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Abstract. Existing algorithms of propagation in belief networks deal
with inference of observations when conditional distributions are initially
defined per edge. The aim of this paper is to propose a direct method
of causal inference of both observations and interventions on the causal
belief networks quantified with the belief function theory where condi-
tional beliefs are defined for all parents without having to transform the
network into a junction tree. We explain how it is still possible to use
the disjunctive rule of combination DRC and the generalized Bayesian
theorem GBT to perform this propagation.
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1 Introduction

Causality plays an important role in many fields, from physics to medicine to
artificial intelligence. Indeed, causal knowledge simplifies decision-making. Inter-
ventions [6] are very useful for identifying causal relations. These latter are ex-
terior manipulations that force target variables to have specific values. However,
an observation is seeing and monitoring phenomena happening by themselves
without any manipulation on the system.

The belief function theory is adequate to formalize imperfect causal knowledge
that agents usually possess especially cases of ignorance. Accordingly, a graphical
structure allows to simply represent and reason from such causal knowledge.
Causal belief networks [3] are compact and flexible graphical representations
where arcs are interpreted as causal links. On these networks, we can compute
the effects of observations and also those of external actions.

In existing algorithms of propagation in belief networks either they are associ-
ational networks [1,11], or causal networks [4], the uncertainty is not modeled by
a conditional mass function between a node and all its parents as for Bayesian
networks, but as a set of local conditional distributions for a node and each of
its parents. In the case where the expert gives conditional distributions defined
for all parents, we must necessarily transform the network that is already simply
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connected (i.e., there are no two nodes that can be connected by more than one
path) into a joint tree while the latter is usually used to transform multiply con-
nected networks (i.e., arbitrary network structures) to a tree structure. Nodes in
this tree are sets of variables called clusters. The propagation algorithm based
on junction trees is expensive. Indeed, it depends on clusters’ size.

In this paper, we propose a causal propagation method that performs directly
on the initial causal belief network in the case where the conditional distributions
are defined for all parents allowing to compute the effects of observations and
also those of external actions. Our proposed algorithms are based on the two
rules proposed by Smets [10] namely the disjunctive rule of combination (DRC)
and the generalized Bayesian theorem (GBT). Moreover, we explain how these
operators can be used on a set of variables.

The rest of the paper is organized as follows: in Section 2, we provide a brief
background on the belief function theory. In Section 3, we recall causal belief
networks. In Section 4, we explain how it is still possible to use the DRC and the
GBT to perform this propagation. Inference in the presence of observations and
interventions using mutilated and augmented graphs where conditional distri-
butions are defined for all parents is described in Section 5. Section 6 concludes
the paper.

2 Belief Function Theory

2.1 Definition

The theory of belief functions [8] is useful for representing uncertain knowledge.
Let Θ be a finite non empty set including all the elementary events related to a
given problem. These events are assumed to be exhaustive and mutually exclu-
sive. Such Θ is called the frame of discernment. Beliefs are expressed on subsets
belonging to the powerset of Θ denoted 2Θ. The basic belief assignment (bba),
denoted by mΘ or m, is a mapping from 2Θ to [0,1] such that:

∑
A⊆Θ m(A) = 1.

For each subset A of Θ, m(A) is called the basic belief mass (bbm). It represents
the part of belief exactly committed to the event A of Θ. Subsets of Θ such that
m(A)> 0 are called focal elements. A bba is said to be certain if the whole mass
is allocated to a unique singleton of Θ and Bayesian when all focal elements are
singletons. If the bba has Θ as unique focal element, it is called vacuous and it
represents the case of total ignorance.
The plausibility function pl quantified the maximum amount of belief that could
be given to a subset A of Θ. It computes the total of masses compatible with A.

pl : 2Θ → [0, 1] such that:

pl(A) =
∑

A∩C �=∅
m(C) (1)

The basic belief assignment can be recovered from the plausibility function as
follows:

m(A) =
∑

C⊆A

(−1)|A−C+1|pl(C̄) (2)
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2.2 Basic Operations

Two bbas m1 and m2 provided by two distinct and independent sources, may be
aggregated using Dempster’s rule of combination, denoted by ⊕, as follows:

m1 ⊕m2(A) = K ·
∑

B∩C=A

m1(B)m2(C), ∀B,C ⊆ Θ (3)

where K−1 = 1− ∑

B∩C=∅
m1(B)m2(C).

