
Generalization in Maze Navigation Using

Grammatical Evolution and Novelty Search

Paulo Urbano1,�, Enrique Naredo2, and Leonardo Trujillo2

1 LabMAg, Universidade de Lisboa, 1749-016 Lisbon, Portugal
pub@di.fc.ul.pt

2 Tree-Lab, Instituto Tecnológico de Tijuana, Calz. del Tecnológico S/N,
Tomás Aquino, 22414 Tijuana, Baja California, México

enriquenaredo@gmail.com, leonardo.trujillo@tectijuana.edu.mx

Abstract. Recent research on evolutionary algorithmshas begun to focus
on the issue of generalization.Whilemostworks emphasize the evolution of
high quality solutions for particular problem instances, others are address-
ing the issue of evolving solutions that can generalize in different scenarios,
which is also the focus of the present paper. In particular, this paper com-
pares fitness-based search,Novelty Search (NS), and random search in a set
of generalization oriented experiments in amaze navigation problem using
Grammatical Evolution (GE), a variant of Genetic Programming. Exper-
imental results suggest that NS outperforms the other search methods in
terms of evolving general navigation behaviors that are able to cope with
different initial conditions within a static deceptive maze.

Keywords: Novelty Search, Grammatical Evolution, Genetic
Programming.

1 Introduction

Genetic Programming (GP) is a machine learning approach for the discovery of
computer programs through an evolutionary search process. An important eval-
uation criteria for artificial learning systems, and for GP in particular, is their
ability to find high quality solutions. However, generalization is also crucial, and
several works have been devoted to this issue [2,7,6]. A general solution is one that
is able to have a high performance on cases used for learning, and also on newer
unseen cases. For example, in maze navigation, an artificial agentmust find its way
through the maze, from the start to a target point. An evolved control program
may be successful in solving a particular navigation task, able to reach the target
starting from a fixed point within the maze, but unable to solve the task when we
change some aspect of the problem such as the initial conditions or environmental
structure. In this scenario, the learned program is considered to be overfitted to
the particular scenario used for learning. Ideally we would like to evolve programs
that exhibit general navigation behaviors; i. e., performs well within a wide range
of previously unseen maze scenarios.

� Corresponding author.

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 35–46, 2014.
c© Springer International Publishing Switzerland 2014

36 P. Urbano, E. Naredo, and L. Trujillo

Some maze navigation tasks are used as deceptive benchmark problems for
traditional Evolutionary Algorithms (EA). The wall configurations of mazes may
create occlusions and cul-de-sacs, complicating the navigation task. Suppose that
fitness is proportional to the Euclidean distance of a robot to the target. Then,
when the walls of the mazes are obstacles that block the direct path to the target,
the fitness gradient does not lead towards a feasible direction, thus deceiving the
evolutionary search process, towards a local optima.

Therefore, to solve a deceptive maze navigation task, the search process must
diverge from areas of high fitness and explore areas of low fitness. The problem
with fitness-based EA is that, by following the gradient of the fitness function,
it will not reward low fitness individuals, thus failing to reach the target. In EA
literature, the main methods for avoiding local optima have focused on the pro-
motion of genomic diversity [15,1]. Recently, rewarding diversity in the space of
behaviors has received growing attention [12]. In general, all diversity-preserving
algorithms take fitness into account, but Novelty Search (NS), a recent divergent
evolutionary technique, takes a more unique step.

NS ignores the fitness function explicitly, relying only on behavioral diversity
as the sole criteria for selection and reproduction. Therefore, instead of guiding
the search for the fittest individual, NS guides the search for the most novel
individual, replacing fitness measure by a novelty score taken from the individ-
uals’ behavior description. NS explores the behavioral space without any goal,
besides generating novelty, ultimately an individual with the desired behavior
may be found. NS has been successfully applied in several deceptive problems in
neuro-evolution [5,10], and in GP [9,14,13] in some cases outperforming fitness-
based EA.

