp. Let cp, > 0 be such that ||vy||lx < cnllvallg for all vi, € Xp,.
Then the steepest descent method with fixed step-size T > 0 such that tcpcp, < 1/2
terminates within a finite number of iterations, and for all J > 0, we have

J
Iy ™ 4 (1/2) D ldg gy < In(u).
j=0
Proof The convexity of I, implies that

FuGu ™™ — w1+ o)) = Il ™).

Using that td;, = {lH — uj and choosing v, = td;, in the discrete scheme leads to

L™ = Il + < ld] 13 < @], d)n + T Fau) H1d]]
= (d].d})n — Fa(u])ld}]
R AR AR It
= t(Fy(u]) — Fa(u}™H)[d]] < crent®d] 1%

Therefore, if Tcrcp, < 1/2 we deduce the estimate from a summation over j =
0,1,...,J. The estimate implies that dﬁ — 0as j — oo so that ||td,j, la < esop
for j sufficiently large. O
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Remarks 4.9 (i) The arguments of the proof of the theorem show that the implicit
version of the descent method, defined by (d}, vi) i + Fu(uj + td;)[vy] = 0 for
every vy € fg(ﬂh), is unconditionally convergent, but requires the solution of
nonlinear systems of equations in every time step.

(i1) For nonconvex functionals, the iteration typically converges to a local minimum
of Ij,. Theoretically, the iteration may stop at a saddle point or local maximum.

To formulate the Newton method for solving the equation Fj(up) = 0in X ;l we
assume that W € C2(R”*?) and g € C?(R™). The Newton scheme may be regarded
as an explicit descent method with a variable metric defined by the second variation
of the energy functional 1, i.e.,

D Fy(up)wn, vl = / D>W (Vup)[Vwy, Vvpl 4+ D>g(up)[wp, vi] dx
2

for up, vy, wy, € yDl(%)m

Algorithm 4.2 (Newton method) Given ug € o), compute the sequence (u{;) j=0,1,...
via u;l'H = u}/l + otjd;f with d;: € 5’5(9}1)’” such that

DF,u)d], vl = —Fy(u))lvy]

forallvy, € YDI(%)”‘ and oj > O with either the optimal step-size aj = 1, a fixed
damping parameter aj = 1 < 1, or a line search minimum «j as in Algorithm 4.1.

Stop the iteration if||ajd,]l |z < é&sop for anorm|| - ||g on 5”6(%)’".

The convergence of the Newton iteration will be discussed in a more general
context below in Sect.4.3.3.

Remark 4.10 As opposed to the descent method, the Newton iteration can in general
only be expected to converge locally. Under certain conditions the Newton scheme
converges quadratically in a neighborhood of a solution. Optimal results can be
obtained by combining the globally but slowly convergent descent method with the
locally but rapidly convergent Newton method. Since the convergence of the Newton
method is often difficult to establish and requires W and g to be sufficiently regular,
developing globally convergent schemes is important to construct reliable numerical
methods.

Example 4.19 For the approximation of minimal surfaces that are presented by
graphs of functions over {2, we consider

In(ur) = /(1 +Vup )2 d
2
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and note that for uy, € <, = {vy € . (F) : vilr, = up.p}and vy, wy, € 5’5(%)

we have
Vuy - Vv,

Fh(uh)[vh]ZQ/de

and

Vwy - Vyy, (Vuh . Vvh)(Vuh . th)

DF; s = -
h(up)[wh, vil J A+ [Vup )72 (1 + [Vup 232

Figure 4.2 displays a combined MATLAB implementation of the Newton iteration and
the descent method with line search. The Newton method fails to provide meaning-
ful approximations for moderate perturbations of the nodal interpolant of the exact
solution as a starting value.

4.3.2 Smooth Constrained Minimization

We next consider the case that the set of admissible functions includes a pointwise
constraint, which is imposed at the nodes of a triangulation, i.e., for G € C(R™), we
have

= {up € S N(T)" :uplr, = upp, Gun()) =0 forall z € A},

The identity G (u h (z)) = Oforall z € .4} isequivalent to the condition ., G (uy,) = 0.
We always assume in the following that <7, # ¢, i.e., that the function up j is com-
patible with the constraint. Moreover, we assume G € C L(®R™) with DG(s) # 0
for every s € M = G’l({O}) so that M C R™ is an (m — 1)-dimensional C!-
submanifold. The Euler—Lagrange equations of the discrete minimization problem

Iy (up) =/W(Vuh)dx
7]

in the set of all functions u;, € .o, can then be formulated as follows.
Proposition 4.3 (Optimality conditions) The function uy, € <), is stationary for I,
in <), if and only if

Fp(up)wn] =0

Sforallwy, € T,, o, where the discrete tangent space T, %, of <, at uy, is defined by

Tuyh = {wi € SB(T)™ : DG (up(2)wi(z) =0 forallz € A;\ID}.



4.3 Solution of Discrete Problems 113

function min_surf (red, scheme)

[c4n,n4de,Db,Nb] = triang_ring(red); nC = size(cédn,1l);
[s,m,m_lumped] = fe_matrices(c4n,nde); X_metric = s;
dNodes = unique (Db); fNodes = setdiff (1:nC,dNodes);

u = u_D(c4dn); sd = zeros(nC,1);

pert = .01lx(rand(nC,1)-.5); pert(dNodes) = 0; u = utpert;
mu = 1/4; norm_corr = 1; eps_stop = le-4;

while norm_corr > eps_stop

alpha = 1;

if strcmp (scheme, 'de nt ")
[I_0,dI,~] = energy(c4n,nde,u);
sd (fNodes) = —-X_metric (fNodes, fNodes) \dI (fNodes) ;
[I_alpha,—] = energy(cd4n,nde,utalphaxsd);

armijo = I_alpha-I_O-muxalphaxdI'=xsd;
while armijo > 0
alpha = alpha/2;
[I_alpha,—] = energy(c4n,nde,utalphax*sd);
armijo = I_alpha-I_O-muxalphaxdI'xsd;
end
elseif strcmp (scheme, 'newton')
[-,dI,d2I] = energy(c4n,nde,u);
sd (fNodes) = —-d2I (fNodes, fNodes) \dI (fNodes) ;
end
u = utalphaxsd; show_pl(c4n,nd4e,Db,Nb,u);
norm_corr = sqgrt ((alphaxsd) '«X_metricx (alphaxsd))
end

function [I,dI,d2I] = energy(cé4n,nde,u)
[nC,d] = size(cd4n); nE = size(nde,1);

ctr_max = (d+1) "2*nE; ctr = 0;

I1 = zeros(ctr_max,1); I2 = zeros(ctr_max,1);
X_d2I = zeros(ctr_max,1);

I = 0; dI = zeros(nC,1);

for j = 1:nE

grads_T = [l,l,l;c4n(n4e(j,:),')']\[O, eye(2)];
vol T = det([1,1,1;c4n(nde(j,:),:)"'1)/2
du = (grads_T) '+«u(nde(j,:)); mod_du = norm(du);
I = I+vol_T=* (l+mod_du”2) " (1/2);
P_loc = ((l+mod_du"2).x*eye(d)-duxdu') ./ ((l+mod_du~2) " (3/2))
for k = 1:d+1
dI (nd4e(j,k)) = dI(nde(j, k))

+vol_T+grads_T (k, :) xdu/ (1+mod_du"2);
for ell = 1:d+1

ctr = ctr+l; Il(ctr) = nde(j,k); I2(ctr) = nde(j,ell);
X_d2I(ctr) = vol_Tx(P_locxgrads_T(k,:)")"
xgrads_T (ell,:)';

end
end
end
d21 = sparse(Il,I2,X_d2I);

function val = u_D(x)
val = .5x(2-sqgrt (sum(x."2,2)));

Fig. 4.2 MATLAB routine for the computation of discrete minimal surfaces with the Newton and
the steepest descent scheme
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Proof We let ¢y, : (—e,€) — 7, be a continuously differentiable function with
@n(0) = uy. We then have that w;, = ¢, (0) € T,,, <%, and

d
0= —TIn(pn()) = DIp(up)[wnl.
dt t=0
Conversely, for every wy, € T,,, %, there exists a function ¢ (¢) as above. O

Remark 4.11 An equivalent characterization of stationary points is the existence of
a Lagrange multiplier A, € YDI(%) such that for all v, € YDl(%)’", we have

Fp(up)lvp] + A DG (up), vip)n = 0.

We propose the following descent scheme for the iterative solution of the con-
strained problem. It may be regarded as a semi-implicit discretization of an H-
gradient flow. In particular, the problems that have to be solved at every step of the
iteration are linear if Fj, is linear.

Algorithm 4.3 (Constrained descent method) Let (-, -)u be a scalar product on
YS(%)”’ and given ug € @), compute the sequence (“h)J—OJ,-- via u;LH =

u{l + rd}{ with d,{ € Tu_},;,xth such that

(!, vi g + Fu(ul +td))vi] =0

forall v, € Tu_}iszih. Stop the iteration if||d,]l Iz < &stop-

Remark 4.12 1f Fj, is linear, then the solution of an iteration is equivalent to the
solution of a linear system of equations of the form

Xy +1SdGT||D}| _[-su}
dG 0 A/ 0
Where Dh, U i and A] are vectors that contain the nodal values of the functions dé s

u! 5> and )\fl, respectively, and X g, S, and dG}, are matrices that represent the scalar
product (-, -) g, the bilinear form Fj, (u;)[vy], and the linearized constraint defined
by DG.

The iterates (ui) j=0,1,... will in general not satisfy the constraint th(ui) =0
but under moderate conditions, the violati(il of the constraint is small. We recall the
notation [|[v]|? = [, #[v*]1dx for v € C(£2).

Theorem 4.10 (Constrained convex minimization) Assume that G € C2(R™) with
||D2G||Loo(]Rm) < ¢, I is convex, u2 € o, and ||vplln < clivpllg for all vy, €
YS(%)”‘. For all J > 0 we have

J
I+ D L1 < I,
j=0
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and for every j = 1,2, ..., the bound
j+1
170Gy D1y < et hnup).

The algorithm terminates after a finite number of iterations.

Proof The convexity of I, implies that

In(uj, + Td]) + Fi(up + di)lu), — (uf, + td)] < I ().

With the choice of v, = ‘L'd}{ in the algorithm and the relation u;;—H = u{l + rd/ s
this leads to
1 4 e .
InGu ) = D) < Fy(uy Old)] = —lldj |-
Asummationover j =0, 1, ..., J proves the energy law. A Taylor expansion shows

that for every z € 4, \ I, we have for some &/ € R” that
2
G (@) = Gw)(2) + tDG ] (2)) - d] (@) + Edé @) " D*GED] ().

Noting DG (u},(2)) - d} (z) = 0 and G(u)(2)) = 0, we deduce by induction that
272 . .
Gy ™' @) = > > di @) D’GE)d; ).
j=0

Since DG is uniformly bonded we have with g, = J o ¢ dx that

J
170G @) gy < D BAGul @)l < et DD Bld] (2)
zeN j=0ze N

J
2 12
=cT E I} ;-
j=0

A combination with the energy law implies the bound for || ﬂhG(u;;Jr] MNizi(2)- The
convergence of the iteration follows from the convergence of the sum of norms of

the correction vectors dé. O

Remark 4.13 In order to satisfy the constraint exactly, the algorithm can be aug-
mented by defining the new iterates through the projection

ui“(z) =1y (uf;(z) + ‘Cd}{ (2)),
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where mps : Us(M) — M is the nearest neighbor projection onto M = G_l({O})
that is defined in a tubular neighborhood Us (M) of M forsome § > Qif M € C 2 The
step-size T > 0 has to be sufficiently small in order to guarantee the well-posedness
of the iteration.

Example 4.20 (Harmonic maps) Minimizing the Dirichlet energy in the set
oty = {up € SN(T)" s unlry = upp, lun(2)| =1 forall z € A}

corresponds to the situation of Theorem 4.10 with G(s) = |s|>*—land M = S~ ! =
{s € R™ : |s] = 1}.Inparticular, we have DG (s) = 2s and | D*>G || e (gm) = 2m /2.
The discrete tangent spaces are given by

Tunh = {wi € SB(T)"™ :un(2) - wi(z) =0 forall z € A\ID).

The nearest neighbor projection g2 is for s € R\ {0} defined by w2 (s) = s/|s].

4.3.3 Nonsmooth Equations

We consider an abstract equation of the form
Fp(up)lval =0

for all v, € X, with a continuous operator Fj : X; — Y, that may not be con-
tinuously differentiable. The goal is to formulate conditions that allow us to prove
convergence of an appropriate generalization of the Newton method. We let X}, and
Y;, be Banach spaces in the following, and assume that X}, is equipped with the
norm of a Banach space X. We let L(X}, Y;) denote the space of continuous linear
operators A, : X, — Y and let || Ay ||L(x,,vy) be the corresponding operator norm.

Definition 4.3 We say that Fj, : X, — Y}, is Newton differentiable at v, € Xy, if
there exists & > 0 and a function G, : B.(vy) — L(Xp, Y) such that

lim 1 Fp (v +wp) — Fr(vi) — Gr(viy +wi)[willly,
wiy—0 [lwnll x

=0.

The function Gy, is called the Newton derivative of Fj, at vy,.

Remark 4.14 Notice that in contrast to the definition of the classical derivative,
here the derivative is evaluated at the perturbed point v;, + wy,. This is precisely
the expression that arises in the convergence analysis of the classical Newton
iteration.

Examples 4.21 (i) If Fj, : X — Y, is continuously differentiable in a neighbor-
hood of v, € Xy, then Fj, is Newton differentiable at v, with Newton derivative
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Gn = DFy, i.e., we have

| Fnvn +wn) — Favn) — G(vp + Wh)[Wh]“Yh < | Favn 4+ wn) — Fn(vp)
— DE,p)wil|y, + [ (DFx(va) — DF (i +wi)) wally,

and the right-hand side converges faster to O than ||wy, || x as w, — O.
(i) If X}, is a Hilbert space the function Fj,(v) = ||v|] x, v € X}, is Newton differen-
tiable with

Gy — [v/|v| ifv 0,

& ifv =0,

where £ € X, with ||§]x < 1is arbitrary.
(iii) The function F, : R — R, s +— max{0, s}, is Newton differentiable with
Newton derivative G (s) = 0 for s < 0, G5 (0) = § for arbitrary § € [0, 1], and
G(s) =1fors > 0.
@iv)If 1 < p < g < oo, the mapping

Fn: L1(2) — L?(£2), v+ max{0, v(x)}

is Newton differentiable with the Newton derivative G (v;) for G, as above. For
p = q this is false.

The semismooth Newton method is similar to the classical Newton iteration but
employs the Newton derivative instead of the classical derivative.

Algorithm 4.4 (Semismooth Newton method) Given u2 € X, compute the sequence
(u{l)j:o,l,_,_ via u;lH = u;l + d{l with d;i IS YS(%)'" such that

Gu(u)ld], vil = —Fp(uj)[vp]
forall vy, € yDl(%)m. Stop the iteration if ||d}{||H < é&stop for anorm || - ||y on
BT

Theorem 4.11 (Superlinear convergence) Suppose that F,(uy) = Oand Fj, : X, —
Y, is Newton differentiable at uy, such that the linear mapping G (uy) : X, — Yj
is invertible with ||G,71 @)Ly, x,) < M for every uy, € Be(uy) with some & > 0.
Then the semismooth Newton method converges superlinearly to uy, if u2 is sufficiently
close to uy, i.e., for every n > 0, there exists J > 0 such that for all j > J, we have

- .
) ™ —unllx < nllug —upllx.
Proof Noting d;| = —Gj(u}) ™" Fy(u}), we have

1 . U .
uil —up = u;l -G, (u;l)Fh(uil) —up
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= ] —up — Gy ) (Fa(uj) — Fu(up))
= —G;l(ui)(Fh(u;l) — Fy(up) — Gh(”i)(”iz — Mh)).

J+1

s i+1
Writing uf =up+w;, , wehave

- ) 4 .
Iwl M lx < 11G, G+ WD IL vy xo0 | Fn (un + wi) — Fi(up)
— Gpup +wipwilly,

< Mo(wylix)

with a function ¢(s) satisfying ¢(s)/s — 0 ass — 0. If ||w2|| x is sufficiently
small, e.g., ||w2||x < &/(M0) with 6 = max,c[o,1] ¢(s), then we inductively find
”;1 € Bg(up) for all j > 0 and ||w£||x — 0 as j — oo. For J > 0 such that
¢(||wf; lx) < (n/M)||w;; |lx forall j > J, we verify the estimate of the theorem. [

Remark 4.15 1f F}, is twice continuously differentiable so that G, = D F}, is locally
Lipschitz continuous and || D F},~ ! @) Ly, x;,) < M, then Algorithm 4.4 coincides
with the classical Newton iteration which is locally and quadratically convergent.

4.3.4 Nonsmooth, Strongly Convex Minimization

For Banach spaces X and Y, proper, convex, and lower semicontinuous functionals
G:X - RU{+4o00}, F : Y - R U {400}, and a bounded, linear operator
A X — Y, we consider the saddle-point problem

inf sup (Au, p) — F*(p) + G(u) = inf sup L(u, p).
ueX pey’ ueX pey’

The pair (u, p) is a saddle point for L if and only if
Au € 3F*(p), —A'pcaGu),

where A’ : Y — X’ denotes the formal adjoint of A. The related primal and dual
problem consist in the minimization of the functionals

I(u) = F(Au) + G(u), D(p) = —F*(p) — G*(~=4'p).

We have I (1) — D(p) > O forall (u, p) € X x Y’ with equality if and only if (u, p)
is a saddle point for L. We assume in the following that X and Y are Hilbert spaces
and identify them with their duals. The descent and ascent flows d;u = —d, L (u, p)
and 0, p = 9, L(u, p), respectively, motivate the following algorithm. Further details
about related nonsmooth minimization problems can be found in [14].
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Algorithm 4.5 (Primal—dua] iteration) Let (u'o, po) € X x Y and set du® = 0.
Compute the sequences (u’')j—o,1,.. and (p’)j=o,1,.. by iteratively solving the
equations

Wt = wl + rdul
—d pT AT e dFF(pItY,
—du/ T — A'pIT e 3G W,
Stop the iteration if ||u/ ™! — u/ | x < egop.

Remark 4.16 The equations in Algorithm 4.5 are equivalent to the variational
inequalities

. . . . o .
(—du/ T — A'pIT oy —u Ty < G — Gt — Slv— w TR
(—dip!™ + AW g — pIthy < F¥(q) — F*(p'™)

for all (v,q) € X x Y. Here, @ > 0 if G is uniformly convex.

We prove convergence of Algorithm 4.5 assuming that « > 0. We abbreviate by
| Al the operator norm || Al (x,y).

Theorem 4.12 (Convergence) Let (u, p) be a saddle point for L. If T| A|| < 1, we
have for every J > 0 that

1—z)A| 1 <y :
— =P T+ Sl — e e Sl — e
j=0
1 0,2 1 0,2
SEHP—P ||Y+§||M—“ %-

In particular, the iteration of Algorithm 4.5 terminates.

Proof We denote 87" = u — u/+! and 8;’;“ = p — p/T! in the following. Using
that ;8" = —dyui*! and d,5]7" = —d; p/*, we find that

) d i+1 i+1 T i+1 i+1 a il
T(G+1) = 5’("6;,* 1%+ 180 %) + E(ndtaﬁ 1% + 1851 13) + Enw 1%

i+1 i+1 i+1 i+1 o i+1
= (8, 8 Yy (s 8 x4 Enaf 1%

. . . . o .
= —(d:p!™ p— Py —(diud T — Ty + 7 e = w %
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The equations for d; p/*! and d;u/*! of Algorithm 4.5 and their equivalent charac-
terization in Remark 4.16 lead to

T(+1) < F*(p) — F*(p/™) — (AW ™, p — p/thy

+G) — G + (A pI T —uith
= [(Au, p/ ™y = F*(p/™) + Gw)]
— [, pyy — F*(p) + G@!™)] + (Au/T, p)y
— (AW p— pI Ty — (AP ui Ty
The definitions of F** = F and G* imply that
(Au, /Ty — F*(p/*h < F(Aw),

— @/t A'p)x — G/t < G*(—A'p).

These estimates and the identity u/+! — 7+ = 1242/ +1 = —12425] %" allow us
to deduce that

T(+1) < F(Au) + Gu) + F*(p) + G*(—A'p)
+ (AWt pyy — (AT p— pI Ty — (A pTT uith
= I(u) — D(p) — t2(Ad>s) T 87Ty

We use I (u) — D(p) = 0 to derive the estimate

TG+ 1) < —t2(Ads) ™ 80y

A summation of the estimate over j = 0, 1, ..., J and multiplication by 7 lead to
2 J
(||8’+1||y + 18 5) + 5 X (il G + 1)1 Zna’“nx
j=0
L0 0 3 ! 20j+1 o+l
< S (1915 +1871%) — 7 D (Ad?si ™, 557,
j=0

A summation by parts, —d,SS = du® = 0, and Young’s inequality show that

J J
j+1 j 1
— A 6y = > (Ads i)y + T Adis) )y 11X
j=0 j=0
J
i 2 2 e o T o J+1
< (D 1Adsily + 1disy T IT) + =18, T + sl Adis) 5
2 s 2 2||A||

A combination of the estimates proves the theorem. (]
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Remarks 4.17 (i) The assumption that a saddle point exists implies that primal and
dual problem are related by a strong duality principle.

(i) If F is strongly convex and G is only convex, then the roles of # and p have to
be exchanged to ensure convergence.

(ii1) The algorithm may be regarded as an inexact Uzawa algorithm. The classical
Uzawa method corresponds to omitting d;u/*1, i.e., solving the equation — A’ p/+! €
3G (u/*1) for u/*! at every step of the algorithm.

(iv) Algorithm 4.5 is practical if the proximity operators r = (1 + tdF*)~!g and
w=(1+ t8G)_1v can be easily evaluated, i.e., if the unique minimizers of

W inw V% +Gw), 1> iur —qlly + F*(r),
2T 2T

are directly accessible. This is the case for quadratic functionals and indicator func-
tionals.

Example 4.22 In the case of the discretized Poisson problem with X = 5”01 (D),
we may choose ¥ = Z%(9,)4, A=V,

1
F(py) = 5/|ph|2dx, G(up) =/fuh dx,
2 2

and exchange the roles of uj, and py. Letting Pj, o f denote the L? projection onto
Yol (), the iteration reads
~j+1 j j+1
Py = pj,+rdip
—dud T+ divy, gt = Puf,
—dpit vt = pitt,
The discrete divergence operator divy, : .Z°(.7,)? — 5”01 () is for every elemen-

twise constant vector field ¢, € Z°(7;)? defined by (divy, g, vi) = —(gqn, Vi)
for all v, € . (7). Convergence holds if t||V|| < 1, where || V|| < ch™!,

4.3.5 Nested Iteration

The semismooth and classical Newton method can only be expected to converge if
the starting value u2 is sufficiently close to the discrete solution uj. The radius of
the ball around u; which contains such starting values may depend critically on the
mesh-size in the sense that it becomes smaller when the mesh is refined. Such a
behavior reflects the problem that the Newton scheme may not be well-defined for
the underlying continuous formulation. When a sequence of refined triangulations
is used, the corresponding finite element spaces are nested, and one may use an
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approximate solution computed on a coarse grid to define a starting value for the
iteration process on the finer grid. Besides providing a method to construct feasible
starting values, this approach can also significantly reduce the computational effort.

Algorithm 4.6 (Nested iteration) Let (93)i—o.,....1. be a sequence of triangulations
with N (T_1) € SN Tp) fort =1,2,...,L.Setl = Oandchooseug e .S1(T).
(i) Iteratively approximate a solution ug € .1 () of Fe(ug) = 0 using the starting
value ug to obtain an approximate solution u}‘ e .U F).

(ii) Stop if £ = L. Otherwise set ”2+1 = uy, £ — £+ 1, and continue with (i).

We make the ideas more precise for a red-green-blue refinement method. The
definition is easily generalized to other refinement methods such as newest-vertex
bisection.

Definition 4.4 We say that .7}, is a refinement of the triangulation 7y if ' (Fy) C
V() and for every node z" € .4}, we either have 7" € .47 or there exist nodes
A e Ay with ' = (28 4 28 /2, of. Fig.4.3.

Lemma 4.1 (Prolongation) Let .9, be a refinement of the triangulation Ty. Given
up € SN Ty), we have up, = uy € .1(F,) with nodal values u,(z") = ug(z")
for every 2" € Ny C N, and up(z") = (uH(z{{) + uH(zg))/Zfor every 7' €
N \ANy and zﬁ‘, zg € Ny with 7" = (zfl + z?)/Z. In particular, there exists a
linear prolongation operator

Prllieh R RJ%” (MH(ZH))ZHEK/VH e (uH(Zh))ZhEe%

foreveryuy € Y (Tn).

Proof The assertion of the lemma follows from the fact that the function u, is affine
on every one-dimensional subsimplex in the triangulation. (]

Remarks 4.18 (i) The superscript 1 in Pr}{_) ;, corresponds to affine functions. Anal-
ogously, there exists a linear operator Prg,% , that maps the values of an elementwise
constant function on 7 to the values of the function represented on .7;,.

(ii) Matrices that realize the linear mappings of the nodal or elementwise values are
provided by the routine red_refine.m.

(ii1) Nested iterations are the simplest version of a multigrid scheme. In more general
versions, grid transfer from a fine to a coarse grid called restriction is required. This
is often realized with the adjoint operators, i.e., with the transposed matrices.

(iv) For nonnested finite element spaces the grid transfer can be realized with inter-
polation or projection operators.

Fig. 4.3 The nodes of the »
refined triangulation are
either existing nodes (dots)
or midpoints of bisected
edges (circles)

yH —_— yh
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Chapter 5
The Obstacle Problem

5.1 Analytical Properties

We discuss in this section analytical properties of the obstacle problem which is the
prototypical example of a convex minimization problem with an inequality constraint
that leads to a variational inequality. Throughout this chapter, for f € L*(2), g €
L%(I'v), and X € HY(£2) with x < 0on I'p, we consider the problem of minimizing

the functional 1
I(u):i/|Vu|2dx—/fudx—/guds
2 2

IN
in the set of functions u € K defined by the convex set
K={ve Hﬁ(.Q) : v > x almost everywhere in £2}.

The model problem is illustrated in Fig.5.1. We show that minimizers for this con-
strained minimization problem are unique and have certain regularity properties.
For more general statements and other minimization problems with inequality con-
straints, we refer the reader to the textbooks [4, 6, 7].

In addition to the general assumption regarding homogeneous Dirichlet conditions
on I'p, justified by the splitting u = # + up with the unknown & € H](£2) and the
extension up € H! (82) of up, we will often consider the case g = 0 on I'n. This is
justified by requiring that d,up = g on I'N.

5.1.1 Existence and Uniqueness

We apply the direct method in the calculus of variations to establish the existence of
a solution. The main ingredients for the proof are the strict convexity and continuity
of I that imply the weak lower semicontinuity and weak closedness of K.
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Fig. 5.1 Deflection u of a
membrane due to a force f
and constrained by a
constant obstacle x

Theorem 5.1 (Well posedness) There exists a unique minimizer u € K for I.

Proof The functional [ is weakly lower semicontinuous on HI% (£2). Its boundedness
from below follows from Holder’s inequality, i.e.,

1
I(u) = EIIVuIIZ = I Ml = gLz el 22y -

With the Poincaré inequality [lul| < cp|Vul|, the trace inequality |lullz2r) <
cr||Vu||, and Young’s inequality, we deduce that

1(u)

v

! 2 202 ] 2 2 1012 1 2
SIVull™ = 2cp 1 f1 — g IVull” = 2718l ) — glIVull

v

1
FIVull? = 2RI 112 = 2¢7 18172

This proves that / is coercive and bounded from below on HS (£2). Since the function
u = max{0, x} satisfies # € K there exists an infimizing sequence (u;) jen C K
with lim . o I (u;) = inf,cg I (v). The coercivity of I shows that this sequence is
bounded and hence there exists a weakly convergent subsequence (uj,)ren C K
and a weak limit u € Hﬁ(.Q). To show that u € K we notice that by the compact
embedding of Hé([?) into L2(£2) we have uj — uin L2(£2), and for a further
subsequence that u J (x) — u(x) for almost every x € £2. Since u(x) > x (x) for
every j € N and almost every x € §2 we conclude that # > x almost everywhere in
£2. The weak lower semicontinuity of / shows that

I(u) <liminf I (uj) = lim I(u;) = inf I(v).
k— 00 j—o00 vekK
Thus, u € K is a solution for the minimization problem. To show that the minimizer

is unique, we let u1, u» € K be minimizers and notice that by the convexity of K,
we have (u1 + u3)/2 € K and

up +u2)

— Ly )12
) =3 Uy — un .

1] 11 1
5 (M1)+§ (u2) — (

If u; # uo, then the right-hand side is positive which leads to the contradiction
1((141 + uz)/Z) < (1 (uy) + I(uz))/Z. Therefore, I has a unique minimizer. ([l
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5.1.2 Equivalent Formulations

We want to formulate optimality conditions for a minimizer u € K of the obstacle
problem. Due to the convexity of K, we have for every v € K and ¢ € [0, 1] that
u—+t(v—u)e K with

I(u) < I(u +t(v— u)).

Setting ¢ (1) = I(u + t(v — u)) we have that ¢ is increasing on [0, 1] and thus its
right-sided derivative at 0 is nonnegative. More precisely, for # > 0 we have

0<t ' (I(u+1t(0v—uw)—1Iw)

_ /IV( +1v—w)Pd 1/lv 2d
_21‘ u 1% u X 21‘ u X
2 2

—/f(v—u)dx—/g(v—u)ds
2

In

t
:/Vu.V(v—u)dx—i—E/|V(v—u)|2dx
2 2

—/f(v—u)dx—/g(v—u)ds.
2

In

Considering the limit # — 0 we find that the variational inequality

/VM'V(v—u)dxz/f(v—u)dx—i—/g(v—u)ds
Q

2 IN

holds for all v € K. The arguments also show that this formulation is a sufficient
characterization of a minimizer. If the variational inequality is satisfied, then we have
for every v € K that

I(u)—I(v)S/Vu~V(u—v)dx—/f(u—v)dx—/g(u—v)ds50,
Q2

Q I

i.e., u € K is minimal for /. An alternative characterization of the solution employs
the indicator functional Ik : H];(.Q) — R U {+o00} defined by

0 for ve K,

IK(V):[+OO for v € K.
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We then include the constraint # € K in the minimization problem by considering
the functional

T) =1 + Ig ()

on Hﬁ(!?). A minimizer u € H];(Q) for I satisfies u € K and is a minimizer for
I in K. One verifies directly that I is a convex functional which is weakly lower
semicontinuous. With

T (u) = { € HL(2) : (u,v —u) < I(v) — I(u) forall v € H(£2)}

we have that u € K is a minimizer for 7 if and only if 0 € 87(14). Since [ is Fréchet
differentiable we have
0e DI(u)+ ol (u).

Equivalently, there exists a Lagrange multiplier . € 0Ig(u) such that 0 =
DI (u)[w]+ (A, w) forallw € H&(.Q). This means that

Oz/Vu-dex—/fwdx—/gwds—l—(k,w)
Q

Q2 I'n

forall w € H!(£2). Withv = u + ¢ € K for every ¢ € H!(£2) with ¢ > 0in 2,
we deduce from the variational inequality above that

(A,d))=—/Vu~V¢dx+/f¢)dx+/g¢ds50,
2

2 N

i.e., that A < O in the distributional sense. The variational inequality is an equality
in the set {x € £2 : u(x) > x(x)} and therefore suppA C {x € 2 : u(x) = x(x)}.
We summarize the observations in the following theorem.

Theorem 5.2 (Variational inequality) A function u € K is the unique minimizer for
[ for functions in K if and only if

/Vu~V(v—u)dxz/f(v—u)dx—i—/g(v—u)ds
Q

Q In

forallv € K. This is satisfied if and only if there exists A € H]é(.Q)’ with supp A C
{x € 2:ulx) = xx)}and A <0 such that

/Vu-dex+(A,w)=/fwdx+/gwds
2

Q I

forallw € HL(2).
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Proof The equivalence of the variational inequality and the minimization problem
has been discussed above. That the variational inequality implies the equation with
the Lagrange multiplier follows by defining A as above. The converse implication is
a consequence of the fact that v —u > O in the set {x € £ : u(x) = x(x)} for every
veKk. (]

The region in which the solution « is in contact with the obstacle x is of importance
in many applications.

Definition 5.1 For the solution of the obstacle problem we define the contact zone
or coincidence set by
C={xe ulkx)=yxx)]}

The boundary 3¢ N £2 is called the free boundary.

Remarks 5.1 (i) By choog.ing A E Hﬁ(g) such that (VA, Vw) = (A, w) for all
w e HI%(.Q), and setting .. = —AX and AN = J,A, we find that the strong form of
the obstacle problem reads

—Au+k=f u>x, A AN <0, SuppA C €, duulry+Ainlry =g ulp, = 0.

(i1) In the complement of the contact zone we have —Au = f and the Lagrange
multiplier is supported in ¥ in the sense that (%, w) = 0 if suppw C €°.
(iii) We have the complementarity principle

(Au+ f)(u—x) =0,

i.e., we have u = x or —Au = f almost everywhere in £2.

5.1.3 Regularity

It is not obvious that solutions of the obstacle problem obey higher regularity
properties. In one-dimensional situations, continuity of the derivative of the solu-
tion, i.e., u € H%(£2), can be verified directly.

Proposition 5.1 (One-dimensional regularity) Let 2 = (a,b) CR, x € H 2(a, b),
f e L%*(a,b), and u € Hé (a, b) be such that u > x in (a, b) and

b

b
/u’(v—u)’dxz/f(v—u)dx

a

orallv € a, with v = x n (a, 0). enu e a, D).
forallv € H}(a, b) with in (a, b). Th H%(a, b)
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Proof We have that u = x in ¥ and —u” = f in €. It thus suffices to consider a
point x, € 3¢ and show that u’ is continuous at x.. By definition there exists ¢ > 0
suchthatu(x.—y) = x(xc—y)and u(x.+y) > x(x.+y)eitherforall—e <y <0
or for all 0 < y < . Without loss of generality we consider the latter situation. For
every nonnegative function ¢ € C 1(£2) with supp ¢ C Bg(x.), we have u + ¢ > x
and thus

Xc+e Xc+€
0< / u'¢p) dx — / fédx
Xe—¢& Xc—¢&
Xe Xc

= / X//‘P dx — / fodx + (X/(xc) - u/(xc))¢(xc)~

Xe—& Xc

Since ¢ > 0 is arbitrary, we find that u’(x;) < x’(x.) by taking the limit ¢ — 0.
The nonnegative, continuous function § = u — x satisfies §(x.) = 0 and §'(x.) < 0.
Thus, we have §'(x.) = 0, i.e., u’(x.) = x'(x.) which implies that " is continuous
at x.. U

Example 5.1 For 2 = (—1,1), x(x) =1 — 4x2/3, it follows that the minimizer
u e HY () for I(w) = ['| |u'(x)|>dx with u > x is given by

[1—4x2/3 for |x| < 1/2,
ulx) =
4/3)(1 —|x|)  for |x| >1/2,

cf. Fig.5.2. In particular, € = [—1/2, 1/2]. We note that u € H>(2)\H3(£2).
A similar result holds in higher-dimensional situations.

Theorem 5.3 (Regularity [1]) If I'p = 82, x € H*(2), xlae < 0, and 2 is
convex, thenu € H 2(.Q).

Fig. 5.2 Solution u of a one-dimensional obstacle problem with obstacle yx; the slopes of the
obstacle and the displacement coincide at the boundary of the contact zone ¢
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5.1.4 Penalization

Penalty methods provide an attractive way to include constraints in a minimization
problem and approximate the original formulation by a sequence of continuous,
Fréchet-differentiable functionals. In particular, standard algorithms like descent
methods can be used for an approximate solution of the functionals. The main idea
is to penalize a constraint violation, e.g., via

1 g2
I (u) = E/ |Vu|2dx —/fudx —/guds + - (u— X)Z_dx,
Q Q I Q
where ¢ > 0 is a small penalty parameter and (s)— = min{s, 0} for s € R. A
violation of the constraint u — x > 0 thus leads to a large contribution to the energy.
In general the minimizer u, € Hﬁ(.Q) will not satisfy u, > yx, so that a penetration

of the obstacle occurs. We include an estimate for the difference u — u, and the
penetration error for a simplified situation.

Theorem 5.4 (Nonconforming penalization) Let I'p = 082 and x = 0 and assume
that the solution u € K of the obstacle problem satisfies u € H*(82). For the unique
minimizer u; € HO1 (£2) of the penalized functional I, we have

20V — u)ll* + e 2lug I1? < 2l f + Aul?,

where u_ (x) = min{u, (x), 0} for almost every x € 2.

Proof The existence of a unique minimizer u, € HO1 (£2) follows from the direct
method in the calculus of variations and the strict convexity of /.. The minimizer
satisfies

(Vug, Vw) + 8_2(1,{5_, w) = (f,w)

for all w € HJ(£2). We set u} = u, — u, and note that u} > 0 in 2. With the
variational inequality satisfied by u and the equation satisfied by u., we find that

IV —ue)|* = (Vu, Viu — ul1) + (Vu, Viug — uel) — Ve, Viu — uel)
< (fiu—ub)+ Vu,Viu —ugl) — (f.u —ug)
+ s_z(ug_, U —Ug)

= (foug) — (Vu, Vug) + e 2(ug , u— ue).
We note that (u,, uj) =0and (u;,u) < 0since u > 0 so that

i =2y, =12
e (U ,u—ug) < —& “lug |I°.
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Green’s identity and Holder and Young inequalities lead to

IV —u) >+ e 2Nu |? < (f,u;) — (Vu, Vu,)

82

-2
£
=(f +Auu) = S If + Aull® + 7||u;||2.

This proves the asserted estimate. O
To define a penalty method that provides a family of approximations (#;)¢~0 C K,
i.e., with u, > x in £2 for every ¢ > 0, we choose a Lipschitz continuous function
6 € Wo°(R) with
9'>0, 0<O<1, O@)=0forallt <O.
We assume that 6(t) — 1 as t — o0 with rate 1/1, i.e., there exists ¢y > 0 with

1—0(t) < cot™!

for all # > 0. Possible choices are () = ¢/(1 +t) or 8(t) = (2/m) arctan(z).

Theorem 5.5 (Conforming penalization) Let g = 0on I'N and define 60.(t) = 0(t/¢)
for everyt € Rand ¢ > 0. Let £ € L*(£2) be a nonnegative function such that
£>(=Ax — )t and & > d,x on I\ in the sense that

(Vx. Vo) = (f.¢) = (€. 9)

forall ¢ € HS(Q) with ¢ > 0 in $2. There exists a unique function u, € Hé(.Q)
such that
(Vug, Vw) + ([0 (ue — x) — 116, w) = (f, w)

forallw € Hé(.Q) that satisfies u, > x and
IV —ue)|I* < ecll€ll 1o

Proof Given O, € C'(R) with ®) = 6, we have that O, is convex and there exists
a unique minimizer u, € Hﬁ(.Q) of the functional

Io(uw) = %/IVulzder/@s(u—x)édx—/(f+€)udx.
2 2

2

The minimizer u, € HI%(.Q) solves the Euler-Lagrange equations

(Vug, Vw) + ([0 (ue — x) — 115, w) = (f, w)
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forallw e H]%(.Q). Due to the assumption on £ we have

IV = ue) ™ I1P = (VIx = uel. VIx —uel®)
= (V) VIX —uel™) = (f, (x —ue)™) = (€, (x —ue) ™)
+ (50 (u — 1), (X —ue)™)
< (§0c(ue — X), (x —ue)) =0,
The last identity follows from the fact that almost everywhere in §2 we have either
us < x;then 0 (ue — x) = 0or x < u, and then (x — u,)* = 0. This proves that

ug > x in §2 and hence u, € K. The variational inequality satisfied by # € K and
the Euler-Lagrange equations fulfilled by u, € Hé(Q) show that

IV —u)l* < (for —ue) + EOeue — X)su — ue) — (f + &, u— up)
= ([Oc(ue — x) — &, u —ue) < ([0c(ue — x) — 116, x — ue),

where we used 0, < 1, £ > 0, and u > yx in the last estimate. Since
s(1—06:(5)) = e(s/e)(1 — 0(s/e)) < ecy
we deduce the asserted bound. O

Remark 5.2 The conforming penalization method is practical only if x € H>(£2).

5.1.5 Dual Formulation

We write the obstacle problem as the formally unconstrained minimization of the
functional

1
1(u)=§/|vu|2dx_/fudx+1K()+(u—x)
2 2

with the indicator functional / K& of the set
K ={ve H)(2):v>0in2}.
With A : H)(2) — L?(2; RY), u > Vu, this can be abstractly written as
I(u) = F(Au) + G(u)
and the dual formulation consists in the maximization of (cf. Sect.4.1.4)

p+— D(p)=—F*(p) — G*(—A'p)


http://dx.doi.org/10.1007/978-3-319-13797-1_4
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in the set of functions p € L2(.Q; Rd). Here, A’ is the formal adjoint operator A" =
V' L2(2;RY) — HJ(2) defined by (V/p,v) = (p, Vv) forall v € H}(£2). We
have F* = F and for u € Hﬁ(.Q)/

G*(w) = sup (u+ fiu) —Igr(w—x)= sup (u+fiutx)—Ig+(u)
ueHy($2) ueHY(£2)

(et Lo + L (et )=+ fox0) + g (e + ),

where we used a simple calculation to imply I;J =1 Ky with
Ky =€ Hp(2) : p < 0).
The dual problem thus seeks a maximizing function p € L*(£2; R?) for

1
D(p) = =3 [ IPPdx = (. =V'p+ ) = I (V' + ).
2

In the case Ip = 952 we have V' = — div. The choice p = Vu shows that we have
strong duality.

Theorem 5.6 (Strong duality) Let Iy = 052. Then p = Vu is maximal for ¢ +—
D(q) in the set of functions g € L*($2; R?) and we have

I(u)= inf I(v)= sup D(q) = D(p).
veH}(2) geL?(2;R4)

Proof For a functional @ : X x ¥ — R U {+o00} and x € X we have

sup @(x, y) > sup inf @ (x, y),
yey yey xeX

and hence inf,cx SUp ey D(x,y) > supyeyinfxex ®(x,y). This allows us to
deduce that

1
I(u)= inf I(v)= inf sup (g, Vv) — = / lg)? dx + G(v)
ve Hp(£2) veH}(2) geL?(2:RY) 2 J

1
> sup inf  —(div ¢,v) — 7/ lg1> dx + G(v)
qeL2(2;Rd) vEHp($2) 2

1
= sup (—1)( sup  (div q,v)+f/|q|2dx—G(v))
qeL?(2;RY) veHL(£2) 29

1
= sup —G*divg) — f/|q|2dx
geL2(2;Rd) 29

= sup D(g).
geL2(2;Rd)
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The direct method in the calculus of variations shows that there exists a unique
minimizer for —D in L?(£2; R?). For p = Vu we have, using div p + f < 0,

1
D(p) = 5/|Vu|2dx —(p, Vu) — (x,div p+ f)
2
1
_ 5/|Vu|2dx+<div P+ fou) = (fo) = (odiv p+ 1)
2

1
=E/|Vu|2dx—(f,u)+(u—x,divp+f).
Q

The complementarity conditions show that (u — x,div p + f) = 0 and hence
D(p) = I(u). O

5.2 Finite Element Approximation

Given a finite element space that is a subspace of ng(.Q), it appears natural to restrict
the variational formulation to the discrete space. While this leads to convergence in
approximating the exact solution, the practical computation is difficult in general
since treating the constraint u, > x may be inefficient in practice. The discretization
of penalized formulations allows us to use standard solvers for discrete problems but
often leads to suboptimal results when the obstacle or the solution is not regular. A
more efficient approach is to approximate the obstacle in the finite element space
by a function y; and to solve the discrete variational inequality by imposing the
constraint on the degrees of freedom which often implies that u,, > xj holds almost
everywhere. We present in this section a priori and a posteriori error estimates for
approximating the obstacle problem with finite elements and refer the reader to the
textbooks [3, 4] for further details.

5.2.1 Abstract Error Analysis

For a Banach space X, a continuous and coercive bilinear forma : X x X — R, a
closed convex set K C X, and a bounded linear functional £ : X — R, weletu € K
denote the uniquely defined function in K with

a(u,v—u) > L(v—u)

for all v € K. For a subspace X; C X and a closed convex set K, C X, we let
uy € Kj, be the unique solution of
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a(up, vy —up) > £(vy —up)

forallvj, € K},. Notice that here we do not impose the conformity condition K;, C K.
We define the operator A : X — X’ for every v € X by

(Av, w) = a(v,w)

forallw e X.

Remark 5.3 If X is a Hilbert space, then the existence and uniqueness of a solution
u € K canbe established by showing that the mapping 7y : u — Px (u—60 R(Au—{))
is a contraction for 6 sufficiently small. Here, Px : X — K is the orthogonal
projection onto K and R : X’ — X is the Riesz representation operator.

Theorem 5.7 (Error estimate) Let H be a Hilbert space such that X is continuously
embedded into H and (¢,v) = (p,v)g if ¢ € H C X' forall v € X. With the
coercivity and continuity constants o, M > 0 of a, we have

2

o

2 . 2
—Nu —up|y < inf Au — Ll x (lup —vlx + lu—vullx) + —Ilu —vully.
2” ”X veK || ||X (” || || || ) 2u || ”X

VhEK)

If Au — £ € H, then

2

o 2 . 2
— |l —up|ly < inf Au—2Llglup —vilg + lu—villg) + —Ilu—vull5.
Sl < int lAw— Ol (ln = vl -+ = valla) + 5=l

Proof The coercivity of a implies that for arbitrary v € K and v, € K, we have

allu —uplly < au—up,u—up) =alu,u) —a(, uy) —alup, u) + alup, up)
<a(u,v)+€u—v)—a(u,uy) +a(up, vy)
+ L(up, — vp) — alup, u)
=a(u,v—up)+a(up, vy —u)
+l(u—v)+L(up —vy)
=a(u,v—up)+a(,vy —u)+L€(u—v)
+ l(up —vp) +a(up —u, vy — u)
= (Au—4,v—up)+ (Au—L,v, —u)

+a(up —u, vy —u).
This implies the first error estimate. The second estimate follows from the bound
(Au—€,v —up) = (Au— €, vy —u) < |Au — €l (v —unllz + lu = villu)

provided that Au — € € H. ]
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Remark 5.4 1If the method is conforming in the sense that K, C K, then the terms
lup — vl x and |lup, — v|| g disappear in the estimates.

5.2.2 Application to P1-FEM

For a triangulation .7, of §2 and x € H'(£2) N C(2) with x < 0on I'Dp, we set
Xn = Z, x and define

Kn = {vw € S(Th) - v = xn)-

The condition u;, € Ky, is, for uj, € 5”])1(%), equivalent to u;(z) > xn(z) = x(2)
for all z € A5. If x is not continuous, then a possible definition of the discrete
obstacle is x;, = _Zx with the Clément interpolant ¢, : LY(2) - SYT).
Throughout the following we assume that u € Hé(.Q) satisfies u > x in £2 and

(Vu, Vv —ul) = (f,v —u)

forallv € Hé(!.?) with v > x. Correspondingly, we let uj, € YS (1) be the unique
function that satisfies u, > x5, and

(Vup, Vv —upl) = (f, v — up)

for all v, € YS(%) with vy, > xp.

Proposition 5.2 (Convergence) Assume that x, — x in H'(£2) as h — 0. Then
we have up, — u as h — 0.

Proof Due to the density of the finite element spaces in HI%(.Q), there exists a
sequence (Wp)p=0 C Hs(.s?) such that wy, € 5’6(%) forevery h > O and wj, — u
in H'(£2) as h — 0. Noting that a standard mollification of the nonnegative function
u — x provides a nonnegative function (v — x). = u. — x. with smooth regular-
izations ug, xe such that u; — u and y. — x in HY(2)ase — 0. We may thus
define vy, = I (u — x)e + xp = Fpue — Ipxe + xn € Ky as an approximation of
u in Kj. An approximation of uy, in K is given by v = up, + (x — xn)+ > x. For
these choices the first estimate of Theorem 5.7 yields the bound

IV —u)l* < c(IVG = xm)+ 1+ 1V @ = Fhue) | + 1V (Ihxe — xu)l)-

Inserting x in the term involving y, shows that the right-hand side converges to 0 as
(e,h) = 0. O

Theorem 5.8 (Error estimate) If x, u € H?(§2) and x, = Iy x, then

IV —up)* < ch*|Au+ FI(ID* x|l + 11 D*ull) + ch?|| D*ul*.
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Proof For vy, = Z,u we have v, > y;, and forv = ujy, + (x — xn)+ we have v > x.
Choosing these functions in the second estimate of Theorem 5.7 with H = L?(£2)
and incorporating nodal interpolation estimates prove the error estimate. (]

5.2.3 A Posteriori Error Analysis

We consider the solutions u € K and u;, € K}, of the continuous and discrete obstacle
problem with homogeneous boundary conditions on the entire boundary I'p = 952,
ie,ue K={ye Hé (82) : v > x} satisfies

Vu, Vv —ul) = (f,v —u)
forallv € K, while uy, € K, = {v;, € 5’01(%) 1 vy > xp) satisfies for all vy, € K,

(Vup, Vv —upl) = (f, v — up).

We follow the arguments of [2, 8] and recall the definition of the discrete inner product

v, whn = [ ulvwldx = D e Bv(@w(z) forv, w e C(2)and B, = [, ¢, dx
forall z € A5.

Lemma 5.1 (Discrete Lagrange multiplier) Let Aj, € 5”01 (9, be defined by

Ars widn = (f, wn) — (Vup, Vwy)
forall wy € 5”01(%). Then we have A, < 0 and (Ap, up — xp)p = O.

Proof Given z € A}, let o, € R be such that u,(z) + «; > xn(z). The discrete
variational inequality with v, = uj;, + «;¢, and wy = o, ¢, in the definition of A
imply with 8, = [, ¢. dx > 0 that

@ Behn(2) = az((fs ¢2) — (Vun, Voy)) <0,
in particular, (Vuyp, Vo;) — (f, ¢;) = 0if up(z) > xn(2). O
Lemma 5.2 (Attachment) Let z € A4,\052 and assume that wy, € ,701 () is such

that wp|w, < 0 and wy(z) = 0. Then

1/2
Wil 2y < chz D b2 1IVwh - ns]ll2s).
Se.,z€8

Proof Assume that the right-hand side vanishes. Then Vwy|,, is constant on w,
and wy|,, is affine. The conditions wy(z) = 0 and wy|,, < 0 on w, imply that
lwall L2w,) = 0. Both sides of the asserted estimate define seminorms on fol (I,
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and we thus deduce the result if 7, = 1. A scaling argument proves the estimate in
the general case. O

The lemmas allow us to prove the following error estimate.

Theorem 5.9 (Residual estimate) Assume that x, = x, ID = 052, and let fr =
|T|~! fT f dx for every T € 9},. We have

/Y@ —w)I* < D7 RIS + Aun =2l oy + D BEIST = Flijaer

Te9, Te9,
+ D hsl[Vun sl
Se. N8R

2
+ D hslVOu —un) - ns]liZa s,
SesFEng

with the skeleton of the discrete free boundary th B defined as
SEB=(Se Sz e MmNS, un(z1) = xu(z1), 22 € My N@y,, un(z2) > xn(22)}.

Proof Abbreviating e = u — uj, and employing the quasi-interpolation operator _¢j
we have, since u;, € K,

IVell®> < (f.e) — (Vup, Vie — Zrel) = (f. Zne) + (n, Znedn
= (f,e— _Zne) — (Vup, Ve — gpel) + Gn, Fnedn
=(f —An.e— _ghe) — (Vuy, Vie — Frel) + (Ap, )
— (A, Fne) + (A, Zhedn.
The first two terms are treated as in the case of the Poisson problem, with an inte-

gration by parts, elementwise. The last two terms are controlled with the properties
of the discrete inner product by

(An» Fne) — (A, Fhe)p < c z WiVl 2 IV _Znell 2 r)

TeI,
4 2 172
<o 2 HHIVG = D) IV Fiel
Te9,
2 2 172
<o D0 B+ Aw = fridag) IV Fiell
Te,

To estimate the term (A, e) let T € Fj,.
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() IfTNAS2 # B, then with wr = U, c_y; nrw;, a Poincaré inequality, and an inverse
estimate, we have

/e)nh dx < ChzT||V)Lh||L2(T)||Ve||L2(wT) <chr|in — fT||L2(T)||Ve||L2(wT)~
T
@) If xp, <upor xp =uponT,then Ay =0ore > 0on T, respectively, implies
/e)»h dx <0.
T

(iii) If T N 082 = @ and there exist 71,22 € A, N T with u,(z1) = xn(z1) and
up(z2) > xn(z2), then we have Aj(z2) = 0. Using that 0 < x5 — up, < u — uy,
An < 0,and up(z1) — xn(z1) = 0, we find with Lemma 5.2 that

/e)»h dx < /(Xh —up)ipdx < hr|Vanl 2oy llxn — unliz2er)

T T
1/2
<chrlin = frizay D, P IIVOh —un) - nslliz2gs)-
SeSp,z21€8
A combination of the estimates implies the theorem. ([

Remark 5.5 A related local lower bound for the error has been derived in [8].

We incorporate an a posteriori error estimate that is based on duality arguments
as in the abstract setting of Theorem4.2. In the stated form it is of limited practical
use but reveals that optimality conditions are an important part in a posteriori error
estimation. The result does not assume that u, is a discrete minimizer.

Theorem 5.10 (Functional estimate) Assume Iy = 952 and let u, € K. For every
P € H(div; £2) such that div pj, + f < 0in £2, we have

IV (@ — u)ll* < IVup — pull* + (x — un, £ +div pp).

Proof The abstract a posteriori error estimate for nonsmooth, strongly convex opti-
mization problems shows, with D as in Theorem 5.6, that

1 1
IV - upl* < = (Iun) — D(Pn))

for every pj, € L*(£2; R?). With Green’s formula, u, € K, and div pj, + f < 0 we
infer
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~ 1 2 1 ~ 2
Iup) = D(pp) = 5 [ IVunl"dx = [ fupdx + =5 [ |pa]” dx
2 2 2

+/X(div P+ f)dx

2

1 - 1 —~
:E/|Vuh|2dx—/ph~Vuhdx+§/Iphlzdx
2 2 2

+/(X —up)(f +div pp) dx.
2

This proves the error estimate. g

5.3 Iterative Solution Methods

We discuss a locally superlinearly convergent and a globally convergent iteration
method. These can be combined to obtain a globally convergent method that has
fast convergence properties in an appropriate neighborhood of the discrete solution.
The interpretation of the primal-dual active set strategy as a semi-smooth Newton
method is due to [5].

5.3.1 Semismooth Newton Iteration

The finite element discretization of the obstacle problem leads to a finite-dimensional
minimization problem of the form

1
MMMRU%»?ﬂAU—BTUS&mam U>2Z

with a positive-definite matrix A € REXL ., Here, the vectorial inequality U > Z is
understood component-wise. Arguing as in the infinite-dimensional situation this is
equivalent to finding (U, A) € RE x RE such that

AU+A=B, U>2Z, A<0, AU-2);i=0,i=12,...,L.

As above we consider the component-wise operation min{0, Y} for a vector ¥ € R-
in the following.
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Lemma 5.3 (Complementarity function) The optimality conditions are satisfied if
and only if

AU+ A =B, €U, A) =A—-min{0, A+ c(U — 2)} =0,

where ¢ > 0 is an arbitrary positive number.

Proof Suppose that the optimality conditions are satisfied and fix | < i < L. If
A; = 0, then U; > Z; implies 6;(U, A) = 0. If A; < 0, then U; = Z; and
A; — min{0, A;} = 0, i.e., € (U, A) = 0. Assume conversely that € (U, A) = 0
and fix 1 <i < L.IfA; +c(U; —Z;) <0,then0 =%, (U,A) = A; — A; +
cUi —Z)=cU; — Zj),ie,U; =Z;and A; <0.If A; + c(U; — Z;) > 0, then
OZ%(U,A)ZA,' and U; > Z;. O

The lemma motivates defining F : RL x RE — RE x RL by

F(U, A) = [F‘(U’ A)}

AU+ A—-B
(U, A)

EU, A)

and compute (U, A) with F(U, A) = 0. For aset & C {1,2,..., L} we define
Iy e REXLfor1 <i, j < Lby

1 if i=jandi €,
0  otherwise.

Uy)ij = {

We denote /¢ = {1,2,..., L}\«/ and note that I + I = I is the identity
matrix in REXE,

Theorem 5.11 (Newton differentiability) The function F is Newton-differentiable
at every (U, A) € RE x RE and with the set

o ={1<i<L:A~+cU —Z) <0}

we have

_|DRWU, A | A I
DFWU, 4) = [DFz(U, A)] - |:—Cld Lye |’
In particular, DF (U, A) is regular and the semismooth Newton scheme for the iter-
ative solution of F (U, A) = 0 is well-defined and locally superlinearly convergent.

Proof A Newton derivative of the mapping x > min{x, 0}is givenby x > xgr_,(x)
with xg_,(x) = 1lifx < 0,and xg_,(x) = 0if x > O; this implies that F' is Newton-
differentiable with Newton derivative D F. Assume that DF (U, A)[V, W]T = 0.
Then the equation D F»(U, A)[V, W]T = 0 yields V|, = 0 and W|g e = 0.
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The identity D F1 (U, A)[V, W]T = 0 then gives (AV)| - = 0, and together with

V| = Oimplies (A V)T V = 0. Since A is positive definite, we deduce that V = 0.
From DF (U, A)[V, W]—r = 0 we then also find that W|, = 0. O

One step of the semismooth Newton scheme
DF(U, M[8U,8A]" = —F(U, A)

for a given iterate U,AeRlis equivalent to

A 1L[sul_ [ AU+A-B
—clylz|[8A] " [ A-min{0, A+cU ~2)} ]

where o/ = {fl<i<L: /Tl- + c(ﬁi — Z;) < 0}. This system can be written as
AU +8U)+ (A+84) =B, (A+84) 7 =0, (U+8U)|7=Z| 7

The semismooth Newton scheme can thus be formulated in the following form which
is a version of a primal-dual active set method.

Algorithm 5.1 (Primal-dual active set method) Let (U°, A°) € RE xRE and ¢ > 0

yees

A={1<i<L:A+cU-2)<0)

A I [u" [ B
Iy, I%fr AL T VAR

Stop the iteration if [[UAT! — U¥|| < egop.

and

Remarks 5.6 (i) The algorithm converges superlinearly if (U°, A?) is sufficiently
close to the solution (U, A), cf. Theorem4.11. Since the Newton-differentiability
only holds in finite-dimensional situations and deteriorates as the dimension increases,
the condition on the initial guess becomes more critical for increasing dimensions.
(ii) The degrees of freedom related to the entries A|%c can be eliminated from the
linear system of equations in the algorithm.

(ii1) Since only a finite number of active sets are possible, the algorithm terminates
within a finite number of iterations at the exact solution.

(iv) Global convergence of the algorithm and monotonicity U¥*t! > U* > Z for
k > 2 can be proved if A is an M-matrix.

(v) Classical active set strategies define o, = {1 < i < L : Ul.k < Z;‘ } which
corresponds to a formal limit ¢ — oo.

The MATLAB code displayed in Fig. 5.3 realizes the primal-dual active set method
for the obstacle problem. The solution uy, is replaced by the sum uy, + up ; with a
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function obstacle_newton (d, red)
[c4n,n4de,Db,Nb] = triang_cube(d);
cdn = 3% (c4n—-.5); Db = [Db;Nb]; Nb = [];
for j = l:red
[c4n,nde,Db,Nb,P0,P1l] = red_refine(c4n,nde,Db,Nb);
end
nC = size(cdn,1);
u_ini = zeros(nC,1);
dNodes = unique (Db); fNodes = setdiff (1:nC,dNodes)';
[s,m,m_lumped,vol_T] = fe_matrices (c4n,nde);
[m_Nb, m_lumped_. Nb] = fe _matrices_bdy (c4n,Nb) ;
D (c
(c

u_ini (dNodes) = n (dNodes, :));

b = m*f (cdn) +m__ Nb*g n)fs*u_ini;

c =1; I = speye(nC); tz = chi(c4d4n)-u_ini;

tu_old = zeros(nC,1l); tu_new = zeros(nC,1); lambda = zeros(nC,1);
norm_corr = 1; eps_stop = 1E-3;

while norm_corr > eps_stop
inactive = find(lambda+cx* (tu_old-tz)=0);
active = setdiff (1:nC, [inactive;dNodes]) ;

o = sparse(size(active,?2),size(active,?2));
X = [s(fNodes, fNodes), I (active, fNodes) ';I (active, fNodes),o];
x = X\ [b(fNodes) ;tz (active)];
tu_new (fNodes) = x(l:size (fNodes,1));
corr = tu_new-tu_old;
norm_corr = sqgrt (corr'xsxcorr);
lambda = zeros(nC,1);
lambda (active) = x(size (fNodes, 1)+ (l:size(active,2)));
tu_old = tu_new;
end
u = tu_new+tu_ini;

show_pl (c4n,n4e,Db,Nb,u); drawnow;

function val = chi(x); val = zeros(size(x,1),1);
function val = f(x); val = -2xones(size(x,1),1);
function val = g(x); val = zeros(size(x,1),1);
function val = u_D(x); r = sqgrt(sum(x."2,2));

val = (r."2/2-log(r)-1/2);

Fig. 5.3 MATLAB implementation of the semismooth Newton method for the obstacle problem

function up j that satisfies Dirichlet boundary conditions. The unknown function
satisfies the constraint u, > x, = x» —up,, and homogeneous Dirichlet conditions.
The function iip ;, also serves as an initial guess for the semismooth Newton iteration.

5.3.2 Global Primal-Dual Method

The discretized obstacle problem can be formulated as a minimization of the mapping

up = Iup) = F(Vup) + G(up)
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with the functionals i
F(Vup) = 5 / [Vup|* dx
Q

and with f, € #1(%,) defined through (fi, vi)n = (f, va) for all v, € S1(Th),
G@up) = —(fn, up)n + 1K0+(uh — Xh)-

We equip the space YDI(%) and the space of element-wise constant vector fields
£9(7,)4 with the inner products (-, -), and (-, -), respectively. This allows us to iden-
tify them with their duals. The formal adjoint operator V' : £°(Z3,)¢ — .73 (%)
of V: YDI(%) — £%7,)? is denoted by — divg and defined via

(— div) pr, vidn = (ps Vvn)

for all p, € Z°(Z)? and vy, € 5”])1(%). We define a discrete subdifferential of
G by

WG up) = {vn € S5(Th) : Oy wh —upn +Gup) < G(wy) f.a. wy, € S3(T)).

Within this setting we reformulate the minimization problem as a saddle-point
problem.

Proposition 5.3 (Saddle-point formulation) The unique minimizer uj, € 5”]31(%)

of I defines a saddle point (up, Vuy) € 5’5(%) x LYG)? for the functional
L: YS(%) x L%(F)? — R defined by

L(n, qn) = (qn, Vvi) — F*(qn) + G(vp),
where F*(qp) = (1/2) fﬂ |qh|2 dx, i.e., with py = Vuj we have
L(un, gn) < L(un, pn) < L(vn, pn)

forall (v, qn) € S3(Th) x LO(T).

Proof We first note that for p;, € Z°(.7,)¢, we have

F(py) = %/Imlzdx: sup  (pn.qn) — F*(qn)
5 e ()4
and g5, = pp is maximal on the right-hand side. This shows that L(uj, pn) >
L(uy, qp) forall g5, € £°(F,)?. Since uy, is optimal, i.e., 0 € 3 F (Vuy) + 8,G (up)
and F is strongly convex, we have for all v, € YS(%)
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1
S IV n = vi)lI> + I (up) < I(vp).

