
Adrian-Horia Dediu Manuel Lozano
Carlos Martín-Vide (Eds.)

 123

LN
CS

 8
89

0

Third International Conference, TPNC 2014
Granada, Spain, December 9–11, 2014
Proceedings

Theory and Practice
of Natural Computing

Lecture Notes in Computer Science 8890
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Adrian-Horia Dediu Manuel Lozano
Carlos Martín-Vide (Eds.)

Theory and Practice
of Natural Computing

Third International Conference, TPNC 2014
Granada, Spain, December 9-11, 2014
Proceedings

13

Volume Editors

Adrian-Horia Dediu
Rovira i Virgili University
Research Group on Mathematical Linguistics (GRLMC)
Av. Catalunya, 35
43002 Tarragona, Spain
E-mail: adrian.dediu@urv.cat

Manuel Lozano
University of Granada
School of Computer and Telecommunication Engineering
Department of Computer Science and Artificial Intelligence (DECSAI)
Periodista Daniel Saucedo Aranda, s/n
18071 Granada, Spain,
E-mail: lozano@decsai.ugr.es

Carlos Martín-Vide
Rovira i Virgili University
Research Group on Mathematical Linguistics (GRLMC)
Av. Catalunya, 35
43002 Tarragona, Spain
E-mail: carlos.martin@urv.cat

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-13748-3 e-ISBN 978-3-319-13749-0
DOI 10.1007/978-3-319-13749-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014955447

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the Third International Confer-
ence on the Theory and Practice of Natural Computing (TPNC 2014), held in
Granada, Spain, during December 9–11, 2014.

The scope of TPNC is rather broad, containing topics of either theoretical,
experimental, or applied interest. The topics include but are not limited to:

– Nature-inspired models of computation
◦ amorphous computing
◦ cellular automata
◦ chaos and dynamical systems-based computing
◦ evolutionary computing
◦ membrane computing
◦ neural computing
◦ optical computing
◦ swarm intelligence

– Synthesizing nature by means of computation
◦ artificial chemistry
◦ artificial immune systems
◦ artificial life

– Nature-inspired materials
◦ computing with DNA
◦ nanocomputing
◦ physarum computing
◦ quantum computing and quantum information
◦ reaction-diffusion computing

– Information processing in nature
◦ developmental systems
◦ fractal geometry
◦ gene assembly in unicellular organisms
◦ rough/fuzzy computing in nature
◦ synthetic biology
◦ systems biology

– Applications of natural computing to algorithms, bioinformatics, control,
cryptography, design, economics, graphics, hardware, learning, logistics, op-
timization, pattern recognition, programming, robotics, telecommunications
etc.

There were 47 submissions. The committee decided to accept 22 papers, which
represents an acceptance rate of 46.81%.

VI Preface

Part of the success in the management of the submissions and reviews is due
to the excellent facilities provided by the EasyChair conference management
system.

We would like to thank all invited speakers and authors for their contribu-
tions, the Program Committee and the external reviewers for their cooperation,
the University of Granada for the excellent facilities put at our disposal, and
Springer for its very professional publishing work.

September 2014 Adrian-Horia Dediu
Manuel Lozano

Carlos Mart́ın-Vide

Organization

TPNC 2014 was organized by the Soft Computing and Intelligent Information
Systems – SCI2S group, from the University of Granada, and the Research Group
on Mathematical Linguistics – GRLMC, from Rovira i Virgili University, Tar-
ragona.

Program Committee

Hussein A. Abbass University of New South Wales, Canberra,
Australia

Uwe Aickelin University of Nottingham, UK
Thomas Bäck Leiden University, The Netherlands
Christian Blum University of the Basque Country,

San Sebastián, Spain
Jinde Cao Southeast University, Nanjing, China
Vladimir Cherkassky University of Minnesota at Minneapolis, USA
Sung-Bae Cho Yonsei University, Seoul, South Korea
Andries P. Engelbrecht University of Pretoria, South Africa
Terence C. Fogarty London South Bank University, UK
Fernando Gomide State University of Campinas, Brazil
Inman Harvey University of Sussex, Brighton, UK
Francisco Herrera University of Granada, Spain
Tzung-Pei Hong National University of Kaohsiung, Taiwan
Thomas Jansen Aberystwyth University, UK
Yaochu Jin University of Surrey, Guildford, UK
Okyay Kaynak Boğaziçi University, Istanbul, Turkey
Satoshi Kobayashi University of Electro-Communications, Tokyo,

Japan
Soo-Young Lee Korea Advanced Institute of Science and

Technology, Daejeon, South Korea
Derong Liu University of Illinois at Chicago, USA
Manuel Lozano University of Granada, Spain
Carlos Mart́ın-Vide (Chair) Rovira i Virgili University, Tarragona, Spain
Ujjwal Maulik Jadavpur University, Kolkata, India
Risto Miikkulainen University of Texas at Austin, USA
Frank Neumann University of Adelaide, Australia
Leandro Nunes de Castro Mackenzie University, São Paulo, Brazil
Erkki Oja Aalto University, Finland
Lech Polkowski Polish–Japanese Institute of Information

Technology, Warsaw, Poland
Brian J. Ross Brock University, St. Catharines, Canada

VIII Organization

Marc Schoenauer University of Paris Sud, Orsay, France
Biplab Kumar Sikdar Bengal Engineering and Science University,

Shibpur, India
Dipti Srinivasan National University of Singapore, Singapore
Darko Stefanovic University of New Mexico, Albuquerque, USA
Umberto Straccia University of Pisa, Italy
Thomas Stützle Université Libre de Bruxelles, Belgium
Ponnuthurai N. Suganthan Nanyang Technological University, Singapore
Johan Suykens KU Leuven, Belgium
El-Ghazali Talbi University of Lille 1, France
Jon Timmis University of York, UK
Fernando J. Von Zuben State University of Campinas, Brazil
Michael N. Vrahatis University of Patras, Greece
Xin Yao University of Birmingham, UK

External Reviewers

Basu, Srinka
Das, Sukanta
Dediu, Adrian-Horia
Ghosh, Soumyabrata
Maiti, Nirmalya

Maji, Pradipta
Mo, Dandan
Seki, Shinnosuke
Tapia, Lydia
Williams, Lance

Organizing Committee

Adrian-Horia Dediu, Tarragona
Carlos Garćıa-Mart́ınez, Córdoba
Carlos Mart́ın-Vide, Tarragona (Co-chair)
Manuel Lozano, Granada (Co-chair)
Francisco Javier Rodŕıguez, Granada
Florentina-Lilica Voicu, Tarragona

Table of Contents

Nature-Inspired Models of Computation

Ultrametric Vs. Quantum Query Algorithms . 1
Rūsiņš Freivalds

Cellular Programming . 11
Peter Niebert and Mathieu Caralp

Multi-Noisy-objective Optimization Based on Prediction of Worst-Case
Performance . 23

Kiyoharu Tagawa and Shoichi Harada

Generalization in Maze Navigation Using Grammatical Evolution and
Novelty Search . 35

Paulo Urbano, Enrique Naredo, and Leonardo Trujillo

Applications of Natural Computing I

Comparing the Optimization Behaviour of Heuristics with Topology
Based Visualization . 47

Simon Bin, Sebastian Volke, Gerik Scheuermann,
and Martin Middendorf

Parameterized Message-Passing Metaheuristic Schemes on a
Heterogeneous Computing System . 59

José-Mat́ıas Cutillas-Lozano and Domingo Giménez

Modeling Fluid Flow Induced by C. elegans Swimming at Low
Reynolds Number . 71

Jonathan Gutierrez, Megan Sorenson, and Eva Strawbridge

Detecting Symmetry in Cellular Automata Generated Patterns Using
Swarm Intelligence . 83

Mohammad Ali Javaheri Javid, Mohammad Majid al-Rifaie, and
Robert Zimmer

Vehicle Routing in a Forestry Commissioning Operation Using Ant
Colony Optimisation . 95

Edward Kent, Jason A.D. Atkin, and Rong Qu

X Table of Contents

Nature-Inspired Computing Architectures

Extrapolated States, Void States, and a Huge Novel Class of Distillable
Entangled States . 107

Michel Boyer and Tal Mor

Design of a Minimal System for Self-replication of Rectangular Patterns
of DNA Tiles . 119

Vinay K. Gautam, Eugen Czeizler, Pauline C. Haddow,
and Martin Kuiper

Unconditionally Secure Quantum Bit Commitment Protocol
Based on Incomplete Information . 134

Naya Nagy and Marius Nagy

Quantum and Reversible Verification of Proofs Using Constant Memory
Space . 144

Marcos Villagra and Tomoyuki Yamakami

Applications of Natural Computing II

Solving 2D-Pattern Matching with Networks of Picture Processors 157
Henning Bordihn, Paolo Bottoni, Anna Labella, and Victor Mitrana

Unavoidable Sets and Regularity of Languages Generated by
(1,3)-Circular Splicing Systems . 169

Clelia De Felice, Rocco Zaccagnino, and Rosalba Zizza

A Two-Dimensional Extension of Insertion Systems 181
Kaoru Fujioka

Differential Evolution-Based Weighted Combination of Distance
Metrics for k-means Clustering . 193

Muhammad Marwan Muhammad Fuad

Inferring Multiobjective Phylogenetic Hypotheses by Using a Parallel
Indicator-Based Evolutionary Algorithm . 205

Sergio Santander-Jiménez and Miguel A. Vega-Rodŕıguez

Information Processing in Nature

Combining Finite Element Method and L-Systems Using Natural
Information Flow Propagation to Simulate Growing Dynamical
Systems . 218

Jean-Philippe Bernard, Benjamin Gilles, and Christophe Godin

Morphogenesis Model for Systematic Simulation of Forms’ Co-evolution
with Constraints: Application to Mitosis . 231

Abdoulaye Sarr, Alexandra Fronville, and Vincent Rodin

Table of Contents XI

The Power of Extra Analog Neuron . 243
Jǐŕı Š́ıma

Model Predictive Control of Linear Parameter Varying Systems Based
on a Recurrent Neural Network . 255

Zheng Yan, Xinyi Le, and Jun Wang

Author Index . 267

Ultrametric Vs. Quantum Query Algorithms

Rūsiņš Freivalds

Institute of Mathematics and Computer Science, University of Latvia
Raiņa bulvāris 29, Riga, LV-1459, Latvia�

Rusins.Freivalds@mii.lu.lv

Abstract. Ultrametric algorithms are similar to probabilistic algorithms
but they describe the degree of indeterminism by p-adic numbers instead
of real numbers. This paper introduces the notion of ultrametric query al-
gorithms and shows an example of advantages of ultrametric query algo-
rithms over deterministic, probabilistic and quantum query algorithms.

Keywords: Nature-inspired models of computation, ultrametric algo-
rithms, probabilistic algorithms, quantum algorithms.

1 Introduction

Let f : {0, 1}n → {0, 1} be a Boolean function. A query algorithm is an algorithm
for computing f(x1, . . . , xn) that accesses x1, . . . , xn by asking questions about
the values of xi. The complexity of a query algorithm is the maximum number
of questions that it asks. The query complexity of a function f is the minimum
complexity of a query algorithm correctly computing f . The theory of compu-
tation studies various models of computation: deterministic, non-deterministic,
and probabilistic and quantum (see [27,1,9,10,11,12,13,14] on traditional models
of computation and [24,3,21,7] on quantum computation). Similarly, there are
query algorithms of all those types.

Deterministic, nondeterministic, probabilistic and quantum query algorithms
are widely considered in literature (e.g., see survey [6]). We introduce a new
type of query algorithms, namely, ultrametric query algorithms. All ultrametric
algorithms and particularly ultrametric query algorithms rather closely follow
the example of the corresponding probabilistic and quantum algorithms.

A quantum computation with t queries is just a sequence of unitary transfor-
mations

U0 → O → U1 → O → . . . → Ut−1 → O → Ut.

The Uj ’s can be arbitrary unitary transformations that do not depend on the
input bits x1, . . . , xn. The O’s are query (oracle) transformations which depend
on x1, . . . , xn. To define O, we represent basis states as | i, z > where i consists of
�log(N +1)� bits and z consists of all other bits. Then, Ox maps | 0, z > to itself
and | i, z > to (−1)xi | i, z > for i ∈ {1, . . . , n} (i.e., we change phase depending
on xi, unless i = 0 in which case we do nothing). The computation starts with
� The research was supported by Project 271/2012 from the Latvian Council of Science.

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 1–10, 2014.
c© Springer International Publishing Switzerland 2014

2 R. Freivalds

a state | 0 >. Then, we apply U0, Ox, . . . , Ox, Ut and measure the final state.
The result of the computation is the rightmost bit of the state obtained by the
measurement.

The quantum computation computes f exactly if, for every x = (x1, , xn),
the rightmost bit of UTOx . . . OxU0 | 0 > equals f(x1, , xn) with certainty.

The quantum computation computes f with bounded error if, for every x =
(x1, , xn), the probability that the rightmost bit of UTOx . . . OxU0 | 0 >
equals f(x1, , xn) is at least 1− ε for some fixed . ε < 1

2 .

2 Ultrametric Algorithms

A new type of indeterministic algorithms called ultrametric algorithms was intro-
duced in [15]. An extensive research on ultrametric algorithms of various kinds
has been performed by several authors (cf. [4,16,23,29]). So, ultrametric algo-
rithms is a very new concept and their potential still has to be explored. This is
the first paper showing a problem where ultrametric algorithms have advantages
over quantum algorithms.

Ultrametric algorithms are very similar to probabilistic algorithms but while
probabilistic algorithms use real numbers r with 0 ≤ r ≤ 1 as parameters,
ultrametric algorithms use p-adic numbers as parameters. The usage of p-adic
numbers as amplitudes and the ability to perform measurements to transform
amplitudes into real numbers are inspired by quantum computations and allow
for algorithms not possible in classical computations. Slightly simplifying the
description of the definitions, one can say that ultrametric algorithms are the
same as probabilistic algorithms, only the interpretation of the probabilities is
different.

The choice of p-adic numbers instead of real numbers is not quite arbitrary.
Ostrowski [26] proved that any non-trivial absolute value on the rational num-
bers Q is equivalent to either the usual real absolute value or a p-adic absolute
value. This result shows that using p-adic numbers was not merely one of many
possibilities to generalize the definition of deterministic algorithms but rather
the only remaining possibility not yet explored.

The notion of p-adic numbers is widely used in science. String theory [28],
chemistry [22] and molecular biology [8,19] have introduced p-adic numbers to
describe measures of indeterminism. Indeed, research on indeterminism in nature
has a long history. Pascal and Fermat believed that every event of indeterminism
can be described by a real number between 0 and 1 called probability. Quantum
physics introduced a description in terms of complex numbers called amplitude of
probabilities and later in terms of probabilistic combinations of amplitudes most
conveniently described by density matrices. Using p-adic numbers to describe
indeterminism allows to explore some aspects of indeterminism but, of course,
does not exhaust all the aspects of it.

There are many distinct p-adic absolute values corresponding to the many
prime numbers p. These absolute values are traditionally called ultrametric. Ab-
solute values are needed to consider distances among objects. We are used to

Ultrametric Vs. Quantum Query Algorithms 3

rational and irrational numbers as measures for distances, and there is a psycho-
logical difficulty to imagine that something else can be used instead of rational
and irrational numbers, respectively. However, there is an important feature that
distinguishes p-adic numbers from real numbers. Real numbers (both rational
and irrational) are linearly ordered, while p-adic numbers cannot be linearly
ordered. This is why valuations and norms of p-adic numbers are considered.

The situation is similar in Quantum Computation (see [24]). Quantum ampli-
tudes are complex numbers which also cannot be linearly ordered. The counter-
part of valuation for quantum algorithms is measurement translating a complex
number a+ bi into a real number a2 + b2. Norms of p-adic numbers are rational
numbers. We continue with a short description of p-adic numbers.

3 p-adic Numbers and p-ultrametric Algorithms

Let p be an arbitrary prime number. A number a ∈ N with 0 ≤ a ≤ p − 1 is
called a p-adic digit. A p-adic integer is by definition a sequence (ai)i∈N of p-adic
digits. We write this conventionally as · · ·ai · · ·a2a1a0, i.e., the ai are written
from left to right.

If n is a natural number, and n = ak−1ak−2 · · ·a1a0 is its p-adic representation,
i.e., n =

∑k−1
i=0 aip

i, where each ai is a p-adic digit, then we identify n with the p-
adic integer (ai), where ai = 0 for all i ≥ k. This means that the natural numbers
can be identified with the p-adic integers (ai)i∈N for which all but finitely many
digits are 0. In particular, the number 0 is the p-adic integer all of whose digits
are 0, and 1 is the p-adic integer all of whose digits are 0 except the right-most
digit a0 which is 1.

To obtain p-adic representations of all rational numbers, 1
p is represented as

· · · 00.1, the number 1
p2 as · · · 00.01, and so on. For any p-adic number it is

allowed to have infinitely many (!) digits to the left of the “p-adic” point but
only a finite number of digits to the right of it.

However, p-adic numbers are not merely a generalization of rational numbers.
They are related to the notion of absolute value of numbers. If X is a nonempty
set, a distance, or metric, on X is a function d from X×X to the nonnegative real
numbers such that for all (x, y) ∈ X ×X the following conditions are satisfied.

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X .

A set X together with a metric d is called a metric space. The same set X
can give rise to many different metric spaces. If X is a linear space over the real
numbers then the norm of an element x ∈ X is its distance from 0, i.e., for all
x, y ∈ X and α any real number we have:

(1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,
(2) ‖α · y‖ = |α| · ‖y‖,
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

4 R. Freivalds

Note that every norm induces a metric d, i.e., d(x, y) = ‖x− y‖. A well-known
example is the metric over Q induced by the ordinary absolute value. However,
there are other norms as well. A norm is called ultrametric if Requirement (3)
can be replaced by the stronger statement: ‖x+y‖ ≤ max{‖x‖, ‖y‖}. Otherwise,
the norm is called Archimedean.

Definition 1. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any
nonzero integer a, let the p-adic ordinal (or valuation) of a, denoted ordp a,
be the highest power of p which divides a, i.e., the greatest number m ∈ N such
that a ≡ 0 (mod pm). For any rational number x = a/b we define ordp x =df

ordp a− ordp b. Additionally, ordp x =df ∞ if and only if x = 0.

For example, let x = 63/550 = 2−1 · 32 · 5−2 · 71 · 11−1. Thus, we have

ord2 x = −1

ord3 x = +2

ord5 x = −2

ord7 x = +1

ord11 x = −1

ordp x = 0 for every prime p /∈ {2, 3, 5, 7, 11} .

Definition 2. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any ra-
tional number x, we define its p-norm as p−ordp x, and we set ‖0‖p =df 0.

For example, with x = 63/550 = 2−1325−27111−1 we obtain:

‖x‖2 = 2

‖x‖3 = 1/9

‖x‖5 = 25

‖x‖7 = 1/7

‖x‖11 = 11

‖x‖p = 1 for every prime p /∈ {2, 3, 5, 7, 11} .

Rational numbers are p-adic integers for all prime numbers p. Since the defi-
nitions given above are all we need, we finish our exposition of p-adic numbers
here. For a more detailed description of p-adic numbers we refer to [17,20].

We continue with ultrametric algorithms. In the following, p always denotes
a prime number. Ultrametric algorithms are described by finite directed acyclic
graphs (abbr. DAG), where exactly one node is marked as root. As usual, the
root does not have any incoming edge. Furthermore, every node having outdegree
zero is said to be a leaf. The leaves are the output nodes of the DAG.

Let v be a node in such a graph. Then each outgoing edge is labeled by a p-
adic number which we call amplitude. We require that the sum of all amplitudes
that correspond to v is 1. In order to determine the total amplitude along a
computation path, we need the following definition.

Definition 3. The total amplitude of the root is defined to be 1. Furthermore,
let v be a node at depth d in the DAG, let α be its total amplitude, and let
β1, β2, · · · , βk be the amplitudes corresponding to the outgoing edges e1, . . . , ek
of v. Let v1, . . . , vk be the nodes where the edges e1, . . . , ek point to. Then the
total amplitude of v�, � ∈ {1, . . . , k}, is defined as follows.

Ultrametric Vs. Quantum Query Algorithms 5

(1) If the indegree of v� is one, then its total amplitude is αβ�.
(2) If the indegree of v� is bigger than one, i.e., if two or more computation paths

are joined, say m paths, then let α, γ2, . . . , γm be the corresponding total
amplitudes of the predecessors of v� and let β�, δ2, . . . , δm be the amplitudes
of the incoming edges The total amplitude of the node v� is then defined to
be αβ� + γ2δ2 + · · ·+ δmγm.

Note that the total amplitude is a p-adic integer.
It remains to define what is meant by saying that a p-ultrametric algorithm

produces a result with a certain probability. This is specified by performing a
so-called measurement at the leaves of the corresponding DAG. Here by mea-
surement we mean that we transform the total amplitude β of each leaf to ‖β‖p.
We refer to ‖β‖p as the p-probability of the corresponding computation path.

Definition 4. We say that a p-ultrametric algorithm produces a result m with a
probability q if the sum of the p-probabilities of all leaves which correctly produce
the result m is no less than q.

Comment. Just as in Quantum Computation, there is something counterin-
tuitive in ultrametric algorithms. The notion of probability which is the result
of measurement not always correspond to our expectations. It was not easy to
accept that L. Grover’s algorithm [18] does not read all the input on any com-
putation path. There is a similar situation in ultrametric query algorithms. It is
more easy to accept the definition of ultrametric query algorithms in the case
when there is only one accepting state in the algorithm. The 3-ultrametric query
algorithm in Theorem 16 has only one accepting state.

4 Kushilevitz’s Function

Kushilevitz exhibited a function f that provides the largest gap in the exponent
of a polynomial in deg(f) that gives an upper bound on bs(f). Never published by
Kushilevitz, the function appears in footnote 1 of the Nisan-Wigderson paper [25].

Kushilevitz’s function h of 6 Boolean variables is defined as follows:
h(z1, . . . , z6) = Σizi − Σi�=jzizj + z1z3z4 + z1z2z5 + z1z4z5 + z2z3z4 + z2z3z5 +
z1z2z6 + z1z3z6 + z2z4z6 + z3z5z6 + z4z5z6.

To explore properties of the Kushilevitz’s function we introduce 10 auxiliary
sets of variables.

S1 = {z1, z3, z4} T1 = {z2, z5, z6}
S2 = {z1, z2, z5} T2 = {z3, z4, z6}
S3 = {z1, z4, z5} T3 = {z2, z3, z6}
S4 = {z2, z3, z4} T4 = {z1, z5, z6}
S5 = {z2, z3, z5} T5 = {z1, z4, z6}
S6 = {z1, z2, z6} T6 = {z3, z4, z5}
S7 = {z1, z3, z6} T7 = {z2, z4, z5}
S8 = {z2, z4, z6} T8 = {z1, z3, z5}
S9 = {z3, z5, z6} T9 = {z1, z2, z4}
S10 = {z4, z5, z6} T10 = {z1, z2, z3}

6 R. Freivalds

By S we denote the class (S1, . . . , S10) and by T we denote the class (T1, . . . , T10).

Lemma 5. For every i ∈ {1, . . . , 6}, the union Si ∪ Ti equals {1, . . . , 6}.

Lemma 6. For every i ∈ {1, . . . , 6}, the variable zi is a member of exactly 5
sets in S and a member of exactly 5 sets in T .

Lemma 7. For every i ∈ {1, . . . , 6}, the variable zi has an empty intersection
with exactly 5 sets in S and with exactly 5 sets in T .

Lemma 8. For every pair (i, j) such that i �= j and i ∈ {1, . . . , 6}, j ∈ {1, . . . , 6},
the pair of variables (zi, zj) is a member of exactly 2 sets in S and a member of
exactly 2 sets in T .

Lemma 9. For every pair (i, j) such that i �= j and i ∈ {1, . . . , 6}, j ∈ {1, . . . , 6},
the pair of variables (zi, zj) has an empty intersection with exactly 2 sets in S
and with exactly 2 sets in T .

Lemma 10. For every triple (i, j, k) of pairwise distinct elements of {1, . . . , 6},
the triple of variables (zi, zj, zk) coincides either with some set Si ∈ S or with
some set Tj.

Lemma 11. No triple (i, j, k) of pairwise distinct elements of {1, . . . , 6} is such
that the triple of variables (zi, zj, zk) is a member of both S and T .

Lemma 12. For every quadruple (i, j, k, l) of pairwise distinct elements of
{1, . . . , 6}, the quadruple of variables (zi, zj , zk, zl) contains exactly 2 sets Si ∈ S
and exactly 2 sets Ti ∈ T .

Proof. Immediately from Lemma 8. �

Lemma 13. For every quintuple (i, j, k, l,m) of pairwise distinct elements of
{1, . . . , 6}, the quintuple of variables (zi, zj , zk, zl, zm) contains exactly 5 sets
Si ∈ S and exactly 5 sets Ti ∈ T .

Proof. Immediately from Lemma 6. �

Lemma 14. 1) If Σizi = 0 then h(z1, . . . , z6) = 0.
2) If Σizi = 1 then h(z1, . . . , z6) = 1,
3) If Σizi = 2 then h(z1, . . . , z6) = 1,
4) If Σizi = 4 then h(z1, . . . , z6) = 0,
5) If Σizi = 5 then h(z1, . . . , z6) = 0,
6) If Σizi = 6 then h(z1, . . . , z6) = 1,
7) If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such that (zj = zk =
zl = 1) and (zj , zk, zl) ∈ S then h(z1, . . . , z6) = 1,
8) If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such that (zj = zk =
zl = 1) and (zj , zk, zl) ∈ T then h(z1, . . . , z6) = 0.