However, most of the research on NS has ignored the issue of generalization.
The motivation of the current paper is to study the capabilities of NS regarding
generalization using maze navigation and Grammatical Evolution (GE) [16]. We
use a fixed maze and a fixed target point for training, and we vary the starting
point and orientation during testing. The goal is to test how general are the be-
haviors when they are evolved using only a single training instance, and also if dif-
ferent initial conditions have implications on the generalization of the solutions.
We also used a bigger training set composed of several initial conditions, with the
goal of evolving behaviors that are able to solve the maze task for every training
case. The generalization abilities of the best evolved behaviors are also evaluated
in the same test set. The performance of NS on the train and test set is compared
against fitness based and random search. Our hypothesis is that an heterogeneous
training set might originate a second level of deception to traditional fitness-based
evolution. Some instances of the training set will be easier to solve than others
and fitness-based evolution might tend to reward individuals fitted to the easiest
training scenarios, failing to generalize. We also hypothesize that NS might play
a significant role in the evolution of general maze navigation agents, preventing
evolution to get trapped in local optima.

Generalization in Maze Navigation 37

Integer String

BNF-Grammar
(A) <expr> ::= <line> (0)
 | <expr> <line> (1)
(B) <line> ::= ifelse <condition> [<expr>] [<expr>] (0)
 | [<op>] (1)
(C) <condition>::= wall-ahead? (0)
 | wall-left? (1)
 | wall-right? (2)
(D) <op> ::= turn-left (0)
 | turn-right (1)
 | move (2)

110110110101010100101001
101111110000101100011000

Binary String

219 85 41 191 11 24

<expr> 219 % 2 = 1
<expr> <line> 85 % 2 = 1
<line> <line> 41 % 2 = 1
<op> <line> 191 % 3 = 2
move <line> 11 % 2 = 1
move <op> 24 % 3 = 0
move turn-left

T r a n s l a t i o n

Program

TranscriptionIndividual

Fig. 1. Example of a GE genotype-phenotype mapping, where the binary genotype is
translated into an integer string used to select production rules from a grammar. The
derivation sequence of the program is shown on the right. All codons were used but
wrapping was unnecessary.

2 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve com-
puter programs in an arbitrary language [16] defined by a Backus-Naur Form
(BNF) grammar. Programs are indirectly represented by variable length binary
genomes, and are built in a development process. The genome linear representa-
tion allows the application of genetic operators such as crossover and mutation
in a typical genetic algorithm manner, unlike in the standard tree-based GP
approach. Beginning with the start symbol of the grammar, a genotypepheno-
type mapping is employed such that each individual’s binary genome, contains
in its codons (typically groups of 8 bits) the information to select and apply the
grammar production rules and generate a program.

Production rules for each non-terminal will be indexed starting from 0. In
order to select a production rule for the left-most non-terminal of the developing
program, from left to right the next codon value on the genome is read and
interpreted using the following formula: I = c%r, where c represents the current
codon value, % represents the modulus operator, and r is the number of produc-
tion rules for the left-most non-terminal. The correspondent production in the
I-th index will be used to replace the left-most non-terminal. If, while reading
codons, the algorithm reaches the end of the genome, a wrapping operator is in-
voked and it starts reading again from the beginning of the genome. The process
stops when all of the non-terminal symbols have been replaced, resulting in a
valid program. In the wrapping process, if an individual fails with this condition
after a maximum of wraps, then it is considered an invalid individual, and is
given the lowest score. The mapping process is illustrated with an example in
Figure 1, where we use a Grammar for describing maze navigation programs
written in Netlogo [19].

3 Novelty Search

Implementing Novelty Search [8] requires little change to any evolutionary algo-
rithm aside from replacing the fitness function with a domain dependent novelty

38 P. Urbano, E. Naredo, and L. Trujillo

metric. The novelty metric measures how different an individual is from other
individuals with respect to behavior. In NS, there is a constant evolutionary pres-
sure towards behavioral innovation. The behavior of each individual is normally
characterized bey a vector of real numbers that capture behavior information
along the whole evaluation or which is just sampled at some particular instants.
The novelty of an individual is measured with respect to the behaviors of the cur-
rent population and of a sample of predecessor individuals, stored in an archive.
The archive is initially empty, and new behaviors are added to it if they are
significantly different from the ones already there, i.e., if their novelty is above
a dynamically computed threshold.

