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Preface

This volume is devoted to the proceedings of the 12th International Confer-
ence on Artificial Intelligence and Symbolic Computation (AISC 2014). This
conference was organized by the University of Seville in Spain and held during
December 11–13, 2014, in the Department of Computer Sciences and Artificial
Intelligence at the University of Seville.

AISC 2014 was the latest in the series of specialized biennial conferences
founded in 1992 by Jacques Calmet and John Campbell. Its goal was to inves-
tigate original research contributions in the fields of artificial intelligence (AI)
and symbolic computation: Originally, the conferences were called AISMC where
the letter M stood for mathematical. From 1998 on the scope became broader
than only mathematics and the M was dropped. This trend led to the confer-
ence being associated with potentially similar ones, including Calculemus and
Mathematical Knowledge Management (MKM), under the integrated federation
of the Conference on Intelligent Computer Mathematics (CICM).

From the beginning, the proceedings have appeared as volumes in the LNCS
and then the LNAI series.

AISC 2014 was again independent from the CICM federation in order to
extend the scope to new domains covered by AI and symbolic computation
beyond mathematics. The goals were to bind mathematical domains such as
algebraic topology or algebraic geometry to AI, but also to link AI to domains
outside pure algorithmic computing.

The new scope thus covers domains that can be described generically as be-
longing to the mechanization and computability of AI. This covers the basic
concepts of computability and new Turing machines, logics including non-classic
ones, reasoning, learning, decision support systems but also machine intelligence
and epistemology and philosophy of symbolic mathematical computing. Theo-
retical as well as application papers were solicited.

Among the 22 submitted papers, 16 were selected. Each paper was reviewed
by three referees, either members of the Program Committee or sub-reviewers.
Acceptance was based solely on the evaluation of the referees and scores achieved.
For two accepted papers a revised version was required and refereed again by
the same reviewers who evaluated the original submission. In a third case the
revised version was rejected.

The scope of the accepted contributions does not fully cover the expected
new scope outlined for this series of conferences but illustrates nicely the trend
set for these conferences.

October 2014 Gonzalo A. Aranda-Corral
Jacques Calmet

Francisco J. Mart́ın-Mateos
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Proving and Computing: Applying

Automated Reasoning to the Verification
of Symbolic Computation Systems (Invited Talk)

José-Luis Ruiz-Reina

Computational Logic Group
Dept. of Computer Science and Artificial Intelligence, University of Seville
E.T.S.I. Informática, Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain

jruiz@us.es

Abstract. The application of automated reasoning to the formal veri-
fication of symbolic computation systems is motivated by the need of
ensuring the correctness of the results computed by the system, beyond
the classical approach of testing. Formal verification of properties of the
implemented algorithms require not only to formalize the properties of
the algorithm, but also of the underlying (usually rich) mathematical
theory.

We show how we can use ACL2, a first-order interactive theorem
prover, to reason about properties of algorithms that are typically im-
plemented as part of symbolic computation systems. We emphasize two
aspects. First, how we can override the apparent lack of expressiveness we
have using a first-order approach (at least compared to higher-order lo-
gics). Second, how we can execute the algorithms (efficiently, if possible)
in the same setting where we formally reason about their correctness.

Three examples of formal verification of symbolic computation algo-
rithms are presented to illustrate the main issues one has to face in this
task: a Gröbner basis algorithm, a first-order unification algorithm based
on directed acyclic graphs, and the Eilenberg-Zilber algorithm, one of
the central components of a symbolic computation system in algebraic
topology.

1 Introduction

Formal verification of the correctness properties of computing systems is one of
the main applications of mechanized reasoning. This is applied in any situation
where correctness is so important that one has to verify the system beyond the
classical approach of testing. For example, safety critical systems or those where
failures may produce high economic losses (these include hardware, micropro-
cessors, microcode and software systems or, more precisely, models of them).
In these cases, to increase confidence in the system, a theorem stating its main
properties is mechanically proved using a theorem prover.

Symbolic computation systems are software systems, so this idea can be ap-
plied to formally verify the correctness of the algorithms implemented in them.

G.A. Aranda-Corral et al. (Eds.): AISC 2014, LNAI 8884, pp. 1–6, 2014.
c© Springer International Publishing Switzerland 2014



2 J.-L. Ruiz-Reina

Since in this case they are usually based on a rich mathematical theory, formal
verification require not only to formalize the properties of the algorithms, but
also of the underlying theory. Another important aspect to take into account is
that the models implemented have to be executable and, if possible, efficient.

ACL2 [7,8] is a theorem prover that uses a first-order logic to reason about
properties of programs written in an applicative programming language. It has
been successfully applied in a number of industrial–strength verification projects
[7]. In this talk, we argue that it can be also applied to the verification of symbolic
computation systems. We emphasize two aspects. First, how we deal with the
apparent lack of expressiveness of a first–order logic (at least compared to higher-
order logics). Second, how we can execute the algorithms modeled (efficiently, if
possible) in a setting where we also formally reason about them.

We illustrate the main issues one has to deal with when facing this task, by
means of three examples. First, Buchberger algorithm for computing a Gröbner
basis of a given polynomial ideal. Second, an algorithm, based on directed acyclic
graphs, for computing most general unifiers of two given first-order terms. Finally
the Eilenberg-Zilber theorem, a central theorem in algebraic topology.

2 The ACL2 System

ACL2 is both a programming language, a logic for reasoning about programs
in the language and a theorem prover to assist in the development of proofs of
theorems in the logic.

As a programming language, ACL2 is an extension of an applicative subset of
Common Lisp. This means that it contains none of Common Lisp that involve
side effects like global variables or destructive updates. In this way, functions in
the programming language behave as functions in mathematics, and thus one
can reason about them using a first-order logic.

The ACL2 logic is a quantifier-free, first-order logic with equality. The logic
includes axioms for propositional logic and for a number of Lisp functions and
data types, describing the programming language. Rules of inference of the logic
include those for propositional calculus, equality and instantiation. But maybe
the main rule of inference is the principle of induction, that permits proofs
by well-founded induction on the ordinal ε0. This include induction on natural
numbers and structural induction.

From the logical point of view, ACL2 functions are total, in the sense that they
are defined on every input, even if it is not an intended input. By the principle
of definition, new function definitions are admitted as definitional axioms only if
there exists a measure in which the arguments of each recursive call decrease with
respect to a well-founded relation, ensuring in this way that no inconsistencies
are introduced by new definitions.

The ACL2 theorem prover mechanizes that logic, being particularly well suited
for obtaining mechanized proofs based on simplification and induction. ACL2 is
automatic in the sense that once a conjecture is submitted to the prover, the
attempt is carried out without interaction with the user. But for non-elementary
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results, is often the case that the prover fails to find a proof in its first attempt.
Thus, we can say that ACL2 is interactive in the sense that the role of the user is
essential for a successful use of the prover: usually, she has to provide a number
of definition and lemmas (what is called the logical world) that the system will
use as simplification (rewrite) rules. The proper definitions and lemmas needed
for the proof are obtained first from a preconceived hand proof, but also from
inspection of failed proof attempts.

3 Gröbner Basis Computation

In [13], a formal verification of a Common Lisp implementation of Buchberger’s
algorithm [4] for computing Gröbner bases of polynomial ideals is presented.
This needed to formalize a number of previous mathematical theories, including
results about coefficient fields, polynomial rings and ideals, abstract reductions,
polynomial reductions, ordinal measures and of course Gröbner bases. All these
notions fit quite well in the first–order ACL2 logic.

It is worth mentioning that this formal project benefited from previous works
done in the system. In particular, an ACL2 theory about term rewriting sys-
tems had been previously developed [14]. It turns out that the notions of critical
pair and of complete rewrite system [2] are closely related to the notions of s-
polynomial and Gröbner basis, respectively. In fact, some of the results needed
in both formalizations are concrete instances of general results about abstract
reductions. Thus, once proved the abstract results, they can applied in any con-
crete context. Encapsulation and functional instantiation [9] in ACL2 are a good
abstraction mechanism that provides some kind of second–order reasoning in
this first–order logic, allowing to reuse previous general results in a convenient
way.

Another key concept in this formalization is the notion of polynomial proof. In
this context, a polynomial ideal basis is seen as a rewriting system that reduces
polynomial in some sense, generalizing the notion of polynomial division. In [13],
the concept of polynomial proof is introduced, as a data structure the contains
explicitly all the components of a sequence of polynomial reductions. It turns
out that the correctness properties of the Buchberger algorithm can be described
as properties of certain functions that transform polynomial proofs.

4 A Dag–Based Quadratic Unification Algorithm

A unification algorithm [1] receives as input a pair of first-order terms and re-
turns, whenever it exists, a most general substitution of its variables for terms,
such that when applied to both terms, they become equal. Unification is a key
component in automated reasoning and in logic programming, for example.

A naive implementation of unification may have exponential complexity in
worst cases. Nevertheless, using more sophisticated data structures and algo-
rithms, it is possible to implement unification quadratic in time and linear in
space complexity. In [15], the ACL2 implementation and formal verification of
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such an efficient algorithm is reported. The key idea is to use a data structure
based on directed acyclic graphs (dags), which allows structure sharing. This
implementation can be executed in ACL2 at a speed comparable to a similar C
implementation, but in addition its correctness properties are formally verified.

Two main issues where encountered in this formalization project:

• For the execution efficiency of the implementation, it is fundamental that
the substitution computed by the algorithm is built by iteratively applying
destructive updates to the dag representing the terms to unify. In principle,
as said before, ACL2 is an applicative programming language, so destructive
updates are not allowed. Nevertheless, ACL2 provides single-threaded objects
(stobjs) [3], which are data structures with a syntactically restricted use, so
that only one instance of the object needs ever exist. This means that when
executing an algorithm that uses a stobj, its fields can be updated by destruc-
tive assignments, while maintaining the applicative semantics for reasoning
about it. In this case, using a stobj to store the input terms as a dag (imple-
menting structure sharing by means of pointers), allows to clearly separate
reasoning about the logic of the unification process (which is independent
of how terms are represented) from the details related to the efficient data
structures used.

• In ACL2, functions are total, and before being admitted in the logic, their
termination for every possible input has to be proved. Thus, in principle,
this unification algorithm cannot be defined in the ACL2 logic, because a
possible input could be, for example, a stobj storing a cyclic graph, which
could lead the algorithm to a non-terminating execution. Nevertheless, we
know that the intended inputs to the algorithm will always be an acyclic
graph and that for those intended inputs, it can be proved that the algo-
rithm terminates. Thus, to accept the definition of the algorithm in the logic,
we need to introduce in its logical definition a condition checking that the
structure stored in the stobj is acyclic and that it represents well-formed
terms. Nevertheless, from the efficiency point of view this is unacceptable,
since this expensive check would be evaluated in every iteration of the algo-
rithm. Fortunately, the combination of the defexec feature [6], together with
the guard verification mechanism allows to safely skip this expensive check
when executing, provided that the function has received a well-formed input
and taking into account that it is previously proved that in every iteration
the well-formedness condition is preserved.

5 The Eilenberg-Zilber Theorem

The Eilenberg–Zilber theorem [12] is a fundamental theorem in Simplicial Alge-
braic Topology, establishing a bridge between a geometrical concept (cartesian
product) and a algebraic concept (tensor product). Concretely, it states homo-
logical equivalence between the cartesian product and the tensor product of two
chain complexes. The Eilenberg-Zilber theorem, expressed as a reduction, has a
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correspondent algorithm that it is a central component of the computer algebra
system Kenzo [5], devoted to computing in Algebraic Topology.

Since Kenzo is implemented in Common Lisp, it seems that ACL2 is a good
choice to verify some of its components, as it is in this case of the Eilenberg-Zilber
algorithm. Although Kenzo is far from being implemented using only applicative
features, we can formally verify an ACL2 version of the algorithm, and use it as
a verified checker for the results obtained using Kenzo.

In [11], it is reported a complete ACL2 formal proof of the Eilenberg-Zilber
theorem. In fact, the formalization presented was developed reusing part of a
previous formal proof of a normalization theorem needed as a preprocessor jus-
tifying the way Kenzo works [10].

The formal proof of the Eilenberg-Zilber theorem is not trivial at all. The first
issue encountered was that the existing (informal) proofs were not suitable for
being formalized in a first–order logic, so a new informal proof had to be carried
out by hand, and then formalized in ACL2. In this proof, the key component is a
new structure called simplicial polynomial, which represent linear combinations
of composition of simplicial operators. Although those linear combinations of
functions are in principle second–order objects, it turns out that they can be
represented as a first-order object. Moreover, the set of simplicial polynomials,
together with addition and composition operations, has a ring structure. It turns
out that the new proof developed is carried out mainly by establishing a number
of lemmas that, although being non-trivial, can be proved by induction and
simplification using the ring properties and the properties given by the simplicial
identities (the identities that define simplicial sets). Induction and simplification
is the kind of reasoning that is suitable for the ACL2 theorem prover.
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Abstract. We present work on the generation of novel mathematical
results by means of integrating heterogeneous reasoning systems.

The combination of reasoning systems has become quite routine in recent
years. Most integrations are of a bilateral nature, where one reasoning system
draws on the strength of another by incorporating results, delegating subtasks or
replaying proofs. This is mostly aimed at supporting standard theorem proving
tasks, such as software or hardware verification or the formalisation of existing
mathematics.

In this talk we highlight some of our work over the last decade that follows a
different approach at system combination: Systems are only loosely integrated
and collaboratively perform creative mathematical tasks leading to novel, non-
trivial results and theorems. We present a number of techniques developed in
the context of problems that are intractable for humans due to large numbers
of cases that need to be considered. We describe

– embedding of machine learning into automated theorem proving technology
to learn invariants that can uniquely distinguish algebraic entities [5,6],

– the generation of classification theorems in finite algebra both of a quanti-
tative and qualitative nature, i.e., by enumerating equivalence classes and
unambiguously describing their elements, using combinations of automated
reasoning, SAT solving, machine learning and computer algebra [4,2,7,3],

– and the application of these technologies to support human reasoning for
solving problems via infinite case analyses in topology [1].

The work demonstrates not only how the combination of systems can lead to
reasoning technology that is more powerful than the sum of its parts, but also
that a lightweight approach to combination allows the integration of a plethora of
different systems that can efficiently obtain novel mathematical results without
foregoing correctness. It also emphasises that the computational component is
not a purely ancillary means to achieve a mathematical end, but that there can be
a symbiotic relationship, in that the mathematical endeavour leads to advances in
automated reasoning technology, while the need to push the scope of automation
further can lead to novel mathematical techniques that are interesting results in
their own right.
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in Automated Proofs of Termination�
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Abstract. Reasoning about termination of declarative programs, which
are described by means of a computational logic, requires the definition of
appropriate abstractions as semantic models of the logic, and also han-
dling the conditional constraints which are often obtained. The formal
treatment of such constraints in automated proofs, often using numeric
interpretations and (arithmetic) constraint solving, can greatly benefit
from appropriate techniques to deal with the conditional (in)equations at
stake. Existing results from linear algebra or real algebraic geometry are
useful to deal with them but have received only scant attention to date.
We investigate the definition and use of numeric models for logics and
the resolution of linear and algebraic conditional constraints as unifying
techniques for proving termination of declarative programs.

Keywords: Conditional constraints, program analysis, termination.

1 Introduction

The operational semantics of sophisticated rule-based programming languages
such as CafeOBJ [7], Maude [3], or Haskell [8] is often formalized in a proof-
theoretic style by means of a computational logic, and the corresponding lan-
guage interpreters better understood as inference machines [15]. The notion of
operational termination [11] was introduced to give an account of the termina-
tion behavior of programs of such languages [12]. An interpreter for a logic L
(for instance the logic for Conditional Term Rewriting Systems (CTRSs) with
inference system in Figure 1) is an inference machine that, given a theory S
(e.g., the CTRS R in Example 1) and a goal formula ϕ (e.g., a one-step rewrit-
ing s → t for terms s and t) tries to incrementally build a proof tree for ϕ by
using (instances of) the inference rules B1,...,Bn

A ∈ I(L) of the inference system
I(L) of L. Then, S is operationally terminating if for any ϕ the interpreter ei-
ther finds a proof, or fails in all possible attempts (always in finite time). In this
setting, practical methods for proving operational termination involve two main
issues (see [13] and also [17] for CTRSs): (1) the simulation of the (one-step)
rewrite relations→ and →∗ associated to a CTRS R and defined by means of the
inference system in Figure 1; and (2) the use of (automatically generated) well-
founded relations � to abstract rewrite computations and guarantee the absence

� Developed during a sabbatical year at UIUC. Supported by projects NSF CNS
13-19109, MINECO TIN2010-21062-C02-02 and TIN 2013-45732-C4-1-P, and GV
BEST/2014/026 and PROMETEO/2011/052.

G.A. Aranda-Corral et al. (Eds.): AISC 2014, LNAI 8884, pp. 9–20, 2014.
c© Springer International Publishing Switzerland 2014
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(Refl) t →∗ t (Cong)

si → ti
f(s1, . . . , si, . . . , sk) → f(s1, . . . , ti, . . . , sk)

for all k-ary symbols f and 1 ≤ i ≤ k

(Tran)

s → u u →∗ t

s →∗ t (Repl)

s1 →∗ t1 . . . sn →∗ tn
� → r

for each rule � → r ⇐ s1 → t1 · · · sn → tn

Fig. 1. Inference rules for the CTRS logic (all variables are universally quantified)

of infinite ones. Here, (1) amounts at dealing with abstractions for sentences like
∀x(B1 ∧ · · · ∧Bn ⇒ A) which simulate the use of the aforementioned inference
rules; and (2) often involves the comparison of expressions s and t using �, pro-
vided that a number of semantic conditions (e.g., rewriting steps si →∗

R ti for
some terms si and ti) hold. Abstractions can be formalized as semantic models
M = (D,FD, ΠD) of L (see Section 2), where D is a domain and FD and ΠD are
interpretations of the function symbols F and predicates Π of L, respectively.
For instance, relations → and →∗ (which are predicates in the corresponding
logic) are typically interpreted as orderings on D, often a numeric domain like N
or [0,+∞). In this paper we introduce the idea of using conditional expressions
to restrict such domains in logical models (Section 3). This is often useful.

Example 1. Consider the following CTRS R:

or(0, x) → x (1)

or(x, 0) → x (2)

or(1, x) → 1 (3)

or(x, 1) → 1 (4)

or(x,not(x)) → 1 (5)

or(not(x), x) → 1 (6)

and(0, x) → 0 (7)

and(x, 0) → 0 (8)

and(1, x) → x (9)

and(x, 1) → x (10)

and(x,not(x)) → 0 (11)

and(not(x), x) → 0 (12)

not(1) → 0 (13)

not(0) → 1 (14)

implies(x, y) → 1 ⇐ not(x) → 1 (15)

implies(x, y) → 1 ⇐ y → 1 (16)

implies(x, y) → 0 ⇐ x → 1, y → 0 (17)

f(x) → f(0) ⇐ implies(implies(x, implies(x, 0)), 0) → 1 (18)

We failed to prove operational termination of R by using the ordering-based
techniques introduced in [13] and also with the more advanced techniques in
[14]. However, below we provide a very simple proof of operational termination
based on the use (within [13]!) of a bounded domain [0, 1] which can be easily
implemented by using conditional constraints.

As an interesting specialization of this general idea, Section 4 introduces convex
matrix interpretations as a new, twofold extension of the framework introduced
by Endrullis et al. [5] for TRSs, where rather than using vectors x of natural num-
bers (or non-negative numbers, as in [2]), we use convex sets satisfying a matrix
inequality Ax ≥ b. Section 5 discusses existing approaches to deal with the ob-
tained numeric conditional constraints:Farkas’ Lemma and results fromAlgebraic
Geometry. Section 6 compares with related work. Section 7 concludes.
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2 Models of Logics for Proofs of Termination

In this paper, X denotes a set of variables and F denotes a signature: a set of
function symbols {f, g, . . .}, each with a fixed arity given by a mapping ar : F →
N. The set of terms built from F and X is T (F ,X ). A CTRS R = (F , R) consist
of a signature F and a set R of rules � → r ⇐ s1 → t1, · · · , sn → tn, where
l, r, s1, t1, · · · , sn, tn ∈ T (F ,X ). For s, t ∈ T (F ,X ), we write s →R t (s →∗

R t)
if there is a proof for s → t (s →∗ t) with the inference system in Figure 1.

Given a (first order) logic signature Σ = (F , Π) where F is a signature of
function symbols and Π is a signature of predicate symbols, the formulas ϕ of a
(first order) logic L over Σ are built up from atoms P (t1, . . . , tk) with P ∈ Π
and t1, . . . , tk ∈ T (F ,X ), logic connectives (e.g., ∧, ¬, ⇒) and quantifiers (∀, ∃)
in the usual way; FormΣ is the set of such formulas. A theory S of L is a set
of formulas, S ⊆ FormΣ , and its theorems are the formulas ϕ ∈ FormΣ for
which we can derive a proof using the inference system I(L) of L in the usual
way (written S � ϕ). Given a logic L describing computations in a (declarative)
programming language, programs are viewed as theories S of L.

Example 2. In the logic of CTRSs, with binary predicates → and →∗, the theory
for a CTRS R = (F , R) is obtained from the inference rules in Figure 1 after
specializing them as (Cong)f,i for each f ∈ F and i, 1 ≤ i ≤ ar(f) and (Repl)ρ
for all ρ : � → r ⇐ c ∈ R. Then, inference rules B1,...,Bn

A become implications
B1∧· · ·∧Bn ⇒ A. For instance, for (Tran), (Cong)not, (Repl)(1), and (Repl)(15):

∀s, t, u (s → u ∧ u →∗ t ⇒ s →∗ t) (19)

∀s, t (s → t ⇒ not(s) → not(t)) (20)

∀x (or(0, x) → x) (21)

∀x, y (not(x) →∗ 1 ⇒ implies(x, y) → 1) (22)

For analysis and verification purposes we often need to abstract L into a numeric
setting (e.g., arithmetics, linear algebra, or algebraic geometry) where appropri-
ate techniques are available to prove properties of interest. This amounts at
giving a (numeric) model of L that satisfies S.

An F -algebra is a pair A = (D,FD), where D is a set and FD is a set of
mappings fA : Dk → D for each f ∈ F where k = ar(f). A Σ-model is a triple
M = (D,FD, ΠD) where (D,FD) is an F -algebra, and for each k-ary P ∈ Π ,
PM ∈ ΠD is a k-ary relation PM ⊆ Dk. Given a valuation mapping α : X → D,
the evaluation mapping [ ]Aα : T (F ,X ) → D (also [ ]Mα if A is part of M) is the
unique homomorphism extending α. Finally, [ ]Mα : FormΣ → Bool is given by:

1. [P (t1, . . . , tk)]
M
α = true if and only if ([t1]

M
α , . . . , [tk]

M
α ) ∈ PA;

2. [ϕ ∧ ψ]Mα = true if and only if [ϕ]Mα = true and [ψ]Mα = true;
3. [ϕ ⇒ ψ]Mα = true if and only if [ϕ]Mα = false or [ψ]Mα = true;
4. [¬ϕ]Mα = true if and only if [ϕ]Mα = false;
5. [∃x ϕ]Mα = true if and only if there is a ∈ D such that [ϕ]Mα[x �→a] = true;

6. [∀x ϕ]Mα = true if and only if for all a ∈ D, [ϕ]Mα[x �→a] = true;
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We say thatM satisfies ϕ ∈ FormΣ if there is α ∈ X → D such that [ϕ]Mα = true.
If [ϕ]Mα = true for all valuations α, we write M |= ϕ. A closed formula, i.e., a
formula whose variables are all universally or existentially quantified, is called a
sentence. We say that M is a model of a set of sentences S ⊆ FormΣ (written
M |= S) if for all ϕ ∈ S, M |= ϕ. And, given a sentence ϕ, we write S |= ϕ if
and only if for all models M of S, M |= ϕ. Sound logics guarantee that every
provable sentence ϕ is true in every model of S, i.e., S � ϕ implies S |= ϕ.

In practice, F -algebras A can be obtained if we first consider a new set of
terms T (G,X ) where the new symbols g ∈ G have ‘intended’ (often arithmetic)
interpretations over an (arithmetic) domain D as mappings g from D into D. The
use of the same name for the syntactic and semantic objects stresses that they
have an intended meaning. We associate an expression ef ∈ T (G, {x1, . . . , xk}) to
each k-ary symbol f ∈ F , where x1, . . . , xk ∈ X are different variables: we write
[f ](x1, . . . , xk) = ef ; and homomorphically extend it to [ ] : T (F ,X ) → T (G,X ).
Then, for all a1, . . . , ak ∈ D, we let fA(a1, . . . , ak) = [ef ]αa , for αa given by
αa(xi) = ai for all 1 ≤ i ≤ k.

Example 3. For R in Example 1, F = {0, 1, or, and, not, implies, f}, where
ar(0) = ar(1) = 0, ar(f) = 1, and ar(or) = ar(and) = ar(implies) = 2. Let
G = {0, 1,max,min, − } with ar(0) = ar(1) = 0 and ar(max) = ar(min) =
ar( − ) = 2. We define an F -algebra over the reals R as follows:

[0] = 0 [and](x, y) = min(x, y) [or](x, y) = max(x, y) [f](x) = 0
[1] = 1 [not](x) = 1− x [implies](x, y) = max(1− x, y)

We define a model M = (D,FD, ΠD) if each P ∈ Π is interpreted as a predicate
PM ∈ ΠD, and each ϕ ∈ FormΣ as a formula ϕM, where ϕM = PM([t1], . . . , [tk])
if ϕ = P (t1, . . . , tk); ϕM = ϕM ⊕ ψA if ϕ = χ ⊕ ψ for ⊕ ∈ {∧,⇒} and ϕM =
�χM if ϕ = �χ for � ∈ {¬, ∀, ∃}. The goal is proving that M |= S holds.

Example 4. We can interpret both → and →∗ as ‘=’ (intended to be the equality
among real numbers). Then, the sentences in Example 2 become

∀s, t, u ∈ R (s = u ∧ u = t ⇒ s = t) (23)

∀s, t ∈ R (s = t ⇒ 1− s = 1− t) (24)

∀x ∈ R (max(0, x) = x) (25)

∀x, y ∈ R (1− x = 1 ⇒ max(1− x, y) = 1) (26)

Unfortunately, (25) and (26) do not hold in the intended model due to the (big)
algebraic domain R. For instance, max(0,−1) = 0 �= −1, i.e., (25) is not true.

Example 4 shows that the appropriate definition of the domain of a model is
crucial to satisfy a set of formulas. The next section investigates this problem.

3 Domains for Algebras and Models Revisited

In proofs of termination, domains D for numeric F -algebrasA usually are infinite
(subsets of) n-dimensional open intervals which are bounded from below: Nn or
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[0,+∞)n for some n ≥ 1. Furthermore, considered orderings often make the
corresponding ordered sets total (like [0,+∞) ordered by ≥R), or nontotal but
with subsets B ⊆ D bounded by some value xB ∈ D (like [0,+∞)n ordered
by the pointwise extension of the usual ordering ≥R over the reals, which is a
complete lattice). More general domains can be often useful, though.

Example 5. (Continuing Example 4) Although (23) and (24) always hold
(under the intended interpretation of ‘=’ as the equality), satisfiability of other
sentences may depend on the considered domain of values: if D = [0, 1], then
(25) and (26) hold; if D = N, then only (25) holds. The use of D = [0, 1] can be
made explicit in (25) and (26) by adding further constraints:

∀x ∈ R ( x ≥ 0 ∧ 1 ≥ x ⇒ max(0, x) = x) (27)

∀x, y ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ y ≥ 0 ∧ 1 ≥ y ∧ 1− x = 1 ⇒ max(1− x, y) = 1) (28)

Thus, we need to deal with conditional constraints for using such more general
domains. Also to handle max expressions [6,16].

Example 6. We can expand the definition of max in (27) and (28) into:

∀x ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ 0 ≥ x ⇒ 0 = x) (29)

∀x ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ x ≥ 0 ⇒ x = x) (30)

∀x, y ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ y ≥ 0 ∧ 1 ≥ y ∧ 1− x = 1 ∧ 1− x ≥ y ⇒ 1− x = 1) (31)

∀x, y ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ y ≥ 0 ∧ 1 ≥ y ∧ 1− x = 1 ∧ y > 1− x ⇒ y = 1) (32)

where (30) clearly holds true and we do not longer care about it.

3.1 Conditional Domains for Term Algebras and Models

Given a set D and a predicate χ over D, we let Dχ = {x ∈ D | χ(x)} be the
restriction of D by χ. An F -algebra A = (D,FD) yields a restricted F -algebra
Aχ = (Dχ,FDχ), where for each f ∈ F , fAχ is the restriction of fA to Dk

χ, if for
all k-ary symbols f ∈ F , this algebraicity or closedness condition holds:

∀x1, . . . , xk

⎛⎝⎛⎝ ∧
i≤i≤k

χ(xi)

⎞⎠⇒ χ(fA(x1, . . . , xk))

⎞⎠ (33)

guaranteeing that if fA is given inputs in Dχ, the outcome belongs to Dχ as well.

Remark 1. Algebraicity is a standard requirement for algebraic interpretations.
Most times, however, the imposition of simple requirements on the shape of the
numeric expressions ef used to define fA (see Section 2) makes this task easy
and often avoids any checking. A well-known example is taking D = [0,+∞)
and requiring ef to be a polynomial whose coefficients are all non-negative.

The relations PM ⊆ Dk interpreting k-ary predicates P ∈ Π can be restricted
to PMχ = PM∩Dk

χ to yield a new interpretation of P in Mχ = (Dχ,FDχ , ΠDχ).
For practical purposes, in this paper we only consider simple restrictions of F -
algebras and models, where D is obtained as the solution of linear constraints.
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Definition 1 (Convex Polytopic Domain). Given a matrix A ∈ Rm×n, and
b ∈ Rm, the set of solutions of the inequality Ax ≥ b is a convex polytope
D(A, b) = {x ∈ Rn | Ax ≥ b}. We call D(A, b) a convex polytopic domain.

Example 7. For A = (−1, 1)T and b = (−1, 0), we have D(A, b) = [0, 1]. If
A = (1) and b = (0), then D(A, b) = [0,+∞).

Example 8. Continuing Example 3, we obtain an F -algebra A[0,1] =
([0, 1],F[0,1]) as the restriction to [0, 1] of the F -algebra over R defined there.
The constraints (25) and (26) are written in the restricted model as follows

∀x ∈ [0, 1] (max(0, x) = x) (34)

∀x, y ∈ [0, 1] (1− x = 1 ⇒ max(1− x, y) = 1) (35)

After encoding memberships like x ∈ [0, 1] as inequalities x ≥ 0 ∧ 1 ≥ x and
expanding the definition of max, we obtain (29)− (32).

In sharp contrast with Example 4, restricting the model at hand to [0, 1] leads to
a model for R in Example 1 which is useful to prove its operational termination.

Example 9. According to [13], R in Example 1 is operationally terminat-
ing if there is a relation � on terms such that →∗ ⊆ �, and a well-
founded ordering � satisfying � ◦ � ⊆ � such that, for all substitutions σ, if
σ(implies(implies(x, implies(x, 0)), 0)) →∗

R σ(1) holds, then σ(F(x)) � σ(F(0)) for
the rule (dependency pair1) F(x) → F(0) ⇐ implies(implies(x, implies(x, 0)), 0) →
1 (where F is a fresh symbol). Let M = ([0, 1],F ′

[0,1], Π[0,1]) where F ′ = F∪{F},
F ′

[0,1] is F[0,1] as in Example 8 extended with [F](x) = x, and Π[0,1] given by

→[0,1]=→∗
[0,1]= (=[0,1]) (i.e., the equality on [0, 1]). M is a model of R; by sound-

ness, if s →∗ t holds for s, t ∈ T (F ,X ), we have [s] =[0,1] [t]. Let � be as follows:
for all s, t ∈ T (F ,X ), s � t holds if and only if [s] =[0,1] [t]. Then, →∗ ⊆ �, as
desired.

Now, consider the ordering >1 over R given by x >1 y if and only if x−y ≥ 1;
it is a well-founded relation on [0, 1] (see [10]). We let � be the (well-founded)
relation on T (F ,X ) induced by >1 as before. Again, for all substitutions σ, if
σ(implies(implies(x, implies(x, 0)), 0)) →∗

R σ(1) holds, then, by soundness,

[σ(implies(implies(x, implies(x, 0)), 0))] =[0,1] [σ(1)] (36)

holds as well. We also have

∀x ∈ [0, 1]([implies(implies(x, implies(x, 0)), 0)] =[0,1] [1] ⇒ [F(x)] >1 [F(0)]) (37)

because, for all x ≥ 0,

[implies(implies(x, implies(x, 0)), 0)] = max(1 −max(1− x,max(1 − x, 0)), 0)
= max(1 −max(1− x, 1 − x), 0)
= max(1 − (1− x), 0)
= max(x, 0)
= x

1 For the purpose of this paper, the procedure to obtain this new rule is not relevant.
The interested reader can find the details in [13].
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and hence [implies(implies(x, implies(x, 0)), 0)] =[0,1] [1] holds only if x = 1 =
[1]. Combining (36) and (37), we conclude that, for all substitutions σ, if
σ(implies(implies(x, implies(x, 0)), 0)) →∗

R σ(1) holds, then [F(x)]M = 1 >1 0 =
[F(0)]M, as desired. This proves operational termination of R in Example 1.

In the following section we discuss an interesting application of convex poly-
topic domains to improve the well-known matrix interpretations [5,2].

4 Convex Matrix Interpretations

A convex matrix intepretation for a k-ary symbol f is a linear expression F1x1+
· · · + Fkxk + F0, where F1, . . . , Fk ∈ Rn×n are (square) matrices, F0 ∈ Rn and
x1, . . . ,xk ∈ Rn, which is closed on D(A, b), i.e., that satisfies

∀x1, . . .xk ∈ Rn

(
k∧

i=1

Axi ≥ b ⇒ A(F1x1 + · · ·+ Fkxk + F0) ≥ b

)
(38)

An F -algebra A = (D,FD) is obtained if D = D(A, b), and each k-ary symbol
f ∈ F is given fA(x1, . . . , xk) = F1x1 + · · · + Fkxk + F0 that satisfies (38).
The following ordering ≥ is considered: x = (x1, . . . , xn) ≥ (y1, . . . , yn) = y if
xi ≥ yi for all 1 ≤ i ≤ n. Given δ > 0, the (strict) ordering >δ is also used: x =
(x1, . . . , xn) >δ (y1, . . . , yn) = y if x1 − y1 ≥ δ and (x2, . . . , xn) ≥ (y2, . . . , yn).

Remark 2. Convex matrix interpretations include the usual matrix interpreta-
tions in [5,2] if A = In×n and b = 0 ∈ Rn.

In contrast to (N,≥) and ([0,+∞),≥), that are total orders, and also to (Nn,≥)
and ([0,+∞)n,≥), that are not total, but are complete lattices, (D(A, b),≥) does
not need to be total or a complete lattice. This has some interesting advantages.

Example 10. Consider the CTRS R [17, Example 7.2.45]:

a → a ⇐ b → x, c → x (39)

b → d ⇐ d → x, e → x (40)

c → d ⇐ d → x, e → x (41)

According to [13], R is operationally terminating if there is a relation � such
that →∗ ⊆ �, and � is a well-founded ordering such that � ◦ � ⊆ � and for
the dependency pair a� → a� ⇐ b → x, c → x (for a� a new symbol), we have
that, for all substitutions σ, if b →∗ σ(x) and c →∗ σ(x), then a� � a�. With

A =

⎡⎣1 1
1 0
0 1

⎤⎦ and b = (1, 0, 0)T , together with:

[a] = [a�] =

[
1
0

]
[b] = [d] =

[
1
0

]
[c] = [e] =

[
0
1

]

we have [a], [a�], [b], [c], [d], [e] ∈ D(A, b), as required by (38). It can be proved
that (D(A, b),FD(A,b), ΠD(A,b)), where →,→∗ ∈ Π are both interpreted (in
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ΠD(A,b)) as ≥ is a model of R. For s, t ∈ T (F ,X ), we let s � t if and only
if [s] ≥ [t]. Thus, →∗ ⊆ � holds. The ordering >1 on D(A, b) is well-founded
because [0,+∞) is bounded from below (see [10]). Thus, for s, t ∈ T (F ,X ), we
define s � t if and only if [s] >1 [t]. Now, since →∗ ⊆ �, we only have to prove
that [b] ≥ [x] ∧ [c] ≥ [x] ⇒ [a�] >1 [a

�], i.e.,

∀x1, x2 ∈ R

⎛
⎝
⎡
⎣ 1 1
1 0
0 1

⎤
⎦
[
x1

x2

]
≥

⎡
⎣1
0
0

⎤
⎦∧

[
1
0

]
≥

[
x1

x2

]
∧
[
0
1

]
≥

[
x1

x2

]
⇒

[
1
0

]
>1

[
1
0

]⎞
⎠ (42)

which can be written as a universally quantified conjunction of two formulas:

x1 + x2 ≥ 1 ∧ x1 ≥ 0 ∧ x2 ≥ 0 ∧ 1 ≥ x1 ∧ 0 ≥ x2 ∧ 0 ≥ x1 ∧ 1 ≥ x2 ⇒ 1 >1 1 (43)

x1 + x2 ≥ 1 ∧ x1 ≥ 0 ∧ x2 ≥ 0 ∧ 1 ≥ x1 ∧ 0 ≥ x2 ∧ 0 ≥ x1 ∧ 1 ≥ x2 ⇒ 0 ≥ 0 (44)

The crucial point is that the conditional part of the implications does not hold
because no x ∈ D(A, b) satisfies (1, 0)T ≥ x and (0, 1)T ≥ x (see Example 11).

The following sections discuss existing mathematical techniques that can be
used to automatically deal with the conditional constraints obtained so far.

5 Conditional Polynomial Constraints

In this section, we explore well-known results from linear algebra [20] and alge-
braic geometry [18] to deal with conditional polynomial constraints.

5.1 Conditional Constraints with Linear Polynomials

Farkas’ Lemma provides a (universal) quantifier elimination result for linear
(conditional) sentences (cf. [20]).

Theorem 1 (Affine form of Farkas’ Lemma). Let Ax ≥ b be a linear system
of k inequalities and n unknowns over the real numbers with non-empty solution
set S and let c ∈ Rn and β ∈ R. Then, the following statements are equivalent:

1. cTx ≥ β for all x ∈ S,
2. ∃λ ∈ Rk

0 such that c = ATλ and λTb ≥ β.

By condition (1) in Theorem 1 proving ∀x (Ax ≥ b ⇒ cTx ≥ β) can be recast
as the constraint solving problem of finding a nonnegative vector λ such that c
is a linear nonnegative combination of the rows of A and β is smaller than the
corresponding linear combination of the components of b. Note that if Ax ≥ b
has no solution, i.e., S in Theorem 1 is empty, the conditional sentence trivially
holds. Thus, we do not need to check S for emptiness when using Farkas’ result.

Example 11. Sentences (43) and (44) can be proved using Theorem 1. This
proves operational termination of R in Example 10.
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Example 12. After encoding the equality as the conjunction of ≥ and ≤, we
transform sentences (29), (31) and (32) into:

∀x ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ 0 ≥ x ⇒ 0 ≥ x) (45)

∀x ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ 0 ≥ x ⇒ x ≥ 0) (46)

∀x, y ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ y ≥ 0 ∧ 1 ≥ y ∧ 1− x = 1 ∧ 1− x ≥ y ⇒ 1− x ≥ 1) (47)

∀x, y ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ y ≥ 0 ∧ 1 ≥ y ∧ 1− x = 1 ∧ 1− x ≥ y ⇒ 1 ≥ 1− x) (48)

∀x, y ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ y ≥ 0 ∧ 1 ≥ y ∧ 1− x = 1 ∧ y > 1− x ⇒ y ≥ 1) (49)

∀x, y ∈ R ( x ≥ 0 ∧ 1 ≥ x ∧ y ≥ 0 ∧ 1 ≥ y ∧ 1− x = 1 ∧ y > 1− x ⇒ 1 ≥ y) (50)

which are conditional linear sentences provable using Farkas’ Lemma.

5.2 Conditional Constraints with Arbitrary Polynomials

Given polynomials h1, . . . , hm ∈ R[X1, . . . , Xn], the semialgebraic set defined by
h1, . . . , hm isWR(h) = WR(h1, . . . , hm) = {x ∈ Rn | h1(x) ≥ 0∧· · ·∧hm(x) ≥ 0}.
A well-known representation theorem establishes that a polynomial which is
positive for all tuples (x1, . . . , xn) ∈ WR(h) can be written as a linear combina-
tion of h1, . . . , hm with ‘coefficients’ s that are sums of squares of polynomials
(s ∈
∑

R[X ]2) [18, Theorem 5.3.8]. If we can write a polynomial f as a linear
combination of h1, . . . , hm with ‘coefficients’ that are sums of squares, this pro-
vides a certificate of non-negativeness of f on WR(h1, . . . , hm): sums of squares
are non-negative, all hi are non-negative on values in WR(h1, . . . , hm) and the
product and addition of non-negative numbers is non-negative. Explicitly:

Theorem 2. Let R[X ] := R[X1, . . . , Xn], h1, . . . , hm ∈ R[X ], WR(h) =
WR(h1, . . . , hm) and S ⊆ R such that WR(h1, . . . , hm) ⊆ Sn. Let si ∈

∑
R[X ]2

for all i, 0 ≤ i ≤ m. If for all x1, . . . , xn ∈ S, f ≥ s0 +
∑m

i=1 si · hi, then, for all
(x1, . . . , xn) ∈ WR(h1, . . . , hm), f(x1, . . . , xn) ≥ 0.

Example 13. Consider the constraint X1 ≥ X2
2 ∧ X2 ≥ X2

3 ⇒ X1 ≥ X4
3 from

[16, page 51]. With s0 = (X2
3 −X2)

2, s1 = 1 and s2 = 2X2
3 , we have:

X1 −X4
3 = (X2

3 −X2)
2 + (X1 −X2

2 ) + 2X2
3 · (X2 −X2

3 )

witnessing that the constraint holds.

6 Related Work

The material in Section 2 can be thought of as a generalization and extension
of the intepretation method for proving termination of Term Rewriting Systems
(see, e.g., [17, Section 5]). The interpretation method uses ordered algebras which
are algebras A with domain D including one or more ordering relations �D, �D,
etc., satisfying a number of properties (stability, monotonicity, etc.). Such rela-
tions are used to induce relations �, � on terms which are then used to compare
the left- and right-hand sides � and r of rewrite rules � → r. The targeted rules
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in such comparisons and the conclusions we may reach depend on the considered
approach for proving termination (see [17, Sections 5.2 and 5.4], for instance).
In our setting, orderings are introduced as interpretations of computational re-
lations (e.g., → and →∗), and we do not require anything special about them
beyond their ability to provide amodel of the theory at hand. For instance, where
the interpretation method requires monotonicity, we just expect the relation to
provide a model of rules (Cong), which encode the monotonicity of the rewrite
relation. The advantage is that we do not need reformulations of the framework
when other logics are considered; in contrast, the interpretation method requires
explicit adaptations. For instance, in Context-Sensitive Rewriting [9] rewritings
are propagated to selected arguments of function symbols only. Thus, (Cong)
may have no specialization for some arguments i of some symbols f . Whereas
this requires specific adaptations of the interpretation method (see, e.g., [21]),
we can apply our methods without any change. Furthermore, although our prac-
tical examples involve CTRSs, our development does not really depend on that
and applies to arbitrary declarative languages.

With regard to existing approaches to deal with conditional constraints in
proofs of termination, the following result formalizes the transformational ap-
proach to deal with polynomial conditional constraints in [6,16].

Proposition 1. [16, Proposition 3] Let prem and conc be two polynomials with
natural coefficients, where conc is not a constant. Let p1, . . . , pm+1, q1, . . . , qm+1

be arbitrary polynomials with natural coefficients. If

conc(pm+1)− conc(qm+1)− prem(p1, . . . , pm) + prem(q1, . . . , qm) ≥ 0

is valid over the natural numbers, then p1 ≥ q1 ∧ · · · ∧ pm ≥ qm ⇒ pm+1 ≥ qm+1

is also valid over the natural numbers.

This result holds if prem and conc have non-negative real coefficients, and
variables range over nonnegative real numbers. When linear polynomials are
used this technique is subsumed by Farkas’ lemma.

Proposition 2. Let C ∈ R≥0[Y ] and P ∈ R≥0[Y1, . . . , Ym] be linear applications
with C nonconstant, i.e., C = γY with γ > 0 and P =

∑m
i=1 πiYi. Let pi, qi ∈

R≥0[X1, . . . , Xn] be linear polynomials for all i, 1 ≤ i ≤ m + 1, i.e., pi =
pi0 +

∑n
j=1 pijXj and qi = qi0 +

∑n
j=1 qijXj. Let A = (pij − qij)m,n, b =

(q10−p10, . . . qm0−pm0)
T , c = (pm+1,1−qm+1,1, . . . , pm+1,n−qm+1,n)

T and β =
qm+1,0−pm+1,0. If for all X1, . . . , Xm ≥ 0, C(pm+1)−C(qm+1)−P (p1, . . . , pm)+
P (q1, . . . , qm) ≥ 0, then there is λ ∈ Rm

0 such that c ≥ ATλ and β ≤ λTb.

Remark 3. Regarding mechanization, Nguyen et al.’s technique has a drawback
with respect to those in Section 5. Given a rule � → r ⇐

∧n
i=1 si → ti, Nguyen et

al.’s technique requires that both [si] and [ti] are polynomials with non-negative
coefficients only. This is because [si] and [ti] are handled separately by poly-
nomials conc and prem. But in an implementation, [si] and [ti] are parametric
polynomials where the coefficients are parameters rather than numbers (see [4,10]
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for instance). Thus, we need to constrain them to be non-negative in order to
use the technique. In contrast, we do not restrict the coefficients of polynomials
in any way. Hence, the coefficients of the parametric polynomials could be neg-
ative numbers without any problem. For instance, this is crucial to synthesize
D(A, b) = [0, 1] used in the examples above, where A and b require negative
numbers.

Farkas’ Lemma is used in proofs of termination of imperative programs in [19].

7 Conclusion

We have provided a generic, logic-oriented approach to abstraction in proofs of
termination of programs in declarative languages, which is based on defining ap-
propriatemodels for logics. We have used numeric domains defined as restrictions
of ‘big’ numeric sets by means of predicates that can be handled as conditional
constraints. We have introduced convex domains and used them to extend the
powerful matrix interpretation method for proving termination of TRSs in two
directions: the use of convex domains and the application to other logics (e.g.,
CTRSs). We have shown the usefulness of these general purpose ideas by ap-
plying them to prove operational termination of CTRSs: R in Example 1 could
not be handled within the recently introduced 2D DP framework for proving
operational termination of CTRSs [13] or its extensions [14]; but the weakness
was not in the framework itself, but in the available algebraic interpretations: we
can prove R operationally terminating now due to the use of a convex domain
like [0, 1]. And powerful tools like AProVE do not find a proof of operational
termination of R in Example 10 by using transformations. In contrast, we found
a simple proof with convex matrix interpretations and the techniques in [13].

We have shown that existing, powerful techniques to deal with numeric con-
straints provide an appropriate framework for implementing the previous tech-
niques. We have implemented most of these techniques as part of our tool
mu-term [1]. In particular, the use of Farkas’ Lemma for dealing with linear con-
ditional constraints obtained from linear polynomial interpretations and matrix
interpretations plays a central role in the implementation of the 2D DP frame-
work for operational termination of CTRSs [13] which is presented in [14]. In [10,
Example 13], we advocate the use of negative coefficients in proofs of termina-
tion of CSR using polynomial interpretations. The implementation, though, was
tricky (see [10, Sections 6.1.3 and 7]). This paper is a step forward because: (1)
our treatment is valid for arbitrary polynomials. We do not need to provide spe-
cial results as [10, Observation 1] to deal with polynomials of some specific form
(quadratic, cubic, ...); (2) we avoid the introduction of disjunctive constraints
which lead to an exponential blowup and to an expensive constraint solving pro-
cess; and (3) we admit negative numbers everywhere. They are treated as any
other number and there is no need to ‘assert’ which of the coefficients could be
negative in order to handle them apart (see [10, Section 7] and [10, Example 20]).
However, much work is necessary to make fully general use of these techniques
in practical applications. We plan to address these issues in the near future.
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for Proving Polynomials Non-negative�
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Abstract. Proving polynomials non-negative when variables range on a
subset of numbers (e.g., [0,+∞)) is often required in many applications
(e.g., in the analysis of program termination). Several representations for
univariate polynomials P that are non-negative on [0,+∞) have been
investigated. They can often be used to characterize the property, thus
providing a method for checking it by trying a match of P against the
representation. We introduce a new characterization based on viewing
polynomials P as vectors, and find the appropriate polynomial basis B
in which the non-negativeness of the coordinates [P ]B representing P in
B witnesses that P is non-negative on [0,+∞). Matching a polynomial
against a representation provides a way to transform universal sentences
∀x ∈ [0,+∞) P (x) ≥ 0 into a constraint solving problem which can be
solved by using efficient methods. We consider different approaches to
solve both kind of problems and provide a quantitative evaluation of
performance that points to an early result by Pólya and Szegö’s as an
appropriate basis for implementations in most cases.

Keywords: Polynomial constraints, positive polynomials, representa-
tion theorems.

1 Introduction

Representations of univariate polynomials that are positive (Pd(I)) or non-
negative (Psd(I)) on an interval I of real numbers have been investigated (see
[14] for a survey) and some of them are useful to check the property. In this
paper we investigate this question: which technique is worth to be implemented
for a practical use? Our specific motivation is the development of efficient and
automatic tools for proving termination of programs, where polynomials play a
prominent role (see [8,12], for instance) and the focus is on Psd([0,+∞)).

We decompose the whole problem into two main steps: (1) the use of repre-
sentation theorems to obtain a set of existential constraints whose satisfaction
witnesses that (∀x ≥ 0) P ≥ 0 holds and (2) the use of constraint solving tech-
niques to obtain appropriate solutions. With regard to (1), several researchers
(starting with Hilbert) addressed this problem and contributed in different ways
(see Section 2). In this setting, the following test is often used in practice [10]: a
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polynomial P is Psd([0,+∞)n) if all coefficients of the monomials in P are non-
negative. This has obvious limitations. For instance, Q(x) = x3 − 4x2 + 6x + 1
is Psd([0,+∞)), but contains negative coefficients. The following observation
generalizes this approach (Section 3): P ∈ R[X ] of degree n can be represented
as a vector [P ]B = (α0, . . . , αn)

T of n + 1 coordinates with respect to a ba-
sis B = {v0, . . . , vn} ⊆ R[X ], i.e., P = α0v0 + α1v1 + · · · + αnvn. Then, P is
Psd([0,+∞)) if (i) [P ]B ≥ 0 and (ii) v0, . . . , vn are Psd([0,+∞)). Requiring all
coefficients in the representation P =

∑n
i=0 pix

i to be non-negative corresponds
to considering the standard basis Sn = {1, x, ..., xn} for polynomials of degree n.
In our running example, [Q]S3 = (1, 6,−4, 1)T �≥ 0. We define a parametric poly-
nomial basis Pn such that, for all P ∈ R[X ] of degree n which is Psd([0,+∞)),
[P ]B ≥ 0 for some specific B which is obtained from Pn by giving appropriate
values to the parameters. We also show how to give value to the parameters.

Example 1. The representation of Q(x) = x3 − 4x2 + 6x + 1 with respect to
B = {1, x, x2, x(x− 2)2} is [Q]B = (1, 2, 0, 1)T ≥ 0.

Regarding (2), in Section 4 we use a recent, efficient procedure to solve polyno-
mial constraints over finite domains [5] as a reference to provide a quantitative
analysis of the characterizations discussed in Sections 2 and 3 and provide an
answer to our question. Section 5 discusses some related work and concludes.

2 Representation of Polynomials Non-negative in [0,+∞)

We consider the following representations of Psd([0,+∞)) polynomials P (see
[14]): (1) Hilbert [9]; (2) Pólya and Szegö [13]; (3) Karlin and Studden [11]; and
(4) Hilbert’s approach using Gram matrices [7].

