
Chapter 15
Multidisciplinary Design Optimization:
Designed by Computer

Cees Bil

Abstract Multidisciplinary design optimization (MDO) has been a field of
research for 25 years. It refers to the formulation of the design problem in
mathematical models and applying optimization techniques to find the minimum or
maximum of a predefined objective function, possibly subject to a set of constraints.
MDO has become an important tool in concurrent engineering (CE), with the ability
to handle many design variables (DV) across various disciplines. Advances in
computer technologies and software engineering have facilitated the practical
application of MDO in industry, including aerospace, automotive, shipbuilding, etc.
However, active research and development in MDO continues. The creative input
of the human designer to the design process is critical and must be integrated in the
MDO process. For MDO to be effective in the design of modern complex systems it
must also incorporate non-technical disciplines, such as finance, environment,
operational support, etc. It remains a challenge to do model them with adequate
fidelity. Simulations and analytical models have imbedded assumptions, inaccura-
cies and approximations. How do we deal with these in an MDO environment?
This chapter gives an introduction to MDO with an historical review, a discussion
on available numerical optimization methods each with their specific features, the
various MDO architectures and decompositions and two case studies where MDO
has been applied successfully.
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15.1 Introduction

The whole is more than the sum of its parts—Aristotle

When the Wright brothers made their historical flight in 1903, their objective was to
achieve powered and controlled flight. In the twenty first century, achieving
powered and controlled flight is hardly the challenge anymore, the question is how
well will it fly and will it meet the user’s needs. The user’s needs are not necessarily
focused on hardware, but on a total business solution, including maintenance,
support, upgrades, etc., that achieve a certain objective over the life-cycle of the
system. Since the industrial revolution, engineers have invested their ingenuity in
developing increasingly complex machines, but perhaps the most striking devel-
opment in terms of rapid technical progression and complexity is the aerospace
domain (Fig. 15.1).

The current design environment of complex systems is defined by a rapid
turnaround of cost effective solutions, involving all operational and business
aspects. The concurrent engineering (CE) approach considers all technical and
business aspects simultaneously, rather than sequentially as in the traditional design
approach. A sequential design approach does not guarantee that an overall optimum
design is found. Figure 15.2 shows a typical aircraft design problem. In the
sequential design process, the aerodynamics group determines the best aspect ratio
(AR), for example, for maximum range P, subject to performance requirements
(design 01). Unfortunately, the structures group cannot comply with the flutter
requirement and needs to increase the wing weight Wmin (design 02). For design 02
all requirements are met, but it is not the optimum design (design 03). Considering

Fig. 15.1 Evolution of engineering complexity in the past century
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aerodynamics, structures and performance at the same time, i.e. concurrently,
would have resulted in an improved design.

This chapter introduces the multidisciplinary design optimization (MDO)
approach that represents a modelling and simulation environment where numerical
optimization techniques are applied to drive the optimization process. This chapter
gives an overview of MDO applications to complex systems design. Section 15.2
provides the motivation for using MDO and its potential benefits in reduced lead
times and improved design quality. Section 15.3 gives an historical background to
MDO development. Section 15.4 discusses a range of numerical optimization
methodologies, their classification and specific features. Section 15.5 cover more
specifically nonlinear optimization methodologies, including the gradient-based
methods such as SQL and GRM, and the genetic algorithms (GA) which have
gained recent popularity as they do not rely on gradient information and are able to
find a global optimum. Section 15.6 discusses MDO techniques for cases which are
multi-modal or have multiple objectives. Section 15.7 gives an overview of various
MDO architectures and the opportunity to decompose the optimization problem
into different levels and coupling of variables, which avoids redundant computa-
tions and can speed up the process considerably. Section 15.8 presents two case
studies where MDO was applied successfully in the structural design of a car body
and of an aircraft wing. Section 15.9 concludes with a discussion some of the
impediments in MDO application and focus areas for future research and
development.
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Fig. 15.2 Sequential versus concurrent design process [1]
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15.2 Multidisciplinary Design Optimization (MDO)

A new approach that has gained much interest in the past two decades in assisting
design teams is MDO [2, 3]. MDO is a sub-field of computational engineering and
proposes an environment where all the relevant analysis tools, or simulation
models, are coupled and a numerical optimization algorithm is applied to search for
the optimum design as defined by a given objective function and subject to design
constraints (Fig. 15.3).

There are a number of advantages to the MDO approach, such as:

• Reduction in design time
• Systematic, logical design procedure
• Handles wide variety of design variables (DV) and constraints concurrently
• Not biased by prejudice

These potential benefits have motivated many researchers, scientists and engi-
neers to develop MDO frameworks for a range of different application [4–10].

15.3 Historical Background

The existence of optimization methods is as old as calculus and can be traced to
the days of Newton, Lagrange and Cauchy [11]. The development of differential
calculus methods of optimization was possible because of the contributions of
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Newton and Leibnitz. The foundations of calculus of variations were laid by
Bernoulli, Euler, Lagrange and Weierstrass. The optimization of constrained
problems, which involves the addition of unknown multipliers, became known by
the name of its inventor Lagrange. Cauchy made the first application of the steepest
descent method to solve unconstrained minimization problems. In spite of these
early contributions, very little progress was made until the middle of the 20th
century, when high-speed digital computers made the implementation of the opti-
mization procedures possible and stimulated further research in new methods.

The first step in the application of optimization was in structural design in the
1960s when Schmit [12] proposed a rather general new approach, which served as
the conceptual foundation for the development of many modern structural opti-
mization methods. It introduced the idea and indicated the feasibility of coupling
finite element structural analysis and non-linear mathematical programming to
create automated optimum design capabilities for a rather broad class of structural
design problems.

An alternative, analytical form of structural optimization was offered by Prager
and in numerical form by Venkayya in 1968 [13]. This concept became known as
the optimality criteria. In the design of statically determinate structures, each
member is fully stressed under at least one loading condition. The strength of the
two methods suggested a natural separation of the design problem, where opti-
mality criteria would deal with a large number of DV and mathematical pro-
gramming would solve the component-design problem. This approach was pursued
by Sobieski et al. in 1972 in the design of fuselage structures.

For practical MDO applications there are two important issues. The first is the
selection of the models and analysis methods. As mathematical optimization relies
only on the analysis methods provided; these methods must not only be accurate,
but also correctly reflect the sensitivity to variations in the selected DV. The choice
of analysis methods will depend on the design phase. It is usually not appropriate to
use a Navier-Stokes CFD code in conceptual design as design is still very flexible
and not accurately defined yet. Instead statistical/empirical methods as found in are
more appropriate in the early design stages. A number of computer-based design
synthesis systems have been developed for aircraft configuration design, such as
ACSYNT, ADAS, RDS, SOCCER and AAA. Note that statistical/empirical
methods are not based on engineering science and are therefore only applicable in a
narrow range of applications and are not necessarily correctly sensitive to the
selected DV.