The novelty metric characterises how far the new individual is from the rest
of the population and its predecessors in behavior space, based on the sparseness
at the respective point in the behavior space. A simple measure of sparseness at
a point is the average distance to the k-nearest neighbours at that point, where
k is a constant empirically determined. Intuitively, if the average distance to a
given point’s nearest neighbours is large then it is in a sparse area; it is in a
dense region if the average distance is small. The sparseness at each point is
given by Equation 1, where μi is the ith-nearest neighbour of x with respect
to the behavior distance metric dist, which typically is the Euclidean distance
between domain-dependent behavior characterisation vectors.

ρ(x) =
1

k

k∑

i=1

dist(x, μi) . (1)

Candidates from more sparse regions of this behavioral search space then
receive higher novelty scores, thus guiding the search towards what is new, with
no other explicit objective.

4 Related Work

With the exception of [2,11], as far as we know, the research on NS has mostly
ignored the issue of generalization in robotic domains. For example, Lehman
and Stanley in neuro-evolution [9], Lehman and Stanley in GP [10], as well as
Loukas and Georgiou in GE [4], have made experiments using a variety of mazes
with different levels of deception, but the evolved behaviors were specific for each
maze configuration and initial conditions. It was not tested if the evolved behav-
iors were able to generalize to different starting and target points or to different
mazes. Velez and Clune in [18] transfered maze navigation robots evolved with
NS to new scenarios. Their experiments in neuro-evolution have confirmed that
agents using NS do learn exploration skills. The transferred robots did in fact
perform much better than randomly generated agents but did not outperform
transferred robots evolved by a standard fitness-based EA. In [9], using stan-
dard GP, and in [17], using Grammatical Evolution, NS was applied successfully
to the Santa Fe Trail Problem (SFT), a known deceptive problem in GP, but
their goal was finding individuals able to perform well in that trail. Kushchu [7]

Generalization in Maze Navigation 39

(I9-W,I10-E)

(I7-S,I8-N)

Target

(I11-S,I12-E) (I3-N,I4-W)

(I5-E,I6-N)(I1-E,I2-N)

Fig. 2. The Medium Maze is a rectangle of 38 × 22 tiles. Left figure shows the target
represented by a black square, and the 12 training instances labelled from I1 to I12. On
each location there are 2 instances with different orientations. The initial orientations
are labeled by: N=North, E=East, S=South, W=West. The right figure shows the 100
initial conditions used for testing, randomly generated.

has identified the SFT problem as an example of evolution of brittle solutions
in fitness-based GP. His experimental results showed that most of the time, a
successful ant won’t perform well on some variations of the same trail. Kushchu
in [7] proposed to train an ant on a set composed of variations of the SFT, shar-
ing similar characteristics and tested the learned behaviors on a different set of
similar trails. He was able to successfully evolve general trail following ant behav-
iors for a class of trails similar in difficulty to the SFT. Doucette and Heywood
[2] have empirically evaluated the impact of NS on generalization performance
for the SFT, using SFT as a single set and a test set of similar trails. They
evaluated a cross-section of combined novelty and fitness, and fitness only func-
tion, and no method was to produce successful individuals in both the SFT and
the trails from the set. However, results showed that the classical fitness-based
GP provided best train and test performances, but programs evolved by NS
alone had more generalization abilities, i.e., lower differences between train and
test performance. In contrast, in two other experiments [9,17] NS outperformed
fitness-search in the SFT.

