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Abstract. This paper proposes a new approach to cope with multi-
objective optimization problems in presence of noise. In the first place,
since considering the worst-case performance is important in many real-
world optimization problems, a solution is evaluated based on the upper
bounds of respective noisy objective functions predicted statistically by
multiple sampling. Secondary, a rational way to decide the maximum
sample size for the solution is shown. Thirdly, to allocate the computing
budget of a proposed evolutionary algorithm only to promising solutions,
two pruning techniques are contrived to judge hopeless solutions only by
a few sampling and skip the evaluation of the upper bounds for them.
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1 Introduction

Many real-world Multi-objective Optimization Problems (MOPs) have more
than one objective function contaminated by noise. The presence of noise leads
to different results for repeated evaluations of the same solution. Therefore, for
solving Multi-Noisy-objective Optimization Problems (MNOPs), various Multi-
Objective Evolutionary Algorithms (MOEAs) have also been reported. The goal
of those MOEAs is to produce a set of distributed solutions that are not only
of high quality, but also robust. However, there are many possible notations
of robustness. Even among them, the worst-case performance is important in
particular if the decision maker is very risk averse, or if the stakes are high.

This paper thinks about a new class of MNOPs in which the predicted upper
bounds of respective noisy objective functions are minimized simultaneously. The
predicted upper bounds of noisy objective functions provide a proper criterion
to measure the worst-case performance. However, the multiple sampling of every
solution to predict the upper bounds statistically is still expensive. Therefore,
a novel MOEA based on Differential Evolution (DE) [1] is proposed for solving
the new class of MNOPs effectively. In order to examine as many solutions as
possible within a limited number of function evaluations, the proposed MOEA
uses two pruning techniques, which are called U-cut and C-cut respectively, to
judge hopeless solutions only by a few sampling and skip their evaluations.
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2 Related Work on Multi-Noisy-objective Optimization

To date, a number of methods including various MOEAs have been reported to
solve MNOPs [2]. As stated above, the goal of those methods is to produce a
set of distributed solutions that are not only of high quality, but also robust.
There are many possible notations of robustness, including a good expected
performance, a good worst-case performance, a low variability in performance,
or a large range of disturbance still leading to acceptable performance [3].

In order to evaluate the good expected performance for a solution, averaging
over multiple samples is a most fundamental approach. That is because it is
applicable even if the properties of uncertainties are completely unknown [4,5].
On the other hand, some assumptions on the probability distribution of objec-
tive function values are often introduced into the problem formulation, namely,
a normal distribution with constant variance [6,7,8], a normal distribution with
variable variance [9,10], a uniform distribution [11], and so on. Thereby, statis-
tical approaches such as Probabilistic dominance [6] can be used to compare
two uncertain solutions. Incidentally, for the case that the objective functions
are distributed normally with a constant variance, learning algorithms have also
been reported to estimate the constant variance during the optimization [7].

In order to evaluate the worst-case performance for a solution, the concept
of min-max robustness is introduced into the problem formulation. Thereby, the
worst value of each objective function is found by the multiple sampling of the
same solution [12]. Another interpretation of the uncertainty in MOPs is based
on scenarios instead of noise. The objective function values for a given solution
depend on scenarios. A set of objective function values for all possible scenarios
is considered. Then the worst-case performance for the solution is obtained as
a set of non-dominated objective function values by solving an inversed MOP
[13,14]. The objective function values of a solution for all possible scenarios can
be also depicted as a polygon in the objective space. Therefore, the worst-case
performance of the solution is represented deterministically as a set of extremal
points of the polygon. For finding those extremal points one by one, a single
objective optimization algorithm is used repeatedly [15].

It can be seen that the previous work that addresses the worst-case perfor-
mance in MNOPs is relatively limited. Moreover, to the best of our knowledge,
the statistical approach based on the predicted upper bounds of noisy objective
functions has not yet been reported. Because it is impossible to find the worst
value of a stochastic objective function in a finite number of samples, we think
that the statistical approach proposed in this paper is practically useful.

