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Abstract. Insertion systems are extended to two-dimensional models
that are used to generate picture languages. Insertion rules are defined
in terms of rows and columns. Using picture-insertion rules, we herein
introduce two types of derivations that depend on the position at which
the rules are applied. We obtain the relationships between the classes of
languages generated by picture-insertion systems for each type of deriva-
tion and a number of two-dimensional computing models, such as tiling
systems. Furthermore, we introduce regular control for the derivations in
picture-insertion systems. Finally, we compare the classes of languages
generated by picture-insertion systems with and without regular control.
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1 Introduction

A number of approaches to represent and generate picture languages (two-
dimensional languages), such as tiling systems, automata, regular expressions,
and grammars [11], [5], [9], [1], have been reported. Some of the ideas behind
these approaches are based on concepts related to string languages, and the cor-
responding results are proved which are extended from language properties into
two-dimensional languages.

On the other hand, insertion and deletion systems are computing models that
are based on the field of molecular biology and can characterize any recursively
enumerable language that was originally defined for string languages.

Several methods for generating two-dimensional languages based on insertion
and deletion operations have been proposed [8]. In [2], an array single-contextual
insertion deletion system for two-dimensional pictures (ASInsDelP) was intro-
duced based on DNA computation. With an insertion rule consisting of context-
checking picture u and inserting picture x, a picture αuxuβ is obtained from
a given picture αuβ by replicative transposition operation, which implies that
columns are inserted by the insertion rule.

Computing models based on DNA molecules have evolved and increasingly
complex structures have been introduced. Winfree [13] introduced a tile assembly
model with DNA tile over two-dimensional arrays. A specialized model for DNA
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pattern assembly was proposed in [6] and theory of DNA pattern assembly has
been recently developed.

In this paper, we focus on insertion operations with double context-checking
strings while extending insertion systems from one dimension to two dimensions
and then introduce picture-insertion systems to generate picture languages. The
picture-insertion operation introduced herein is related to the (one-dimensional)
insertion operations of the form (u, x, v) to produce a string αuxvβ from a given
string αuvβ with context uv by inserting a string x between u and v [10].

A derivation proceeds using picture-insertion rules in order to generate arrays.
In one step of the derivation, pictures of the same size are inserted in either every
row or every column. We introduce two modes of applying picture-insertion
rules: alongside mode and independent mode. In the alongside mode, pictures
are inserted in the same column (resp. row) for any row (resp. column). In the
independent mode, there is no restriction as to the position of insertion regarding
rows or columns.

Furthermore, we introduce regular control for the derivations and demon-
strated that the proposed control properly increases the generative powers of
picture-insertion systems.

2 Preliminaries

In this section, we introduce the notation and basic definitions used in this paper.
The basics of formal language theory are available in [11] and [10].

For an alphabet Σ, a picture p is a two-dimensional rectangular array of
elements of Σ. Σ∗∗ (resp. Σ∗) is the set of all pictures (resp. strings) over Σ,
including the empty picture (resp. empty string) λ. A picture language (resp.
language) over Σ is a subset of Σ∗∗ (resp. Σ∗).

For a picture p ∈ Σ∗∗, let �1(p) (resp. �2(p)) be the number of rows (resp.
columns) of p. For a picture p in Σ∗∗, |p| = (m,n) denotes the size of the picture
p with m = �1(p) and n = �2(p). In particular, for a string w in Σ∗, |w| denotes
the length of w. For a string w = a1a2 · · ·an, wT is a vertical string, such as
a1
...
an

. For a picture p with |p| = (m,n), the transposition of p is a picture q with

|q| = (n,m) such that rows and columns of p are interchanged.
For any h ≤ m and k ≤ n, Bh,k(p) is the set of all sub-pictures of p of size

(h, k).
For pictures p and q, the row and column concatenations are denoted by p� q

and p |©q, respectively, which are defined if �2(p) = �2(q) (resp. �1(p) = �1(q))
holds. For k ≥ 0, pk� (resp. pk |©) is the vertical (horizontal) juxtaposition of k
p’s. For picture languages L1 and L2, L1�L2 (resp. L1 |©L2) consists of pictures
p such that p = p1 � p2 (resp. p = p1 |©p2) with p1 ∈ L1 and p2 ∈ L2.