The second issue is an acceptable computing time required to determine the
optimum solution. This depends on the available computing power, sophistication
of the analysis methods and the efficiency of the optimization method its and
implementation. Investigations into using approximation methods as a mechanism
to improve the efficiency of mathematical programming techniques started in the
1970s. This hybrid method uses approximations to find the optimum solution and
then applies a more sophisticated analysis method to the approximate optimum
design. The final optimum design is obtained iteratively. A form of this approach is
known as surrogate models or response function techniques [14, 15].
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15.4 Numerical Optimization Methods

Optimization is an important tool in decision science and in the analysis of physical
systems. To use this methodology, we must first identify an objective, a quantitative
measure of the quality of the system, for example profit, time, potential energy, or
any quantity or combination of quantities that can be represented by a single
numeric. The objective depends on certain characteristics of the system, called DV.
The aim is to find the values for the DV that maximizes and minimizes the objective
function. Often the range of values for the variables is constrained. The process of
defining the relationship between the objective function, DV, and constraints for a
given problem is known as modeling. Construction of an appropriate model is the
first step—sometimes the most important step—in an optimization process. If the
model is too simple, it will not give useful insights into the practical problem. If it is
too complex, it may be too difficult to solve.

Once the model has been formulated, an optimization algorithm can be used to
find its numerical solution. A variety of optimization algorithms exists, each tai-
lored to a particular type of optimization problem. The responsibility of choosing
the algorithm that is appropriate for a specific application often falls on the user.
This choice is an important one, as it may determine whether the problem is solved
rapidly or slowly and, indeed, whether the solution is found at all. After the opti-
mization process has been completed, we must be able to recognize whether it has
succeeded in its task of finding an optimum solution. In many cases, there are
elegant mathematical expressions known as optimality conditions for checking that
the current set of values for the DV is indeed the optimum solution of the problem.
If the optimality conditions are not satisfied, they may still give useful information
on how the current estimate of the solution can be improved. The model may be
improved by applying techniques such as sensitivity analysis, which reveals the
sensitivity of the solution to changes in the model and data. Interpretation of the
solution may also suggest ways in which the model can be refined or improved (or
corrected). If any changes are made to the model, the optimization problem is
solved anew, and the process repeats.

15.4.1 Mathematical Formulation

In a mathematical context, optimization is the minimization or maximization of a
function subject to constraints on its variables [16, 17]. We use the following
notation:

• x is the vector of variables, also called unknowns or parameters;
• f is the objective function, a (scalar) function of x to be maximized or

minimized;
• ci are constraint functions, which are scalar functions of x that define certain

equalities and inequalities that the unknown vector x must satisfy.
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Using this notation, the optimization problem can be written as follows:

min
x2Rn

f ðxÞ; subject to
ciðxÞ ¼ 0; i 2 ne
ciðxÞ� 0; i 2 ni

ð15:1Þ

Figure 15.4 shows the contours of the objective function, that is, the set of points
for which f(x) has a constant value [18]. It also illustrates the feasible region, which
is the set of points satisfying all the constraints (the area between the two constraint
boundaries), and the point x*, which is the solution of the problem. The “infeasible
side” of the inequality constraints is shaded. Classification of the engineering design
optimization problem is necessary to select the right approach for a given problem
[18, 19]. A classification is presented in Fig. 15.5. In the next sections different
categories of optimization methods are discussed with their specific features and
capabilities.

15.4.2 Constrained and Unconstrained Optimization

Problems with the general form of Eq. (15.1) can be classified according to the
nature of the objective function and constraints (linear, nonlinear, convex), the
number of variables, large or small, the smoothness of the functions, differentiable
or non-differentiable, and so on. An important distinction is between problems that
have constraints on the variables and those that do not. Unconstrained optimization
problems, for which we have ne = ni = 0 in Eq. (15.1), arise in many practical
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Fig. 15.4 Optimization problem with two design variables [18]
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applications. Even for some problems with natural constraints on the variables, it
may be appropriate to disregard them if they do not affect the solution and do not
interfere with the algorithms. Unconstrained problems arise also as reformulations
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of constrained optimization problems, in which the constraints are replaced by
penalization terms added to objective function that have the effect of discouraging
constraint violations. Constrained optimization problems arise from models in
which constraints play an essential role, for example in imposing budgetary con-
straints in an economic problem or shape constraints in a design problem. These
constraints may be simple bounds, more general linear constraints, or nonlinear
inequalities that represent complex relationships among the variables.

When the objective function and all the constraints are linear functions of x, the
problem is a linear programming problem. Problems of this type are probably the
most widely formulated and solved of all optimization problems, particularly in
management, financial, and economic applications. Nonlinear programming prob-
lems, in which at least some of the constraints or the objective function is nonlinear,
tend to arise naturally in the physical sciences and engineering, and are becoming
more widely used in management and economic sciences as well [20, 21].

15.4.3 Continuous Versus Discrete Optimization

In some optimization problems the variables make sense only if they take on integer
values. For example, a variable x could represent the number of power plants that
should be constructed by an electricity provider during the next 5 years, or it could
indicate whether or not a particular factory should be located in a particular city.
The mathematical formulation of such problems includes integrality constraints or
binary constraints, in addition to algebraic constraints like those appearing in
Eq. (15.1). Problems of this type are called integer programming problems. If some
of the variables in the problem are not restricted to be integer or binary variables,
they are called mixed integer programming (MIP) problems. Integer programming
problems are a type of a discrete optimization problem. Generally, discrete opti-
mization problems may contain not only integers and binary variables, but also
more abstract variable objects such as permutations of an ordered set. The defining
feature of a discrete optimization problem is that the unknown x is drawn from a
finite, but often very large, set. By contrast, the feasible set for continuous opti-
mization problems is usually infinite, as when the components of x are allowed to
be real numbers.

Continuous optimization problems are usually easier to solve because the
smoothness of the functions makes it possible to use objective and constraint
information at a particular point x to deduce information about the function’s
behavior at all points close to x. In discrete problems, by contrast, the behavior of
the objective and constraints may change significantly as we move from one fea-
sible point to another, even if the two points are “close” by some measure. The
feasible sets for discrete optimization problems can be thought of as exhibiting an
extreme form of non-convexity, as a convex combination of two feasible points is
in general not feasible. Continuous optimization techniques often play an important
role in solving discrete optimization problems. For instance, the branch-and-bound
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method for integer linear programming problems requires the repeated solution of
linear programming “relaxations,” in which some of the integer variables are fixed
at integer values, while for other integer variables the integrality constraints are
temporarily ignored. These sub-problems are usually solved by the simplex method.