3 Problem Formulation

3.1 Noisy-objective and Prediction Interval

Let x = (x1, · · · , xj , · · · , xD) denote a vector of decision variables xj ∈ � that
can be changed by an algorithm. The decision vector x ∈ �D is often referred
to as a solution. An objective vector f (x) = (f1(x), · · · , fm(x), · · · , fM (x))
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depending on a solution x ∈ �D is composed of M (M ≥ 2) objective functions
fm(x) ∈ �, m ∈ IM = {1, · · · , M}. The objective vector f(x) is minimized
in MOPs. Now, we assume that each objective function fm(x) is contaminated
with noise in MNOPs. Therefore, every time a solution x ∈ �D is evaluated, a
different objective vector may be returned. Let fn

m(x) ∈ �, n ∈ IN = {1, · · · , N}
be observed values of fm(x), which are distributed normally as

fn
m(x) ∼ N (μm(x), σm(x)2) = N (fm(x), σm(x)2), (1)

where the mean μm(x) = fm(x), m ∈ IM and the variance σm(x)2, m ∈ IM
are mutually independent functions that depend on the solution x ∈ �D.

Because the mean μm(x) and the variance σm(x)2 in (1) are usually unknown,
we have to estimate those values, respectively, by the sample mean and the
unbiased variance. From a sample set {f1

m(x), · · · , fn
m(x), · · · , fN

m (x)} of an
objective function fm(x) for x ∈ �D, the sample mean is calculated as

fm(x) =
1

N

N∑

n=1

fn
m(x). (2)

The unbiased variance is also calculated from the sample set and (2) as

sm(x)2 =
1

N − 1

N∑

n=1

(fn
m(x)− fm(x))2. (3)

By using fm(x) and sm(x)2 instead of μm(x) and σm(x)2 respectively, the
normal distribution in (1) is approximated by Student’s t-distribution. We have
already obtained the sample set {fn

m(x) ∈ � | n ∈ IN} of size N . Let fN+1
m (x)

be the (N+1)-th sample, or the future observation of fm(x). Then the following
statistic yields Student’s t-distribution with N − 1 degrees of freedom [16]:

fN+1
m (x)− fm(x)

sm(x)

√
1 +

1

N

∼ T (N − 1). (4)

Let α (0 < α ≤ 0.05) be a significance level. The one-side prediction interval
in which the future observation fN+1

m (x) will fall is derived from (4) as

−∞ < fN+1
m (x) ≤ fm(x) + t(N − 1, α) sm(x)

√
1 +

1

N
= fU

m(x), (5)

where t(N−1, α) is the α-quantile of Student’s t-distribution with N−1 degrees
of freedom. The upper bound of the prediction interval is denoted by fU

m(x).
The probability of the future observation fN+1

m (x) of the noisy objective func-
tion fm(x) falling in the prediction interval shown in (5) is

P(fN+1
m (x) ≤ fU

m(x)) = 1− α. (6)

On the other hand, the probability that the future observation fN+1
m (x)

doesn’t fall in the prediction interval in (5) is very small such as

P(fU
m(x) ≤ fN+1

m (x)) = α. (7)
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3.2 Multi-Noisy-objective Optimization Problem

Let {fn(x) = (fn
1 (x), · · · , fn

m(x), · · · fn
M (x)) | n ∈ IN} be a sample set of an

objective vector f(x) ∈ �M depending on a solution x ∈ �D. From (2), (3),
(5), and the sample set {fn(x) ∈ �M | n ∈ IN} of size N , we can predict
the upper bound fU (x) ∈ �M of the future observation fN+1(x) ∈ �M . We
also suppose that each of decision variables xj ∈ �, j ∈ ID = {1, · · · , D} is
limited to the range between the lower xL

j and the upper xU
j bounds. Thereby,

a Multi-Noisy-objective Optimization Problem (MNOP) is formulated as
[
minimize fU (x) = (fU

1 (x), · · · , fU
m(x), · · · , fU

M (x)),

subject to x = (x1, · · · , xj , · · · , xD) ∈ X,
(8)

where X = {x ∈ �D | ∀ j ∈ ID : xL
j ≤ xj ≤ xU

j } is called the decision space.