Remark 1. Our motivation for considering these particular methods is that, in
automatic proofs of termination, polynomials P whose non-negativity must be
guaranteed are parametric, i.e., the coefficients are not numbers but rather vari-
ables whose value is generated by a constraint solving process. All previous
methods fit the requirement of being amenable to this practical setting.

We briefly discuss how to use these four methods and also give some cost indi-
cators: V (n) is the number of parameters used to match P (of degree n) against
the representation, and I(n) is the number of (in)equalities which are obtained.
The following fact is used later.

Proposition 1. Let P,Q ∈ R[X1, . . . , Xn] be P =
∑

αaαX
α and Q=

∑
αbαX

α.
If aα ≥ bα for all α ∈ Nn and Q is Psd([0,+∞)n), then P is Psd([0,+∞)n).

In the following,÷ and % denote the integer division and remainder, respectively.
We say that a polynomial P is a sum of squares (or just sos, often denoted as
P ∈
∑

R[X]2) if can be written P =
∑

i f
2
i for polynomials fi.
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2.1 Hilbert

Since P ∈ R[X1, . . . , Xn] is Psd([0,+∞)n) if and only if H(X1, . . . , Xn) =
P (X2

1 , . . . , X
2
n) is Psd(Rn) (note that this transformation doubles the degree

of P ), we can use the following result.

Proposition 2 (Hilbert). [9] If P ∈ R[X ] is Psd(R), then P is a sum of two
squares of polynomials.

Example 2. Consider H(x) = Q(x2) = x6 − 4x4+6x2+1 = f1(x)+ f2(x) where
fi(x) = (aix

3 + bix
2 + cix+ di)

2 for i = 1, 2. Then, H(x) should match∑2
i=1 a

2
ix

6+ 2aibix
5+ (b2i + 2aici)x

4+ 2(bici + aidi)x
3+ (2bidi + c2i )x

2+ 2cidix+ d2i

which amounts at solving the following equalities :∑2
i=1 a

2
i = 1

∑2
i=1 aibi = 0

∑2
i=1 b

2
i + 2aici = −4∑2

i=1 bici + aidi = 0
∑2

i=1 2bidi + c2i = 6
∑2

i=1 cidi = 0
∑2

i=1 d
2
i = 1

A solution (with irrational numbers) is obtained by using, e.g., Mathematica.

We have V (n) = 2n+ 2 and I(n) = 2n+ 1.

2.2 Pólya and Szegö

Proposition 3 (Pólya & Szegö). [13] If P is Psd([0,+∞)), then there are sos
polynomials f, g such that P (x) = f(x) + xg(x) and deg(f), deg(xg) ≤ deg(P ).

If f, g ∈
∑

R[X ]2, then both f and xg are Psd([0,+∞)). Thus, Pólya and Szegö’s
representation actually provides a characterization. We can use it, then, to prove
that P is Psd([0,+∞)) iff P matches the representation. Since every univariate
sos polynomial f can be written as a sum of two squares of polynomials, in
Proposition 3 we assume f = f2

1 +f2
2 and g = g21 +g22 , for polynomials fi and gi,

i = 1, 2. If n = deg(P ) = 1, then, since deg(f), deg(xg) ≤ 1, f, g ∈
∑

R[X ]2 must
be constant polynomials f = f0 and g = g0. If n = 2, then, since deg(xg) ≤ 2,
g ∈
∑

R[X ]2 must be a constant. If n > 2, then deg(fi) = d1 ≤ �n
2 �, and

deg(gi) = d2 ≤ �n−1
2 �. Write fi = ai,d1x

d1 + · · ·+ ai,1x+ ai,0 and gi = bi,d2x
d2 +

· · ·+bi,1x+bi,0 for i = 1, 2. Try to match the coefficients of the target polynomial
P against this representation.

Example 3. For our running example Q, we have

Q(x) = x3 − 4x2 + 6x+ 1 = f1(x) + f2(x) + x(g1(x) + g2(x))

where fi(x) = (aix+ bi)
2 and gi(x) = (cix+ di)

2 for i = 1, 2. Then,

Q(x) = (c21 + c22)x
3 +(a2

1 + a2
2 +2c1d1 +2c2d2)x

2 +(2a1b1 +2a2b2 + d21 + d22)x+ b21 + b22

By Proposition 1, rather than equalities, we solve now the inequalities1:

1 ≥ c21 + c22; −4 ≥ a2
1 + a2

2 + 2c1d1 + 2c2d2; 6 ≥ 2a1b1 + 2a2b2 + d21 + d22; 1 ≥ b21 + b22.

with: a1 = 0, a2 = 0, b1 = 1, b2 = 0, c1 = 1, c2 = 0, d1 = −2, and d2 = 1.

1 Using inequalities makes the constraint solving process more flexible and often avoids
the use of irrational numbers, often out of the scope for most constraint solving tools.
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Each fi and gi contributes with d1+1 and d2+1 parametric coefficients, respec-
tively, i.e., V (n) = 2(d1 + 1+ d2 +1) = 2(2+ d1 + d2) = 2(n+ 1) = 2n+ 2. The
number of inequalities to be solved is I(n) = n+ 1 (one per coefficient pi of P ).

2.3 Karlin and Studden

Theorem 1 (Karlin and Studden). [11, Corollary V.8.1] Let P2m be a poly-
nomial of degree 2m for some m ≥ 0 with leading coefficient a2m > 0. If P2m is
Pd([0,+∞)), then there exists a unique representation

P2m(X) = a2m
∏m

j=1(X − αj)
2 + βX

∏m
j=2(X − γj)

2

where β > 0 and 0 = γ1 < α1 < γ2 < · · · < γm < αm < ∞. Similarly, if
P2m+1 is a polynomial of degree 2m+1 for some m ≥ 0, with leading coefficient
a2m+1 > 0 and P2m+1 is Pd([0,+∞)), then there exists a unique representation

P2m+1(X) = a2m+1X
∏m+1

j=2 (X − αj)
2 + β

∏m
j=1(X − γj)

2

where β > 0 and 0 = α1 < γ1 < α2 < γ2 < · · · < γm < αm+1 < ∞.

Unfortunately, this representation cannot be used to prove that P is Pd([0,+∞))
by matching. For instance, P = (x − 1)2 matches it, but it is not Pd([0,+∞)).
However, Karlin and Studden’s representation can be used to prove P to be
Psd([0,+∞)) by matching if we just require αj , β, γj ≥ 0.

Example 4. Since the degree of Q is odd, we let

KQ(x) = x(x − α2)
2 + β(x− γ1)

2 = x3 + (β − 2α2)x
2 + (α2

2 − 2βγ1)x+ βγ2
1

Thus, we have the following constraints (using Proposition 1):

−4 ≥ β − 2α2 1 ≥ 0 6 ≥ α2
2 − 2βγ1 1 ≥ βγ2

1 β ≥ 0 γ1 ≥ 0 α2 ≥ 0

The assignment α2 = 9
4 , β = 1

4 , and γ1 = 1
2 solves the system.

We have V (n) = n and I(n) = n+ 1 + V (n) = 2n+ 1.

2.4 Hilbert with Gram Matrices

An alternative way to use Hilbert’s representation is the following.

Theorem 2. [7] Let P be a polynomial of degree 2m and z(X) be the vector of
all monomials Xα such that |α| ≤ m. Then, P is a sum of squares in R[X ] if and
only if there exists a real, symmetric, psd matrix B such that P = z(X)TBz(X).

ProvingH(x) = P (x2) of degree 2n to be sos amounts at (1) matchingH against
z(X)TBz(X) (where z(X) = (1, X, . . . , Xn)T ) and (2) proving B ∈ Rn+1×n+1

positive semidefinite. Since B is symmetric, we need (n+1)(n+2)
2 parameters bij

to represent B. Then, we need to solve 2n+ 1 equations in (n+1)(n+2)
2 variables
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(the parameters bij) corresponding to the monomials in H . According to [15],

this can be done by taking (n+1)(n+2)
2 − (2n+1) = n2−n

2 of the bij as unknowns
which can be given appropriate values that are obtained using (2), i.e., B must be
positive semidefinite. This can be done by computing the characteristic polyno-
mial det(zIn+1−B) =

∑n
i=0 ciz

i of B and requiring its roots to be non-negative
[15]. They show that this can be achieved by imposing (−1)i+n+1ci ≥ 0 for all

0 ≤ i ≤ n. Thus, V (n) = (n+1)(n+2)
2 . and I(n) = (2n+ 1) + (n+ 1) = 3n+ 2.

3 Checking Positiveness of Polynomials as Vectors

Let V be an n-dimensional vector space over the reals and B = {v1, . . . , vn}
be an ordered basis for V. For all n-tuples α = (α1, . . . , αn) ∈ Rn we write
α ≥ 0 if αi ≥ 0 and α > 0 if α1 > 0 and α2, . . . , αn ≥ 0. Every v ∈ V
can be represented as a coordinate vector [v]B = (α1, . . . , αn)

T ∈ Rn such that
v = α1v1+· · ·+αnvn. Given bases B and B′ for V, there is a change of base matrix
(cb-matrix) MB′ �→B (or just M) which can be used to obtain the coordinate
representation [v]B of v in B from the representation [v]B′ of v in B′: [v]B =
M [v]B′ . The set Pn of univariate polynomials of degree at most n is a vectorial
space of dimension n + 1 and has a standard basis Sn = {1, x, . . . , xn}. If B =
{v0, . . . , vn} is a basis for Pn and every v ∈ B is Psd([0,+∞)), then given
P ∈ Pn, if [P ]B = (α0, . . . , αn)

T ≥ 0, then P is Psd([0,+∞)). If P =
∑n

i=0 pix
i,

this is translated into the search of a basis B satisfying the conditions above
and a cb-matrix M = MSn �→B such that M [P ]Sn ≥ 0. We consider parametric
bases B consisting of polynomials with parametric coefficients which can be given
appropriate values as to fit the requirements above. By a parametric polynomial
we mean a polynomial P ∈ R[γ1, . . . , γk][X ] over X whose monomials have
coefficients in R[γ1, . . . , γk]; variables γ1, . . . , γk are called parameters. For all
i ∈ N, consider the parametric univariate polynomials, :

Pi(x) =
∏ i

2

j=1(x− γij)
2 if i is even Pi(x) = x

∏ i−1
2

j=1(x− γij)
2 if i is odd

where the empty product is 1, and γij are parameters satisfying γij ≥ 0. For
instance, P0(x) = 1, P1(x) = x, P2(x) = (x − γ21)

2 = γ2
21 − 2γ21x + x2, and

P3(x) = x(x − γ31)
2 = γ2

31x − 2γ31x
2 + x3. Note that for all i ≥ 0 and x ≥ 0,

Pi(x) ≥ 0 and P0(x) > 0. Given n ∈ N, let Pn = {P0(x), . . . ,Pn(x)} ordered by
the sequence 0, 1, . . . , n. Pn is a basis of Pn; this is a consequence of the following.

Theorem 3. Let P = {P0, . . . , Pn} be a set of n + 1 polynomials such that
P0 ∈ R− {0} and deg(Pi) = i for all 1 ≤ i ≤ n. Then, P is a basis of Pn(x).

Note that Pn+1 = Pn ∪ Pn+1(x).

Proposition 4 (Number of Parameters in the Basis). Given n ∈ N, the
number N(n) of parameters in Pn is given by N(0) = 0 and N(n) = N(n− 1)+

�n
2 � for n > 0. Furthermore, N(n) = n2

4 if n is even and n2−1
4 otherwise.
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We prove that Pn characterizes Psd([0,+∞)) and Pd([0,+∞)).

Theorem 4. A polynomial P ∈R[X ] of degree n is Psd([0,+∞)) (Pd([0,+∞)))
if and only if [P ]Pn ≥ 0 (resp. [P ]Pn > 0) for some assignment of values γij ≥ 0
to the parameters in Pn.

We show how to compute the cb-matrix Mn = MSn �→Pn for obtaining the rep-
resentation [P ]Pn = Mn[P ]Sn of P ∈ Pn which is required in Theorem 4. In
the following, [Pn(x)]

1,··· ,n
Sn

is the n-dimensional vector containing the first n
(parametric) coordinates of [Pn(x)]Sn (the last one is 1, corresponding to xn).

Theorem 5 (Incremental cb-matrix). We have M0 = I1 and for all n > 0,

Mn =

(
Mn−1 −Mn−1[Pn(x)]

1,...,n
Sn

01×n 1

)
Example 5. Since M1 = I2, according to Theorem 5, we have:

M2 =

⎛⎝ M1 −M1

(
γ2
21

−2γ21

)
01×2 1

⎞⎠ =

⎛⎝1 0 −γ2
21

0 1 2γ21
0 0 1

⎞⎠ and

M3 =

⎛⎜⎜⎝ M2 −M2

⎛⎝ 0
γ2
31

−2γ31

⎞⎠
01×3 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 −γ2

21 −2γ2
21γ31

0 1 2γ21 4γ21γ31 − γ2
31

0 0 1 2γ31
0 0 0 1

⎞⎟⎟⎠
For our running example [Q]S3 = (1, 6,−4, 1)T , we impose [Q]P3 = M3[Q]S3 > 0:

⎛
⎜⎜⎝

1 0 −γ2
21 −2γ2

21γ31
0 1 2γ21 4γ21γ31 − γ2

31

0 0 1 2γ31
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
6
−4
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 + 4γ2
21 − 2γ2

21γ31
6− 8γ21 + 4γ21γ31 − γ2

31

−4 + 2γ31
1

⎞
⎟⎟⎠ >

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠

The corresponding existential constraint:

γ21, γ31 ≥ 0, 1+4γ2
21−2γ2

21γ31 > 0 ∧ 6−8γ21+4γ21γ31−γ2
31 ≥ 0 ∧ 2γ31−4 ≥ 0 ∧1 > 0

is satisfied if γ21 = 0 and γ31 = 2, witnessing Q as pd([0,+∞)) through the
coordinate representation [Q]P3 = (1, 2, 0, 1)T when P3 = {1, x, x2, x(x− 2)2}.

Note that V (n) = N(n) = n2−n%2
4 and I(n) = n+1+ V (n) = n+ 1+ n2−n%2

4 .

Remark 2. If P is a parametric polynomial of degree n, then [P ]Sn is an n+ 1-
tuple of parameters which are treated by the constraint solving system which
obtains the parameters of the basis Pn in the same way (see Remark 1).

4 Quantitative Analysis

In constraint solving, the number of variables occurring in the whole set of con-
straints usually dominates the temporal cost to reach a solution. In our setting,
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assuming P of degree n, for each representation method V (n) and I(n) (see
Section 2) are as follows:

Method: Hilbert P&S K&S Gram Vector

V (n): 2n+ 2 2n+ 2 n+ 1 (n+1)(n+2)
2

n2−n%2
4

I(n): 2n+ 1 n+ 1 2n+ 1 3n+2 n+ 1 + n2−n%2
4

This table suggests the following conclusion: for proving Psd([0,+∞)), Karlin &
Studden is the best choice. However, this does not pay attention to the subsequent
constraint solving process that we need to use in any implementation. In [5] an
efficient procedure to solve polynomial constraints C (e.g., P ≥ 0, where P is
written as a sum of monomials with the corresponding coefficients) is given.
The procedure transforms a polynomial constraint into a formula of the linear
arithmetic and then fast, highly efficient Satisfiability Modulo Theories (SMT)
techniques are used to find a solution. In linear arithmetic (logic) only constants c
or additions of linear expressions c·v are allowed, the atoms consist of expressions
� �� �′ where �, �′ are constants or linear expressions and �� ∈ {=, >,≥}, and the
formulas are combinations of atoms using → (implication) and ∧ (conjunction).
An initial preprocessing L0 transforms P �� 0 into �P �� 0, where �P is obtained
from P by replacing the nonlinear monomials M by new variables xM ; then new
atoms xM = M are added and they are subsequently transformed after further
linearization using the following rules, where D is a finite domain of numbers2:

Definition 1. Let C be a pure non-linear constraint and D be a finite set. The
transformation rules are the following (where v is a variable):

L1: C ∧ x = vp =⇒ C ∧
∧

a∈D(v = a → x = ap), if p > 1
L2: C ∧ x = vp · w =⇒ C ∧

∧
a∈D(v = a → x = ap · w)

L3: C ∧ x = vp ·M =⇒ C ∧
∧

a∈D(v = a → x = ap · xM ) ∧ xM = M
if M is not linear and v does not occur in M

For x = M0 where M0 is a monomial with m different variables, if M0 consists
of at most two variables, one of them of degree 1, then L1 or L2 apply; no
new variables are introduced and the equality is transformed into |D| new linear
formulas. If M0 = vpM contains m variables and M is not linear, then only L3
applies, and then introduces a new variable xM together with |D| new linear
formulas and a new equality xM = M where M has m− 1 variables.

Example 6. For instance, for 1 ≥ c21 + c22 in Example 3,

1 ≥ c21 + c22 �L0 1 ≥ xc21
+ xc22

∧ xc21
= c21 ∧ xc22

= c22
�L1 1 ≥ xc21

+ xc22
∧
∧

d∈D c1 = d → xc21
= d2 ∧

∧
d∈D c2 = d → xc22

= d2

we obtain 1 + 2|D| linear formulas and 2 new variables are required.

In the following, VL(n) is the number of new variables introduced by L0. And if
P is the targeted polynomial, pi for 0 ≤ i ≤ n is the coefficient of xi in P .

2 Simplified definition which only uses a single domain of values for all variables.
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Hilbert. If f =
∑d

j=0 fjx
j is a parametric polynomial of degree d > 0, then the

coefficient ci of x
i in f2 is obtained from the products frfs such that r + s = i.

Here, fsfr does not count as a new combination because frfs + fsfr = 2frfs. If
i ≤ d we have different contributing combinations from (0, i) to (i÷2, i−i÷2), i.e.,
1+i÷2 combinations. If i > d, then we have different contributing combinations
starting from (d− i, d), i.e., 1 + (2d− i)÷ 2 = 1+ d− i÷ 2− i%2 combinations.
Overall, if μd(ci) = 1 + i÷ 2, if i ≤ d, and μd(ci) = 1 + d− i÷ 2− i%2, if i > d,
then ci consists of a sum of μd(ci) monomials frfs all of them of degree 2.

When matching P (x) =
∑n

i=0 pix
i
i against Hilbert’s representation, each pi,

0 ≤ i ≤ n is matched by a sum c2i of 2μn(c2i) expressions of degree 2 (in
the parameters). However, for all 0 ≤ i < n, there are additional equations
c2i+1 = 0 which are due to the duplication of the degree of P before the matching.
Therefore, there are 2n+ 1 equations gathering∑n

i=0 2μn(c2i) +
∑n−1

i=0 2μn(c2i+1) = 2
(∑n

i=0 μn(c2i) +
∑n−1

i=0 μn(c2i+1))
)

quadratic terms all together, i.e., VL(n) = 2
(∑n

i=0 μn(c2i) +
∑n−1

i=0 μn(c2i+1))
)
.

Polya and Szegö. When matching P =
∑n

i=0 pix
i
i against Polya and Szegö’s

representation in Section 2.2, if n = 1, then p0 and p1 are matched to squared
constants f2

0 and g20 , respectively. If n = 2, then p1 is matched to a sum of two
monomials of degree 2 each; finally, if n ≥ 3, then p0 and pn are each of them
matched to a sum of 2 squares, and each pi, 0 < i < n is matched to a sum of
2μn÷2(ci) + 2μ(n−1)÷2(ci−1) expressions which are parametric coefficients: the
coefficients of monomials of degree i from f2

1 and f2
2 , and the coefficients of

monomials of degree i− 1 from g21 and g22 . All these parametric coefficients have
degree 2. We have two equations with two terms and n− 1 equations gathering∑n−1

i=1 2μn÷2(ci) + 2μ(n−1)÷2(ci−1)=2
(∑n−1

i=1 μn÷2(ci) +
∑n−1

i=1 μ(n−1)÷2(ci−1)
)

= 2
(
1 + μn÷2(cn−1) +

∑n−2
i=1 μn÷2(ci) + μ(n−1)÷2(ci)

)
terms. Terms M of degree 2 require a new variable xM in the initial step L0.
Overall, VL(1) = 2, VL(2) = 3 · 2 = 6 and, for n ≥ 3:

VL(n) = 6 + 2
(
μn÷2(cn−1) +

∑n−2
i=1 μn÷2(ci) + μ(n−1)÷2(ci)

)
Karlin and Studden. If α ∈ {0, . . . , n}m, we let |α| =

∑m
i=1 αi. Note that

(
∏m

i=1(x− ai))
n
=
∑mn

i=0(−1)i(
∑

α∈{0,...,n}m,|α|=mn−i a
α)xi. If n = 1, there are(

m
m− i

)
=

(
m
i

)
parametric monomials aα (all of them of degree m− i with

respect to parameters ai) accompanying xi. If n = 2, we can obtain the number

of monomials accompanying xi as follows. There are

(
m
p

)
monomials aα with
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α ∈ {0, 1}m and |α| = m− p. Here, 0 ≤ p ≤ m. These monomials can contribute
to a monomial of degree 2m− i for xi. However, note that only those monomials
satisfyingm−p ≤ 2m−i (i.e., p ≥ i−m) will be useful; otherwise, the monomials
aα exceed the required degree 2m− i for xi. If we replace 2m− i − (m − p) =
m− i+p occurrences of 1 by 2 in α to yield α′ (with m−p− (m− i+p) = i−2p
occurrences of 1 only), then, |α′| = 2(m−i+p)+i−2p = 2m−i as desired. We can

do that in

(
m− p

m− i+ p

)
different ways. However, this process makes sense only

if α has enough occurrences of 1, i.e., if 2(m− p) ≥ 2m− i (equivalently, 2p ≤ i,
i.e., p ≤ i ÷ 2) so that the replacement of occurrences of 1 by 2 in α actually
leads to the appropriate α′. Overall, xi comes with a parametric coefficient of

mon(m, i) =

i÷2∑
p=max(0,i−m)

(
m
p

)(
m− p

m− i + p

)
monomials of degree 2m− i (in the parameters ai).

When matching a polynomial P of degree 2m against Karlin & Studden rep-
resentation, we get 2m + 1 constraints Ci ≤ pi, 0 ≤ i ≤ 2m, where Ci consists
of mon(m, i) monomials of degree 2m− i (coming from the first term of P2m(X)
in Theorem 1) and mon(m − 1, i − 1) monomials of degree 2m − i (due to the
product with β and X) coming from the second term of P2m(X). Therefore, Ci

consists of nonlinear monomials if 2m − i > 1 (i.e., i < 2m − 1). Overall, we

have
∑2m−2

i=0 (mon(m, i) +mon(m− 1, i− 1)) nonlinear monomials. Similarly, P
of degree 2m + 1 yields 2m + 2 constraints Ci = pi, 0 ≤ i ≤ 2m + 1, where
Ci consists of mon(m, i − 1) monomials of degree 2m− i + 1 (coming from the
first term of P2m(X) above) and mon(m, i) monomials of degree 2m− i+1 (due
to the product with β) coming from the second term of P2m(X). Therefore,
Ci consists of nonlinear monomials if 2m − i + 1 > 1 (i.e., i < 2m). Overall,∑2m−1

i=0 (mon(m, i− 1) +mon(m, i)) nonlinear monomials. Hence,

VL(n) =

{∑2m−2
i=0 (mon(m, i) +mon(m− 1, i− 1)) if n = 2m∑2m−1
i=0 (mon(m, i− 1) +mon(m, i)) if n = 2m+ 1

Vector. In the following, μ(e) is the number of monomials in a parametric poly-
nomial expression e in normal form; κ(e) is the number of constant monomials
in e (κ(e) ∈ {0, 1}); λ(e) is the number of linear and non constant monomials in
e (λ(e) ∈ {0, 1}); and λ(e) is the number of nonlinear monomials in e. Clearly,
μ(e) = κ(e) + λ(e) + λ(e). Note that, since κ, λ, and λ are mutually exclusive,
identifying μ(e) with one of them implies that the other are null. Finally, δ(e) is
the common degree of all monomials in e (or ⊥ if it does not exist). A polyno-
mial Pn(x) consists of parametric coefficients πn,i for 0 ≤ i ≤ n, where πn,n = 1
(i.e., μ(πn,n) = κ(πn,n) = 1 and δ(πn,n) = 0). If n > 0 is even (n = 0 is a
particular case of the previous one), then for all 0 ≤ i < n, πn,i consists of
a sum of μ(πn,i) = mon(n ÷ 2, i) monomials, all of them of degree n − i (i.e.,
δ(πn,i) = n − i). Thus, πn,i is linear (and nonconstant) if n − i = 1. There-
fore, μ(πn,n−1) = λ(πn,n−1) and, for all 0 ≤ i < n − 1, μ(πn,i) = λ(πn,i) and
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δ(πn,i) = n− i. If n is odd, then πn,0 = 0 and for all 0 < i < n, πn,i consists of
a sum of μ(πn,i) = mon(n÷ 2, i− 1) monomials, all of them of degree n− i+ 1
(i.e., δ(πn,i) = n − i + 1). Summarizing: μ(πn,i) = mon(n ÷ 2, i − (n%2)). A
constraint P ≥ 0 is translated into a set of n+ 1 inequalities Ci ≥ 0, where Ci

is the result of multiplying the i-th row of Mn = (mn
ij)n+1×n+1 and [P ]Sn , the

vector of coefficients of P , for i = 0, . . . , n. We have the following results.

Proposition 5. For all n, μ(mn
1,2) = 0 and for all 1 ≤ j < i ≤ n, μ(mn

i,i) = 1
and μ(mn

i,j) = 0. Let n > 1. For all 1 ≤ i ≤ n,

1. μ(mn
i,n+1) =

∑n
j=1 μ(m

n−1
ij )μ(πn,j−1) =

∑n
j=1 μ(m

n−1
ij )mon(n÷ 2, (j − 1)−

n%2).
2. δ(mn

i,n+1) = δ(mn−1
i,n ) + 1 = n+ 1− i.

Proposition 6. VL(0) = VL(1) = 0 and for all n > 1, VL(n) = VL(n − 1) +∑n−1
i=1 μ(mn

i,n+1).

4.1 Comparison

Let VP (n) = V (n)+VL(n) be the number of parameters obtained after matching
a given representation and issuing the preprocessing step L0 for the linearization.
The following table shows VP (n) for some degrees n of the targeted polynomial
P for the considered representation methods3.

Method 1 2 3 4 5 6 7 8 9 10 20 100
Hilbert 10 18 28 40 54 70 88 108 130 154 504 10504
P&S 6 10 20 28 36 46 56 68 80 94 284 5404
K&S 2 4 7 13 20 38 57 111 166 328 78741 9.57 · 1023
Vector 0 2 6 28 96 498 2322 15308 93696 758086 2.48 · 1016 < ∞

Although the range of values for n is small, the trend for the different methods
is clear and suggests that, for n > 6, Pólya & Szegö’s representation provides
the best starting point for an implementation. Let’s reason that this is actually
the case. Let WL(n) be the number of variables introduced by the linearization
after using L0 and L1, . . . , L3. Obviously, VL(n) ≤ WL(n). Let VT (n) = V (n) +
WL(n) be the number of variables occurring in the linear formula obtained by
the linearization process. The number FL(n) of new formulas introduced by
the linearization is bounded by |D|WL(n) ≤ FL(n). And the total number of
formulas is FT (n) = I(n) + FL(n), thus bounded by I(n) + |D|WL(n) ≤ FT (n).

Since the degree of all monomials in the parametric polynomials in the rep-
resentation is 2, for Pólya and Szegö’s representation WPS

L (n) = V PS
L (n) (the

linearization process will not introduce more variables after L0). Thus, V PS
T (n) =

V PS(n) + V PS
L (n) = V PS

P (n). The V PS
L (n) equations xM = M are transformed

by the application of L1 or L2 only (because deg(M) = 2) into FPS
L (n) =

|D|V PS
L (n) new linear formulas. Thus, FPS

T (n) = IPS(n) + |D|V PS
L (n).

3 Obtained using Haskell encodings of the cost formulas in Appendix B.
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Since for M ∈ {Hilbert ,KS ,Vector ,G}, V PS
T (n) = V PS

P (n) < V M
P ≤ V M

T (n)
for all n > 6 (see the table above4), and, since IPS(n) < IM (n) for all n > 1,
we have FPS

T (n) = IPS(n) + |D|V PS
L (n) < IM (n) + |D|WM

L (n) ≤ FM
T (n) for all

n > 6, we finally conclude that Pólya and Szegö’s representation is the best choice
for an implementation using the constraint solving method in [5]: it minimizes
both the number of variables VT (n) and formulas FT (n) to be considered.

5 Related Work and Conclusions

In Section 3, we have shown that the notions of polynomial bases and vector
coordinates can be used instead of that of monomials and monomial coefficients
when testing univariate polynomials P for Psd([0,+∞)) and Pd([0,+∞)). The
quantitative analysis in the previous section, though, suggests that this new
method is hardly useful in practice. We show its theoretical interest as improving
on the use of Bernstein’s polynomials [3], which inspired our developments.

Psd([0,+∞)) and Psd([−1, 1]) are related through Goursat transform (see

[14]): Given P ∈ R[X ] of degree n, we let P̃ (X) = (1+X)nP (1−X
1+X ). Furthermore,˜̃

P (X) = 2nP (X). Then, P is Psd([−1, 1]) if and only if P̃ is Psd([0,+∞)) and

deg(P̃ ) ≤ n, see [14, Lemma 1]. Testing Pd([−1, 1]) or Psd([−1, 1]) of univariate
polynomials P ∈ R[X ] on [−1, 1] can be done by using the so-called Bernstein’s
basis [6]: if [P ]Bn > 0, for the Bernstein basis Bn (which consists of polynomials
of degree n only) then P is Pd([−1, 1]) [2]. Unfortunately, Bn does not capture
all P ∈ Pd([−1, 1]) as positive vectors [P ]Bn . For instance, P (X) = 5X2−4X+1
is positive on [−1, 1] but [P ]B2 �> 0 [6]. Nevertheless, for each P ∈ Pd([−1, 1]) of
degree n the so-called Bernstein’s Theorem [4] ensures the existence of some p ≥
n such that [P ]Bp consists of positive coordinates only (the minimum of those p is
called the Bernstein degree of P ). Unfortunately, such p can be much higher than
n. For instance, for P (X) = 5X2 − 4X + 1) we need to consider 23 polynomials
in Bernstein’s basis. Even worst, the Bernstein degree of a polynomial P is not
usually known, and we have to (over)estimate it. For instance, a the recent

estimation [6] is n(n−1)
2

M
λ , where n is the degree of the polynomial, M is the

maximum value of the coordinates [P ]Bn of P in the Bernstein basis of degree
n, and λ is the minimum of P on [−1, 1]. For P (X) = 5X2 − 4X + 1 we have
n = 2, M = 10, λ = 1

5 , and a estimation of 50, far beyond 23, the real Bernstein
degree of P . In [6], this problem is addressed by using partitions of [−1, 1] where
we are able to represent P in a Bernstein basis of degree n by using positive
coordinates only. However, we need to produce several (up to n+ 1) partitions
of [−1, 1], compute the corresponding representations of P , etc. Furthermore, it
is unclear how [6] would be used with parametric polynomials (see Remark 1).

4 Although we do not provide information about V G
L (n), note that V G(n) and V PS

T

are already very similar. Thus, assuming V PS
T (n) < V G

T (n) is natural.
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Example 7. For our running example, we get Q̃(X) = −10X3+4X2 +10X+4.

According to [6, page 640], for B3 = {
(
3
i

)
(1−X)3−i(X+1)i

8 | 0 ≤ i ≤ 3}, i.e.,

{1
8
(1−3x+3x2−x3),

3

8
(1−x−x2+x3),

3

8
(1+x−x2−x3),

1

8
(1+3x+3x2+x3)}

we have: SS3 �→B3 =

⎛⎜⎜⎝
1 −1 1 −1
1 − 1

3 − 1
3 1

1 1
3 − 1

3 −1
1 1 1 1

⎞⎟⎟⎠ and [Q̃]B3 = SS3 �→B3 [Q̃]S3 =

⎛⎜⎜⎝
8

− 32
3

16
8

⎞⎟⎟⎠,
which does not witness Q̃ as Psd([−1, 1]) due to the negative coordinate − 32

3 in

[Q̃]B3 . The estimated Bernstein degree (for n = 3, M = 16 and λ � 1.22) is 40,
i.e, a 40-square cb-matrix is required! This can be compared with Example 5.

We have investigated methods for proving univariate polynomials Psd([0,+∞)),
and a quantitative evaluation of the requirements needed to make a practical
use of them suggests that an early result by Pólya and Szegö’s provides an ap-
propriate basis for implementations in most cases. An important motivation and
contribution of this work in connection with the development of tools for auto-
matically proving termination is that we avoid the need of explicitly requiring
that parametric polynomials arising in proofs of termination have non-negative
coefficients (which is the usual practice in termination provers, see [8,12]). We
will use our new findings in future versions of the tool mu-term [1].

Acknowledgements. I thank the anonymous referees for their valuable
comments.
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13. Polya, G., Szegö, G.: Problems and Theorems in Analysis II. Springer (1976)
14. Powers, V., Reznick, B.: Polynomials that are positive on an interval. Transactions

of the AMS 352(10), 4677–4692 (2000)
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1 Introduction

This work arises from a comment of the third author, a just retired (2014) pathol-
ogy Professor. He was sorry that his knowledge regarding evaluating cytologies,
based in his long experience working as pathologist, was going to be lost.

The usual process regarding vaginal cytologies evaluation [2,17] is the follow-
ing: vaginal cytologies are usually first checked by an expert medical laboratory
technician, that is specifically dedicated to this sort of diagnosis. The cytology
is redirected to the pathologist only if the diagnosis is not clear.

Unfortunately, training these medical laboratory technicians is a long and
expensive process. They have to observe many microphotographs and many real
cytologies on the microscope until the required expertise is achieved.

Moreover, the flow–chart of the diagnosis process, developed ad hoc for this
work is complex (Figure 1). This flow–chart is inspired by the widely adopted
Bethesda System [4,16] and somehow details the steps usually carried out in
medical laboratories.

As the logic underlying the flow-chart (both the variables and the logic de-
ductions) are Boolean, the first two authors considered that it was very well
suited for approaching it as a classic Rule–Based Expert System (RBES) that
synthesized this knowledge.

It could be used in two ways by medical laboratory technicians specialized in
vaginal cytology:

– as a trainer, during their educational period,
– as an aid for decision making during the exercise of their profession.

The final version will include microphotographs of real cases as illustration of
all steps.

We decided to implement the RBES using an algebraic inference engine (that
used Groebner bases [5]) because of our experience using this approach with
medical applications [10,11,12,15]. We did choose the computer algebra system
CoCoA [1] for the implementation. The novelty of this work is not on the theoret-
ical side but on the new application identified and the GUI under development,
that will handle microphotographs as illustrations (see Section 6).

The first step carried out was to organize the knowledge in the form of a
flow–chart (Figure 1).

Essentially, we have considered 7 possible diagnosis:

– malignant,
– epidermoid invasive non–keratinizing carcinoma,
– epidermoid invasive keratinizing carcinoma,
– probably malignant or slight displasia,
– perform new cytologies,
– reactive process,
– normal cytology.



36 C. Gamallo-Chicano, E. Roanes-Lozano, and C. Gamallo-Amat

Fig. 1. The flow–chart of the diagnosis process

As a first step, we have considered 12 possibilities regarding:

– the presence or accumulation of round, polygonal or squamous cells,
– the chromatine density,
– the ratio between the nucleus and the cytoplasm,
– the existence of cell stacking,
– the size of the nucleoli,
– the number of mitosis,
– the irregularity of the border of the nuclei.

(see Figures 2–6). Other possibilities arise when advancing in the flow diagram.
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Fig. 2. Normal endocervical and squamous cells

Fig. 3. Normal endocervical squamous epithelium with groups of dysplasic cells that
fits in a high–grade SIL (Squamous Intraepithelial Lesion, Bethesda classification)

2 RBES Structure

Due to the characteristics of the flow–chart summarizing the diagnosis process
(there is no imprecise knowledge or fuzzyness), the knowledge is structured as a
simple set of (Boolean) rules.

2.1 Logical Variables and Process

The first level potential facts are x0, ..., x11:

– x0: round cells presence,
– x1: round cells accumulation,
– x2: squamous cell plates presence,
– x3: plates of polygonal and cohesive cells,
– x4: denser chromatine than normal,
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Fig. 4. Low–grade SIL (Squamous Intraepithelial Lesion, Bethesda classification). Cel-
lular group with a low–moderate dysplasia. The cytoplasm of the cells are clearly
orangephilic.

Fig. 5. Low–grade SIL (Squamous Intraepithelial Lesion, Bethesda classification). Cy-
topathological action of HPV (human-papillomavirus).

– x5: thin and sparse chromatine,
– x6: altered nucleus to cytoplasm ratio in favor of the nucleus,
– x7: cell stacking,
– x8: prominent nucleoli,
– x9: nucleoli occupy almost the entire cells,
– x10: low number of mitosis,
– x11: nuclei with jagged edges.

From these potential facts a first level of conclusions can be obtained:

– p1: possible metaplasia,
– p2: possible displasia,
– p3: suspected malignancy.
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Fig. 6. Epidermoid carcinoma. Images of phagocytosis, polymorphic nuclei and hy-
perchromasia.

Fig. 7. Squamous cell carcinoma. Cellular groups with a clear cytologic atypia.

Now, in some cases, the system will ask about other (second level) potential
facts:

– h0: other previous cytologies available,
– h1: regression w.r.t. previous cytologies,
– h2: cellular membrane folding w.r.t. previous cytologies,
– h3: chromatine evolution towards less dense w.r.t. previous cytologies.

According to the first and second level potential facts that hold and the first
level conclusions, the system will ask about other (third level) potential facts:

– y1: great variability in the cellular morphology,
– y2: aberrant shapes (like fibers or tadpoles),
– y3: syncytia formation (multinucleate cytoplasms),
– y4: Indian ink–like chromatine.
– y5: keratinizing cytoplasm.
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Then a final diagnosis is reached:

– d0: malignant,
– d1: epidermoid invasive non–keratinizing carcinoma,
– d2: epidermoid invasive keratinizing carcinoma,
– d3: probably malignant or slight displasia,
– d4: perform new cytologies,
– d5: reactive process,
– d6: normal cytology.

2.2 Rules

The following rules translate the processes summarized in the flow–chart:

R1: x[2] ∨ x[3] ∨ x[4] → p[1]
R2: x[1] ∧ x[6] → p[2]
R3: p[2] ∧ x[9] → p[3]
R4: ¬(x[0] ∧ x[6]) ∧ x[10] → d[5]
R5: p[2] ∧ x[11] → p[3]
R6: h[0] ∧ h[1] ∧ p[3] → d[5]
R7: p[3] ∧ h[0] ∧ ¬h[1] ∧ ¬(h[2] ∧ h[3]) → d[4]
R8: p[3] ∧ h[0] ∧ ¬h[1] ∧ h[2] ∧ h[3] → d[3]
R9: p[3] ∧ ¬h[0] → d[4]
R10: p[3] ∧ x[7] ∧ x[8] ∧ x[5] → d[0]
R11: d[0] ∧ (y[1] ∨ y[2] ∨ y[3] ∨ y[4] ∨ x[9]) → d[2]
R12: d[0] ∧ (y[1] ∨ y[2] ∨ y[3] ∨ y[4] ∨ ¬y[5] ∨ x[9]) → d[1]

and the following rules are added in order to detect mutually excluding diagnoses:

R13: d[0] ∨ d[1] ∨ d[2] → ¬d[3] ∧ ¬d[5] ∧ ¬d[6]
R14: d[3] → ¬d[0] ∧ ¬d[1] ∧ ¬d[2] ∧ ¬d[5] ∧ ¬d[6]
R15: d[5] → ¬d[0] ∧ ¬d[1] ∧ ¬d[2] ∧ ¬d[3] ∧ ¬d[6]
R16: d[6] → ¬d[0] ∧ ¬d[1] ∧ ¬d[2] ∧ ¬d[3] ∧ ¬d[5]

Remark 1. It is important to underline that, if no diagnosis (d[i]) is obtained
from these rules, then the cytology should be considered as “normal” (d[6]),
because the flow–chart is designed to detect altered cases.

3 The Algebraic Approach to RBES

3.1 The Ring / Boolean Algebra Isomorphisms

The inference engine is based on a mathematical result, that translates the prob-
lem of determining whether a propositional formula may be inferred from others
or not, into a computer algebra problem. This problem was firstly treated in [7,8]
in the Boolean case and in [3,6] in the many–valued modal case. Constructing an
isomorphic structure (quotient ring) allows to directly translate known results
and to pass to RBES in a natural way [9,13,14].
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Let ∨,∧,¬,→ denote the logic disjunction, conjunction, negation and impli-
cation, respectively. Let (C,∨,∧,¬,→) be the Boolean algebra of the proposi-
tions that can be constructed using a finite number of propositional variables
P,Q, ..., R. Let us consider the Boolean algebra (A, +̃, ·, 1+, “is a multiple”),
where A is the residue class ring

A = Z2[p, q, ..., r]/〈p2 − p, q2 − q, ..., r2 − r〉

(〈p2 − p, q2 − q, ..., r2 − r〉 denotes the polynomial ideal generated by p2 − p, q2 −
q, ..., r2 − r). Let us define:

ϕ: (C,∨,∧,¬,→) −→ (A, +̃, ·, 1+,“is a multiple”)

the following way; for propositional variables:

P −→ p
Q −→ q
............
R −→ r

and for any A,B ∈ C

A ∨B −→ a+̃b
¬A −→ 1 + a

Then, as an immediate consequence of the De Morgan laws:

A ∧B −→ a · b

This correspondence turns out to be a Boolean algebra isomorphism [9,13,14].
Moreover, if ∨ is substituted by xor and +̃ by +, a (Boolean) ring isomorphism
is obtained.

The main result is Theorem 1, translating the problem of checking whether a
propositional formula is a tautological consequence of (i.e., can be inferred from)
others or not, by a polynomial ideal membership:

Theorem 1. A propositional formula α is a tautological consequence of a set of
formulae {β1, ..., βm}, if and only if

ϕ(¬α) ∈ 〈ϕ(¬β1),...,ϕ(¬βm)〉

3.2 An Algebraic Approach to Consistency Checking and
Knowledge Extraction in RBES

Bruno Buchberger developed a theory and an algorithm for finding specific basis
of ideals, which he called Groebner basis (named after his PhD advisor), that are
unique for each polynomial ideal [5]. In this theory, a method for computing the
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Normal Form of a polynomial modulo an ideal (the residue of the polynomial
modulo the ideal) is also provided. A most important application of Normal
Form is the solution of the ideal membership problem: if g is a polynomial and
L is an ideal:

g ∈ L if and only if NormalForm(g, L) = 0

Groebner bases and Normal Forms are key for performing the simplifications
derived from the definitions of the logical connectives of the logic (see Section
4.1) as well as for checking logic inferences.

Regarding RBES, logical inconsistency (i.e., what happens when a statement
turns out to be true and false at the same time) is translated in the polynomial
model in the degeneracy of the quotient ring into a ring with only one element
(that is, a ring where 0 = 1). This can be checked with a computer algebra
system by calculating whether a certain Groebner basis is {1} or not in the
quotient ring.

Meanwhile, from Theorem 1 and the solution of the ideal membership problem
mentioned above, knowledge extraction in the RBES can be performed in a com-
puter algebra system by calculating whether the Normal Form of the polynomial
translation of the negation of the logic formula belongs to the ideal generated by
the polynomial translation of the negation of certain formulae (facts, rules and
integrity constraints) in the quotient ring.

4 CoCoA 4.7.5 Implementation

4.1 Defining the Polynomial Ring and the Logical Connectives
(Boolean Case)

The polynomial ring is first defined:

A::=Z/(2)[x[0..11],p[1..3],h[0..3],y[1..5],d[0..6]];

USE A;

and the ideal I (that introduces idempotency) is then defined:

MEMORY.I:=Ideal(

x[1]^2-x[1],x[2]^2-x[2],x[3]^2-x[3],x[4]^2-x[4],x[5]^2-x[5],

x[6]^2-x[6],x[7]^2-x[7],x[8]^2-x[8],x[9]^2-x[9],x[10]^2-x[10],

x[11]^2-x[11],

p[1]^2-p[1],p[2]^2-p[2],p[3]^2-p[3],

h[0]^2-h[0],h[1]^2-h[1],h[2]^2-h[2],h[3]^2-h[3],

y[1]^2-y[1],y[2]^2-y[2],y[3]^2-y[3],y[4]^2-y[4],y[5]^2-y[5],

d[0]^2-d[0],d[1]^2-d[1],d[2]^2-d[2],d[3]^2-d[3],d[4]^2-d[4],

d[5]^2-d[5],d[6]^2-d[6]

);

Then the logical connectives can be defined. Note that NEG represents ¬ and IMP

represents →. As OR and AND are reserved words in CoCoA, we we have decided
to use the (short) Spanish words: O and Y. Note that NF is the command that
computes Normal Form.
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Define NEG(M)

Return NF(1-M,MEMORY.I);

EndDefine;

Define O(M,N)

Return NF(M+N-M*N,MEMORY.I);

EndDefine;

Define Y(M,N)

Return NF(M*N,MEMORY.I);

EndDefine;

Define IMP(M,N)

Return NF(1+M+M*N,MEMORY.I);

EndDefine;

4.2 Defining the Rules of the RBES

R1:=IMP(O(O(x[2],x[3]),x[4]), p[1]);

R2:=IMP(Y(x[1],x[6]),p[2]);

R3:=IMP(Y(p[2],x[9]),p[3]);

R4:=IMP(Y(Y(NEG(Y(x[0],x[6])),p[1]),x[10]),d[5]);

R5:=IMP(Y(p[2],x[11]),p[3]);

R6:=IMP(Y(Y(h[0],h[1]),p[3]),d[5]);

R7:=IMP(Y(Y(Y(NEG(h[1]),NEG(Y(h[2],h[3]))),h[0]),p[3]),d[4]);

R8:=IMP(Y(Y(Y(NEG(h[1]),Y(h[2],h[3])),h[0]),p[3]),d[3]);

R9:=IMP(Y(p[3],NEG(h[0])),d[4]);

R10:=IMP( Y(Y(Y(p[3],x[7]),x[8]),x[5]) , d[0]);

R11:=IMP(Y(O(O(O(O(y[4],x[9]),y[3]),y[2]),y[1]),d[0]),d[2]);

R12:= IMP(Y(O(O(O(O(O(NEG(y[5]),x[9]),y[4]),y[3]),y[2]),y[1]),

d[0]),d[1]);

R13:=IMP( O(O(d[0],d[1]),d[2]) , Y(Y(NEG(d[3]),NEG(d[5])),

NEG(d[6])) );

R14:=IMP( d[3] , Y(Y(Y(Y(NEG(d[0]),NEG(d[1])),NEG(d[2])),

NEG(d[5])),NEG(d[6])) );

R15:=IMP( d[5] , Y(Y(Y(Y(NEG(d[0]),NEG(d[1])),NEG(d[2])),

NEG(d[3])),NEG(d[6])) );

R16:=IMP( d[6] , Y(Y(Y(Y(NEG(d[0]),NEG(d[1])),NEG(d[2])),

NEG(d[3])),NEG(d[5])) );

J:=Ideal( NEG(R1),NEG(R2),NEG(R3),NEG(R4),NEG(R5),NEG(R6),NEG(R7),

NEG(R8),NEG(R9),NEG(R10),NEG(R11),NEG(R12),NEG(R13),

NEG(R14),NEG(R15),NEG(R16) );



44 C. Gamallo-Chicano, E. Roanes-Lozano, and C. Gamallo-Amat

5 Examples

Each of the following examples are executed in less than 2 seconds in a standard
computer with an i3 processor.

It has to be taken into account that the polynomials involved in this approach
to consistency checking and knowledge extraction in RBES are not linear, but
linear in each variable (the monomial of highest degree is the product of all the
polynomial variables in the ring, and, therefore, the number of variables is an
upper bound for the total degree of the polynomials) [13]. Consequently, timings
are surprisingly low and problems that initially could be considered intractable
due to the general double exponential worst-case complexity of Groebner bases
(like a RBES involving 150 rules) are treatable in reasonable times on a standard
computer.

Example 1. The facts considered are: x[1], x[6], x[11] and ¬h[0]. Then we declare
in CoCoA:

K:=Ideal( NEG(x[1]), NEG(x[6]), NEG(x[11]), NEG(NEG(h[0])) );

and we first check consistency ([1] shouldn’t be obtained):

If GBasis(MEMORY.I+J+K)=[1]

Then PrintLn "INCONSISTENCY"

Else PrintLn "CONSISTENCY"

EndIf;

Then we check then which of d[0], ..., d[6] can be deduced (we should look for
zeroes; a “1” means its negation is deduced):

NF(NEG(d[0]),MEMORY.I+J+K);

NF(NEG(d[1]),MEMORY.I+J+K);

NF(NEG(d[2]),MEMORY.I+J+K);

NF(NEG(d[3]),MEMORY.I+J+K);

NF(NEG(d[4]),MEMORY.I+J+K);

NF(NEG(d[5]),MEMORY.I+J+K);

NF(NEG(d[6]),MEMORY.I+J+K);

The output obtained is:

-------------------------------

CONSISTENCY

-------------------------------

d[0] + 1

-------------------------------

d[1] + 1

-------------------------------

d[2] + 1

-------------------------------

d[3] + 1
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-------------------------------

0

-------------------------------

d[5] + 1

-------------------------------

d[6] + 1

-------------------------------

that is, d[4] is obtained (“Perform new cytologies”).

Example 2. The facts considered are: ¬x[0] and x[10]. Then we declare in Co-
CoA:

K:=Ideal( NEG(NEG(x[0])), NEG(x[10]) );

and we first check consistency ([1] shouldn’t be obtained):

If GBasis(MEMORY.I+J+K)=[1]

Then PrintLn "INCONSISTENCY"

Else PrintLn "CONSISTENCY"

EndIf;

Then we check then which of d[0], ..., d[6] can be deduced (we should look for
zeroes; a “1” means its negation is deduced):

NF(NEG(d[0]),MEMORY.I+J+K);

NF(NEG(d[1]),MEMORY.I+J+K);

NF(NEG(d[2]),MEMORY.I+J+K);

NF(NEG(d[3]),MEMORY.I+J+K);

NF(NEG(d[4]),MEMORY.I+J+K);

NF(NEG(d[5]),MEMORY.I+J+K);

NF(NEG(d[6]),MEMORY.I+J+K);

The output obtained is:

-------------------------------

1

-------------------------------

1

-------------------------------

1

-------------------------------

1

-------------------------------

d[4] + 1

-------------------------------

0

-------------------------------

1

-------------------------------
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that is, d[5] is obtained (“Reactive process”). The negations of d[0], d[1], d[2],
d[3] and d[6] are also obtained.

Example 3. The fact considered is: x[0]. Then we declare in CoCoA:

K:=Ideal( NEG(x[0]) );

and we first check consistency ([1] shouldn’t be obtained):

If GBasis(MEMORY.I+J+K)=[1]

Then PrintLn "INCONSISTENCY"

Else PrintLn "CONSISTENCY"

EndIf;

Then we check then which of d[0], ..., d[6] can be deduced (we should look for
zeroes; a “1” means its negation is deduced):

NF(NEG(d[0]),MEMORY.I+J+K);

NF(NEG(d[1]),MEMORY.I+J+K);

NF(NEG(d[2]),MEMORY.I+J+K);

NF(NEG(d[3]),MEMORY.I+J+K);

NF(NEG(d[4]),MEMORY.I+J+K);

NF(NEG(d[5]),MEMORY.I+J+K);

NF(NEG(d[6]),MEMORY.I+J+K);

The output obtained is:

-------------------------------

d[0]

-------------------------------

d[1]

-------------------------------

d[2]

-------------------------------

d[3]

-------------------------------

d[4]

-------------------------------

d[5]

-------------------------------

d[6]

-------------------------------

that is, no d[i] is obtained. It should be considered a “Normal cytology” (d[6]).
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6 Graphic User Interface

The GUI is still under development.
Using a GUI has the great advantage that the user doesn’t have to deal with

the CAS introducing mathematical expressions or formulae, he/she only has to
click on options.