15.4.4 Global and Local Optimization

Many algorithms for nonlinear optimization problems seek only a local solution, a
point at which the objective function is smaller than at all other feasible nearby
points. They do not always find the global solution, which is the point with lowest
function value among all feasible points. Global solutions are needed in some
applications, but for many problems they are difficult to recognize and even more
difficult to locate. For convex programming problems, and more particularly for
linear programs, local solutions are also global solutions. General nonlinear prob-
lems, both constrained and unconstrained, may possess local solutions that are not
global solutions.

15.4.5 Stochastic and Deterministic Optimization

In some optimization problems, the model cannot be fully specified because it
depends on quantities that are unknown at the time of formulation. This charac-
teristic is shared by many economic and financial planning models, which may
depend for example on future interest rates, future demands for a product, or future
commodity prices, but uncertainty can arise naturally in almost any type of
application.

Rather than just use a “best guess” for the uncertain quantities, more useful
solutions may be obtained by incorporating additional knowledge about these
quantities into the model. For example, they may know a number of possible
scenarios for the uncertain demand, along with estimates of the probabilities of each
scenario. Stochastic optimization algorithms use these quantifications of the
uncertainty to produce solutions that optimize the expected performance of the
model. Related paradigms for dealing with uncertain data in the model include
chance constrained optimization, in which we ensure that the variables x satisfy the
given constraints to some specified probability, and robust optimization, in which
certain constraints are required to hold for all possible values of the uncertain data.

Many algorithms for stochastic optimization do, however, proceed by formu-
lating one or more deterministic sub-problems, each of which can be solved by the
aforementioned techniques. Stochastic and robust optimization are seeing a great
deal of recent research activity.
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15.4.6 Convexity

The concept of convexity is fundamental in optimization. Many practical problems
possess this property, which generally makes them easier to solve both in theory
and practice. If the objective function in the optimization problem (1) and the
feasible region are both convex, then any local solution of the problem is in fact a
global solution. The term convex programming is used to describe a special case of
the general constrained optimization problem in which:

• Objective function is convex,
• Equality constraint functions ci (·), i ∈ E, are linear, and
• Inequality constraint functions ci (·), i ∈ I, are concave.

Optimization algorithms are iterative: they begin with an initial guess of the
variable x and generate a sequence of improved estimates (called “iterates”) until
they terminate, hopefully at a solution. The strategy used to move from one iterate
to the next distinguishes one algorithm from another. Most strategies make use of
the values of the objective function f, the constraint functions ci, and possibly the
first and second derivatives of these functions.

Some algorithms accumulate information gathered at previous iterations, while
others use only local information obtained at the current point. Regardless of these
specifics, good algorithms should possess the following properties:

• Robustness: they should perform well on a wide variety of problems in their
class, for all reasonable values of the starting point.

• Efficiency: they should not require excessive computer time or storage.
• Accuracy: they should be able to identify a solution with precision, without

being overly sensitive to errors in the data or to the arithmetic rounding errors
that occur when the algorithm is implemented on a computer.

These goals may conflict. For example, a rapidly convergent method for a large
unconstrained nonlinear problem may require too much computer memory. On the
other hand, a robust method may also be the slowest. Tradeoffs between conver-
gence rate and storage requirements, and between robustness and speed, and so on,
are central issues in numerical optimization.

The mathematical theory of optimization is used both to characterize optimal
points and to provide the basis for most algorithms. It is not possible to have a good
understanding of numerical optimization without a firm grasp of the supporting
theory. Accordingly, this chapter gives a solid, though not comprehensive, treat-
ment of optimality conditions, as well as convergence analysis that reveals the
strengths and weaknesses of some of the most important algorithms.
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15.5 Nonlinear Programming Techniques

Most MDO systems for complex engineering design will have to assume the
general case that at least the objective function or one of the constraint functions are
nonlinear. In that case a nonlinear optimization technique is used. In this category
there are gradient-based methods that rely on first and second derivatives of the
objective function and constraint functions to determine the search direction and
update the DV. If they cannot be calculated implicitly, these derivatives can be
approximated using a finite-difference method. Stochastic methods such as GAs do
not require gradients and have therefore gained significant interest over the past
few years.

15.5.1 Sequential Quadratic Programming

Sequential quadratic programming (SQP) methods are iterative methods that solve
at the kth iteration a quadratic sub-problem (QP) of the form QP [22, 23]:

Minimise : min dtHkd þrf ðxkÞtd ð15:2Þ

subject to

rhiðxkÞtd þ hiðxkÞ ¼ 0; i ¼ 1; . . .; p;

rgjðxkÞtd þ gjðxkÞ� 0; j ¼ pþ 1; . . .; q

where d is the search direction and Hk is a positive definite approximation to the
Hessian matrix of Lagrangian function of problem (P). The Lagrangian function is
given by:

Lðx; u; vÞ ¼ f ðxÞ þ
Xp
i¼1

uihiðxÞ þ
Xq
j¼pþ1

vjgjðxÞ ð15:3Þ

where ui and vj are the Lagrangian multipliers. The sub-problem (QP) can be solved
by using the active set strategy. The solution dk is used to generate a new iterate:

xkþ1 ¼ xk þ akdk ð15:4Þ

where the step-length parameter αk ∊ (0,1] depends on some line search techniques. At
each iteration, the matrixHk is updated according to any of the quasi-Newtonmethod.
The most preferable method to update Hk is Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method, whereHk is initially set to the identity matrix I and updated using the
equation:
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Hkþ1 ¼ Hk þ ykytk
skytk

� HkskstkHk

stkHksk
ð15:5Þ

where

sk ¼ xkþ1 � xk; y k ¼ rLðxkþ1; ukþ1; vkþ1Þ � rLðxk; uk; vkÞ ð15:6Þ

15.5.2 Generalized Reduced Gradient

The generalized reduced gradient (GRG) transforms inequality constraints into
equality constraints by introducing slack variables [24]. Hence all the constraints in
(P) are of equality form and can be represented as follows:

hiðxÞ ¼ 0; i ¼ 1; . . .; q ð15:7Þ

where x contains both original variables and slacks. Variables are divided into
dependent, xD, and independent, xI, variables (or basic and nonbasic, resp.):

x ¼
xD
. . .
xI

2
4

3
5 ð15:8Þ

The names of basic and nonbasic variables are from linear programming.
Similarly, the gradient of the objective function bounds and the Jacobian matrix
J may be partitioned as follows:

a ¼
aD
. . .