Furthermore, F = {fU (x) ∈ �M | x ∈ X} is called the objective space. In order
to simplify the notation in this paper, we will sometimes use an objective vector
fU (x) ∈ F to represent a corresponding solution x ∈ X, and vice versa.

Definition 1. A vector v = (v1, · · · , vm, · · · , vM ) ∈ �M is said to dominate
the other v′ ∈ �M and denoted as v 	 v′, if the following condition is true:

(∀m ∈ IM : vm ≤ v′m) ∧ (∃n ∈ IM : vn < v′n). (9)

Definition 2. A vector v = (v1, · · · , vM ) ∈ �M is said to weakly dominate the
other v′ ∈ �M and denoted as v � v′, if the following condition is true:

∀m ∈ IM : vm ≤ v′m. (10)

From (6), the probability of fN+1(x) weakly dominating fU (x) is

P(fN+1(x) � fU (x)) =

M∏

m=1

P(fN+1
m (x) ≤ fU

m(x)) = (1− α)M . (11)

From (7), the probability of fU (x) weakly dominating fN+1(x) is

P(fU (x) � fN+1(x)) =
M∏

m=1

P(fU
m(x) ≤ fN+1

m (x)) = αM . (12)

3.3 Selection of Sample Size

For calculating an objective vector fU (x) in (8), a solution x ∈ X needs to be
evaluated N times. Sampling size selection is actually a burden to balance the
quality of the objective vector fU (x) with the computational overhead.

We employ a rational way to determine an appropriate sample size N from
the accuracy of the unbiased variance sm(x)2 in (3). The both-side confidence
interval of the variance σm(x)2 appeared in (1) is given as follows [16]:

N − 1

χ2(N − 1, α/2)
sm(x)2 ≤ σm(x)2 ≤ N − 1

χ2(N − 1, 1− α/2)
sm(x)2, (13)
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where χ2(N − 1, α/2) and χ2(N − 1, 1 − α/2) are the α/2-quantile and the
(1− α/2)-quantile of the χ2-distribution with N − 1 degrees of freedom.

Let δ (δ > 1) be a tolerance for the ratio of the upper bound to the lower
bound of the confidence interval in (13). Thereby, the ratio is limited as

χ2(N − 1, α/2)

χ2(N − 1, 1− α/2)
≤ δ. (14)

From the condition in (14) and the Fisher’s approximation of χ2-distribution
[17], we decide a sample size N for a given tolerance δ (δ > 1) as follows:

N ≥ 1

2

(
(1 +

√
δ) zα/2√

δ − 1

)2

+
3

2
, (15)

where zα/2 is the α/2-quantile of the standard normal distribution: N (0, 1). The
sample size N increases quickly as we attempt to reduce the tolerance δ.

4 Differential Evolution for MNOP

If we calculate the objective vector fU (x) in (8) from the sample set of size N
for every examined solution x ∈ X, we can apply conventional MOEAs, such as
NSGA-II [18] and DEMO [19], to MNOP without modification. In order to cope
with MNOP, we select DEMO as the basic MOEA for its simplicity in coding,
fewer control parameters, good accuracy, and fast speed convergence [5].

Algorithm 1 provides the pseudo-code of DEMO applied to MNOP. First
of all, an initial population P ⊂ X of size NP is generated randomly. There-
after, the objective vector fU (xi) is evaluated for each xi ∈ P from a sample
set {fn(xi) | n ∈ IN} of size N . Every solution xi ∈ P , i = 1, · · · , NP is
chosen to be the target vector xi in turn. By using a basic strategy named
“DE/rand/1/exp” [1], a new trial vector u ∈ X is generated from the target
vector xi ∈ P and other solutions selected randomly in P at the 7th line.