Smets [9] qualified Dempster’s rule of conditioning as one of the natural ingre-
dients and the center of the transferable belief model. Upon the arrival of a new
information B, the initial knowledge encoded with a mass value, m(A), is revised
using Dempster’s rule of conditioning. m(A|B) denotes the degree of belief of A
in the context where B holds. It is defined as:

m(A|B) =

{
K.

∑

C⊆B̄

m(A ∪ C) if A ⊆ B,A �= ∅
0 if A �⊆ B

(4)

where K−1=1−m(∅).

2.3 Multi-variable Operations

When we model aspects of the real world, the bbas induced from experts are
defined on different frames of discernment. We recall in what follows useful multi-
variables operations. Let us consider in what follows, a first frame Θ and a second
frameΩ. A vacuous extension is changing the referential by adding new variables.
Thus, a mass function mΘ defined on Θ will be extended to Θ × Ω as follows:

mΘ↑ΘΩ(C) =

{
mΘ(A) if C = A×Ω
0 otherwise

(5)

Given a mass distribution defined on the product space Θ × Ω, marginalization
corresponds to mapping over a subset of the product space by dropping the extra
coordinates. The new belief defined on Θ, mΘΩ↓Θ is obtained by:

mΘΩ↓Θ =
∑

C⊆Θ×Ω,C↓Θ=A

mΘΩ(C), A ⊆ Θ (6)

Smets [10] has generalized the Bayesian theorem within the transferable belief
model framework known as the Generalized Bayesian Theorem (GBT). Let us
consider plΩ(c|ai) and ai ∈ a where a ⊆ Θ and c ⊆ Ω. The a posteriori plausi-
bility distribution plΘ(a|c) is defined as follows:

plΘ(a|c) = 1−
∏

ai∈a

(1− plC(c|ai)) (7)

The function that is the dual of GBT is the disjunctive rule of combination
(DRC). Let us consider plΩ(c|ai) and ai ∈ a where a ⊆ Θ and c ⊆ Ω. The
plausibility distribution pl(c|a) is defined as follows:

plΘ(c|a) = plΘ(a|c) = 1−
∏

ai∈a

(1 − plC(c|ai)) (8)
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3 Causal Belief Networks

Belief networks [1,3,11] are simple and efficient tools to compactly represent
uncertainty distributions. Causal reasoning can be intuitively and formally de-
scribed with graphs [2,3,6]. On these networks, it is possible to predict the effects
of both observations and external actions on the system. Causal belief networks
[3] are used to formalize the imperfect causal knowledge. They represent an al-
ternative to causal Bayesian networks, that allow to formalize conditional beliefs
in a flexible way. It is defined on two levels:

– Qualitative level: represented by a directed acyclic graph (DAG) named G
where G = (V,E) in which the nodes V represent variables and edges E
encode the cause-effect relations among variables. The set of parents of A
is denoted by Pa(A). The set of children of A is denoted by Ch(A). A root
is a node with no parents (Pa(A) �= ∅). A leaf is a node with no children
(Ch(A) �= ∅). We will denote by R the set of roots and by L the set of leaves.

