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Abstract. Ultrametric algorithms are similar to probabilistic algorithms
but they describe the degree of indeterminism by p-adic numbers instead
of real numbers. This paper introduces the notion of ultrametric query al-
gorithms and shows an example of advantages of ultrametric query algo-
rithms over deterministic, probabilistic and quantum query algorithms.
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1 Introduction

Let f : {0, 1}n → {0, 1} be a Boolean function. A query algorithm is an algorithm
for computing f(x1, . . . , xn) that accesses x1, . . . , xn by asking questions about
the values of xi. The complexity of a query algorithm is the maximum number
of questions that it asks. The query complexity of a function f is the minimum
complexity of a query algorithm correctly computing f . The theory of compu-
tation studies various models of computation: deterministic, non-deterministic,
and probabilistic and quantum (see [27,1,9,10,11,12,13,14] on traditional models
of computation and [24,3,21,7] on quantum computation). Similarly, there are
query algorithms of all those types.

Deterministic, nondeterministic, probabilistic and quantum query algorithms
are widely considered in literature (e.g., see survey [6]). We introduce a new
type of query algorithms, namely, ultrametric query algorithms. All ultrametric
algorithms and particularly ultrametric query algorithms rather closely follow
the example of the corresponding probabilistic and quantum algorithms.

A quantum computation with t queries is just a sequence of unitary transfor-
mations

U0 → O → U1 → O → . . . → Ut−1 → O → Ut.

The Uj ’s can be arbitrary unitary transformations that do not depend on the
input bits x1, . . . , xn. The O’s are query (oracle) transformations which depend
on x1, . . . , xn. To define O, we represent basis states as | i, z > where i consists of
�log(N +1)� bits and z consists of all other bits. Then, Ox maps | 0, z > to itself
and | i, z > to (−1)xi | i, z > for i ∈ {1, . . . , n} (i.e., we change phase depending
on xi, unless i = 0 in which case we do nothing). The computation starts with
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a state | 0 >. Then, we apply U0, Ox, . . . , Ox, Ut and measure the final state.
The result of the computation is the rightmost bit of the state obtained by the
measurement.

The quantum computation computes f exactly if, for every x = (x1, . . . . , xn),
the rightmost bit of UTOx . . . OxU0 | 0 > equals f(x1, . . . . , xn) with certainty.

The quantum computation computes f with bounded error if, for every x =
(x1, . . . . , xn), the probability that the rightmost bit of UTOx . . . OxU0 | 0 >
equals f(x1, . . . . , xn) is at least 1− ε for some fixed . ε < 1

2 .

2 Ultrametric Algorithms

A new type of indeterministic algorithms called ultrametric algorithms was intro-
duced in [15]. An extensive research on ultrametric algorithms of various kinds
has been performed by several authors (cf. [4,16,23,29]). So, ultrametric algo-
rithms is a very new concept and their potential still has to be explored. This is
the first paper showing a problem where ultrametric algorithms have advantages
over quantum algorithms.

Ultrametric algorithms are very similar to probabilistic algorithms but while
probabilistic algorithms use real numbers r with 0 ≤ r ≤ 1 as parameters,
ultrametric algorithms use p-adic numbers as parameters. The usage of p-adic
numbers as amplitudes and the ability to perform measurements to transform
amplitudes into real numbers are inspired by quantum computations and allow
for algorithms not possible in classical computations. Slightly simplifying the
description of the definitions, one can say that ultrametric algorithms are the
same as probabilistic algorithms, only the interpretation of the probabilities is
different.

The choice of p-adic numbers instead of real numbers is not quite arbitrary.
Ostrowski [26] proved that any non-trivial absolute value on the rational num-
bers Q is equivalent to either the usual real absolute value or a p-adic absolute
value. This result shows that using p-adic numbers was not merely one of many
possibilities to generalize the definition of deterministic algorithms but rather
the only remaining possibility not yet explored.

The notion of p-adic numbers is widely used in science. String theory [28],
chemistry [22] and molecular biology [8,19] have introduced p-adic numbers to
describe measures of indeterminism. Indeed, research on indeterminism in nature
has a long history. Pascal and Fermat believed that every event of indeterminism
can be described by a real number between 0 and 1 called probability. Quantum
physics introduced a description in terms of complex numbers called amplitude of
probabilities and later in terms of probabilistic combinations of amplitudes most
conveniently described by density matrices. Using p-adic numbers to describe
indeterminism allows to explore some aspects of indeterminism but, of course,
does not exhaust all the aspects of it.