The search efficiency of DE depends on the control parameters, namely the
scale factor SF and the crossover rate CR, which are used in the strategy. Thus,
we introduce a self-adapting mechanism of them [20] into DEMO. A different set
of parameter values SF,i and CR,i are assigned to each xi ∈ P , i = 1, · · · , NP .
The strategy generates u from xi ∈ P by using SF and CR decided as

SF =

{
0.1 + rand1[0, 1] 0.9, if rand2[0, 1] < 0.1,

SF,i, otherwise,
(16)

CR =

{
rand3[0, 1], if rand4[0, 1] < 0.1,

CR,i, otherwise,
(17)

where randk[0, 1] ∈ [0, 1] denotes a uniformly distributed random number.
The objective vector fU (u) is evaluated for the trial vector u from a sample

set {fn(u) | n ∈ IN} of size N at the 8th line. In lines 9-15, the trial vector u
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Algorithm 1. DEMO applied to MNOP

1: P := Generate Initial Population(NP );
2: for i := 1 to NP do
3: fU (xi) := Predict Upper Bound(fn(xi), n ∈ IN);
4: end for
5: repeat
6: for i := 1 to NP do
7: u := Strategy(xi ∈ P ); /* Generate a new trial vector u ∈ X */
8: fU (u) := Predict Upper Bound(fn(u), n ∈ IN );
9: if fU (u) � fU (xi) then
10: xi := u; /* Replace xi ∈ P by u. */
11: else
12: if fU (xi) � fU (u) then
13: P := P ∪ {u}; /* Add u to P . Thus, |P | > NP holds. */
14: end if
15: end if
16: end for
17: P := Truncation Method#1(P , NP ); /* |P | = NP holds. */
18: until a termination condition is satisfied;
19: Output the non-dominated solution set P̌ ⊆ P ;

is compared to the target vector xi ∈ P . If fU (u) weakly dominates fU (xi), u
replaces xi. However, when they are non-dominated each other, u is added to
P . Otherwise, u is discarded. As a result, if u survives, the control parameters
SF and CR used for u are assigned to the new solution u ∈ P . The number of
solutions in P becomes NP ≤ |P | ≤ 2NP at the 17th line. In order to return
the population size to NP , the following truncation method is applied to P .

[truncation method #1]

Step 1 Decide the non-domination rank [18] for each solution xi ∈ P and then
select NP solutions from P in the ascending order on the rank.

Step 2 If some solutions need to be selected from Pr ⊆ P with the same rank,
evaluate ε-DOM criterion [21] for xi ∈ Pr. Thereafter, select the necessary
number of solutions from Pr in the descending order on the criterion.

For sorting non-dominated solutions, some secondary criteria that can replace
the crowding-distance [18] have been reported. From the result of comparative
study, ε-DOM was the best in the average among examined secondary criteria
[21]. Therefore, ε-DOM is adopted in Step 2 of the truncation method #1.

5 Proposed Approach to MNOP

Multiple sampling of every examined solution is very expensive in most of real-
world optimization problems. To allocate the computing budget of DEMO only
to promising solutions of MNOP, we propose two novel pruning techniques of
hopeless solutions, which are called U-cut and C-cut respectively. First of all, we
restrict the value of each fU

m(x) in (8) to be less than γm ∈ � because
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1. in real-world applications, every solution has to meet absolute standards,
2. a part of the Pareto-front is usually sufficient for decision making,
3. expensive evaluation may be omitted for unacceptable solutions.