The GUI will also show the user microphotographs as illustration of the dif-
ferent questions and steps.

As mentioned in Section 2.1, according to the knowledge extracted, the GUI
could ask the lab technician more questions in order to complete the input in
order to reach the final diagnosis.

7 Conclusions

We believe that this RBES could be really useful and helpful for training lab
technicians specialized in vaginal cytology and for helping them in the decision
making process that takes place during their work.

This RBES is planned to be tested with new lab technicians during the 2014-
15 academic year.
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Abstract. In this work, we present an interoperability framework that
enables the translation of specifications (signature of functions and lemma
statements) among different theorem provers. This translation is based on
a new intermediate XML language, called XLL, and is performed almost
automatically. As a case study, we focus on porting developments from
Isabelle/HOL to ACL2. In particular, we study the transformation to
ACL2 of an Isabelle/HOL theory devoted to verify an algorithm comput-
ing a diagonal form of an integer matrix (looking for the ACL2 executabil-
ity that is missed in Isabelle/HOL). Moreover, we provide a formal proof
of a fragment of the obtained ACL2 specification — this shows the suit-
ability of our approach to reuse in ACL2 a proof strategy imported from
Isabelle/HOL.

1 Introduction

In the frame of the ForMath European project [1], several theorem provers are
used to verify mathematical algorithms, with an emphasis on Coq/SSReflect [11]
but also using intensively Isabelle/HOL [19] and ACL2 [16]. Due to this diversity
of tools, it was natural to investigate how different provers could collaborate, in
some manner, in the same formalisation effort.

Numerous contributions have been made along the years in the area of the-
orem proving interoperability. We give here just a few strokes of the brush, by
saying that translations among proof assistants can be of two kinds: deep and
shallow. In the former, deep translations, e.g. [6,12,15,18], the soundness of the
transformation is ensured, and thus, it is necessary to analyse semantics issues
(underlying logics, language expressiveness, and so on). In the latter, shallow
translations, e.g. [10,17,21], only the syntactical structure is translated from the
source formalism to the target one.

In this work, and starting from a complete formalisation in Isabelle/HOL, we
develop a set of tools that translates a proof plan to ACL2, looking for efficient
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(but verified) executability. Since we do not have a deep Isabelle/HOL–ACL2
translator at our disposal, we try to materialise the previous observation by
writing a shallow porting mechanism. Even if we do not aim at doing a survey
of the state of the art in the field, it is worth noting that approaches abound
in the literature. The Omega system [23] has been fruitfully used through the
years to perform proof planning strategies. As far as we can determine, it is
unable to integrate with the theorems provers we are interested in. A different
tool is the Evidential tool bus [9]. Evidential’s design principle is that of semantic
neutrality; our work here is probably not different from it, but could be seen as an
ad-hoc case study of what they call translators (in our case, from Isabelle/HOL
to ACL2). Another meaningful possibility for our development would have been
the use of the THF0 [4] language, to which several tools in TPTP are translated;
indeed, a subset of Isabelle/HOL statements can be already translated to THF0,
in order to enable the communication with external automated theorem provers.
Applying a similar idea to ACL2 seems an interesting idea, but our interest in
XML based tools, such as Ecore and OCL (see [3] for details), leads us to propose
a different approach.

Our approach translates function signatures and statements, while proofs and
function bodies are not ported. In principle, this weak process could be consid-
ered unsafe (this criticism could be also applied to any shallow strategy). Never-
theless, our key idea is based on the following argument: the family of function
signatures and statements in a formalisation encodes a proof scheme that can
be reused in any other system. Of course, some constraints must be added to
render sensible this claim. For instance, the target framework must be expres-
sive enough to receive the formulas from the source environment (at least, in the
concrete problem to be ported). Additionally, such a reuse may be not optimal
(otherwise, something as a deep translation would be accomplished), because
both the data structures and the working style of each theorem prover can be
very distant. In any case, at some convenient abstract level, the sketch of the
proof can be translated, saving a significant amount of time. At the end of the
process, when a complete proof is (re)built in the target system, the question
about the soundness of the translation is no longer relevant.

The above proposal is instantiated in this paper in a particular case study,
where we go from Isabelle/HOL to ACL2, transforming a complete constructive
proof in Isabelle/HOL, related to integer matrices manipulation, into an (in-
complete) ACL2 specification. This transformation is justified because it is not
possible to directly execute the matrix operations inside Isabelle/HOL — due
to the internal representation of matrices — and we decided to look for a proof
in ACL2, where executability will be guaranteed. The essence of the proof is
captured in this transformation, showing the adequacy of our contribution.

The organization of the paper is as follows. Our general framework to inter-
operate is briefly described in Section 2. Section 3 is devoted to comment on
the Isabelle/HOL theory developed and the translation process, while Section 4
deals with the completion of the ACL2 specification until a proof of a fragment
of the theory is obtained. The paper ends with conclusions, further work and the
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bibliography. The paper is backed with a report [3] in which we have thoroughly
described the architecture of the tool, two case studies, and the steps which can
be applied to produce new translations.

2 A (Minimal) Framework to Interoperate

The framework presented in [3] — from now on called I2EA (Isabelle/HOL to
Ecore and ACL2) — allows the transformation of Isabelle/HOL specifications
to both Ecore models [2] and ACL2 specifications; the role of Ecore is presented
in [3]. In this paper, we only focus on proving the following concept: the I2EA
framework can be used to translate Isabelle/HOL specifications to ACL2, and to
reuse a proof scheme in ACL2 imported from Isabelle/HOL. To this aim, we just
use the components of the I2EA framework shown in Figure 1. We describe the
components of that diagram in the following subsections.

Isabelle/HOL XLL ACL2

Fig. 1. (Reduced) Architecture of the I2EA framework

2.1 Isabelle

Isabelle [19] is a generic interactive proof assistant, on top of which different
logics can be implemented; the most explored of this variety of logics is higher-
order logic (or HOL), and it is also the logic where a greater number of tools
(code generation, automatic proof procedures) are available.

The HOL type system is rather simple; it is based on non-empty types,
function types (⇒) and type constructors κ that can be applied to already
existing types (nat, bool) or type variables (α, β). Types can be also introduced
by enumeration (bool) or by induction, as lists (by means of the datatype com-
mand). Additionally, new types can be also defined as non-empty subsets of
already existing types by means of the typedef command; the command takes a
set defined by comprehension over a given type {x :: α. P x}, and defines a new
type σ, as well as Rep and Abs morphisms between the types. Type annotations
can be made explicit to the prover, by means of the notation x :: α, and can
solve situations where types remain ambiguous even after type inference.

Isabelle also introduces type classes in a similar fashion to Haskell; a type class
is defined by a collection of operators (over a single type variable) and premises
over them. For instance, the library has type classes representing arithmetic
operators (like sum or unary minus). Concrete types (int, real, set, and so on)
are proved to be instances of those type classes. The expression (x :: α :: plus)
imposes that the type variable α poses the structure and properties stated in the
plus type class, and can be later replaced exclusively by types which are instances
of such a type class. Type classes provide operator overloading, enabling to reuse
symbols for different types (0 :: nat and 0 :: int).
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2.2 ACL2

ACL2 [16] stands for “A Computational Logic for Applicative Common Lisp”.
Roughly speaking, ACL2 is a programming language, a logic and a theorem
prover. Its programming language is an extension of an applicative subset of
Common Lisp [24]. The ACL2 logic describes the programming language, with a
formal syntax, axioms and rules of inference: the applicative subset of Common
Lisp is a model of the ACL2 logic. Finally, the theorem prover provides support
for mechanised reasoning in the logic. Thus, the system constitutes an environ-
ment in which programs can be defined and executed, and their properties can
be formally specified and proved with the assistance of a theorem prover. The
logic is a first-order logic with equality including axioms for propositional logic
and for a number of primitive Common Lisp functions and data types.

New function definitions (using defun) are admitted as axioms only if there
exists an ordinal measure in which the arguments of each recursive call (if any)
decrease, thus proving its termination and ensuring that no inconsistencies are
introduced. The operator defun-sk introduces new functions that represent ex-
istential quantifiers, following the idea of Skolemization.

The ACL2 theorem prover is an integrated system of ad-hoc proof techniques,
including simplification and induction among them. Simplification is a process
combining term rewriting with some decision procedures (linear arithmetic, type
set reasoner, and so on). Sophisticated heuristics for discovering an (often suit-
able) induction scheme is one of the key features in ACL2. The command defthm

starts a proof attempt, and, if it succeeds, the theorem is stored as a rule (in
most cases, a conditional rewriting rule). The theorem prover is automatic in
the sense that, once defthm is submitted, the user can no longer interact with
the system. However, in some sense, it is interactive. Often, non-trivial results
cannot be proved on a first attempt, and then the role of the user is important:
she has to guide the prover by providing a suitable collection of definitions and
lemmas, used in subsequent proofs as rewrite rules. These lemmas are suggested
by a preconceived “hand” proof (at a higher level) or by inspection of failed
proofs (at a lower level). This kind of interaction is called “the Method” [16].

2.3 XLL

XLL, for Xmall Logical Language, is an XML-based specification language. Its
definition is done through an XML schema [3, Appendix 6.7] which consists of
two parts:

1. A specification of data types (or classes), including for each data type a name
plus a family of operators (or methods).

2. A set of logical statements, expressing some properties of the data types
involved.

The first part defines a dictionary for the operations that can appear in the
second one. In the second part, XLL defines essentially a typed first-order logic
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language. The propositional connectives are grouped in the first part of the XLL
schema, the one referring to data types, and will be translated literally to any
other specification language (for example, ACL2) as primitive operations.

With respect to the types in the logical expressions, they can be user-defined
classes or elementary data types which can be easily inferred from the context.
Only in cases of implicit coercion, some additional type annotations are neces-
sary. For instance, in integer matrix manipulation, the constant 1 can denote
either an entry of a matrix or an index for a row or column. In the former case,
1 should be considered as an integer; on the contrary, in the latter, it must be
considered as a natural number. These disambiguation annotations are encoded
inside the very logical expression, by using enriched arguments like:

<constant> <name>1</name> <type>Nat</type> </constant>

Additionally, the schema checks that the statements of the properties contain
operations that exclusively appear in the XLL file itself (in the specification
part); the XLL schema ensures that the properties stated in the file are referred
to a certain context (a set of data types and operations).

We have not specified a formal semantics of XLL; it is a simple language in
which types, operations and logical statements over them (in a typed first-order
logical language) can be expressed. The language is enough to cover both the
expressiveness of ACL2, and a first-order fragment of Isabelle/HOL.

In the case study presented in Section 3, XLL documents (that is to say, XML
documents compliant with our XLL schema) are generated from Isabelle/HOL
formalisations. As an intermediary step, we use a set of libraries generating
XML documents from Isabelle specifications, part of the Isabelle standard distri-
bution. Namely, we generate a collection of XML files from an Isabelle/HOL the-
ory, which are subsequently transformed into an XLL file. Furthermore, from that
XLL document an ACL2 set of statements can be also generated, essentially
forgetting the data types part, because ACL2 is an environment without ex-
plicit static typing; nevertheless, the type annotations in the logical expressions
are used to generate predicates checking dynamically ACL2 types, as we will
explain later. From the XLL document, we are able to produce an Isabelle the-
ory, and automatically prove (in Isabelle!) the behavioural equivalence between
the generated Isabelle theory (from the XLL document) and the original Is-
abelle theory — see [3] for an example. However, it is not possible to reconstruct
the Isabelle theory from the produced ACL2 specification, because, having ACL2
a weaker type system than Isabelle/HOL, we irretrievably lost information in
the translation.

Each one of the previous steps is automatic, except the initial choice of the
types, operations and lemmas which are of interest for our development (types
and operations dependencies are also solved by the tool). The user is in charge
of choosing the definitions (and lemmas) that will be exported, and she has to
decide what is the correct level of granularity to export a set of functions (and
lemmas) detailed-enough to be useful for the proof-scheme, but also abstract-
enough to give a proof-scheme independent from the concrete representation of
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the source theorem prover. This is why we have labelled the whole generation
process as almost automatic.

3 Transforming an Isabelle/HOL Formal Development to
ACL2: A Diagonal Matrix Form

In this section, we apply the previously defined interoperability setting to an Is-
abelle/HOL formalisation of some well-known results about integer matrices.
It is important to highlight that, even if the theory is written in HOL, the prob-
lem is essentially of a first-order nature, and therefore the information that is lost
when going from Isabelle/HOL to XLL (and then to ACL2) does not prevent us
from getting a sensible specification. Thus, we consider an Isabelle/HOL develop-
ment (described in [3]) which defines a verified method to reduce a given matrix to
a diagonal form, i.e. a method to compute a diagonal matrix which is equivalent to
the initial one — two matrices A and B are equivalent if there exist two invertible
matrices P and Q such that B = PAQ.

Then, the corresponding Isabelle/HOL formalisation includes the basic ma-
trix operations (addition and multiplication) and properties of the ring of inte-
ger matrices. The main result of this Isabelle/HOL theory can be expressed as
follows:

Lemma 1. Given an integer matrix A, there exist three integer matrices P , Q
and B such that:

– B = PAQ;
– P and Q are invertible matrices;
– B is a diagonal matrix.

The diagonal matrix presented in the previous lemma is usually computed
in many algorithms as an intermediary step in the computation of the Smith
Normal Form (see [5, 7]); indeed, this particular matrix has its own interesting
properties.1

3.1 An Isabelle/HOL Formalisation of Lemma 1

Let us briefly describe the Isabelle/HOL formalisation that leads us to prove
Lemma 1 (the interested reader can find a more complete description in [3]).

One of the most relevant decisions in the initial steps of a formalisation is the
choice of a suitable representation for the objects involved in the development;
in this particular case, integer matrices. In our Isabelle/HOL theory, the family

1 In spite of the fact that the calculation on the Smith Normal Form is a more renowned
result than the one presented in Lemma 1, the diagonal form is enough in many
calculations. For example, the homology of a chain complex over a ring can be
obtained using the diagonal form of the differential maps represented as matrices.
This situation is usual in some programs for Symbolic Computation in Algebraic
Topology; thus, the presented result has its own interest in that area.
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of matrices is represented as the set of functions with two arguments of type
nat and finitely many non-zero positions. This functional representation eases
the definition of operations over matrices and the proof of properties (it has
been introduced in Isabelle, and successfully used, as a part of the Flyspeck
project [20]). The formal definition is:

type_synonym ’a infmatrix = "nat => nat => ’a"

definition nonzero_positions ::

"(’a::zero) infmatrix ⇒ (nat x nat) set" where

"nonzero_positions A = {pos. A (fst pos) (snd pos) ~= 0}"

definition "matrix = {(f::(nat ⇒ nat ⇒ ’a::zero)).

finite (nonzero_positions f)}"

typedef ’a matrix = "matrix :: (nat ⇒ nat ⇒ ’a::zero) set"

The library offers several definitions and properties over this data type; in par-
ticular, operations nrows and ncols that, making use of the Hilbert’s ε operator,
return the maximum row and column which contain nonzero elements. We had
to define elementary operations on matrices; in particular, there are two basic
operations for our development (interchange rows matrix and row add matrix )
that exchange two rows of a matrix, and replace a row by the sum of itself
and another row multiplied by an integer respectively (the corresponding op-
erations acting on columns are also defined). We introduce here the definition
of interchange rows matrix, as well as the definition of its functional behaviour
over the underlying representation of matrices presented previously (in this case,
functions):

definition interchange_rows_infmatrix ::

"int infmatrix ⇒ nat ⇒ nat ⇒ int infmatrix"

where "interchange_rows_infmatrix A n m ==

(λi j. if i=n then A m j else if i=m then A n j else A i j)"

definition interchange_rows_matrix ::

"int matrix ⇒ nat ⇒ nat ⇒ int matrix"

where "interchange_rows_matrix A n m==

Abs_matrix (interchange_rows_infmatrix (Rep_matrix A) n m)"

The previous definition relies on the type morphisms Abs matrix and
Rep matrix, which perform the conversion between the type (matrix) and the
underlying type (infmatrix, an abbreviation of the functional representation
of matrices). It makes use of the function interchange rows infmatrix, which
represents the functional behaviour of the elementary operation.

Using these functions (and their column counterparts), we can define several
auxiliary results and finally state and prove Lemma 1 in Isabelle/HOL.
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lemma Diagonalize_theorem:

shows "∃P Q B. is_invertible P ∧ is_invertible Q ∧ B = P*A*Q

∧ is_square P (nrows (A::int matrix)) ∧ is_square Q (ncols A)

∧ Diagonalize_p B (max (nrows A) (ncols A))"

The proof of this result (from a conceptual point of view) is constructive;
that is, the witnesses (P , Q and B in this case) for the existential expression
(it applies the existential quantifier to P , Q and B) are explicit and could be
algorithmically produced. Roughly speaking, the procedure used in the proof
to compute the equivalent diagonal matrix is analogous to the Gauss-Jordan
elimination method [8, Section 28.3].

The fact that the essence of the proof is constructive would allow us to obtain
executable programs from it. However, it is not possible to directly execute the
corresponding expressions inside Isabelle due to the representation of matrices
(based on the abstract type matrix ). It is well-known that, in such a situation,
we could refine the data structure representation (by taking, for instance, lists
of lists to represent matrices), in order to get executable code from Isabelle. Our
approach is however different: we look for a proof in a different theorem prover
(ACL2), where executability will be guaranteed.

3.2 From the Isabelle/HOL Theory to XLL

As a first step in the translation of the Isabelle/HOL theory to ACL2, the corre-
sponding XLL document — an XML instance compliant with the XLL schema
— is generated through a series of automatic steps, as presented in [3]. The XLL
description of the theory consists of two different components: data types and
logical statements.

The former contains the specification of the data types appearing in the source
Isabelle/HOL theory (their names and the collection of functions where the types
appear as parameters, which are selected by the tool). This information is auto-
matically organized in a class, an XLL structure which is used to represent each
type and its operations (and that in our Ecore experiments is later assigned to
a UML class), whose XLL description (for the type matrix) appears in Figure 2
(we only include elementary operations over matrices).

The second component of the resulting XLL document consists of a set of state-
ments establishing the properties of the entities (data and methods) involved in
the theory. To illustrate this component, we include in Figure 3 (Page 58) the XLL
description of the lemma which states in Isabelle/HOL the idempotence property
of interchange_rows_matrix— the square of this function is the identity.

lemma interchange_rows_matrix_id:

shows

"interchange_rows_matrix (interchange_rows_matrix A n m) n m = A"
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<Class name="Matrix.matrix">

<Class_Parameters>

<Parameter name="alpha">

<Type name="Int.int"/>

</Parameter>

</Class_Parameters>

...

<method name="Diagonal_form.interchange_rows_matrix">

<Type name="Matrix.matrix"/>

<Input name="n"><Type name="Nat.nat"/></Input>

<Input name="m"><Type name="Nat.nat"/></Input>

</method>

...

</Class>

Fig. 2. XLL for the generated matrix class

3.3 From XLL to ACL2

From the XLL description of the Isabelle/HOL theory, and only applying XSLT
transformations [25], we can obtain an ACL2 specification. For instance, the
ACL2 function obtained from the XLL file of Figure 2 is:

(defun Diagonal_form.interchange_rows_matrix (A n m)

(declare (ignore A n m)) nil)

The body of this function is empty (in fact, the value nil is returned by
default to allow the compilation of the function) since data types are very linked
to the way of working in each proof assistant. Therefore, it is unlikely that the
Isabelle/HOL representation of matrices will be the most useful one to work in
ACL2. Then, we delegate the task of defining a suitable representation of the
data types to a further step in the development process (see Section 4).

In the same way, theorems like the one presented in Figure 3 are also translated
to ACL2.

(defthm interchange_rows_id

(implies

(and (matrix_integerp A) (natp n) (natp m))

(equal (Diagonal_form.interchange_rows_matrix

(Diagonal_form.interchange_rows_matrix A n m) n m) A)))

Using this procedure, we translate the whole Isabelle/HOL development into
ACL2. The ACL2 version of Lemma 1 is stated as follows.

(defun-sk exists_Diagonalize_theorem (A)

(exists (P Q B)

(and (Diagonal_form.is_invertible P)
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<Theorem>

<name>interchange_rows_id</name>

<forall>

<param> <name>A</name> <type>Int.int Matrix.matrix</type> </param>

<body>

<forall>

<param> <name>n</name> <type>Nat.nat</type> </param>

<body>

<forall>

<param> <name>m</name> <type>Nat.nat</type> </param>

<body>

<operation>

<name>HOL.eq</name>

<operation>

<name>Diagonal_form.interchange_rows_matrix</name>

<operation>

<name>Diagonal_form.interchange_rows_matrix</name>

<constant> <name>A</name> </constant>

<constant> <name>n</name> </constant>

<constant> <name>m</name> </constant>

</operation>

<constant> <name>n</name> </constant>

<constant> <name>m</name> </constant>

</operation>

<constant> <name>A</name> </constant>

</operation>

</body>

</forall>

</body>

</forall>

</body>

</forall>

</Theorem>

Fig. 3. XLL for the interchange rows id theorem

(and (Diagonal_form.is_invertible Q)

(and (equal B (Groups.times_class.times

(Groups.times_class.times P A) Q))

(and (Diagonal_form.is_square P (Matrix.nrows A))

(and (Diagonal_form.is_square Q (Matrix.ncols A))

(Diagonal_form.Diagonalize_p B

(max (Matrix.nrows A) (Matrix.ncols A))))))))))

(defthm Diagonalize_theorem

(implies (matrix_integerp A)

(exists_Diagonalize_theorem A)))
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We claim that the previous statements, transferred from the Isabelle/HOL
formal development, can be used as a guideline to achieve a similar formalisation
in ACL2. The following section includes a small example illustrating this fact.

4 An Experiment in Reusing (Schemes of) Proofs

As a driving example to translate proof schemes, we consider a small theory
about the basic operations over matrices described in Section 3. In particular,
we are interested in proving that the elementary matrices Pi,j (identity matrices
where the i-th and j-th rows are swapped) are invertible. The actual statement
of the lemma explains that the square of a Pi,j (encoded using the function P ij)
matrix is the identity matrix.

lemma P_ij_invertible:

assumes n: "n < a" and m: "m < a"

shows "(P_ij a n m) * (P_ij a n m) = one_matrix (a)"

The main components of the theory required to prove the above lemma are
the functions:

– interchange rows matrix, that exchanges two rows of a matrix;
– P ij, that defines the elementary matrix Pij in dimension a.

definition P_ij :: "nat ⇒ nat ⇒ nat ⇒ int matrix"

where "P_ij a n m ==

interchange_rows_matrix (one_matrix a) n m"

and the lemmas:

– interchange_rows_matrix_id, which states the idempotency of the func-
tion interchange_rows_matrix (see the end of Subsection 3.2).

– PA_interchange_rows, that relates the interchange rows matrix opera-
tion to the left product by the P ij matrices.

lemma PA_interchange_rows:

assumes n:"n < nrows A" and m: "m < nrows A"

and na: "nrows A <= a"

shows "interchange_rows_matrix (A::int matrix) n m =

(P_ij a n m) * A"

This specification can be considered as a suitable strategy to prove lemma
P_ij_invertible in Isabelle/HOL and, as we will show, the same strategy can
be replicated in ACL2 to prove the same result.

We omit the XLL instance provided by this source Isabelle/HOL theory (the
interested reader can extract it from [3]) to directly present the ACL2 specifica-
tion which is automatically produced by the I2EA framework. The file generated
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by the I2EA framework consists of two parts: the headers of the functions and
the lemmas.

In the function section, we find not only the specification of the functions
defined in the Isabelle/HOL theory, but also all the functions involved in the
theorems of such a theory which are defined in other libraries (for instance,
the definition of the identity matrix Matrix.one_matrix), and also predicate
recognisers (in this case, the matrix_integerp function is the recogniser for
integer matrices), which replace in ACL2 some Isabelle typing information:

(defun matrix_integerp (x) (declare (ignore x)) nil)

(defun Diagonal_form.interchange_rows_matrix (x1 x2 x3)

(declare (ignore x1 x2 x3 )) nil)

(defun Matrix.nrows (x1)

(declare (ignore x1)) nil)

(defun Groups.times_class.times (x1 x2)

(declare (ignore x1 x2)) nil)

(defun Diagonal_form.P_ij (x1 x2 x3)

(declare (ignore x1 x2 x3)) nil)

(defun Matrix.one_matrix (x1)

(declare (ignore x1)) nil)

Using the headers of these functions as a guideline, we must provide a con-
crete representation for integer matrices and define the rest of the functions
— we re-use an ACL2 matrix library presented in [13], where matrices are
encoded as lists of vectors, and several background lemmas are provided; in
addition, ACL2’s pre-defined functions are used to define the body of some func-
tions (e.g. the “*” ACL2’s function is used to define the body of the function
Groups.times class.times).

Once this task is carried out, we can focus on the lemmas generated by the
I2EA framework.

(defthm interchange_rows_id

(implies (and (matrix_integerp A) (natp n) (natp m))

(equal (Diagonal_form.interchange_rows_matrix

(Diagonal_form.interchange_rows_matrix A n m)

n m) A)))

(defthm PA_interchange_rows

(implies (and (natp n) (matrix_integerp A) (natp m) (natp a)

(< n (Matrix.nrows A)) (< m (Matrix.nrows A))

(<= (Matrix.nrows A) a))
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(equal (Diagonal_form.interchange_rows_matrix A n m)

(Groups.times_class.times

(Diagonal_form.P_ij a n m) A))))

(defthm P_ij_invertible

(implies (and (natp n) (natp a) (natp m) (< n a) (< m a))

(equal (Groups.times_class.times

(Diagonal_form.P_ij a n m)

(Diagonal_form.P_ij a n m))

(Matrix.one_matrix a))))

ACL2 is able to find the proof of the first two lemmas without any external
help; however, it gets stuck when proving lemma P_ij_invertible.We can sug-
gest ACL2 to use the lemmas PA_interchange_rows and interchange_rows_id

to finish the proof, but the system is not able to use them. Inspecting ACL2’s
proof attempt, we realise that ACL2 needs a lemma which states that the func-
tion Diagonal_form.P_ij generates an integer matrix.

(defthm P_ij_matrix_integerp

(implies (and (natp a) (natp n) (natp m))

(matrix_integerp (Diagonal_form.P_ij a n m))))

Once this lemma is introduced in the system, ACL2 finishes the proof of
P_ij_invertible. Let us note that P_ij_matrix_integerp is taken for granted
in Isabelle/HOL, since this type information is already provided in the definition
of P_ij.

As foreseen, the previous discussion shows that we can import the Isabelle/HOL
proof scheme intoACL2, but some additional lemmas can be necessary to complete
the proof— in our experiments, those auxiliary lemmas are always related to predi-
cate lemmas such as P_ij_matrix_integerp.These ACL2 lemmas containing the
information encoded in the Isabelle functions target types, in the form of recognis-
ers, will be automatically generated in future releases of the I2EA framework. The
case study onmatrices has proven itself useful to give us feedback on the kind of in-
formation that is represented differently in Isabelle and ACL2, but still necessary
on both tools.

5 Conclusions and Future Work

In this paper, we have described a facility to transform Isabelle/HOL theories
into ACL2 specifications. We have shown, through a concrete case study, that
the transferred-information is enough to reconstruct a proof in ACL2. In par-
ticular, the original Isabelle theory consists of 5952 lines of code, 222 lemmas,
and 54 definitions. Those lemmas and definitions have been filtered to extract
119 lemmas, and 32 definitions that have been translated to ACL2. Finally, the
ACL2 development consists of 58 definitions (19 of them using defun-sk) and
119 lemmas.
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The drawbacks of our approach (with respect to other mainstream approaches
to interoperate between theorem provers) are the following ones:

– Our proposal is not universal, in the sense that it is not proposed as a general
solution to the interoperability problem.

– Our proposal is partial, because when going from Isabelle/HOL to ACL2,
it is evident that no higher-order Isabelle theory could be translated to a,
necessarily first-order logic, ACL2 specification.

– Our proposal is incomplete (even for the fragment of Isabelle/HOL that
we are considering), since we port only function signatures and statements,
while definitions and proofs are not transferred in the process.

– Our proposal requires the expert knowledge of the user to choose the relevant
lemmas and definitions to generate a useful proof-scheme.

On the positive side, the benefits of the presented framework are:

– Our proposal was developed quickly (at least when comparing it with the
effort required to embed a system in another one); in the implementation we
used many already available XML tools, reducing the programming needs
to a minimum [3].

– Our proposal is flexible, because due to the lightweight technology used,
we have been able to modify our XLL schema to adapt it to other close
situations, without reprogramming the whole framework, see [14].

– And last, but not least, our proposal works, since we have shown how a
nontrivial formalisation (a diagonalisation algorithm for integer matrices)
has been translated profitably to ACL2, as required in our ForMath setting.

We think that the global balance is positive. More research and experiments are
needed in order to get more evidences of the interest of this kind of shallow inter-
operability approach. As future work, we should translate other (first-order like)
Isabelle/HOL theories to ACL2; for instance, it would be interesting to study algo-
rithms for symbolic matrices presented in [22]. Moreover, we should generalise our
approach to other proof assistants. In this last line, some successful experiences
have been already made: we have used XLL as intermediary language to port Coq
statements to ACL2 in a context of Java programming verification, see [14].
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Abstract. Existing algorithms of propagation in belief networks deal
with inference of observations when conditional distributions are initially
defined per edge. The aim of this paper is to propose a direct method
of causal inference of both observations and interventions on the causal
belief networks quantified with the belief function theory where condi-
tional beliefs are defined for all parents without having to transform the
network into a junction tree. We explain how it is still possible to use
the disjunctive rule of combination DRC and the generalized Bayesian
theorem GBT to perform this propagation.

Keywords: Belief function theory, propagation, interventions, causal
belief networks.

1 Introduction

Causality plays an important role in many fields, from physics to medicine to
artificial intelligence. Indeed, causal knowledge simplifies decision-making. Inter-
ventions [6] are very useful for identifying causal relations. These latter are ex-
terior manipulations that force target variables to have specific values. However,
an observation is seeing and monitoring phenomena happening by themselves
without any manipulation on the system.

The belief function theory is adequate to formalize imperfect causal knowledge
that agents usually possess especially cases of ignorance. Accordingly, a graphical
structure allows to simply represent and reason from such causal knowledge.
Causal belief networks [3] are compact and flexible graphical representations
where arcs are interpreted as causal links. On these networks, we can compute
the effects of observations and also those of external actions.

In existing algorithms of propagation in belief networks either they are associ-
ational networks [1,11], or causal networks [4], the uncertainty is not modeled by
a conditional mass function between a node and all its parents as for Bayesian
networks, but as a set of local conditional distributions for a node and each of
its parents. In the case where the expert gives conditional distributions defined
for all parents, we must necessarily transform the network that is already simply
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connected (i.e., there are no two nodes that can be connected by more than one
path) into a joint tree while the latter is usually used to transform multiply con-
nected networks (i.e., arbitrary network structures) to a tree structure. Nodes in
this tree are sets of variables called clusters. The propagation algorithm based
on junction trees is expensive. Indeed, it depends on clusters’ size.

In this paper, we propose a causal propagation method that performs directly
on the initial causal belief network in the case where the conditional distributions
are defined for all parents allowing to compute the effects of observations and
also those of external actions. Our proposed algorithms are based on the two
rules proposed by Smets [10] namely the disjunctive rule of combination (DRC)
and the generalized Bayesian theorem (GBT). Moreover, we explain how these
operators can be used on a set of variables.

The rest of the paper is organized as follows: in Section 2, we provide a brief
background on the belief function theory. In Section 3, we recall causal belief
networks. In Section 4, we explain how it is still possible to use the DRC and the
GBT to perform this propagation. Inference in the presence of observations and
interventions using mutilated and augmented graphs where conditional distri-
butions are defined for all parents is described in Section 5. Section 6 concludes
the paper.

2 Belief Function Theory

2.1 Definition

The theory of belief functions [8] is useful for representing uncertain knowledge.
Let Θ be a finite non empty set including all the elementary events related to a
given problem. These events are assumed to be exhaustive and mutually exclu-
sive. Such Θ is called the frame of discernment. Beliefs are expressed on subsets
belonging to the powerset of Θ denoted 2Θ. The basic belief assignment (bba),
denoted by mΘ or m, is a mapping from 2Θ to [0,1] such that:

∑
A⊆Θ m(A) = 1.

For each subset A of Θ, m(A) is called the basic belief mass (bbm). It represents
the part of belief exactly committed to the event A of Θ. Subsets of Θ such that
m(A)> 0 are called focal elements. A bba is said to be certain if the whole mass
is allocated to a unique singleton of Θ and Bayesian when all focal elements are
singletons. If the bba has Θ as unique focal element, it is called vacuous and it
represents the case of total ignorance.
The plausibility function pl quantified the maximum amount of belief that could
be given to a subset A of Θ. It computes the total of masses compatible with A.

pl : 2Θ → [0, 1] such that:

pl(A) =
∑

A∩C �=∅
m(C) (1)

The basic belief assignment can be recovered from the plausibility function as
follows:

m(A) =
∑
C⊆A

(−1)|A−C+1|pl(C̄) (2)
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2.2 Basic Operations

Two bbas m1 and m2 provided by two distinct and independent sources, may be
aggregated using Dempster’s rule of combination, denoted by ⊕, as follows:

m1 ⊕m2(A) = K ·
∑

B∩C=A

m1(B)m2(C), ∀B,C ⊆ Θ (3)

where K−1 = 1−
∑

B∩C=∅
m1(B)m2(C).

Smets [9] qualified Dempster’s rule of conditioning as one of the natural ingre-
dients and the center of the transferable belief model. Upon the arrival of a new
information B, the initial knowledge encoded with a mass value, m(A), is revised
using Dempster’s rule of conditioning. m(A|B) denotes the degree of belief of A
in the context where B holds. It is defined as:

m(A|B) =

{
K.
∑

C⊆B̄

m(A ∪ C) if A ⊆ B,A �= ∅

0 if A �⊆ B
(4)

where K−1=1−m(∅).

2.3 Multi-variable Operations

When we model aspects of the real world, the bbas induced from experts are
defined on different frames of discernment. We recall in what follows useful multi-
variables operations. Let us consider in what follows, a first frame Θ and a second
frameΩ. A vacuous extension is changing the referential by adding new variables.
Thus, a mass function mΘ defined on Θ will be extended to Θ × Ω as follows:

mΘ↑ΘΩ(C) =

{
mΘ(A) if C = A×Ω
0 otherwise

(5)

Given a mass distribution defined on the product space Θ × Ω, marginalization
corresponds to mapping over a subset of the product space by dropping the extra
coordinates. The new belief defined on Θ, mΘΩ↓Θ is obtained by:

mΘΩ↓Θ =
∑

C⊆Θ×Ω,C↓Θ=A

mΘΩ(C), A ⊆ Θ (6)

Smets [10] has generalized the Bayesian theorem within the transferable belief
model framework known as the Generalized Bayesian Theorem (GBT). Let us
consider plΩ(c|ai) and ai ∈ a where a ⊆ Θ and c ⊆ Ω. The a posteriori plausi-
bility distribution plΘ(a|c) is defined as follows:

plΘ(a|c) = 1−
∏
ai∈a

(1− plC(c|ai)) (7)

The function that is the dual of GBT is the disjunctive rule of combination
(DRC). Let us consider plΩ(c|ai) and ai ∈ a where a ⊆ Θ and c ⊆ Ω. The
plausibility distribution pl(c|a) is defined as follows:

plΘ(c|a) = plΘ(a|c) = 1−
∏
ai∈a

(1 − plC(c|ai)) (8)
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3 Causal Belief Networks

Belief networks [1,3,11] are simple and efficient tools to compactly represent
uncertainty distributions. Causal reasoning can be intuitively and formally de-
scribed with graphs [2,3,6]. On these networks, it is possible to predict the effects
of both observations and external actions on the system. Causal belief networks
[3] are used to formalize the imperfect causal knowledge. They represent an al-
ternative to causal Bayesian networks, that allow to formalize conditional beliefs
in a flexible way. It is defined on two levels:

– Qualitative level: represented by a directed acyclic graph (DAG) named G
where G = (V,E) in which the nodes V represent variables and edges E
encode the cause-effect relations among variables. The set of parents of A
is denoted by Pa(A). The set of children of A is denoted by Ch(A). A root
is a node with no parents (Pa(A) �= ∅). A leaf is a node with no children
(Ch(A) �= ∅). We will denote by R the set of roots and by L the set of leaves.

– Quantitative level: is the set of normalized bbas associated to each node
in the graph. Conditional distributions can be defined for each variable A
denoted on ΘA in the context of its parents (either one or more than one
node):

∑
subik⊆ΘA

mA(subik|Pa(A)) = 1

An intervention is an external action which changes some value(s) in the sys-
tem and consequently will lead to different results than those found with obser-
vational data. These effects should be adequately predicted. While conditioning
is used to compute the effect of observations, the “do” operator [6] is used to
compute the impact of external action. Handling interventions and computing
their effects on the system can be done by making changes on the structure of
the belief causal network. The two equivalent methods developed were namely,
belief graph mutilation method where all the edges directed to the target node
will be deleted and belief graph augmentation method which consists of adding,
for the target variable, a new parent variable denoted DO. Thus, the parents set
of the variable A denoted PA is transformed to Pa′ = Pa∪{DO}. The DO node
takes values in do(ai), x ∈ {ΘA∪ {nothing}}. do(nothing) represents the state
of the system when no interventions are made. do(ai) means that the variable A
is forced to take the certain value ai.

4 DRC and GBT for Inference in Causal Belief Networks

4.1 Definitions

To reduce the cost of storage, the DRC and the GBT are used when the plausi-
bility distributions are conditionally defined for singletons (ai ∈ a) where a ⊆ Θ.
The DRC is used for backward propagation. Let mΘ be the bba of the parent
node A which is sent to its child C.

plΩ(c) =
∑
a⊆Θ

mΘ(a)(1 −
∏
ai∈Θ

(1− plΩ(c|ai))) (9)
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The GBT can be used for forward propagation. Let mΩ be the bba of the child
node which is sent to its parent node A using the GBT.

plΘ(a) =
∑
c⊆Ω

mC(c)(1−
∏
ai∈Θ

(1− plΩ(c|ai))) (10)

Exemple 1. Let Θ = {a1, a2} and Ω = {c1, c2}. mΘ and mΩ(.|ai) are the a
priori mass distribution. plΩ is computed using the DRC (see Table 1). Thanks
to the mobius transformation, we can convert the plausibility distribution plΩ to
a mass distribution mΩ. plΘ is computed using the GBT using mΩ and mΩ(.|ai)
(see Table 2).

Table 1. DRC

{a1}     {a2}        Ө plΩ(c) 

{c1} 
   ø 

{c1} 
  Ω 

mӨ 

0 
0.5 
0.5 
1 

0 
0.2 
0.8 
1 

0 
0.6 
0.9 
1 

0 
0.42 
0.78 
1 

0.2 0.4 0.4 

Table 2. GBT

{a1}     {a2}        Ө 

{c1} 
   ø 

{c1} 
  Ω 

0 
0.5 
0.5 
1 

0 
0.2 
0.8 
1 

0 
0.6 
0.9 
1 

0.9 0.84 0.92 

mΩ 

0 
0.2 
0 

0.8 

plӨ(a) 

4.2 Propagating Distributions for All Parents

In this section, we explain that is possible to use the GBT and the DRC for
propagation when the relations between nodes are not binary (i.e., conditional
distributions are defined for all parents).

Given a set of variables (A1, A2, . . . , Ai) which are parent nodes of a variable
C. To apply the GBT and the DRC, we will consider the m-tuple of the cartesian
product of the parent nodes. Accordingly, the first component of the i-tuple
belongs to A1, the second A2 and the i-th to Ai.

Each i-tuple will be considered as a singleton. To reduce the cost of storage
and facilitate to experts to express their beliefs, the plausibility distributions of
C will be defined and stored in the context of singletons of the cartesian product
(A1, A2, . . . , Ai).

Example 2. Let us consider the following directed causal belief network in Fig-
ure 1 where A and B are the parents of C. For the sake of simplicity, all the
variables used in this example are binary. The DRC and the GBT can be applied
for singletons (ai ∈ a). Since the conditional mass distributions of C are defined
for all parents A and B, conditional mass distributions will be defined for subsets.
So, we have to use the cartesian product of the parents node A and B (A × B =
{a1b1, a1b2, a2b1, a2b2}). When applying the DRC and the GBT, the conditional
plausibility distributions of C are saving according to singletons of the cartesian
product A × B.
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A B 

C 

a1b1 a1b2 a2b1 a2b2 
c1 0.7 0.5 0.7 0.6 
c2 0.2 0 0.3 0.4 
ƟC 0.1 0.5 0 0 

a1 0.5 
a2 0.5 
ƟA 0 

b1 0.2 
b2 0.5 
ƟB 0.3 

Fig. 1. Belief network where distributions are defined for all parents

5 Inference in Singly Connected Causal Belief Networks

The impact of a new piece of information on the remaining variables can be
found by first computing the joint distribution and then making marginaliza-
tion by dropping the extra coordinates. This method is not suitable when the
number of variables becomes substantial. To solve this problem, equivalent local
computations have been proposed [5,7].

Existing algorithms only deal with the propagation of observational data in
belief networks [1,12] where distributions are defined per single parent. To en-
sure propagation in the case where distributions are defined for all parents, we
have to transform the initial network into a junction tree even if this technique
is usually used to transform a multiply network into a tree structure. This trans-
formation is expensive and the propagation algorithm depends on clusters’ size.
To tackle these problems, we propose a direct method of propagation in causal
belief networks where distributions are defined for all parents. The proposed
method consists of updating the belief mass of each node. If the node has more
than one parent, we need to combine the distributions of parent nodes using
the vacuous extension to the product space of variables representing the parent
nodes. In our approach, the combined distribution is stored in a fictional node
allowing message passing to its child node.

Causal propagation consists of finding the influence of an intervention or an
observation on the remaining variables of the system. This is done through mes-
sage passing between variables. When receiving a message each node X updates
both local vectors; the vector π(x1, ..., xn) concerning messages received by its
parents and the vector λ(x1, ..., xn) concerning messages received by its chil-
dren. Each node sends and receives messages from each of its neighbors. The
local message-passing between variables is based on two kinds of messages. The
π-message is a message sent from a parent node to a child node and the λ-message
is a message sent from a child node to a parent node.

In this section, we will first introduce the basic concepts of propagation in
belief networks. Then, we explain how to compute the mass distribution of the
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fictional node. At the end of this section, we present algorithms for propagating
observations and interventions in causal belief networks.

5.1 The Basic Concepts of Propagation in Belief Networks

Message passing is termed forward propagation or backward propagation de-
pending on the direction in which the message is circulated. The causal belief
inference algorithm are based on two rules the Disjunctive Rule of Combination
(DRC) and the Generalized Bayesian Theorem (GBT). In fact, the algorithm
consists of two phases: propagation down (backward) and propagation up (for-
ward).

Let us consider the two nodes A and C where A is the parent of C. The
message sent from A to C is a π-message computed using the DRC and the
message sent from C to A is a λ-message computed using the GBT.

A C 

Propagation down (backward): DRC 

Propagation up (forward): GBT 

Fig. 2. Propagation process between A and C

5.2 Computation of the Mass Distribution of the Fictional Node

To perform the propagation in a simply connected network where nodes are
originally defined in the context of all parents, we will combine the mass dis-
tributions of parent nodes. These distributions may correspond to the a priori
distributions in the case of root nodes or posteriori distributions to the other
nodes computed using the GBT and the DRC. The result of this combination
will be stored in a table associated with a fictional node. The mass distribution
of the fictional node is computed using the Dempster rule of combination after
the extension of the mass distributions of different parents Pa(A) of the visited
node A to a joint space using the vacuous extension. The mass distribution of
the fictional node is denoted as mfictional. It is computed as follows:

mfictional = ⊕A∈Pa(A)(m
A↑Pa(A)) (11)

Once we combined the distribution of the node parents, we can make the
propagation up and down using the two operators DRC and GBT.

Example 2 (Continued). Let us continue with the same network presented in
Figure 1. Let mA and mB be the mass distributions of the two nodes A and B.
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To combine these nodes into a fictional node AB, we have to use the vacuous
extension to extend A and B to a joint space A× B (see Table 3 and Table 4).
The mass distribution of the fictional node is then computed using the Dempster
rule of combination (see Figure 3).

Table 3. mA↑AB

a1 × ΘB 0.5

a2 × ΘB 0.5

ΘA × ΘB 0

Table 4. mB↑AB

b1 × ΘA 0.2

b2 × ΘA 0.5

ΘB × ΘA 0.3

AB 

C 

     {a1,b1} 0.1 
{a1,b2} 0.25 
{a2,b1} 0.1 
{a2,b2} 0.25 

 {a1}    ӨB 0.15 
 {a2}    ӨB 0.15 
  ӨA     {b1}  0 
  ӨA     {b2}  0 
 ӨA      ӨB 0 

Fig. 3. A causal belief network with a fictional node

5.3 Propagation of Observations in Causal Belief Networks

We propose in this section a direct propagation algorithm in singly connected
causal belief networks where conditional beliefs are defined for all parents. The
causal direct propagation of observations consists of two steps: the propagation
down and the propagation up. A post-order (in direction of leaves) and a pre-
order (in direction of roots) will be defined to propagate information backward
and forward respectively.

Algorithm. Propagation down

For each A ∈ post-order
If A /∈ R

Combine the masses of its parents using the vacuous extension.
Store the combined distribution in a fictional node.
Pass a message π from the fictional node to A using the DRC.
Compute its mass distribution.
Send a message to its child C.
Marginalization: find the initial mass of the parent nodes.

End if
End for
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Algorithm. Propagation up

For each A ∈ pre-order
If A /∈ R

Combine the masses of parents.
Store the combined distribution in a fictional node.
Send a message λ to the fictional node using the GBT.
Compute its mass distribution.
Marginalization: find the initial mass of the parent nodes.

End if
End for

Algorithm. Direct propagation of observations

Updating the mass distribution of the node concerned by the observation.
Propagation down.
Propagation up.

Each node A computes its mass distribution by combining the two values π and
λ using this formula:

m ← πA ⊕ λA (12)

Example 2 (Continued). Let us continue with same example. Propagation
consists of sending a message π from the mass distribution of the fictional node
that is resulting from the combination of distributions of A and B to the node
C. This latter computes its message π using the DRC (Equation 9). The new
distribution of node C is as follows: c1 = 0.73, c2 = 0.17, ΘC = 0.1
Then, the node C sends a message λ to the fictional node AB which in turn
computes the new value λ using the GBT (Equation 10). The results are subsets
of the cartesian product of A×B. The distribution of AB as follows:
mAB({(a1, b1)}) = 0.0152, mAB({(a1, b2)}) = 0.0185, mAB({(a2, b1)}) = 0.026,
mAB({(a2, b2)}) = 0.0404, mAB({(a1, b1), (a1, b2)}) = 0.0744, mAB({(a1, b1),
(a2, b1)})= 0.0065, mAB({(a1, b1), (a2, b2)}) = 0.01, mAB({(a1, b2), (a2, b1)})
= 0.0434, mAB({(a1, b2), (a2, b2)}) = 0.0279, mAB({(a2, b1), (a2, b2)}) = 0.0173,
mAB({(a1, b1), (a1, b2), (a2, b1)}) = 0.1734, mAB({(a1, b1), (a2, b1), (a2, b2)})
= 0.0043, mAB({(a1, b1); (a1, b2), (a2, b2)}) = 0.1115, mAB({(a1, b2), (a2, b1);
(a2, b2)}) = 0.065, mAB({(a1, b1), (a1, b2), (a2, b1), (a2, b2)}) = 0.3662

After computing the distributions of the fictional node AB, it is possible to
compute the mass distribution of A and B by applying the marginalization mAB↓A

where mAB↓A(a1) = 0.1081, mAB↓A(a2) = 0.0837 and mAB↓A(ΘA) =0.8082 and
mAB↓B where mAB↓B(b1) = 0.0477, mAB↓B(b2) = 0.0868 and mAB↓B(ΘB) =
0.8655 since the propagation is ensured between a node and its neighbors.
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5.4 Propagation of Interventions in Causal Belief Networks

Handling interventions can be done using graph augmentation and graph muti-
lation methods.

– Propagation in the mutilated graph

Propagation in this graph consists of two steps: the mutilation step where
the distribution of concerned by the intervention becomes a certain one (see
Figure 4) and the propagation step using the direct causal propagation al-
gorithm presented in Section 5.3.

Algorithm. Direct propagation using the mutilated based approach

Cutting all edges pointing to the node concerned by the intervention C.
C computes its new marginal which becomes a certain bba.
Propagation down.
Propagation up.

A B 

C 

a1 0.5 
a2 0.5 
ƟA 0 

b1 0.2 
b2 0.5 
ƟB 0.3 

c1 1 
c2 0 
ƟC 0 

Fig. 4. A causal belief mutilated graph

– Propagation in the augmented graph

Since adding the “DO” node, the conditional distribution of the node con-
cerned by the intervention A given all parents must be updated. Hence, the
graph augmentation method allows to represent the effect of observations
when the DO node is taking the value nothing . When the DO node is tak-
ing the do(ai), we make a certain action which succeeds to put its target at
a precise value by making it completely independent of its original causes.
Thus, the distribution of A is a certain bba. Let Pa(A) be the parents of the
A except the DO node, the conditional distribution of the A is defined as
follows:

m(ak|Pa(A), do(x)) =

⎧⎨⎩
1 if x = ai
0 if x �= ai
m(ak|Pa(A), do(x)) x = nothing

(13)
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Propagation in this graph consists of two steps: the augmentation step where
the conditional distribution of the node concerned by the intervention be-
comes a certain due to addition of the node DO and the propagation step
using the using the direct causal propagation algorithm presented in Sec-
tion 5.3.

Algorithm.Direct propagationusing the augmentedbasedapproach

Add the nodeDOasa parentof thenode concernedby the interventionC.
Updating the conditional mass distribution of C using Equation 13.
Propagation down.
Propagation up.

Example 3. Let us consider the network presented in Figure 5 which illustrates a
causal belief augmented graph on which an intervention do(c1) forces the variable
C to take the specific value c1. The conditional bba of C given its parents DO
and A are defined using the Equation 13.

DO A 

C 

do(c1) 1 
do(c2) 0 

do(nothing) 0 

a1 0.5 
a2 0.5 
ƟA 0 

do(c1) a1 do(c1) a2 do(c2) a1 do(c2) a2 do(noth)a1 do(noth) a2 

c1 1 1 0 0 0.7 0.5 

c2 0 0 1 1 0.3 0.5 

ƟC 0 0 0 0 0 0 

Fig. 5. A causal belief augmented graph

In the case where the intervention do(c1) forces the variable C to take the
specific value c1, the mass distribution of the node C after the propagation process
using the DRC is a certain bba. When the variable takes the value nothing, the
bba is the same where there is no intervention. The parent nodes are extended
to the joint space DO×A using the vacuous extension and then combined using
the Dempster rule of combination. The results of the propagation are as follows:
do(c1): c1=1, c2=0, ΘC=0; do(c2): c1=0, c2=1, ΘC=0; do(nothing): c1=0.6,
c2=0.4, ΘC=0
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6 Conclusion

In this paper, we explained how we can still use the DRC and the GBT rules for
propagation in causal belief networks even if the distributions are defined for all
parents. We proposed a method acting directly on the network without having
to go through the transformation into a junction tree. The proposed algorithms
deal with the inference of observations and interventions in the augmented and
mutilated graphs. As future work, we intend to treat inference in multiply con-
nected causal belief networks. Inference in causal belief networks can be used in
several applications like those allowing the intrusion detection and or ensuring
system reliability.