– Quantitative level: is the set of normalized bbas associated to each node
in the graph. Conditional distributions can be defined for each variable A
denoted on ΘA in the context of its parents (either one or more than one
node):

∑
subik⊆ΘA

mA(subik|Pa(A)) = 1

An intervention is an external action which changes some value(s) in the sys-
tem and consequently will lead to different results than those found with obser-
vational data. These effects should be adequately predicted. While conditioning
is used to compute the effect of observations, the “do” operator [6] is used to
compute the impact of external action. Handling interventions and computing
their effects on the system can be done by making changes on the structure of
the belief causal network. The two equivalent methods developed were namely,
belief graph mutilation method where all the edges directed to the target node
will be deleted and belief graph augmentation method which consists of adding,
for the target variable, a new parent variable denoted DO. Thus, the parents set
of the variable A denoted PA is transformed to Pa′ = Pa∪{DO}. The DO node
takes values in do(ai), x ∈ {ΘA∪ {nothing}}. do(nothing) represents the state
of the system when no interventions are made. do(ai) means that the variable A
is forced to take the certain value ai.

4 DRC and GBT for Inference in Causal Belief Networks

4.1 Definitions

To reduce the cost of storage, the DRC and the GBT are used when the plausi-
bility distributions are conditionally defined for singletons (ai ∈ a) where a ⊆ Θ.
The DRC is used for backward propagation. Let mΘ be the bba of the parent
node A which is sent to its child C.

plΩ(c) =
∑

a⊆Θ

mΘ(a)(1 −
∏

ai∈Θ

(1− plΩ(c|ai))) (9)
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The GBT can be used for forward propagation. Let mΩ be the bba of the child
node which is sent to its parent node A using the GBT.

plΘ(a) =
∑

c⊆Ω

mC(c)(1−
∏

ai∈Θ

(1− plΩ(c|ai))) (10)

Exemple 1. Let Θ = {a1, a2} and Ω = {c1, c2}. mΘ and mΩ(.|ai) are the a
priori mass distribution. plΩ is computed using the DRC (see Table 1). Thanks
to the mobius transformation, we can convert the plausibility distribution plΩ to
a mass distribution mΩ. plΘ is computed using the GBT using mΩ and mΩ(.|ai)
(see Table 2).

Table 1. DRC

{a1}     {a2}        Ө plΩ(c) 

{c1} 
   ø 

{c1} 
  Ω 

mӨ 

0 
0.5 
0.5 
1 

0 
0.2 
0.8 
1 

0 
0.6 
0.9 
1 

0 
0.42 
0.78 
1 

0.2 0.4 0.4 

Table 2. GBT

{a1}     {a2}        Ө 

{c1} 
   ø 

{c1} 
  Ω 

0 
0.5 
0.5 
1 

0 
0.2 
0.8 
1 

0 
0.6 
0.9 
1 

0.9 0.84 0.92 

mΩ 

0 
0.2 
0 

0.8 

plӨ(a) 

4.2 Propagating Distributions for All Parents

In this section, we explain that is possible to use the GBT and the DRC for
propagation when the relations between nodes are not binary (i.e., conditional
distributions are defined for all parents).

Given a set of variables (A1, A2, . . . , Ai) which are parent nodes of a variable
C. To apply the GBT and the DRC, we will consider the m-tuple of the cartesian
product of the parent nodes. Accordingly, the first component of the i-tuple
belongs to A1, the second A2 and the i-th to Ai.

Each i-tuple will be considered as a singleton. To reduce the cost of storage
and facilitate to experts to express their beliefs, the plausibility distributions of
C will be defined and stored in the context of singletons of the cartesian product
(A1, A2, . . . , Ai).