5 Maze Navigation Experiments

Given the static maze shown in Figure 2, similar to the Medium Maze of [9], an
agent controlled by a GE program must navigate from a specific starting point
and orientation to a target point using a limit number of moves. The chosen maze
has some potential for deception as the target is behind an inner wall blocking
direct paths. The agent may sense the wall in the square in front, in the square
on the right and on the left. It has 3 possible actions each one consuming one
move: it may move forward one square if is there is no wall in front, it may turn
right or left, rotating 90 degrees, clockwise or counter clockwise, respectively.

The grammar that defines the space of possible programs is given in Figure
1, the one we used to illustrate genotype to phenotype mapping in GE. We
used 3 sensor boolean functions (wall-ahead?, wall-left? and wall-right?), and
three actions (move, turn-left and turn-right). The program will be repeatedly

40 P. Urbano, E. Naredo, and L. Trujillo

Table 1. Parameters used for both experimental setups. Codons-min and Codons-max
are the minimal and maximal number of codons in the initial random population.

Parameter Value Parameter Value

Codon-size 8 Generational YES
Codons-min 15 Mutation prob 0.01
Codons-max 25 Elitism 10%
Number of runs 100 NS archive NO
Wraps 10 Crossover codon-crossover
Number of individuals 250 NS k−neighbors 3
Crossover prob. 0.9 Maximum of moves 100, 500

Selection Roulette Wheel

executed until the agent hits the target or reaches the maximum number of
moves. The agent succeeds if it hits the target square within the fixed limit of
moves.

We compared novelty, fitness and random-based search in a series of generaliza-
tion experiments. We want to assess how general the evolved behaviors are using
only a single training instance. We have tried out different starting conditions,
i.e., different single instance training sets. We have chosen 12 initial conditions
for training the agent shown in the picture on the left side of Figure 2. Training
instances were chosen to be heterogeneous in terms of the level of deception and
difficulty imposed by the navigation task. Some starting points will be more or
less blocked by walls, may be more or less distant to the target point, adjacent to
the wall with the target or near the external wall, far from the target, others will
be in the empty space, distant from both walls. For each initial condition, we have
evaluated, in a series of runs, the performance of the best program from each run
on an independent test set of initial conditions, not used for learning. For testing,
we used the 100 initial positions and orientations presented on the right of Figure
2, that were randomly generated but correspond to a wide range of initial condi-
tions. We also used a training set composed with all of the 12 initial conditions,
and evaluate the generalization abilities in the same test set with 100 instances.
Our objective is to evolve behaviors that are successful for all 12 initial conditions
and evaluate their generalization abilities.

All experiments mentioned in this study are performed using the jGE library
[3], which is a Java implementation of GE, and jGE Netlogo [4], which is a
Netlogo extension of the jGE library. The Netlogo program was extended with
an implementation of NS. The phenotype is a NetLogo program and the space
of possible programs is given by the BNF-grammar showed on Figure 1. The
experiments were repeated 100 times with a population of 250 individuals for 50
generations. The parameters used are presented in Table 1.

Fitness-based search needs a measure of performance to evaluate individuals,
thus fitness is computed by 1/(1 + dist(p, q)), where p is the final position, and
q the maze target. In the case of a training data with 12 instances, each agent
is evaluated 12 times and the final fitness is the average score across all the
evaluations. Similarly, the fitness on the test set will be the average fitness across
all 100 evaluations.

Generalization in Maze Navigation 41

NS needs a behavior descriptor, so we used same descriptor from [10], which
is the final position of the robot after hitting the target point or exhausting the
maximal number of moves. By ignoring the details of the trajectories, NS will
rewards agents that end in zones where nobody or less agents have ended before.
In the case of a training set with 12 instances, the agent is evaluated 12 times, for
every instance of the training set, and its final behavior descriptor is composed
by the 12 ending points, which are concatenated in a vector to obtain a single
descriptor. For an invalid individual, a value of 0 is given for both fitness and
novelty. In the NS extension of GE, the novelty score of an individual will be the
average behavior distance towards the behaviors of its k-nearest valid neighbours.
After some preliminary exploration, we set to 3 the number of neighbours used
to compute novelty score and we did not use an archive as in [8] since in our
experiments it did not help to improve the performance.