Ultrametric Vs. Quantum Query Algorithms 7

Proof. If Σizi = 0 then all monomials in the definition of h(z1, . . . , z6) equal
zero. If Σizi = 1 then Σizi = 1 but all the other monomials in the definition of
h(z1, . . . , z6) equal zero. If Σizi = 2 then h(z1, . . . , z6) = Σizi−Σi�=jzizj = 2−1.
If Σizi = 3 and (zj , zk, zl) ∈ S then h(z1, . . . , z6) = Σizi −Σi�=jzizj = 3− 3 + 1.
If Σizi = 3 and (zj , zk, zl) ∈ T then h(z1, . . . , z6) = Σizi −Σi�=jzizj = 3− 3 + 0.
If Σizi = 4 then, by Lemma 12, h(z1, . . . , z6) = Σizi − Σi�=jzizj = 4 − 6 + 2. If
Σizi = 5 then, by Lemma 13, h(z1, . . . , z6) = Σizi − Σi�=jzizj = 5 − 10 + 5. If
Σizi = 6 then h(z1, . . . , z6) = Σizi −Σi�=jzizj = 6− 15 + 10. �

By α(z1, . . . , z6) we denote the cardinality of those Si = (zj, zk, zl) such that
zj = zk = zl = 1. By β(z1, . . . , z6) we denote the cardinality of those Si =
(zj , zk, zl) such that zj = zk = zl = 0.

Lemma 15. 1) For arbitrary 6-tuple (z1, . . . , z6) ∈ {0, 1}6, h(z1, . . . , z6) = 1 iff
α(z1, . . . , z6)− β(z1, . . . , z6) is congruent to 1 modulo 3.
2) For arbitrary 6-tuple (z1, . . . , z6) ∈ {0, 1}6, h(z1, . . . , z6) = 0 iff α(z1, . . . , z6)−
β(z1, . . . , z6) is congruent to 2 modulo 3.

Proof. If Σizi = 0 then α(z1, . . . , z6) − β(z1, . . . , z6) = 0 − 10 ≡ 2(mod 3). If
Σizi = 1 then, by Lemma 7, α(z1, . . . , z6) − β(z1, . . . , z6) = 0 − 5 ≡ 1(mod 3).
If Σizi = 2 then, by Lemma 9, α(z1, . . . , z6)−β(z1, . . . , z6) = 0−2 ≡ 1(mod 3).
If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such that (zj = zk = zl = 1)
and (zj , zk, zl) ∈ S then, by Lemmas 10 and 11, α(z1, . . . , z6)− β(z1, . . . , z6) =
1 − 0 ≡ 1(mod 3). If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such
that (zj = zk = zl = 1) and (zj , zk, zl) ∈ T then, by Lemmas 10 and 11,
α(z1, . . . , z6)− β(z1, . . . , z6) = 0− 1 ≡ 2(mod 3). If Σizi = 4 then, by Lemma
12, α(z1, . . . , z6) − β(z1, . . . , z6) = 2 − 0 ≡ 2(mod 3). If Σizi = 5 then, by
Lemma 13, α(z1, . . . , z6) − β(z1, . . . , z6) = 5− 0 ≡ 2(mod 3). If Σizi = 5 then
α(z1, . . . , z6)− β(z1, . . . , z6) = 10− 0 ≡ 1(mod 3). These results correspond to
Lemma 14. �

Theorem 16. There exists a 3-ultrametric query algorithm computing the
Kushilevitz’s function using 3 queries.

Proof. The desired algorithm branches its computation path into 31 branches at
the root. We assign to each starting edge of the computation path the amplitude
1
61 .

The first 10 branches (labeled with numbers 1, . . . , 10)correspond to exactly
one set Si.

Let Si consist of elements zj, zk, zl. Then the algorithm queries zj , zk, zl. If
all the queried values equal 1 then the algorithm goes to the state q3. If all the
queried values equal 0 then the algorithm goes to the state q3 but multiplies the
amplitude to (−1). (For the proof it is important that for every 3-adic number a
the norm ‖−a‖ = ‖a‖.) If the queried values are not all equal then the algorithm
goes to the state q4.

The next 10 branches (labeled with numbers 11, . . . , 20) also correspond to
exactly one set Si. Let Si consist of elements zj , zk, zl. Then the algorithm queries

8 R. Freivalds

zj, zk, zl. If all the queried values equal 1 then the algorithm goes to the state
q5. If all the queried values equal 0 then the algorithm goes to the state q3. If
the queried values are not all equal then the algorithm goes to the state q4 but
multiplies the amplitude to (−1).

11 branches (labeled with numbers 21, . . . , 31) ask no query and the algorithm
goes to the state q3.

In result of this computation the amplitude A3 of the states q3 has become

A3 =
1

31
(11 + α(z1, . . . , z6)− β(z1, . . . , z6)),

The 3-ultrametric query algorithm performs measurement of the state q3. The
amplitude A3 is transformed into a rational number ‖A3‖. As it was noted in
Section 3, 3-adic notation for the number 31 is . . . 000112 and 3-adic notation
for the number 1

31 is . . . 0212111221021. Hence, for every 3-adic integer γ, ‖γ‖ =
‖ 1
31γ‖.
By Lemma 15, ‖11+α(z1, . . . , z6)−β(z1, . . . , z6)‖ = 1 if h(z1, . . . , z6) = 1 and

‖11 + α(z1, . . . , z6)− β(z1, . . . , z6)‖ = 1
3 if h(z1, . . . , z6) = 0. �

5 Conclusions

Theorem 16 shows that there exists a bounded error 3-ultrametric query algo-
rithm for the Kushilevitz’s function whose complexity is much smaller than com-
plexity of any known deterministic, nondeterministic, probabilistic and quantum
query algorithm for this function. Moreover, Lemma 15 heavily exploits advan-
tages of ultrametric algorithms, and this invites to conjecture that Kushilevitz’s
function is specific for advantages of ultrametric algorithms.

More difficult problem is to compare theorem 16 with the provable lower
bounds of complexity. It is known that deterministic and nondeterministic query
complexity of the Kushilevitz’s function is 6. There exists an exact quantum
query algorithm for the Kushilevitz’s function with complexity 5 (see paper [5])
but nobody can prove that exact quantum query complexity for this function
exceeds 3. There is an indirect proof of this conjecture.

Iterated functions are defined as follows.
Define a sequence h1, h2, . . . with hd being a function of 6d variables by: h1 = h,

hd+1 = h(hd(x1, . . . , x6d), hd(x6d+1, . . . , x2·6d)), hd(x2·6d+1, . . . , x3·6d),
hd(x2·6d+1, . . . , x3·6d), hd(x3·6d+1, . . . , x4·6d), hd(x4·6d+1, . . . , x5·6d),
hd(x5·6d+1, . . . , x6·6d))

A. Ambainis proved in [2] that even bounded error query complexity for the
iterated Kushilevitz’s function exceeds Ω((

√
39
2)d) = Ω((3.12 . . .)d). Had this

proof been valid for d = 1, we would have that error bounded quantum query
complexity for Kushilevitz’s function exceeds 3. Unfortunately, Ambainis proof
works for large values of d.

Ultrametric Vs. Quantum Query Algorithms 9

References

1. Ablayev, F.M., Freivalds, R.: Why sometimes probabilistic algorithms can be more
effective. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS,
vol. 233, pp. 1–14. Springer, Heidelberg (1986)

2. Ambainis, A.: Polynomial degree vs. quantum query complexity. Journal of Com-
puter and System Sciences 72(2), 220–238 (2006)

3. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses
and generalizations. In: Proc. IEEE FOCS 1998, pp. 332–341 (1998)

4. Balodis, K., Beriņa, A., C̄ıpola, K., Dimitrijevs, M., Iraids, J., Jēriņš, K., Kacs, V.,
Kalājs, J., Krišlauks, R., Lukstiņš, K., Raumanis, R., Scegulnaja, I., Somova, N.,
Vanaga, A., Freivalds, R.: On the state complexity of ultrametric finite automata.
In: Proceedings of SOFSEM, vol. 2, pp. 1–9 (2013)

5. Bērziņa, A., Freivalds, R.: On quantum query complexity of kushilevitz function.
In: Proceedings of Baltic DB&IS 2004, vol. 2, pp. 57–65 (2004)

6. Buhrman, H., Wolf, R.D.: Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science 288(1), 21–43 (2002)

7. Moore, C., Quantum, J.C.: automata and quantum grammars. Theoretical Com-
puter Science 237(1-2), 275–306 (2000)

8. Dragovich, B., Dragovich, A.: A p-adic model of dna sequence and genetic code.
p-Adic Numbers, Ultrametric Analysis, and Applications 1(1), 34–41 (2009)

9. Freivalds, R.: Recognition of languages with high probability on different classes
of automata. Doklady Akademii Nauk SSSR 239(1), 60–62 (1978)

10. Freivalds, R.: Projections of languages recognizable by probabilistic and alternating
finite multi-tape automata. Information Processing Letters 13(4-5), 195–198 (1981)

11. Freivalds, R.: On the growth of the number of states in result of the determinization
of probabilistic finite automata. Avtomatika i Vichislitel’naya Tekhnika (3), 39–42
(1982)

12. Freivalds, R.: Complexity of probabilistic versus deterministic automata. In:
Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp.
565–613. Springer, Heidelberg (1991)

13. Freivalds, R.: Languages recognizable by quantum finite automata. In: Farré, J.,
Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 1–14. Springer,
Heidelberg (2006)

14. Freivalds, R.: Non-constructive methods for finite probabilistic automata. Interna-
tional Journal of Foundations of Computer Science 19, 565–580 (2008)

15. Freivalds, R.: Ultrametric finite automata and turing machines. In: Béal, M.-P.,
Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 1–11. Springer, Heidelberg (2013)

16. Freivalds, R., Zeugmann, T.: Active learning of recursive functions by ultrametric
algorithms. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.)
SOFSEM 2014. LNCS, vol. 8327, pp. 246–257. Springer, Heidelberg (2014)

17. Gouvea, F.Q.: p-adic numbers: An introduction, universitext (1983)
18. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-

ceedings of the 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)
19. Khrennikov, A.Y.: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical

Systems and Biological Models. Kluwer Academic Publishers (1997)
20. Koblitz, N.: P-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edn. Grad-

uate Texts in Mathematics, vol. 58. Springer (1984)
21. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc.

IEEE FOCS 1997, pp. 66–75 (1997)

10 R. Freivalds

22. Kozyrev, S.V.: Ultrametric analysis and interbasin kinetics. In: Proc. of the 2nd
International Conference on p-Adic Mathematical Physics, vol. 826, pp. 121–128.
American Institute Conference Proceedings (2006)

23. Krišlauks, R., Rukšāne, I., Balodis, K., Kucevalovs, I., Freivalds, R., Agele, I.N.:
Ultrametric turing machines with limited reversal complexity. In: Proceedings of
SOFSEM, vol. 2, pp. 87–94 (2013)

24. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge University Press (2000)

25. Nisan, N., Wigderson, A.: On rank vs. communication complexity. Combinator-
ica 15(4), 557–565 (1995)

26. Ostrowski, A.: Über einige Lösungen der Funktionalgleichung ϕ(x)ϕ(y) = ϕ(xy).
Acta Mathematica 41(1), 271–284 (1916)

27. Papadimitriou, C.H.: Computational complexity. John Wiley and Sons Ltd, Chich-
ester (2003)

28. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-Adic Analysis and Mathematical
Physics. World Scientific, Singapore (1995)

29. Zariņa, S., Freivalds, R.: Visualisation and and ultrametric analysis of koch fractals.
In: Proc. 16th Japan Conference on Discrete and Computational Geometry and
Graphs, pp. 84–85. Tokyo (2013)

Cellular Programming

Peter Niebert and Mathieu Caralp

Aix Marseille Université�, CNRS, LIF UMR 7279, 13288, Marseille, France
{peter.niebert,mathieu.caralp}@univ-amu.fr

Abstract. We present a design approach for “smart surfaces” inspired
by cellular automata. The aim is to construct and to program scalable
distributed realtime interactive systems composed of inexpensive micro-
controllers to build surfaces that interact physically with their environ-
ment. Our work is both pragmatic and integrated: it covers the entire
chain from hardware considerations, a programming model based on a
networked locally synchronous virtual machine, dedicated programming
language features, a distributed embedded implementation and an inte-
grated programming environment with a simulator implementation of
the locally synchronous virtual machine.

The platform which we have developed allows for arbitrary distributed
algorithms to be implemented, including those that cannot perform scal-
ably in realtime. We argue for a pragmatic coexistence of certain non-
realtime algorithms together with “cellular” algorithms that operate much
like cellular automata.

Our “case study” is an application of this approach for modular inter-
active lighting systems.

1 Introduction

Cellular automata have many virtues which make them a popular formalism in
various scientific disciplines [13]. The key aspect of cellular automata is the local
and simple nature of the computation that leads to a complex global behaviour.
They are often used for modeling and simulation of complex systems. On the
other hand, cellular automata are also popular for their mathematical esthetics,
notably for visually observable computation.

Simulation of cellular automata has the advantage of being highly paralleliz-
able and thus quite compatible with current trends in computing architectures.

However, we believe that cellular automata are also a very useful paradigm
for the design of scalable distributed, embedded realtime computation with ap-
plications in ubiquitous or pervasive computing [9] such as smart surfaces and
materials. Such devices combine physically coupled sensors and actuators by a
network of microcontrollers. The presence of microcontrollers turns the entire
surface or material into a computing device that interacts physically with its
environment.
� This work was supported in part by the ANR project MACARON. Special thanks
to the sponsors of the LED’s CHAT exhibition, notably the region Provence Alpes
Côte d’Azur, Marseille Provence 2013 and Lumicom.

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 11–22, 2014.
c© Springer International Publishing Switzerland 2014

12 P. Niebert and M. Caralp

The natural physical architecture for such systems are modules with sensors
and actuators that are linked among each other for communication and for energy
distribution. The communication links will be for the major part local between
neighbouring modules, for a minor part connected to other computing devices
or networks or the internet. The function of the device is to react to stimuli from
the sensors by control of the actuators. One architectural choice for the control
of such a system is to use the network of microcontrollers for information collec-
tion (from the sensors, mergecast) and command distribution (broadcast), but
this choice misses a major technological promise, scalability. Indeed, if the com-
putation itself is performed by the microcontrollers, then we might hope that an
extension of the surface by additional modules adds the computational resources
necessary for its operation: local computing power (additional microcontrollers)
and bandwidth (for local communication). The second promise of decentralized
control is low latency, since the path from the stimulus to the actuators is short.

Fig. 1. A visitor sending coloured waves through the LED’s CHAT installation

In this article, we describe a concrete engineering approach in this direction
of decentralized control which is inspired by cellular automata and which we
call “cellular programming”. It is the result of an adventure that initially aimed
to visually simulate cellular automata on LED modules as an exercice for com-
puter science students in designing embedded software. As we went along, the
aim shifted to the design of an environment for building scalable modular, in-
teractive embedded systems, together with a dedicated programming language,

Cellular Programming 13

an integrated development environment and a distributed embedded runtime
system. As an application, the event “Marseille Provence, European Capital of
Culture 2013” allowed us to build a prototype using 500 triangular modules with
more than 15000 LEDs and 2000 sensors and to expose an interactive installation
to the public.

The aim of the article is to cover an integrated view of our work, includ-
ing, beyond hardware design and distributed embedded software, an abstraction
layer, the locally synchronous virtual machine, allowing for simulation of cellular
programs, as well as programming language considerations and to put “cellular
algorithms” into a distributed programming perspective.

Related work. Closest in spirit to our work, but with a different emphasis, is the
rich body of work on sensor networks[7]. The latter have in common with our
setting the need of operating on primitive microcontrollers, but the main empha-
sis in that domain is a low energy profile for autonomous, often battery powered
microcontrollers. Rather than “smart surfaces”, sensor networks are more related
to “smart dust” as concept in ubiquitous computing.

The computational constraints of sensor networks have given rise to works on
lightweight runtime environments, notably TinyOS [12] and its derivatives. The
notion of coroutines, which we use in our programming concept, has also come
up in this context under the name of “protothreads” [3], which allow to program
pseudo parallel programs without a scheduler. However, the temporal behaviour
of protothreads is not semantically linked between modules but restricted to
local use.

Certain works in sensor networks also mention cellular automata or local
algorithms, e.g. [2].

As to wired systems, cellular automata show up in certain studies of “smart
surfaces”, e.g. [10]. However, we are not aware of a general programming oriented
approach as we have presented in this work.

Networks of microprocessors have been considered as scalable computing plat-
form for several decades, a recent attempt is presented in [1]. Our approach in
contrast is not about scalable computation but about scalable interaction of the
smart surface with it’s environment. The design goals, in particular concerning
performance considerations, are quite opposed in both cases. E.g. recent trends
in manufacturing [8] may allow in the future to integrate big numbers of ex-
tremely low power and low performance microcontrollers to constitute active
materials, which call for programming approaches as the one we present here.

The article is structured as follows. In Section 2, we introduce a program-
ming model for the locally synchronous virtual machine. In Section 3, we present
a lightweight dedicated programming language for this programming model. In
Section 4, we discuss with examples the notion of « cellular algorithms » allow-
ing to understand in which sense the distributed algorithms are scalable. We
conclude in Section 5 with some remarks on the actual implementation in our
demonstrator.

14 P. Niebert and M. Caralp

2 Cellular Programming Model

Modules and Topology. We consider systems composed of modules in a topo-
logical neighbourhood relationship. E.g. squares in a matrix with up to four
neighbours each, or hexagones with up to six neighbours. Unlike cellular au-
tomata such as Conway’s game of life, we limit the neighbourhood relation on
common edges of the modules, not common vertices. The topology need not
necessarily be flat, e.g. triangles may be grouped together to build complex
threedimensional surfaces. We suppose physical links between modules sharing
an edge, which allow the modules to communicate. Each module is equipped
with sensors, actuators and communication channels.

From now on, we consider the modules to be the “cells” of a system and we
describe the execution model with the double inspiration of cellular automata
and synchronous programming [6].

We consider that each cell has a state composed of variable values, where we
distinguish five kinds of variables in three groups.

Output variables : Variables controlling the actuators, or the “visible” part of
the cell state ; variables for “publishing” part of a state to the neighbours.

Input variables : Sensor values; variables for “observing” the published states
of the neighbours.

Internal variables : all other explicit or hidden variables (e.g. stack ...).

In pure cellular automata, there would be no sensor variables and we just
suppose the possibility of integrating the neighbouring states into the rules and
we would suppose that the state of a cell is fully visible. Thus, there would
be no distinction between internal variables and published or visible variables.
The pragmatic reason for the distinction here is the fact that storage (state)
and computation (complex rules) are generally much more abundantly available
than communication bandwidth.

Locally synchronous virtual machine. A very important aspect of our approach
is that it allows to implement faithfully a globally synchronous semantics in
an asynchronous setting. Based on the three groups of variables present in each
module, we propose the following execution model of a locally synchronous virtual
machine in each round :
1. Wait for all neighbors to finish previous the round.
2. Update input variables :

a) Read sensors.
b) Copy output variables of modules to input variables of all neighbours.

On a physical system, this requires communication between modules.
3. Compute new values for internal variables and output variables for the next

round.

We observe the following consequences :
– If a module is executing round n then its neighbors have finished round n−1.
– The order of execution of the computation in each module has no conse-

quence on the local variables.

Cellular Programming 15

We suppose that the computation in (3) is deterministic, i.e. based on the same
state of input variables and internal variables, the resulting values of internal
variables and output variables will always be the same. However, the sensor
readings may be subject to non-determinism or probabilistic distribution, which
might carry through to the behavior of the module.

As a result, we can define global states as snapshots combining the local
states of modules after executing the same number of rounds. We can faithfully
simulate this semantics by pretending that all modules execute synchronously in
parallel even though, in a real time setting, distant modules may be executing
different rounds at the same (global) time. Neighboring modules will in contrast
always expose combined state coherent with a globally synchronous semantics.

Inherent latency. Similar to cellular automata, there is an inherent latency
to this execution model. At any round, a bit of information will only pass across
one edge in the network topology and hence, the minimal latency of information
flow for modules at distance n is n rounds.

3 A Dedicated Programming Language

The semantic model of the previous section basically is a synchronous system
with rounds for local computation and a delay of one round for copying of vari-
ables from a module to a neighbour. We present a simple programming language
which is designed to be quickly adopted by anyone with a minimal programming
experience with little syntax and semantic concepts to learn. For example, as in
Processing (popular in digital arts), essential system resources and functionalities
should be accessible without syntactic overhead.

Given the synchronous execution model, a synchronous language [6] could
be an option for writing applications, but the first author’s teaching experience
suggested that the « good old coroutine » is much easier to adopt for casual de-
veloppers. We thus propose an integration of dedicated primitives for coroutines
into a C like language.

3.1 Synchronous Programming with Coroutines

Coroutines are an old, maybe the first concept of concurrency in programming
and are generally seen as a lightweight version of threads. A coroutine is a
function with a special construct for returning from a call, often called yield, or
just return. However, when calling a coroutine two times, the second call will
pick up the computation after the return of the first call. This implies that the
values of the variables of the coroutine must be retained between successive calls.

In our framework, coroutines can be declared such that the call is implicit,
once per round. Since each such coroutine will be called once per round, a yield or
return call means a change of round or a delay of one round period. Syntactically,
we write the pseudo instruction “sleep n;”, where n is an expression for the
number of rounds to wait.

A simple illustration is to have two LEDs blink at different rates. Here, we
suppose a fixed round duration of 10ms. In this example, LED 0 blinks with a

16 P. Niebert and M. Caralp

period of 1s (100 times 10ms) and LED 1 blinks with a period of 260ms. As can be
seen, the structuring of the code into several coroutines allows for asynchronous
behaviour in a synchronous setting.

coroutine blink0 {
while(1){

led[0] = white; sleep 50; led[0] = black; sleep 50;
}

}

coroutine blink1 {
while(1) {

led[1] = green; sleep 13; led[1] = black; sleep 13;
}

}

It has to be underlined that the “sleeping interval” starts based on the current
execution round, not on an occurrence time of the last instruction. Coroutines
written in this way provide an easy access to synchronous pseudo-parallelism
within a module and between modules.

In the case of several coroutines, the execution order or call order may have
an influence on the result of the computation, when referring to shared variables.
In order to obtain a deterministic semantics, the call order is determined, here
by the alphabetical order of the name of the coroutine.

3.2 Synchronous Communication with Shared Variables

As mentioned in Section 2, the communication between modules is based on
input and output variables. In the API, these variables are simply called in and
out, where both are arrays indexed by the direction of the communication, where
the base type (elements of these arrays) represents the amount of information
that can be shared each round. Typically, in and out are thus two dimensional
arrays where the first dimension concerns the direction of communication and
the second dimension gives access to multiple scalar bits of information passed
at each round.

It is important to note the one round delay between the assignment of a value
to out[i] and the availability of the same value in in[j] in the corresponding
neighbouring module. As an example on the use of these variables, consider a
distributed simulation of a cellular automaton. This simulation can really take
place within a coroutine of the following structure.

coroutine cellular {
//... initialisation code for setup of local variables

while(1) {
// assign "out" with information shared about local state
sleep 1; // receive copy of neighbour’s shared state in "i"

Cellular Programming 17

// compute new local state based on "in" and old local state
}

}

As can be seen, the sleep statement structures the cyclic operation into two
phases, before and after emission. It is interesting to note that a change of
perspective takes place between these two phases, since the first phase is done
from the point of view of the sender and the second phase from the point of view
of the receiver.

As another example, let us consider “migration” of an “agent”, i.e. an activity
that can move from one module to another. We implement such movement with
a coroutine that is present on all modules, but with a difference in perspective.
Variables in and out are used to signal migration from one module to another.

coroutine agent {
bool present;

// initialize "present" so that it represents the presence
// of the agent on the current module.
while(1){

// set "out" to tell neighbours no agent is coming (default)
if(present) {

bool migrate;
int target;
// do locally, what the agent has to do, in particular
// set "migrate" and "target" if the agent has to move

if(migrate){
// update "out[target]" to announce coming agent
present = false; // note that agent is leaving

}
}
sleep 1; // pass information
if(!present){

// check "in" to see if agent is coming in
// and update "present"

}
}

}

Again, this example shows how the “sleep” statement means a change of
perspective/location within the same coroutine. Before the sleep, we have the
perspective of the agent, after the sleep, we take the perspective of a poten-
tial module receiving the agent. Note also the lightweight nature of this kind
of migration requiring a single persistent bit per module and a single bit of
communication bandwidth per link and per round.

18 P. Niebert and M. Caralp

4 Cellular and non Cellular Algorithms

We believe that the actual interest in applying a cellular paradigm to modular
systems as described in this work is scalability, i.e. that the design holds for
arbitrarily or at least very large collections of modules and that locally, the per-
formance of the modules executing their “cellular” task is not influenced by the
size of the installation. Since the system interacts with the physical world, its
response must be real time. There are indeed reasons to hope for such scalabil-
ity, since with each added module we also add local computational power and
bandwidth.

However, not all distributed algorithms (see e.g. [11] for an introduction) are
scalable in this way. We call an algorithm cellular1 iff its execution time in
number of rounds, bandwidth, memory requirements as well as computational
requirements are constant, independent of the dimension of the network. We
claim that this definition reflects “scalable, distributed realtime” performance.

The basic execution model of the locally synchronous virtual machine is that
of one round. The bandwidth per round is bounded by the type of the commu-
nication variables in and out. The memory resources are verifiably limited by
allowing only static (compile time) allocation. The computing power can practi-
cally only be verified at runtime in simulation.

As a result, the locally synchronous virtual machine allows in principle only
the execution of cellular algorithms in an even stricter sense, one round algo-
rithms with bounded bandwidth and computational resources. But using corou-
tines, it is possible to specify multi-round algorithms, e.g. including various
sleep statements at different points in the algorithm. Syntactically, arbitrary
synchronous distributed algorithms can be coded in the formalism.