Example 2. Let us consider the following directed causal belief network in Fig-
ure 1 where A and B are the parents of C. For the sake of simplicity, all the
variables used in this example are binary. The DRC and the GBT can be applied
for singletons (ai ∈ a). Since the conditional mass distributions of C are defined
for all parents A and B, conditional mass distributions will be defined for subsets.
So, we have to use the cartesian product of the parents node A and B (A × B =
{a1b1, a1b2, a2b1, a2b2}). When applying the DRC and the GBT, the conditional
plausibility distributions of C are saving according to singletons of the cartesian
product A × B.
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A B 

C 

a1b1 a1b2 a2b1 a2b2 
c1 0.7 0.5 0.7 0.6 
c2 0.2 0 0.3 0.4 
ƟC 0.1 0.5 0 0 

a1 0.5 
a2 0.5 
ƟA 0 

b1 0.2 
b2 0.5 
ƟB 0.3 

Fig. 1. Belief network where distributions are defined for all parents

5 Inference in Singly Connected Causal Belief Networks

The impact of a new piece of information on the remaining variables can be
found by first computing the joint distribution and then making marginaliza-
tion by dropping the extra coordinates. This method is not suitable when the
number of variables becomes substantial. To solve this problem, equivalent local
computations have been proposed [5,7].

Existing algorithms only deal with the propagation of observational data in
belief networks [1,12] where distributions are defined per single parent. To en-
sure propagation in the case where distributions are defined for all parents, we
have to transform the initial network into a junction tree even if this technique
is usually used to transform a multiply network into a tree structure. This trans-
formation is expensive and the propagation algorithm depends on clusters’ size.
To tackle these problems, we propose a direct method of propagation in causal
belief networks where distributions are defined for all parents. The proposed
method consists of updating the belief mass of each node. If the node has more
than one parent, we need to combine the distributions of parent nodes using
the vacuous extension to the product space of variables representing the parent
nodes. In our approach, the combined distribution is stored in a fictional node
allowing message passing to its child node.

Causal propagation consists of finding the influence of an intervention or an
observation on the remaining variables of the system. This is done through mes-
sage passing between variables. When receiving a message each node X updates
both local vectors; the vector π(x1, ..., xn) concerning messages received by its
parents and the vector λ(x1, ..., xn) concerning messages received by its chil-
dren. Each node sends and receives messages from each of its neighbors. The
local message-passing between variables is based on two kinds of messages. The
π-message is a message sent from a parent node to a child node and the λ-message
is a message sent from a child node to a parent node.

In this section, we will first introduce the basic concepts of propagation in
belief networks. Then, we explain how to compute the mass distribution of the
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fictional node. At the end of this section, we present algorithms for propagating
observations and interventions in causal belief networks.

5.1 The Basic Concepts of Propagation in Belief Networks

Message passing is termed forward propagation or backward propagation de-
pending on the direction in which the message is circulated. The causal belief
inference algorithm are based on two rules the Disjunctive Rule of Combination
(DRC) and the Generalized Bayesian Theorem (GBT). In fact, the algorithm
consists of two phases: propagation down (backward) and propagation up (for-
ward).

Let us consider the two nodes A and C where A is the parent of C. The
message sent from A to C is a π-message computed using the DRC and the
message sent from C to A is a λ-message computed using the GBT.

A C 

Propagation down (backward): DRC 

Propagation up (forward): GBT 

Fig. 2. Propagation process between A and C

5.2 Computation of the Mass Distribution of the Fictional Node

To perform the propagation in a simply connected network where nodes are
originally defined in the context of all parents, we will combine the mass dis-
tributions of parent nodes. These distributions may correspond to the a priori
distributions in the case of root nodes or posteriori distributions to the other
nodes computed using the GBT and the DRC. The result of this combination
will be stored in a table associated with a fictional node. The mass distribution
of the fictional node is computed using the Dempster rule of combination after
the extension of the mass distributions of different parents Pa(A) of the visited
node A to a joint space using the vacuous extension. The mass distribution of
the fictional node is denoted as mfictional. It is computed as follows:

mfictional = ⊕A∈Pa(A)(m
A↑Pa(A)) (11)

Once we combined the distribution of the node parents, we can make the
propagation up and down using the two operators DRC and GBT.

Example 2 (Continued). Let us continue with the same network presented in
Figure 1. Let mA and mB be the mass distributions of the two nodes A and B.
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To combine these nodes into a fictional node AB, we have to use the vacuous
extension to extend A and B to a joint space A× B (see Table 3 and Table 4).
The mass distribution of the fictional node is then computed using the Dempster
rule of combination (see Figure 3).