6 Results

We begin by presenting and discussing results gathered from experiments where
the agents are limited to 100 moves following [9].

6.1 Results and Analysis for a Maximal of 100 Moves

The results have been separated into training and testing performance. Consid-
ering the best programs from each run, we measured the percentage of hits and
the average fitness in the train and test sets. Results are illustrated in Table 3 for
each training set composed of a single instance comparing all three methods. Al-
though NS did not obtain a 100% percentage of hits for every instance, it had the
best performance, followed by fitness-based search, and finally random search. As
random search has attained almost maximal performance with the following set
of initial instances: {I5, I6, I7, I8, I9, I10}, we may conclude that they define easy
navigation tasks. The best behaviors evolved by the three methods performed
poorly on the test set: Not a single behavior was able to hit the target for every
testing instance and the average fitness scores were low and very similar for all
three methods. The results obtained with experiments with a training set com-
posed with the 12 instances presented in Table 2, show that none of the methods
were able to evolve behaviors that hit the target for all 12 training instances,
exhibiting also a very poor performance on the test set. Our explanation about
the poor training performance of both fitness-based search and NS on on the 12
instances experiments, is that a maximum number of 100 movements, following
[9], imposes a heavy constraint inhibiting maze exploration and thwarting the
evolution of general maze navigation behaviors. Hence, we have repeated the
experiments fixing a new limit for the number of moves: 500, which increases
time for maze exploration.

6.2 Results and Analysis for a Maximal of 500 Moves

The results regarding training sets with a single instance are presented in Table 3.
These results are better for novelty and fitness-based search when compared with

42 P. Urbano, E. Naredo, and L. Trujillo

Table 2. Table of results from the training set composed with the 12 instances. L-100
and L-500 stands for the limit of moves. NS-K3 stands for Novelty Search with the
k-neighbour parameter set to 3. Fit stands for the average fitness score of the best
program from each run, and Hits for the average number of best programs that hit the
target.

Training Testing

Hits Fit Hits Fit

L-100 NS-K3 0% 0.46 0% 0.14
Fitness 0% 0.40 0% 0.13
Random 0% 0.39 0% 0.12

L-500 NS-K3 61% 0.93 41% 0.89
Fitness 22% 0.63 13% 0.47
Random 1% 0.40 0% 0.16

experiments with the number of moves limited to 100. On the other hand, the
differences for random search are not so relevant: It was still able to get a 100% of
successful solutions for some of the initial conditions, and a very low hit percent-
age and average fitness for the most difficult cases, similar to the experiment with
a limit of 100 moves. NS outperforms fitness-based and random search in terms
of training performance, having a 100% of hits for every training instance, and a
higher average fitness. Fitness-based against random search shows better results
for some of the instances, while for the instances I5, I7 it shows lower perfor-
mance than random search. However, instances {I1, I2, I3, I4, I11, I12} introduce
more difficulty for the methods tested. Those points, when used as single train-
ing sets will generate behaviors with higher generalization abilities than other
instances. In contrast the easiest starting conditions resulted in behaviors with
the lowest generalization abilities. All three methods were still unable to evolve
general behaviors after being trained with a single instance. Nevertheless, NS
showed the best performance against fitness and random-based search, and the
best test performance was 13% for I12.

Results obtained from experiments with a training set of 12 instances are pre-
sented in Table 2. In this experiment, NS had the best performance again in terms
of training and testing, 61% of the runs generate a program which hit the target
from every initial condition in the training set, while 41% of the runs perform suc-
cessfully in the test set. Fitness-based search had 22% of hits in the training set,
and 13 exhibit general navigation skills which are able to cope with every initial
condition in the test set. In terms of average fitness scores, fitness-based search,
was clearly outperformed by NS: a difference of 0.3 in the training set and 0.43
in the test set. In a training set composed of instances that correspond to tasks
with different levels of difficulty and deception, it will be easy to find individuals
that solve the less difficult cases and it will harder to solve instances defining more
deceptive tasks, creating local optima for fitness-based search.