In practice, there are good reasons to allow the coexistence of cellular and
non-cellular algorithms (in different coroutines). Examples of highly useful non-
cellular algorithms include diameter measurement (at least twice the diame-
ter number of rounds), broadcast (diameter number of rounds for propagation
plus number of rounds for information passing depending on the bandwidth),
firmware update (broadcast), 2D map computation, etc. In the following, we
present two interesting applications of cellular algorithms.

4.1 Distributed Signal Processing

We suppose that each module carries sensors, depending on the application. The
fusion of sensor values in a bounded perimeter allows observations not possible
with individual sensors.

E.g. in the case of our interactive light animation, we used infrared flash lights
as a “pointing device”. The flash lights through a cone of light that is observed

1 A related theoretical notion in distributed algorithms used to state impossibility re-
sults is that of a “local algorithm”, which must terminate in a bounded number of
rounds independent of the network size. Local algorithms may use arbitrary band-
width and computing resources, though.

Cellular Programming 19

by individual sensors, but with an intensity that varies with the distance of the
flash light as well as with the distance from the central axis of the light cone. By
combining the observations of several sensors, we can estimate the position of
the axis of the light cone. In practice, this approach allows to observe gestures
with a precision far beyond the sensor density.

The implementation is based on a cellular algorithm that routes sensor values
in a bounded perimeter to each module. The routing takes a number of rounds
equivalent to the topological distance of the modules integrated into the obser-
vation. The latency of the availability of sensor values depends on this distance.

Depending on the setting, the routing scheme itself may have to be calculated
in advance with a non-cellular algorithm, but this algorithm has to execute only
when changes in the topology take place.

4.2 Distributed Simulation

We believe that the initial motivation of distributed simulation of cellular au-
tomata is close to the “typical application”, but the notion of “cellular automa-
ton” has to be taken widely to see the potential. In each round, each module
simulates its cell or sub cells and communicates the state of the subcells required
for the computation to the neighbours.

What are the limitations? In principle, it would seem that generations cannot
be computed faster than rounds, but things are a bit more complicated.

Consider for instance a distributed simulation of Conway’s Game of Life on
squared modules, where each module covers n × n cells and is connected to
four neighbouring modules. In a naïve implementation, we will communicate
to each direct neighbour the values of the cells on the edge in one round, and
the corners will have to be passed on to the diagonal neighbours in a second
round. So only after two rounds, the information is ready for the computation
of the next generation, hence the fastest distributed simulation speed would be
one generation every two rounds. However, if we communicate more than the
edge at each round, for instance the three cells around each corner, then the
diagonal module, which receives the values of these cells two rounds later can
compute the value of the corner of the previous round and can thus immediately
compute the next generation. Thus, one generation can be computed every round.
If even more cells are communicated, several generations can be computed each
round. Of course, when integrating perturbations, e.g. as a consequence of sensor
observations, it still takes the distance number of rounds before the observation
can be taken into account. But the consequence is sensor latency, not limited
simulation speed.

Another example is finite element simulation, a commonly used approximative
simulation approach for continuous processes, e.g. fluid dynamics. To avoid mis-
understandings, the aim of a distributed finite element simulation in our context
is not efficient simulation, but rather a low latency link between the sensors, the
actuators and the simulated process. A simulated continuous medium mapped
on our modules is subdivided into cells, a bounded number of cells per mod-
ule. We can use continuous (floating point) variables and fixed step numerical

20 P. Niebert and M. Caralp

integration to simulate (pseudo-)physical processes on these cells, where the val-
ues of a cell after an integration step depend only on values in a bounded environ-
ment before the step. In short, this simulation is a cellular automaton. Again, for
the distributed simulation we communicate the values of the bordering cells to
the neighbours. If we intend real time simulation of (pseudo-)physical processes,
then the step width is linked to the duration of a round, but the accuracy of the
simulation depends on the density of cells as well as on the step width. Increas-
ing the number of cells on a module implies increasing the number of values to
communicate to the neighbours and more computation. Likewise, decreasing the
step width for higher accuracy implies more computation and more communica-
tion. Since microcontrollers are often not equipped with floating point units, the
computation is as likely a limiting factor for spatial and temporal resolution as
is the communication.

5 Implementation, “LED’s CHAT”

5.1 Hardware

We implemented the above concepts as an ambitious prototype which was ex-
posed at the “LED’s CHAT” exhibition. The modules (shaped as equilateral tri-
angles) carry LEDs as actuators and Infrared sensors (for interaction), as well as
connecting cables for communication and power distribution. A microcontroller
is used to implement all the tasks of a module (reading sensors, controlling LED’s
communicating with neighbors).

From a computational perspective, a suffi-
ciently powerful single processor can obviously
simulate several cells of a cellular automaton
or several less powerful “submodules”. The con-
verse is also true to some extent: several modules
can cooperate to perform certain collective tasks
in parallel, thus combining their computing and
communication resources. This observation sug-
gests to design the surfaces of the modules in

such a manner as to be compatible with a subdivision into submodules in a
way that preserves the communication infrastructure. E.g., for triangular mod-
ules communicating on edges, a subdivision of triangles into four subtriangles
implies two triangles on each edge and an interiour triangle.

For this case, the communication channels on an edge between two modules
will have to be shared for the communication of the two pairs of submodules,
whereas the communication within the module is simulated by software. On the
other hand, grouping modules together to constitute supermodules introduces
latency into the communication: the information received via a module on the
edge is not immediately available to all the modules in the supermodule but may
need time for propagation.

Cellular Programming 21

These observations imply pragmatic trade-
offs in terms of production cost as well as en-
ergy usage when deciding on the granularity
of the design. It also means that a purist “cel-
lular automaton” approach to the design of
such systems will be suboptimal, at least with
off the shelf components. In the case of the tri-
angular LED’s CHAT modules, we opted for
a subdivision into 25 cells with RGB LED’s
in the center2 controlled by a 32bit Micro-
controller running at 80MHz and disposing of 128kB or RAM. However, in a
previous prototype, we used an 8bit Microcontroller running at 20MHz and only
4kB of RAM for controlling 6 RGB LEDs. This illustrates how little resources
can suffice in principle for each module.

In future applications, trends in manufacturing [8] may open the path to
networks of tiny modules with each significantly reduced resources directly inte-
grated into “smart surfaces”.

5.2 Software

In Section 2, we have indicated the semantics of a locally synchronous virtual
machine which executes synchronous distributed programs in rounds. Here, we
briefly discuss implementation issues concerning an actual distributed implemen-
tation of the virtual machine to be executed on embedded modules.

The design goal of the embedded implementation of the virtual machine is to
execute it on primitive microcontrollers with as little as 4kB RAM.

Each microcontroller has to cope with four essential tasks, reading sensors,
manipulating actuators, participating in the communication framework and exe-
cuting application code. A crucial possibility is to dispatch an application across
the network by a distributed bootloader. This is achieved by a non-cellular dis-
tributed algorithm which however can still be coded within the same framework.

The heart of the implementation is the communication framework. Its task is
to synchronize the microcontrollers and to copy variables between neighbouring
vertices, as well as certain administrative tasks, such as distributed reset etc.

It turns out that a key issue in the communication framework is synchroniza-
tion between modules, a problem related to the much researched topic of clock
synchronization. However, for the locally synchronous virtual machine, it is suffi-
cient to closely synchronize neighbouring modules (and to less synchronize more
distant modules), an objective introduced as gradient synchronization in [5]. In
[4], an algorithm using an external clock source like GPS for a subset of nodes
is proposed, that matches closely our setting. In a concrete implementation of
the locally synchronous virtual machine, the synchronization of neighbours is
implicitly necessary in every round.

2 The picky reader will actually identify 31 LEDs, 6 additional LEDs are placed at
the corners between triangles).

22 P. Niebert and M. Caralp

Beyond embedded software, the de-
velopment of distributed applications
requires tool support. We have built an
integrated development environment with
integrated editor, compiler and visual real
time simulator/debugger, as well as fea-
tures helping for the development of ro-
bust applications that work in various
topologies. It is important to underline
the consistency of synchronous simulation (with a multi threaded simulator ex-
ecuting the synchronous semantics) and asynchronous physical execution.

References

1. Ackley, D.H., Cannon, D.C., Williams, L.R.: A movable architecture for robust
spatial computing. The Computer Journal (2012)

2. Choudhury, S.: Cellular automaton based algorithms for wireless sensor networks.
Ph.D. thesis, Queen’s University, Kingston, Ontario, Canada (2012)

3. Dunkels, A., Schmidt, O., Voigt, T., Ali, M.: Protothreads: Simplifying event-driven
programming of memory-constrained embedded systems. In: Proceedings of the 4th
International Conference on Embedded Networked Sensor Systems, SenSys 2006,
pp. 29–42. ACM, New York (2006)

4. Fan, R.: Lower Bounds in Distributed Computing. Ph.D. thesis, Massachusetts
Institute of Technology (2008)

5. Fan, R., Lynch, N.: Gradient clock synchronization. Distributed Computing 18(4),
255–266 (2006)

6. Halbwachs, N.: Synchronous Programming of Reactive Systems. The Springer In-
ternational Series in Engineering and Computer Science. Springer (1992)

7. Iyengar, S.S., Brooks, R.R. (eds.): Sensor Networking and Applications. Chapman
and Hall/CRC (2012)

8. Leenen, M.A., Arning, V., Thiem, H., Steiger, J., Anselmann, R.: Printable elec-
tronics: flexibility for the future. Physica Status Solidi (a) 206(4), 588–597 (2009)

9. Obaidat, M., Denko, M., Woungang, I.: Pervasive Computing and Networking.
Wiley (2011)

10. Pérez, G.B.: S.N.A.K.E.: A dynamically reconfigurable artificial sensate skin. Mas-
ter of science in media arts and sciences, Massachusetts Institute of Technology
(2006)

11. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press
(2000)

12. TinyOS web page, http://www.tinyos.net
13. Wolfram, S.: A new kind of science. General science, Wolfram Media (2002)

http://www.tinyos.net

Multi-Noisy-objective Optimization

Based on Prediction of Worst-Case Performance

Kiyoharu Tagawa1 and Shoichi Harada2

1 School of Science and Engineering, Kinki University
Higashi-Osaka 577-8502, Japan
tagawa@info.kindai.ac.jp

2 Graduate School of Science and Engineering Research, Kinki University
Higashi-Osaka 577-8502, Japan

Abstract. This paper proposes a new approach to cope with multi-
objective optimization problems in presence of noise. In the first place,
since considering the worst-case performance is important in many real-
world optimization problems, a solution is evaluated based on the upper
bounds of respective noisy objective functions predicted statistically by
multiple sampling. Secondary, a rational way to decide the maximum
sample size for the solution is shown. Thirdly, to allocate the computing
budget of a proposed evolutionary algorithm only to promising solutions,
two pruning techniques are contrived to judge hopeless solutions only by
a few sampling and skip the evaluation of the upper bounds for them.

Keywords: evolutionary computing, multi-objective optimization.

1 Introduction

Many real-world Multi-objective Optimization Problems (MOPs) have more
than one objective function contaminated by noise. The presence of noise leads
to different results for repeated evaluations of the same solution. Therefore, for
solving Multi-Noisy-objective Optimization Problems (MNOPs), various Multi-
Objective Evolutionary Algorithms (MOEAs) have also been reported. The goal
of those MOEAs is to produce a set of distributed solutions that are not only
of high quality, but also robust. However, there are many possible notations
of robustness. Even among them, the worst-case performance is important in
particular if the decision maker is very risk averse, or if the stakes are high.

This paper thinks about a new class of MNOPs in which the predicted upper
bounds of respective noisy objective functions are minimized simultaneously. The
predicted upper bounds of noisy objective functions provide a proper criterion
to measure the worst-case performance. However, the multiple sampling of every
solution to predict the upper bounds statistically is still expensive. Therefore,
a novel MOEA based on Differential Evolution (DE) [1] is proposed for solving
the new class of MNOPs effectively. In order to examine as many solutions as
possible within a limited number of function evaluations, the proposed MOEA
uses two pruning techniques, which are called U-cut and C-cut respectively, to
judge hopeless solutions only by a few sampling and skip their evaluations.

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 23–34, 2014.
c© Springer International Publishing Switzerland 2014

24 K. Tagawa and S. Harada

2 Related Work on Multi-Noisy-objective Optimization

To date, a number of methods including various MOEAs have been reported to
solve MNOPs [2]. As stated above, the goal of those methods is to produce a
set of distributed solutions that are not only of high quality, but also robust.
There are many possible notations of robustness, including a good expected
performance, a good worst-case performance, a low variability in performance,
or a large range of disturbance still leading to acceptable performance [3].

In order to evaluate the good expected performance for a solution, averaging
over multiple samples is a most fundamental approach. That is because it is
applicable even if the properties of uncertainties are completely unknown [4,5].
On the other hand, some assumptions on the probability distribution of objec-
tive function values are often introduced into the problem formulation, namely,
a normal distribution with constant variance [6,7,8], a normal distribution with
variable variance [9,10], a uniform distribution [11], and so on. Thereby, statis-
tical approaches such as Probabilistic dominance [6] can be used to compare
two uncertain solutions. Incidentally, for the case that the objective functions
are distributed normally with a constant variance, learning algorithms have also
been reported to estimate the constant variance during the optimization [7].

In order to evaluate the worst-case performance for a solution, the concept
of min-max robustness is introduced into the problem formulation. Thereby, the
worst value of each objective function is found by the multiple sampling of the
same solution [12]. Another interpretation of the uncertainty in MOPs is based
on scenarios instead of noise. The objective function values for a given solution
depend on scenarios. A set of objective function values for all possible scenarios
is considered. Then the worst-case performance for the solution is obtained as
a set of non-dominated objective function values by solving an inversed MOP
[13,14]. The objective function values of a solution for all possible scenarios can
be also depicted as a polygon in the objective space. Therefore, the worst-case
performance of the solution is represented deterministically as a set of extremal
points of the polygon. For finding those extremal points one by one, a single
objective optimization algorithm is used repeatedly [15].

It can be seen that the previous work that addresses the worst-case perfor-
mance in MNOPs is relatively limited. Moreover, to the best of our knowledge,
the statistical approach based on the predicted upper bounds of noisy objective
functions has not yet been reported. Because it is impossible to find the worst
value of a stochastic objective function in a finite number of samples, we think
that the statistical approach proposed in this paper is practically useful.

3 Problem Formulation

3.1 Noisy-objective and Prediction Interval

Let x = (x1, · · · , xj , · · · , xD) denote a vector of decision variables xj ∈ � that
can be changed by an algorithm. The decision vector x ∈ �D is often referred
to as a solution. An objective vector f (x) = (f1(x), · · · , fm(x), · · · , fM (x))

Multi-Noisy-objective Optimization 25

depending on a solution x ∈ �D is composed of M (M ≥ 2) objective functions
fm(x) ∈ �, m ∈ IM = {1, · · · , M}. The objective vector f(x) is minimized
in MOPs. Now, we assume that each objective function fm(x) is contaminated
with noise in MNOPs. Therefore, every time a solution x ∈ �D is evaluated, a
different objective vector may be returned. Let fn

m(x) ∈ �, n ∈ IN = {1, · · · , N}
be observed values of fm(x), which are distributed normally as

fn
m(x) ∼ N (μm(x), σm(x)2) = N (fm(x), σm(x)2), (1)

where the mean μm(x) = fm(x), m ∈ IM and the variance σm(x)2, m ∈ IM
are mutually independent functions that depend on the solution x ∈ �D.

Because the mean μm(x) and the variance σm(x)2 in (1) are usually unknown,
we have to estimate those values, respectively, by the sample mean and the
unbiased variance. From a sample set {f1

m(x), · · · , fn
m(x), · · · , fN

m (x)} of an
objective function fm(x) for x ∈ �D, the sample mean is calculated as

fm(x) =
1

N

N∑

n=1

fn
m(x). (2)

The unbiased variance is also calculated from the sample set and (2) as

sm(x)2 =
1

N − 1

N∑

n=1

(fn
m(x)− fm(x))2. (3)

By using fm(x) and sm(x)2 instead of μm(x) and σm(x)2 respectively, the
normal distribution in (1) is approximated by Student’s t-distribution. We have
already obtained the sample set {fn

m(x) ∈ � | n ∈ IN} of size N . Let fN+1
m (x)

be the (N+1)-th sample, or the future observation of fm(x). Then the following
statistic yields Student’s t-distribution with N − 1 degrees of freedom [16]:

fN+1
m (x)− fm(x)

sm(x)

√

1 +
1

N

∼ T (N − 1). (4)

Let α (0 < α ≤ 0.05) be a significance level. The one-side prediction interval
in which the future observation fN+1

m (x) will fall is derived from (4) as

−∞ < fN+1
m (x) ≤ fm(x) + t(N − 1, α) sm(x)

√

1 +
1

N
= fU

m(x), (5)

where t(N−1, α) is the α-quantile of Student’s t-distribution with N−1 degrees
of freedom. The upper bound of the prediction interval is denoted by fU

m(x).
The probability of the future observation fN+1

m (x) of the noisy objective func-
tion fm(x) falling in the prediction interval shown in (5) is

P(fN+1
m (x) ≤ fU

m(x)) = 1− α. (6)

On the other hand, the probability that the future observation fN+1
m (x)

doesn’t fall in the prediction interval in (5) is very small such as

P(fU
m(x) ≤ fN+1

m (x)) = α. (7)

26 K. Tagawa and S. Harada

3.2 Multi-Noisy-objective Optimization Problem

Let {fn(x) = (fn
1 (x), · · · , fn

m(x), · · · fn
M (x)) | n ∈ IN} be a sample set of an

objective vector f(x) ∈ �M depending on a solution x ∈ �D. From (2), (3),
(5), and the sample set {fn(x) ∈ �M | n ∈ IN} of size N , we can predict
the upper bound fU (x) ∈ �M of the future observation fN+1(x) ∈ �M . We
also suppose that each of decision variables xj ∈ �, j ∈ ID = {1, · · · , D} is
limited to the range between the lower xL

j and the upper xU
j bounds. Thereby,

a Multi-Noisy-objective Optimization Problem (MNOP) is formulated as
[
minimize fU (x) = (fU

1 (x), · · · , fU
m(x), · · · , fU

M (x)),

subject to x = (x1, · · · , xj , · · · , xD) ∈ X,
(8)

where X = {x ∈ �D | ∀ j ∈ ID : xL
j ≤ xj ≤ xU

j } is called the decision space.

Furthermore, F = {fU (x) ∈ �M | x ∈ X} is called the objective space. In order
to simplify the notation in this paper, we will sometimes use an objective vector
fU (x) ∈ F to represent a corresponding solution x ∈ X, and vice versa.

Definition 1. A vector v = (v1, · · · , vm, · · · , vM) ∈ �M is said to dominate
the other v′ ∈ �M and denoted as v 	 v′, if the following condition is true:

(∀m ∈ IM : vm ≤ v′m) ∧ (∃n ∈ IM : vn < v′n). (9)

Definition 2. A vector v = (v1, · · · , vM) ∈ �M is said to weakly dominate the
other v′ ∈ �M and denoted as v � v′, if the following condition is true:

∀m ∈ IM : vm ≤ v′m. (10)

From (6), the probability of fN+1(x) weakly dominating fU (x) is

P(fN+1(x) � fU (x)) =

M∏

m=1

P(fN+1
m (x) ≤ fU

m(x)) = (1− α)M . (11)

From (7), the probability of fU (x) weakly dominating fN+1(x) is

P(fU (x) � fN+1(x)) =
M∏

m=1

P(fU
m(x) ≤ fN+1

m (x)) = αM . (12)

3.3 Selection of Sample Size

For calculating an objective vector fU (x) in (8), a solution x ∈ X needs to be
evaluated N times. Sampling size selection is actually a burden to balance the
quality of the objective vector fU (x) with the computational overhead.

We employ a rational way to determine an appropriate sample size N from
the accuracy of the unbiased variance sm(x)2 in (3). The both-side confidence
interval of the variance σm(x)2 appeared in (1) is given as follows [16]:

N − 1

χ2(N − 1, α/2)
sm(x)2 ≤ σm(x)2 ≤ N − 1

χ2(N − 1, 1− α/2)
sm(x)2, (13)

Multi-Noisy-objective Optimization 27

where χ2(N − 1, α/2) and χ2(N − 1, 1 − α/2) are the α/2-quantile and the
(1− α/2)-quantile of the χ2-distribution with N − 1 degrees of freedom.

Let δ (δ > 1) be a tolerance for the ratio of the upper bound to the lower
bound of the confidence interval in (13). Thereby, the ratio is limited as

χ2(N − 1, α/2)

χ2(N − 1, 1− α/2)
≤ δ. (14)

From the condition in (14) and the Fisher’s approximation of χ2-distribution
[17], we decide a sample size N for a given tolerance δ (δ > 1) as follows:

N ≥ 1

2

(
(1 +

√
δ) zα/2√

δ − 1

)2

+
3

2
, (15)

where zα/2 is the α/2-quantile of the standard normal distribution: N (0, 1). The
sample size N increases quickly as we attempt to reduce the tolerance δ.

4 Differential Evolution for MNOP

If we calculate the objective vector fU (x) in (8) from the sample set of size N
for every examined solution x ∈ X, we can apply conventional MOEAs, such as
NSGA-II [18] and DEMO [19], to MNOP without modification. In order to cope
with MNOP, we select DEMO as the basic MOEA for its simplicity in coding,
fewer control parameters, good accuracy, and fast speed convergence [5].

Algorithm 1 provides the pseudo-code of DEMO applied to MNOP. First
of all, an initial population P ⊂ X of size NP is generated randomly. There-
after, the objective vector fU (xi) is evaluated for each xi ∈ P from a sample
set {fn(xi) | n ∈ IN} of size N . Every solution xi ∈ P , i = 1, · · · , NP is
chosen to be the target vector xi in turn. By using a basic strategy named
“DE/rand/1/exp” [1], a new trial vector u ∈ X is generated from the target
vector xi ∈ P and other solutions selected randomly in P at the 7th line.

The search efficiency of DE depends on the control parameters, namely the
scale factor SF and the crossover rate CR, which are used in the strategy. Thus,
we introduce a self-adapting mechanism of them [20] into DEMO. A different set
of parameter values SF,i and CR,i are assigned to each xi ∈ P , i = 1, · · · , NP .
The strategy generates u from xi ∈ P by using SF and CR decided as

SF =

{
0.1 + rand1[0, 1] 0.9, if rand2[0, 1] < 0.1,

SF,i, otherwise,
(16)

CR =

{
rand3[0, 1], if rand4[0, 1] < 0.1,

CR,i, otherwise,
(17)

where randk[0, 1] ∈ [0, 1] denotes a uniformly distributed random number.
The objective vector fU (u) is evaluated for the trial vector u from a sample

set {fn(u) | n ∈ IN} of size N at the 8th line. In lines 9-15, the trial vector u

28 K. Tagawa and S. Harada

Algorithm 1. DEMO applied to MNOP

1: P := Generate Initial Population(NP);
2: for i := 1 to NP do
3: fU (xi) := Predict Upper Bound(fn(xi), n ∈ IN);
4: end for
5: repeat
6: for i := 1 to NP do
7: u := Strategy(xi ∈ P); /* Generate a new trial vector u ∈ X */
8: fU (u) := Predict Upper Bound(fn(u), n ∈ IN);
9: if fU (u) � fU (xi) then
10: xi := u; /* Replace xi ∈ P by u. */
11: else
12: if fU (xi) � fU (u) then
13: P := P ∪ {u}; /* Add u to P . Thus, |P | > NP holds. */
14: end if
15: end if
16: end for
17: P := Truncation Method#1(P , NP); /* |P | = NP holds. */
18: until a termination condition is satisfied;
19: Output the non-dominated solution set P̌ ⊆ P ;

is compared to the target vector xi ∈ P . If fU (u) weakly dominates fU (xi), u
replaces xi. However, when they are non-dominated each other, u is added to
P . Otherwise, u is discarded. As a result, if u survives, the control parameters
SF and CR used for u are assigned to the new solution u ∈ P . The number of
solutions in P becomes NP ≤ |P | ≤ 2NP at the 17th line. In order to return
the population size to NP , the following truncation method is applied to P .

[truncation method #1]

Step 1 Decide the non-domination rank [18] for each solution xi ∈ P and then
select NP solutions from P in the ascending order on the rank.

Step 2 If some solutions need to be selected from Pr ⊆ P with the same rank,
evaluate ε-DOM criterion [21] for xi ∈ Pr. Thereafter, select the necessary
number of solutions from Pr in the descending order on the criterion.

For sorting non-dominated solutions, some secondary criteria that can replace
the crowding-distance [18] have been reported. From the result of comparative
study, ε-DOM was the best in the average among examined secondary criteria
[21]. Therefore, ε-DOM is adopted in Step 2 of the truncation method #1.

5 Proposed Approach to MNOP

Multiple sampling of every examined solution is very expensive in most of real-
world optimization problems. To allocate the computing budget of DEMO only
to promising solutions of MNOP, we propose two novel pruning techniques of
hopeless solutions, which are called U-cut and C-cut respectively. First of all, we
restrict the value of each fU

m(x) in (8) to be less than γm ∈ � because

Multi-Noisy-objective Optimization 29

1. in real-world applications, every solution has to meet absolute standards,
2. a part of the Pareto-front is usually sufficient for decision making,
3. expensive evaluation may be omitted for unacceptable solutions.

Let γ = {γ1, · · · , γM} ∈ �M be a cutoff point specified by the designer.
A Multi-Noisy-Hard-objective Optimization Problem (MNHOP) is formulated
as [

minimize fU (x) = (fU
1 (x), · · · , fU

m(x), · · · , fU
M (x)),

subject to (x ∈ X) ∧ (fU (x) � γ),
(18)

where a solution x ∈ X is feasible if the solution satisfies all constraints. The
feasible space G ⊆ F is defined as G = {fU (x) ∈ F | ∀m ∈ IM : fU

m(x) ≤ γm}.