aI

2
64

3
75; b ¼

bD
. . .

bI

2
64

3
75; rf ðxÞ ¼

rDf ðxÞ
. . .

rI f ðxÞ

2
64

3
75

JðxÞ ¼
rDh1ðxÞ . . . rIh1ðxÞ
. . . . . . . . .

rDhqðxÞ . . . rIhqðxÞ

2
64

3
75

ð15:9Þ

Let x0 be an initial feasible solution, which satisfies equality constraints and
bound constraints. Note that basic variables must be selected so that JD(x

0) is
nonsingular. The reduced gradient vector is determined as follows:

gI ¼ rI f ðx0Þ � rDf ðx0ÞðJDðx0ÞÞ�1JIðx0Þ ð15:10Þ
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The search directions for the independent and the dependent variables are
given by:

dj ¼
0; if x0i ¼ ai; gi [ 0
0; if x0i ¼ bi; gi\0
�gi; otherwise

8<
: ð15:11Þ

dD ¼ �ðJDðx0ÞÞ�1JIðx0Þdt ð15:12Þ

A line search is performed to find the step length ƒ¿ as the solution to the
following problem:

min f x0 þ a d
� � ð15:13Þ

Subject to: 0� a� amax, where amax ¼ sup a
a � x0 � x0 þ ad� b

� �
.

The optimal solution α* to the problem gives the next solution: x1 = x0 + α · d.

15.5.3 Genetic Algorithms

In the computer science field of artificial intelligence, a GA, evolutionary algo-
rithms (EA) and particle swarm optimization (PSO) include a search heuristic that
mimics the process of natural selection (biology-mimicking) [25–29]. This heu-
ristic, also sometimes called a meta-heuristic, is routinely used to generate useful
solutions to optimization and search problems [30]. GAs belong to the larger class
of EA, which generate solutions to optimization problems using techniques inspired
by natural evolution, such as inheritance, mutation, selection, and crossover. GAs
are stochastic optimization algorithms based upon the principles of evolution
observed in nature. Because of their power and ease of implementation, the use of
GAs has noticeably increased in recent years. Unlike the gradient methods, they
have no requirements on convexity, differentiability, and continuity of the objec-
tive, and constraint functions. These significant characteristics of GAs increase their
popularity in applications. The basic GA can be summarized by the following steps:

1. Generate an initial population of possible solution (chromosomes) randomly,
2. Evaluate the fitness of each chromosome in the initial population,
3. Select chromosomes that will have their information passed on to the next

generation,
4. Cross over the selected chromosomes to produce new offspring chromosomes,
5. Mutate the genes of the offspring chromosomes,
6. Repeat steps (3) through (5) until a new population of chromosomes is created,
7. Evaluate each of the chromosomes in the new population,
8. Go back to step (3) unless some predefined termination condition is satisfied.
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GAs are directly applicable only to unconstrained problems. In the application of
GAs to constrained nonlinear programming problems, chromosomes in the initial
population or those generated by genetic operators during the evolutionary process
generally violate the constraints, resulting in infeasible chromosomes. During the
past few years, several methods were proposed for handling constraints, grouped
into the following four categories:

• Preserving feasibility of solutions,
• Penalty functions,
• Search for feasible solutions,
• Hybrid methods.

Penalty function methods are the most popular methods used in the GAs for
constrained optimization problems. These methods transform a constrained prob-
lem into an unconstrained one by penalizing infeasible solutions. Penalty is
imposed by adding to the objective function f(x) a positive quantity to reduce fitness
values of such infeasible solutions:

f̂ ðxÞ ¼ f ðxÞ if x 2 F
f ðxÞ þ pðxÞ otherwise

�
ð15:14Þ

where f̂ ðxÞ is the fitness function and p(x) is the penalty function whose value is
positive. The design of the penalty function p(x) is the main difficulty of penalty
function methods. Several forms of penalty functions are available in the literature.

15.6 Multi-modal and Multi-objective Design Optimization

Optimization problems are often multi-modal: they possess multiple good solutions.
They could all be globally good (same cost function value) or there could be a mix
of globally good and locally good solutions. Obtaining all (or at least some of) the
multiple solutions is the goal of a multi-modal optimizer [31–39].

Classical optimization techniques due to their iterative approach do not perform
satisfactorily when they are used to obtain multiple solutions, since it is not
guaranteed that different solutions will be obtained even with different starting
points in multiple runs of the algorithm. EA however are very popular approaches
to obtain multiple solutions in a multi-modal optimization task.

Real life engineering designs often have more than one conflicting objective
functions thus requiring a multi-objective optimization approach. The multi-
objective optimization becomes more difficult with increasing number of objectives
and it has been shown in that existing multi-objective optimization algorithms do
not perform well with more than five objectives. The optimization identifies several
solutions that are good considering the objective functions. These are called Pareto
solutions.
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Figure 15.6 shows a Pareto front defining the solutions for a two objective (F1

and F2) problem. Multi-objective optimization has been applied in many fields of
science, including engineering, economics and logistics where optimal decisions
need to be taken in the presence of trade-offs between two or more conflicting
objectives.

For a nontrivial multi-objective optimization problem, there does not exist a
single solution that simultaneously optimizes each objective. In that case, the
objective functions are said to be conflicting, and there exists a, possibly infinite
number of, Pareto optimal solutions. A solution is called non-dominated, Pareto
optimal, Pareto efficient or non-inferior, if none of the objective functions can be
improved in value without degrading some of the other objective values. Without
additional subjective preference information, all Pareto optimal solutions are con-
sidered equally good (as vectors cannot be ordered completely). Researchers study
multi-objective optimization problems from different viewpoints and, thus, there
exist different solution philosophies and goals when setting and solving them. The
goal may be to find a representative set of Pareto optimal solutions, and/or quantify
the trade-offs in satisfying the different objectives, and/or finding a single solution
that satisfies the subjective preferences of a human decision maker (DM).

15.7 MDO Architectures

It is a fact of physics that in an engineering system such as a road vehicle there are
interactions among the physical phenomena and the vehicle hardware parts. These
interactions make the vehicle a synergistic whole that is greater than the sum of its
parts. Taking advantage of that synergy is the mark of a good design but the web of
interactions is difficult to untangle. That difficulty combined with the need to
partition the work into subtasks executed simultaneously to compress the project
time gave rise to the practice of dividing the detailed design work into specialty

Fig. 15.6 Pareto front with
two objective functions
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areas, each area centered on a physical phenomenon, e.g. stress and strain, or on a
hardware subsystem, e.g. the car suspension. The above practice has achieved its
purpose of developing a broad work front and compressing project time but on the
downside it impeded trade-offs across the subtasks boundaries making the design of
the vehicle fall somewhat short of optimal.