Next, we present a number of two-dimensional computing models. A tile is
a square picture of size (2, 2). For a finite set θ of tiles over alphabet Γ ∪ {#},
LOC(θ) denotes the set {p ∈ Γ ∗∗ | B2,2(p̂) ⊆ θ}, where p̂ is a picture obtained
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by surrounding p with the symbol #. A picture language L over Γ is local if
L = LOC(θ) for some tile set θ.

For alphabets Γ and Σ, a coding ϕ : Γ ∗ → Σ∗ is a morphism such that
for any a in Γ , ϕ(a) ∈ Σ holds. A projection π : Γ ∗ → Σ∗ with Γ ⊇ Σ is a
morphism such that if a is in Σ then π(a) = a, otherwise π(a) = λ.

A tiling system is a tuple T = (Σ,Γ, θ, π), where Σ and Γ are alphabets, θ is
a finite set of tiles over the alphabet Γ ∪ {#}, and π : Γ → Σ is a projection.
A language L(T ) defined by a tiling system T is L(T ) = π(LOC(θ)). Let REC
be the class of picture languages generated by tiling systems.

Based on a pure context-free rule of the form a → α with a ∈ Σ and α ∈ Σ∗ in
one dimension, a pure 2D context-free grammar G = (Σ,Pc, Pr, A) is considered
in [12] , where Σ is an alphabet, Pc = {tci | 1 ≤ i ≤ m}, Pr = {trj | 1 ≤ j ≤ n},
and A ⊆ Σ∗∗ − {λ} is a finite set of pictures over Σ. A column table tci (1 ≤
i ≤ m) is a set of pure context-free rules such that for any two rules a → α,
b → β in tci , |α| = |β| holds. Similarly, a row table trj (1 ≤ j ≤ n) is a set of
pure context-free rules of the form a → αT , a ∈ Σ, α ∈ Σ∗ such that for any
two rules a → αT , b → βT in trj , |α| = |β| holds.

Let P2DCFL be the class of picture languages generated by pure 2D context-
free grammars.

A context-free matrix grammar (G1, G2) consists of two grammars G1 and G2,
where

– G1 = (H1, I1, P1, S) is a context-free grammar,H1 is a finite set of horizontal
nonterminals, I1 = {S1, · · · , Sk} is a finite set of intermediate symbols with
H1 ∩ I1 = ∅, P1 is a finite set of context-free rules, S is the start symbol in
H1,

– G2 = (G21, · · · , G2k), where G2i = (V2i, Σ, P2i, S2i) with 1 ≤ i ≤ k is a
regular grammar, V2i is a finite set of nonterminals with V2i ∩ V2j = ∅ for
i �= j, Σ is an alphabet, P2i is a finite set of regular rules of the form X → aY
or X → a with X,Y ∈ V2i, a ∈ Σ, S2i in V2i is the start symbol.

A regular matrix grammar is a context-free matrix grammar (G1, G2), where
both G1 and G2 are regular grammars. Let CFML (resp. RML) be the class of
picture languages generated by context-free (resp. regular) matrix grammars.

Let us conclude this section by presenting an insertion system for string lan-
guages [10], based on which we introduce a picture-insertion system in the next
section. An insertion system is a tuple γ = (Σ,P,A), where Σ is an alphabet,
P is a finite set of insertion rules of the form (u, x, v) with u, x, v ∈ Σ∗, and A
is a finite set of strings over Σ called axioms.