Let γ = {γ1, · · · , γM} ∈ �M be a cutoff point specified by the designer.
A Multi-Noisy-Hard-objective Optimization Problem (MNHOP) is formulated
as [

minimize fU (x) = (fU
1 (x), · · · , fU

m(x), · · · , fU
M (x)),

subject to (x ∈ X) ∧ (fU (x) � γ),
(18)

where a solution x ∈ X is feasible if the solution satisfies all constraints. The
feasible space G ⊆ F is defined as G = {fU (x) ∈ F | ∀m ∈ IM : fU

m(x) ≤ γm}.

Algorithm 2. DEUC applied to MNHOP

1: P := Generate Initial Population(NP );
2: for i := 1 to NP do
3: if ∀n ∈ IN : fn(xi) � γ then
4: g(xi) := (fU (xi) := Predict Upper Bound(fn(xi), n ∈ IN ));
5: else
6: g(xi) := f n̂(xi); /* ∃n̂ ∈ IN : f n̂(xi) � γ */
7: end if
8: end for
9: repeat
10: for i := 1 to NP do
11: u := Strategy(xi ∈ P ); /* Generate a new trial vector u ∈ X */
12: if ∀n ∈ IN : (g(xi) � fn(u)) ∧ (fn(u) � γ) then
13: g(u) := (fU (u) := Predict Upper Bound(fn(u), n ∈ IN ));
14: else
15: g(u) := f n̂(u); /* ∃n̂ ∈ IN : (g(xi) 	 f n̂(u)) ∨ (f n̂(u) � γ) */
16: end if
17: if g(u) � g(xi) then
18: xi := u; /* Replace xi ∈ P by u. */
19: else
20: if g(xi) � g(u) then
21: P := P ∪ {u}; /* Add u to P . Thus, |P | > NP holds. */
22: end if
23: end if
24: end for
25: P := Truncation Method#2(P , NP , η); /* |P | = NP holds. */
26: until a termination condition is satisfied;
27: Output the non-dominated feasible solution set Q̌ ⊆ Q ⊆ P ;

Differential Evolution with U-cut & C-cut (DEUC) is an extended DEMO
and applied to MNHOP in (18) instead of MNOP in (8). Algorithm 2 provides
the pseudo-code of DEUC. The proposed DEUC evaluates solutions xi ∈ P by
the fitness vectors g(xi) ∈ �M instead of the objective vectors fU (xi) ∈ �M .
The fitness vectors are initialized for xi ∈ P , i = 1, · · · , NP in lines 2-8 as
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g(xi) =

{
fU (xi) = (fU

1 (xi), · · · , fU
M (xi)), if ∀n ∈ IN : fn(xi) � γ,

f n̂(xi) = (f n̂
1 (xi), · · · , f n̂

M (xi)), otherwise,
(19)

where (∀n ∈ {1, · · · , n̂− 1} ⊂ IN : fn(xi) � γ) ∧ (f n̂(xi) � γ) holds.
DEUP generates the trial vector u ∈ X at the 11th line in the same way with

DEMO in Algorithm 1. The fitness vector g(u) of u is evaluated in lines 12-16.
From (11), if g(xi) dominates f n̂(u), g(xi) also dominates fU (u) in short odds.
Therefore, the U-cut based on the upper bounds of objective functions skips
additional sampling of u and set f n̂(u) to g(u). On the other hand, if f n̂(u)
doesn’t dominate γ ∈ �M , u is probably infeasible. Therefore, the C-cut based
on the cut -off point also skips additional sampling of u and set f n̂(u) to g(u).
The objective vector fU (u) is evaluated and substituted for g(u) at the 13th
line only if u is feasible and g(xi) doesn’t dominate every fn(u), n ∈ IN .