There are many distinct p-adic absolute values corresponding to the many
prime numbers p. These absolute values are traditionally called ultrametric. Ab-
solute values are needed to consider distances among objects. We are used to
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rational and irrational numbers as measures for distances, and there is a psycho-
logical difficulty to imagine that something else can be used instead of rational
and irrational numbers, respectively. However, there is an important feature that
distinguishes p-adic numbers from real numbers. Real numbers (both rational
and irrational) are linearly ordered, while p-adic numbers cannot be linearly
ordered. This is why valuations and norms of p-adic numbers are considered.

The situation is similar in Quantum Computation (see [24]). Quantum ampli-
tudes are complex numbers which also cannot be linearly ordered. The counter-
part of valuation for quantum algorithms is measurement translating a complex
number a+ bi into a real number a2 + b2. Norms of p-adic numbers are rational
numbers. We continue with a short description of p-adic numbers.

3 p-adic Numbers and p-ultrametric Algorithms

Let p be an arbitrary prime number. A number a ∈ N with 0 ≤ a ≤ p − 1 is
called a p-adic digit. A p-adic integer is by definition a sequence (ai)i∈N of p-adic
digits. We write this conventionally as · · ·ai · · ·a2a1a0, i.e., the ai are written
from left to right.

If n is a natural number, and n = ak−1ak−2 · · ·a1a0 is its p-adic representation,
i.e., n =

∑k−1
i=0 aip

i, where each ai is a p-adic digit, then we identify n with the p-
adic integer (ai), where ai = 0 for all i ≥ k. This means that the natural numbers
can be identified with the p-adic integers (ai)i∈N for which all but finitely many
digits are 0. In particular, the number 0 is the p-adic integer all of whose digits
are 0, and 1 is the p-adic integer all of whose digits are 0 except the right-most
digit a0 which is 1.

To obtain p-adic representations of all rational numbers, 1
p is represented as

· · · 00.1, the number 1
p2 as · · · 00.01, and so on. For any p-adic number it is

allowed to have infinitely many (!) digits to the left of the “p-adic” point but
only a finite number of digits to the right of it.

However, p-adic numbers are not merely a generalization of rational numbers.
They are related to the notion of absolute value of numbers. If X is a nonempty
set, a distance, or metric, on X is a function d from X×X to the nonnegative real
numbers such that for all (x, y) ∈ X ×X the following conditions are satisfied.

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X .

A set X together with a metric d is called a metric space. The same set X
can give rise to many different metric spaces. If X is a linear space over the real
numbers then the norm of an element x ∈ X is its distance from 0, i.e., for all
x, y ∈ X and α any real number we have:

(1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,
(2) ‖α · y‖ = |α| · ‖y‖,
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
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Note that every norm induces a metric d, i.e., d(x, y) = ‖x− y‖. A well-known
example is the metric over Q induced by the ordinary absolute value. However,
there are other norms as well. A norm is called ultrametric if Requirement (3)
can be replaced by the stronger statement: ‖x+y‖ ≤ max{‖x‖, ‖y‖}. Otherwise,
the norm is called Archimedean.

Definition 1. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any
nonzero integer a, let the p-adic ordinal (or valuation) of a, denoted ordp a,
be the highest power of p which divides a, i.e., the greatest number m ∈ N such
that a ≡ 0 (mod pm). For any rational number x = a/b we define ordp x =df

ordp a− ordp b. Additionally, ordp x =df ∞ if and only if x = 0.

For example, let x = 63/550 = 2−1 · 32 · 5−2 · 71 · 11−1. Thus, we have

ord2 x = −1

ord3 x = +2

ord5 x = −2

ord7 x = +1

ord11 x = −1

ordp x = 0 for every prime p /∈ {2, 3, 5, 7, 11} .

Definition 2. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any ra-
tional number x, we define its p-norm as p−ordp x, and we set ‖0‖p =df 0.

For example, with x = 63/550 = 2−1325−27111−1 we obtain:

‖x‖2 = 2

‖x‖3 = 1/9

‖x‖5 = 25

‖x‖7 = 1/7

‖x‖11 = 11

‖x‖p = 1 for every prime p /∈ {2, 3, 5, 7, 11} .

Rational numbers are p-adic integers for all prime numbers p. Since the defi-
nitions given above are all we need, we finish our exposition of p-adic numbers
here. For a more detailed description of p-adic numbers we refer to [17,20].

We continue with ultrametric algorithms. In the following, p always denotes
a prime number. Ultrametric algorithms are described by finite directed acyclic
graphs (abbr. DAG), where exactly one node is marked as root. As usual, the
root does not have any incoming edge. Furthermore, every node having outdegree
zero is said to be a leaf. The leaves are the output nodes of the DAG.