We write α =⇒ β if α = α1uvα2 and β = α1uxvα2 for some insertion rule
(u, x, v) ∈ P with α1, α2 ∈ Σ∗. The reflexive and transitive closure of =⇒ is
defined as =⇒∗. A language generated by γ is defined as L(γ) = {w ∈ Σ∗ |
s =⇒∗ w, for some s ∈ A}.

Let INS be the class of string languages generated by insertion systems.
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3 Picture-Insertion Systems

We introduce a picture-insertion system with two types of tables consisting of
insertion rules for columns and rows, as follows:

Definition 1. A picture-insertion system is a tuple γ = (Σ, Ic, Ir, A), where Σ
is an alphabet, Ic = {tci | 1 ≤ i ≤ m}, (resp. Ir = {trj | 1 ≤ j ≤ n}) is a finite
set of column (resp. row) tables, and A is a finite set of pictures over Σ.

Each tci (1 ≤ i ≤ m) is a set of C-type picture-insertion rules of the form
(u,w, v) with u, v ∈ Σ∗ and w ∈ Σ+ such that for any two rules (u,w, v) and
(x, z, y) in tci , we have |u| = |x|, |w| = |z|, and |v| = |y|.

Each trj (1 ≤ j ≤ n) is a set of R-type picture-insertion rules of the form(
u,
w,
v

)
with uT , vT ∈ Σ∗ and wT ∈ Σ+ such that for any two rules

(
u,
w,
v

)
and(

x,
z,
y

)
in trj , we have |u| = |x|, |w| = |z|, and |v| = |y|.

Intuitively, a C-type (resp. R-type) rule refers to an insertion rule for a row
(resp. column), then widen the column (resp. row) of pictures.

Next, we define two methods for applying insertion rules for pictures in order
to obtain arrays.

Definition 2. For pictures p1 and p2 in Σ∗∗, we say that p1 derives p2 denoted
by p1 =⇒a p2 with alongside mode if p2 is obtained from p1 by inserting pictures
with the same column (resp. row) for each row (resp. column) using C-type (resp.
R-type) insertion rules of some tci (resp. trj ) in Ic (resp. Ir).

In a graphical representation of C-type picture-insertion rules, we have

=⇒a

α1

αk′

αk

u1 v1 β1 α1

αk′

αk

u1 v1 β1

· · ·

· · ·

· · ·

· · ·
uk′

uk

· · ·

· · · · · ·

· · ·
vk′

vk

βk′

βk

uk′

uk

· · ·
w1

· · · · · ·
wk′

wk

· · ·· · ·

· · · · · · · · · · · · · · ·
vk′ βk′

βkvk

We note that different C-type (resp. R-type) insertion rules might be applied
for rows (resp. columns) in the process of p1 =⇒a p2.

Definition 3. For pictures p1 and p2 in Σ∗∗, we say that p1 derives p2 denoted
by p1 =⇒i p2 with the independent mode if p2 is obtained from p1 by inserting
pictures for each row (resp. column) using C-type (reps. R-type) insertion rules
of some tci (resp. trj ) in Ic (resp. Ir).

In a graphical representation of C-type picture-insertion rules, we have
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=⇒i

α1

αk′

αk

u1 v1 β1 α1

αk′

αk

u1 v1 β1

· · ·

· · ·

· · ·

· · ·
uk′

uk

· · ·

· · · · · ·

· · ·
vk′

vk

βk′

βk

uk′

uk

· · ·
w1

· · · · · ·
wk′

wk

· · ·· · ·

· · · · · · · · · · · · · · ·
vk′ βk′

βkvk

Different C-type (resp. R-type) insertion rules might be applied to rows (resp.
columns) in the process of p1 =⇒i p2.

Unlike the alongside mode in Definition 2, there is no restriction regarding the
position at which to apply picture-insertion rules in the process of p1 =⇒i p2.