The trial vector u is compared to the target vector xi ∈ P in lines 17-23
based on their fitness vectors. The feasibility of solutions doesn’t need to be
considered in the comparison between u and xi ∈ P , because it is proven that
feasible solutions fU (x) ∈ G are not dominated by any infeasible ones [22]:

fU (x) ∈ F ∧ fU (x′) ∈ G ∧ fU (x) � fU (x′) ⇒ fU (x) ∈ G. (20)

In order to return the population size to NP at the 25th line, the following
truncation method #2 is applied to P . The truncation method #2 was proposed
for multi-hard-objective optimization problems in our previous paper [22]. Hard-
objective differs from constrained objective because the former has no conflict
with its constraint. If an objective function fU

m(x) is minimized in MNHOP, its
constraint fU

m(x) ≤ γm will be satisfied sooner or later. Let Q ⊆ P be a set of
feasible solutions defined as Q = {xi ∈ P | fU (xi) ∈ G}. Feasible solutions
xi ∈ Q have priority over infeasible ones in P . For sorting infeasible solutions,
alternative schemes are chosen by a control parameter η (0 ≤ η ≤ 1).

[truncation method #2]

Step 1 If |Q| ≥ NP then apply truncation method #1 to Q ⊆ P .
Step 2 If |Q| < NP then select all feasible solutions xi ∈ Q. Thereafter, the

shortage is selected from the set of infeasible solutions Qc = P \Q as
Step 2.1 If |Q| ≤ η NP then apply truncation method #1 to Qc ⊆ P .
Step 2.2 Otherwise, select the necessary number of solutions xi ∈ Qc ⊆ P in

the ascending order on the violation distance d(xi) ∈ � defined as

d(xi) =

M∑

m=1

max{0, (gm(xi)− γm)}. (21)

6 Numerical Experiments

6.1 Experimental Setup

In most real-world MNOPs, the higher objective function values are usually
expected to have more errors than lower ones [10]. Therefore, by using a deter-
ministic function fm(x) ∈ �, the noisy objective function is defined as
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Table 1. Number of obtained solutions

(a) DEMO applied to MNOP

M 2 4 6 8

DTLZ1 85.7 99.9 100.0 100.0
DTLZ2 98.3 100.0 100.0 100.0
DTLZ3 98.7 100.0 100.0 100.0
DTLZ4 98.5 100.0 100.0 100.0
DTLZ5 98.3 100.0 100.0 100.0
DTLZ6 79.7 100.0 100.0 100.0

(b) DEUC applied to MNHOP

M 2 4 6 8

DTLZ1 92.0 100.0 100.0 76.6
DTLZ2 99.0 100.0 100.0 100.0
DTLZ3 99.4 100.0 100.0 63.3
DTLZ4 98.7 100.0 100.0 100.0
DTLZ5 99.0 100.0 100.0 100.0
DTLZ6 95.1 100.0 100.0 100.0

Table 2. Comparison of DEMO and DEPC by Wilcoxon test

(a) Convergence (CM)

M 2 4 6 8

DTLZ1 � � � �
DTLZ2 — � � �
DTLZ3 � � � �
DTLZ4 � � � �
DTLZ5 — � � �
DTLZ6 � � � �

(b) Diversity (MS)

M 2 4 6 8

DTLZ1 � � � �
DTLZ2 — � � �
DTLZ3 � � � �
DTLZ4 — � � —
DTLZ5 — � � �
DTLZ6 � � � �

(c) Hypervolume (Hv)

M 2 4 6 8

DTLZ1 � � � �
DTLZ2 — — — —
DTLZ3 � � � �
DTLZ4 — — — —
DTLZ5 — � — —
DTLZ6 � � � �

fn
m(x) = fm(x) + λm fm(x) εam + κm εbm, (22)

where εam ∼ N (0, 1), εbm ∼ N (0, 1), λm > 0, and κm > 0.
According to a model of noise [10], the noise in (22) is also composed of two

components: variable one λm fm(x) and constant one κm. From the reproductive
property of the normal distribution [16], fn

m(x) is distributed normally as

fn
m(x) ∼ N (fm(x), σm(x)2) = N (fm(x), λ2

m fm(x)2 + κ2
m). (23)

The scalable test MOPs [23] with M objectives are employed for providing
fm(x) in (22) with λm = 0.01 and κm = 0.05, m ∈ IM . From (15), the minimum
sample size N = 40 is calculated for α = 0.05 and δ = 2.5. DEMO is applied to
each instance of MNOP in (8) 30 times. The population size is chosen as NP =
100. As the termination condition, the total number of function evaluations is
limited to 8 × 105. Similarly, DEUC is applied to each instance of MNHOP in
(18), where a cutoff point γ ∈ �M is given for all cases as γm = 2.0, m ∈ IM .
A recommended value η = 0.2 [22] is used for the truncation method #2.