The MDO has evolved as a new discipline that provides a body of methods and
techniques to assist engineers in moving engineering system design closer to the
global optimum. Parallel to the development of these methodologies, a number of
software packages have been created to facilitate integration of codes, data, and user
interface. These packages, such as FIDO, iSIGHT, LMS Optimus, and DAKOTA,
are often referred to as frameworks [40].

The key concept in several of these MDO methods is a decomposition of the
design task into subtasks performed independently in each of the modules, and a
system-level or coordination task giving rise to a two-level optimization. In general,
decomposition was motivated by the obvious need to distribute work over many
people and computers to compress the task calendar time. Equally important benefit
from the decomposition is granting autonomy to the groups of engineers respon-
sible for each particular subtask in choosing their methods and tools for the subtask
execution. As an additional advantage, the concurrent execution of the subtasks fits
well the technology of massively concurrent processing that is now becoming
available (see Chap. 4).

Several requirements exist for a framework to provide an easy-to-use and robust
MDO environment:

• Provide for quick and easy linking of analysis tools. The set of analysis tools to
be linked could involve such tools as COTS software (CAD, CAE, CAM),
legacy (in house) codes, spreadsheets, databases, and tools to capture user’s
knowledge.

• Provide effective support for geographically distributed modelling and optimi-
zation, through CORBA client-server compliancy of the software tools and
models, facilitating both tight and loose collaboration, ranging from OEMs,
customers, suppliers and consultants.

• Access to efficient parametric study capability such as design of experiments
(DOE) based procedures, including full factorial designs, fractional factorial
designs (orthogonal arrays), central composite designs and Latin hypercube
designs.

• Access to a full range of optimization search strategies ranging from gradient
based numerical optimization, simulated annealing and GAs and most impor-
tantly, an optimization advisor that can appropriately recommend the optimi-
zation algorithm or a combination of algorithms (hybrid optimization plan) to be
used for solution of the user problem.

• Access to a full range of model approximation techniques such as polynomial,
Kriging, or neural networks based response surfaces, sensitivity based Taylor
series linearization, and variable complexity models.
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• Provide the ability to perform trade-off studies between different design
responses.

• Provide support to easy description and set up of MDO problems using formal,
decomposition based MDO methods such as global sensitivity equations (GSE)
based Optimization, collaborative optimization (CO), and bi-level integrated
system synthesis (BLISS).

• Provide the ability to account for uncertainties in design using probabilistic
constraints and robust design formulations.

• Framework should provide support for parallel computing, including parallel
invocations of simulation codes as well as subsystem optimizations and intel-
ligent load balancing [41].

• Provide effective support of visualization of design data both at runtime and
post-processing stages.

• Provide effective support for database management through structured query
language (SQL) interface for data storage/access/manipulation both at the local
(subsystem) and global (system) levels.

• The framework should be easy to use in terms of user interface for MDO,
extensible for user addition of optimization solvers, scalable for large scale
problem solving and provide for robust performance [42].

A brief description of some of the formal MDO architecture used to solve the
system optimization problem is provided in the following sub-sections [43–58].

15.7.1 Multidisciplinary Design Feasible (MDF)

The All-in-One (A-i-O) method, also referred to as multidisciplinary feasibility
(MDF), is the most common way of approaching the solution of MDO problems. In
this method, the vector of DV x is provided to the coupled system of analysis
disciplines and a complete multidisciplinary analysis (MDA) is performed via a
fixed-point iteration with that value of x to obtain the system MDA output variable
y(x) that is then used in evaluating the objective f(x, y(x)) and the constraints c(x, y
(x)). The optimization problem is:

min f z; x; y x; y; zð Þð Þ ð15:15Þ

With respect to: z; x and subject to: c z; x; y x; y; zð Þð Þ� 0
If a gradient-based method is used to solve the above problem, then a complete

MDA is necessary not just at each iteration but at every point where the derivatives
are to be evaluated. Thus, attaining multidisciplinary compatibility can be prohib-
itively expensive in realistic application. Figure 15.7 shows the data flow in an A-i-
O analysis and optimization. The different disciplines are considered as a single
monolithic analysis. This is conceptually very simple, and once all disciplines are
coupled to form one single MDA module, one can use the same techniques that are
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used in single discipline optimization. One of the disadvantages of this approach is
that the solution of the one system might be very costly and does not exploit the
potentially weak coupling between some of the disciplines that would enable the
division into different analyses modules that might run in parallel. The only
opportunity for parallelizing the optimization procedure would be the use of dif-
ferent processes for each member of the population when using a GA or running the
analyses for different design points when calculating gradients by finite differencing
or when evaluating the points for a response surface.

15.7.2 Individual Discipline Feasible (IDF)

The IDF formulation provides a way to avoid a complete MDA at optimization.
IDF maintains individual discipline feasibility, while allowing the optimizer to
drive the individual disciplines to MDF and optimality by controlling the inter-
disciplinary coupling variables. In IDF, the specific analysis variables that represent
communication, or coupling, between analysis disciplines are treated as optimiza-
tion variables and are in fact indistinguishable from DV from the point of view of a
single analysis discipline solver. The IDF architecture is shown in Fig. 15.8.
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Coupling
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Fig. 15.7 MDF architecture
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15.7.3 Simultaneous Analysis and Design (SAND)

This approach optimizes the design and solves the governing equations at the same
time by posing the problem as:

min f z; x; yð Þ ð15:16Þ

With respect to: x; y; z, subject to: c z; x; y x; y; zð Þð Þ� 0; Rðx; y; zÞ ¼ 0
SAND is not inherently multidisciplinary and can also be used for single

discipline optimization problems. It can be very efficient since we solve the whole
problem at once, but if a very efficient analysis is already in place, it is usually not
worthwhile to use SAND. To implement SAND, one needs to calculate the residual
of each governing equation.

15.7.4 Optimizer-Based Decomposition (OBD)

The main idea of this method is to use the optimizer to enforce inter-disciplinary
compatibility. Instead of iterating the MDA to converge the coupling variables y,
these coupling variables are given by the optimizer as a guess, or target, yt. The new
optimization problem can be written as:

min f z; x; y x; yt; zð Þð Þ ð15:17Þ

With respect to: x; yt; z, subject to: c z; x; y x; yt; zð Þð Þ� 0; yti � yiðx; yt; zÞ ¼ 0
The number of DV has increased, and is equal to the number of original DV plus

the number of coupling variables. This increases the size of the optimization
problem, but conveniently decouples all the analyses, which can now be solved in
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parallel without intercommunication. Note that when using gradient-based
optimization, the gradients @f =@yt and @c=@yt must also be calculated.

