
Chapter 17
Variability Management

Georg Rock, Karsten Theis and Patrick Wischnewski

Abstract The global market, different and changing environmental laws, the
customer wish for individualization, time-to-market, product costs, and the pressure
on manufacturers to discover new product niches, to name only a few variability
drivers, result in an ever increasing number of product variants in nearly all
engineering disciplines as, for example, in car manufacturing. Mastering the related
increasing product complexity throughout the whole product lifecycle is and
remains one of the key advantages in competition for the future. Currently for a
manufacturer, as for any other discipline, it is no option not to invest in an efficient
and effective variability handling machinery able to cope with the arising chal-
lenges. Not only the task to invent, develop, introduce and manage new variants is
important but also to decide which variant to develop, which to remove and which
to not develop at all. The consequences of such decisions with respect to product-
line variability have to be computed based on formalized bases such that an opti-
mized product variability can assure on the one hand customer satisfaction and on
the other hand cost reduction within the variability-related engineering processes.
This chapter presents current research in the field of product variability configu-
ration, analysis and visualisation. It presents solution sketches based on formal
logic that were illustrated by some real world examples.

Keywords Product variety � Mass customisation � Product configuration �
Complexity management � Variability management � Formal variability analysis

G. Rock (&)
Trier University of Applied Sciences, 54293 Trier, Germany
e-mail: g.rock@hochschule-trier.de

K. Theis
PROSTEP AG, Dolivostr. 11, 64293 Darmstadt, Germany
e-mail: karsten.theis@prostep.com

P. Wischnewski
Logic4Business GmbH, 66123 Saarbrücken, Germany
e-mail: patrick.wischnewski@logic4business.com

© Springer International Publishing Switzerland 2015
J. Stjepandić et al. (eds.), Concurrent Engineering in the 21st Century,
DOI 10.1007/978-3-319-13776-6_17

491

17.1 Introduction

Product variety arises because customer requirements are usually individual and
therefore they expect an individual solution for a given investment. Private con-
sumers rank variety of assortment straight after location and price when naming
reasons why they shop at their favorite stores. They care about variety because they
are more likely to find what they want when going to a store that offers more varied
assortments. In a market which is predominantly determined by the customer
(“buyer market”) and subject to high volatility, the variety of products for reasons of
competition is presumably imperative because every manufacturer is forced to
continuously extend the product portfolio with new, more efficient, more attractive
products. Furthermore, the product variety occurs on the long-lived capital-intensive
goods too, which were brought on the market to an earlier time with a lower level of
modularity and now need to be overhauled or upgraded.

Thus, customers get a wide product portfolio offered, which allows them to find
a product that best meets their requirements. The challenge lies in the selection of
products, less the actual product offering [1]. Consumer demands have increased
significantly in recent years and will increase again. Enterprises become successful
if they can provide solutions for a variety of needs. The need to offer a variety of
products marks the crucial difference with the past. From the marketing perspective,
vendors offer product variety presuming that the product characteristics determine
their value and that variety is a key driver of utility. Their assumption is that
customers derive utility by choosing among singular characteristics of a product.
Product variety can be just unnecessary, if the vendor is not able to meet customer’s
needs producing the most appropriate product from an existing modular product
platform (see Chap. 14) [2, 3].

The use of information and communication technology in modern cars gives the
product managers an even increased and thus arbitrary range of variety [4].
Especially the entertainment systems in automotive industry will be revolutionized
concerning functionality and usability aspects. The seamless integration of mobile
systems and even the utilization of mobile platform technologies within the car’s
entertainment system itself will result in new variants that have to be handled
correctly in the car manufacturing context.

In a future perspective for the automotive industry, this trend of increasing
variability is expected to be reinforced [1]. The automotive industry will meet a
world of consumers in the future who want to get their individual wishes, needs,
expectations and preferences expressed by their automobile and simultaneously the
customer expects an improved product quality. Their individuality comprises var-
ious sub-areas such as mobility, urbanity, emotions, entertainment, security or
knowledge. All these aspects can be condensed into the forecast that the passenger
car in the future will be an expression of one’s personality even more than today. It
must, therefore, be better adjusted to the individuals than ever before [5].

492 G. Rock et al.

http://dx.doi.org/10.1007/978-3-319-13776-6_14

Changing the view from a user of products to a developer of variant products
and focusing on a V-Model based development the variability problem arises in
every development stage as illustrated in Fig. 17.1 (see also Chap. 9).

Starting at the very early phase as for example in requirements engineering (see
Chap. 5) variability constraints arise in all successive phases, as there are design,
construction, implementation, and during the complete validation or verification
phase. This shows two main aspects of variability in development (so-called
internal variability). First, variability is not limited to exactly one development
phase, but it rather spreads over all development phases. Second, since there are
dependencies between domains and corresponding functions we have to have an
“overall composed variability model” as depicted in Fig. 17.1. This model tends to
be very large and complex. Thus, there must be a very powerful methodology and
corresponding analysis engines supporting the engineers during product
development.

The structure of this chapter is as follows. In Sect. 17.2 we present some
background information including a short introduction to the current research in
variability management. Section 17.3 changes the perspective from a user of
variable products to the developer of products with variability. The related devel-
opment process, challenges and corresponding concepts for a tool-based solution
are presented. In the following Sect. 17.4 the application of the described concepts
is shown with the help of industrial examples. Although these examples are rather
abstract they illustrate typical application scenarios. Section 17.5 presents use cases.
Two final Sects. (17.6 and 17.7) sum up and give some future directions in the field
of variability management and variability analysis.

Overall Composed Variability Model

Requirements
Raumkonzept

Raumangebot vorne inkl. Ein- / Ausstieg

Raumangebot hinten inkl. Ein- / Ausstieg

Ablagekonzept

Kofferraum / Zuladung

VDA Volumen Gesamtfahrzeug
min/max in l, Länge, Breite und Tiefe des Kofferraums in mm

Zugänglichkeit Kofferraum Gesamtfahrzeug

Höhe der Ladekante in mm, Höhe der Ladeöffnung und Breite der Ladeöffnung in mm

Heckscheibenneigung Gesamtfahrzeug

in Grad

Functional Spec.

System Design

Software-Arch.

Implementation

Unit-Test

System-Test

Integration-Test

Sign-Off Test

Variant information
across the product

lifecycle

Transformation of
stage-variability into
general variabiltity

Composing different stages
for:

Analysis and Optimization

Standardized
represenation of variability

on all stages

Fig. 17.1 Variability as a cross-domain and cross-functional development characteristic

17 Variability Management 493

http://dx.doi.org/10.1007/978-3-319-13776-6_9
http://dx.doi.org/10.1007/978-3-319-13776-6_5

17.2 Background

Product variety encompasses different product designs or product types that are
offered in a market by a vendor. It can be subdivided into external variety and
internal variety. External variety is the product variety seen and perceived by the
customer, whereas internal variety is the variety covering all procedural variants
inside manufacturing, such as logistics and distribution operations in satisfying the
provision of external variety. External variety is further subdivided into useful
variety and useless variety. Useful variety is appreciated by the customer, such as
useful options and stylistic differences, in distinction to the useless variety that is
either transparent or unimportant, or confuses the customer. Uncontrolled internal
variety may yield the excessive and unnecessary variety of parts, features, tools,
fixtures, raw materials, and processes. Although more product variety extends the
potential for generating increased revenues, there are potential adverse effects,
resulting from increased complexity.

External variety is an important driver for enterprises producing to forecast. On
the other hand management of internal variety is dominant for enterprises offering
products to order. The effectiveness of strategies to mitigate negative effects of
internal variety, such as modularity, mutability, late configuration (postponement),
and option bundling, depends on the order-fulfillment strategy the enterprise fol-
lows [1]. This requires that assembly systems have to be designed such that they
can handle the variety, too [6–8].