The reflexive and transitive closure of =⇒a (resp. =⇒i) is defined as =⇒∗
a

(resp. =⇒∗
i ). A picture language generated by γ = (Σ, Ic, Ir, A) using the along-

side mode (resp. independent mode) is defined as La(γ) = {w ∈ Σ∗∗ | s =⇒∗
a w,

for some s ∈ A} (resp. Li(γ) = {w ∈ Σ∗∗ | s =⇒∗
i w, for some s ∈ A}).

Let INPA (resp. INPI) be the class of picture languages generated by
picture-insertion systems using the alongside mode (resp. independent mode).

4 Examples

In the following, we present examples of picture-insertion systems.

Example 4. Consider a picture-insertion system γ1 = (Σ, Ic, Ir, A), where Σ =

{a, b}, Ic = {tc1} with tc1 = {(λ, ab, λ)}, Ir = {tr1} with tr1 = {
(
a,
a,
λ

)
,

(
b,
b,
λ

)
},

A = {λ}.
The picture language La(γ1) generated by γ1 using the alongside mode is

{wk� | w is Dyck’s string language over {a, b}, k ≥ 0 }. For example, the
following pictures are generated using the alongside mode:

ab, ab
ab ,

ab
ab
ab

, aabb
aabb ,

aabb
aabb
aabb

, aabbab
aabbab ,

aabbab
aabbab
aabbab

,
aabbabab
aabbabab
aabbabab
aabbabab

.

From the R-type insertion rules in tr1 and the definition of the alongside
mode, all of the row strings are the same.

On the other hand, we consider the picture language Li(γ1) generated by γ1
using the independent mode. For example, the following pictures are generated
using the independent mode:

ab, ab
ab ,

ab
ab
ab

, aabb
abab ,

aabb
abab
abab

, aaabbb
ababab ,

aaabbb
ababab
ababab

,
aaaabbbb
aaaabbbb
abababab
abababab

.

Any picture generated by γ1 using the independent mode satisfies the condi-
tion that any row must consist of a Dyck language over Σ. From the definition
of the independent mode, Li(γ1) includes a picture with different row strings.

Furthermore, we have the inclusion La(γ) ⊂ Li(γ).
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As shown in Example 4, picture-insertion systems are two-dimensional gener-
alizations of insertion systems in linear cases. Actually, for the case with Pr = ∅,
the picture-insertion system generates strings using both the alongside mode and
the independent mode. Then, a Dyck language is generated, as noted in Lemma
7. Note that a Dyck language is not regular (in a one-dimensional sense), which
implies that both INPA and INPI include a picture language which is not
regular.

Example 5. Consider a picture-insertion system γ2 = (Σ, Ic, Ir, A), where
Σ = {a, b, d, e},
Ic = {tc1, tc2},
Ir = {tr1, tr2},
tc1 = {(u, ab, λ) | u ∈ {a, b}} ∪ {(u, de, λ) | u ∈ {d, e}},
tc2 = {(λ, ab, v) | v ∈ {a, b}} ∪ {(λ, de, v) | v ∈ {d, e}},

tr1 = {
(
u,
w,
λ

)
| w = (ad)T , u ∈ {a, d}} ∪ {

(
u,
w,
λ

)
| w = (de)T , u ∈ {d, e}},

tr2 = {
(
λ,
w,
v

)
| w = (be)T , u ∈ {b, e}} ∪ {

(
λ,
w,
v

)
| w = (be)T , v ∈ {b, e}},

A = { ab
de }.

The following are examples of the pictures generated by γ using the alongside
mode:

aabb
ddee ,

aaabbb
dddeee ,

abab
dede ,

ababab
dedede ,

aabb
aabb
ddee
ddee

,
abab
dede
abab
dede

.

Note that the pictures generated by γ2 using the alongside mode are Chinese
boxes, which are nested boxes with two-dimensional Dyck analogue structures.
The symbol a (resp. b, d, and e) implies the upper left (resp. upper right, lower
left, and lower right) corner of the box.

5 Properties and Comparisons of Picture-Insertion
Systems Using the Alongside Mode

We first consider picture-insertion systems using the alongside mode and obtain
the following result.