15.7.5 Collaborative Optimization (CO)

The CO architecture, shown in Fig. 15.9, is designed to promote disciplinary
autonomy while achieving interdisciplinary compatibility. The optimization prob-
lem is decomposed into optimization subproblems corresponding to the different
disciplines. Each subproblem is given control over its own set of local DV, is
responsible for satisfying its own set of local constraints and does not know about
the other disciplines’ DV or constraints. The objective of each sub-problem is to
agree on the values of the coupling variables with the other disciplines. A system-
level optimizer is used to coordinate this process while minimizing the overall
objective. The system level optimization problem can be stated as:

min f ðzt; ytÞ ð15:18Þ

With respect to: zt; yt, subject to: j�i ðzti; z�i ; yt; y�i ðx�i ; yt; z�i ÞÞ ¼ 0; i ¼ 1; . . .;N
where N is the number of disciplines, and the subscript * represents the results from
the solution of the ih discipline optimization sub-problem:

min jiðzti; zi; yt; yðxi; yt; ziÞÞ ¼ R 1� zi
zti

� �2

þR 1� yi
yti

� �2

ð15:19Þ
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With respect to: zi; xi, subject to: ciðxi; zi; yiðxi; yt; ziÞÞ� 0, where c is the vector
of constraints for the ih discipline. J is a measure of interdisciplinary discrepancy
that we want to drive to zero at the system level. The solution of this sub-problem
returns j�i . Note that post-optimality sensitivities are needed.

15.7.6 Concurrent Subspace Optimization (CSSO)

The CSSO method is also a decomposition-based strategy that allows for the dis-
ciplines to run decoupled from each other. Again, the multiple subspace optimi-
zation problems are driven by a system-level optimizer that provides overall
coordination. Each sub-problem in CSSO uses approximations to non-local disci-
plinary coupling variables to estimate the influence of these variables on the sys-
tem-level objective and constraints. The subspace optimization problem for the ih

discipline is given by:

min f ðz; x;~yjðzi; xiÞ; yiðxi;~yj; zÞÞ ð15:20Þ

With respect to: zi; xi, subject to: cðxi; z;~yj; ðzi; xiÞ; yiðzi; xi;~yjÞÞ� 0, where j 6¼ i
and yi ¼ ðz; xjÞ are the approximations to the other disciplines’ coupling variables,
or states. These approximations can be made using response surfaces. The system-
level optimizer solves the following problem:

min f ðz; x;~yðz; xÞÞ ð15:21Þ

With respect to: z; x, subject to: cðz; c;~yðz; xÞÞ� 0.
After each iteration of the system-level optimizer, a MDA is performed to update

the model which gives the approximate response of all coupling variables ~y.

15.7.7 Bi-Level Integrated System Synthesis (BLISS)

The recently introduced BLISS method uses a gradient-guided path to reach the
improved system design, alternating between the set of modular design subspaces
(disciplinary problems) and the system level design space. BLISS is an A-i-O like
method in that a complete system analysis performed to maintain MDF at the
beginning of each cycle of the path. With BLISS, the general system optimization
problem is decomposed into a set of local optimizations dealing with a large
number of detailed local DV (X) and a system level optimization dealing with a
relatively small number of global variables (Z) in comparison with the other MDO
methods. In optimization it is useful to distinguish between X and Z because:
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• The X variables are associated with individual components and, therefore, they
tend to be clustered. Also, the constraints they govern directly, e.g. the stringer
buckling in built-up, thin-walled structures typical of aerospace vehicles, tend to
be highly nonlinear. The total number of the X variables in a typical airframe is
in thousands but their number in an individual substructure is likely to be quite
small.

• The number of Z variables is much smaller than the total number of X variables.
• Nonlinearity of the overall behavior constraints, such as displacements, with

respect to X and Z tends to be weaker than that of the local strength and buckling
constraints.

With BLISS, the solution of the system level problem is obtained using either
(i) the optimum sensitivity derivatives of the behavior/state (Y) variables with respect
to system level DV (Z) and the Lagrange multipliers of the constraints obtained at the
solution of the disciplinary optimizations, or (ii) a response surface constructed using
either the system analysis solutions or the subsystem optimum solutions.

15.8 Case Studies in Multidisciplinary Design Optimization

15.8.1 Optimization of Automotive Structures Under Multiple
Crash and Vibration Design Criteria

This design problem is aimed at reducing the overall mass of a vehicle by focusing
on a group of structural components that are influential in both energy absorption
(crashworthiness) and vehicle stiffness (vibration) [9]. Through a preliminary
analysis, 22 components were selected as highlighted in Fig. 15.10. These com-
ponents have a combined mass of 105.25 kg for 8 % of the crash-model mass at
1,333 kg and approximately 45 % of the vibration-model mass at 233 kg. Due to the
vehicle model symmetry, the 22 components are represented by 15 wall-thickness
DV denoted by x1 through x15. The 22 components contribute to 42, 27 and 36 %
of the total energy absorbed in full frontal impact (FFI), offset frontal impact (OFI)
and side impact (SI), respectively. In this study, the scope to sizing optimization
focused on a subset of components that show considerable influence on both crash
and vibration characteristics of the vehicle. The design optimization problem is
formulated as:

min f ðxÞ ð15:22Þ

Subject to: giðxÞ ¼ RiðxÞ � Rb
i ðxÞ� 0 with i ¼ 1; . . .; 8, giðxÞ ¼ Rb

i ðxÞ�
RbðxÞ� 0, with i ¼ 9; . . .; 14, 0:5xbj � xj � 1:5xbj with j ¼ 1; . . .; 15

Where the objective function f(x) represents the total mass of the selected
components shown in Fig. 15.13. In the first group of design constraints, Ri, i = 1, 8
represent Toeboard Intrusion, Dash Intrusion for FFI and OFI, Door Intrusion for SI
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in all three scenarios; all of these responses are required to be no greater than the
corresponding values in the baseline model denoted by Rb

i , i = 1, 8. In the second
group, Ri, i = 9, 11 represent the internal energy absorbed by the 22 components
combined in the three crash scenarios whereas Ri, i = 12, 14 represent the three
selected natural frequencies of the vibration model, with all required to be no less
than the corresponding values in the baseline model. The design space is defined by
15 DV that represent the wall thicknesses of the components, with each bounded to
within ±50 % of the respective baseline value. With the response surrogate models
developed, the optimization problem was solved using SQP. Given the gradient-
based search approach in SQP and the non-convex nature of the combined
crash–vibration vehicle optimization problem, the problem was solved using 15
randomly selected initial design points with the best result corresponding to the
optimum design defined in Table 15.1.