6.2 Results and Discussion

Table 1 compares the average numbers of solutions obtained by DEMO and
DEUC. Because the solutions obtained by DEUC have to be feasible, DEUC
finds fewer solutions than DEMO in two cases: DTLZ1 and DTLZ3 (M = 8).

To evaluate the solutions in Table 1, we use three metrics: 1) Convergence
Measure (CM) of the original test MOPs [23], 2) Maximum Spread (MS) [24],
and 3) Hypervolume (Hv). MS is a metric to evaluate the diversity of solutions.
Hv is a comprehensive metric evaluating both convergence and diversity.
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

(e) DTLZ5 (f) DTLZ6

Fig. 1. Histogram of the number of solutions examined by DEUC

Table 2 compares DEUC with DEMO by using Wilcoxon test about CM, MS,
and Hv: � (�) means that DEUC is significantly better (worse) than DEMO
with risk 1[%]; � (�) means that DEUC is better (worse) than DEMO with risk
5[%]; and “—” means that there is no significant difference between DEUC and
DEMO. From Table 2, DEUC is not defeated by DEMO in CM for all cases. On
the other hand, DEUC can’t beat DEMO in MS. Comparing to DEMO in Hv,
DEUC is not defeated for all cases and significantly better for many cases.

From Table 2(c), DEMO is competitive with DEUC in DTLZ2 and DTLZ4.
However, DEUC defeats DEMO in DTLZ1, DTLZ3, and DTLZ6. Fig. 1 shows
the histogram of the number of solutions examined by DEUC in each problem.
Category #N in Fig. 1 denotes the number of solutions evaluated N = 40 times.
Categories #U and #C denote the numbers of solutions evaluated less than N =
40 times due to U-cut and C-cut respectively, where DEUC applies U-cut to each
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solution before C-cut. Because DEMO evaluates every solution N = 40 times,
the number of examined solutions is always (8× 105)/40 = 2 × 104. Contrarily,
DEUC examines more solutions than DEMO as shown in Fig. 1.

From Fig. 1, both U-cut and C-cut work effectively in DTLZ1, DTLZ3, and
DTLZ6. Especially, C-cut becomes more effective as the number of objective
functions increases. Because a lot of hopeless solutions are evaluated only a few
times due to U-cut and C-cut, the total numbers of solutions examined by DEUC
become very large in those problems. On the other hand, neither U-cut nor C-
cut is effective for the other problems. Especially, U-put doesn’t work when
the number of objective functions is large. Consequently, the total numbers of
examined solutions don’t increase so much in DTLZ2, DTLZ4, and DTLZ5.

7 Conclusion

It is important to consider the worst-case performance for real-world MNOPs.
Therefore, we have predicted statistically the upper bounds of noisy objective
functions from a finite number of samples. In order to omit useless multiple
sampling, we have also proposed an extended DEMO named DEUC that uses
two pruning techniques of hopeless solutions. DEUC was not defeated by DEMO
in all test problems. Besides, DEUC outperformed DEMO in many test problems.
Even though DEUC requires a new control parameter, namely the cutoff point,
an appropriate cutoff point can be decided easily for real-world MNOPs from
specifications or an existing solution. Actually, a sufficient improvement over an
existing solution should be acceptable in real-world applications.

Future work will include an in-depth evaluation of the proposed DEUP on
a broad range of practical MNHOPs with various cutoff points. Furthermore,
handling non-Gaussian noise efficiently remains as an active area of research.
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