Let v be a node in such a graph. Then each outgoing edge is labeled by a p-
adic number which we call amplitude. We require that the sum of all amplitudes
that correspond to v is 1. In order to determine the total amplitude along a
computation path, we need the following definition.

Definition 3. The total amplitude of the root is defined to be 1. Furthermore,
let v be a node at depth d in the DAG, let α be its total amplitude, and let
β1, β2, · · · , βk be the amplitudes corresponding to the outgoing edges e1, . . . , ek
of v. Let v1, . . . , vk be the nodes where the edges e1, . . . , ek point to. Then the
total amplitude of v�, � ∈ {1, . . . , k}, is defined as follows.
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(1) If the indegree of v� is one, then its total amplitude is αβ�.
(2) If the indegree of v� is bigger than one, i.e., if two or more computation paths

are joined, say m paths, then let α, γ2, . . . , γm be the corresponding total
amplitudes of the predecessors of v� and let β�, δ2, . . . , δm be the amplitudes
of the incoming edges The total amplitude of the node v� is then defined to
be αβ� + γ2δ2 + · · ·+ δmγm.

Note that the total amplitude is a p-adic integer.
It remains to define what is meant by saying that a p-ultrametric algorithm

produces a result with a certain probability. This is specified by performing a
so-called measurement at the leaves of the corresponding DAG. Here by mea-
surement we mean that we transform the total amplitude β of each leaf to ‖β‖p.
We refer to ‖β‖p as the p-probability of the corresponding computation path.

Definition 4. We say that a p-ultrametric algorithm produces a result m with a
probability q if the sum of the p-probabilities of all leaves which correctly produce
the result m is no less than q.

Comment. Just as in Quantum Computation, there is something counterin-
tuitive in ultrametric algorithms. The notion of probability which is the result
of measurement not always correspond to our expectations. It was not easy to
accept that L. Grover’s algorithm [18] does not read all the input on any com-
putation path. There is a similar situation in ultrametric query algorithms. It is
more easy to accept the definition of ultrametric query algorithms in the case
when there is only one accepting state in the algorithm. The 3-ultrametric query
algorithm in Theorem 16 has only one accepting state.

4 Kushilevitz’s Function

Kushilevitz exhibited a function f that provides the largest gap in the exponent
of a polynomial in deg(f) that gives an upper bound on bs(f). Never published by
Kushilevitz, the function appears in footnote 1 of the Nisan-Wigderson paper [25].

Kushilevitz’s function h of 6 Boolean variables is defined as follows:
h(z1, . . . , z6) = Σizi − Σi�=jzizj + z1z3z4 + z1z2z5 + z1z4z5 + z2z3z4 + z2z3z5 +
z1z2z6 + z1z3z6 + z2z4z6 + z3z5z6 + z4z5z6.

To explore properties of the Kushilevitz’s function we introduce 10 auxiliary
sets of variables.

S1 = {z1, z3, z4} T1 = {z2, z5, z6}
S2 = {z1, z2, z5} T2 = {z3, z4, z6}
S3 = {z1, z4, z5} T3 = {z2, z3, z6}
S4 = {z2, z3, z4} T4 = {z1, z5, z6}
S5 = {z2, z3, z5} T5 = {z1, z4, z6}
S6 = {z1, z2, z6} T6 = {z3, z4, z5}
S7 = {z1, z3, z6} T7 = {z2, z4, z5}
S8 = {z2, z4, z6} T8 = {z1, z3, z5}
S9 = {z3, z5, z6} T9 = {z1, z2, z4}
S10 = {z4, z5, z6} T10 = {z1, z2, z3}
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By S we denote the class (S1, . . . , S10) and by T we denote the class (T1, . . . , T10).

Lemma 5. For every i ∈ {1, . . . , 6}, the union Si ∪ Ti equals {1, . . . , 6}.

Lemma 6. For every i ∈ {1, . . . , 6}, the variable zi is a member of exactly 5
sets in S and a member of exactly 5 sets in T .

Lemma 7. For every i ∈ {1, . . . , 6}, the variable zi has an empty intersection
with exactly 5 sets in S and with exactly 5 sets in T .

Lemma 8. For every pair (i, j) such that i �= j and i ∈ {1, . . . , 6}, j ∈ {1, . . . , 6},
the pair of variables (zi, zj) is a member of exactly 2 sets in S and a member of
exactly 2 sets in T .