Furthermore, one interesting observation regarding both limits of moves: L −
100 and L − 500, is that the orientations in some of the initial conditions are

Generalization in Maze Navigation 43

move move turn-left
ifelse wall-left?
 [tu rn-left]
 [move move ifelse wall-ahead?
 [turn-right move move]
 [move turn-right]]

Fig. 3. Left figure shows an example of an evolved program able to solve the maze
for every test instance, exhibiting general navigation. Figures at the right show the
trajectory when using this program for initial conditions: I1, I7, I11, respectively.

Table 3. Table of results from each of the twelve instances, where the sub-index stands
for the number of the training instance. L-100, and L-500 stands for the limit of moves.
NS-K3 stands for Novelty Search with the k-neighbour parameter set to 3. Fit stands
for the average fitness score, and Hits for the percent of best individuals which reach
the target.

L-100 L-500

Instance Train Test Train Test

Method Hits Fit Hits Fit Hits Fit Hits Fit

I1 NS-K3 100% 1.000 0% 0.110 100% 1.00 3% 0.263
Fitness 94% 0.950 0% 0.112 94% 0.74 3% 0.286
Random 19% 0.330 0% 0.111 34% 0.44 1% 0.149

I2 NS-K3 100% 1.000 0% 0.133 100% 1.00 6% 0.365
Fitness 73% 0.796 0% 0.126 69% 0.95 2% 0.201
Random 10% 0.233 0% 0.102 14% 0.28 2% 0.159

I3 NS-K3 77% 0.864 0% 0.166 100% 1.00 12% 0.476
Fitness 7% 0.295 0% 0.166 62% 0.69 1% 0.328
Random 0% 0.129 0% 0.115 8% 0.20 0% 0.145

I4 NS-K3 92% 0.949 0% 0.141 100% 1.00 8% 0.455
Fitness 22% 0.430 0% 0.124 68% 1.00 3% 0.665
Random 0% 0.149 0% 0.124 10% 0.22 1% 0.165

I5 NS-K3 100% 1.000 0% 0.079 100% 1.00 0% 0.091
Fitness 96% 0.980 0% 0.073 95% 0.98 0% 0.072
Random 100% 1.000 0% 0.074 100% 1.00 0% 0.083

I6 NS-K3 100% 1.000 0% 0.010 100% 1.00 4% 0.168
Fitness 86% 0.930 0% 0.081 90% 0.95 2% 0.107
Random 83% 0.915 0% 0.089 86% 0.93 0% 0.106

I7 NS-K3 100% 1.000 0% 0.120 100% 1.00 0% 0.124
Fitness 100% 1.000 0% 0.117 99% 0.99 0% 0.125
Random 100% 1.000 0% 0.118 100% 1.00 0% 0.120

I8 NS-K3 100% 1.000 0% 0.114 100% 1.00 0% 0.121
Fitness 100% 1.000 0% 0.113 100% 1.00 0% 0.120
Random 100% 1.000 0% 0.113 100% 1.00 0% 0.115

I9 NS-K3 100% 1.000 0% 0.098 100% 1.00 0% 0.095
Fitness 100% 1.000 0% 0.099 100% 1.00 0% 0.096
Random 100% 1.000 0% 0.097 100% 1.00 0% 0.095

I10 NS-K3 100% 1.000 0% 0.082 100% 1.00 0% 0.081
Fitness 100% 1.000 0% 0.083 100% 1.00 0% 0.081
Random 100% 1.000 0% 0.082 100% 1.00 0% 0.084

I11 NS-K3 60% 0.741 0% 0.160 100% 1.00 11% 0.538
Fitness 8% 0.264 0% 0.128 57% 0.64 6% 0.387
Random 0% 0.139 0% 0.111 7% 0.19 2% 0.173

I12 NS-K3 68% 0.793 0% 0.163 100% 1.00 13% 0.627
Fitness 7% 0.274 0% 0.116 59% 0.67 2% 0.422
Random 1% 0.140 0% 0.114 6% 0.19 2% 0.174

in fact relevant in the training set as well as in the test set, since they impact
on the overall generalization performance. We can see in Table 3 differences in
train and test performance between some pairs of instances: I1 and I2, I3 and I4.