Algorithm 2. DEUC applied to MNHOP

1: P := Generate Initial Population(NP);
2: for i := 1 to NP do
3: if ∀n ∈ IN : fn(xi) � γ then
4: g(xi) := (fU (xi) := Predict Upper Bound(fn(xi), n ∈ IN));
5: else
6: g(xi) := f n̂(xi); /* ∃n̂ ∈ IN : f n̂(xi) � γ */
7: end if
8: end for
9: repeat
10: for i := 1 to NP do
11: u := Strategy(xi ∈ P); /* Generate a new trial vector u ∈ X */
12: if ∀n ∈ IN : (g(xi) � fn(u)) ∧ (fn(u) � γ) then
13: g(u) := (fU (u) := Predict Upper Bound(fn(u), n ∈ IN));
14: else
15: g(u) := f n̂(u); /* ∃n̂ ∈ IN : (g(xi) 	 f n̂(u)) ∨ (f n̂(u) � γ) */
16: end if
17: if g(u) � g(xi) then
18: xi := u; /* Replace xi ∈ P by u. */
19: else
20: if g(xi) � g(u) then
21: P := P ∪ {u}; /* Add u to P . Thus, |P | > NP holds. */
22: end if
23: end if
24: end for
25: P := Truncation Method#2(P , NP , η); /* |P | = NP holds. */
26: until a termination condition is satisfied;
27: Output the non-dominated feasible solution set Q̌ ⊆ Q ⊆ P ;

Differential Evolution with U-cut & C-cut (DEUC) is an extended DEMO
and applied to MNHOP in (18) instead of MNOP in (8). Algorithm 2 provides
the pseudo-code of DEUC. The proposed DEUC evaluates solutions xi ∈ P by
the fitness vectors g(xi) ∈ �M instead of the objective vectors fU (xi) ∈ �M .
The fitness vectors are initialized for xi ∈ P , i = 1, · · · , NP in lines 2-8 as

30 K. Tagawa and S. Harada

g(xi) =

{
fU (xi) = (fU

1 (xi), · · · , fU
M (xi)), if ∀n ∈ IN : fn(xi) � γ,

f n̂(xi) = (f n̂
1 (xi), · · · , f n̂

M (xi)), otherwise,
(19)

where (∀n ∈ {1, · · · , n̂− 1} ⊂ IN : fn(xi) � γ) ∧ (f n̂(xi) � γ) holds.
DEUP generates the trial vector u ∈ X at the 11th line in the same way with

DEMO in Algorithm 1. The fitness vector g(u) of u is evaluated in lines 12-16.
From (11), if g(xi) dominates f n̂(u), g(xi) also dominates fU (u) in short odds.
Therefore, the U-cut based on the upper bounds of objective functions skips
additional sampling of u and set f n̂(u) to g(u). On the other hand, if f n̂(u)
doesn’t dominate γ ∈ �M , u is probably infeasible. Therefore, the C-cut based
on the cut -off point also skips additional sampling of u and set f n̂(u) to g(u).
The objective vector fU (u) is evaluated and substituted for g(u) at the 13th
line only if u is feasible and g(xi) doesn’t dominate every fn(u), n ∈ IN .

The trial vector u is compared to the target vector xi ∈ P in lines 17-23
based on their fitness vectors. The feasibility of solutions doesn’t need to be
considered in the comparison between u and xi ∈ P , because it is proven that
feasible solutions fU (x) ∈ G are not dominated by any infeasible ones [22]:

fU (x) ∈ F ∧ fU (x′) ∈ G ∧ fU (x) � fU (x′) ⇒ fU (x) ∈ G. (20)

In order to return the population size to NP at the 25th line, the following
truncation method #2 is applied to P . The truncation method #2 was proposed
for multi-hard-objective optimization problems in our previous paper [22]. Hard-
objective differs from constrained objective because the former has no conflict
with its constraint. If an objective function fU

m(x) is minimized in MNHOP, its
constraint fU

m(x) ≤ γm will be satisfied sooner or later. Let Q ⊆ P be a set of
feasible solutions defined as Q = {xi ∈ P | fU (xi) ∈ G}. Feasible solutions
xi ∈ Q have priority over infeasible ones in P . For sorting infeasible solutions,
alternative schemes are chosen by a control parameter η (0 ≤ η ≤ 1).

[truncation method #2]

Step 1 If |Q| ≥ NP then apply truncation method #1 to Q ⊆ P .
Step 2 If |Q| < NP then select all feasible solutions xi ∈ Q. Thereafter, the

shortage is selected from the set of infeasible solutions Qc = P \Q as
Step 2.1 If |Q| ≤ η NP then apply truncation method #1 to Qc ⊆ P .
Step 2.2 Otherwise, select the necessary number of solutions xi ∈ Qc ⊆ P in

the ascending order on the violation distance d(xi) ∈ � defined as

d(xi) =

M∑

m=1

max{0, (gm(xi)− γm)}. (21)

6 Numerical Experiments

6.1 Experimental Setup

In most real-world MNOPs, the higher objective function values are usually
expected to have more errors than lower ones [10]. Therefore, by using a deter-
ministic function fm(x) ∈ �, the noisy objective function is defined as

Multi-Noisy-objective Optimization 31

Table 1. Number of obtained solutions

(a) DEMO applied to MNOP

M 2 4 6 8

DTLZ1 85.7 99.9 100.0 100.0
DTLZ2 98.3 100.0 100.0 100.0
DTLZ3 98.7 100.0 100.0 100.0
DTLZ4 98.5 100.0 100.0 100.0
DTLZ5 98.3 100.0 100.0 100.0
DTLZ6 79.7 100.0 100.0 100.0

(b) DEUC applied to MNHOP

M 2 4 6 8

DTLZ1 92.0 100.0 100.0 76.6
DTLZ2 99.0 100.0 100.0 100.0
DTLZ3 99.4 100.0 100.0 63.3
DTLZ4 98.7 100.0 100.0 100.0
DTLZ5 99.0 100.0 100.0 100.0
DTLZ6 95.1 100.0 100.0 100.0

Table 2. Comparison of DEMO and DEPC by Wilcoxon test

(a) Convergence (CM)

M 2 4 6 8

DTLZ1 � � � �
DTLZ2 — � � �
DTLZ3 � � � �
DTLZ4 � � � �
DTLZ5 — � � �
DTLZ6 � � � �

(b) Diversity (MS)

M 2 4 6 8

DTLZ1 � � � �
DTLZ2 — � � �
DTLZ3 � � � �
DTLZ4 — � � —
DTLZ5 — � � �
DTLZ6 � � � �

(c) Hypervolume (Hv)

M 2 4 6 8

DTLZ1 � � � �
DTLZ2 — — — —
DTLZ3 � � � �
DTLZ4 — — — —
DTLZ5 — � — —
DTLZ6 � � � �

fn
m(x) = fm(x) + λm fm(x) εam + κm εbm, (22)

where εam ∼ N (0, 1), εbm ∼ N (0, 1), λm > 0, and κm > 0.
According to a model of noise [10], the noise in (22) is also composed of two

components: variable one λm fm(x) and constant one κm. From the reproductive
property of the normal distribution [16], fn

m(x) is distributed normally as

fn
m(x) ∼ N (fm(x), σm(x)2) = N (fm(x), λ2

m fm(x)2 + κ2
m). (23)

The scalable test MOPs [23] with M objectives are employed for providing
fm(x) in (22) with λm = 0.01 and κm = 0.05, m ∈ IM . From (15), the minimum
sample size N = 40 is calculated for α = 0.05 and δ = 2.5. DEMO is applied to
each instance of MNOP in (8) 30 times. The population size is chosen as NP =
100. As the termination condition, the total number of function evaluations is
limited to 8 × 105. Similarly, DEUC is applied to each instance of MNHOP in
(18), where a cutoff point γ ∈ �M is given for all cases as γm = 2.0, m ∈ IM .
A recommended value η = 0.2 [22] is used for the truncation method #2.

6.2 Results and Discussion

Table 1 compares the average numbers of solutions obtained by DEMO and
DEUC. Because the solutions obtained by DEUC have to be feasible, DEUC
finds fewer solutions than DEMO in two cases: DTLZ1 and DTLZ3 (M = 8).

To evaluate the solutions in Table 1, we use three metrics: 1) Convergence
Measure (CM) of the original test MOPs [23], 2) Maximum Spread (MS) [24],
and 3) Hypervolume (Hv). MS is a metric to evaluate the diversity of solutions.
Hv is a comprehensive metric evaluating both convergence and diversity.

32 K. Tagawa and S. Harada

(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

(e) DTLZ5 (f) DTLZ6

Fig. 1. Histogram of the number of solutions examined by DEUC

Table 2 compares DEUC with DEMO by using Wilcoxon test about CM, MS,
and Hv: � (�) means that DEUC is significantly better (worse) than DEMO
with risk 1[%]; � (�) means that DEUC is better (worse) than DEMO with risk
5[%]; and “—” means that there is no significant difference between DEUC and
DEMO. From Table 2, DEUC is not defeated by DEMO in CM for all cases. On
the other hand, DEUC can’t beat DEMO in MS. Comparing to DEMO in Hv,
DEUC is not defeated for all cases and significantly better for many cases.

From Table 2(c), DEMO is competitive with DEUC in DTLZ2 and DTLZ4.
However, DEUC defeats DEMO in DTLZ1, DTLZ3, and DTLZ6. Fig. 1 shows
the histogram of the number of solutions examined by DEUC in each problem.
Category #N in Fig. 1 denotes the number of solutions evaluated N = 40 times.
Categories #U and #C denote the numbers of solutions evaluated less than N =
40 times due to U-cut and C-cut respectively, where DEUC applies U-cut to each

Multi-Noisy-objective Optimization 33

solution before C-cut. Because DEMO evaluates every solution N = 40 times,
the number of examined solutions is always (8× 105)/40 = 2 × 104. Contrarily,
DEUC examines more solutions than DEMO as shown in Fig. 1.

From Fig. 1, both U-cut and C-cut work effectively in DTLZ1, DTLZ3, and
DTLZ6. Especially, C-cut becomes more effective as the number of objective
functions increases. Because a lot of hopeless solutions are evaluated only a few
times due to U-cut and C-cut, the total numbers of solutions examined by DEUC
become very large in those problems. On the other hand, neither U-cut nor C-
cut is effective for the other problems. Especially, U-put doesn’t work when
the number of objective functions is large. Consequently, the total numbers of
examined solutions don’t increase so much in DTLZ2, DTLZ4, and DTLZ5.

7 Conclusion

It is important to consider the worst-case performance for real-world MNOPs.
Therefore, we have predicted statistically the upper bounds of noisy objective
functions from a finite number of samples. In order to omit useless multiple
sampling, we have also proposed an extended DEMO named DEUC that uses
two pruning techniques of hopeless solutions. DEUC was not defeated by DEMO
in all test problems. Besides, DEUC outperformed DEMO in many test problems.
Even though DEUC requires a new control parameter, namely the cutoff point,
an appropriate cutoff point can be decided easily for real-world MNOPs from
specifications or an existing solution. Actually, a sufficient improvement over an
existing solution should be acceptable in real-world applications.

Future work will include an in-depth evaluation of the proposed DEUP on
a broad range of practical MNHOPs with various cutoff points. Furthermore,
handling non-Gaussian noise efficiently remains as an active area of research.

Acknowledgment. This work was supported by a grant from Japan Society
for the Promotion of Science (JSPS) (Project No. 24560503).

References

1. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical
Approach to Global Optimization. Springer (2005)

2. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey.
IEEE Trans. on Evolutionary Computation 9(3), 303–317 (2005)

3. Gunawan, S., Azarm, S.: Multi-objective robust optimization using a sensitivity
region concept. Structural and Multidisciplinary Optimization 29(1), 50–60 (2005)

4. Voß, T., Trautmann, H., Igel, C.: New uncertainty handling strategies in multi-
objective evolutionary optimization. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 260–269. Springer, Heidelberg
(2010)

5. Rakshit, P., Konar, A., Das, S., Jain, L.C., Nagar, A.K.: Uncertainty management
in differential evolution induced multiobjective optimization in presence of mea-
surement noise. IEEE Trans. on Systems, Man, and Cybernetics: Systems 44(7),
922–937 (2013)

34 K. Tagawa and S. Harada

6. Hughes, E.J.: Evolutionary multi-objective ranking with uncertainty and noise. In:
Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001.
LNCS, vol. 1993, pp. 329–342. Springer, Heidelberg (2001)

7. Fieldsend, J.E., Everson, R.M.: Multi-objective optimization in the presence of
uncertainty. In: Proc. IEEE CEC 2005, pp. 243–250 (2005)

8. Shim, V.A., Tan, K.C., Chia, J.Y., Mamun, A.A.: Multi-objective optimization
with estimation of distribution algorithm in a noisy environment. Evolutionary
Computation 21(1), 149–177 (2013)

9. Bui, L.T., Abbass, H.A., Essam, D.: Localization for solving noisy multi-objective
optimization problems. Evolutionary Computation 17(3), 379–409 (2009)

10. Eskandari, H., Geiger, C.D.: Evolutionary multiobjective optimization in noisy
problem environments. Journal of Heuristics 15(6), 559–595 (2009)

11. Teich, J.: Pareto-front exploration with uncertain objectives. In: Zitzler, E., Deb,
K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993,
pp. 314–328. Springer, Heidelberg (2001)

12. Kuroiwa, D., Lee, G.M.: On robust multiobjective optimization. Vietnam Journal
of Mathematics 40(2&3), 305–317 (2012)

13. Avigad, G., Branke, J.: Embedded evolutionary multi-objective optimization for
worst case robustness. In: Proc. GECCO 2008, pp. 617–624 (2008)

14. Branke, J., Avigad, G., Moshaiov, A.: Multi-objective worst case optimization by
means of evolutionary algorithms. Working Paper, Coventry UK: WBS, University
of Warwick (2013), http://wrap.warwick.ac.uk/55724

15. Ehrgott, M., Ide, J., Schöbel, A.: Minmax robustness for multi-objective
optimization problems. European Journal of Operation Research (2014),
http://dx.doi.org/10.1016/j.ejor.2014.03.013

16. Wackerly, D.D., Mendenhall, W., Scheaffer, R.L.: Mathematical Statistics with
Applications, 7th edn. Thomson Learning, Inc. (2008)

17. Fisher, R.A.: On the interpretation of χ2 from contingency tables, and calculation
of P . Journal of the Royal Statistical Society 85(1), 87–94 (1922)

18. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2),
182–197 (2002)

19. Robič, T., Filipič, B.: DEMO: Differential evolution for multiobjective optimization.
In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS,
vol. 3410, pp. 520–533. Springer, Heidelberg (2005)

20. Brest, J., Greiner, S., Bošković, B., Merink, M., Žumer, V.: Self-adapting control
parameters in differential evolution: a comparative study on numerical benchmark
problems. IEEE Trans. on Evolutionary Computation 10(6), 646–657 (2006)

21. Köppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for han-
dling many-objective optimization problems. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer,
Heidelberg (2007)

22. Tagawa, K., Imamura, A.: Many-hard-objective optimization using differential evo-
lution based on two-stage constraint-handling. In: Proc. GECCO 2013, pp. 671–678
(2013)

23. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multi-objective optimization. TIK-Technical Report, 112, 1–27 (2001)

24. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications, PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)

http://wrap.warwick.ac.uk/55724
http://dx.doi.org/10.1016/j.ejor.2014.03.013

Generalization in Maze Navigation Using

Grammatical Evolution and Novelty Search

Paulo Urbano1,�, Enrique Naredo2, and Leonardo Trujillo2

1 LabMAg, Universidade de Lisboa, 1749-016 Lisbon, Portugal
pub@di.fc.ul.pt

2 Tree-Lab, Instituto Tecnológico de Tijuana, Calz. del Tecnológico S/N,
Tomás Aquino, 22414 Tijuana, Baja California, México

enriquenaredo@gmail.com, leonardo.trujillo@tectijuana.edu.mx

Abstract. Recent research on evolutionary algorithmshas begun to focus
on the issue of generalization.Whilemostworks emphasize the evolution of
high quality solutions for particular problem instances, others are address-
ing the issue of evolving solutions that can generalize in different scenarios,
which is also the focus of the present paper. In particular, this paper com-
pares fitness-based search,Novelty Search (NS), and random search in a set
of generalization oriented experiments in amaze navigation problem using
Grammatical Evolution (GE), a variant of Genetic Programming. Exper-
imental results suggest that NS outperforms the other search methods in
terms of evolving general navigation behaviors that are able to cope with
different initial conditions within a static deceptive maze.

Keywords: Novelty Search, Grammatical Evolution, Genetic
Programming.

1 Introduction

Genetic Programming (GP) is a machine learning approach for the discovery of
computer programs through an evolutionary search process. An important eval-
uation criteria for artificial learning systems, and for GP in particular, is their
ability to find high quality solutions. However, generalization is also crucial, and
several works have been devoted to this issue [2,7,6]. A general solution is one that
is able to have a high performance on cases used for learning, and also on newer
unseen cases. For example, in maze navigation, an artificial agentmust find its way
through the maze, from the start to a target point. An evolved control program
may be successful in solving a particular navigation task, able to reach the target
starting from a fixed point within the maze, but unable to solve the task when we
change some aspect of the problem such as the initial conditions or environmental
structure. In this scenario, the learned program is considered to be overfitted to
the particular scenario used for learning. Ideally we would like to evolve programs
that exhibit general navigation behaviors; i. e., performs well within a wide range
of previously unseen maze scenarios.

� Corresponding author.

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 35–46, 2014.
c© Springer International Publishing Switzerland 2014

36 P. Urbano, E. Naredo, and L. Trujillo

Some maze navigation tasks are used as deceptive benchmark problems for
traditional Evolutionary Algorithms (EA). The wall configurations of mazes may
create occlusions and cul-de-sacs, complicating the navigation task. Suppose that
fitness is proportional to the Euclidean distance of a robot to the target. Then,
when the walls of the mazes are obstacles that block the direct path to the target,
the fitness gradient does not lead towards a feasible direction, thus deceiving the
evolutionary search process, towards a local optima.

Therefore, to solve a deceptive maze navigation task, the search process must
diverge from areas of high fitness and explore areas of low fitness. The problem
with fitness-based EA is that, by following the gradient of the fitness function,
it will not reward low fitness individuals, thus failing to reach the target. In EA
literature, the main methods for avoiding local optima have focused on the pro-
motion of genomic diversity [15,1]. Recently, rewarding diversity in the space of
behaviors has received growing attention [12]. In general, all diversity-preserving
algorithms take fitness into account, but Novelty Search (NS), a recent divergent
evolutionary technique, takes a more unique step.

NS ignores the fitness function explicitly, relying only on behavioral diversity
as the sole criteria for selection and reproduction. Therefore, instead of guiding
the search for the fittest individual, NS guides the search for the most novel
individual, replacing fitness measure by a novelty score taken from the individ-
uals’ behavior description. NS explores the behavioral space without any goal,
besides generating novelty, ultimately an individual with the desired behavior
may be found. NS has been successfully applied in several deceptive problems in
neuro-evolution [5,10], and in GP [9,14,13] in some cases outperforming fitness-
based EA.

However, most of the research on NS has ignored the issue of generalization.
The motivation of the current paper is to study the capabilities of NS regarding
generalization using maze navigation and Grammatical Evolution (GE) [16]. We
use a fixed maze and a fixed target point for training, and we vary the starting
point and orientation during testing. The goal is to test how general are the be-
haviors when they are evolved using only a single training instance, and also if dif-
ferent initial conditions have implications on the generalization of the solutions.
We also used a bigger training set composed of several initial conditions, with the
goal of evolving behaviors that are able to solve the maze task for every training
case. The generalization abilities of the best evolved behaviors are also evaluated
in the same test set. The performance of NS on the train and test set is compared
against fitness based and random search. Our hypothesis is that an heterogeneous
training set might originate a second level of deception to traditional fitness-based
evolution. Some instances of the training set will be easier to solve than others
and fitness-based evolution might tend to reward individuals fitted to the easiest
training scenarios, failing to generalize. We also hypothesize that NS might play
a significant role in the evolution of general maze navigation agents, preventing
evolution to get trapped in local optima.

Generalization in Maze Navigation 37

Integer String

BNF-Grammar
(A) <expr> ::= <line> (0)
 | <expr> <line> (1)
(B) <line> ::= ifelse <condition> [<expr>] [<expr>] (0)
 | [<op>] (1)
(C) <condition>::= wall-ahead? (0)
 | wall-left? (1)
 | wall-right? (2)
(D) <op> ::= turn-left (0)
 | turn-right (1)
 | move (2)

110110110101010100101001
101111110000101100011000

Binary String

219 85 41 191 11 24

<expr> 219 % 2 = 1
<expr> <line> 85 % 2 = 1
<line> <line> 41 % 2 = 1
<op> <line> 191 % 3 = 2
move <line> 11 % 2 = 1
move <op> 24 % 3 = 0
move turn-left

T r a n s l a t i o n

Program

TranscriptionIndividual

Fig. 1. Example of a GE genotype-phenotype mapping, where the binary genotype is
translated into an integer string used to select production rules from a grammar. The
derivation sequence of the program is shown on the right. All codons were used but
wrapping was unnecessary.

2 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve com-
puter programs in an arbitrary language [16] defined by a Backus-Naur Form
(BNF) grammar. Programs are indirectly represented by variable length binary
genomes, and are built in a development process. The genome linear representa-
tion allows the application of genetic operators such as crossover and mutation
in a typical genetic algorithm manner, unlike in the standard tree-based GP
approach. Beginning with the start symbol of the grammar, a genotypepheno-
type mapping is employed such that each individual’s binary genome, contains
in its codons (typically groups of 8 bits) the information to select and apply the
grammar production rules and generate a program.

Production rules for each non-terminal will be indexed starting from 0. In
order to select a production rule for the left-most non-terminal of the developing
program, from left to right the next codon value on the genome is read and
interpreted using the following formula: I = c%r, where c represents the current
codon value, % represents the modulus operator, and r is the number of produc-
tion rules for the left-most non-terminal. The correspondent production in the
I-th index will be used to replace the left-most non-terminal. If, while reading
codons, the algorithm reaches the end of the genome, a wrapping operator is in-
voked and it starts reading again from the beginning of the genome. The process
stops when all of the non-terminal symbols have been replaced, resulting in a
valid program. In the wrapping process, if an individual fails with this condition
after a maximum of wraps, then it is considered an invalid individual, and is
given the lowest score. The mapping process is illustrated with an example in
Figure 1, where we use a Grammar for describing maze navigation programs
written in Netlogo [19].

3 Novelty Search

Implementing Novelty Search [8] requires little change to any evolutionary algo-
rithm aside from replacing the fitness function with a domain dependent novelty

38 P. Urbano, E. Naredo, and L. Trujillo

metric. The novelty metric measures how different an individual is from other
individuals with respect to behavior. In NS, there is a constant evolutionary pres-
sure towards behavioral innovation. The behavior of each individual is normally
characterized bey a vector of real numbers that capture behavior information
along the whole evaluation or which is just sampled at some particular instants.
The novelty of an individual is measured with respect to the behaviors of the cur-
rent population and of a sample of predecessor individuals, stored in an archive.
The archive is initially empty, and new behaviors are added to it if they are
significantly different from the ones already there, i.e., if their novelty is above
a dynamically computed threshold.

The novelty metric characterises how far the new individual is from the rest
of the population and its predecessors in behavior space, based on the sparseness
at the respective point in the behavior space. A simple measure of sparseness at
a point is the average distance to the k-nearest neighbours at that point, where
k is a constant empirically determined. Intuitively, if the average distance to a
given point’s nearest neighbours is large then it is in a sparse area; it is in a
dense region if the average distance is small. The sparseness at each point is
given by Equation 1, where μi is the ith-nearest neighbour of x with respect
to the behavior distance metric dist, which typically is the Euclidean distance
between domain-dependent behavior characterisation vectors.

ρ(x) =
1

k

k∑

i=1

dist(x, μi) . (1)

Candidates from more sparse regions of this behavioral search space then
receive higher novelty scores, thus guiding the search towards what is new, with
no other explicit objective.

4 Related Work

With the exception of [2,11], as far as we know, the research on NS has mostly
ignored the issue of generalization in robotic domains. For example, Lehman
and Stanley in neuro-evolution [9], Lehman and Stanley in GP [10], as well as
Loukas and Georgiou in GE [4], have made experiments using a variety of mazes
with different levels of deception, but the evolved behaviors were specific for each
maze configuration and initial conditions. It was not tested if the evolved behav-
iors were able to generalize to different starting and target points or to different
mazes. Velez and Clune in [18] transfered maze navigation robots evolved with
NS to new scenarios. Their experiments in neuro-evolution have confirmed that
agents using NS do learn exploration skills. The transferred robots did in fact
perform much better than randomly generated agents but did not outperform
transferred robots evolved by a standard fitness-based EA. In [9], using stan-
dard GP, and in [17], using Grammatical Evolution, NS was applied successfully
to the Santa Fe Trail Problem (SFT), a known deceptive problem in GP, but
their goal was finding individuals able to perform well in that trail. Kushchu [7]

Generalization in Maze Navigation 39

(I9-W,I10-E)

(I7-S,I8-N)

Target

(I11-S,I12-E) (I3-N,I4-W)

(I5-E,I6-N)(I1-E,I2-N)

Fig. 2. The Medium Maze is a rectangle of 38 × 22 tiles. Left figure shows the target
represented by a black square, and the 12 training instances labelled from I1 to I12. On
each location there are 2 instances with different orientations. The initial orientations
are labeled by: N=North, E=East, S=South, W=West. The right figure shows the 100
initial conditions used for testing, randomly generated.

has identified the SFT problem as an example of evolution of brittle solutions
in fitness-based GP. His experimental results showed that most of the time, a
successful ant won’t perform well on some variations of the same trail. Kushchu
in [7] proposed to train an ant on a set composed of variations of the SFT, shar-
ing similar characteristics and tested the learned behaviors on a different set of
similar trails. He was able to successfully evolve general trail following ant behav-
iors for a class of trails similar in difficulty to the SFT. Doucette and Heywood
[2] have empirically evaluated the impact of NS on generalization performance
for the SFT, using SFT as a single set and a test set of similar trails. They
evaluated a cross-section of combined novelty and fitness, and fitness only func-
tion, and no method was to produce successful individuals in both the SFT and
the trails from the set. However, results showed that the classical fitness-based
GP provided best train and test performances, but programs evolved by NS
alone had more generalization abilities, i.e., lower differences between train and
test performance. In contrast, in two other experiments [9,17] NS outperformed
fitness-search in the SFT.