References

1. Ben Yaghlane, B., Mellouli, K.: Inference in directed evidential networks based on
the transferable belief model. International Journal Of Approximate Reasoning 48,
399–418 (2008)

2. Benferhat, S., Smaoui, S.: Possibilistic causal networks for handling interven-
tions: A new propagation algorithm. In: AAAI Conference on Artificial Intelligence
(AAAI), pp. 373–378. AAAI Press (2007)

3. Boukhris, I., Elouedi, Z., Benferhat, S.: Dealing with external actions in causal
belief networks. International Journal Of Approximate Reasoning, 978–999 (2013)

4. Boussarsar, O., Boukhris, I., Elouedi, Z.: Representing interventional knowledge in
causal belief networks: Uncertain conditional distributions per cause. In: Laurent,
A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part III.
CCIS, vol. 444, pp. 223–232. Springer, Heidelberg (2014)

5. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Pub., San Mateo (1988)

6. Pearl, J.: Causality: Models, Reasonning and Inference. Cambridge University
Press (2000)

7. Shachter, R.D.: Probabilistic inference and influence diagrams. Operations
Research 36, 589–604 (1988)

8. Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton
(1976)

9. Smets, P.: The combination of evidence in the transferable belief model. IEEE
Pattern Analysis and Machine Intelligence 12, 447–458 (1990)

10. Smets, P.: Jeffrey’s rule of conditioning generalized to belief functions. In:
Uncertainty in Artificial Intelligence, pp. 500–505 (1993)

11. Xu, H., Smets, P.: Evidential reasoning with conditional belief functions. In:
Uncertainty in Artificial Intelligence, pp. 598–606 (1994)

12. Xu, H., Smets, P.: Reasoning in evidential networks with conditional belief func-
tions. International Journal of Approximate Reasoning 14, 155–185 (1996)



From Declarative Set Constraint Models

to “Good” SAT Instances

Frédéric Lardeux1 and Eric Monfroy2

1 Université d’Angers, France
Frederic.Lardeux@univ-angers.fr

2 LINA, UMR CNRS 6241, TASC INRIA, Université de Nantes, France
Eric.Monfroy@univ-nantes.fr

Abstract. On the one hand, Constraint Satisfaction Problems allow
one to declaratively model problems. On the other hand, propositional
satisfiability problem (SAT) solvers can handle huge SAT instances. We
thus present a technique to declaratively model set constraint problems,
to reduce them, and to encode them into ”good” SAT instances. We
illustrate our technique on the well-known nqueens problem. Our tech-
nique is simpler, more expressive, and less error-prone than direct hand
modeling. The SAT instances that we automatically generate are rather
small w.r.t. hand-written instances.

1 Introduction

Most of combinatorial problems can be formulated as Constraint Satisfaction
Problems (CSP) [18]. A CSP is defined by some variables and constraints
between these variables. Solving a CSP consists in finding assignments of the
variables that satisfy the constraints. One of the main strength of CSP is declar-
ativity and expressiveness: variables can be of various types (finite domains,
floating point numbers, sets, . . . ) and constraints as well (linear arithmetic con-
straints, set constraints, non linear constraints, Boolean constraints, . . . ). More-
over, the so-called global constraints not only improve solving efficiency but also
expressiveness: they propose new constructs and relations such as alldifferent
(to enforce that all the variables of a list have different values), cardinality (to
link a set to its size), . . .

On theother hand, thepropositional satisfiabilityproblem(SAT) [8] is restricted
(in terms of expressiveness) to Boolean variables and propositional formulae. Cod-
ing set constraints directly into SAT is a tedious tasks (see for example [19] or [9]).
Moreover, when one wants to optimize its model in terms of variables and clauses
this quickly leads to very complicated and unreadable models in which errors can
easily appear. However, SAT solvers can now handle huge SAT instances (millions
of variables). It is thus attractive to 1) encode CSPs into SAT (e.g., [3,5]) in order
to benefit from the declarativity and expressiveness of CSP and the power of SAT,
and 2) introduce more declarativity into SAT, e.g., with global constraints such as
alldifferent [12], or cardinality [4].

G.A. Aranda-Corral et al. (Eds.): AISC 2014, LNAI 8884, pp. 76–87, 2014.
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Various systems of set constraints (either specialized systems [13], libraries
for constraint programming systems such as [10], or the set constraint library of
CHOCO [1]) have been designed and it has been shown that numerous problems
can easily be modeled with set constraints.

In this paper we are concerned with the transformation of set constraints into
SAT instances: we often refer to this transformation as ”encoding”. In [11], we
presented encoding rules that are directly applied on the CSP set constraints.
However, we have noticed that some supports of sets (i.e., elements that are
possibly in this set) could be reduced (some elements can be removed from
the supports without loosing any solution). Thus, the generated SAT instances
include non necessary information.

It is inconceivable to force the user to write reduced CSP models: first, because
it is a tedious and error-prone task; and second, it may be impossible to see all the
relations between the sets (more especially when working on sets which supports
are not yet declared). Thus, our approach consists in providing:

– a simple but complete, declarative, and expressive set language for easily
modeling problems with constraints such as intersection, union, cardinal of
sets, . . .

– a set of reduction rules (⇒red) to reduce CSP models. In fact, these rules
define constraint propagation [2] for sets and elements and make the model
Generalized Arc Consistent [14].

– a set of encoding rules (⇔enc) that convert CSP constraints into SAT in-
stances.

In this paper, we illustrate our approach with the famous nqueen problem.
Moreover, we have tried our technique on various problems (e.g., Social Golfer
Problem [11], Sudoku, Car-sequencing) and the SAT instances which are au-
tomatically generated have a complexity similar to the complexity of improved
hand-written SAT formulations, and their solving with a SAT solver (in our case
Minisat [6]) is efficient compared to other SAT approaches.

Compared to [11], the ⇒red reduction rules enable us:

– to simplify the encoding rules (⇔enc): indeed, some transformation cases
become unuseful; the encoding rules become even more simple and readable;

– to obtain even smaller SAT instances, in terms of clauses and variables; these
problems are solved faster;

– to tackle and solve larger problems that we were unable to encode using only
our previous encoding rules (for size reasons).

We can compare our work with SAT encoding techniques such as [3] and [5].
These works make a relation between CSP solving and SAT solving in terms of
properties such as consistencies for finite domain variables and constraints. In
this article, we are concerned with a different type of constraints (i.e., set con-
straints) and we try to obtain small SAT instances that are also well-suited for
standard SAT solvers. Our approach is similar to [12] in which alldifferent global
constraints and overlapping alldifferent constraints are handled declaratively
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before being encoded automatically in SAT using rewrite rules. Note also that
we use the work of [4] about the cardinality global constraint in order to perform
the encoding of set cardinality. Our goal is not to compete with standard set
solvers, but to introduce set constraints into SAT.

In the next section (Section 2) we present the CSP set constraint language.
In Section 3 we show the rules to reduce models. Section 4 presents our new
rule-based system for encoding set constraints into SAT. Section 5 illustrates
our approach on the nqueen problem. We finally conclude in Section 6.

2 Set Constraint

2.1 Universe and Supports

In order to encode set constraints into SAT, we consider 3 notions: universe,
support, and domain. Informally, the universe is the set of all elements that are
considered in a model of a given problem; the support F of a set F appearing
in this model is a set of possible elements of F (i.e., F is a superset of F ); and
the domain of an element variable is a set of possible values for this element.

Definition 1. Let P be a problem, and M be a model of P in L, i.e., a descrip-
tion of P from the natural language to the language of constraints L.

– The universe U of M is a finite set of constants.
– The support F of the set F of the model M is a subset of the universe U . F

represents the constants of U that can possibly be elements of F :

F ⊆ F ⊆ U and F ∈ P(F)

where P(F) = {A|A ⊆ F} is the power set of F . We say that F is over F .
– The domain Dx of a variable element x is a subset of the universe U ; Dx

represents the elements of U that are possible values (i.e., constants) for x.

Note that each element of U \F cannot be an element of F . In the following,
we denote sets by upper-case letters (e.g., F ) and their supports by calligraphic
upper-case letters (e.g., F). Variable elements are represented by lower-case let-
ters (e;g., x) and their domain by D indexed by the variable name (e.g., Dx).
When there is no confusion, we shorten ”the set F of the model M” to ”F”.

Consider a model M with a universe U , and a set F over F . For each element
x of F , we consider a Boolean variable xF which is true if x ∈ F and false
otherwise. We call the set of such variables the support variables for F in F . In
the following, we write xF for xF = true and ¬xF for xF = false.

Example 1. Let U = {x, y, z, t} be the universe of a model M , and F = {x, y, t}
be the support of a set F of M . Then, we have 3 Boolean variables xF , yF , and
tF corresponding respectively to x, y, and t to represent F . By definition, z �∈ F
and there is no zF variable; and x, y, t can possibly be in F . Consider now that
F = {x, y}. Then, we have xF , yF , and ¬tF .
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2.2 Syntax

In order to declare objects, we use the following declarations:

– Universe(U) is used to declare the universe as the set U ;
– Set(F,F): declares a set F together with its support F .;
– Element(x,Dx): creates a variable x of type element with its domain Dx.

Consider F , G, H , and Fi (i ranging from 1 to n) being sets, and x being an
element. We consider the following usual (CSP) set constraints:

element (dis)equality x = y (x �= y)
(non)membership x ∈ F (x �∈ F )
set (dis)equality F = G (F �= G)
intersection H = F ∩G
union H = F ∪G
inclusion F ⊆ G
difference H = F \G
multi-intersection F =

⋂n
i=1 Fi

multi-union F =
⋃n

i=1 Fi

cardinality{=, <,>} |F | {=, <,>} k

More constraints could be defined, but they can be deduced from these basic
constraints. A model for a problem is given by:

1. a universe;
2. some sets together with their supports;
3. some variable elements with their domains;
4. some constraints between sets and elements.

3 Reducing Supports

Support sizes are a crucial parameter for the sizes of generated SAT instances.
Moreover, it is quite complicated (and sometimes impossible) to write a model
with ”reduced” supports. For example, consider 3 sets: Set(G, {1, 2, . . . , 10000}),
Set(F, {9999, . . . , 20000}), and Set(H, {5000, . . . , 25000}). Latter in the model,
let consider that the constraint H = F ∪ G appear. Then, the support of H
can be reduced to {5000, . . . , 20000}, and the support of G can be reduced to
{5000, . . . , 10000}.

We thus consider some reduction rules ⇒red to reduce domains and supports
w.r.t. constraints. These rules remove elements of the supports and domains that
cannot participate in any solution to the problem. We first start with failure case,
i.e., cases that do not lead to any solution.

Failures. Rule 1 causes a fail when the domain of a variable is empty. Rule 2
leads to a fail when the imposed cardinality is higher than the size of the support
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of the set. Rule 3 is similar for inequality about cardinal.

Dx = ∅ ⇒red fail (1)

|F | = k ⇒red fail if |F| < k (2)

|F | > k ⇒red fail if |F| ≤ k (3)

Domain Reduction. Rule 4 reduces the domains of two equal variables. When
2 variables are disequal, Rule 5 reduces the domain of the second variable when
the domain of the first one is restricted to a singleton ({vx}). The domain of a
variable x is reduced by Rule 6 w.r.t. the support of a set F in which x must
appear (constraint x ∈ F ):

x = y ⇒red

{
Dx ← Dx ∩Dy,
Dy ← Dx ∩Dy

(4)

x �= y,Dx = {vx} ⇒red Dy ← Dy \ {vx} (5)

x ∈ F ⇒red Dx ← Dx ∩ F (6)

Support Reduction. When 2 sets must be equal, Rule 7 reduces their supports
to their intersection. Intersection constraint enables to reduce the domain of the
set intersection (Rule 8) whereas union constraint may reduce the supports of
the 3 sets appearing in the constraint (Rule 9). Inclusion constraint only reduces
the support of the included set (Rule 10). Difference constraint may reduce 2
supports of the 3 sets (Rule 11). Rules 12 and 13 are similar to Rules 9 and 8
for multi-union and multi-intersection constraints.

F = G ⇒red F ← F ∩ G, G ← G ∩ F (7)

H = F ∩G ⇒red H ← H ∩ F ∩ G (8)

H = F ∪G ⇒red H ← H ∩ (F ∪ G), F ← F ∩ H, G ← G ∩ H (9)

F ⊆ G ⇒red F ← F ∩ G (10)

H = F \G ⇒red H ← H ∩ F , F ← F ∩ H (11)

H =

n⋃
i=1

Fi ⇒red H ← H ∩ (

n⋃
i=1

Fi), ∀i ∈ [1..n] Fi ← Fi ∩H, (12)

H =

n⋂
i=1

Fi ⇒red H ← H ∩ (

n⋂
i=1

Fi) (13)

Rule Application. ⇒red rules can be seen as filtering (or reduction) functions
in constraint programming. They can thus be applied by a fixed-point algorithm
such as chaotic iterations [2,16,15]: since the rules have the required properties
(monotonic decreasing and idempotent), termination is ensured.

In fact, these rules define constraint propagation for sets and elements. More-
over, they enforce GAC (Generalised Arc Consistency [14]), i.e., the supports
and domains cannot be reduced anymore using a single constraint without
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loosing solution local to this constraint. Since this is not the focus of this paper,
we don’t give here the proof, but just the basis: with respect to GAC, variable
domains (in terms of constraint programming) are the domains of the variable
elements, and the power-set of the supports for sets.

4 The ⇔enc Encoding Rules

We can now define the encoding of our CSP set constraints into SAT. In the
following, we consider three sets F ,G, andH respectively defined on the supports
F , G and H of the universe U , and for each x ∈ U the various Boolean variables
xF , xG , and xH as defined before. |G| denotes the cardinality of the set G.

Contrary to [11], we consider here that supports and domains are reduced
using ⇒red rules. Allowing the supports to be non reduced eases the modeling
process: indeed, one does not have to compute the reduced support and can use
a superset of it or the universe; then, supports are reduced automatically by the
⇒red rules and the ⇔enc encoding rules can generate smaller SAT instances.

The clauses that are generated by these rules are of the form ∀x ∈ F , φ(xF )
which denotes the |F| formulae φ(xF ) built for each element x of the support
F of F (x refers to the element of the universe/support, and xF to the variable
representing x for the set F ).

Element(x,Dx) and set(F,F) enable to create the required SAT variables:
as many variables as the support for a set, and as many as the domain for a
variable element. In the following, we present rules for set constraint encodings
with: first, the set constraint, then its encoding in SAT (i.e., some clauses linking
the SAT variables), and finally, the number of clauses generated.

Element Variable. This encoding rule enforces each element variable to have
one and only one value from its domain:

Element(v,Dv) ⇔enc ∀x ∈ Dv,
∨

x∈Dv
(∧y∈Dv ,x �=y(¬yv) ∧ xv) |Dv|2 bin. clauses

Element Variable (dis) Equality. let us recall that after application of ⇒red

rules on v = w, v and w have the same domain. This is not the case for v �= w.

v = w ⇔enc ∀x ∈ Dv, xv ↔ xw 2.|Dv| binary clauses

v �= w ⇔enc

{
∀x ∈ Dv, xv → ¬xw 2.|Dv| binary clauses
∀x ∈ Dw, xw → ¬xv 2.|Dw| binary clauses

Membership Constraint. This constraint enforces the element v to be in the
set F : if x ∈ F (x is in the support of F ), then the corresponding support
variable must be true (i.e., xF ). The constraint x �∈ F can be similarly defined.

v ∈ F ⇔enc ∀x ∈ Dv, xv → xF |Dv| binary clauses

v �∈ F ⇔enc ∀x ∈ Dv ∩ F , xv → ¬xF ∧ xF → ¬xv 2.|Dv| binary clauses
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Set (Dis) Equality Constraint. After reduction, 2 equal sets G and F have
the same support. Thus, the encoding for the equality constraint is:

F = G ⇔enc ∀x ∈ F , xF ↔ xG 2.|F| binary clauses

The constraint F �= G is satisfied when at least one variable of the intersection
of the 2 sets is different in F and G, or when a variable appearing in the support
of F and not in the one of G is true (and vice-versa):

F �= G ⇔enc (
∨

x∈F∩G xF ↔ ¬xG) ∨ (
∨

x∈F\G xF) ∨ (
∨

x∈G\F xG)
2.|F ∪G| clauses of size 2 + |F ∩ G| − |F ∪G|

Intersection Constraint. Let H be the intersection of two sets G and F : the
reduced support of H is included in the intersection of the supports of G and F .

– for the elements of F ∩ G ∩H: a support variable of H is true if and only if
this variable is in F and G;

– for the elements of (F ∩ G) \ H: since such an element cannot be in H , it
must not be in F or in G.

F ∩G = H ⇔enc⎧⎨⎩∀x ∈ F ∩ G ∩ H, xF ∧ xG ↔ xH
|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩H| binary clauses

∀x ∈ (F ∩ G) \ H, ¬xF ∨ ¬xG |(F ∩ G) \ H| binary clauses

Union Constraint. More cases must be considered for this constraints:

– for the elements of F ∩ G ∩H: a support variable of H is true if and only if
this variable is in F or in G; this is the trivial case;

– for the elements of (F ∩ H) \ G: this case is a reduction of the previous one
but it is however equivalent; since such an element x is not in the support
of G then xG does not exist, and x is in H if and only if it is in F ; note that
the generated clauses are exactly the same removing xG ;

– for the elements of (G ∩ H) \ F : this is the symmetrical case for G;

F ∪G = H ⇔enc⎧⎪⎪⎨⎪⎪⎩
∀x ∈ F ∩ G ∩ H, xF ∨ xG ↔ xH

|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩H| binary clauses

∀x ∈ (F ∩ H) \ G, xF ↔ xH 2.|(F ∩ H) \ G| binary clauses
∀x ∈ (G ∩ H) \ F , xG ↔ xH 2.|(G ∩ H) \ F| binary clauses

Inclusion Constraint. Elements of F that are in F must also be in G:

F ⊆ G ⇔enc ∀x ∈ F , xF → xG |F| binary clauses
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Difference Constraint. After reduction, F and H have the same support:

– for the elements of F ∩G ∩H: such elements are in H if and only if they are
in F and not in G;

– for the elements of F \ G: they are in H if and only if they are in F .

H = F \G ⇔enc⎧⎨⎩∀x ∈ F ∩ G ∩ H, xF ∧ ¬xG ↔ xH
|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩ H| binary clauses

∀x ∈ F \ G, xF ↔ xH 2.|F \ G| binary clauses

Multi-union Constraint. The multi-union constraint H =
⋃n

i=1 Fi is equiva-
lent to the n− 1 ternary constraints: F1,2 = F1 ∩ F2, F1,2,3 = F1,2 ∩ F3, . . . It is
not only a short-hand, but it also significantly reduces the number of variables
(only variables for H are required, not for each set F1,2,...) and generated clauses.
Indeed, elements of

⋂n
i=1 Fi are considered once in the multi-union constraint

whereas they are considered n− 1 times in the corresponding n− 1 binary union
constraints. the set {1, . . . , n}.

H =
⋃n

i=1 Fi ⇔enc

{
∀i ∈ N, ∀x ∈ Fi, xFi → xH

∑n
i=1 |Fi| binary clauses

∀x ∈ H, xH →
∨

i∈N,x∈Fi
xFi |H| m-ary clauses (m ≤ n)

Multi-intersection Constraint. Similarly, we define the multi-intersection
constraints. As for the multi-union, the advantage is the gain of clauses and
variables in the generated SAT instance:

H =
⋂

i∈N Fi ⇔enc{
∀x ∈ H,

∧n
i=1 xFi ↔ xH 2.|H| (n+ 1)-ary clauses

∀x ∈ (
⋂n

i=1 Fi) \ H,
∨

i∈N (¬xFi) |
⋂

i∈N Fi \ H| n-ary clauses

Cardinality Constraint. This constraint has been studied for the encoding of
global constraints (see e.g., [4]). The very intuitive encoding is quite simple but
the generated clauses are too large. A more efficient encoding is based on the
unary representation of integers (an integer k ∈ [0..n] is represented by 1 k times
followed by 0 n− k times). We re-use this encoding [4] that we have chosen for
the unit clauses it generates, and thus, the simplifications that can be achieved
in the SAT instances. Consider the set G over the support G of size n, then the

set constraint |G| = k generates: n+
∑n

i=1 2u
n
i (�

un
i

2 �+ 1)( un
i

2 !+ 1)− (
un
i

2 + 1)
clauses and

∑n
i=1 u

n
i variables. with un

n = 1,un
1 = n and un

i = un
2i−1+2un

2i+un
2i+1.

The cardinality le constraint can similarly be generated.

5 Application to the Nqueen Problem

Practically, the ⇒red rules have been implemented as Constraint Handling Rules
(CHR [7]), and the ⇔enc rules with C++. To illustrate our approach, we have
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chosen the nqueen problem for various reasons: it is not well suited for SAT
solvers; it scales well; it can be modeled in various ways with sets. We first give
an intuitive model and then a more efficient model of the nqueen problem.

nqB: Model with the Board as Universe. The variables are the following:

– Universe: U = {x1,1, . . . , xn,n}, i.e., the set of cells of a n× n board
– Rows: ∀i ∈ [1..n], set(Ri, {xi,1, . . . , xi,n})
– Columns: ∀i ∈ [1..n], set(Ci, {x1,i, . . . , xn,i})
– 2.n− 3 East-West diagonals: set(D1, {x1,2, x2,1}), set(D2, {x1,3, x2,2, x3,1}),

. . . , set(D2.n−3, {xn−1,n, xn,n−1})
– 2.n − 3 West-East diagonals: set(D2.n−2, {xn−1,2, xn,1}), . . . , set(D4.n−6,

{x1,n−1, x2,n})
– the set of n queens: set(Q, {x1,1, . . . , xn,n})
– the n queens: ∀i ∈ [1..n], Element(q(i), {x1,1, . . . , xn,n})

The constraints are:

– Q is of size n: |Q| = n
– the n queens are in Q: ∀i ∈ [1..n], q(i) ∈ Q
– queen i is on row i: ∀i ∈ [1..n], qi ∈ Ri

– one and only one queen per column: ∀i ∈ [1..n], set(CQi, {x1,1, . . . , xn,n}),
CQi = Ci ∩Q, |CQi| = 1

– at most one queen per diagonal: ∀i ∈ [1..4.n− 6], set(DQi, {x1,1, . . . , xn,n}),
DQi = Di ∩Q, |DQi| < 2

Note that the support of each CQi (resp.DQi) could have been set to the support
of Ci (resp.Di). However, one does not have to care about this when modeling
since the ⇒red rules will reduce these supports. The solutions are contained in
Q: each element of Q is a queen, i.e., a cell of the board.

nqQ: Model with the Queens as Universe. Since the encoding is very cor-
related to the size of the support, we propose another model where the universe
is much smaller, i.e., the set of n queens:

– Universe: Q = {q1, . . . , qn}, i.e., the n queens to be placed on a n×n board;
– Rows: ∀i ∈ [1..n], set(Ri, {qi}); each row i is over queen i;
– the set of queens and columns are defined as above, but over the support Q;
– each cell Ci,j is defined as the intersection of row Ri and column Cj : ∀i, j ∈

[1..n], set(Ci,j ,Q), Ci,j = Ri ∩ Cj ;
– the 4.n− 6 diagonals are defined by unions of cells: set(D1,Q), D1 = C1,2 ∪

C2,1, set(D2,Q), D2 = C1,3 ∪ C2,2 ∪ C3,1, . . .
– Q is of size n: |Q| = n
– to enforce one queen per row: ∀i ∈ [1..n], |Ri| = 1;
– one and only one queen per column: ∀i ∈ [1..n], |Ci| = 1;
– a different queen on each column: Q =

⋃n
i=1 Ci

(or, ∀i, j ∈ [1..n], set(CCi,j ,Q), CCi,j = Ci ∩ Cj , |CCi,j | = 0 );
– atmost one queen per diagonal: ∀i ∈ [1..4.n− 6], |Di| < 2.
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Table 1. Experimental results

q

Model with the Board as universe
⇔enc ⇒red+ ⇔enc

var cl
time

minisat
time

var cl
time

minisat⇔enc ⇒red ⇔enc

5 3 696 22 749 0,07 0,01 0,02 564 2 055 0,01 0,00
10 42 956 635 874 2,19 0,38 0,06 2 876 18 654 0,09 0,03
15 170 611 4 652 164 16,64 2,94 0,21 7 243 75 413 0,25 0,13
20 449 116 19 336 154 56,90 18,07 0,42 13 924 212 850 0,68 0,65
25 942 141 58 637 309 183,67 88,12 0,75 22 977 486 081 1,61 2,92
30 1 715 296 145 441 474 485,82 0,78 34 392 965 086 3,77 8,37
35 1,93 48 486 1 735 499 6,70 18,54
40 2,79 65 316 2 897 434 12,56 43,23
45 4,00 84 646 4 565 419 19,65 89,72
50 5,32 106 928 6 870 358 32,06 166,80
55 7,16 131 783 9 956 493 50,23 303,35
60 9,18 159 188 13 983 778 76,83 514,04
65
70
75
80
85
90
95

100

q

Model with the queens as universe
⇔enc ⇒red+ ⇔enc

var cl
time

minisat
time

var cl
time

minisat⇔enc ⇒red ⇔enc

5 475 1 486 0,01 0,00 0,03 267 796 0,01 0,00
10 3 000 11 166 0,07 0,00 0,05 1 332 4 936 0,03 0,01
15 8 585 35 566 0,16 0,02 0,19 3 347 14 476 0,07 0,01
20 18 300 81 326 0,37 0,05 0,34 6 428 31 398 0,13 0,04
25 32 835 154 326 0,72 0,09 0,61 10 623 57 548 0,21 0,07
30 52 870 260 426 1,20 0,16 0,92 15 918 94 648 0,34 0,09
35 79 665 406 646 1,84 0,26 1,37 22 439 144 700 0,50 0,16
40 114 000 599 046 2,81 0,35 2,09 30 264 209 610 0,69 0,24
45 156 335 843 046 3,79 0,51 3,02 39 339 291 020 0,94 0,32
50 207 420 1 144 646 5,20 0,68 4,13 49 664 390 680 1,24 0,45
55 268 005 1 509 846 6,87 0,96 5,42 61 239 510 340 1,59 0,58
60 338 840 1 944 646 8,80 1,24 7,08 74 064 651 750 2,00 0,73
65 420 995 2 455 686 11,17 1,67 9,45 88 207 816 796 2,54 0,95
70 516 330 3 051 186 13,63 1,95 11,91 103 962 1 007 816 3,15 1,18
75 624 415 3 734 786 16,97 4,54 16,70 121 117 1 226 136 3,77 1,44
80 746 000 4 512 486 20,32 2,81 20,80 139 672 1 473 506 4,43 1,77
85 881 835 5 390 286 24,20 3,74 25,90 159 627 1 751 676 5,37 2,12
90 1 032 670 6 374 186 28,71 4,16 32,00 180 982 2 062 396 6,10 2,58
95 1 199 255 7 470 186 33,82 9,57 37,80 203 737 2 407 416 7,09 3,06

100 1 382 340 8 684 286 45,03 17,63 40,50 227 892 2 788 486 8,47 3,46
105 1 582 675 10 022 486 46,08 8,54 52,00 253 447 3 207 356 9,55 4,22
110 1 801 010 11 490 786 53,00 142,33 61,00 280 402 3 665 776 11,15 4,68
115 2 038 095 13 095 186 60,13 61,73 70,80 308 757 4 165 496 12,72 5,46
120 2 294 680 14 841 686 69,36 82,00 338 512 4 708 266 14,39 6,12
150 4 302 080 28 673 566 132,96 185,00 550 732 8 975 516 26,40 12,98
200 9 735 680 67 150 566 316,90 525,00



86 F. Lardeux and E. Monfroy

Interpretation of the results: if cell Ci,j = {qk}, then queen qk is in i × j, else
Ci,j = ∅ and there is no queen in i× j.

As said before, our goal is not to compete with arithmetic solvers or set solvers,
but to be able to declaratively, expressively, and error-prone model problems into
SAT. Table 5 presents the results for the two models (model with the board as
universe and model with the queens as universe). Column ”q” represents the
queens number and others columns represent the number of variables (var) and
clauses (cl) for the generated SAT instance, the encoding time (time ⇔enc), the
reduction time (time ⇒red) and the solving time by the Minisat solver [6] (min-
isat). When have limited the running time to 600 seconds for each combination
of processes. No result is written if this value is reached. When only the Minisat
column is empty this means that the instance exceed the memory size (4GB).

We can observe that the reduction rules ⇒red permit to significantly reduce
the size of the SAT instances. Thereby, instances which are unsolvable (due to
the size) before reduction are now solved by MiniSat (q=30 for model nqB and
q=120 for model nqQ). This result shows that contrary to some reduction rules
such as breaking symmetry [17], our reduction rules do not make the search
more difficult. Finally we can also note that the cumulative running time (en-
coding+resolution or reduction+encoding+resolution) is better when reduction
is applied: always for the nqB model and from q=30 for the nqQ model.

We have tried our technique on various problems (e.g., Social Golfer
Problem [11], Sudoku, Car-sequencing) and the SAT instances which are au-
tomatically generated have a complexity similar to the complexity of improved
hand-written SAT formulations, and their solving with a SAT solver (in our case
Minisat) is efficient compared to other SAT approaches.

6 Conclusion

We have presented a technique for encoding set constraints into SAT: the model-
ing process is achieved using some very declarative and expressive set constraints;
they are then reduce by our ⇒red rules before being automatically converted
(⇔enc) into SAT variables and clauses. We have illustrated our approach on the
nqueen problem and shown some good results with the application of reduction
and encoding rules. The advantages of our technique are the following:

– the modeling process is simple, declarative, expressive, and readable. More-
over, it is solver independent and independent from CSP or SAT solvers;

– the technique is less error-prone than hand-written SAT encodings;
– the SAT instances which are automatically generated are smaller in terms

of number of variables and clauses;
– finally, with respect to solving time, adding reduction process permits to

reduce the cumulative running time (reduction+encoding+resolution);
– the generated SAT instances also appeared to be well-suited for Minisat.

In the future, we plan to use our set constraints encoding for formalizing
finite domain variables. We also plan to combine set constraints with arithmetic
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constraints, and we want to define the corresponding combining SAT encoding.
To this end, we will need to add some new constraints and to complete our ⇔enc

and ⇒red rules.
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Abstract. Sudoku, which is one of the most popular puzzles in the
world, can be considered as a kind of combinatorial problem. Consid-
ering a Sudoku puzzle as a singleton set constraint, we define a purely
mathematical hierarchy of Sudoku puzzles in terms of a Boolean poly-
nomial ring. We also introduce a sufficiently practical symbolic compu-
tation method using Boolean Gröbner bases to determine the hierarchy
level of a given Sudoku puzzle. According to our experiments through
our implementation, there exists a strong positive correlation between
our hierarchy and the levels of difficulty of Sudoku puzzles usually as-
signed by a heuristic analysis. Our mathematical hierarchy would be a
universal tool which ensures the mathematical correctness of the level of
a Sudoku puzzle given by a heuristic analysis.

Keywords: Sudoku, Boolean Gröbner Bases.

1 Introduction

Combinatorial problems are often reduced to solving constraints of sets. Such
constraints are described as polynomial equations over Boolean rings of sets
with some additional conditions of cardinality. Sudoku that is one of the most
popular puzzles in the world is among such instances. Any Sudoku puzzle can
be considered as a constraint of sets with an additional condition that each
variable has to be a singleton, i.e., a set containing exactly one element. When
we solve a Sudoku puzzle as a human, i.e., without a computer, we usually use
several techniques such as naked pair/triple, hidden pair/triple, XY-wing, XY-
chain, etc. Those techniques are categorized from the easiest level to the highest
level. Most books and websites of Sudoku puzzles assign the level of difficulty
to each puzzle, which is usually given by a heuristic analysis of the applicable
techniques. Hence, it might happen that different analyses assign different levels
of difficulty to one puzzle. Based on the theory of Boolean polynomial ring,
we define a purely mathematical hierarchy of Sudoku puzzles. Our hierarchy
reflect any generalization of the above techniques. We also introduce a sufficiently
practical method to determine the hierarchy level of a given Sudoku puzzle,
which is based on the computations of Boolean Gröbner bases [10]. Our method
is implemented on the computer algebra system Risa/Asir [8]. (See also [4].) In
order to see our hierarchy is effective, we computed the hierarchy levels for 735
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Sudoku puzzles in the series of Sudoku books [12] where they are categorized from
the level 1 to 7 according to their levels of difficulty assigned by some heuristic
analysis. Our computation experiments tell us that there exists a strong positive
correlation between our hierarchy and the levels of difficulty assigned in the
book. Some heuristic analysis sometimes assigns an improper level of difficulty
for some puzzle. Our mathematical hierarchy would be a universal tool which
ensures the mathematical correctness of the level of a Sudoku puzzle given by a
heuristic analysis.

The paper is organized as follows. In section 2, we show how we can con-
sider a Sudoku puzzle as a singleton set constraint and how we can translate it
into a system of equations of a certain Boolean polynomial ring. We also give
a minimum description of a Boolean polynomial ring. In section 3, we define a
hierarchy of Sudoku puzzles. In section 4, we show some properties concerning
the computation of minimal polynomials in a Boolean polynomial ring. These
properties enable us to compute the hierarchy level of a given Sudoku puzzle.
Section 5 contains some computation data we have obtained through our com-
putation experiments. The reader is referred to [10] for Boolean Gröbner bases
and related properties of Boolean rings.

2 Sudoku Puzzle as a Singleton Set Constraint

We begin with a quick review of Boolean polynomial rings.

Definition 1. A commutative ring B with an identity 1 is called a Boolean
ring if every element a of B is idempotent, i.e., a2 = a.

(B,∨,∧,¬) becomes a Boolean algebra with the Boolean operations ∨,∧,¬ de-
fined by a ∨ b = a+ b+ a · b, a ∧ b = a · b,¬a = 1+ a. Conversely, for a Boolean
algebra (B,∨,∧,¬), if we define + and · by a + b = (¬a ∧ b) ∨ (a ∧ ¬b) and
a · b = a ∧ b, (B,+, ·) becomes a Boolean ring. Note that + is nothing but an
exclusive OR operator. Since −a = a in a Boolean ring, we do not need to use
the symbol ’−’, however, we also use − when we want to stress its meaning.

Example 1. Let S be an arbitrary set and P(S) be its power set, i.e., the family
of all subsets of S. Then, (P(S),∨,∧,¬) becomes a Boolean algebra with the
operations ∨,∧,¬ as union, intersection and the complement of S respectively.

Definition 2. Let B be a Boolean ring. A quotient ring B[X1, . . . , Xn]/〈X2
1 −

X1, . . . , X
2
n −Xn〉 modulo an ideal 〈X2

1 −X1, . . . , X
2
n −Xn〉 becomes a Boolean

ring. It is called a Boolean polynomial ring and denoted by B(X1, . . . , Xn), its
element is called a Boolean polynomial.

Note that a Boolean polynomial of B(X1, . . . , Xn) is uniquely represented by a
polynomial of B[X1, . . . , Xn] that has at most degree 1 for each variable Xi. In
what follows, we identify a Boolean polynomial with such a representation.

Multiple variables such as X1, . . . , Xn or Y1, . . . , Ym are abbreviated to X̄ or
Ȳ respectively. Lower small roman letters such as a, b, c are usually used for



90 S. Inoue and Y. Sato

elements of a Boolean ring B. The symbol ā denotes an m-tuple of elements of
B for some m.

Definition 3. Let I be an ideal of B(X̄). For a subset S of Bn, VS(I) denotes
a subset {ā ∈ S|∀f ∈ If(ā) = 0}. When S = Bn, VS(I) is simply denoted by
V (I) and called a variety of I. We say I is satisfiable in S if VS(I) is not empty.
When S = Bn, we simply say I is satisfiable.

We first show how a Sudoku puzzle is considered as a singleton set constraint
and presented as a system of equations of a Boolean polynomial ring.

4 9
3 1 8

5

5 8
2 9

1 7

6 5
7

2 9

Consider the above Sudoku puzzle. We associate a variable Xij for each grid
at the i-th row and the j-th column. This puzzle can be considered as a set
constraint where each variable should be assigned a singleton from 9 candidates
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} and {9} so that any distinct two variables
which lie on a same row, column or block must be assigned different single-
tons. 17 variables are assigned singletons X11 = {4}, X15 = {9}, . . . , X99 = {9}
as the initial conditions. This constraint is translated into a system of equa-
tions of the Boolean polynomial ring B(X11, X12, . . . , X99) = B(X̄) with B =
P({1, 2, . . . , 9}) as follows:
(1) X11 = {4}, X15 = {9}, . . . , X99 = {9}.
(2) XijXi′j′ = 0(= ∅) for each pair of distinct variables Xij , Xi′j′ which lie

on a same row, column or block.
(3)
∑

(i,j)∈A Xij = 1(= {1, 2, . . . , 9}) where A is a set of indices lying on

a same row, column or block. (There are 27 such A’s.)

This puzzle is nothing but solving the above equations with a strong restric-
tion that each variable must be a singleton. Let I be the ideal of B(X̄) gen-
erated by the corresponding polynomials of (1),(2) and (3), we call I the cor-
responding ideal of the puzzle. Let Sing denote the subset of B81 defined by
Sing = {(a1, a2, . . . , a81) ∈ B81| each ai is a singleton }. Then the puzzle is
nothing but obtaining VSing(I). We can easily compute V (I) by the computa-
tion of a stratified Boolean Gröbner basis of I, however we have to do something
more for the computation of VSing(I).

In the rest of the paper, B denotes the Boolean ring P({1, 2, . . . , 9}), X̄ de-
notes 81 variables X11, . . . , X99.
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1
2 3 ? 4

3 2
1

4 5

9

1

5 4

3 ? 6 2 8

basic-a basic-b

The above two pictures illustrate two types of typical examples of the basic
level strategies of Sudoku solving. In the left example the variable X28 must be
{1}, in the right example the variable X93 must be {7}.

The corresponding ideal contains a unary polynomial {1, 2, 3, 4}X28+{1} (but
not X28 + {1}) for the left example, (1 + {7})X93(but not X93 + {7}) for the
right example. Note that the equation {1, 2, 3, 4}X28 + {1} = 0 has a solution
X28 = {1} ∪ p with any subset p of {5, 6, 7, 8, 9}, but the singleton solution is
just X28 = {1}. The equation (1 + {7})X93 = 0 has another solution X93 = ∅.
These observations lead us to the following definitions.

Definition 4. A unary Boolean polynomial f(X) ∈B(X) is called
(i) a solution polynomial if it has the following form
f(X) = X + {s},

(ii) a semi-solution polynomial of type-a if it has the following form
f(X) = {s1, s2, . . . , sl}X + {si} for some i = 1, . . . , l

(iii) a semi-solution polynomial of type-b if it has the following form
f(X) = (1 + {s})X

(iv) a contradiction polynomial if it has the following form
f(X) = a, f(X) = X or f(X) = aX + b for some non-zero constant a, b

such that the cardinality of b is greater than 1.
The polynomials X+{si} and X+{s} are called the associated solution polyno-
mial of the semi-solution polynomial of (ii) and (iii) respectively. The associated
solution polynomial of a semi-solution polynomial h is denoted asp(h).

Obviously we have the following property.

Lemma 5. Let I be an ideal of B(X̄) generated by the corresponding poly-
nomials of (1),(2) and (3). If I contains a semi-solution polynomial f(X), let
X + {s} be its associated solution polynomial then the singleton solution of X
must be {s}, more precisely VSing(I) = VSing(I + 〈X + {s}〉). If I contains a
contradiction polynomial then VSing(I) = ∅.
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3 Hierarchy of Sudoku Puzzles

In order to describe our hierarchy, we first give several terminologies.

Definition 6. Let I be a satisfiable ideal of B(X̄). I is called solvable if VSing(I)
�= ∅, furthermore I is called uniquely solvable if the cardinality of VSing(I) is 1.

We first define an operation Ψ0 and Ψ∗
0 on ideals of B(X̄) as follows.

Definition 7. Let I be an ideal of B(X̄). Let P be the set of all unary semi-
solution polynomials which are contained in I and Q = {asp(h)|h ∈ P}, Ψ0(I)
is defined as an ideal sum of I and 〈Q〉, i.e., Ψ0(I) = I + 〈Q〉. Let Ψ1

0 = Ψ0 and
Ψk+1
0 (I) = Ψ0(Ψ

k
0 (I)) for each k = 1, . . .. Since Ψ1

0 (I), Ψ
2
0 (I), . . . are increasing

sequence and B(X̄) is a finite Boolean ring, there exists m such that Ψm+1
0 (I) =

Ψm
0 (I). Let m be the least one and set Ψ∗

0 (I) = Ψm
0 (I). Ψ∗

0 (I) is called the basic
closure of I. An ideal I is said to be basically closed if Ψ∗

0 (I) = I. Note that
Ψ∗
0 (I) is basically closed.

Definition 8. For a uniquely solvable ideal I, if Ψ∗
0 (I) is a maximal ideal, i.e.,

it is generated by 81 solution polynomials X11 + {s11}, . . . , X99 + {s99}, then I
is said to be basic solvable. For a basic solvable ideal I, its basic rank is the least
m such that Ψ∗

0 (I) = Ψm
0 (I) denoted by b-rank(I).

If any uniquely solvable ideal is also basic solvable, then we would be able to
give a mathematical hierarchy of Sudoku puzzles by using the basic rank defined
above. Unfortunately, the situation is not so simple. There exist many uniquely
solvable ideals which are not basic solvable but can be handled by more advanced
strategies of Sudoku solving. For making a hierarchy for such tough ideals, we
have to do something more.

1
2

1
3

2
3 a

b d
a 1

2 a a 1
4 a a a a

b d

b d
c 2

3 c c 3
4 c c c c

b d
b d

b d
b d

XY-wing XY-chain

The above two pictures illustrate two types of typical examples of well-known
advanced strategies of Sudoku solving. In the picture there are two numbers
located in a same grid. For example 1 and 2 are located in the grid of the
second line and the second column. It means that there are only two possible
singleton solutions {1}, {2} for the variable X22. The XY-wing strategy tells us
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that a �= 3 in the left picture, the XY-chain strategy tells us that a �= 1, b �=
2, c �= 3 and d �= 4 in the right picture. The given situation is generalized
as a unary polynomial equation (1 + {1, 2})X22 = 0. That is the polynomial
(1 + {1, 2})X22 is contained in the corresponding ideal. For the left example,
let the initial polynomials of (1) of a Sudoku puzzle be (1 + {1, 2})X22,(1 +
{2, 3})X52 and (1 + {1, 3})X25, then consider the corresponding ideal I. If I
contains the polynomial {3}X55, we can detect a �= 3. Unfortunately I does
not contain it, actually I contains no unary polynomials. On the other hand,
the ideal I + 〈X55 + {3}〉 contains two semi-solution polynomials (1 + {1})X25

and (1 + {2})X52. If we further put their associated solution polynomials, then
I+ 〈X55+{3}, X25+{1}, X52+{2}〉 contains the contradiction polynomial X22.
Let the initial polynomials be (1+{1, 2})X22,(1+{2, 3})X52, (1+{3, 4})X55, and
(1+{1, 4})X25 for the right example. In this case there are many variables whose
candidate can be eliminated. Consider the variable X24 for example. X24 �= 1 is
also detected as follows. The ideal I + 〈X24 + {1}〉 contains two semi-solution
polynomials (1 + {2})X22 and (1 + {4})X25. The ideal I + 〈X24 + {1}, X22 +
{2}, X25 + {4}〉 contains two semi-solution polynomials (1 + {3})X52 and (1 +
{3})X55. Finally, the ideal I+ 〈X24+{1}, X22+{2}, X25+{4}, X52+{3}, X55+
{3}〉 contains the contradiction polynomial {3}. The elimination for the other
variables can be similarly detected. In the left example we need one step of
manipulation of refinement of an ideal by the associated solution polynomials
to get a contradiction polynomial, in the right example we need two steps of
manipulations. In general the human strategy of XY-chain is considered more
advanced than XY-wing. These observation lead us to the following definition
of a further hierarchy for uniquely solvable but not basic solvable ideals.

Definition 9. Let I be an ideal of B(X̄). For each variable X , a solution
polynomial X + {s} is said to be basic refutable w.r.t. I if Ψ∗

0 (I + 〈X + {s}〉)
contains a contradiction polynomial. When X + {s} is refutable in I, the least
m such that Ψm

0 (I + 〈X + {s}〉) contains a contradiction polynomial is called
the basic refutable rank(br-rank in short) of X + {s} w.r.t. I and denoted br-
rank(X + {s}, I) (abbreviated br-rank(X + {s}) when I is clear from context).

Using these terminologies, we define operations Ψ1, Ψ
∗
1 , Ψ2, Ψ

∗
2 , . . . and Ψ∗

∞ on
ideals of B(X̄) as follows.

Definition 10. Fix a natural number k. For an arbitrary ideal J of B(X̄).
Define the set BRk(J) of unary polynomials by BRk(J) = {{s}X |X + {s} is a
basic refutable polynomial w.r.t. J such that br-rank(X+{s}) ≤ k}. For an ideal
I of B(X̄), set Ψk(I) = Ψ∗

0 (I+〈BRk(I)〉). Let Ψ1
k = Ψk and Ψ i+1

k (I) = Ψk(Ψ
i
k(I))

for each k = 1, 2, . . .. Since Ψ1
k (I), Ψ

2
k (I), . . . are increasing sequence, there exists

a natural number m such that Ψm
k (I) = Ψm+1

k (I) = · · · . For such an m set
Ψ∗
k (I) = Ψm

k . Since Ψ∗
1 (I), Ψ

∗
2 (I), . . . are also increasing sequence, there exists l

such that Ψ∗
l (I) = Ψ∗

l+1(I) = · · · . For such an l set Ψ∗
∞(I) = Ψ∗

l . Ψ
∗
∞(I) is called

the strategy closure of I. An ideal I is said to be strategy closed if Ψ∗
∞(I) = I.



94 S. Inoue and Y. Sato

Definition 11. Let I be a uniquely solvable but not basic solvable ideal. If
Ψ∗
∞(I) is a maximal ideal, we say I is strategy solvable. For an strategy solvable

ideal I the least k such that Ψ∗
k (I) = Ψ∗

∞(I) is called the strategy rank of I and
denoted s-rank(I). We also assign s-rank 0 to any basic solvable ideal. If Ψ∗

∞(I)
is not a maximal ideal, we assign s-rank ∞ to I.

4 Computation of Minimal Polynomials

In the previous section, we define a hierarchy of uniquely solvable ideals. For
the computation of both ranks, we have to compute all the unary polynomials
contained in a given ideal. In this section we show Boolean Gröbner bases are
ideal tools for such computations.

Definition 12. Let I be a satisfiable ideal of a Boolean polynomial ring B(X̄).
For a non-constant Boolean polynomial f of B(X̄), the set {p(Z) ∈ B(Z)|p(f) ∈
I} forms an ideal in a Boolean polynomial ring B(Z), where Z is a new variable.
The Boolean polynomial h(Z) which generates this ideal is called the minimal
polynomial of f w.r.t. I. (Note that any finitely generated ideal in a Boolean
ring is principal.) Such a Boolean polynomial is uniquely determined. Since we
can use any variable Z, we denote such a unary Boolean polynomial simply by
MinPolyf,I. When I is clear from the context, we simply writeMinPolyf . When
f is a variable Xi among X̄ , we always assume that MinPolyf is a polynomial
of Xi.

Theorem 13. Let G be a Boolean Gröbner basis of a satisfiable ideal I in
B(X̄). For a Boolean polynomial f ∈ B(X̄), let f

G
= c1t1+ · · ·+ cltl+ d, where

c1, . . . , cl, d are elements of B and t1, . . . , tl are distinct Boolean terms which are
not equal to 1. Then MinPolyf,I(Z) = (c1 ∨ · · · ∨ cl + 1)(Z + d). (When l = 0,
c1 ∨ · · · ∨ cl denotes 0.)

Proof. Note first that any unary Boolean polynomial is a linear polynomial.

For arbitrary elements a, b of B, af + b ∈ I if and only if af + b
G
= 0. Since I

is satisfiable, I does not contain a non-zero constant, so G does not contain a

non-zero constant. Therefore af + b
G
= af

G
+ b = a(c1t1 + · · ·+ cltl + d) + b =

ac1t1 + · · ·+ acltl + ad+ b, af + b ∈ I ⇔ ac1 = 0, . . . , acl = 0 and ad+ b = 0 ⇔
a(c1 ∨ · · · ∨ cl) = 0 and b = ad ⇔ a = (c1 ∨ · · · ∨ cl +1)u, b = (c1 ∨ · · · ∨ cl +1)du
for some element u ∈ B ⇔ aZ + b ∈ 〈(c1 ∨ · · · ∨ cl +1)Z +(c1 ∨ · · · ∨ cl +1)d〉 =
〈(c1 ∨ · · · ∨ cl + 1)(Z + d)〉. �

Note that we can use an arbitrary admissible term order in the above theorem.
In case f is a single variable Xi, the next theorem shows that we do not even
need monomial reductions, MinPolyXi is essentially contained in the Gröbner
basis.

Theorem 14. Let I be a satisfiable ideal in a Boolean polynomial ring B(X̄)
and G be its stratified Boolean Gröbner basis w.r.t. an arbitrary admissible term
order. Then for each variableXi of X̄, there exists a non-zero minimal polynomial
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of Xi w.r.t. I if and only if G contains a polynomial g = aXi+b1t1+ · · ·+bltl+c
with its leading term Xi, where t1, . . . , tl are distinct terms which are not equal
to 1 and b1, . . . , bl, c are elements of B such that a �= b1 ∨ · · · ∨ bl. Moreover if
such g exists, the minimal polynomial has the following form:

MinPolyXi = a(1 + b1 ∨ · · · ∨ bl)Xi + c(1 + b1 ∨ · · · ∨ bl).
(l and c could be 0. For l = 0, b1 ∨ · · · ∨ bl denotes 0).

Proof. If Xi /∈ LT (G) = {LT (g)|g ∈ G}, then Xi
G

= Xi. In the previous
theorem, let f = Xi, hence l = 1, t1 = Xi, c1 = 1 and d = 0. Therefore
MinXi = (1 + 1)(Xi + 0) = 0. Otherwise, there exists g ∈ G such that LT (g) =
Xi. Let g = aXi+b1t1+ · · ·+bltl+c. Xi →g (1+a)Xi+b1t1+ · · ·+bltl+c. Since
G is reduced, b1t1+ · · ·+ bltl+ c is not reducible by →G. Since G is stratified, G
does not contain any other element whose leading term is Xi, hence (1 + a)Xi

is not reducible by →G. Therefore Xi
G
= (1 + a)Xi + b1t1 + · · ·+ bltl + c. Note

that ab1 = b1, . . . , abl = bl and ac = c since g is boolean closed. By the previous
theorem, MinPolyXi = ((1+a)∨b1∨· · ·∨bl+1)(Xi+c) = ((1+a)+b1∨· · ·∨bl+
1)(Xi+ c) = (a+ b1∨· · ·∨ bl)(Xi+ c) = a(1+ b1∨· · ·∨ bl)Xi+ c(1+ b1∨· · ·∨ bl).
Obviously MinPolyXi = 0 if and only if a = b1 ∨ · · · ∨ bl. �
For a given Sudoku puzzle, we can compute the basic closure Ψ∗

0 (I) and the
strategy closure Ψ∗

∞(I) of the corresponding ideal I together with its both ranks,
i.e., the least l,m such that Ψ∗

0 (I) = Ψ l
0(I) and Ψ∗

∞(I) = Ψ∗
m(I) by computing

only Boolean Gröbner bases. From a Boolean Gröbner basis, we can directly
obtain all unary minimal polynomials as is shown above.