Therefore, employing p, = Vuy,

1 1
L(vp, pn) =1 (vp) — 5||Vvh||2 + (Vvi, pn) — Enphnz
1
=1(n) = Vv = pull? = I(up) = L(up, pn).

This proves the proposition. ]

The global iterative scheme realizes a subdifferential flow for the functional L;
in particular, we use the iteration

diuk € =3,y L(uk, pry = div) pf — 0, G (ub),

dipk € 9, Lk, pky = Vuk —aF*(pf) = Vul — pk,
where the discrete subdifferential 9, G is given by
WG (un) = —fn + nlg;un = xn)-
The inclusion of the iteration characterizes the unique minimizer uﬁ € yDl(%) of

1 - .0~
> =l — ™ = TG Pl Sl + Ly (en = )

in the set of functions uy, € YS(%). Straightforward considerations imply that

uk () = max{x4(2), uk "1 (2) + T(div) P~ + fi)(2)}

for every z € A3 \I'd. The equation for d; pﬁ of the iteration is equivalent to

pz =1+ r)_l(pﬁ_l + ‘L'VM]Z).

The proposed algorithm is a modified version of the abstract primal-dual strategy of
Algorithm4.5 in the sense that the extrapolation is done in the variable pj, in which
strong convexity holds.

Algorithm 5.2 (Primal-dual iteration) Let ul) € #X (), p) € £°(Z)?, and

7 > 0 and define dtp,(z = 0. Compute the sequences (u';l)kzo,]w C YS(%) and

(POk=o1,.. € LUT) via pf = py ' +tdip} !,
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k _ k—1 -0 ~k
uy (z) = max{xn(z), u), (z) + v(div, pj, + fu)(2)}
for all z € A4,\ID, and
p=0+0 " (py " +1Vup).

Stop if [|d; pk || < &gtop-

The following theorem shows that the iteration converges for every choice of
(), py)-

Theorem 5.12 (Convergence) Let uj € yg(ﬂh) be the unique minimizer for Iy,
and set p, = Vuy, € LT If v < ch with ¢ > 0 sufficiently small, then the
iteration of Algorithm5.2 satisfies

2 L L

T

= > (g7 + I1di phI1P) + 7 D on — PEIP < llpn — pll* + lun — ufll7-
k=1 k=1

In particular, ||d,pfl||, ||dtufl||h — Oask — oocand pﬁ — ppask — oo. Moreover,

u];l—>uhask—>oo.

Proof The inclusion and equation satisfied by the iterates, i.e.,
—dyuf, + div} B € 4G (uf),  —dip + Vuf = p}

imply upon testing with uj; — uﬁ and pj — pﬁ, respectively, that

%(”Ph — PP + llun — uplly) + %(nd,uéin,% + Idipp %) + %”Ph — pill?
= —op, P ) — o b+ 3w~ PP
< F*(pn) — F*(p}) — (Vuf, pn — p}) + Gup) — G(uj)
+ (= div) pr up — ub)
= [(Vun, p}) = F*(p}) + Gup)] = [(Vul, pn) — F*(pn) + G(uly)]
+ (Vuy, pp) — (Vun, pp) + (— divy By, un — up)n

= L(un, py) — LGy, pn) + (P — Py, Viun — uj)).
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Since (up, pp) is a saddle-point for Lj;, we have Lj (up, pz) < Lu(up, pn) <
Ly (uﬁ, pr). With this and ﬁ — p’ﬁ = —tzdtzpﬁ, we deduce that

L
1 L2 e 2
5 Ulpn = P2 + lew — ui17) 7; ldiuf 17 + llde pj 1) anh—phn
L 1
<0 > (=d? ply, Yl — ) + S (lpn = Pl + llun = u17)-

k=1

To bound the sum on the right-hand side, we use summation by parts, d; p2 =0,
Young’s inequality, and an inverse estimate to verify that

L

L
T D Ay, Viuy —uy]) =7 D (dipy ", V) + T (di ply, Vg — Dl
k=1 k=1

)

L

T _

= (24 1va i + 1, pf 1)
k=1

2
T
+ —||dfp£ 12+ 221V (up — up)ll*
T L ‘L'2
< Z(Z Idouf 1+ e pf~" 1) + S s pf 12
k=1

L2
+ —llup —u ,
4I| AN

where we assumed that T < ch with ¢ such that 27||Vv,| < |lvall5 for all v, €
yg(%).This proves the estimate of the theorem and impliesthatdtu';l — 0,d; pﬁ —
0, and p’h‘ — pp as k — oo. Since Vu’,g - p’,j — 0 it follows that u';l — Uup. |

The MATLAB code displayed in Fig. 5.4 realizes this scheme. The employed rou-
tine comp_gradient.m computes the element-wise constant gradient of a P1
function. The routine discrete_divergence.m provides a matrix that com-
putes div2 gy, for a vector field g, € & 0(%,)”l.
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function obstacle_global (d, red)
[c4n,nde,Db,Nb] = triang_cube (d);
cd4n = 3% (c4n-.5); Db = [Db;Nb]; Nb = [];
for j =1 : red
[cd4n,nde,Db,Nb,—,~] = red_refine (c4n,nde,Db,Nb);
end
h = 2" (-red); tau = h/10;
nC = size(cd4n,1); nE = size(nde,1);
dNodes = unique (Db); fNodes = setdiff (1:nC,dNodes)';
[s,m,m_lumped,vol_T] = fe_matrices (c4n,nde);
D = discrete_divergence (c4n,nde);
u_old = u_D(céd4n); u_new = zeros(nC,1);
p_old = zeros(nE,d); dt_p = zeros(nk,d);
norm_corr = 1; eps_stop = 1E-2;
while norm_corr > eps_stop
p_tilde = p_old+tau*dt_p;
div_p_tilde = m_lumped\ (D'xreshape (p_tilde',d*nE,1));
b = u_old+taux (div_p_tilde+f (c4n));
u_new (fNodes) = max (chi (fNodes), b (fNodes)) ;
du_new = comp_gradient (c4n,nde,u_new);
p_new = (p_old+tauxdu_new)/ (l+tau);
dt_p = (p_new-p_old)/tau; p_old = p_new; u_old = u_new;
norm_corr = sqgrt(vol_T'ssum(dt_p."2,2))
end
show_pl (c4n,n4e,Db,Nb,u_old); drawnow;

function D = discrete_divergence (c4n, nde)
[nC,d] = size(c4n); nE = size(nde,l);
ctr = 0; ctr_max = dx (d+1)*nE;
I = zeros(ctr_max,1l); J = zeros(ctr_max,1);
X = zeros(ctr_max,1l);
for j =1 : nE
X_T = [ones(l,d+1l);cd4n(nde (3, :),:)"1;
grads_T = X_T\[zeros(l,d);eye(d)];
vol_T = det (X_T)/factorial (d);
for m = 1 : d+1
for n =1 : d
ctr = ctr+l;
I(ctr) = dx(j-1)+n; J(ctr) = nde(j,m);
X(ctr) = -vol_Txgrads_T (m,n);
end
end
end
D = sparse(I,J,X,d*nE,nC);

function val = f(x); val = -ones(size(x,1),1);
function val = u_D(x); val = zeros(size(x,1),1);
function val = chi(x); val = (-.15)~*ones(size(x,1),1);

Fig. 5.4 MATLAB implementation of the globally convergent primal-dual method for the obstacle
problem
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Chapter 6
The Allen—Cahn Equation

6.1 Analytical Properties

The Allen-Cahn equation is a simple mathematical model for certain phase
separation processes. It also serves as a prototypical example for semilinear
parabolic partial differential equations. The presence of a small parameter that defines
the thickness of interfaces separating different phases makes the analysis challeng-
ing. Given ug € LZ(Q), e>0and T > 0, we seek a functionu : [0, T] x 2 — R
that solves

du — Au=—e2fu), u0)=ug, dul, g =0,

for almost every ¢ € [0, T] and with f = F’ for a nonnegative function F € C )
satisfying F(£1) = 0, cf. Fig.6.1. Unless otherwise stated, we always consider
F(s) = (s> — 1)?/4 and f(s) = s> — s but other choices are possible as well. We
always assume that |ug(x)| < 1 for almost every x € 2. For this model problem
we will discuss aspects of its numerical approximation. For further details on mod-
eling aspects and the analytical properties of the Allen—Cahn and other phase-field
equations we refer the reader to the textbook [7] and the articles [1, 2, 4, 6, 10, 11].
The Allen—Cahn equation is the L>-gradient flow of the functional

_1 2 -
I.(u) = 5 |Vul“dx + ¢ F(u)dx.
2 Q

Solutions tend to decrease the energy and develop interfaces separating regions in
which it is nearly constant with values close to the minima of F. We refer to the
zero level set of the function u as the interface but note that this does not define a
sharp separation of the phases. More precisely, the phases are separated by a region
of width ¢ around the zero level set of u often called the diffuse interface.
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F(s) f(s) I
N T N
\ ‘ —

Fig. 6.1 Double well potential F(s) = (s> — 1)?/4 and its derivative f(s) = s> — s which is
monotone outside [—1, 1]; solutions develop time-dependent interfaces I} that separate regions in
which u(z, -) ~ £1

6.1.1 Existence and Regularity
The existence of a unique solution u follows, e.g., from a discretization in time and
a subsequent passage to a limit.

Theorem 6.1 (Existence) For every ug € L2(2) and T > O there exists a weak
solutionu € H'([0, T]; H'(£2))NL>([0, T]; H'(2)) that satisfies u(0) = ug and

(Bu, v) + (Vu, Vv) = —2(f (), v)

for almost every t € [0, T] and every v € HY(0). If ug € HY(), then we have
ue HY([0,T]; L>(£2)) N L>([0, T]; H'(2)) and

T/
Lu(T") + / I8l dt < I (uo)
0

for almost every T' € [0, T].

Proof The existence of a solution follows from an implicit discretization in time that
leads to a sequence of well-posed minimization problems. Straightforward a-priori
bounds, together with compact embeddings, then show the existence of a weak limit
that solves the weak formulation. If ug € H'(£2), then we may formally choose
v = 0d:u to verify that

d 1 d
I3ul> + — = Vul? = —e 72— [ F(u)dx.
dt 2 dt
2

An integration over [0, T'] implies the asserted bound. This procedure can be rigor-
ously carried out for a time-discretized problem, and then the estimate also holds as
the time-step size tends to zero. O

Remarks 6.1 (i) Stationary states for the Allen—Cahn equation are the constant func-
tions u = £1 and u = 0. The state u = 0 is unstable.
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(ii) For 2 = R? a stationary solution is given by u(x) = tanh(x - a/ (ﬁs)) for
all x € R? and an arbitrary vector a € R¥. This characterizes the profile of typical
solutions for Allen—Cahn equations across interfaces.

Since the nonlinearity f is monotone outside the interval [—1, 1], solutions of the
Allen—Cahn equation satisfy a maximum principle.

Proposition 6.1 (Maximum principle and uniqueness) If u is a weak solution of the
Allen—Cahn equation and |ug(x)| < 1 for almost every x € 2, then |u(t,x)| < 1
for almost every (t, x) € [0, T] x §2. Solutions with this property are unique.

Proof Letu € H'([0, T]; H'(£2)") N L?([0, T]; H'(£2)) be the function obtained
by truncating u at £1, i.e.,

u(t, x) = min{l, max{—1, u(t, x)}}
for almost every (¢, x) € [0, T] x §2. Then d;u = d;u, Vu = Vu, and f(u) = f(u)
in {(t,x) € [0,T] x 2 : |u(t,x)| < 1} and d;u = 0, Vu = 0, and f(u) = 0
otherwise. The function u is therefore a weak solution of the Allen—Cahn equation.
If u — u # 0, then either u > u = 1 and

f)— f@) = f'@yw—u = f()wu—u) =2u—u)
oru <u=—1and
f) = f@) < frayw—u) = f'(=)u—u) =2(u—1u).

Altogether we find that almost everywhere in [0, T'] x £2, we have

(f) — f@) @ — i) = 2Ju — il
The difference § = u — u satisfies

(0:8,v) + (V8,Vv) = —e2(f(u) — f@), ),

and for v = §, we obtain
1d 2 2 —21e112
——1|8 V|- < -2 8.
2dt” 1=+ 1IV3ll© = =2 |I5]|

With 6(0) = 0, it follows directly that § = 0in [0, 7] x £2. If u; and u, are solutions
with |uq], |uz| < 1in [0, T] x §2, then we have

[ f(u1) = fu2)] < cplur — us|

almost everywhere in [0, T] x £ with ¢; = SUPser—1.1] | f/(s)|. The difference
8 = uy| — uo satisfies
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(@8, v) + (V8, Vv) = —e >(f (1) = f(u2),v)

and the choice of v = § leads to
1d _
Mnan% V81> < cre2|18%

An application of Gronwall’s lemma implies that u; = u,. ]

As for the linear heat equation, one can show that the solution is regular. The
corresponding bounds depend critically however on the small parameter ¢ > 0.

Theorem 6.2 (Regularity) If the Laplace operator is H* regular in 2 and ug €
H'(R2), thenu € L>([0, T1; H*(2))NH*([0, T]; H'(2))NH' ([0, T1; H*(£2))
and there exists o > 0 such that

T T
5 172 5 172 .
sup Nl + ([ el gy dr) 4 ([ Nl gy de) < e
tel0,7T] A A

If I, (ug) < c and | Aug|| < ce~2, then we may choose o = 2.

Proof The proof follows with the arguments that are used to prove the corresponding
statements for the linear heat equation, cf. [8]. U

6.1.2 Stability Estimates

In the following stability result we assume that an approximate solution satisfies a
maximum principle. This is satisfied for certain numerical approximations and the
assumption can be weakened to a uniform L°-bound. We recall that Gronwall’s
lemma states that if a nonnegative function y € C([0, T']) satisfies
T/
T =A +/a(t)y(t)dt
0

for all T’ € [0, T] with a nonnegative function a € L([0, T1]), then we have

T
Y(T') < Aexp (/adt).
0
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Together with a Lipschitz estimate, this will be the main ingredient for the
following stability result. Due to its exponential dependence on &2, it is of limited
practical use.

Theorem 6.3 (Stability) Let u € H'([0, T]; H'(22)) N L>([0, T]; H'(£2)) be
a weak solution of the Allen—Cahn equation with |u| < 1 almost everywhere in
[0, T] x 2. Let i € H'([0, T1]; H'(£2)) N L2([0, T1; H (2)) satisfy |u] < 1
almost everywhere in [0, T] x $2, and u(0) = ug, and solve

(011, v) + (ViI, Vv) = —e 2(f @), v) + (Z(1), v)

for almost every t € [0,T], all v € HI(SZ), with a functional X e LZ([O, TI;
H'(£2)). Then we have

T
sup |lu —ﬁ||2+/ IV (u — )% d
tel0,T] o

T
< 2(||u0 — ol +/ 12120 0y dt) exp ((1 4 2c 6™ H)T).
0
Proof With ¢y = sup;cp, ) |.f'(s)], we have

[f(s1) — f(s2)] < crlsy — 52|

for all s1, s, € R. The difference § = u — u satisfies
(8. v) + (V8, V) = —e 2 (f(u) — f (i), v) — (%.v)

for almost every ¢ € I and every v € H'(£2). For v = § we find that

1d _ ~
EEIIrSIIz + V812 < cre 218117 + 12 g1 oy 181 1 (2
B 1 =~ 1
< cre 21817 + SRz oy + S USI% + V8
1 -2 2 L ~0 1 2
< S +2er87 BN + S 1% gy + 5 IVSI%.

Absorbing the term |[V§]|?/2 on the left-hand side and integrating over (0, T")
lead to

T T T’
||8<T’>||2+/||va||2dr < ||3<0>||2+/||@||g1(9)/dr+<1+2cfe—2>/||a||2dr.
0 0 0
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Defining A = [|§(0)||% + fo ||%|| dt,b=(1+ 26f8_2), and setting

HY(R2)
t

y(t) = ||6(r)||2+/ V82 ds,
0

we have y(T') < A+a fOT/ y(t) dr; Gronwall’s lemma implies the estimate of the
theorem. 0

Remark 6.2 The functional Z models the error introduced by a discretization of the

equation so that we may assume that ||<%’(t) 12 iy S €€ ~P (h® +1P) for a mesh-size

h > 0 and a time-step size T > 0, and parameters «, 3, p > 0. If ||ug — u()||2 <hY,
then we obtain the error estimate

sup Jlu —a||? +/ IV —w)|1>dr < ce P (h*+1P +h?)exp (a+ ZCfsfz)T).
1€[0.7]

Even for the moderate choice ¢ ~ 107!, the exponential factor is of the order 1040
and it is impossible to compensate this factor with small mesh- and time-step sizes
to obtain a useful error estimate. In practice even smaller values of ¢ are relevant.

To obtain an error estimate that does not depend exponentially on ¢! and which
holds without assuming a maximum principle, refined arguments are necessary. The
following generalization of Gronwall’s lemma allows us to consider a superlinear
term.

Proposition 6.2 (Generalized Gronwall lemma) Suppose that the nonnegative func-
tions y1 € C([0,T]), y2,y3 € L0, TD, a € L*®([0, T)), and the real number
A > 0 satisfy

T/ T/ T/
y1(T/)+/y2(t)dt =< A+/a(t)y1(t)dt+/y3(t)dt
0 0 0

forall T € [0, T). Assume that for B > 0, B > 0, and every T’ € [0, T, we have

T’ T’
/y3(t)dt < B( sup P /(yl(t) + y2(1)) dz.
o tel0,7']

Set E = exp(fOTa(t) dt) and assume that SAE < (8B(1 + T)E)~'/F. We then
have
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T

T
sup Y1(l)+/y2(t)dt < 8Aexp(/a(s)ds),
0

t€l0,T]
0

Proof We assume first that A > 0, set @ = 8AE, and define

T/
Ig={T"€[0,T]:V(T")= sup yi(t) +/y2(t) dr < 6}.
1€[0,77] ,

Since y1(0) < A < 0 and since 7 is continuous and increasing, we have Iy =
[0, Ty] for some O < Tyy < T.Forevery T’ € [0, Tys] we have

T’ T’ T/
mwsf/mmmsA+/ﬁmmmm+Bsw.ﬁm/@mnwm»m
0 o te[0,T7] 0
T/
<A +/a(t)y1 ()dr + B+ T)o' P,
0

An application of the classical Gronwall lemma, the condition on A, and the choice
of 0 yield that for all T" € [0, Ty;], we have
T/
maﬁ+/nmmsm+3a+nwww§
0

IS

This implies V' (Ty) < 0, hence Ty = T, and thus proves the lemma if A > 0. The
argument is illustrated in Fig. 6.2. If A = 0, then the above argument holds for every
6 > 0 and we deduce that y; () = y2(t) =0 forall ¢t € [0, T]. O

Remark 6.3 The differential equation underlying the generalized Gronwall lemma
has the structure y' = y'*#. For B > 0, solutions become unbounded in finite time
depending on the initial data, e.g., for y/ = y2, we have y(t) = (f. — 1)~ with
te =Yy ! Therefore, an assumption on A is unavoidable to obtain an estimate on the
entire interval [0, T'].

Fig. 6.2 Continuation
argument in the proof of the
generalized Gronwall lemma
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Two elementary properties of the function f are essential for an improved stability
result. These define a class of nonlinearities that can be treated with the same argu-
ments.

Lemma 6.1 (Controlled non-monotonicity) We have f'(s) > —1 and

(f) = M) (s —7) = f1(s)s — 1) =3s(s —r)°
forallr,s € R.

Proof The lemma follows from the identities f'(s) = 3s> — 1, f”(s) = 6s, and
f""(s) = 6 together with a Taylor expansion of f. O

The controlled non-monotonicity of f avoids the use of a Lipschitz estimate.
To estimate the resulting term involving f’, we employ the smallest eigenvalue of
the linearization of the mapping u +— —Au + f(u(t)), i.e., of the linear operator
Vi —Av+ f(u(t))v.

Definition 6.1 For u € L*®([0, T]; H'(£2)) let the principal eigenvalue iac:
[0, T] — R of the linearized Allen—Cahn operator for ¢ € [0, T'] be defined by

V|12 + e 2(F (w@))v, v
hac() = — inf Vvl (J; (u(®)v, v)
veH (2)\{0} vl

Remarks 6.4 (i) As in the theory of ordinary differential equations, the principal
eigenvalue contains information about the stability of the evolution.

(i) If [u(t)| < 1in £2, then we have —Aac(#) > ¢% — 1 — cye 2 with the Poincaré
constant cp = sup,c g1y o} IVII/IIVIlg1 (@) and ¢p = supger_y 13 | f'(s)|. There-
fore, Aac() < 1+ &72. The evolution is stable as long as Aac(f) < c for an
e-independent constant ¢ > 0, and becomes unstable for Aac(¢) > 1.

(iii) For the stable stationary states u(f) = =*1, the choice of v = 1 shows that we
have Aac(f) = —2e~2 < 0, while for the unstable stationary state u(t) = 0 we have
rac(t) = &2

(iv) As long as the curvature of the interface I'; = {x € £2 : u(¢, x) = 0} is bounded
e-independently, one can show that A5c(¢) is bounded e-independently, cf. [4].

The generalized Gronwall lemma, the controlled non-monotonicity, and the prin-
cipal eigenvalue A ac can be used for an improved stability analysis. We first use the
non-monotonicity in the equation for the difference § = u — u tested by 6, i.e.,

%%IISIIZ +HIVSIP = —e72(f ) = f @), u— 1) — (#,9)

< — (S ) — 1), u— i)
+ 36 ull Loy lu = 135 ) — (£ 6).-



6.1 Analytical Properties 161
The definition of Aac(#) implies that
—hacll8|> < V811> + e 2(f'w)s. 5)

and the combination of the two estimates proves that

1d . ~
5 77 1817+ 1V3I% < Aaclldl* + V812 + 362wl (@) 181175 ) + (2, 0).

By slightly refining the argument we may apply the generalized Gronwall lemma to
this equation. In the following theorem we employ the principal eigenvalue defined
by an approximate solution to the Allen—Cahn equation. This is in the spirit of
a posteriori error estimation to obtain a computable bound for the approximation
error. It follows the concept that all information about the problem is extracted from
the approximate solution.

Theorem 6.4 (Robust stability) Ler 0 < ¢ < 1 and u € H'([0, T]; H'(£2)") N
LZ([O, TI; H! (82)) be the weak solution of the Allen—Cahnfquation. Given a func-
tiontt € H'([0, T1; H'(£2))NL*([0, T1; H' (£2)) define % € L*([0, T1; H' (£2)))
through _

(A1), v) = (i, v) + (VII, Vv) + &> (f (@), V)

for almost every t € [0, T] and all v € H' (). Suppose that no, n1 € L?([0, T
are such that for almost every t € [0, T] and all v € H! (£2), we have

(Z(0),v) < no@ IVl +m OV

Assume that kac € L'([0, T1) is a function such that for almost every t € (0, T),
we have i i
~ v 2P )Y,
—ac(t) < inf Vv« + ()2‘ @) V)’
veH (D\(0) vl

and set (1) = 2(2 + (1 - ez)XAC(t))+. Define

T
e = I — DO + / 0+ e 20 di
0

and assume that

T
-3/2

_ _ 3/
nac < e*(6¢sllill Lo, 712202 (1 + T)) 1(8 exp (/Mx(t)dt)) ,
0
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then

T

T
sup ||u—Ellz—i—az/IIV(u—ZZ)szt < sn,icexp(/m(t)dz).
0

s€[0,T]
0

Proof The difference § = u — u satisfies
(88, v) + (V8, Vv) = e 2(f (u) — f(@D), v) — (%, V)

for almost every ¢t € [0, T]and allv € H L. Choosing v = §, using the assumed
bound for #, noting Lemma6.1, and using Young’s inequality we find

%%”5"2 +IVSIP = = (2, 8) — e 2(f @) — f(@), )

< noll8ll +mllIV8l — 72 (f' ()3, 8) + 3¢ [l () 181173
1 2 - & 2 2 =2 pl
= 2%+ 19l +7m S IV8IZ = (1 = )e™>(f @3, 8)

— (@8, 8) + 32 llwll o) 181135 -
The assumption on XAC (t) shows that
—dac®I81 < IVSI1* + & 2(f'@)3, ).

Multiplying this estimate by 1 — &% and using f’(#) > —1, we derive the bound

-2

1d
——I|5|| +Ivs)? =0 o + 118117 +7771+—||V5|| + (1 —&)acldl

2 2 2 -2
+ (I =eD)IVEIT+ 1817 + 3¢ IIMIILOO(Q)H(SIILz(Q)

[u——y

o2 2+(2+(1 —eHrao)l81?

N|°’NI\)I>—‘

JIVSIZ +3e 2l oo (2 181135 )
which leads to
d 2 2 2 2 -2.2 2 2= 3
S 1817 + 221 VSI? < ng + 720t + 81 + 662 @l L) 181175 )

2
Holder’s inequality and the Sobolev estimate ||v||L4(Q) < CS||V||H1(_Q) for v €
H'(£2) yield that
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181175 g2, =/|6||a|2dx < 1181181174y < eslSNCISI* + IVSIP.  (6.1)
2

An integration of the last two estimates over [0, 7] shows that we are in the situation
of Proposition 6.2 with

i) = 8O, y20) = 21V, y3() = 62|l Lo () 18173 )

P T
and A = nic, B = 6~ *|lill L o,7):L0(2))cs, B =1/2,and E = exp ([, ;. dt).
The proposition thus implies the assertion. (]

Remarks 6.5 (i) The robust stability result can be proved for a class of nonlinearities
f satisfying the estimates of Lemma®6.1.

(ii) If the exponential factor is bounded by a polynomial in ¢!, then we have
improved the stability result of Theorem 6.3. We discuss this question below.

6.1.3 Mean Curvature Flow

The Allen—Cahn equation is closely related to the mean curvature flow that seeks for
a given hypersurface .#y C R¢, a family of hypersurfaces (M) tef0,1) such that

d—1
Vz—TH on .#;

for every t € [0, T']. Here, V is the normal velocity of points on the surface and H
is the mean curvature. For a family of spheres ((8 Bra (0)) 1€[0.7] centered at 0 with
positive radii R : [0, T] — R, we have ’

’ = ;

The family of spheres thus solves the mean curvature flow if

1

ie., if R(t) = (T. — t)/2, where T, = R(0)2. This equation has a blowup structure
and the solution only exists in the interval [0, T;), cf. Fig.6.3. To understand the
stability of the evolution, we linearize the right-hand side operator ¥ (R) = 1/(2R)
of the differential equation at the solution R(#) and obtain

~1 ~1
~Amer(t) = 2RO~ 2T, — 1)
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DOo="T%
Oo

T.

Fig. 6.3 A family of spheres that solve the mean curvature flow within [0, 7,); at t = T, the
surfaces collapse

We thus see that Ayicr is unbounded at ¢+ = T, when the surfaces collapse. This
reflects the occurrence of large unbounded normal velocities. Nevertheless, for every
T’ < T., we have

T/

-1
/)»MCF(I) dr = 7(log(Tc —T')—logT.).
0

Assuming that Apicrp & Aac, we will deduce below heuristically that the expo-
nential dependence of the stability estimate in Theorem 6.4 is moderate. To under-
stand the relation between the Allen—Cahn equation and the mean curvature flow let
(A1) ier0,11 be afamily of surfaces that solve the mean curvature flow. We assume that
for every t € [0, T], we have .#; = 352, for a simply connected domain §2, C R4
and let d_4 (¢, -) be the signed distance function to .#; that is negative inside £2;.
Given a trajectory ¢ : [0, T] — R? of a point xo = ¢(0) € ., i.e., we have
¢ (1) € A, forall ¢ € [0, T], its normal velocity given by

Vi(t,p @) =n(t, ¢ (1) - ¢ ().

Since d 4(t, ¢(¢t)) = 0 for all # € [0, T] it follows with n(t, x) = Vd_,(t, x) for
every x € ./, that

0=20ddyt ¢1)+Vdy(101) ¢'1),

ie., V(t,x) = —0dd 4(t, x) for every x € .#;. Noting that Dzd,/// = D(Vd y)
is the shape operator it follows that for the mean curvature we have (d — 1)H =
tr(D?*d y) = Ad 4. With V. = —H we deduce that 8;d , — Ad_y = 0 on .4,.
The function ¥ (z) = tanh(z/+/2) satisfies —" (z) + f (¥ (z)) = 0, and this implies

that for

Wb, x) = ¥ (—d‘/’g’ x))
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we have

vi—Av+ el f) = (dd gy — Adg) ¥ (dyle) —e 2 (W (dy/e)
+f(V(da/e)))
= N ad gy — Ad4) V' (d g /6).

Since 9;d ;4 — Ad 4 = 0 on .#;, we deduce that if d 4 is sufficiently smooth, then
the function g = 9;d ; — Ad_j grows linearly in a neighborhood of .#;, i.e., we
have |0;d y — Ad 4| < c|d 4|. Noting that the function v satisfies |zy'(z)| < c,
we find that

|5_1(8td/// — NV (dyle)| <c|(da/e)V (dale)| <c.

Therefore, the function v(¢, x) = ¥ (d_y (¢, x)/¢) solves the dominant terms of the
Allen—Cahn equation d,u — Au = —e 2 f (u) and serves as an approximation of the
solution in a neighborhood of width ¢ of the interface I';. The profile is illustrated in
Fig. 6.4. More details can be found in [5].

6.1.4 Topological Changes

The mean curvature flow provides a good approximation of the Allen—Cahn equation
in the sense that v(x, t) = v (dist(x, .#;)/e) nearly solves the Allen—Cahn equation;
the family I} = {x € £2 : u(x, t) = 0} is a good approximation of a solution for the
mean curvature flow. These approximations are valid as long as the interfaces .#; or
I'; do not undergo topological changes, i.e., as long as .#; or I'; does neither split nor
have parts of it disappear. This is closely related to the stability of the solution that
is measured by the principal eigenvalue Aac(¢). It can be shown and it follows from
the discussion of the mean curvature flow above, that A ac is bounded from above
independently of ¢ as long as the interface I is smooth and has bounded curvature.
When an interface collapses, large, unbounded velocities occur and the eigenvalue

T+1

I; T /)

+ -1 +-1

Fig. 6.4 A typical configuration of a solution of the Allen—-Cahn equation (/eft) and a solution
restricted to a line in the domain (middle) together with a magnification of the interface (right)
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Aac attains the upper bound Aac ~ £~2. This however only occurs on a time-interval
of length comparable to &2, the characteristic time scale for the Allen—Cahn equation.
Due to this fact, we have for the temporal integral of the principal eigenvalue that
occurs in the stability analysis

T
/AAC(t) dr ~ 1 + (# topological changes) log(fl).
0
The logarithmic contribution results from the transition regions in which Aac grows

like (7, — t)~! for a topological change at r = T... Integrating this quantity up to the
time 7, — &2, where Aac has nearly reached its maximum, reveals that

2

TC—82 ch—g
/AAc(t)de / (T, — 1)~ " dt ~ log(e ™).
T.—1 T.—1

The logarithmic growth in ¢~! of the integrated eigenvalue is precisely what is
affordable in the estimate of Theorem 6.4 to avoid an exponential dependence on & !
and instead obtain an algebraic dependence. A typical behavior of the eigenvalue is
depicted in Fig.6.5.

6.1.5 Mass Conservation

The Allen—Cahn equation describes phase transition processes in which the volume
fractions of the phases may change and the only stationary configurations represent

ol [o] s

QLAC (t)

& e t

Fig. 6.5 Two topological changes in an evolution defined by the Allen—Cahn equation; the topo-
logical changes are accompanied by extreme principal eigenvalues; the eigenvalue increases like
(T, — 1)~! before a topological change occurs at 7,
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single phases. This corresponds, e.g., to melting processes. In order to model phase
separation processes in which the volume fractions are preserved, a constraint has
to be incorporated or a fourth order evolution has to be considered. The latter is the
H~'-gradient flow of the energy I,, where H~(2) = X, is the dual of the space
Xo={ve H(2): [,vdx =0},1ie.,

Bu, v)—1 = —(Vu, Vv) — e 2(f (u), v).
Here, the inner product (v, w)_ is forv,w € H~1(£2) defined by
v, w)_1 =/V(—A—1V) V(—A"'w)dx,
2
where —A~!v and A~!w € X are the unique solutions of the Poisson problem
—Au = fin 2, dulye =0

with vanishing mean for the right-hand sides f = v and f = w, respectively. In the
strong form the gradient flow reads

Ju=—Ap, ¢ = Au—e">f(u),

together with homogeneous Neumann boundary conditions on 952 for # and ¢ and
initial conditions for u. The variable ¢ is the chemical potential and the system is
called the Cahn—Hilliard equation which can be analyzed with the techniques dis-
cussed above. Mass conservation is a consequence of the fact that d,u has vanishing
integral mean. Solutions do not obey a maximum principle but satisfy certain
L*°-bounds.

6.2 Error Analysis

In this section we discuss error estimates for numerical approximations of the Allen—
Cahn equation obtained with the implicit Euler scheme. The stability result of Theo-
rem 6.4 is already formulated in the spirit of an a posteriori error analysis. We discuss
results from [3, 8, 9].

6.2.1 Residual Estimate

We include an estimate for the residual of an approximation obtained with the implicit
Euler scheme. The result can be modified to control the error of other approximation
schemes.
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Proposition 6.3 (Residual bounds) Let 0 = 1) < t] < -+ < tg < T and 7y =
tr—tri—1, k=1,2,..., K, and (F)k=o.,... k a sequence of regular triangulations of
satisfies

.y — Fha ™ o) + (Vg Vo) = =& (F uh). vp).

where 9 denotes the nodal interpolation operator related to . Y. Let Upz €
H! ([0, T1; H! (82)) be the piecewise linear interpolation in time of(u],‘l)k:o
define # € L*(I; H'(22)') fort € [0, T1and v € H'(£2) by

.....

(R(1),v) = O, v) + (Vunz, Vv) + &2 (f (unr), v).
For almost every t € [ty—1, ty] and all v € H! (£2) we have

(R(1), V) < (e + Neoarse) V]| + (Ceenbpace + M) IVVI]

k-1
where pr = |[uf [l @) + llu) " L (2),

_ _ _ 1/2
T e = ( S B 0k — Al = A gk + 6 2f(ulfl)||i2(T))
Teyhk

1/2 1/2
(2 Vg nshiag) T+ (D AVl nldg)

Se.skng2 Sesknos

and

k 2 =1k
Mimer = & IS Looqs, lluy " — ugll,

k k—1 k
T][ime - ||V(uh - uh)”s

k -1 —1 k—1
Neoarse = Tk H’ﬂkuh Uy I

Proof Foralmosteveryt € (tfx_1,t),k =1,2,..., K,andallv € H'(£2), we have
by definition of # that

(Z(1),v) =7 ) —uy V) + (Vup e (0, V) + 72 f (up (1)), )
=7 'k — b v+ (Vuk, V) e (W), v)
+ (Vun,e (1) — ), Vv) + e 2 (f (un, o (1) — f(u}). v)
+ rk_l(fkui_l - u;_l, V)
=I1+10+4---4+ VL

Since the sum of the first three terms vanishes for all v € (%), we may insert
the Clément interpolant #;v € ./ Y(Z) of v. An element-wise integration by parts
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and estimates for the Clément interpolant lead to
I+I+ 1= (r},v— _fiv) < Coipaee | VVII-

A repeated application of Holder’s inequality, the identity

1
Pln @) = £y = ([ une )+ 1= oy dr) un e ) o,
0

and the linearity of uj ; in ¢ lead to

VAV < Vo (@) = w1V 4 &2 oos,) lun < (0) = wj | [1v]

k k
= Nimer VI + Mime VYL
A further application of Holder’s inequality proves
-1 k—1 k—1 k
VI S Tk ”‘ﬁkuh - uh ||||V|| = T’coarse”v”'

A combination of the estimates leads to the asserted bound. O

In combination with Theorem6.4 we obtain the following a posteriori error
estimate. It bounds the approximation error in terms of computable quantities
provided that the error estimator is sufficiently small and depends exponentially
only on the temporal average of the principal eigenvalue defined by the numerical
approximation.

Theorem 6.5 (A posteriori error estimate) Assume that we are in the setting of
Proposition 6.3 and suppose that )‘Q\C e L'([0, T)) is afunction, such that for almost
everyt € (0, T), we have

b < e VAR W@y
" veH!(2)\(0) vl

)

and set j1; (1) = 22 + (1 — e (). Define ne(t) = nf for t € (-1, 10),
k=1,2,...,K, and ¢ € {time/, time, space, coarse} and let

T
niC = [l(u — ug)(o)”z + /(ntzime/ + ngoarse + 872’712ime + 6727752pace) dz.
0

If

T
-3/2

—1
nac < 84(6CSIIMh,r||L°°(|0,T];L°°<9))(1 + 7)) (8 exp (/Mx(t)df)) ,
0
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then we have

T

T
sup [l — up,c | +ez/ IV (u = wn )| dr < 8nze><p(/m(t)dt).
5€[0,T] o 0

Proof The theorem is an immediate consequence of Proposition6.3 and Theo-
rem6.4. O

6.2.2 A Priori Error Analysis

To derive a robust a priori error estimate for a semidiscrete in time approximation
scheme, we try to follow the arguments used in the stability analysis of Theorem 6.3
with exchanged roles of the exact solution and its numerical approximation. As
above we avoid the use of a Lipschitz estimate for the nonlinearity, and instead
employ a linearization. The non-monotonicity of the resulting equation is controlled
by a cubic term. The linearization allows us to incorporate the principal eigenvalue
that is assumed to be well-behaved in the sense that a discrete integral grows only

logarithmically in e~

Proposition 6.4 (Discrete stability) Given t > 0 let (U Ki—o k. C HY(£2) be

such that

.....

@ U, v) + (VU*, Vv) = —e2(f(UY), v)
fork=1,2,...,Kandallv e H'(82). We then have
- K
L") + 2 =217 = D ld U |* < 1)
2 k=1

for every 1 < L < K. Moreover, if||UO||Loo(_Q) < 1, then “UkHLOO(_Q) < 1 for
k=1,2,...,K.

Proof The mean value theorem shows that for every x € £2 there exists a number
&, such that

T
FWHGU = d FU + 2 [ E)dU.
Using that f'(£,) > —1 and choosing v = d,U*, we deduce that

d T B 672
Id, U )1? + E’IIVU"IIZ + §||Va',U"||2 +de™? / F(U*)dx — Tuawkn2 <0.
22
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Multiplication by 7 and summation over k = 1,2, ..., L imply the assertion. A
truncation argument and the characterization of U* as the minimum of a functional
I gk show that |U || () < 1 provided that U O has this property. ]

Proposition 6.5 (Consistency) Assume that the weak solution of the Allen—Cahn
equation satisfies u € C([0, T1; H' (2)) and u € H*([0, T]; H'(£2)") with

T

2 -2
/”utl”Hl(Q)/ dr <c¢ 0-
0

For uf = u(ty), k =0,1,..., K, we have
(di*, v) + (Vb Vo) = =72 (F (), v) + G (t: v)

for all v e H' () with consistency functionals €y () satisfying

K

T Z “(gf (tk)”ill(ﬂ)’ S szs_zg.
k=1

We have o =2 if I (ugp) < c.

Proof Noting that
(di®,v) + (Vi V) + e 2 (f W), v) = (did — dun), v) = € (1 v)

forallv € H'(£2), arguing as in the case of the linear heat equation, and incorporating
Theorem 6.2 proves the asserted bound. ]

The following lemma is a generalization of the classical discrete Gronwall lemma

which states that if
L/

WA+t ank
k=1

forO0 < L' < Landifta; <1/2fork =1,2,..., L, then we have

sup yk < 2Aexp (2r Zak).
k=0,...,L —

The condition a;t < 1/2 is required to absorb the term a;/ yL/.

Lemma 6.2 (Generalized discrete Gronwall lemma) Let t > 0 and suppose that
the nonnegative real sequences (yé‘)kzo k, L =1,2,3, (ax)k=o0.... k, and the real
number A > 0 satisfy

..........
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L L L-1
y1L+rZy]2‘ §A+t2akyf+1:2yl3‘
k=1 k=1 k=1

Jorall L = 0,1,...,K, sup;_y g tar < 1/2, and Kt < T. Assume that for
B>0,8>0andevery L =1,2,...,K, we have

L—-1 L—-1
> y§<B( sup 01 DT O + 5.
= k=1, ..., L— P

Set E = exp (21 Z,i(:l ak) and assume that SAE < (8B(1 + T)E)~YP. Then

K

K
sup yll‘ + 7 Zyé‘ < 8Aexp (21 Zak).
k=1

k=0.....K =

Proof Set 6 = 8AE. We proceed by induction and suppose that

L—-1

Y1+TZY§§
k=

sup
L 1

k=0,...,

This is satisfied for L = 1. For every L’ = 1,2, ..., L, we then have due to the
assumptions of the lemma that

L L L'—1
Wtk <A+e> ayf+B( swp (yl)ﬂ Z(leryz)
k=1 k=1 k=1,2,....L'~
L/
<A+TY ayf+ B+ T)0'F.
k=1

The classical discrete Gronwall lemma, the condition on A, and the estimate 07 <
(8B(1 + T)E)~! prove that forall L' = 1,2, ..., L, we have

L/
WoATe? Dk <204+ B+ T HE <
k=1

TS

This completes the inductive argument and proves the lemma. (]

The a priori bounds and the generalized discrete Gronwall lemma lead to a robust a
priori error estimate under an assumption on the principal eigenvalue that is motivated
by analytical considerations.
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Theorem 6.6 (A priori error estimate) Assume ¢ < 1, I;(ug) < co, and that there
arecy > 0, k > 0 with

K
T Z)‘Xc(tk) <c1 +loge™.
k=1

7+6k

Then there exists a constant ¢ > 0 such that if Tt < cp¢ , we have

suplut) = UAIP +‘E€22||V(M(lk) UNI? < er?e™07H,
k=1,...
K k=1

k

Proof Denoting u* = u(t;) the error e = u* — U¥ satisfies the identity

(de*,v) + (Vek, V) = —e2(f ) — FWUS), v) + Co (1, v)

forallv € H'(£2). Lemma6.1, the definition of Aac(#), and ||u*|| 002y < 1 imply
that
—e 2 (f W) = fWU5, ) < =2 ek, ) + 362 @) €M1 5 g
= —(1—eHe 2(fWhyer, &) — (f'wh)e*, &b
-2 kn3
+38 ”6‘ ||L3(.Q)
< (I —eMracolle > + (1 — o) Ve |2
+ ek + 36721k 5 ).

Hence, for the choice of v = ek, we find that

—d,ne 1>+ = ||dte 12+ [vek|? %(tk,e’w—s*(f(uk)—f(Uk>,e")

-2
&
= S0y + 5 e+ & ||Ve K12

+ (1= eHrac)lleb)* + (1 —82>||Ve I
+ 1417 + 36721 135 ).
Using (a + b)3 < 4(a® + b3) and t||d,ek||Loo(_Q) < 4 we find that

3 —
141730y < 4(1€" 11750y + T2 Nldiet 1135 ) < M35 ) + 1627 i€t |12,

If 7 is sufficiently small so that 48772 < 1 /2, then the combination of the last two
estimates implies

dil|e P+ Ve 1> < e 1Ct0) 1 g+l 17 +48s 7211175 )0 (6.2)

(£2)°
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where 1 =22 + AL (#)). We set

k k2 Lk 2 kn2 Lk =2,k 13

yi = etl% yy = e7IVerll®, y3 =482 7[5

Noting that ¢* = 0 and

1 3y < 1€ I 17 ) < eslle AP+ 1V 1), (6.3)
we find by summation of (6.2) and (6.3) over k = 1,2,..., L that we are in the
situation of Lemma 6.2 with

K K
A=t Y Gy E=exp (2r Zu’;), B = 48s“cs,
k=1 k=1
and B = 1/2. Therefore,
K
sup [leF 1> + &2 D" [|Veh|I* < BAE,
k=0,... K k=1

provided that SAE < (8B(1+T)E )~2. Since according to Proposition 6.5 we have
A < ct2e7°, this is satisfied if cgt2e ®E < (8B(1 + T)E)~2. With the assumed
bound for the discrete integral of AXC, we deduce that

K
E <exp(8T)exp (4r Z )‘XC (tk)) < CE8_4".
k=1
Therefore, the condition T2 < cel4e!?* implies the assertion. |
Remarks 6.6 (1) If u;; € Lz([O, T1; LZ(SZ)), then the bound for A in the proof can
be improved and the conditions of the theorem can be weakened.
(i1) An a priori error analysis for a fully discrete approximation follows the same
strategy by decomposing the error u(t;) — ul,‘l as (u(ty) — Qru(ty)) + (Qpu(ty) — u’,‘l)
with the H!-projection Qy, cf. [8].

6.3 Practical Realization

We discuss in this section alternatives to the implicit Euler scheme and include an
estimate for the approximation of the principal eigenvalue that is needed to compute
the a posteriori error bound.
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6.3.1 Time-Stepping Schemes

The implicit Euler scheme requires the solution of a nonlinear system of equations
in every time step and is stable under the condition T < 2¢2. We consider various
semi-implicit approximation schemes defined by approximating the nonlinear term
avoiding some of these limitations.

Algorithm 6.1 (Semi-implicit approximation) Given ug e (%), v > 0,and a

.....

(duk, i) + (Vub, Vo) + e 72 (G @k, uf ™, v) =0

forall v, € Z1(F).

The function G is assumed to provide a consistent approximation of the nonlinear
function f in the sense that G (s, s) = f(s).

Examples 6.1 (i) The (fully) implicit Euler scheme corresponds to
Gimpl(uk, Mk_l) — f(uk)

(ii) The choice of
Gexpl(uk’ uk*l) — f(ukfl)

realizes an explicit treatment of the nonlinearity.

(iii) Carrying out one iteration of a Newton scheme in every time step of the implicit
Euler scheme with initial guess uz_l corresponds to the linearization

Glin(uk, Mk_l) — f(uk_l) + f/(uk—l)(uk _ I/tk_l).
(iv) A Crank—Nicolson type treatment of the nonlinear term is
F*) — Fu™")

: k k—1

_ ifu u*
Gcn(uk,uk l): uk—uk_l #

£ W) if uk = uk-1.

We have G (u¥, uk=1) = (1/4) ¥ 4+ u* =1 (Wh)? + W*—1)?% —2).

(v) The decomposition F' = F* 4+ F of F@u*1 = ((u*)? — 1)2/4 into a convex
part F*u 1) = ((u*)* 4+ 1)/4 and a concave part FOW1 = —(1/2)(u*1)?
leads with the derivatives f* and f¢" of F* and F*”, respectively, to the definition

GCXCV(uk’uk—l) — fC)C(uk) + fCV(uk—l).
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Remarks 6.7 (i) Only the explicit and linearized treatment of the nonlinear term leads
to linear systems of equations in every time step. The convex-concave decomposition
leads to monotone systems of equations.

(i) The best compromise for stability and linearity appears to be the linearized
treatment of the nonlinear term.

(iii) The decomposition of F into convex and concave parts corresponds to the general
concept to treat monotone terms implicitly and anti-monotone terms explicitly.

(iv) Numerical integration simplifies the nonlinearities, i.e., for all z, y € 4}, we
have

(G, uy Nz 0y), = Gluf(2), uy ' (2) B8y

with B; = |, o ¥z» 8o that the corresponding contribution to the system matrix is given
by a diagonal matrix.
(v) The numerical schemes have different numerical dissipation properties.

The stability of the different semi-implicit Euler schemes is a consequence of
the following proposition. We omit a discussion of the explicit treatment of the

nonlinearity since this is experimentally found to be unstable even for T ~ &2.

Proposition 6.6 (Semi-implicit Euler schemes) Given uk uF1 e Randt > 0, we
set dyuk = (uk — uk_l)/t. We have

G (k| k) du > dy (k) — §|dtu"|2,
Gk, ukNYdu* = d, F (ub),

GCXCV(I/Lk, uk_l)dtuk > th(I/tk),

and if |u¥|, Wk~ < 1, then
lin,, k  k—1 k PN k2
G, u T )diu" > di F(u") — 7|d,u |<.

In particular, the implicit Euler scheme is stable if T < 2&?, the semi-implicit Euler
scheme with Crank—Nicolson type treatment of the nonlinear term is unconditionally
stable, the semi-implicit Euler scheme with decomposed treatment of the nonlinearity
is unconditionally stable, and the semi-implicit Euler scheme with a linearized
treatment of the nonlinear term is stable if a discrete maximum principle holds and
T < (2/7)€2, i.e., under these conditions we have for the solutions of the respective
semi-implicit Euler schemes that

L(ub) < I.(u)

forall L > 0.
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Proof A Taylor expansion shows that for some £ € R, we have

F'™h) = F@) + fa) @™ —u) + %f/(é‘)(u"_l —u)?.
Since f/(&§) > —1 we deduce after division by 7 that

byt = dyF @) + 2 £ @) ) = dyF ) = 2 |dd 2

and this implies the bound for G'™P'. Assuming that [u¥|, [u¥~'| < 1, a similar
argument with f”(s) = 6s shows with some ¢ € [—1, 1] that

(f@ D+ @ hHet —uTh) et —uth
1
= F @ —dTH = @O —d T 2 L@t —dtTh - 6 — Wt
and with the previous estimate we deduce that
ling k  k—1 k oot k2
G (W, u"")dw" = dF(u") — 7|dzu 1"
If d,uk # 0, then
Gk Wt — it = Ff) = Ffh = wd F b,
and if d;u* = 0, then G (WX, u*"Nd,u¥ = 0 = vd, F(u*) which implies the
asserted identity for G". For the convex function F* and its derivative f*, we
have
fC)C(uk)(uk—l _ Mk) _|_ FCX(uk) S ch(uk_l).
Analogously, for the convex function — F¢” and its derivative — ", we have
_fCV(ukfl)(uk _ uk*l) _ FCV(ukfl) S _ch(uk).
The combination of the two estimates proves that
GCXCV(Mk, uk_l)d,uk — fCX(uk)dtuk + fCV(uk—l)dtuk Z thCX(uk) + thCV(uk).

The stability of the related schemes now follows from the choice of v, = d,u’,‘l in the
semi-implicit Euler scheme, i.e.,

d T _ _
e (1> + éuwﬁnz + E||thu’,;||2 +e2(Guk, uy™h, dut) =0,
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together with a summationoverk = 1, 2, ..., L, and the corresponding lower bounds
for Gk, uj™h. O

6.3.2 Computation of the Eigenvalue

The a posteriori error estimate of Theorem 6.5 requires a lower bound for the principal
eigenvalue of the linearized Allen—Cahn operator with respect to the approximate
solution, i.e., a function XZC such that

—Me@ < inf IVVI? + &2 (f (up, ())v, v)
" veH (2)\(0) BE

To approximate the infimum on the right-hand side, we replace the space H'(£2) by
1 (). We fix a time ¢ in the following and let — A € R be the infimum at time ¢,
i.e., there exists w € H'(£2) with |w| = 1 and

—Aw,v) = (Vw, Vv) + 8_2(phw, V)

forall v € H'(£2) and with p, = f/(up. (7).

Proposition 6.7 (Eigenvalue approximation) Let (A, wy,) € R x .71 (.F,) be such
that
—ApWiyvi) = (Ywi, V) + &2 (prwn, vi)

forallvy, € V(). Assume that the Laplace operator with homogeneous Neumann
boundary conditions is H?-regular in §2 in the sense that || D*v|| < ca||Av|| for all
v € H(82) with 3,v = 0 on 382 and suppose that lpnllLe(2) < co. Then there
exists ¢c1 > O such that if h < c1¢, we have

0<A— Ay <ce %

Proof In the following we occasionally replace the function p; by g5, = pn +
| prll Lo (s2) Which corresponds to a shift of —A and — Ay, by || pll L (e) but allows
us to use ¢; > 0. The fact that .”1(.7,) C H'(£2) implies that we have —A <
— Ay,. Since wy, is minimal for v, — ||V, ||> + ¢ 2(pnvi, vi) among functions
vy € () with ||vy]| = 1 with minimum —Aj, and since —A = [|[Vw]|® +
8‘2(phw, w), we have

0<A— Ay < —(Yw, Vw) — e 2(guw, w) + IVl + e 2 (qnv, vi)
< 2(Vvi, Vv — wl) + 267 2(qnvi, v — w).
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We note —A < ¢ 2| py | Lo(2) and conclude with —Aw = —Aw — 72 ppw that
IVwll < ce™', ID*w < cllAw] < e
We incorporate the H'-projection Q,w € .#'(.7;) defined by
(VOrw, Vyp) + (Qnw, yn) = (Vw, Vy) + (W, yp)
forall y, € & '(3,) which satisfies the estimates

Rllw — Quwll + IV(w — Qpw)|l < ch*(|D*w].

We suppose that & < ce is such that

_ 1
L= 11Quwll| < Iw — Qnwl| < ch?e™? < 5

Choosing v, = Qpw/| Qpw| and noting
IVQwwll + 1Qpwll < VW] + [Iwl| < ce™!

we find that

(Vvp, Vivyg —w]) = | QhW”_z((VQhW» VIQuw —w]) 4+ (VQpw, VIw — | Qpwllw]))
= 1Quwll =2 ((Qaw, Qpw — w) + (1 — | QawI)(V Qpw, Vw))
< ch2g_2(1 + 8_2).

Analogously, we have

(v, vi = w) = [Quwll 7> ((Qaw, Qnw —w) + (Qpw, w — [ Qrwllw))
= 1@l 7> ((Quw, Quw — w) + (1 — [|QnwID(Qnw. w))
< ch?s™2.
A combination of the estimates implies the asserted error bound. O

The discrete eigenvalue problem can be recast as the problem of finding a vector
W e RE with W 'mW = 1 and

(—A + cshit)mW = (s + & 2mp + csigm)W = YW

with the mass matrix m, the stiffness matrix s, the weighted mass matrix m,, and an
arbitrary constant cgpif;. For cghife = g2 lprll L= () + 1, we have that the symmetric
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matrices m and ¥ = s + ¢ %m p + Cshitem are positive definite, and we may use the
following vector iteration with Rayleigh-quotient approximation to approximate A.

Algorithm 6.2 (Vector iteration) Given Wy € RZ such that W(;r mWp = 1, compute
the sequence A, j=0,1,2,...via AV = (WO)TYWO and

Wi+l

(Wi Tmwi+1)'/?

Wit =y~ mw/), witl =

and _ _ ‘
— AT 4 ogin = (WY Ty witt,

Stop the iteration if |A/+! — AJ| < egqp.

Remark 6.8 The iteration converges to the smallest eigenvalue provided that the
initial vector Wy is not orthogonal to the corresponding eigenspace.

6.3.3 Implementation

The MATLAB code shown in Fig. 6.6 realizes the semi-implicit Euler scheme with
linearized treatment of the nonlinear term and computes the principal eigenvalue
defined by the approximate solution in every time step. We used the discrete inner
product (-, -);, to simplify the computation of some matrices, i.e., we use the formu-
lations

(dyuf, vi) + (Vg Vvn) + &2 (f ™ Yuf, vin

= e 2(F N vn e T2 @l hub T v

and
A () Wiy vi) = (Ywi, Vo) + 72 @ )ywn, vidn

for all v, € .#1(%,) to find uﬁ € .#'(%,) and an approximation of the eigenpair
(—MAc(B), wh)-
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function ac_linearized_euler (d, red)
[c4n,nde,Db,Nb] = triang_cube (d);
cdn = 2% (c4n-1/2);

for j = l:red

[c4n,nde,Db,Nb,—,~] = red_refine(c4n,nde,Db,Nb);
end
nC = size(cédn,1);
T =1;
eps = 27 (-4); tau = (2/3)xeps”2;

K = ceil(T/tau);
u = u_0(c4n,eps);

[s,m,m_lumped] = fe_matrices (c4n,nde);
w_init = rand(nC,1)-.5;
lambda = zeros(K,1);

for k = 1:K

b_nonlin = —-eps” (-2) *m_lumpedx*f (u)
+eps” (- )*m lumpedx (df (u) .*u);
m_nonlin = eps” (-2)*m_lumpedxdiag (df (u));
= tau” (-1) *mxu+b_nonlin;

X tau” (-1) *m+s+m_nonlin;

u = X\b;

c_shift = abs(min(df (u)))+1;
Y

lambda (k) = -neg_lambda_shift+eps” (-2)*c_shift;
figure(l); show_pl (c4n,nde,Db,Nb,u); axis square;
figure (2); plot(taux(l:k),lambda(l:k)); drawnow;
w_init = w;

end

function val = f (u)
val = u. 3-u;
function val = df (u)
val = 3xu."2-1;

function val = u_0 (x,eps)

dist = sgrt(min((x(:,1)-.3).72,(x(:,1)+.3).72)+x(:,2)
val = —tanh(dist/ (sqrt(2)*eps));

function [mu,w] = vector_iteration(Y,m,w)

mu = 0; mu_old 0;

diff mu = 1; eps_stop = 1E-01;
while abs (diff_mu) > eps_stop

w o= Y\ (mxw) ;
w = w/sqgrt (w'sm*w) ;
mu = w'xY#*w;

diff_mu = mu-mu_old;
mu_old = mu;
end

= s+teps” (-2) *m_lumpedxspdiags (df (u) +c_shift, 0,nC,nC);
[neg_lambda_shift,w] = vector_iteration(Y,m,w_init);

.72)-.35;

Fig. 6.6 Implementation of the linearized implicit Euler scheme with numerical integration for

the Allen—Cahn equation and computation of the eigenvalue in each time step
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Chapter 7
Harmonic Maps

7.1 Analytical Properties

Harmonic maps are stationary points of the Dirichlet energy in the set of vector
fields that attain their values in a given target manifold, e.g., the unit sphere. Related
problems arise in various applications and the problem of computing harmonic maps
serves as a mathematical model problem for constrained minimization problems on
infinite-dimensional spaces. We will consider the case of computing harmonic maps
into the unit sphere S”~! = {s € R™ : |s| = 1}, i.e., unit-length vector fields, but
notice that a large class of target manifolds can be treated with the same ideas. We
thus aim at approximating minimizers u € </ for

1 2
I(u) = 5 [Vu|”dx
2

with the set of admissible vector fields
o ={ve H'(2;R™) : [v(x)] = 1 forae. x € 2, |, = up).

The function up € L2(I'p; R™) on the nonempty set Ip C 952 is assumed to admit
an extension 7ip € H!(£2; R™) with |up(x)| = 1 for almost every x € £2. We
briefly summarize the main properties of harmonic maps and refer the reader to the
textbooks [9, 12] for more details.

7.1.1 Existence and Nonuniqueness

The existence of minimizers is established by the direct method in the calculus of
variations.
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184 7 Harmonic Maps

Theorem 7.1 (Existence) There exists a minimizer u € <7

Proof Since up admits an extension to a unit-length vector field field up € .« there
exists an infimizing sequence (1) jen C & with lim; oo I (uj) = inf ¢ I (v).
Since uj; — up € Hﬁ(Q; R™), we have that (u;) jen is bounded in H'(£2; R™).
A subsequence converges weakly to a vector field u € H'(£2;R™) with u| n =
up. To show that u € </ we notice that the subsequence converges strongly in
L%(£2; R™), and hence there exists a further subsequence that converges pointwise
almost everywhere to u. Therefore, |u| = 1 almost everywhere in £2, i.e., u € «.
The weak lower semicontinuity of / implies that # is a minimizer. ]

Remark 7.1 The proof shows that the set <7 is weakly closed.

The essential condition that 7 # ¢} may be difficult to verify in practice even if
up € L>(I'p; R™) is smooth and satisfies |up(x)| = 1 for almost every x € 3£2.

Example 7.1 (Nonexistence) For £2 = Bj(0) C R? and up(x) = x there is no
function up € H'(£2;R?) with iplse = up and |up(x)| = 1 for almost every
x € £2. This is a consequence of the Hopf—Poincaré formula and Brouwer’s fixed
point theorem.

Due to the invariance of the Dirichlet energy under rotations, we cannot expect
harmonic maps to be unique.

Example 7.2 (Nonuniqueness) Let 2 = (0, 1), Ip = 92 = {0, 1}, m = 3, and let
u: (0, 1) — S2 be minimal for

1
1
I(u) = E/|u’|2dx
0

in the set of functions v € &/ with v(0) = e and v(1) = —e for some ¢ € S2.
Then for every rotation Q € SO3) = {R € R3>3 . RTR = Iz, detR = 1}
with Qe = e, we have that & = Qu is another minimizer. The harmonic maps
ui(x) = [cos(x),0,sin(mx)]", x € (0,1), and u» = Quy, where Q € R3*3
realizes a rotation by 7 about the first coordinate axis, with identical Dirichlet energy
are shown in Fig.7.1.

L

Fig.7.1 Two harmonic maps on £2 = (0, 1) with the same boundary values and identical Dirichlet
energy; the length of the arrows is scaled for graphical purposes
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Remarks 7.2 (i) Harmonic maps can be approximated by penalizing the pointwise
constraint, e.g., considering for ¢ > 0 the Ginzburg-Landau regularization

1 2 e’ 2 2
I.(u) = 3 [Vul|“dx + e (Jul” — 1)~ dx
2 2

and investigating the limiting behavior of minimizers (u;)¢~0 as € — 0.
(i) Formally, a harmonic map u and the Lagrange multiplier A associated to the
length constraint define a saddle-point for the functional

1
L(u,)) = E/|W|2c1x Jr/x(|u|2 —1)dx.
2 2

7.1.2 Euler-Lagrange Equations and Nonregularity

The Euler-Lagrange equations define a nonlinear partial differential equation.

Theorem 7.2 (Euler-Lagrange equations) Let u € o7 be stationary for the Dirichlet
energy. Then we have
(Vu, Vw) = (|Vu|2u, w)

forallw € H}\(2; R™) N L®(2; R™).

Proof Letw € H'(2; R™)NL®(2; R™)and e > Obesuchthate||wl zo (@) < 1/2.
We then have that |u(x) + rw(x)| > 1/2 for almost every x € §2 and every r € R
with |r| < e. It follows that the map

p u(x) +rw(x)
u'(x) = ——=
lu(x) + rw(x)]

belongs to H'(£2; R™) and satisfies [u"| = 1 in £2 and u”" |, = up. Since ud =

we have that the function ¢ — I (") is minimal at » = 0. We note that

u?

d

o "=w—u(u-w).

u
r=0

A differentiation shows that

d
0= 2] =3 f1a-ade- s wir

dr
t=1g

and the orthogonality (deu) -u = 0for £ = 1,2, ..., d implies the assertion. |
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Definition 7.1 Solutions u# € &/ of the Euler-Lagrange equation are called
harmonic maps (into the sphere).

Remark 7.3 The function A = |Vu|*> € L'(£2) is the Lagrange multiplier associated
to the pointwise constraint |u(x) 12 =1.

Solutions of the Euler-Lagrange equations are in general neither energy
minimizing nor regular.

Example 7.3 (Nonregularity) Let 2 = (—1, 1)3 and up(x) = x/|x| forx € I'p =
082. Thenu(x) = x/|x| forx € §2 satisfies u € &7 and is a harmonic map. Moreover
u is minimal for 7 in the set of vector fields in .«

Remarks 7.4 (i) For d = 2, harmonic maps are smooth.

(ii) If d = 3, then energy minimizing harmonic maps u are partially regular in
the sense that u is smooth in £2 \ S for a set § with %I(S) = 0, e.g., a set of
points. Harmonic maps that are not globally energy minimizing can be discontinuous
everywhere.