5 Maze Navigation Experiments

Given the static maze shown in Figure 2, similar to the Medium Maze of [9], an
agent controlled by a GE program must navigate from a specific starting point
and orientation to a target point using a limit number of moves. The chosen maze
has some potential for deception as the target is behind an inner wall blocking
direct paths. The agent may sense the wall in the square in front, in the square
on the right and on the left. It has 3 possible actions each one consuming one
move: it may move forward one square if is there is no wall in front, it may turn
right or left, rotating 90 degrees, clockwise or counter clockwise, respectively.

The grammar that defines the space of possible programs is given in Figure
1, the one we used to illustrate genotype to phenotype mapping in GE. We
used 3 sensor boolean functions (wall-ahead?, wall-left? and wall-right?), and
three actions (move, turn-left and turn-right). The program will be repeatedly

40 P. Urbano, E. Naredo, and L. Trujillo

Table 1. Parameters used for both experimental setups. Codons-min and Codons-max
are the minimal and maximal number of codons in the initial random population.

Parameter Value Parameter Value

Codon-size 8 Generational YES
Codons-min 15 Mutation prob 0.01
Codons-max 25 Elitism 10%
Number of runs 100 NS archive NO
Wraps 10 Crossover codon-crossover
Number of individuals 250 NS k−neighbors 3
Crossover prob. 0.9 Maximum of moves 100, 500

Selection Roulette Wheel

executed until the agent hits the target or reaches the maximum number of
moves. The agent succeeds if it hits the target square within the fixed limit of
moves.

We compared novelty, fitness and random-based search in a series of generaliza-
tion experiments. We want to assess how general the evolved behaviors are using
only a single training instance. We have tried out different starting conditions,
i.e., different single instance training sets. We have chosen 12 initial conditions
for training the agent shown in the picture on the left side of Figure 2. Training
instances were chosen to be heterogeneous in terms of the level of deception and
difficulty imposed by the navigation task. Some starting points will be more or
less blocked by walls, may be more or less distant to the target point, adjacent to
the wall with the target or near the external wall, far from the target, others will
be in the empty space, distant from both walls. For each initial condition, we have
evaluated, in a series of runs, the performance of the best program from each run
on an independent test set of initial conditions, not used for learning. For testing,
we used the 100 initial positions and orientations presented on the right of Figure
2, that were randomly generated but correspond to a wide range of initial condi-
tions. We also used a training set composed with all of the 12 initial conditions,
and evaluate the generalization abilities in the same test set with 100 instances.
Our objective is to evolve behaviors that are successful for all 12 initial conditions
and evaluate their generalization abilities.

All experiments mentioned in this study are performed using the jGE library
[3], which is a Java implementation of GE, and jGE Netlogo [4], which is a
Netlogo extension of the jGE library. The Netlogo program was extended with
an implementation of NS. The phenotype is a NetLogo program and the space
of possible programs is given by the BNF-grammar showed on Figure 1. The
experiments were repeated 100 times with a population of 250 individuals for 50
generations. The parameters used are presented in Table 1.

Fitness-based search needs a measure of performance to evaluate individuals,
thus fitness is computed by 1/(1 + dist(p, q)), where p is the final position, and
q the maze target. In the case of a training data with 12 instances, each agent
is evaluated 12 times and the final fitness is the average score across all the
evaluations. Similarly, the fitness on the test set will be the average fitness across
all 100 evaluations.

Generalization in Maze Navigation 41

NS needs a behavior descriptor, so we used same descriptor from [10], which
is the final position of the robot after hitting the target point or exhausting the
maximal number of moves. By ignoring the details of the trajectories, NS will
rewards agents that end in zones where nobody or less agents have ended before.
In the case of a training set with 12 instances, the agent is evaluated 12 times, for
every instance of the training set, and its final behavior descriptor is composed
by the 12 ending points, which are concatenated in a vector to obtain a single
descriptor. For an invalid individual, a value of 0 is given for both fitness and
novelty. In the NS extension of GE, the novelty score of an individual will be the
average behavior distance towards the behaviors of its k-nearest valid neighbours.
After some preliminary exploration, we set to 3 the number of neighbours used
to compute novelty score and we did not use an archive as in [8] since in our
experiments it did not help to improve the performance.

6 Results

We begin by presenting and discussing results gathered from experiments where
the agents are limited to 100 moves following [9].

6.1 Results and Analysis for a Maximal of 100 Moves

The results have been separated into training and testing performance. Consid-
ering the best programs from each run, we measured the percentage of hits and
the average fitness in the train and test sets. Results are illustrated in Table 3 for
each training set composed of a single instance comparing all three methods. Al-
though NS did not obtain a 100% percentage of hits for every instance, it had the
best performance, followed by fitness-based search, and finally random search. As
random search has attained almost maximal performance with the following set
of initial instances: {I5, I6, I7, I8, I9, I10}, we may conclude that they define easy
navigation tasks. The best behaviors evolved by the three methods performed
poorly on the test set: Not a single behavior was able to hit the target for every
testing instance and the average fitness scores were low and very similar for all
three methods. The results obtained with experiments with a training set com-
posed with the 12 instances presented in Table 2, show that none of the methods
were able to evolve behaviors that hit the target for all 12 training instances,
exhibiting also a very poor performance on the test set. Our explanation about
the poor training performance of both fitness-based search and NS on on the 12
instances experiments, is that a maximum number of 100 movements, following
[9], imposes a heavy constraint inhibiting maze exploration and thwarting the
evolution of general maze navigation behaviors. Hence, we have repeated the
experiments fixing a new limit for the number of moves: 500, which increases
time for maze exploration.

6.2 Results and Analysis for a Maximal of 500 Moves

The results regarding training sets with a single instance are presented in Table 3.
These results are better for novelty and fitness-based search when compared with

42 P. Urbano, E. Naredo, and L. Trujillo

Table 2. Table of results from the training set composed with the 12 instances. L-100
and L-500 stands for the limit of moves. NS-K3 stands for Novelty Search with the
k-neighbour parameter set to 3. Fit stands for the average fitness score of the best
program from each run, and Hits for the average number of best programs that hit the
target.

Training Testing

Hits Fit Hits Fit

L-100 NS-K3 0% 0.46 0% 0.14
Fitness 0% 0.40 0% 0.13
Random 0% 0.39 0% 0.12

L-500 NS-K3 61% 0.93 41% 0.89
Fitness 22% 0.63 13% 0.47
Random 1% 0.40 0% 0.16

experiments with the number of moves limited to 100. On the other hand, the
differences for random search are not so relevant: It was still able to get a 100% of
successful solutions for some of the initial conditions, and a very low hit percent-
age and average fitness for the most difficult cases, similar to the experiment with
a limit of 100 moves. NS outperforms fitness-based and random search in terms
of training performance, having a 100% of hits for every training instance, and a
higher average fitness. Fitness-based against random search shows better results
for some of the instances, while for the instances I5, I7 it shows lower perfor-
mance than random search. However, instances {I1, I2, I3, I4, I11, I12} introduce
more difficulty for the methods tested. Those points, when used as single train-
ing sets will generate behaviors with higher generalization abilities than other
instances. In contrast the easiest starting conditions resulted in behaviors with
the lowest generalization abilities. All three methods were still unable to evolve
general behaviors after being trained with a single instance. Nevertheless, NS
showed the best performance against fitness and random-based search, and the
best test performance was 13% for I12.

Results obtained from experiments with a training set of 12 instances are pre-
sented in Table 2. In this experiment, NS had the best performance again in terms
of training and testing, 61% of the runs generate a program which hit the target
from every initial condition in the training set, while 41% of the runs perform suc-
cessfully in the test set. Fitness-based search had 22% of hits in the training set,
and 13 exhibit general navigation skills which are able to cope with every initial
condition in the test set. In terms of average fitness scores, fitness-based search,
was clearly outperformed by NS: a difference of 0.3 in the training set and 0.43
in the test set. In a training set composed of instances that correspond to tasks
with different levels of difficulty and deception, it will be easy to find individuals
that solve the less difficult cases and it will harder to solve instances defining more
deceptive tasks, creating local optima for fitness-based search.

Furthermore, one interesting observation regarding both limits of moves: L −
100 and L − 500, is that the orientations in some of the initial conditions are

Generalization in Maze Navigation 43

move move turn-left
ifelse wall-left?
 [tu rn-left]
 [move move ifelse wall-ahead?
 [turn-right move move]
 [move turn-right]]

Fig. 3. Left figure shows an example of an evolved program able to solve the maze
for every test instance, exhibiting general navigation. Figures at the right show the
trajectory when using this program for initial conditions: I1, I7, I11, respectively.

Table 3. Table of results from each of the twelve instances, where the sub-index stands
for the number of the training instance. L-100, and L-500 stands for the limit of moves.
NS-K3 stands for Novelty Search with the k-neighbour parameter set to 3. Fit stands
for the average fitness score, and Hits for the percent of best individuals which reach
the target.

L-100 L-500

Instance Train Test Train Test

Method Hits Fit Hits Fit Hits Fit Hits Fit

I1 NS-K3 100% 1.000 0% 0.110 100% 1.00 3% 0.263
Fitness 94% 0.950 0% 0.112 94% 0.74 3% 0.286
Random 19% 0.330 0% 0.111 34% 0.44 1% 0.149

I2 NS-K3 100% 1.000 0% 0.133 100% 1.00 6% 0.365
Fitness 73% 0.796 0% 0.126 69% 0.95 2% 0.201
Random 10% 0.233 0% 0.102 14% 0.28 2% 0.159

I3 NS-K3 77% 0.864 0% 0.166 100% 1.00 12% 0.476
Fitness 7% 0.295 0% 0.166 62% 0.69 1% 0.328
Random 0% 0.129 0% 0.115 8% 0.20 0% 0.145

I4 NS-K3 92% 0.949 0% 0.141 100% 1.00 8% 0.455
Fitness 22% 0.430 0% 0.124 68% 1.00 3% 0.665
Random 0% 0.149 0% 0.124 10% 0.22 1% 0.165

I5 NS-K3 100% 1.000 0% 0.079 100% 1.00 0% 0.091
Fitness 96% 0.980 0% 0.073 95% 0.98 0% 0.072
Random 100% 1.000 0% 0.074 100% 1.00 0% 0.083

I6 NS-K3 100% 1.000 0% 0.010 100% 1.00 4% 0.168
Fitness 86% 0.930 0% 0.081 90% 0.95 2% 0.107
Random 83% 0.915 0% 0.089 86% 0.93 0% 0.106

I7 NS-K3 100% 1.000 0% 0.120 100% 1.00 0% 0.124
Fitness 100% 1.000 0% 0.117 99% 0.99 0% 0.125
Random 100% 1.000 0% 0.118 100% 1.00 0% 0.120

I8 NS-K3 100% 1.000 0% 0.114 100% 1.00 0% 0.121
Fitness 100% 1.000 0% 0.113 100% 1.00 0% 0.120
Random 100% 1.000 0% 0.113 100% 1.00 0% 0.115

I9 NS-K3 100% 1.000 0% 0.098 100% 1.00 0% 0.095
Fitness 100% 1.000 0% 0.099 100% 1.00 0% 0.096
Random 100% 1.000 0% 0.097 100% 1.00 0% 0.095

I10 NS-K3 100% 1.000 0% 0.082 100% 1.00 0% 0.081
Fitness 100% 1.000 0% 0.083 100% 1.00 0% 0.081
Random 100% 1.000 0% 0.082 100% 1.00 0% 0.084

I11 NS-K3 60% 0.741 0% 0.160 100% 1.00 11% 0.538
Fitness 8% 0.264 0% 0.128 57% 0.64 6% 0.387
Random 0% 0.139 0% 0.111 7% 0.19 2% 0.173

I12 NS-K3 68% 0.793 0% 0.163 100% 1.00 13% 0.627
Fitness 7% 0.274 0% 0.116 59% 0.67 2% 0.422
Random 1% 0.140 0% 0.114 6% 0.19 2% 0.174

in fact relevant in the training set as well as in the test set, since they impact
on the overall generalization performance. We can see in Table 3 differences in
train and test performance between some pairs of instances: I1 and I2, I3 and I4.

44 P. Urbano, E. Naredo, and L. Trujillo

Figure 3 shows an example of one of the best evolved solutions, and the trajecto-
ries for 3 different initial conditions.

7 Conclusions and Future Work

This work presents the first application of NS with GE to study their generaliza-
tion abilities on a maze navigation task. An agent controlled by a GE program
must navigate in a maze from a specific starting point and orientation to a tar-
get point using a limit number of moves. We have compared novelty, fitness
and random based evolution using GE in a series of generalization experiments.
We have used a fixed maze a fixed target and varied the agent initial position
and orientation. The goal is to evolve behaviors that are able to hit the target
starting from any point and facing any direction. In this work, we consider 12
different initial conditions for the agent, where some positions are easier or less
deceptive than others. First, we start by using just one instance at a time, then
we use all 12 instances as training set, and the evolved programs were tested on
a set of 100 random instances. Furthermore, we use two different moves limit:
100 and 500. The experiments with a limitation of 100 moves showed that it
was not possible to evolve programs with general navigational abilities. The per-
formances exhibited by the best programs evolved by the three methods were
very similar and very poor in the test set. The three methods were also unable
to evolve a single program able to hit the target for every starting condition in
the training set composed with the 12 instances. Anyhow, NS exhibited the best
performance, followed by fitness based search. Regarding evolution using single
instances training sets, NS outperformed fitness based search and also random
search for the more deceptive cases, as it was expected, since it does not follow
the gradient of the fitness function, but all showed similar results in the easier
cases. Anyhow, all successful behaviors for single training instances were too
overfitted and failed in the test set.

When we increase the limit of moves to 500, allowing more time for explo-
ration, every method is still unable to evolve general navigation abilities for the
single instance training sets, composed with the easier starting conditions. In
contrast, all three methods were able to evolve programs with general naviga-
tion abilities, able to solve the maze task for every condition in the test set, using
single instance training sets that impose more difficulty and deception. This hap-
pened not so frequently but more frequently with NS than with the other two
methods. Therefore, instances that appear to impose a higher difficulty in the
navigation task, when used alone in the training set, seem to induce better gen-
eral navigation skills using all three methods. But, if we use a more numerous
training set, using the 12 training instances all together, random based search
was unable to find general behaviors that solve the maze task for every instance
of the training set and the same happened in the test set. NS had the best
performance both in the training set (12 instances) and in the test set evolving
more frequently general navigation programs. Fitness based search seems to be
overfitting to some of the instances of the training set, the easiest ones, which is
enough to achieve a higher score, creating a local optima.

Generalization in Maze Navigation 45

NS in these experiments exhibits a substantial improvement in the evolution
of general maze navigation agents, avoiding the deception involved in the maze
task, preventing evolution from being trapped in local optima. This research
work presents a window of opportunity for generalization research, for instance,
instead of having fixed targets we may perform generalization experiments where
we vary both the initial conditions and the target of maze tasks. Additionally,
we may try to transfer agents evolved with NS to new mazes to test if the skills
acquired in a particular environment generalize to unseen environments. Finally,
in a general way, one further work will be trying to understand what must be
the right ingredients to get the right training set in order to evolve successfully
general behaviors.

Acknowledgments. The authors acknowledge the following projects. First au-
thor is supported by FCT project EXPL/EEI-SII/1861/2013. Second author
is supported by CONACYT (México) scholarship No. 232288. Third author is
supported by CONACYT (México) Basic Science Research Project No. 178323,
DGEST (México) Research Projects No.5149.13-P, also by TIJ-ING-2012-110,
and by FP7-Marie Curie-IRSES 2013 project ACoBSEC funded by the European
Comission.

References

1. Burke, E.K., Gustafson, S., Kendall, G., Krasnogor, N.: Is Increased Diversity in
Genetic Programming Beneficial? An Analysis of Lineage Selection. Ph.D. thesis,
University of Nottingham, UK (February 2004)

2. Doucette, J., Heywood, M.: Novelty-based fitness: An evaluation under the santa
fe trail. Genetic Programming, 50–61 (2010)

3. Georgiou, L., Teahan, W.J.: jge - a java implementation of grammatical evolu-
tion. In: 10th WSEAS International Conference on Systems, Athens, Greece, pp.
534–869 (2006)

4. Georgiou, L., Teahan, W.J.: Grammatical evolution and the santa fe trail problem.
In: International Conference on Evolutionary Computation (ICEC), pp. 10–19.
SciTePress, Valencia (2010)

5. Gomes, J.C., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems
with novelty search. CoRR abs/1304.3362 (2013)

6. Gonçalves, I., Silva, S.: Experiments on controlling overfitting in genetic program-
ming. In: 15th Portuguese Conference on Artificial Intelligence (EPIA 2011) (2011)

7. Kushchu, I.: Genetic programming and evolutionary generalization. IEEE Trans-
actions on Evolutionary Computation 6(5), 431–442 (2002)

8. Lehman, J., Stanley, K.: Exploiting open-endedness to solve problems through
the search for novelty. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.)
Artificial Life XI: Proceedings of the Eleventh International Conference on the
Simulation and Synthesis of Living Systems, pp. 329–336. MIT Press, Cambridge
(2008)

9. Lehman, J., Stanley, K.O.: Efficiently evolving programs through the search for
novelty. In: Pelikan, M., Branke, J. (eds.) GECCO, pp. 837–844. ACM (2010)

46 P. Urbano, E. Naredo, and L. Trujillo

10. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary Computation 19(2), 189–223 (2011)

11. Li, J., Storie, J., Clune, J.: Encouraging creative thinking in robots improves their
ability to solve challenging problems. In: Proceedings of the 2014 Conference on
Genetic and Evolutionary Computation, GECCO 2014, pp. 193–200. ACM (2014)

12. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary
robotics: An empirical study. Evolutionary Computation 20(1), 91–133 (2012)

13. Naredo, E., Trujillo, L.: Searching for novel clustering programs. In: GECCO, pp.
1093–1100 (2013)

14. Naredo, E., Trujillo, L., Mart́ınez, Y.: Searching for novel classifiers. In: Krawiec,
K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS,
vol. 7831, pp. 145–156. Springer, Heidelberg (2013)

15. Nicoară, E.S.: Mechanisms to avoid the premature convergence of genetic algo-
rithms. Petroleum - Gas University of Ploiesti Bulletin, Mathematics LXI(1) (2009)

16. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evolutionary Compu-
tation 5(4), 349–358 (2001)

17. Urbano, P., Loukas, G.: Improving grammatical evolution in santa fe trail using
novelty search. In: Advances in Artificial Life, ECAL, pp. 917–924 (2013)

18. Velez, R., Clune, J.: Novelty search creates robots with general skills for explo-
ration. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Com-
putation, GECCO 2014, pp. 737–744. ACM (2014)

19. Wilensky, U.: Netlogo, Evanston, IL: Center for Connected Learning and
Computer-Based Modeling (1999), http://ccl.northwestern.edu/netlogo

http://ccl.northwestern.edu/netlogo

Comparing the Optimization Behaviour
of Heuristics with Topology Based Visualization

Simon Bin1, Sebastian Volke2, Gerik Scheuermann2, and Martin Middendorf1

1 Parallel Computing and Complex Systems Group, Institute of Computer Science,
University of Leipzig, Germany

{sbin,middendorf}@informatik.uni-leipzig.de
2 Image and Signal Processing Group, Institute of Computer Science,

University of Leipzig, Germany
{volke,scheuermann}@informatik.uni-leipzig.de

Abstract. In this paper we propose some changes and extensions of the
visualization approach that is used in the visualization tool dPSO-Vis.
It is shown also how corresponding visualizations can help for the analy-
sis of fitness landscapes of combinatorial optimization problems and for
understanding and comparing the optimization behaviour of heuristics.
As an example we use a small instance of the Travelling Salesperson
Problem (TSP) and the three heuristics Greedy, Random greedy, and
Simulated Annealing.

Keywords: visualization, fitness landscape, combinatorial optimization
problem, barrier landscape, heuristic, optimization behaviour.

1 Introduction

In this paper we show how visualization can be helpful for comparing and un-
derstanding the optimization behaviour of (meta)heuristics for combinatorial op-
timization problems. In particular, we propose some changes and extensions of
the visualization approach that is used in the recent visualization tool dPSO-Vis
([11]). A one-dimensional landscape is used for the visualization of the topology
of the search space and of the search process of the meta-heuristic. We concen-
trate here on the visualization of small problem instances for which it is possible
to generate all solutions and to determine their fitness values. We also shortly
discuss how the concepts that are introduced in this paper could be applied to
larger problem instances. The Travelling Salesperson Problem (TSP) is used as
the example optimization problem and the heuristics Greedy, Random greedy,
and Simulated Annealing are the example metaheuristics.

It is assumed here that an optimization problem is given as a finite set of
solutions X together with an objective function f : X → R that assigns each
solution its fitness. The optimization problem is then to find a solution with
minimum objective value, i.e. with highest fitness. Instead of a minimization
problem, a maximization problem could also be considered. In addition it is
assumed that a neighbourhood relation N ⊂ X × X is given on the set of

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 47–58, 2014.
c© Springer International Publishing Switzerland 2014

48 S. Bin et al.

solutions. Here we assume that N is symmetric, i.e. (x, y) ∈ N iff (y, x) ∈ N .
Let N(x) = {y ∈ X | (x, y) ∈ N} be the neighbours of x. Then (X,N) is the
neighbourhood graph and (X,N, f) is called fitness landscape. In this paper we
assume that (X,N) is connected. The neighbourhood relation should reflect the
process used by the heuristic to create new solutions from a given solution as
described in the following. Given a solution x ∈ X the heuristic can create a
new solution y from x only when (x, y) ∈ N . Alternatively, when the heuristic
is allowed to perform several steps for creating a new solution, it can create
y from x only when there exists solutions x = x1, x2, . . . , xk = y such that
(xi, xi+1) ∈ N for i ∈ {1, 2, . . . , k − 1}. In some cases the neighbourhood graph
might reflect not all possible transitions but only the transitions that occur with
a certain likelihood. The details of which solutions are actually created and from
which starting solutions depend on the particular heuristic.

The basic concept for the one-dimensional landscape that is used here for the
visualization stems from Volke et al. [11]. Their approach has been implemented
in the visualization tool dPSO-Vis. More details are described in Section 2. It
was also shown by Volke et al. in [10] how dPSO-Vis can be used to compare the
optimization behaviour of two discrete Particle Swarm Optimization algorithms
(PSO) for solving the RNA folding problem. We do not give an overview on other
visualization methods here but point the reader to [9].

The changes and extensions that are introduced here to the visualization
concept of dPSO-Vis are explained in Section 2. The used heuristics and the test
instances are described in Section 3. Results are shown in Section 4. The paper
ends with conclusions in Section 5.

2 Visualization Method

The visualization of dPSO-Vis [11] is based on the barrier tree data structure
which has been proposed by Flamm et al. [1] to represent the topology of a
fitness landscape (X,N, f). The barrier tree can be used to partition the nodes
of (X,N) into so called basins and to associate every barrier tree arc with one
basin ([11]). In the following this is explained in more detail.

The barrier tree is a directed tree B where each node v of B has a height
h(v) ∈ R. For a node v in B let Bv be the subtree of B with node v. Let (X,N)η
be the subgraph of (X,N) that is generated by all nodes x ∈ X with f(x) ≤ η,
Similarly, let (X,N)<η be the subgraph of (X,N) that is generated by all nodes
x ∈ X with f(x) < η. In the barrier tree B each leaf represents a local minimum
of (X,N, f), i.e. a node x ∈ X such f(x) ≤ f(y) for all y ∈ N(x). If there
exists a set of local minima that are connected in the subgraph of (X,N) that is
generated by the local minima, all nodes in the set are represented by the same
single leaf in B. Each subtree of B with root v and height h(v) corresponds to a
connected component C of (X,N)h(v) such that this component is not connected
in (X,N)<h(v), i.e. C<η is not connected. C is the component of (X,N)h(v) that
contains the local minima which are represented by the leaves of Bv. The height
h(v) is called the barrier between the components of C<η. Thus, an inner node

Comparing the Optimization Behaviour of Heuristics 49

v of the barrier tree represents all nodes x ∈ C with h(x) = h(v). Some of these
nodes represent a barrier between the different parts of the fitness landscape
that correspond to the child nodes of v. An edge (u, v) of the barrier tree B
corresponds to all nodes x of (X,N) for which it holds: i) x �∈ (X,N)<h(u) and
ii) x ∈ (X,N)<h(v) and x is connected to a leaf of Bv. This set of nodes is called
basin. As a consequence, the subtree Bv represents all nodes in (X,N)h(v) which
are connected to a local minimum that corresponds to a leaf in Bv.

Volke et al. [11] proposed to add a node v, that corresponds to the global
maximum of (X,N, f), to the nodes of the barrier tree B. Also, an edge is
inserted from the (original) root of the barrier tree to v. Then, every edge of the
barrier tree represents a subset of the nodes of (X,N) with an objective value
that lies in a certain interval of R. Also, all nodes of (X,N) are represented by
B and the edges of B partition the nodes of (X,N) into basins. It should be
noted that the barrier tree can be computed with a flooding algorithm [1]. This
algorithm can be easily extended to also compute the partitioning of the solution
space ([11]).