Hence, the main objective of many recent research projects is the decrease of
external variety by standardized interfaces and further module utilization in different
combinations and simultaneously the limitation of internal variety by standardiza-
tion and modular design. In addition, research has focused on the identification of the
right degree of variety [9–11]. This aims at reducing the complexity such that it can
be handled with current tools [11].

Now, the question arises how the remaining internal product variety can be
managed such that the following requirements are simultaneously fulfilled:

• As many customer requirements as possible are fulfilled,
• the quality of the products is improved,
• the development and production time is shortened, and
• the overall costs are reduced.

Since product variety has gained a high importance in the past years, a new,
autonomous cross-functional discipline called variety, variant, or variability man-
agement was established for holistic treatment of these phenomena. In particular,
powerful tools that shift dealing with the complexity from the user to the tool, is, in
our opinion, the key for successfully achieving the above requirements.

The feature oriented domain analysis-approach (FODA) introduced by Kang [12]
uses feature models which are today almost established as a standard mean to specify
the variability of products. They allow for a description of the domain engineering and
the application engineering model variability within the Product-Line-Engineering

494 G. Rock et al.

process as described in [13]. Although feature models have not yet pervaded the
complete market for variant reach products, we observed over the last years that
companies using their proprietary formats and analyzing techniques (often based on
Excel-like tools) reach the limits of their approaches and are looking for a more
sophisticated analyzing machinery and a standardized form of variability specifica-
tion as started for example by the Object Management Group (OMG) Request for
Proposal for common variability language (CVL) [14]. Feature models enable us to
visualize variability in multiple ways as shown in [15–19]. All the referenced
approaches are using tree like views as for example shown in Fig. 17.2. Furthermore
they give us the possibility to analyze the specified variability in a formal way because
of the defined and generally accepted formal semantics as described for example in
[20–22]. There are several extensions of these models including the handling of
additional feature attributes to be part of the formal analysis process as described in
Sect. 17.3. At least from an academic point of view variability related problems
in product development seem to be solved and do not need further investigations [23].
A closer look at real world applications reveals that many of the problems remain still
unsolved for different reasons. A short and by far not complete list of reasons is as
follows:

• The pure size (still increasing) of real world problems,
• Missing formal variability experts able to improve formal analysis algorithms on

a problem/product/enterprise based way,
• Grown product and management structures to handle variability established in

the last decade,
• Missing migration concepts for established and grown legacy systems to handle

product variability,
• Increasing product and environment complexity,
• A constantly increasing number of variability drivers.

The only tool able to solve the problem is the formal logic (with different
characteristics). Today, most of the variability tool vendors use operational logic
that evaluates the rules in a particular order. This approach usually has unwanted

CAR

Manual Automatic

OTS FHC

Model

DHC

Engine

2.0 Diesel 2.0 Gasoline 3.0 Gasoline

RadioSport

Extras

Race Equi...

Gear Box

18”17”

Wheels

BlackGrey MetalGreenGreyBlue

Color

Fig. 17.2 Product structure

17 Variability Management 495

side effects because different execution orders can lead to different results. As a
consequence the encoding of variability in an operational logic is hard to debug.
Furthermore, these tools are usually not complete which means that the tools do not
consider all possible variants. These tools are already of big help, but will not
succeed to solve the problem in an adequate way.

In order to obtain complete tools and avoid side effects, all rules have to be
considered at once without any order. There are so called formal solvers that
accomplish these requirements. However, the methods that these solvers implement
are computationally expensive. This means that they are not feasible for industrial
size problems, in general. As a consequence, the methods as well as their imple-
mentation in solvers have to be adapted to the respective input in order to obtain
efficient solvers for dealing with the variability in industry. Although general
purpose solvers can be applied to many industrial problems with some success, it is
in our opinion not enough to be able to solve say 80 % of the problems and leave
the rest with the so-called “local heroes”.

In addition, a solver alone does not solve the variability problems in industry
because there is a strong need for a visualization that represents the solver results in
an adequate way to the user. The visualization of product line models and their
dependencies that represents the far end in product line engineering has to deal with
huge variability models and often an incredible number of constraints (more than
200,000) for a complete product line. To the best knowledge of the authors there is
currently no tool with an appropriate user interface available able to visualize such
models, their constraints and analysis results from a solver in an effective and
efficient way.

In order, to obtain such a comprehensive tool that efficiently analyzes product
data and visualizes the models and the analysis results, requires two directions of
research. One direction focuses on the development of reasoning procedures that
efficiently analyze product data. The second direction of research focuses on the
development of an appropriate user interface. With successful research in these
areas, the product life cycle management would be revolutionized and there would
be a significantly improving of product quality accompanied by a reduction of the
development time and development costs.

This chapter presents current research towards this goal based on formal logic.
Propositional logic has been recognized throughout the centuries as one of the
corner stones of reasoning in philosophy and mathematics. With the help of
proposition logic and sometime needed slight extensions to it, a wide range of
combinatorial problems arising in variability management can be expressed and
formulated as a propositional satisfiability (SAT) problem (see Sect. 17.3.2).
Meanwhile SAT has become a reference problem for an enormous variety of
complexity statements [24]. The presented method is based on SAT and its
extensions that have been successfully used by the authors in several industrial
projects. In addition, this chapter shows extensions of these methods and presents
examples where these methods have been successfully applied. In addition, several
directions for further research towards a comprehensive tool suit are sketched.

496 G. Rock et al.

17.3 Functionalities for Management of Complex Products

In the concurrent engineering process, it is vital to have comprehensive analysis
tools that ensure properties like consistency, correctness and ensure that specified
properties are fulfilled. This is required throughout the whole life-cycle of the
products. In particular, complex products can be composed of several thousand
parts. In this context, complete analysis tools are indispensable that help the
engineers to manage the product data, significantly improve product quality and
reduce overall cost.

These tools identify errors in the development process as soon as they occur and
can, therefore, be identified and avoided from the very beginning. This saves
the possibly extremely expensive correction of these errors in a later stage of the
development process or even after the product has been delivered to customers. The
possibility to personalize a product in terms of individual customer preferences is
nowadays one of the key factors in many industries.

Not only the presentation of variety but also the effective and efficient man-
agement of variety come into play. To address the mentioned challenges, there is a
need for methodologies to specify, analyze and manage the occurring variety
efficiently. In this chapter, we concentrate on the correct and complete analysis of
industrial-sized variant descriptions. This is the computationally most difficult part
moving the handling of complexity from the user to the algorithm. So, it is a
powerful tool for the user, in order to benefit from the complexity of the products
with respect to variety, quality and efficiency.

Below, examples are presented of an analysis task that a respective tool should
be able to perform in order to successfully and completely manage all variants of a
product:

• Detect inconsistencies and conflicts in the product variability description
• Determine all parts of a specific product
• Determine all parts that are currently not used in any product
• Determine in which products a particular part is used
• Compute product configurations with predefined properties, i.e. buildability
• Computation of the needed (optimal) variability for a product family
• Optimization of a product family according to predefined measures such as cost

or customer orientation
• Identify all reusable components
• Identify products that are not desired by the costumers.

With such a tool it is not necessary anymore to restrict the number of variants as
much as possible in order to maintain them. Moreover, it allows a manufacturer to
maintainmanymore variants of a product by reducing the effort tomanage all of them.

A tool providing this functionality must be functionally correct, complete, fast
and efficient. In particular, it has to consider all possible product variants during the
analysis. Approximations are not suitable for this purpose and must be excluded in
this phase, because they do not consider all possible variants, i.e. they omit products

17 Variability Management 497

during the analysis of a product portfolio. Thus, they do not guarantee to find all
relevant information or errors in the product data. We argue that an incomplete
approach is not good enough and, furthermore, can mislead and direct wrong
decisions.