The objective function history showed 16 iterations for finding the optimum
design point. A complete iteration refers to solution of the direction finding QP and
step size associated with SQP. The optimization took a total of 163 analysis calls
and approximately 20 min for the process to complete. The optimum mass was
101.49 kg for the 22 selected components in comparison to the baseline mass of
105.25 kg for a reduction of approximately 3.6 %.

Table 15.2 shows that the optimum design based on crashworthiness require-
ments alone reduces the overall vehicle stiffness as indicated by the frequency
reduction of 6.4 % in the first mode, 5.7 % in second mode and 3.9 % in third mode.
Frequencies of the current optimised design are the same as those in the baseline
design. Out of 15 DV in the crash–vibration vehicle optimum, nine have increased
and six have decreased relative to the respective baseline values with design var-
iable five reaching its lower bound.

The general assessment of the results found in this study is that the crash and
vibration responses are in competition. Vehicle components have to change
thickness in such a way that both criteria are satisfied while weight is minimised.
This is evident by the significant difference in optimised mass of the designs using

Fig. 15.10 Selected vehicle
components and associated
design variables [9]
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crashworthiness and vibration, 101.49 kg, and crashworthiness alone, 88 kg.
Adding vibration considerations to the optimization problem produced a design
with less weight reduction but without sacrificing structural rigidity.

Table 15.1 Design variable bounds and optimum values [9]

Component Lower bound
(mm)

Baseline
(mm)

Upper bound
(mm)

Optimum
(mm)

1 A-Pillar 0.806 1.611 2.417 1.471

2 Front bumper 0.978 1.956 2.934 2.169

3 Firewall 0.368 0.735 1.103 0.913

4 Front floor panel 0.353 0.705 1.058 0.560

5 Rear cabin floor 0.353 0.706 1.059 0.387

6 Outer cabin 0.415 0.829 1.244 0.897

7 Seat reinforcement 0.341 0.682 1.023 1.009

8 Cabin mid-rail 0.525 1.050 1.575 1.287

9 Shotgun 0.762 1.524 2.286 1.670

10 Inner side rail 0.948 1.895 2.843 1.694

11 Outer side rail 0.761 1.522 2.283 1.654

12 Side rail
extension

0.948 1.895 2.843 1.952

13 Rear plate 0.355 0.710 1.065 0.668

14 Roof 0.351 0.702 1.053 0.815

15 Suspension frame 1.303 2.606 3.909 1.923

Table 15.2 Comparison
of the baseline and optimum
model [9]

Response Baseline Optimum Diff (%)

FFI toe int (mm) 157.07 160.29 2.05

FFI dash int (mm) 122.06 118.30 −3.08

FFI accel (g) 63.51 59.12 −6.91

FFI int eng (kJ) 62.31 62.35 0.06

SI door int (mm) 313.93 311.09 −0.90

SI accel (g) 47.88 47.71 −0.36

SI Int eng (kJ) 22.37 23.51 5.10

OFI toe int (mm) 273.48 229.29 −16.16

OFI dash int (mm) 246.94 200.52 −18.80

OFI accel (g) 35.02 33.91 −3.17

OFI int eng (kJ) 39.42 41.46 5.17

Frq1 (Hz) 35.39 35.39 0.00

Frq2 (Hz) 36.23 36.23 0.00

Frq3 (Hz) 38.37 38.37 0.00

Mass (kg) 105.25 101.49 −3.60
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15.8.2 Multidisciplinary Design Optimization of a Regional
Aircraft Wing Box

The structural design of an airframe is determined by multidisciplinary criteria
(stress, fatigue, buckling, control surface effectiveness, flutter and weight etc.) [59].
Several thousands of structural sizes of stringers, panels, ribs etc. have to be
determined considering hundreds of thousands of requirements to find an optimum
solution, i.e. a design fulfilling all requirements with a minimum weight or mini-
mum cost respectively. MDO techniques were successfully applied in sizing the
wing boxes of the newly developed regional jet family. Figure 15.11 shows how the
MDO process has been organized based on MSC Nastran SOL 200. Before the
numerical optimization loop can be started, the design must be parameterized and
all disciplines must make available their analysis models and design criteria. The
wing box sizes can be parameterized by simply assigning DV to the FE-properties
(cross-sections, thicknesses). The linking scheme between FE-properties and the
independent DV is represented by the Design Model and it is based on constructive,
manufacturing as well as numerical considerations.

Structural Analysis provides all relevant structural responses based on the
analysis models and the current set of DV. The Sensitivity Analysis calculates the
first derivatives of all responses with respect to the independent DV. A very
important feature of MSC NASTRAN is the External Server, which allows the
integration of user-defined design criteria described by Fortran routines. It therefore
can be used to integrate various detailed design constraints, which are dependent on
NASTRAN responses (stresses, displacements etc.). All detailed wing buckling
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criteria (skin, stringer, and column buckling and stringer crippling) have been
implemented within this External Server. The objective function and all constraints
are mathematically defined in the Evaluation Model based on structural responses.
They are then transferred to the optimization algorithm to find an improved set of
DV. This set is converted into a new set of FE-Properties in order to initiate the next
cycle. As a result of the non-linear relationship between the constraints and DV, the
full process must be repeated several times until an optimum design is found.

Figure 15.12 shows the lower panel, the spars and the internal ribs of the outer
wing box. The panels consist of a skin stiffened by rectangular stringers. The
number of stringers decreases from inboard to outboard due to wing taper. Ribs are
connected both to spars and panels. The panels and spars carry global bending and
torsional loads, whilst the primary function of ribs is to stabilize the whole structure
and transfer the local air load into the wing box. Since the panels and the spars are
machined from solids, the sizes of skin and stringers can change between each
pocket surrounded by two stringers and two ribs. It is even possible to have a
varying skin thickness or varying stringer height within a pocket to provide the
locally required strength and stiffness with a minimum weight. This results in
several thousands of independent parameters defining the whole wing box design.

The level of meshing detail of the wing model is shown in Fig. 15.13. This
model is the same finite element model that is typically used for sizing by tradi-
tional methods. The wing box model mainly consists of Shell and Beam elements
representing skin and stringers/stiffeners, respectively. Combining the wing box
with fuselage and empennage FE models results in a Whole Aircraft Shell
FE-Model (WAM) of approximately 250,000 degrees of freedom.

Fig. 15.12 General layout of the outer wing box [59]
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The most important structural sizes of the wing box comprise the skin thickness
and the stringer height and thickness. This applies to the panels as well as to the
spars. Linear equations define the relationship between the independent DV and the
FE-Properties representing skin and stringers sizes. For the purpose of applying
buckling constraints, the upper and lower surfaces of the wing are subdivided into
so called Buckling Fields. Each buckling field consists of the finite element mesh
between two adjacent span wise ribs and two chord wise adjacent sets of stringers.
Mechanically speaking, this corresponds to each stiffened sub-panel on the wing.
The skin elements within each buckling field were linked together and represented
by a single design variable.