5 Computation Data

Any computation of a Boolean Gröbner basis of an ideal of B(X̄) terminates
within at most a few seconds in our implementation of Boolean Gröbner bases
on the computer algebra system Risa/Asir. We have implemented a program to
compute both ranks of a given Sudoku puzzle by the computations of Boolean
Gröbner bases. Using our implementation we have computed both ranks for 735
Sudoku puzzles which are contained in the series of Sudoku books [12]. The books
(named Basic,Middle,High,SuperHigh,Hard,SuperHard and UltraHard) are cat-
egorized from the easiest level 1 to the highest level 7. Each book has 105 Sudoku
puzzles. While most Sudoku puzzle books contain only puzzles which are solvable
by using some heuristic strategies, the series of books are famous for containing
some tough puzzles which are not solvable by any known heuristic strategies. All
puzzles in the book Basic and Middle are basic solvable, the average of b-rank is
16 for Basic and 20.5 for Middle. The book Basic contains 103 puzzles which can
be solved using only a-type of semi-solution polynomials, meanwhile the book
Middle contains 90 such puzzles. The other books contains puzzles which are not
basic solvable. The following table contains the data we have obtained through
our computation. Each grid contains the number of puzzles of the book of its
line which has the s-rank of its column.
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s-rank 0 1 2 3 4 5 ∞
High 84 3 10 7 1 0 0

SuperHigh 58 9 22 12 4 0 0
Hard 39 15 21 17 8 4 0

SuperHard 17 13 32 24 19 1 0
UltraHard 11 15 22 21 21 9 6

The following pictures cite 6 examples of Sudoku puzzles we have computed.
The first 5 puzzles are from the book UltraHard whose s-rank is ranged from
1 to 5. The last puzzle is the strategy closure of the tough puzzle introduced in
[5]. That is the corresponding ideal of the picture is equal to Ψ∗

∞(I) where I is
the corresponding ideal of the original puzzle of [5]. It is not strategy solvable.

6
2 7 5 1 8

4 8 9

3 7 4 5
9 5 3
6 9 1 8
7 6 9

5 9 7 3 6
9

6 5 3 4
3 8 1 5
4 2 6

5 6
9 7 1

6 9

3 1 4
9 6 7 1

8 7 3 2

s-rank 1 s-rank 2

8 6 4 3
2 8 3 9
3 4 8

2 1
1 7

3 8

4 2 1
6 9 7 3

1 3 2 5

4 2 7 5
7 6 4

1 6

5 4 3 8
8 5 3

4 9 6 5

7 1
1 4 2

9 1 8 6

s-rank 3 s-rank 4

6 2 3
1 8 5
4 2 3 6

9 7
3 7 5 6
4 5

7 3 4
4 5 9

8 2 6

5 3
8 5 2

7 1 5

4 5 3
1 7 3 6

3 2 8

6 5 9
4 3

9 7

s-rank 5 Ψ∗
∞(I)
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6 Conclusion and Remarks

In section 3, we have seen that some solution polynomials leading to a contra-
diction by XY-wing or XY-chain strategy are basic refutable. Similarly we can
easily show that any solution polynomial leading to a contradiction by other ex-
isting Sudoku solving strategie is also basic refutable. Therefore, we can say that
any sudoku puzzle which can be solved by existing Sudoku solving strategies is
also strategy solvable defined in this paper.

We can also see there exists a strong positive correlation between our ranks
and the difficalty levels of Sudoku puzzles in the books of [12]. Meanwhile, the
hardest book contains 11 basic solvable puzzles. We think there exists some
improper analysis for them. Though we can not simply say the higher rank puzzle
is more difficult than the lower rank puzzle since there is no precise defenition
of the “difficulty level” of Sudoku puzzles, our rank can be usuful for checking
an analysis program.

The strategy closure Ψ∗
∞(I) is not equal to the corresponding ideal I of the

puzzle of [5]. The original sudoku does not have 5 at the grid (2,5) and 3 at the
grid (5,6). The same author introduced an improved puzzle in [6]. For its corre-
sponding ideal I, we have Ψ∗

∞(I) = I. There should be some mathematical struc-
ture describable in terms of our Boolean polynomial ring which makes clear the
difference between those tough puzzles. We used only unary minimal polynomials
for extending ideals. Consider the polynomial (X ∪ Y + 1){1, 2, 3}) = 0. Obvi-
ously it does not have a sigleton solution, however the ideal 〈(X∪Y +1){1, 2, 3})〉
does not contain any unary contradiction polynomial. If we use such a non-unary
contradiction polynomial for the refutation process, we may enrich our hierarchy.
The computation of the minimal polynomial of such a non-unary polynomial can
be also done by the computations of Boolean Gröbner bases. But we need fur-
ther monomial reductions by a Boolean Gröbner basis. This is actually a heavy
computation. We are now implementing this computation for further expansion
of our hierarchy.

Though we have not mentioned in this paper, our hierarchy could be useful
for making a Sudoku puzzle with a desired level of difficulty.

We conclude the paper with the following most important property of our
hierarchy. The definition of our hierarchy is purely mathematical, it does not
contain any property which is described in terms of heuristic strategies such as
XY-wing, XY-chain, etc. Therefor our work is different from any other existing
work concerning difficulty of Sudoku puzzles such as [1]
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Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743,
pp. 130–141. Springer, Heidelberg (2009)

4. Nagai, A., Inoue, S.: An Implementation Method of Boolean Gröbner Bases and
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1 Introduction

1.1 Motivation: On the Need for Such a Piece of Software

We have some experience in Graphic User Interfaces (GUI) design and devel-
opment. During the last fifteen years we have designed different Rule Based
Expert Systems (RBES), using Gröbner Bases (GB)-based inference engines im-
plemented on Computer Algebra Sytems (CAS) [1–3]. As most of the users of
these RBES and CAS applications are neither mathematicians nor computer sci-
entists, either MapleTM MapletsTM or different Visual-Basic� or JavaTM GUI
were developed ad-hoc.

Some time ago we attended a talk summarizing a research project about
mathematical software development for primary schools. This team was devoted
to develop JavaTM applets for tasks that are already implemented in all CAS.
They were producing very nice software, but only after a hard work. They did
not directly use a friendly mathematical software systems like the (discontin-
ued) DeriveTM, because they considered it too complex for students at the age
their software was intended and because the software had to be free. We could
not think of any CAS that directly matched their needs, as the free CAS we
know: Maxima [4], Reduce [5], CoCoA [6], AxiomTM, MuPAD� Light (also dis-
continued), YACAS [7], Risa/Asir [8], Singular [9]... are not as easy to use as
DeriveTM. The simplest to use is possibly wxMaxima [10], which first versions
looked relatively similar to DeriveTM...

We have found that many other educational authors are also developing this
kind of small specific purpose tools (as may be checked searching on the web for
“software” and an elementary mathematical topic).

At university level the problem is usually the lack of time. Many teachers that
use mathematical software systems for their research, and consider them useful
for classroom use, cannot spend the required time to introduce the mathematical
software system to the students.

There are many GUI similar to the one introduced in this paper (see Sec-
tion 4), but this one has the advantages of its simplicity (but the drawback of
providing a fixed interface).

Obviously, if the mathematical software system chosen is not free, the user
needs to have a license for that piece of software.

1.2 Background

Developing GUI for mathematical software has been an active field for a long
time. A summary of Section 4 can be found immediately afterwards.

Already in 1963 Marvin Minsky’s proposed program proposed a mathematical
GUI. More recently we could underline WIMS (WWW Interactive Multipurpose
Server), a whole free system designed for developing lessons, mathematical tools,
examples... accessible via Internet.

Another powerful approach is WMI, a set of PHP scripts that interfaces with
some CAS and other environment including Internet-accesible infrastructure for
classroom ready material and assessment is WME.
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The main approach in this line is possibly SAGE (Software for Algebra and
Geometry Experimentation), a Python� implementation that provides an en-
vironment that can call different pieces of software from the same session. It
includes the possibility to build GUIs.

This is a hot topic. For example, the last release of MapleTM, MapleTM18,
clearly increases its possibilities in the development of specific purpose applica-
tions. For instance, the so called “Clickable mathTM” allows to interact with the
worksheet. For example, it is possible to ask the system to solve an equation
step-by-step, just by clicking on the equation (Figure 1). Another novelty are
the “embedded components”, that allow to easily build specific purpose GUIs
executed under MapleTM18 (Figure 2). Finally, the Explore command allows
to easily include sliders and similar controls in specific purpose GUIs executed
under MapleTM18 (Figure 3).

1.3 Structure of the Article

The paper is structured in seven sections. After the present Introduction, the
developed GUI is described in detail in Section 2. In Section 3 brief examples of
the GUI calling the systems Risa/Asir, Octave [11], MapleTM, Maxima, Singular
and CoCoA are detailed. Section 4 gives a survey of the many existent similar
works, meanwhile Section 5 underlines the main differences w.r.t. our approach.
Finally, Section 6 and Section 7 contains the Conclusions and Acknowledgments,
respectively.

2 The Proposed GUI

2.1 An Overview of the GUI

We believe that it would be desirable to provide of a simple GUI with:

– a text input line
– a text output window
– 2D and 3D graphic windows

i.e., a DeriveTM-style (single-line entry) GUI, that could perform any task spec-
ified (in a separate file) to the chosen CAS.

We have developed a GUI in Visual-Basic� for Windows� operating system,
that can communicate with many pieces of mathematical software that have
command line versions using standard text interfaces (Figure 4). The file is
named GeneralGUI.EXE. It is known to work, at least, with the command line
versions of MapleTM, Maxima, CoCoA, Risa/Asir, Singular and Octave.

The GUI uses two files, TECHDATA.TXT and another text file (denoted, for
example, CODE.TXT), which must be created by the application developer and
allocated in the same directory as GeneralGUI.EXE.

TECHDATA.TXT should contain the following lines of code:

– the title of the application (to appear in the upper blue bar of the GUI),
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Fig. 1. An example of use of MapleTM18 ’s “Clickable MathTM”: solving an algebraic
equation step by step

Fig. 2. A simple “embedded component” designed using MapleTM18

– a message to the final user (to appear in the upper left corner, beside the
input window),

– the path to the executable of the mathematical software system, and the
name of this file, for instance:
C:\Program Files (x86)\Maxima-5.30.0\bin\maxima.bat

– the prompts of the lines that should be ignored by the GUI (e.g. “>” for
MapleTM input lines or “−−” for CoCoA comments).

Meanwhile CODE.TXT contains the code to be executed by the GUI (in the
syntax of the chosen piece of mathematical software).

In old Windows� versions (XP included), Microsoft� .NET Framework 3.0
redistributable package [12] has to be installed. This is not required in Vista,
7 and 8 versions. In some computers using version 8 it will be necessary to
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Fig. 3. A simple GUI designed using MapleTM18 ’s Explore command

install the programs in the directory where the mathematical software system is
installed (as happens in general with the CAS Singular 3-x-x ; see Section 3.5).

The GUI is freely available from www.ucm.es/info/secdealg/GUI-CAS.zip

(only for non-commercial use).

2.2 Plots and the GUI

There are two options if a graph is to be plotted:

– either a different window is opened from the GUI (this is the case if Maxima
is used: it automatically calls the plotting utility gnuplot, that opens a new
window),

– or a different version of the GUI, GeneralGUIp.EXE, that splits the space
under the input line between the “algebra window” and the “plot window”,
is used (this is the case, for instance, if MapleTM is chosen: the plot is saved
in a file and the GUI loads and displays it).

The complete approach is resumed in Figure 5.

2.3 Using the GUI

When the final user starts the GUI, it begins by reading TECHDATA.TXT file.
It shows afterwards the main GUI window with the title and message specified
by the application developer and the (empty) input and output windows within
the main GUI window.
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Fig. 4. Screenshot of our GUI (empty example)

When the final user types an input and clicks the “OK” or presses the Return
key, a session of the chosen CAS is started and the input is stored in a global
variable (VAR1). Then the code in CODE.TXT is read from the CAS session and
executed for the value of VAR1.

Finally the output of the CAS is shown in the output window of the GUI.
Depending on the final user’s choice, the program exits or takes another input
to be computed.

Note that the end user, for instance a student, only has to type the data or
code indicated in the GUI, without having to learn in detail the mathematical
software own syntax.

3 Examples

Let us observe that the following examples just try to show some possibilities
of our GUI using different mathematical software systems in situations where
the code is short, so that they can be included here. It neither tries to show
all the potential of the mathematical software systems used, nor claims that
the particular mathematical software system chosen in each example is the best
possible one for that task.
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read TECHDATA.TXT for title, message to the final user and working path

↓
show the GUI with title, message, input and output (empty) windows

↓
get the final user’s input and store it in a global variable (VAR1)

↓
read the code in CODE.TXT and execute it for VAR1

↓
show the output of the CAS in the output window of the GUI

↓
show the plot generated by the CAS (if applies)

↓
depending on the final user’s choice, exit or take another input

Fig. 5. Algorithm of the whole process

3.1 Real Factorization of a Polynomial Using Risa/Asir

The application which corresponds to the GUI appearing in Figure 6 factorizes in
Q the given polynomial (making a call to Command Line Risa/Asir v. 20091015,
that provides the code for factorizing the polynomial).

Fig. 6. Factorizing a polynomial using Risa/Asir. In order to make the text clearly
visible, only the upper left corner of the GUI is shown.

The content of TECHDATA.TXT is, in this case:

(CAS: Risa/Asir) Factorize (in R) a given polynomial

Write the polynomial to be factorized

C:\Asir\Bin\asir.exe
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CODE_Asir.txt

----

and the content of CODE.TXT is simply:

A=VAR1;

fctr(A);

In Figure 6, the final user has introduced 3x5−3x2 and obtains its factorization
as output.

3.2 Square and Inverse of a Matrix Using Octave

Octave is a command line system with MATLAB�-like syntax and possibilities.
In this case the final user introduces a square matrix and the GUI returns its

square and inverse (computed numerically by Octave 3.2.4). Once more, as we
count with the power of a mathematical software system, this is straightforward.

The content of TECHDATA.TXT is:

(System: Octave 3.2.4) Square and inverse of a matrix (numeric)

Write the matrix, e.g.: [[2,3];[5,1]]

C:\Octave\3.2.4_gcc-4.4.0\bin\octave-3.2.4.exe

CODE_Octave.txt

ans =

and the content of CODE.TXT is simply:

global msg1="Square of the given matrix"

global msg2="Inverse of the given matrix"

disp(msg1)

VAR1^2

disp(msg2)

VAR1^(-1)

The output for matrix

⎛⎝ 1 2 3
1 1 1
0 7 1

⎞⎠ is shown in Figure 7.

3.3 Checking Whether an Algebraic Curve is Contained in an
Algebraic Surface Using MapleTM

Checking whether an algebraic curve is contained in an algebraic surface is
straightforward using Gröbner Bases (GB) [13–15]. If the curve is the intersec-
tion of surfaces s1 = 0 and s2 = 0, it is clear that it is contained in the surface
s3 = 0 if and only if the condition s3 = 0 does not add any new constraint to
the algebraic system {s1 = 0, s2 = 0}. In terms of ideals , this is equivalent to

〈s1, s2〉 = 〈s1, s2, s3〉
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Fig. 7. Calculating the square and inverse of a matrix using Octave

which holds if and only if

GB(〈s1, s2〉) = GB(〈s1, s2, s3〉) .

The application makes a call to Command Line MapleTM18 (that provides
the GB code).

The content of TECHDATA.TXT is:

(CAS: Maple 18) Check wether an Algebraic Curve is Contained in an

Algebraic Surface

Input: {eq1_curve , eq2_curve} , eq_surface

C:\Archivos de Programa\Maple 18\bin.win\cmaple.exe

CODE_Maple.txt

True

>

and the content of CODE.TXT is:

interface(warnlevel=0):

with(Groebner):

n:=VAR1:

B1:=Basis( [ op(n[1]) ] , plex(x,y,z) ):

B2:=Basis( [ op(n[1]), n[2] ] , plex(x,y,z) ):

print();

evalb(B1=B2);

For instance, if the final user introduces

{x^2+y^2-z-1,z-1},x^2+y^2-2
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that is, the curve is the intersection of an elliptic paraboloid and a horizon-
tal plane and the surface is a vertical cylinder (Figure 8), the answer is “Yes”
(Figure 9).

Fig. 8. The algebraic curve (given as intersection of two algebraic surfaces) and the
algebraic surface

Fig. 9. Checking with MapleTM whether the algebraic curve is contained in the alge-
braic surface or not

3.4 Plotting a Function and its Derivative Using Maxima

This application calls Maxima 5.30.0, that computes a primitive of the function,
displays it, and plots both the original and the primitive functions (Maxima calls
the plotting utility gnuplot, that opens a new plot window, as said above).

The content of TECHDATA.TXT is, in this case:



A Simple GUI for Developing Applications 109

(CAS: Maxima 5.30.0) Differentiate f(x) and plot f(x) and f’(x)

in (-5,5)

Write the function: C:\Program Files

(x86)\Maxima-5.30.0\bin\maxima.bat CODE_Maxima.txt

----

and the content of CODE.TXT is simply:

fun:VAR1$

string(fun);

fund:diff(fun,x)$

string(fund);

plot2d([fun,fund],[x,-5,5],[y,-5,5]);

that is, the function is defined, it is differentiated and both functions are plot-
ted by gnuplot in a separate window (gnuplot should be closed before plotting
another curve).

A screenshot of the output for the input sin(x2) can be found in Figure 10.

Fig. 10. Computing the derivative of a function and plotting both the function and its
derivative using Maxima anf gnuplot
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3.5 Compute the Resultant of Two Polynomials in x,y,z w.r.t. A
Given Variable Using Singular

This application calls Singular 3-1-6, that includes a command for computing
resultants.

This case is slightly more complex than the previous ones because, unlike
Singular 2-x-x, Singular 3-x-x uses BASH.EXE to start Singular and requires:

– all files related to the GUI to be allocated where the binaries of Cygwin are
installed, for example C:\cygwin\bin,

– to include in this directory a new BAT file, denoted, for example, Singu.BAT,
containing: bash.exe Singular

The content of the rest of the files is similar to those above. The content of
TECHDATA.TXT is:

(CAS: Singular 3-1-6) Resultant of two polynomials w.r.t. a

variable

Write: polynomial1, polynomial2, variable

Singu.bat

CODE_Singular.txt

True

//

and the content of CODE.TXT is simply:

ring r=0, (x,a,b,c), lp;

resultant(VAR1);

that is, the characteristic of the ring, its variables and the variable ordering to
be used are specified and the resultant is then computed.

If (x− a)(x− b), x− c and the variable x are given as input, (a− c)(b− c) =
ab−ac−bc+c2 is obtained (see Figure 11). The output is obtained in Singular’s
notation: ab− ac− bc+ c2.

3.6 Plotting a Function and its Derivative Using MapleTM

In Figure 12 MapleTM18 and its package Student are used to compute the area
under a curve, approximate a definite integral (calculate its approximation by
rectangular boxes) and plot the curve and the boxes. The other version of the
GUI (GeneralGUIp) has been used in this case. The two windows under the
input line are clearly noticeable.

The details are of this example are omitted for the sake of space.

3.7 The First Application Developed: Consistency Checking and
Knowledge Extraction in RBES

This GUI was introduced in [16] and cited in [17] as part of a shell for RBES
implementation using CoCoA 4.3 (see Figure 13).
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Fig. 11. Screenshot of a GUI that obtains resultants using Singular

Nevertheless, we believe that the GUI has a much wider range of applications,
from elementary to graduate level mathematics, as shown in the other examples
above.

4 Related Works

Developing GUI for available mathematical software is a very active field and
many different approaches have been followed.

This section neither tries to be exhaustive nor to go into detail but to give
an overview of other related works and approaches. A detailed overview of ap-
proaches and systems can be found in [18] (parts of it are obsolete; for instance,
at the time, hypertextual access to documentation was only provided by a few
CAS). Curiously, the importance of using standards like OpenMath for exchang-
ing mathematical expressions was already underlined in that paper.

A more modern and exhaustive report from the same authors can be found
in the first part of [19]. An overview of modern projects and systems for making
mathematics available on the Internet can be found in [20].

Marvin Minsky’s 1963 Mathscope proposed program [21] is a very early paper
about a GUI for displaying publication-quality mathematical expressions and
their symbolic manipulation.

In 1986 Neil M. Soiffer developed an improved GUI for the CAS Reduce de-
noted MathScribe [22]. It provided two-dimensional input and output of expres-
sions in a windows environment.

In the late ’80s, there was an attempt from within MapleTM environment
(Iris), and inspired by MathScribe [22], to improve access to the existing version
of MapleTM at the time [23].

In 1992 Norbert Kajler presented CAS/PI (Computer Algebra System Porta-
ble Interface), which was an early attempt to provide access to different CAS
(MapleTM, Sisyphe, Ulysee) and plotting packages from a common GUI [24,
25] (it was initially developed as Sisyphe’s GUI). According to [24], the kernel
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Fig. 12. A definite integral, its approximation and the corresponding plot using
MapleTM

with the formula editor requires about 17MB of memory, because the formula
editor of this multi-system interface deals with syntactic differences among CAS.
According to [18], “An important goal of CAS/PI is to allow expert users to tailor
the user interface to specific needs and to connect it to various tools”.

Some CAS were specifically designed for teaching, and subsequently included
convenient GUI. The design of MathpertTM [26] was based in principles like
cognitive fidelity (the order of the steps followed by the system should be the
same as those followed by the student), the glass box principle (the user can
see how the system solves the problem) and the correctness principle.

Another easy-to-use system was TheoristTM (later renamed LiveMathTM),
that offered palettes and interactive graphics [27].

Nowadays almost all general and specific purpose CAS (MapleTM, Mathema-
tica�, MuPAD�, Reduce, Maxima, AxiomTM, DeriveTM, TI-nspireTM, Risa/A-
sir, CoCoA, Singular...) offer convenient windows-based GUI.

Nevertheless there are still attempts to improve the original GUI, like wxMax-
ima or Kayali [28] (these two for Maxima).
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Fig. 13. Screen capture of the RBES example in [16]

Another modern attempt is MathDrag’n [29], a Symbolic Equation Manipula-
tor that focuses on the easiness of use of the interface. It can ask Mathematica�
or Maxima to perform the computations (in the background).

WIMS [30] (WWW Interactive Multipurpose Server) is a whole free system
designed by Xiao Gang at Nice University (France) for developing lessons,mathe-
matical tools, examples... accessible via Internet. The mathematical tools, as they
are called, can communicate with some CAS (like Maxima or GAP), but the goal
of the system is much broader than ours: the system includes the possibility to
develop virtual classes, including mechanisms for automatic score gathering and
processing. It can interface with different background programs like the CAS
Maxima, MuPAD� and GAP as well as the mathematical software system Oc-
tave, the ray tracing package POV-RayTM, TeX and the proof assistant COQ
[31]. Some WIMS’ didactic applications are shown in [32]. There are different
ongoing projects that use WIMS in the teaching process [30].

Focusing on WIMS’ mathematical tools, they are far more flexible than ours
(they are similar toMapleTM MapletsTM). Therefore, the intermediate user needs
to learn how to design them, and each one takes time to be developed (see, for
instance, the detailed example at the end of [32]). Whereas, we focus on the
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possibility that an intermediate user, already an expert in a certain CAS, can
straightforwardly begin producing applications running on our GUI, the GUI of
each application needing no time to be developed (on the other hand, we accept
the handicap that the design of the GUI is fixed).

A similar free environment recently designed and implemented at Szeged Uni-
versity (Hungary) is WMI [33]. Its main authors are Robert Vajda and Kovács
Zoltán. It is a set of PHP scripts installed in a UNIX� or LinuxTM server.
WMI interfaces with the CAS MapleTM, MuPAD� and Mathematica�. These
interfaces can handle html and TeX documents as well as static and dynamic
plots.

The philosophy underlying WMI and WIMS is similar: WMI offers interac-
tive question forms (including assessment), randomly generated exercises, the
possibility of developing specific applications... Thematic modules about linear
algebra, calculus, discrete mathematics and analytic geometry have been devel-
oped so far [33]. A more modern version, WMI2, is also available [34].

Another impressive similar environment including classroom ready material
and assessment, WME, has been developed at Kent University (USA). It is
an Internet-accesible infrastructure (WME Framework) for mathematics educa-
tion that allows easy and systematic development of educational contents and
supports education capabilities. The content of the pages is encoded in MeML
(Mathematics Education Markup Language) [36] and the MeML pages are stored
in regular web servers and can be accessed through friendly front-ends running
on common web browsers [37].

The lessons, modules... of WME are supposed to be developed by experts, as
they “require non-trivial amounts of time, effort, and programming expertise”
[35].

Also as part of the Internet Accessible Mathematical Computation Framework
(IAMC) at Kent University, a page of live demos calling the CAS Maxima and
returning MathML code of the output is shown [38].

Yet another big package is SAGE (Software for Algebra and Geometry Ex-
perimentation) [39–41], and its development is led by William Stein (University
of Washington). It is written in Python� and, according to its developers, it
aimed to “support research and teaching in algebra, geometry, number theory,
cryptography, and related areas” and its overall goal is to “create a viable free
open source alternative to MapleTM, Mathematica�, Magma and MATLAB�”.
It provides an interface to open source mathematical software systems such as
GAP, Maxima, Singular and PARI/GP and commercial mathematical software
systems like Magma, Mathematica� and MapleTM.

Probably, the key issue of SAGE is to provide an environment that can call
different pieces of software from the same session. Therefore the user can choose
the best mathematical software system for each task.

In particular, SAGE Cell Server [42] provides an Internet–based service for
performing online computations in SAGE’s own language, as well as in GAP,
GP, Maxima, Octave, Python�, R and Singular.
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A system specialized in automated reasoning is MathWeb-SB (formerly Math-
Web) [43–45]. It has been developed at the Universität des Saarlandes as a ser-
vice infrastructure offering a uniform interface that can access different CAS
(MapleTM, Magma, GAP and μCAS) and automated theorem provers (EQP,
Otter, ProTein, Spass, WaldMeister, TPS and LEO). It has been implemented
in the Mozart programming system and uses OpenMath for some communication
tasks. It is used in different universities in Europe and North America.

Finally, NetSolve [46–48] is a bridge between simple standard programming
interfaces and desktop systems and the services supported by grid architecture
developed at the University of Tennessee. It includes interfaces to the classic
languages C and FortranTM, the mathematical software systems MATLAB�
and Octave and the CAS Mathematica�.

With MapleTM (MapletsTM) or Mathematica� [49] it is possible to build spe-
cific purpose windows-environment (stand-alone applications cannot be created).
None of the free CAS, as far as we know, offers the possibility of building specific
purpose windows-environments.

In fact MapleTM offers two further possibilities:

– MapleNetTM, a server version of MapleTM, that can be accessed from Map-
letsTM or JavaTMApplets,

– Maple T.A.TM, an environment for online testing and assessment

(the possibilities of both of them are summarized in the Abstract [50]). MathML
is used to encode and display mathematical expressions. And, as said at the end
of Section 1, MapleTM18 has been greatly developed its capabilities regarding
application developing (see Figures 1,2,3).

Already in the late ’90s TMath [51, 52], an extension of Tcl language, provided
a C++ interface to Mathematica� using the latter’s Mathlink� protocol. It
could also access MATLAB�.

JavaMath API [53, 54] is a free software that makes it possible to integrate ex-
isting CAS into Internet-accessible mathematical services. It includes interfaces
to MapleTM and GAP and uses the standard OpenMath for this interfacing. The
applications need to be programmed in JavaTM.

In [55] it is described how flash technology can be used to develop amiddleware
for CAS. The software developed can call MapleTM and Mathematica� and
provides friendly interfaces (with palettes, icons...) to these CAS.

The Spanish TutorMates� [56, 57] includes an interface to Maxima and Ge-
oGebra, but cannot be included in this category, as the final user cannot change
or extend its content (it includes theoretical aspects, examples and exercises for
Secondary Education).

5 Summary of Differences of our Approach

As we have seen above, there are different systems allowing an intermediate user
to produce simple GUI for providing the final users with an easy access to a
specific purpose task implemented in an existing mathematical software system.
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Nevertheless, all these pieces of middleware require from the intermediate user
either to master another computer language (like JavaTM) or to learn how to
design the GUI in the system’s own grammar.

Instead, our approach exclusively requires from the intermediate user to know
to program in the mathematical software system (accepting, as a disadvantage,
that the appearance of the GUI is fixed).

6 Conclusions

Summarizing, we believe that in science, engineering and education, there is a
need for producing small very specific purpose applications requiring of algo-
rithms that are already implemented in all mathematical software systems. We
have developed a very easy-to-use tool which may be very convenient for math-
ematical software developers. The main interest of the implementation lies in
software reuse.

The future development could consist in:

– adapting this general purpose mathematical GUI to other CAS
– analyzing the possibilities of migrating to other operating systems like X

Window SystemTM(e.g. implementing the GUI in a portable language like
JavaTM)

– studying the possibility to offer the GUI as a web service,
– spreading this software to potential application developers (trying to get

their feedback for future refinements).

This piece of software can be freely downloaded from

www.ucm.es/info/secdealg/GUI-CAS.zip

(only for non-commercial use).

Acknowledgements. This work was partially supported by the research project
TIN2012-32482 (Spanish Government).

The authors would also like to thank the anonymous reviewers for their valu-
able comments, which helped to improve the manuscript.

References
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15. Roanes-Lozano, E., Roanes-Maćıas, E., Laita, L.M.: Some Applications of Gröbner
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Abstract. We consider planning with uncertainty in the initial state as a case
study of incremental quantified Boolean formula (QBF) solving. We report on
experiments with a workflow to incrementally encode a planning instance into a
sequence of QBFs. To solve this sequence of successively constructed QBFs, we
use our general-purpose incremental QBF solver DepQBF. Since the generated
QBFs have many clauses and variables in common, our approach avoids redun-
dancy both in the encoding phase and in the solving phase. Experimental results
show that incremental QBF solving outperforms non-incremental QBF solving.
Our results are the first empirical study of incremental QBF solving in the context
of planning and motivate its use in other application domains.

1 Introduction

Many workflows in formal verification and model checking rely on certain logics as
languages to model verification conditions or properties of the systems under consid-
eration. Examples are propositional logic (SAT), quantified Boolean formulas (QBFs),
and decidable fragments of first order logic in terms of satisfiability modulo theories
(SMT). A tight integration of decision procedures to solve formulas in these logics is
crucial for the overall performance of the workflows in practice.

In the context of SAT, incremental solving has become a state of the art approach
[1,10,20,28]. Given a sequence of related propositional formulas S = 〈φ0, φ1, . . . , φn〉
an incremental SAT solver reuses information that was gathered when solving φi in or-
der to solve the next formula φi+1. Since incremental solving avoids some redundancy
in the process of solving the sequence S, it is desirable to integrate incremental solvers
in practical workflows. In contrast, in non-incremental solving the solver does not keep
any information from previously solved formulas and always starts from scratch.

QBFs allow for explicit universal (∀) and existential (∃) quantification over Boolean
variables. The problem of checking the satisfiability of QBFs is PSPACE-complete.
We consider QBFs as a natural modelling language for planning problems with uncer-
tainty in the initial state. In conformant planning we are given a set of state variables
over a specified domain, a set of actions with preconditions and effects, an initial state
where some values of the variables may be unknown, and a specification of the goal.
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The task is to find a sequence of actions, i.e., a plan, that leads from the initial state to
a state where the goal is satisfied. Many natural problems, such as repair and therapy
planning [33], can be formulated as conformant planning problems. When restricted to
plans of length polynomial in the input size this form of planning is Σ2P-complete [3],
whereas classical planning is NP-complete.

Therefore, using a transformation to QBFs in the case of conformant planning is a
very natural approach. Rintanen [31] presented such transformations. Recently,
Kronegger et al. [18] showed that transforming the planning instance into a sequence of
QBFs can be competitive. In this approach, they generated a QBF for every plan length
under consideration and invoked an external QBF solver on each generated QBF. How-
ever, the major drawback is that the QBF solver cannot reuse information from previous
runs and thus has to relearn all necessary information in order to solve the QBF. In this
work we overcome this problem by tightly integrating a general-purpose incremental
QBF solver in an incremental workflow to solve planning problems. To obtain a better
picture of the performance gain through the incremental approach, we perform a case
study where we compare incremental and non-incremental QBF solving on benchmarks
for conformant planning.

The main contributions of this work are as follows.
– Planning tool. We present a planning tool based on the transformation of planning

instances with unknown variables in the initial state to QBFs. This tool implements
an incremental and exact approach, i.e., it is guaranteed to find a plan whenever a
plan exists and – if successful – it returns a plan of minimal length. Furthermore,
our tool allows for the use of arbitrary (incremental) QBF solvers.

– Experimental evaluation. We evaluate the performance of the incremental and the
non-incremental approach to planning with incomplete information in the initial
state. Thereby, we rely on incremental and non-incremental variants of the QBF
solver DepQBF [23,24].1 Incremental QBF solving outperforms non-incremental
QBF solving in our planning tool. Our results are a case study of incremental QBF
solving and motivate its use in other application domains. In addition, we also com-
pare our results to heuristic approaches.

2 Incremental QBF Solving

We focus on QBFs ψ = Q̂.φ in prenex conjunctive normal form (PCNF). All quanti-
fiers occur in the prefix Q̂ = Q1B1 . . . QnBn and the CNF part φ is a quantifier-free
propositional formula in CNF. The prefix consists of pairwise disjoint sets Bi of quan-
tified Boolean variables, where Qi ∈ {∀, ∃}, and gives rise to a linear ordering of the
variables: we define x < y if x ∈ Bi, y ∈ Bj and i < j.

The semantics of QBFs is defined recursively based on the quantifier types and the
prefix ordering of the variables. The QBF consisting only of the truth constant true
(") or false (⊥) is satisfiable or unsatisfiable, respectively. The QBF ψ = ∀x. ψ′ with
the universal quantification ∀x at the leftmost position in the prefix is satisfiable if
ψ[x := ⊥] and ψ[x := "] are satisfiable, where the formula ψ[x := ⊥] (ψ[x := "])

1 DepQBF is free software: http://lonsing.github.io/depqbf/

http://lonsing.github.io/depqbf/
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results from ψ by replacing the free variable x by ⊥ ("). The QBF ψ = ∃x. ψ′ with the
existential quantification ∃x is satisfiable if ψ[x := ⊥] or ψ[x := "] are satisfiable.

Search-based QBF solving [8] is a generalization of the DPLL algorithm [9] for
SAT. Modern search-based QBF solvers implement a QBF-specific variant of conflict-
driven clause learning (CDCL) for SAT, called QCDCL [11,21,25,34]. In QCDCL the
variables are successively assigned until an (un)satisfiable subcase is encountered. The
subcase is analyzed and new learned constraints (clauses or cubes) are inferred by Q-
resolution [17,25]. The purpose of the learned constraints is to prune the search space
and to speed up proof search. Assignments are retracted by backtracking and the next
subcase is determined until the formula is solved.

Let 〈ψ0, ψ1, . . . , ψn〉 be a sequence of QBFs. In incremental QBF solving based
on QCDCL, we must keep track which of the constraints that were learned on a solved
QBF ψi can be reused for solving the QBFs ψj with i < j. An approach to incremental
QBF solving was first presented in the context of bounded model checking [27]. We
rely on the general-purpose incremental QBF solver DepQBF [23,24].

To illustrate the potential of incremental QBF solving, we present a case study of
QBF-based conformant planning in the following sections. To this end we discuss con-
formant planning and two types of benchmarks used in the experimental analysis.

3 Conformant Planning and Benchmark Domains

A conformant planning problem consists of a set of state variables over a specified
domain, a set of actions with preconditions and effects, an initial state where some
values of the variables may be unknown, and a specification of the goal. The task is to
find a sequence of actions, i.e., a plan, that leads from the initial state to a state where
the goal is satisfied. The plan has to reach the goal for all possible values of unknown
variables, i.e., it has to be fail-safe. This problem can nicely be encoded into QBFs,
e.g., by building upon the encodings by Rintanen [31]. Conformant planning naturally
arises, e.g., in repair and therapy planning [33], where a plan needs to succeed even if
some obstacles arise.

The length of a plan is the number of actions in the plan. As one is usually looking for
short plans, the following strategy is used. Starting at a lower bound k on the minimal
plan length, we iteratively increment the plan length k until a plan is found or a limit
on the plan length is reached. This strategy is readily supported by an incremental QBF
solver because a large number of clauses remains untouched when moving from length
k to k + 1 and always leads to optimal plans with respect to the plan length.

The two benchmark types we consider in our case study are called “Dungeon”. These
benchmarks are inspired by adventure computer-games and were first presented at the
QBF workshop 2013 [18]. In this setting a player wants to defeat monsters living in a
dungeon. Each monster requires a certain configuration of items to be defeated. In the
beginning, the player picks at most one item from each pool of items. In addition, the
player can exchange several items for one more powerful item if she holds all necessary
“ingredients”. Eventually, the player enters the dungeon. When entering the dungeon,
the player is forced to pick additional items. The dilemma is that the player does not
know which items she will get, i.e., the additional items are represented by variables



Conformant Planning as a Case Study of Incremental QBF Solving 123

PDDL
instance

Parser QBF Encoder QBF SolverGrounder Plan

dynamic grounding

No

Yes

Fig. 1. Architecture of the planning tool

with unknown values in the initial state. It might also happen that the new items turn
out to be obstructive given the previously chosen item configuration. The goal is to pick
items such that irrespective of the additional items she defeats at least one monster.

We consider two variants of the Dungeon benchmark. In variant v0 the player is only
allowed to enter the dungeon once, thus has to pick the items and build more power-
ful items in advance. In contrast, in variant v1 the player might attempt fighting the
monsters several times and pick/build further items in between if she was unsuccessful.

Despite the simple concept, these benchmarks are well suited for our case study.
First, they capture the full hardness of Σ2P-complete problems. Second, it is natural to
reinterpret the game setting as a configuration or maintenance problem.

4 QBF Planning Tool

We briefly describe our planning tool that takes planning instances as input and encodes
them as a sequence of QBFs. This tool generates a plan of minimal length for a given
conformant planning instance with uncertainty in the initial state.

Figure 1 illustrates the architecture of our planning tool which was used for the ex-
periments. The tool takes a planning instances given in PDDL format as input. After
parsing the input, the grounder analyzes the given planning instance and calculates a
lower bound � on the plan length. Starting with a plan length of k = �, the grounder
then grounds only relevant parts of the instance, i.e., the grounder systematically elim-
inates variables from the PDDL instance. In a next step, the QBF encoder takes the
ground representation as input and transforms it into a QBF that is satisfiable if and
only if the planning problem has a plan of length k. The encoding which is used for
this transformation to QBFs builds upon the ∃∀∃-encoding described in the work of
Rintanen [31]. We decided to employ the ∃∀∃-encoding rather than a ∃∀-encoding as
this gives a more natural encoding and simplifies the PCNF transformation. Since in
this work we focus on a comparison of the incremental and non-incremental approach,
we do not go into the details of the encoding. After the transformation into a QBF, the
QBF encoder then invokes a QBF solver on the generated QBF. If the generated QBF
is satisfiable, our system extracts the optimal plan from the assignment of the leftmost
∃-block. If the QBF is unsatisfiable, the plan length k is incremented, additional rele-
vant parts of the problem may need grounding, and the subsequent QBF is passed to the
solver. Below, we give an overview of the features and optimizations of our planning
tool.

Since grounding the planning instance can cause an exponential blow-up in the size
of the input, we have implemented a dynamic grounding algorithm. This algorithm uses
ideas from the concept of the planning graph [6] to only ground actions that are relevant
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for a certain plan length. With this optimization, we are able to make the grounding
process feasible. Although the planning tool provides several methods to compute lower
bounds on the plan length, in our experiments we always started with plan length 0 to
allow for a better comparison of the incremental and non-incremental approach.

Our incremental QBF solver DepQBF is written in C whereas the planning tool is
written in Java. To integrate DepQBF in our tool and to employ its features for incre-
mental solving, we implemented a Java interface for DepQBF, called DepQBF4J.2 This
way, DepQBF can be integrated into arbitrary Java applications and its API functions
can then be called via the Java Native Interface (JNI).

In our planning tool, the use of DepQBF’s API is crucial for incremental solving be-
cause we have to avoid writing the generated QBFs to a file. Instead, we add and modify
the QBFs to be solved directly via the API of DepQBF. The API provides push and pop
functions to add and remove frames, i.e., sets of clauses, in a stack-based manner. The
CNF part of a QBF is represented as a sequence of frames.

Given a planning instance, the workflow starts with plan length k = 0. The QBF ψk

for plan length k can be encoded naturally in an incremental fashion by maintaining
two frames f0 and f1 of clauses: clauses which encode the goal state are added to f1.
All other clauses are added to f0. Frame f0 is added to DepQBF before frame f1. If ψk

is unsatisfiable, then f1 is deleted by a pop operation, i.e., the clauses encoding the goal
state of plan length k are removed. The plan length is increased by one and additional
clauses encoding the possible state transitions from plan length k to k + 1 are added
to f0. The clauses encoding the goal state for plan length k + 1 are added to a new f1.
Note that in the workflow clauses are added to f0 but this frame is never deleted.

The workflow terminates if (1) the QBF ψk is satisfiable, indicating that the instance
has a plan with optimal length k, or (2) ψk is unsatisfiable and k + 1 exceeds a user-
defined upper bound, indicating that the instance does not have a plan of length k or
smaller, or (3) the time or memory limits are exceeded. In the cases (1) and (2), we
consider the planning instance as solved. For the experimental evaluation, we imposed
an upper bound of 200 on the plan length.

The Dungeon benchmark captures the full hardness of problems on the second level
of the polynomial hierarchy. Therefore, as shown in the following section, already
instances with moderate plan lengths might be hard for QBF solvers as well as for
planning-specific solvers [18]. We considered an upper bound of 200 of the plan length
to be sufficient to show the difference between the incremental and non-incremental
QBF-based approach. The hardness is due to the highly combinatorial nature of the
Dungeon instances, which also applies to configuration and maintenance problems. Fur-
ther, configuration and maintenance problems can be encoded easily into conformant
planning as the Dungeon benchmark is essentially a configuration problem.

Our planning tool can also be combined with any non-incremental QBF solver to
determine a plan of minimal length in a non-incremental fashion. This is done by writ-
ing the QBFs which correspond to the plan lengths k = 0, 1, . . . under consideration to
separate files and solving them with a standalone QBF solver [18].

2 DepQBF4J is part of the release of DepQBF version 3.03 or later.
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Table 1. Overall statistics for the planning workflows implementing incremental and non-
incremental QBF solving by incDepQBF and DepQBF, respectively: total time for the workflow
on all 288 instances (including time outs), solved instances, solved instances where a plan was
found and where no plan with length 200 or shorter exists, average time (t) in seconds, number
of backtracks (b) and assignments (a) performed by the QBF solver on the solved instances.

288 Planning Instances (Dungeon Benchmark: v0 and v1)
Time Solved Plan found No plan t b a

DepQBF: 112,117 168 163 5 24.40 2210 501,706
incDepQBF: 103,378 176 163 13 14.55 965 120,166

Table 2. Statistics like in Table 1 but for those planning instances which were uniquely solved
when using either incDepQBF or DepQBF, respectively. For all of these uniquely solved in-
stances, no plan was found within the given upper bound of 200.

Uniquely Solved Planning Instances
Solved Plan found No plan t b a

DepQBF: 2 0 2 545.04 99 1,024,200
incDepQBF: 10 0 10 94.15 174 45,180

5 Experimental Evaluation

We evaluate the incremental workflow described in the previous section using planning
instances from the Dungeon benchmark. The purpose of our experimental analysis is
to compare incremental and non-incremental QBF solving in the context of conformant
planning. Thereby, we provide the first empirical study of incremental QBF solving in
the planning domain. In addition to [26,27], our results independently motivate the use
of incremental QBF solving in other application domains.

From the Dungeon benchmark described in Section 3, we selected 144 planning
instances from each variant v0 and v1, resulting in 288 planning instances. Given a
planning instance, we allowed 900 seconds wall clock time and 7 GB of memory for
the entire workflow, which includes grounding, QBF encoding and QBF solving. All
experiments reported were run on AMD Opteron 6238, 2.6 GHz, 64-bit Linux.

We first compare the performance of incremental and non-incremental QBF solv-
ing in the planning workflow. To this end, we used incremental and non-incremental
variants of our QBF solver DepQBF, referred to as incDepQBF and DepQBF, respec-
tively. For non-incremental solving, we called the standalone solver DepQBF by system
calls from our planning tool. Thereby, we generated the QBF encoding of a particular
planning instance and wrote it to a file on the hard disk. DepQBF then reads the QBF
from the file. For incremental solving, we called incDepQBF through its API via the
DepQBF4J interface. This way, the QBF encoding is directly added to incDepQBF by
its API within the planning tool (as outlined in the previous section), and no files are
written. The solvers incDepQBF and DepQBF have the same codebase. Therefore, dif-
ferences in their performance are due to whether incremental solving is applied or not.

The statistics in Tables 1 to 3 and Figure 3 illustrate that incremental QBF solving by
incDepQBF outperforms non-incremental solving by DepQBF in the workflow in terms
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Fig. 2. Related to Table 3. Let P5, P6 and P7 be the sets of planning instances where a plan of
length 5, 6, and 7 was found using both incDepQBF and DepQBF. The data points on the lines
“inc5” (dashed) and “noninc5” (solid) show the total numbers of backtracks spent by incDepQBF
and DepQBF on the QBFs corresponding to the plan lengths i = 0, . . . , 5 for all instances in P5.
The data points for P6 and P7 were computed similarly for the plan lengths i = 0, . . . , 6 and
i = 0, . . . , 7, respectively, and are shown on the lines “inc6”, “noninc6” and “inc7”, “noninc7”.

of solved instances, uniquely solved instances (Table 2), run time and in the number of
backtracks and assignments spent in QBF solving. With incDepQBF and DepQBF, 166
instances were solved by both. For three of these 166 instances, no plan exists.

The different calling principles of incDepQBF (by the API) and DepQBF (by system
calls) may have some influence on the overall run time of the workflow, depending on
the underlying hardware and operating system. In general, the use of the API avoids I/O
overhead in terms of hard disk accesses and thus might save run time. Due to the timeout
of 900 seconds and the relatively small number of QBF solver calls in the workflow (at
most 201, for plan length 0 up to the upper bound of 200), we expect that the influence
of the calling principle on the overall time statistics in Tables 1 and 2 and Figure 3 is
only marginal. Moreover, considering backtracks and assignments as shown in Table 3
as an independent measure of the performance of the workflow, incremental solving by
incDepQBF clearly outperforms non-incremental solving by DepQBF.

Figure 2 shows how the number of backtracks evolves if the plan length is increased.
On the selected instances which have a plan with optimal length k, we observed peaks
in the number of backtracks by incDepQBF and DepQBF on those QBFs which corre-
spond to the plan length k − 1. Thus empirically the final unsatisfiable QBF for plan
length k − 1 is harder to solve than the QBF for the optimal plan length k or shorter
plan lengths. Figure 2 (right) shows notable exceptions. For k = 6, the number of
backtracks by DepQBF increases in contrast to incDepQBF. For k = 5 and k = 7,
incDepQBF spent more backtracks than DepQBF. We attribute this difference to the
heuristics in (inc)DepQBF. The same QBFs must be solved by incDepQBF and De-
pQBF in one run of the workflow. However, the heuristics in incDepQBF might be
negatively influenced by previously solved QBFs. We made similar observations on in-
stances not solved with either incDepQBF or DepQBF where DepQBF reached a longer
plan length than incDepQBF within the time limit.

Incremental solving performs particularly well on instances for which no plan exists.
Considering the ten instances uniquely solved with incDepQBF (Table 2), on average it
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Fig. 4. Sorted accumulated run times of solvers
on selected QBFs from the planning workflow.
DepQBF-pre includes preprocessing.

took less than 0.5 seconds to encode and solve one of the 201 unsatisfiable QBFs (i.e.,
from plan length zero to the upper bound of 200) in the planning workflow. Considering
the 13 instances solved using incDepQBF which do not have a plan (Table 1), on av-
erage the workflow took 73.80 seconds and incDepQBF spent 35,729 assignments and
135 backtracks. In contrast to that, the workflow using DepQBF took 270.92 seconds
on average to solve the five instances which do not have a plan (Table 1), and DepQBF
spent 421,619 assignments and 99 backtracks.

5.1 Preprocessing

The implementation of (inc)DepQBF does not include preprocessing [5,12]. In general,
preprocessing might be very beneficial for the performance of QBF-based workflows.
The efficient combination of preprocessing and incremental solving is part of ongoing
research in SAT [19,28] and QBF [14,16,26,32].

In order to evaluate the potential impact of preprocessing in our workflow, we carried
out the following experiment. We ran the workflow using DepQBF on all 288 planning
instances with a time limit of 900 seconds and collected all QBFs that were generated
this way. Like for the results in Table 1, we ran DepQBF and incDepQBF on these QBFs
within our workflow. Additionally, we ran the QBF solver Nenofex [22] because it per-
formed well on QBFs generated from the Dungeon benchmark.3 Nenofex successively
eliminates variables in a QBF by expansion at the cost of a possibly exponential blow up
of the formula size. Figure 4 shows the run times of DepQBF, incDepQBF, Nenofex and
DepQBF-pre, which combines DepQBF with the preprocessor Bloqqer [5]. We accu-
mulated the solving times spent on QBFs that were generated from a particular planning
instance. The plot shows these accumulated times for each planning instance. Run times
smaller than the time out of 900 seconds do not necessarily indicate that the planning
instance was solved because we considered only a subset of the QBFs corresponding

3 Results of Nenofex in the QBF Gallery 2013: http://www.kr.tuwien.ac.at/
events/qbfgallery2013/sc apps/conf planning dungeon.html
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Table 3. Average and median number of assignments (a and ã, respectively), backtracks (b, b̃),
and workflow time (t, t̃) for planning instances from Dungeon-v0 (left) and Dungeon-v1 (right)
where both workflows using DepQBF and incDepQBF found the optimal plan

Dungeon-v0 (81 solved instances)
DepQBF incDepQBF diff. (%)

To
ta

l a: 171,245,867 122,233,046 -28.6
b: 1,660,296 1,237,384 -25.4
t: 1,253.50 638.94 -49.0

Pe
r

in
st

an
ce

a: 2,114,146 1,509,049 -28.6
b: 20,497 15,276 -25.4
t: 15.47 7.88 -49.0
ã: 1,388 1,391 +0.2
b̃: 13 11 -15.3
t̃: 1.01 0.37 -63.8

Pe
r

so
lv

ed
Q

B
F a: 629,580 449,386 -28.6

b: 6,104 4,549 -25.4
t: 4.60 2.34 -49.0
ã: 828 833 +0.6
b̃: 1 1 +0.0
t̃: 1.01 0.36 -63.8

Dungeon-v1 (82 solved instances)
DepQBF incDepQBF diff. (%)

To
ta

l a: 183,674,291 164,131,257 -10.6
b: 1,670,375 1,459,655 -12.6
t: 1,308.26 773.39 -40.8

Pe
r

in
st

an
ce

a: 2,239,930 2,001,600 -10.6
b: 20,370 17,800 -12.6
t: 15.95 9.43 -40.8
ã: 1,595 1,641 +2.8
b̃: 15 15 +0.0
t̃: 1.31 0.37 -71.7

Pe
r

so
lv

ed
Q

B
F a: 667,906 596,840 -10.6

b: 6,074 5,307 -12.6
t: 4.75 2.81 -40.8
ã: 827 828 +0.1
b̃: 1 1 +0.0
t̃: 1.31 0.37 -71.7

to the planning instance. The performance of DepQBF-pre and Nenofex shown in Fig-
ure 4 illustrates the benefits of preprocessing in the planning workflow. Among other
techniques, Bloqqer applies expansion, the core technique used in Nenofex, in a way
that restricts the blow up of the formula size [4,7].

Given the results shown in Figure 4, preprocessing might considerably improve the
performance of incremental QBF solving in our workflow. To this end, it is necessary
to combine QBF preprocessing and solving in an incremental way.

5.2 Comparison to Heuristic Approaches

Although our focus is on a comparison of non-incremental and incremental QBF
solving, we report on additional experiments with the heuristic planning tools Confor-
mantFF [15] and T0 [30]. In contrast to our implemented QBF-based approach to con-
formant planning, heuristic tools do not guarantee to find a plan with the optimal (i.e.,
shortest) length. In practical settings, plans with optimal length are desirable. Moreover,
the QBF-based approach allows to verify the non-existence of a plan with respect to an
upper bound on the plan length. Due to these differences, a comparison based on the
run times and numbers of solved instances only is not appropriate.

Related to Table 1, ConformantFF solved 169 planning instances, where it found a
plan for 144 instances and concluded that no plan exists (with a length shorter than our
considered upper bound of 200) for 25 instances. Considering the 124 instances where
both incDepQBF and ConformantFF found a plan, for 42 instances the optimal plan
found by incDepQBF was strictly shorter than the plan found by ConformantFF. On the
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124 instances, the average (median) length of the plan found by incDepQBF was 2.06
(1), compared to an average (median) length of 3.45 (1) by ConformantFF.