Lemma 9. For every pair (i, j) such that i �= j and i ∈ {1, . . . , 6}, j ∈ {1, . . . , 6},
the pair of variables (zi, zj) has an empty intersection with exactly 2 sets in S
and with exactly 2 sets in T .

Lemma 10. For every triple (i, j, k) of pairwise distinct elements of {1, . . . , 6},
the triple of variables (zi, zj, zk) coincides either with some set Si ∈ S or with
some set Tj.

Lemma 11. No triple (i, j, k) of pairwise distinct elements of {1, . . . , 6} is such
that the triple of variables (zi, zj, zk) is a member of both S and T .

Lemma 12. For every quadruple (i, j, k, l) of pairwise distinct elements of
{1, . . . , 6}, the quadruple of variables (zi, zj , zk, zl) contains exactly 2 sets Si ∈ S
and exactly 2 sets Ti ∈ T .

Proof. Immediately from Lemma 8. �

Lemma 13. For every quintuple (i, j, k, l,m) of pairwise distinct elements of
{1, . . . , 6}, the quintuple of variables (zi, zj , zk, zl, zm) contains exactly 5 sets
Si ∈ S and exactly 5 sets Ti ∈ T .

Proof. Immediately from Lemma 6. �

Lemma 14. 1) If Σizi = 0 then h(z1, . . . , z6) = 0.
2) If Σizi = 1 then h(z1, . . . , z6) = 1,
3) If Σizi = 2 then h(z1, . . . , z6) = 1,
4) If Σizi = 4 then h(z1, . . . , z6) = 0,
5) If Σizi = 5 then h(z1, . . . , z6) = 0,
6) If Σizi = 6 then h(z1, . . . , z6) = 1,
7) If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such that (zj = zk =
zl = 1) and (zj , zk, zl) ∈ S then h(z1, . . . , z6) = 1,
8) If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such that (zj = zk =
zl = 1) and (zj , zk, zl) ∈ T then h(z1, . . . , z6) = 0.
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Proof. If Σizi = 0 then all monomials in the definition of h(z1, . . . , z6) equal
zero. If Σizi = 1 then Σizi = 1 but all the other monomials in the definition of
h(z1, . . . , z6) equal zero. If Σizi = 2 then h(z1, . . . , z6) = Σizi−Σi�=jzizj = 2−1.
If Σizi = 3 and (zj , zk, zl) ∈ S then h(z1, . . . , z6) = Σizi −Σi�=jzizj = 3− 3 + 1.
If Σizi = 3 and (zj , zk, zl) ∈ T then h(z1, . . . , z6) = Σizi −Σi�=jzizj = 3− 3 + 0.
If Σizi = 4 then, by Lemma 12, h(z1, . . . , z6) = Σizi − Σi�=jzizj = 4 − 6 + 2. If
Σizi = 5 then, by Lemma 13, h(z1, . . . , z6) = Σizi − Σi�=jzizj = 5 − 10 + 5. If
Σizi = 6 then h(z1, . . . , z6) = Σizi −Σi�=jzizj = 6− 15 + 10. �

By α(z1, . . . , z6) we denote the cardinality of those Si = (zj, zk, zl) such that
zj = zk = zl = 1. By β(z1, . . . , z6) we denote the cardinality of those Si =
(zj , zk, zl) such that zj = zk = zl = 0.

Lemma 15. 1) For arbitrary 6-tuple (z1, . . . , z6) ∈ {0, 1}6, h(z1, . . . , z6) = 1 iff
α(z1, . . . , z6)− β(z1, . . . , z6) is congruent to 1 modulo 3.
2) For arbitrary 6-tuple (z1, . . . , z6) ∈ {0, 1}6, h(z1, . . . , z6) = 0 iff α(z1, . . . , z6)−
β(z1, . . . , z6) is congruent to 2 modulo 3.

Proof. If Σizi = 0 then α(z1, . . . , z6) − β(z1, . . . , z6) = 0 − 10 ≡ 2( mod 3). If
Σizi = 1 then, by Lemma 7, α(z1, . . . , z6) − β(z1, . . . , z6) = 0 − 5 ≡ 1( mod 3).
If Σizi = 2 then, by Lemma 9, α(z1, . . . , z6)−β(z1, . . . , z6) = 0−2 ≡ 1( mod 3).
If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such that (zj = zk = zl = 1)
and (zj , zk, zl) ∈ S then, by Lemmas 10 and 11, α(z1, . . . , z6)− β(z1, . . . , z6) =
1 − 0 ≡ 1( mod 3). If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such
that (zj = zk = zl = 1) and (zj , zk, zl) ∈ T then, by Lemmas 10 and 11,
α(z1, . . . , z6)− β(z1, . . . , z6) = 0− 1 ≡ 2( mod 3). If Σizi = 4 then, by Lemma
12, α(z1, . . . , z6) − β(z1, . . . , z6) = 2 − 0 ≡ 2( mod 3). If Σizi = 5 then, by
Lemma 13, α(z1, . . . , z6) − β(z1, . . . , z6) = 5− 0 ≡ 2( mod 3). If Σizi = 5 then
α(z1, . . . , z6)− β(z1, . . . , z6) = 10− 0 ≡ 1( mod 3). These results correspond to
Lemma 14. �

Theorem 16. There exists a 3-ultrametric query algorithm computing the
Kushilevitz’s function using 3 queries.

Proof. The desired algorithm branches its computation path into 31 branches at
the root. We assign to each starting edge of the computation path the amplitude
1
61 .

The first 10 branches (labeled with numbers 1, . . . , 10)correspond to exactly
one set Si.

Let Si consist of elements zj, zk, zl. Then the algorithm queries zj , zk, zl. If
all the queried values equal 1 then the algorithm goes to the state q3. If all the
queried values equal 0 then the algorithm goes to the state q3 but multiplies the
amplitude to (−1). (For the proof it is important that for every 3-adic number a
the norm ‖−a‖ = ‖a‖. ) If the queried values are not all equal then the algorithm
goes to the state q4.

The next 10 branches (labeled with numbers 11, . . . , 20) also correspond to
exactly one set Si. Let Si consist of elements zj , zk, zl. Then the algorithm queries
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zj, zk, zl. If all the queried values equal 1 then the algorithm goes to the state
q5. If all the queried values equal 0 then the algorithm goes to the state q3. If
the queried values are not all equal then the algorithm goes to the state q4 but
multiplies the amplitude to (−1).

11 branches (labeled with numbers 21, . . . , 31) ask no query and the algorithm
goes to the state q3.

In result of this computation the amplitude A3 of the states q3 has become

A3 =
1

31
(11 + α(z1, . . . , z6)− β(z1, . . . , z6)),

The 3-ultrametric query algorithm performs measurement of the state q3. The
amplitude A3 is transformed into a rational number ‖A3‖. As it was noted in
Section 3, 3-adic notation for the number 31 is . . . 000112 and 3-adic notation
for the number 1

31 is . . . 0212111221021. Hence, for every 3-adic integer γ, ‖γ‖ =
‖ 1
31γ‖.
By Lemma 15, ‖11+α(z1, . . . , z6)−β(z1, . . . , z6)‖ = 1 if h(z1, . . . , z6) = 1 and

‖11 + α(z1, . . . , z6)− β(z1, . . . , z6)‖ = 1
3 if h(z1, . . . , z6) = 0. �

5 Conclusions

Theorem 16 shows that there exists a bounded error 3-ultrametric query algo-
rithm for the Kushilevitz’s function whose complexity is much smaller than com-
plexity of any known deterministic, nondeterministic, probabilistic and quantum
query algorithm for this function. Moreover, Lemma 15 heavily exploits advan-
tages of ultrametric algorithms, and this invites to conjecture that Kushilevitz’s
function is specific for advantages of ultrametric algorithms.

More difficult problem is to compare theorem 16 with the provable lower
bounds of complexity. It is known that deterministic and nondeterministic query
complexity of the Kushilevitz’s function is 6. There exists an exact quantum
query algorithm for the Kushilevitz’s function with complexity 5 (see paper [5])
but nobody can prove that exact quantum query complexity for this function
exceeds 3. There is an indirect proof of this conjecture.

Iterated functions are defined as follows.
Define a sequence h1, h2, . . . with hd being a function of 6d variables by: h1 = h,

hd+1 = h(hd(x1, . . . , x6d), hd(x6d+1, . . . , x2·6d)), hd(x2·6d+1, . . . , x3·6d),
hd(x2·6d+1, . . . , x3·6d), hd(x3·6d+1, . . . , x4·6d), hd(x4·6d+1, . . . , x5·6d),
hd(x5·6d+1, . . . , x6·6d))

A. Ambainis proved in [2] that even bounded error query complexity for the
iterated Kushilevitz’s function exceeds Ω((

√
39
2 )d) = Ω((3.12 . . .)d). Had this

proof been valid for d = 1, we would have that error bounded quantum query
complexity for Kushilevitz’s function exceeds 3. Unfortunately, Ambainis proof
works for large values of d.
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