7.1.3 Compactness

The lack of uniqueness and regularity of harmonic maps makes it difficult to quantify
stability properties. The weaker concept of compactness shows that accumulation
points of (almost) harmonic maps are again harmonic maps, i.e., that bounded subsets
of the set of harmonic maps are weakly compact. The key to this property is the
following equivalent characterization of harmonic maps. We restrict ourselves to the
case m = 3 for ease of presentation.

Lemma 7.1 (Equivalent characterization) Let m = 3. The function u € < is a
harmonic map if and only if

d
(Vu, Viu x ¢]) = Z(agu, ux dgp) =0
(=1
forall ¢ € H5(.Q; R3) N L%°(£2; R3). This is the case if and only if
(Vu,Vw) =0

forallw e Hé(.Q; R3) satisfying u - w = 0 almost everywhere in $2.

Proof (i) Let u € </ be a harmonic map. Then the choice w = u X ¢ in the Euler—
Lagrange equations, the fact that u - (1 x ¢) = 0, and the identity

(Oeut, d¢[u x @]) = (Qeu, u x 9¢)
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for?¢ =1,2,...,d imply the first characterization. The second one is an immediate
consequence of the Euler-Lagrange equations if w € Hﬁ(.Q; R3) N L®(£2; R?)
with w - u = 0 in £2. A truncation argument shows that this is satisfied for all
we HI])(.Q; R3) with w - u = 0 almost everywhere in 2.

(i1) Assume that the first equation of the lemma is satisfied and let w € Hﬁ(.Q; R3N
L>®(2; R3). For ¢ = uxw we have, due to the formulaa x (b xc) = b(a-c)—c(a-b)
that

uxq):ux(uxw)=(u-w)u—|u|2w=(u-w)u—w.

Moreover, we have for £ = 1,2, ..., d that
Oe[(u - wyul = (0¢ut - wyu + (u - 9gw)u + (u - w)oeu.

With d,u - u = 0 this implies that
d
0= Z [(Beu, (u - w)deu) — (eut, Bew)] = (IVulPu, w) — (Vuu, V)
=1

which proves that u is a harmonic map.

(ii1) Suppose that the second characterization is satisfied and let ¢ € HI%(.Q; RN
L®(£2; R3). The function w = u x ¢ satisfies u - w = 0 so that the first characteri-
zation holds. ([

Remark 7.5 The condition that (Vu, Vw) = 0 for all w € HJ(£2; R?) satisfying
u - w = 0 shows that u is stationary with respect to tangential perturbations.

The equivalent characterizations imply the following weak compactness result
which will serve as a guideline to prove convergence of numerical approximations.

Theorem 7.3 (Weak compactness) Let (%) jen C HI%(.Q; R3Y be a sequence of
functionals with ”%j”f’rl)(-@)’ — 0as j — oo, and assume that (uj)jeN C o is
such that

(Vuj, Vw) = (|Vuj|2uj, w) +Zj(w)

forevery j € Nandall w € H]é(.Q; RH N L®2;RY). Ifu € H'(2; R3) is such
that uj — u in Hl(.Q; R3) as j — oo, then we have u € </ and u is a harmonic
map.

Proof The weak closedness of <7 implies that u € <7. For every ¢ € ng(.Q; R3 N
C®(22;R% and j € N, the choice of w = u; x ¢ yields, using dgu j - (eu j X ) = 0,

d
D @uujuj x ded) = Rj(uj x ).

=1

Since u; — u in L2(£2;: R3) and Oguj — Ogu in L?(£2; R?), we have
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(Opuj,uj x 9¢p) = (e j, u X 9¢p) + (dpuj, [uj — ul X dep)
— (3gu, u X 3(¢>)

as j — ooforl =1,2,...,d. Employing Z; — 0in H];(Q; R3)’ and thatu; x ¢
is bounded in Hﬁ(.Q; R3), we also have

%j(uj X ¢) — 0

as j — oo. Altogether we find that u satisfies

d
> (@ou.u x de¢) =0

=1

for all ¢ € Hﬁ(.Q; R?) N C®(2; R?). A density argument shows that this identity
holds for all ¢ € Hﬁ(.Q; R3) N L®(£2; R3) so that Lemma7.1 implies that u is a
harmonic map. (]

Remarks 7.6 (i) The equivalent characterization of harmonic maps involving the
cross product allowed us to use that the product of a weakly and a strongly convergent
sequence is weakly convergent. We remark that the identification of the limit of the
square of a weakly convergent sequence is difficult in general and a passage to a limit
in the Euler—Lagrange equations for harmonic maps does not imply that the limit is
a harmonic map.

(i1) While the existence of harmonic maps into general target manifolds other than
the unit sphere can be established analogously, related compactness results are false
in general. For d = 2 and sufficiently smooth target manifolds, regularity and
compactness can be proved, cf. [11].

7.1.4 Harmonic Map Heat Flow

The harmonic map heat flow is the L?-gradient flow of the Dirichlet energy subject
to the unit length constraint and is given by

du — Au=|Vul*u, lu(t,)| =1, u(0) = uo, ulr, = up, dulr, =0

for almost every ¢ € [0, T']. To avoid very irregular solutions, it is important to
construct solutions that satisfy an energy law.

Theorem 7.4 (Existence) Given ug € H'(§2; R™) with |ug(x)| = 1 for almost
every x € £2, there exists u € H'([0, T1; L?(§2; R™)) N L>®°([0, T1; H'($2; R™))
such that |u(t, x)| = 1 for almost every (t, x) € [0, T] x £2, u(0) = uy,

Bpu, w) + (Vu, Vw) = (|Vul>u, w)
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for almost every t € [0, T] and all w € Hﬁ(.Q; R™) N L®(£2; R™), and

T/
1w(Ty) + / 1l dr < 1(uo)
0

Sor almost every T' € [0, T1.

Proof The result follows from the convergence of numerical approximations proved
below. (]

Remark 7.7 Uniqueness of solutions is known within the class of energy decreasing
solutions if d = 2.

Solutions of the harmonic map heat flow can develop singularities in finite time.

Example 7.4 (Finite-time blowup [8]) Let 2 = B;(0) C R2, Iy = 982, and
up = uo|ry, for ug defined for b > 0 by

1
uo(x) = — (xy sinh(|x]), x2 sin h(|x]), |x| cos h(|x]))

x|

for x € £2\ {0} and h(r) = br?. If and only if b > m, the corresponding solution
of the harmonic map heat flow is singular in the sense that there exists 7, > 0 with
lim; 7, [[Vu(t)|| L (2) = 0.

7.2 Numerical Approximation

We discuss in this section the approximation of harmonic maps and employ arguments
from [1, 3, 5, 6, 10].

7.2.1 Discrete Harmonic Maps

Itis straightforward to verify that the only polynomial vector fields that are pointwise
of unit length are constant vector fields. Therefore, the constraint cannot be imposed
almost everywhere on polynomial finite element functions. The following proposition
shows that it is sufficient to impose the constraint at the nodes of a triangulation,
cf. Fig.7.2.

Proposition 7.1 (Nodal constraint) Ler (.9},),~0 be a family of regular triangula-
tions of 2 C RY and let (up)p-0 C H'(§2; R™) be such that u, € . ()" and
lup(z)| = 1 forall z € N, and every h > 0. If uj, — u in H'(£2; R™) for some
u € H'(2; R™), then we have |u(x)| = 1 for almost every x € £2.
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Fig. 7.2 The unit-length
constraint is only imposed at
the nodes of the
triangulation; the linearly
interpolated vector field may
violate the constraint
between two nodes

Proof We have .%,|u,|> = 1 for every h > 0 and hence by nodal interpolation
estimates and D?uy,|7 = 0 for every T € .7}, that
2

ln? = 1] oy = Nunl? = Talunl® | 27y < hFID* nl*ll 207y

= ch | [Vun*ll 2y = chT I Vunll ooy | Vunll 2y

The inverse estimate || Vuy || oo () < ch;1 lupllzeory = ch;1 and a summation over
T € , imply
2
lunl> = 1| < chlVu]|

and prove that |up| — 1 in L%(£2) as h — 0. Since also |uj| — |u| ash’ — 0
almost everywhere in £2 for an appropriate subsequence 4’ > 0, we deduce |u| = 1
in £2. O

The proposition motivates minimizing the Dirichlet energy restricted to finite
element functions that satisfy the boundary conditions and the unit-length constraint
at the nodes of the underlying triangulation.

Theorem 7.5 (Discrete harmonic maps) Assume that tip., € ' ()" satisfies

lup.p(z)| = 1 forall z € N, and up , = up.p|ry,- There exists a minimizer uy € <,
for I in the set of discrete admissible vector fields

oy ={vy € SUT)™ ()| = 1 forall z € Ny, v, = up,p)-
The function uy, € <, is stationary for I in the set of functions in <7, if and only if
(Vup, Vwp) =0
for all wy, € Fylup] with
Fnlun] = {wn € BT 2 wi(2) - ui(z) = 0 forall z € A}
Proof The functional I is coercive and continuous on .7%,, and this implies the exis-
tence of a minimizer. To verify the second statement, let u;, € <7, be stationary

for I and let w, € %p[uy]. For every r € R, we have that |uj(z) + rwh(z)|2 =
lun(2)|? + r?|wp(z)|> = 1 for all z € 4} and we may define



7.2 Numerical Approximation 191

. up(z) +rwp(z)

B Z/V un @ + rwn @1

uZ:,ﬂh(uh+rwh)

lun + rwh

For every z € .4}, a Taylor expansion at r = 0 shows that
w5 (2) = u(2) + rwa(2) + r26,(2)

for a function &, € 5%(%)’”. Therefore, if uy, is stationary for 7, we have

o1

0 = lim —(I(uZ) — I(uh)) = (Vuyp, Vwy).

r—0r

Conversely, assume that (Vuy,, Vwy,) = 0 for all w, € Fplup]. If (u)),e(—ee) is a
continuously differentiable path in .7, with wg = uj, then we have

uy =up +rwp + ¢ ()&,

with a vector field &, € 5”5(%)’”, a function ¢ such that ¢(r)/r — O asr — 0,
and wy, € 5’5(9},)’” defined by

d
wp(2) = o rzow;l(z).

Since |u2(z)|2 = 1forevery z € A, and r € (—¢, ), we have wy(z) - up(z) =0
for all z € A7, i.e., wy, € Fp[up]. This implies

I(up,) = I(up) +r(Vup, Vwp) + ¢ (r)(Vup, V&) + I (rwy + ¢ (r)én)
and thus, using (Vuy, Vwy) = 0, we have (I(uZ) — I(uh))/r — 0Oasr — 0,1e.,
r + I (uj) is stationary at r = 0. (I
The theorem motivates the following definition.

Definition 7.2 A function u, € <7, is called a discrete harmonic map if
(Vup, Vwy) =0

for all wy, € .Z),[uy].

Remark 7.8 The space of admissible test functions .%j,[u;,] may be regarded as the
tangent space of .7, at uy,. In particular, a discrete harmonic map is stable with respect
to discrete tangential perturbations.

The compactness result of Theorem7.3 implies the convergence of discrete
harmonic maps as # — 0. For ease of presentation we again restrict to the case
m = 3. The perturbation functionals %}, in the following theorem model an inexact
solution of the discrete problems.



192 7 Harmonic Maps

Theorem 7.6 (Discrete compactness) Let (up)p=0 C H L(2; R3) be a bounded
sequence of almost discrete harmonic maps associated to the sequence (I3)n=0,
i.e., for every h > 0, we have uj, € <, and there exists %), € Hﬁ(.Q; R3)/ with

(Vup, Vwi) = Zn(wp)

for all wy, € Fylup). If Z, — 0 in H]%(.Q; R™) and upj — up in L%(Ip) as
h — 0, then every weak accumulation point of (up)p=0 is a harmonic map.

Proof Letu € H 1(£2; R?) be a weak accumulation point of the sequence (u;)n~0
and without loss of generality, assume that the entire sequence converges weakly to
u,ie,up — uin HY(2;R¥ ash — 0. Proposition7.1 shows that |u| = 1 almost
everywhere in §2. Moreover, the weak continuity of the trace operator implies that
ulry, = up. Given ¢ € C®(2; R N HL(2; R?), set wy, = I, (up, x ¢). Then
wy € 5%(%)3 with wy(2) - up(z) = 0 for all z € A45,. An element-wise nodal
interpolation estimate and D?uy, |7 = 0 forevery T € .9, show that

IV O = un x ®)llz2ery < chr D wn x )l 27y
< chr (1Vunll 2oy IV@ Nl Loy + Nlunllo ) IVl L2 (ry)-

This implies that |Vwy| < ¢ and wj, —uj, x w — 0in H'(£2;R3) as h — 0.
Therefore, we have

Enwn) = Vup, Vwp) = (Vuy, Viug x o) + (Vup, Viwy — up x ¢1)

with
Vup, Viwp —up x ¢1) = 0

as h — 0. For the other term on the right-hand side, we have

d d

> Beun, delun x @) = D (e, un x de)

=1 =1

and since u, — u in L2(§2; R3) and Vu, — Vu in L2(2; R3*3) as h — 0, we

deduce that y

0= lim (Vup, Viuy x $]) = ;(aeu, u X ).

This proves that u is a harmonic map. (]
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7.2.2 Iterative Computation

The iterative computation of discrete harmonic maps is based on the computation of
tangential corrections that define a new approximation after a node-wise projection
onto the unit sphere. The following algorithm may be regarded as a discrete version
of the H!-flow for harmonic maps which is formally defined as

(Vou, Vw) = —(Vu, Vw) + (|Vul?u, w).

For w with w - u = 0, the second term on the right-hand side disappears. Moreover,
wehave d;u-u = 0if |u(¢, x)| = 1 foralmostevery (¢, x) € [0, T]x 2. We employ a
semi-implicit discretization of this problem to compute approximations vﬁ of 9, u(ty)
to find discrete harmonic maps with bounded energy. In particular, the linearized
constraint will be treated explicitly, which leads to linear systems of equations in
every time-step. The approach is illustrated in Fig.7.3.

Algorithm 7.1 (Discrete H'-flow [1]) Letu!) € 7,0 €[0,1],and > 0 and define
the sequence (uﬁ)k:()’l,m C /), by computing vﬁ € I [uﬁ_l] such that

(VK Vwp) + (VIub ™' + 00051, V) =0

for all wy, € %, [u’,fl] and setting

K Z uﬁfl(z) —i—rvﬁ(z)

up = —1 Pz
Sl @)+ @)

until | V|| < &gop-

Proposition 7.2 (Termination I) Assume that 9}, is weakly acute. The iterates
(u];l)kzo,h,,, C ), of Algorithm7.1 are well defined and satisfy

L
1 T 1
Euw,%nz + Q4200 —1)7 D> IVIE < 5||Vu2||2
k=1

Fig. 7.3 The iteration of
Algorithm 7.1 computes
corrections vf, in the tangent
space of the unit sphere at
the current iterate ul,‘fl and
then employs a projection
onto the unit sphere to define
the update u’,i
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for every L > 1. In particular, if T(1 — 20) < 2, then the iteration terminates and
the output uj € <), satisfies

(Vuj,, Vwp) = Zn(wp)

for all wy, € Fpluy) and || % | HL(@:Rmy = (1 4 07)é&st0p-

Proof Given u];l_l € 7, the space .7, [ul;l_l] is a closed subspace of YB(%)’" and
the Lax—Milgram lemma implies the existence of a uniquely defined v’fl € I [ul;l_l]
with

(VK Vwi) + (VIuk ™ +000k1, V) = 0

for all wy, € ﬂh[uﬁ_l]. Since Iulfl_l(z)l = 1and vﬁ(z) . ul;l_l(z) =O0forall z € A7,
we have |u];l_l(z) + rvﬁ (z)] = 1 and u]fl € 7, is well defined. The mapping

s/ls| if [s| = 1,

K if [s] <1

F:.:s—

is Lipschitz continuous with || D F'|| o gy = 1 so that Proposition 3.2 implies
k—1
IVujl < IV~ + ol

The choice of w, = v];l in the equation of Algorithm7.1 and the formula 27 (a +
0th)b = (a + th)* — a® + t2(20 — 1)b? show that

1 _ 1 _ T
AR Envwz Loy — ;uwz N2+ (20 - DIVVE? =o0.

A combination with the bound for || Vu’;l || and a multiplication by t, together with a
summation over k = 1,2, ..., L, imply

L
1 T 1
EIIWﬁIIZ + Q4200 —1)7 > IV < 5||Vu2||2.
k=1

This yields that || Vv{f | < efor K > Osufficiently large and the functions uj = u }If -1

and v = vK satisfy
(Vu;‘;’ th) = _(1 + Gr)(VvZ, th)

for all wy, € Fp[u}]. Setting Z,(w) = —(1 4+ 607)(Vv;, Vw) forw € Hﬁ(Q; R™)
proves the assertion. [

Remarks 7.9 (i) The proof of the proposition shows that we have the local energy
decay property ||Vu];l|| < ||Vu£_1|| for all k > 1.
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Fig. 7.4 A triangulation .7}, 1
that is weakly acute if and } {
onlyif 8 > 1/2 29 28 z
<o 21 22 % |P
23 24 5

(ii) Note that for all choices of 0 the large step size T = 1 leads to a stable and
convergent iterative scheme.

The acuteness property is necessary in general to guarantee that the projection
step is stable in the sense that ||Vu’,‘1|| < ||V[u§§7l + rvﬁ]”.

Proposition 7.3 (Necessity of acuteness) For B > 0, let T}, be the triangulation
of 2 = (0,1) x (0, B) shown in Fig.7.4, and let T > 0. Let up, € . ()" and
vi € Fplun), be defined by up(zj) = e and vy (z;) =0 for j =3,4,...,10, and

up(z1) = ey, up(z2) = —ey,
vi(z1) = —(s/T)ea, vn(z2) =0,

where s = 1/2 — B and ey denotes the {-th canonical basis vector in R™. Then for
Puy, € ST defined with 1y, = uj, + tvy by

~ up(z)
P _ on\s7
@ = ol

forall z € Ny, we have ||V Puy|| < |Vuy|| if and only if T}, is weakly acute, i.e., if
and only if p > 1/2.

Proof Since |uj(z)| > 1 for all z € .4, Proposition 3.2 implies that |V Puy| <
|Vuy| if 7, is weakly acute and this is the case if and only if 8 > 1/2. Suppose
that 8 < 1/2. Then with the entries A j, j,k = 1,2, ..., 10, of the stiffness matrix
and the identity u,(z;) = Pun(z;) for j = 2,3,4,..., 10, the representation of
[ Vwy || in terms of the nodal values of wy, and the entries of A, cf. the proof of
Proposition 3.2, we have that

10
~ ~ 1 ~ ~
O = I\Vinll® = IV P I* = =5 > Aj(lin(z)) = in (@)
Jk=1
— | Piin(zj) — Pt (z0)l?)
10

= _ZAlj(ﬁZ/’l(Zj) - ﬁh(Z1)|2

j=2
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— |Pli(z)) — Piipz)P).
We have |, (z1) — in(22)1> = 4 + 52 and [iy,(z;) — un(z1)|* = s* and

17 = |Plin(z1) — Piin(z2) > = 2+ 2/(1 + s/,
3 = |Piiy(zj) — Piip(z2)> =2 —2/(1 +sH'/?

for j =3,4,...,10.Since 12| Aj; =0 wehave >} A; = —Aj — Ay and
hence ' ‘
82 = (s> —1)(A1 + A) — Ap@ 45> —1})
= A (s? - tzz) —Ap@+ t22 - tlz)'

Direct calculations show that
A= (1282 +5)/4B), A= (1—48%)/4p).
With ¢ (s) = (1 +52)1/2 — 1 —s%/2 and % = 1/4 — 5 + s> we verify that

4B(1 45717267 = (1287 +5) (s* /2 + 57 (s) — 26(s)) — (1 — 4p%) (257 + 46 (s))
= (8 — 125 + 125%) (s*/2 + s%p (s) — 20 (5))
—16(s = s7)(s?/2+ ¢ (5))
= —8s® + 125" — 657 + 65° + ¢ (s)( — 165 — 1257 + 125%)
= —653(1 = 25) — 65°(1 — 5) + 459 (5) (2 — 3s% + 35%)
— 2(s3 + 8¢(s)).

Since 0 < s < 1/2 and ¢(s) < 0, the first three terms on the right-hand side are
negative. The estimate —s*/8 < ¢(s) implies that the last term on the right-hand
side is nonpositive. This shows § < 0 if B < 1/2 and proves the assertion. |

7.2.3 Projection-Free Iteration

The acuteness condition of Proposition 7.2 is restrictive if d = 3 but allows for large
step sizes. In the continuous situation we have that the identity u - 9,u = 0 implies that
the initial length is preserved. In the discrete setting a semi-implicit discretization
of this orthogonality leads to approximations that violate the constraint when the
projection step is omitted, cf. Fig.7.5.

Algorithm 7.2 (H'-flow without projection) Let ug € o), T > 0, and define the
sequence (u’;l)kzo,l,,_, c .Z1(F,)™ by computing vﬁ € .7, [uﬁ_l] such that
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Fig. 7.5 Omitting the 1-\;)3[ (2)
projection step in the
semi-implicit H'-flow leads

to approximations that m TV%( 2)
violate the unit-length \
constraint; the corresponding

errorin L1(2) is
independent of the number

of iterations and controlled
by the step size

(V. Vwy) + (VIup ™ 4 1)1, V) = 0
for all wy, € ﬁh[ul,‘l_l] and setting

u];, = uﬁ_l + rvllj

until [[VVE || < egtop.-

The following proposition shows that the violation of the constraint is independent
of the number of iterations and controlled by the step size.

Proposition 7.4 (Termination II) The iterates (u’;l)kzo,]w c YT of
Algorithm’.2 satisfy u’;l|pD =upfork=0,1,...and

L
1 T 1
SIVEE P+ @+ 02 S IV = SV
k=1

for every L > 1. Moreover, we have every L > 1 that
|l P] =11 g < cTlVupl®.

Proof Due to the Lax—Milgram lemma the iteration is well-defined and the choice
w';l = vﬁ“ shows, using the formula 2t (a + th)b = (a + th)? — a? + 72b2, that

247 1 1 _
S IV + IV = Va2 =0
which implies the first asserted estimate. For every z € .47, we have
lup @1 =1 =lu "' @F + @1 — 1

and inductively with |u2(z)| = 1, we find that

L
uf@PF —1=1>>" W)

k=1
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The discrete norm equivalences of Lemma 3.4 yield

/)| Il 2] = 1 gy = 22 b llu @ =1

7€M,
L L
2 dy. k 2 2 k2
<2 D> R @ < et D] IR
k=1 ze k=1

Poincaré’s inequality and the first estimate of the proposition imply

L
|l P] = 1 1y < €T DIVRIP < et Vaupl?,
k=1

which proves the proposition. (]

We conclude the discussion with a lemma which shows that the approximate
treatment of the constraint at the nodes implies that it is satisfied by accumulation
points in the limit (&, 7) — 0.

Lemma 7.2 (Constraint approximation) If (), )~ is a bounded sequence in H' (§2;
R™) such that up, € SY(F)™ forall h > 0, up, — wu in L*>(2; R™) for some
ue H (2;R™) ash — 0, and

170 [lun*] = i1y — O

as h — 0, then we have |u|*> = 1 almost everywhere in £2.

Proof Two applications of the triangle inequality show that

el = 1l L1 (e
2 2 2 2 2
< el = lun PNl 12y + Munl® = Zallun® 21y + 1nlunl?] = 1l )

Due to the assumptions of the lemma we have that the third term on the right-hand
side tends to zero as i — 0. Since

2 2
el ™ = funl"l L) < llu —unllllu 4wyl

we have that also the first term on the right-hand side vanishes as 7 — 0. We use
Hoélder’s inequality and a nodal interpolation estimate to verify thatforevery T € .7,
we have

d/2
I A R [P [ A (T [

dj2,2 2 2 2 2
< chy 2 WE 1D un Pl 2y < hFIVuR 2.
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With a summation over T € .7}, we deduce for the second term that
2 2 2 2
Nunl> = Za[lunl* ]l @) < ch*IVunl®.

Since the upper bound vanishes as & — 0, this implies that [u|> = 1. (]

7.2.4 Other Target Manifolds

The ideas outlined above can be generalized to approximate harmonic maps into tar-
get manifolds other than the unit sphere. We let .#Z C R™ be an (m — 1)-dimensional
C?-submanifold and let T,.# denote the tangent space at p € .# . Moreover, we let
7wy Us(AM) — A be the nearest neighbor projection onto .# which is uniquely
defined in a neighborhood Us(.#) = {q € R™ : dist(p, .#) < 8} of .4 for some
8 > 0. The function 7r_y satisfies |_4(q) —q| = inf ,c 4 |p—ql|forallg € Us(A4).
If # = 0% for a convex set € C R™, then 7_y is well defined in R™ \ %

Definition 7.3 Given up ; € .7 (.Z},)™ with @ip ,(z) € .# for all z € A, set
= {up € ST uplry = up,plr, and uy(z) € A forall z € J%,}
and for u;, € <7, let
Fnlup] = {vh € 5’5(%)’" 2vin(2) € Ty, o) forall z € J%,}

With these definitions we can define the following generalization of Algorithm 7.1.

Algorithm 7.3 (H'-flow for general target manifolds) Let u2 € ofj and T > 0 and
define the sequence (u’,‘l)kzo,l,m € ), by computing v’,ﬁ € .7 [u];f]] such that

(Vv Vwn) + (VIuy ™"+ 1vj], V) =0

for all wy, € %, [u],fl] and setting

uf = > W @) + (@)
z€NMp

until | V|| < &gop.

Remarks 7.10 (i) Well-posedness of the algorithm requires that t be sufficiently
small so that ulfl_l(z) + rvﬁ(z) € Us(A) for all z € M, cf. Fig.7.6. If 4 = 0¢
for a convex set %, then this is always satisfied.

(ii) A stability proof employs an expansion of 7, and the fact that Dr_y (s)|7, . =
idy, 4 provided that .# isa C 3_submanifold.
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Tk (2)

Us () M =3C

Fig.7.6 The projection of u/;l_l (2)+ rv’fl (z) onto the target manifold is in general only well defined
within a tubular neighborhood of . in the case of nonconvex manifolds and a step-size restriction
needs to be imposed (left); for boundaries of convex sets no restriction on the step size is required
(right)

(iii) The projection step can be omitted if an appropriate version of a shifted tangent
space is available, e.g., if .# = g~'({0}) for an appropriate function g : R” — R.

7.2.5 Practical Realization

The implementation of Algorithm7.1 requires working with discrete vector fields
up € V(7)™ which are given by

up = Z Uuz@;

zeM,

with coefficients u, = uj(z) € R™ forall z € .4},. The function uj, will be identified
with the vector U € R™! defined by

with L = #.4}. The constraint u;(z) - v4(z) = 0 for all z € 4}, for a vector
field v, € (7)™ is then equivalently imposed by By V = 0 with the matrix
By € REXL defined through

uZ 0

0 ul 0
By = 2
0
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sothat ByV = [ug - vy, Uz - Vg, oony llygy - vZL]T. The solution of the linearly
constrained linear problems is based on the fact that we have

ByV =0, W'S,V=WT'"b forall W € ker B

if and only if there exists A € R’ such that

Sm By 1[V] _[b

By O Al |0’
where S, is the P1 finite element stiffness matrix for vector fields with m compo-
nents. A MATLAB implementation is shown in Fig.7.7.

7.3 Approximation of Constrained Evolution Problems

The iterative schemes discussed above are discrete H'-gradient flows for harmonic
maps and can be modified to provide approximations of the L2-gradient flow
of harmonic maps. We show that this leads to convergent approximations of the
harmonic map heat flow. In addition to this we analyze discretizations that preserve
the constraint without an explicit correction of the iterates. We also discuss the appli-
cation of the developed techniques to a hyperbolic problem. The presentation is based
on results from [2, 4, 7].

7.3.1 Harmonic Map Heat Flow

The harmonic map heat flow is the L?-gradient flow for the Dirichlet energy that
is constrained to unit-length vector fields. In the strong form it seeks a function
u:[0,T] x £ — R™ such that |u| = 1in [0, T] x £2 and

du — Au = |Vul’u, ulp, =up, Oulr, =0, u(0)=ug,

where I'p may be empty. The following proposition provides useful equivalent char-
acterizations for the practically relevant case m = 3.

Proposition 7.5 (Equivalent formulations) The following formulations are equiva-
lent for a functionu € H' ([0, T1; L?(82; R3))NL>®([0, T1; H'($2; R?)) satisfying
lu(t, x)| = 1 for almost every (t, x) € [0, T] x £2:

(i) For almost every t € [0, T] and every w € H&(.Q; R3) N L®(2: R3), we have

@y, w) + (Vu, Vw) = (|Vu|>u, w).
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function hl_flow_hm(d, red)

[c4n,nde,Db,Nb] = triang_cube(d); Db = [Db;Nb]; c4n = c4n-.5;
for j = l:red

[cd4n,nde,Db,Nb,—,~] = red_refine(c4n,nde,Db,Nb);
end

theta = 1/2; tau = 2; eps_stop = le-4; nC = size(c4dn,1);
dNodes = unique (Db); fNodes = setdiff (1:nC,dNodes);

FNodes = [3+xfNodes-2,3xfNodes-1, 3xfNodes-0];

nDb = size (dNodes,1l); nF = size (fNodes, 2);

fe_matrices (c4n,nde); SSS = sparse(3x*nC,3x*nC);

3
k:3:3xnC; SSS(idx,idx) = s;

u = zeros (3*«nC,1);
for j = 1:nC
u(3+«j-[2,1,0]) = u_0(cd4n(J,:));
end
for j = 1:nDb
u(3+«dNodes (J)-[2,1,0]1) = u_D(cd4n(dNodes (J),:));
end
Flist = [FNodes, 3*xnC+fNodes];
norm_corr = 1;
while norm_corr > eps_stop
B = sparse (nC, 3xnC);
for j = 1:nC
B(j,3+3-[2,1,0]) = u(3%j-[2,1,0])";
end
X = [SSS,B';B,sparse(nC,nC)1];
b = [-(l+theta*tau) " (-1)*SSS*u;zeros(nC,1)1]1;
x = X(Flist,Flist)\b(Flist);
v = zeros (3xnC,1);
v (FNodes) = x(1:3xnF); tu = uttauxv;
norm_corr = sqrt (v'xSSSxv);
for j = 1:nC
u(3%xj-[2,1,0]) = tu(3%«j-[2,1,0]) /norm(tu(3x3-[2,1,01));
end

show_pl_field(c4n,u); axis square; view(30,30); drawnow;
end

function val = u_D (x)
val = [x/norm(x),zeros(l,3-size(x,2))];
function val = u_0(x)

val_tmp = rand(l,3)-.5;
val = val_tmp/norm(val_tmp) ;

function show_pl_field(cé4n,u)
[nC,d] = size(c4n); X = [c4dn,zeros (nC,3-d)];
quiver3(X(:,1),X(:,2),X(:,3),u(l:3:3%nC),u(2:3:3%nC),u(3:3:3%nC));

Fig. 7.7 Iterative approximation of harmonic maps into the sphere $2 incorporating a projection
step which can be deactivated by uncommenting the command u = tu;
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(i) For almost every t € [0, T] and every w € Hs(.Q; R3) with w(x) - u(t,x) =0
for almost every x € §2, we have

0;u, w) + (Vu, Vw) = 0.
(iii) For almost every t € [0, T and every ¢ € H]%(.Q; R3) N L®(2: R3), we have
(01, ¢) — (Vu, V[u x (u x ¢)]) = 0.

Proof The proof is similar to the proof of Lemma7.1. Assume that formulation (i)
is satisfied. If w(x) - u(x, ) = 0, then the right-hand side vanishes and a truncation
argument shows that formulation (ii) holds. Using the identity w = u X (u X ¢) =
u(u-¢)—¢ implies the equivalence of (i) and (iii). Finally, (iii) follows from choosing
w=u X (u X ¢) in (ii) and noting that d;u - u = 0. O

Remark 7.11 The equivalence of (i) and (ii) can also be established for functions
with values in R" with m # 3.

7.3.2 Semi-implicit, Linear Schemes

The L>-flow of harmonic maps can be approximated by replacing the H'-inner
product in Algorithm 7.1 by the L>-inner product. As in that algorithm, the projection
step can be omitted leading to a violation of the unit length constraint that is controlled
by the step size independently of the number of iterations or time steps. As above
we denote

oty = {vn € ST (@) = 1forall z € A, valr, = up,i}
and given any u;, € .'(.7},)", we denote
Fnlun) = {vw € SB(T)"™ vi(@) - up(z) = 0forall z € ;).

Here and throughout the following the set I may be empty.

Algorithm 7.4 (Discrete Lz—ﬂow with optional projection) Let u2 e 7,0 €[0,1],

computing fork = 1, 2, ..., K the function v’h‘ e [u],‘l_l] such that
Wk wa) + (VI ™" 4 67vi], Vi) =0

for all w, € %, [MIZ_I] and setting ii’,‘l = ull‘l_l + tv’h‘ and
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~%
k _ ~k k _ uy, (2)
Uy =1uy, Or up= E m%-
ety Tk

We discuss the stability properties of the algorithm for the case 6 = 1.

,,,,,

Algorithm7.4 for 6 = 1.
(1) If the projection is omitted, then we have V’,ﬁ = d,uﬁ fork=1,2,..., K and for
L=12,...,K

L
1 T 1
IV 7 37 (SIVAf I + 1) = SVl P,
k=1
PAARNE 1||L1(.<2) = <ot

(ii) If the projection step is included and if 9, is weakly acute, then uﬁ € ) for
k=0,1,..., K andforevery L =1,2,..., K, we have

L
1 T 1
SIVUfIP 43 (GIVAIR + 417) < S 1VvugiP,
k=1
L

k k
T D v — dufllpi o) < cot.
k=1

Proof The well-posedness of Algorithm 7.4 follows as in the case of Algorithm7.1
with the help of the Lax—Milgram lemma and the fact that |ﬁ];l ()] = 1forallk > 1
and z € Aj,.

(1) Assume that the projection step in Algorithm 7.4 is omitted. We then have vﬁ =
dyuk and the choice of wy, = d,u¥ yields

d T
lldeu I* + 3’||Vuﬁ||2 + §||thulf,||2 =0.

A summation over k = 1,2,..., L and multiplication by 7 prove the stability
estimate. Forall z € A4, andk = 1,2, ..., L, we have

luk ()1 = |ul 1 (2) + tduk (D1 = [~ @1 + Plduk (2))?

and inductively it follows with |u2(z)| = 1 that

L
lup @1 = 1= ldup ).
k=1
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Multiplication by hg the norm equivalences of Lemma 3.4, and the stability estimate
imply, as in the proof of Proposition 7.4, that

L
| Ialluh P] = 1] 1y < €7 D lldiuh 1 < cxl| Vad |
k=1

(ii) If the projection step is included, then the choice of w;, = vl,j shows that
1 _ _ T
Va7 + - (V@™ 4 Tl = 1V P) + S 1vl* =0,

Since .75, is weakly acute and u’,‘l(z) = F (ﬁﬁ(z)) for all z € .4, with the
Lipschitz continuous mapping F(s) = s/|s| for |s| > 1 and F(s) = s otherwise,
Proposition 3.2 implies as in the proof of Proposition 7.2 that

k k—1 k
IVupll < IVIw, " + v ]Il
With this, a summation over k = 1,2, ..., L, and a multiplication by 7, the previous

identity implies the asserted stability estimate. To prove the estimate for the difference
v];l — dtu];l, let z € 44, Then

~k
_ uy(z)  _
T (diuy(2) = vi(2) = up(2) — ()~ (@) + TV (2) = ——— — T (2).
|k (2)]
With the identity
‘s—ijz‘i“m—u: lls| — 1|
st Ts
for every s € R™, it follows that
t|douf () — Vi@ = |laf @] — 1| = [lu} " @) + v @) — 1.

The relations u];l_l(z) . vlh‘ (z) =0and |u];l_l(z)| = 1 and the estimate (1 + s2)!/2 <
1 4 s2/2 imply that

1/2

k() + k) = (1+2pi@1P) 7" < 1+ 2@ )2.

A combination of the estimates and a summation over z € .4}, yield

> hdiug () = vi@l < T D @I
ze€NM zeM,

Norm equivalences and the stability result imply the asserted estimate. [


http://dx.doi.org/10.1007/978-3-319-13797-1_3
http://dx.doi.org/10.1007/978-3-319-13797-1_3
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Remark 7.12 Under the conditions of Proposition 7.6 we have the local energy decay
property ||VuX | < [Vu} =" forall k > 1.

The stability estimates provide a priori bounds for the numerical approximations
which allow us to pass to the limits for appropriate interpolants. Given the iterates
(Mh)k —0.....k of Algorithm 7.4 we define the interpolants i, ; : [0, T] x £ — R™,
“hr : [0, T] x 2 — R™ and Vit [0, T] x 2 — R™ fort € (t_1, tx) with
t =kt and x € §2 by

—~ Ik =1 j_q I —1k—1
up(t,x) = Tu (x) + Tuh(x),

u}zr(t,x)—uh (X) uhf(t x)—uh(x)

+
vh’r(t, X) = vh(x).
For ease of presentation, we again restrict the presentation to the case m = 3.

Theorem 7.7 (Convergence) Suppose that Iy = #, ul) — ug in H'(2;R?)
as h — 0, and that 9, is weakly acute for every h > 0 if the projection
step is carried out. Then every accumulation point of the sequence (u}—:_r)h,r>0 in

L°°([0, TT; H! (£2; R3)) as (h, t) — 0is a weak solution of the harmonic map heat
flow.

Proof Step 1: Selection of a weak limit. The stability bounds of Proposition 7.6 imply
that the sequences (”}tr)h,wO and (V;t-[)h,r>0 are uniformly bounded in the spaces
L°°([0, TT; Hl(.Q; R3)) and L2([0, T1; L2(.{2; R3)), respectively, so that after the
extraction of a subsequence which is not relabeled, we have the existence of u €
L°°([0, T]; H'(£2; R3)) and v € L%([0, T]; L2(£2; R3)) with

wf, ~*u in L0, T]; H'(2; RY),
vi = v in L*([0, T]; L*(2: RY)

as (h, ) — 0. Since vhr oy, — 0in L2([0,T]; LY(2;R3) as T — 0 we

deduce that u € H' ([0, T]; L*($2; R3)) and v = d,u.

Step 2: Verification of the energy law. From the stability bounds we have for almost
every T’ € [0, T] up to a subsequence that Vuh (T',) — Vu(T’,-). The weak
lower semicontinuity of norms induced by inner products shows that

T/

1 1
5||Vu(T/)||2+/ 18,u )| dr < znwou2

for almost every T’ € [0, T].
Step 3: Unit-length constraint. An interpolation estimate and Dzuh,r |r = 0 for all
elements R € .7}, yield for every ¢ € [0, T'] that
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[l P] = 1 P oy = ARITP R [ D1y ]
< c|RI" IRVl 117

L2(R)
LY(R)

= ch}IRI[Vunc g |* < chg Vi 2o g

In the case of no projection we have
Il (£ )P = 1) < et

while for the scheme including the projection step we have, cf. the proof of
Proposition 7.1,
e, (2, )P = 1 < chl| Va2, ).

The triangle inequality yields that |u}tr| — 1in L([0, T] x £2) in both cases, i.e.,
that |u(¢, x)| = 1 for almost every (¢, x) € [0, T] x £2.

Step 4: Attainment of initial data. The weak continuity of the trace operator and

“2 — u%in L2(£2; R¥ ash — 0 prove u(0, -) = uop.

Step 5: Passage to the limit in the equation. It remains to show that the function u
solves the partial differential equation. For this, we choose ¢ € L2([0, T]; C*(£2;
R3)) and define w ™) = =uy, . X ¢ and

Whe = fh[u;f_, x ¢].

For this function we have u; (¢, z) - wp ¢ (¢, z) = 0 for almost every ¢ € [0, T'] and
every z € .4j,. Moreover, we have using Dzuh,f |r = O for all elements R € .7}, that
IV ™ —wi o)l 2ry < chrID? [y, % 91l 12k

= hR(”VMh,r”LZ(R)||V<P||L2(R) + ||Mh,r||L2(R)||D2<P||L2(R))-

A summation over R € .7}, shows that wy, ; —w/" — 0in L>°([0, T]; H'(£2; R?))
as (h, ) — 0. The equation of Algorithm 7.4 yields

Wi oo Wheo) + (VIug 4+ TV 1 Viwg) = 0

1/2,,+
/ vy, is uniformly

for almost every ¢ € [0, T]. Due to Lemma7.6 we have that t
bounded in L2([0, T]; H'(£2; R?)) and hence the term

T T

[ Va2 o P ar) /nv wi P ar)

0 0

converges to 0 as (h, ) — 0. We write
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T T T
/(Vu;,r’ Vwy ) dt = /(Vu;’t’ Vw(h,r)) dr + /(VM,ZT, Viwpr — W(h,r)]) dr
0 0 0

and note that the second term on the right-hand side converges to 0 as (i, 7) — 0,
while for the first term on the right-hand side we have