Table 3. mA↑AB

a1 × ΘB 0.5

a2 × ΘB 0.5

ΘA × ΘB 0

Table 4. mB↑AB

b1 × ΘA 0.2

b2 × ΘA 0.5

ΘB × ΘA 0.3

AB 

C 

     {a1,b1} 0.1 
{a1,b2} 0.25 
{a2,b1} 0.1 
{a2,b2} 0.25 

 {a1}    ӨB 0.15 
 {a2}    ӨB 0.15 
  ӨA     {b1}  0 
  ӨA     {b2}  0 
 ӨA      ӨB 0 

Fig. 3. A causal belief network with a fictional node

5.3 Propagation of Observations in Causal Belief Networks

We propose in this section a direct propagation algorithm in singly connected
causal belief networks where conditional beliefs are defined for all parents. The
causal direct propagation of observations consists of two steps: the propagation
down and the propagation up. A post-order (in direction of leaves) and a pre-
order (in direction of roots) will be defined to propagate information backward
and forward respectively.

Algorithm. Propagation down

For each A ∈ post-order
If A /∈ R

Combine the masses of its parents using the vacuous extension.
Store the combined distribution in a fictional node.
Pass a message π from the fictional node to A using the DRC.
Compute its mass distribution.
Send a message to its child C.
Marginalization: find the initial mass of the parent nodes.

End if
End for
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Algorithm. Propagation up

For each A ∈ pre-order
If A /∈ R

Combine the masses of parents.
Store the combined distribution in a fictional node.
Send a message λ to the fictional node using the GBT.
Compute its mass distribution.
Marginalization: find the initial mass of the parent nodes.

End if
End for

Algorithm. Direct propagation of observations

Updating the mass distribution of the node concerned by the observation.
Propagation down.
Propagation up.

Each node A computes its mass distribution by combining the two values π and
λ using this formula:

m ← πA ⊕ λA (12)

Example 2 (Continued). Let us continue with same example. Propagation
consists of sending a message π from the mass distribution of the fictional node
that is resulting from the combination of distributions of A and B to the node
C. This latter computes its message π using the DRC (Equation 9). The new
distribution of node C is as follows: c1 = 0.73, c2 = 0.17, ΘC = 0.1
Then, the node C sends a message λ to the fictional node AB which in turn
computes the new value λ using the GBT (Equation 10). The results are subsets
of the cartesian product of A×B. The distribution of AB as follows:
mAB({(a1, b1)}) = 0.0152, mAB({(a1, b2)}) = 0.0185, mAB({(a2, b1)}) = 0.026,
mAB({(a2, b2)}) = 0.0404, mAB({(a1, b1), (a1, b2)}) = 0.0744, mAB({(a1, b1),
(a2, b1)})= 0.0065, mAB({(a1, b1), (a2, b2)}) = 0.01, mAB({(a1, b2), (a2, b1)})
= 0.0434, mAB({(a1, b2), (a2, b2)}) = 0.0279, mAB({(a2, b1), (a2, b2)}) = 0.0173,
mAB({(a1, b1), (a1, b2), (a2, b1)}) = 0.1734, mAB({(a1, b1), (a2, b1), (a2, b2)})
= 0.0043, mAB({(a1, b1); (a1, b2), (a2, b2)}) = 0.1115, mAB({(a1, b2), (a2, b1);
(a2, b2)}) = 0.065, mAB({(a1, b1), (a1, b2), (a2, b1), (a2, b2)}) = 0.3662

After computing the distributions of the fictional node AB, it is possible to
compute the mass distribution of A and B by applying the marginalization mAB↓A

where mAB↓A(a1) = 0.1081, mAB↓A(a2) = 0.0837 and mAB↓A(ΘA) =0.8082 and
mAB↓B where mAB↓B(b1) = 0.0477, mAB↓B(b2) = 0.0868 and mAB↓B(ΘB) =
0.8655 since the propagation is ensured between a node and its neighbors.
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5.4 Propagation of Interventions in Causal Belief Networks

Handling interventions can be done using graph augmentation and graph muti-
lation methods.