Lemma 6. The class of INPA is not closed under the operations of union,
column catenation, or row catenation. The class is closed under transposition.

Proof. Consider the picture language La(γ1) in Example 4 and the picture lan-
guage L1, which is obtained by replacing b with d in La(γ1).

Suppose that there is a picture-insertion system γ′ = ({a, b, d}, P ′
c, P

′
r, A

′)
such that La(γ1) ∪ L1 = La(γ

′). For infinite pictures over {a, b} in La(γ1),
there is a picture-insertion rule (u,w, v) with |w|a = |w|b. Similarly, for L1, we
have a picture-insertion rule (x, z, y) with |z|a = |z|d. In order to generate only
pictures in La(γ1) ∪ L2, any picture-insertion rule (u,w, v) with |w|a = |w|b
satisfies |uv|b > 0. Otherwise, γ′ generates a picture p which satisfies |p|b > 0
and |p|d > 0.
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Similarly, for infinite pictures over {a, d} in L1, a picture-insertion rule (x,
z, y) with |z|a = |z|d satisfies |xy|d > 0.

Let n = max{|u|, |v|, |w| | (u,w, v) be a picture-insertion rule for γ′}, �a =
max{�1(α) | α ∈ A′}, and N > n + �a. Consider the string aNabaNb2N in
L1 ⊂ La(γ

′). There is no way to generate the string by a picture-insertion rule
(u,w, v) with |uv|b > 0 and |w|a = |w|b due to the substring ab between aN and
aN .

The non-closure property under column catenation and row catenation can
be determined by considering La(γ1)� L2 and La(γ1) |©L2, respectively.

The closure property under transposition can be determined if we substitute
column (resp. row) tables with row (resp. column) tables by replacing the rule

(u,w, v) (resp.

(
uT ,
wT ,
vT

)
) with

(
uT ,
wT ,
vT

)
(resp. (u,w, v)) and consider transposi-

tion axiom. ��

From the construction of tiling systems, defined by the projection of local
languages, tiling systems are considered to be two-dimensional generalizations
of one-dimensional regular languages. In one-dimensional cases, for the class of
regular languages denoted by REG, the proper inclusion REG ⊂ INS holds,
where INS is the class of languages generated by insertion systems in one dimen-
sion. In contrast to the one-dimensional cases, for the class of picture languages
generated by tiling systems denoted by REC, we obtain the following result.

Lemma 7. The class of INPA is incomparable with the class of REC.

Proof. Consider a picture-insertion system γ2 = (Σ, Ic, Ir, A), where Σ = {a, b},
Ic = {tc1} with tc1 = {(λ, ab, λ)}, Ir = ∅, A = {λ} derived from Example 4.

The class of REC coincides with that of regular languages if restricted to one
dimension. A language La(γ2) in a one-dimensional language is a Dyck language
which is not regular. Therefore, there is a picture-insertion system γ2 such that
La(γ2) is not generated by a tiling system.

Consider a picture language Ls over {a, b}, where Ls consists of squares, the
positions in the main diagonal of which are covered by a and the remaining
squares are covered by b. From [11], Ls is in the class of REC.

Suppose that there is a picture-insertion system γ such that Ls = La(γ). For
a picture w in {a, b}∗∗, there is a derivation w =⇒a w′ using the C-type insertion
rule such that |w| = (m,m) and |w′| = (m,m′) with m′ > m. For the picture w′

in Ls, |w′| = (m,m′) with m �= m′ holds. Thus, we have a contradiction.
Thus, the lemma is proved. ��

We compare the class of INPA to the class of P2DCFL as follows.

Lemma 8. The class of INPA is incomparable with the class of P2DCFL.