44 P. Urbano, E. Naredo, and L. Trujillo

Figure 3 shows an example of one of the best evolved solutions, and the trajecto-
ries for 3 different initial conditions.

7 Conclusions and Future Work

This work presents the first application of NS with GE to study their generaliza-
tion abilities on a maze navigation task. An agent controlled by a GE program
must navigate in a maze from a specific starting point and orientation to a tar-
get point using a limit number of moves. We have compared novelty, fitness
and random based evolution using GE in a series of generalization experiments.
We have used a fixed maze a fixed target and varied the agent initial position
and orientation. The goal is to evolve behaviors that are able to hit the target
starting from any point and facing any direction. In this work, we consider 12
different initial conditions for the agent, where some positions are easier or less
deceptive than others. First, we start by using just one instance at a time, then
we use all 12 instances as training set, and the evolved programs were tested on
a set of 100 random instances. Furthermore, we use two different moves limit:
100 and 500. The experiments with a limitation of 100 moves showed that it
was not possible to evolve programs with general navigational abilities. The per-
formances exhibited by the best programs evolved by the three methods were
very similar and very poor in the test set. The three methods were also unable
to evolve a single program able to hit the target for every starting condition in
the training set composed with the 12 instances. Anyhow, NS exhibited the best
performance, followed by fitness based search. Regarding evolution using single
instances training sets, NS outperformed fitness based search and also random
search for the more deceptive cases, as it was expected, since it does not follow
the gradient of the fitness function, but all showed similar results in the easier
cases. Anyhow, all successful behaviors for single training instances were too
overfitted and failed in the test set.

When we increase the limit of moves to 500, allowing more time for explo-
ration, every method is still unable to evolve general navigation abilities for the
single instance training sets, composed with the easier starting conditions. In
contrast, all three methods were able to evolve programs with general naviga-
tion abilities, able to solve the maze task for every condition in the test set, using
single instance training sets that impose more difficulty and deception. This hap-
pened not so frequently but more frequently with NS than with the other two
methods. Therefore, instances that appear to impose a higher difficulty in the
navigation task, when used alone in the training set, seem to induce better gen-
eral navigation skills using all three methods. But, if we use a more numerous
training set, using the 12 training instances all together, random based search
was unable to find general behaviors that solve the maze task for every instance
of the training set and the same happened in the test set. NS had the best
performance both in the training set (12 instances) and in the test set evolving
more frequently general navigation programs. Fitness based search seems to be
overfitting to some of the instances of the training set, the easiest ones, which is
enough to achieve a higher score, creating a local optima.

Generalization in Maze Navigation 45

NS in these experiments exhibits a substantial improvement in the evolution
of general maze navigation agents, avoiding the deception involved in the maze
task, preventing evolution from being trapped in local optima. This research
work presents a window of opportunity for generalization research, for instance,
instead of having fixed targets we may perform generalization experiments where
we vary both the initial conditions and the target of maze tasks. Additionally,
we may try to transfer agents evolved with NS to new mazes to test if the skills
acquired in a particular environment generalize to unseen environments. Finally,
in a general way, one further work will be trying to understand what must be
the right ingredients to get the right training set in order to evolve successfully
general behaviors.

Acknowledgments. The authors acknowledge the following projects. First au-
thor is supported by FCT project EXPL/EEI-SII/1861/2013. Second author
is supported by CONACYT (México) scholarship No. 232288. Third author is
supported by CONACYT (México) Basic Science Research Project No. 178323,
DGEST (México) Research Projects No.5149.13-P, also by TIJ-ING-2012-110,
and by FP7-Marie Curie-IRSES 2013 project ACoBSEC funded by the European
Comission.