Because of the fact that discrete products have a discrete structure, complete
methods are computationally expensive. In contrast to a continuous structure, a
discrete structure means that a product is composed of several individual parts.
Each part is either contained in the product or it is not contained. In general,
complete procedures for discrete structures are at least NP-hard. For the worst case,
this means that all combinations of all parts of a product have to be considered
during the analysis. For example, for a product portfolio with 3,000 parts we have,
in general, 23,000 different products that have to be considered during the analysis.
The same holds in case of engineering changes, which must be considered too.

To obtain efficient and complete analysis procedures for complex products, the
encoding of the product data and the reasoning procedures have to match to one
another. The research in the field of automatic theorem proving of the last decade
has improved the underlying algorithms in such a way that product data containing
several million product parts can be analyzed efficiently in many cases. In the
remaining of this section, we present a complete method for the analysis of product
data based on a particular kind of logical reasoning procedure, based on SAT [24]
that was successfully applied under industrial conditions.

Figure 17.3 depicts the general workflow of analyzing and optimizing products
according to the presented method. First the product data has to be transformed into
a logical model representing all the relevant aspects of the product data (see
Sect. 17.3.1). In the second step, the logical reasoning procedure that analyses and
optimizes the logical product model (see Sect. 17.3.2) is applied. The result shown
to the user depends on the performed analysis. In nearly all cases the result has to be
adapted to the expected reader to be understandable and, thus, usable.

17.3.1 Logical Product Model

Transforming the product data into a representation in logic (as depicted in
Fig. 17.3) defines a unique semantics for the data. Thus, logical reasoning tools can
precisely analyze the logical model. In order to obtain an efficient and useful
analyzing framework that supports the concurrent engineering process, the logical
product model has to fulfill the following three substantial requirements:

Product
Data

Product
Model

Analysis Optimize

Fig. 17.3 Analysis process

498 G. Rock et al.

• The model must adequately represent the relevant information of the original
product data.

• The model must be in a form such that efficient analyzing procedures cope with
model complexity.

• The structural representation of the model allows to trace back the results of the
analysis to actual product characteristics.

Feature diagrams [25, 43] are an appropriate means, because they provide a
logical framework that fulfills these requirements. They are suited to encode
structural information of a product as well as the formulation of additional
constraints.

This is an important step in order to build a knowledge base for all products of a
manufacturer. In particular, this knowledge base is a tool that enables the engineers
to consolidate their knowledge into one consistent knowledge base. The reasoning
procedures shown in Sect. 17.3.2 provide a tool that automatically verifies the
consistency of structural information and additional constraints, and prevents
possible interface problems between several engineering departments. As a con-
sequence, this knowledge base is an explicit representation of the manufacturer’s
know-how and enables everybody involved in the product lifecycle to access this
knowledge (see Sect. 17.4.1).

Besides the mentioned advantages it should be noted that the creation of an
appropriate logical representation of the product model is usually not a trivial task.
It needs a lot of experience in the field of formal logic and their respective analyzing
procedures. Furthermore, a gap remains between the real world product and the
specified formal model. This gap can only be bridged with the help of the domain
experts who should provide a crucial support within this first phase.

17.3.1.1 Feature Diagrams

Figure 17.4 depicts a feature diagram that represents an extension of the product
structure given in Fig. 17.2. A feature diagram is a tree that represents a set of valid
products which are also called variants. Thus, variants represent a valid selection of
features (nodes in the feature tree) in a feature tree. It is possible to further restrict
valid feature selections by so-called cross-tree constraints.

• Optional/mandatory features
In every valid product a mandatory features (indicated by a filled circle in
Fig. 17.4) is selected if and only if its parent node is selected. If an optional
feature is selected, its parent has to be selected, too. The root of the feature
diagram is usually mandatory and assumed to be part of all valid products.

• XOR, OR, AND group
If a non-leaf feature F is set to XOR, exactly one of its children has to be
selected if F itself is selected. In Fig. 17.4 the feature Engine is a XOR group,
i.e. the car can have exactly one engine and in this case must have exactly one

17 Variability Management 499

engine. Likewise, OR denotes that at most one children is selected and AND
that all children have to be selected.

• Implies/Excludes
The implies and excludes relations define so-called cross-tree constraints. For
example, if the feature “3.0 gasoline” is selected then the feature “Race” has to
be selected and if the feature “Radio” is selected then the feature open twoseater
(OTS) is excluded, i.e. it cannot be selected.

Additionally, a feature diagram can contain arbitrary Boolean formulas over the
features in the tree. The following formulas are examples for such constraints:

Race ! Sport
^

OTS

This means whenever the Race option is part of a product then also the Sport
option and the option OTS have to be included in the product.

The second example expresses the constraint that the OTS excludes a radio:

OTS ! :Radio

Feature diagrams represent product data with a precise semantics. Consequently,
a feature diagram defines a mathematical model for the variability of the corre-
sponding product data. This model constitutes the basis for the formal analysis
described in Sect. 17.3.4.

17.3.1.2 Quantitative Extensions of Feature Diagrams

An extension of feature trees by attributes as mentioned by Benavides [26] extends
the expressivity of feature models (see Fig. 17.5). Attributes provide a method to
model additional information within the feature model. With appropriate reasoning
methods these attributes can be used in the analysis process and the visualization.
Examples for such attributes are costs, weight, and speed. There exist reasoning
procedures for analyzing attributed feature trees and for optimizing in terms of the
specified attributes.

excludes

implies

implies (after February 2000)

CAR

Manual Automatic

OTS FHC

Model

DHC

Engine

2.0 Diesel 2.0 Gasoline 3.0 Gasoline

RadioSport

Extras

Race Equi...

Gear Box

18”17”

Wheels

BlackGrey MetalGreenGreyBlue

Color
exactly one

Fig. 17.4 Feature diagram

500 G. Rock et al.

17.3.2 Logical Analysis

In order to perform logical operations on feature diagrams, the feature diagrams are
first translated into a set of Boolean formulas. There exist tools that automatically
verify the satisfiability of a set of Boolean formulas. The tools we consider here are
so called SAT solvers [24].

All aforementioned analysis tasks can be formulated as a Boolean satisfiability
problem and, consequently, can be answered by a SAT solver.

Aside from efficient SAT procedures, the right encoding of the real-world
problem in Boolean logic, is the key for successfully analyzing industrial product
data.

17.3.2.1 Translation into Logic

Feature diagrams are a formal representation of product data with a precise
semantics. Consequently, they define a unique mathematical model of the product
data that consists of the hierarchical structure and additional logical formulas that
specify the properties and links to all product parts. The analyzing procedures
presented here operate on purely logical representations of the product data. As a
consequence, the structure and content of a feature diagram have to be transformed
into an equivalent representation in logic.

The following example shows the translation of the node GearBox of Fig. 17.4
in propositional logic:

GearBox ! Manual _ManualCR

GearBox ! :Manual _ :ManualCR

Manual ! GearBox

ManualCR ! GearBox

3.0 Gasoline 2.0 Gasoline 2.0 Diesel

Engine

cost = 2300
weigth = 1400

cost = 1200
weigth = 1200

cost = 1200
weigth = 1200

Fig. 17.5 Extended feature
diagram

17 Variability Management 501

This expresses the parent-child relation and the property that this node is an
XOR node.

Although the translation of a feature model into a set of Boolean formulas is
straightforward as proposed by Benavides et al. [26], this is a crucial step for
successfully analyzing huge product data. Because they are computational expen-
sive, the reasoning procedures rely on the right encoding of the input data in order
to perform efficiently and to avoid the worst-case behavior.

From our experience, a respective encoding for most problems from industry can
be found, which has also been proposed by Mendonca et al. [21]. However, this is
not always obvious and might involve deeper inspection of the product data per-
formed by the variability expert together with the domain expert.

17.3.2.2 Satisfiability Procedures for Feature Diagrams

The analysis tasks of Sect. 17.3.1.1 needs be transformed into a satisfiability
problem. A satisfiability problem verifies for a set of Boolean formulas if there
exists a variable assignment that fulfills all formulas at the same time.