Proof. Consider a pure 2D context-free grammar G = (Σ,Pc, Pr, { aba
ded }), where

Σ = {a, b, d, e}, Pc = {tc}, Pr = {tr} with tc = {b → aba, e → ded} and

tr = {a → a
d , b → b

e } [12].
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Suppose that there is a picture-insertion system γ = (Σ, Ic, Ir, A) such that
L(G) = La(γ). Any row in L(G) consists of strings such that anban or dnedn

with n ≥ 1.
There is no picture-insertion rule that can generate these strings, which can be

proved by contradiction. Briefly, a picture-insertion rule (u,w, v) with w ∈ {a}∗
(resp. w ∈ {d}∗) needed for infinitely long anban (resp. dnedn) generates a string
aibaj (resp. diedj) with i �= j.

On the other hand, consider a picture-insertion system γ3 = ({a, b}, Ic3, Ir3,
A3) such that Ic3 = {tc3} with tc3 = {(ab, ab, λ)}, Ir3 = {tr3} with tr3 =

{
(
a,
a,
λ

)
,

(
b,
b,
λ

)
}, A3 = {a3b3ab, a3b3}. A picture language La(γ3) consists of

pictures such that (a3b3(ab)n)m� with m ≥ 1, n ≥ 0. From [7][12], there is no
pure 2D context-free grammar which generates La(γ3).

Thus, the lemma is proved. ��
In the following, we consider two types of matrix grammars. First, from the

picture language La(γ2) in Lemma 7 and the fact that a Dyck language is not
regular in a one-dimensional sense, we obtain the following result.

Corollary 9. There is a picture language in the class of INPA which is not in
the class of RML.

Lemma 10. Every picture language in the class of RML is a coding of a lan-
guage in the class of INPA.

Proof. (Outline)
The proof is based on the idea that in a one-dimensional sense, the class of
regular languages REG is included in the class of insertion systems INS [10].

Consider a regular matrix grammar (G1, G2), where G1 = (H1, I1, P1, S) and
G2 = (G21, · · · , G2k) with G2i = (V2i, Σ, P2i, S2i) (1 ≤ i ≤ k) are regular.

For regular languages L(G1) and L(G2i) (1 ≤ i ≤ k), there are picture-
insertion systems γ′

1 = (I1, P1, A1), γ
′
2i = (Σ,P2i, A2i) and integers n1, n2i such

that L(G1) = L(γ′
1), L(G2i) = L(γ′

2i), and the axiom in γ′
1 (resp. γ′

2i) is no more
than n1 − 1 (resp. n2i − 1). (See [10] for more details about how to define the
integers n1 and n2i.)

Let N be the least common multiple of n2i (1 ≤ i ≤ k).
We construct a picture-insertion system with the additional symbols γ =

(Σ ∪ {S2i | 1 ≤ i ≤ k} ∪ {#}, Ic, Ir, A) and a coding ϕ : (Σ ∪ {S2i | 1 ≤ i ≤
k} ∪ {#})∗ → Σ∗ with ϕ(a) = a for a ∈ Σ and ϕ(a) = λ otherwise.

Roughly speaking, the regular language L(G1) is simulated by C-type picture-
insertion rules in γ and the regular language L(G2i) is simulated by R-type
picture-insertion rules in γ. Finally, the coding ϕ deletes the redundant symbols
S2i (resp. #) required to simulate G2i (resp. G1).

A finite set of pictures A satisfies A = { w
#n | w ∈ A1, |w| = n}. We construct

C-type picture-insertion rules (u,w, λ) and (#m,#n, λ), where (u,w, λ) is in P1

concerning γ′
1 and |u| = m, |w| = n. The symbol # lies in the bottommost of

each picture.
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We construct R-type picture-insertion rules

– R1-type:

(
S2i,
z2i,
#

)
, where z2i ∈ L(G2i), �1(z2i) ≤ N − 1

– R2-type:

(
u2i,
w2i,
λ

)
, �1(u2i) ≤ N − 1, 1 ≤ �1(w2i) ≤ N derived from P2i.