In dPSO-Vis a 2D landscape profile called barrier landscape is computed that
is topologically equivalent to (X,N, f) and therefore has the same barrier tree
(details see [11]). The form of the 2D landscape is a height graph over a 1D
line which contains a valley for every leaf node of the barrier tree and nested
valleys for every subtree of it. If two subtrees are joined by an inner node, there
is a corresponding mountain pass within the landscape profile that joins the
corresponding valleys. Each edge (u, v) of the barrier tree corresponds to the
right slope and the left slope of the corresponding valley. The middle part of
the valley corresponds to the subtree Bu. This construction leads to a roughly
symmetric impression of the barrier landscape with high slopes at both sides
and the lowest part in the middle.

In this paper we use an asymmetric visualization of the barrier landscape
where all nodes of (X,N) that correspond to a single edge of the barrier tree are
drawn as a single slope which increases from left to right (examples are shown
in figures 2 and 4). Moreover, for each inner node v of B and each edge (u, v) we
add a line that connects the highest node of (X,N) which is represented by (u, v)
to the leftmost node that is represented by v. We call these lines barrier lines.
Recall that several nodes of (X,N) with the same height might be represented
by v. Some additional changes with respect to the barrier landscape in dPSO-Vis
are: i) All local minimum nodes are marked in the barrier landscape (if several
connected minimum nodes exist, only the leftmost is marked), ii) all leftmost
nodes that are represented by inner nodes of the barrier tree are marked, and
iii) for each node the height of its lowest neighbour in (X,N) is shown below it.

In order to visualize the behaviour of a heuristic we mark the solutions that are
the result of a run of the heuristic. Since for several runs of a heuristic a solution
might have been found several times, the size of the marking is proportional to
how often the solution has been found. It should be noted that the type of the
used markings and their colour can by easily changed for the visualization.

50 S. Bin et al.

-5k

0

5k

10k

0 10k 20k 30k 40k 50k

1
2

3
4

5

6 7

8
9

10

Fig. 1. The TSP test instance

3 Heuristic Algorithms and Test Instance

As a test optimization problem we use the well known Travelling Salesper-
son Problem (TSP). Given is a set of n cities and an n × n distance ma-
trix D = |d(i, j)|i,j∈{1,...,n} where d(i, j) is the distance from city i to city
j. Here we consider symmetric TSP instances only, i.e. d(i, j) = d(j, i) for
i, j ∈ {1, 2, . . . , n}. The problem then is to find a shortest round tour that con-
tains each city exactly once, i.e. to find a permutation π of 1, 2, . . . , n such that
d(π(n), π(1)) +

∑n
i=1 d(π(i), π(i+1)) is minimal. Note, that every cyclic shift of

a permutation π and the corresponding inverse permutations lead to the same
round tour and therefore to the same solution. Thus, the set X of solutions can
be described by choosing one representative from each equivalence class of so-
lutions, e.g. as the set of all permutations π of {1, 2, . . . , n} with π(1) = 1 and
π(2) ≤ �n/2�+ 1.

The neighbourhood relations that we consider here as examples are the swap
neighbourhood and the width restricted interchange neighbourhood. In the swap
neighbourhood two permutations π, π′ are neighboured if one of the following
conditions hold: i) i ∈ {1, 2, . . . , n−1} such that π(i) = π′(i+1), π(i+1) = π′(i)
and π(j) = π′(j) for all j ∈ {1, 2, . . . , n} − {i, i + 1}, or ii) π(n) = π′(1),
π(1) = π′(n) and π(j) = π′(j) for all j ∈ {2, 3, . . . , n − 1}. In the interchange
neighbourhood two permutations π, π′ a neighboured if one of the following con-
ditions hold: if there exists i, j ∈ {1, 2, . . . , n} such that π(i) = π′(j), π(j) = π′(i)
and π(h) = π′(h) for all h ∈ {1, 2, . . . , n} − {i, j}. The k-width restricted inter-
change neighbourhood has the additional restriction that |i− j| ≤ k must hold.
Note, that there exists many other (and for heuristics often better) neighbour-
hoods that are used for solving the TSP problem.

As a test instance we have chosen a 10 city TSP instance that consists of 2
clusters of 5 cities each. The instance is shown in Figure 1. The distances between
the cities are the Euclidean distances.

In order to demonstrate how the visualization can be used to compare the
optimization behaviour of heuristics we have chosen the following three example
heuristics: Random start greedy, Randomized greedy, and Simulated Annealing.

Greedy starts with a uniform randomly chosen permutation π ∈ X . Then it
chooses the best permutation π′ ∈ N(π), i.e. the permutation π′ with minimum

Comparing the Optimization Behaviour of Heuristics 51

Algorithm 1. Simulated Annealing algorithm
1: T ← 1 probability to accept a worse solution
2: s ← x where x ∈ X is chosen randomly
3: accept ← true
4: while accept=true do
5: accept ← false
6: while accept = false and ∃ untested neighbour in N(s) do
7: randomly choose untested neighbour x ∈ N(s)
8: if f(x) < f(s) or r < T where r is uniform randomly

chosen in [1,0] then
9: s ← x
10: accept ← true
11: end if
12: end while
13: T ← (1− ρ)T
14: end while
15: return the best found solution

value f(π′). If there exists more than one such permutation one of them is chosen
randomly. If f(π′) < f(π) then the last step is executed again (with π′ instead
of π). Otherwise, the algorithm stops.

Randomized greedy works similar as Greedy but with the difference that it
chooses a random solution (instead of the best solution) from all solutions π′ ∈
N(π) for which f(π′) < f(π) holds if such a solution exists. Otherwise, the
algorithm stops.

The third heuristic is a simple standard Simulated Annealing algorithm. A
pseudo-code can be found in Algorithm 1. For the tests the value ρ = 0.05 has
been used for the parameter of changing the temperature.

4 Results

In this section we show what the proposed visualization method can tell us about
the fitness landscape of a problem instance, the neighbourhood relation, the
optimization behaviour of the heuristics and the connections between these three
aspects. If not mentioned otherwise, all results use the swap neighbourhood.

4.1 Fitness Landscape

A visualization of the whole fitness landscape of the test instance is shown in
Figure 2. The figure shows that the landscape consists of 5 plateaus with a steep
descent between two neighboured plateaus. The fitness differences between the
solutions within each plateau are smaller than the fitness differences between
two plateaus. An exception is the third (numbered from left to right) plateau
in the middle where several very narrow valleys exist that have solutions with
a fitness that is in the range of fitness of the second plateau. A detailed view

52 S. Bin et al.

150k

200k

250k

300k

350k

400k

450k

0 20k 40k 60k 80k 100k 120k 140k 160k 180k

F
it
ne

ss
va

lu
e

Solutions

Fig. 2. Visualization of the fitness landscape of the TSP test instance: fitness of all
solutions, local minima (red filled triangles), representatives for barriers (explained in
the text) (blue triangles), quality of best neighbours (grey crosses).

of these valleys can be seen in Figure 3. The figure shows that only very few
solutions are part of each valley. Figure 2 shows also that the plateau with the
best (worst) solutions is very small and contains only about 2% of the solutions.
The middle plateau, in contrast, contains more than half of the solutions.

Another interesting fact that can be seen from the visualization is, that the
two worst plateaus do not contain any local minimum. For heuristic algorithms
which consider the whole neighbourhood of a solution this means that there is
no danger to get stuck at the very bad solutions of plateaus 4 and 5. The other
three plateaus contain many local minima and most of them lay in the better
(left) part of each plateau. The fitness of all these local minima is not much
better than their neighbours in the plateau (with the exception of the already
mentioned steep valleys that occur in the left part of middle plateau).

It can be seen that many solutions that lay within one of the plateaus 2-5
have a best neighbour which has a much better quality than the node itself.
These neighbours lay in the plateau that is the next to the left. This shows
that heuristics which evaluate the whole neighbourhood of a solution have good
chances for a fast improvement, i.e. to jump directly from one plateau to the
next better plateau.

Comparing the Optimization Behaviour of Heuristics 53

212k

214k

216k

218k

220k

222k

53.6k 53.8k 54.0k 54.2k 54.4k 54.6k 54.8k 55.0k 55.2k

F
it
ne

ss
va

lu
e

Solutions

Fig. 3. Detailed view of some deep valleys of the middle plateau; local minima (red
filled triangles), representatives for barriers (explained in the text) (blue triangles),
quality of best neighbours (grey crosses), barrier lines (dotted lines).

A detailed view of the left part of the first plateau, i.e. the best part of the
fitness landscape, is shown in Figure 4 (top). The many local minima in that
plateau show that it might easily happen for a heuristic to get stuck in one of
these local minima.

For the example test instance it was shown that the visualization of its fitness
landscape reveals several interesting properties. Also, the extent of the prop-
erties is immediate from the visualization. However, it could not be estimated
from simply looking at the problem instance alone. The visualization also leads
directly to conclusions about the presumed optimization behaviour of heuristics
in the respective part of the landscape. A closer look at the problem instance
then gives us explanations for some of the properties. For example, the reason
why there are five plateaus is the following. The problem instance consists of two
clusters of five cities each. Each solution has 2, 4, 6, 8 or 10 edges that contain
one city from each cluster. Obviously, the smaller the number of such edges is
the better is a solution. Thus, the 5 plateaus correspond to these five classes of
solutions. The middle plateau contains most of the solutions, because — as a
short combinatorial calculation shows — the number of solutions with 6 edges
between the clusters is much larger than the number of solutions with fewer or
more such edges.

4.2 Neighbourhood Relation

The lower part of Figure 4 shows the same part of the fitness landscape for
different neighbourhoods. Clearly, the quality of the solutions is independent
of the neighbourhood. What changes is the number and the location of local

54 S. Bin et al.

114k

116k

118k

120k

122k

124k

0 200 400 600 800 1k

F
it
ne

ss
va

lu
e

Solutions

114k

116k

118k

120k

122k

124k

0 200 400 600 800 1k

F
it
ne

ss
va

lu
e

Solutions

114k

116k

118k

120k

122k

124k

0 200 400 600 800 1k

F
it
ne

ss
va

lu
e

Solutions

Fig. 4. Detailed view of the left (best) part of the fitness landscape; local minima
(red filled triangles), representatives for barriers (explained in the text) (blue trian-
gles), quality of best neighbours (grey crosses), barrier lines (dotted lines). Swap neigh-
bourhood (top), 2-restricted interchange neighbourhood (bottom left) and 3-restricted
interchange neighbourhood (bottom right).

minima. It can be seen clearly that the landscape with the (width restricted)
interchange neighbourhood is simpler and has less local minima than the land-
scape with the swap neighbourhood. Moreover, the landscape with the 3-width
restricted interchange neighbourhood is simpler than the landscape with the 2-
width restricted interchange neighbourhood. The reason is that a solution has
more neighbours in the 2-width restricted interchange neighbourhood than in the
swap neighbourhood and it has more neighbours in the 3-width restricted inter-
change neighbourhood than in the 2-width restricted interchange neighbourhood.
It may also be noted, that the 1-width restricted interchange neighbourhood is
equal to the swap neighbourhood.

For a heuristic this means that the problem becomes simpler and the danger
to get stuck in a local minimum is smaller with the 2- or 3-width restricted
interchange neighbourhood than with the swap neighbourhood. This is at the
expense of a growing neighbourhood. It should be mentioned that we do not
argue here, that such observations are new. The point is, that the proposed
visualization shows such effects of different neighbourhoods very clearly and also
the strength of this effect is easily visible for the user.

Comparing the Optimization Behaviour of Heuristics 55

150k

200k

250k

300k

0.0 20.0k 40.0k 60.0k 80.0k 100.0k

F
it
ne

ss
va

lu
e

Solutions

150k

200k

250k

300k

0.0 20.0k 40.0k 60.0k 80.0k 100.0k

F
it
ne

ss
va

lu
e

Solutions

Fig. 5. Solutions of the heuristics Greedy (left) and Simulated Annealing (right), 10000
runs of each; shown is the left half of the fitness landscape; red bright dots = found
local minima, blue dark dots = found non local minima.

300k

302k

304k

306k

308k

310k

312k

50.0k 60.0k 70.0k 80.0k 90.0k 100.0k

F
it
ne

ss
va

lu
e

Solutions

300k

302k

304k

306k

308k

310k

312k

50.0k 60.0k 70.0k 80.0k 90.0k 100.0k

F
it
ne

ss
va

lu
e

Solutions

Fig. 6. Solutions found by heuristics Greedy (left) and Random greedy (right), 10000
runs of each; shown is the left upper part of plateau 3; red bright dots = found local
minima.

4.3 Optimization Behaviour

The optimization behaviour of the heuristics Greedy and Simulated Annealing
can be seen in Figure 5. In each figure the results of 10000 runs of the cor-
responding heuristic are shown. It can be seen that both heuristics often find
solutions that lay within the best plateau. However, many solutions lay also in
the left part of plateau 2 and also in the deep valleys of plateau 3. It can be
seen that Simulated Annealing works on average slightly better than Greedy
because more solutions of the former lay within plateau 1. Also the solutions
of Simulated Annealing within plateau 2 lay more in the better (left) part. The
visualization also shows that some solutions of Greedy lay also outside of the
deep valleys on plateau 3. Since this cannot be seen in the print version of Fig-
ure 5 a detailed version of that part is shown in Figure 6. This figure shows also
that Random greedy has more solutions than Greedy in this not so good part of
the fitness landscape. In principle, this could have been expected. However, the
visualization shows this effect quantitatively.

A detailed view of the best (left) part of plateau 1 is shown in Figure 7. All
local minima have been found by at least one of the 10000 runs of each heuristic.

56 S. Bin et al.

114k

116k

118k

120k

122k

124k

0.0 500.0 1.0k 1.5k 2.0k

F
it
ne

ss
va

lu
e

Solutions

114k

116k

118k

120k

122k

124k

0.0 500.0 1.0k 1.5k 2.0k

F
it
ne

ss
va

lu
e

Solutions

114k

116k

118k

120k

122k

124k

0.0 500.0 1.0k 1.5k 2.0k

F
it
ne

ss
va

lu
e

Solutions

Fig. 7. Solutions found by Greedy (upper left), Random greedy (upper right), Sim-
ulated Annealing (bottom), 10000 runs of each; shown is the left (best) part of the
fitness landscape; red bright dots = found local minima, blue dark dots = found non
local minima.

It can be seen that Simulated Annealing found the best solutions more often
than the other heuristics. Greedy found the best solutions slightly more often
than Random greedy. By definition of the heuristics, all solutions of Greedy and
Random greedy are local minima. This is different for Simulated Annealing: most
but not all of the solutions that have been found in the best part of the fitness
landscape are local minima. The reason is that Simulated Annealing might end
in the basin of attraction of a local minimum which is worse than the best
solution that was found during the run. The visualization shows that nearly
every of the solutions in the best part of the front was the best solution in at
least one of the 10000 runs of Simulated Annealing. As a consequence it might
be reasonable to improve Simulated Annealing by performing one run of Greedy
on the best solution found by Simulated Annealing. Of course this makes the

Comparing the Optimization Behaviour of Heuristics 57

algorithm slightly slower. The user can see from the visualization that this would
improve a significant part of the good solutions that have been found.

As a final note, we want to mention that the proposed visualization method
can not be directly used for large problem instances, for the simple reason that
there exists too many solutions. However similar ideas can be applied to a sample
of the set of all solutions. It will be interesting, to develop proper sampling
techniques on which such a visualization can be based. For the case of RNA
folding landscapes, which were the original motivation to introduce the barrier
tree data, this has been done very recently in [5].

5 Conclusions

Some extensions of the visualization approach that is used by the visualization
tool dPSO-Vis ([11]) have been proposed. Examples are: i) barrier lines are in-
troduced that connect a valley of the landscape with a barrier, ii) local minimum
nodes can be marked in the barrier landscape, and iii) the fitness of best neighbour
nodes are shown. Also, for a visualization of the optimization behaviour of heuris-
tics the solutions that it has found in one or more runs can be marked. The size
of such a mark is proportional to how often the corresponding solution has been
found. For the example of a small instance of the Travelling Salesperson Problem
(TSP) and the three heuristics Greedy, Random greedy, and Simulated Annealing,
it was shown how the introduced visualization method can help for the analysis
of the fitness landscapes and for understanding the optimization behaviour of the
heuristics. Clearly, some of the conclusions that were drawn from the visualization
could also, at least in principle, be found by other methods. However, it was ar-
gued that the proposed visualization can easily give an approximate quantitative
and detailed insight which is often difficult to get by other methods.

The proposed visualization method can be applied in principle to any com-
binatorial optimization problem. The only requirement is that a neighbourhood
relation between solutions can be defined that is used by the heuristics to create
new solutions. Future work is to extend the proposed visualization methods to
sampled solution sets in order to be able to apply it to larger problem instances.

Acknowledgement. This work has been supported by the European Social
Fund (ESF) and the Free State of Saxony (ESF App.No. 100098248 and App.No.
100098251).

References

1. Flamm, C., Hofacker, I.L., Stadler, P.F., Wolfinger, M.T.: Barrier Trees of Degen-
erate Landscapes. Z. Phys. Chem. 216, 1–19 (2002)

2. Halim, S., Yap, R.H.C.: Designing and Tuning SLS Through Animation and Graph-
ics: An Extended Walk-Through. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.)
SLS 2007. LNCS, vol. 4638, pp. 16–30. Springer, Heidelberg (2007)

58 S. Bin et al.

3. Halim, S., Yap, R.H.C., Lau, H.C.: Viz: A Visual Analysis Suite for Explaining
Local Search Behavior. In: Proc. 19th Annual ACM Symposium on User Interface
Software and Technology (UIST 2006), pp. 57–66 (2006)

4. Halim, S., Yap, R.H.C., Lau, H.C.: Search Trajectory Visualization for Analysing
Trajectory-Based Meta-Heuristic Search Algorithm. In: Proc. European Conference
on Artificial Intelligence, pp. 703–704 (2006)

5. Kucharík, M., Hofacker, I., Stadler, P.F., Qin, J.: Basin Hopping Graph: a compu-
tational framework to characterize RNA folding landscapes. Bioinformatics 30(14),
2009–2017 (2014)

6. Oesterling, P., Heine, C., Jänicke, H., Scheuermann, G., Heyer, G.: Visualization
of high-dimensional point clouds using their density distribution’s topology. IEEE
Transactions on Visualization and Computer Graphics 17(11), 1547–1559 (2011)

7. Pérez, J., Mexicano-Santoyo, A., Santaolaya, R., Alvarado, I.L., Hidalgo, M.A., De
la Rosa, R.: A visual tool for analyzing the behavior of metaheuristic algorithms. In-
ternational Journal of Combinatorial Optimization Problems and Informatics 3(2),
31–43 (2012)

8. Pérez, J., Mexicano-Santoyo, A., Santaolaya, R., Alvarado, I.L., Hidalgo, M.A., De
la Rosa, R.: A Graphical Visualization Tool for Analyzing the Behavior of Meta-
heuristic Algorithms. International Journal of Emerging Technology and Advanced
Engineering 3(4), 32–36 (2013)

9. Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application
of Fitness Landscapes. Springer Series Emergence, Complexity and Computation,
vol. 6, pp. 487–507 (2014)

10. Volke, S., Bin, S., Zeckzer, D., Middendorf, M., Scheuermann, G.: Visual Analysis
of Discrete Particle Swarm Optimization using Fitness Landscapes. In: Richter, H.,
Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness
Landscapes. Series Emergence, Complexity and Computation, vol. 6, pp. 487–507.
Springer (2014)

11. Volke, S., Middendorf, M., Hlawitschka, M., Kasten, J., Zeckzer, D., Scheuermann,
G.: dPSO-Vis: Topological Visualization of Discrete Particle Swarm Optimization.
Computer Graphics Forum 32(3), 351–360 (2013)

Parameterized Message-Passing Metaheuristic

Schemes on a Heterogeneous Computing System

José-Mat́ıas Cutillas-Lozano and Domingo Giménez

Departamento de Informática y Sistemas, University of Murcia
30071 Murcia, Spain

{josematias.cutillas,domingo}@um.es
http://dis.um.es

Abstract. This paper focuses on the development of message-passing
parameterized schemes of metaheuristics in a heterogeneous cluster. An
island model implemented with the master-slave scheme is used. Previous
parameterized schemes are extended with new metaheuristic-parallelism
parameters representing the migration frequency, the size of the migra-
tion and the number of processes. An optimization Problem of Electricity
Consumption in the Exploitation of Wells is used as test case. The best
experimental results are obtained in terms of speed-up and quality of
the solution by mapping a number of processes close to the value of the
population size, and considering the relative speeds of the components
of the heterogeneous system.

Keywords: Parameterized metaheuristic schemes, Parallel metaheuris-
tics, Message-passing metaheuristic schemes, Heterogeneous computing.

1 Introduction

The use of a unified parameterized scheme for metaheuristics facilitates the devel-
opment of metaheuristics and their application [3,6]. Although the metaheuristic
scheme has proved efficient, its use for solving large problem instances greatly
increases the execution time. The application of high performance computing
strategies to metaheuristics is an interesting option for reducing the execution
time. There is a large number of parallel strategies that can be applied to differ-
ent metaheuristics in parallel environments of different characteristics [2,9,12].

This work studies the development of message-passing parameterized meta-
heuristics and their optimization for heterogeneous clusters. A basic parame-
terized metaheuristic scheme is expanded with new metaheuristic-parallelism
parameters, which control the intensity and frequency of information exchange
between processes. The island model is used for the message-passing scheme
[8,10,11], with the master-slave paradigm [1,4].

A Problem of Electricity Consumption in Exploitation of Wells (PECEW) is
used as test case [7]. The same methodology could be applied to other problems
simply adapting the basic functions and parameters of the metaheuristic scheme
to each particular case [3]. The message-passing parameterized metaheuristic

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 59–70, 2014.
c© Springer International Publishing Switzerland 2014

http://dis.um.es

60 J.-M. Cutillas-Lozano and D. Giménez

scheme allows us to speed-up the execution of the algorithm, and the best re-
sults in terms of speed-up and quality of the solution are obtained through a
processes to processors mapping based on the relative speed of the computational
components in the system.

The rest of the paper is organized as follows. Section 2 summarizes the ideas
of parameterized metaheuristic schemes. A message-passing scheme is discused
in Section 3. Section 4 briefly describes the problem PECEW used as test case
and shows the experimental results of the application of the message-passing
scheme with several mapping techniques for hetereogeneous systems. Section 5
concludes the paper and offers some future research lines.

2 A Parameterized Scheme of Metaheuristics

A parameterized metaheuristic scheme is presented in [3]. The scheme (Algo-
rithm 1) considers a set of basic functions whose instantiation, by selecting the
appropriate values of the metaheuristic parameters, ParamMet = {ParamIni,
ParamEnd, ParamSel, ParamCom,ParamImp, ParamInc}, determines the
particular metaheuristic. The arguments S, SS, SS1, and SS2 correspond to the
sets of solutions that the method manipulates in successive iterations. The same
scheme represents several metaheuristics and allows reuse of the functions and
variables.

Algorithm 1. Parameterized metaheuristic scheme

Initialize(S,ParamIni)

while (not EndCondition(S,ParamEnd)) do
SS=Select(S,ParamSel)

SS1=Combine(SS,ParamCom)

SS2=Improve(SS1,ParamImp)

S=Include(SS2,ParamInc)

end while

The meaning and number of the parameters depend on the basic metaheuris-
tics considered and on the implementation of the basic functions. The basic
metaheuristics used in our work are Greedy Randomized Adaptive Search Proce-
dure (GRASP), Genetic Algorithms (GA), Scatter Search (SS) and Tabu Search
(TS). The basic functions and the meaning of the parameters in the parame-
terized scheme are briefly commented on. A more complete description of the
parameters and the implementation of the basic functions, together with their
application to different optimization problems can be found in [3,5,6].

– Initialize: Elements are randomly generated to form an initial set with
INEIni elements. A subset with FNEIni elements is selected for the iter-
ations. In some metaheuristics, some initial elements are improved by using,
for example, a local search or a greedy approach. A parameter PEIIni indi-
cates the percentage of elements to be improved, and the improvement may

Metaheuristic Scheme on Heterogeneous Cluster 61

be more or less intense, which is represented by an intensification parame-
ter, IIEIni. The parameter STMIni is used to set the extension of Tabu
short-term memory in the improvement.

– EndCondition: One end condition common to the different metaheuristics
consists of a maximum number of iterations (MNIEnd) or a maximum
number of iterations without improving the best solution (NIREnd).

– Select: Two sets are established, one with the best elements and one with
the worst, according to the objective function. The number of best elements
is NBESel and of worst elements NWESel.

– Combine: The total number of elements to be obtained by combination is
2(NBBCom+NBWCom +NWWCom), where the parameters represent
the number of combinations of the best with the best elements, the number
of the best with the worst and the number of the worst with the worst.

– Improve: As in the improvement in the initialization, PEIImp, IIEImp
and SMIImp represent the percentage of elements to be improved, the in-
tensification of the improvement and the short-term memory in the improve-
ment of the elements generated in the combination; and PEDImp, IDEImp
and SMDImp represent the corresponding values in a diversification, which
is equivalent to the mutation in the GA.

– Include: The NBEInc best elements are maintained in the reference set,
and the other FNEIni−NBEInc are selected from the remaining elements,
with some selection criteria; for example, randomly or according to some
distance function. LTMInc is a Tabu parameter (long-term memory) used
for tracking the most frequently explored individuals.

There is a set with 20 metaheuristic parameters with which it is possible
to experiment to hybridize, mix and adapt the metaheuristics to the target
problem. The basic metaheuristics can be implemented in different ways, and
more metaheuristics can be incorporated into the scheme, so having a different
number of parameters with different meanings, but the methodology for the use
of the parameterized scheme and for the development of parameterized parallel
schemes is common to different implementations and can be extended to other
types of parameterized algorithmic schemes.