Due to technical problems, we were not able to run the experiments with T04 on
the same system as the experiments with (inc)DepQBF and ConformantFF. Hence the
results by T0 reported in the following are actually incomparable to Table 1. However,
we include them here to allow for a basic comparison of the plan lengths.

Using the same time and memory limits as for incDepQBF and ConformantFF, T0
solved 206 planning instances, where it found a plan for 203 instances and concluded
that no plan exists (with a length shorter than the upper bound of 200) for three in-
stances. Given the 156 instances where both incDepQBF and T0 found a plan, for
56 instances the optimal plan found by incDepQBF was strictly shorter than the plan
found by T0. On the 156 instances, the average (median) length of the plan found by
incDepQBF was 2.25 (1), compared to an average (median) length of 3.08 (2) by T0.

From the 13 instances solved by incDepQBF for which no plan exists (Table 1), none
was solved using T0 and 12 were solved using ConformantFF.

Our experiments confirm that the QBF-based approach to conformant planning finds
optimal plans in contrast to the plans found by the heuristic approaches implemented in
ConformantFF and T0. Moreover, (inc)DepQBF and other search-based QBF solvers
rely on Q-resolution [17] as the underlying proof system. Given a Q-resolution proof Π
of the unsatisfiability of a QBF ψ, it is possible to extract from Π a countermodel [2]
or strategy [13] of ψ in terms of a set of Herbrand functions. Intuitively, an Herbrand
function fy(xy1 , . . . , xyn) represents the values that a universal variable fy must take to
falsify ψ with respect to the values of all existential variables xy1 , . . . , xyn with xyi < y
in the prefix ordering. Given a conformant planning problem P , Q-resolution proofs
and Herbrand function countermodels allow to independently explain and verify [29]
the non-existence of a plan (of a particular length) for P by verifying the unsatisfiability
of the QBF encoding of P . This is an appealing property of the QBF-based approach. In
practical applications, it may be interesting to have an explanation of the non-existence
of a plan in addition to the mere answer that no plan exists.

The exact QBF-based approach for conformant planning can be combined with
heuristic approaches in a portfolio-style system, for example. Thereby, the two ap-
proaches are applied in parallel and independently from each other. This way, modern
multi-core hardware can naturally be exploited.

6 Conclusion

We presented a case study of incremental QBF solving based on a workflow to incre-
mentally encode planning problems into sequences of QBFs. Thereby, we focused on a
general-purpose QBF solver. The incremental approach avoids some redundancy. First,
parts of the QBF encodings of shorter plan lengths can be reused in the encodings of
longer plan lengths. Second, the incremental QBF solver benefits from information that
was learned from previously solved QBFs. Compared to heuristic approaches, the QBF-
based approach has the advantage that it always finds the shortest plan and it allows to
verify the non-existence of a plan by Q-resolution proofs.

4 Experiments with T0 were run on AMD Opteron 6176 SE, 2.3 GHz, 64-bit Linux.
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Using variants of the solver DepQBF, incremental QBF solving outperforms non-
incremental QBF solving in the planning workflow in terms of solved instances and
statistics like the number of backtracks, assignments, and run time. The results of our
experimental study independently motivate the use of incremental QBF solving in ap-
plications other than planning. We implemented the Java interface DepQBF4J to inte-
grate the solver DepQBF in our planning tool. This interface is extensible and can be
combined with arbitrary Java applications.

The experiments revealed that keeping learned information in incremental QBF
solving might be harmful if the heuristics of the solver are negatively influenced. Our ob-
servations merit a closer look on these heuristics when used in incremental solving. In gen-
eral, the combination of preprocessing and incremental solving [14,16,19,26,27,28,32]
could improve the performance of QBF-based workflows.
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Laboratoire des Sciences de l’information et des Systèmes (LSIS)
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Abstract. The concept of symmetry has been extensively studied in the field
of constraint programming and in the propositional satisfiability. We are inter-
ested here, by the detection and elimination of local and global symmetries in
the item-set mining problem. Recent works have provided effective encodings as
Boolean constraints for these data mining tasks and some idea on symmetry elim-
ination in this area begin to appear, but still few and the techniques presented are
often on global symmetry that is detected and eliminated statically in a prepro-
cessing phase. In this work we study the notion of local symmetry and com-
pare it to global symmetry for the itemset mining problem. We show how local
symmetries of the boolean encoding can be detected dynamically and give some
properties that allow to eliminate theses symmetries in SAT-based itemset mining
solvers in order to enhance their efficiency.

Keywords: symmetry, Item-set mining, data mining, satisfiability, constraint pro-
gramming.

1 Introduction

The work we propose here is to investigate the notion of local symmetry1 elimination in
the Frequent Itemset Mining (FIM) [1] and compare it to global symmetry2. The item-
set mining problem has several applications in real-life problems and remains central in
the Data mining research field. Since its introduction in 1993 [1], several highly scal-
able algorithms are introduction ([2], [20], [39],[36] [37], [13],[16], [31]) to enumerate
the sets of frequent items.

Recently DeRaedt et Al. ([33], [18]) introduced the alternative of using constraint
programming in data mining. They showed that a such alternative can be efficiently ap-
plied for a wide range of pattern mining problems. Most of the pattern mining constraint
had been expressed in a declarative constraint programming language. This include fre-
quency constraint, closeness, maximality, and anti-monotonic then use a constraint pro-
gramming system like Gecode as black box to solve the problem. A strength point here

� Actually, I am at CRIL for one year CNRS delegation position.
1 The symmetry of the sub-problems corresponding the different nodes of the search tree.
2 The symmetry of the initial problem corresponding to the root of the search tree.

G.A. Aranda-Corral et al. (Eds.): AISC 2014, LNAI 8884, pp. 132–146, 2014.
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is that different constraints can be combined and solved without the need to modify
the solver, unlike in the existing specific data mining algorithms. Since the introduction
of this declarative approach, there is a growing interest in finding generic methods to
solve data mining tasks. For instance, several works expressed data mining problems
as boolean satisfiability problem ([24], [21], [29], [26], [34], [23]) and used efficient
modern SAT solvers as black box to solve them. More recently, a constraint declarative
framework for solving Data mining tasks called MininZinc [17], had been introduced.

On the other hand, symmetry is a fundamental property that can be used to study var-
ious complex objects, to finely analyze their structures or to reduce the computational
complexity when dealing with combinatorial problems. Krishnamurthy introduced in
[28] the principle of symmetry to improve resolution in propositional logic. Symme-
tries for Boolean constraints are studied in depth in [8, 9]. The authors showed how to
detect them and proved that their exploitation is a real improvement for several auto-
mated deduction algorithms. Since that, many research works on symmetry appeared.
For instance, the static approach used by James Crawford et al. in [14] for proposi-
tional logic theories consists in adding constraints expressing global symmetry of the
problem. This technique has been improved in [6] and extended to 0-1 Integer Logic
Programming in [4]. But the notion of symmetry in the field of data mining is not well
studied yet. Only few works on global symmetry elimination are introduced for some
specific data mining algorithms that are targeted to solve some Data mining tasks ([19],
[30],[15], [38], [32], [25],[22]).

As far as we know, there is no local symmetry breaking method in the framework
of data mining. In this work, we investigate dynamic local symmetry detection and
elimination and compare to global symmetry exploitation in SAT-based item set mining
solvers. Local symmetry is the symmetry that we can discover at each node of the search
tree during search. Global symmetry is the particular local symmetry corresponding to
the root of the search tree (the symmetry of the initial problem). Almost all of the known
works on symmetry are on global symmetry. Only few works on local symmetry [8, 9]
are known in the literature. Local symmetry breaking remains a big challenge.

Eliminating symmetry leads to enumerate only the non symmetrical structures, then
could provide a more pertinent and compact output. That is only non-symmetrical pat-
terns are generated, each symmetrical pattern class is represented by one element.

The rest of the paper is structured as follows: in Section 2, we give some neces-
sary background on the satisfiability problem, permutations and the necessary notion
on itemset mining problem. We study the notion of symmetry in itemset mining in
Section 3. In Section 4 we show how symmetry can be detected by means of graph au-
tomorphism. We show how local and global symmetry can be eliminated in Section 5.
Section 6 shows how symmetry elimination is exploited by a SAT-based item set mining
solvers and we gives some experiments on different transaction data-sets in section 7.
We conclude the work in Section 8.

2 Background

We summarize in this section some background on the satisfiability problem, permuta-
tions, and the necessary notions on the itemset mining problem.
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2.1 The Propositional Satisfiability Problem (SAT)

We shall assume that the reader is familiar with the propositional calculus. We give
here, a short description. Let V be the set of propositional variables called only vari-
ables. Variables will be distinguished from literals, which are variables with an assigned
parity 1 or 0 that means True or False, respectively. This distinction will be ignored
whenever it is convenient, but not confusing. For a propositional variable p, there are
two literals: p the positive literal and ¬p the negative one.

A clause is a disjunction of literals {p1, p2, . . . , pn} such that no literal appears more
than once, nor a literal and its negation at the same time. This clause is denoted by
p1 ∨ p2 ∨ . . . ∨ pn . A set F of clauses is a conjunction of clauses. In other words, we
say that F is in the conjunctive normal form (CNF).

A truth assignment of a system of clauses F is a mapping I defined from the set of
variables of F into the set {True, False}. If I[p] is the value for the positive literal p
then I[¬p] = 1− I[p]. The value of a clause p1 ∨ p2 ∨ . . .∨ pn in I is True, if the value
True is assigned to at least one of its literals in I , False otherwise. By convention,
we define the value of the empty clause (n = 0) to be False. The value I[F ] of the
system of clauses is True if the value of each clause of F is True, False, otherwise.
We say that a system of clauses F is satisfiable if there exists some truth assignments
I that assign the value True to F , it is unsatisfiable otherwise. In the first case I is
called a model of F . Let us remark that a system which contains the empty clause is
unsatisfiable.

It is well-known [35] that for every propositional formula F there exists a formula
F ′ in conjunctive normal form(CNF) such that F ′ is satisfiable iff F is satisfiable. In
the following we will assume that the formulas are given in a conjunctive normal form.

2.2 Permutations

LetΩ = {1, 2, . . . , N} for some integerN , where each integer might represent a propo-
sitional variable or an atom. A permutation of Ω is a bijective mapping σ from Ω to
Ω that is usually represented as a product of cycles of permutations. We denote by
Perm(Ω) the set of all permutations of Ω and ◦ the composition of the permutation
of Perm(Ω). The pair (Perm(Ω), ◦) forms the permutation group of Ω. That is, ◦ is
closed and associative, the inverse of a permutation is a permutation and the identity
permutation is a neutral element. A pair (T, ◦) forms a sub-group of (S, ◦) iff T is a
subset of S and forms a group under the operation ◦.

The orbit ωPerm(Ω) of an element ω of Ω on which the group Perm(Ω) acts is
ωPerm(Ω)={ωσ : ωσ = σ(ω), σ ∈ Perm(Ω)}.

A generating set of the group Perm(Ω) is a subset Gen of Perm(Ω) such that each
element of Perm(Ω) can be written as a composition of elements of Gen. We write
Perm(Ω)=< Gen >. An element of Gen is called a generator. The orbit of ω ∈ Ω
can be computed by using only the set of generators Gen.

2.3 The Frequent, Closed, Maximal Itemset Problem

Let I = {0, . . . ,m − 1} be a set of m items and T = {0, . . . , n − 1} a set of
n transactions (transaction identifier). A subset I ⊆ I is called an itemset and a
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transaction t ∈ T over I is in fact, a pair (tid, I) where tid is the transaction
identifier and I the corresponding itemset. Usually, when there is no confusion, a trans-
action is just expressed by its identifier. A transaction database D over I is a finite set
of transactions such that no different transactions have the same identifier. A transac-
tion database can be seen as a binary matrix n × m, where n =| T | and m =| I |,
with Dt,i ∈ {0, 1} forall t ∈ T and i ∈ I. More precisely, a transaction database is
expressed by the set D = {(t, I) | t ∈ T , I ⊆ I, ∀i ∈ I : Dt,i = 1}. The coverage
CD(I) of an itemset I in D is the set of all transactions in which I occurs. That is,
CD(I) = {t ∈ T | ∀i ∈ I,Dt,i = 1}. The support SD(I) of I in D is the number
| CD(I) | of transactions supporting I . Moreover, the frequency FD(I) of I in D is
defined by |CD(I)|

|D| .

Example 1. Consider the transaction database D made over the set of fruit items I =
{Kiwi,Oranges,Apple, Cherries, plums}. For example, we can see in Table 1 that
the itemset I = {kiwi, Apples} has CD(I) = {1, 3}, SD(I) =| CD(I) |= 2, and
FD(I) = 0, 5.

Table 1. An instance of a transaction database

tid itemset

1 Cherries, Apples, Kiwi
2 Cherries, Apples, Oranges
3 Plums, Apples, Kiwi
4 Plums, Apples, Oranges

Given a transaction database D over L, and θ a minimal support threshold, an itemset
I is said to be frequent if SD(I) ≥ θ. I is a closed frequent itemset if in addition to
the frequency constraint it satisfies the following constraint: for all itemset J such that
I ⊂ J , SD(I) > SD(J). I is said to be a maximal frequent itemset if in addition
to the frequency constraint it satisfies the following constraint: for all itemset J such
that I ⊂ J , SD(J) < θ. Both closed and maximal itemsets are two known condensed
representation for frequent itemsets. The data mining tasks we are dealing with in this
work are defined as follows:

Definition 1. 1. The frequent itemset mining task consists in computing the following
set FIMD(θ) = {I ⊆ I|SD(I) ≥ θ}.

2. The closed frequent itemset mining task consists in computing the following set
CLOD(θ) = {I ∈ FIMD(θ)|∀J ⊆ I, I ⊂ J, SD(I) > SD(J)}.

In the next section, we will use the previous definition to express both the frequent
and the closed frequent itemset mining tasks as declarative constraints that could be
solved by appropriate constraint solvers.

3 Symmetry in Itemset Mining Represented as a Satisfiability
Problem

The frequent itemset mining tasks and some of its variants tasks (closed, maximal,
..etc) had been encoded for the first time in [33, 18] as constraint programming tasks
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where a constraint solver could be used as a black box to solve them. Since that, other
works ([24], [21], [29], [26], [34], [23]) expressed the data mining tasks as a satisfiabil-
ity problem where the mining tasks are represented by propositional formulas that are
translated into their conjunctive normal forms (CNF) which will be given as inputs to
a SAT solver. In this work we use this last approach to encode the data mining tasks as
satisfiability problems in which we detect and eliminate symmetry.

Before defining symmetry, we shall first give the CNF encoding of the data mining
tasks. The idea behind the CNF encoding of a data mining task defined on a database
transaction database D is to express each of its interpretations as a pair (I, T ) where I
represents an itemset and T its covering transaction subset in D. To do that, a boolean
variable Ii is associated with each item i ∈ I and a variable Tt is associated with each
transaction t ∈ T . The itemset I is then defined by all the variables Ii that are true. That
is Ii = 1, if i ∈ I , and Ii = 0 if i /∈ I . The set of transaction T covered by I is then
defined by the set of variable Tt that are true. That is, Tt = 1 if t ∈ CD(I) and Tt = 0
if t /∈ CD(I).

For instance, the FIMD(θ) task can be seen as the search of the set of models
M = {(I, T ) | I ⊆ I, T ⊆ T , T = CD(I), | T |≥ θ}. We have to encode both
the covering constraint T = CD(I) and the frequency constraint | T |≥ θ. These
constraints expressed by the two following boolean and pseudo boolean constraints :∧

t∈T
(¬Tt ←

∨
i∈I,Dt,i=0

Ii)

∧
i∈I

(Ii →
∑

t∈T |Dt,i=1

Tt ≥ θ)

The frequent closed itemset task is specified by adding to the two previous con-
straints the two following constraint :∧

t∈T
(¬Tt →

∨
i∈I,Dt,i=0

Ii)

∧
i∈I

(Ii ↔
∧

t∈T |Dt,i

Tt))

An important property of these logical encodings established to represent different
data mining tasks is that the models of the resulting logical formulas express the solu-
tions of the original data mining tasks considered. This approach is totally declarative,
the logical formulas representing the data mining tasks are translated to their equivalent
CNF formulas by using known transformation techniques [35] and then given as inputs
to a SAT solver which is used as a black box to compute theirs models. For example,
if the considered problem is the search of frequent itemsets in a transaction database D,
then the models of the logical formula representing this task in D express exactly the
different frequent itemsets of D and their covers. That is, if CNF (k,D) denotes the
CNF logic encoding a the data mining task k in the transaction database D and P k

D a
predicate representing the task k in D, then an itemset I ⊆ I having T ⊆ T as a cover
verifies P k

D (P k
D(I, T ) = true) if I is an itemset which is an answer to the data mining

task k and T is its cover. Formally, we get the following proposition:
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Proposition 1. Let J = (I, T ) be an interpretation of CNF (k,D), I ′ = {i ∈ I :
Ii = true}, and T ′ = {t ∈ T : Tt = true}, then J is a model of CNF (k,D) iff
P k
D(I

′, T ′) = true.

Proof. The proof is similar to that one given in [33, 18]. It expresses the fact that the
boolean encoding CNF (k,D) is sound.

On other hand symmetry is well studied in constraint programming and in the satis-
fiability problem. Since Krishnamurthy’s [27] symmetry definition and the one given in
[11, 12] in propositional logic, several other definitions are given in the CP community.
We will define in the following both semantic and syntactic symmetries for the boolean
encoding of the itemset mining problem and show their relationship.

Definition 2. (Semantic Symmetry of CNF (k,D)) Let CNF (k,D) be the CNF en-
coding of the mining task k in D and LCNF (k,D) its set of literals. A semantic symmetry
of CNF (k,D) is a permutation σ defined on LCNF (k,D) such that CNF (k,D) and
σ(CNF (k,D)) have the same models (i.e. D and σ(D) have the same frequent pat-
terns).

In other words a semantic symmetry of CNF (k,D) is a literal permutation that
conserves the set of frequent/closed or maximal item sets of D. Semantic symmetry is
a general symmetry definition, but its computation is trivially time consuming. We give
in the following the definition of syntactic symmetry which we will show that it is a
sufficient condition to semantic symmetry that could be computed efficiently.

Definition 3. (Syntactic Symmetry of CNF (k,D)) Let CNF (k,D) be the boolean
encoding of the data mining task k defined on D and LCNF (k,D) its set of literals. A
syntactic symmetry of CNF (k,D) is a permutation σ defined on LCNF (k,D) such that
the following conditions hold:

1. ∀� ∈ LCNF (k,D), σ(¬�) = ¬σ(�),
2. σ(CNF (k,D)) = CNF (k,D)

In other words, a syntactical symmetry of CNF (k,D) is a literal permutation that
leaves CNF (k,D) invariant. If we denote by Perm(LCNF (k,D)) the group of per-
mutations of LCNF (k,D) and by Sym(LCNF (k,D)) ⊆ Perm(LCNF (k,D)) the subset
of permutations of LCNF (k,D) that are the syntactic symmetries of CNF (k,D), then
Sym(LCNF (k,D) is trivially a sub-group of Perm(LCNF (k,D)).

Theorem 1. Each syntactical symmetry of CNF (k,D) is a semantic symmetry of
CNF (k,D).

Proof. It is trivial to see that a syntactic symmetry of CNF (k,D) is always a semantic
symmetry of CNF (k,D). Indeed, if σ is a syntactic symmetry of CNF (k,D), then
σ(CNF (k,D)) = CNF (k,D), thus it results that CNF (k,D) and σ(CNF (k,D))
have the same models (they express the same item sets satisfying the predicate PD

k)).

Example 2. Consider the transaction database D of Table 1 and k = FIMD(θ) for
θ = 2. If the set of items I = {Kiwi,Oranges,Apple, Cherries, P lums} are en-
coded by the scalars {1, 2, 3, 4, 5}, then the corresponding boolean encoding
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CNF (FI-MD(θ),D) for the frequent item set mining in D is formed by the set
var = {I1, I2, I3, I4, I5, T1, T2, T3, T4} of boolean variables and the set cl = {¬T1 ∨
¬I2,¬T1∨¬I5,¬T2∨¬I1,¬T2∨¬I5,¬T3∨¬I2,¬T3∨¬I4,¬T4∨¬I1,¬T4∨¬I4} of
clauses and the pseudo boolean constraints pb = {I1 → T1 +T3 ≥ 2, I2 → T2 +T4 ≥
2, I3 → T1 + T2 + T3 + T4 ≥ 2, I4 → T1 + T2 ≥ 2, I5 → T3 + T4 ≥ 2}. The
permutation σ = (I1, I2)(I4, I5)(T1, T4)(T2, T3) defined on the set of variables var is
a syntactic symmetry of CNF (FIMD(θ),D).

In the sequel we give some symmetry properties of the boolean encoding
CNF (k,D), which express some semantics on the database D.

Definition 4. Two literals Ii and Ij of CNF (k,D) are symmetrical if there exists a
symmetry σ of CNF (k,D) such that σ(Ii) = Ij .

Remark 1. The symmetry between the item literals Ii and Ij expresses the symmetry
between the items i and j of D. The previous definition could be applied for the trans-
action literals Tt too.

Definition 5. The orbit of a literal Ii ∈ CNF (k,D) on which the group of symmetries

Sym(LCNF (k,D)) acts is I
Sym(LCNF(k,D))

i ={σ(Ii) : σ ∈ Sym(LCNF (k,D))}

Remark 2. All the literals in the orbit of a literal Ii are symmetrical two by two.

Example 3. In Example 2, the orbit of the item I1 is I
Sym(LCNF(k,D))
1 = {I1, I2},

If I is a model of CNF (k,D) and σ a syntactic symmetry, we can get another model
of CNF (k,D) by applying σ on the literals which appear in I. Formally we get the
following property. These two symmetrical models of CNF (k,D) express two sym-
metrical item sets of D.

Proposition 2. I is a model of CNF (k,D) iff σ(I) is a model of CNF (k,D).

Proof. Suppose that I is a model of CNF (k,D), then σ(I) is a model of
σ(CNF (k,D)). We can then deduce that σ(I) is a model of CNF (k,D) since
CNF (k,D) is invariant under σ. The converse can be shown by considering the con-
verse permutation of σ.

In Example 2, if we consider θ = 2 and the symmetry σ, there will be symmetri-
cal models in CNF (k,D) (symmetrical frequent item sets in D). For instance, J =
(I, T ) = {I1, I3, T1, T3} is a model of CNF (k,D)that corresponds to the frequent
item set {Kiwi,Apples} in D. By the symmetry σ we can deduce that σ(J) = {I2, I3,
T2, T4} is also a model of CNF (k,D) which corresponds to the frequent item sets
{Oranges,Apples}. These are what we call symmetrical models of CNF (k,D) or
symmetrical frequent item sets of D. A symmetry σ transforms each frequent itemset
(a model of the CNF encoding) into a frequent itemset and each no-good (not a frequent
itemset or a model of the CNF encoding) into a no-good.

Theorem 2. Let Ii and Ij be two literals of CNF (k,D) that are in the same orbit
with respect to the symmetry group Sym(LCNF (D), then Ii is true in an a model of
CNF (k,D) iff Ij is true in a model of CNF (k,D).
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Proof. If Ii is in the same orbit as Ij then it is symmetrical with Ij in CNF (k,D).
Thus, there exists a symmetry σ of CNF (k,D) such that σ(Ii) = Ij . If I is a model of
CNF (k,D) then σ(I) is also a model of σ(CNF (k,D)) = CNF (k,D), besides if
Ii ∈ I then Ij ∈ σ(I) which is also a model of CNF (k,D). For the converse, consider
Ii = σ−1(Ij), and make a similar proof.

Corollary 1. Let Ii be a literal of CNF (k,D), if Ii is not true in any model of
CNF (k,D), then each literal Ij ∈ orbit = �Sym(LCNF(k,D)) is not true in any model
of CNF (k,D).

Proof. The proof is a direct consequence of Theorem 2.

Corollary 1 expresses an important property that we will use to break local symmetry
at each node of the search tree of a SAT-based procedure for the itemset mining prob-
lem. That is, if a no-good is detected after assigning the value True to the current literal
Ii of CNF (k,D), then we compute the orbit of Ii and assign the value false to each
literal in it, since by symmetry the value true will not lead to any model of CNF (k,D).

4 Symmetry Detection

The most known technique to detect syntactic symmetries for CNF formulas in satisfi-
ability is the one consisting in reducing the considered formula into a graph [14, 5, 4]
whose automorphism group is identical to the symmetry group of the original formula.
We adapt the same approach here to detect the syntactic symmetries of the boolean en-
coding CNF (k,D) of transaction database. That is, we represent the boolean encoding
CNF (k,D) of the transaction database D by a graph GCNF (k,D) that we use to com-
pute the symmetry group of CNF (k,D) by means of its automorphism group. When
this graph is built, we use a graph automorphism tool like Saucy [5] to compute its
automorphism group which gives the symmetry group of CNF (k,D). Following the
technique used in [14, 5, 4], we summarize bellow the construction of the graph which
represent the boolean encoding CNF (k,D). Given the the encoding CNF (k,D), the
associated colored graph GCNF (k,D)(V,E) is defined as follows:

– Each positive item literal Ii of CNF (k,D) is represented by a vertex Ii ∈ V of the
color 1 in GCNF (k,D). The negative literal ¬Ii associated with Ii is represented by
a vertex ¬Ii of color 1 in GCNF (k,D). These two literal vertices are connected by
an edge of E in the graph GCNF (k,D).

– Each positive transaction literal Tt of CNF (k,D) is represented by a vertex Tt ∈
V of the color 2 in GCNF (k,D). The negative literal ¬Tt associated with Tt is
represented by a vertex ¬Tt of color 2 in GCNF (k,D). These two literal vertices are
connected by an edge of E in the graph GCNF (k,D).

– Each positive auxiliary3 literal �i of CNF (k,D) is represented by a vertex �i ∈ V
of the color 3 in GCNF (k,D). The negative literal ¬�i associated with �i is rep-
resented by a vertex ¬�i of color 3 in GCNF (k,D). These two literal vertices are
connected by an edge of E in the graph GCNF (k,D).

3 The literals used to compute the CNF form CNF (k,D).
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– Each clause ci of CNF (k,D) is represented by a vertex ci ∈ V (a clause vertex) of
color 4 in GCNF (k,D). An edge connects this vertex ci to each vertex representing
one of its literals.

An important property of the graph GCNF (k,D) is that it preserves the syntactic
group of symmetries of CNF (k,D). That is, the syntactic symmetry group of
CNF (k,D) is identical to the automorphism group of its graph representation
GCNF (k,D), thus we could use a graph automorphism system like Saucy on GCNF (k,D)

to detect the syntactic symmetry group of CNF (k,D). The graph automorphism sys-
tem returns a set of generators Gen of the symmetry group from which we can deduce
each symmetry of CNF (k,D).

5 Symmetry Elimination

There are two ways to break symmetry. The first one is to deal with the global symmetry
which is present in the formulation of the given problem. Global symmetry can be
eliminated in a static way in a pre-processing phase of a SAT-based itemset solver by
just adding the symmetry predicates as it is done in [14, 5, 6, 4]. The second way is the
elimination of local symmetry that could appear in the sub-problems corresponding to
the different nodes of the search tree of a SAT-based itemset solver. Global symmetry
can be considered as the local symmetry corresponding to the root of the search tree.

Local symmetries have to be detected and eliminated dynamically at some decision
node of the search tree. Dynamic symmetry detection in satisfiability had been studied
in [8–10] where a local syntactic symmetry search method had been given. We use the
same technique to break local symmetry in itemset mining.

Consider the logic encoding CNF (k,D) of the transaction D, and a partial assign-
ment I of a SAT-based itemset solver applied to CNF (k,D). Suppose that � is the
current literal under assignment. The assignment I simplifies CNF (k,D) into a sub-
formula CNF (k,D)I which defines a state in the search space corresponding to the
current node nI of the search tree. The main idea is to maintain dynamically the graph
GCNF (k,D) of the sub-formula CNF (k,D)I corresponding to the current node nI ,
then color the graph GCNF (k,D)I

as shown in the previous section and compute its au-
tomorphism group Aut(CNF (k,D)I). The sub-formula CNF (k,D)I can be viewed
as the remaining sub-problem corresponding to the unsolved part. By applying an auto-
morphism tool on this colored graph we can get the generator set Gen of the symmetry
sub-group existing between literals from which we can compute the orbit of the current
literal � that we will use to make the symmetry cut.

After this, we use Corollary 1 to break dynamically the local symmetry and then prune
search spaces of tree search itemset methods. Indeed, if the assignment of the current
literal � defined at a given node nI of the search tree is shown to be a failure, then by
symmetry, the assignment of each literal in the orbit of � will result in a failure too.
Therefore, the negated literal of each literal in the orbit of � has to be assigned the value
true in the partial assignment I . Thus, we prune in the search tree, the sub-space which
corresponds to true assignment of the literals of the orbit of �. That is what we call the
local symmetry cut.
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6 Symmetry Advantage in Tree Search Algorithms

Now we will show how these detected symmetrical literals can be used to increase the
efficiency of SAT-based algorithms for the itemset mining. We choose in our imple-
mentation the Davis Putnam (DP) procedure to be the baseline method that we want
to improve by the advantage of local symmetry elimination. We will show in the next
session how the symmetry cut had been integrated in a DPLL solver.

If I is an inconsistent partial interpretation in which the assignment of the value
True to the current literal � is shown to be conflicting, then according to Corollary
1, all the literals in the orbit of � computed by using the group Sym(LCNF (k,D)I

)
returned by Saucy are symmetrical to �. Thus, we assign the value False to each literal
in �Sym(LCNF(k,D)) since the value True is shown to be contradictory, and then we
prune the sub-space which corresponds to the value True assignments. The resulting
procedure called Satisfiable is given in Algorithm 1.

Procedure Satisfiable(F);
begin

if F = ∅ then F is satisfiable
else if F contains the empty clause, then F is unsatisfiable

else begin
if there exists a mono-literal or a monotone literal � then

if Satisfiable(F�) then F is satisfiable
else F is unsatisfiable

else begin
Choose an unsigned literal � of F
if Satisfiable(F�) then F is satisfiable
else
begin

Gen=Saucy(F);
�Sym(LF )=orbit(�,Gen)={�1, �2, ..., �n};
if Satisfiable(F¬�1∧¬�2∧...∧¬�n) then F is satisfiable
else F is unsatisfiable

end
end

end

Fig. 1. The Davis Putnam procedure with local symmetry elimination

The input formula F expresses the boolean encoding CNF (k,D). The function
orbit(�,Gen) is elementary, it computes the orbit of the literal � from the set of gener-
ators Gen returned by Saucy.

7 Experiments

Now we shall investigate the performances of our search techniques by experimental
analysis.
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7.1 The Input Data-sets

We choose for our experiments the following data-sets:

– Simulated data-sets: In this class, we use the simulated data-sets, generated specif-
ically to involve interesting symmetries. The data are available at http://www.
cril.fr/decMining.

– Public datasets: The datasets used in this class are well known in the data mining
community and are available at https://dtai.cs.kuleuven.be/CP4IM/datasets/

7.2 The Experimented Methods

Now we shall investigate the performances of our search techniques by experimental
analysis. We choose the previous datasets for our study to show the symmetry behav-
ior in solving the itemset mining problem. We expect that symmetry breaking will be
profitable in other datasets. Here, we tested and compared three methods:

1. No-sym: search without symmetry breaking by using the AVAL solver [7] as the
baseline method;

2. Gl-sym search with global symmetry breaking. This method uses in pre-processing
phase the program SHATTER [3, 4] that detects and eliminates the global symme-
tries of the considered instance by adding on it symmetry breaking clauses, then
apply the solver AVAL [7] to the resulting instance. The CPU time of Gl-sym in-
cludes the time that SHATTER spends to compute the global symmetry.

3. Lo-sym: search with local symmetry breaking. This method implements in AVAL
the dynamic local symmetry detection and elimination strategy described in this
work. The CPU time of Lo-sym includes local symmetry search time.

The common baseline search method for the three previous methods is AVAL. The
complexity indicators are the CPU time and the size of the output. Both the time needed
for computing local symmetry and global symmetry are added to the total CPU time of
search. The source codes are written in C and compiled on a Core2Duo E8400, 2.8
GHZ and 4 Gb of RAM.

7.3 The Obtained Results

We reported in Figure 2 the practical results of the methods: No-sym, Gl-sym, and Lo-
sym, on a simulated data dataset-gen-jss-5 for the closed frequent itemset mining prob-
lem. The curves give the CPU times (the ones on the left in the figure) respectively the
number of patterns (the ones on the right in the figure) with respect to the minimum sup-
port threshold. We can see on the time curves that symmetry elimination is profitable
for the itemset mining problem. Indeed, both Gl-sym and Lo-sym outperform No-sym.
We also remark that Lo-sym detects and eliminates more symmetries than Gl-sym and is
more efficient. From the curves giving the number of patterns we can see that symmetry
leads to significantly decrease the size of the output by keeping only non-symmetrical
patterns. We can see that Lo-sym reduces more the output than Gl-sym. Local symme-
try elimination is profitable for solving the itemset mining problem and outperforms
dramatically global symmetry breaking on these problems.
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Fig. 2. Results on simulated data (Closed frequent itemsets): CPU time and number of patterns
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Fig. 3. Results on public data - Australian and Muchroom - (frequent itemsets): CPU time

In Figure 3, we reported the practical results of the methods No-sym and Gl-sym
and Lo-sym on some public datasets for the frequent itemset mining problem. We can
see that there exist some symmetries that are exploited and even the symmetries do not
abound, Gl-sym and Lo-sym outperforms No-sym in CPU time. Indeed, many symmet-
rical no-good branches in the search tree are avoided in the exploration. However, the
outputs are not reduced, since the detected symmetries usually involve items of the same
transactions. We expect to reduce the size of the output when the detected symmetries
involve items of different transactions.

8 Conclusion

We studied in this work the notions of global and local symmetry for the itemset mining
problem expressed as a CNF formulas. We addressed the problem of dynamic symme-
try detection and elimination of local symmetry during the search process. That is, the
symmetries of each CNF sub-formula defined at a given node of the search tree and
which is derived from the initial formula by considering the partial assignment corre-
sponding to that node. Saucy is adapted to compute this local symmetry by maintaining
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dynamically the graph of the sub-formula defined at each node of the search tree. Saucy
is called with the graph of the local sub-formula as the main input, and then returns the
set of generators of the automorphism group of the graph which is shown to be equiv-
alent to the local symmetry group of the considered sub-formula. The proposed local
symmetry detection method is implemented and exploited in the DPLL search method
to improve its efficiency. Experimental results confirmed that symmetry breaking is
profitable for the itemset mining problem expressed as a satisfiability problem.

As a future work, we are looking to eliminate symmetry in other data mining prob-
lems and try to implement some weakened symmetry conditions under which we may
detect more symmetries, then experiment it and compare its results with the ones given
here.
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Abstract. Belief function theory provides a flexible way to combine
information provided by different sources. This combination is usually
followed by a decision making which can be handled by a range of decision
rules. Some rules help to choose the most likely hypothesis. Others allow
that a decision is made on a set of hypotheses. In [6], we proposed a
decision rule based on a distance measure. First, in this paper, we aim
to demonstrate that our proposed decision rule is a particular case of the
rule proposed in [4]. Second, we give experiments showing that our rule
is able to decide on a set of hypotheses. Some experiments are handled
on a set of mass functions generated randomly, others on real databases.

Keywords: belief function theory, imprecise decision, distance.

1 Introduction

Belief function theory [2,9] allows us to represent all kinds of ignorance and offers
rules for combining several imperfect information provided by different sources
in order to get a more coherent one. The combination process helps to make de-
cisions later. Decision making consists in selecting, for a given problem, the most
suitable actions to take. Today, we are often confronted with the challenge of
making decisions in cases where information is imprecise or even not available.
In [12], Smets proposed the transferable belief model (TBM) as an interpreta-
tion of the theory of belief functions. The TBM emphasizes a distinction between
knowledge modeling and decision making. Accordingly, we distinguish the credal
level and the pignistic level. In the credal level, knowledge is represented as belief
functions and then combined. The pignistic level corresponds to decision making,
a stage in which belief functions are transformed into probability functions.

The pignistic probability, the maximum of credibility and the maximum of
plausibility are rules that allow a decision on a singleton of the frame of discern-
ment. Sometimes and depending on application domains, it seems to be more
convenient to decide on composite hypotheses rather than a simple one. In the
literature, there are few works that propose a rule or an approach for making
decision on a union of hypotheses [4,1,8]. Recently, we proposed a decision rule
based on a distance measure [6]. This rule calculates the distance between a
combined mass function and a categorical one. The most likely hypothesis to

G.A. Aranda-Corral et al. (Eds.): AISC 2014, LNAI 8884, pp. 147–156, 2014.
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choose is the hypothesis whose categorical mass function is the nearest to the
combined one.

The main topic of this paper is to demonstrate that our proposed decision
rule is a particular case of that detailed in [4] and to extend our rule so that
it becomes able to give decisions even with no categorical mass functions. We
present also our experiments on mass functions generated randomly as well as
on real databases.

The remainder of this paper is organized as follows: in section 2 we recall
the basic concepts of belief function theory. Section 3 presents our decision rule
based on a distance measure proposed in [6]. In section 4, we demonstrate that
our proposed rule is a particular case of that proposed in [4]. Section 5 presents
experiments and the main results. Section 6 concludes the paper.

2 The Theory of Belief Functions

The theory of belief functions [2,9] is a general mathematical framework for
representing beliefs and reasoning under uncertainty. In this section, we recall
some concepts of this theory.

The frame of discernment Θ = {θ1, θ2, . . . , θn} is a set of n elementary hy-
potheses related to a given problem. These hypotheses are exhaustive and mutu-
ally exclusive. The power set of Θ, denoted by 2Θ is the set containing singleton
hypotheses of Θ, all the disjunctions of these hypotheses as well as the empty
set.

The Basic belief assignment (bba), denoted by m is a mass function defined
on 2Θ. It affects a value from [0, 1] to each subset. It is defined as:∑

A⊆2Θ

m(A) = 1. (1)

A focal element A is an element of 2Θ such that m(A) > 0. A categorical bba is
a bba with a unique focal element such that m(A) = 1. When this focal element
is a disjunction of hypotheses then the bba models imprecision.

Based on the basic belief assignment, other belief functions (credibility func-
tion ad plausibility function) can be deduced.

– Credibility function bel(A) expresses the total belief that one allocates to A.
It is a mapping from elements of 2Θ to [0, 1] such that:

bel(A) =
∑

B⊆A,B �=∅
m(B). (2)

– Plausibility function pl(A) is defined as:

pl(A) =
∑

A∩B �=∅
m(B). (3)
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The plausibility function measures the maximum amount of belief that sup-
ports the proposition A by taking into account all the elements that do not
contradict. The value pl(A) quantifies the maximum amount of belief that
might support a subset A of Θ.

The theory of belief function is a useful tool for data fusion. In fact, for a
given problem and for the same frame of discernment, it is possible to get a
mass function synthesizing knowledge from separate and independent sources
of information through applying a combination rule. Mainly, there exists three
modes of combination:

– Conjunctive combination is used when two sources are distinct and fully
reliable. In [10], the author proposed the conjunctive combination rule which
is defined as:

m1 ∩©2(A) =
∑

B∩C=A

m1(B)×m2(C). (4)

The Dempster’s rule of combination [2] is a normalized form of the rule
described previously and is defined as:

m1⊕2(A) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
B∩C=A

m1(B)×m2(C)

1−
∑

B∩C=∅
m1(B)×m2(C)

∀A ⊆ Θ, A �= ∅

0 if A = ∅

(5)

This rule is normalized through 1−
∑

B∩C=∅
m1(B)×m2(C) and it works under

the closed world assumption where all the possible hypotheses of the studied
problem are supposed to be enumerated on Θ.

– Disjunctive combination: In [11], Smets introduced the disjunctive combina-
tion rule which combines mass functions when an unknown source is unreli-
able. This rule is defined as:

m1 ∪©2(A) =
∑

B∪C=A

m1(B)×m2(C) (6)

– Mixed combination: In [5], the authors proposed a compromise in order to
consider the benefits of the two combination modes previously described.
This combination is given for every A ∈ 2Θ by the following formula:

⎧⎨⎩mDP (A) = m1 ∩©(A) +
∑

B∩C=∅,B∪C=A

m1(B)m2(C) ∀A ∈ 2Θ, A �= ∅

mDP (∅) = 0
(7)
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3 Decision Making in the Theory of Belief Functions

In the transferable belief model, decision is made on the pignistic level where
the belief functions are transformed into a probability function, named pignistic
probability. This latter, noted as BetP is defined for each X ∈ 2Θ, X �= 0 as:

betP (X) =
∑

Y ∈2Θ,Y �=∅

|X ∩ Y |
|Y |

m(Y )

1−m(∅) (8)

where |Y | represents the cardinality of Y .
Based on the obtained pignistic probability, we select the most suitable hy-

pothesis with the maximum BetP. This decision results from applying tools of
decision theory [4]. In fact, if we consider an entity represented by a feature
vector x. A is a finite set of possible actions A = {a1, . . . , aN} and Θ a finite
set of hypotheses, Θ = {θ1, . . . , θM}. An action aj corresponds to the action of
choosing the hypothesis θj . But, if we select ai as an action whereas the hypoth-
esis to be considered is rather θj then the loss occurred is λ(ai|θj). The expected
loss associated with the choice of the action ai is defined as:

RbetP (ai|x) =
∑
θj∈Θ

λ(ai|θj)BetP (θj). (9)

Then, the decision consists in selecting the action which minimizes the expected
loss. In addition to minimizing pignistic expected loss, other risks are presented
in [4].

Decision can be made on composite hypotheses [1,8]. We present in this paper
the Appriou’s rule [1] which helps to choose a solution of a given problem by
considering all the elements contained in 2Θ. This approach weights the decision
functions (maximum of credibility, maximum of plausibility and maximum of
pignistic probability) by an utility function depending on the cardinality of the
elements. A ∈ 2Θ is chosen if:

A = argmax
X∈2Θ

(md(X)pl(X)) (10)

where md is a mass defined by:

md(X) = KdλX

(
1

|X |r

)
(11)

The value r is a parameter in [0, 1] helping to choose a decision which varies
from a total indecision when r is equal to 0 and a decision based on a singleton
when r is equal 1. λX helps to integrate the lack of knowledge about one of the
elements of 2Θ. Kd is a normalization factor and pl(X) is a plausibility function.

In the following, we present our decision rule based on a distance measure.
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4 Decision Rule Based on a Distance Measure

In [6], we proposed a decision rule based on a distance measure. It is defined as:

A = argmin(d(mcomb,mA)) (12)

This rule aims at deciding on a union of singletons. It is based on the use of
categorical bba which helps to adjust the degree of imprecision that has to be
kept when deciding. Depending on cases, we can decide on unions of two elements
or three elements, etc. The rule calculates the distance between a combined bba
mcomb and a categorical onemA . The minimum distance is kept and the decision
corresponds to the categorical bba’s element having the lowest distance with the
combined bba. The rule is applied as follows:

– We consider the elements of 2Θ. In some applications, 2Θ can be of a large
cardinality. For this reason, we may choose some elements to work on. For
example, we can keep the elements of 2Θ whose cardinality is less or equal
to 2.

– For each selected element, we construct its corresponding categorical bba.
– Finally, we apply Jousselme distance [7] to calculate the distance between

the combined bba and a categorical bba. The distance with the minimum
value is kept. The most likely hypothesis to select is the hypothesis whose
categorical bba is the nearest to the combined bba.

Jousselme distance is defined for two bbas m1 and m2 as follows:

d(m1,m2) =

√
1

2
(m1 −m2)tD(m1 −m2) (13)

where D is a matrix based on Jaccard distance as a similarity measure between
focal elements. This matrix is defined as:

D(A,B) =

{
1 if A=B=∅
|A∩B|
|A∪B| ∀A,B ∈ 2Θ

(14)

In this paper, we propose to apply the rule through two different manners:

– Distance type 1 is calculated with categorical bbas (m(A) = 1) for all ele-
ments of 2Θ except Θ to have an imprecise result rather than a total igno-
rance.

– Distance type 2 is calculated with simple bbas such as m(A) = α, m(Θ) =
1− α.

In the following, we show that our proposed rule can be seen as a particular case
of that proposed in section 3.

Jousselme distance can be written as:

d(m1,m2) =
1

2

∑
Y⊆Θ

∑
X⊆Θ

|X ∩ Y |
|X ∪ Y |m(X)m(Y ) (15)
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If we consider the expected loss of choosing ai, then it can be written as:

RbetP (ai|x) =
∑
Y ∈Θ

λ(ai|Y )BetP (Y ).

RbetP (ai|x) =
∑
Y ∈Θ

λ(ai|Y )
∑
X∈Θ

|X ∩ Y |
|X |

m(X)

1−m(∅) .

RbetP (ai|x) =
∑
Y ∈Θ

∑
X∈Θ

λ(ai|Y )
|X ∩ Y |

|X |
m(X)

1−m(∅) .

(16)

The equation relative to decision is equal to that for the risk for a value of λ
that has to be equal to:

λ(ai|Y ) =
|X |(1−m(∅))

|X ∪ Y | m(X) (17)

In this section, we showed that for a particular value of λ, our proposed
decision rule can be considered as a particular case of that proposed in [4]. In
the following section, we give experiments and present comparisons between our
decision rule based on a distance measure and that presented in [1].

5 Experiments

5.1 Experiments on Generated Mass Functions

We tested the proposed rule [6] on a set of mass functions generated randomly.
To generate the bbas, one needs to specify the cardinality of the frame of dis-
cernment, the number of mass functions to be generated as well as the number of
focal elements. The generated bbas are then combined. We use the Dempster’s
rule of combination, the disjunctive rule and the mixed rule. Suppose we have a
frame of discernment represented as Θ = {θ1, θ2, θ3} and three different sources
for which we generate their corresponding bbas as given in Table 1.

Table 1. Three sources with their bbas

S1 S2 S3

θ1 0.410 0.223 0.034
θ2 0.006 0.108 0.300

θ1 ∪ θ2 0.039 0.027 0.057
θ3 0.026 0.093 0.128

θ1 ∪ θ3 0.094 0.062 0.04
θ2 ∪ θ3 0.199 0.153 0.004

θ1 ∪ θ2 ∪ θ3 0.226 0.334 0.437
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We apply combination rules and we get the results illustrated in Table 2.

Table 2. Combination results

Dempster rule Disjunctive rule Mixed rule

θ1 0.369 0.003 0.208
θ2 0.227 0 0.128

θ1 ∪ θ2 0.025 0.061 0.075
θ3 0.168 0 0.094

θ1 ∪ θ3 0.049 0.037 0.064
θ2 ∪ θ3 0.103 0.035 0.093

θ1 ∪ θ2 ∪ θ3 0.059 0.864 0.338

Table 3. Decision results

Pignistic Appriou rule Rule based on
Probability distance measure

Dempster rule θ1 θ1 ∪ θ2 θ1
Disjunctive rule θ1 θ1 θ1 ∪ θ2

Mixed rule θ1 θ1 θ1 ∪ θ2

Once the combination is performed, we can make decision. In Table 3, we
compare between the results of three decision rules, namely the pignistic prob-
ability, the Appriou’s rule with r equal to 0.5 as well as our proposed decision
rule based on distance measure.

Table 3 shows the decision results obtained after applying some combination
rules. We depict from this table that not all the time the rule proposed by
Appriou gives a decision on a composite hypotheses. In fact, as shown in Table 3,
the application of disjunctive rule as well as the mixed rule lead to a decision on a
singleton which is θ1. This is completely different from what we obtain when we
apply our proposed rule which promotes a decision on union of singletons when
combining bbas. The obtained results seems to be convenient especially that the
disjunctive and the mixed rules help to get results on unions of singletons.

5.2 Experiments on Real Databases

To test our proposed decision rule, we do some experiments on real databases
(IRIS1 and HaberMan’s survival2). Iris is a dataset contaning 150 instances, 4
attributes and 3 classes where each class refers to a type of iris plant. HaberMan
is a dataset containing results study conducted at the University of Chicago’s
Billings Hospital on the survival of patients who had undergone surgery for
breast cancer. This dataset contains 306 instances, 3 attributes and 2 classes

1 http://archive.ics.uci.edu/ml/datasets/Iris
2 http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival
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(1: patient survived 5 years or longer, 2: patient died within 5 years). For the
classification, our experiments are handled in two different manners.

– First, we apply the k-NN classifier [3]. The results are illustrated in a con-
fusion matrix as shown in Table 4 (left side).

– Second, we modify the k-NN classifier’s algorithm based on the use of Demp-
ster rule of combination, to make it able to combine belief functions through
the mixed rule. Then, Appriou’s rule and our proposed decision rule are
applied to make decision. Results are illustrated in Table 4.

Table 4. Confusion Matrices for Iris

k-NN classifier

θ1 θ2 θ3
θ1 11 0 0
θ2 0 11 2
θ3 0 0 16

Appriou’s rule

θ1 θ2 θ1 ∪ θ2 θ3 θ1 ∪ θ3 θ2 ∪ θ3
θ1 11 0 0 0 0 0
θ2 0 15 0 0 0 0
θ3 0 1 0 13 0 0

Our decision rule

θ1 θ2 θ1 ∪ θ2 θ3 θ1 ∪ θ3 θ2 ∪ θ3
θ1 10 0 0 0 0 0
θ2 0 12 0 2 0 1
θ3 0 0 0 13 0 2

The same tests are done for HaberMan’s survival dataset. The results of ap-
plying k-NN classifier, Appriou’s rule and our decision rule are given respectively
in Table 5. For the classification of 40 sets chosen randomly from Iris, we remark
that with the k-NN classifier, all the sets having θ1 and θ3 as corresponding
classes are well classified and only two originally belonging to class θ2 were clas-
sified as θ3. Appriou’s rule gives a good classification for sets originally belonging
to classes θ1 and θ2 and thus promoting a result on singletons rather than on a
union of singletons.

Considering the results obtained when applying our decision rule based on a
distance type 1, we note that only 2 sets are not well classified and that 3 have
θ2 ∪ θ3 as a class. The obtained results are good because our method is based
on an imprecise decision which is underlined by the fact of obtaining θ2 ∪ θ3 as
a class.

Considering HaberMan’s survival dataset, we note that the k-NN classifier,
Appriou’s rule as well as our decision rule give the same results where among the
sets originally belonging to θ1, 34 are well classified and among the 18 belonging
to θ2, only 6 are well classified. We obtain the same results as the other rules
because the HaberMan’s survival dataset has only two classes and our method
is based on getting imprecise decisions and excluding the ignorance.

All the experiments given previously are based on the use of distance type 1.
The results shown below are based on distance type 2. In fact, we consider a
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Table 5. Confusion Matrices for HaberMan’s survival

k-NN classifier

θ1 θ2
θ1 34 4
θ2 12 6

Appriou’s rule

θ1 θ2 Θ

θ1 34 4 0
θ2 12 6 0

Our decision rule

θ1 θ2 Θ

θ1 34 4 0
θ2 12 6 0

simple bba and each time, we assign a value α to an element of 2Θ. The tested rule
on Iris as illustrated in Table 6 (left side) gives better results with an α < 0.8. In
addition to that, we obtained decisions on a union of singletons. The tests done
on HaberMan’s survival as given in Table 6 (right side) shows that with α > 0.5,
we obtain a better rate of good classification although we did not obtain a good
classification for the class θ2 and no set belongs to Θ. We aim in the future to
make experiments on other datasets because HaberMan’s survival, for example,
does only have 2 classes, so we do not have enough imprecise elements.