– Propagation in the mutilated graph

Propagation in this graph consists of two steps: the mutilation step where
the distribution of concerned by the intervention becomes a certain one (see
Figure 4) and the propagation step using the direct causal propagation al-
gorithm presented in Section 5.3.

Algorithm. Direct propagation using the mutilated based approach

Cutting all edges pointing to the node concerned by the intervention C.
C computes its new marginal which becomes a certain bba.
Propagation down.
Propagation up.

A B 

C 

a1 0.5 
a2 0.5 
ƟA 0 

b1 0.2 
b2 0.5 
ƟB 0.3 

c1 1 
c2 0 
ƟC 0 

Fig. 4. A causal belief mutilated graph

– Propagation in the augmented graph

Since adding the “DO” node, the conditional distribution of the node con-
cerned by the intervention A given all parents must be updated. Hence, the
graph augmentation method allows to represent the effect of observations
when the DO node is taking the value nothing . When the DO node is tak-
ing the do(ai), we make a certain action which succeeds to put its target at
a precise value by making it completely independent of its original causes.
Thus, the distribution of A is a certain bba. Let Pa(A) be the parents of the
A except the DO node, the conditional distribution of the A is defined as
follows:

m(ak|Pa(A), do(x)) =

⎧
⎨

⎩

1 if x = ai
0 if x �= ai
m(ak|Pa(A), do(x)) x = nothing

(13)
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Propagation in this graph consists of two steps: the augmentation step where
the conditional distribution of the node concerned by the intervention be-
comes a certain due to addition of the node DO and the propagation step
using the using the direct causal propagation algorithm presented in Sec-
tion 5.3.

Algorithm.Direct propagationusing the augmentedbasedapproach

Add the nodeDOasa parentof thenode concernedby the interventionC.
Updating the conditional mass distribution of C using Equation 13.
Propagation down.
Propagation up.

Example 3. Let us consider the network presented in Figure 5 which illustrates a
causal belief augmented graph on which an intervention do(c1) forces the variable
C to take the specific value c1. The conditional bba of C given its parents DO
and A are defined using the Equation 13.

DO A 

C 

do(c1) 1 
do(c2) 0 

do(nothing) 0 

a1 0.5 
a2 0.5 
ƟA 0 

do(c1) a1 do(c1) a2 do(c2) a1 do(c2) a2 do(noth)a1 do(noth) a2 

c1 1 1 0 0 0.7 0.5 

c2 0 0 1 1 0.3 0.5 

ƟC 0 0 0 0 0 0 

Fig. 5. A causal belief augmented graph

In the case where the intervention do(c1) forces the variable C to take the
specific value c1, the mass distribution of the node C after the propagation process
using the DRC is a certain bba. When the variable takes the value nothing, the
bba is the same where there is no intervention. The parent nodes are extended
to the joint space DO×A using the vacuous extension and then combined using
the Dempster rule of combination. The results of the propagation are as follows:
do(c1): c1=1, c2=0, ΘC=0; do(c2): c1=0, c2=1, ΘC=0; do(nothing): c1=0.6,
c2=0.4, ΘC=0
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6 Conclusion

In this paper, we explained how we can still use the DRC and the GBT rules for
propagation in causal belief networks even if the distributions are defined for all
parents. We proposed a method acting directly on the network without having
to go through the transformation into a junction tree. The proposed algorithms
deal with the inference of observations and interventions in the augmented and
mutilated graphs. As future work, we intend to treat inference in multiply con-
nected causal belief networks. Inference in causal belief networks can be used in
several applications like those allowing the intrusion detection and or ensuring
system reliability.
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