Considering the following set of Boolean formulas where a, b and c are Boolean
variables, i.e., they can be assigned true or false:

a _ b _ c :a _ b _ :c
a _ :b _ c a _ :b _ :c
a _ b _ :c :a _ b _ c
:a _ :b _ c

Although this is a small problem, the solution is not obvious. If we consider
problems with several thousand or million variables, this is almost impossible to do
without efficient and sophisticated algorithms. In order to find a solution, one has to
consider all possible assignments for the variables. Assuming a problem with
50,000 variables, we have to consider 250,000 assignments. Once a fulfilling solution
has been found, the solution is easy to verify. These kinds of problems are called
NP-hard problems.

In 1960 an algorithm [27] was presented that computes an assignment for a set of
Boolean functions. This algorithm was later improved and became known as the
DPLL algorithm. The algorithm searches the decision tree as depicted in Fig. 17.6
for a satisfying solution.

In order to perform the satisfiability procedure efficiently, the DPLL algorithm
has been improved by many techniques and methods. Tools that implement a
satisfiability procedure are called SAT Solvers which are described in detail in the
Handbook of Satisfiability [24]. Current SAT Solvers are mostly based on the

502 G. Rock et al.

CDCL method that is an improvement of DPLL. The abstract DPLL calculus [44] is
depicted in Fig. 17.7.

However, in general, it is not sufficient to use an off-the-shelf solver, because
also the solver engine has to be adapted to the input problem in order to obtain the
best, or in many cases an acceptable, performance. The harder the problems
become, the more crucial it is to adapt the solver in order to solve the problem at all.

17.3.2.3 Reasoning Procedures for Extended Feature Diagrams

A feature diagram as well as an extended feature diagram has an equivalent rep-
resentation as a set of logical formulas (see Sect. 17.3.2.1). The translation of an
extended feature tree results in a propositional logic with an additional theory. For
this kind of logic there exist three approaches of a reasoning procedure in basic
research: modular [28–30], hierarchical [31, 32] and integrated approaches [33, 34].

Fig. 17.6 Decision tree

Unit Propagation

Decide

Fail

Backjump

Fig. 17.7 Abstract CDCL procedure

17 Variability Management 503

The modular approach implements a black-box strategy whereas the other two
approaches implement a white-box strategy:

(i) Modular approach: The modular approach adds the quantitative aspects as
labels to the propositional formula.

weight ¼ 5; torque ¼ 450f g:ManualCR

(ii) Integrated approach: The integrated approach combines the quantitative
aspects with the propositional formulas resulting in one formalism.

ManualCR:data ¼ ð5; 450Þ

(iii) Hierarchical approach: The hierarchical approach combines the quantitative
aspects with the propositional formulas, too. In contrast to the integrated
approach, the combination of these two formalism is only through variables.

x ¼ 5 ^ y ¼ 450 ! ManualCR:data ¼ ðx; yÞ

The modular approach results in two almost independent formalisms. This
means for the analysis that the theory part is not integrated in the actual analysis.
Rather, it is analyzed independently with special methods for the respective theory.
As a consequence, this method is called black-box strategy because the analysis
procedure does not know anything about the theory methods. It only asks the theory
black-box if a given label is valid in the theory part of the formalism.

The two white-box approaches combine the propositional and the theory part
within a single formalism. On the one hand, this has the disadvantage that the two
parts cannot be treated independently from each other. This results in methods that
are considerably more complex. On the other hand, the white-box approaches are
transparent. This means that the properties of the theory part of the formalism can
be easier used in the propositional part in order to simplify the current formulas.

Adding taxonomies to the logical formalism of complex products is a further
extension that requires decision procedures for the Bernays–Schönfinkel class. This
is also called the effective propositional (EPR) class. A decision procedure for the
Bernays–Schönfinkel class based on the first-order prover SPASS [35] is presented
in [36]. An overview over EPR solvers can be found in [37].

It requires further investigation which of these approaches is best suited for
analyzing the respective properties of industrial products.

17.3.2.4 SAT Based Optimization

In addition to the analysis, there exist efficient optimization procedures for product
models that compute optimal products with respect to a given cost function.
Because of the fact that product data have a discrete structure, computing an

504 G. Rock et al.

optimum requires discrete optimization procedures. In general, discrete optimiza-
tion problems are much harder than continuous optimization problems. For further
details about optimization in general and further use cases, Chap. 15 may be
considered.

The hardness of discrete optimization problems for huge products such as cars,
aircrafts or ships involving several thousand parts, requires highly efficient opti-
mization techniques.

We have successfully used SAT based optimization procedures in several
industrial projects applying the branch and bound method [38]. Using this proce-
dure together with the logical product model (see Sect. 17.5.1), a defined cost
model and an objective function computes optimum products with respect to var-
ious cost metrics.

For example, the following use cases can be solved with such an optimization
procedure:

• Assembly sequence optimization [6],
• Computation of the optimal configuration, for example the cheapest, fastest,

lightest product (see Sect. 17.4.2).
• Test coverage optimization.

An extended feature model as depicted in Fig. 17.5 defines a product model and
a cost model. In addition to the objective function, these methods allow the for-
mulation of additional bounds.

17.3.3 Visualization

In addition, to visualize the product structure as depicted in Sect. 17.3.1, the
analysis and optimization results need an adequate visualization. The visualization
should provide the results to the target user group or role, for example engineers,
managers and sales people.

This means that the visualization of the same analysis task has to be visualized
with respect to the specific user scope, considering specific needs or objectives e.g.
level of detail or abstraction. The reasoning procedures shown in Sect. 17.3.2,
produce the respective information.

However, preparing and visualizing this information such that the user efficiently
can use it is an open area for research. Figure 17.8 illustrates an example for a
reporting of a conflict. In this example, a user has selected two different kinds of
wheels, but only one is allowed by the constraints. In the case that a conflict is more
complicated and involves hundreds of features and constraints, this representation is
not appropriate anymore in order to efficiently analyze the conflict.

17 Variability Management 505

http://dx.doi.org/10.1007/978-3-319-13776-6_15

17.3.4 A Tool for Formal Variability Management

The presented analysis methods and the presented examples described in Sect. 17.4
are realized with the help of a commercial tool [39]. As opposed to tools as for
example described in [40, 41], this tool focuses on the analysis and optimization of
variant product structures based on the aforementioned propositional logic and a
very efficient implementation of a SAT solving procedure. It offers a set of analysis
possibilities as there are for example:

• Consistency Check
• Dead Feature Detection
• Optimization with bounds
• Product Configuration
• Analysis Result Visualization
• Formal Rule-based Debugging.

Considering these analysis procedures the focus of this tool, lies in the perfor-
mance of the result computation. The user is now able to solve the specified prob-
lems in real-time. The tool allows for a systematic and timesaving analysis of huge
product structures, keeping at the same time the right level of abstraction for the
result presentation. It can be looked at as a formal logic based integrated develop-
ment environment (IDE) for variant product structures where all the analysis results
are mathematically proven to be correct. There is no longer a “perhaps”.

17.4 Applications

This section presents examples showing how SAT based methods can be used in
order to significantly improve the overall quality of complex product data and,
consequently, the quality of the actual products. As a consequence, they enable
manufactures to offer more variants that they can manage. This allows them to
satisfy the customer’s requirements with higher granularity.

The examples shown in this section are a product consistency check and product
optimization.

Type Constraint Comment

User Selection _Spoke_Wheel User selection

Constraint (imp(_Wheels exo(_Disk_Wheel _Spoke_Wheel)))

FeatureTree _Wheels _Wheels is mandatory

User Selection _Disk_Wheel User selection

FeatureTree _ExampleCars _ExampleCars is mandatory

Fig. 17.8 Conflict reason

506 G. Rock et al.

17.4.1 Product Consistency

A complex product involves many parties, such as customers, mechanical
engineering, electronic engineering, marketing, management, regulations and cer-
tifications. Ensuring that a product respects all requirements from all parties is a
challenge that causes a lot of problems, in general. These problems are the major
issue for product callbacks or severe damage to people and the manufacturers.
Figure 17.9 illustrates the different parties that have particular requirements to a
product.