T T

d
/ (Vitj, . Vw0 dr = / 2 Oty Deluy - x gDt
0 o t=1

+
S
—
M=~
~~~
>
o~
<
=
3
=
=
3
|
=
X
)
o~
<
N
o
o

This implies that for (4, ) — 0, we have

T T

/(V[u,;r + vy 1 V) dt — /(w, Viu x ¢])dt.
0 0

Finally, we verify that

T T
/(VZ, wh,r) dt = /(VZ, ux @)+ O, lun —ul x @) + v wp e —w P dr
0 0

T
— /(8,14, u x ¢)dt
0
as (h, t) — 0. Altogether we have proved that u satisfies
T
/(8,14, ux @)+ (Vu,Viu x ¢])dt =0
0

for all ¢ € L?([0, T]; C*(£2; R?)). Choosing ¢(t, x) = p(t)w(x) we deduce that

O, u xw) + (Vu, Viu x w])dr =0
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for all w € C*®(£2; R?). A density argument proves that this is satisfied for every
we HY(2;RHNL®(2;R3).Forgp € H'(2;RHNL®(2; R andw = u x ¢,
we verify with the identities u X (u X ¢) = (u - ¢)u — ¢ and d;u - u = 0O that

—(Ou, @) + (Vu, Vu x (u x ¢)1) =0

for almostevery t € [0, T]. According to Proposition 7.5 this implies that u is a weak
solution of the harmonic map heat flow. (|

7.3.3 Constraint Preservation

The third characterization of solutions of the harmonic map heat flow in Proposi-
tion 7.5 reads in the strong form that

oru +u x (u x Au) = 0;

this reveals a symplectic structure and implies that the L?-flow of harmonic maps
is constraint preserving, i.e., if |ug(x)| = 1 for almost every x € £2, then we have
lu(t, x)| = 1 for almost every (¢, x) € [0, T'] x §£2. We consider the case I'p = @ for
ease of presentation.

Lemma 7.3 (Constraint preservation) Let u € L°°([0,T]; H L(2;R3)) satisfy
du € L2([0,T1; L*(82; R?)) and u(0, ) = ug with ug such that |ug(x)| = 1
for almost every x € §2. Assume that

(Oru, @) + (Vu, Vu x (u x ¢)]) =0

for almost every t € [0, T] and every ¢ € HY(£2:R3) N L®($2; R?). Then we have
lu(t, x)| = 1 for almost every (t,x) € [0, T] x £2.

Proof Let p € C*(R") be a nonnegative function with |[po|l.1(p,) = 1 and
suppp C Bj1(0). Given ¢ > 0, set p.(x) = p(x/e) for x € §2. For xo € £2 the
choice of ¢ = p. (- — xp)u implies that

d1 s 0 o
77 7 1@ D17 pe) (x0) = (Gru, peut) = 0,

ie., ([u(T', ) % pe)(x0) = (Juo()|* * pe)(xo0) for every T’ € [0, T]. Noting that
(lu(t, )|* % pe)(x0) = |u(t, xp)| as & — 0 implies the assertion. (I

The lemma motivates the development of numerical schemes that preserve the
length-constraint in a discrete sense. For the Crank—Nicolson type discretization of
the strong form

did® + i =2 5 @12 x AUy = 0
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we observe that testing with «¥~1/2 = (u* + u*~1)/2 formally yields the length-
preservation property
diluk|* = 0.

To obtain this property for a fully discrete scheme, reduced integration has to be
incorporated. We define the discrete Laplacian Zhuh e Z1(F,)3 of a function
up € ()’ by _

(Apup, vi)p = —(Vup, Vvy)

for all vy, € Z1(F,)3.

Algorithm 7.5 (Constraint-preserving iteration) Let ug e YT with
|u2(z)| = 1 forall z € 4, and © > 0 and define the sequence (u];l)k:()
V()3 such that

.....

k—1/2 k—1/2 ~ k—1/2
(dridk, pyn + @y x P Ry T, o = 0

for all ¢, € .21 (F)3.

To establish the well-posedness of the algorithm, we note that a corollary of
Brouwer’s fixed-point theorem states that if @ : R® — R” is continuous with
®(s)-s > 0forall s € R” with |s| > R for some R € R, then there exists s* € R”
with [s*| < R and @ (s*) = 0.

Proposition 7.7 (Stability and constraint preservation) There exists a sequence
(uﬁ)kzo ,,,,, xk C LNT)? that solves the scheme of Algorithm7.5. We have
|MIZ(Z)| =1fork=0,1,...,K and

L
1 1
EIIVu;fllz +1 Y lduy]® < §||Vu2||2.
k=1

Proof Letk > 1 and define @), : .7'(7,)3 — .Z1(Z)3 by

2 . -
Dy (vp) = ?(Vh —uyhH + Ipvin x (v x Apvp)].

The function @}, is continuous and the Cauchy—Schwarz inequality, employing that
(Inwn, vidn = (wp, vp)p forall vy, wy, € 71 (%)3, proves that

2 k-1 1 LTI
(@Pr(vr), vidn = ;(Vh —u, V) = ;”Vh”h - ;lluh [

ie., (@,(vp), vi)n > 0 for all vy, € .Z1(F)3 with |lvallp > ||u];l_l||h. Brouwer’s

fixed-point theorem thus implies that there exists r,kl e .1(%,)? with @, (r,kl) =0

or equivalently that u';l = 2r,]§ - ulfl_l solves
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k—1/2 k—1/2 ~ k—1)2
0= d,uh—i—ﬂh[ 2 % (u, / X Apuy, / )],

ie.,
k—1/2 k—1/2

(e, w4 % s Ly x Ry L win = 0

for all w, € ()3 For z € A}, and the function w;, = [uﬁ_l/z(z)]goz, the
properties of the discrete inner product imply that

k—1/2 -1/2
/ /)h

k—1/2

/3zdz|uh(z)| —ﬂzd,uh(z) u, (2) = (dtuh ‘quh
(uk 172 [uk 12 R, uk 1/2

= B (uy, F1202) x [uk 2(2) x Zhu

)h
@]1) - u

]Qoz

k— 1/2 k 1/2

(z) =0,

|uﬁ(z)| = |uk_l(z)| and inductively the assumption |u2(z)| = 1 implies

k—1/2

|uh(z)| =1.Forwy = Zhu , we obtain

k—1/2 k—1/2

X Z Lt
k—
1/2) (

k—1/2

dt”V”h”h + ”’4
(Vd,uh, Vu,,
= —(d,uh, Zhu

I
k—1/2

x [u,

—1/2
k/><

) — (uy,

k—1/2 k 1/2 k—1/2

]Zu
xl ]Z

X Apu
k—1/2
[uh

)h
12y g

The choice of wy, = d,u’,‘l shows that

k—1/2 ~ k12 k—12
Ik 117 = — Gy 5 Al 2 % douby,

~  k=1/2 k 1 k
< lluf " x Apul, /||h|| 2% dud |l

and with |uk 1/z(z)l < 1 for every z € .4}, we deduce ||d,uh|| < ||uk V2
Zhuh 1/2 lln. A combination of the last two estimates, multiplication by t, and a
summation over k = 1, 2, ..., L thus prove the asserted bound. |

Remarks 7.13 (i) The stability bound implies unconditional convergence to a weak
solution of the harmonic map heat flow.

(ii) The existence of the iterates in Algorithm 7.5 was established by Brouwer’s fixed
point theorem which is nonconstructive and in fact the iterates may not be uniquely
defined. If T < ch2 in» the following linear iteration is constraint-preserving and

converges to the unlquely defined function u* s 12 et rg = u];l_l and define the

sequence (rf)¢=o.1... C () via

2 o, 2 .
Sk i+ f < [ X At L e = = @b g
T T

for all ¢, € .71 (F,)3.
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7.3.4 Approximation of Wave Maps

Wave maps are solutions of the wave equation subject to a pointwise unit-length
constraint. They solve the partial differential equation

8t2u — Au = \u

in [0, T] x §2 with a Lagrange multiplier A : [0, T] x £ — R associated to the
constraint |u(t, x)| = 1 for almost every (¢,x) € [0, T] x £2 and subject to the
boundary condition d,u = 0 on [0, T] x 952 and the initial conditions u (0, -) = ug
and 0,u(0, -) = u;. Qualitatively, similar partial differential equations arise in general
relativity and particle physics. Wave maps may also be regarded as harmonic maps
on [0, T] x £ for the Dirichlet energy defined with the Minkowski metric on the
R+ time-space domain, i.e., they are stationary for

T
1
I,(u) = 5//|Du|§,dtdx
0 Q
: _ 2 _ .2 2 2 d+1 :
with Du = (8;u, Vu) and |v|; = —vg + v+ ---v; forv € R*"". An important

feature of solutions for the wave map equation is the energy conservation property
that the mapping

1 2 1 2
t> I(u(t, ), du(t, ) = E/|a,u(z, | dx—i—E/Wu(t, )]* dx

Q Q
is constant as a function of ¢ € [0, T'].

Definition 7.4 Given ug € H'(2;R") and u; € L%(22;R™), a wave map is a
function u : [0, T] x £2 — R™ such that

(@ u e H'([0, T]; L2(2; R™) N L*([0, T1; H'(2; R™)),

(b) |u(t, x)| = 1 for almost every (¢, x) € [0, T] x £2,

(c) forallw e C2°([0, T); C>®(£2; R™)) with u(z, x) - w(t, x) = 0 for almost every
(t,x) € [0, T] x £2, we have

T
~ | @ 8wy + (V. Tyt = G O,
0
(d) the initial data u is attained continuously by u as t — 0in H'(£2; R™),

(e) for almost every T’ € [0, T], we have

I(u(T', ), 9u(T', ) < I(uo, ur).
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The algorithm for approximating wave maps is a modification of Algorithm7.4
for the approximation of the harmonic map heat flow. The sets <%, and .%, [u];l_l] are
defined as above.

Algorithm 7.6 (Wave map approximation) Let u2, vg e .1 ()™ with |u2 @) =1

.....

K = [T/t] by computing vﬁ € I [u],f]] such that

(v, wi) + (VIuh ™ 4+ ook ], V) = 0

for all wy, € ﬁh[uﬁ_l] and setting with i), = ul,‘l_l + rv’;l

~k
k_ ~k k _ Z uy, (2)
Mh = uh or Mh = m(ﬂz
zetp ' h <

‘We have the following stability result.

Proposition 7.8 (Stability) (i) If no projection is carried out, then vﬁ = dtu];l Sfor
k=1,2,...,KandforL=1,2,..., K, we have

2 L
T 1 1
- > (v I + 19V, 117) = 5||v2||2 + 5||Vu2||2,
k=1

EATAR

Lo, 1 L2

~ ~|IV

2||vh -+ 2|| uy I~ +
- 1“L1(.Q) = CoT.

(ii) If a projection is carried out in every step of the algorithm and if J), is weakly
acute, then we have |ul;l(z)| = 1jfork =0,1,...,K and all z € N}, and for
L=1,2,...,K that

2

L
1 1 T 1 1
5||v,%||2 + Enwffnz + 5 > (v I + IVvp %) < 5||v2||2 + §||w2||2,
k=1

L L
”Vh — dluh ”LI(Q) E coT.
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function wave_maps (d, red)

[c4n,n4de,Db,Nb] = triang_cube(d); c4n = c4n-.5;
T = 10;

tau = 27 (-red)/4; K = ceil(T/tau);

for j = l:red

[c4n,nde,Db,Nb] = red_refine(c4n,nde,Db,Nb);
end
nC = size(cdn,1);
[s,m,—,~] = fe_matrices (c4dn,nde);

SSS = sparse (3xnC,3*nC); MMM = sparse (3xnC,3*nC);
for k =1 : 3

idx = k:3:3xnC; SSS(idx,idx) = s; MMM(idx,idx) = m;
end
u = zeros(3*nC,1); v = zeros(3*nC,1);
for j = 1:nC
u(3*«3-[2,1,0]) = u_0(cd4n(J,:));
v(3x3-[2,1,0]1) = v_0(cd4n (3, :));
end

for k = 1:K
B sparse (nC, 3%nC) ;
for j = 1:nC

B(3j,3%*3-02,1,0]) = u(3%xj-[2,1,0]);
end
X = [MMM+tau”2%SSS,B';B,sparse (nC,nC)];
b = [MMM*v-tau*SSS=*u;zeros(nC,1)];
x = X\Db;
v = x(1:3%nC);
tu = uttauxv;
for j = 1:nC
u(3xj-[2,1,01) = tu(3+«3-[2,1,0])/norm(tu(3x3j-[2,1,01));
end

show_pl_field(c4n,u); axis(.5+[-1,1,-1,1,-1,1]1);
view(30,18); drawnow; pause(.05)

end

function val = u_0(x)

d = size(x,2);

x = [x,zeros(1,3-d)];

r = norm(x); a = max(0,1-2*r) "4;

val = [2xa*x(1:2),a"2-r"2 1/(a"2+r"2);
function val = v_0 (x)

val = [0,0,0];

Fig. 7.8 MATLAB realization of Algorithm 7.6 for the approximation of wave maps
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Proof The choice of w, = v,’i yields

d, T 1 -~ _ T
E'IIVEIIQ + Eudtvﬁnz + Z(uwi Lok 2 = vy ?) + Euwﬁnz =0.

In the case of no projection, we have u];l_l + rv’;l = ul,‘l, and a summation over

k=1,2,..., L implies the stability bound. If u];l is obtained through a projection,

then it follows as in the proof of Proposition 7.6 that ||Vu';l I < ||V[u1;l_] + rv];l] Il
and again a summation over k = 1,2, ..., L implies the stability bound. The other
estimates follow as in the proof of Proposition 7.6. ]

Remark 7.14 The stability bounds imply the convergence of approximations to a
wave map.

Figure 7.8 displays a MATLAB realization of Algorithm7.6 that is based on the
implementation of Algorithm7.1.
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Chapter 8
Bending Problems

8.1 Mathematical Modeling

Bending describes the deformation of thin objects under small forces. Typically,
the object is neither stretched nor sheared, but large deformations occur. A simple
example is the deformation of a sheet of paper that is clamped on part of its boundary
and subject to a force such as gravity. Since curvatures are important to describe
such a behavior, the related mathematical models involve higher-order derivatives.
We discuss the derivation of such models and their properties. For further details we
refer to the textbooks [5, 6] and the seminal paper [10].

8.1.1 Bending Models

We consider a Lipschitz domain @ C R? representing the region occupied by a thin
plate, a body force f = (f1, />, f3)T : w — R3 acting on it, and clamped boundary
conditions on the nonempty closed subset yp C dw that prescribe the displacement
by a function up and the rotation by a mapping @p on yp.

Definition 8.1 The nonlinear Kirchhoff model seeks a deformation u : @ — R3
that minimizes the functional

. 1
IK‘(u)=5/|D2u|2dx—/f-udx,
w w

subject to the isometry constraint (Vu)"Vu = I, and the boundary conditions
uly, = up and Vul|,, = Pp.

The isometry constraint reflects the fact that pure bending theories do not allow
for a shearing or stretching of the plate. This limits the class of boundary conditions
that lead to nonempty sets of admissible deformations. In particular, the function @p
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218 8 Bending Problems

prescribes the normal, of the deformed surface on yp. The model sets no limitations
on the size of the deformation, but does not prohibit self-penetrations, i.e., it does
not enforce the surface parametrized by u# be embedded. We will show below that
the isometry constraint allows us to replace the Frobenius norm of the Hessian by
the Euclidean norm of the Laplacian, i.e., |D%u| = |Aul, and that these expressions
coincide with the modulus of the mean curvature. For small displacements

¢ =u—[idy,0]",

ie., if |[V@| < 1, the isometry constraint can be omitted and it suffices to consider
the vertical component w = u3 of the deformation. Typical large deformation and
small displacement situations are depicted in Fig.8.1.

Definition 8.2 The linear Kichhoff model seeks a vertical displacementw : @ — R
that minimizes the functional

. 1
15 (w) = §/|D2w|2dx—/f3wdx
w w

subject to the boundary conditions w|,,, = 0 and Vw|,, = 0, i.e., w belongs to the
set H (w) = {v € H*(2) : v],, =0, |y, = O}

The linear Kirchhoff model is closely related to a model in which no second-order
derivatives occur. It may be regarded as an approximation of the linear Kirchhoff
model in which small shearing effects may occur. Mathematically, the second order
derivatives are replaced by an additional variable and the difference is penalized
with a penalty parameter, which may be regarded as a small artificial plate thickness.
Notice that the symmetric gradient of a gradient is the Hessian, i.e., e(Vw) = D?w.

Definition 8.3 The linear Reissner—Mindlin model seeks for given t > 0 a vertical
displacement w : @ — R and a rotation 6 : @ — R> that minimize the functional

-2
' 1
™My, 0) = T/w —Vw|2dx+§/|8(9)|2dx—/f3wdx,
w w w

Fig. 8.1 Large isometric deformation of a thin clamped plate (leff) and small displacement
described by a linear model (right)
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where £(9) = [(VO) T + (V0)]/2, subject to the boundary conditions w|,,, = 0 and
Olyp =0.

A solution u of the nonlinear Kirchhoff model defines an open surface in R? that
is parametrized by the deformation u. Since this surface is isometric to @, we have
that the Gaussian curvature K vanishes, i.e., that the local length and angle relations
are preserved under the deformation. The mean curvature is given by H> = |D?u|?
and this identity establishes a relation to a bending model that is used to describe the
deformation of fluid membranes such as cell surfaces. Here, the considered surfaces
are closed. The justification of the model is less clear than in the case of solids. In
particular, fluid membranes can undergo large shearing effects that are not seen by
its description as a surface.

Definition 8.4 The Willmore model seeks a closed surface . C R> that minimizes

the functional 1
IMW@ZE/MM—/KM

M M

subject to constraints that the surface area of .# or that the volume enclosed by .#
be prescribed.

The integral over the Gaussian curvature is a topological invariant and can be
neglected if a minimizer is sought in a fixed topology class. If the surface area and
the enclosed volume are prescribed, then the model is referred to as the Helfrich
model.

8.1.2 Relations to Hyperelasticity

In three-dimensional hyperelasticity, pure bending is characterized by a cubic scaling
of the energy with respect to the plate thickness ¢, i.e., that

Mw:/wwwm—/ﬁmm~ﬁ

for the optimal deformations u; € H'(§2;; R®) ast — Ofor 2, = w x (—1/2,1/2) C
R3, such that us|rp, = id on FD = yp x (—t/2,t/2). This motivates considering
the rescaled energy functionals I, = 1731, and investigating the limiting behavior
for + — 0 in the framework of I"-convergence. We let V' denote the gradient with
respect to the first two variables x’ = (x1, x2). The corresponding three-dimensional
objects are denoted V = (V’, 33) and x = (X', x3).

Theorem 8.1 (Dimension reduction [10]) Let

W (F) = dist*(F, SO(3))
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for all F € R¥3 and SO3) = (F € R : FTF = L3, detF = 1}. Set
f,(x xX3) =t 2ﬁ(x x3) and assume ﬁ — fin L2(£21; R3) and that f is inde-
pendent of X3 € (—1, 1). Let (u);~0 be a sequence of minimizers for the sequence of
functionals (I;)t=0, i.e., uy € H! (824 R3) with u;| ry, = idy,. Then the rescaled func-
tions U(x', %3) = u(x’, £x3) converge in H' (£21; R?) to a function u € H'(£21; R?).
This function is independent of X3, defines a parametrized surface with the first funda-
mental form g = (V') (V'u) = L in 2, and satisfies u € H>(£21; R3). Moreover,
it has the boundary values ul,, = [id, O]T and V/u|yD = I, O]T and minimizes

: 1
N = E/|h|2dx’—/f.uc1x’,
w w

withthe normal b = d1u x du and the second fundamental formh = — (V’b)—r (V'u),
in functions v € H'(£21; R?), that are independent of %3, satisfy VW (V) =D
in §21, and have the same boundary conditions as u. Conversely, every such mini-
mizer u of Il is the limit of a sequence of rescaled minimizers of I, and the minimal
energies converge to I (u).

Remarks 8.1 (i) We will show below that || = |D?u| for the Frobenius norms of
the second fundamental form and the Hessian of u.

(i1) The result also holds for isotropic, frame-indifferent energy densities W &
C2(R™") with W (I3) = 0, and W(F) > dist*(F, SO(3)), cf. [10].

For a heuristic justification of the result, we follow [7] and consider the rescaled
energy functional

T(u) =13 / W (Vu) dx

with W given by

W(F) = dist*(F, SO(3)) = mm |F 0.

We assume that the optimal deformation u; = u is of the form
u(x', x3) = v(x') + x3b(x’)

with z-independent vector fields v,b : v — R3 and b is normal to the surface
parametrized by v, i.e., dgv(x’) - b(x") = 0 for £ = 1, 2. This means that v is the
deformation of the middle surface w and the segments normal to w are mapped to
straight lines that are normal to the deformed surface, cf. the right plot of Fig.8.2.
We have

Vu = [V'v, b] + [x3V'D, 0].

For matrices F € R3*3 in a neighborhood of SO(3), we use the approximation
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Fig. 8.2 Normal segments are mapped to straight line segments under the Reissner—Mindlin
hypotheses (/eft); the Kirchhoff-Love hypotheses require that the deformed segments be normal to
the deformed middle surface (right)

W (F) = dis?(F, SO(3)) ~ ~|F'F — I;*.

FNg

For a proof of this relation consider F = P+¢G, where P = mso(3) (F) is the nearest-
neighbor projection of F' onto SO(3) and G is normal to SO(3) at P. We may assume
that P = I3, which implies that G is symmetric. Then dist*(F, SO(3)) = £*|G|? and
IFTF—13)? = e2|G+G T 24+ 0(&3) = 4¢2|G|>+0(3). Since I (u) = t31,(u) < C
and ¢ is small, we expect that W (Vu) is small, i.e., that Vu is close to SO(3) so that

-3
~ =
T,(u) ~ T/|(W)TW—13|2dx.
o
. I NT 77, ARV
Noting (V'v) ' Vb = (V'b) ' V'v, we have

ISR v/ AR v N T T o
(W)TW:[(W) Vv 0 }HS [Z(Vb) Vv (V'b) b}rx% |:(Vb) Vbo}

0 |b? bTV'b 0 0 0l
With the abbreviations
=t VW'V =D), h=—-W'Vb, k=b"b

we obtain

f —2h (V'b)Th
Ty~ /‘[gth ]+X3[bT(W)< ) i|+x§

/‘ 18 — 2x3h +x3k (V'b) T ‘2
b1 (V') b2 — 1

o)

To guarantee that this expression is bounded #-independently, we need to impose the
condition |b|2 = 1, and with the resulting identity bIV'b = 0, we deduce that

~ t73 R 2,12
Ii(u) ~ T/ |tg, — 2x3h 4 x3k|” dx.
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By carrying out the integration with respect to x3, we obtain

.
1,<u>~—/|g,| 3P+ K+ B ke

Again, to obtain a 7-independent limit, we need that g, = 0. Neglecting the term
involving the factor #2, this leads to the reduced, z-independent functional

P 1
I(u) = ﬁ/|h|2dx’,
w

subject to the pointwise constraint (V' WiV = L. We finally remark that for
forces described by functions f; that are independent of x3 and such that r—2f, — f
in L?(w; R?) as r — 0, we find with the assumed expansion u(x) = v(x') + x3b(x')
that

t/2

—3/f, udx—t‘3/ﬁ vdx+t_3//x?b -y dx’ dx3

—t/2 ®
=t72/f,~vdx—>/f~vdx’
2 co

ast — 0.

8.1.3 Relations to Linear Elasticity

Linear elasticity employs a geometric linearization defined through the symmetric
gradient

£@) = ~ (V)T + V) ~ + (Vi) Vi~ I)
2 2

for small displacements ¢ = u — id3 : £2 — R3 with £2 C R3. The energy density
W is approximated by the quadratic expression

1 1
W(Vu) ~ EDZW(13)[V¢ Vo] = —D2W(13)[8(¢>) ()],

provided W is isotropic and frame-indifferent, using that W(/3) = 0, and
DW (I3) = 0. For homogeneous materials it follows that with the Lamé constants
X, i we have for every symmetric matrix E € R3*3 with C = D*>W (I3) that
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CE =2uE + A(tr E)I3.

The related minimization problem looks for ¢ : £2 — R? to be minimal for the
Navier—Lamé functional

1 —~
N (¢) = E/(Cs@):e(qﬁ)dx—/f-qbdx,
2 2

subject to ¢ |y, = 0. For thin plates £2, = w x (—t/2, t/2) with Dirichlet boundary
I'd> = yp x (—t/2,1/2) for yp C dw, often the following assumptions are made to
obtain a dimensionally reduced model. The different assumptions are illustrated in
Fig.8.2.

Assumption 8.1 (Reissner—Mindlin hypotheses) (1) Points on the middle surface
are only displaced in the vertical direction, i.e., ¢1(x’,0) = ¢(x’,0) = 0 for all
X € w.

(2) The vertical displacement does not depend on x3, i.e., ¢3(x’, x3) = w(x').

(3) Segments that are normal to the middle surface are linearly deformed, i.e.,
d(,x3) = p(x', 0) — x30(x') for all (x', x3) € £2,.

The assumption implies that the minimizer for /N is given by

R e < 16
¢(x,x3)—[ o) ]

with the rotation 6 : @ — R? and the vertical displacement w : @ — R.

Assumption 8.2 (Kirchhoff-Love hypotheses) In addition to the Reissner—-Mindlin
hypotheses, assume that segments that are normal to the middle surface are mapped
linearly and isometrically to segments that are normal to the deformed middle surface,
e, p(X,x3) = (¥, 0) — x30(x') forall (', x3) € §2, with

/ !
B0, 0) = (14 Vw212 [Vow} ~ [Vow} '

Note that ¢ is the displacement, so that the third component of the normal vector 0
disappears. The additional assumption implies that the solution of the linearly elastic
problem is given by

—x3V'w(x)

w(x") ]

P, x3) = [

for the vertical displacement w : @ — R.

Proposition 8.1 (Linear bending) Assume that f; is independent of x3 and set f3 =
t=2f; 3. Suppose that CE = E for all symmetric matrices E € R>3. Let ¢ €
Hllj(.Qt; R3) be the minimizer of the three-dimensional elasticity functional IN“ with
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2 =82 and? = f;. Up to a change of constants we have:

(i) Under the Reissner—Mindlin hypotheses the pair (w, 0) € Hllj (w) x H]ID (w: R?)
that specifies ¢ solves the linear Reissner—Mindlin model.

(ii) Under the Kirchhoff-Love hypotheses the function w € H]%(a)) that specifies ¢
solves the linear Kirchhoff model.

Proof In the case of the Reissner—Mindlin hypotheses we have

g'(¢) = [—x3V 0 0] + % |:—X3(V/9)T V/W] _ [ —x3&'(0)  (V'w— 9)/2] '

Vw0 —0T 0 Vw—0T/2 0
Therefore, due to the assumption CE = E,

1
Ce'(9) : €'(¢) = e’ O + S IV'w — 01,

An integration over £2; = w x (—t/2, t/2) shows that

/(Cs(go) 8((p)d)€——/|8(9)| dx' + - /le 9| dx’.

2

Since f; is independent of x3, we have

t/2 t/2
/fz pdx = //( x3)0 - fi.12 dxz dx’ +//medxzdx —t/fzsde’
o —t/2 o —t/2

Hence,
—3,NL 1 2., 12 2 4 )
Ny = 57 [ le@P d' + - [ Vw6 dy' — [ fwdx'.
w w w

For the Kirchhoff hypothesis, this simplifies to / Ki" que to the identities V'w = 6
and &’ (V'w) = V'V'w. |

Remark 8.2 1If CE = 2uE + A(tr E)I3 is considered then the assumption that for
o = Ce(¢) we have 033 = 0 has to be included.
8.1.4 Properties of Isometries

Given a surface ./ parametrized by u : @ — R3 the first and second fundamental
forms g, h : @ — R?>*? are given by
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g = @ u)i<ij<r = (Yu) Vu,
h=—0;b-du)1<ij<2 = —(Vb)TVu = b D%,

where b = 9ju X dru/|du x dyu| is a unit normal to .# . The parametrization is
assumed to be an immersion, so that the tangent vectors dju and d,u are linearly
independent everywhere in w. The first and second fundamental form are interpreted
as bilinear forms on the tangent space 7. in terms of the coefficients of the family
of bases (Blu(x), Bzu(x))xew. It follows that g is a symmetric and positive definite
matrix for every x € w that defines a metric on the tangent space of .#. The Gauss
and mean curvature are the determinant and the trace of the Weingarten map

—1

s = —hg
and given by
deth h:det'g
K=dets=—, H=trs=—-=
detg detg

respectively. The Weingarten map measures variations of the normal b and is inter-
preted as a linear mapping on the tangent space. The second fundamental form is
the bilinear form associated with s. We refer the reader to Sect. 8.4 for a detailed
discussion.

Definition 8.5 The parametrization u : @ — R3 is called isometry if g(x) = I, for
every x € w.

Proposition 8.2 Suppose that u : @ — R> is a C*-isometry. Then 0;0ju - dgu = 0,
K =0, and
D%l = |Aul = |h| = |H],

where | - | denotes the Frobenius norm on the respective spaces.

Proof We first note that for 1 < i7,j < 2, we have 0 = 0;(0ju - dju) = 20;0;u - dju.
To show that we also have Bl-zu -9ju = 0 fori # j, we note 0 = 0;(9; - Jju) =
O2u - dju + du - d;dju, i.e., 3%u - u = —du - 9;9;u = 0. Hence, we have

0;0ju - o =0

fori,j, k = 1,2, i.e., the Christoffel symbols of the second kind vanish. As a con-
sequence of Gauss’ theorem, cf. Lemma 8.3, we have K = 0. Moreover, we deduce
that —Au = Bb and since (—Au) - b = tr(—h) = H, we have 8 = H. The
vectors (dju, dru, b) form an orthonormal basis of R3 for every x € o, so that
[0;0;u| = 10;0ju - b| and hence

2
ID*ul> = > |didju - bI* = |,
ij=1
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Moreover, we have
Ih)* = |s)* = (trs)> — 2dets = H*> — 2K = H?,

which proves the assertion. (]

Remark 8.3 Since isometries in H?(w; R3) can be approximated by isometries in
C? (w; R3) in the norm of H2 (w; R3), the results of the proposition also hold for
isometries u € Hz(a); ]R3), cf. [12].

8.2 Approximaton of Linear Bending Models

We discuss in this section numerical methods for the approximation of the linear
Kirchhoff and the linear Reissner—Mindlin model. Finite element methods for dimen-
sionally reduced models have to be carefully developed to avoid so-called locking
effects. This describes the phenomenon that deformations obtained by numerical
computation are too small in comparison to the true deformation. In particular, mem-
brane locking is the inability of a finite element method to capture bending effects
without stretching while shear locking refers to the problem that a finite element
method is too stiff to describe certain in-plane deformations due to the occurrence of
a small parameter. Another effect that occurs in the description of thin elastic struc-
tures is the Babuska paradox that states that if a domain is approximated by polygons,
then the numerical solutions may fail to converge to the correct solution. We follow
closely the presentation of [5] and refer the reader to [4] for further aspects.

8.2.1 Discrete Kirchhoff Triangles

To avoid an H 2-conforming finite element method for the linear Kirchhoff model,
we employ a nonconforming discretization that is based on the construction of a
discrete gradient operator

Vi W, — O

with H 1-conforming finite element spaces W), C H Yw) and ©, ¢ H'(w; R?).
These are for a regular triangulation .7, of w defined as

Wy, = {wi € C(@) : wilr € PRYT) forall T € .,
Vwy, continuous at all z € .4},
On = {6 € C@) : Oplr € Po(T) forall T € F).

Here, P (T) for every T € 7, denotes the set of polynomials of total degree less
or equal to k > O restricted to 7. The superscript in Pged means that one degree of
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Vh
Wi —_— O,

Fig. 8.3 Schematic description of the elementwise reduced cubic finite element space W), (left)
and the space of elementwise quadratic vector fields &, (right)

freedom is eliminated, i.e., with the center of mass xr = (1/3) ZZE%QT zof T,

1
PYUT) = {pe PT) i pr) = 5 3 [p@) +Vp() - 6r = 2)]).
zeMNT

The degrees of freedom in W), are the function values and the derivatives at the
vertices of the elements, cf. Fig. 8.3. For w € H>(w), we define the nodal interpolant
3w € Wy by the conditions 7 w(z) = w(z) and V.7 w(z) = Vw(z) for all
z€ M.

Definition 8.6 The discrete gradient operator Vj, : W, — Oy, is for w, € W), the
uniquely defined function 6, = Vwy, € @), with

On(z) = Vwy(z) forall z € A7,

1
O (zs) - ng = E(wh(z;) +Vwi(zd) -ns  forall S € .,

On(zs) - ts = Vwp(zs) - ts for all S € .},

where, for all sides S € yh, the orthonormal vectors ng, g € R2 are chosen such
that ng is normal to S, ZS, zS € M}, are the endpoints of S, and zg = (ZS + ZS)/Z is

the midpoint of S. For w € H3(£2), we set Vyw = Vhf w.

Remark 8.4 For every S € .}, we have

1
Viwn(zs) = 5[(th(zé) + Vwi(z3)) - ns|ns + [Vwa(zs) - ts]ts

The following lemma shows that V;, may be regarded as an interpolation operator
on the space of gradients of functions in H>(w). We let yp C dw be closed and of
positive surface measure and define yny = dw \ yp.

Lemma 8.1 (Properties of V), [5]) (i) There exists c; > 0 such that for all w, € Wy,
and T € F, we have for £ = 0, 1 that

S ¢ 0+1
T IV wallzary < IV Viwnllzzy < etV wall 2.
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where V! =V and VO = I.
(i) There exists co > 0 such that for all w € H3(w) and T € Fj, we have

IVaw = VWl 2y + BV Vew — D*wll 27y < 2h3 ID*wll ).
(iii) There exists c3 > O such that for all wy, € Wy, and T € T}, we have
IVawn — Ywall 2y < cshrllD*wall 2 ().
(iv) The mapping wy, — ||[VVywy,|| defines a norm on
Wip = {wh € Wy :wp(z) =0, Vwy(z) =O0forallz € M, N )/D},

and we have wy|,, = 0 and Vwy|,, = 0 for all wy, € Wy, p.

Proof (i) Both expressions define semi-norms and we show that V*1y;, = 0if and
only if VEV,w, = 0 for all wy, € W),. Assume that Vuwnlr = cr for some cr € RZ.
Then Vwy(z) = ¢y forall z € A4, NT and Vwy,(zs) = cp forall S € ., NT.
Thus, the cubic polynomials wy|s are affine for all S € ., N 3T, and also the
function wy |37 is affine. Due to the elementwise constraint in the definition of Wy,
it follows that wy,|7 is affine and thus Vw), = cr. If conversely Vwy,|r = cr, then
also Vywy|r = cr. Hence, the expressions ||Vl+lwh||L2(T) and ”VthWhHLZ(T) are
equivalent semi-norms on Wj,|r and a scaling argument proves the first assertion.
(i) Since V,w|r is affine if Vw|7 is affine, the Bramble—Hilbert lemma yields the
interpolation estimate

10 — Ol 2y + hr IV O — )l 2y < chF D01l 2

for§ = Vw € H*(w) and 6 = Vjw.

(iii) The estimate is a consequence of (ii) and the inverse estimate |[D3wy,|| 2(1) =
chy 1D will 2 r).

@iv) If wy(z) = 0 and V,wy,(z) = 0 for all z € 4, N yp then, since wy|s is a cubic
polynomial for every S € .7}, it follows that wy|,, = 0 and V,wy|,, = 0. Assume
that [[VV,wy,|| = 0. Then, since V,wy|,p, = 0 we deduce by Poincaré inequality that
Vipwy = 01in w. With (i) and wy|,,, = 0 we find wj, = 0 in w. U

The interpolation estimates allow us to prove the following error estimate.

Theorem 8.2 (Error estimate) Assume that w € le)(a)) N H3(w) is the solution of
the linear Kirchhoff model, i.e.,

(D*w, D*v) = (f,v)
forallv e H]%(a)) and let wy, € Wy, p solve

(VVpwp, VVRvE) = (f, vp)
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for all vy, € Wy p. Then we have

ID*w — VVywull < chlWllg o)-
Proof The Lax—Milgram lemma and Lemma 8.1(iv) imply the existence of unique
solutions w € le)(a)) and w, € W), p. The assumption w € H3(w), the boundary

condition (Dzw)n|,,N = 0, an integration by parts, and the identities div D> = AV =
V A show, that for all v € H]%(a)), we have

(f,v) = (D*w, D*v) = —(VAw, Vv)
and this identity holds for all v € Hll) (w). Therefore, for v, € W, p it follows that

(VViw, VVivn) = (D*w, VViv) + (V[Viw — Vwl, VVj0p)
= —(VAw, Vivp) + (V[Vw — Vw], VVivi)
= —(VAw, Vvy) — (VAw, [Viv, — Vigl)

+ (V[Vaw — Vw], VVvp).

Recalling that V,w = Vhf~h3w and incorporating the discrete and continuous for-
mulations, this yields that

IVVilw — willl* = (VViw, VVi[w — wi]) — (VViwh, VVi[w — wy])
= (f, Zpw — wp) + (VAw, Vi[w — wy] — V[.Z2w — wy])
+ (VIViw — VW], VW — wi]) — (f, 3w — wy)
= (VAW, Vilw — wi] — VL.Z w — wp])
+ (V[Vpw — Vw], VVi[w — wy]).

For the first term on the right-hand side we have by Lemma 8.1(i) and (iii) that
(VAW, Vilw — wi] — VL7 w — wi) < chl|VAW[||[VVi[w — wh]]l.
The second term is estimated with the help of Lemma 8.1(ii), i.e.,
(VIViw = Vwl, VV4Iw = wil) < chllD ][V Vilw — wyl]

The combination of the last three estimates, the triangle inequality, and the bound
|1D?*w — VVw|| < ch||D3w]|| of Lemma 8.1(ii) prove the assertion. ([l
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8.2.2 Realization

For the implementation of the discrete Kirchhoff triangle, we identify functions wy, €
Wy, and 6, € Oy, with vectors W € R3L and ® € R2EHM) where L = ne = #.4,
and M = ng = #.9},, defined by

On(z1) (6, ]
Fwpz) T [ wz ] Op(z2) 0.
Vwp(z1) Swy, .
wi(22) Wza ) :
On(zL) o
_ | Vwp(z2) | _ | w _ %
W= , =17 97 outs) - (On(zg,) +0n(z5))/2 | = b5,
: On(zs,) — (6n (Zéz) + 0p (zgz))/ 2 Os,
Wh(ZL) Wz . .
LVwy(zp) Lowz, | 1: ) :
L On(zsy) — (On(zs,,) +0n(z5,)) /2| LOsy

with A4, = {z1,22,...,z.} and ., = {S1, S, ..., Sum}. For the coefficient of 6,
related to a side S € .7, we subtract half of the values of 6, at the corresponding
endpoints zé and Zé since we use the hierarchical basis

(@zw Pzas oo Pz PS5 PSps - "(pSM)

of the space .#%(%},) = {vy € C(@) : vu|r € Po(T) forall T € ) given by the
nodal basis (¢;,, ¢z, ..., ¢z ) of 1(F,) and the functions @5 = 4(pzé(pz§ for all

S € &) A straightforward calculation shows that, for a function wy, € Pged(T), we
have that wy,|s is cubic for every side S C a7 with

3 1
(Vwa(zs)) - ts = m(w;,(z@ —wi(z§)) — Z(th(z;) + Vwi(z3) - ts

with |S| = |z§ — z§| and z§ — zblw = |S|ts. Since (ng, ts) are orthonormal vectors it
follows for 6;, = V,wy, that

(Vwi(zg) + Vwi(z3)) - ns]ns

N =

On(zs) = (Vwn(zs) - 15)1s + [

1
= (th(ZS) . tS)ts + E(th(zé) + th(Zb%))

1
=[5 (Vwalzg) + Ywi(z)) - 1s]1s

[\

3 3
= m(wh(zg‘) - Wh(Zé))lS - Z[(th(zé) + th(zg)) . tS]tS

1
- E(th(zé) + Vwa(zd).
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Since 6, (zg) = Vwy, (zg), Jj =1, 2, the corresponding coefficient is given by

05 = O (zs) — (On(z8) + On(zd)) /2

3 3
= m(w;,(zf) - Wh(Zé))tS — Z[(th(zé) + th(zg,)) . tS]tS-

With these identifications, the discrete gradient operator can be represented by a
matrix D;, € R2EHMP3L For a single element T = conv{zy, z2, z3} with sides
S1 = conv{zp, z3}, S» = conv{zs, 71}, and S3 = conv{z], 22}, we have

0, 0L 0 0 0 O Wy,
0, 00 0 L 0 O Swy,
051 _100 0 0 0 b Wz,
Os, | ~0 ~0 ?Sl Ts, _ZSI ZSI dwz,
Os, Is, Ts, 9 0 -5, Ts, Wz
Os, tsy Tsy —ts; Ts; O 0 Wy,
where TSe = —(3/Mts, t;; and?se = —(3/(2|S¢1))ts, . For a simpler implementation

we approximated the right-hand side using numerical integration, i.e.,
/f3thx ~ /fh[fw;l]dx
w w

which is computed with the lumped mass matrix. Figure 8.5 displays an implemen-
tation of the approximation of the linear Kirchhoff model with the discrete Kirchhoff
triangle. The M x 2 field n4s provides an enumeration of the edges and defines
their endpoints. The field s4e has dimension ng x 3, ng = #.7,, and contains the
global numbers of the sides of the elements in .7}, where the convention that the
Jjth edge of T is opposite to the jth node of T is used, cf. Fig. 8.4. These arrays are
provided by the subroutine sides. The stiffness matrix of the P2 finite element
space with respect to the hierarchical basis defined above is provided by the routine
fe_matrix_p2.m.

Fig. 8.4 Local enumeration z

of the sides of a triangle S,

every side is associated to Si
the opposite node

21 S3 22
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function kirchhoff_ linear (red)
[c4n,nde,Db,Nb] = triang_cube (2);
for j = l:red
[c4n,nde,Db,Nb] = red_refine(c4n,nde,Db,Nb);
end
[nds, s4e] = sides (nde);
nC = size(cdn,1l); nS = size(nds,1);
dNodes = unique (Db) ;
FNodes = setdiff (1:3%nC, [3xdNodes-2; 3xdNodes-1; 3xdNodes-0]) ;
u = zeros(3*nC,1); b = zeros(3*nC,1);
D = sparse (2% (nC+nS), 3*nC);
for j = 1:nC
D(2%3-[1,0],3%3-[1,0]) = eye(2);
end
for j = 1:nS
t_S = (c4n(nds(3,2),:)-c4n(nds(J,1),:))"';
length_S = norm(t_S); t_S = t_S/length_S
D(2*nC+2x3j-[1,0],3*n4d4s(j,1)-2) = -3/ (2+length_S)*t_S;
D (2+nC+2+*j— [1 0]1,3*n4s(3,2)-2) = 3/(2+xlength_S)*t_S;
D(2*nC+2x3j-[1,0],3*n4s(J,1)-[1,0]) = —(3/4)*(t_S*t_S"');
D(2*nC+2x3j-[1,0],3*n4d4s(3,2)-[1,0]) = —(3/4)*(t_S*t_S"');
end
[s_pl,—,m_lumped,vol_T] = fe_matrices(c4n,nde);
s_p2 = fe_matrix_p2(c4n,nde,n4ds,sde,s_pl,vol_T);
S = sparse (2% (nC+nS), 2% (nC+ns)) ;
S(1:2:2% (nC+nS),1:2:2% (nC+ns)) = s_p2;
S(2:2:2%(nC+nsS) ,2:2:2% (nC+ns)) = s_p2;
S_dkt = D'xS*D;
b(3%(1:nC)-2) = m_lumpedxf (c4n);
u (FNodes) = S_dkt (FNodes, FNodes) \b (FNodes) ;
show_pl (c4n,nde,Db,Nb,u(l:3:3%nC))
function [n4ds,sd4e] = sides (nde)
sides = reshape(nde(:,[2,3,3,1,1,21)',2,11)"';
[nds,—, sideNrs] = unique (sort (sides,2), 'rows', "first');
s4e = reshape(sideNrs (l:3%size(nde,1)),3,[1)";
function val = f(x)
val = ones(size(x,1),1);

Fig. 8.5 MATLAB routine for the approximation of the linear Kirchhoff model with Kirchhoff
triangles

8.2.3 Reissner—Mindlin Plate

The linear Reissner—Mindlin model seeks a pair (w, 6) € Hll) (w) x Hllj (w; R?) such
that
(£©0). e(¥)) + 1720 — Vw, ¥ — Vi) = (f. 1)

forall (¥, n) € H]1) (w; R?) x Hll) (w). The corresponding strong form of the problem
reads as
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—dive@®) +1720 —Vw) =0inw, Ol =0, 8,0]y =0,
12 div(@ —Vw) =finw, wly =0, @ —Vw)-nl, =0

with yN = 0w \ yp. The problem can be simplified by employing a Helmholtz
decomposition of & — Vw. For a function p € H!(w) we write

Curl p = (Vp)* = [—dp, dip] .

Proposition 8.3 (Equivalent formulation) Assume that w is simply connected. There
exist uniquely defined functions r € Hllj(a)) and p € H' (w) with prdx = 0 and
Curl p-n|, = 0, such that =20 — Vw) = —Vr —Curl p. The functionr € Hllj(a))
satisfies

(Vr, Vi) = (f.m)

foralln e HllD (w). The pair (0, p) is uniquely defined by the equations

(e0),e(¥)) — (Curl p,y) = (Vr,¥),
0, Curl g) — t2(Cur1 p,Curl ¢) =0

forall (Y, q) € Hll)(a); R2) x H!(w) with Curl q-nlyy = 0. The functionw € Hll)(w)
satisfies
(Vw, Vv) = (0, Vv) + 12 (Vr, Vv)

forallv e Hllj(a)).

Proof Letr e Hllj (w) be the unique solution of
(Vr, Vi) = (f,m) = =126 — Vw, Vi)

forall n € Hll)(a)). Since F = t2(0 — Vw) + Vr satisfies div F = 0 in w and since
F - n|,y = 0, there exists a uniquely defined function p € H !(w) with f HLPdx =0,
Curl p-n=0onyN,and F = —Curl p, cf.,, e.g., [11]. For all n € Hll)(a)), we then
have

(Curl p, V) = / n Curl p-nds =0.

ow

The equations now follow from the weak formulation of the linear Reissner—-Mindlin
model and the identity that defines Curl p. (]

The equations derived in the proposition show that the solution of the linear
Reissner-Mindlin model can be computed by successively solving three problems.
The first and the third formulations that define r and w are Poisson problems, while
the second one defines the pair (6, p) through a saddle-point problem with a penalty
term that is qualitatively equivalent to the Stokes problem. In particular, the inf-sup



234 8 Bending Problems

condition is satisfied and the solution operator is bounded #-independently. This
implies the robust solvability of the Reissner—Mindlin model, provided that the
finite element spaces used for the approximation of (6, p) satisfy a discrete inf-
sup condition. A possible choice is the so-called mini-element, which is the lowest
order conforming polynomial element for the Stokes problem. To guarantee that a
discrete Helmholtz decomposition is available, the variables r and w then need to be
approximated in the nonconforming Crouzeix—Raviart finite element space, cf. [1]
for related details and optimal, #-independent error estimates.

8.3 Approximation of the Nonlinear Kirchhoff Model

The linear Kirchhoff model may be regarded as a simplification of the nonlinear
Kirchhoff model in the case of small displacements. We generalize in this section the
finite element method based on discrete Kirchhoff triangles for the linear model to
the nonlinear one that describes large bending deformations. The proposed method
uses techniques developed in [3].

8.3.1 Discretization

We employ the spaces Wj, and ©), introduced for the approximation of the linear
Kirchhoff model. The fact that the gradient of a function in W), is continuous at
vertices of elements allows us to impose the isometry constraint at those points. We
thus consider the minimization problem defined by

. 1
K uy) = z/|vvhuh|2dx—/f.uhdx
w w

subject to uy, € ), = {vh € W,?, [Vvh(z)]TVvh(z) = I, forall z € A7,
vi(2) = up(2), Vvi(z) = @p(z) forallz € A, Nyp}.

For the vector field u;, € W7, the approximate gradient Vj,uy, is obtained by applying
V), to each component of u;. We suppose that the boundary data up and @p are
compatible in the sense that for a function iip € H?(w; R3) with (Vip) ' Vip = I
in w, we have up = up|,,, and @p = Vip|,,,. We also assume that up and @p can
be approximated with arbitrary accuracy by nodal interpolation on yp, i.e.,

|lup — Fwinly |20, ) + [ @D — Z1 Vbl ||L2(yo) -0

(yp)

as h — 0. For analyzing convergence of the numerical scheme, we assume that there
exists a solution of the nonlinear Kirchhoff model that is smooth or which can be
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approximated by smooth isometries. This assumption is not a restriction because of
corresponding density results in [12].

Theorem 8.3 (Approximation) Assume that there exists a minimizer u € < with
o =veH ;R : (V) Vv =D, v],, = up, Vvly, = &p}

for the nonlinear Kirchhoff model which can be approximated in H*(w; R3) by
functions v € o/ N H?(w; R3). For every h > 0 there exists a minimizer uy, € W; of
I,Il(i. If (up)n=o is a sequence of minimizers, then |Vuy| < C, forall h > 0, and every
accumulation point u € H' (w; R3) of the sequence is a strong accumulation point,
belongs to H? (w; R3), satisfies (Vu)TVu = I, almost everywhere in w, u|,, = up,
and Vu|,, = ®Pp, and is a minimizer for A

Proof By Lemma 8.1 (iii) we have that || VVju;|| is a norm and this implies that / ,fi
has a minimizer. Because of the assumptions on the boundary data, it follows by
Poincaré inequality and Lemma 8.1 (i) that || Vu,, || < Cand ||VV,uy| < Cforallh >
0.Letu € H'(w;R?*) andz € H' (w: R3X2) be such that for a subsequence (which is
not relabeled), we have uj, — u in H! (w; R?) and Vju, — z in H' (w; R3*?%). With
Lemma 8.1 we verify that || Vyu, — Vuy|| < ch||VVyuy| and this yields Vu = z,
in particular u € H?(w;R3). The attainment of the boundary data follows from
continuity properties of the trace operators and the fact that

lup — Fpupll + | Vpup — I Vauyll — 0

as h — 0. A nodal interpolation estimate and an inverse estimate yield that for every
T € ,, we have

| (Vi) " Vun < 3 | D[(Vur) " Va] |,

I ” LY(T) (T)

< chi (1D unll 2y IV unll 2y + 1D w72 )

< chr (ID%upll 27 | Vitnl 2y + 1 D*un | 7o ).

A summation over all T € .7, together with the fact that Vuy, converges strongly to
Vu implies that (Vu) " Vu = I almost everywhere in w. To verify that # minimizes

1K1, we first note that by weak lower semicontinuity of the L2 norm, we have
ID?ull = [[Vz]| < Tim inf ||V V|
h—0
and
/uh~fdx—>/u‘fdx.
w w

This proves that
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M) < lim inf IR uy).

To show that the minimal energy is attained let # € .2/ be a minimizing isometry for
I8 Due to the assumed approximability of u by smooth isometries, we may assume
that # € H>(w; R?). We define ), = ﬂ;ﬁ € 7, and note with Lemma 8.1(ii) that

I Vyiin — Vll + hl|V Vit — Dl < ch® ([l 3 (o)

which implies the attainment of the minimal energy. |

8.3.2 Iterative Minimization

Our iterative scheme for the practical solution of the discretized minimization prob-
lem realizes a discrete H2-gradient flow of the energy functional with a linearization
of the nodal isometry constraint about the current iterate. For this, it is important
to realize that for the employed finite element space W), the nodal values of the
discrete deformation (u;(z) : z € A7) and its gradient (Vuy(z) : z € ;) are
mutually independent variables in the minimization problem.

Algorithm 8.1 (Discrete H>-isometry-flow) Let T > 0 and ug € W,f be such that
T
[Vi) ()] Vuhz) =D

forall z € N, and ug(z) = up(z) and th?l(z) = @&p(z) forall z € N, N yp. For
k=1,2,... define
Fnluy ™1
= {wn € Wi p : [Vwi(@]' Vi ' (@) + [V ' @1 Vwi(@) = 0fa.z € ;)

and compute u];, = uﬁ_l + td,ufl with d,u];l € ﬁh[ulg_l] satisfying
(VVideul, VVwy) + (V" dad), VVwy) = (F, wh)

forall wy € ﬁh[uﬁ_]]. Stop the iteration if ||VVhdtu§‘l|| < &stop-

The iterates (u’Z) k=o0.1,... will in general not satisfy the nodal isometry constraint
exactly, but the violation is independent of the number of iterations and controlled
by the step size t.

Theorem 8.4 (Iteration) The iterates (le,)k:o,l,... of Algorithm 8.1 are well defined
and satisfy

. T . _
B @) + S IV Vad | < IFah.
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Moreover, we have

Proof The existence of a unique dtu’h‘ € Fh[u';fl] in every step of the iteration
follows from the fact that the bilinear form (v, wy) — (VVjvi, VViwy) defines
a coercive and continuous bilinear form on ﬁh[uz_l], cf. Lemma 8.1(iv). Upon
choosing wy, = d,u]}i, we find that

1
Vs P+ |95 + SV P = (. i)
and this proves the energy decreasing property. Using ”]Z = uﬁ_l + rdtuz, we have

(Vik) Tk = (vid =Y TV 4 o (V) TV

+ 7 (VuZ_I)TVd,ulg + 12 (Vd,ulfl) TVd,ul,j.

Since dtu';l eF h[uﬁ_l], the sum of the second and third term on the right-hand side
vanishes at every z € .4, and an inductive argument, together with the assumptions
on ug, leads to

L
Vb @] Vi) = b| = 22 > [Vdu ).
k=1

A discrete norm equivalence and a local inverse inequality imply the assertion. [

8.3.3 Realization

The implementation of Algorithm 8.1 is based on the realization of the discrete
Kirchhoff triangle for the linear problem. We also employ quadrature to discretize
the forcing term which we assume to act only in the vertical direction. This implies
that only the nodal values (uh(z) 1z € J%l) and (Vuh(z) 1z € JW,) are needed for
the implementation, in particular, no evaluation of uy, in the interior of elements in
T, isrequired. If S, is the stiffness matrix related to piecewise quadratic vector fields
with six components, D realizes the operator V), : W}? — @2, and Bj_; encodes the
constraints and boundary conditions defined in the space ﬁh[ulg_l], then one step of
the discrete gradient flow leads to the linear system of equations

(1+at)D'$:D B | 1[d,U*] _ [~aDTS$2D U1 +<F
Bi_1 0 A | 0 '
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function kirchhoff_nonlinear (red)
[c4n,nde,Db,Nb] = triang_strip(10);
alpha = 1; tau = 27 (-red)/10;

for j = l:red

[cd4n,nde,Db,Nb] = red_refine(cd4n,nde,Db,Nb) ;
end
nC = size(cédn,1l);
dNodes = unique (Db); DNodes = [3%dNodes-2;3xdNodes-1;3xdNodes-01];

FNodes = setdiff (1:9%nC, [0xnC+DNodes; 3*xnC+DNodes; 6xnC+DNodes]) ;
S_dkt = fe_matrix_dkt (c4n,nde);
[—,7,m_lumped] = fe_matrices(c4n,nde);
7Z = sparse (3x*nC, 3xnC);
SSS = [S_dkt,Z,72;%2,S_dkt,Z2;2,7Z,S_dkt];
SSS_free = SSS (FNodes, FNodes) ;
u = u_moebius (c4dn);
dt_u = zeros(9xnC,1);
bbb = zeros (9*nC,1);
bbb (6*nC+(1:3:3%nC)) = m_lumped*£3(cdn);
corr = 1; eps_stop = le-2;
while corr > eps_stop;
B = sparse (3*nC, 9«nC) ;
for j = 1:nC
for k = 1:3

idx_3Jj 3% (j-1); idx_jk = (k=-1)*3*nC+3%(j-1);
B(idx_J+1,idx_jk+2) = u(idx_jk+2);
B(idx_J+2,idx_jk+3) = u(idx_jk+3);
B(idx_7J+3,idx_jk+2) = u(idx_jk+3);
B(idx_7J+3,idx_jk+3) = u(idx_jk+2);
end

end

B (DNodes, :) = [1;

72727 = sparse(size(B,1l),size(B,1));

AAA = [ (l+tauxalpha) *SSS_free,B(:,FNodes) ';B(:,FNodes), ZZ2%Z];

rhs = —-alpha*SSS*xu+bbb;

ddd = [rhs (FNodes) ;zeros(size(B,1),1)];

xxx = AAA\ddd;

dt_u (FNodes) = xxx(l:size(SSS_free,1));

corr = sqgrt(dt_u'xSSSxdt_u)

u = uttauxdt_u; show_pl_para(cd4n,nde,u);
end

function val = f3(x)

val Oxones (size(x,1),1);

function u = u_moebius (x)

L = max(x(:,1)); nX = size(x,1); u = zeros(9+«nX,1);
u(0*nX+(1:3:3%*nX)) = sin(2xpixx(:,1)/L);

u(3*nX+(1:3:3*nX)) = x(:,2)+(1-2*x(:,2)) .*sin(pi*x(:,1)/(2*L));
u(6xnX+(1:3:3%xnX)) = sin(pi*x(:,1)/L);

U(0*xnX+(2:3:3xnX)) = ones (nX,1);

u(3*nX+(3:3:3%nX)) = ones(nX,1)-2*(x(:,1)>L/2).*xones (nX,1);

Fig. 8.6 Approximation of the nonlinear Kirchhoff model with discrete Kirchhoff triangles
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The matrix D' $,D is generated as in the case of the linear model and provided
by the routine dkt_matrix.m. The initial deformation is assumed to satisfy the
boundary conditions which may be inhomogeneous. We refer to the implementation
displayed in Fig. 8.6 for details.

8.4 Willmore Flow

We discuss in this section numerical methods for approximating the Willmore flow.
This is the L2-gradient flow of the Willmore energy which is defined on closed sur-
faces in R3. To compute the evolution equation, we review concepts from differential
geometry to differentiate quantities on surfaces and to measure variations of surfaces.
The reader is referred to the textbooks [13, 14] for further details. The numerical
schemes are based on results in [2, 8, 9].

8.4.1 Tangential Differentiation and Curvature

Let.# C R3 be a surface, i.e., an orientable two-dimensional C2-submanifold .7 in
R3, with continuous unit normal n : .# — R3. For scalar functions f : .# — R and
vector fields F : .4 — R3 on . that admit continuously differentiable extensions
FrUH)—> Rand F : % (#) — R3 to an open neighborhood of .#, we define
the tangential gradient and the tangential divergence by

Vuf =Vf—n-VPn, divyF = divF —n'DFn.
The operators satisfy the product rule

divy(fF)=Vyf -F+f divyF.

The tangential gradient V , F of a vector field F is the matrix whose i-th row coincides
with the transpose of the tangential gradient of the i-th component of F'. The Laplace—
Beltrami operator is defined as

A yf = divy Nyf.

For a local parametrization u : @ — R3 of ., the tangent vectors deu, £ = 1,2,
are linearly independent and define a unit normal b = £0iu x du/|d1u x du|,
cf. Fig. 8.7. We assume in the following that the sign is chosen so that b = nou. The
first fundamental form is the matrix g with entries

8ij = 8iu . Bju.
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1

Fig. 8.7 Local parametrization of a surface by a mapping u : @ — R?; the partial derivatives 9;u
and d,u of u define a basis of the tangent space for every point on the image of u; their normalized
cross product defines a unit normal b to the surface

It defines a metric on the tangent space of .Z, e.g., the length of a tangent vector
101U + apdu is given by the square root of « - (gar). The matrix g is symmetric

and positive definite everywhere in w; and we let g=! = (g¥) be its inverse and

g 1?2 = (gl(jfl/ %) the symmetric and positive definite square root of g~!.

Proposition 8.4 (Differential operators on .#') We have

2 2

(Vyf)ou= Z §70;(f o w)du, (divy F)ou= Z §79;(F ou) - dyu.
ij=1 ij=1

IfF = 21'2:1 F;0;u is tangential or F = N 4 f, then

2
(divy F)ou= (detg)™"/* > 8i(Fi o u(det g)'/?),

i=1

2
(Aaf) ou=(detg)™"/> > d;((detg)'g"d;(f o w).
ij=1

In particular, the operators are independent of the extensions.

Proof We occasionally omit the composition with u, e.g., we write V 4 f for (V 4 f)ou.
For k = 1, 2 we have

(Vuf) - = Vf - gu = 8 (f o u) = 3 (f o u)

and (Vf) - n = 0. Since

2 2 2
( Z g79;(f o u)aiu) RS Z 8 gikdj(f ou) = Z&/k(‘?j(f ou) = d(f ou)

ij=1 i,j=1 Jj=1

and since the sum on the right-hand side of the first asserted identity is orthogonal

to n, we deduce the formula for V ,f. With V; = ZJ‘2=1 g;_l/z)a/u fori =1, 2, the

vectors (Vy, Va, b) define an orthonormal basis in R3,ie.,



8.4 Willmore Flow 241
2 2
—1/2) (~1/2 —1/2) (=172
Vi-Vie= Z g;, / )g,((@ / )3]'14'3@% = Z g,gj / )g](cg / )gjz = ik
Jit=1 J.=1
and V; - b =0 for i = 1, 2. With this we have
2
div F =tr DF = »_ V,' DFV; + b DFb,
i=1

and hence by definition of div

2 2
divyF= >, g,?j‘”z)gﬁ,:”z)(aju)TDFaku = > Jy(Fou) - du

ij, k=1 Jk=1

which is the second identity. Assume now that F is tangential so that F o u =
Ziz=1 F;0;u with uniquely defined functions F; : @ — R. It then follows that

2
divy F= )" ¢(3Fieu+ Fidjdeu) - dju
ij.k=1
2
= Z 87 (3jFxgik + Fr0;0ku - 0ju)
ijk=1
2 2
=2 (8Fe+ D 8" Fi(@dju - o).
k=1 ij=1

Since g~! is symmetric, g~! = (detg)~!det’g, and 28;(det g)!/? = (det g)~1/?
det’g : 9rg, we have for k = 1, 2 that

2 2

- 1 - B
D T @y b = 5 > & thgiy = (det )™ op(detg)' /2.
ij=1 i,j=1

The combination of the last two equations shows that

2

divy F = Z (9Fx + Fi(det 9)~"23(det g)'/?),
k=1

which is the asserted identity. The identity for the Laplace—Beltrami operator now
follows from the characterization of V 4. (I
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Example 8.1 For the parametrization u(0, ¢) = r(sin 6 sin ¢, sin 0 cos ¢, cos §) of
the sphere S, C R3 with radius r > 0, we have detg(0, ¢) = r*sin? 0 and Ag,f =
(r? sin0) 1[99 (sin 03pf) + (sin@)_la(%f].

Remark 8.5 The representation F = Zizzl(Vi, F)V;, = Zijzl gi(F - d;u)dju of a
tangential vector field F with the orthonormal vectors (Vi, V») constructed in the
proof of Proposition 8.4 yields the Weingarten equation oyb = — le =1 g’jhkiaju
with the coefficients Ay, of the second fundamental form defined below.

To define a measure of curvature, we let ¢ : (—¢, &) — .# be a C% curve in .4
with |¢’(1)| = 1 for all € (—¢, ¢) and consider the quantity k = ¢” - (n o ¢). Since
¢ - (noc) =0 wehave

k=—c-(noc)y =—=c"-(Vync).

We call V 4 n the shape operator which is closely related to the second fundamental
form defined through the symmetric matrix

hl‘j = —8,»19 . aju =b- 8,'8]'14.
The mapping induced by V ,n is also called the Weingarten map.

Proposition 8.5 (Shape operator) The matrix V yn is symmetric and defines a self-
adjoint linear operator on the tangent space of # into itself and is in the basis
(81u, dru) given by the generally nonsymmetric matrix s = —hg~\.

Proof Fori =1,2,3 we have (Vn;) - n = 0 and hence (V n)n = 0. The identity
|n|?> = 1 implies that n' (Vyn) = 0. Therefore, V n defines an endomorphism
on the tangent space of .#; and for i = 1,2 there exist s;;, j = 1,2, such that

(Vym)diu = zji] 83705, ie.,

2
> sigju - deu = (Vgndu) - du = ;(n o u) - deu = b - Yu = —hig
j=1

and hence with dju - du = gjx we deduce sg = —h. The identity also implies the
symmetry of V /n. (]

The principal curvatures of .# are the eigenvalues of the self-adjoint symmetric
operator V 4 n restricted to the tangent space of .# and are denoted by «1 and k2. The
eigenvectors corresponding to x1 and k» are called directions of principal curvature.
The possibly nonsymmetric matrix s has the eigenvalues «1 and «, and the mean and
Gauss curvature are defined as

H=trs =« +k3, K =dets=«ik2,
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Fig. 8.8 Ellipsoidal surface with k1 < 0, k2 < 0 (left), hyperbolic surface with k1 < 0, k2 > 0
(middle), and parabolic surface with k; = 0, k3 > 0 (right) relative to the unit normal n = e3

respectively. We have that |V///n|2 =sl:5= tr(sz) = K12 +/(22 = (tr s)2 —2dets =
H? — 2K. We also note the identities H = —h : g~! = tr(—hg™1).

Remark 8.6 The sign of H depends on the choice of the unit normal, whereas K
is independent of the sign of +n. The definition implies «1, k3 > 0 if .Z is locally
convex with respect to the chosen unit normal. The mean curvature H is often defined
as (1/2)trs = (k1 + x2)/2.

Typical local shapes of two-dimensional surfaces are given in the following
example and are shown in Fig. 8.8.

Example 8.2 Consider a local parametrization of a surface that is given by the graph
of the function f : w — R, i.e., u(x) = (x,f(x)). Also assume that 0 € » with
Vf(0) = 0.Noting dju = ¢;fori =1,2,andb =e3,¢g =1, and h = b-0;0ju = sz,
we find that s = —hg™! = —D?*f atx = 0.

Proposition 8.6 (Mean curvature) We have
divyn=H, —A_yid , = Hn,

where id_y : # — R3 denotes the identity on M, i.e.,id_y(p) = p forallp € #
and Ay is applied to every component of id .

Proof With the characterization of div, of Proposition 8.4, we have

m 2
divyn= Y glojnou - du=—")" glhj=—whg™") =trs.
ij=1 ij=1
We have Vsid 4 =1 —nn" and thus —A 4id’ , = div,,(n'n) = n'H. O

We have the following generalized integration-by-parts formula.

Proposition 8.7 (Integration-by-parts) For a vector field F : .# — R3 and a
compactly supported function ¢ : M — R, we have

/V//ﬂp-Fds:—/(p diV///FdS—F/H(F'n)QDdS'
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Proof We assume that ¢ belongs to a coordinate chart parametrized by u and consider
the vector field G = ¢ F on .. We set G = G+ Gpor With Gyor = ynfory = G-n.
Then Gy = Ziz:l G;d;u and Proposition 8.4 and an integration-by-parts in R? yield

2
/ divyy Guands = ) | / 0(Gi(det )'/?) dx
M =l

:/ div ((detg)'/?[G1, G11) dx = 0.

w