Table 6. Rates of good classification

α < 0.8 α >= 0.8

Iris 0.95 0.675

α <= 0.2 α ∈ [0.3, 0.5] α > 0.5

HaberMan’s survival 0.786 0.803 0.821

6 Conclusion

In this paper, we presented a rule based on a distance measure. This decision rule
helps to choose the most likely hypothesis based on the calculation of the distance
between a combined bba and a categorical bba. The aim of the proposed decision
rule is to give results on composite hypotheses. In this paper, we demonstrated
that our proposed rule can be seen as a particular case of that proposed in [4]. We
presented also the different experiments handled on generated mass functions as
well as on real databases.
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Abstract. An implementation (in Maple) of the multivalued elementary
inverse functions is described. The new approach addresses the difference
between the single-valued inverse function defined by computer systems
and the multivalued function which represents the multiple solutions of
the defining equation. The implementation takes an idea from complex
analysis, namely the branch of an inverse function, and defines an index
for each branch. The branch index then becomes an additional argument
to the (new) function. A benefit of the new approach is that it helps
with the general problem of correctly simplifying expressions containing
multivalued functions.

1 Introduction

The manner in which computer-algebra systems handle multivalued functions,
specifically the elementary inverse functions, has been the subject of extensive
discussions over many years. See, for example, [5,6,8]. The discussion has centred
on the best way to handle possible simplifications, such as

√
z2 = z ? arcsin(sin z) = z ? ln(ez) = z ? (1)

In the 1980s, errors resulting from the incorrect application of these transforma-
tions were common. Since then, systems have improved and now they usually
avoid simplification errors, although the price paid is often that no simplification
is made when it could be. For example, Maple 18 fails to simplify

√
1− z

√
1 + z −

√
1− z2 ,

even though it is zero for all z ∈ C, see [2,8]. Here a new way of looking at such
problemsis presented.

The discussion of possible treatments has been made difficult by the many
different interpretations placed on the same symbols by different groups of math-
ematicians. Sorting through these interpretations, and assessing which ones are
practical for computer algebra systems, has been an extended process. In this
paper, we shall not revisit in any detail the many past contributions to the
discussion, but summarize them and jump to the point of view taken here.
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1.1 A Question of Values

One question which has been discussed at length concerns the number of val-
ues represented by function names. One influential point of view was expressed
by Carathéodory, in his highly regarded book [4]. Considering the logarithm
function, he addressed the equation

ln z1z2 = ln z1 + ln z2 , (2)

for complex z1, z2. He commented [4, pp. 259–260]:

The equation merely states that the sum of one of the (infinitely many)
logarithms of z1 and one of the (infinitely many) logarithms of z2 can
be found among the (infinitely many) logarithms of z1z2, and conversely
every logarithm of z1z2 can be represented as a sum of this kind (with a
suitable choice of ln z1 and ln z2).

In this statement, Carathéodory first sounds as though he thinks of ln z1 as a
symbol standing for a set of values, but then for the purposes of forming an
equation he prefers to select one value from the set. Whatever the exact mental
image he had, the one point that is clear is that ln z1 does not have a unique
value, which is in strong contrast to every computer system. Every computer
system will accept a specific value for z1 and return a unique ln z1.

The reference book edited by Abramowitz & Stegun [1, Chap 4] is another
authoritative source, as is its successor [15]. They both define, to take one ex-
ample, the solution of tan t = z to be t = Arctan z = arctan z+kπ. When listing
properties, they both give the equation

Arctan(z1) + Arctan(z2) = Arctan
z1 + z2
1− z1z2

. (3)

For z1 = z2 =
√
3, we have Arctan

√
3 + Arctan

√
3 = Arctan(−

√
3). For com-

puter users, this is confusing, because their systems return values arctan
√
3 =

π/3 and arctan(−
√
3) = −π/3, and most users do not see the difference be-

tween Arctan and arctan. (Below, a new form of (3) is given.) By comparing
the Abramowitz & Stegun definition with the statement of Carathéodory, we
can see that as far as equations are concerned, both sets of authors favour an
interpretation based on interactively selecting one value from a set of possible
ones.

Riemann surfaces give a very pictorial way of seeing multi-valuedness [16,7],
but a question remains whether they can be used computationally [13]. To discuss
these approaches in detail will deflect attention from the implementation here.
Therefore, now that alternative approaches have been noted, they will be set
aside.

Here, an inverse function will have a single value [13]. Further, that single value
will be determined by the arguments to the function and not by the context in
which it finds itself.



Multivalued Elementary Functions in Computer-Algebra Systems 159

2 A New Treatment of Inverse Functions

The basis of the new implementation is notation introduced in [11]. To the
standard function ln z, a subscript is added:

lnk z = ln z + 2πik .

Here the function ln z denotes the principal value of logarithm, which is the
single-valued function with imaginary part −π < & ln z ≤ π. This is the function
currently implemented in Maple, Mathematica, Matlab and other systems. In
contrast, lnk z denotes the kth branch of logarithm. With this notation, the
statement above of Carathéodory can be restated unambiguously as

∃k,m, n ∈ Z, such that lnk z1z2 = lnm z1 + lnn z2 .

His “and conversely” statement is actually a stronger statement. He states

∀k ∈ Z, ∃m,n ∈ Z, such that lnk z1z2 = lnm z1 + lnn z2 .

In the light of his converse statement, Carathéodory’s first statement could be
interpreted as meaning

∀m,n ∈ Z, ∃k ∈ Z, such that lnm z1 + lnn z2 = lnk z1z2 .

I think the English statement does not support this interpretation, but it may be
supported by the original German. In any event, it shows the greater conciseness
of branch notation.

The principal of denoting explicitly the branch of a multivalued function will
be extended here to all the elementary multivalued functions. In order for the
new treatment to be smoothly implemented in Maple, a system of notation is
needed that can co-exist with the built-in functions of Maple.

2.1 Notation for Inverses

The built-in functions for which we shall be implementing branched replacements
are

– log(z),
– arcsin(z), arccos(z), arctan(z),
– arcsinh(z), arccosh(z), arctanh(z),
– fractional powers z1/n.

Rather than risk confusion by trying to modify the actions of these names within
Maple, we shall leave the built-in functions untouched and work with indepen-
dent, clearly defined and unambiguous notation for the branched functions.

The model we follow is to adapt the notation invfunc used in Maple; Math-
ematica has a similar construction InverseFunction. The most direct presen-
tation is simply to display the definitions, with source code.
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2.2 Subscripts in Maple

A subscript on a function f , as in fk(z), is really an additional argument to the
function, except that instead of placing it in parentheses, as in f(k, z), we choose
subscripting. In Maple, however, the programming is quite different in the two
cases. Thus f(k, z) is coded as

f:= proc (k,z) ... end

and the k and z can be used in the procedure without further programming. A
subscripted function, however, is written as f[k](z), and is an ‘indexed name’.
The procedure is now coded as

f:= proc (z) ... end

and inside the procedure there is a variable available to the program called
procname. If the procedure has been called with an indexed name, then this is
contained in procname and the index, i.e., the subscript, can be retrieved for use
in the procedure by using the op function.

3 Particular Functions

In this section, the inverses of the elementary functions are defined in the new
notation. The implementations use Maple’s indexed names, and in Maple’s 2-D
printing, the indexes appear as subscripts.

3.1 Inverse Sine

The principal branch of the inverse sine function is denoted in Maple by arcsin.
Using this, we define the branched inverse sine by

invsin0 z = arcsin z , (4)

invsink z = (−1)k invsin0 z + kπ . (5)

The principal branch now has the equivalent representation invsin0 z=invsin z=
arcsin z. It has real part between −π/2 and π/2. Notice that the branches are
spaced a distance π apart in accordance with the antiperiod1 of sine, but the
repeating unit is of length 2π in accord with the period of sine.

The Maple code for the function is

invsin := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs ;

1 An antiperiodic function is one for which ∃α such that f(z + α) = −f(z), and α is
then the antiperiod. This is a special case of a quasi-periodic function [14], namely
one for which ∃α, β such that f(z + α) = βf(z).
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elif type(procname, ’indexed’) then

branch := op(procname);

branch*Pi+(-1)^branch*arcsin(z);

else arcsin(z);

end if;

end proc;

The nargs function counts the number of arguments supplied by the user, and
although here the code is restricted to 1 argument, one could allow the branch
number to be passed as an argument instead of as a subscript. Note that the
code is not ‘industrial strength’, and in particular the branch is not tested for
being an integer. Since the code is exploratory, it relies on the user being sensible.
Examples of its use appear below.

3.2 Inverse Cosine

The principal branch has real part between 0 and π, and this is easiest achieved
by setting invcosk z = invsink+1 z − π/2. The code is

invcos := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs ;

elif type(procname, ’indexed’) then

branch := op(procname);

invsin[branch+1](z)-Pi/2;

else arccos(z);

end if;

end proc;

3.3 Inverse Tangent

The principal branch has real part from −π/2 to π/2, and the kth branch is
invtank z = invtan z + kπ. As code:

invtan := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs ;

elif type(procname, ’indexed’) then

branch := op(procname);

branch*Pi+arctan(z);

else arctan(z);

end if;

end proc;

The two-argument inverse tangent function has been implemented in many com-
puter languages. It is a synonym for arg, in that arg(x + iy) = arctan(y, x) for
x, y ∈ R. It can be described using the branches of invtan as

arctan(y, x) = invtank(y/x) ,
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where k = H(−x) sgn y, and H is the Heaviside step function. For x small this
is inaccurate, when using invcot is better.

3.4 The Logarithm

The logarithm is the inverse of the exponential function, and therefore our con-
vention would suggest implementing the branched version using invexp. This,
however, seems too radical for acceptance, so we use loge instead. Another possi-
bility might seem to be Log, but this is unsatisfactory because textbooks cannot
agree on the definition of Log. Also Mathematica uses Log[x] as its standard
log function, and may in the future have its own branch implementation.

loge := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs ;

elif type(procname, ’indexed’) then

branch := op(procname);

ln(z) + 2*Pi*I*branch;

else ln(z);

end if;

end proc;

3.5 Inverse Hyperbolic Functions

A common point of contention in notation for inverse hyperbolic functions is
whether to write arcsinh or arsinh, and similarly for the other functions. The
point of the debate being that the geometrical interpretation of inverse sinh is an
area, not an arc. Maple and Mathematica use the former notation to the chagrin
of more enlightened authors [3,9] who prefer the latter. They argue that arc

should not be merely a synonym for inverse. The convention here allows us to
avoid this argument by using the inv prefix. We use the Russian abbreviations
for the primary functions to save typing. Thus we define in the obvious way
invsh[k](z), invch[k](z), invth[k](z). We save space by not listing them.

3.6 Fractional Powers

The principal branch of z1/n is defined by exp( 1n ln z), and replacing ln z by
lnk z gives the branched function. The standard notation for roots and fractional
powers does not leave an obvious place for the branch label, and most obvious
names are already used by Maple or Mathematica. We use the name invpw,
meaning inverse (integer) power. The Maple code defines invpw[k](z,n), where
the subscript is the branch, as usual, while the fractional power is 1/n. Thus it is
modelled on the Maple surd function. Unlike the other inverse functions, there
are only n distinct values, but we allow k to be any integer.

Since square root is so common, it is coded separately as invsq[k](z), and
it can be displayed in traditional notation as (−1)k

√
z.
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4 Applications

We now demonstrate some uses of the new notation.

4.1 Plotting

With the new functions, we can easily plot branches. Figure 1 shows plots pro-
duced by the Maple commands

> plot([invsin[-1](x),invsin(x),invsin[1](x)],x=-1 .. 1,

linestyle=[2,1,3]);

> plot([invtan[-1](x),invtan(x),invtan[1](x),invtan[2](x)],

x=-5..5, discont = true, linestyle = [2, 1, 3, 4]);

Fig. 1. The branches of inverse sine and inverse tangent plotted taking advantage of
branch notation

4.2 Identities

In order to express identities containing inverse functions correctly, we need the
unwinding number,

K(z) =

⌈
z − π

2π

⌉
,

defined in [5] (rather than in [6] where the sign is different). Note that the
unwinding number is a built-in function in Maple, called unwindK. This imme-
diately gives us

lnk e
z = z − 2πiK(z) + 2πik . (6)

Note the special case lnK(z) e
z = z.
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Consider an identity one might see in a traditional treatment:

cosx =
√
1− sin2 x , (7)

where the author would add “and the branch of the root is chosen appropriately”.
Using the branched root, we write the more precise

cosx = invsq[K(2ix)](1 − sin2 x) = (−1)K(2ix)
√
1− sin2 x . (8)

We can contrast the two approaches in Maple with the command

> plot([ sqrt(1-sin(x)^2), invsq[unwindK(2*x*I)](1-sin(x)^2)],

x = -7 .. 7, linestyle = [2, 1]);

The resulting plot is given in figure 2.

Fig. 2. The graph of
√

1− sin2 x using branch notation for square root

We return to the Abramowitz and Stegun [1] ‘identity’ (3). The branch prob-
lems with this equation are neatly displayed by the Maple command

> plot3d([arctan(x)+arctan(y), arctan((x+y)/(1-x*y))],

x = -2 .. 2, y = -2 .. 2, orientation = [-45, 45, 0])

The more precise identity is

invtan(x) + invtan(y) = invtank
x+ y

1− xy
, where k = H(xy − 1) sgn(x) , (9)

and H is the Heaviside step. A more complicated example from [1] is their
identity for Arcsinx+Arcsin y, which becomes

invsinx+ invsin y = invsin[k]
(
x
√

1− y2 + y
√
1− x2

)
, (10)

k = H(x2 + y2 − 1)(sgnx+ sgn y)/2 .

Here the branch of invsin is allowed to vary, but there might be another formula
which includes variable branches of square root.
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Fig. 3. A plot of the sum of two inverse tangents and the usual formula for their sum

As a final identity, we consider formula (4.4.39) in [1].

Arctan(x+ iy) = kπ +
1

2
arctan

2x

1− x2 − y2
+

i

4
ln

x2 + (y + 1)2

x2 + (y − 1)2
.

To turn this identity into something that computer-algebra systems can use, one
should decide what to do with k. This can be replaced by

invtank(x+ iy) =
1

2
invtann

2x

1− x2 − y2
+

i

4
ln

x2 + (y + 1)2

x2 + (y − 1)2
,

where n = 2k + sgn(x)H(x2 + y2 − 1).

4.3 Calculus

Calculating the derivative of an inverse function is a standard topic in calculus.
The results in the textbooks are restricted to the principal branches of the func-
tions. It is possible, however, to generalize results to any branch. For example

d

dx
invsink x =

1

cos(invsink x)
=

(−1)k√
1− x2

.

Integration by substitution is a well-known application of inverse functions.
A specific difficulty has been the application of the substitution u = tan 1

2x in
integrals such as∫

3 dx

5− 4 cosx
=

∫
6 du

1 + 9u2
= 2 arctan(3 tan 1

2x) . (11)

The right-hand side is discontinuous, as has been pointed out in [12,10]. The
correction to the usual integration formula [12] can be rewritten in the new
notation as ∫

3 dx

5− 4 cosx
= 2 invtanK(ix)(3 tan

1
2x) . (12)
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The contrast is illustrated in figure 4 by the plot

> plot([ 2*invtan[unwindK(I*x)](3*tan((1/2)*x)),

2*arctan(3*tan((1/2)*x))], x=-3..9,linestyle=[2,1],

discont=true);

Fig. 4. A graph of the discontinuous and continuous integrals discussed in (11) and (12)

5 Conclusions

The focus here has been on the implementation of multivalued inverse functions
in a computer-algebra system. The development of the notation, and of tools
such as the unwinding number, has been motivated by the idea that traditional
treatments of multivalued functions are not precise enough. Too often, decisions
on branch choices are avoided by texts, the avoidance being often covered by
phrases such as “taking an appropriate branch”. The notation here allows one
to state precisely which branch of a function should be used, and the notation
also reminds one that such choices are important.

After branch information is added to existing equations, they are typically
longer than before. This means that people looking for elegance rather than
strictness will find little benefit in the new approach and notation. Looking back
at Carathéodory’s discussion of (2), we can see exactly the desire for elegance
of presentation bringing with it the cost of impreciseness.

Outside computer-algebra systems, the notation also offers benefits. For exam-
ple, it should make the topic easier for students. We already teach students that
y = x2 implies x = ±√

y, and we teach calculus students that dy/dx = 1 implies
y = x + K, where K is a constant. So solutions to equations in which arbitrary
elements appear are already part of a student’s education. By using branch index-
ing, we can bring all the elementary inverse functions into a single pattern, and
both students and computers are forced to confront branch choices explicitly.
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There are many multivalued functions in mathematics, and here we have
considered only the elementary functions. The principles developed here can be
found already in Maple to varying degrees. The Lambert W function has been
fully implemented using the same ideas of explicit branches as here. Maple’s
RootOf construction uses an index to specify different roots of an equation.
Although there is a tendency to think of RootOf as specifying values rather
than functions, there is no reason not to use it to define a function, although its
generality will often make the branch structure of the defined function difficult
to understand. The current approach is one of a number of possibilities for
correct manipulation in a computer-algebra system. It fits together with the
unwinding number approach happily and offers other ways of presenting and
working with expressions. As with the unwinding number, there remains much
scope for further development.
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Abstract. This paper is framed within the problem of analyzing the
rationality of the components of two classical geometric constructions,
namely the offset and the conchoid to an algebraic plane curve and,
in the affirmative case, the actual computation of parametrizations. We
recall some of the basic definitions and main properties on offsets (see
[13]), and conchoids (see [15]) as well as the algorithms for parametrizing
their rational components (see [1] and [16], respectively). Moreover, we
implement the basic ideas creating two packages in the computer algebra
system Maple to analyze the rationality of conchoids and offset curves,
as well as the corresponding help pages. In addition, we present a brief
atlas where the offset and conchoids of several algebraic plane curves are
obtained, their rationality analyzed, and parametrizations are provided
using the created packages.

Keywords: Offset variety, conchoid variety, rational parametrization,
symbolic mathematical software.

Introduction

In this paper we deal with two different geometric constructions that appear in
many practical applications, where the need of proving rational parametrizations
as well as automatized algorithmic processes is important. On one side we con-
sider offset varieties and on the other conchoid varieties. Offsets varieties have
been extensively applied in the field of computer aided geometric design (see
[5],[3],[4]), while conchoids varieties appears in several of practical applications,
namely the design of the construction of buildings, in astronomy [6], in electro-
magnetism research [20], optics, physics, mechanical engineering and biological
engineering [7], in fluid mechanics [19], etc.

The intuitive idea of these geometric constructions is the following. Let C be
the field of complex numbers (in general, one can take any algebraically closed
field of characteristic zero), and let C be an irreducible hypersurface in Cn (say

G.A. Aranda-Corral et al. (Eds.): AISC 2014, LNAI 8884, pp. 168–179, 2014.
c© Springer International Publishing Switzerland 2014
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n = 2 or n = 3, and hence C is a curve or a surface). Moreover, although it is
not necessary for the development of the theory, in practice one considers that
C is real (i.e. there exists at least one regular real point on C). The offset variety
to C at distance d (d is a field element, in practice a non-zero real number),
denoted by Od(C), is the envelope of the system of hyperspheres centered at the
points of C with fixed radius d (see Fig.1, left); for a formal definition, see e.g.
[1]. In particular, if C is unirational and P(t), with t = (t1, . . . , tn), a rational
parametrization of C, the offset to C is the Zariski closure of the set in Cn

generated by the expression P(t)± d N (t)

‖N (t)‖ where N (t) is the normal vector to

C associated with P(t).
The conchoid construction is also rather intuitive. Given C as above (base

variety) and a fixed point A (focus), consider the line L joining A (in practice
the focus is real) to a point P of C. Now we take the points Q of intersection
of L with a hypersphere of radius d centered at P . The Zariski closure of the
geometric locus of Q as P moves along C is called the conchoid variety of C
from focus A at a distance d and denoted by CA

d (C) (see Fig.1 right); for the
geometric construction of the conchoid and, for a formal definition, see e.g. [15]
and [10]. The Conchoid of Nicomedes and the Limaçon of Pascal are the two
classic examples of conchoids, and the best known. They appear when the base
curve is a line or a circle, respectively. Similarly, if C is unirational and P(t) is a
rational parametrization of C, then the conchoid is the Zariski closure of the set
defined by the expression

P(t)± d
P(t)− A

‖P(t)− A‖ .

–1

0

1

2

3

4

5

y

–3 –2 –1 1 2 3x

Fig. 1. Left: Construction of the offset to the parabola, Right: Geometric construction
of the conchoid
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These two operations are algebro-geometric, in the sense that they create
new algebraic sets from the given input objects. There is an interesting relation
between the offset and the conchoid operations. Indeed, there exists a rational
bijective quadratic map which transforms a given hypersurface F and its offset
Fd to a hypersurface G and its conchoidal Gd, and vice versa (see [11]).

The main difficulty when applying these constructions is that they generate
much more complicated objects than the initial ones. There is a clear explosion
of the degree of the hypersurface, singularity structure and the density of the
defining polynomials (see e.g. [2], [13], [15]). As a consequence, in practice, the
implicit equations are untractable from the computational point of view. This is
one of the reasons why the use of parametric representations of offsets and con-
choids are considered. Let us see an illustrating example. We consider the plane
curve C defined by y4 = x5. Its offset has degree 12 and the polynomial defining
it has 65 nonzero terms, and its infinity norm is 300781250. However, the offset
can be parametrized by radicals (see [17], [18]) as (t4, t5)± d√

25t8+16t6
(−5t4, 4t3) .

On the other, the offset can be rationally parametrized as(
1

625

(
t2 − 1

) (
16 t8 − 32 t6 + 625 dt4 + 32 t2 − 16

)
t4 (t2 + 1)

,

2

3125

−16 t12 + 64 t10 − 80 t8 + 3125 dt6 + 80 t4 − 64 t2 + 16

t5 (t2 + 1)

)
.

The paper is structured as follows. In Section 1 we recall some of the ba-
sic definitions and main properties on offsets and conchoids of algebraic plane
curves (see [13], [15]). We provide algorithms to analyze the rationality of the
components of these new objects (see [1], [16]), and in the affirmative case, ra-
tional parametrizations are given. In Section 2 we present the creation of two
packages in the computer algebra system Maple to analyze the rationality of
offset and conchoids curves respectively, whose procedures are based on the
above algorithms, as well as the corresponding help pages. Finally, in Section 3,
we illustrate the performance of the package by presenting a brief atlas where the
offset and conchoids of several algebraic plane curves are obtained, with their ra-
tionality analyzed. Furthermore, in case of genus zero, a rational parametrization
is computed. We have not done an theoretical analysis of the complexity of the
implemented algorithms but the practical performance of the implementation
provides answers, in reasonable time for curves of degree less than 5.

1 Parametrization Algorithms: Curve Case

In this section we summarize the results on the rationality of the offsets and
conchoids of curves, presented in [1], [16] respectively, by deriving an algorithm
for parametrizing them. The treatment of surfaces can be found at [1], [12], [14]
(offsets) [8], [9], [10] (conchoids).

The Offset Rationality Problem
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The rationality of the components of the offsets is characterized by means of
the existence of parametrizations of the curve whose normal vector has rational
norm, and alternatively by means of the rationality of the components of an
associated curve, that is usually simpler than the offset. As a consequence, one
deduces that offsets to rational curves behave as follows: they are either reducible
with two rational components (double rationality), or rational, or irreducible and
not rational.

For this purpose, we first introduce two concepts: Rational Pythagorean Hodo-
graph and curve of reparametrization. Let P(t) = (P1(t), P2(t)) ∈ C(t)2 be a ra-
tional parametrization of C. Then, P(t) is rph (Rational Pythagorean Hodograph)
if its normal vectorN (t) = (N1(t), N2(t)) satisfies thatN1(t)

2+N2(t)
2 = m(t)2 ,

with m(t) ∈ C(t). For short we will express this fact writing ‖N (t)‖ ∈ C(t). On
the other hand, we define the reparametrizing curve of Od(C) associated with
P(t) as the curve generated by the primitive part with respect to x2 of the nu-
merator of x2

2 P
′
1(x1)−P

′
1(x1)+ 2 x2 P

′
2(x1) , where P

′
i denotes the derivative of

Pi. In the following, we denote by GO
P (C) the reparametrizing curve of Od(C) as-

sociated with P(t). Summarizing the results in [1], one can outline the following
algorithm for offsets.

Algorithm: offset parametrization

– Given: a proper rational parametrization P(t) of a plane curve C in K2 and
d ∈ C.

– Decide: whether the components of Od(C) are rational.
– Determine: (in the affirmative case) a rational parametrization of each

component.

1. Compute the normal vector N (t) of P(t). If ||N (t)|| ∈ K(t̄) then return
Od(C) has two rational components parametrized by P(t)± d

||N (t)||N (t).

2. Determine GO
P (C), and decide whether GO

P (C) is rational.
3. If GO

P (C) is not rational then return no component of Od(C) is rational.
4. Else compute a proper parametrization R(t) = (R̃(t),R(t)) of GO

P (C)
and return that Od(C) is rational and that Q(t) = P(R̃(t)) +

2 dR(t)

N2(R̃(t))(R(t)2+1)
N (R̃(t)) where N = (N1, N2), parametrizes Od(C).

The Conchoid Rationality Problem

In [16], it is proved that conchoids having all their components rational can only
be generated by rational curves. Moreover, it is shown that reducible conchoids to
rational curves have always their two components rational (double rationality).
From these results, one deduces that the rationality of the conchoid component,
to a rational curve, does depend on the base curve and on the focus but not
on the distance. To approach the problem we use similar ideas to those for off-
sets introducing the notion of reparametrization curve as well as the notion of
rdf parametrization. The rdf concept allows us to detect the double rationality
while the reparametrization curve is a much simpler curve than the conchoid,
directly computed from the input rational curve and the focus, and that behaves
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equivalently as the conchoid in terms of rationality. As a consequence of these
theoretical results [16] provides an algorithm to solve the problem. The algo-
rithm analyzes the rationality of all the components of the conchoid and, in the
affirmative case, parametrizes them. The problem of detecting the focuses from
where the conchoid is rational or with two rational components is, in general,
open.

We say that a rational parametrization P(t) = (P1(t), P2(t)) ∈ K(t)2 of C
is at rational distance to the focus A = (a, b) if (P1(t) − a)2 + (P2(t) − b)2 =
m(t)2 , with m(t) ∈ K(t). For short, we express this fact saying that P(t) is
rdf or A-rdf if we need to specify the focus. On the other hand, we define the
reparametrization curve of the conchoid CA

d (C) associated to P(t), denoted by
GC
P(C), as the primitive part with respect to x2 of the numerator of−2x2(P1(x1)−

a) + (x2
2 − 1)(P2(x1)− b) .

Algorithm: conchoid parametrization

– Given: a proper rational parametrization P(t) of a plane curve C in K2, a
focus A = (a, b), and d ∈ C.

– Decide: whether the components of the conchoid CA
d (C) are rational.

– Determine: (in the affirmative case) a rational parametrization of each
component.

1. Compute GC
P(C).

2. If GC
P(C) is reducible return that CA

d (C) is double rational and that
P(t) + d

±‖P(t)−A‖ (P(t)− A) parametrize the two components.

3. Check whether the genus of GC
P is zero. If not, return that CA

d (C) is not
rational.

4. Compute a proper parametrization (φ1(t), φ2(t)) of GC
P and return that

CA
d (C) is rational and that P(φ1(t)) +

d
±‖P(φ1(t))−A‖ (P(φ1(t))− A) para-

metrizes CA
d (C).

We can note that the rationality of the both constructions is not equivalent.
For instance, if C is the parabola of equation y2 = y21 , that can be parametrized
as (t, t2), the offset at distance d is rational. However, the rationality of the
conchoid of the parabola depends on the focus.

2 Implementation of Conchoid and Offset Maple
Packages and Help Pages

In this section, we present the creation of two packages in the computer algebra
system Maple, that we call Conchoid and Offset. These packages compute the
implicit equation, and analyze the rationality and the reducibility of conchoids
and offset curves respectively, providing rational parametrizations in case of
genus zero. In addition, it allows us to display plots. These packages consist in
several procedures that are based on the above parametrization algorithms.
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In the following, we give a brief description of the procedures and we show one of
the help pages for one of the Maple functions. The procedure codes and packages
are available in
http://www.euitt.upm.es/uploaded/docs personales/sendra pons juana/

offsets conchoids/Offset.zip

2.1 Procedures of the Conchoid Package

getImplConch This procedure determines the implicit equation of the conchoid

of an algebraic plane curve, given implicitely, at a fixed focus and a fixed distance.
For this purpose, we use Gröbner basis to solve the system of equations consisting
on the circle centered at generic point of the initial curve C and radius d, the
straight line from the focus A to the generic point of the initial curve C, and the
initial curve C.

getParamConch Firstly this procedure checks whether the conchoid of a ra-

tional curve is irreducible or it has two rational components. For this purpose,
we analyze whether a proper rational parametrization of the initial curve is
rdf. In affirmative case, the procedure outputs a message indicating reducibil-
ity (the conchoid has two rational components) and a rational parametrization
for each component is displayed. Otherwise, the conchoid is irreducible and the
reparametrization curve is computed in order to study its rationality. In the
affirmative case, it provides a rational parametrization by means of a rational
parametrization of the reparametrizing curve and it outputs a message indicating
irreducibility and rationality.

plotImplConch This procedure computes the conchoids curve using getIm-

plConch procedure, and then it plots both the initial curve and its conchoid
within the coordinates axes interval [−a, a]× [−a, a].

2.2 Procedures of the Offset Package

ImplicitOFF This procedure determines the implicit equation of the offset of

a rational algebraic plane curve, given parametrically, at a fixed distance. For
this purpose, since the algebraic system has three variables and one parameter
(namely the distance), instead of Gröbner basis we simplify the computation by
using resultants to solve the system of equations consisting on the circle centered
at a generic point of the initial curve C and radius d, and the normal line at each
point of C.

OFFparametric This procedure analyzes the rationality of the offset of a ratio-

nal plane curve. For this purpose, first it decides whether the offset is irreducible
or it has two rational components. In case of reducibility, the procedure outputs
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a rational parametrization for each component, using the rph concept. Other-
wise, it checks whether the offset is rational or not. In the affirmative case, it
provides a rational parametrization by means of a rational parametrization of
the reparametrizing curve.

OFFplot This procedure computes the offset curve at a generic distance, d, and

then replaces d with fixed value, dist. Finally, it plots both the initial curve and
its offset at a distance dist within the coordinates axes interval [−a, a]× [−a, a].

Once we have implemented the Offset/Conchoid procedure in Maple, we have
created two packages containing them, called Conchoid and Offset, respectively.

Theoretically, to compute the implicit equation of either the conchoid or the
offset, we use the incidence varieties introduced in [1] and [15], respectively.
In the definition of this incidence variety an equation, to exclude extraneous
factors, is introduced such that the Zariski closure of the projection is exactly
the offset/conchoid curve. Therefore, by the theorem of the closure, Gröbner
basis computation, and resultant when possible, provides the correct equation. In
addition, one has to take into account that we are dealing with generic conchoids
and generic offsets and therefore the specialization of the Gröbner basis or the
resultant may fail. Nevertheless, since we have only one parameter there are only
finitely many specializations; In particular, d = 0 generates a bad specialization.
Since d = 0 is not interesting from the geometric construction point of view we
are excluding this case. In addition, we have created the help pages associated
to the procedures.

3 Atlas of Conchoid and Offset Curves

In this section we illustrate the previous results applying the packages Offset
and Conchoid. We analyze the rationality of the offset and the conchoid of sev-
eral classical rational curves, and in the case of rationality we compute rational
parametrizations. We give a table summarizing the main details of the process
for each geometric construction, such as the degree of the implicit equation, ra-
tional character and rational parametrization in case of genus zero. In case of
Conchoids, the rationality depends on the focus, therefore in the table we study
the rationality for different focus position, distinguishing if the focus is on the
base curve or not. We don’t include the implicit equation of the reparametriz-
ing curve because of space limitations. The implicit equations, plots and more
details of the computation of these atlas are available by contacting with the
corresponding author.
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Table 1. Offsets Curves

Base Curve
Offset
Degree

Rationality & Parametrization

Circle
x2
2 + x2

1 − 4
4

Double Rational(
± (d±r)2t

t2+1
, ∓ (d±r)(t2−1)

t2+1

)
Parabola
x2 − x2

1
6

Rational(
(t2−1)(−t2−1+4 dat)

4at(t2+1)
, t6−t4−t2+1+32 dt3a

16at2(t2+1)

)

Hyperbola
x2
1

16
− x2

2
9

− 1
8 Irreducible and non rational

Ellipse
x2
1

25
+

x2
2

16
− 1

8 Irreducible and non rational

Cardioid
(x2

1 + 4x2 +
x2
2)

2 − 16(x2
1 +

x2
2)

14

Rational(
(−9+t2)(dt6−117dt4+3456t3−1053dt2+729d)

(243t2+27t4+t6+729)(t2+9)
,

−18(dt6−16t5−21dt4+864t3−189dt2−1296t+729d)t

(243t2+27t4+t6+729)(t2+9)

)

Three-leaved Rose
(x2

1+x2
2)

2+x1(3x
2
2−x2

1)
14 Irreducible and non rational

Trisectrix of Maclau-
rin
x1(x

2
1 + x2

2)− (x2
2 − 3x2

1)
10 Irreducible and non rational

Folium of Descartes
x3
1 + x3

2 − 3x1x2
14 Irreducible and non rational

Tacnode
2x4

1−3x2
1x2+x2

2−2x3
2+x4

2
20 Irreducible and non rational

Epitrochoid
x4
2+2x2

1x
2
2− 34x2

2+x4
1−

34x2
1 + 96x1 − 63

10 Irreducible and non rational

Ramphoid Cusp
x4
1+x2

1x
2
2−2x2

1x2−x1x
2
2+

x2
2

20 Irreducible and non rational

Lemniscata of
Bernoulli
(x2

1 + x2
2)

2 − 4(x2
1 − x2

2)
16 Irreducible and non rational
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Table 2. Conchoids Curves

Curve C Focus Curve F

Focus Conch. A

Conchoid
Parametrization

Circle

A=F=(0,0)
A=(-2,0) ∈ C,
A=(-4,0) /∈ C

(
−2(−1+t2)±(1−t2)

1+t2
, 4t±2t

1+t2

)
DR(

3t4−12t2+1
1+2t2+t4

, 2t(−3+5t2)

1+2t2+t4

)
R

NR

Parabola

A=F=(0,1/4)
A ∈ C,A=(0,0)
A=(0,-2) /∈ C

(
t± 4t

1+4t2
, t2 ± 4t2−1

1+4t2

)
DR(

2t+2t3+1−2t2+t4

(−1+t2)(1+t2)
, 2t(2t+2t3+1−2t2+t4)

(−1+t)2(1+t)2(1+t2)

)
R

NR

Hyperbola
A=F=(5,0)
A=(-4,0) ∈ C
A=(0,0) /∈ C

(
−2(9+t2)

3t
± 2(−t−6)(2t+3)

45+24t+5t2
,

t2−9
2t

± 3(t2−9)

45+24t+5t2
) DR(

(45t6+129t4+311t2+27)

(1+t2)(−9+t2)(9t2−1)
, 2(−63+81t4−82t2)t

(1+t2)(−9+t2)(9t2−1)

)
R

NR

Ellipse
A=F=(3,0)
A=(0,4) ∈ C
A=(0,0) /∈ C

(
5(t2−1)

t2+1
± t2−4

t2+4
, 8t
t2+1

± 4t
t2+4

)
DR

(
(1−t2)(100t+100t3+4t4+17t2+4)

(4t4+17t2+4)(1+t2)
,

2(−58t4+8t6−58t2+8−4t5−17t3−4t)

(4t4+17t2+4)(1+t2)
) R

NR

Cardioid
A=(0,0) ∈ C
A=(-9,0) /∈ C

(
−1024t3

(16t2+1)2
± −8t

16t2+1
,

−128t2(16t2−1)

(16t2+1)2
± 1−16t2

16t2+1
) DR

NR

Three-
leaved Rose

A=(0,0) ∈ C
A=(-2,0) /∈ C

(
2(t4−6t2+9)t2(t−1)(t+1)

(t4+2t2+1)2
, 4t3(t4−6t2+9)

(t4+2t2+1)2

)
R

NR

Trisectrix of
Maclaurin

A=(0,0) ∈ C
A=(-4,0) /∈ C

(
−2(−5t2+2t4+1)

(t4+2t2+1)
, −4t(−5t2+2t4+1)

(t4+2t2+1)(t2−1)

)
R

NR

Folium of
Descartes

A=(0,0) ∈ C
A=(-1,-1) /∈ C

(
(−6t+6t5+t6−3t4+3t2−1+8t3)(t−1)(t+1)

(t2+1)(t6−3t4+3t2−1+8t3)
,

2(−6t+6t5+t6−3t4+3t2−1+8t3)t

(t2+1)(t6−3t4+3t2−1+8t3)
) R

NR

Tacnode
A=(0,0) ∈ C
A=(0,1) ∈ C

NR
NR

Epitrochoid A=(3,0) ∈ C
A=(0,0) /∈ C

(
−7t4+288t2+256

(t2+16)2
± 16−t2

t2+16
,

−16t(5t2−16)

(t2+16)2
± (−8t)

t2+16
) DR

NR

Ramphoid
Cusp

A=(0,0) ∈ C
A=(-1,-1) /∈ C

NR
NR

Lemniscata
of Bernoulli

A=(-1,-1) ∈ C
A=(-2,0) ∈ C

NR
NR

DR Double Rational, R Rational, NR Irreducible and Non Rational
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Fig. 2. Left: Parabola and the offset at d = 2. Right: Hyperbola and the offset at d = 1.5.

Fig. 3. Left: Ellipse and the offset at d = 1. Right: Cardioid and the offset at d = 1.

Fig. 4. Left: Three-leaved Rose and the offset at d = 1. Right: Trisectrix of Maclaurin
and the offset at d = 1.
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Fig. 5. Left: Circle and the conchoid at A = (−2, 0) and d = 1 (Limaçon of Pascal).
Right: Straight line and the conchoid at A = (0, 0) and d = 2 (Conchoid of Nicomedes).

Fig. 6. Left: Conchoid of Sluze and the conchoid at A = (−2, 0) and d = 1. Right:
Folium of Descartes and the conchoid at A = (0, 0) and d = 2.

Fig. 7. Left: Lemniscata of Bernoulli and the conchoid at A = (−2, 0) and d = 1.
Right: Parabola and the conchoid at A = (0, 1/4) and d = 1.



Rational Conchoid and Offset Constructions 179

Acknowledgements. Corresponding Author supported by the Spanish Minis-
terio de Economia y Competitividad under the Project MTM2011-25816-C02-01.

References

1. Arrondo, E., Sendra, J., Sendra, J.R.: Parametric Generalized Offsets to
Hypersurfaces. Journal of Symbolic Computation 23(2–3), 267–285 (1997)

2. Arrondo, E., Sendra, J., Sendra, J.R.: Genus Formula for Generalized Offset
Curves. Journal of Pure and Applied Algebra 136(3), 199–209 (1999)

3. Farouki, R.T., Neff, C.A.: Analytic Properties of Plane Offset Curves. Comput.
Aided Geom. Des. 7, 83–99 (1990)

4. Farouki, R.T., Neff, C.A.: Algebraic Properties of Plane Offset Curves. Comput.
Aided Geom. Des. 7, 100–127 (1990)

5. Hoffmann, C.M.: Geometric and Solid Modeling. Morgan Kaufmann Publis. (1993)
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Abstract. In Cognitive Science, conceptual blending has been proposed as an
important cognitive mechanism that facilitates the creation of new concepts and
ideas by constrained combination of available knowledge. It thereby provides a
possible theoretical foundation for modeling high-level cognitive faculties such as
the ability to understand, learn, and create new concepts and theories. This paper
describes a logic-based framework which allows a formal treatment of theory
blending, discusses algorithmic aspects of blending within the framework, and
provides an illustrating worked out example from mathematics.

1 Introduction

Since its introduction, the theoretical framework of Conceptual Blending (CB) has
gained popularity as alleged submechanism of several complex high-level cognitive
capacities, such as counterfactual reasoning, analogy, and metaphor [2]. While there is
a growing body of work trying to conceptually relate CB to several facilities at the core
of cognition, there currently are very few (if any) fully worked out formal or algorithmic
accounts. Still, if only some of the assumptions made about the importance of blending
mechanisms within human cognition and intelligence turn out to be reliable, a complete
and implementable formalization of CB and its defining characteristics would promise
to trigger significant development in artificial intelligence.

An early formal account on CB, especially influential to our approach, is the classical
work by Goguen using notions from algebraic specification and category theory [3].

This version of CB is depicted in Figure 1, where a blend of two inputs I1 and I2 is
shown. Each node in the figure stands for a representation of a concept or conceptual
domain as a theory (set of axioms) in a formal language. We’ll call the nodes “spaces”,
so to avoid terms with strong semantical load such as “concept” or “conceptual do-
main”. Each arrow in the figure stands for a morphism, that is, a change-of-language
partial function that translates at least part of the axioms from its domain into axioms
in its codomain, preserving their structure. Now, while in practice all formal languages
of interest have a established semantics and the morphisms are therefore intended to
act as partial interpretations of one theory into another, Goguen’s presentation of CB
stays at the syntactic level, which more directly lends itself to computational treatment.

G.A. Aranda-Corral et al. (Eds.): AISC 2014, LNAI 8884, pp. 180–192, 2014.
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The same will apply to our own approach. Given input spaces I1 and I2 and a general-
ization space G that encodes some (ideally all) of the structural commonalities of I1 and
I2, a blend diagram is completed by a blend space B and morphisms from I1 and I2 to
B such that the diagram (weakly!) commutes. This means that if two parts of I1 and I2

are translated into B and in addition are identified as ‘common’ by G, then they must be
translated into exactly the same part of B (whence the term ‘blend’).

G
������

��

��
�����

���

I1
�����

��� I2
������

��
B

Fig. 1. Goguen’s version of concept blending (cf. [3])

A standard example of CB, discussed in [3] and linked to earlier work on computa-
tional aspects of blending in cognitive linguistics (see, e.g., [11]), is that of the possible
blends of HOUSE and BOAT into both BOATHOUSE and HOUSEBOAT (as well as other
less-obvious blends). Parts of the spaces of HOUSE and BOAT can be structurally aligned
(e.g. a RESIDENT LIVES-IN a HOUSE; a PASSENGER RIDES-ON a BOAT). Conceptual
blends are created by combining features from the two spaces, while respecting the con-
structed alignments between them. Newly created blend spaces are supposed to coexist
with the original spaces: we still want to maintain the spaces of HOUSE and BOAT.

A still unsolved question is to find criteria to establish whether a blend is better than
other candidate blends. This question has lead to the formulation of various competing
optimality principles in cognitive linguistics (cf. [2]). While several of them involve se-
mantic aspects that escape Goguen’s and our own treatment of CB, other principles can
be reasonably approached even from a more syntactic framework. For example, there is
the Web Principle (maintain as tight connections as possible between the inputs and the
blend), the Unpacking Principle (one should be able to reconstruct the inputs as much
as possible, given the blend), and the Topology Principle (the components of the blend
should have similar relations to those that their counterparts hold in the input spaces).
These three principles, taken as a package, can be interpreted in terms of Figure 1 as
demanding that the morphisms should preserve as much representational structure as
possible. For example, one can notice that Figure 1 looks like the diagram of a pushout
in category theory. Goguen actually argued against forcing the diagram of every blend
to be a pushout [3], but he did claim that some forms of a pushout construction (in a
3
2 -category) capture a notion of structural optimality for blends.

We will propose two alternative competing criteria for structural blend optimality
that also work in the spirit of the Web, Unpacking, and Topology principles, and an
algorithmic method for performing blending guided by those principles. We will use
HDTP, a framework for computational analogy making between first-order theories,
in order to obtain the generalization spaces G. Accordingly, our presentation here will
be restricted to CB over first-order theories. The paper is structured as follows: we
first introduce the formal framework we use to model blending processes, and then
propose our algorithmic description of blending. As proof of concept, along the paper
we present a worked out example from mathematics. The paper finishes with some
concluding remarks, a review of related work, and an outlook for future research.
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2 Our Framework

Our approach is based on the Heuristic-Driven Theory Projection (HDTP, [10]), a
framework for computing analogical relations between two input spaces presented as
axiomatizations in some many-sorted first-order languages. HDTP proceeds in two
phases: in the mapping phase, the source and target spaces are compared to find struc-
tural commonalities and a generalized space G is created, which subsumes the matching
parts of both spaces. In the transfer phase, unmatched knowledge in the source space
can be mapped to the target space to establish new hypotheses (Figure 2). For our cur-
rent purposes we will only need the mapping mechanism and replace the transfer phase
by a new blending algorithm, so instead of talking about source and target spaces, from
now on we will refer to the input spaces as the ‘left’ and ‘right’ spaces (L and R). This
convention is meant to be merely a mnemonic relating to our diagrams and not an indi-
cation that one space has priority over the other (since we don’t need transfer anymore).

Generalization (G)

��������
����

�������
������

Source (L)
analogical transfer �� Target (R)

Fig. 2. HDTP’s overall approach to creating analogies (cf. [10])

During the mapping phase in HDTP, pairs of formulae from L and R are anti-unified,
resulting in a generalization theory G that reflects common aspects of the input spaces.
Anti-unification [9] is a mechanism that finds least-general anti-unifiers of expressions
(formulae or terms). An anti-unifier of A and B is an expression E such that A and B
can be obtained from E via substitutions. E is a least-general anti-unifier of A and B if
it is an anti-unifier and the only susbtitutions on E that yield anti-unifiers of A and B
act as trivial renamings of the variables in E . As it happens, first-order anti-unification
(where only first-order substitutions are allowed) is not powerful enough to produce
the generalizations needed in HDTP, so a special form of higher-order anti-unification
is used where, under certain conditions, symbols of relation and function can also be
included in the domain of substitutions (see [10] for the details). The generalized theory
G can be projected into the original spaces by higher-order substitutions which are
computed by HDTP during anti-unification. We will say that a formula is covered by G
if it is in the image of this projection; otherwise it is uncovered.

Example 1. We will use a working example in this paper based on the theories L and
R from Table 1, which describe basic properties of the standard order and addition of
the natural numbers (starting from 1) and the non-negative rationals, respectively. All
the axioms are implicitly universally quantified, and x <i y abbreviates ¬(y ≤i x). The
table also shows a generalization theory G over the signature is {a,≤,+}. G reflects
the fact that axiom (Li) is structurally like (Ri) when 1 ≤ i ≤ 6. Upon applying the left
and right substitutions to G, we’ll get the first six L-axioms and the first six R-axioms,
respectively, which are the covered formulas in this example.

In HDTP, any two formulae (or terms) from the input spaces that are generalized
(i.e. anti-unified) to the same expression in G are considered to be analogical. In anal-
ogy making, the analogical relations are used in the transfer phase to translate uncovered
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Table 1. The two axiomatizations and the first generalization G used in the worked example. G
comes together with a left substitution {a (→ 1,≤ (→ ≤L,+ (→ +L} and a right substitution
{a (→ 0,≤ (→≤R,+ (→+R} from which L and R can be recovered.

Axiomatization L

x ≤L x (L1)
x ≤L y∧ y ≤L z → x ≤L z (L2)
x ≤L y∨ y ≤L x (L3)
1 ≤L x (L4)
x+L y = y+L x (L5)
(x+L y)+L z = x+L (y+L z) (L6)
¬(x+L 1 ≤L x) (L7)
x ≤L y∧ y ≤L x+L 1 → y = x∨ y = x+L 1 (L8)

Axiomatization R

x ≤R x (R1)
x ≤R y∧ y ≤R z → x ≤R z (R2)
x ≤R y∨ y ≤R x (R3)
0 ≤R x (R4)
x+R y = y+R x (R5)
(x+R y)+R z = x+R (y+R z) (R6)
x+R 0 = x (R7)
x <R y →∃z : x <R z∧ z <R y (R8)

Generalization G

x ≤ x (G1)
x ≤ y∧ y ≤ z → x ≤ z (G2)
x ≤ y∨ y ≤ x (G3)
a ≤ x (G4)
x+ y = y+ x (G5)
(x+ y)+ z = x+(y+ z) (G6)

facts from the source to the target space, while blending combines uncovered facts from
both spaces. Thus, the blending process can build on the generalization and substitu-
tions provided by the analogy engine, and analogy can be considered a special case of
blending.

There are two extreme cases of CB, depending on the portion of the input theories
covered by G. The first case (left side of Figure 3) occurs when the input spaces are iso-
morphic, meaning that there is a bijective morphism that simply renames the signature
symbols of the language of L onto the symbols of R. In that case, all formulae of the
theories can be generalized and are completely covered by G, and the resulting blend
will be isomorphic to both of them 1. The other extreme (right side of Figure 3) occurs

G ∼=
����

���
�∼=

		���
���

L
∼= ����
���

∼= �� R
∼=		�
����

L ∼= R

/0
����

���
��

						
			

L
����

��� R
						

	

L⊕R

Fig. 3. The two extreme cases of input spaces, along with their generalizations and blends

when no formulae can be aligned and therefore the generalized theory G is empty, so no
formulae of the input theories are covered. In this case, a blend can always be obtained
by taking the (possibly inconsistent) disjoint union of the input theories. In practice,
neither of the two extreme cases is of real interest. The interesting proper blends arise
when only parts of the input theories are covered by G. In fact, one can adjust the blend
by changing the generalization, either by removing formulae from G and so reducing
its coverage, or by choosing altogether another G which associates different formulae.

Given G, the theories L and R can be split into their (non-empty) covered parts L+

and R+ and uncovered parts L− and R−. The covered parts are fully analogical, i.e.
basically isomorphic, and make up the core of the a blend B based on G. The uncovered
parts reflect the idiosyncratic aspects of the spaces, which we would ideally want to
integrate into B. However, due to the identifications induced by G, adding all this to B
may result in an inconsistent theory. To preserve consistency, we may be forced to

1 HDTP is syntax-based, but has some “re-representation” abilities by which formulae derived
from the axioms may be used in the mapping phase if the original axiomatizations don’t yield
a good analogical relation (cf. [10, pp. 258]). Thus, in some cases, two formally different but
semantically equivalent axiomatizations may not result in an empty generalization.
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consider only consistent subsets of this ideal, fully inclusive, blend. In view of this, we
propose the following two optimality principles: IP renders a version of the Web and
Topology principles formulated in the introduction, while CP supports the Unpacking
Principle.

COMPRESSION PRINCIPLE (CP): aim for blend diagrams in which B is as
compressed as possible, that is, where as many signature symbols aligned by
G as possible are actually integrated as a single symbol in B.

INFORMATIVENESS PRINCIPLE (IP): aim for blend diagrams in which B is
as informative as possible, i.e., it includes a maximally consistent subset of the
potentially merged formulae (obtained by taking the union of the input theories
and then collapsing pairs of signature symbols that have been identified by the
analogy into one unified symbol).

3 Theory Blending Algorithm

Now we tackle the problem of algorithmically finding a list of optimal blends, given
two input theories L and R over first-order signatures ΣL, ΣR, respectively. A blend is
optimal if it is consistent and as maximally compressed and informative as possible. An
unconstrained way to do this leads to an explosion of possibilities to be tried, so good
heuristics are needed in order to choose which possibilities to test first. We propose to
proceed according to the following general steps:

1. Generalization: Using the HDTP mapping phase, compute a generalization G
that is as strong as possible (i.e identifies as many symbols as possible) together with
its associated substitutions2. As an example, see Table 1 and Example 1.

2. Identification: Build the blend signature ΣB by taking the ‘union’ of ΣL and ΣR

and collapsing each pair of symbols aligned by G to only one of them. Regardless of
how the collapsing is done, at the end the algorithm will produce the same blends, mod-
ulo partial renamings of identified symbols3. In what follows, we will simply choose the
symbol from ΣR when collapsing a pair. Thus, for the case of Table 1, ΣB will coincide
with ΣR, since no symbol in ΣL is uncovered by the left substitution.

3. Blending: Construct the set of all formulae over ΣB that might be part of a blend.
This will consist of every formula in R+, the covered part of R, plus every formula in
the uncovered parts of R and L, Ax = Tr(L−)∪R−. Here Tr is the (partial) translation
function that maps symbols from ΣL to corresponding symbols from ΣR according to the
generalization G, so ensuring that all formulas of Ax are build over signature ΣB. The set
Ax corresponding to the example in Table 1 is listed in the leftmost column of Table 2,
which also shows all the candidate blends for this particular generalization G.