Verifying that a product with several million variants satisfies all the require-
ments, is only possible with complete methods. Completeness means that all
possible variants are respected and checked that they fulfill all specified require-
ments and satisfies all interfaces to all involved parties. This procedure is called a
consistency check.

First, in order to use logical methods, the product model as well as the speci-
fications must have been formally specified. Mostly, products and its specification
are stored in a product data management (PDM) system. Consequently, these data
have to be translated into a formal representation first.

In order to perform a consistency check for a product, all relevant aspects of the
product that are not contained in the PDM system, have to be also present in a
format that can be transferred to a formal model (see Sect. 17.3.1). For the esti-
mation of costs, this could also involve enterprise resource planning (ERP) systems.
Currently, there exists no general approach. Therefore, it is defined for every use
case. This leaves room for research in order to find a general approach.

Even more, such a model improves the communication between the parties by
defining a precise language that can automatically be verified against specified
properties.

Once all the aspects are defined and transferred to a formal model, the formal
methods of Sect. 17.3.2.2 verify their consistency. If there are inconsistencies, these
methods will find them and generate an explanation. This explanation is called a
proof. A proof is a mathematical precise representation of the reason of the

Customer

ISO 26262,
Certification

(CE, CCC, …)
Production

Departments
(Engineering,
Marketing,…)

Management

Complex
Product

Fig. 17.9 Parties involved in
the product lifecycle

17 Variability Management 507

inconsistency. Based on this proof, sophisticated and exact reports for each party
involved can be generated together with proposals to solve them. This is an area for
further applied research, too.

This section depicts the opportunities that formal methods provide in order to
support the product lifecycle and to improve the product quality by ensuring that all
requirements of all parties are fulfilled. At the same time, this section shows the
areas for further research towards a general approach.

17.4.1.1 Industrial Application

The product model represents the information backbone for all people working on a
specific product. In automotive industry for example, engineers must ensure that
new parts fit into a well-defined set of car configurations—geometrically and
logically. During the development phase the product structure and the geometrical
parts are developed concurrently, thus both models are subject to a continuous
change. In order to cope with the described situation, engineers work in so-called
“reference configurations”. These reference configurations have to provide a valid
reference for all product configurations using the designed parts, functions etc.
Changes in the variant product model may have various effects on this: The ref-
erence configuration may represent the wrong set of configurations, or an incom-
plete set or the configuration becomes invalid at all. Obviously, managing complex
products within a complex project environment with concurrently working engi-
neers, this happens each and every day. The work of all mechanical designers,
electrical engineers, software developers etc. deeply depends on a consistent
product model. No person can detect all errors in the variant product model man-
ually. The risk is that errors propagate through follow-up processes undetected,
causing very large efforts and high costs. By this an automatic efficient consistency
check of variant product models becomes an essential success factor for all com-
panies offering variant products.

17.4.2 Product Optimization

The optimization methods in Sect. 17.3.2.4 allow the computation of optimum
complex products with respect to specified metrics. Examples for cost metrics are
price, weight and CO2 emission.

The following shows examples for optimization tasks:

• What is the best product with respect to customer needs?
• What parts of a company portfolio are cheaper to be produced in house and what

parts are cheaper to be bought from a supplier?
• What are the parts that cause the most costs?
• What parts are worth to consider for redesign in order to make them more cost

efficient?

508 G. Rock et al.

Figure 17.10 depicts a black-box view to the optimization procedure for com-
plex products. The inputs for the optimization procedure are a product model, a cost
model and sales figures. The product model represents the product data and the cost
model assigns certain cost values to the product model. The sales figure is a list of
product variants that are expected to be sold or were sold in a defined time period.

For example, based on this input parameters the optimizer computes the cost-
optimal product model by removing or adding parts and products to the product
portfolio. The computed optimum is consistent in terms as explained in
Sect. 17.4.1, i.e. all requirements are fulfilled. In addition to the consistency of the
computed optimum, this method finds mathematically provable the global
optimum.

The results of the optimization procedure can be the basis for further decision
processes. They can optimize on several expected market situations and the
respective consequences. In this case, the formal methods provide the presented
functionality, but they have to be adapted to the individual application in order to
perform efficiently. This is due to the fact, that an optimization operation is even
more difficult from a computational point of view than a consistency check.
Therefore, it is even more sensitive to the given product model. As a consequence,
research towards a general approach for optimization of complex products is nee-
ded. Furthermore, there is currently no standard mechanism for the specification of
the input parameters like the costs for the product model or the sales figures.

17.4.2.1 Industrial Application

Product variation is a key differentiator between competitors. However, product
variation is causing costs in development, production and after sales too. The
optimum is in-between the broadest offering to get more customers and the smallest
offering to save costs. Real customer orders aren’t evenly spread across the possible
product configurations. It’s the exact opposite: Real customer orders show accu-
mulations of few sets of options, because there are always customer groups with
similar requirements. One possible optimization is to offer packages with a well-
defined set of options. These packages fulfill the requirements of many customers
and reduce the number of variants and the costs too. However, the optimal set of

Product
Model

Budget

Cost
Model

Optimization
Procedure

Optimum
Product

Configuration

Fig. 17.10 Optimization of
product configuration

17 Variability Management 509

packages is very hard to find, because no one can manually survey the mix of a
complex cost structure, historical selling and forecast data within a highly variable
product model. The identification of an optimal set of packages is the typical use
case for a mathematical optimization toolkit. Even in this case the customer has to
be taken more closely into account. Often the customer selects a package and
afterwards wants to upgrade a certain feature within that respective package. Also
in this case the optimization toolkit has to provide a useful variant.

17.5 Case Studies

In this section we present real industrial case studies for the application scenarios
described in Sect. 17.4. These case studies were abstracted from the real case for
obvious reasons.

17.5.1 Debugging a Product Variant Model

In this case study, a debugging tool for the product data of a globally operating
machine manufacturer is presented. The debugging tool ensures that the product
data fulfills the quality requirements. The manufacturer uses several mechanisms
to express properties of his product involving engineering and marketing data.
Altogether, the manufacturer defines several thousand of such product properties.
At the engineering side the properties of the product describe all products that are
buildable. The marketing side describes the market requirements and the product
variants that are offered in the different countries.

The manufacturer uses a configuration tool that allowed the user to configure the
product in the respective country. However, this process was error prone because
the configuration tool did not offer a comprehensive analyzing mechanism, making
the specification of the product model and the resulting variants transparent and
understandable to the user.

The absence of such an analyzing mechanism results in a sometimes-
unpredictable behavior of the configuration tool. Examining the specification
mechanisms of the manufacturer in order to understand the reason for the behavior
was very time consuming and required a lot of experience.

This has two reasons. First, the definition of the specification mechanisms was
not unique and several exceptions to the rules were implemented. Second, the
configuration engine used an operational semantics. This means the interpretation
of the mechanisms was implemented in the software. As a result, the order of the
rules had an impact on the behavior, which is usually an unwanted side effect.

In the case study, we used the commercial analyzing tool [39] that solves these
problems by enabling und actively supporting the user to understand the problem

510 G. Rock et al.

and to find out whether the problem was a specification error or a bug in the
configuration tool. Figure 17.11 depicts the debugging process and the respective
inputs. For example, we discovered with the help of the tool that marketing offered
a control unit for a variant of a machine for which the control software had not been
released yet.

The first step in this investigation has been the translation of the specification
mechanisms of the manufacturer into a logical product model. This defines a formal
semantics based on mathematical logic for each individual mechanism and, as a
consequence, each mechanism has a unique precisely specified meaning.

The logical product model can be loaded into the analyzing tool. The tool allows
the user to interactively inspect the product model. Furthermore, the consequences
of a selection of a feature in the product are computed in real time. Even more
important, the user sees the reason for the consequences. In particular, the user
immediately understands why the selection of one feature requires the selection/
de-selection of other features.