The product rule and (V y) - n = 0 show that
/ divy Gpor ds = /y divy nds = /des = /(G-n)Hds.

The combination of the identities and an application of the product rule prove the
asserted formula. ]

Remark 8.7 1f ¢ does not vanish on the boundary of .#, then the boundary term
fa _y ©F - udt with the conormal i = T x n, where 7 is the tangent on dw, has to
be included on the right-hand side.

8.4.2 Normal Variations

For a surface .# C R3 with unit normal  and a function ¢ . M — R, we consider
for —e < t < ¢ the normal variations of .# defined by

My ={qeR :q=p+tepnp), p e M),

cf. Fig.8.9. Then .#y = .# and for sufficiently small ¢ > 0, the sets .#; are surfaces
inR3. Ifu: w— R3isalocal parametrization of .#, then

Uy =u—+t(pou)(nou)

Fig. 8.9 Normal variation of n
a surface defined by a scalar

function ¢ My = M +1dn—



8.4 Willmore Flow 245

is a local parametrization of .#;. For a function f; : .#; — R we denote f = f and
define

of (p) = lim =" (fi(p) = fo())

for p € .. The proposition below studies the changes of geometric quantities on
the surfaces .#; and employs Gauss’ equation and an equivalent characterization of
the Laplace—Beltrami operator stated in the following lemma.

Lemma 8.2 (Christoffel symbols) With the Christoffel symbols of the first kind
Ijm = 0;0ju - Ou and of the second kind Flf = zgz:l gk’” Ij.m» we have Gauss’
equation and a representation of the Laplace—Beltrami operator, i.e.,

2 2 2
didu=> [iowu+hyh, Ay = Zgif(aiaj¢ -3 F;akqs).
k=1 ij k=1

Proof We have 0;0;ju - n = h;; and hence there exist oef‘j with

2 2

k k
3,‘8]‘1/1 . agu = Zaijﬁku . 3[u = Zaijgk@,
k=1 k=1

ie., aZ.’ = Z%:l g™ (3; dju) - dgu. This implies the representation of d;0;u. According
to Proposition 8.4 we have

2
Agd= D &0;(g" dmpdeu) - du
ij.e,m=1
2
= > &[0 dmpdeu + ¢ (0;00$)dert + O (9000)] - i
ij.e,m=1
2
= Z 8/[9;8"" dmpgei + " (30mP)gei + & I Tje.i].
ij.e,m=1

Usin% 0=0 37 (& 8m) = (38" grm + &7 gm), we find that 3;g"" =
— an:l gha,-grkgkm and noting 9;gx = ljrx + Lk, r, 1€,
2
angm = - Z gﬂr(Fjr,k + I}k,r)gkm,
r.k=1

shows that A _, ¢ equals
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2 2
> = D & Wk + D)8 dmdbgei + 8 B0md)gei + 8 dmd Te ]

i lm=1 rk=1

2 2

=>4~ Z( ik + T8 ame + 800 + > " om e 1]

i,j=1 k,m=1 £,m=1
2

Z [9;9;¢ — Z & Iy kdm]-
Jj=1 k,m=1

This implies the asserted formula for A_,¢. (I

A consequence of this is Gauss’ theorema egregium which is stated below for
isometric parametrizations, cf. Proposition 8.2.

Lemma 8.3 (Gauss curvature for isometries) Assume that I'j; = 0;0;u - du = 0
foralll <i,j,k <2 ThenK = 0.

Proof Using az(afu) = 01(0102u) and the identities 9;0;u = h;;b, Lemma 8.2 shows
that
0 = 02(h11D) — 91 (h12b) = (0211 — 01h12)b + h1102n — h1201n.

The Weingarten equations dyb = — 212 =1 g’jhkiéﬂju, cf. Remark 8.5, imply that for
the tangential part of the identity, we have

2 2 2
0=—hi > g'hyidju+hiz D~ ghiidju = — D ¥ (hiihy — hiohi)dju.

ij=1 ij=1 ij=1

The contributions to the sum vanish for i = 1 and hence
2
0= —(deth) > g¥dju.
j=1

Since dju and d,u are linearly independent, this impliesdeth = 0and K =0. [

Proposition 8.8 (Normal variations of geometric quantities) For 1 < i,j < 2 we
have

2
Sy = —20hy, Sg;' =20 D ¢Fhug, S(detg)'* = pH(detg)'?
k=1

and
Sn=—Vyp, SH=—A40¢— s
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Proof We identify ¢ with the function ¢ o u and write b = n o u. We also omit the
dependence on ¢ in the following. Noting 9;b - b = 0, we have

gl = ity - djuy = gij + 1 (u - b + u - ) + 1*ipdjp + 1>¢> b - ;b

which implies 8g;; = —2¢h;;. With g~'g = I, we find that g~! = —g~1(3g)g™!
and hence

2 2
85¢7 == > ¢*(6grg" =2¢ > " hieg.
k,t=1 k=1

1 1

The relations (det g)~'det’g = g~ ' and g=! : h = —H imply

1 1
S(detg)!/? = 5(detg)—l/z(det/g) 1 8g = E(detg)l/zg_] - 8g

= —¢(detg)?g7 . h = ¢(det g)'/*H.
Using b - 9;u = 0, we deduce b - d;ju + b - §d;u = 0 and with §d;u = ¢9;b + (3;)b
and b - 9;b = 0, it follows that b - dju = —9d;¢. Since 0 = 8|b|2 = 26b - b, we have

that there exist o1, oy with b = 10 u + a2 9ou. Noting
2

> it du = 8b - du = —p

i=1
we find that o; = — 37 ¢3¢ which implies

2 ..
5b=— > glopou,
ij=1

and this expression coincides with —V 4 ¢. It remains to compute §H. For this we
first compute 84;;. Noting

80;0ju = (0;0;9)b + 8;¢9;b + 0;9;b + ¢9;9;b,
and using b - 9;0;b = —0;b - 9;b, we have
b - (80;0ju) = 0;0;¢p — ¢9;b - d;b.
The Weingarten equation dib = 212 =1 g’jhkiaju leads to
2 2

0ib - 9jb = Z gemhizg”hjramu S Ogu = Z 8" hishy;.

C,m,r,s=1 r,s=1
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The formula for §» and Gauss’ equation show that

2 2 2
8b- (@idju) = —( D & 0uporu) - (D I} 0mu) = = D I} oep.
m=1 =1

k.t=1

‘We thus have

2 2
Shij = (8b) - didju + b - (80;0u) = — > I[}jdee + idjp — ¢ > & hiohyg
=1 k=1

and

2 2 2 2
> glshy = & (a0 — DI 3e¢) —¢ > &g hihy
(=1

ij=1 ij=1 ijke=1
2
=Ay9—ols|”

For the mean curvature we find that

2
SH =—8 Y g'hy
ij=1
=— > (6ghy + g¥(hy)

ij=1

2
=20 > g*hughj— A g+ ols)®
ij.k =1

= —291s* — As¢ + $Isl.
This proves the proposition. ([

We finally derive variations for functionals measuring the surface area and the
enclosed volume by a surface. The variation of a functional ¢ defined on C2-surfaces
is the limit

89 (M) p) = lim 1= (9 (M) — G (M)

for a surface . that is perturbed in the normal direction with a function ¢ as above.

Proposition 8.9 (Variations of area and volume functional) For .# = 052 define

d(//l):/lds, “V(///):/ldf:%/&nds.
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We have

1
8.0 (M)[P] :/H¢ds, SV (M)p] = 5/(1+H)q>ds.
M M

Proof The first identity is a direct consequence of Proposition 8.8. The second iden-
tity follows fromid_y, - n = t¢. O

8.4.3 Variation of the Willmore Functional

The normal variations of geometric quantities allow us to characterize stationary
surfaces for the Willmore functional and to define related evolution problems. For a
closed surface .# C IR3, the bending energy is given by the Willmore functional

1
W(AH) = 3 / H? ds.
M
The following theorem characterizes critical points of the functional.

Theorem 8.5 (Euler—Lagrange equations) For a normal variation of # defined by
a function ¢ : M — R, we have

1
SW(A)|9] = /(—A///HM) — [VanI*H¢ + 5H3<b ds,
M

where |V yn|> = H> — 2K.

Proof We assume that ¢ is supported in a coordinate chart. We then have

1 1
8§/H2ds= E5/Hz(detg)l/zdx
/A w

1
= /H(SH)(detg)l/z + §H25(detg)1/2dx
1
= / H(=A_y¢ — pls|*)(det 9)'/? + 5¢H3(detg>”2dx

= /H(—A//ﬂﬁ) — ¢H|s|> + %¢H3 ds.
M

Noting |s|> = |Vn|> = H?> — 2K and integrating-by-parts proves the theorem. [
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Definition 8.7 For a family of surfaces (.#}):c[0,7] and a family of points on the
surfaces given by a differentiable function ¢ : [0, T] — R3 with ¢(r) € ., for all
t € [0, T] we define the normal velocity of .#; at gy = c(tp) by

V (g0, t0) = ¢'(to) - n(qo).

We let
(@. V)., =/¢1ﬁds
M

denote the L? inner product on .#;.

Definition 8.8 (i) A family of surfaces (.#;);c[0, 17 evolves according to the Willmore
flow if
V), d) ., = =W (A $]

forallt € [0, T] and all ¢ € C®°(.4;).
(ii) A family of surfaces (.#;):c[0,1] evolves according to the Helfrich flow if there
exist A, i : [0, T] — R such that

VD), )., = =W (AD[P] + 1L (0)0A (M) 9] + n(@)8V (A1) 9]

forall t € [0,T] and all ¢ € C*(.#;) and the mappings ¢ — 7 (#;) and t +—>
V' (M) are constant.

Remark 8.8 The existence of solutions for the Willmore and Helfrich flow is only
understood in special situations, e.g., when the initial surface .# is a small pertur-
bation of a sphere.

8.4.4 Discretization of the Laplace—Beltrami Operator

For a surface .#/ C R3, let .4, be an approximate surface that is the union of
flat triangles in the triangulation .7}, with vertices .4, C R3, cf. Fig.8.10. The
elementwise constant unit normal n, on .#), defines the tangential gradient of a
function v, € .71(%,) via

Fig. 8.10 Triangulated
surface (left) and
construction of an auxiliary
tetrahedron with the
auxiliary node

Zr = xr + |T|"2nr (right)
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Va,vh = PyVv, = (1 —n, ® nh)V’f;h,

where v, is an arbitrary extension of v, to R3, e.g., by introducing for each triangle
T € Jj the auxiliary nodeZy = x7+|T|"/?ny|7, cf. Fig. 8.10, and setting v, Z) = 0.
The Laplace—Beltrami operator on a surface .# leads to a Poisson problem on .Z
of the form

—A yu=fon.#, u=uponypy, Vi Wy = g on yN i,

where p, is the conormal on I'n , C d.#4. A discrete approximation seeks uj, €
V() such that up|yy, , = up s

/ Vo, un - Ny, vhds = /fvh ds + / gnvp dt
My, M, YN,h

for all v, € #1(.},) with Vilyp, = 0.1f yp p = 0, then the condition f///, upds =0
is imposed. The MATLAB code displayed in Fig. 8.11 realizes the numerical scheme
for the Laplace—Beltrami operator.

8.4.5 A Numerical Scheme for the Willmore Flow

We recall that the Willmore flow for a given initial surface .# C R> seeks a family
of surfaces (.#});e[0,77 that solve the equation

1
V= AgH+HN g = SH,

where V is the normal velocity of (.#;):e[0. 7], 7 @ unit normal on .#;, and H the mean
curvature of .#;. For the position vector X : .#, — R> on.#,wehave V = (8,X)-n
and Hn = —A_4id_, . To discretize the evolution equation we consider a time step
tr € [0, T] and assume that we are given a triangulation ﬂhk that defines the closed

polyhedral surface ////f with unit normal nﬁ e £°(7,)%. We also suppose that

ﬁ];l e 7! (Zlk)3 and H ,’; e ! (ﬂhk) approximate the unit normal n and the mean

curvature of a smooth approximation of ///é‘ To define the new surface ./, ,’f 1 we
compute a mapping
X}frl : ///,f - R3
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function laplace_beltrami (red)

[c4n,nde,Db,Nb] = triang_torus(.5,1,red);

nE = size(nde,l); nC = size(c4dn,1);

nNb = size(Nb,1); nDb = size (Db,1);

dNodes = unique (Db); fNodes = setdiff (1:nC,dNodes) ;
max_ctr = 9xnE; ctr = 0;

I = zeros(max_ctr,1l); J = zeros(max_ctr,1);
X_s = zeros (max_ctr,1);
b = zeros(nC,1); c = zeros(nC,1); u = zeros(nC,1);
for j = 1:nE
n_T = cross(c4n(nde(j,2),:)-c4n(nde(3,1),:),
cd4n(nde (j,3),:)-c4n(nde(3,2),:));
area_T = norm(n_T)/2;
n_T = n_T/norm(n_T);
mp_T = sum(c4n(nde(j,:),:))/3;
aux_tetra = [cd4n(nde(j,:),:);mp_T+sqrt (area_T)+*n_T];
grads3_T = [1,1,1,1;aux_tetra']\[0,0,0;eye(3)];
P.T = eye(3)-n_T'«n_T;
for k = 1:3
b(nde(j,k)) = b(nde(j,k))+(1/3)xarea_T+f (mp_T);
c(nde(j,k)) = c(nde(j,k))+(1/3)~*area_T;
for ell = 1:3
ctr = ctr+l;
I(ctr) = nde(j,k); J(ctr) = nde(j,ell);
X_s(ctr) = area_T* (P_Txgrads3_T(k,:)")"
* (P_T+grads3_T(ell,:)");
end
end
end
s = sparse(I,J,X_s,nC,nC);
for j = 1:nNb
length_E = norm(c4n(Nb(j,1),:)-c4n(Nb(j,2),:));
mp_E = (c4n(Nb(j,1),:)-c4n(Nb(j,2),:))/2;
b(Nb(j,1)) = b(Nb(j,1))+(1/2)+length_E*g(mp_E);
b(Nb(j,2)) = b(Nb(j,2))+(1/2)+xlength_E*g(mp_E);
end
if isempty (dNodes)
s = [s,c;c',0]; b = [b;0];
else
for j = 1:nDb
u (dNodes (j)) = u_D(c4n(dNodes (j),:));
end
b = b-sx*u;
end
u (fNodes) = s (fNodes, fNodes) \b (fNodes) ;

show_pl_surf (c4n,nde,u);

function val = £ (X); val = X
function val u_D(X); val =
function val = g(X); val = 0

(2);

2
0;

’

Fig. 8.11 MATLAB routine for the approximation of the Poisson problem on a surface
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Fig. 8.12 Deformation

Xp ok — R ofa béas .
surface ///;f that defines the %l,f - > My
new surface .#, ilf +l

that defines ///}:‘H = X,]fH (///}f‘), cf. Fig.8.12. A function or vector field on ///}f‘ is
identified with a function on ./, }{‘H via the parametrization X ,]:H. The vector field

X}11<+1 €. (ﬂh")3 is obtained by the following semi-implicit discretization of the
Willmore flow from [2].

Algorithm 8.2 (Discrete Willmore flow) For a discrete surface M, ,? , functions ﬁg €
5”1(90)3 and H;(l) = do div///oﬁ?l and a step size T > 0, compute the sequence

(///hk)k —0...K Via ///k'H = Xk'H(///k) where XIH'1 e 7! (ﬂk)3 and Hk"’1 €
Yl(%]]‘) solve

Ukt ~ k1 k
—O T =i i)+ (VY g (|Hk|2H L)
= (Hy IV k7 v)

(38 i)~ (VX ¥ ) = 0

for all v, € 5”1(,71‘) and Y, € 7! (91‘)3 and set nk+] d“l k“ . Stop the

iteration if [V llni < esop for Vi = (G —id 0 /7 andvk+1 vhk+1 ik

The averaging operator 427,1" Lt (///,’f) - 71 (Zlk) is defined through

L > AT ed= DT,
|

|,
TeJk, zeT TeJk, zeT

Afv(z) =

and the inner product (-, -)¢ p is forv,w € C (////f) defined by

v, Wikn = / S yw] dx.
A

Remark 8.9 The precise stability and convergence properties of Algorithm 8.2 are
not known. The algorithm has an equidistribution property in the sense that it equidis-
tributes the nodes of the discrete surface which avoids mesh irregularities. Details
are discussed in [2].
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According to Proposition 8.9 it suffices to impose that

/Vds:/VHds:O
M M

to guarantee that the surface area and the enclosed volume are preserved. This leads
to an identity for the associated Lagrange multipliers in the evolution equation, i.e.,

1
V =AH+H|Vyn|*— EH3 +AH + .

Testing the equation with a constant function and with H — H, where H is the integral
mean of H, leads to

1

1
=— | —H|Vyn|*+ -H> — AH ds,
" |///|/ [V nl 3
V4

[y (=HINgn?+ 03 H - H) + |V yHP ds

b= [/ (H — )2 ds

To incorporate the constraints in Algorithm 8.2, the term AH is discretized implic-
itly if A > 0 and explicitly otherwise. The MATLAB implementation displayed in
Fig.8.14 requires the bilinear forms

@5 okn (Voo Vo,  (Vel, Ve,
N o/ A R TR (L A R ST

for pairs of nodes z,y € Jijlk and associated scalar nodal basis functions ¢, ¢y €
S1(F5,)F and vectorial nodal basis functions gof = ¢ze¢ and @' = ¢yen, with
the canonical basis vectors eg, e,, € R3. The representing matrices are encoded
in the arrays m, s, S, M_n, m_w provided by the routine shown in Fig.8.13
while the last one is directly computed and stored in the array m_H. The routine
willmore_matrices.malso computes an approximation of the mean curvature
through HX = %k (div //4( ﬁ’;l).
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function [m,s,S,M_n,m_w,H] = willmore_matrices (c4n,nde,w)
nC = size(cd4n,1l); nE = size(nde,1);

max_ctr = 9%nE; ctr = 0;

I = zeros(max_ctr,1l); J = zeros (max_ctr,1);

X_s = zeros (max_ctr,1);

diag_m = zeros(nC,1);

diag_m w = zeros(nC,1);

diag_M n = zeros(nC,3);
tr_nabla_w = zeros(nC,1);
for j = 1:nE

n_T = cross(c4n(nde(j,2),:)-c4n(nde(3,1),:),
c4n(nde (j,3),:)-cd4n(nde(3,2),:));
area_T = norm(n_T)/2;
n_T = n_T/norm(n_T);
mp_T = sum(c4n(nde(j,:),:))/3;
tmp_tetra = [cd4n(nde(]j,:),:);mp_T+sgrt (area_T)*n_T];
grads3_T [1,1,1,1;tmp_tetra']\[0,0,0;eye(3)];

P_.T = eye(3)-n_T'sxn_T;

P_Dphi_T grads3_T(1:3,:)xP_T;
nabla_ T w = w(nde(j,:),:)'«P_Dphi_T;
tr_nabla_w(j) = trace(nabla_T_w);

W_sg = sum(sum(nabla_T _w."2));
for k = 1:3

diag_m(nde(j,k)) = diag_m(nde(]j,k))+area_T/3;
diag_m_w(nde(j,k)) = diag_m_w(nde(j, k))+area_T*W_sq/3;
diag_M n(nde(j,k),:) = diag_M n(nde(j,k),:)

+(area_T/3)*n_T;
for ell = 1:3
ctr = ctr+l;

I(ctr) = nde(j,k); J(ctr) = nde(j,ell);
X_s(ctr) = area_T
* (P_T*grads3_T(k,:)") "« (P_T+xgrads3_T (ell,:)");
end
end

end
m = spdiags(diag_m,0,nC,nC); m_w = spdiags(diag_m_w,0,nC,nC);
IT = [3xI-2;3xI-1;3%I]; JJ = [3%J-2;3xJ-1;3xJ];
s = sparse(I,J,X_s); S = sparse(II,JJ,repmat (X_s,3,1));
I = [1:3:3*nC,2:3:3%*nC,3:3:3xnC]"'; J = [1l:nC,1:nC,1:nC]";
M_n = sparse(I,J,diag_M n(:));
H = average_qgquant_surf (c4n,nde,tr_nabla_w);

Fig. 8.13 Matrices required in the implementation of the Willmore and the Helfrich flow
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function willmore_helfrich_flow(red)

[nde, c4d4n,—~,~] = triang_sphere (red);

cdn(:,3) = .4%cd4n(:,3);

tau = 27 (-red) /200;

nC = size(c4dn,1);

w = averaged_normal (c4n,nde);

[-,—,—,—,7,H] = willmore_matrices (c4n,nde,w);

X = reshape (c4n',3%nC,1);
corr = 1; eps_stop = le-1;
while corr > eps_stop
w = averaged_normal (c4n, nde);
[m,s,S,M n,m_w,~] = willmore_matrices (cdn,nde,w);
m_H = spdiags(diag(m).+H."2,0,nC,nC);
[lambda,mu] = helfrich_constraints(c4n,H,s,m,m_w,m_H);
A = [M_n',taux (s+m_H/2-max (lambda, 0) *m);-S,M_n];
b [tau*m_w+H+M_n'*xX+taux (muxmxones (nC, 1)
+min (lambda, 0) xm*H) ; zeros (3«nC, 1) ];

xx = A\b;

V = (xx(1:3xnC)-X) /tau;

v = sum(reshape(V',3,nC)"'.*w,2);
corr = sqgrt (v'xmxv)

H = xx(3*nC+(1:nC)); X = X+tauxV; cdn = reshape(X',3,nC)"';
show_pl_surf (c4n,nde, H);

end
function [lambda,mu] = helfrich_constraints (c4n,H,s,m, m_w,m_H)
nC = size(cd4n,1); I = ones(nC,1);
mean_H = I'+«mxH/ (I'*m«*1I);
g = (H-mean_H) '+xmx (H-mean_H) ;
lambda = 0;
if g >0
lambda = (-H'xm_wxH+H'xm_H/2+H
—(-H"'"xm_w*I+H"+«m_H/2xI)+mean_H+H'xs«*H) /q;
end
mu = (-H'*xm_wxI+I"+m_H/2+H-lambdaxI'*mxH)/ (I"'+«mxI);
function w = averaged_normal (c4n,nde)
nC = size(cdn,1l); nE = size(nde,1);
n = zeros(nk,3); w = zeros (nC,3);
for j = 1l:nE
n_T = cross(c4n(nde(j,2),:)-c4n(nde(3,1),:),
cd4n(nde(j,3),:)-c4n(nde(3,2),:));
n(j,:) = n_T/norm(n_T);
end
for k = 1:3
w(:,k) = average_quant_surf (cd4n,nde,n(:,k));
end
norm_w = sqrt (sum(w." 2,2));
w = w./ (norm_wx*ones (1,3));

Fig. 8.14 Numerical approximation of the Willmore and the Helfrich flow
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Chapter 9
Nonconvexity and Microstructure

9.1 Analytical Properties

We discuss in this section features of minimization problems for energy functionals

of the form
I(u):/W(Vu)dx—/f.udx_/g,uds
2 2

I'n

with a continuous but nonconvex energy density W : R”*¢ — R that is assumed
to be nonnegative and to satisfy a p-growth condition for some p > 1. Although the

functional 7 is coercive and bounded from below, the direct method in the calculus
of variations cannot be applied due to the lack of weak lower semicontinuity of /
for which convexity or quasiconvexity is required. In fact, infimizing sequences that
are bounded exist but the energy functional may have no minimizers. Two natural
questions arise:

e Do the weak limits of infimizing sequences solve a well-posed modified problem
and can these be approximated numerically?

e Do the infimizing sequences contain information that explain the failure of weak
lower semicontinuity and are these accessible?

It turns out that the weak limits of infimizing sequences are exactly the minimizers
of the functional 79¢ that is obtained from I by replacing W by its quasiconvex
envelope. Since [ is strongly continuous, the failure of weak lower semicontinuity is
precisely related to the occurrence of oscillations that prohibit strong convergence.
These oscillations are physically meaningful and of importance in applications. They
can be efficiently described in a statistical sense with the help of measure-valued
mappings. The ill-posed minimization of / may result from neglecting a higher order
term in a well-posed minimization problem, e.g., in

Ig(u):§||D2u||2+/W(Vu)dx—/f~udx—/g-uds
2 2 2
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262 9 Nonconvexity and Microstructure

with a small parameter ¢ > 0. The motivation for this is that the scale introduced
by ¢ is too small to be resolved by numerical solution methods. Due to the noncon-
vexity of W, the gradient Vu oscillates between different values, describing certain
microstructures. The quadratic term involving the Hessian of u controls the frequency
of these oscillations. When this term is neglected the oscillations become arbitrarily
fast leading to infimizing sequences that are not strongly convergent. We discuss
these effects in simplified model situations and refer the reader to the textbooks
[8, 15], the survey articles [13, 14], and the seminal paper [2] for further details.

9.1.1 A Scalar Model Problem

Most of the problems related to nonconvex energy minimization become apparent
for scalar and even one-dimensional problems. For £2 ¢ R? we first consider the
functional

I(u) =/W(Vu)dx
2

with the energy density W : RY — R defined for F € R¢ by
1
WF) = (F? =17,
the set of admissible functions
o ={ue W) ulp, = up)

for a possibly empty set I C 952, and a function up = up|;, for some up €
W-4(£2). We note that the convex hull W** of W is for F € R? given by

W(F) for |F|>1,

0 for |F| < 1.

The convex hull W** is the largest convex function below W and is obtained by
computing twice the Fenchel conjugate of W, cf. Fig.9.1.

W / \W\
} | —+ ; |

Fig. 9.1 Function W(F) = (|F|*> — 1)2/4 and its convex hull W**(F) that coincides with W for
|F| > 1 and vanishes otherwise
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The following proposition discusses the existence of solutions and infimizing
sequences for affine boundary conditions. These play a special role in the relaxation
of nonconvex minimization problems.

Proposition 9.1 (Affine boundary conditions) For I'y = 952 and the affine boundary
condition ip(x) = F - x, for F € R and x € $2, the functional I has the unique
minimizer u = up € < satisfying I(w) = |QIW**(F) = |QIW(F) if |[F| > 1. If
|F| < 1, we haveinf ey [(u) = |2|W**(F) < |2|W (F) and there exists a bounded
infimizing sequence (uj)jeny C &/ N W1 (2) with luj — upllzee(2y — O.

Proof The proof follows from the observation that W is convex only in R? \ B;(0)
in the sense that
DW(F) - (G—-F)+ W) < W(G)

holds for all G € R? if and only if [F| = 1. If |F| > 1, then due to the above
inequality the function u(x) = F - x satisfies for every v € &7

/W(Vu) dx < / W (Vv)dx +/DW(Vu) -V(u—v)dx.
Q Q

2

Since Vu = F is constant and (u — V)]ag = 0, we have

/DW(VM) -V(u—v)dx =0.
Q

Therefore, u is a minimizer with I(u) = |Q|W(F) = |Q|W**(F). If |[F| < 1,

we claim that there exists a sequence (uj)jen C &/ such that I(yj)) — 0 as

J — 00. To construct the sequence (u;);eN, we note that there exist Fy, I € R4 and

0 € (0, 1) with |Fi| = |F2| = 1 and F = 0F; + (1 — 6)F>. For j € N we define
e Wh*(R?) by

(F2—F1)x
ui(x) =Fp-x+ / X©.1)(s) ds,
0
where .1y : R — R is the one-periodic extension of the characteristic function

Xx@,1 : (0,1) — {0, 1} of the interval (0, 1). Figure9.2 illustrates the construction.
For every j > 1 the function %; satisfies

Vij(x) = Fi + X@,1)(j(F2 — F1) - x)(Fy — F1)
_|F1 if k<j(Fa—F1)-x<k+0, ke,
| if k+0<jFr—F—1)-x<k+1,keZ,
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Fig. 9.2 Function u; whose L 9/;
gradient oscillates between /i .
Fy and F, on a length scale — (1-0)/j

1/j with volume fractions @ — Rk -F
and 1 — 6 —Vﬁj:Fz
Vi =F

i.e., Viu; oscillates between the values Fi and F» with frequency j and volume
fractions 0 and (1 — ), respectively. If x - (F» — F1) = k/j for an integer k, then a
change of variables shows that

J(F2—Fp)x X
w(x)=Fp-x+— / Xodt=F -x+-(1—0)=F -x.
J J

0

Hence, the function #; —up vanishes on the lines Ly = {x € 2 : (F2 —F1)-x = k/j}
and a Poincaré inequality with [|Vu;||p (o) < 1 implies that

l; —upllzo 2y < 1/j.

To define functions (u;)jen that satisfy the boundary condition u;(x) = F-x

for x € 02, we choose nonnegative cut-off functions ¢; € W(}’OO(Q) with
||V¢/'||L00(_Q) <7, ||¢||LOC(Q) <1, and (]5/'()6) = 1 if dist(x, 0§2) > 1/j. We then set

uj = (1 - ¢j)ﬁD + ¢jﬁj.

We have | u; —upllre () < c/j. Since Vuj(x) € {Fy, F2} for dist(x, d§2) > 1/j and
[Vu;(x)| < cfordist(x, 382) < 1/j,itfollowsthat/(u;) < c/j asrequired. Moreover,
we have that () e is bounded in W12°(£2) and uj — upinL*(2)asj - oco. O

For affine boundary conditions with [F| < 1 nonuniqueness and nonexistence of
solutions can occur.

Proposition 9.2 (Nonuniqueness and nonexistence) For F = 0and a > 0 the
functional

Tw) = Iu) + %nuu2

has no solution if « > 0 and infinitely many solutions if « = 0.

Proof We havel > 0. According to Proposition 9.1 there exists a sequence (u;)jeN C
W4(2) with I(uj) — 0 and ||ujllzo@) — Oasj — oco. Ifu € WH4(2) is a
minimizer for 7, then we have () = 0 and («/2)||u||?> = 0. In particular, I (u) = 0
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implies that |Vu| = 1 almost everywhere. If @ > 0 this leads to a contradiction. If
o = 0, we note that there exist infinitely many functions u € W () with |Vu| = 1
and u|y = 0, e.g., solutions of the Eikonal equations on subsets of £2. O

The characterization of the infimal energy for affine boundary conditions leads to
the rigorous justification of the convexified problem.

Theorem 9.1 (Scalar relaxation) The convexified functional

1 (1) = / W**(Vu) dx

2

has a minimizer u € <7. The minimizers are exactly the weak limits of infimizing
sequences for I in <.

Proof (sketchted) For ease of presentation we assume that up is piecewise affine.
The existence of a minimizer u € .7 follows from the direct method in the calculus of
variations and it remains to construct an infimizing sequence that approximates u. For
this, let (.7},)~0 be a sequence of triangulations of §2 such that up € .7 !(.%,) for all
h > 0. Due to the density of finite element spaces in W1 (£2), there exists a sequence
=0 C Wh*(2) with w, € #1(F}) and wj, — uin WH*(2) as h — 0. Since
I¢* is strongly continuous on W14 (£2), there exists for every ¢ > 0 a number /iy > 0
such that I (uy,) < I°*(u) + ¢ forall 0 < h < hg. Forevery h > O and T € 9},
we have that uy, |7 is affine and according to Proposition9.1 there exists a sequence
(urj)jen C WH(T) such that ur jlar = uplsr, lup — ur jllesry — 0, and

IT|W** (Vup|T) =iETO/W(VMT,j)dx-
‘ T

Given ¢ > 0 we may thus choose for every T' € .7}, a function uy € W% (T) with
urlar = uplar and

TW (Vundr) = [ WCTur) de+e/121,
T
The function ., € L°°(82), defined by u.|y = ur for all T € 7, satisfies
Ty € Who(2) and
I ) < I (up) < I(ue) < 1% (up) +& < I (u) + 2¢
provided & < hg. This proves that the minimizer u for /** is the weak limit of an
infimizing sequence for /. Conversely, if (#;)jen C &/ is an infimizing sequence for

I with weak limit u € <7, then we have

I (u) < liminf I () < lim inf 1(u;).
j—00 j—00
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According to the first implication there exists an infimizing sequence (u;)jcn for 1
such that I(u;) — I°*(u) as j — oo. Hence we have I (u) = liminf;_, o I(x;). O

Remark 9.1 The theorem implies that for the constant sequence (I;)jen with [; = 1
for all j € N we have I — 1" [** as j — oo with respect to weak convergence in
W1-4(£2). Weakly continuous low-order terms can be incorporated in the result.

9.1.2 General Relaxation Result

The discussion of the model problem for a scalar function reveals that the nonex-
istence of minimizers is related to the nonconvexity of the energy density W and
the development of oscillations in infimizing sequences. In particular, infimizing
sequences do not converge strongly but satisfy for Lipschitz domains @ C R?

lim 1nf — W(Vu]) dx = W*(F),

]—)OO

provided that Vi; — F in LP(w; R?) as j — oo. While this is always true for
scalar problems, when vectorial problems are considered the right-hand side is only
alower bound which may be strict. This motivates defining the guasiconvex envelope
for F € R4 by

WI(F) =  inf / W(F + Vv) dx.
ver (w;Rm) 1]

The definition implies that for quasiconvex energy densities, affine functions are
solutions of the corresponding minimization problem subject to their own boundary
conditions and this yields that corresponding energy functionals are weakly lower
semicontinuous on W17 (§2; R™) provided a p-growth condition is satisfied. Analo-
gous to the scalar case, one can prove the following theorem.

Theorem 9.2 (General relaxation [8]) Ler W : R"™*4 — R be continuous with
cl(|FIP —1) < W(F) < c2([FP+ 1) for 1| < p < oo and all F € R™*?. Given
fell(2;R™), g e L’ (In; R™), and ip € W'P(2; R™), the functional

ch(u):/W’”(Vu)dx—/f-udx—/gwds
2 2 I3}

has a minimizer u € o = {v € WP (2: R™) : vl = uplry ). The minimizers are
exactly the weak limits of infimizing sequences for the corresponding functional 1. If
d =1o0orm =1, then we have Wi¢ = W**,

The reason for the discrepancy W4¢ £ W** is that for given matrices F, Fp €
R™*4  there exists a nonconstant function v € W1 (£2; R™) with Vv € {F}, F»}
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almost everywhere in §2 if and only if | and F» are compatible in the sense that
rank(F, — F1) = 1. This is always satisfied if d = 1 or m = 1. An efficient
characterization of quasiconvex envelopes is an important open problem.

9.1.3 Statistical Description of Oscillations

The discussion of the model problem for a scalar function implies that
W (Vvj) —* W**(F) 9.1)

in L>°(£2) for an infimizing sequence (vj)jen C W1-2°(£2) for I subject to affine
boundary conditions described by F € R?. We also saw that Vv; /> Vv in general.
In particular, we have that

(V) —=* ¢(F)

in L*°(£2) only holds in general if ¢ is continuous and Vyv; — Vv = F orif ¢ is
affine. For appropriate growth conditions, we have

d+1
W (F) = D 6;W(F) 9.2)
i=1

with convex coefficients (6;);=1... 4+1 and (F;)i=1,.. a+1 C RY. 1t appears natural
to expect a relation between the infimizing sequence in (9.1) and the convex combi-
nation that defines W**(F) in (9.2). We recall that the gradients of the constructed
infimizing sequence (v;);eN oscillate between the values F and F7 with volume frac-
tions 6 and 1 — 6. Thus, the family (6;, F;)i=1.... 4+1 provides a statistical description
of the oscillations in an infimizing sequence (vj)jen. Conversely, it is desirable to
extract the convex combination from the infimizing sequence. For this, we notice
that we may identify the convex combination with the probability measure

d+1

n= Z 0i0F,
i=1

with the Dirac measures §r,,i = 1,2, ...,d + 1, i.e,, for every continuous function

¢ € C(R?) we have
d+1

(1, ) = D_ 0 (Fy).
i=1

We may also identify the sequence (Vv));en with the sequence of families of mea-
sures ¢/ : x > o defined for j € N and x € 2 by

W = 89v;00)-
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It turns out that within an appropriate space we have the convergence ;/ —* p as
Jj — oo. For the special case of affine boundary conditions, the limiting probability
measure is spatially constant. In general, if the weak limit of the infimizing sequence
is not affine, then the corresponding measure also depends on x € £2. In the special
situation that Vv; — Vv strongly in L>°(§2), then the limiting family of probability
measures is given by u, = 8v,(y) for almost every x € £2. The precise mathematical
framework for these considerations is provided by a fundamental theorem for which
the following definition is required.

Definition 9.1 Let Co(R™*?) = {¢ € CR™9) : limp»o0 ¢(F) = 0} be
equipped with the norm |||l cormxdy = Suppegm=a |¢(F)|. A functional pu €
Co(R™*4Y is called probability measure if

(e, ) = / ¢(F)du(F) =0

Rmxd

for all ¢ € Co(R™*4) with ¢ > 0 and (u, 1) = 1.
This framework enables the following compactness result.

Theorem 9.3 (Fundamental theorem on Young measures [1, 16]) Let (z))jen be a
bounded sequence in LP(§2; R"™*?). Then there exists a subsequence (Zj ken and
a family of probability measures, it = (ix)xeo on R4 called generated Young
measure such that x — (¢, iy) is measurable for every ¢ € Co(R™ ), and if
Ve C(R™*) and the sequence x — V(zj, (x)) is weakly convergent in LY (£2), then
the weak limit is x — (Y, ly).

Proof (sketched) The sequence (zj)jeN is identified with the sequence (,uj)jeN of
probability measures @/ = (3;(x))xes2- This defines a bounded sequence in the
space L33 (£2; Co (R™*4)") of weakly-* measurable, essentially bounded maps £ —
Co(R™*dy By establishing the duality relation

L'(£2; Co(R™ )Y = L23(82; Co(R™*)')

the first assertion is a consequence of the Banach—Alaoglu—Bourbaki theorem. The
identification of the limit of v/ (z;, ) for ¢ € C (R™*4Y is based on technical approxi-
mations. O

A Young measure generated by a weakly convergent sequence (z;)jen allows us
to characterize accumulation points of sequences (¢ o z;)jeN, €.g., for W(Vv;) with
zj = Vy; for all j € N. An important open problem related to the characteriza-
tion of quasiconvexity is the identification of Young measures that are generated by
sequences of gradients. In particular, we have that for every F € R”*¢ there exists
a homogeneous Young measure generated by gradients such that

W9 (F) = (W, ), /Adu:F.

Rmxd
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This identity provides a way to reconstruct information about microstructure from
the relaxed problem defined by the functional 79¢.

Example 9.1 For the sequence (i1;) jcn defined forj € Nand x € 2 by u;(x) = Fi +
0(F2 —Fux X6 (js) ds we have that the gradients (Vi;);cy generate the homogeneous

Young measure x — u, = 06r, + (1 — 0)F,.

9.2 Direct and Relaxed Numerical Minimization

We discuss in this section the numerical treatment of minimization problems that lead
to the development of oscillations, i.e., the construction of infimizing sequences by
numerical minimization, and the approximation of the weak limits via the numerical
solution of the relaxed functional. We discuss results from [5-7, 11].

9.2.1 A Lower Bound

The definition of the quasiconvex envelope of an energy density motivates investiga-
tion of the numerical approximation of minimization problems with affine boundary
conditions. While this provides conceptually a way to find the quasiconvex envelope,
it turns out that the convergence of the energies is slow in general, due to the formation
of oscillations. The following result from [7] is generalized here to the case p > 1.

Theorem 9.4 (Lower bound [7]) Letd = 2, 1 < p < oo, set F1 = [0, 1]T,
F>, =10, —1]T, and for F € R2 define

W(F) = min{|F — F\|’, |F — F»|}.

For a positive integer N and h = 1/N let .}, be the triangulation of 2 = (0, 1)?
depicted in Fig.9.3. If u;, € Yol(%) is such that for 0 < a < p, we have

I(up) = / W(Vup)dx < cih®,
2

Fig. 9.3 Triangulation for
the derivation of the lower
bound (left) and I [aj+1,bj41] Loz
configuration of triangles at h

the point zp considered in the
proof of Theorem 9.4 (right) laj,b;] T, *

T 2

Xo X XN-1 Xi
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then, provided h is sufficiently small, we have
I(up) > ¢ 1 =o/P,

In particular, we have o < p/(p + 1).

Proof (a) Throughout the proof we fix 0 < § < 1/5 independently of &, set x; = kh
for k = 0,1,...,N — 1, and let K; be the number of elements T € .7}, with
T C [xk, xk+1] x [0, 1] and ming—1 2 |Vuy|r — F¢| > 6. For every element with this
property we have W (Vuy,|7) > 67 and therefore using N = h~!,

N-1
I > Ki8Ph*/4 > ch  min  Kj.
(un) = ; Wh'/dzch min K

This implies the asserted bound provided that K; > ch™@/P for k = 0,1, ...,
N — 1. To prove this estimate, we fix 0 < k < N — 1 in the following.

(b) Welet 0 < Jy <N and [qg;, bj],j = 1,2, ..., Ji, be maximal intervals such that
allT € 5, with T C [xg, xx+1] x [0, 1] and an entire edge on x; x [a;, b;] satisfy
either |Vuy|r — F1| < 8 or [Vuy|r — F>| < §. Therefore, we have either dyu, > 1—§
onxy X [aj, bj] or dyup < —1+8 onxg x [aj, bjlforj=1,2,...,J;. If Jy = 0, then
Ky = h~' > h™%/P 5o that we may assume J; > 1 in the following. If s — uy,(xy, 5)
has a zero &; € [a;, b;] or otherwise with & = a;, we have

N
up (xi, )| = / [d2up (xi, )| dr = (1 = 8)[&; — 5.
&

The convexity of r — r”*1 implies that

bj bj

1=686)7P 1
/Iuh(Xk,S)l”dS > —5)”/|Ej — 5P ds > (p+ 1) E(b—a)‘"ﬂ-
aj aj

With this we deduce that

1

Jk Ji
1 p+1
/ lun(ee, )P ds = ¢ D" (b — a)P ' = cJ—p(Z(bj - a,-)) :

0 j=1 k=1

A one-dimensional integration argument, uy|3 = 0, and Jensen’s inequality prove

1
/|uh(xk,s>|"dss/|aluh|”dx.
0 2
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Noting |d1u (x)|P < W(Vup) and 1 — Z]Jil (bj — a;) < Kih, the assumption Kyh <
1/2 implies that

1
I) = / (s )7 ds = eI 9.3)
0

(c) We want to show that J; < Kj + 1. Since this is true for J; = 1, we assume
Ji = 2 in the following. For two subsequent intervals [a;, b;] and [a;1, bjy1] such
that b; < ajy1, there is an element Tp € 73, with Ty C [xg, 2411 x [0, 1] such
that an entire edge belongs to x; x [bj, ajy1] and }Vuh|T0 — F(| >8,0=121f
b; = ajy1, then there exist elements 71, To C [xg, xx+1] x [0, 1], such that 77 has an
entire edge on [a;, b;] and T has an entire edge on [aj11, bj+1] and |Vuh lr, —Fe¢ | <34
or |Vuh|n + Fg| < § for £ = 1, 2. For the vertices zp € A, N Ty, £ = 1,2, not
belonging to x; x [0, 1] and the vertex zo = (xx, a;), we have

up(21) = wn(z0) + (h/N2)Vuylr, - 11,117,
un(22) = un(z0) + (h/~'2)Vuylry - [1, =117
On the triangle Tp = conv{zp, z1, z2} as in the right plot of Fig.9.3 we thus have

yuplry = (up(22) — up(z1)/h
= (uttn1y — Oxttnl 1) /N2 — @yunlr, + dyun|ry) /N2

and [dyupl7,| < 2+/28 < 46. This implies that |Vuy|z, — F¢| > & for € = 1,2.
We have thus shown that between all subsequent intervals [a;, b;] and [a; 1, bj11],
j=1,2,...,Jr — 1, there exists an element 7T with |Vuh|T0 —Fg| >d§ford =1,2
and this proves J;y < K + 1.
(d) We show that if & is sufficiently small so that rl=alr < (¢ /02)1/1’ /2, then we
may deduce that

(c1/e) Ph™*/P < Ky + 1.

Suppose that the conclusion is wrong. Then
(K + Dh < (c2/c)) PRI < 1/2

so that (9.3), Jy < K + 1, and ¢1h* < (K + 1) 7P lead to the contradiction
c1th® = I(up) = c2(Kx + 1)77 > ¢1h”.

This proves the theorem. O

Remark 9.2 On special sequences of triangulations the minimal discrete energy can
decay significantly faster with 4.
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9.2.2 Upper Bounds

To show that the lower bound for the discrete energy minimization is sharp, we
consider throughout the energy functional

I(u) :/W(Vu)dx
2

foru € W(; 7 (£2) and the energy density for I < p < oo and F € R? defined by
W(F) = min{|F — F1|", |[F — F2|"}
with F; = [0,1]7 and F> = [0, —1] .

Theorem 9.5 (Coarse upper bound) Given 2 C R? and a quasiuniform triangula-

tion Iy, of $2, we have '
min  I(uy) < c1h'/?.
up€ S (T

Proof We define a function % € W1°°(R?) that is one-periodic in y by

y—k for k€ Zandk <y <k+1/2,

ug@z[l/z—@—k) for k€ Zandk+1/2<y<k+1

and setforO <« < 1 and (x,y) € 2
ug (x,y) = h*u(h™%x, h™%y).

The function u, satisfies Vi € {F1, F2} and |lugllro2) < h*/2. For0 < g <1
and (x,y) € £2, we define

¢p(x, y) = min{h P dist((x, y), 082), 1)

which satisfies ¢glae = 0, pg(x, y) = 1 for (x,y) € £ with dist((x, y), 982) > hB,
and [|Vrgllre(2) < ch~# . For the continuous function u = YUy, we have ulyo =
0, |Vu(x,y)| < ch® B for (x,y) € Upp(82) = {(x,y) € 2 : dist((x, y), 32) < hP)}
and Vu(x,y) € {F, F>}, otherwise, cf. Fig.9.4.

The nodal interpolant u, = ,u satisfies }Vuh|T| < c||Vullpeo(r) forevery T €
Ty, We have that Vuy, |7 = Fy for £ € {1, 2} and hence W(Vuy|7) = 0for T € .9, if

Fig. 9.4 Construction of a

finite element function with VoS Vu, =F
low energy and typical < Vu, =F>
triangles A— V| < c(14h%PF)
Wb [Vuy| <c
hoc
l W
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T does not intersect Uj,s(352) oraline Ly = {(x,y) € £2 : y = kh*} for some k € Z.
The number of such lines in §2 is proportional to 2~* and the number of triangles inter-
secting such a line is bounded by ch™ 1. Therefore, we deduce, using |T| < ch?, that

I(up) < / W (Vi) dx + > ITIW(Vuplr) < e +h* + k'),
Uy k€Z,T€F,:TNLy#D
For 8 = 1 and @ = 1/2 we obtain the asserted bound. [

The bound of the previous theorem is sharp for p = 1 but can be improved if
p > 1. To provide a proof for this, we restrict for ease of presentation to the case
£2 = (0,4) x (0, 1) and laminates that are parallel to the x-axis. The main idea is
to construct a function that oscillates on a coarse scale in the interior of £2 and on a
finer scale in a neighborhood of the boundary, cf. Fig.9.5. According to Theorem 9.4
the estimate is optimal in the sense that there exists a sequence of triangulations for
which it cannot be improved. The following result is based on ideas from [11] and
was derived in a more general setting in [5].

Theorem 9.6 (Sharp upper bound) Let p > 1 and 7}, be a quasiuniform triangula-
tion of 2 = (0,4) x (0, 1). We have

min  I(up) < cihP/PHY,
upeSy ()

Proof We define the function # € WH*°((0, 1) x R) for (%,7) € (0, 1)? by

y for 0<y<(1+%)/8,
1+x/4-y for (1+%)/8<y=<(3+%)/8,

ux,y) =q1-1/2+y for 3+%)/8<y=<(5-%/8,
—(1+%/4+0 =y for §-%)/8<y=<(7-%)/8,
y—1 for (7-%)/8<y<1

ha

zf\lha I

(=]
‘I
~

Fig. 9.5 Improved construction of a finite element function with low energy employing multiple
scales
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and extend u periodically in 7y, i.e., u(x, k +y) = u(x,y). Notice that u(0,y) =
u(l,2y).Givenr > 1,welet yr : [r~!, 1] — [0, 1] be the linear, increasing bijection
and set (X, y) = u(y¥ (%), ) for (x,3) € [r~!, 1] x R. We then define

h*u(l, y/h%) for x €[1,2],
u(x,y) = (h%/2)u(rx, 2y/h*)  for x e [r~0+D r7],0<j<J—1,
(h*/27yu(1,2’y/h*)  for x e[0,r 7].
For x € [2,4] we set u(x,y) = u(4 — x,y). We assume that =% € Z, so that
the interval [0, 1] is exactly partitioned into intervals of length 4% and we have
u(x,0) = u(x,1) = 0 for all x € [0, 4]. The construction of the function u is

depicted in Fig.9.5.
With

deu = £ (r/2Y 50 (Wx, Yy/h*),  dyu = d5u(r'x, Yy/h%).
It follows that

[F 1 in the white region,
Vu =

Fr 4+ ﬁ(h“ (r/2)i) [1,0]T  inthe gray region.

The specification of «, r, and J below will guarantee that h%(r/2) < ¢ forj =
0,1,...,J. We define ¢g(x, y) = min{h~Px, 1} and set

up = Iylpgul.

For (x,y) € £ with x < hd we then have [Vuy| < c(1 + 2=/h*=F). The energy

F (up,) in the region [r~Y*+Dr=/] is the sum of the following contributions:

e For2h=¢ interfaces of length r~/ separating regions of constant gradients, we get
for A~ 17~/ many triangles of area 42 on which |Vuy,| < ¢

Jid <2 *h Y = c2/ryh' .

interfaces —
e In aregion of area r7 in which Vu, = F» + &((h*(r/2))[1, 0]", we obtain

Vi

branching

<cr (h* (r/2)j)p = cr 7U=P7IP = (P 2Py poP .
We note that in the boundary region [0, hP] x [0, 1], we have the contribution
Thoundary < chP (14277 1%7F).

Altogether we have

J
Ip) < chP (1427 0Py ¢ D7 (@/ryn' = 4 (7=t j2ry=rper).
j=0
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We choose 2 < r < 2/0=D B8 = p/(p+1),a = 1/(p + 1), and J as the smallest
integer with J > log, (h*~P) = log, h!=P)/@+1D) 5o that 2=/ h* < hf = pP/®P+D,
The choices imply the asserted bound provided A%(r/2)’ < c. Since (r/2)) <
QVP=Dy < (pe=Py1/(=p) = p=1/+1) = p=« this is guaranteed. O

Remarks 9.3 (i) The result justifies the interpretation of the scale introduced by the
discretization as a scale related to a surface energy term.
(i1) The growth parameter p > 1 determines the amount of energy stored in interfaces.

9.2.3 Failure of Direct Minimization

The restriction of a coercive and continuous but nonconvex energy functional / to
a finite-dimensional subspace leads to the existence of discrete minimizers which
define an infimizing sequence as the dimension increases. The problematic analytical
properties of the continuous problem are however reflected in the fact that it seems
impossible to find global minimizers of the discrete problems due to the occurrence
of many local minimizers and large energy barriers between them. The following
theorem proves, in a simple model situation, that the number of local minimizers in
neighborhoods of decreasing diameter of global minimizers grows exponentially and
the separating relative energy barriers increase linearly with the number of degrees
of freedom. The statement is a simplified version of a result from [6].

Theorem 9.7 (Local minimizers) Let 7, be the uniform partition of 2 = (0, 1)
with mesh-size h = 1/N for an even integer N, and for uj, € /' (F},) define

1

1
1 2 1
I(Mh)Zz/(W;,F—l) dx+§/uﬁdx.
0

0

(i) The minimizers u,jf e SN of I satisfy I(u;l—L) < I, = h*/24 and are given by
wy |7,(x) = £(—1Ya(x — x)

forx € Ty = [(j—Dh,jh), x; = i—1/2)h,j = 1,2,...,N,anda = (1—h*/12)!/2,
cf. Fig.9.6.

(i1) For uy, € {u;[, u, } there exist 2N/2 distinet local minimizers (ufl’*)gzl
SN with uy* — |l < 2h and 1(uy*) < 4L, € =1,2,..., 2N/,
(iii) For every continuous path ¢ : [0, 11 — .#1(F},) connecting two of those local
minimizers we have max;cjo,11{(¢(t)) = 6NIj,.

.....

Proof (i) We minimize the energy on every element over affine functions and then
assemble the elementwise minimizers to a function in .%”!(.7,). For the element
T; = xj+[—h/2, h/2] and up|1;(x) = a(x —x;) + b, we have the energy contribution
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1 ) 1 h W h
Ir; (up) = -/((u2)2 —1)7dx + E/M}‘;dx= ;‘(a2 — )24+ —d® + Ebz.
T

~

24
T

A straightforward optimization shows that a> = 1 — h?/12 and b = 0 and implies
that Ir,(u) = (h*/24)(1 — h?/12). The functions u; € .’'(7},) are obtained by
alternating the slopes #-a and these are the only minimizers of /.

(i) Given uy, € {u}jlt} and 1 < k < N/2, we modify uj, on Ry = Tr,_1 U Tk by
defining , € .#'(.9,) through %, = uy, in (0, 1) \ Ry and Uy |7y, = Ul and
1|1y = |7y, cf. Fig.9.6. To compute I(i;,), we note that the first part of the
energy remains unchanged while the second one is increased. We have

1 [ 3 - Th?
E/uﬁ—u%dxzzaz, /(uh—uh)zdx:—az,
Ry

6
Ry
ie., I(,) < I(up) + B3 /4 and |luy, — ul|> < (7/6)h3. For every interval Ry, k =
1,2,..., N/2,wemay either modify uj, as above or leave u;, unchanged which defines
2N/2 distinct functions (u},),— _ov2 C V(T withI(u)) < I+ (N/2)(h*/4) =

Ay and ||y, — ul|> < (7/12)R%. For € = 1,2,..., 2V we letu,* € /' () be
the minimizer for / within the closure of the set

Xh(ufl) = {vy € SN : sign(v}) = sign((ufl)’) a.e.in (0, 1)}.

We have that |(ufl’*)/ | > 1/4/3 since otherwise / (“f[*) > (1/9)h which contradicts
I(I/lfl’*) < 4I;,. Since W”(s) > 0 for W = (s> — 1)>/4 and 5 € R? \ B, 5(0), we
have that 7 is strongly convex on the line segment that connects uf; and ufl* Using
DI(u;*)[v] = 0 for all v, € ' (F) we verify that

1 0%

Sl = wbl? < IGuf) — 1(uy™) < 41 — I

The triangle inequality yields ||uy, — u} ™| < 2h.

Fig. 9.6 Global discrete minimizer u,, (leff) and modified function i, obtained by exchanging the
slopes of u; on two adjacent elements (right)
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(iii) If ¢ : [0, 1] = .#1(},) connects two of the above local minimizers, then there
exists an element 7" such that their derivatives have different signs on 7' € 73, e.g.,
©(0)|7 > 0 and ¢(1)’'|7 < 0, and for some #* € [0, 1], it follows that ¢(t*)' |7 = 0
and hence I(¢(1*)) > h/4 = 6h~ 1. O

9.2.4 Approximation of the Relaxed Problem

The results on the numerical minimization of the energy functional / with nonconvex
energy density show that optimal finite element functions have complicated structures
and are, due to the occurrence of local minimizers, difficult to compute. Relaxation
theory motivates to discretize the functionals /9¢ in which W is replaced by its
quasiconvex envelope. It can be shown that W4€ is continuous and satisfies the same
growth conditions as W, so that we assume W% € C (R™*4) with

a(FIP = 1) < WIF) < oo(IFIP + 1)

for some 1 < p < oo, constants ¢1,c; > 0, and all F € R™*d To establish the
convergence of finite element minimizers of related energy functionals, it suffices to
prove I'-convergence in the absence of low-order terms and boundary conditions,
i.e., to consider

I1°(v) = / Wi (Vv) dx

2

forv e Wir(2; R™).

Theorem 9.8 (Convergence) Let (T},) -0 be a sequence of triangulations of 2 and
forh > 0andv € W'P(2; R™), set

[y = |10 i v e ST,
277 oo if ve WHP(Q; R™)\ ()™,

We then have IZC =TI 19 as h — 0 with respect to weak convergence in
Wlr(2; R™).

Proof We have [9°(v) < IZC(V) for all v € WhP(2; R™) and all & > 0 and that
19¢ is weakly lower semi-continuous, so that it suffices to show that for every
v € WLP(£2;R™) there exists a sequence (vy)p=0 C W!'P(£2;R™) such that
vp € L1 T)™ forevery h > 0 and vj, — vin WP(£2; R™) as h — 0 and

L () = 17(v)

as h — 0. Due to the density of the finite element spaces in W17 (§2; R™), there
exists a sequence of finite element functions (vy),~0 C WP (£2; R™) with v, — v
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in WhP(£2; R™) as h — 0. Thus, Vv, — Vvin LP(£2; R”*%) and for a subsequence
we have the pointwise convergence Vv (x) — Vv(x) for almost every x € 2 as
K — 0. Therefore, the continuity of W4 implies W9¢(Vvy) — W9¢(Vv) almost
everywhere in §2 as 1 — 0. From the growth conditions satisfied by W%¢, we deduce
that [W7¢(Vvy)| < c2(14|Vvy|P). The generalized dominated convergence theorem
thus implies that 1€ (v;,) — I9°(v) as i’ — 0. O

Remarks 9.4 (i) Dirichlet boundary conditions are included in the result by consid-
ering the restriction of /9¢ to the space up j, + 5’6(%)’” for a sequence of approxi-
mations up j, € .71 ()™ satisfying iip , — up in WP (£2; R™) as h — 0.

(ii)) The same I'-convergence result can be proved for the functionals I, that
are obtained by restricting the non-quasiconvex functional I to .'(.7})™, i.e.,
I, — 1" 19, The practical minimization of IZC is however expected to be signifi-
cantly simpler than the minimization of 7y, although I;fc does in general not define a
convex minimization problem.

For scalar problems corresponding to m = 1 or in other special situations, we
have W9¢ = W** with the convex hull W** of W. In this case an error estimate can
be proved. We use the fact that for a convex functional @ : R"*¢ — R, we have

F e dd*(S) & Secod(F) 9.4)

for all S, F € R™*4 which may be interpreted as [00*]~! = 9®. We note that we
also have @*** = @*, We say that d®* is strongly monotone if

cslS1 = $21? < (S1 — $2, F1 — Fa)

for some ¢, > 0 and all Sy, S», Fy, F» € R4 with F; € d®*(Sy) for € = 1,2,
cf. Fig.9.7 for an illustration.

Theorem 9.9 (Convex relaxation) Assume that W9¢ = W**, p = 2, 9W* is strongly
monotone, and W** € CH(R™*?) with

IDW*(F)| < ¢;(IF| + 1)

forall F e R™4 Leta > 0, ug, f € L*($2; R™), and g € L*>(I'n; R™) and suppose
that u € Wll)’z(.Q; R™) and uy, € 5’5(%)’" are minimal for

[ SW RNV

Fig. 9.7 Function W(F) = min{|F — 1|2/2, |F + 1|2/2}, its convex hull W**(F) that vanishes in
B1(0) and the conjugate W*(S) = W***(S) = |S|2/2 + |§| with strongly monotone subdifferential
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1**(v):/W**(W)dx+%nv—uonz—/f-vdx—/g.vds
2

2 2

in the sets of all v € W];’p(.Q; R™) and v € 5’5(%)”‘, respectively. With o =
DW**(Vu) and oy, = DW**(Vuy,), we have

cillo —opll +aflu —up| < inf (||V(M—Vh)||+05||u—vh||)-
e (Tp)m

Proof Due to the assumptions on W**, we have that the discrete and continuous
minimizers u and uy, satisfy the corresponding Euler—Lagrange equations, i.e.,

/DW**(Vu)~Vvdx+a/(u—uo)~vdx:/fvdx+/gvds
2 2

Q In

forallv e Wg’p (£2; R™) and

/DW**(Vuh)~Vvhdx—i-a/(uh—uo)'vhdxz/fvhdx—l-/gvhds
Q

Q Q N

for all v, € 5’5(%)’". Since 5”5(%)’" C WIID’Z(Q; R™), we deduce the Galerkin
orthogonality, abbreviating 0 = DW**(Vu) and o, = DW**(Vuy,),

/(0—0;,)~Vvhdx+a/(u—uh)-vhdx=0
2 2

for all v, € YDl(%,)m. The equivalence (9.4) applied to o = DW**(Vu) and
oy = DW**(Vuy) proves Vu € aW*(o) and Vu, € dW*(oy,), so that the strong
monotonicity of dW* yields the estimate

cxlo —onl? < (0 —op) - V(u— up)

almost everywhere in £2. This implies that

cxllo —opll® + allu — uy)? < /(a —op) - V(u — up) dx
2

+a/(u—uh)~(u—uh)dx.
Q
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Galerkin orthogonality allows replacing u;, by an arbitrary function v, € 5%(%)’”
on the right-hand side, and an application of Holder’s inequality leads to the asserted
estimate. (]

Remarks 9.5 (i) The stresses o and o), are uniquely defined even if u and uy, are
non-unique.

(i) The condition W** € C'(R”*¢) and the bound for [DW**(F)| follow from a
quadratic growth condition and imply that W*** = W* is strictly convex.

(iii) A corresponding a posteriori error estimate follows analogously.

9.2.5 Iterative Minimization

To find stationary points with low energy for the functional

I(up) = / W (Vuy,) dx
2

with a nonconvex or convex energy density in the set of all u, € . ! (9,) with
up|lrp, = up, we employ a descent method with line search. We recall that the
Armijo—Goldstein criterion guarantees that for 0 < pu < 1/2, u, € &7 L), and
dp € 5’5(%) satisfying

(Vdp, Vvy) = =81 (up)[vy]

for all v, € YDl(%), there exists a number o’ > 0 such that with ||th||2 =
—&1(up)[dy] we have

Iy + ady) < I(up) — pel| V|2
for all @ € (0, o).

Algorithm 9.1 (Descent method) Choose 0 < pu < 1/2 and ggop > 0. Let u2 €
ZY(Z,) with uplrp, = up and compute a sequence (u’h)j:o,l c ZY(Z) via

W = ) + o) with &), € S} (F), such that

yees

(Ve Vvy) = =81(d,)[vy] = —/DW(VML) - Vv dx
2

for all v, € YDI(%) and the maximal «; € {27 : £ € Ny} satisfying
1G], + eyd)) < 1) — o8I (][],
Stop the iteration if ||Vd2|| < &stop-

A MATLAB realization of Algorithm9.1 is displayed in Fig.9.8.
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function energy_minimization (d, red)

[c4n,nde,Db,Nb] = triang cube(d); Db = [Db;Nb]; Nb = [];
for j = l:red
[c4n,nde,Db,Nb] = red_refine(c4n,nde,Db,Nb) ;
end
[nC,d] = size(cd4n); h = 27 (-red);
dNodes = unique (Db); fNodes = setdiff (1:nC,dNodes);
[s,m,—,7] = fe_matrices (c4n,nde);
F = zeros(d,1l); u = cd4n+F+hx (rand(nC,1)-.5);
u (dNodes) = c4n (dNodes, :) *F;

sd = zeros(nC,1);
mu = 1/4; norm_corr = 1; eps_stop = 5e-4;
while norm_corr > eps_stop

alpha = 1;

[I_0,dI] = energy(c4dn,nde,u);

sd (fNodes) = -s (fNodes, fNodes) \dI (fNodes) ;
[I_alpha,~] = energy(c4dn,nde,utalphaxsd);

armijo = I_alpha-I_O-muxalphaxdI'xsd;
while armijo > 0
alpha = alpha/2;

[I_alpha,~] = energy(c4n,nde,utalphax*sd);
armijo = I_alpha-I_O-muxalphaxdI'x*sd;
end
u = utalphaxsd;
norm_corr = sqrt ((alphaxsd) 'xs* (alphaxsd))
show_pl (c4n,n4e,Db,Nb,u); drawnow;
end
function [I,dI] = energy(c4n,néde,u)
[nC,d] = size(cdn); nE = size(nde,1l);
du = comp_gradient (c4n,nde,u);

I = 0; dI = zeros(nC,1);

for j = 1:nE
X_T = [ones(l,d+1);cd4n(nde (3, :),:)"1;
grads_T = X_T\[zeros(l,d);eye(d)];
vol_T = det (X_T)/factorial (d);
[W_T,DW_T] = W(du(3,:));
I = I+vol _T+W_T;
for k = 1:d+1

dI(nd4e(j,k)) = dI(nde(j,k))+vol_T*DW_Txgrads_T(k,:)";

end
end
function [val,vec] = W(F)
p = 32; phi = pi/4; F_ref = [cos(phi),sin(phi),0]; d = size(F,2);
F_1 = F_ref(l:d); F_2 = -F_1;
val = (1/p)*norm(F-F_1,2) " (p/2)*norm(F-F_2,2)" (p/2);
vec = (1/2)*norm(F-F_1,2)" (p/2-2)*norm(F-F_2,2) " (p/2)* (F-F_1)+

(1/2)*norm(F-F_1,2) " (p/2)*norm(F-F_2,2) " (p/2-2) x (F-F_2) ;

Fig. 9.8 MATLAB routine that realizes a descent method for the minimization of the energy func-
tional I (u) = [, W(Vu) dx with W(F) = (1/p)|F—F1|"/?|F— F,|P/? subject to the affine boundary
condition u(x) = Fx forx € Ip
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Remark 9.6 The algorithm can also be applied to the convexified problem. For that
problem it is also desirable to use a Newton iteration. This is however problematic
due to the fact that the convex envelope W** is typically only degenerately convex
in the sense that D>W** may vanish. To avoid related problems stabilizing quadratic
terms are often added in the energy minimization.

9.3 Approximation of Semi-convex Envelopes

The relaxed problem defined by the energy functional 79¢ provides a well-posed
reformulation of the original minimization problem and allows us to reconstruct
information about the occurrence of microstructures. The essential ingredient is the
knowledge of the quasiconvex envelope W9¢ of the energy density W which can be
computed explicitly only in special situations. Its numerical approximation is difficult
since no efficient characterization of quasiconvexity is known and the definition of
W4 as a minimization problem causes severe numerical difficulties. Upper and lower
bounds for W9¢ are known and these are accessible numerically. We discuss their
approximation and consider throughout the case m = d and a continuous function
W : R9%4 _ R that satisfies

a(FPP=1) =WF) = a(FIP+ 1)

for all F € R?*4 with constants c1,c2 > 0 and a number p > 1. We follow ideas
from [3, 4, 9].

9.3.1 Upper and Lower Bounds for W1¢

A lower bound for the quasiconvex envelope is defined by the polyconvex envelope,
cf. [8].

Definition 9.2 The polyconvex envelope WP€ of W is the largest polyconvex function
wre s R4 — R with WP < W.

We recall that a polyconvex function is convex in the minors, i.e., in the determi-
nants of square submatrices. This implies that the polyconvex envelope is the largest
function W o T below W with a convex function W : R% — R and the minors vector
T : R4 s R given by

(F,detF) € R? if d=2,

T(F): = = 19 .
(F,detFqq,...,detF33,detF) € R if d=23,

where the matrices 75,-]- are obtained from F by deleting the ith row and jth column.
The function WP¢ can equivalently be characterized through a constrained nonlinear
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minimization problem, i.e., for F € R9%4 e have

‘[d+1 Td+l ‘Ed-i-l
WPC(F) = inf{ S 0wWAp A e R 9,20 > =1 > 6,74y = T(F)}.
=1 =1 =1

If the condition ZE‘SI 0, T(A¢) = T(F) is simplified to E‘Sl 0¢Ay = F, then we
obtain the convex envelope W**(F). In particular, we have W**(F) < WP¢(F). Since
polyconvexity implies weak lower semicontinuity of integral functionals, it provides
a lower bound for the quasiconvex envelope. An upper bound is defined through the
rank-one convex envelope.

Definition 9.3 The rank-one convex envelope W' of W is the largest function W’ :