Back to the general setting, the set R+ ∪Ax would be the ideal blend, but it might
be inconsistent. So in this step we also compute the set MaxCon of maximal consistent
blends B such that R+ ⊆ B ⊆ R+∪Ax. For the running example, this involves exploring
the lattice of theories depicted in Figure 4.

2 A simplified version of HDTP is used, where substitutions must preserve the arity of symbols.
3 The algorithm might in principle be extended by producing for each discovered optimal blend

all of its “mirror” blends, obtained by renamings.
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The user of the algorithm decides now if the produced blends are good enough or
the search must continue. In the first case we stop. If not, go to the next step which will
need the set MinInc of minimally inconsistent subsets of R+∪Ax that extend R+.

4. Relaxation: Reduce the set of symbols covered by the generalization by shrinking
G (some simple heuristics for this step are given below). Return to step 2.

Now we discuss how steps 3 and 4 can be implemented (steps 1 and 2 are obtained
from HDTP). We use a simple procedure COMPUTEBLENDS which, besides the sets
R+ and Ax introduced above, needs a list Init of initial blend candidates (so each ele-
ment of Init extends R+). Init must have the property that every possible blend based on
the current generalization is either a superset or a subset of one of the elements of Init.
This, plus the way in which Init will be changed in the relaxation phase (more on this
below) guarantees that the algorithm will find all the optimal blends if never asked to
stop the search (at the end of step 3). At the very beginning of the process (step 1 above)
Init can be initialized, for example, to be the set of theories that extend R+ (a different
choice will be used later in our worked example). When a relaxation is needed (step 4
above) a new set Init is computed from MaxCon and MinInc (more on this later). There
is a fourth parameter (‘direction’) which is used to direct the search as explained soon.

proc COMPUTEBLENDS(R+, Ax, Init, direction)
global MaxCon := /0; global MinInc := /0
foreach T ∈ Init do EXPLORE(R+, Ax, T , direction) end foreach

end proc

The first thing to do is to initialize as empty two global sets MaxCon and MinInc that
will keep at all times during the search the largest consistent theories and the smallest
inconsistent theories that have been found up to the moment. After this initialization,
the procedure enters into a loop in which for each initial theory T in Init, the procedure
EXPLORE will populate MaxCon and MinInc. After execution, all blends that contain
T or are contained in T , will be “classified correctly” by MaxCon and MinInc, i.e. they
will be subsumed by some theory in MaxCon if they are consistent, and they will sub-
sume some theory from MinInc if they are inconsistent (cf. Lemma 1 below). When the
loop ends, MaxCon determines precisely the optimal blends.

proc EXPLORE(R+, Ax, T , direction)

if T �∈ ↓MaxCon ∪ ↑MinInc then
if T is consistent then MaxCon := {T}∪{M ∈ MaxCon | M �⊆ T}
else MinInc := {T}∪{M ∈ MinInc | T �⊆ M} endif

endif
if T ∈ ↓MaxCon and (direction ∈ {up,both}) then

foreach Axiom ∈ (Ax\T ) do EXPLORE(R+, Ax, T ∪{Axiom}, up) end foreach
else if T ∈ ↑MinInc and (direction ∈ {down,both}) then

foreach Axiom ∈ T \R+ do EXPLORE(R+, Ax, T \{Axiom}, down) end foreach
endif

end proc

Here, ↑C denotes the set of theories that contain some theory from C and ↓C denotes
the set of theories that are contained in some theory from C; ,C is ↑C∪ ↓C. As first
step in EXPLORE, if T is not yet classified by MaxCon or MinInc, consistency of T is
checked and MaxCon or MinInc are updated accordingly. In any case, if T is consistent
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(inconsistent), a recursive upwards (downwards) search towards extensions (subsets) of
T is initiated. These upward and downward searches are performed unless the direction
parameter prohibits them. The calls to EXPLORE made when working with the first,
strongest generalization use always the direction both, with the effect that upwards and
downwards searches are allowed. In the case of calls to EXPLORE after a ‘relaxation’
has been made, the direction is set to up (the reasons for this will be explained later)4.

The above claims about EXPLORE follow from the next result, in which R+ and Ax
are fixed and the words ”theory blend” refer to sets T such that R+ ⊆ T ⊆ R+∪Ax. Also,
we will say that MaxCon and MinInc classify correctly if all the elements of MaxCon
are consistent theory blends and all elements of MinInc are inconsistent theory blends.

Proposition 1. The following pre- and post conditions hold true of the operation of
EXPLORE (R+, Ax, T , direction), for all theory blends T :
(1) If all consistency checks can be accomplished, the procedure will terminate.
(2) If MaxCon and MinInc classify correctly before executing EXPLORE, then the same
holds afterwards.
(3) If a theory blend B is classified correctly by MaxCon and MinInc before executing
EXPLORE, then the same holds after calling EXPLORE.
(4) If direction = up and MaxCon and MinInc classify correctly before executing EX-
PLORE, then ↑T is classified correctly by MaxCon and MinInc after calling EXPLORE.
(5) If direction = up and MaxCon and MinInc classify correctly before executing
EXPLORE, then ↓ T is classified correctly by MaxCon and MinInc after calling
EXPLORE.
(6) If direction= both and MaxCon and MinInc classify correctly before executing EX-
PLORE, then ,T is classified correctly by MaxCon and MinInc after calling EXPLORE.

Proof. To show (1) notice first that the recursion will only occur with strictly larger
(direction = up) or strictly smaller (direction = down) values for T . As the size of T is
limited by R+ and R+∪Ax the claim follows. (2) follows directly, as MaxCon is only
changed when a consistent blend T is added. The case for MinInc is analogous. (3)
Let B be a consistent blend. By assumption B ∈↓MaxCon before executing EXPLORE.
MaxCon is only changed if T is consistent but T �∈ MaxCon, in which case it will
become {T}∪ {M ∈ MaxCon|M �⊂ T}. Now either B ⊆ T or B ⊆ M ∈ MaxCon with
M �⊆ T . In both cases B is classified correctly by the new MaxCon. (4) We proceed by
induction on the cardinality of Ax\T . If T is inconsistent, no recursive call to EXPLORE

is made. If T ∈↑MinInc there is nothing to prove. If T /∈↑MinInc, observe that T will
be added to MinInc, so at the end of the procedure ↑T will be classified correctly by
MaxCon and MinInc. Now, if T is consistent and T /∈↓MaxCon, then T will be added to
MaxCon. Then, for each element A of Ax\T , a call EXPLORE(R+,Ax,T ∪{A},up) will
be made. By inductive hypothesis, after all these calls, every ↑ (T ∪{A}) is classified
correctly by MaxCon and MinInc, and so (since T is also classified correctly) ↑T is
classified correctly. (5) The argument is analogous to that for (4), now using induction
on the cardinality of T \R+. (6) If T is consistent, an argument very close to that of (4)

4 There are standard ways to improve the efficiency of the above procedure (using ordered lists,
for example), but such discussion would lead us away from the main focus of this paper.
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shows that ↑T is classified correctly, so T ⊆ T ′ for some T ′ ∈ MaxCon. Then ↓T is
classified correctly as well. A similar argument applies if T is inconsistent.

As our framework stands, the evaluation of blends in Step 3 and the decision to stop
or continue with a relaxation, is a mandatory interactive step where the user decides.
As for the relaxation step, if needed, it is important to find a good weakening of G a
good set Init with which to continue to step 2. In principle, the framework allows for
an interactive implementation where the user decides which weakened generalization
to use next, or for an implementation that uses automated heuristics, such as building a
weakened generalizations for which: (1) only one old symbol mapping is dropped, and
(2) the fewest number of axioms become uncovered under the new generalization.

In any case, once a weakened generalization Ĝ has been fixed, the previously found
MaxCon and MinInc sets are used to compute an appropriate new Init set, as follows.
Let Tr and T̂r be the old and new translation functions. To form the set Init, for each
T in MinInc (and optionally for every minimal extension of MaxCon) add to Init the
theory that results from replacing in T every formula of the form Tr(φ) in R− by T̂r(φ).
This new Init is good in that every optimal blend for the weakened generalization will be
an extension of one the Init elements. This is why the exploration, after some relaxation
has been made, can be constrained to be upwards only.

Our algorithm involves testing theories in first-order logic with equality for inconsis-
tency; this is well-known to be undecidable in general. In our examples the inconsisten-
cies will be discovered quickly5, but in more elaborate situations, a resource-bounded
check for inconsistency may model reasonably well the experience of mathematicians
who can work productively with theories that are believed to be consistent and later re-
vise their results in case an inconsistency is found. Research on Nelson Oppen methods
(see [7] for a survey) reveals conditions under which the satisfiability and decidability
of two theories is preserved when taking their union. The basic case requires the sig-
natures of the two theories to be disjoint, but this can sometimes be relaxed. Some of
these technical results might end up being useful to our work.

4 Worked Example
To illustrate the algorithm and suggest at least one improvement to it, we come back to
take the theories shown in Table 1. Remember that L is based on the additive natural
numbers (starting from 1) and L on the non-negative rational numbers. Thus, the notion
of ‘number’ in L is discrete with least element 1, whereas in R it is dense with least
element 0 (as the neutral element for addition). We will find all the optimal blends of L
and R. The example shows that our approach isolates just a few optimal blends among
many candidates, and that the short list includes (although not exclusively) the ones that
one would expect a mathematician to judge as most interesting.

The first stage of the procedure was already partially described in the previous sec-
tion. It explores the potential blends based on the generalization G of Table 1. Figure 4
shows a lattice of the blends and Table 1 lists the axioms of each candidate blend. Our
set of initial theories will be formed by the minimal extensions of theory R and the mini-
mal extensions of (the transferred version of) theory L. That is, Init:= {T 1,T3,T 7,T4}.

5 HDTP and an a beta implementation of the blending phase module are available on request.
The blending module uses prover9 to check for consistency.
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Table 2. Formulae L7t and L8t result from transferring the uncovered formulae of axiomatization
L, according to generalization G. The table shows some of the theories in the search space of
possible blends. Maximal consistent theories are starred.

T R T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T L
x ≤R x (R1) X X X X X X X X X X X
x ≤R y∧ y ≤R z → x ≤R z (R2) X X X X X X X X X X X
x ≤R y∨ y ≤R x (R3) X X X X X X X X X X X
0 ≤R x (R4) X X X X X X X X X X X
x+R y = y+R x (R5) X X X X X X X X X X X
(x+R y)+R z = x+R (y+R z) (R6) X X X X X X X X X X X
x+R 0 = x (R7) X X X X X X X
x <R y → ∃z : (x <R z∧ z <R y) (R8) X X X X X X X
¬(x+R 0 ≤R x) (L7t) X X X X X X X
x ≤R y∧ y ≤R x+0 → y = x∨ y = x+R 0 (L8t) X X X X X X X
Consistent: Y N Y∗ N Y∗ N N N Y Y Y∗

The sets MaxCon and MinInc are initialized as empty and we start to explore the initial
theories. The first is T 1, which is inconsistent:

x+R 0 = x (R7)

¬(x+R 0 ≤R x) (L7t)

¬(x ≤R x) (Substitution)

x ≤R x (R1)

The two last lines are clearly contradictory. The algorithm orders to add T 1 to MinInc.
However, knowing that the inconsistency arises from only the axioms R1,R7, and L7t,
it is better to add the smaller T5 to MinInc than adding T 1 itself. Thus, MinInc:= {T5}.

Now, as the algorithm prescribes, we recursively explore (downwards) every theory
obtained from T 1 by deleting one axiom. These theories are T R,T 2, and T5: T R is
consistent and T 5 �⊆ T R, so MaxCon := {TR}; T 2 is consistent, not contained in TR,
and does not extend T5, then we update MaxCon := {TR,T 2}; and T 5 extends the only
member of MinInc, so we do nothing. This ends the analysis of T 1.

T 6

T 7 T 3 T 1 T 4

T L T 5 T 2 T 8 T 9 T R

{L7t} {L8t} {R7} {R8}

/0

T x = consistent

T x
= maximal

consistent

T x = inconsistent

T x
= mininal

inconsistent

Fig. 4. A lattice of the ‘blends’ that appear in the given example
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The second initial theory is T 3. This theory is not a subset of T R or T 2, and does
not extend T5. In addition it is inconsistent, as shown by the third and last lines of the
following proof, which uses all the axioms of T3 not covered by the generalization.

¬(x+R 0 ≤ x) (L7t)

¬(x+R 0 ≤ x)→ ∃z : (x <R z∧ z <R x+R 0) (R8)

x <R z∧ z <R x+R 0 (FOL)

¬(z ≤R x)∧¬(x+0 ≤R z) (Def. ≤R)

x ≤R z∧ z ≤R x+R 0 (FOL + R3)

z = x∨ z = x+R 0 (MP with L8t)

z ≤R x∨ x+R 0 ≤R x (FOL + R1 + Def. ≤R)

We update MinInc:= {T 5,T3}, and recursively explore (downwards!) every theory
obtained from T3 by erasing one axiom, namely T L,T 2, and T8:

1. T L is consistent and does not extend T R nor T 2, then MaxCon := {TR,T 2,TL}.
We are in the “downwards” mode, so we stop.

2. T 2 is a member of MaxCon, so we stop.
3. T 8 is consistent and not contained in a member of MaxCon. We set MaxCon :=

{TR,T 2,TL,T 8}. Again, we are in the “downwards” mode, so this branch stops.

This ends the analysis of T3, the second initial theory.
The third initial theory is T 7, but the analysis of it stops immediately as it extends

T 5 ∈ MinInc. We are left with the initial theory T 4, which is consistent and not con-
tained in Maxcon. Then Maxcon is updated by deleting the subsets of T4 (T R and T 8)
and adding T 4: MaxCon := {T4,T2,T L}. Then we recursively explore (upwards) for
possible consistent extensions of T 4. The only proper extension of T 4 is T 6, which
extends elements of MinInc. The first stage of the algorithm ends thus::
Solutions: T 2, T 4, and T L. Minimally inconsistent theories: T 5 and T 3.

Note that T L is just a signature renaming of theory L, T 4 a case of analogical transfer
but not a proper blend, and T 2 a proper blend intuitively describing the rationals larger
than some nonzero number, which is not more interesting than the rationals starting
with zero, to which L corresponds. It is then fair to assume that the user will decide
to continue the search. In the second search stage, some of the contradictions found in
stage 1 will be avoided by weakening the signature of the generalization in the relax-
ation step. The weakening heuristics described in the previous section suggest dropping
the identification between 0 and 1, as this is the dropping that would diminish coverage
the least. The new generalized theory changes only in that (G4) is not an axiom of it
anymore. The result of transferring all of the axioms of axiomatization L to the R side
involves the introduction of a new symbol of constant (1) to the R-side; cf. Table 3.

The set of initial theories will consist of the smallest versions, under the new signa-
ture, of the theories associated with the elements of MinInc from stage 1. More in de-
tail, under the new signature there are four versions of each old theory T j from the first
stage. We call them T j0, T j1, T j2, or T j3 depending on which subset of {R4,L4tt}
they contain: T j0 includes no element from {R4,L4tt}, R j1 includes only L4tt, R j2
includes only R4, and R j3 includes the two axioms. Only some of these theories are
shown in Table 3. Our set of initial theories in this stage will then be Init:= {T 30,T50}.
The sets MaxCon and MinInc are reset to the empty set.
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Table 3. Formulae Lxxx result from transferring the uncovered formulae of L according to the
weakened generalization that does not identify 0 and 1. Maximal consistent theories are starred.

T 30 T 50 T 51 T 52 T 53 T 10 T 11 T 12 T 13 T 62 T 72
(R1)− (R3),(R5),(R6) X X X X X X X X X X X
0 ≤R x (R4) X X X X X X
x+R 0 = x (R7) X X X X X X X X X X
x <R y →∃z : (x <R z∧ z <R y) (R8) X X X X X X
1 ≤R x (L4tt) X X X X
¬(x+R 1 ≤R x) (L7tt) X X X X X X X X X X X
x ≤R y∧ y ≤R x+1 → y = x∨ y = x+R 1 (L8tt) X X X X
Consistent: N Y N Y N Y N Y∗ N N Y∗

Every maximally compressed solution blend with respect to the new generalization
must extend one of the initial theories. We explore each one of these initial theories in
the “upwards” mode. We start with T 30. This theory is inconsistent because the proof
used in stage 1 to see that T 3 is inconsistent still goes through when using 1 instead of
0 throughout, and L7tt instead of L7t. We update MinInc := {T30}.

Then we test the second and last initial theory, T 50. The theory is consistent but may
not be maximal. We update MaxCon:= {T50}, and explore T 50’s minimal extensions:

1. T 51 is inconsistent and does not extend T 30, therefore MinInc := {T30,T51}.
2. T 10 is consistent and extends T 50. Set MaxCon:= {T10} and explore the three

minimal extensions of T 10, thus: T60 and T11 extend the elements T 30 and T 51
of MinInc, so nothing is done in these cases; and T12 is consistent and properly
extends T10. Thus, we update MaxCon:= {T 12} and test the minimal extensions
of T 12. There are only two cases of such a minimal extension: Adding L4tt to T 12
yields a theory that extends the element T 51 of MinInc; and Adding L8tt yields the
theory T 62, which is inconsistent because it extends T 30 ∈ MinInc.

3. T 70 = T 50∪{L8tt} is consistent. So we update MaxCon:= {T12,T70}, and ex-
plore the minimal extensions of T 70. They are: T60 (which extends T30 ∈MinInc),
T 71 (which extends T 51 ∈ MinInc), and T 72 (maximal consistent). After these ex-
plorations, MaxCon:= {T12,T72}, and MinInc:= {T30,T51}.

4. T 52 is a subset of T 12 ∈ MaxCon, so we stop.

The second stage ends with new solutions T 12 and T72, which, we claim, are the two
mathematically interesting blends of the given theories: there are distinguished numbers
0 and 1, with 0 the unit for addition, and 1 strictly greater than 0; T 72 is discrete, with a
zero element immediately below 1, while T12 is dense, with a distinguished unit size.

5 Concluding Discussion

We presented a new algorithmic way of performing theory blending, based on the HDTP
framework. Our approach is inspired by Goguen’s treatment of CB, but differs from his
in various aspects. First, our system generally outputs fewer blends focusing on max-
imal informativeness and compression as optimality criteria. By this we capture some
aspects from [2]’s “optimality principles” for blends. Second, our algorithm uses only
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the weakenings of a fixed generalization, while Goguen seems to require the explo-
ration of many (possibly mutually incompatible) starting generalizations. Our account
also differs from that of [8], as there mappings “do not have to rely on similarity: they
can present conflicts that are striking, surprising or even incongruous” [8, p. 90].

Our approach performs CB as theory blending. It therefore is especially appealing
for applications in mathematics (such as the automated creation of mathematical con-
cepts and conjectures) and logic-based AI. We demonstrated how traditional optimality
criteria for CB can be spelled out in this setting. Also, we can add consistency as a
further criterion to judge the quality of blends. As discussed, some relaxations of our
algorithms (e.g. using bounded checks) may yield a better fit with human performance.
We will also need to study more heuristics for the generalization relaxation stage, since
they will affect the order in which optimal blends will be detected, and so the time
needed to make the mathematically-oriented user satisfied by the produced blends.

Other algorithmic accounts are given, for instance, in [8], where the CB mechanism
uses a parallel search engine based on genetic algorithms, or in [4], sketching the blend-
ing of logical theories within a distributed ontology setup. Further work on CB is con-
tained in [6] where the authors present a rule-based system for counterfactual reasoning
in natural language. These examples are mostly addressing problems from linguistics
or philosophy, but our interest lies in particular in the blending of mathematical theo-
ries, as a means of understanding certain developments in the history of mathematics,
as described by [1], and as part of general mathematical cognition, as suggested by [5].
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Decomposition of Some Jacobian

Varieties of Dimension 3

Lubjana Beshaj and Tony Shaska

Dep. of Mathematics and Statistics, Oakland University, Rochester, MI, 48309

Abstract. We study degree 2 and 4 elliptic subcovers of hyperelliptic
curves of genus 3 defined over C. The family of genus 3 hyperelliptic
curves which have a degree 2 cover to an elliptic curve E and degree
4 covers to elliptic curves E1 and E2 is a 2-dimensional subvariety of the
hyperelliptic moduli H3. We determine this subvariety explicitly. For any
given moduli point p ∈ H3 we determine explicitly if the corresponding
genus 3 curve X belongs or not to such family. When it does, we can
determine elliptic subcovers E, E1, and E2 in terms of the absolute
invariants t1, . . . , t6 as in [12]. This variety provides a new family of
hyperelliptic curves of genus 3 for which the Jacobians completely split.
The sublocus of such family when E1

∼=E2 is a 1-dimensional variety
which we determine explicitly. We can also determine X and E starting
form the j-invariant of E1.

1 Introduction

There are some problems in classical mathematics which can be solved only
through symbolic computational methods. The problem in which this work is
focused lies within this category. Whether methods in artificial intelligence, ma-
chine learning etc can be improved to generalize such computational methods
remains to be seen.

Let Mg denote the moduli space of genus g ≥ 2 algebraic curves defined
over an algebraically closed field k and Hg the hyperelliptic submoduli in Mg.
The sublocus of genus g hyperelliptic curves with an elliptic involution is a g-
dimensional subvariety of Hg. For g = 2 this space is denoted by L2 and studied
in [11] and for g = 3 is denoted by S2 and is computed and discussed in detail
in [4]. In both cases, a birational parametrization of these spaces is found via
dihedral invariants which are introduced by the second author and generalized
for any genus g ≥ 2 in [6]. We denote the parameters for L2 by u, v and for S2 by
s2, s3, s4 as in respective papers. Hence, for the case g = 3 there is a birational
map φ : S2 −→ H3 such that φ : (s2, s3, s4) = (t1, . . . , t6), where t1, . . . , t6 are
the absolute invariants as defined in [12].

The dihedral invariants s2, s3, s4 provide a birational parametrization of the
locus S2. Hence, a generic curve in S2 is uniquely determined by the corre-
sponding triple (s2, s3, s4). Let X be a curve in the locus S2. Then there is a
degree 2 map f1 : X → E for some elliptic curve E. Thus, the Jacobian of X
splits as Jac (X )∼=E ×A, where A is a genus 2 Jacobian. Hence, there is a map

G.A. Aranda-Corral et al. (Eds.): AISC 2014, LNAI 8884, pp. 193–204, 2014.
c© Springer International Publishing Switzerland 2014



194 L. Beshaj and T. Shaska

f2 : X → C for some genus 2 curve C. The equations of X , E, and C are given
in Thm. 2. For any fixed curve X ∈ S2, the subcovers E and C are uniquely
determined in terms of the invariants s2, s3, s4.

In section three we give the splitting of the Jacobians for all genus 3 algebraic
curves, when this splitting is induced by automorphisms. The proof requires the
Poincare duality and some basic group theory.

In this paper, we are mostly interested in the case when the Jacobian of the
genus two curve C also splits. The Jacobian of C can split as an (n, n)-structure;
see [8]. The loci of such genus 2 curves with (3, 3)-split or (5, 5)-split have been
studied respectively in [7, 9]. For n = 4 the reader can check [5]. We focus on the
case when the Jacobian of C is (2, 2)-split, which corresponds to the case when
the Klein 4-group V4 ↪→ Aut (C). Hence, Jac X splits completely as a product
of three elliptic curves. We say that Jac X is (2, 4, 4)-split.

Let the locus of genus 3 hyperelliptic curves whose Jacobian is (2, 4, 4)-split be
denoted by T . Then, there is a rational map ψ : T → L2 such that ψ(s2, s3, s4) =
(u, v), which has degree 70 and can be explicitly computed, even though the
rational expressions of u and v in terms of s2, s3, s4 are quite large.

There are three components of T which we denote them by Ti, i = 1, 2, 3. Two
of these components are well known and the correspond to the cases when V4

is embedded in the reduced automorphism group of X . These cases correspond
to the singular locus of S2 and are precisely the locus det (Jac (φ)) = 0. This
happens for all genus g ≥ 2 as noted in [11]. The third component T3 is more
interesting to us. It doesn’t seem to have any group theoretic reason for this
component to be there in the first place. We find the equation of this component
it terms of the s2, s3, s4 invariants. It is an equation F1(s2, s3, s4) = 0 as in
Eq. (7). In this locus, the elliptic subfields of the genus two field k(C) can be
determined explicitly.

The main goal of this paper is to determine explicitly the family T3 of genus

3 curves and relations among its elliptic subcovers. We have the maps T3
ψ−→

L2
ψ0−→ k2, such that ψ0(ψ(s2, s3, s4)) = (j1, j2), where s2, s3, s4 satisfy Eq. (7)

and u, v are given explicitly by Eq. (6) and Thm. (3) in [11]. The degree deg ψ0 =
2 and deg ψ = 70.

Since T3 is a subvariety of H3 it would be desirable to express its equation in
terms of a coordinate in H3. One can use the absolute invariants of the genus 3
hyperelliptic curves t1, . . . , t6 as defined in [12] and the expressions of s2, s3, s4
in terms of these invariants as computed in [4].

Further, we focus our attention to the sublocus V of L2 such that the genus
2 field k(C) has isomorphic elliptic subfields. Such locus was discovered in [11]
and it is somewhat surprising. It does not rise from a family of genus two curves
with a fixed automorphism group as other families, see [11] for details. Using this
sublocus of M2 we discover a rather unusual embedding M1 ↪→ M2 as noted in
[11]. Let T ⊂ T3 ⊂ H3 be the subvariety of T3 obtained by adding the condition
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j1 = j2. Then, T is a 1-dimensional variety defined by equations{
F1(s2, s3, s4) = 0

F2(s2, s3, s4) = 0
(1)

where F2 is the discriminant of the quadratic polynomial roots of which are j-
invariants j1 and j2; cf. Lemma 3. Hence, we have the maps k → T ↪→ V ↪→ k,
such that t → (s2, s3, s4) → (u, v) → j1.

Next we study whether the above maps are invertible. That would provide
birational parameterizations for varieties V and T. The variety V is known to have
a birational parametrization from Thm. (3) in [11]. The map can be inverted as
j → (u, v) =

(
9− j

256 , 9
(
6− j

256

))
; see [11] for details. The main computational

task of this paper is to find a birational parametrization of T.
Given (u, v) ∈ V there is a unique (up to isomorphism) genus 2 curve C

corresponding to this point in V . From Lemma 3, every genus 2 curve can be
written as in Eq. (11). Hence, there exists a triple (s2, s3, s4) corresponding to
(u, v).

If j ∈ Q, then the corresponding elliptic curve Ej is defined over Q. From the
above expressions we see that u, v ∈ Q. Then, from [10] the corresponding genus
two curve C has also minimal field of definition Q. The same holds for s2, s3, s4
and the genus 3 corresponding curve X .

2 Decomposition of Jacobian Varieties of Dimension 3

Let X be a genus g algebraic curve with automorphism group G := Aut (X ).
Let H ≤ G such that H = H1 ∪ · · · ∪ Ht where the subgroups Hi ≤ H satisfy
Hi ∩Hj = {1} for all i �= j. Then,

Jac t−1(X ) × Jac |H|(X/H) ∼= Jac |H1|(X/H1)× · · · × Jac |Ht|(X/Ht)

The groupH satisfying these conditions is called a group with partition. Elemen-
tary abelian p-groups, the projective linear groups PSL2(q), Frobenius groups,
dihedral groups are all groups with partition.

Let H1, . . . , Ht ≤ G be subgroups with Hi ·Hj = Hj ·Hi for all i, j ≤ t, and let
gij denote the genus of the quotient curve X/(Hi ·Hj). Then, for n1, . . . , nt ∈ Z

the conditions
∑

ninjgij = 0, and
∑t

j=1 njgij = 0, imply the isogeny relation∏
ni>0

Jac ni(X/Hi)∼=
∏
nj<0

Jac |nj |(X/Hj)

In particular, if gij = 0 for 2 ≤ i < j ≤ t and if g = gX/H2
+ · · ·+ gX/Ht

, then

Jac (X )∼=Jac (X/H2)× · · · × Jac (X/Ht)

The reader can check [1] for the proof of the above statements.
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2.1 Non-hyperelliptic Curves

We will use the above facts to decompose the Jacobians of genus 3
non-hyperelliptic curves. X denotes a genus 3 non-hyperelliptic curve unless
otherwise stated and X2 denotes a genus 2 curve.

The Group C2. Then the curve X has an elliptic involution s ∈ Aut (X ).
Hence, there is a Galois covering π : X → X/〈σ〉 =: E. We can assume that this
covering is maximal. The induced map π∗ : E → Jac (X ) is injective. Then, the
kernel projection Jac (X ) → E is a dimension 2 abelian variety. Hence, there is
a genus 2 curve X2 such that Jac (X2)∼=E × Jac (X2).

The Klein 4-group. Next, we focus on the automorphism groups G such
that V4 ↪→ G. In this case, there are three elliptic involutions in V4, namely
σ, τ, στ . Obviously they form a partition. Hence, the Jacobian of X is the prod-
uct Jac 2(X )∼=E2

1 × E2
2 × E2

3 of three elliptic curves. By applying the Poincare
duality we get Jac (X )∼=E1 × E2 × E3.

The Dihedral Group D8. In this case, we have 5 involutions in G in 3 conju-
gacy classes. No conjugacy class has three involutions. Hence, we can pick three
involutions such that two of them are conjugate to each other in G and all three
of them generate V4. Hence, Jac (X )∼=E2

1 ×E2, for some elliptic curves E1, E2.

The Symmetric Group S4. The Jacobian of such curves splits into a product
of elliptic curves since V4 ↪→ S4. Below we give a direct proof of this.

We know that there are 9 involutions in S4, six of which are transpositions.
The other three are product of two 2-cycles and we denote them by σ1, σ2, σ3.
Let H1, H2, H3 denote the subgroups generated by σ1, σ2, σ3. They generate V4

and are all isomorphic in G. Hence, Jac (X )∼=E3, for some elliptic curve E.

The Symmetric Group S3. We know from above that the Jacobian is a direct
product of three elliptic curves. Here we will show that two of those elliptic curves
are isomorphic. LetH1, H2, H3 be the subgroups generated by transpositions and
H4 the subgroup of order 3. Then

Jac 3(X )∼=E2
1 × E2

2 × E2
3 × Jac 3(Y)

for three elliptic curves E1, E2, E3 fixed by involutions and a curve Y fixed by the
element of order 3. Simply by counting the dimensions we have Y to be another
elliptic curve E4. Since all the transpositions of S3 are in the same conjugacy
class then E1, E2, E3 are isomorphic. Then by applying the Poincare duality we
have that Jac (X)∼=E2 × E′.

Summarizing, we have the following:

Theorem 1. Let X be a genus 3 curve and G its automorphism group. Then,
a) If X is hyperelliptic, then the following hold:

i) If G is isomorphic to V4 or C2 × C4, then Jac (X) is isogenous to the
product of an elliptic curve E and the Jacobian of a genus 2 curve X2, namely
Jac (X )∼=E × Jac (X2).
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ii) If G is isomorphic to C3
2 then Jac (X) is isogenous to the product of three

elliptic curves, namely Jac (X )∼=E1 × E2 × E3.
iii) If G is isomorphic to D12, C2 ×S4 or any of the groups of order 24 or 32,

then Jac (X) is isogenous to the product of three elliptic curves such that two of
them are isomorphic, namely Jac (X )∼=E2

1 × E2.
b) If X is non-hyperelliptic then the following hold:

i) If G is isomorphic to C2, then Jac (X) is isogenous to the product of an
elliptic curve and the Jacobian of some genus 2 curve X2, namely Jac (X )∼=E×
Jac (X2).

ii) If G is isomorphic to V4, then Jac (X) is isogenous to the product of three
elliptic curves namely Jac (X )∼=E1 × E2 × E3.

iii) If G is isomorphic to S3, D8 or has order 16 or 48, then Jac (X) is isoge-
nous to the product of three elliptic curves such that two of them are isomorphic
to each other, namely Jac (X )∼=E2

1 × E2.
iv) If G is isomorphic to S4, L3(2) or C3

2�S3, then Jac (X) is isogenous to
the product of three elliptic curves such that all three of them are isomorphic to
each other, namely Jac (X )∼=E3.

Proof. The proof of the hyperelliptic case is similar and we skip the details.
Part b): When G is isomorphic to C2, V4, D8, S4, S3 the result follows from the

remarks above. The rest of the theorem is an immediate consequence of the list
of groups as in the Table 1 of [6]. If |G| = 16, 48 then D8 ↪→ G. Then, from the
remarks at the beginning of this section the results follows. If G is isomorphic
to L3(2) or C

2
4�S3 then S4 ↪→ G. Hence the Jacobian splits as in the case of S4.

This completes the proof. /0
The above theorem gives the splitting of the Jacobian based on automor-

phisms. Next we will focus on the (2, 4, 4) splitting for hyperelliptic curves. We
will explicitly determine the elliptic components for a given genus 3 curve X .

3 Hyperelliptic Curves with Extra Involutions

Let K be a genus 3 hyperelliptic field over the ground field k. Then K has
exactly one genus 0 subfield of degree 2, call it k(X). It is the fixed field of the
hyperelliptic involution ω0 in Aut (K). Thus, ω0 is central in Aut (K), where
Aut (K) denotes the group Aut (K/k). It induces a subgroup of Aut (k(X))
which is naturally isomorphic to Aut(K) := Aut (K)/〈ω0〉. The latter is called
the reduced automorphism group of K.

An elliptic involution of G = Aut (K) is an involution which fixes an elliptic
subfield. An involution of Ḡ = Aut(K) is called elliptic if it is the image of an
elliptic involution of G. If ω1 is an elliptic involution in G then ω2 := ω0 ω1 is
another involution (not necessarily elliptic). So the non-hyperelliptic involutions
come naturally in (unordered) pairs ω1, ω2. These pairs correspond bijectively
to the Klein 4-groups in G.

Definition 1. We will consider pairs (K, ε) with K a genus 3 hyperelliptic field
and ε an elliptic involution in Ḡ. Two such pairs (K, ε) and (K ′, ε′) are called
isomorphic if there is a k-isomorphism α : K → K ′ with ε′ = αεα−1.
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Let ε be an elliptic involution in Ḡ. We can choose the generator X of Fix(ω0)
such that ε(X) = −X . Then K = k(X,Y ) where X,Y satisfy equation Y 2 =
(X2 − α2

1)(X
2 − α2

2)(X
2 − α2

3)(X
2 − α2

4), for some αi ∈ k, i = 1, . . . , 4. Denote
by s1, s2, s3, s4 the symmetric polynomials of α2

1, α
2
2, α

2
3, α

2
4; see [15] for details.

Then, we have Y 2 = X8 + s1X
6 + s2X

4 + s3X
2 + s4, with s1, s2, s3, s4 ∈ k,

s4 �= 0. Furthermore, E = k(X2, Y ) and C = k(X2, Y X) are the two subfields
corresponding to ε of genus 1 and 2 respectively.

Preserving the condition ε(X) = −X we can further modify X such that
s4 = 1. Then, we have the following:

Theorem 2. Let K be a genus 3 hyperelliptic field and F an elliptic subfield of
degree 2.

i) Then, K = k(X,Y ) such that

Y 2 = X8 + aX6 + bX4 + cX2 + 1 (2)

for a, b, c ∈ k such that the discriminant of the right hand side Δ(a, b) �= 0.
ii) F = k(U, V ) where U = X2, and V = Y and

V 2 = U4 + aU3 + bU2 + cU + 1 (3)

iii) There is a genus 2 subfield L = k(x, y) where x = X2, y = Y X and

y2 = x(x4 + ax3 + bx2 + cx+ 1) (4)

Proof. The proof follows from the above remarks. To show that the genus 2
subfield is generated by X2, Y X it is enough to show that they are fixed by ω2.
In cases ii) and iii) we are again assuming that the discriminant of the right
hand side is not zero. /0

These conditions determine X up to coordinate change by the group 〈τ1, τ2〉
where τ1 : X → ζ8X , τ2 : X → 1

X , and ζ8 is a primitive 8-th root of unity in k.
Hence, τ1 : (a, b, c) →

(
ζ68a, ζ

4
8b, ζ

2c
)
, and τ2 : (a, b, c) → (c, b, a).

Then, |τ1| = 4 and |τ2| = 2. The group generated by τ1 and τ2 is the dihedral
group of order 8. Invariants of this action are

s2 = a c, s3 = (a2 + c2) b, s4 = a4 + c4. (5)

Since the above transformations are automorphisms of the projective line P1(k)
then the SL2(k) invariants must be expressed in terms of s2, s3, and s4.

If s4 + 2s22 = 0 then this implies that the curve has automorphism group
Z2 × Z4, see [4] for details. From now on we assume that s4 + 2s22 �= 0.

The discriminant of the octavic polynomial on the right hand side of Eq. (2)
is expressed in terms of s2, s3, s4; see [15] for details. From now forward we
will assume that Δ(s2, s3, s4) �= 0 since in this case the corresponding triple
(s2, s3, s4) does not correspond to a genus 3 curve. The map (a, b, c) (→ (s2, s3, s4)
is a branched Galois covering with group D4 of the set {(s2, s3, s4) ∈ k3 :
Δ(s2, s3, s4) �= 0} by the corresponding open subset of (a, b, c)-space. In any
case, it is true that if a, b, c and a′, b′, c′ have the same s2, s3, s4-invariants then
they are conjugate under 〈τ1, τ2〉.



Decomposition of Some Jacobian Varieties of Dimension 3 199

Lemma 1. For (a, b, c) ∈ k3 with Δ �= 0, equation (2) defines a genus 3 hy-
perelliptic field Ka,b,c = k(X,Y ). Its reduced automorphism group contains the
non-hyperelliptic involution εa,b,c : X (→ −X. Two such pairs (Ka,b,c, εa,b,c) and
(Ka′,b′,c′, εa′,b′,c′′) are isomorphic if and only if s4 = s′4, s3 = s′3, and s2 =
s′2, where s4, s3, s2 and s′4, s

′
3, s

′
2 are associated with a, b, c and a′, b′, c′, respec-

tively, by (5)).

Proof. An isomorphism α between these two pairs yields
K = k(X,Y ) = k(X ′, Y ′) with k(X) = k(X ′) such that X,Y satisfy (2) and
X ′, Y ′ satisfy the corresponding equation with a, b, c replaced by a′, b′, c′. Fur-
ther, εa,b,c(X

′) = −X ′. Thus X ′ is conjugate to X under 〈τ1, τ2〉 by the above
remarks. This proves the condition is necessary. It is clearly sufficient. /0

Relations among s2, s3, s4 for each G when V4 ↪→ G are determined in [4].

4 Subcovers of Genus 2

Next we study in detail the complement C of E in Jac (X ). From the above
theorem, C has equation as in Eq. (4). Its absolute invariants i1, i2, i3, as defined
in [11], can be expressed in terms of the dihedral invariants s4, s3, s2 as follows:

i1 = 144
M

D2
f1(s2, s3, s4), i2 = 432

M2

D3
f2(s2, s3, s4), i3 =

243

16

M3

D5
f3(s2, s3, s4) (6)

where M = s4+2s22 and D = 16 s2
3−40 s2

2+8 s2s4−3 s3
2−20 s4 and f1, f2, f3

are given in [15]. For the rest of the paper we assume that D = J2 �= 0.
We consider the case when Jac (C) is (2, 2) decomposable. The locus L2 of

such genus two curves is computed in [11] in terms of the invariants i1, i2, i3.
Substituting the expressions in Eq. (6) in the equation of L2 from [11] we have
the following: (

2 s2
2 − s4

)
·
(
2 s2

2 + s4
)
· F1(s2, s3, s4) = 0 (7)

where F1(s2, s3, s4) is an irreducible polynomial of degree 13, 8, 6 in s2, s3, s4
respectively; see [15].

Let the locus of genus 3 hyperelliptic curves whose Jacobian is (2, 4, 4)-split
be denoted by T . There are three components of T which we denote them by
Ti, i = 1, 2, 3 as seen by Eq. (7).

Two of these components are well known and the correspond to the cases when
V4 is embedded in the reduced automorphism group of X . These cases correspond
to the singular locus of S2 and are precisely the locus det (Jac (φ)) = 0, see [11].
This happens for all genus g ≥ 2.

Lemma 2. Let X be a genus 3 curve with (2, 2, 4)-split Jacobian. Then, one of
the following occurs

i) Z3
2 ↪→ Aut (X )

ii) Z2 × Z4 ↪→ Aut (X )
iii) X is in the locus T3
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Proof. The proof is an immediate consequence of Theorem 2 and Eq. (7). /0
The third component T3 is more interesting to us. It is the moduli space of

pairs of degree 4 non-Galois covers ψi : X3 → Ei, i = 1, 2.
One of the main goals of this paper is to determine explicitly the family T3 of

genus 3 curves and relations among its elliptic subcovers. We have the maps

T3
ψ−→ L2

ψ0−→ k2

(s2, s3, s4) → (u, v) → (j1, j2)
(8)

where s2, s3, s4 satisfy F1(s2, s3, s4) = 0 and u, v are given explicitly by Eq. (6)
and Thm. (3) in [11].

The expressions of u and v are computed explicitly in terms of s2, s3, s4 by
substituting the expressions of Eq. (6) expressions for u and v as rational func-
tions of i1, i2i3 as computed in [11]. As rational functions u and v have degrees
35 and 70 respectively (in terms of s2, s3, s4). The j-invariants j1 and j2 will be
determined in the next section.

Since T3 is a subvariety of H3 it would be desirable to express its equation in
terms of a coordinate in H3. One can use the absolute invariants of the genus 3
hyperelliptic curves t1, . . . , t6 as defined in [12] and the expressions of s4, s3, s2
in terms of these invariants as computed in [4].

Remark 1. T3 is a 2-dimensional subvariety of H3 determined by the equations{
F1(s2, s3, s4) = 0

ti − Ti(s2, s3, s4), i = 1, . . . , 6
(9)

where Ti is the function ti evaluated for the triple (s2, s3, s4).

The equations of T3 can be explicitly determined in terms of t1, . . . , t6 by
eliminating s2, s3, s2 from the above equations. Normally, when we talk about
T3 we will think of it given in terms of t1, . . . , t6.

Example 1. Consider the genus 3 curves X with Aut (X )∼=Z3
2. Then, s4 = 2s22

and

u =
1

P

(
−9 s3

2 + 120 s2s3 − 400 s2
2 + 16 s2

3
)

v =− 2

P 2
(432 s2s3

3 − 27 s3
4 − 1440 s2

2s3
2 − 6400 s2

3s3 + 32000 s2
4

+ 288 s2
3s3

2 − 5376 s2
4s3 + 23040 s2

5 + 256 s2
6)

where P = −s23 − 8 s2s3 − 16 s22 + 16 s32.

For the rest of this section we will see if we can invert the map ψ.

Proposition 1. Let (u, v) ∈ k2 such that

(u2 − 4v + 18u− 27)(v2 − 4u3)(4v − u2 + 110u− 1125) �= 0.
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Then, the curve of genus 2 defined over k given by

y2 = a0x
6 + a1x

5 + a2x
4 + a3x

3 + ta2x
2 + t2a1x+ t3a0, (10)

corresponds to the moduli point (u, v) ∈ L2 ↪→ M2, where one of the following
holds:

i) If u �= 0, then t = v2− 4u3, a0 = v2+u2v− 2u3, a1 = 2(u2+3v)(v2− 4u3),
a2 = (15v2 − u2v − 30u3)(v2 − 4u3), and a3 = 4(5v − u2)(v2 − 4u3)2.

ii) If u = 0, then t = 1, a0 = 1 + 2v, a1 = 2(3 − 4v), a2 = 15 + 14v,
a3 = 4(5− 4v).

Hence, corresponding to the pair (u, v) there is a unique genus 2 curve Cu,v. The
following Lemma addresses the rest of our question.

Lemma 3. i) Any genus two curve C defined over an algebraically closed field
k can be written as

y2 = x(x4 + ax3 + bx2 + cx+ 1) (11)

for some a, b, c ∈ k such that Δ(a, b, c) �= 0.
ii) Let C be a genus 2 curve with equation as in Eq. (11). Then, there exists

a genus 3 curve X with equation Y 2 = X8+ aX6+ bX4+CX2+1 and a degree
2 map f : X → C such that x = X2 and y = Y X.

Proof. i) Let C be a genus 2 curve defined over k. Then, the equation of C is
given by y2 = Π6

i=1(x−αi), where αi are all distinct for all i = 1 . . . 6. Since k is
algebraically closed, then we can pick a change of transformation in P1(k) such
that α1 → 0 and α2 → ∞. We can also pick a coordinate such that α3 · · ·a6 = 1.
Then, the curve C has equation as claimed. The condition that Δ(a, b, c) �= 0
simply assures that not two roots of the sextic coalesce.

ii) This genus 3 curve is a covering of C from Thm. 2. /0
Hence, the curve Cu,v can be written as in Eq. (11). This would mean that we

can explicitly compute s4, s3, s2 in terms of u and v. Finding a general formula for
(s2, s3, s4) in terms of (u, v) is computationally difficult. Under some additional
restrictions this ca be done, as we will see in the next section.

5 Elliptic Subfields

In this section we will determine the elliptic subcovers of the genus 3 curves
X ∈ T3. We will describe how this can be explicitly done, but will skip displaying
the computations here. A point p = (t1, . . . , t6) ∈ T3 satisfies equations Eq. (9).
Our goal is to determine the j-invariants of E,E1, E2 in terms of t1, . . . t6. The
j-invariant of E is

j = 256

(
−s3

2 − 12 s4 − 24 s2
2 + 3 s2s4 + 6 s2

3
)3

(s4 + 2 s22)
f(s2, s3, s4), (12)

where f(s2, s3, s4) can be found in [15].
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We denote the degree 2 elliptic subcovers of C by E1 and E2 and their j-
invariants by j1 and j2. These j invariants are the roots of the quadratic

j2 + 256
2u3 − 54u2 + 9uv − v2 + 27v

u2 + 18u− 4v − 27
j + 65536

u2 + 9u− 3v

(u2 + 18u− 4v − 27)2
, (13)

see Eq. (4) in [11].
Since these j-invariants are determined explicitly in terms of u and v, then via

the map ψ : T3 → L2 we express such coefficients in terms of s2, s3, s4. Moreover,
the maps

T3 → k3 \ {Δ(s2, s3, s4) = 0} → k2 \ {Δu,v = 0} → k2

(t1, . . . , t6) → (s4, s3, s2)
ψ−→ (u, v) → (j1, j2)

(14)

are all explicitly determined.

Example 2. Let be given a 6-tuple

(t1, . . . , t6) =

(
8767521

6224272
,
152464

5329
,
8116

3431
,−3343532

695617
,− 91532

148117
,−50448727768

28398241

)
which satisfies the Eq. (17) in [12]. Then, this tuple corresponds to a genus 3
hyperelliptic curve, more precisely the curve X with equation

Y 2 = X8 +X6 +X4 +X2 + 1

Then, the corresponding invariants are s2 = 1, s3 = 2, s4 = 2. The genus
2 subcover has invariants i1 = − 48

5 , i2 = 432
5 , i3 = 1

400 and the corresponding
dihedral invariants are u = 9 and v = − 754

5 . The j-invariants of the three elliptic

subcover are j = 2048 j1 = 32768
5 + 2

5

√
268435081 and j2 = 32768

5 − 2
5

√
268435081.

Next we will study the subvariety of T3, such that E1 is isomorphic to E2.

5.1 Isomorphic Elliptic Subfields

The two elliptic curves E1 and E2 are isomorphic when their j-invariants are
equal, which happens when the discriminant of the quadratic in Eq. (13) is zero.
From Remark (1) in [11] this occurs if and only if

(v2 − 4u3)(v − 9u+ 27) = 0

The first condition is equivalent to D8 ↪→ Aut(C). The later condition gives
u = 9 − λ

256 and v = 9
(
6− λ

256

)
, where λ := j1 = j2. Both of these loci can be

explicitly computed given enough computing power.
Substituting u and v in terms of s2, s3, s4 in the equation v− 9u+27 = 0, we

get an equation of degree 68, 42, and 29 in s2, s3, s4 respectively. We denote it
by

F2(s2, s3, s4) = 0 (15)

and do not display it here because of its size. This equation and the Eq. (7)
define the locus T in terms of s4, s3, s2.



Decomposition of Some Jacobian Varieties of Dimension 3 203

Lemma 4. The algebraic variety T is a 1-dimensional subvariety, it has 5 genus
0 components as in Eq. (16). Every point (s2, s3, s4) ∈ T correspond to a genus
3 hyperelliptic curve with (2, 4, 4)-split Jacobian such that the degree 4 elliptic
subcovers are isomorphic to each other.

Proof. From the equations above we can eliminate s3 via resultants and get the
following. In this case we get

(2s22 − s4)
16(s4 + 2s22)

172 g121 g122 g103 g84 g5 = 0 (16)

where g5 can be found in [15] and g1, . . . , g4 are

g1 = s4 + 2 s2
2 − 100 s2 + 625

g2 = − 27 s4 + s2
3 + 6 s2

2 + 768 s2 − 4096

g3 = − 16777216 + 5242880 s2 − 450560 s2
2 + 7680 s2

3 − 340 s2
4 + 8 s2

5 − 102400 s4

+ 16640 s2s4 − 220 s2
2s4 + 4 s4s2

3 − 125 s4
2

g4 =3515625 − 937500 s2 + 62500 s2
2 + 64 s2

4 + 15000 s4 − 2000 s2s4

Since (2s4 − s22)(2s4 + s22) �= 0, as noted before. All other components are genus
zero curves. /0

The equation of T can be expressed in the absolute invariants t1, . . . , t6 by
eliminating s4, s3, s2 from expressions in Eq. (6). Such expressions are large and
we do not display them here.

Let be given a parameterization of T. Then we have the following maps

k → T → L2 → k

t → (s4(t), s3(t), s2(t)) → (u(t), v(t)) → j(t)
(17)

This map gives us the possibility to construct a family of curves defined over
Q such that all their subcovers, namely C, E, E1, and E2 are also defined over
Q. For example, for t ∈ Q we have the corresponding s4, s3, s3 ∈ Q. Hence, there
is a genus 3 curve X defined over Q. The invariants u, v are rational functions
of s4, s3, s2 and therefore of t. Thus, u, v ∈ Q. Form Prop. 1 there is a genus 2
curve C such that C is defined over Q. Moreover, the j-invariants for all elliptic
subcovers are rational functions in s4, s3, s2 and therefore in t. Hence, E, E1, E2

are also defined over Q.

Theorem 3. Let X be a curve in T and s2, s3, s4 its corresponding dihedral
invariants. Then

Jac (X )∼=E × E′ × E′

where E and E′ are elliptic curves with j-invariants j(E) as in Eq. (12) and
j(E′) as

j′ = −128
2 u3 − 54 u2 + 9 uv − v2 + 27 v

u2 + 18 u− 4 v − 27
,

where u and v are given as rational functions of i1, i2, i3 as in [11]. Moreover,
there is only a finite number of genus 3 curves X such that E∼=E′.
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Proof. The equation of j(E) was computed in Eq. (12). Since the other two
elliptic subcovers have the same j-invariants then this invariant is given by the
double root of the quadratic in Eq. (13). Thus,

j′ = −128
2 u3 − 54 u2 + 9 uv − v2 + 27 v

u2 + 18 u− 4 v − 27

Substituting the values for u and v we get the expression as claimed.
We have E∼=E′ if and only if j = j′.This gives a third equation G(s2, s3, s4) =

0 as claimed in the theorem. By Bezut’s theorem, the number of solutions of the
system of equationsFi(s2, s3, s4) = 0, for i = 1, 2 andG(s2, s3, s4) = 0 is finite. /0

The family above could be significant in number theory in constructing genus
3 curves with many rational points. Similar techniques have been used for genus
2 in [10] and by various other authors [2, 3, 14].
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Gómez, David 168
Guhe, Markus 180
Gust, Helmar 180

Heras, Jónathan 49
Hernando, Antonio 99

Inoue, Shutaro 88

Jeffrey, David J. 157

Kronegger, Martin 120
Krumnack, Ulf 180
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Rubio, Ángel Luis 49
Rubio, Julio 49
Ruiz-Reina, José-Luis 1
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