3 A Parameterized Message-passing Metaheuristic
Scheme

The development of message-passing parameterized schemes is analyzed with
MPI implementations, because distributed memory systems comprising multi-
core nodes can solve larger problems in shorter execution time. An island model
is used, with division of the population in different subsets assigned to p pro-
cesses, with identifiers from 0 to p − 1, where the process P0 acts as master in
the communications, and the remaining processes are the slaves.

The parameterized scheme in Algorithm 1 is extended to obtain a parame-
terized message-passing scheme (Algorithm 2) with the introduction of a new

62 J.-M. Cutillas-Lozano and D. Giménez

function (migration) and new metaheuristic-parallelism parameters, which com-
prise the number of processes (p), the number of generations between migrations
(NGMPar) and the volume of data transferred (NEMPar). A homogeneous
data partition is considered, with assignation of the same number of elements to
each process. So, subsets Si are processed in parallel by processes Pi, with |Si|
= |S|

p , and S = S0∪...∪Sp−1. Each process is initialized with INEIni
p elements.

Then, the metaheuristic scheme of Algorithm 3 is applied sequentially to each
subset over a number of iterations. The sizes of the other sets in each process are
also divided by the number of processes: FNEIni

p , NBESel
p , NWESel

p , NBBCom
p ,

NBWCom
p , NWWCom

p and NBEInc
p . The end condition is established now with

the number of evolution-migrations, MNIEnd
NGMPar . The master informs the slaves

when the end condition is accomplished.

Algorithm 2. Parameterized message-passing metaheuristic scheme. Island
Model(S,ParamMet,ParamPar).

1: IN PARALLEL in each process Pi (i = 0, ..., p− 1) DO
2: Initialize(Si,ParamIni)

3: while (not EndCondition(ParamEnd,NGMPar)) do
4: Sequential Metaheuristic Scheme(Si,NGMPar)
5: Immigrate(Si,S0,NEMPar)

6: In P0 Integrate Subpopulations(S0)
7: Emigrate(S0,Si,NEMPar)

8: end while
9: END PARALLEL
10: Solution: best sk ∈ S0

Algorithm 3. Sequential Metaheuristic Scheme(Si,ParamMet,NGMPar).

while (not EndCondition(NGMPar)) do
SSi=Select(Si,ParamSel)

SS1i=Combine(SSi,ParamCom)

SS2i=Improve(SS1i,ParamImp)

Si=Include(SS2i,ParamInc)

end while

The set of metaheuristic parameters is completed with the three new meta-
heuristic-parallelism parameters, ParamPar = {p,NGMPar,NEMPar}. The
influence of these parameters on the fitness and the execution time is analyzed
in the computational results section. There are many possibilities for the imple-
mentation of the new function (migration), but our initial goal is to analyze the
advantages of using a parameterized message-passing metaheuristic scheme and
to adapt it to a heterogeneous cluster. So, we use a simple migration scheme,
with immigrations from the slaves to the master (line 5 of Algorithm 2) and

Metaheuristic Scheme on Heterogeneous Cluster 63

emigrations from the master to the slaves (line 7), and with the same number
of elements in the immigration and the emigration (NEMPar). No exchange of
elements among slaves is considered, allowing only the combination of the best
elements from each subset (and subsequent improvements and diversifications)
in the master process (line 6). The percentage of migrating elements of each
subset should not be very high in order to enhance only the migration of the
best elements of each subset and reduce the execution time while maintaining
a certain amount of native elements in each subset. Besides, high values could
produce an increment in the cost of the communications. The number of gener-
ations between migrations (NGMPar) also affects the goodness of the solution
and the execution time. High values mean less information exchange between
processes, and possibly worse final solutions or more iterations to converge, but
at the same time they reduce the number of communications and the execution
time per iteration.

4 Computational Results

A problem of electricity consumption in exploitation of wells [7] is used as test
case to evaluate the message-passing parameterized scheme. We consider a water
system consisting of a series of pumps (B) of known power, located in wells, that
draw water flows along a daily time range R. The total flow is the sum of the
flows contributed by each well. The pumps may be running or idle at any given
time. The pumps operate electrically and the electricity has a daily cost which
should be minimized. The objective function is:

Minimize Ce =
R∑

i=1

B∑

j=1

TiPjNixij (1)

where Ce represents the cost of the electricity consumed by the combination of
pumps selected in a day; Ti is the cost of the electricity in the range i; Pj is
the electric power consumed by the pump j; Ni is the number of hours of pump
operation in the time slot i; and xij represents a binary element of a matrix with
values 1 or 0 for pump on or off. Using the notation of evolutionary algorithms,
an individual or element is represented by the binary matrix, x, of size B × R,
which encodes the set of pumps distributed in different time slots. The set of
individuals constitutes a population.

The results below are obtained when applying the metaheuristic scheme on
a heterogeneous cluster to different instances of the problem. The experiments
were carried out using the metaheuristic combinations in table 1 and varying the
number of processes and mappings to the computational nodes. Metaheuristic
parameters in table 1 were chosen because they form a metaheuristic set with
different population sizes (populations of 50, 100 and 200 individuals) with rea-
sonable parameters for distributed-memory parallelism (NGMPar equal to 10,
and values of NEMPar of 10, 15 or 20). Furthermore, the number of iterations
was fixed to 100, which allows easy comparison of the execution times between

64 J.-M. Cutillas-Lozano and D. Giménez

subpopulations of different sizes and is sufficiently high to get good fitness re-
sults. We are interested in reducing the execution time and in obtaining good
quality solutions; so the inverse of the product of the fitness and the execution
time is used as a common indicator. High values are desired for this indicator.

Experiments have been carried out in a heterogeneous cluster with four nodes:

– Saturno is a NUMA system with 4 Intel hexa-core NEHALEM-EX EC E7530
nodes (24 cores), 1.87 GHz, 32 GB of shared-memory.

– Marte and Mercurio are AMD Phenom II X6 1075T (hexa-core), 3 GHz, 15
GB (Marte) and 8 GB (Mercurio), each with private L1 and L2 caches of 64
KB and 512 KB, and L3 of 6 MB shared by all the cores.

– Luna is an Intel Core 2 Quad Q6600, 2.4 GHz, 4 GB.

Table 1. Values of the metaheuristic parameters used in the experiments

INEIni FNEIni PEIIni IIEIni STMIni NGMPar NEMPar NBESel NWESel NBBCom
m1 50 50 100 15 4 10 10 25 25 45
m2 100 100 100 15 8 10 15 50 50 90
m3 200 200 100 15 12 10 20 100 100 10

NBWCom NWWCom PEIImp IIEImp SMIImp PEDImp IDEImp SMDImp NBEInc LTMInc
m1 50 45 100 5 4 10 5 4 25 4
m2 100 90 100 5 8 10 5 8 50 8
m3 200 180 100 5 12 10 5 12 100 12

A homogeneous assignation of data to the processes in the message-passing
scheme is considered, and satisfactory mappings of the processes to the nodes in
the heterogeneous system should be obtained. There are many options for homo-
geneous data assignation to heterogeneous processors. Two types of basic criteria
for mapping have been followed: one based on the number of cores in each system
and the other based on the relative speed of the nodes. The assignation based on
relative speed is more natural, but preliminary results also advised following a
criterion based on the number of processors on each node, which is simpler and
in some cases gives satisfactory results when there is not a big difference in the
relative speed of the cores in the different nodes. Table 2 shows the number of
processes assigned to each node in the system, for different assignation criteria:

– Non Oversubscribed Cores (NOC): The number of processes assigned to a
node coincides with the number of cores in the node (column NOC in the
table).

– Non Balanced Oversubscription (NBO): A number of processes (p) propor-
tional to the number of cores is assigned to each node, with the total number
of processes equal to FNEIni. For example, if we consider the node Saturno,

psat =

⌊
FNEIni

numCorestotal

⌋

· numCoressat +

[

DIF · numCoressat
numCorestotal

]

(2)

Metaheuristic Scheme on Heterogeneous Cluster 65

Table 2. Number of processes launched for the three metaheuristic combinations in ta-
ble 1 applied to PECEW 50-6 in the heterogeneous system Saturno(sat) + Marte(mar)
+ Mercurio(mer) + Luna(lun), with the mapping techniques: Non Oversubscribed
Cores (NOC), Non Balanced Oversubscription (NBO), Fully Balanced Oversubscrip-
tion (FBO), and yFBO.

NOC NBO FBO 0.2·FBO 0.4·FBO 0.6·FBO 0.8·FBO
m1 sat 24 30 31 6 12 19 25

mar 6 8 7 1 3 4 6
mer 6 7 7 1 3 4 6
lun 4 5 5 1 2 3 4
total 40 50 50 9 20 30 41

m2 sat 24 60 62 12 25 37 50
mar 6 15 14 3 6 9 11
mer 6 15 14 3 6 8 11
lun 4 10 10 2 4 6 8
total 40 100 100 20 39 60 80

m3 sat 24 120 122 24 49 73 98
mar 6 30 28 6 11 17 22
mer 6 30 28 6 11 17 22
lun 4 20 22 4 9 13 17
total 40 200 200 40 80 120 159

with numCorestotal = 40 for our heterogeneous cluster, numCoressat =

24 for Saturno, DIF = FNEIni − numCorestotal ·
⌊

FNEIni
numCorestotal

⌋
is the

remainder of the quotient FNEIni
numCorestotal

, and
[
DIF · numCoressat

numCorestotal

]
repre-

sents the rounding to the nearest integer, which is
⌊
DIF · numCoressat

numCorestotal

⌋
and

⌈
DIF · numCoressat

numCorestotal

⌉
for the slowest and fastest nodes, respectively. So, for

FNEIni = 100 (m2 in table 1), psat = 60. In the same way, we can cal-
culate pmar (with numCoresmar = 6 for Marte), pmer (with numCoresmer

= 6 for Mercurio) and plun (with numCoreslun = 4 for Luna), resulting in
pmar = pmer = 15 and plun = 10.

– Fully Balanced Oversubscription (FBO): A total number of processes equal
to FNEIni are executed, but in this case the computational load is dis-
tributed proportionally to the relative speeds of the nodes. If we have
FNEIni individuals, the number of processes assigned to each node, px
(with x = sat, mar, mer, lun), is obtained with the equations:

pmar = psat · vmar

vsat

pmer = psat · vmer

vsat

plun = psat · vlun

vsat

psat + pmar + pmer + plun = FNEIni

(3)

where vx = numCoresx
tsecuen,x

represents the relative speed of the sequential meta-

heuristic algorithm in each node, and numCoresx and tsecuen,x are the num-
ber of cores and the sequential execution time of the algorithm in the node
x. For example, considering the relative speeds vsat = 1.000, vmar = 0.236,

66 J.-M. Cutillas-Lozano and D. Giménez

vmer = 0.224 and vlun = 0.177, and value of FNEIni = 50 (m1 in table 1),
the values of the number of processes are psat = 31, pmar = pmer = 7 and
plun = 5, where each variable obtained is rounded to the nearest integer.

– yFBO: To reduce the overhead that a large number of processes produces,
the number of processes assigned to each node should be proportional to the
speed of the nodes but with the number of processes scaled with a value y (val-
ues considered in the experiments were y = 0.1, 0.2, . . . , 0.9). So, px(yFBO)
= y · px(FBO) (where x = sat, mar, mer, lun). For example, for a number
of processes in Saturno according to the configuration FBO, psat(FBO) =
31, and for y = 0.5 a value of psat(0.5FBO) = 16 (rounded to the nearest
integer) is obtained.

In the first two configurations the number of processes in each node is pro-
portional to the number of cores. The third configuration is proportional to the
relative speeds of the nodes, which are calculated from the sequential execution
time of an execution of the algorithm in each node. In the cluster we are using,
the differences in computing capacity of the cores in the different nodes for the
problem we are working with are not big, which makes the assignations based
on the number of cores (column NBO) or on their relative speed (column FBO)
very similar, and so similar speed-ups are obtained.

The figures and tables below represent the mean values of ten observations
for each variable measured. Figure 1 (a) shows the speed-ups achieved when
applying the three metaheuristics in table 1 to PECEW, for the three basic
configurations of heterogeneous processes of table 2 (columns 1 to 3), and figure
1 (b) compares the speed-ups obtained when varying the number of processes of
FBO (configurations yFBO) by multiplying it by several reduction factors (0.1
to 0.9). The configurations NBO and FBO yield, on average, the same speed-
up (52), which is the highest obtained. Fitness values have also been considered.
Figure 2 shows the corresponding fitness values for the speed-ups in figure 1. We
can see that the quality of the solution found does not vary too much with the
processes mapping (a), although a variation of fitness with the total number of
processes launched is observed for the FBO configuration (b). In general, there is
a minimum value for the fitness corresponding to a value of y close or below 0.5 in
yFBO. This can be seen in m2 and m3 specially. This minimum can be explained
considering that the FBO configuration implies to launch a number of processes
equal to the total number of individuals in the population FNEIni. A decrease
in the fitness could be expected when increasing the number of processes (islands)
because it enables a greater exchange of information between subpopulations
(values of y between 0.1 and 0.5 in yFBO), however, when reaching a greater
number of islands than a half of the total population to be distributed, the effect
begins to be otherwise, that is, each island would be formed by a single individual
with the possibility of diversity decreased (this can be seen from y greater than
0.5 with some fluctuations). So, the best fitnesses are obtained with medium-low
values of y (close or below 0.5) in yFBO, but at the expense of low speed-ups.

To take into consideration both the execution time (t) and the fitness (f), we

consider a Common Indicator CI = 106

f ·t . High values are desirable, but it could

Metaheuristic Scheme on Heterogeneous Cluster 67

NOC NBO FBO

m1 34 41 41
m2 44 54 56
m3 38 61 59

average 39 52 52

(a)

 0

 10

 20

 30

 40

 50

 60

m1 m2 m3 average

S
pe

ed
−

up

0.1·FBO
0.2·FBO
0.3·FBO
0.4·FBO
0.5·FBO
0.6·FBO
0.7·FBO
0.8·FBO
0.9·FBO

FBO

(b)

Fig. 1. Speed-up achieved: (a) with the three basic configurations of heterogeneous
processes of table 2 and the three metaheuristics considered and (b) when varying the
number of processes of FBO on multiplying it by several reduction factors (0.1 to 0.9).

NOC NBO FBO

m1 7674.64 7719.67 7713.48
m2 7529.90 7646.13 7690.01
m3 7483.48 7611.97 7633.67

average 7562.67 7659.26 7679.06

(a)

 7450

 7500

 7550

 7600

 7650

 7700

 7750

m1 m2 m3 average

F
itn

es
s

0.1·FBO
0.2·FBO
0.3·FBO
0.4·FBO
0.5·FBO
0.6·FBO
0.7·FBO
0.8·FBO
0.9·FBO

FBO

(b)

Fig. 2. Fitness obtained: (a) with the three basic configurations of heterogeneous pro-
cesses of table 2 and the three metaheuristics considered and (b) when varying the
number of processes of FBO on multiplying it by several reduction factors (0.1 to 0.9).

be modified to give more importance to time or fitness, or bi-objective optimiza-
tion could be considered. The values for different processes configurations and
metaheuristics are shown in figure 3. The Kruskal-Wallis test revealed statistical
differences in the CI means for the three metaheuristic configurations applied. A
deeper analysis of the groups of processes configurations for each metaheuristic
was made. The Wilcoxon rank sum test with continuity correction was applied
at a significance level α = 0.05. The algorithm performing best (higher values
of CI) for a particular data set is indicated by a symbol +. Algorithms against
which it is statistically superior are indicated with a −, and ∼ represents that
there was no difference in the means. For m1 and m2 the best configuration was

68 J.-M. Cutillas-Lozano and D. Giménez

FBO, and NBO was the best for m3. Furthermore, for m2, FBO was signifi-
cantly better than the other methods (figure 4). These results led us to choose
FBO to do the experiments of section (b) of figures 1, 2 and 3. The evolution
of the speed-up, fitness and CI when progressively reducing the number of pro-
cesses launched is shown, with the FBO criterion and varying the total number
of processes (yFBO). A large number of processes would produce a high over-
head, and a reduction in the total number of processes may be advisable when
the populations are very large.

On average, when the number of processes launched is reduced (multiplying
FBO by a reduction factor y), the Common Indicator also decreases, so for
moderate values of the population parameter FNEIni (between 50 and 200) it
is advisable to start a number of processes close to the value of this parameter,

NOC NBO FBO

m1 73(−) 86(∼) 87(+)
m2 44(−) 53(−) 55(+)
m3 18(−) 29(+) 29(∼)

average 45 56 57

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

m1 m2 m3 average

C
I

0.1·FBO
0.2·FBO
0.3·FBO
0.4·FBO
0.5·FBO
0.6·FBO
0.7·FBO
0.8·FBO
0.9·FBO

FBO

(b)

Fig. 3. CI = 106

f ·t achieved: (a) with the three basic configurations of heterogeneous
processes of table 2 and the three metaheuristics considered and (b) when varying the
number of processes of FBO on multiplying it by several reduction factors (0.1 to 0.9).

FBO NBO NOC

70
75

80
85

90

processes mapping

C
I

(a) m1

FBO NBO NOC

45
50

55

processes mapping

C
I

(b) m2

FBO NBO NOC

15
20

25
30

processes mapping

C
I

(c) m3

Fig. 4. Statistical summary of CI = 106

f ·t , for the three basic configurations of hetero-
geneous processes in table 2 and the three metaheuristics considered.

Metaheuristic Scheme on Heterogeneous Cluster 69

using a mapping based on the relative speeds of the nodes (FBO), but if the
fitness is the key factor, the balanced distribution with a medium number of
processes (y = 0.4 or 0.5) is preferred.

5 Conclusions and Future Work

This work studies the adaptation of a parameterized message-passing meta-
heuristic scheme for computation in heterogeneous clusters. Three metaheuristic-
parallelism parameters (NEMPar, NGMPar and p) appear in the
message-passing scheme, which follows an island model implemented with
the master-slave paradigm. The parameters allow us to control the intensity
and frequency of information exchange between processes and the volume of
data transferred. A problem of optimization of electricity consumption in wells
exploitation was used as test case. For this problem and in the heterogeneous
cluster used for the experiments, the best results in terms of speed-up and quality
of the solution are obtained through a processes to heterogeneous processors
mapping based on relative speeds of the nodes in the cluster. Furthermore, for
moderate population sizes, it is better to use a total number of processes close
to the size of the population.

As part of our future work, the application of the message-passing scheme to
get parallel hyperheuristics is being analyzed, and the design of message-passing
schemes with heterogeneous distribution of data and a number of processes equal
to the number of cores is also being considered. To fully exploit the computa-
tional systems in a cluster, possibly with GPUs in each node, a multicore+GPU
version of the scheme should be developed and integrated with the message-
passing version. We are also working on modeling the execution time as a func-
tion of the metaheuristic and parallelism parameters, which could facilitate the
inclusion of autotuning in the message-passing scheme. The problem of deciding
the best processes-to-processors distribution could be tackled as a bi-objective
problem, and hyperheuristics to approach this problem could be developed on
top of parameterized bi-objective metaheuristics.

Acknowledgements. Thisworkwas supportedby the SpanishMINECO, aswell
as European Commission FEDER funds, under grant TIN2012-38341-C04-03.

References

1. Aida, K., Natsume, W., Futakata, Y.: Distributed computing with hierarchical
master-worker paradigm for parallel branch and bound algorithm. In: Proceedings
of the 3rd IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid 2003), pp. 156–163 (2003)

2. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience
(2005)

70 J.-M. Cutillas-Lozano and D. Giménez

3. Almeida, F., Giménez, D., López-Esṕın, J.-J., Pérez-Pérez, M.: Parameterised
schemes of metaheuristics: basic ideas and applications with Genetic algorithms,
Scatter Search and GRASP. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans 43(3), 570–586 (2013)

4. Bendjoudi, A., Melab, N., Talbi, E.-G.: An adaptive hierarchical master-worker
(AHMW) framework for grids - application to B&B algorithms. J. Parallel Distrib.
Comput. 72(2), 120–131 (2012)

5. Cutillas-Lozano, J.-M., Giménez, D.: Determination of the kinetic constants of a
chemical reaction in heterogeneous phase using parameterized metaheuristics. In:
ICCS (2013)

6. Cutillas-Lozano, J.-M., Giménez, D.: Optimizing shared-memory hyperheuristics
on top of parameterized metaheuristics. In: ICCS (2014)

7. Cutillas-Lozano, L.-G.: Metaheuŕıstica aplicada a la optimización de los criterios
de producción de aguas subterráneas. Sondea Project (in Spanish). Final-studies
dissertation, University of Alicante (2012)

8. Van Luong, T., Melab, N., Talbi, E.-G.: GPU-based island model for evolutionary
algorithms. In: GECCO, pp. 1089–1096 (2010)

9. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Appli-
cations. Springer (2011)

10. Mezmaz, M.-S., Kessaci, Y., Choon Lee, Y., Melab, N., Talbi, E.-G., Zomaya,
A.Y., Tuyttens, D.: A parallel island-based hybrid genetic algorithm for precedence-
constrained applications to minimize energy consumption and makespan. In: GRID,
pp. 274–281 (2010)

11. Mezmaz, M.-S., Melab, N., Talbi, E.-G.: Using the multi-start and island models
for parallel multi-objective optimization on the computational grid. In: e-Science,
pp. 112 (2006)

12. Talbi, E.-G.: Metaheuristics - From Design to Implementation. Wiley (2009)

Modeling Fluid Flow Induced by C. elegans
Swimming at Low Reynolds Number

Jonathan Gutierrez1, Megan Sorenson2, and Eva Strawbridge3

1 St. Mary’s University, San Antonio, TX 78228, USA
2 Concordia University Irvine, Irvine, CA 92612, USA

3 James Madison University, Harrisonburg, Virginia 22807, USA
strawbem@jmu.edu

Abstract. C. elegans have been extensively researched regarding loco-
motion. However, most mathematical studies have focused on body dy-
namics rather than the fluid. As the nematodes undulate in a sinusoidal
fashion, they cause fluid movement that has been studied experimentally
but not modeled computationally on this scale. Utilizing the Navier-
Stokes equation, regularized stokeslets, and the method of images, we
computed the dynamics of the surrounding fluid. Our results strikingly
matched experimental outcomes in various ways, including the distance
particles travelled in one period of undulation, as well as qualitatively
and quantitatively matching velocity fields. We then implemented this
method using video data of swimming C. elegans and successfully repro-
duced the fluid dynamics. This is a novel application of the method of
regularized stokeslets that combines theory and experiment. We expect
this approach to provide insight in generating hypotheses and informing
experimental design.

Keywords: Applications of computing, computing with biology, C. el-
egans, low Reynolds number, regularized stokeslets, swimming.

1 Introduction

The past decade has evinced significant research into the locomotion of microor-
ganisms, in particular that of the nematode Caenorhabditis elegans both theo-
retical and experimental [16,15,17,2,3,11,14]. However, while there have been a
number of experimental investigations into the induced fluid movement of bac-
terial flagella or carpets [10,7], artificial helices [18], and nematodes [16], to the
authors’ knowledge, there has been little theoretical investigations into the in-
duced fluid flows, particularly at the intermediate scale of C. elegans, a 1mm
long, unsegmented round worm.

Fluid movement is potentially important for a number of reasons including
mixing of either passive or active chemicals in the fluid [10,7,5], transport of
nonzero volume particles [5], and swarm interactions of large numbers of or-
ganisms [9] all at low Reynolds number where viscosity, rather than inertia,
dominates. In a viscosity dominated regime, where forcing is proportional to

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 71–82, 2014.
c© Springer International Publishing Switzerland 2014

72 J. Gutierrez, M. Sorenson, and E. Strawbridge

velocity rather than acceleration, mixing and flows are often counter intuitive
due the reversibility. That is, any action which causes a flow in the fluid, if re-
versed not necessarily at the same velocity will effectively undo any flow, mixing,
or propulsion. To overcome this reversibility and achieve forward locomotion,
microorganisms utilize asymmetric motions such as corkscrewing of a helical
flagella as with the bacteria E. coli or longitudinally asymmetric undulation as
with C. elegans. In all of these cases, the organisms interact with the fluid which
then interacts with either dissolved chemical species, suspended nonzero volume
particles, or with other microorganisms to produce non-intuitive global behavior
or results which are more than simply the sum of the individual motions of each
swimmer separately.

Here we investigate these fluid motions first for an isolated swimmer in order
to validate our computational model for the fluid and transport dynamics against
experimental data in [16]. We use the method of regularized stokeslets in order
to first model the induced fluid velocities of an artificial numerical swimmer and
finally to extract fluid velocities from physical video data of a nematode swim-
ming in a salt water solution. Even without fine tuning physical parameters, our
model is able to reproduce experimental results including the appropriate decay
of velocity magnitudes away from the forcing (i.e. organism) as well as quali-
tatively and quantitatively matching extremely well with PIV (particle image
velocometry) measurements from [16] of the surrounding velocity fields.

By tracking particles or chemicals species in the fluid surrounding the mul-
tiple C. elegans, it may be possible to study mixing and chemical interactions
theoretically. From this information, we hope to eventually inform experimental
design and construct hypotheses which may be tested in the lab. The meth-
ods used here can also be adapted to computationally study the fluid flows
induced by large numbers of swimming nematodes. Moreover, with some mod-
ifications to the computational swimmers it is also possible to further analyze
organism-organism interactions in non-dilute populations in order to study the
fluid dynamics contributions to swarm behavior.

2 Materials and Methods

The organism of study here is the nematode C. elegans, which are 1.06 ± 0.06
mm long and 80 μm in diameter [16]. Their wavelike movement has an average
amplitude of 0.25 mm and a frequency of 2 Hz [16,2], meaning that a full beating
cycle is completed in 0.5 seconds. The average forward swimming speed has
been found to be 0.36 ± 0.06 mm/s by [16] and to be 0.12 mm/s at James
Madison University’s Wiggling Organism Research and Modeling (WORM) lab
(the discrepancy here is likely due to the age, adult and L4 respectively, and
size of the worms used in the respective experiments). The worms were analyzed
swimming in M9, a salt water solution composed of Na2HPO4 · 7H2O, KH2PO4,
NaCl, and NH4Cl, between two slides separated by 0.15 mm coverslip spacers.
The viscosity of M9 was measured in the WORM lab to be 1.596 cP at 20◦C
using a Brookfield DV-III LV Rheometer.