R9%d _ R such that W'¢ < W and ¢ — W(F + tabT) is convex for all F € R4*d
anda,b € RY.

To identify W' as an upper bound for W4 (F), we recall that this quantity is
defined by the minimization problem

W9 (F) = inf |a)|_1/W(F+Vv)dx.
)
w

veW(;’oc(a)

By the strong continuity of the integral functional, an infimizing sequence has to
develop oscillations to decrease the value below W (F). Functions of the form

b-x

us(x) = Fix +a/ 5&9,1)(8—15) ds
0

for ¢ > 0 which are appropriately truncated at the boundary oscillate between gra-
dients F| and F, = F| + ab' so that

WIF) < OW(F1) + (1 — )W (F2)

provided that 0 F14(1—0)F, = F.The matrices F'| and F» differ by arank-one matrix
and the process can be repeated by replacing F; and F> by convex combinations
Fi1=01F11+(1—61)F2and Fp = 62F»1 4 (1 —62)F>, provided that F1» — F11 and
F — F»1 are rank-one matrices. This process is illustrated in Fig. 9.9 and motivates
defining the lamination-convex envelope W as the pointwise limit limy_, oo W¥ of
the recursively constructed functions (W¥);cny with WO = W and W*t! for k > 0
and F € R?*4 defined by

WHHL(F) = inf {oWX(F) + (1 — 0)WE(F2) 1 0 € [0, 11, F1, F> € R,
OF 4+ (1 —0)F, = F, rank(F, — F) = 1}.



284 9 Nonconvexity and Microstructure

F—r m N F
F— — F11 / \
F

— Fi2 F
1 2
/ \

Fi Fia

Fig. 9.9 Successive lamination by replacing gradients by convex combinations of rank-one con-
nected matrices

A result in [12] shows that this provides an equivalent characterization of W',
ie., W = w. In particular, in the iterative process above, the function W is
successively convexified along rank-one lines.

The functions W, W49¢, WP¢, W** and W’¢ are related by the inequalities

W < WPC < W9 < W' < W.

In general all of these inequalities are strict. We remark that only W**, WP¢ W4¢
define weakly lower semicontinuous minimization problems. An important feature
of W€ is its physical interpretation that the energy is lowered by iterated laminates.

Example 9.2 ([10]) Given Fy, F» € R?*4 Jet
W(F) = min{W, (F), W2(F)}
with W;(F) = |F — F;|>/2 for F € R¥* and j = 1, 2. Then

W(F) for [Wi(F) — Wa(F)| = 2/2,

WI(F) =
(F) 5
Wa(F) — (Wa(F) — Wi (F) +3/2)%/(23)  for |Wi(F) — Wa(F)| < 1/2,

where X is the largest eigenvalue of (F, — F1) T (F2 — Fi). We have W** %+ WP =
W€ = W’ = W'. The identity W** = W’ holds if and only if rank (F, — F}) = 1.

Below, we denote by K; for s > 0, the set
K, ={F e R |F|oo <5}

with |F|s = maxj<; j<q |Fij|. The following assumptions simplify the convergence
proofs of the numerical methods for the approximation of WP¢ and W',

Assumption 9.1 (Convexity and monotonicity)

(i) There exists a convex function g : R¥*¢ — R such that W > gand W = g in
R*4 \ K, for some s > 0.

(i) For all F € 0K and a,b € R4, such that F + tab’ ¢ K; for all t+ > 0, the
function t > W(F +tab ") is increasing for ¢ > 0.
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The first part of the assumption implies that W** = WP¢ = W9 = W' = W
in R?*? \ K. We remark that this is not satisfied in Example 9.2 but the subsequent
results can be appropriately modified. The methods described below compute discrete
homogeneous Young measures 5 and pf, such that WP(F) ~ (W, u5°) and
W(F) ~ (W, uy’) with a mesh-size § > 0. The Young measures py” will be a
gradient Young measures.

9.3.2 Approximation of WP

To define an approximation of W7¢ we note that the infimum in the minimization
problem that defines WP¢(F) remains unchanged if 7; + 1 is replaced by a number
N > 15 + 1, cf. [8]. We then restrict the matrices Ag, £ = 1,2, ..., N, to belong to
the grid of nodes .45 , defined for a uniform grid size § > 0 and a radius r = N§ for
an integer N > 0 by

%,r = SZdXd NK;,

cf. Fig.9.10. To .45, we associate the triangulation .7 , of K, that consists of cubes
of edge length § and with vertices in .45 . The space . 1 (J5.r) is the set of all con-
tinuous functions on K, that equal a polynomial of partial degree-one on every cube
in 75 ;. We let (p4)ac.s;,, be the nodal basis of 71 (J5.r) and Z , the corresponding
nodal interpolation operator.

For F € K, and .4 C .45 , we then consider the optimization problem

WP (F) = inf{ D O0AWA) 04 =0, D a=1 > 0,TA) = T(F)},
Ae N Ae N Ae N

In this problem the only degrees of freedom are the convex coefficients (64)ae. 4
that are associated to the fixed nodes A € .4 C R?*¢. The problem is thus a
linear optimization problem with inequality and equality constraints. To show that
the optimization problem ng/ (F) has a solution, it suffices to construct a feasible

A S 1=f
—tt

Foi Fu

5 I - f
F F
> F
2

,

Foo Fio

Fig. 9.10 Grid points .45, = 8Z%*? N K, (left); successive decomposition of a matrix F €
R*4N[0, 119%? along coordinate axes into a convex combination of the vertices of [0, 117%¢ (right)
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vector (64) ey - This is based on the fact that minors are affine along rank-one lines,
e.g., along the coordinate axes.

Lemma 9.1 (Rank-one affinity) Let A € R, n=1,2,...,d,and 1 <i,j < n.
For Ejj = eiejT € R™" with the canonical basis vectors e;, e; € R" and t € R, we
have

det(A + 1E;) = detA 4 (— 1) 1 det Ay;.

Proof An expansion of the determinant of A + ¢Ej; according to Laplace’s rule with
respect to the ith row proves the assertion. (]

Lemma 9.2 (Local rank-one decomposition) Let F' € [0, 119%4 and By a2

be the matrices in {0, 1}4*4. There exist convex coefficients Py a2 with

2d?

T(F) = > peT (Ep).
i=1

For 1 <k <29 we have py = i (F).

Proof We identify the matrix F with the vector (fi),—; 42 via fii—na+j = (F)j»
1 < i,j < d. The decomposition of F is constructed in a hierarchical way in d?
steps. In the first step we write

F=(1-f)Fo+fiF1,
where Fy and F coincide with F in all components except for the first one in which

F( vanishes and F has the value 1. Notice that F; — Fy = eleir, so that according
to Lemma9.1 we have

T(F)=0-)TF) +ATF).

In the second step, we write

Fo=0—=p/)Foo+HLFo1, Fi1=0-/)Fu+hLFn,

where the matrices Fog, Fo; and Fjg, F11 coincide with F and F except for the
second entries, respectively, where Foo, F1o vanish and Fo1, 11 have the entry 1.
The decomposition is sketched in the right plot of Fig. 9.10. Noting that F1; — Fo; =
Fo1 — Foo = e;rez we have

T(F) = (1 —f)[(1 = )T Foo) + T FoD)| +fi[(1 = LT F1) + AT F1)].

Repeating this procedure we obtain after d> steps a decomposition of F with the
asserted properties. O
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Theorem 9.10 (Approximation) Let W € CLY Ry and F € K, and assume that

T4+1

WPEF) = D 6 (Ae)
=1

with a feasible family (Gg,Ag)z’fll C [0, 1] x K,. Then the optimization problem
W% (F) has a solution, and we have

0.< W (F) = WP(F) < ST DW | co.a k.
where |DW|co k) = SUpf, pyex, IDW(F1) — DW(F)|/|Fy — Fo|°.
Proof Lemma9.2 implies for ¢ = 1,2, ..., 77 + 1 that

TMA) = D ¢a(A)T(A).

Ae s,

Therefore, setting 94 = z":ﬁl Orpa(Ar) we have

T(F)= > 0.T(@A)

Ae s,

and ZAG/% , 0a = 1, cf. Fig.9.11. Hence, (0a)ac. 4;, defines a feasible vector for
the optimization problem, and we have

Td+1 fd+1
WL ()< D0 WA = D 0 D paAdW(A) = D 6T W(AY).
Aefs =1 Aes, =1

Since WPC(F) < Wi% (F), the interpolation estimate

II5W — WllLook,0) < 8" IDW | ok, (0

implies the assertion. (]

A F=YI60.4
O Apl=1,2,...t+1
® Ae s, Xt 0alA) #0

Fig.9.11 Interpolation of the polyconvex envelope on the grid .5 ,; only the nodal basis functions
corresponding to the filled dots contribute to the interpolation
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Remarks 9.7 (i) The bound Ay € K, £ = 1,2, ..., 15 + 1, can be guaranteed with
growth properties of W if p > d. Otherwise it follows from Carathéodory’s theorem.
(ii) The C'-%-regularity of W is only needed in a neighborhood of the region in which
WPe = W.

. . pc
9.3.3 Adaptive Computation of Wa,r

The discretization of WP¢(F) defines an optimization problem with many unknowns
and its direct implementation appears difficult and inefficient. In particular, only
74 + 1 many matrices are needed in the continuous situation and only these matrices
have to be approximated locally. The following optimality conditions characterize
the relevant nodes A € 4.

Proposition 9.3 (Maximum principle) The feasible family (0a)ac.y C [0, 1] is
C

optimal in W(‘; +(F) if and only if there exists A _y € R* such that

Ay -T@A) —WA) < Z Our(hy - T@A) = W(A)) = Ay - T(F) — Wi.(F)
Ale NV

forallA e V. If6s > 0 forA € N, then equality holds.

Proof The Karush-Kuhn-Tucker optimality conditions state that the feasible vector
(64)ac_v solves the optimization problem if and only if there exist Ay € R™,
)‘,//V € R, and (up)serr C R with ugy < 0forall A € 4 such that us64 = O for
allA € .4 and

D paW@A) = D ok TA) =3y D pa+ D paita =0
AleNV AleV AleN AleN

forall (pa)ac.yr C R.GivenA € A setpg = 04— 1and pyr = O forA” € N\ {A}.
It follows that

Ay -T@A)—WA) < Z Oa (A y - TA) —W(A))
Ale NV

and the equality of the right-hand sideto A_y (F))— W’;;/ (F) follows from the definition
of the optimization problem. Conversely, assume that (64)4¢c 4 is feasible and the
condition of the proposition is satisfied. Then, the Karush-Kuhn-Tucker conditions
are satisfied with

—pa= D (i -T@A)=WA")) =1y - TA) + W) =0,
Ale NV
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Mp=( 2 war- 3 T+ Y )/ X1).
AeN AeN AeN AleN

The complementarity condition 464 = 0 for all A € .4 and the specification of
wa show that if 64 > 0, then uyg = 0 and equality holds. [l

Remarks 9.8 (i) Employing the continuous analogue of Proposition 9.3, i.e., that the
mapA — A-T(A) — WP¢(A) is maximal forA = F,i.e.,0 = A-DF (F) — DWPC(F),
it follows that the quantity A_y - DT (F)) approximates DWP¢(F).

(i) If p > d and 64 > 0, then the estimate T(A) - Ay < cr|r s ||Al¢ implies that
c1|APP —ci —cr|A g ||A|? < [A_y||T(F)|+c1 and shows that |A| < r with a number
r’ > 0 that depends on F and A_4 .

Proposition 9.3 motivates an iterative active set strategy with small subsets of .45
for the practical solution of WZC/S (F) and a local refinement of the grid.

Proposition 9.4 (Active set prediction)
(i) Let XW € R¥™ and gas > 0 and set

M={Ae N Ky T@A) —WA) > max (Ay - T@A) — WA)) —eas}.
'e.

Ifsupge g |y — %) - T(A)| < eas/2, then we have WrL(F) = WP
(ii) Let (0a) ac.4;, be optimal for Wg{“ (F) and define for M > 0

Zs ={A e M, :hy, - TA) —WQA) <Ay, - TF) — Wy.(F) — M},
Zs/z = {A € M), : thereexists A € Zs with A" — A| < 8}.
If (GA{A)AGM/Zr is optimal for Wif/a/z’r (F) with Lagrange-multiplier A5 then we
have 3 pc7,,, 04 < M~ for ny = [Wlco1 ko) + 1T1co ko125, |

Proof (i) If for a solution (64)ac_s; , of the optimization problem Wﬁf/(F )and A €
A, we have 04 > 0, then we deduce with Proposition 9.3 that

oy - T@A) = W(A) = ry - T(F) = W (F),
and it follows that
doy - T(A) — W(A) > Ay - T(A) — W(A) — eas/2
=y T(F) = W (F) = eas/2
=max Ay - T(A) — W(A) — eas/2
Ale N

> max Ay - T(A)) — W(A') — eas.
Ale N

This implies that A € ..
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() IfA e 25/2 and A’ € Zg are such that |A — A’| < §, then we have

W(A) = W (F) + g5, - (T(A) = T(F)) + 8M — 81,

ForA € A5, \Zg /2 the same estimate holds without SM. If (64) sc 4 . is optimal
in the definition of Wf/cz’r(F ), then

WS (P = > 0AW(A) = WIS(F) — 80, + > 04M5
A&/}{g/zm AeZ'

and since Wf'.(F) > Wf/cz’r(F ) this proves the second assertion. O

The proposition leads to the following algorithm in which the active set is predicted
and iteratively enlarged until the maximum principle holds. Once a solution has been
found the grid is refined locally.

Algorithm 9.2 (Irerative approximation of WP*(F)) Let r > 0, M > 0, and L be
a positive integer and set§ = r, A = 0, 4 = A5, and eas = 1. Until § = 2Ly
repeat the following steps.

(i) Set

Nieive = {A € N 5 T(A) = W(A) = max (1 T(A) = WA)) — eas}

and add further nodes to .#;.ve to ensure feasibility.

(i1) Solve the optimization problem Wﬁ}mve and check the maximum principle on
A . If this is not satisfied, then increase £as and continue with (i).

(iii) Refine the grid locally around those nodes A € .4 for whichA_y-T(A)—W(A) >
)L(A/-T(F)—Wif/(F)—(SM to obtainanew set.4" C A5/3 r,setd = §/2and eas = 6,
and continue with (i).

Figure9.12 displays an implementation in MATLAB of the algorithm. The optimal-
ity conditions are checked up to a tolerance 8. The time-consuming generation of
the grid in R?*¢ and its local refinement and coarsening are realized in the C-routines
grid_gen.cand loc_grid_ref.c.

9.3.4 Approximation of W'

To approximate the upper bound W' for W9, we choose as in the approximation
of the polyconvex envelope the grid 45, = 879%4 N K, for parameters § > 0 and
r = N§ for a positive integer N. We employ a set of discrete rank-one matrices that
are identified with pairs of vectors in the set

Ry = {(as., by) € 879 x 87 : |as| < 2dr, 1 — d8§ < |bs| < 1 + d8}.

With this set the iterative algorithm reads as follows.
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function polyconvexification (d)

F_ref = [pi/4 00 0 0 000 0]; F =F_ref(l:d"2);
r=4; L = 4; M= 100;

W = Q@(F) (sum(F."2,2)-1)."

[W_pc, lambda] = multilevel poly (W,F,r,L,M)

function [W_pc,lambda] = multilevel poly(W,F,r,L,M)
d = sqgrt(size(F,2)); tau_d = (d-1)xd"2+1;

T_F = [F,minors(F)];

delta = r; atoms = grid_gen(delta,r,d);

W_pc = 0; lambda = zeros(tau_d,1);

eps_as 1; ell = 1;

while ell < L
W_A = feval (W,atoms); T_A = [atoms,minors (atoms)];
mp = 0;

while —mp
active = active_set (lambda,T_F,eps_as,T_A,W_A,delta,d);
[lambda,W_pc] = lin_prog(T_F,active,T_A,W_A,tau_d);
mp = max_princ (lambda, T_F,W_pc,delta,T_A,W_A);
eps_as = eps_asx*2;

end

if ell < L
atoms = refine_coarsen(lambda,T_F,W_pc,T_A,W_A,delta,M,d);
delta = delta/2; eps_as = delta;

end

ell = ell+];

end

function active = active_set (lambda,T_F,eps_as,T_A,W_A,delta,d)
nA = size(T_A,1);
vec = T_Axlambda-W_A;

active = sparse(size(T_A,1),1);
idx_mp = (vec>max (vec)-eps_as);
idx_feas = (max(abs(T_A(:,1:d72)
-ones (nA,1)*T_F(1:d"°2)),[],2)<delta);
active (max (idx_mp,idx_feas)) = 1;
function [lambda,W_pc] = lin_prog(T_F,active,T_A,W_A,tau_d)
idx = find(active); n_active = nnz (idx);
f = W_A(idx)'; A = [T_A(idx,:),ones(n_active,1)]'; b = [T_F,11"';
[, W_pc,,,Lambda] = linprog(f, []1,[],A,b,zeros(n_active,1l),I[1);
lambda = -Lambda.eglin(l:tau_d);

function mp = max_princ (lambda,T_F,W_pc,delta,T_A,W_A)
vec_A = T_Axlambda-W_A;
mp = —(max(vec_A)>T_F+lambda-W_pc+delta”2);

function atoms = refine_coarsen(lambda,T_F,W_pc,T_A,W_A,delta,M,d)
vec = T_Axlambda-W_A;

idx = (vec>T_Fxlambda-W_pc-Mxdelta);

atoms = loc_grid_ref (delta/2,T_A(idx,1:472),d);

Fig. 9.12 MATLAB realization of the iterative scheme for the computation of the polyconvex enve-
lope
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Algorithm 9.3 (Rank-one convexification) Given 0 < § < r set Wg = 5 ,W and
define for k = 0, 1, ... the function Wé‘“ € 5”1(%,,) for every F € 45 , by

. 1 1
WP = inf { > 0 WE(F + 8tashy ) : (as, bs) € Ry .00 2 0, > o M - M }
Lel Lel

where Wé‘ is extended by +o0 outside K. Stop if ||W(§‘Jrl

- W§||L°°(K,) =< Estop-
Remarks 9.9 (i) The algorithm realizes a successive discrete convexification along
rank-one lines. In particular, the infimum in the definition of Wé‘“ (F) is attained
with two points, i.e., there exist (as, 85) € ‘Qsl,r’ 6 € [0, 1],and ¢, £7 € Z such that
0¢1 4+ (1 —0£;) =0 and

WETL(F) = OWE(F + 801asbg ) + (1 — )WE(F + 8€aasby ).

(i1) The one-dimensional convexification in the algorithm can be realized as follows:
Let (fj)j=o0,..... be a sequence of function values associated with grid points x; =
Xo + hj. Setgo =foand fi = g1. Thenforj > 2,3, ... set g; = f; if

8 — 8j—1 - 8ji—1 — &j-2
Xj —Xj—1 ~ Xj—] —Xj—2

Otherwise determine the smallest integer k < j — 2 with

8 — 8j—k - 8j—k — 8j—k—1
Xj — Xj—k Xj—k — Xj—k—1

and replace gj—p,m=1,2,...,k, by

8j — 8j—k
Gjem = 8j—k + (j—km — Xj—p) —L—.
Xj — Xj—k

Points lying above the convex envelope can be eliminated from the list and this allows
for a realization of the strategy with complexity &'(L), cf. Fig.9.13.

A= F=0, (F+5€1a5b:3r) + 6y, (F+5€2a5b5T)
0 = F+8lashy,j=1,2

| | | |
LN B B W R B B Aun S R A R

F+ 551(151)2; F F+ 542(151);;

Fig. 9.13 The iterates in the approximation of the rank-one convex envelope are obtained by
discrete convexification along rank-one directions; function values between grid points are obtained
by interpolation
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Lemma 9.3 (Iterative lamination) Suppose that Assumption9.1 holds.

(i) For every F € Kj there exist F1,F, € Kg and 6 € [0, 1] such that rank
(F2 — F1) = 1 and WFtL(F) = 0WK(F)) + (1 — 9) Wk (F»).

(ii) We have [W*|co1 g,y < IW|coag,) for all k > 0.

Proof (i) Due to Assumption9.1 we have W = W* = g in R4*? \ K| for every
k> 0.Lete > 0and OWK(F)) + (1 — O)WK(Fy) < WKHL(F) + ¢ for feasible
matrices F, F». We want to show that we can decrease the value by choosing matrices
Fi,Fr € K. WithG=F, — F;,wehave F| = F — (1 — 6)G and F» = F + 6G.
Choosing @ < 1 — 6 and 8 < 6 such that F| = F — aG and F; = F + BG satisfy
F1, F» € 9K, we have W (F,) < WH(Fy) for € = 1,2 and with & = /(e + B) that
= 0F+(1—0)F,.Notingthat Fy = ,U,(Fl—l-(l M@)szorﬂ =1,2and u, € [0, 1]
and Wh(Fy) < MW"(Fl) + (1 = ) WK(Fy) shows OWK(F)) + (1 — )Wk(F,) <
oWk (F D+ a-— G)Wk (Fz) which implies the assertion.
(ii) Let F, G € K, and assume that WAt1(F) < WKt1(G). Let 6 € [0, 1] and
Fi,F> € Kybe suchthat F = 6F + (1 —0)F», rank(F» — F1) = 1, and WKT1(F) =
OWk(Fy) + (1 — O)WK(F,). With G; = F; + (G — F), j = 1,2, we have that
WKH(G) < 6WK(G) + (1 — 0)WK(G») and therefore

WHHG) — WRTH(F) < 0WK(G) + (1 — O)WK(G,) — oW (Fy)
+ (1= OWHF2) < WK oy IF = Gl

If WAHL(F) > WKt1(G), then the same estimate follows by interchanging the role
of G and F. An inductive argument proves the statement. (]

Theorem 9.11 (Approximation of W’¢) Assume that W € C%Y(R?*?) such that
Assumption9.1 holds and W'¢ = wk for some K > 0. There exists a constant
c1 > 0 such that if § and r satisfy s < r — c19, then we have

W5 = Wl k,) < KeSIW ok, )-
Proof We show that for all £ > 0, we have
Wit — Wit ok, < 8 |Wk|c0-l(K,) + WS — Wrl 1k,

which implies the assertion by incorporating Lemma9.3 and the interpolation esti-
mate [|WY — W1k, < c8|W|con (k,)- We consider the case k = 0 and abbreviate

W(? = Ws and Wy = W. The general case follows analogously. Let VT/‘S] be defined
for F € K, by

Wi (F) =inf { D 6,W(F + 8tay bs) : (as. bs) € %}, 00 = 0. > 6p(1,0) = (1,0)},
LeZ LeZ

where W = W on K, and W = +o0 otherwise. Suppose that WB (F) < Wa (F) and
let (as, bs) € % and (0¢)¢c7 be optimal in the definition of Ws (F). Then
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(W} (F) = Wi (F)| <" 00(Ws(F + 8ta] bs) — W(F + 8Lay by))
LeZ
< IW — WsllLok,)-

(F ) > WB (F ), then the same estimate follows from 1nterchang1ng the roles
of Wl(F ) and W (F). It remains to bound the difference |W5 (F) — WHF)|. If
F e K, \ K, we have W1 (F) = W(F) and since W!(F) < W (F) < W(F) also
Ws (F). Otherwise, if F € K, let F,F> € K, a,b € R and 6 € [0, 1], such that
Fr—F =ab',|b|=1,F=0F, + (1 —0)F,, and

WH(F) = 0W(F1) — (1 — O)W(F2).
We note that |a| = |F» — F1| < 2d'/?s, and for
as =8la/8], bs=38b/s]

we deduce that |as| < |a| +d'/28 < 2d'/?r.and 1 —d'/2§ < |bs| < 1 +d'/*5. We
define
b =—(1-0)/8], € =16/3],

and if £ = €, = 0, then we set 6y, = 6 and 6y, = 1 — 6. Otherwise let

¢
Oy = ———, O, =1—0,.
€11+ £2

It follows that |6, — 6] < 26 if 6 < 1/2 and we have 6y, €1 + 6¢,¢» = 0 and
0p, — (1 —6) = —(0¢, —0). We have thus constructed a feasible pair (as, bs) € %’(;r
and coefficients (6;)¢c7 for the definition of VT/‘SI (F). Employing Wl(F) < W; (F)

and F} =F — (1 —0)ab' ,Fy = F +6ab", a repeated application of the triangle
inequality shows that

\WH(F) — W) (F)| < 6, W(F — 8€1asby ) + 60, W(F + 82a5bg )
—OW(F) — (1 = OW(F2)
= 00, [W(F — 8t1asby ) — W(F — (1 —6)ab")]
+ 00, [W(F + 82asb ) + W(F +6abT)]

+ (e, — O [WF) — W(F)]
< C(S|W|C0,1(Kr).

This implies the assertion. (]

Remark 9.10 With Lemma9.2 one can show that the iterates (Wé‘)kzo’lw provide
reliable upper bounds for W', i.e., Wé‘ > W’ forall k > 0.
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Chapter 10
Free Discontinuities

10.1 Functions of Bounded Variation

Many important phenomena require the description of physical quantities with
discontinuous functions. Although Sobolev functions are not continuous in gen-
eral, they are too restrictive to admit functions with jumps across lower-dimensional
subsets. We introduce in this section the space of functions of bounded variations
and discuss its properties. The reader is referred to the textbooks [2, 4, 9] for details.

10.1.1 Derivatives of Discontinuous Functions

Functions in L'(£2) define regular distributions and can be differentiated in the
distributional sense, i.e., given u € Ll(.Q), its distributional derivative is the linear
functional Du : C°(£2; RY) — R defined by

(Du, ¢) =—/u div ¢ dx

2
for every ¢ € C°(82; RY).

Remark 10.1 For u € L'(£2) we have u € Wh1(2) if Du € L'(£2; RY), ie., if
there exists g € L1(£2; R9) such that for all ¢ e C(82; R9), we have

(Du, ¢) =/g'¢>dx.

2

The space Cp(§2; R™) denotes the completion of the space C2°(§2; R™) with
respect to the norm ||v|| (@) = sup, o [v(x)|forv e C°(£2; R™), defined through
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298 10 Free Discontinuities
the Euclidean norm on R™. It is a separable Banach space and its dual is denoted by
A ($2; R™). The elements in .# (§2; R™) are through Riesz’s representation theorem

identified with (vectorial) Radon measures; and the application of u € . (£2; R™)
tov € Co(£2; R™) is denoted by

(1, @) =/¢du=/¢(X)du(X).
2 2

If m = 1, we call u a scalar Radon measure and write .# (§2) for .Z (£2; R™).

Examples 10.1 (i)Every f € L'(£2; R™) defines a Radon measure r=f®dx e
A ($2; R™) through the Lebesgue integral

(s 9) =/¢-fdx
2

forall ¢ € C2°($2; R™). This is a bounded linear functional on Co(§2; R™) since
(nr, @) = 1 lip)ll@lle ).

(ii) The Dirac distribution 8, for xo € 2 defines a Radon measure in .2 (§2) which,
for all ¢ € Co(£2) is given by

(8x0> P) = ¢ (x0).

(iii) Given a union C = U‘_ I} of Lipschitz continuous curves I} C £2,i =
1,2,...,n, and a function f € L! (C; R™), we define the Radon measure prc =
f ® ds|¢ by setting for ¢ € Cy(£2)

(lre, @) =/¢fd5-
c

Definition 10.1 A function u € L'(£2) is said to be of bounded variation if its
distributional derivative defines a Radon measure, i.e., if there exists ¢ > 0 such that

(Du, §) = —/u div ¢ dx < cllplima)

2

forallgp € C Cl (£22; R?). The minimal constant ¢ > 0 with this property is called rotal
variation of Du and is given by

|Dul(2) = sup{ —/u div pdx : ¢ € CH2:RY), pll1o@) < 1}.
22
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The space of all such functions is denoted BV (£2) and called the space of functions
of bounded variation. It is equipped with the norm

lullpv(2) = llull 1) + [Dul($2)

forall u € BV (£2).
We summarize some basic facts about the space BV (§2).

Remarks 10.2 (i) The space BV (§2) is a nonseparable Banach space.

(ii) We have that | Du|(£2) is the operator norm of Du : C2°(82; R?) - R.
(iii) We have W1 (£2) C BV(82) with [|u]lgy(2) = llully11(g) forallu € Wh1(£2).
(vi) We have that u € BV (2) if and only if there exists u € .# ($2; R?) such that

/udiv¢dx=—/¢d,u
2

2

for all ¢ € Cl(£2; RY).

(v) Ifu € BV($2) and Du = 0, then u is constant on every connected component of
£2. Moreover, u — |Du|(£2) is a seminorm on BV (£2).

(vi) If u € BV(£2) and ¢ : R — R is Lipschitz continuous with constant L, then
Y ou € BV(82) with |[D(¢¥ ou)|(§2) < L|Dul(£2).

(vii) If 2 = (a, b) C R! and u € BV (£2), then there exists &z € BV (2) withu = u
almost everywhere in £2 and

n
|Du|(£2) = sup > i) — o),
a<xp<x|<--<xp<b j=1
where the supremum is over all partitionsa < xg < x; < --- < x, < b withn > 1.

Typical examples of functions in BV (£2) that do not belong to wL1(2) are func-
tions that are piecewise weakly differentiable and jump across lower-dimensional
subsets.

Examples 10.2 (i) For 2 = (—1, 1) and u(x) = sign(x), we have

(Du, ¢) = — / u¢' dx = / ¢ dx — / ¢’ dx = 2¢(0)
(1,1 ©.1) ©.1)
forall ¢ € CJ(2). i.e.. Du = 28) and u € BV(£2) with | Du|(£2) = 2.

(i) For £2 ¢ R? and a Lipschitz domain E C £2, the characteristic function u = g
satisfies

(DXE,QS):—/XE div¢dx=—/div¢dx=—/¢~n1;ds

2 E oE
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for all ¢ € C}(£2; R?) with the outer unit normal ng on E, i.e., we have Dyp =
—ng @ ds|yg. This implies that |[Dxg|(£2) = j‘fd_l(aE) is the length or surface
area of 0 E for d = 2 and d = 3, respectively.

Remarks 10.3 (1) If E C R, then E is said to be of finite perimeter in £2 if xg €
BV(£2), and in this case | D xg|(£2) is called the perimeter of E in §2. The perimeter
generalizes the length or surface area of the boundary of a measurable set E N £2.

(ii) The coarea formula states that the total variation coincides with the integral of
the perimeters of the level sets of a function of bounded variation, i.e., we have that

+o0
IDu|(9)=/IDX{u>z}|(~Q)dt.

—00

10.1.2 Properties of BV (£2)

The space BV (£2) is an extension of W!1(£2) in the sense that W!-1(£2) c BV (£2)
and |[ullw11(@) = lullpv(e) for all u € WL1(£2). Since the set C*®(£2) is dense
in Wh1(£2), we have that BV (£2) is not the closure of C*($2) with respect to the
norm in BV (£2). In particular, convergence with respect to the norm in BV (£2) or
equivalently strong convergence in BV (£2) is a notion of convergence that is too
restrictive in applications.

Definition 10.2 (i) We say that the sequence (u,),en C BV (§2) converges inter-
mediately or strictlytou € BV(82) if u, — win L'(£2) and |Du,,|(£2) — |Du|(£2)
asn — oo.

(i1) We say that (u,),en C BV (82) converges weakly tou € BV ($2) if u, — u in
L' () and Du,, —* Du in .#(82; R?), i.e., (Du,, ¢) — (Du, ¢) as n — oo for
every ¢ € Co(£2; RY).

Remarks 10.4 (i) The space BV (£2) is the dual of a separable Banach space and
therefore a natural weak* topology on BV (£2) exists. It coincides with the notion of
weak convergence introduced in the definition.

(i) The weak topology in BV (£2) in the sense of Banach spaces is difficult to char-
acterize due to the lack of an efficient characterization of BV (£2)’.

(iii) For (un)pey € WHP(£2) and 1 < p < oo, we have that u,, — u in WP ()
for some u € W'P(£2) if and only if u,, — u and lunllwrrey = lullwirg) as
n — oo.

Examples 10.3 (i) For 2 = (—1, 1), let (u,),en C BV (£2) be defined by u, (x) =
nx if |x] < 1/n and u,(x) = sign(x) for [x| > 1/n, cf. Fig.10.1. We have that
Uy, — uin L'(2) asn — oo for u(x) = sign(x) for all x € £2. Since |Du,|(£2) =
Vupllpie) = 2 foralln € Nand Du = 28¢, we have | Du,|($2) — |Du|(£2); that
is, the sequence (u,,),cN converges intermediately to u as n — oo. Since (u;),cN C
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Fig. 10.1 Sequence of functions converging intermediately to u = sign but not strongly (left);
sequence of functions converging weakly to # = 1 but not intermediately (right)

Wh1(2) but u ¢ W1(£2), the sequence does not converge strongly to .

(ii) For 2 = (—1, 1) let (u,),en be defined by u, (x) = n|x]| if |x|] < 1/n and
un(x) = 1for |x| > 1/n, cf. Fig. 10.1. We have that (u,,),cx converges in L!(£2) to
the constant function u = 1, but |Du,|(£2) = 2 and |Du|(£2) = 0 so that (u#,),eN
does not converge intermediately to u. Since (Duy, x{x|<1/m)) = 0 form < n, it
follows that the sequence converges weakly to u.

An important property of the total variation is that it is lower semicontinuous with
respect to strong convergence in L!(£2). The following theorem shows that this is
equivalent to weak lower semicontinuity in BV (£2).

Theorem 10.1 (Weak lower semicontinuity) If (u,),en C BV(£2) and u € LY ()
such that |Du,|(82) < cforalln € Nand u, — uin LY(2), then u € BV ()
with |Du|(§2) < liminf,,_, » |Du,|(§2). Moreover, we have u, — u in BV($2) as
n— oo.

Smooth functions are not dense in BV (£2) with respect to strong convergence but
with respect to intermediate convergence.

Theorem 10.2 (Approximation by smooth functions) The spaces C ®(2) and
C°°(82) N BV (82) are dense in BV (§2) with respect to intermediate convergence.

The following compactness result allows us to extract weakly convergent subse-
quences from bounded sequences in BV (£2). This is the crucial difference between
the spaces BV (£2) and wll(2).

Theorem 10.3 (Compactness) Let (uy,),en C BV (82) be a bounded sequence. Then
there exists a subsequence (uy;)jeN and u € BV (£2) such that un; — u in BV (£2)
as j — oo.

The most important examples of functions in BV (§2) are piecewise regular func-
tions that jump across an interface.

Proposition 10.1 (Piecewise regular functions) If 2 =02,U 2, and 21, 25 are
such that 21 N2y = Pand ¥ = 021 NI and u € Ll(.Q) such that u|_qj €
WLL(2)) for j = 1,2, then u € BV(£2) with
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Du=Vu® dx — [Jun] ® ds|x

with the piecewise defined weak gradient Vu|g; = V(u|g;) and the jump [un] =
uQng, Lx+uo,no, | s across X with the outer unit normals ng; to jforj=1,2.

Proof For ¢ € C2°(82; R9) a piecewise integration by parts with ¢|; 2;\x = 0 for
Jj =1, 2 shows that

/u div ¢dx:/u div ¢dx+/u div, ¢ dx

2 Q] 92

=—/(Vu)-¢dx—/(Vu)~¢dx+ / u¢ -ng, ds

21 2 0821
+ / u¢ -ng, ds

d§2»

= —/(Vu)-¢dx+/¢-[[un]]ds,
2 )

which proves the assertion. ([

The proposition can be generalized which leads to the following characterization
of functions in BV (£2).

Theorem 10.4 (Decomposition of Du) For every u € BV (§2) we have
Du =Vu ® dx — [un] ® ds|s, + Cy,

where S, is a (d — 1)-dimensional jump set, Vu € L'(82) is the weak gradient in
the set 2\S,, and C,, either vanishes or is a measure supported on a Cantor set of
vanishing d-dimensional Hausdorff measure that is zero for sets of finite (d — 1)-
dimensional Hausdor{f measure. A point x € §2 belongs to S, if there exists a unit
vector n € R? and distinct numbers a* € R such that

1ir%|B§E(x, Nt / u(y)dy = a*,
e—>
BE(x.,nN2
where Bgi(x, n)={y e Bs(x): £(y —x) -n > 0}, cf. Fig.10.2.
Some further important properties of BV (£2) are listed below.

Remarks 10.5 (i) The embedding BV (§2) — LP(£2) is continuous for 1 < p <
d/(d — 1) and compactfor 1 < p <d/(d —1).
(ii) We have |lu||Lr(2) < c diam(£2)|Du|($2) if u € BV (£2) with fQ udx = 0 and
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Fig. 10.2 Sets BX(x, n) for +

apointx € S, Wéere the B¢ (x,n) n

function u jumps from the

value a~ to the value a* in _

the direction of n B (x ’ n) s
u

l<p=d/d-1.
(iii) There exists a linear_operator tr : BV(£2) — L'(32) such that tr(u) = ulyq
for all u € BV (£2) N C($£2). Moreover, we have the integration by parts formula

/¢Du:—/u div ¢dx+/tr(u)¢-nds

2 2 52

for all u € BV(£2) and all ¢ € C!(2; RY). The operator tr is continuous with
respect to intermediate convergence in BV (£2). It is not continuous with respect to
weak convergence in BV (£2); for example for (u,,),eny C BV(0, 1) defined through
up(x) =nxforx < 1/nandu(x) = 1forx > 1/n, we have u,, — u withu = 1
but u,(0) =0 foralln € N.

10.1.3 A Variational Model Problem on BV (2)

To understand the finite element approximation of variational problems involving
total variation, we consider, for given g € L2(.Q) and @ > 0, minimizing the
functional

1) = | Dul(€2) + %/(u _9lds
2

as defined for u € BV(£2) N L3(£2). By the density of smooth functions we may
choose a bounded infimizing sequence (#,),cN C wh(22) N L%(2). Due to the
lack of reflexivity or more generally an existing separable predual space, we cannot
extract a weakly convergent subsequence in W1 (£2). A weak limit of a subsequence
exists in the space BV (£2) N LZ(SZ).

Theorem 10.5 (Existence) There exists a minimizer u € BV (£2) N L%($2) for 1.

Proof The functional 7 is bounded from below and the set of admissible functions
is nonempty, and hence there exists a bounded infimizing sequence (u,),eN C
BV(£2) N LZ(Q). Theorem 10.3 guarantees the existence of a weakly convergent
subsequence (up;)jeN With weak limit u € BV($2) and Theorem 10.1 implies
I(u) < liminf;_, I(unj), i.e., u is a minimizer for /. O
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Remark 10.6 The existence of solutions subject to Dirichlet boundary conditions
ulye = up for up € L'(382) is difficult to establish due to the lack of weak
continuity of the trace operator.

The following stability result implies the uniqueness of minimizers.

Theorem 10.6 (Stability and uniqueness) For g1, g» € L2(2) let the functions
ui, uy € BV(82) N L*(2) be minimizers of I with g replaced by g1 and g», respec-
tively. We then have

lur —uzll < lig1 — g2ll.

In particular, minimizers are uniquely defined.

Proof We define the convex functionals F : BV (£2) — R and Gy : L2(2) > R,
£=1,2,by
F(u) = |Dul(2), Ge(u) = (@/2)llu — g|*

and set Iy = F + G;. We extend F to L2(£2) with the value +00, and note that G,
is Fréchet differentiable with

3G(w)[v]l = a(u — g¢,v)

for all v € L%(£2). Since F is convex, we have that its subdifferential is monotone,
i.e., for ue € 0F (ug), £ = 1, 2, we have

(o — 1, uz —uy) = 0.

Noting that 0 € 01y(uy) we deduce that —§G(uy) € dF (ug) for £ = 1,2, and
therefore
(—aua—g2) +a(ur — g1, us —uy) > 0.

This implies that
luz — ur|* < (uz —u1, g2 — g1)

and an application of Holder’s inequality proves the asserted bound. (I

Due to a monotonicity property of the total variation, a maximum principle holds
for the minimization problem.

Proposition 10.2 (Maximum principle) If g € L°°($2), then the minimizer u €
BV (2) N L*(2) for I satisfies u € L*(82) with lull o2y < llgllLoe(s).-

Proof Assume that g(x) < g for almost every x € £2 and given the minimizer
u € BV(2) N L%(£2) for I, define 7(x) = min{u(x), g} for x € £2. According
to Remark 10.2 we have u € BV (§2) with |Du|(£2) < |Du|($2). Since also ||u —
gl < llu — gll, we deduce that I (u) < I(u). This implies # = u and u < g. The
same argument shows that u > g if g(x) > g for almost every x € 2. Therefore
u € L>(£2) with the asserted bound. - O
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Useful information about the minimization of I is contained in the related dual
problem. To identify it, we note that by a completion of C2°(§2; R¥) with respect to
the norm || p || g (giv:2) = llpIl + || div p|l, the total variation | Du|(§2) of a function
u € BV(£2) N L3(£2) can equivalently be characterized as

|Dul(2) = sup{ —/u div pdx : p € Hy(div: 2), |p| < lin.Q},
2

where
Hy(div; 2) = {p € L*(2; RY) : div p € L*(R2), p - nlye = O}.

For the minimization problem defined through 7, we thus have with the indicator
functional Ik, o) of the set

K1(0)={p € LZ(.Q; Rd) 1 |pl < 1 almost everywhere in £2}
that

inf T = inf |Dul(2)+ <lu—g|?
ueBVNL? ueBVNL? 2

. . [07
= inf sup (—/u div de+—||u—g||2—11<1(0>(p)).
ueBVNL? peHy (div) 2

This defines a saddle point problem with unknowns u and p. The dual problem is
obtained by eliminating u. For this we assume that the order of the infimum and
supremum can be interchanged, i.e.,

inf I(u)= sup inf (— Ju div pdx + Flu — gl> — IKI(())(p)).
ueBVNL? peHy (div) u€BVNL? Q

A direct calculation shows that the solution u of the inner minimization problem is
for p € Hy(div; §2) given by

u=g—i—oc_1 div p,

and thus

. 1 . 1
inf Tu)= sup —=—|divp+agl®+=—lagl?® — I, (p).
ueBVNL2 peHy (div) 20

The maximization problem defined by the right-hand side is the dual problem. The
heuristic interchange of the infimum and the supremum can be rigorously justified
and leads to the following result.
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Proposition 10.3 (Strong duality) For p € Hy (div; £2) define

1 . , 5
D(p)z—gll div p +agll +§||g|| — Ik, 0(p)-

We have
inf I1(u) = sup D(p).
ueBV(2)NL2(2) pEHN (div; 2)

Moreover, there exists a solution p € Hy (div; §2) that maximizes the functional D.

Proof The reader is referred to [12] for a proof of the result which is established by
showing that [ is the Fenchel dual of D in the sense of [11]. O

Remark 10.7 Exchanging the order of the infimum and supremum always leads to
the weak duality principle inf, I (u) > sup, D(p).

Proposition 10.4 The unique solution u € BV (£2) N L*(2) of the minimization
problem defined by I and every solution p € Hy(div; §2) of the maximization
problem defined by D correspond to a saddle point for the functional

. o
L(u, p) = —/u div pdx + = flu — gl — Ix,0)(p)
2

and are related by

div p=a(u—g), Du € dlg, 0(p).
where the inclusion is understood as
—(u, div(g — p)) <0
forall g € Hy(div; £2) N K1(0).

Proof The proof follows from standard arguments in convex optimization, cf.,
e.g., [11]. O

Remarks 10.8 (i) The inclusion Du € 09Ik, 0)(p) is formally equivalent to p €
d|Du|. In particular, we have p = Vu/|Vu| in regions where Vu # 0.

(ii) In the case of Dirichlet boundary conditions on 952, the space Hy (div; £2) is
replaced by H(div; £2) = {p € L2(§2; Ry : div p € L3(£2)).

An explicit solution can be constructed in the case of Dirichlet boundary
conditions.

Example 10.4 Letr > 0 be such that B, (0) C §2 and define g = x3, (0)- Then
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i = max {0, 1-— d/(ozr)}xgr 0)

is the minimizer for / subject to u|y = 0.

Proof Assume that d < ar and define

) —r~Ix for |x| <r,
X) =
P —rx/|x|? for |x|>r.

Then p € H(div; £2) with div p = —(d/r)xs, ) and |p| < 1. Moreover, we have
u = (1/a) div p + g. Since p = —n on d B, (0) we have for every g € H (div; £2)
with |g| < 1 that

~ divig = p) = ~(1 = d/@n) [ @ p-nds =<0

3B, (0)
If d > ar, we define
—(a/d)x for |x| <r,
px) = 5 )
—(a/d)yr<x/|x|= for |x|>r

and verify div p = —axp, ) = —ag,ie,u = (1/a) div p+ g = 0, and |p| <
ar/d < 1. Since u = 0 the variational inclusion Du € 91k, 0)(p) is satisfied. [
10.2 Numerical Approximation

We discuss in this section the numerical approximation and iterative solution of the
minimization problem defined through the functional 7, which for every function
u € BV(£2) N L?(£2) is given by

o
I(w) = |Dul($2) + 2 lu — gl

fora > 0 and g € L%*(2). The subsequent discussion is based on results

in [6-8, 10].

10.2.1 WV Conforming Approximation

The finite element space .1 (.7,) defines a subspace of BV (£2) N W!1(£2). Due to
the density of smooth functions in BV (£2) with respect to intermediate convergence,
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we can approximate functions in BV (£2) by functions in .#!(.7,). The following
lemma provides bounds on the approximation error. For ease of presentation we
restrict to the case d = 2.

Lemma 10.1 (Approximation of BV functions) Assume that 2 C R? is star-shaped
and let & > 0. For every u € BV(2) there exists u. , € . () such that

IVuenlpi@) < (1+ che™! + ce)| Dul(£2),

and
luen — ull 1oy < c(h?e™" + &) Dul(82).

Ifu € L*®(82), then |lug pll L@y < llull L)

Proof Since C*°(£2) is dense in BV (£2) with respect to intermediate convergence
we may choose a function # € C!(£2), such that ||z — ullpiey < celDul($2)
and [|VullL1o) < (1 + &)|Du|(£2). Moreover, if u € L*°(£2), then we have that
lull oo (2) < llullLoo(s2)- This allows us to assume u € C'(£2) in the following. We
suppose that £2 is star-shaped with respect to 0 and define the set .(/2\8 =14+
and the linear transformation ¢ : 2, — 2, % > /(1 + ). We set il = u o ¢.
and with a nonnegative convolution kernel p, € C O (R2), we let uy = (e * pe)le
and define u. , = Zu.. To prove the estimates we first note that nodal interpolation
estimates guarantee

e — tellp1egy + hIVUen — ug)|l < ch* | D?uell 1 (g).-
Standard mollification arguments show that

lue — el (@) < cell Vitell 1,

2 o~
ellDuellprey + IVuellpioy < Vel s,)-
A transformation argument and a direct calculation imply that

llwe — ullpiey < cellVullpi gy
Vil 1@y = (1 + o) Vull i g

The combination of the estimates proves the asserted bounds for the case u €
C'(£2). The estimate lugnllLeo2)y < llullpe(e) is a direct consequence of the

construction. O

Remarks 10.9 (i) For d > 3 the same result can be proved by employing a quasi-
interpolation operator instead of the nodal interpolation operator.

(ii) The estimate of the lemma and Holder’s inequality imply that for functions
u € BV(2)NL>®(R) wehaveinf, c 17 lu—vpllLr2) < ch'/Pforl < p < co.
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(ii1) Optimizing the convergence rates of the estimates in the lemma simultaneously
for intermediate convergence leads to the choice ¢ = /!/? and the suboptimal esti-
mate ||lu — e pll 1) < ch'/?

Since the functional I is strongly convex, the distance of any function to the
minimum is controlled by the difference of the values of the functional.

Lemma 10.2 (Convexity) If u € BV(£2) N L?>(2) is the minimizer for I, then we
have

o 2

Ellu —vlIF = 1) —1(u)

foreveryv € BV(£2) N L*(£2).

Proof We define F : BV(£2) - Rand G : L2(2) >R by
o 2
F(u) =|Dul(£2), Gu)= EIIM — gl

and extend F by 400 to L?(£2). Then F is convex and G is strongly convex and
Fréchet differentiable with §G (u)[w] = a(u — g, w), i.e., we have

5G )y — u] + %nu — 2+ Gw) = GW)

for all u, v € L%(£2). Since u € BV (£2) N L%(£2) is a minimizer, we have
0e€dl(u)=0Fu)+35Gu),
or equivalently —8G (1) € 0 F (u), i.e.,
—3Gw)[v —ul+ F(u) < F(v).
The strong convexity of G yields
%IIM — VP +Gw) — G+ Fu) < F(v)

which proves the assertion. ([

Theorem 10.7 (Error estimate) Assume that 2 C R? is star-shaped and g €
L%®(2). Let u € BV(2) N L*(2) and uj, € /() be the minimizers for I
in the respective spaces. We then have

0%
>l = up|> < ch'/2,

Proof Lemma 10.2 and the fact that I (1) < I (vy,) for all vj, € LUT) imply that
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%nu —upl? < Tup) — I () < I(vp) — I ()

= IVvrlipi@) — Dul(£2)

+5 [ (0n=9 - =) (0n -0+ - g) ds

2

o
= IVvnliziy = 1Dul($2) + Slve = ullpi ) Ive + v = 281l @)

Fore > Oweletvy, =ugp € ST be an approximation of u as in Lemma 10.1
and deduce that

%Hu —up|? < cthe ™ + &)|Du|(2) + c(h*e ™" + &)| Du|(£2).

With & = h'/2 we find the asserted bound. O

Remarks 10.10 (i) Since foru € BV (£2)NL2%(£2) the best approximationin UG
satisfies inf,, ¢ o1(7,) lu — vall < h'/2, the convergence rate of the theorem is sub-
optimal. Numerical experiments indicate that the optimal convergence rate & (h'/?)
in L2(£2) is in general not attained.

(i) If £2 = (a, b) C R and the minimizer u € BV (£2) N L3(£2) is piecewise con-
tinuous, then we can employ the nodal interpolant v, = #,u in the proof of the
theorem and noting that |V .Zu|| < |Du|($2) and ||u — Spullp1 oy < ch|Du|(£2),
we obtain the quasi-optimal estimate ||u — uy,| < ch!/?.

The best approximation resultinf,, c 17 [ —vallLr(2) < ch'/P for functions
u € BV(£2) N L*(£2) can in general not be improved as the following example
shows.

Example 10.5 Let 2 = (—1, 1), 9}, a uniform triangulation of £2 with mesh-size
h > 0 such that z = 0 is a node of .7},. For u = sign, we then have

inf  lu—vpllr2) = ch'/?.
e (Th)

To prove this we show that the entire approximation error is concentrated at the
discontinuity at x = 0. We assume that there exists a minimal w;, € .#!(.7},) which
is antisymmetric, i.e., we have wy,(—x) = —wy,(x) for x € (0, 1) and wy,(0) = 0.
Then the function wy, is affine on (—#, h) with slope a/h € R, cf. Fig. 10.3, for some
a € R, and we have with the transformation y = x/h that

/ |M—Wh|de=2/ |1_ax/h|l’dx=2h/|1—ay|"’dy.
(—h,h) (0.h) ()

The value of the integral related to the minimizing choice of a is positive and inde-
pendent of & which implies that [lu — wp|lzr(2) = ch'/p.
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Fig. 10.3 The approximation of a discontinuous function with continuous, piecewise affine func-
tions leads to an error |lu — wyllLr(2) > ch'/P (left); for the best approximation of # = sign in
.#1(Z,) with respect to the L? norm, the Gibb’s phenomenon occurs at the discontinuity (right)

10.2.2 Piecewise Constant Approximation

The set of piecewise constant finite element functions .’ 0(Z,) is a subset of BV (£2).
It is straightforward to check that for a sequence of triangulations their union defines
a dense subset with respect to weak convergence. We will show that density with
respect to intermediate convergence fails and hence that the discretization of the
model problem with piecewise constant finite elements may not approximate the
right minimum.

Proposition 10.5 (Piecewise constant functions) For every up € £°(J,) we have

1Dup|(2) = D lunlllzics).

Se.NNR

Proof The identity follows directly from an elementwise integration by parts. [

Proposition 10.6 (Nonapproximation) Let 2 = (—1/2,1/2) x (0, 1) and let u €
BV(£2) N L*°(82) be, for x = (x1,x2) € £2, defined by u(xi, x2) = xix,<0). For
each n > 1 let J, be the triangulation of 2 with maximal mesh-size h,, = 1/n, as
shown in Fig. 10.4. Then there is no sequence (un),cN C LY(2) withu, € £°(T)
for all n € N such that u, — u in LY(2) and |Du,|(£2) — |Du|(2) = 1 as
n— oo.

Proof Let (u,),en be a sequence with u, € .£°(.7,) such that ||u,, — ullpie) —> 0
and |Du,|(2) < c forall n € N. Given n € N we define the sets R’j’. for j =
1,2,...,nby

R} ={(x1,x) € 2:(j—D/n <x2 < j/n}

and set R" = R{. Letu, € LY(R"™) be the average of u, over all strips, i.e., for
(x1,x3) € R" set

_ l < .
up(x1, x2) = - Z}un(m,xz +j/n),
=
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[ 14

1/2

NN <

u=1
1
|
|
1
1
|
R?=R? '
\J R*= R}

Fig. 10.4 Construction of triangulations 7,, n € N, of 2 = (—1/2,1/2) x (0, 1) on which
piecewise constant finite element functions are not dense in BV (§2) with respect to intermediate
convergence; the jump set of the function u = x{x, <o) is not resolved by the triangulations

and reflect u,, across the xj-axis, i.e., u,(x1, —x3) = u,(x1, xp) for (x1, x2) € R".
We then define %, € L'(£2) by periodically extending u, with period 2/n in the
xp-direction. Then 7, € L' (£2) is continuous across the interfaces ﬁ'} N F; 41 for
j=1,2,...,n—1and wehave ||En—u||L1(R;?) = |ltty —ull 1 (gny and |DZI,1|(R;?) =
|Du,|(R") for j = 1,2,...,n,where | Du,|(R") denotes the total variation of Du,
on R". With the triangle inequality we verify that

|Dit, |($2) = n|Duy|(R") < |Duy|(£2),
||ﬁn - u”Ll(,Q) = }’l”ﬁn - I/l”Ll(Rn) < ”Mn - u||L1(_Q)
For every ¢ > 0 there exists N € N such that |lu, —u|| ;1) < e foralln > N, ie.,
n —ullpgny < €/n.

For each n > N there exist distinct triangles T_ilr, T_%, 71,72 € , N R" with
ﬁn|TJ1UT3_ >1—4e andﬂ,,|T_1UT3 < 4e¢ since otherwise |[u, — ullpigny > €/n. The
triangle inequality along disjoint paths of neighboring elements connecting 7/ and
T/ for j = 1,2, respectively, yields that

(1= 802/ n < (VD) ([l 1 — Tl | + [nl 2 — Tily2)
< > MEadl s = |1DELI(R")

Se.S,NRY

and hence |Du,|(2) > |Dii,|(£2) > (1 — 8¢)+/2 for all n > N, i.e., we have that
|Du,|(2) /1 = |Du|(§2) asn — 0. (I
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10.2.3 Iterative Solution

To develop an iterative solution method for the nondifferentiable minimization prob-
lem, we first state optimality conditions for the minimization of I in.#! (.7},). For this
we note that the minimization of I can be equivalently expressed as a saddle-point
problem; that is, due to the fact that Vi, is elementwise constant for uj € . 1 ()
we have

o
inf / |Vup|dx + —|lup — g||2 = inf sup /ph - Vuy dx
uhejfl(ryh).Q 2 uheyl(gﬂ phefo(%)dg

o 2
+ Elluh —glI” = Ik, 0 (pn)

= inf sup  Lp(upn, pn),
upe () pneL0(T)d

where Ik, (o) is the indicator functional of the set K1(0) = {p € L*°(£2; Rd) dpl <
lae.in £2}.

Lemma 10.3 (Optimality) The function up € .'() minimizes I in /(%) if
and only if there exists py € L°(F)¢ with |pp| < 1 in §2 such that

(pn, Vvp) = —a(up — g, vi), (Vup,qn — pp) <0

for all (v, qn) € SN(Ty) x L) with |qn| < 1 in £2.

Proof The existence of a saddle point (uy, pp) € .21 (F) x £°(F)¢ follows from
the fact that the Lagrangian function L), is a lower-semicontinuous, proper, convex-
concave function, cf., e.g., [14] for details. The equations are the corresponding
Kuhn-Tucker optimality conditions, i.e.,

0 =368y, Ln(un, pr), 0 € dp,Lp(up, pr),

where we note that &, € 31k, ) (ps) for&, € £°(F) and pj, € £° () NK1(0),
i.e.,
Grsan — pn) + 1k,0)(Pn) < Ik, 0)(qn)

for all g, € £°(F,)?, if and only if
Gn-qn — pn) <0

for all g5, € Z°(7)? N K1(0). O

To find a saddle point for L;, we use a descent flow with respect to u;, and an
ascent flow with respect to py, i.e.,

Orup = —8u, Ly(up, pr), rpn € 0p, Lp(up, pn)-
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With an appropriate time-discretization and a discrete inner product (-, ), s on
57 1(%,) that may differ from the L? inner product, this motivates the following
iteration which specifies the abstract primal-dual iteration of Algorithm 4.5.

Algorithm 10.1 (Primal-dual iteration) Let (-, -), ¢ be an inner product on . L),

>0, @), p) e ST x LOT)?, set dul) = 0, and fork = 0, 1, ... with

~k k—1 k—1 .
u, =u;,  + tdu,” solve the equations

(—d; pf + Vit qn — pf) <0,
(dity, vidns + (Pl Vi) + e (uj, — g, vi) =0
subject to | pf| < 1in £2 for all (vs, gi) € 1 (F}) x LO(F)? with |gn] < 1in 2.
Stop the iteration if ||d,u§ lns < &stop-

Remark 10.11 Notice that pfl is the unique minimizer of the mapping

k=12
l

1 ~
qn — Z“% - D — (qn, Vuﬁ) + Ik, 0)(qn)

and given by the truncation operation

p;‘l = (p,lf] + fVﬁﬁ)/max{l, |pﬁ71 + tVﬁ],ﬂ}

which can be computed elementwise.

The iterates of Algorithm 10.1 converge to a stationary point if 7 is sufficiently
small.

Proposition 10.7 (Convergence) Let u;, € ' (.F,) be minimal for I in %' ()

and define
Vvl

0= )
v e L1 (TH\(0) valln.s

If T0 < 1, then the iterates of Algorithm 10.1 converge to uy, in the sense that they
satisfy for every N > 1

(lun — upliz, + Il pn — PoI%).

R —

N
T
> (A= 2OdufI}  +alluy —uf)?) <
k=1

Proof Let p;, € £%(7,)% be as in Lemma 10.3. Upon choosing v;, = uj; — u];l and
qn = py in Algorithm 10.1, we find that

d T
3’(||uh —uplly o+ lIlpn — PRIP) + 5(||dtuﬁ 175 + Idi pRIIF) + eellug — uf )l

= —(du, up — w5 — (di s, pp — ph) + alluy — ul)?
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< (Phs Vi — ) + ey, — g, un — ) = (pn — pj, Vi) + el — uj |
Using that
(up, — 8. un — up) + llun — wy|* = (up — g, up — up)
and choosing g, = p]hc in Lemma 10.3, we deduce that

dt T

~ Ul = w17 5+ 1pn = PiI%) + 5 (st 7 + I 1) + ellun — w12

= (py, Vun = up) = (pr — piy, Vidy) + a(uy, — g, up — uj)

= (P Vun = up) = (pn = Py Vi) = (i Vup, — )

= (pn = pjy» Vil = @) + (P = pn. Vup)

< (pn = pj Yy — @) = 7 (py — pjy. Vdiup),

where we used u’fl — ﬁ’h‘ = rzdfuﬁ in the last identity. Multiplication by t, summation
overk = 1,2, ..., K,discrete integration by parts, Young’s inequality, and d,u2 =0
show that for the right-hand side we have

K K
_ K
3 E (pn — pﬁ, Vd,zulfl) =73 E (d,pz, thu];l 1) + r2(ph — pﬁ, Vd,u’,fl)|k:0
k=1 k=1

2
T —
< 7(;_1 IVl + 1, 1)

1 K12 T4 K2
+ = lpn — pEI2 + S 1vauk))
2 2
7? al 2,2 k—12 k2
< 7(2r 02 ldyu~ I} + lld; 1)
k=1

1 t46?
+ 5 lon = i P+ —— g 1 -

Due to the assumption 76 < 1 we may absorb the terms of the right-hand side and
conclude that

K K

1 T

5 ln —uf s+ S = 09 ldygy 1> + 1 erlluy, — |
k=1 k=1

< =(llun — upllz s + low — PoI?).

| =

This proves the theorem. U
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Remark 10.12 Notice that we cannot expect convergence p; — pj since py is not
unique in general, e.g., if Vuy|r = 0 for some T € .7j,.

Useful choices of the inner product (-, -), s are weighted combinations of the
inner product in L?(£2) and the semi-inner product in H 1(£2).

Proposition 10.8 (Discrete inner products) For s € [0, 1] and vj,, w, € ./ l(%l)
define

1-s
Wnswidns = i, wp) + h,(ninv)/s(VVh, Vwp),

where h'L—9/5 — 0 for s = 0. We then have ||Vvy| < ch;irr?in{l’(lfs)/(zy)}||vh||h,s

min

forall v, € LY (Fy) withe = 1ifs > 0.

Proof 1f s > 0, then we have by definition of ||vh||%’s = (Vu, Vi), that

—(1—s)/s
Vvl < hto ™ lvnli2
for all v, € .1(.Z},). For s > 0 the inverse estimate || Vvy|| < ch;ﬂlnnvh ||, valid for
allv, € 1T, implies the assertion. U

To fully justify the choice of the scalar products (-, -);.s for s > 0, we have
to show that the right-hand side in the estimate of Proposition 10.7 is bounded
h-independently. For s < 1/2 this is guaranteed by the following lemma if the
sequence (up)p -0 of finite element approximations is uniformly bounded in the set
WhH(2) N L®(£).

Lemma 10.4 (Discrete interpolation estimate) For every vy € ./ Y(Z,) we have
hanin | Vv 1172y < €lvallzoe ) IVl (g)-

Proof ForT € 9, anintegration by parts on T together with the fact that Avy, |7 = 0,
implies that

hr/IVVhI2 dx = hT/VhVVh cnpds < hr dT | vallzooer) | T1 VYRl L1y
T aT
Noting h7|dT| < ¢|T|, a summation over T € .7}, implies the assertion. ([l

Remark 10.13 To obtain approximations with residuals that are bounded indepen-
dently of the parameter s, the stopping criterion

k
(drty,, Vi)n,s
sup —————— = Estop

mes N7y lvall

should be used.
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10.2.4 Realization

The MATLAB code displayed in Fig. 10.5 is an implementation of the primal dual
method of Algorithm 10.1 with the scalar product (-, -),1/2 defined in Proposition
10.8 and the corresponding choice = £'/?/10. It computes the update of plg_l via
the elementwise operation

p’,i_l + rV'zZ’;l_l

max(1, |pf " + Vi, ')

k
Pp =

and the linear system of equations
(dstty, vidns + (P Vi) = —a(uy — g, vi)

for all v, € #'(%,). The second term on the left-hand side is represented by the
matrix with the entries

(xre', Vo) = |T| ;|7

forall T € 95,0 =1,2,...,d, and z € .4}, which is assembled in the routine
mixed_matrix.

10.2.5 A Posteriori Error Control

We apply the abstract framework for a posteriori error estimates for strongly con-
vex minimization problems of Theorem4.2 to control the approximation error in
the numerical minimization of /. The estimate states that the distance of an arbi-
trary approximation to the minimizer is controlled by the primal-dual gap. The dual
functional is for p € Hy (div; £2) given by

1 . , 2
D(p) = —gll div p +agll +§||g|| — Ik, 0)(p),

and we have D(gq) < I (u) for every g € Hy (div; §2) with equality for a solution of
the dual problem.

Theorem 10.8 (A posteriori error estimate) Let u € BV (§2) N L2(2) be the mini-
mizer for I. Then for every up € () and py, € Hy(div; 2) with |pj| < 1, we
have

o - 1 N
5”“ —up|? < Vunllp o) —/Vuh -phdx + g” div pp — a(up — 9)II%.
Q
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function tv_reg_primal_dual (d, red)

[cd4n,nde,Db,Nb] = triang_cube(d); cd4n = c4n-.5;
for j = l:red

[c4n,nde,Db,Nb] = red_refine(c4n,nde,Db,Nb);
end
h = 2" (-red); alpha = 100; tau = h"(1/2)/10; noise = .4;
[s,m,—,~] = fe_matrices (c4n,nde);
ms = mixed_matrix(c4dn,nde);
A = mt+hxs;
[nC,d] = size(c4dn); nE = size(nde,l);
gg = g(cé4n)+noisex (rand(nC,1)-.5);
u = zeros(nC,1l); u_tilde = u; p = zeros(nk,d);
corr = 1; eps_stop = le-2;
while corr > eps_stop

du_tilde = comp_gradient (c4n,nde,u_tilde);

p_tmp = pttauxdu_tilde;
p = p_tmp./max (1, (sqrt (sum(p_tmp."2,2))*xones(1,d)));
P = reshape(p',d*nE,1);
u_new = (A+tau*alphax*m)\ (Axu-tau*rms*P+tauralpha*mxgqg);
dt_u = (u-u_new)/tau;
corr = sqgrt (dt_u'*Axdt_u)
u_tilde = 2xu_new-u;
u = u_new;
show_pl (c4n,nd4e,Db,Nb,u) ;
end

function ms = mixed_matrix (c4dn,nde)
[nC,d] = size(cdn); nE = size(nde,1l);
ctr = 0; ctr_max = dx (d+1)*nE;
I = zeros(ctr_max,1l); J = zeros(ctr_max,1l); X = zeros(ctr_max,1);
for j = 1:nE

X_T = [ones(l,d+1l);cd4n(nde (3, :),:)"1;

grads_T = X_T\[zeros(l,d);eye(d)];

vol_T = det (X_T)/factorial (d);

for k = 1:d+1

for ell = 1:d

ctr = ctr+l;
I(ctr) = nde(j,k); J(ctr) (j—1) xd+ell;
X(ctr) = vol_Txgrads_T(k,ell);
end
end
end
ms = sparse(I,J,X,nC,d*nE);
function val = g(x)
val = zeros(size(x,1),1);
val (sgrt (sum(x."2,2))<.2) = 1;

Fig. 10.5 MATLAB realization of Algorithm 10.1 for the iterative minimization of the total variation

regularization problem
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Proof We recall from Lemma 10.2 that
o 2
EIIM —upl” = ITup) — I ().

Incorporating the duality principle 7(u) > D(py) for all p;, € Hy(div; £2), we
deduce that

o 2 < IV o 2 1 di —~ 2 o 2 i —~
EIIM —upll” < \Vuplproy+ Elluh —gl*+ ﬂ” iv pp +agl” - §||g|| + Ik, 0)(Ph)-
We assume that |py| < 1in £2 and with straightforward calculations deduce that

o 2 1 o~ 2

Sl —unll® < Vunllpro) + =1 div pp — a(un — @)l

2 20

PN o 2« 2« 2
+ Mh(dIVPh+0lg)dx+§||Mh—g” —zllgll —Elluhll

2
1 .~ P
= [Vunllpr o) + ﬂ” div pp — a(up — 9)1° —I—/uh div pj, dx.
2
An integration by parts proves the asserted estimate. |

Remarks 10.14 (i) The error estimate is sharp in the sense thatif u = u;, and pj, = p
solves the dual problem, then the right-hand side vanishes.

(i) The practical application requires us to compute a conforming approximate
solution of the dual problem. The piecewise constant approximation provided by
Algorithm 10.1 in general does not satisfy p, € Hy (div; £2).