References

1. Burke, E.K., Gustafson, S., Kendall, G., Krasnogor, N.: Is Increased Diversity in
Genetic Programming Beneficial? An Analysis of Lineage Selection. Ph.D. thesis,
University of Nottingham, UK (February 2004)

2. Doucette, J., Heywood, M.: Novelty-based fitness: An evaluation under the santa
fe trail. Genetic Programming, 50–61 (2010)

3. Georgiou, L., Teahan, W.J.: jge - a java implementation of grammatical evolu-
tion. In: 10th WSEAS International Conference on Systems, Athens, Greece, pp.
534–869 (2006)

4. Georgiou, L., Teahan, W.J.: Grammatical evolution and the santa fe trail problem.
In: International Conference on Evolutionary Computation (ICEC), pp. 10–19.
SciTePress, Valencia (2010)

5. Gomes, J.C., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems
with novelty search. CoRR abs/1304.3362 (2013)

6. Gonçalves, I., Silva, S.: Experiments on controlling overfitting in genetic program-
ming. In: 15th Portuguese Conference on Artificial Intelligence (EPIA 2011) (2011)

7. Kushchu, I.: Genetic programming and evolutionary generalization. IEEE Trans-
actions on Evolutionary Computation 6(5), 431–442 (2002)

8. Lehman, J., Stanley, K.: Exploiting open-endedness to solve problems through
the search for novelty. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.)
Artificial Life XI: Proceedings of the Eleventh International Conference on the
Simulation and Synthesis of Living Systems, pp. 329–336. MIT Press, Cambridge
(2008)

9. Lehman, J., Stanley, K.O.: Efficiently evolving programs through the search for
novelty. In: Pelikan, M., Branke, J. (eds.) GECCO, pp. 837–844. ACM (2010)

46 P. Urbano, E. Naredo, and L. Trujillo

10. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary Computation 19(2), 189–223 (2011)

11. Li, J., Storie, J., Clune, J.: Encouraging creative thinking in robots improves their
ability to solve challenging problems. In: Proceedings of the 2014 Conference on
Genetic and Evolutionary Computation, GECCO 2014, pp. 193–200. ACM (2014)

12. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary
robotics: An empirical study. Evolutionary Computation 20(1), 91–133 (2012)

13. Naredo, E., Trujillo, L.: Searching for novel clustering programs. In: GECCO, pp.
1093–1100 (2013)

14. Naredo, E., Trujillo, L., Mart́ınez, Y.: Searching for novel classifiers. In: Krawiec,
K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS,
vol. 7831, pp. 145–156. Springer, Heidelberg (2013)

15. Nicoară, E.S.: Mechanisms to avoid the premature convergence of genetic algo-
rithms. Petroleum - Gas University of Ploiesti Bulletin, Mathematics LXI(1) (2009)

16. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evolutionary Compu-
tation 5(4), 349–358 (2001)

17. Urbano, P., Loukas, G.: Improving grammatical evolution in santa fe trail using
novelty search. In: Advances in Artificial Life, ECAL, pp. 917–924 (2013)

18. Velez, R., Clune, J.: Novelty search creates robots with general skills for explo-
ration. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Com-
putation, GECCO 2014, pp. 737–744. ACM (2014)

19. Wilensky, U.: Netlogo, Evanston, IL: Center for Connected Learning and
Computer-Based Modeling (1999), http://ccl.northwestern.edu/netlogo

http://ccl.northwestern.edu/netlogo

	Generalization in Maze Navigation using Grammatical Evolution and Novelty Search
	1
Introduction
	2
Grammatical Evolution
	3
Novelty Search
	4
Related Work
	5
Maze Navigation Experiments
	6
Results
	6.1
Results and Analysis for a Maximal of 100 Moves
	6.2
Results and Analysis for a Maximal of 500 Moves

	7
Conclusions and Future Work