Let Ic (resp. Ir) consists of column (resp. row) tables, where each table in-
cludes all the C-type (resp. R-type) picture-insertion rules with the same length
of triplet.

By the context-checking of picture-insertion rules, concerning R-type picture-
insertion rules, the R1-type rules are applied first and only once. Then, R2-type
picture-insertion rules are used to simulate L(G2i).

The topmost row generated byG1 can be simulated by C-type picture-insertion
rules, and each column can be simulated by R-type picture-insertion rules. Fi-
nally, we eliminate the symbols S2i and # using the coding ϕ. ��

Corollary 11. The class of INPA is incomparable with the class of CFML.

Proof. In the one-dimensional case, the class of insertion systems is incomparable
with that of context-free languages. Thus, the corollary holds for these one-
dimensional language relationships. ��

6 Properties and Comparisons of Picture-Insertion
Systems Using the Independent Mode

Next, we consider picture-insertion systems using the independent mode and
obtain the following results.

Lemma 12. The class of INPI is not closed under the operations of union,
column catenation, or row catenation. The class is closed under transposition.

Proof. Consider the picture languages Li(γ1) in Example 4 and the picture lan-
guage L4 which is obtained by placing d in the place of b as for Li(γ1).

The proof is similar to the proof for Lemma 6 for picture-insertion systems
using the alongside mode. ��

For the generative powers, in the following, we compare picture-insertion sys-
tems with tiling systems.

Lemma 13. The class of INPI is incomparable with the class of REC.

Proof. The proof is similar to the proof for Lemma 7. ��

Lemma 14. The class of INPI is incomparable with the class of P2DCFL.
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Proof. The proof is almost the same as Lemma 8.

Consider a pure 2D context-free grammar G = (Σ,Pc, Pr, { aba
ded }) in Lemma

8. As in Lemma 8, we can prove by contradiction that there is no picture-insertion
system γ such that L(G) = Li(γ).

Next, we consider a picture-insertion system γ3 = ({a, b}, Ic, Ir, A) in Lemma
8. A picture language Li(γ3) consists of pictures such that (a3b3(ab)n)m� with
m ≥ 1 and n ≥ 0.

From the above two results, we obtain the claim. ��

Note 15. Consider a picture-insertion system γ = (Σ, Ic, Ir , A), the C-type rule
of which is of the form (a, w, λ) with a ∈ Σ, w ∈ Σ∗, and the R-type rule is of

the form

(
a,
wT ,
λ

)
with a ∈ Σ, wT ∈ Σ∗.

Then, there is a pure 2D context-free grammar G such that Li(γ) = L(G).
The proof is obvious from the definition. For example, a C-type picture-insertion
rule (a, w, λ) can be simulated by the rule a → aw. Therefore, a restricted
insertion system using the independent mode is simulated by a pure 2D context-
free grammar.

Lemma 16. Both, INPA and INPI are incomparable.

Proof. Consider the picture-insertion system γ1 over Σ = {a, b} in Example 4.
We show that the picture language La(γ1) in INPA is not in INPI.

Suppose that there is a picture-insertion system γ such that La(γ1) = Li(γ).
Each column table in γ consists of one C-type picture-insertion rule. For any
string w in a Dyck language, and C-type picture-insertion rule, the derivation
in γ proceeds deterministically, i.e., there should be only one place where the
picture-insertion rule can be applied. Otherwise, the picture-insertion rule can
generate a picture with different row strings.

For a C-type picture-insertion rule (u,w, v) which satisfies αuvβ =⇒a αuwvβ
with α, u, w, v, β ∈ Σ∗ and αuvβ, αuwvβ ∈ La(γ1). For the string αuvβαuvβ in
La(γ1), there are two substrings uv in αuvβαuvβ for which we can apply the
picture-insertion rule (u,w, v). Thus, we have a contradiction.