(iii) The error estimate gives rise to the nonnegative refinement indicators

_ _ |
nr un, pr) = IVupllprry — / Vuy - ppdx + Z” div pp —a(up — g)llizm
T

for u, € .#1(7,) and py, € Hy(div; 2) with |p,| < 1. Noting the optimality
condition div p = a(u — g) and the duality relation

|Du|($2) = —/u div pdx
2

for an exact solution (u, p) € (BV(.Q) N L2(.Q)) X Hy(div; £2) with |p| < 1in £2,
the refinement indicators have the interpretation of a residual.
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10.2.6 Regularized Minimization

In some situations a regularized treatment of the functional / provides accurate
approximations and in this case a semi-implicit discretization of the corresponding
gradient flow defines a useful iterative scheme. We define the regularized functional
Is for § > 0 by

o
Is(u) = / Vals dx + S — gI?
2

foru € Wh1(£2) N L2(£2) and with |p|s = (|p|> + 82)!/? for every p € R?.

Algorithm 10.2 (Semi-implicit, regularized L*>-flow) Given § > 0, T > 0, and
u2 e YT compute the sequence (uﬁ)kzo,l,m by solving

ek, vi) + (IVus 5 VUl Vo) = —aul — g, vi)

for all v, € Z1(F). Stop if ||dsuk | < esiop.

Remark 10.15 The choicev, = u];l shows that the iteration is unconditionally weakly
stable in the sense that

d T 120 kg2, O a
Sk I + Sl I? + | 1Va ™ 152Vl |+ S eI < gl
2 2 2 2
for all k > 1. In order to obtain accurate approximations, the step size should be

chosen so that © < chp,. This scaling leads to practically strongly stable approxi-
mation schemes for § > 0 in the sense that the regularized energy /5 decreases.

If § < ch'/2, we have the same error estimates as for the unregularized
approximation.

Proposition 10.9 (Regularized approximation) Let u € BV (£2) N L%(2) be the
minimizer for I and let us j € 71 () be minimal for

o 2
Is(vp) = [ |Vvplsdx + §||Vh —gll
Q

in the set of functions vy, € LY. Ifé < ch1/2, then we have

o
Sl —usll® < ch'/2.

Proof We first note that for every p € R? we have

Ipl < Ipls < Ipl + 6.
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With Lemma 10.2 and the fact that us 5 is minimal for /s in . L(7,) it follows for
every v, € .71(.7,) that

%IIM —uspll> < I(usp) — I(w) < Is(us,p) — () < Is(vp) — I (u)
=1Is(vp) —1(vp) +1(vp) — I (u) < 8|2+ 1(vp) — I (u).

1/2

With v, = ug p, as in Lemma 10.1 for ¢ = h'/*, we deduce the asserted bound. [

Remark 10.16 An alternative definition for |p|s is given by

pls = [Pl it |p| =3,
(Ipl*+8%/2 if |pl <.

Figure 10.6 displays an implementation of Algorithm 10.2. The weighted stiffness
matrix is computed in the routine fe_matrices_weighted which provides for
elementwise constant functions a, b : 2 — R the matrices with entries

Sa,zy =/aV¢Z-V<py dx, mp gy :/b(ngoydx
Q Q

forz,y € M.

10.2.7 Total Variation Flow

The total variation arises in various mathematical models describing evolution prob-
lems by subdifferential flows. The evolution problems are also often the basis for
numerical minimization algorithms. An implicit discretization leads to the following
algorithm.

Algorithm 10.3 (Subdifferential flow) Given ul) € .#1(7}) and T > 0, compute
the sequence (ullj)kzomlg c .#Y(,) by minimizing for k = 1,2,..., K the
functionals
k 1 k—1)2
17, (wp) = 2_||Wh —uy, 17+ 1 (wp)
T
in the set of functions wy, € .Z1(%,).

The scheme may be regarded as an implicit Euler method and is unconditionally
stable.

Proposition 10.10 (Stability) Assume that I : L2(2) = R U {400} is convex and
lower-semicontinuous. For L = 1,2, ..., K we have
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function tv_reg regularized(d, red)

[c4n,nde,Db,Nb] = triang cube(d); c4n = c4n-.5;

for j = l:red
[c4n,n4de,Db,Nb]

red_refine (c4n,nde, Db, Nb) ;

end

h = 2" (-red); alpha = 100; tau = h/10;
noise = .4; delta = h™(1/2);

nC = size(cdn,l); nE = size(nde,l);
[-,m,—,—] = fe_matrices (c4n, nde);

gg = g(cé4n)+noisex (rand(nC,1)-.5);

u = zeros (nC,1);

corr = 1; eps_stop = le-5;
while corr > eps_stop
du = comp_gradient (c4n,nde,u);
a_du_inv = 1./sqrt(sum(du.”2,2)+delta”2);
[s_du,~] = fe_matrices_weighted(c4n,nde,a_du_inv,zeros(nk,1));
X (l+alphaxtau) *m+tauxs_du;
b = mxuttauxalphaxm*gg;
u_new = X\b;
dt_u = (u_new-u)/tau;
corr = sqrt (dt_u'*mxdt_u);
u = u_new;
show_pl (c4n,nde,Db,Nb,u);
end

function val = g(x)
val = zeros(size(x,1),1);
val (sgrt (sum(x."2,2))<.2) = 1;
function [s_a,m_b] = fe_matrices_weighted(c4n,nde,a,b)
[nC,d] = size(cdn); nE = size(nde,1l);
m_loc = (ones (d+1,d+1)+eye(d+1))/ ((d+1)«*(d+2));
ctr = 0; ctr_max = (d+1) "2*nE;
I = zeros(ctr_max,1l); J = zeros(ctr_max,1);
X_s_a = zeros(ctr_max,1l); X_m b = zeros(ctr_max,1l);
for j = 1:nE

X_T = [ones(l,d+1);cd4n(nde (3, :),:)"1;

grads_T = X_T\[zeros(l,d);eye(d)];

vol_T = det (X_T)/factorial(d);

for m = 1:d+1

for n = 1:d+1

ctr = ctr+l;
I(ctr) = nde(j,m); J(ctr) = nde(Jj,n);
X_s_a(ctr) = vol_T+*a(j)*grads_T(m, :)*grads_T(n,:)";
X_m_b(ctr) = vol_T+*b(Jj)+*m_loc (m,n);
end
end
end
s_a = sparse(I,J,X_s_a,nC,nC); m_b = sparse(I,J,X_m b,nC,nC);

Fig. 10.6 MATLAB realization of the semi-implicit gradient flow discretization of the regularized
total variation functional /s defined in Algorithm 10.2
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L
L k2 0
Tp) +7 ) Iy |* < 1 ().
k=1

Proof The existence of the iterates follows from the direct method in the calculus

of variations, and the strong convexity of If ,, implies their uniqueness. For k =

1,2,...,K we have 0 € 8If’h(u’;l), ie., —d,uﬁ € 81(14’,‘1) and hence for all v, €
SNTh)
(—dsuy, vy — ) + 1 (ujy) < T(vi).

The choice v, = u];l_l yields
tlldiuy 1> + Tdi I (uf)) < 0

and a summation over k = 1, 2, ..., L implies the stability estimate. O

We next bound the difference between the fully discrete and semi-discrete

approximations, i.e., we estimate the difference uﬁ — uk, where (uk)k:(),l,__, K 18

the sequence of minimizers for the functionals
k 1 k=12
L (w) = =lw — w17 4+ T (w)
T

with an initial u® = ug € L2(£2). For ease of presentation we restrict to the case
I(u) = |Dul|(£2).

Proposition 10.11 (Partial error estimate) Let I(u) = |Du|($2) for u € BV (82)
and assume that ug € BV(2) N L*°(82). For L = 1,2, ..., K we have

luf — w12 < ) — uoll* + ch'/3.
The constant ¢ > 0 depends on T, | Du®|(£2), ||Vu2||L1(Q); and ||u0||LOO(Q)_

Proof We let (uk)kzo ,,,,, xk C BV(£2)N L2(.Q) be the solution of the semi-discrete
scheme with initial value u® = ug. Then, fork = 1,2, ..., K and all v € BV(£2) N
L?(£2) we have
(—dju®, v —uby + 15 < 1),
Fork =1,2,..., K, and all v, € .#'(.7,) we have
(—dyufy, vi — up) + 1 () < 1(vp).

Choosing v = uz we deduce that

(d[u* — uk ), b — b)) + 1) = 1) < (duk, vy — ub),
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ie.,

d, T
Sl =P+ Sy — )P < T 0on) = 1) + g o — ]

Fore > O weletv, = u’;h be as in Lemma 10.1 so that
Tp) — 1WX) < c(e + he )T W)
and
lvw = |1> < v —u¥ll L1 @)l — u¥ L2y < c(hPe™" +2) | DUk (2) ¥ || L (g).

Arguing as in Proposition 10.2, we have ||Mk||LOC(Q) < ||u0||Loo(9) for k =

1,2, ..., K. The construction of ulg ;, in Lemma 10.1 guarantees that ||v || oo (@) <

||I/lk||LOO(Q). As in the proof of Proposition 10.10, we find that the semi-discrete
scheme is energy-decreasing, i.e., we have |IDuk|(2) < |DuP|(2) for k =
1,2,..., K, and hence

L
|Du|(2) + 7 ldiuk||* < [Du®|(2) = co.
k=1

Incorporating also the estimate from Proposition 10.10, it follows from a summation
overk=1,2,..., L that

L
1 1
Sluf = ub )2 < Slup — w1 + 77 (1Dval(R2) — |Duk|(£2))
2 2 ~
L L
172 12
+ (= D e 1) (7 2 v — 1)
k=1 k=1
1
< E||L¢2 —uO)? + ¢T (e + he Heg
1/2 1/2 _
+ T e U0 = gy (W2e ™" + &) V2.
Choosing & = h?/3 leads to the assertion. O

The combination of Proposition 10.11 with the abstract error estimate for implicit
discretizations of subdifferential flows of Theorem4.7 leads to the following error
estimate.

Theorem 10.9 (Error estimate) Assume that ug € BV (£2) N L°°(82) and ”2 €
S WT) is such that |lug — ul)|| < h'/® and |Dul)|(22) < c for all h > 0. We then
have
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,,,,,

Proof The assertion is a direct consequence of the abstract error estimate for implicit
discretizations of subdifferential flows of Theorem4.7 and Proposition 10.11. ]

Remarks 10.17 (i) The upper bound can be improved to t + h!/*

A1 (u®) # @ and ||du} L~ <cfork=1,2,...,K.

(i) In the case of Dirichlet boundary conditions and d = 1, any monotone function
u € BV (82) is stationary for /, whereas only the affine interpolant of the boundary
data is stationary for the regularized functional Is.

provided that

10.3 Segmentation

We discuss in this section the numerical approximation of segmentation problems.
The considered simple model problems detect edges in certain images and serve
as bases for the development of models that describe damage and fracture in solid
mechanics. We refer the reader to [5, 9] for further details.

10.3.1 The Mumford-Shah Functional

The Mumford—Shah functional detects certain edges in an image g : £2 — R by
minimizing the functional

I(u,K):% / |vu|2dx+ﬁ%d—1(1<)+% /(u—g)zdx
Q2\K 2\K

in closed sets K C £ and functions u € H!'(£2\K) with given parameters
a, B,y > 0. For a minimizing pair (u#, K) the (d — 1)-dimensional Hausdorff mea-
sure 5741 (K) has to be finite, e.g., K is the union of curves or surfaces ford = 2 or
d = 3, respectively, and .777¢~! is the corresponding surface measure. The function
u approximates the data g and may jump across the set K . Establishing the existence
of minimizing pairs is a difficult task, since the unknowns u# and K are different
objects and the Hausdorff measure is not lower semicontinuous.

Example 10.6 For k € N recursively define S; C [0, 1] through Sop = [0, 1/2] and
k
Sk = (1/2)Sk—1 U (1/2)(Sk—1 + 1/2) = U 27 *D2¢, 20 + 17

e.g., 81 = [0, 1/4]U[2/4, 3/4]. Then the sequence (Si )N converges to S = [0, 1]
with respect to the Hausdorff metric


http://dx.doi.org/10.1007/978-3-319-13797-1_4

326 10 Free Discontinuities
dy(K,L)=inf{e > 0: K C Us(L), L C Us(K)},

where U, (K) = {x € R? : dist(x, K) < ¢}. Since #¢71(S) = 1 and 71 (Sy) =
1/2 for all k € N, we conclude that the mapping K + #¢~!(K) is not lower
semicontinuous with respect to the Hausdorff metric.

The main idea to establish the existence of solutions is to consider functions
of bounded variation and to identify K with the discontinuity set S, of a function
u € BV(£2). We recall that the distributional derivative of u € BV (§2) permits the
decomposition

Du=Vu® dx — [un] ® ds|s, + C,

with a vector field Vu € L'(£2; R?) and the discontinuity set S, of finite (d — 1)-
dimensional Hausdorff measure. The Cantor part C, is in general supported on a
set of infinite (d — 1)-dimensional Hausdorff measure. If C,, = 0, it is natural to
consider

I'(w) = %/ \Vu|>dx + B4~ 1(S,) + %/(u — ¢)%dx.
2 2

The functions u € BV (£2) with C, = 0 are called special functions of bounded
variation and the set of all such functions is denoted SBV (£2), i.e.,

SBV($2) ={u e BV(£2) : C, = 0}.

Sequences (u;) jen C SBV(§2) N L*($2) that are uniformly bounded in L°°(£2)
and for which we have Vu; € L*(£2) for every j € N, such that the expression

/ |Vuj|* dx + 2971 (Su))
2

is uniformly bounded, provide convergent subsequences (u , )xeny With limit u €
SBV(£2), i.e., we have that u;, — u almost everywhere in 2, Vu; — Vu in
L2(£2), and
#9718, < liminf 227718, ).
k—o00 JE

This compactness property implies the following existence result.

Theorem 10.10 (Existence [1]) If g € L*°(£2), then the functional 1’ has a min-
imizer u € SBV(£2) N L*°(82). The pair (u, K) with K = S, N 2 minimizes the
Mumford—Shah functional in pairs (u, K) consisting of a closed set K C 2 with
V(K < 0o andu € WH2(Q2\K).
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C,/ A'

Fig. 10.7 Typical vertices of the singularity set K in the minimization of the Mumford—Shah
functional; vertices are either points on the boundary where K intersects 952 perpendicularly (A),
triple points where three smooth segments intersect with equal angles (B), or endpoints of curves (C)

Precise characterizations of the singularity set K are available.

Remark 10.18 Assume d = 2 and a minimizing pair (u, K) is such that K is the
finite union of C!'! curves. Then every vertex of K is either (a) A point on 2
where K and 9£2 intersect perpendicularly, (b) A point in £2 at which three C'-!
curves intersect with angles 277 /3, or (¢) A point in £2 at which a C-! curve ends, cf.
Fig.10.7. The technical results follow from contradictions and local modifications
to lower the energy.

10.3.2 Regularization of I’ (u)

It is difficult to approximate the Mumford—Shah functional directly with finite ele-
ment methods since the singularity sets of discontinuous, piecewise polynomial finite
element functions are subsets of the skeleton of the underlying triangulation which
is in general too restrictive to approximate a given curve. An approach to regular-
izing the Mumford—Shah functional is to describe the set K by the zero level set
Iy = ¢~ 1({0}) of a function ¢ : 2 — R and noting that the Hausdorff measure of
I’y is approximated by the Modica—Mortola type length functional L., i.e.,

AN Ty) ~ Le(Ty) = g/ VoI dx + %/(«p — )% dx.
2 2

This relation follows from Young’s inequality together with the transformation w =
(¢ — )2 ie., [Vw| =2|¢p — 1||V¢|. We have

1 1
Lty =5 [ 1o+ s [o-17ar= [1volio-tiar=3 [ 1vwiar
2 2 2 2

We assume that I is a smooth curve and, for every r € I, denote by n, the unit
normal to Iy at r. With the tubular neighborhood
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Ipe=xel:x=r+tn,, |t| <€}

of I'y we have

&
1 1
Lg(Fd,)Zz/|Vw|dxz§//|Vw~nr|dtdr.

Iy Iy —¢

Assuming that L¢(Iy) remains bounded as ¢ — 0, the function ¢ approaches
the value 1 away from I, for ¢ sufficiently small, so that we may assume that

w=(p—1D2~0in §£2\TI'p . The integral of the modulus of the derivative of w in
normal direction to I is then approximately 2 and we obtain

Le(Ty) z/ldSZ%d—l(r,,,).
Iy

These observations motivate us to consider the Ambrosm—Tortorelll approximation
of the Mumford—Shah functional in which L. approximates 1 (S,) and enforces

¢ to be close to one, while a term ¢2|Vu|? favors ¢ ~ 0 to permit large, unbounded
gradients of u.

Theorem 10.11 (Regularization [3]) For (u, ¢) € H'(2) x H'(2) and ¢ > 0,
define the Ambrosio—Tortorelli functional

AT, (u, §) = %/(452 ) |Vul? dx
2

+,3(§/IV¢|2dx+2—18/(¢—l)zdx)—i-g/(u—g)zdx
22 2

2

and extend AT, with value +00 to L' (§2) x LY(2). Then, as ¢ — 0, we have that
AT, =" I" with respect to strong convergence in L'(£2) x L'(2), and where
I"(u, @) = I'(u) if (u, p) € SBV(£2) x L' (2) with ¢ = 1 almost everywhere and
I"(u, ¢) = 400 otherwise, i.e., I'(u) = 1" (u, 1) for all u € SBV(£2).

10.3.3 Numerical Approximation of AT,

The functional AT, can be directly discretized with H'-conforming finite element
methods; that is, given ¢ > 0 and a triangulation .7, of £2, we consider the separately
convex functional
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o
AT, (s 1) = 5/(@% +62)|Vuy P dx
2

1
+,3(§/IV¢h|2dx+2—8/(¢h—l)zdx)+%/(uh—g)zdx
Q 2 £2

for (up, ¢n) € .#(F}). Extending AT ;. , by +00 on L' (£2)2\.71 (.},)?, the density
of 1) in L1(£2) leads to a I'-convergence result as in Theorem 10.11. The
iterative solution of AT, j is based on a semi-implicit discretization of a gradient
flow with respect to ¢;,. This leads to two uncoupled equations in every step of
the iteration. We let Pov € 2°(.7},) denote the elementwise average of a function
ve LY().

Algorithm 10.4 (Semi-implicit gradient flow for AT ) Given T > 0 and ¢>2 €
21T, define the sequence (u/;l,qbﬁ)k:l,zw by solving for k = 1,2,... the
equations

a((|Pops 112+ e2)Vuk, V) + y ik — g, vp) =0,

ﬁ(d){;—l,wm:o

(d@f, wi) + a(IVuk 20F, wi) + Be(VoLk, V) + -

for all (v, wp) € LN (T) x .Z1(F},). Stop the iteration if ||d,¢,’§|| < &stop-

In the implementation of the scheme shown in Fig. 10.8 we used the parameter

g =1.

10.3.4 The Perona—Malik Equation

The Perona—Malik equation is a nonlinear parabolic partial differential equation that
denoises an image g for a parameter A > 0 through

Vu

o= 0 (v

):o, dau(t,) =0, u(0)=g.

The diffusion coefficient a (|Vu|) = (1+|Vu|?*/A%)~2 is small in regions where |Vu/|
is large and this leads to a preservation of edges in the images that are characterized
by large gradients. In the remaining regions where |Vu| < c, the diffusion coefficient
a(|Vu)) is larger and causes a smoothing of u away from the edges. This leads to a
simultaneous denoising and steepening of edges, but analytically to the problem that
the equation is of backward and forward parabolic type, so that the well-posedness of
the initial boundary value problem is false in general. The equation has an interesting
relation to the Mumford—Shah model, i.e., to its Ambrosio—Tortorelli regularization,
described in [13]. An implicit discretization in time of the Perona—Malik equation
leads to the problem of determining «* such that
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function ambrosio_tortorelli (d, red)
[c4n,nde,Db,Nb] = triang_cube(d); c4n = 2x(c4n-.5);
for j = l:red

[cd4n,nde,Db,Nb] = red_refine(cd4n,nde,Db,Nb) ;
end
[nC,d] = size(c4n); nE = size(nde,1l); gg = g(cdn);
alpha = 1; gamma = 10; tau = 2" (-red)/10; eps = 1/10;

[s,m, ] fe_matrices (c4dn, nde);
a_0 = zeros(ng,1);
phi = zeros(nC,1); corr = 1; eps_stop = le-2;
while corr > eps_stop
a_phi_sqg = eps”2+ (sum(phi (nde),2)/(d+1))."2;
[s_phi,—~] = fe_matrices_weighted(c4n,nde,a_phi_sqg,a_0);
X_u = gammaxm+alphaxs_phi;
b_u = gamma*m*gg;
u = X_u\b_u;

du = comp_gradient (c4n,nde,u);
mod_du_sqg = sum(du."2,2);
[-,m_du] = fe_matrices_weighted(c4dn,nde,a_0,mod_du_sq);
X_phi = mt+eps*tauss+tauxalpha*m_du+ (1/ (2+eps)) xtauxm;
b_phi = mxphi+ (1/(2xeps))+tauxm*ones (nC,1);
phi_new = X_phi\b_phi;
dt_phi = (phi_new-phi)/tau;
corr = sqrt (dt_phi'smxdt_phi);
phi = phi_new;
figure(l); show_pl (c4n,nde,Db,Nb,u);
figure(2); show_pl (c4n,nde,Db,Nb,phi);
end

function val = g(x)
val = tanh (100 (sum(x."2,2)-1/2));

Fig. 10.8 MATLAB realization of Algorithm 10.4 for the iterative minimization of the Ambrosio—
Tortorelli regularization of the Mumford—Shah functional

The Euler-Lagrange equations of the Ambrosio—Tortorelli functional AT, define the
pair (u, ¢) via
o div ((¢>2 + 82)Vu) =vyu—g),
ae|Vul’p — Be>Ap + B(¢p — 1) = 0.

Neglecting terms with a factor £2, we find that

1

=17 (a/B)e|Vu|?
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and

div( vu 2) —Yw-o. (10.2)
(14 (a/B)e|Vul?) o

Fork =1andu® = gin (10.1)and, e.g., =172, B =¢,and y = «/7 in (10.2),
the partial differential equations coincide. The practical solution of the Perona—Malik
equation is based on a semi-implicit discretization of the equation.

Algorithm 10.5 (Semi-implicit Perona—Malik equation) Given T > 0 and g; €
71 (h), define the sequence (uﬁ)k:(),l,,_, by setting u2 = gj and solving for k =
1,2, ... the equations

];l \Y% =0
—1 , Vh)
(l—i—Wuh 1| /)»2)2

(deul, vy) + (

for all v, € #1(.7,). Stop the iteration if ||d,u/h‘ Il < éstop-

An implementation of the scheme is shown in Fig. 10.9.

function perona_malik (d, red)
[cd4n,nde,Db,Nb] = triang_cube(d); cd4n = 2x(c4n-.5);
lambda = .5;
for j = l:red
[c4n,nde,Db,Nb] = red_refine(c4n,nde,Db,Nb) ;
end
nE = size(nde,1);
tau = 2" (-red)/10;
[-,m,—] = fe_matrices(c4dn,nde);
u = g(cédn);
corr = 1; eps_stop = le-2;
while corr > eps_stop
du = comp_gradient (c4n,néde,u);
a_du = (l+sum(du.”2,2)/lambda”2)." (-2);
[s_du,~] = fe_matrices_weighted(c4n,nde,a_du,zeros(nk,1));
X = m+tauxs_du;
b = mxu;
u_new = X\b;
dt_u = (u_new-u)/tau;
u = u_new;
corr = sqgrt(dt_u'*mxdt_u);
show_pl (c4n,nd4e,Db,Nb,u);
end
function val = g(x)
val = tanh (100 (sum(x."2,2)-1/2))+.25«(rand(size(x,1),1)-.5);

Fig. 10.9 MATLAB realization of the semi-implicit discretization of the Perona—Malik equation
specified in Algorithm 10.5
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Remarks 10.19 (i) A stability proof for the iteration is expected to require restrictive
conditions on the step size 7. Practically, the iteration provides satisfactory results for
T < ch. Difficulties in the numerical analysis reflect the fact that no general existence
theory for the Perona—Malik equation is available and in fact solutions may fail to
exist due to occurring backward diffusion.

(ii) An alternative choice for the diffusion coefficient in the Perona—Malik equation

. 2752
isa(s) = e /4.
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Chapter 11
Elastoplasticity

11.1 Modeling and Analytical Properties

We discuss in this section the mathematical description of elastoplastic material
behavior. We follow the textbooks [5, 9] and the survey article [7].

11.1.1 One-Dimensional Plastic Effects

Mathematical elasticity is based on the Hookean principle that a deformation of an
elastic body is accompanied by a restoring interior force that pulls the body back
into its reference configuration when an outer force stops acting. The starting point
of elastoplasticity is that only a bounded range of restoring forces are possible, and
when a limit is reached, microstructural changes in the crystal lattice occur that lead
to remaining, plastic deformations. A typical example is the elongation of a rubber
band or copper wire beyond a critical value that leads to a permanent lengthening of
the band or wire. To specify some basic principles, we consider a one-dimensional
wire that is regarded as a chain of elements consisting of springs and frictional
devices, as depicted in Fig. 11.1.

If one end of the band is fixed and the other end is displaced, a change of length
occurs, which causes a restoring force that is proportional to the relative change in
length, i.e., to the strain, as long as it is below the friction coefficient. When the restor-
ing force reaches the value of the friction coefficient, the frictional device starts to
glide and a plastic strain compensates the increasing total strain while the stress rem-
ains constant. The rate of change of the plastic strain has the same sign as the stress.

Example 11.1 Suppose that a wire occupies the region £2 = (0, 1) and its left end
is fixed while its right end is displaced gradually by up(#). The deformation of the
wire is then given by y(¢,x) = x(1 + up(z)). The corresponding displacement
is u(t,x) = xup(t) and the strain is given by d,u(t, x) = up(¢). The restoring
force or stress o is proportional to dyu, i.e., 0 = Cd,u as long as the magnitude
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Fig. 11.1 Plastic material behavior interpreted as a combination of springs and frictional devices
(left); an analogy is the pulling of a mass over a dry surface with an elastic rope (right)

of o is below the critical value oy, i.e., |o| < o,. When this value is reached, a
plastic strain develops while the stress remains constant, i.e., o0 = C(d,u — p) and
p = max{0, up(t) — (C’lay}. The evolution of p is described by the requirements

that p = 0 as long as |o| < o, and p is proportional to o when |o| = oy.

11.1.2 Hypotheses of Multi-dimensional Elastoplasticity

We consider an object made of a metal or more generally of a ductile material that
occupies the domain £2 C R? on which a body force f : [0, T] x £2 :— R? and a
surface traction g : [0, T'] x Iy — R? are acting. The corresponding displacement
u : 2 — R3 is required to vanish on the boundary Iy = 82\ I\. Assuming that
only small deformations occur, these can be described by the symmetric gradient
e(u) = (VuT + Vu)/2 called strain. The corresponding restoring force is denoted
by the symmetric stress tensor ¢ € ngxn?, and as long as o belongs to a set of
admissible forces, we have the linear relation 0 = Ce(u). In a quasi-stationary
situation, we have the equilibrium of forces

—divo = fin{2, on=gonlN\.

When strains occur that lead to inadmissible stresses, another variable is required
and this is the plastic strain

p=c¢u)— Clo =e(u) —e.

The variable p is a symmetric tensor and assuming that uniform compressions are
entirely elastic, one imposes the plastic incompressibility condition that p is trace-
free. When plastic material behavior occurs, the material properties often change,
and this is described by an internal variable £ € R™, e.g., the proportionality rela-
tion between stress and strain may change. In particular, it is observed that the
set of admissible stresses increases when plasticity occurs or that the center of the
set of admissible stresses is shifted. These effects are called isotropic and kinematic
hardening, respectively. Situations in which no hardening occurs and the set of admis-
sible stresses remains unchanged are referred to as perfect plasticity. Considering an
isothermal and rate-independent situation, the fundamental laws of thermodynamics
allow us to deduce the existence of a free energy of the form

P(e. &) = ¢°(e) + 97 (§).
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Moreover, the additive decomposition €(1#) = e + p can be justified from thermo-
dynamical considerations. In the simplest linear setting we may assume that

1 1
d)(e,é):ze.(Ce—i-ES.HS

with symmetric and positive definite tensors C : RG s — R and H : R — R™.
With this, the stress tensor is defined as o = 9,¢ (e, &) = Ce and we define the
conjugate forces x = —0ds¢ (e, §) = —HE. The pairs ¥ = (o, x) and P = (p, &) are
called generalized stress and generalized plastic strain, respectively. The hypothesis
of maximal plastic work reads as

S.P>T-P

for all admissible generalized stresses T € S. This is equivalent to the Prandtl-Reuss

normality rule or flow rule Pe Ngs(X) with the normal cone Ng(X') of the set S
at Y. In particular, the rate of change of the plastic strain vanishes if X belongs
to the interior of S called elastic domain. The boundary of S is called the yield
surface. A yield function is a function @ that defines the set of admissible stresses
as § = {¥ : &(X) < 0} and determines the yield surface as the zero level set of
@. The modeling of a yield function is typically based on the formulation of a yield
criterion that determines when plastic material behavior sets in and popular choices
are the von Mises and the Tresca criteria, which model that plasticity occurs when
certain shear stresses exceed a given threshold parameter.

Figure 11.2 illustrates different plasticity models by corresponding hysteresis
curves, i.e., stress-strain relations, in a cyclic loading-unloading experiment. Up to
time 71, the strain ¢ increases and the stress o is proportional to ¢ until the yield stress
oy is reached. Then plastic material behavior occurs and while the strain increases,

Sx@k o Sx(g)
up(? ! e Gl BN
p(f) TN N A N
P P Iy

Sy Sy Sy

[ARSRE]

up(?)

—

Fig. 11.2 Sets of admissible stresses Sy ) = {0 € Rfyxnf 1 @(o, x(t)) < 0} for given internal
forces x(t) and hysteresis curves for different hardening models in a cyclic loading-unloading
experiment; the stress-strain relations show different hysteresis effects for perfect plasticity (second

column), kinematic hardening (third column), and isotropic hardening (fourth column)
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the stress remains constant in the case of perfect plasticity or continuous to increase
with a different rate in the case of kinematic or isotropic hardening. This is accom-
panied by a change of the internal variable or equivalently the set of admissible
stresses. When the direction of loading changes, an elastic unloading takes place
until the boundary of the modified set of admissible stresses is reached. Practically,
the experiment is carried out by extending a thin wire by a prescribed amount and
measuring the required force.

11.1.3 Mathematical Model

Based on the previous discussion we formulate the isothermal, quasi-static elasto-
plastic model problem with Prandtl—Reuss flow rule. For a bounded domain £2 ¢ R¢,
IpC o, In=0R2\Ipand f:[0,T]1x 2 — Réandg: [0, T]x [Ny — R¢, we
seek (u, p,£) : [0, T] x 2 — RY x R x R™ with (u, p, £)(0) = (u0, po. &)
such that

—dive = f, (p, é) € dls(o, x),
onlry =8, o =C(e(u) — p),
ulp =0, x = —Hé§.

Inhomogeneous Dirichlet boundary conditions are assumed to be included in the
right-hand side. The subdifferential of the indicator functional Is of S evaluated

at X' coincides with the normal cone Ng(X') and the condition P e dl s(X) is

equivalent to X' € 9l (13) with the support functional /g of S. The inclusion can
thus be equivalently formulated by requiring that

o (@—p+x-C—&+1i(p. &) <Iiq,0)
is satisfied for all (¢, ¢) € Rg’yff x R™. To derive a weak formulation, we set
Y = HL(2; RY) x L2(2; RE) x L2(2; R™)

sym

and define the bilinear form </ : ¥ x Y — Rfory = (u, p, ) andw = (v, ¢, ¢) by

Ay w) = / Cle(u) — p) : (e(v) — q) + HE - £ dx
2

E(w):/f-vdx+/g~vds.
2

In

and the linear form



11.1 Modeling and Analytical Properties 337

The variational inequality can be written as (o, x) € 9y ( 1'), é ) with the dissipation
Sfunctional ¥ : Y — R U {400} defined forw = (v, ¢, ¢{) by

V(W) =/1§“(q,§)dx.

2

The model problem is now formally equivalent to finding y : [0, T] — Y such that
y(0) = yp and . . )
A (y,w—=y)+¥w) =¥ (@) =tw—y)

forallw € Y and all ¢ € [0, T]. A proof follows from choosing w = (£v + i, 0,0)
to deduce the weak formulation of the equilibrium of forces and w = (L't, q,&) to
verify a weak form of the flow rule.

11.1.4 Flow Rules and Coercivity

A yield function that realizes the von Mises yield criterion and describes kinematic
and isotropic hardening simultaneously is given by

(0. a,p) =|dev(o + B)| —oy(1 +ay)

with devo = o0 — (1/d) tr 0 and o4 = max{e, 0} for a generalized stress vector
Y =(o,ap) € Rﬁlyfnd x R x Rf}ffrf with a yield stress oy, > 0. The set of admissible
stresses is defined as

={¥ e R xR x R¥? . p(x) < 0.

sym sym

Note that here the internal variable £ is identified with the pair (a, b) € R x R7”*™"

sym
and the variable x is given by («, B) = —H(a, b). The support functional I for S
can be computed explicitly.

Lemma 11.1 (General support functional) For P = (p, a, b) € Rfyxnf x R x Rfyfnd
we have

I;(l.’): oy|pl 1ftrp'=0,b=p, oylp| < —a,
+o00  otherwise.
Proof By definition of 1 ;(I.’) we have

I;([.J,C.l,[;) = sup p:o Laa+b:B.
(0.0, B)€S

If tr p # 0, we choose (o o, B) = (rly, 0, 0) ie.,devo = 0, for arb1traryr eR
and deduce that I*(p,a b) =oo.If p # b we choose 0 = r(p — b) B =
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and o = 0 to deduce that I;‘(i),é,l;) = oo. If oy|p| > —a, we choose o =
oy(1+7r)p/Ipl, B =0,and o = r for r > 0 so that

I§(p.a.b) = oy(1+r)|pl +ar = o,|pl + (oy|p| + @)r

which is unbounded as r — oco. We may thus assume p = b and tr p=0,ie.,
p = devp, and oy|p| < —a in the following. For every & > 0, the maximal
trace-free choice for o and B is given by 0 = —B = (1 + &) (0y/2) p/|p| so that

Is(p, a, b) = sup(1 + a)ay | p| + ad = sup oy | p| + (o) p| + @) = oy |p|
a>0 a>0

sinceoyll')|+é <0. O
Special cases of the flow rule are the following.
Examples 11.2 (i) Perfect plasticity corresponds to

D (o) = |dev(o)| — oy

and the variables (o, 8) and (a, b) can be eliminated from the problem.
(i1) Linear isotropic hardening corresponds to

@ (o, a) =|dev(o)| — oy (1 +ay)

and the variables 8 and b can be eliminated from the problem.
(ii1) Kinematic hardening corresponds to

P (o, B) = |dev(o + B)| — oy

and the variables « and a can be eliminated from the problem. The variable § =

—Hiinb is called back stress and can be replaced by —Hyiy, p, noting that p = b on
dom ¢ and assuming p(0) = 5(0).

In the case of linear kinematic or isotropic hardening, we have that the bilinear
form &7 is coercive on the domain of v, i.e., on

dom ¢y ={weY :¥(w) < oo},
where ¥ (w) = [, 1$(g, ¢)dx forw = (v,¢q,¢) €Y.
Proposition 11.1 (Coercivity) Assume that for § = (a, b) € R x Rfyﬁi, we have

HE : £ = Hisoa® + Hinb : b

such that either His, or Hyin is positive definite. If Hiso = 0 or Hyin = O, then a or
b is eliminated from the problem, respectively. If Hyin # 0, then the variables p and
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b are identified. With this convention the bilinear form
1 1
A (y,w) = E/C(s(u) — p) : (S(V) — q) dx + E/aHisoe + b : Hyin f dx
Q Q

for yw € Yand y = (u,p,a,b) and w = (v,q,e, f) is coercive on the
domain of .

Proof Young’s inequality and the positive definiteness of C imply that

12> (1 =8 Declle@l* + (1 = &eclipll®.

IC2 (e(u) — p)

Since 7§ is only finite if p = b and o, |p| < a almost everywhere in £2, we have

2 2 2 2
[Hisoa I” + IHkinb |7 = cisollall™ + ckin D]l

2 2
> max{ciso/0y, ckin}llP” = cullpll”.

Upon choosing § = 1+ cp/(2cc) and using Korn’s inequality [|u|l g1(o) < clle@) |l
the combination of the estimates proves the assertion. (I

Remarks 11.1 (i) More generally, it suffices to assume that H is positive definite and
that || p|| < c||&|| on the domain of ¥ to guarantee that <7 is coercive on dom .
(ii) For kinematic hardening, we identify p = b and then have that </ is coercive on
the entire space ¥ = HI%(.Q; Ry x L2(£2; Rfyﬁi).

(ii1) Coercivity does not hold in the case of perfect plasticity when His, = 0 and
Hyin = 0.

(iv) The von Mises yield criterion |dev(o + B)| < oy, (1 + ay) is also called J>-
plasticity since it is based on the second deviatoric stress invariant.

(v) The Tresca yield criterion is based on the maximum shear stress Ogpeqr =

maxi<; j<d4 |o; — o;| with the principal stresses o1, 02, ..., 0q4.

The functional ¢ (w) = fg I5(q, ¢)dx for w = (v, ¢q, ¢) is homogeneous of
degree one, i.e., we have

vyw) =yyw)

forall w € Y and y > 0. This property has important implications that can be
verified by straightforward computations.

Lemma 11.2 (Degree-one homogeneity) Let y : ¥ — RU{+o00} be convex, proper,
lower semicontinuous, and homogeneous of degree one.

(i) With C, = 0y (0) we have oy (w) C Cy forallw € Y, 0 € Cy, and
Y= Ia.

(i) Forallw €Y such that 0y (w) # @, we have (s, w) = ¥ (w) forall s € 0y (w).
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11.1.5 Equivalent Formulations and Existence

In the mathematical description of plastic material behavior, inertial terms were
neglected in the equilibrium equation leading to a quasi-stationary evolution prob-
lem. Practically, this means that the time-scale of the considered experiment is sig-
nificantly larger than the internal time scales of a particular material. Mathematically,
this induces a rate-independence of the problem in the sense thatif y : [0, T] — Y
solves the problem subject to the load € : [0, 7] — Y',and y : [0,T'] — [0, T]
is an increasing reparametrization of the time interval, then y oy : [0,T'] — Y
solves the problem defined by the load £ o y. In the elastoplastic model problem
this is satisfied since the functional i is homogeneous of degree one. This particular
property of the problem allows for different notions of solutions. We discuss them in
an abstract framework and consider a Hilbert space Y, a continuous and symmetric
bilinear form &/ : Y x Y — R, a function £ € Wl*oo([O, T1; Y"), and we define the
energy functional

1
Et,y) = zﬂ(y, y) = (£@), y).

A dissipation functional is defined by a proper, convex, lower semicontinuous func-
tional ¢ : ¥ — R U {400} that is degree-one homogeneous. We assume that <7 is
coercive on dom  and let yp € Y be some initial data.

Definition 11.1 The (primal) evolutionary variational inequality or primal problem
seeks y : [0, T] — Y such that y(0) = yp and
A (y(0), w = y(1)) = (L), w = y(0)) + ¥ (w) = ¥ (3(1)) = 0

forallw e Y andt € [0, T].

Associating the operator A : Y — Y’ to the bilinear form 7, the evolutionary
variational inequality is equivalent to the inclusion

—Ay + L ey ().

The degree-one homogeneity of v implies that ¢y = I with the indicator functional
c, of the set C, = 9y (0). Convex duality relatlons thus yield that we have the
equivalent inclusion
y € dlc,(—Ay + 0).

Setting ¥ = £ — Ay and noting y = A~! (é -3 ) lead to the following formulation.

Definition 11.2 The dual evolutionary variational inequality or dual problem seeks
X :[0,T] — Cy such that X(0) = £(0) — Ay and

(Z-T, AN —0))>0

forallY € Cy and all t € [0, T].
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Choosing w = aw in the primal problem and considering the limit @ — oo shows
that we have
A (y, W) + ¢y w) = (€, w).

The choice w = 0 yields

A (y,y)+ Q) < (€, ).

The first inequality implies that, for every ¢ € [0, T], the element y(¢) is a global
minimizer for the mapping

Ve SN+ Y —y@).
The choice W = y(t) and a combination of the inequalities leads to the identity

A (y,y) = (6 3) + ¥ ().

Therefore, we have

d . .
E@@(t’ y) = 8,(5"([, y) + (ayé"(t, y), y) = B,é”(t, y) — w(y).

These observations justify the third definition of a solution for the evolution problem.

Definition 11.3 The energetic formulation seeks y : [0, T] — Y such that y(0) =
yo and the global stability and global energy balance equations

E(t,y®) <&, 30) + ¥ (T — y(0)).

t
éf(t,y(t))-k/w(&(S)) £(0, y(0)) /K(S) y(s))d
0

0
hold forall y € Y and all r € [0, T].

An advantage of the energetic formulation is that no derivatives of & or { are
involved. The global energy balance states that dissipated energy in the time interval
[0, ] equals the difference of the change in the stored energy and the power of external
forces. Solutions for rate-independent evolution problems can be constructed by an
implicit discretization in time, which leads to incremental minimization problems
defined by the functionals

Y IEO) =60, »H+vE -y,

By establishing appropriate a priori bounds and carrying out a passage to a limit, one
can prove the following theorem.
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Theorem 11.1 (Existence and uniqueness) If £ € W-°([0, T1; Y'), & is coercive
on dom , and €(0) — Ayy € C,, then the energetic formulation and the primal
problem have a unique solution y € WH%°([0, T1; Y).

Proof (sketched) We recall that the variational inequality is equivalent to the inclu-
sion y € dl¢, (—Ay-+¢) and, assuming for simplicity that <7 is coercive on the entire

space, we introduce the variable z = y — A"1¢.Then ? € 81& (—Az) + A’lé. The
operator v — 01c, (—Av) is maximally monotone and Theorem 2.8 implies the exis-
tence of a unique solution provided d/c, (—Azo) # ¥,1.e., —Ayo+£(0) € Cs. O

A stability and uniqueness result follows from the primal formulation.

Remark 11.2 Letyy, y; € wL2°([0, T]; Y) be solutions subjecttotheloads €1, €> €
W1e2([0, T1; Y'), respectively. We then have o ||y ; || Lo< (0,73, v) < A, j = 1.2, and

T
2lly1 = y2llfeqorpy) < @llyi©0) — y2 0012, + (A + Az)/ 161 — a1y de,
0

where « is the coercivity constant of o7/, ||y||fz{ = (y,y),andA; = ”éj”Loo([O,T];)//)
for j =1,2.

The theorem implies the existence of a unique solution of the primal problem in
the case of positive hardening. Existence of solutions for perfect plasticity and for
the dual formulation require additional assumptions.

Remarks 11.3 (i) Although the dual problem is formally equivalent to the primal
problem, existence theories require imposing a safe-load assumption, i.e., that there
exists a regular stress in the elastic domain that compensates the given loads. The
assumption can be proved for individual cases of isotropic and kinematic hardening,
cf. [6].

(ii) The existence of solutions for perfect plasticity can be established under a suitable
safe-load assumption and within the space of bounded deformations BD(S2), i.e.,
deformations u € L' (£2; RY) such that the symmetric part €(u) of the distributional
gradient Du is a bounded Radon measure. The solutions can be obtained as vanishing
hardening limits, cf. [3, 4, 6].

11.2 Approximation of Rate-Independent Evolutions

For a Hilbert space Y, a symmetric, continuous bilinear form & : ¥ x ¥ — R,
a convex, proper, lower-semicontinuous functional ¢ : ¥ — R U {+o00}, and a
function £ € W°([0, T1; Y'), we consider the evolution problem

Ay, v—y)— @), v—y)+¥v)—¥() =0
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forallv € Y, t € [0, T], subject to the initial condition y(0) = yo. We assume
that v is homogeneous of degree one and .7 is coercive on Y so that there exists a
unique solution y € WwL2°([0, T; Y). With the bilinear form o7, we associate the
invertible, bounded linear operator A : ¥ — Y’. The formulation is then equivalent
to the inclusion —Ay + £ € 3y (y). The norm induced by .7 is denoted by | - | oy
and the norm in Y by || - ||. We follow ideas from [2, 7].

11.2.1 Time-Incremental Minimization

An implicit discretization of the evolution problem can be formulated as a sequence
of minimization problems.

Algorithm 11.1 (Implicit discretization) Given y° € Y and t > 0, set f, = kr,
k=20,1,...,K, and let (yk)k:1 k C Y be a sequence of minimizers for the
functionals

,,,,,

1
IFw)y =y w—yhH+ 5 (0, w) = (L), w).

The iterates of the algorithm are uniquely defined.

Proposition 11.2 (Existence of semi-discrete iterates) For k = 1,2, ..., K, there
exists a unique minimizer y* € Y for If, and we have

A (Y, v —diy®) — (L), v — diy*) + Y () — Y (diy*) = 0

forallv € Y. In particular, —Ayk +L4(ty) € Cyfork=1,2,..., K.

Proof The existence of a minimizer in every time step follows from the direct method
in the calculus of variations, and we have 0 € alf (yk), ie.,

0 € Ay* — £(n) + ay (yF — y*71)

and this implies that —Ay* + £(1;) € C, and the variational inequality by incor-
porating the degree-one homogeneity of 1. Uniqueness follows from the
coercivity of .o7. O

Noting that ¢ = Ia for C, = 3y (0), the transformation z = —y + A~'¢ shows

that the evolution problem is equivalent to the inclusion -z € dlc, (Az) — A_lé.
Similarly, the transformation z¥ = —y* 4+ A~1¢¥ shows that the variational inequality
of the proposition is equivalent to the inclusion —d,z* € dl¢, (AzF) — A='d, £*. We

abbreviate r = A~'¢ and r¥ = A~'d,£(1;) in the following and apply the abstract
strategy of Theorem 4.7 to the rate-independent evolution problem.


http://dx.doi.org/10.1007/978-3-319-13797-1_4
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Theorem 11.2 (Auxiliary error estimate) Suppose that z € W-([0,T];Y)
satisfies .

—z+redlc, (Az)
and the sequence (zk)k:() k C Y is such that z(0) = 20, AZF € C, for k =
0,1,..., K, and

—di 7" +rk e dlc, (AZ5)

fork =1,2,..., K. With the piecewise affine interpolant 7; : [0, T] — Y of the
approximations (zk)k:()w, K, we have

sup NIz = Zellr < (10 + T lrllwroeqo. 1)) -
tel0,7T]

Proof (i) We first note that the discrete inclusion is equivalent to the variational
inequality

(—did"+ 7k v — Ay <0
for all v € C,. With the choice v = AzF~! we define

—& = tlldi N3, — T (*, Adizt) <0

and note that f .
Ndiz ey < 7" ler-

(i) Weletz§ : [0, T] — Y be the piecewise constant function satisfying z; (r) = z*

ifth1 <t < ty. Similarly, : [0, T] — Y’ denotes the piecewise constant
interpolant of ()i

(=8Zc +rT,v—Az) <0
for all v € C,. Defining
G () = (=02 +r7, Azf — AZ,),

we find
(—0Zc +r,v—AZ) SC @)+ (r—rf,v— AZr).

(iii) Noting the equation for z, i.e.,
(=0iz+r,v—Az) <0

and choosing v = Az and v = AZ; in the equations for Z; and z, respectively, and
adding the inequalities, we find that

1 1 R
~—llz =Z %, <G @) + —||r — 2, 4+ = sup llz —ZII%,.
2T teq0.71)
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Using that z —Z; = — (¢ — tx)d, 2" for t € [t4_1, tx] we have

t— 1
T

C (1) = (t — )l di2* 1%, — (¢ — 1) (%, Ad,ZF) = (=&)< &.

We also note that ||r — || < SUP;¢[0.7] [7]l.7. An integration over the interval
[0,¢*], where t* € [0,T] corresponds to the maximum of
t — ||z — Z¢ oz, and z(0) = z° show that

2

K
1 R T .
5 S lle=Zelll, <7 X G+ sup 171G,
1€[0,T] =1 1€[0,T]

(iv) We note that the equation for =1 with k > 2 reads as
(—d, 2 v — A <.

By defining z~!, so that —d,z° + r® = 0, and noting that 0 € BOIC* (AzZY), this
variational inequality also holds with k = 1. The choice v = Az¥ yields

(—=d; 2+ 751 Ad R <o
With the definition of &) we deduce that
& = —t(diZ* + r, Adih)
< —t(diz" — i, AdiZ*) 4+ t(d T — 5L Ady 2

= —t2(d}* —dir, AdiZF)

d o
—‘Ezéﬂdﬂk ”i{ — ?Hd,zzk ”i{ + 7:2<dtrk’ Adtzk)

IA

d
2% k2 2 k k
—2 221 + 22 s i Ly

IA

d,

20t k2 2 .

—t=di 2"y + 7 sup (7l 7 llers
2 1€[0,T]

where we used ||d; 2|l oy < |Ir¥|l oy and ||dir¥ | < SUP; 0,77 171l 7. A summation
of & overk =1,2,..., K yields

K 2
T
§ 02 2 2
T éak = 7||d[Z ”Q/ +ct T”rnwl,w([(),T];Y/)-
k=1

This implies the assertion. ]
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Remark 11.4 The proof of the theorem provides the computable a posteriori error
estimate

K K
~2 ° 2
sup llz =213, <2t > &+ > sup (P2,
1€[0,T] k=1 k=1 T€l—1.%]

The theorem implies an error estimate for the approximation of the original
formulation.

Corollary 11.1 (Time discretization) Assume that yy € Y satisfies —Ayo + £(0) €
3V (0) and that we have £ € W>°([0, T1; Y'). Forthe solutiony € WH*°([0, T1; Y)
of the evolutionary variational inequality with y(0) = yo and the piecewise affine
interpolant y; € wbhoo([0, T1; Y) of the iterates (yk)k:() k of Algorithm 11.1 such
that y° = yo, we have

.....

sup [ly = Vel < ct.
t€[0,T]

Example 11.3 The error estimate applies to kinematic hardening. Recalling that in
this case we have with the identification p = b and thus 8 = —Hi;, p that

A (y, w) =/C(8(u) —p):(€(0) —¢)+ Hunp : gdx
2

for y = (u, p) and w = (v, q). Hence, with 0 = C(e(u) — p) we have that
Ay = (—divo, —o + Hiinp). We recall that ¥ (y) = oy|plo, where |plo = |pl
if tr p = 0and |p|p = 400 otherwise, and

Z(t,w)=/f(t)~vdx+/g(t)-vds.
Q

I'n

With o9 = o (0) the compatibility condition —Ayg+£(0) € v (0) is thus equivalent
to divog + f(0) = 01in £, opn = g on IN, and o¢ — Hyinpo € 0,9 - |o, that is,
| dev(op — Hiinpo)| = |dev(oo + Bo)| < oy.

Remark 11.5 The error estimate also holds for a spatially discrete version of the
problem. In this case Y is replaced by a finite-dimensional subspace Y C Y and the
subdifferential is defined with respect to this space.

11.2.2 Discretization in Space

We next investigate the error introduced by a spatial discretization. For this we assume
that we are given a finite-dimensional subspace Y, C Y and let Py p, : Y — Y}
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denote the orthogonal projection onto Y}, with respect to <7 that is, for z € ¥ we let
P/ nz € Yy be such that
A (Peypz —2,vn) =0

forall v, € Y},. We assume that there exists a bounded linear operator ¢}, : ¥ — Y},
such that _#;,z € dom  whenever z € dom .

Proposition 11.3 (Space discretization) Let y € WL([0, T1; Y) be the solution of
the primal problem and let y, € W>°([0, T1; Y) be the uniquely defined function
yu [0, T] — Yy, satisfying yn(0) = y,? = Py pyo and
A (Y, vie = Yi) = (€@), v = 33) + ¥ ) — ¥ (5) = 0
forallvy € Yy andt € [0, T]. Assume that there exists cy, such that
() =y W) < cyllv —wl
forall v,w € dom . We then have

T
sup Ily — wll® < c/ 1= Z3lde + 10 = Poyw)yoll®
te[0,T] 0

Proof The existence of the spatially discrete solution follows as in the continuous
case. We choose v = y,, and add the discrete formulation to the continuous variational
inequality to verify that

A Yy 3= I+ (3, I =D+ (9 vi = 3) = L), vy =3+ Y ) =¥ (3) = 0.
The choice v, = _7j, y yields

A=y, V=) < =@, Iny =)+ U InY) =¥ )+ n, Iny — )
< (IOl + ey +calynl) Iy = Zndl.

We thus have
1 d 2 . .
Sl = (e + ey +callynl)ly — Znyl

which implies the asserted estimate. (]

Remarks 11.6 (i) For a sequence of dense subspaces (Y3);~0, the estimate of the
proposition implies the convergence y, — y ash — 0 provided _#, has appropriate
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approximation properties. Related convergence rates under regularity assumptions
on y are discussed in Example 11.4.

(ii) For kinematic hardening, the condition on the operator ¢, means that for
(tn, pn) = Zn(u, p) we have tr p, = 0if tr p = 0. This can be guaranteed by
employing averaging operators for the definition of pj,. The proof of the proposition
simplifies if we can choose ¢, = Py j.

11.2.3 Fully Discrete Approximation

The combination of the estimates for the semi-discrete schemes allows us to derive
an error estimate for fully discrete approximations. These are obtained with the
following algorithm.

Algorithm 11.2 (Fully discrete iteration) Given y,? € Yyandt > 0,let (y}’f)k: L..K
be a sequence of minimizers y,’j € Y, for the functionals

1
T o) = W (wn = 331 + 7 v ) = (£G8k), ).

The iterates of the algorithm are uniquely defined and satisfy a discrete variational
inequality.

Proposition 11.4 (Existence of fully discrete approximations) There exists a unique

.....

A (YK, v — dyyF) — (L), v — dryk) + 9 (vp) — ¥ (dyf) =0

fork =1,2,...,K and all v, € Yp,. If —Ayo + €(0) € 0¥ (0) and y?l = Py nyo,
then we have

k
K ldeyi Il < cll€llwrooqo,71:v7)-

,,,,,

Proof The derivation of the variational inequality is analogous to the proof of
Proposition 11.2. The assumption on yg and the definition of y,? imply that

— 50, )+ (€O). vh) = — (v, vi) + (£O0), vi) < Yr(vp)

and by setting y, = yg, ie., d; yg = 0 the variational inequality also holds for
k = 0. To prove the estimate we note that the choice v;, = 0 yields

A Yk, diyky < (@), diyf) — v diyh),

while the choice v, = d; y;l‘ +d, yﬁ_l in the equation for yﬁ_l leads to

o (i~ diyE) < —(0t1), deyl) + W (deyf +diyy ) — w(diyy .
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Adding the two inequalities shows that

Tl (dyyk, diyl) < (Tdib(t0), diyf) + W (dyk +diyf ™) — W (diyf) — wdyi )

y k
<t sup [y lldiypll,
telti,tk—1]

where we used the convexity and degree-one homogeneity of . (]

.....

([0, TT; Y) denote its piecewise affine interpolant in time. The combination of the
estimates for the semi-discrete schemes implies the following error estimate.

Theorem 11.3 (Fully discrete approximations) Given the sequence of approxima-
tions (ylg)k:()w,l( € Yy, such that y,? = Pg Yo, we have for its piecewise affine
interpolant yy, ; that

T
sup [ly — Vel < e(z? +/ I = 2wyl de + 111 = Poyp)yoll?).
t€l0,T]

0

Proof Welety), € WLoo([0, T1; Y) be the solution of the semi-discrete approxima-
tion in space, and notice that according to Proposition 11.3 we have

T
sup Ily — wll? < c/ 10 = 2031t + 11 = Poy m)yol™
1€[0,T] /

The fully discrete scheme is interpreted as a temporal discretization of the semi-
discrete scheme in space and the arguments of the proof of Theorem 11.2 lead to the
estimate

sup |y — Yol < ct.
tel0,T]

The combination of the two estimates implies the estimate of the theorem. (]

Examples 11.4 (i) For kinematic hardening, we may eliminate the internal variables
and have ¥ = ng(.Q; RY) x L*(22; R4y and y = (u, p) € Y. Assuming that
u € WHI([0, T1; H2(£2; R?) and p € Wh1([0, T1; H'(£2; R¥*?)), we obtain
with the subspace Y;, = YDl(%)d x L0(F5,)%*4  the convergence rate ¢ (t +h'/?).
More realistic regularity assumptions suggest the convergence rate @ (t + h'/479%)
for arbitrary § > 0.

@ii) If ¢ and ¢ are of lower order, e.g., £ € W22°([0, T1; L?(2; RYY) and ¢ :
L*(£2;R?4) — R U {+00}, and Y is elliptic on H)(£2; RY) x H!(£2; R*d),
e.g., in the case of gradient plasticity, then no regularity is required to deduce the
convergence rate &' (t + h'/?) for lowest order conforming finite elements.
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11.2.4 A Posteriori Error Control

A basis for full a posteriori error control is a characterization of the solution of the
evolution problem as the unique minimizer of an appropriate functional. The key
ingredient for this is the Fenchel duality relation

v+ 0N = (0, y)

in which equality holds if and only if y € 9v¥*(y’) and y’ € 9y (y).

Proposition 11.5 (Minimization property [10]) The function y € W“([O, T;Y)
satisfies
—Ay +L€dy(y), y0) =y

if and only if F(y) = 0 for the nonnegative functional
T
F(z) = / YE) + Y — A7) — (€ — Az, 2) dr + 1 (2(0) — o)
0

defined for z € W-1([0, T1; Y) and with x (w) = (1/2)(Aw, w) + ||w|>.

Proof The Fenchel duality relation implies that F'(z) > 0. If F(y) = 0, then it also
implies that —Ay + ¢ € 3y (y) and y(0) = Yo is an immediate consequence. The
converse implication follows analogously. (]

Theorem 11.4 (A posteriori error control [10]) For y € WLI([0, T1; V) with
F(y) =0andeveryv e wbh([0, T1; V), we have

FN-

sup |ly —v|%, < F(v).
te(0,7T]

Proof For s € [0, T] we define
FS(2) = / Y (2) + ¥*(C — Az) — (€ — Az, 2) dt + x (z(0) — yo).
0

Noting that (d/dt)||z||_2 = 2(Az, z) and incorporating the definition of x implies
that

F'(z) = / V() +Y*(l — Az) — (€, z)dt
0

(Iz)11%, = 1z0)112)) + x (2(0) — yo)

N =

+
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s
= / V(@) +Yr(C— Az) — (£, 2)dr
0

(12112, + lIyoll%,) — (Az(0), yo) + 112(0) — yoll.

| =

+

This shows that G*(z) = F*(z) — ||z(s) ||i{/2 is convex and hence F* is the sum
of a convex and a quadratic function. For 6 € [0, 1]and v, w € w0, T1; Y) and
z = 60v+ (1 — 6)w, we thus deduce that

) ) 1
0<F'() =G*(2) + Enz(s)nif
1
<0G M)+ (1= 0)G W)+ J10v(s) + (1 — Ows)|I%, .

Incorporating the formula

Op(v) + (1 —)pw) —pOv+ (1 —0)w) =0(1 —0)p(v — w)

for ¢ (v) = |[v[|2,/2 implies the estimate

(1 —0) 2
———— sup [v—w|, SOF®)+ (1 —-0)FWw).
2 sep0.1)
For & = 1/2 and w = y we deduce the asserted estimate. (I

Example 11.5 Consider kinematic hardening with the variable y = (u, p) and let
y = (&, p) be an admissible function, i.e., ¥*(£ — AY) = Ic, (¢ — Ay) = 0 for all
t € [0, T]. Assume that y is piecewise affine in time with respect to the time steps
(t)k=0....x and let (@, p*) = (@(t), p(tx)) and 7y = #; — tx_1. We then have

K
sup Iy =313, <4 uni(@, p)
1€[0,T] P

with

N (@, p) = / oyld p*| = F(t) - dyit* + Ce@*) — p*) : (e(d") — dip") dx,
Q

where f (1) = T, ! tjil f(¢) dz. The admissible function y can be constructed in a

post-processing procedure from a typically inadmissible finite element approxima-

tion ¥y, and the triangle inequality leads to a computable estimate for the approxi-

mation error ||y —yj, ¢ ||. Lowest order approximations satisfy the stress admissibility

condition o, € K exactly, but in general not the equilibrium condition — divoy, = f.
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11.3 Numerical Solution

The numerical solution of the nonlinear system of equations related to a time step
in the implicit discretization of quasi-static elastoplastic evolution problems can be
formulated as a nonlinear displacement problem. The key to this reformulation is a
pointwise solution of the discretized flow rule that leads to a formula for the stress
field in terms of the displacement. We employ ideas from [1, 8, 9].

11.3.1 Solution of the Discretized Flow Rule

For a step size t > 0, an implicit discretization of the flow rule reads as
>k e drid,Ph

with the generalized stress X% = (0%, x¥), the generalized plastic strain PF =
( pk, & k ), and the backward difference quotient d, Pk = (Pk — Pk_l) /T. We recall
that we have the relations

xF = —Hgk, of = Clewr) - ph.

The following proposition shows that for the generalized plastic strain PX~!, the
generalized stress X*~! from a previous time step, and a trial strain &(u*) that
may be a guess of the true displacement in the k-th time step, the corresponding
generalized stress X* is pointwise uniquely determined by the flow rule and defines
Pk, cf. Fig. 11.3.

Proposition 11.6 (Return map) Given arbitrary Pk=1 k=1 and e (u®), there exist
uniquely defined X* and P* such that

=k e 1% d, PY).

The field >k is the best approximation of >k = (tCdye(uF) + o*1, )(k_l) in S
with respect to the scalar product (o, x), (p,¢)) = (0 :C'p+ x :H'¢) /7.

Sk
'k

z

Fig.11.3 For given Pk=1 xk=1 and e (u*) the elastic trial stress k= (tCdye(uk)+o*1, kal)
is projected onto the set S to obtain an admissible stress X kel $(dy Py
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Proof Wenote d; p* = die(u¥) —C~'d;o* = die*) + v 1Clo*" 1 — ¢~ 1C~ 1ok
and d; £ = —H 'd, x* = t='"H~' ¥~ —t~1H~!x*. Hence, the inclusion d, P¥ €
Als(XX) is equivalent to

Sfct o 1Cdye () 4 o*—1
R Kk 1 k
z [ 0 H—l} (}: [ e ) € alg(Z5).

This implies the assertion. ]

The proposition shows that given £*~! and #*~!, which uniquely define P¥~!,
there exists a well-defined map

ﬁ:ukHEk,

so that the flow rule is satisfied with P* determined by X* and u*. For the von
Mises yield criterion we derive an explicit formula for the operator 7. An essential
ingredient for this is the following lemma in which we employ the functional

|p| iftr p=0,

o RE 5 RU (400}, pi>
[-lo sym { hop +o00 otherwise.

We assume that
CE =MtrE)I; +21E

for E € REX¢ and constants A, u > 0.

Lemma 11.3 (Explicit solution [1]) Let B € ngxnf and p € ngff withtr p = 0,
and n,r > 0 be such that

72=B—t(C+2n)pedr|-|op).

Then
(|devB| —r)+ devB

2t(u+mn) |devB|

p=

Proof The inclusion is equivalent to z : (¢ — p) +r|plo < rlglo. If p = 0, we have
z:q <r|q| and deduce |devz| = |dev B| <r. If p # 0, thendevz = rp/|p| and
using Cp = 2up, we find that

.

devB —2(u+np=r P

Pl

which implies | dev B| = 2(u + n)|p| +r and 2| p| = (| dev B| — r) /(i + ). Since