In addition, the tool finds inconsistencies immediately and, therefore, avoids
working with an incorrect product model. Usually a conflict involves just a few
rules. As a consequence, the rules to be considered in order to understand the reason
of an inconsistency is drastically reduced from several thousand to just a handful of
rules.

Additionally, the tool enables even less experienced people to understand the
specified product properties and its consequences. This is because the tool serves as
a reference interpreter for the properties. As a consequence, the communication
between several people involved in the product lifecycle of the product was sig-
nificantly improved.

Marketing
Product Model

Engineering
Product Model

Analyzing
Tool

Fig. 17.11 Debugging
process overview

17 Variability Management 511

17.5.2 Computation of a Set of Cost-Optimized Wire
Harnesses

In this case study the goal was to compute a set of cost optimum wire harnesses for
a product portfolio of a manufacturer with respect to a forecast. The manufacturer
wants to know which wire harness to order from a supplier in order to put in stock.

This is a crucial operation because the ordered harnesses have to fulfill the
following requirements:

• For each product variant that is expected to be ordered there must be a matching
wire harness in stock

• The wire harnesses in stock must be cost optimal.

This ranges from an individual wire harness for each order to one wire harness
for all orders. The computation is based on the following inputs:

• The product portfolio and its properties describing the properties of the product
variants and the mutual dependencies of its parts. This is defined by the
manufacturer.

• Properties of the wire harnesses describing the dependencies between options in
the wire harness. This is defined by the supplier.

• The costs of a wire harness representing the contract with the supplier. The
contract defines all involved costs like production cost, stock costs, transpor-
tation costs and price deductions.

• An estimation of the expected sales for each product configuration relevant to
the wire harnesses.

The current decision process of the manufacturer, which wire harness shall be
ordered, is based on a local optimization method. Because of the fact, that the task
is a discrete optimization problem, a local optimization can differ significantly from
the global optimum (see Chap. 15). This requires a further step for additional
optimization.

To compute the global optimum solution, we used the optimization engine of the
commercial tool [39]. The tool guarantees that it finds an optimal solution. In order
to use this tool we first translated the aforementioned input into a formal model with
a defined set of cost attributes. This resulted in the following inputs for the tool, as
depicted in Fig. 17.12:

• a model of the products,
• a model of the wire harnesses,
• a model of the costs of the wire harnesses and
• an estimate of the expected sales for each product configuration relevant to the

wire harnesses.

Based on the logical representation of the products, the wire harnesses, the costs
and the expected sales, the optimization engine computed a set of cost-optimized
wire harnesses, i.e. the optimality can be proven mathematically. Because of the

512 G. Rock et al.

http://dx.doi.org/10.1007/978-3-319-13776-6_15

fact that a discrete optimization is computational expensive, the definition of the
formal model is essential, because it has to fulfill two fundamental requirements.
First, it must adequately represent the input data. Second, it must be defined in such
a way that the optimization procedure works efficiently on the model.

The translation of the input data into a logical model resulted in 300,000 logical
formulas. The optimization procedure took about 3 h to compute the global optimal
solution. Comparing the optimization results of the tool with the current used
method, results in an improvement of at least 15 %.

17.5.3 Car Pool Optimization for Manufacturers
and Customers

In the case study car pool optimization, we examined the possibility to compute a
cost optimum set of cars for the car pool of a company. The input parameters for
this case study were the product model, a cost model for the product model, a given
budget and a set of predefined options that every car should have. Then the opti-
mization was on the fuel consumption of the whole car pool.

With current car configurators only one car can be configured with respect to the
available options. The configurator computes the price and indicates the fuel con-
sumption of the current configuration. In particular, there is no possibility to select a
set of options and the remaining options are set with respect to an optimization
procedure.

Further applications are the possibility to define preferences for a configuration
and the optimization procedure finds the best car for a given budget. Different
customers have their preferences for different kinds of options. For example, safety
option, sport options or options causing the least fuel consumption.

Performing optimizations on configurations is a big advantage for both customer
and manufacturer. The customer finds the product he wants quickly without
bothering about options he is not interested in. The manufacturer on the other hand

Optimization Procedure

Cost Optimal Wire Harness

SupplierManufacturer

Wire Harness
Model

Cost
Model

Sales
Figures

Product
Model

Fig. 17.12 Optimum product model

17 Variability Management 513

can optimize his product portfolio particularly to the demands of the customers. The
optimization enables him to better understand his product portfolio. These insights
can be the basis for further decisions, for example launching of marketing offers or
invention of new feature options.

Figure 17.13 depicts this case study. The manufacturer and the customer com-
pute optimal configurations based on the same product model. For the customer, a
subset of the available configurations is defined. For example, this defines
the market offers of the manufacturer. Instead of having different representations of
the product portfolio, we show in this case study that manufactures as well as
customers can perform their processes on the same product model.

Furthermore, this method provides a marketing driven model based design and
development of new products. In this case, the manufacturer starts with a less
detailed customer model that defines the customer demands. The model becomes
more detailed during the design and development phase of the product. Conse-
quently, the current development model can be optimized with respect to the
customer model and verified against the customer model.

17.6 Future Directives

In the late 90s, entering of electronics into products and customer demands for
individual products to mass customer market prices caused a rise of the product
complexity as indicated in Fig. 17.14. Electronics were shipped with diverse
releases and software versions that have to exactly match the hardware parts. This
has resulted in a huge number of variants that have to be maintained and have to
fulfill specific properties. Further reasons for an explosion of variants are fast
changing market demands, legal regulations, and certificates. Nowadays, the
complexity of global products drastically rises due to the aforementioned reasons
for variety explosion. On the other hand, the general purpose CDCL algorithm

Optimization Procedure

Complete
Product Model

Manufacturer Customer

Customer Sub-Model
(Options that can be

selected by a customer)

Fig. 17.13 Manufacturer and customer optimize on the same product model

514 G. Rock et al.

(see Sect. 17.3.2.2) has steadily improved such that its implementations could
successfully analyze complex products. To be still able to successfully analyze
these products with mathematical tools, the CDCL based algorithms can be spe-
cialized to the properties of these analyzing problems. An appropriate tool that
implements a specialized CDCL algorithm and successfully analyses complex
products is available [39].

The case studies in this chapter have shown that algorithms based on the
methods depicted in this chapter are able to solve variant problems from various
states in the product lifecycle that could not be solved without these. As a conse-
quence, powerful analyzing tools exist that completely and precisely verify com-
plex product models with respect to a diversity of properties involving variants.
Furthermore, we expect that models are able to express variant information from
other states in the product life cycle and the relations between the states as shown in
Fig. 17.9. Examples of other states in the product life cycle are: the requirement and
market analysis, design, construction, production, logistics, sales and after-sales.

In the area of model based systems engineering (MBSE) there is a standard
modeling language, the systems modeling language (SysML) [42], with a diversity
of analyzing tools for several aspects of the systems. In the case of variability
management we expect a similar development towards a model based variability
management (MBVM). The common variability language (CVL) [14] is an
example of the development towards this direction. In the long term this could even
go further towards a model based product life cycle management (MB PLM). From
such a development we expect a similar impact on the development of products like
crash simulations for the development of safe cars.