On the other hand, we show that the picture language Li(γ1) in INPI is not
in INPA. Suppose that there is a picture-insertion system γ′ = (Σ, Ic, Ir, A)
such that Li(γ1) = La(γ

′). Let n = max{�1(α) | α ∈ A}+max{|uwv| | (u,w, v)
be a C-type picture-insertion rule in Ic}.

Consider a picture
a2nb2nab
aba2nb2n . For the first row a2nb2nab, a picture-insertion

rule is applied to the nested structure of a2nb2n at least twice. On the other
hand, for the second row aba2nb2n, the substring ab without a nested structure
is followed by a2nb2n. Therefore, there is no way to generate the picture using
the alongside mode.

From the above two results, we obtain the claim. ��
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7 Picture-Insertion Systems with Regular Control

We introduce an additional function for picture-insertion systems to control the
application of picture-insertion rules. As is noted in [12], controlling the applica-
tion with a regular language remains the generative power in general. However,
the control for pure 2D context-free grammars properly increases their genera-
tive power. We apply regular control to picture-insertion systems and present
the results below.

Definition 17. A picture-insertion system with regular control γ(R) is a tuple
(γ,R), where γ = (Σ, Ic, Ir , A) is a picture-insertion system and R is a regular
language over Γ with a set of table labels of Ic and Ir.

For pictures p1 and p2 in Σ∗∗, we write p1
t

=⇒a p2 (resp. p1
t

=⇒i p2) if
p1 derives p2 using the alongside mode (resp. independent mode) using C-type
(resp. R-type) insertion rules in the column table t in Ic (resp. Ir).

For a picture-insertion system γ = (Σ, Ic, Ir, A) and a regular language R
over Γ , a regular control picture-insertion language La(γ(R)) using the alongside

mode is a set of pictures w ∈ Σ∗∗ such that S
α

=⇒a w, α ∈ Γ ∗, α ∈ R. Similarly, a
regular control picture-insertion language Li(γ(R)) using the independent mode

is a set of pictures w ∈ Σ∗∗ such that S
α

=⇒i w, α ∈ Γ ∗, α ∈ R.
Let INPAC (resp. INPIC) be a set of regular control picture-insertion lan-

guages using the alongside mode (resp. independent mode).

Example 18. Consider a picture-insertion system γ1 = (Σ, Ic, Ir, A) in Example
4 and a regular language R = {(tc1tr1tr1)n | n ≥ 1} with tc1 = {(λ, ab, λ)} and

tr1 = {
(
a,
a,
λ

)
,

(
b,
b,
λ

)
}.

The C-type insertion rule in tc1 inserts picture ab and widens two columns.
Each R-type rule in tr2 inserts the picture a or b and widens one row. The regular
control language (tc1tr1tr1)

n with n ≥ 1 enables the generated pictures to be
proportionate to the lengths of rows and columns.

Lemma 19. INPA ⊂ INPAC. INPI ⊂ INPIC.

Proof. From the definition of INPAC and INPIC, the inclusions INPA ⊆
INPAC and INPI ⊆ INPIC are obvious.

As noted in Lemma 7, there is no picture-insertion system γ such that L(γ)
consists of squares.

From Example 18, there is a picture language which consists of infinitely many
square pictures in INPAC and INPIC. Then, the proper inclusion is proved.

��

The lemmas imply that regular control properly increases generative power
for picture-insertion systems.
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8 Concluding Remarks

In this paper, we introduced picture-insertion systems which generate picture
languages and for the language classes generated by picture-insertion systems, we
considered comparisons with two-dimensional computing models. Furthermore,
in order to perform the derivations, we defined regular control of the picture-
insertion systems, which properly increases the generative powers.

In the future, as in the one-dimensional case, picture insertion-deletion sys-
tems can be defined in which we can use not only picture-insertion operations
but also deletion operations.

Using insertion systems together with some morphisms, characterizing and
representation theorems have been given for the one-dimensional case [3] [4].
We discuss whether similar representation theorems are possible in the two-
dimensional case.
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