13 and dev B are parallel, we deduce the asserted formula. O
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We solve the discretized flow rule explicitly for the yield function @ (o, o, f) =
|dev(o + B)| — oy(1 + a4) and the corresponding support functional of the set of
admissible stresses

I;‘(i)) _ {O‘y|p| if tr p.: 0, b =p, oylp| < —a,
+o00 otherwise,

cf. Lemma 11.1. We assume the constitutive relations
a = —Higea, B = —Hinb

such that H;, is a multiple of the identity.

Proposition 11.7 (General von Mises flow rule) Assume that ( pk’1 ,ak—1 pk=T
with tr p*=1 =0, b*~1 = p*=1 and a*=' < 0 are given. For arbitrary u*, define
AF = (C(a(uk) — pk_l). Then with

(Idev A* — Hiinp* ™! — 0y (1 — Hisoa* 1)) | dev A% — Hyy ph~!
2t (e + Hisoo'}z + Hin) | dev Ak — Hkinpk_ll

dtpk =

and dy(a*, b%) = (—oyldp*|. dip*) = —di(Hisoa®, HiinB*) and o* = A% —
tCd, p* we have
=k e 1% d, PY).

Proof We omit the superscript k and abbreviate P = d; P¥ and P’ = P*~! in the
following. The inclusion X' € 0/ (P) states that P is a minimizer for the mapping

r:PwIi(P)—X:P=1Iip.a.b)—c:p—ai—p:b.
The identities («, ) = —(Hisoa, Hyinh) and a = a’ + ta, b = b’ + b lead to
F(p.a.b)y=1I:p.a.b)— o : p+ Hiwad + Hynb : b
= 13(p.a.b) — 0 : p + Hisod'd + tHigot® + Hyinh' : b + tHynb : b.

We note that / ;‘ is finite only if p = b, so that we may eliminate b and b/, i.e., we
may consider minimizing

F/([.?, é) = I;:(l;a &» ﬁ) — 0! 1.7 + Hisoa/& + "—'IHIiso(:l2 +Hkinp/ : 1.7 + '(]Hlkinl.7 : 1.7

Given p, the functional /{ is finite only if oy|plo < —a. Notinga’ < O and @ < 0,
show that given p, the optimal value of a for I'’(p, a) subjecttoa < —oy|ploisa =
—oy|plo. Noting I{(p, a, p) = oy|plo, we may thus restrict to the minimization of

FU([’) = Uyl[.)|0 —0: i)_Hisoaya/|l.7|0+THis005|1.7|%+Hkinp/ : 1.7+7Hkin[.) : 1.7
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For a minimizer, we have
0 € —0 + 2tHiso02 p + Hyinp' + 2tHiin p + 8(0y — Hiso0ya))| - lo(p).
Writing 0 = A — tCp we have
A — Hyinp' — 7(C + 2Hiso02 + 2tHiin) p € 80y (1 — Hisod')| - [o(p).

Lemma 11.3 implies the asserted formula for p. ]

The formula of the proposition defines the stress function .% : u* - o¥ via
Lk Wk C(e@®) — p*=1) — Cd, p*
Ty = | AFwh) | = | —Hiso(@* " = 70,1d, p"))
ﬂzk k) —Hiin (P* 1 + 7d, p*)

For the special cases of perfect plasticity and linear isotropic and kinematic hardening,
the formula for the stress o = .% (u¥) can be simplified. We recall the abbreviation
AR = C(e(uk) — pFh).

Examples 11.6 (i) For perfect plasticity we have

dev Ak
koo ky _ a4k k
5% (M )—A —(|d€VA |—O'y)+m.

(i) For isotropic hardening we have

(Idev AF| — oy (1 — Higoa*~1))4 dev AF

SRk = Ak - .
) [+ Hioo2/u [dev AT

(ii1) For kinematic hardening we have

(| dev A* — Hiinp* ' — 0y)4 dev AF — Hiin p*~!
1 4 Hyin /e | dev AF — Hign pk=1|°

Rl L

Remarks 11.7 (i) The operator . k can be written as
Wk = AF — 2/ud,pk

with
dev A% + pmk-1

dtpk = (l/r)(|deVAk +Mk71| —Skil)_‘_m

for M* = —Hyinp*~!, 57! = 0,(1 — Hisoa*™1), and r = 2ut(1 + Hyin/1t +
Hisoo'yz/u). Notice that M¥—1 is deviatoric, i.€., MK = dev MF1,
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(i) If max{His, Hiin} > O, then the mapping .#* is Lipschitz continuous and
strongly monotone.

A time step of the discretized elastoplastic evolution problem can now be formu-
lated in terms of displacement.

Corollary 11.2 (Displacement formulation) The tuple
Wk, p*,a* bh) € H'(2;RY) x L2 (2: R x L*(82) x L*(2; RY*?)

sym

satisfies uk b, =0,

/(C(s(uk) — pk) re(v)ydx = / f(ty) -vdx +/g(tk) -vds
2 2

IN
forallv e H'($2; RY) with v|ry, = 0, and
C(e@) — p¥) di p*
k= ok € als(d, P*) = a1 | | dya*
,Bk dlbk

if and only if

/yk(u") : Vvdx=/f(tk)-vdx+/g(tk)~vdx

Q2 2 I'n
forallv € HY(£2; RY) with vi, = 0 and (pk, ak, b*y are defined according to
Proposition 11.7.

Remark 11.8 Notice that the stress function .#’* only depends on Vu*, i.e., we may
write K (k) = 7K (Vuk).

11.3.2 Newton Method for Nonlinear Elasticity

Given a stress function . : R9*4 — RI%d e consider the iterative solution and
implementation of the problem of finding u;, € .#!(.7)¢ such that M (z)u(z) =
up(z) forallz € 4/ N Ipand

/Y(Vuh):Vvhdx:/f-vhdx+/g~vhds
2 2

I'n

for all v, € #1(7)¢ with M(z)vi(z) = O for all z € 4 N I'p. The matrix field
M : I'y — R?*4 allows us to impose Dirichlet conditions on individual components
of the vector field u;, on I'p, or to formulate gliding boundary conditions.
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vvvvyvy M) = {8 (1)] up(x 1) = m
2 10 0
leeeressss M(x,0) = 0 1] , up(x,0) = [0}

Fig. 11.4 Partial Dirichlet boundary conditions and full Dirichlet boundary conditions specified
by a matrix field M and a vector field up

Example 11.7 Consider £2 = (0, 5)x (0, 1) and the Dirichlet conditions u|[2 51x {0} =
0 and u2|[0,31x{1} = w for a displacement field u = (u1, uz). This is equivalent to
requiring Mu = up on I'p with M and up specified in Fig. 11.4.

The application of the Newton scheme to the nonlinear system of equations leads
to the following algorithm.

Algorithm 11.3 (Newton scheme for nonlinear elasticity) Let u2 e .1 (7)? with
M(z)u%(z) = up(z) for all z € A N Ip. Define the sequence (uﬁ)g=()’1’m by
computing for ¢ = 1, 2, ..., a function ufl € yl(ﬂ)d with M(z)ufl (z) = up(z) for
allz € A4 N Ipand

/Dy(wfj‘)[wf;] : Vv dx =/Dy(wf;‘)[wf;*1] : Vv, dx
2 2

+/f~vhdx+/g-vhds
Q

In

for all v, € #1(7)? with M (z)vj,(z) = 0 for all z € 4" N I'p. Stop the iteration if
IV ey =10, p gty < Estop fOr 1wallfy 5o, = J DI VunVwn) = Vo d.

We employ the basis (Y(;,p) = epp; :z2€ A, p=12,...,d) of S 1(T)4
with the canonical basis vectors e, € R4, p = 1,2,...,d. Given a vector field
up, € SNT )d with coefficient vector U € RYL with L = #.4", we define the vector
F(U) e RL

2

forz € 4 and 1 < p < d. Similarly, we define the matrix DF (U) € RALxdL by

[DFO)]( = | DS Vi) T
2
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forz,y € A and 1 < p,q < d. The full-rank matrix B is obtained by arranging
the d x d matrices M (z) for all z € .4 N I'p on the diagonal of a matrix B. , and then
deleting vanishing rows. Similarly, we arrange the vectors up(z) € R?,z € A4 NI,
in a vector W and then delete the entries corresponding to deleted rows in B to obtain
a vector W. With these definitions, a step of the Newton iteration can be rewritten as

DFWU*Y BT [U*] _[DFWU*~hHhu' - Fut)
B 0 AT w :

. . . . . . -~ 2 .
In our implementation a matrix A € R?*4 is identified with a vector A € R?" via
Aij = AG—Dd+j, 1€,

ai ceeodyg
I . . T T
A= : . ~ A=lay,az,...,a] .

A@—1)d+1 * -+ dg2

The MATLAB codes displayed in Figs. 11.5 and 11.6 realize Algorithm 11.3. The
code in Fig. 11.5 is an implementation of the Newton iteration and the routine dis-
played in Fig.11.6 computes the required matrix D F (up) and vector F(uy) for
an iteration step in the Newton scheme. The routine also provides the stress field
op = < (Vuy). In the implementation, the elementwise constant Jacobian matrix
Vuy, is contained in the array Du whose dimension is #.7 x d°. In a loop over all
elements in .7, the elementwise contributions to the matrix D F (1) and the vector
F(up) are computed, where the arrays D_psi_1 and D_psi_2 represent gradi-
ents of elements in the basis of .7} (%)d. The routines element_geometry.m
and side_geometry.m compute elementwise gradients of basis functions and
volumes and midpoints of elements and sides, respectively.

11.3.3 Implementation of Elastoplasticity

The MATLAB routine for solving the quasi-stationary elastoplastic model problem
displayed in Fig. 11.7 is based on the displacement formulation of Corollary 11.2 of
a time step in the implicit discretization of the problem. We consider the k-th time
step of the discretized elastoplastic evolution problem in the following. According to
Remark 11.7, the nonlinear stress function .#% (1) = .*(Vu) is for a displacement
field u and A = C(e(u) — p*~!) given by

SK(Vu) = A = 2utd, p*
with

1 dev A + M1
dpf=—(devA+ Ml —gk-ly —— ~ —
P 2,utr(| + | = )+|devA+Mk*1|
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function nonlinear_elasticity(d_tmp, red)
global d; d = d_tmp; factor = 10;

[c4n,nde,Db,Nb] = triang_beam(d,5);
for j l:red
[cd4n,nde,Db,Nb] = red_refine(cd4n,nde,Db,Nb) ;
end
[nC,d] = size(c4d4n); u = zeros (d*nC,1);
[B,W] = diri_constraint (c4n,Db);
[DF,F,sigma] = nonlinear_fe matrices(c4n,nde,Nb,u);
corr = 1; eps_stop le—-4;
while corr > eps_stop
b = [DFxu-F;W]; A = [DF,B';B,sparse(size(B,1),size(B,1))1;
X A\b; u_new X (1:d*nC) ;
corr = sqgrt ((u-u_new) "«DF* (u-u_new)); u = u_new;
[DF,F,sigma] = nonlinear_fe matrices(c4n,nde,Nb,u);
end
def = céd4nt+factorxreshape(u,d,nC)"';
mod_sigma = sum(sigma.”2,2).7(1/2);

show_pl_def (c4n,nde,def,mod_sigma) ;

function [B,W] = diri_constraint (c4n,Db)

[nC,d] = size(c4n); dNodes = unique (Db); nDb = size (dNodes,1);
B = sparse (d+«nDb,d*nC); W = sparse (d+*nDb,1);

for j = 1:nDb

[M,U] = u_D(c4n (dNodes (3),:));
B((j-1)%d+(1l:d), (dNodes (j)-1)*d+(1:d)) = M;
W((3j-1)xd+(1:d)) = U;

end

essential_DNodes = find(sum(abs (B),2));

B = B(essential DNodes,:); W = W(essential_DNodes, :);

function [M,U] = u_D(x)
d = size(x,2); M = zeros(d,d); U = zeros(d,1);
if x(d) == 0
M = eye(d);
elseif x(d) == 1
M(d,d) = 1; U(d) = -.025;
end

Fig. 11.5 Newton scheme for the solution of the nonlinear elasticity problem as in Algorithm 11.3

The derivative with respect to u is for v and B = Ce(v) given by
D.*(Vu)[Vv] = B

if |[dev A + M*1| < s¥=1 and

1 dev B
D (Vu)[Vv] = B — —(|devA + M| — sk 1) — ——
(Vu)[Vv] r(| ev A+ | —s )|devA+Mk*1|
sk=1 dev A + M*-1

S (devA+ M) idev BT
ey A M ey B A M



360 11 Elastoplasticity

function [DF,F,sigmal = nonlinear_fe_matrices (c4n,n4de,Nb,u)
[nC,d] = size(c4n); nE = size(nde,l); nNb = size(Nb,1);
F = zeros(dxnC,1l); sigma = zeros(nkE,d"2); Du = zeros(nk,d"2);
ctr_max = d"2*(d+1) "2%nE; ctr = 0;
I = zeros(ctr_max,1); J = zeros(ctr_max,1); X = zeros(ctr_max,1);
for k = 1:d
Du(:, (k=1)xd+(1l:d)) = comp_gradient (c4n,nde,u(k:d:nCx*d));
end
for j = 1:nE
[mp_T,vol_T,grads_T] = geometry_element (c4n(nde(j, :),:));
Du_T = Du(j,:); sigma(j,:) = stress(Du_T,J);

for m = 1:d+1
for p = 1:d
D_psi_ A = zeros(l,d"2);
D_psi_A(dx(p-1)+(1l:d)) = grads_T(m,:);
D_Sigma_T A = stress_derivative(Du_T,D_psi_A,Jj);
for n = 1:d+1
for g = 1:d

ctr ctr+l;

D_psi_B = zeros(1l,d"2);

D_psi_B(dx(g-1)+(1:d)) = grads_T(n,:);

I(ctr) = dxnde(j,m)-d+p;

J(ctr) = dxnde(j,n)-d+qg;

X(ctr) = vol_T«D_Sigma_T_ AxD_psi_B';
end; end
phi_mp T = zeros(d,1l); phi_mp_T(p) = 1/(d+1);
F(d* (nde(j,m)-1)+p) = F(dx (nde(j,m)-1)+p)

+vol_Tx* (sigma (Jj, :) *D_psi_A'-f (mp_T) xphi_mp_T);
end; end; end
DF = sparse (I, J,X,d*nC,d*nC);
for j = 1:nNb
[mp_S,vol_S] = geometry_side (c4n(Nb(j,:),:));
for m = 1:d
for p = 1:d
phi_mp_S = zeros(d,1l); phi_mp_S(p) = 1/d;
F(d* (Nb(j,m)-1)+p) = F(d* (Nb(j,m)-1)+p) ...
—-vol_Sxg(mp_S)+xphi_mp_S;
end; end; end

function val = f(x); global d; val = zeros(1l,d);
function val g(x); global d; val = zeros(1l,d);

function val = stress(Du_T, j)

global d; transp = reshape(l:d"2,d,d)"';
E_sym = (Du_T+Du_T (transp(:)))/2;

val = .lxsum(E_sym."2,2)«E_sym+E_sym;

function val = stress_derivative (Du_T, B, j)

global d; transp = reshape(l:d"2,d,d)"';

E_sym = (Du_T+Du_T (transp(:)))/2; B_sym = (B+B(transp(:)))/2;

val = .2+sum(E_sym.*B_sym,2) *E_sym+.lxsum(E_sym."2,2) «B_sym+B_sym;

Fig. 11.6 Finite element matrices and vectors required in the Newton iteration of Algorithm 11.3
with stress function defined through the energy density W (E) = |E|*/40 + | E|%/2
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function elastoplasticity(d_tmp, red)
global d p_old p_new a_old a_new tau t; d = d_tmp;
[cd4n,nde,Db,Nb] = triang_beam(d,5);
shift_vec = [2.5,.5,.5];
cdn = 0.01% (cd4n-ones(size(cdn,1),1)+shift_vec(l:d));
for j = l:red
[c4n,nde,Db,Nb] = red_refine(c4n,nde,Db,Nb);
end
tau = 27 (-red) /40;
[nC,d] = size(c4d4n); nE = size (nde,l);
T = .2; factor = 10; material_parameters();
p_old = zeros(nk,d"2); p_new = zeros (nkE,d"2);
a_old = zeros(nE,1l); a_new = zeros(nk,1l);
for k = 1l:floor (T/tau)
t = kxtau;
[u,sigma] = plastic_step(c4n,nde,Db,Nb);
p_old = p_new; a_old = a_new;
def = cd4n+factorxreshape(u,d,nC)"';
mod_sigma = sum(sigma.”2,2)."(1/2);
mod_p = sum(p_new. 2,2)."(1/2);
figure(l); show_pl_def (c4n,nde,def,mod_sigma);
figure(2); show_pl_def (c4n,nde,def,mod_p);
end

function [u,sigma] = plastic_step(c4n,nde,Db,Nb)
[nC,d] = size(cdn); u = zeros(d*nC,1);
[B,W] = diri_constraint (c4n,Db);
[DF,F,sigma] = nonlinear_fe_matrices(c4n,nde,Nb,u);
corr = 1; eps_stop = le-2;
while corr > eps_stop

b = [DF*u-F;W];

A [DF,B';B,sparse(size(B,1),size(B,1))1];

x = A\b;

u_new = x(l:dxnC);

corr = sqgrt ((u-u_new) "«DF* (u-u_new))

u = u_new;

[DF,F,sigma] = nonlinear_fe_matrices_plast (c4n,n4e,Nb,u);

end

function material_parameters ()

global nu lambda mu sigma_y H_kin H_iso;

E = 1.37e+11; nu = 0.3;

lambda = nu*E/ ((l+nu) * (1-2%nu)); mu = E/ (2% (1+nu));
sigma_y = 4.5e08; H_kin = 1/1000; H_iso = 0;

Fig. 11.7 The implicit discretization of the elastoplastic evolution problem leads to a nonlinearly
elastic problem in every time step that is solved with a Newton iteration; the defined material
parameters model realistic steel

otherwise. We use global variables to avoid long arguments of function calls. This
enables us to use the routine that assembles the matrices for the Newton scheme with
the stress function .%. The routine nonlinear_ f e_matrices_plast.mis
thus acopy of theroutinenonlinear_fe_matrices.minwhichthe subroutines,
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function val = stress (Du_T, j)

global d lambda mu sigma_y H_kin H_iso;
global tau p_old p_new a_old a_new;
transp = reshape(l:d72,d,d)"';

id_mat = reshape(eye(d),1,d"2);

E_sym = (Du_T+Du_T (transp(:)))/2;

A = lambdax*tr (E_sym-p_old(j, :))*id_mat+2+mux (E_sym-p_old(Jj,:));
M = —-H_kin*p_old(7j,:);

r = 1+H_isoxsigma_y " 2/mu+H_kin/mu;

s = sigma_yx* (1-H_isox*a_old(j));

dt_p = zeros(1,d"2);

if norm(dev (A+M))-s > 0
dt_p = (1/(2+*muxtau*r)) (l-s/norm(dev (A+M)) ) xdev (A+M) ;
end
p_new(j,:) = p_old(j,:)+tauxdt_p;
a_new(j) = a_old(j)-tauxsigma_y*norm(dt_p);

val = A-2smuxtauxdt_p;

function dev_A = dev (A)

global d; dev_A = A-tr(A)/d+reshape(eye(d),1,d"2);
function tr_A = tr(A)

global d; tr_ A = sum(A(l:d+1:d72),2);

function val = stress_derivative (Du_T,Dv, j)

global d lambda mu sigma_y H_kin H_iso;

global p_old a_old;

transp = reshape(l:d72,d,d)"';

id_mat = reshape(eye(d),1,d"2);
)

E_sym = (Du_T+Du_T (transp(:)))/2;
A = lambdax*tr (E_sym-p_old(j, :))*id_mat+2+mux (E_sym-p_old(J,:));
M = -H_kin*p_old(j,:);
r = 1+H_isoxsigma_y ~2/mu+H_kin/mu;
s = sigma_y+* (1-H_isox*a_old(j));
Dv_sym = (Dv+Dv (transp(:)))/2;
B = lambdaxtr (Dv_sym)+xid_mat+2+mu*Dv_sym;
val = B;
if norm(dev (A+M))-s > 0
val = B+ (1/r)* (norm(dev (A+M) ) —-s) xdev (B) /norm (dev (A+M) ) . ..

—(1/r)+xs* (dev (A+M) xdev (B) ') xdev (A+M) /norm (dev (A+M) ) " 3;
end

function dev_A = dev (A)

global d; dev_A = A-tr(A)/d+reshape(eye(d),1,d"2);
function tr_A = tr(A)

global d; tr A = sum(A(l:d+1:d72),2);

Fig. 11.8 Implementation of the stress function .7 (Vi) for general von Mises plasticity and its
derivative D.7* (Vu)[Vv]; the index Jj refers to the corresponding element in the triangulation

defining the stress and its derivative, have been eliminated. These are replaced by the
functions displayed in Fig. 11.8. The argument j in the calls of the stress function
and its derivative in the assembly of the matrices allows us to access the elementwise
values of globally defined fields in the subroutines. We remark that the variables g
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and b are eliminated from the problem in the implementation via the identities p = b
and B = —Hi;,b.
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Appendix A
Auxiliary Routines

A.1 Triangulations

A.1.1 Domains in R¢

Triangulations of some domains in R are provided by the routines displayed in
Figs. A.1 and A.2. The routine triang_cube .m defines a coarse triangulation of
the d-dimensional unit cube for d = 1,2, 3 with a partition of the boundary into
Dirichlet and Neumann parts specified by

2=0,0D% Ip=32n R x{0), I'v=2d2\Ip.

A uniform triangulation of a two-dimensional strip with side lengths L € N and 1
into 2L right isosceles triangles and the Dirichlet part of the boundary consisting of
the ends of the strip, i.e.,

2=0,L)x©0,1), I'p={0,L}yx[0,1], In=082\ ID,

is computed in the routine triang_strip.m. The routine triang_beam.m
defines a uniform partition of the two- or three-dimensional beam

2 =(0,L) x (0, )"
with variable integer length L > 0. The boundary is partitioned according to
I'p ={(x1,...,xq) €982 : (x1,xg) € [0,3] x {1} or (x1,xq) € [2, L] x {0}
and I'ny = 082 \ Ip. Figure A.2 shows the MATLAB code triang ring.m that
provides an approximate triangulation of the annulus £2=B5(0)\ B; (0) with Dirichlet

boundary I = 9$2 and empty Neumann boundary Iy = . The triangulation is
obtained from a triangulation of the unit square via the parametrization
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function [c4n,nde,Db,Nb] = triang_cube (d)
if == 1

cdn = [0;1]; nde = [1,2]; Db = 1; Nb = 2;
elseif d ==

c4n = [0,0;1,0;1,1;0,1]; nde = [1,2,3;1,3,4];
Db = [1,2]; Nb = [2,3;3,4;4,11;

elseif d ==
c4n = [0,0,0;1,0,0;1,1,0;0,1,0;0,0,1;1,0,2;1,1,1;0,1,11;
nde = [1,2,3,7;1,6,2,7;1,5,6,7;1,8,5,7;1,4,8,7;1,3,4,71;
Db = [1,2,3;1,4,3];
Nb = [2,3,7;2,7,6;1,2,6;1,6,5;5,6,7;1,8,5;5,7,8;1,4,8;
4,7,8;3,4,71;
end

function [c4n,n4e,Db,Nb] = triang_strip (L)

nde = [[1:L;L+1+(2:L+1);L+1+(1:L)]"'; [1:L;2:L+1;L+1+(2:L+1)]1"'];
cdn = [[0:L;zeros(1,L+1)]"';[0:L;ones(1,L+1)]1"'];

Db = [L+1,2*xL+2;L+2,11;

Nbo = [[1:L;2:L41]"; [2+L+2:-1:L43;2+«L+1:-1:L+2]"'];

function [c4n,n4e,Db,Nb] = triang beam(d, L)

if d ==
c4n_ref = [0,0;1,0;1,1;0,1]1; nde_ref = [1,2,3;1,3,4];
bdy_left = [4,1]; bdy_mid = [1,2;3,4]1; bdy_right = [2,3];
elseif == 3
c4n_ref = [0,0,0;0,0,1;0,1,0;0,1,1;1,0,0;1,0,1;1,1,0;1,1,11;
nd4e_ref = [1,2,8,4;1,2,6,8;1,3,4,8;1,3,8,7;1,5,7,8;1,5,8,61;
bdy_left = [1,2,4;1,3,4]; bdy_right = [6,5,8;7,5,8];
bdy_mid = [1,2,6;1,3,7;1,5,6;1,5,7;4,2,8;6,2,8;4,3,8;7,3,81;
end
nC = size(cd4n_ref,1); cd4n = ci4n_ref; nde = nde_ref;

bdy = [bdy_left;bdy_mid];
for k = 2:L

c4dn = [cdn; [cd4n_ref (:,1)+(k-1),cd4n_ref (:,2:d)]11];
nde = [néde;nde_ref+nCx(k-1)];
bdy = [bdy;bdy_mid+nCx (k-1)1;

end

bdy = [bdy;bdy_right+nCx (L-1)]1;

[c4n,—, K] = unique(cédn, 'rows', 'first");

nde = K(nde); bdy = K(bdy); Db = []; Nb = [];

for j = l:size(bdy,1);
mp_S = sum(c4dn(bdy (3, :),:),1)/d;

if (mp_S(1)<3 && mp_S(d)==1) || (mp_S(1)>2 && mp_S(d)==0)
Db = [Db;bdy (J,:)];

else
Nb = [Nb;bdy (J,:)];

end

end

Fig. A.1 Generation of triangulations of the cube 2 = (0, 1)4 (top), the strip 2 = (0, L) x (0, 1)
for L € N (middle), and the beam £2 = (0, L) x (0, 1)?~! for L € N (bottom)
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function [c4n,nde,Db,Nb] = triang_ring(red)
c4n_ref = [0,0;1,0;1,1;0,1]; nde = [1,2,3;1,3,4];
Db = [2,3;4,1]; Nb = [1,2;3,4]1;

for j = l:red

[c4n_ref,nde,Db,Nb] = red_refine(cd4n_ref,nde,Db,Nb);
end
idx = find(cd4n_ref (:,2)==1); cdn_ref (idx,2) = 0;
[cd4n_ref,—,K] = unique (c4n_ref, , );
nde = K(nde); Db = K(Db); Nb = [];
r = cd4n_ref(:,1); phi = cd4n_ref (:,2);
cdn = [(r+l).xcos(2xpixphi), (r+l) .*sin (2«pi*phi) ];

Fig. A.2 Generation of an approximate triangulation of the annulus B> (0) \ B1(0)

f:(0,1) x[0,1] = B2(0)\ B1(0), (., ¢)— (r + 1)(cos(2n¢), sin(2n¢)).

Multiply occurring nodes in the image of the triangulation are eliminated with the
help of the MATLAB command unigque.

A.1.2 Hypersurfaces in R

Discrete surfaces, i.e., unions of flat triangles in R>, that define Lipschitz con-
tinuous submanifolds in R3 are computed in the MATLAB routines displayed in
Fig. A.3. Starting with a triangulation of the boundary of the cube [—1, 1]13/+/3,
an approximation of the unit sphere is obtained by alternatingly projecting the nodes
onto the unit sphere and refining the triangulation. This is realized in the program
triang_sphere.m. An approximation of the two-dimensional torus 7, g with
radii 0 < r < R is computed in the routine triang_torus.m which employs the
transformation f : [0, 2712 — R3 defined by

f(u,v) =[(R 4 rcos(v))cos(u), (R+rcos(v))sin(u), r sin(v)]T.

The surface is closed and the boundary parts I'p and '\ are empty.
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function [n4e,c4n,Db,Nb] = triang_sphere (red)

c4n = [-1,-1,-1;1,-1,-1;1,1,-1;-1,1,-1;-1,-1,1;1,-1,1;
11111;711171]/Sqrt(3);

n4e = [1,2,6;6,5,1;2,3,7;7,6,2;3,8,7;3,4,8;4,5,8;4,1,5;
6,7,8;6,8,5;1,3,2;1,4,3];

Db = []; Nb = [];

for j = l:red
[c4n,nde,Db,Nb] = red_refine_surf (c4n,nde,Db,Nb) ;
c4n = c4n./ (sqrt (sum(cdn.”2,2))*[1,1,11);

end

function [c4n,n4e,Db,Nb] = triang_torus(r,R,red)
c4n_ref = [0,0;1,0;1,1;0,1]; nde = [1,2,3;1,3,4];

Db = []; Nb = [];
for j = l:red

[c4n_ref,nde,Db,Nb] = red_refine(c4n_ref,nde,Db,Nb);
end
idx = find(cd4n_ref (:,2)==1); cd4n_ref (idx,2) = 0;
idx = find(cd4n_ref(:,1)==1); cd4n_ref (idx,1) = 0;
[c4n_ref,—,K] = unique (c4n_ref, , );

nde = K(nde);
u = 2+pixcdn_ref(:,1); v = 2xpixcdn_ref(:,2);
c4n = [(R+rxcos(v)) .*xcos(u), (Rtrxcos(v)) .*sin(u),r*sin(v)];

Fig. A.3 Discrete surfaces defined by approximate triangulations of the unit sphere (fop) and the
torus with radii 0 < r < R (bottom)

A.2 Grid Refinement

Coarse triangulations can be refined with the MATLAB routine red_refine.m
displayed in Figs. A.4 and A.5. The refinement procedure partitions every
d-dimensional simplex into 2¢ subsimplices by bisecting its one-dimensional sub-
simplices and appropriately connecting new nodes as illustrated in Figs. A.6 and A.7.
The routine also provides matrices that allow for computing the coefficients of a given
finite element function on the coarse triangulation with respect to the nodal basis on
the refined triangulation by a matrix vector multiplication. For continuous, piecewise
affine functions this is realized with the matrix P1 and for elementwise constant func-
tions with the matrix PO. For triangulations of hypersurfaces in R3, the same strategy
can be used to refine a given simplicial approximation of a surface, cf. Fig. A.8. The
code red_refine_surf.m shown in Fig. A.9 is a straightforward modification
of the routine red_refine.m that incorporates the additional coordinates of the
nodes. A postprocessing procedure that projects the newly created nodes onto a given
surface can be incorporated to increase the accuracy of the approximation.
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function [c4nNew, n4eNew,DbNew, NoNew,PO,P1]
= red_refine (c4n,nde, Db, Nb)
[nC,d] = size(cdn); nE = size(nde,1l);
nDb = size(Db,1); nNb = size (Nb,1);
K = sparse(l:nC,1:nC,1:nC);
c4dnNew = c4dn; ndeNew = zeros (nE*x27°d,d+1);
DbNew = zeros (nDb*2" (d-1),d); NbNew = zeros (nNb*2" (d-1),d);
PO = sparse(2°dxnE,nE);
nr_nodes = nC;
for j = 1:nE
for k = 1:d+1
for m = 1:d+1

if K(nde(j,k),nde(j,m))==0
nr_nodes = nr_nodes+l1;
K(n4e(j,k),nd4e(j,m)) = nr_nodes;
K(nd4e(j,m),nde(j,k)) = nr_nodes;
1(2*(nr nodes— nC 1)+(1:2)) = [nr_nodes,nr_nodes];
IZ(Z*(nr nodes-nC-1)+(1:2)) = [nde(j,k),nde(j,m)];
E(2* (nr_nodes-nC-1)+(1:2)) = [1 11/2;
c4nNew(nr nodes, :) =
(c4n (nde (j, k), :)+c4n(nde(j,m), :))/2;
end
end
end
nodes = K(nde(Jj,:),nde(3,:));
if d ==1

ndeNew (2% (J-1)+(1:2),:) =
[nodes (1,1),nodes(1,2);nodes(1,2),nodes(2,2)1;

elseif d ==
ndeNew (4% (J-1)+(1:4),:) =

[nodes (1,1), nodes(l,Z),nodes(l 3);
nodes (1, 2) ,nodes (2, 3) ,nodes (1, 3) ;
nodes (1,2) ,nodes (2,2) ,nodes (2, 3) ;
nodes ( ) ,nodes (2, 3) ,nodes (3,3)1;

elseif d ==

nd4eNew (8x (j-1)+(1:8),:) =

[nodes (1,1),nodes(1,2),nodes(1,3),nodes(1,4);
nodes (1, 2) ,nodes (2,2) ,nodes (2, 3) ,nodes (2,4) ;
nodes (1, 3) ,nodes (2, 3) ,nodes (3, 3) ,nodes (3,4) ;
nodes (1,4) ,nodes (2,4) ,nodes (3,4) ,nodes (4,4);
nodes (1,2) ,nodes (1, 3) ,nodes (1,4),nodes (2,4);
nodes (2, 3) ,nodes (1, 3) ,nodes (1,2) ,nodes (2,4);
nodes (1, 3) ,nodes (1,4) ,nodes (2,4) ,nodes (3,4);
nodes (1, 3) ,nodes (2,4) ,nodes (2, 3) ,nodes (3,4)1;

end

PO(2°d* (j-1)+(1:2°d),Jj) = ones(1l,2°d);

end
I1 = [I1,1:nC]; I2 = [I2,1:nC]; EE = [EE,ones(1l,nC)];

Pl = sparse(Il,I2,EE,nr_nodes,nC);

Fig. A.4 MATLAB implementation of a uniform refinement procedure that partitions every simplex
into 29 subsimplices (continued in Fig. A.5)
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for j = 1:nDb
nodes = K(Db(j,:),Db(j,:));
if d ==
DbNew = Db;
elseif d == 2
DbNew (2 (j=1)+(1:2), :)
[nodes (1,1),nodes(1,2);
nodes (1,2),nodes (2,2)1];
elseif d == 3
DbNew (4 (j—=1)+(1:4),:) =
[nodes (1,1),nodes(1,2),nodes(1,3);
nodes (1, 2),nodes (2,2),nodes (2, 3)
nodes (1, 2),nodes (2, 3) ,nodes (1, 3)
nodes (1, 3) ,nodes (2, 3) ,nodes (3, 3)

’

17
end
end
for j = 1:nNb
nodes = K(Nb(Jj,:),Nb(j,:));
if d ==
NbNew = Nb;
elseif d == 2
NbNew (2 (j—=1)+(1:2),:) =
[nodes (1,1),nodes(1,2);
nodes (1, 2),nodes (2,2)1;
elseif d ==
NbNew (4% (j=1)+(1:4),:) =
[nodes (1,1),nodes(1,2),nodes(1,3);
nodes (1, 2),nodes (2, 2) ,nodes (2, 3)
nodes (1, 2),nodes (2, 3) ,nodes (1, 3)
nodes (1, 3) ,nodes (2, 3) ,nodes (3, 3)

’

17
end
end

Fig. A.5 MATLAB implementation of a uniform refinement procedure that partitions every simplex
into 2¢ subsimplices (continued from Fig. A.4)

Fig. A.6 Partitioning of

one- and two-dimensional

simplices to define refined —
triangulations

Fig. A.7 Partitioning of the
three-dimensional simplex to
define refined triangulations
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Fig. A.8 Uniform refinement of a triangulation of a discrete surface

function [c4nNew, n4eNew, DbNew, NoNew,P0,P1]
= red_refine_surf (c4n,nde, Db, Nb)
nC = size(cdn,l); nE = size(nde,l);
nDb = size(Db,1l); nNb = size(Nb,1);
K = sparse(l:nC,1:nC,1:nC);
c4nNew = c4n; nédeNew = zeros (nkEx4,3);
DbNew = zeros (nDbx2,2); NbNew = zeros (nNbx2,2);
PO = sparse (4*nE,nE); nr_nodes = nC;
for j = 1:nE
for k = 1:3
for m = 1:3
if K(nde(j,k),nde(j,m))==
nr_nodes = nr_nodes+1;
K(nde (j, k), nde (j,m)
K(nde (j,m),nde (j, k)

) = nr_nodes;

)
I1 (2% (nr_nodes-— nC 1)

)

)

= nr_nodes;

+(1:2)) = [nr_nodes,nr_nodes];
+(1: 2)) = [nd4e(J,k),nde(J,m)];
+(1:2)) = [1 11/2;

12(2*(nr nodes-nC-1

E(2* (nr_nodes—-nC-1
c4nNew(nr nodes, :) =
(c4n (nde (j,k), :)+cdn(nde(j,m),:))/2;

end
end

end

nodes

K(nde (j, :),nde (3, :));

ndeNew (4% (J=1)+(1:4),:) =
[nodes(1,1),nodes(1l,2),nodes(1,3);
nodes (1, 2),nodes (2, 3),nodes (1, 3);
nodes (1, 2),nodes (2,2) ,nodes (2, 3);
nodes ( ) ,nodes (2,3) ,nodes (3,3)1;
PO (4% (j-1)+(1:4),3) = es(4,1);
end
I1 = [I1,1:nC]; I2 = [I2,1:nC]; EE = [EE,ones(1,nC)];

Pl = sparse(Il,I2,EE,nr_nodes,nC);
for j = 1:nDb
nodes K(Db(j,:),Db (3, :));
DbNew (2x (j=1)+(1:2),:) =
[nodes (1,1),nodes(1,2);nodes(1,2),nodes(2,2)]1;

end
for j = 1:nNb
nodes = K(Nb(Jj,:),Nb(3,:));
NbNew (2x (j=1)+(1:2),:) =
[nodes (1,1),nodes (1,2);nodes (1,2),nodes (2,2)];

end

Fig. A.9 MATLAB implementation of a uniform refinement procedure for simplicial surfaces in
R3; every flat triangle in R3 is partitioned into 4 subtriangles
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A.3 Visualization

A.3.1 Displaying Commands

Table A.1 lists some MATLAB commands which plot functions and manipulate a
figure. Detailed explanations are available from MATLAB’s help function.

A.3.2 Functions and Vector Fields

The routines shown in Fig. A.10 visualize functions and vector fields that are continu-
ous and piecewise affine. The first routine show_p1 . mdisplays the domain £2 ¢ R¢
that is colored by the values of the scalar finite element function uj, : 2 — R. The
command drawnow enforces an immediate update of graphical output which is
required when evolution problems are solved numerically. Three-dimensional vec-
tor fields uy, : 2 — R3 on domains 2 C R? withd = 1, 2, 3 are visualized with the
routine show_pl_field.m. A deformed domain defined by u, (£2) for 2 C R4
and uj, : 2 — R is displayed with the program show_pl_def .m. An optional
elementwise constant quantity defines a coloring of the deformed domain. Parame-
trized surfaces in R? defined by a mapping uj, : £2 — R> are visualized with the
routine show_pl_para.m. Discrete surfaces defined by unions of flat triangles
together with continuous, elementwise affine functions on the surface are plotted
with the MATLAB code show_p1l_surf .mdisplayed in Figs. A.11.

Table A.1 MATLAB commands that generate and manipulate plots and figures

plot, plot3 Plots a polygonal curve in R? or R3

trimesh Displays a triangulation in R?

tetramesh Displays a triangulation in R?

trisurf Shows the graph of a scalar function on a triangulation (d=2)
quiver, quiver3 Plots a two- or three-dimensional vector field

clf Clears a figure

drawnow Updates a figure

axis Sets the axes in a figure including the color range (optional)
axis square Equal scaling of axes

axis on/off Switches coordinate axes on or off

colorbar Displays a color bar

subplot Shows several plots in one figure

view Changes the perspective

colormap Chooses a color scale
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function show_pl (c4n,nde, Db, Nb,u)
d = size(c4n,?2);

(

if d == 1

plot (c4n (nde) ,u(nde));
elseif d ==

trisurf (nde,c4n(:,1),c4n(:,2),u);
elseif d ==

trisurf ([Db;Nb],cd4n(:,1),cd4n(:,2),cd4n(:,3),u);
end
drawnow;

function show_pl_field(c4dn,u)

[nC,d] = size(c4dn);

X = [c4dn,zeros (nC,3-d)];

quiver3 (X (:,1),X(:,2),X(:,3),u(l:3:3%nC),u(2:3:3*nC),u(3:3:3*nC));
drawnow;

function show_pl_def (c4n,nde,def, mod_sigma)

[nC,d] = size(def);
if d ==

plot (c4n (nde),def (nde));
elseif d ==

trisurf (nde,def(:,1),def(:,2),zeros(nC,1l),mod_sigma);
view (0, 90)

elseif d ==
tetramesh (nd4e,def, mod_sigma);

end

drawnow;

function show_pl_para(céd4n,nde,u)

nC = size(c4dn,l);

trisurf (nde,u(0*nC+(1:3:3%nC)),u(3*nC+(1:3:3%*nC)),
u(6*xnC+(1:3:3xnC)));

drawnow;

Fig. A.10  MATLAB routines that visualize a scalar quantity uj, : 2 — R (first), a vector field uy, :
2 — R3 (second), a deformation uy, : 2 — R4 (third), or a parametrized surface uy : 2 — R3
(fourth routine)

function show_pl_surf (c4n,n4e,H)
trisurf (nde,cd4n(:,1),c4n(:,2),c4n(:,3),H);
drawnow;

Fig. A.11 MATLAB routine that displays a discrete surface colored by a scalar quantity

A.4 Various Routines

A.4.1 Finite Element Gradient

The function comp_gradient .m shown in Fig. A.12 computes the elementwise
constant gradient of a given continuous, elementwise affine function represented in
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function du = comp_gradient (c4n,nde,u)

d = size(c4n,2); nE = size(nde,1);

du = zeros (nE,d);

for j = 1:nE
X_T = [ones(l,d+1l);cd4n(nde (3, :),:)"1;
grads_T = X_T\[zeros(l,d);eye(d)];
du(j,:) = u(nde(j,:)) '~grads_T;

end

Fig. A.12 Computation of the elementwise vectorial values of the gradient of a P1 function

terms of its nodal values, i.e., the routine computes for a given function u;, € .% L)
the matrix

T
[V”h|T1 y V”h'Tz» RN V”h|TM] € R#’%‘Xd.
A.4.2 Element and Side Geometry
Given the local coordinates
Zr =21, 22, -, za41) | € ROTDX 70 — (21,20, ..., za] T € R¥¢

of an element or a side the MATLAB routines geometry_element.m and
geometry_ side.mdisplayed in Fig. A.13 compute the corresponding midpoint

function [mp_T,vol_T,grads_T] = geometry_element (Z_T)
d = size(zZz_T,2);

mp_T = sum(Z_T,1)/(d+1);

X_T = [ones(l,d+1);Z_T'];

vol_T = det (X_T)/factorial (d);

grads_T = X_T\[zeros(l,d);eye(d)];

function [mp_S,vol_S] = geometry_side (Z_S)
d = size(Z_S,2);
mp_S = sum(Z_S,1)/d;

if d ==
vol_S = 1;
elseif d ==
vol_S = norm(Z_S(1,:)-2_S(2,:));
elseif d ==
vol_S = norm(cross(Z_S(3,:)-2_S(1,:),2_S(2,:)-2_5S(1,:)),2)/2;
end

Fig. A.13 Determination of the midpoint and volume (surface area) of elements and sides; for
elements (fop) the gradients of the nodal basis functions associated to an element are provided
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function A_v = average_quant_surf (c4n,nde,v)

nC = size(cdn,l); nE = size(nde,l);

area_patch = zeros(nC,1); quant_patch = zeros(nC,1);
for j = 1:nE

n_T = cross(c4n(nde(j,2),:)—-c4n(nde(3j,1),:),
c4n(nde(j,3),:)-c4n(nde(J,2),:));

area_T = norm(n_T) /2;

area_patch(nde(j,:)) = area_patch(nde(j,:))+area_T;

quant_patch(nde(j, :)) = quant_patch(nde(]j,:))+area_T*v(]);

end
A_v = quant_patch./area_patch;

Fig. A.14 Elementwise affine, continuous regularization of an elementwise constant function by
computing local averages

Fig. A.15 Nodal patch used
to compute an average of a
discontinuous function

and volume or surface area. In the case of an element, also the gradients of the nodal
basis functions restricted to the element are provided.

A.4.3 Averaged Quantities

Given a discrete surface and an elementwise constant scalar quantity vy, a contin-
uous, elementwise affine approximation @7, [v,] of v;, is computed in the routine
average_quant_surf.m shown in Fig. A.14. The function <7 [v;] is repre-
sented in the nodal basis by its nodal values that are defined by

Jy v
vel(2) = m,

for all nodes z € .4, and with the support w, of the nodal basis function associated
to z, cf. Figs. A.15.

A.4.4 Minors

For a list of matrices in R?*4 4 = 2, 3, that are identified with vectors in R?", the
routine minors .m displayed in Fig. A.16 computes the nontrivial minors of the
matrices, i.e., for a matrix § € R?*9 the determinant of S, if d = 2 and the vector
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function val = minors(A)
if size(A,2) == 4
val = A(:,1).%A(:,4)-A(:,2).%A(:,3);
elseif size(A,2) == 9
val = zeros(SJ_ze(A,l),lO);
val(:,1:9) = [A(:,5).*%A(:,9)-A(:,6).%A(:,8),
A(:,4) .%A(:,9)-A(:,6).%xA(:,T7),
A(: 4) *A(:,8)-A(:,5).%A(:,7),
A(:,2).%A(:,9)-A(:,3).%A(:,8),
A(:,1).%A(:,9)-A(:,3).%A(:,7),
A(:,1) . %A (:,8)-A(:,2).%A(:,7),
A(:,2).%xA(:,6)-A(:,3).%A(:,5),
A(:,1).%xA(:,6)-A(:,3).%A(:,4),
A(:,1) . %A (:,5)-A(:,2) .xA(:,4)];
val(:,10) = A(:,1).*xval(:,1)-A(:,2).*val(:,2)
+A(:,3).xval(:,3);
end

Fig. A.16 Computation of the nontrivial minors of a list of d x d matrices that are identified with
vectors in Rdz ford =2,3

(det S, det $%!, ... det $33, det S)

if d = 3, where S/ € R?*? denotes the matrix that is obtained by deleting the i-th
row and j-th column of S.

A.4.5 Standard Finite Element Matrices

The routine fe_matrices_weighted.m shown in Fig. A.17 for elementwise
constant functions ay,, by, : 2 — R computes the .4}, X .4}, matrices with the entries

/ apVeo, - Vo dx, / brp;py dx
2 2

for pairs of nodes (z, y) € A, x A},. For a triangle T with nodes z1, 22, z3, a basis
of the space of polynomials of maximal degree 2 on T is given by the functions

W, Y2, ..., Y6) = ((pZI s 020> V30 402,023, 40302, 4‘9229013)’

cf. Fig. A.18. The elementwise defined functions can be assembled to obtain a basis
of the finite element space . 2(%). The routine fe_matrix_p2.m, shown in
Fig. A.19 computes the corresponding stiffness matrix.
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function [s_a,m _b] = fe_matrices_weighted(c4n,nde,a,b)
[nC,d] = size(c4n); nE = size(nde,l);

m_loc = (ones(d+1l,d+1)+eye(d+1))/ ((d+1)*(d+2));

ctr = 0; ctr_max = (d+1) "2%nE;

I = zeros(ctr_max,1); J = zeros(ctr_max,1);

X_s_a = zeros(ctr_max,1l); X_m b = zeros(ctr_max,1);
for j = 1:nE
X_T = [ones(l,d+1l);cd4n(nde (3, :),:)"1;
grads_T = X_T\[zeros(l,d);eye(d)];
vol_T = det (X_T)/factorial (d);
for m = 1:d+1
for n = 1:d+1
ctr = ctr+l;
I(ctr) = nde(j,m); J(ctr) = nde(3j,n);
X_s_a(ctr) = vol_Tx*a(j)*grads_T(m, :)*grads_T(n,:)";
X m b(ctr) = vol_Txb(Jj)+*m_loc (m,n);
end
end
end
s_a = sparse(I,J,X_s_a,nC,nC); m_b = sparse(I,J,X_m b,nC,nC);

Fig. A.17 Computation of weighted P1 finite element mass and stiffness matrix

|
|
|
| 23
| 3
21 <1
22 22

A.4.6 Special Finite Element Matrices

Fig. A.18 Typical
hierarchical basis functions
in the P2 finite element
method with elementwise
quadratic functions

The routine nonlinear_fe_matrices_plast.m shown in Fig. A.20 com-
putes, for a stress function . : R?*¢ — R4*4 and a given deformation uy, : 2 —
R4, the vector

F(up)lepe:] :/(zy(vuh) : Vieppy) dx _Af (epe;) dx _A g (eppr)ds

N

forp=1,2,...,d and z € .4}, the matrix

DF (up)leppz, eqpyl :/_Q Dy(vuh)[v(ep(pz)a V(eqpy)]dx

forl < p,q <dandz,y € 4}, and the stress field o, = .(Vuy,). The routine is
a reduced version of the MATLAB program nonlinear_fe_matrices.m. The
system matrix related to the discrete Kirchhoff element used for bending problems
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function s_p2 = fe_matrix_p2(cé4n,nde,néds,sde,s_pl,vol_T)
nC = size(cdn,1l); nE = size(nde,l); nS = size(nds,1l);
sde = sde+nC;

m_loc = [2,1,1;1,2,1;1,1,21/12;
shift = [2,1]; sides = [2,3;3,1;1,2];

s_p2 = sparse (nC+nS,nC+ns); s_p2(l:nC,1:nC) = s_pl;
for j = 1:nE
grads_T = [ones (1,3);c4n(nde(J,:),:)"I\[zeros(1,2);eye(2)]1;

for k = 1:3
for ell = 1:

1:2
s_p2(sde(j,k),sde(],ell)) =
s_p2(sde(j,k),sde(j,ell))+16xvol_T(3)
xgrads_T (sides (k,m), :)
xgrads_T (sides (ell,n),:)"'
*m_loc (sides (k, shift (m)), sides(ell,shift (n)));
end
end
end
end
for k = 1:3
for ell = 1:3
for n = 1:2
s_p2(nde(j, k) ,sde(j,ell)) =
s_p2(nde(j,k),sde(j,ell))+4x(vol_T(3)/3)
«grads_T (k, :)xgrads_T (sides(ell,n), :)"';
end
s_p2(sd4e(j,ell),nde (], k)) = s_p2(nde(Jj, k),sde(],ell));
end
end
end

Fig. A.19 Computation the P2 stiffness matrix

encodes the inner product
Vi, wh) > / VVivp @ VVpwy dx
Q

for all v, wy € Wp. The representing matrix with respect to an appropriate nodal
basis of the finite element space W), C H 1(£2) is assembled in the MATLAB routine
fe_matrix_dkt.m shown in Fig. A.21 using the P2 finite element stiffness
matrix computed with the routine fe_matrix_p2 .m displayed in Fig. A.19.
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function [DF,F,sigmal = nonlinear_ fe_matrices_plast (c4n,nde,Nb,u)
[nC,d] = size(c4n); nE = size(nde,l); nNb = size(Nb,1);
F = zeros(dxnC,1l); sigma = zeros(nkE,d"2); Du = zeros(nk,d"2);
ctr_max = d"2x(d+1) "2xnE; ctr = 0;
I = zeros(ctr_max,1); J = zeros(ctr_max,1); X = zeros(ctr_max,1);
for k = 1:d
Du(:, (k=1)xd+(1l:d)) = comp_gradient (c4n,nde,u(k:d:nCxd));
end
for j = 1:nE
[mp_T,vol_T,grads_T] = geometry_element (c4n(nde(j, :),:));
Du_T = Du(j,:); sigma(j,:) = stress(Du_T,J);

for m = 1:d+1
for p = 1:d
D_psi_ A = zeros(l,d"2);
D_psi_A(dx(p-1)+(1l:d)) = grads_T(m, :);
D_Sigma_T_A = stress_derivative (Du_T,D_psi_A, J);
for n = 1:d+1
for g = 1:d
ctr = ctr+l;
D_psi_B = zeros(l,d"2);

D_psi_B(dx(g-1)+(1l:d)) = grads_T(n,:);
I(ctr) = dxnde(j,m)-d+p;
J(ctr) = dxnde(j,n)-d+qg;
X(ctr) = vol_T«D_Sigma_T_ AxD_psi_B';
end
end
phi_mp_T = zeros(d,1l); phi_mp_T(p) = 1/(d+1);
F (dx (nd4e(j,m)-1)+p) = F(dx(nde(J,m)-1)+p)
+vol_Tx (sigma(j, :)*D_psi_A'-f (mp_T) »phi_mp_T);
end
end
end

DF = sparse (I, J,X,d*nC,d*nC);
for j = 1:nNb
[mp_S,vol_S] = geometry_side(c4n(Nb(j,:),:));
for m = 1:d
for p = 1:d

phi_mp_S = zeros(d,1); phi_mp_S(p) = 1/d;
F (d* (Nb (,m)-1) +p) = F (d* (Nb (3, m)-1) +p)
-vol_Sxg(mp_S)*phi_mp_S;
end
end
end

function val = f(x); global d; val zeros (1,d);
function val = g(x); global d; val = zeros(1l,d);

Fig. A.20 Vector, matrix, and stress field required in the solution of a nonlinear displacement
problem; the nonlinear stress function and its derivative for a time step in elastoplasticity are
provided by the routines stress.mand stress_derivative.m
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function S_dkt = fe_matrix_dkt (c4n,nde)

[nds, s4e] = sides (nde);
nC = size(cdn,1l); nS = size(néds,1);
D = sparse (2% (nC+nS), 3*nC);

for j = 1:nC
D(2%3-1[1,01,3%3-[1,0]) = eye(2);

end

for j = 1:nS
t_S = (c4n(nds(j,2),:)-c4n(nds(3,1),:))";
ell_S = norm(t_S); t_S = t_S/ell_S;
D(2*nC+2+3j-[1,0],3*n4d4s(j,1)-2) = -3/ (2+«ell_S)*t_S;
D(2*nC+2x3j-[1,0],3*nds (J,2)-2) = 3/ (2xell_S)*t_S;
D(2*nC+2x3j-[1,0],3*n4s(J,1)-[1,0]) = —(3/4)*(t_S*t_S"');
D(2*nC+2x3j-[1,0],3*n4s(3,2)-[1,0]) = —(3/4)*(t_S*t_S"');

end

[s_pl,—,—,vol_T] = fe_matrices(cdn,nde);

s_p2 = fe_matrix_p2(c4n,nde,n4ds,sde,s_pl,vol_T);

S = sparse (2% (nC+nS), 2% (nC+ns)) ;
S(1l:2:2%x(nC+nS),1:2:2%(nC+nS)) = s_p2;
S(2:2:2%x(nC+nS),2:2:2%(nC+nsS)) = s_p2;
S_dkt = D'xS*D;

function [n4ds,sd4e] = sides (nde)

nE = size(nde,1);

sides = reshape(nde(:,[2,3,3,1,1,21)',2,11)"';
[nds,—,sideNrs] = unique (sort (sides,2), 'rows'
s4e = reshape(sideNrs (1:3%nE),3,[1)";

, "first');

Fig. A.21 System matrix for discrete Kirchhoff triangles

A

51 521

Fig. A.22 Subgrid .45, C R?*? (left) and its local refinement obtained by adding atoms locally
around existing ones (right)

A.5 Grids in R9*4

A.5.1 Uniform Grids

The performance of MATLAB is suboptimal when large or iterated loops are required.
This is the case in the generation of the grid K° N 874%4 in the d?-dimensional
space of matrices (Fig. A.22). To improve the performance this is realized in the
C routine grid_gen.c shown in Fig. A.23. It employs the interface MEX that
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finclude <math.h>
#include <mex.h>
void grid_2d(double atoms[], double delta, int M, int N, int L) {
int j, k, m, n, idx;
for (j=-M; Jj<M+1l; J++) for (k=-M; k<M+1l; k++)
for (m=-M; m<M+1l; m++) for (n=-M; n<M+1l; n++){
idx = (3+M) *pow (N, 3) + (k+M) *pow (N, 2) + (m+M) «*N+ (n+M) ;
atoms [0xL+idx] = jxdelta; atoms[lxL+idx] = kxdelta;
atoms [2«L+idx] = mxdelta; atoms|[3+xL+idx] = nxdelta;}
}
void grid_3d(double atoms[], double delta, int M, int N, int L) {
int j! kl ml I-11 O! p! ql SI tl idx;
for (j=-M; Jj<M+1l; J++) for (k=-M; k<M+1l; k++)
for (m=-M; m<M+1l; m++) for (n=-M; n<M+l; n++)
for (o=-M; o<M+l; o++) for (p=-M; p<M+l; p++)
for (g=-M; g<M+1l; g++) for (s=-M; s<M+l; s++)
for (t=-M; t<M+1l; t++){
idx = (J+M) xpow (N, 8) + (k+M) xpow (N, 7) + (m+M) xpow (N, 6)
+ (n+M) xpow (N, 5) + (0+M) *pow (N, 4) + (p+M) *pow (N, 3)
+ (g+M) xpow (N, 2) + (s+M) *pow (N, 1) + (t+M) ;

)
atoms [0*L+idx] jxdelta; atoms[lxL+idx] = kxdelta;
atoms [2*«L+idx] = mxdelta; atoms[3*xL+idx] = n=xdelta;
atoms[4+L+idx] = oxdelta; atoms[5xL+idx] = pxdelta;
atoms[6+L+idx] = gxdelta; atoms[7xL+idx] = sxdelta;
atoms[8+L+idx] = txdelta;}
}
void mexFunction (int nlhs, mxArray xplhs[],
int nrhs, const mxArray *prhsl[]) {

double *delta, =*r, =*atoms;

int 4, L, M, N;

if (nrhs!=3) mexErrMsgTxt ("3 input arguments required!");

if (nlhs!=1) mexErrMsgTxt ("1l output argument required!");

delta = mxGetPr (prhs[0]);

r = mxGetPr (prhs[1l]);

d = smxGetPr (prhs[2]);

M = floor ((xr)/(*delta));

N = 2+M+1;

L = pow(N,pow(d,2));

plhs[0] = mxCreateDoubleMatrix (L,pow(d,2),mxREAL) ;

atoms =mxGetPr (plhs[0]);

if (d==2)

grid_2d(atoms, xdelta,M,N,L);
else

grid_3d(atoms, xdelta,M,N,L);

Fig. A.23 Croutine grid_gen. c that generates the grid K ° N 874%4; the program is incorpo-
rated into MATLAB with the interface MEX
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#include <mex.h>
#include <math.h>
void new_grid_2d(double new_atoms[], double delta, double atoms|],
int nr_old) {
int z, ctr, j, k, m, n, idx; idx = 1l6xnr_old;
for (z=0; z<nr_old; z++){ctr = 0;
for (3j=0; j<2; j++) for (k=0; k<2; k++)
for (m=0; m<2; m++) for (n=0; n<2; n++) {

new_atoms [0xidx+zx16+ctr] = atoms[0Oxnr_old+z]+jxdelta;
new_atoms[l+xidx+z+16+ctr] = atoms[l*nr_old+z]+k*delta;
new_atoms [2+xidx+z*16+ctr] = atoms[2+nr_old+z]+m*delta;
new_atoms [3*xidx+z*16+ctr] = atoms[3*nr_old+z]+n*delta;

ctr = ctr+l;}
}}
void new_grid_3d(double new_atoms[], double delta, double atoms([],
int nr_old) {
int z,ctr, j, k, m, n, o, p, 9, s, t, idx; idx = 512xnr_old;
for (z=0;z<nr_old;z++) {ctr = 0;
for (3=0; 3<2; j++) for (k=0;k<2;k++) for (m=0;m<2;m++)
for (n=0;n<2;n++) for (0=0;0<2;0++) for (p=0;p<2;p++)
for (g=0;g<2;g++) for (s=0;s<2;s++) for (t=0;t<2;t++) {

new_atoms [0xidx+zx512+ctr] = atoms[0Oxnr_old+z]+jxdelta;
new_atoms [1lxidx+z+x512+ctr] = atoms[l*nr_old+z]+kxdelta;
new_atoms [2x1idx+zx512+ctr] = atoms[2+nr_old+z]+mxdelta;
new_atoms [3xidx+z+512+ctr] = atoms[3*nr_old+z]+nxdelta;
new_atoms [4x1idx+zx512+ctr] = atoms[4*nr_old+z]+oxdelta;
new_atoms [5xidx+zx512+ctr] = atoms[5xnr_old+z]+p=*delta;
new_atoms [6*xidx+zx512+ctr] = atoms[6xnr_old+z]+gxdelta;
new_atoms [7+xidx+zx512+ctr] = atoms[7xnr_old+z]+sxdelta;
new_atoms [8xidx+zx512+ctr] = atoms[8xnr_old+z]+txdelta;
ctr = ctr+l;}
+}
void mexFunction (int nlhs, mxArray xplhs|[],
int nrhs, const mxArray *prhs[]) {

double xdelta, =*atoms, =xnew_atoms;

int d, m, d_sg;

if (nrhs!=3) mexErrMsgTxt ("3 input arguments required!");

if (nlhs!=1) mexErrMsgTxt ("1 output argument required!");

m mxGetM(prhs[1]);

delta = mxGetPr (prhs([0]);

atoms = mxGetPr (prhs[1l]);

d *mxGetPr (prhs([2]); d_sg = pow(d,2);

plhs[0] = mxCreateDoubleMatrix (pow(2,d_sq)*m,d_sq, mxREAL) ;

new_atoms = mxGetPr (plhs[0]);

if (d==2)

new_grid_2d(new_atoms, xdelta, atoms,m) ;
else

new_grid_3d(new_atoms, xdelta, atoms,m) ;

Fig. A.24 Croutine loc_grid_ref. c that locally adds new atoms to a given set of atoms
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provides a simple way to incorporate C code in MATLAB. The routine is compiled
under MATLAB with the command

mex grid_gen.c;

For this the gnu C compiler gcc has to be selected using the MATLAB command
mex -setup. The routine can then be used within MATLAB with the command

atoms = grid_gen(delta,r,d);

The nodes of the grid are referred to as atoms.

A.5.2 Local Refinement

A grid or subgrid A5, C K° N 874%4 can be refined locally by adding atoms in
the neighborhoods of existing ones, i.e., by replacing every atom s € .45 , by the set
of atoms

)
s+ 510, 1ydxd,

cf. Fig. A.22 for a schematic description. This is implemented in the C program
loc_grid_ref.c shown in Fig. A.24 that also employs the interface MEX. It is
incorporated in MATLAB with the command

atoms_new = loc_grid_ref (delta/2,atoms,d) ;
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Frequently Used Notation

Real numbers, vectors, and matrices

Z

N, Np

R

[s, 2], (s, 1)
Rd

Rﬂxm

B, (x), By
K, (x), K,
ACB

a, A

aT, AT
[-1

a-b= aTb
a®b= ab
axb
alb
A:B

trA

I

Sm—l

SO (n)
Loyl T, (x,y)

X1 X2
Y1 )2

Integers

Positive and nonnegative integers
Real numbers

Closed and open interval
d-dimensional Euclidean vector space
Vector space of n by m matrices
Open ball of radius r centered at x or at the origin
Closed ball of radius r centered at x or at the origin
Aisasubsetof BorA =B
(Column) vector and matrix
Transpose of a vector or matrix
Euclidean length or Frobenius-norm
Scalar product of vectors a and b
Dyadic product of vectors a and b
Cross product of vectors a, b € R3

a is perpendicular to b

Inner product of matrices A and B
Trace of the matrix A

L x L identity matrix

Unit sphere in R”

Group of special orthogonal matrices
Vectors with entries x and y

Matrix with entries x1, x2, y1, y2
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Sets, domains, and functionals

2
n

Bounded Lipschitz domain in R, d=2,3
Outer unit normal on 92

Dirichlet boundary, closed subset of 952
Neumann boundary, Iy = 9082 \ I'D

Time interval

Set of admissible functions or vector fields
Energy functional

Energy density

Linear spaces and operators

id

ker

X,Y

I llx

X/

(¢, x)

I llx
L(X,Y)

I llLex,y)
A/

H
(x, Y)H

Differential operators

3, s 7
v

div

D, D?

Oy, Dy, 0y, 0°
7

u, u'

e(u)

A

8

Identity operator

Kernel of an operator

Banach spaces

Norm in X

Linear bounded functionals A : X — R
Duality pairing of ¢ € X’ and x € X
Operator norm in X’

Bounded linear operators A : X — Y
Operator norm in L(X, Y)

Adjointof A € L(X,Y)

Hilbert space

Inner product of x and y in a Hilbert space H

Partial derivative with respect to the i-th component
Gradient of a function

Divergence of a vector field

Total derivative and Hessian of a function

Partial derivatives

Normal derivative Vu - n on 952

Partial derivative with respect to ¢

Symmetric gradient of a displacement

Laplace operator

Fréchet derivative of a functional
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Function spaces

CK(A; R™)
CP($2; R™)
Co(£2;: R™)
LP(£2;R™)
wkr(2; R™)
WSJ’(Q; Rm)
H*(2; R™)
wkr ([0, T1; X)
Hy (div; £2)
BV (£2)
SBV(£2)

[ A

| Du|(£2)

Convex analysis

I'(H)
dom ¢
oF

F*

Ic

1

D

Modes of convergence

Finite differences

T
d;

T, Tk+1/2
uk . ykt12

k-times continuously differentiable vector fields
Compactly supported, smooth vector fields

Closure of C2°(§2; R™) with respect to maximum norm
Functions whose p-th power is Lebesgue integrable
k-times weakly differentiable vector fields

Vector fields in W7 (£2; R™) vanishing on I'p or 952
Sobolev space wk2(2; rR™)

Sobolev-Bochner space of X-valued functions

Vector fields with square integrable divergence
Functions of bounded variation

Special functions of bounded variation

Norm and inner product in L2(£2; R™)

Total variation of the distributional derivative of u

Convex, proper, lower semicontinuous functionals on H
Domain of the functional ¢

Subdifferential of F € I'(H)

Fenchel conjugate of F

Indicator functional of the convex set C

Convex functional

Dual of a convex functional /

Strong convergence
Weak and weak* convergence
I'-convergence

Step size

Backward difference quotient

Time steps kt and (k + 1/2)T
Approximations associated to time steps
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Finite element spaces

h, hmin
hT, th hz
N or AN,
T or I,
S or .
T or R

z, S

(T, S5 (Th)
& or ﬂh

v, W

B:

Ih

[Vuy - ns]

Py

On

Other notation

C, C, C’, CH, C1,C2, ...

dx, ds
dr

A

[A]
diam(A)
XA

dx
O(t),o(t)
supp f

€

4
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Maximal and minimal diameter of elements in .7},
Local mesh-sizes

Nodes that define vertices of elements

Set of elements that define a triangulation

Sides of elements in a triangulation

Element in a triangulation

Node, side

Nodal basis function

Patch of a node

Polynomials of maximal degree k restricted to T
T5,-elementwise constant functions

Continuous, .7, -elementwise affine functions
Functions in .#’! (.7},) vanishing on I'p or 8£2
Nodal interpolation operator on .7,

Discrete inner product (mass lumping)

Integral of nodal basis function ¢,

Clément quasi-interpolant

Jump of Vuy, across S in direction of ng
L?-projection onto a discrete subspace
H'-projection onto a discrete subspace

Mesh-size independent, generic constants
Volume and surface element for Lebesgue measure
Lebesgue integral with respect to time variable
Closure of a set A

Volume or surface area of a set A C RY
Diameter of the set A

Characteristic function of a set A

Dirac measure supported at x

Kronecker symbol

Landau symbols

Support of a function f

Consistency term

Residual functional
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MATLAB routines

d

red

cdn

nde

Db, Nb

dNodes
fNodes

nC, nE, nDb, nNb
s, m, m_lumped
m_Nb, m_Nb_lumped
vol_T
grads_T

mp_T

tau

I,J,X

Space dimension

Number of uniform refinements

List of coordinates of nodes

List of elements

Lists of sides on Ip and I'y

Nodes belonging to I'p

Nodes not belonging to I'p

Number of nodes, elements and sides on I'p and T’y
P1 stiffness, mass, and lumped mass matrix
Exact and discrete inner products on 'y

Areas or volumes of elements

Elementwise gradients of nodal basis functions
Midpoints of elements

Step size

Lists to generate a sparse matrix
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Symbols
H''-projection, 49
H?-regularity, 56
L>-projection, 49
I"-convergence, 87, 88

A

Active set method, 145, 290

Admissible stresses, 334

Allen—Cahn equation, 153

Ambrosio—Tortorelli functional, 328

Angle condition, 48

A posteriori error estimate, 58, 77, 97

A priori error estimate, 57, 66, 69, 72, 96,
100, 102

Aubin-Lions lemma, 33

Aubin-Nitsche lemma, 58

B

Backward difference quotient, 34
Bending, 217
Best-approximation, 57

Bochner space, 31

Bounded variation, 298
Bramble—Hilbert lemma, 46

C

Céa’s lemma, 57

Céa’s lemma, generalized, 100
Cahn-Hilliard equation, 167
Carathéodory function, 24
Chemical potential, 167
Christoffel symbols, 245
Clément interpolant, 50

© Springer International Publishing Switzerland 2015

Coercivity, 20, 34, 35
Coincidence zone, 131
Compact embedding, 22
Compactness, 105, 187, 301
Compatible gradients, 24
Complementarity, 92, 131, 144
Consistency, 65, 175
Constrained descent method, 114
Constraint preservation, 209
Contact zone, 13, 131
Continuous problem, 85
Crank—Nicolson scheme, 67

D

Deformation, 12

Degree-one homogeneity, 339
Density, 22, 54

Descent method, 108, 280
Deviator, 18

Difference calculus, 64

Diffuse interface, 153

Dirac measure, 298

Direct method, 20

Dirichlet boundary conditions, 29
Dirichlet energy, 11

Discrete compactness, 105
Discrete gradient, 227

Discrete Gronwall lemma, 35
Discrete Gronwall lemma, generalized, 171
Discrete harmonic map, 191
Discrete inner product, 73, 316
Discrete maximum principle, 62, 74
Discrete product rule, 65
Discretized problem, 85
Displacement, 13

Dissipation functional, 337
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Distributional derivative, 297
Divergence, 239
Duality, 136, 306

E

Efficiency, 60

Eigenvalue, 178

Elastic domain, 335
Elasticity tensor, 13
Elements, 46

Embedding, 21

Energetic formulation, 341
Energy law, 30
Euler—Lagrange equations, 11, 27, 185, 249
Evolution triple, 32
Explicit Euler scheme, 68

F

Fenchel conjugate, 92

Finite element, 45

Flow rule, 335
Fréchet-differentiable, 30

Free boundary, 13, 131

Free nodes, 78

Fundamental form, 224, 239, 242
Fundamental lemma, 28

G

Gateaux-differentiable, 30
Galerkin approximation, 57
Galerkin method, 68
Galerkin orthogonality, 57
Gauss curvature, 225, 242
Gauss’ equation, 245
Gelfand triple, 32
Generalized derivative, 32
Geometric linearization, 222
Gradient, 30

Gradient flow, 34

Green’s formula, 22
Gronwall lemma, generalized, 158

H

Harmonic map, 14, 183, 186
Heat equation, 63

Helfrich flow, 250

Helfrich model, 219
Helmholtz equation, 101
Hooke’s law, 17

Index

I

Implicit Euler scheme, 34, 65
Indicator functional, 20, 129
Integration-by-parts, 22, 33, 243
Interface, 14

Intermediate convergence, 300
Interpolant, 45

Inverse estimate, 53

Isometry, 15, 217, 225, 246
Isotropic hardening, 334

J
Jump, 58

K
Kinematic hardening, 334
Kirchhoff model, 217

L

Lagrange multiplier, 29, 130, 140
Lamination-convex envelope, 283
Laplace—Beltrami operator, 239
Lax—Milgram lemma, 56
Lax—Milgram lemma, generalized, 100
Linear elasticity, 13

Locking, 226

Lumping, 73

M

Mass matrix, 84

Maximum principle, 60, 155, 288, 304
Mean curvature, 225, 242

Mean curvature flow, 163

Midpoint scheme, 70

Monotonicity, 41, 98

Mumford-Shah functional, 17, 325

N

Navier—Lamé equations, 223
Nested iteration, 122
Neumann boundary condition, 29
Newton derivative, 116, 144
Newton differentiable, 116
Newton method, 111, 357
Nodal basis, 49

Nodal interpolant, 49
Nodes, 48

Noncontact zone, 13
Nonconvexity, 16

Norm equivalence, 53
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Normal variation, 246
Normal velocity, 250

0
Obstacle problem, 13, 127

Optimality conditions, 112, 306, 313

P

Patch, 50

Penalization, 133, 134
Penalty parameter, 133
Penalty term, 14
Penetration, 133

Perfect plasticity, 334
Perimeter, 300
Perona—Malik equation, 329
Phase transition, 14

Plastic strain, 18, 334, 335
Poincaré inequality, 22, 51, 55
Poisson problem, 11, 55
Polyconvex, 24

Polyconvex envelope, 282

Primal-dual iteration, 119, 148, 314

Principal curvature, 242
Principal eigenvalue, 160
Probability measure, 268
Prolongation, 122
Proper, 41
Pseudomonotone, 107

Q

Quasiconvex, 24
Quasiconvex envelope, 266
Quasiuniform, 53

R

Radon measure, 298
Rank-one convex envelope, 283
Rate-independence, 340
Reduced integration, 74
Refinement, 122

Regular triangulation, 48
Reissner—Mindlin model, 218
Relaxation, 265, 266
Reliability, 60

Residual estimate, 76
Resolvent, 41

Return map, 352

Rothe method, 34

S
Saddle point, 118, 147

Semismooth Newton method, 117
Separability, 22

Shape operator, 242
Shape-memory effect, 15
Sobolev-Bochner space, 32
Stiffness matrix, 61

Strain, 17, 334

Stress, 17, 335

Strict convergence, 300
Strict convexity, 26, 42
Strong convexity, 29, 92
Strong duality, 92, 93

Strong monotonicity, 98, 278
Subdifferential, 41
Subdifferential flow, 42, 321
Summation-by-parts, 65
Support functional, 337

T

Tangential gradient, 239
Theorema egregium, 246
Topological change, 165
Total variation, 16, 298
Trace inequality, 51

Trace operator, 22
Transformation, 47
Transition temperature, 15
Triangulation, 46

\%

Variational inequality, 129, 130
Vector iteration, 180

'Von Mises criterion, 337

W

Wave map, 212

Weak acuteness, 62, 195
Weak differentiability, 21
Weak gradient, 21

Weak lower semicontinuity, 19, 23, 301

Weingarten equation, 242
Weingarten map, 225, 242
Wheeler’s trick, 68
Willmore energy, 219, 249
Willmore flow, 250

Y

Yield stress, 17, 335
Yield surface, 335
Yosida regularization, 42
Young measure, 268
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