The same applies to the stringer properties. The stringer offset and the second
moment of inertia are updated after the optimization before the analysis of the new
sizes takes place. The overall design model of the whole wing was structured
corresponding to the major wing sections. Each of these components was subdi-
vided again into upper and lower panels, front and rear spar, as well as skin and
stringers. With this arrangement the total number of DV reached 2,515. Minimum
and maximum sizes due to manufacturing or lightning protection were considered
as lower and upper bounds for the FE-Properties. Special PATRAN command
language (PCL) tools were developed to automate the creation and update of all
corresponding design model input data for Nastran SOL 200.

The mathematical objective of the optimization process is to find a minimum
feasible weight. All relevant wing box sizing criteria comprising of limit, ultimate
and fatigue stresses, buckling criteria, manufacturing requirements, control surface

Fig. 15.13 FE-Model of the wing (93,000 DOF) [59]
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effectiveness and flutter criteria were applied in the form of in-equality constraints.
The buckling constraints were communicated to NASTRAN during the optimiza-
tion process by the External Server. Fatigue stress constraints were applied to all
fatigue sensitive areas of the wing box. These areas included the lower skin panels,
major wing box joints (inner and outer wing joint, lower front and rear panel joints),
front spar web at the pylon attachment and rear spar web at the landing gear
attachment. Due to manufacturing requirements, a minimum stringer thickness to
height ratio had to be adhered to. Furthermore, the relative step size of the stringer
height was limited in spanwise direction to prevent excessive out-of-plane bending
stresses. Table 15.3 gives an overview of all constraints.

The aileron effectiveness constraint is incorporated via a roll performance cri-
terion which is required to be greater than or equal to zero at maximum True Air
Speed. A set of three trim cases, i.e. pairs of Mach number and dynamic pressure,
were defined from which, on an empirical basis, the zero effectiveness curve can be
extrapolated to maximum true air speed by a 2nd order polynomial.

The flutter constraint is defined such that the lowest flutter speed, i.e. a flutter
mode with zero damping, must not be lower than a prescribed limit velocity which
depends on the flight altitude. All normal modes up to 50 Hz are taken into account
in the flutter analysis using the PK-method. The range of air speeds used for the
flutter response is limited to a minimum required set. Because of the high com-
putational effort required for flutter optimization, a pre-selection of very few critical
flutter cases is indispensable. In order to get an indication for these cases, a

Table 15.3 Wing box design constraints [59]

Structure Constraint type Center Inner Outer Load cases Constraints

Skin elements von-Mises stress 416 1,132 562 96 ultimate 202,560

Stringer and horizontal
stiffener elements

Axial, tension and
compression stress

476 985 622 96 ultimate 199,488

Spar web elements Shear stress 148 525 280 96 ultimate 91,488

Buckling field skin Panel buckling 147 251 364 96 ultimate 75,552

Buckling field skin Crippling 147 251 364 96 ultimate 75,552

BF stringers Stringer buckling 147 251 364 96 ultimate 75,552

BF skin and stringer Euler buckling 147 251 364 96 ultimate 75,552

Lower panel skin Principle stress 384 1042 508 3 fatigue 5,502

Panel joints Principle stress 20 108 42 3 fatigue 510

Spar web elements Principle stress 408 3 fatigue 1,224

Height of adjacent
stringers

Maximum step size 120 199 115 434

Stringer thickness
to height ration

Minimum ration 431 995 538 1,964

Outer wing box skin Aileron effectiveness 3 times cases (zero aileron
effectiveness)

3

Inner wing box skin Lowest flutter speed 1 flutter speed limit 1

Total number of constraints 805,402
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comprehensive flutter check covering the entire flight regime (i.e. a systematic
variation of payload mass, fuel mass and flight level) is performed preceding the
optimization runs.

A valuable means of displaying the results is shown in Fig. 15.14. In this figure,
the driving load cases that design a given section with respect to column buckling
of the outer wing are displayed. The driving cases are resulting from symmetrical
maneuvers at different speeds, altitudes, flap settings etc. Similar plots for other
wing sections and other buckling criteria are also produced. In order to satisfy the
aileron reversal constraint the stiffness of the outer wing was locally increased. The
skin thicknesses obtained from static optimization were taken as lower bounds.
Significant changes are essentially restricted to a zone reaching diagonally from the
aileron attachment area inboard to the leading edge, close to the inner wing con-
nection. Similar results were obtained for the lower skin.

15.9 Discussion and Conclusions

MDO is at a crossroad. The focus of MDO has shifted dramatically over the past
25 years as researchers are finding new ways to use MDO methods and tools on a
wide array of problems. The potential of MDO has been illustrated in this chapter
with a few case studies. A strong research focus in MDO remains to resolve a
number of issues that remain an impediment in implementing MDO in all levels of
design an development. The major challenges in MDO integration are [60–64]:

• Integrating the designers’ skills and experience in the design process. This
makes the optimization task difficult to model in an algorithmic form.

• Companies have their own legacy and embedded design improvement processes
and tend to resist the implementation of new optimization systems.
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Fig. 15.14 Critical load cases, outer wing upper panels, column buckling criteria [59]
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• Acquisition and maintenance of hardware and software can be costly.
• Handling large scale qualitative design spaces. It would be ideal to handle

quantitative and qualitative information together within one framework.
• Interfaces between feature-based parametric CAD models and optimization

models with automatic bi-directional conversions do not exist at present.
• Recently there is interest in design optimization within a dynamic environment.

Research is required to extend this to multi-objective design optimization.
• Stochastic optimization, like GAs, is contradictory to conventional deterministic

thinking, so how can the user select the most effective technique?
• Scalability is a major challenge for complex systems design optimization.

Large-scale design optimization must deal with the complexity.
• There is a lack of understanding about the interaction between components and

their behaviors. This may lead to results that cannot be explained.
• Uncertainty is another major challenge for complex systems design optimization.

Robust design optimizations are addressing this issue.

There are three major areas of improvement when it comes to use of computing
to address engineering design optimization: improve efficiency and speed of opti-
mization and effective use of human knowledge. Large-scale optimization will
require more research in topology design, computational power and efficient opti-
mization algorithms. Emergent computing techniques such as grid computing,
swarm intelligence and quantum computing improve efficiency and speed of the
optimization. Future success of MDO is in application of expert knowledge with
existing and emergent algorithmic and computing approaches to large-scale
designs, supported by education on optimization.
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