1960 1980 1990 2000 20131970

100

1,000

10,000

100,000

1,000,000

CDCL

Specialized CDCL

Product
complexity

Fig. 17.14 Development of product complexity and the performance of general purpose CDCL
procedures and specialized CDCL procedures

17 Variability Management 515

17.7 Conclusions and Outlook

This chapter has illustrated the crucial importance of variability management. We
have presented some of the basic theoretical background and several real-world use
cases that have been successfully mastered using methods based on formal logic.
Thus, we have shown that the application of a formal logic-based approach to real-
world variability problem scenarios is very promising. Although we had to cus-
tomize the underlying analysis algorithms and find an appropriate way to encode
the problem scenario in a formal setting, we are very confident to be able to find
such optimizations for most problems of this kind. The more real-world problems
we analyze, the more experience we gain in optimizing and customizing our
algorithms and problem representations. Although we have to respect and observe
the basic research that has been done and that will be done in the area, we are
currently at a stage where we need more applied research based on real world
examples in real industrial project settings to develop and improve a comprehensive
tool suite based on formal logic. This will be one of the key factors enabling
manufacturers and product line engineers to develop and master even more com-
plex products and at the same time meet exactly the customer demands. To the best
of our knowledge and having analyzed the past, variability reduction certainly is not
an option for successful manufacturers or product line engineers in the future in a
global competition. The only way for a sustainable variability management and
product line engineering is to analyze, optimize, develop and adapt product vari-
ability in accordance with the rapidly changing market requirements. Formal
approaches as described in this chapter provide the means for achieving this goal.

References

1. Hüttenrauch M, Baum T (2008) Effiziente Vielfalt Die dritte Revolution in der
Automobilindustrie. Springer, Berlin

2. Elgh F (2014) Automated engineer-to-order systems. A task oriented approach to enable
traceability of design rationale. Int J Agile Syst Manag 7(3–4):324–347

3. McLay A (2014) Re-reengineering the dream: agility as competitive adaptability. Int J Agile
Syst Manag 7(2):101–115

4. Alguezaui S, Filieri R (2014) A knowledge-based view of the extending enterprise for
enhancing a collaborative innovation advantage. Int J Agile Syst Manag 7(2):116–131

5. Chang D, Chen CH (2014) Understanding the influence of customers on product innovation
Int J Agile Syst Manag 7(3–4):348–364

6. Hu S, Ko J, Weyand L, ElMaraghy H, Lien T, Koren Y, Bley H, Chryssolouris G, Nasr N,
Shpitalni M (2011) Assembly system design and operations for product variety. CIRP Ann
Manuf Technol 60(2):715–733

7. Wallis R, Stjepandić J, Rulhoff S, Stromberger F, Deuse J (2014) Intelligent utilization of
digital manufacturing data in modern product emergence processes. In: Cha J et al (eds)
Moving integrated product development to service clouds in global economy. Proceedings of
the 21st ISPE Inc. international conference on concurrent engineering. IOS Press, Amsterdam,
2014, pp 261–270

516 G. Rock et al.

8. Kretschmer R, Rulhoff S, Stjepandić J (2014) Design for assembly in series production by
using data mining methods. In: Cha J et al. (eds.) Moving integrated product development to
service clouds in global economy. Proceedings of the 21st ISPE Inc. international conference
on concurrent engineering. IOS Press, Amsterdam, 2014, pp 379–388

9. ElMaraghy H, Schuh G, ElMaraghy W, Piller F, Schönsleben P, Tseng M, Bernard A (2013)
Product variety management. CIRP Ann Manuf Technol 62(2):629–652

10. ElMaraghy H, Azab A, Schuh G, Pulz C (2009) Managing variations in products, processes
and manufacturing systems. CIRP Ann Manuf Technol 58(1):441–446

11. ElMaraghy W, ElMaraghy H, Tomiyama T, Monostori L (2012) Complexity in engineering
design and manufacturing. CIRP Ann Manuf Technol 61(2):793–814

12. Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-oriented domain
analysis (foda) feasibility study. Technical report, DTIC Document

13. Pohl K, Böckle G, van der Linden F (2005) Software product line engineering—foundations,
principles, and techniques. Springer, Berlin

14. Haugen Ø, Wasowski A, Czarnecki K (2013) Cvl: common variability language. In: Kishi T,
Jarzabek S, Gnesi S (eds) Proceedings of the 17th international software product line
conference. ACM, New York, p 277

15. Nestor D, O’Malley L, Quigley AJ, Sikora E, Thiel S (2007) Visualisation of variability in
software product line engineering. In: Pohl K, Heymans P, Kang KC, Metzger A (eds) 1st
International workshop on variability modelling of software-intensive systems (VAMOS
2007). http://www.sse.uni-due.de/vamos/2007/files/vamos07_0038_paper_7.pdf. Accessed 20
Aug 2014

16. Heuer A, Lauenroth K, Müller M, Scheele JN (2010) Towards effective visual modeling of
complex software product lines. In: Botterweck G, Jarzabek S, Kishi T, Lee J, Livengood S
(eds.) Software product lines: going beyond: Proceedings of the 14th international software
product line conference, pp 229–238, SPLC 2010. Jeju Island, Sep 13–17 2010, Springer,
Berlin

17. Botterweck G, Thiel S, Nestor D, bin Abid S, Cawley C (2008) Visual tool support for
configuring and understanding software product lines. In: Geppert B, Pohl K (eds)
Proceedings of the 12th international software product line conference, SPLC 2008. IEEE
Computer Society, Los Alamitos, pp 77–86

18. Cawley C, Nestor D, Preußner A, Botterweck G, Thiel S (2008) Interactive visualisation to
support product configuration in software product lines. In: Heymans P, Kang KC, Metzger A,
Pohl K (eds.) 2nd international workshop on variability modelling of software-intensive
systems (VAMOS 2008). http://www.sse.uni-due.de/vamos/2008/papers/VAMOS08_01.pdf.
Accessed 20 Aug 2014

19. Schneeweiss D, Botterweck G (2010) Using flow maps to visualize product attributes during
feature configuration. In: Botterweck G, Jarzabek S, Kishi T, Lee J, Livengood S (eds)
Software product lines: going beyond. Proceedings of the 14th international software product
line conference, pp 219–228, SPLC 2010. Jeju Island, 13–17 Sep 2010, Springer, Berlin

20. Czarnecki RK, Helsen S, Eisenecker UW (2004) Staged configuration using feature models.
In: Nord RL (ed) Software product lines: 3rd international conference, SPLC 2004, 30 Aug–2
Sep 2004, Boston. vol 3154 LNCS, pp 266–283, Springer, Berlin. http://www.ece.uwaterloo.
ca/*kczarnec/splc04.pdf. Accessed 20 Aug 2014

21. Mendonca M, Wasowski A, Czarnecki K (2009) SAT-based analysis of feature models is easy.
In: Muthig D, McGregor JD (eds) 13th international software product line conference, SPLC
2009, 24–28 Aug 2009. San Francisco, ACM international conference proceeding series,
446:231–240, ACM. http://gsd.uwaterloo.ca:8088/SPLOT/articles/mendonca_sat_analysis_
splc_2009.pdf. Accessed 20 Aug 2014

22. Antkiewicz M, Czarnecki K (2004) FeaturePlugin: feature modeling plug-in for eclipse. In:
Burke G (ed.) Proceedings of the 2004 OOPSLA workshop on eclipse technology eXchange.
pp 67–72, ACM. http://gp.uwaterloo.ca/sites/default/files/2004-antkiewicz-feature-modeling-
plugin_0.pdf. Accessed 20 Aug 2014

17 Variability Management 517

http://www.sse.uni-due.de/vamos/2007/files/vamos07_0038_paper_7.pdf
http://www.sse.uni-due.de/vamos/2008/papers/VAMOS08_01.pdf
http://www.ece.uwaterloo.ca/~kczarnec/splc04.pdf
http://www.ece.uwaterloo.ca/~kczarnec/splc04.pdf
http://gsd.uwaterloo.ca:8088/SPLOT/articles/mendonca_sat_analysis_splc_2009.pdf
http://gsd.uwaterloo.ca:8088/SPLOT/articles/mendonca_sat_analysis_splc_2009.pdf
http://gp.uwaterloo.ca/sites/default/files/2004-antkiewicz-feature-modeling-plugin_0.pdf
http://gp.uwaterloo.ca/sites/default/files/2004-antkiewicz-feature-modeling-plugin_0.pdf

23. Capilla R, Bosch J, Kang KC (2013) Systems and software variability management: concepts,
tools and experiences. Springer, Berlin

24. Biere A, Heule M, van Maaren H, Walsh T (2009) Handbook of satisfiability. Frontiers in
artificial intelligence and applications, vol. 185. IOS Press, Amsterdam

25. Kang KC, Kim S, Lee J, Kim K, Shin E, Huh M (1998) FORM: a feature-oriented reuse
method with domain-specific reference architectures. Ann Softw Eng 5:143–168

26. Benavides D, Segura S, Ruiz-Cortes A (2010) Automated analysis of feature models 20 years
later: a literature review. Inf Syst 35(6):615–636. http://www.researchgate.net/publication/
223760542_Automated_analysis_of_feature_models_20_years_later_A_literature_review/
links/0046352bd57ee8f1c9000000. Accessed 20 Aug 2014

27. Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM 7
(3):201–215

28. Nelson G, Oppen D (1979) Simplification by cooperating decision procedures. ACM Trans
Program Lang Syst 1(2):245–257

29. Ganzinger H, Sofronie-Stokkermans V, Waldmann U (2006) Modular proof systems for
partial functions with Evans equality. Inf Comput 204(10):1453–1492

30. Nieuwenhuis R, Oliveras A, Tinelli C (2006) Solving sat and sat modulo theories: From an
abstract davis–putnam–logemann–loveland procedure to dpll(t). J ACM 53:937–977, Nov
2006. http://www.divms.uiowa.edu/ftp/tinelli/papers/NieOT-JACM-06.pdf. Accessed 20 Aug
2014

31. Ihlemann C, Jacobs S, Sofronie-Stokkermans V (2008) On local reasoning in verification. In:
Ramakrishnan CR, Rehof J (eds) Tools and algorithms for the construction and analysis of
systems. 14th international conference, TACAS 2008, held as part of the joint european
conferences on theory and practice of software, pp 265–281, ETAPS 2008, Budapest, March
29–April 6 2008. LNCS vol 4963, Springer, Berlin

32. Althaus E, Kruglov E, Weidenbach C (2009) Superposition modulo linear arithmetic sup(la).
In: Ghilardi S, Sebastiani R (eds.) Frontiers of combining systems, Proceedings of 7th
international symposium, pp 84–99, FroCoS 2009, Trento, September 16–18, 2009. LNCS vol
5749, Springer, Berlin

33. Waldmann U (2001). Superposition and chaining for totally ordered divisible abelian groups
(Extended abstract). In: Gore R, Leitsch A, Nipkow T (eds) Automated reasoning : first
international joint conference, pp 226–241, IJCAR 2001, LNAI, vol 2083, Siena, 2001.
Springer, Berlin

34. Korovin K, Voronkov A (2007) Integrating linear arithmetic into superposition calculus. In:
Duparc J, Henzinger TA (eds.) 21st international workshop, CSL 2007, 16th annual conference
of the EACSL, Lausanne, Switzerland, 11–15 Sept 2007, vol 4646LNCS, pp 223–237. Springer,
Berlin. http://pdf.aminer.org/000/563/602/a_precedence_based_total_ac_compatible_ordering.
pdf. Accessed 20 Aug 2014

35. Weidenbach C, Dimova D, Fietzke A, Kumar R, Suda M, Wischnewski P (2009) SPASS
Version 3.5. In: Schmidt R (ed) CADE—22, 22nd international conference on automated
deduction, pp 140–145, Montreal, 2–7 Aug 2009, LNCS, vol 5663. Springer, Berlin

36. Suda M, Christoph W, Patrick W (2010) On the saturation of YAGO. IJCAR, pp 441–456
37. Sutcliffe Geoff, Suttner Christian B (2006) The state of CASC. AI Commun 19(1):35–48
38. Larrosa J, Nieuwenhuis R, Oliveras A, Rodriguez-Carbonell E (2009) Branch and bound for

boolean optimization and the generation of optimality certificates. In: Kullmann O (ed.)
Theory and applications of satisfiability testing—SAT 2009, 12th international conference
pp 453–466, SAT 2009, Swansea, 30 Jun–3 Jul 2009, vol 5584 of LNC, Springer, Berlin.
http://www.researchgate.net/publication/220944553_Branch_and_Bound_for_Boolean_
Optimization_and_the_Generation_of_Optimality_Certificates. Accessed 20 Aug 2014

39. Logic4Business GmbH: www.logic4business.com
40. BigLever Software, Inc.: www.biglever.com
41. Pure systems GmbH. www.pure-systems.com
42. Object Management Group. http://www.omgsysml.org/

518 G. Rock et al.

http://www.researchgate.net/publication/223760542_Automated_analysis_of_feature_models_20_years_later_A_literature_review/links/0046352bd57ee8f1c9000000
http://www.researchgate.net/publication/223760542_Automated_analysis_of_feature_models_20_years_later_A_literature_review/links/0046352bd57ee8f1c9000000
http://www.researchgate.net/publication/223760542_Automated_analysis_of_feature_models_20_years_later_A_literature_review/links/0046352bd57ee8f1c9000000
http://www.divms.uiowa.edu/ftp/tinelli/papers/NieOT-JACM-06.pdf
http://pdf.aminer.org/000/563/602/a_precedence_based_total_ac_compatible_ordering.pdf
http://pdf.aminer.org/000/563/602/a_precedence_based_total_ac_compatible_ordering.pdf
http://www.researchgate.net/publication/220944553_Branch_and_Bound_for_Boolean_Optimization_and_the_Generation_of_Optimality_Certificates
http://www.researchgate.net/publication/220944553_Branch_and_Bound_for_Boolean_Optimization_and_the_Generation_of_Optimality_Certificates
http://www.logic4business.com
http://www.biglever.com
http://www.pure-systems.com
http://www.omgsysml.org/

43. Bontemps Y, Heymans P, Schobbens PY, Trigaux JC (2004) Semantics of FODA feature
diagrams. In: Männistö T, Bosch J (eds.) Proceedings SPLC 2004 workshop on software
variability management for product derivation—towards tool support, pp 48–58. http://
www.researchgate.net/publication/234080947_Semantics_of_FODA_feature_diagrams/links/
00b4952691aadd1ab6000000. Accessed 20 Aug 2014

44. Nieuwenhuis R, Oliveras A, Tinelli C (2004) Abstract DPLL and Abstract DPLL Modulo
Theories. LPAR 2004:36–50

17 Variability Management 519

http://www.researchgate.net/publication/234080947_Semantics_of_FODA_feature_diagrams/links/00b4952691aadd1ab6000000
http://www.researchgate.net/publication/234080947_Semantics_of_FODA_feature_diagrams/links/00b4952691aadd1ab6000000
http://www.researchgate.net/publication/234080947_Semantics_of_FODA_feature_diagrams/links/00b4952691aadd1ab6000000

	17 Variability Management
	Abstract
	17.1 Introduction
	17.2 Background
	17.3 Functionalities for Management of Complex Products
	17.3.1 Logical Product Model
	17.3.1.1 Feature Diagrams
	17.3.1.2 Quantitative Extensions of Feature Diagrams

	17.3.2 Logical Analysis
	17.3.2.1 Translation into Logic
	17.3.2.2 Satisfiability Procedures for Feature Diagrams
	17.3.2.3 Reasoning Procedures for Extended Feature Diagrams
	17.3.2.4 SAT Based Optimization

	17.3.3 Visualization
	17.3.4 A Tool for Formal Variability Management

	17.4 Applications
	17.4.1 Product Consistency
	17.4.1.1 Industrial Application

	17.4.2 Product Optimization
	17.4.2.1 Industrial Application

	17.5 Case Studies
	17.5.1 Debugging a Product Variant Model
	17.5.2 Computation of a Set of Cost-Optimized Wire Harnesses
	17.5.3 Car Pool Optimization for Manufacturers and Customers

	17.6 Future Directives
	17.7 Conclusions and Outlook
	References