Flow Induced by C. elegans Swimming 73

The induced fluid motion due to swimming C. elegans was studied using an
in-house microscope designed based on the MRC Worm-Tracker microscope and
implementing the Worm-Tracker software along with a strobing light source.
Videos were taken at 10 and 15 frames per second of wild-type (N2) nematodes.
The worms were maintained on agar plates using the standard OP50 E. coli
strain at 20◦ C. These videos were processed and the centerlines extracted using
Matlab c©.

3 The Navier-Stokes Equation

The dynamics of incompressible Newtonian fluids are given by the Navier-Stokes
equations,

−∇p+ μΔu = ρ

(
∂u

∂t
+ u ·∇u

)

− f , (1)

∇ · u = 0 , (2)

where −∇p is the pressure gradient, μ the dynamic viscosity, ∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂z

)

is the gradient operator, Δ = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is the three dimensional Laplacian
operator, u the flow velocity, ρ the fluid density. Finally, −f represents external
forces due to, for example, a body moving in the fluid. We will use the method of
regularized stokeslets (described later in the text) to determine an appropriate
representation for f . Equation (2) represents the incompressibility condition.
Because all solutions of interest here are aqueous and water is incompressible
this condition plus and appropriate representation of f , closes the system of
equations above.

It is worth noting that the terms of the Navier-Stokes equation yield the indi-
vidual forces in the system where μΔu is the viscous force and ρ

(
∂u
∂t + u ·∇u

)
,

the only component which is nonlinear in velocity, corresponds to the inertial
forces. In the next section we will argue that for the regime of interest, the non-
linear inertial terms may be neglected, reducing the system to a linear one and
enabling the use of regularized stokes ets and the method of images.

3.1 Nondimensionalization

We have previously referred to C. elegans as a low Reynolds number swimmer,
meaning that we expect this to be a viscosity dominated regime. The Reynolds
number is effectively the ratio of the size of inertial to viscous forces. If this
ratio is small, viscosity dominates; if it is large, inertia dominates; and if it is
approximately 1, then both should remain important. Inertia works to keep an
object going at a constant velocity while viscosity is the resistance of the fluid
to flow [13]. At this point it is salient to note that 1mm, while small, is not
microscopic and can be seen with the naked eye. Additionally, the viscosity of
M9 is only about 1.5 times that of water, which is most certainly not a viscous

74 J. Gutierrez, M. Sorenson, and E. Strawbridge

fluid. Therefore it is imperative to determine the Reynolds number for these
experiments.

For the nondimensionalization of the Navier-Stokes equation, the unknowns
are separated into two components, units and scalars, allowing units to be re-
moved in order to compare the relative importance of inertial and viscous forces.
We use p = P0p̂, x = Lx̂, y = Lŷ, z = Lẑ, t = Tt̂, and u = L

T û, where the

hats indicate the nondimensional variables. Here L
T û is the natural component

for velocity. Additionally, we chose the units of pressure to be μ
T . Utilizing these

substitutions and with some simplification (1) becomes

−∇̂p̂+ Δ̂û =
ρL2

Tμ

(
∂û

∂t̂
+ (û · ∇̂û)

)

, (3)

where the highlighted term is the Reynolds number.
By rewriting V = L

T and η = μ
ρ , the Reynolds number becomes LV

η , where L
and V represent a characteristic length and velocity of the system respectively
and η represents dynamic viscosity. Using the appropriate parameters for C.

elegans we find LV
η =

(1mm)(0.12mm
s)

1.596cP = 0.075, which is much less than one. The

inertial terms can be dropped, simplifying (1) to a linear system which is called
the Stokes equation. The Stokes equation always possesses a unique solution and
moreover, linearity allows the calculation of the velocity due to different forces
to be summed separately rather than solved simultaneously.

3.2 Regularized Stokeslets

As previously indicated, modeling the fluid flow induced by the locomotion of
swimming nematodes is appropriate using the forced Stokes equation which is
given by

−∇p+ μΔu = −f , (4)

where p and u are the nondimensionalized pressure and velocity respectively
after dropping the hat notation, and f is the nondimensional external forcing
acting on the fluid. When f represents a point force we have f = gδ (X) where
δ is the Dirac delta function and X = x − x0 is the vector difference between
a position x and the location of the point force at x0. Here the position of the
point forces lie along the body of the swimmer. For the delta function point force
(4) has an exact solution which is given by the stokeslet. While this solution is
exact at all locations away from the object, it is singular at the location x0.
Numerically this presents a problem when the point forces are distributed along
a curve in three-dimensions as is desired in this case when modeling a slender
body because the velocity field becomes infinite on the filament itself [4,6].

To resolve the numerical issues due to this singularity, rather than using delta
functions the forcing is chosen to be represented by smooth but localized force
which is defined everywhere, f = gφε (X). Generally this smooth, radially sym-
metric function, φε, is referred to as a “blob” function and is required to decay
sufficiently fast. That is, we shall require

∫∞
0 r2φε(r)dr = 1

4π . The parameter ε

Flow Induced by C. elegans Swimming 75

controls where the majority of the force is concentrated and is generally chosen
to represent a physical quantity such as the radius of the filamentary object,
here the radius of the worm, 40μm. With the forcing given by this smooth func-
tion, (4) has an exact solution given by the regularized stokeslet [5]. A typical

blob function is of the form φε(r) =
15ε4

8π(r2+ε2)7/2
. Then the corresponding bihar-

monic function to this regularized stokeslet is given byΔ2Bε(r) = φε(r) so the
regularized stokeslet is then

1

8π
Sε (X) =

(

−B′′
ε (r)

r
−B′′

ε (r)

)

I +

(
rB′′(r) −B′

ε(r)

r3

)

XX. (5)

3.3 Method of Images

Because all experimental data to which these computations will be compared
have walls, we implemented a version of the regularized stokeslet which also con-
tains solutions using the method of images. The method of images is a common
mathematical approach to enforce wall boundary conditions in one direction for
linear partial differential equations, as in this case with a floor. In essence, to
ensure zero flow through the wall due to a force in the fluid, an imaginary force is
added which mirrors the real force on the other side of the wall. These two forces
then effectively “cancel” each other out. This procedure is technically more com-
plicated for the regularized stokeslet and requires the additional use of a doublet
and potential dipole at the mirror image point as well but has been previously
obtained by [1] and is implemented here. A complete treatment of the method
of images for regularized stokeslets is beyond the scope of this paper but can be
found in compete detail in [1].

4 The Model Nematode

Our initial investigations implemented a computationally artificial model of C.
elegans given by

x = [2πks+ ιωt] /Larc , (6)

y =

[

A sin

(
2πs

λ
+ ωt

)

eαs
]

/Larc . (7)

The parameters Aeαs control the maximum amplitude. The value of A is chosen
based on α, which controls the decay of amplitude through the worm from head
to tail. However, it should be noted that A is not a direct reflection of the maxi-
mum amplitude. The parameter λ is the wave length, s is the parameterization
variable, and ω is the oscillation frequency. C. elegans ’ forward displacement is
not equal to ω, so a slip parameter ι was introduced. To account for the length,
1 mm, of the worm, we normalize by the arc length Larc of the function at each
time.

To use the method of regularized stokeslets, we implemented a blob parameter
of d = 40 μm equally spaced along the nematode so that there were �1/2d�

76 J. Gutierrez, M. Sorenson, and E. Strawbridge

(13 in this case) blobs. Adjacent forces positioned too far apart would result in
our worm having holes, allowing fluid flow through the centerline. Conversely,
the blobs cannot be too close together because overlapping blobs would create
a total force much greater than the actual force induced by the worm [5].

5 Results

5.1 Velocity Field

Using regularized stokeslets, the method of images, and knowing the position
and velocity of the blob forces, the forcing on, and therefore velocity of the
fluid can be computed exactly at any point in time and space. That is, this is a
grid free method. This allows us to compute the velocity vector field around the
worm as is shown in Fig. 1a. Here we can see that the velocity vectors (which are
denoted as lines with circles at the heads) are largest near the body as predicted,
particularly around areas of greater body displacement as was observed in the
experiments of [16,8]. Additionally, circular trajectories rotating in alternating
directions are observed. These circular regions remain near the body, opposed to
traveling out into the fluid, a characteristic of low Reynolds number swimmers’
fluid dynamics [16].

Figure 1b shows a color map of the velocity magnitude in a grid surrounding
the nematode as was produced from the experimental data of [16]. Larger ve-
locities are seen near the areas of greater body displacement and circular flow
regions remain present. Once again, the theoretical nematode is consistent with
the experimental results. When similar parameters as those shown in the figures
of [16] were implemented, the maximum magnitudes were within approximately
10 μ m/s. Additionally, we found that the magnitudes of the velocities vary sig-
nificantly with fluctuation in the nematode length, frequency, and wavelength.

5.2 Velocity Magnitude and Distance from the Wall

We computed the normalized average velocity magnitude as a function of the
the normalized distance r/L from the worm (here L = 1mm) averaged over
the length of the worm and one full beat period. Because the bulk fluid flow
is zero, we expect the velocity to decay to zero as our observations move away
from the worm. Figure 2a depicts the calculation scheme and Fig. 2b indicates
the theoretically predicted exponential decay rate, e−2πr/λ, as the solid blue line
[12]. This method is consistent with the computations of [5] and the experimental
observations of [18] with rotating metal helices.

The experimental techniques of [16] specifically measured the velocity magni-
tudes of the nematodes at 300 μm (roughly 7d, where d is the nematode radius)
from the bottom wall of the fluid containing cell. Our numerical method enables
us to examine the effect of distance from the wall and its impact on the fluid
behavior. We computed the velocity magnitudes as a function of distance from
the nematode’s maximum amplitude (as shown in Fig. 2a) for heights ranging

Flow Induced by C. elegans Swimming 77

−1 −0.5 0 0.5 1

2

2.5

3

mm

m
m

(a)

−1 −0.5 0 0.5 1

2

2.5

3

mm

m
m

0

0.5

1

(b)

Fig. 1. (a) The velocity vector field shows the direction of fluid surrounding the worm
and a rough magnitude of each vector. The circles indicate position at which the velocity
vectors were calculated. (b) The grayscale bar indicates the magnitude of the velocity
vector.

−1 −0.5 0 0.5 1
2

2.2

2.4

2.6

2.8

3

mm

m
m

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r/L

|V
|/|

V
| m

ax

d
3d
5d
7d
9d

e−2π r/λ

(b)

Fig. 2. (a) Along each of the dashed vertical lines we computed the normalized flow
velocity magnitudes at a distance, r, away from our model worm (L = 1 mm). The
circles indicate position at which the velocity vectors were calculated. (b) Velocity
magnitudes are observed as the distance from the nematode increases. The decaying
velocities at different heights away from the wall are then plotted. The solid line shows
the predicted outcome from [12]

78 J. Gutierrez, M. Sorenson, and E. Strawbridge

from d to 10d above the bottom wall. When the distance is roughly 300 μm,
the numerical results (Fig. 2b labeled in black) lie just above the the predicted
decay, e−2πr/λ, of [12], and are nearly identical to the experimental results of
[16].

Additionally, we were able to calculate Xthres, the normalized distance from
the artificial worm where velocity magnitudes fall below ten percent of their re-
spective maximums. As the distance from the wall increases, these values appear
to converge to 0.5039. When the maximum velocities | V |max for each of these
heights were calculated, we found that as the distance from the wall increases,
| V |max increases as well and also appears to converge to 0.7853 mm/sec.

To the authors’ knowledge, the relationship between velocity decay or maxi-
mum velocity produced as a function of distance from a wall has not previously
been examined and our experiments predict that expected decay rate of [12] does
not accurately describe normalized fluid velocity magnitudes generated when a
wall is present but at a substantial distance from the swimming organism. This
represents a very testable hypothesis that we hope to investigate further both
numerically and experimentally.

5.3 Particle Tracking

Fluid particles located in the plane of the worm’s motion were tracked and
these particle paths are shown in Fig. 3. The circular flow patterns are again
evident and the particles are seen to have moved the greatest distance near the
regions of greatest body displacement, indicating that these circular regions are
characteristic of streamlines, not simple vector fields at a snapshot in time. We
wanted to ensure that our particle movement was an accurate representation of
the actual change in position. To test this, we tracked particles directly on the
worm. If computed exactly, particle on the body will remain on the nematode
for all time. However, we expect to observe first order error in the time evolution
of particle location.

Because the integration scheme used is first order in time, as the time step dt
is decreased, the error should decrease proportionally. To check our numerical
method we computed the euclidian distance between the actual location of fluid
particles initialized on the worm itself, and the point where it should have been
positioned on the worm. This distance is recorded in Table 1. At T = 0.1 (roughly
the end time used for the particle tracking in Fig. 3) and 0.5 seconds (a full beat
cycle), we see from this table that we do in fact have first order convergence.
However, as the end time is increased, the method for tracking particles does
not continue to show the appropriate relationship. The increased error is likely
caused by the method of evenly distributing the blob forces on the sinusoidal
curve as a function of time. However, our model works well for all periods of
time for which experimental data exists with which to compare.

Particles paths were also plotted where color corresponds to a total distance
traveled (Fig. 4). From this figure we see that the maximum distance a fluid par-
ticle traveled is approximately 50 μm. This is strikingly consistent with the
experimental data from [16] which was produced using PIV and suspended

Flow Induced by C. elegans Swimming 79

florescent particles. We found that the distance each particle traveled was ef-
fected greatly by the physical parameters such as the length of the nematode,
beat frequency, and wave length, indicating that further investigation into this
is needed in order to determine upper bounds for mixing, and compare with real
experimental situations.

−0.5 0 0.5
2

2.2

2.4

2.6

2.8

3

mm

 m
m

Fig. 3. Particles are tracked for 0.125 seconds with a dt of 0.001 as the worm swims
through the fluid where the particles themselves are plotted as dots at the ending time

Table 1. The relationship between time step size and error decrease is the correct
proportion for T = 0.1 and T = 0.5 seconds

(a) Total Time = 0.1

dt distance
ddn+1

ddn

0.1 0.0071 -
0.05 0.0035 2.0014
0.025 0.0018 2.0018
0.0125 0.0009 2.0030
0.00625 0.0004 2.0057

(b) Total Time = 0.5

dt distance
ddn+1

ddn

0.1 0.0070 -
0.05 0.0035 2.0193
0.025 0.0017 2.0371
0.0125 0.0008 2.0757
0.00625 0.0004 2.1631

6 From Theory to Experiment

After validating our computational model with the numerical artificial swimmer,
we extended this work to experimental data obtained in our own lab. Videos were

80 J. Gutierrez, M. Sorenson, and E. Strawbridge

−0.4 −0.2 0 0.2 0.4

2

2.5

3

mm

m
m

0.01

0.02

0.03

0.04

0.05

Fig. 4

Fig. 5. Particles are traced for 0.06 seconds with a time step of 0.002. The color bar
indicates the magnitude of displacement in mm.

taken of L4 C. elegans for four seconds at ten frames per second. The centerline
of these worms was extracted and normalized into mm, as seen in Fig. 6a. The
worm centerlines were then divided up into the 13 blob forces used to create
the velocity field around the nematode. Two consecutive frames were plotted,
and the velocities were calculated by tracking the distance each blob traveled
and dividing this the change in time between frames. Figure 6b depicts the
worm’s initial position plotted with a dashed line and the final position plotted
as a solid line. Three regions of higher velocity magnitude are present, along
with the circular motion of the velocity vectors, once again consistent with the
results found by [16]. While the velocity magnitudes obtained here are slightly
larger than those found by [16], we believe this is due the significant variation
of movements between worms as well as over time. This parameter dependence
is a subject of future study.

7 Conclusion

We implemented an algorithm that utilizes regularized stokeslets and the method
of images to track the fluid dynamics around a swimming C. elegans at low
Reynolds number. Results were obtained using both a computationally artificial
worm and experimentally obtained video data to study the fluid dynamics as-
sociated with nematode locomotion. Particles carried by the fluid were tracked
numerically, reproducing experimental outcomes with respect to particle dis-
placement. The velocity fields as well as the velocity magnitudes as a function of
lateral distance from the worm also match both qualitatively and quantitatively
with the experiments of [16] and the theoretical predictions of [12]. Moreover, by

Flow Induced by C. elegans Swimming 81

(a)

0.8 1 1.2 1.4 1.6 1.8

0.4

0.6

0.8

1

1.2

mm

m
m

0.5

1

1.5

2

(b)

Fig. 6. (a) C. elegans photographs with extracted centerline gathered in our lab. (b)
The color velocity field based on C. elegans movement as the worm moves from the
dashed line to the solid line over 0.1 seconds. The grayscale color bar indicates magni-
tude of the velocity vectors in mm/s.

computationally studying the impact of experimentally relevant boundaries (i.e.
the bottom of the fluid chamber), we can predict this decay rate as a function
of distance from this wall.

In future work we hope to extend this research to study the precise relation-
ship between flow features and the physical and locomotive parameters of real
nematodes (e.g. body length, wave length, longitudinal asymmetry, wave speed,
etc.) as well as to include multiple swimmers in order to analyze fluid dynam-
ics contributions of swarm behavior through organism-organism interaction in
non-dilute environments. In order to study complex patterns and behaviors asso-
ciated with dense or non dilute populations of swimmers (i.e. potential swarms)
in fluids, a clear understanding of the dynamic role of the fluid in this behav-
ior and communication between organisms is needed. Additionally, this method
can be used to track particles or chemical species in fluids to further investigate
microscopic mixing as well as the chemical processes aided by active flow. This
is particularly applicable to the construction of microfluidic devices and mixing
using bacterial carpets [10].

Acknowledgements. This research was partially funded by NSF grant number
1004516, and James Madison University Mathematics and Statistic Department
provided funding for the WORM lab. Charles Wolgemuth and Karin Leiderman
contributed the original centerline and regularized stokeslets programs respec-
tively.

82 J. Gutierrez, M. Sorenson, and E. Strawbridge

References

1. Ainley, J.S., Durkin, S., Embid, R., Boindala, P., Cortez, R.: The method of images
for regularized stokeslets. Journal of Computational Physics 227, 4600–4616 (2008)

2. Berman, R.S., Kenneth, O., Sznitman, J., Leshansky, A.M.: Undulatory locomotion
of finite filaments: lessons from Caenorhabditis elegans. New Journal of Physics 15,
075022 (2013)

3. Berri, S., Boyle, J.H., Tassieri, M., Hope, I.A., Cohen, N.: Forward locomotion of
the nematode C. elegans is achieved through modulation of a single gait. HFSP
Journal 3, 186–193 (2009)

4. Bouzarth, E., Minion, M.: Modeling slender bodies with the method of regularized
stokeslets. Journal of Computational Physics 230, 3929–3947 (2011)

5. Buchman, A.L., Fauci, L.J., Strawbridge, E.M., Zhao, L.: Flow included by bac-
terial carpets and transport of microscale loads. IMA Volume: Applications of
Dynamical Systems in Biology and Medicine (to appear, 2014)

6. Cortez, R.: The method of regularized stokeslets. SIAM Journal on Scientific Com-
puting 23, 1204–1225 (2001)

7. Darnton, N., Turner, L., Breuer, K., Berg, H.: Moving fluid with bacterial carpets.
Biophysical Journal 86, 1863–1870 (2004)

8. Gray, J., Lissmann, H.W.: The locomotion of nematodes. Journal of Experimental
Biology 41, 135 (1964)

9. Ishikawa, T., Pedley, T.J.: Coherent structures in mololayers of swimming particles.
Physical Review Letters 100, 088103 (2008)

10. Kim, M., Breuer, K.: Use of bacterial carpets to enhance mixing in microfluidic
systems. Journal of Fluids Engineering 46, 139 (2007)

11. Korta, J., Clark, D.A., Gabel, C.V., Mahadevan, L., Samuel, A.D.T.: Mechanosen-
sation and mechanical load modulate the locomotory gait of swimming C. elegans.
The Journal of Experimental Biology 210, 2382–2389 (2007)

12. Lighthill, J.: Flagellar hydrodynamics. SIAM Reviews 18, 161 (1976)
13. Purcell, E.M.: Life at low reynolds number. American Journal of Physics 45, 3

(1977)
14. Shen, X.N., Arratia, P.E.: Undulatory swimming in viscoelastic fluids. Physical

Review Letters 106, 208101 (2011)
15. Sznitman, J., Prashant, K., Purohit, P., Lamitina, T., Arratia, P.E.: Material prop-

erties of Caenorhabditis elegans swimming at low reynolds number. Biophysical
Journal 98, 617–626 (2010)

16. Sznitman, J., Shen, X., Sznitman, R., Arratia, P.E.: Propulsive force measurements
and flow behavior of undulatory swimmers at low reynolds number. Physics of
Fluids 22, 121901 (2010)

17. Sznitman, R., Gupta, M., Hager, G.D., Arratia, P.E., Sznitman, J.: Multi-
environment model estimation for motility analysis of Caenorhabditis elegans.
PLoS One 5, e11631 (2010)

18. Zhong, S., Moored, K.W., Pinedo, V., Garcia-Gonzalez, J., Smits, A.J.: The flow
field and axial thrust generated by a rotating rigid helix at low reynolds number.
Experimental Thermal and Fluid Science 46, 1–7 (2013)

Detecting Symmetry in Cellular Automata

Generated Patterns Using Swarm Intelligence

Mohammad Ali Javaheri Javid, Mohammad Majid al-Rifaie,
and Robert Zimmer

Department of Computing
Goldsmiths, University of London

London SE14 6NW, UK
{m.javaheri,m.majid,r.zimmer}@gold.ac.uk

Abstract. Since the introduction of cellular automata in the late 1940’s
they have been used to address various types of problems in computer
science and other multidisciplinary fields. Their generative capabilities
have been used for simulating and modelling various natural, physical
and chemical phenomena. Besides these applications, the lattice grid of
cellular automata has been providing a by-product interface to generate
graphical patterns for digital art creation. One important aspect of cellu-
lar automata is symmetry, detecting of which is often a difficult task and
computationally expensive. In this paper a swarm intelligence algorithm
– Stochastic Diffusion Search – is proposed as a tool to identify axes of
symmetry in the cellular automata generated patterns.

Keywords: Cellular automata, swarm intelligence, symmetry, aesthetics.

1 Introduction

Creating aesthetically pleasing images has been investigated by many researches
in the context of evolutionary computing, including the Bimorphs of Dawkins
[9], Mutator of Latham [30], and Virtual Creatures of Sims [29]. Although
some impressive results have been achieved, there still remain problems with the
aesthetic selection. According to [18], first, the subjective comparison process,
even for a small number of phenotypes, is slow and forms a bottleneck in the
evolutionary process. Human users would take hours to evaluate many successive
generations that in an automated system could be performed in a matter of
seconds. Secondly, genotype-phenotype mappings are often not linear or uniform.
That is, a minor change in genotype may produce a radical change in phenotype.
Such non-uniformities are particularly common in tree or graph based genotype
representations such as in evolutionary programming, where changes to nodes
can have a radical effect on the resultant phenotype. In this study we approach
the problem in the framework of dynamical systems and define a criterion for
aesthetic selection in terms of its association with symmetry. The association of
aesthetics and symmetry has been investigated from different points of view.

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 83–94, 2014.
c© Springer International Publishing Switzerland 2014

84 M.A. Javaheri Javid, M.M. al-Rifaie, and R. Zimmer

In this work, a brief account on cellular automata is presented, followed by a
section on symmetry and its significance in aesthetics. Then a swarm intelligence
algorithm – Stochastic Diffusion Search – is explained, highlighting its main
features. Afterwards, the application of the algorithm in detecting symmetry
along various axes of symmetry is detailed, illustrating the performance of the
method proposed.

2 Cellular Automata

Definition 1: A Cellular Automaton (CA) is a lattice of regularly arranged
homogeneous finite state automaton as unit cells in Euclidean space. It can be
represented as a quadruple of A = { S,N, d, f} where:

1. S is a finite set of integer numbers as states,
2. N is a finite set of integer numbers as neighbourhood,
3. d is a finite set of integer numbers as the dimension of the space,
4. f : Sn �→ S is the transition function.

In a discrete two-dimensional (d = 2) finite lattice with a periodic boundary
the state of each cell (automaton) at time (t) is determined by the states of
immediate surrounding neighbourhood cells at time t− 1.

The 9-cell mapping is also known as a Moor neighbourhood and a mapping
that satisfies the following condition is called a quiescent state (S = 0).

f(0, 0, 0, 0, 0, 0, 0, 0, 0) = 0 (1)

The behaviour of CA at a certain point of time emergences from a synchronous
iterative application of transition function (local rule) over the initial configura-
tion at time t0. There are some distinctive characteristics in CA which can make
them particularly attractive to digital artists and suitable for image and pattern
generation purposes (each automaton acting as picture element). Furthermore,
the significance of CA for computer art comes from the fact that simple rules can
generate observationally unpredictable complex behaviours and there is a vast
universe of behaviours which can be explored. Generally the behaviour of a par-
ticular cellular automaton is constrained by its initial configuration, transaction
function and number of states. A two-dimensional multi-state cellular automa-
ton with periodic boundary provides an endless environment for the growth of
patterns and the observation of emergent complex behaviour over the time of
evolution. For some rules the periodic generation of patterns creates an animated
sequence of pattern formations. This opens up possibility of generating anima-
tions based on the development of pattern formation where both symmetries and
the element of surprise coexist. This capability was observed in [27] where CA
are described as “self-generating computer graphics movies”. This is a new way
of generating imagery which has no precedent in human culture [26]. The role
of symmetry in art, architecture and its association with aesthetic preferences
is a well known concept [21]. The iterative application of transition function

Detecting Symmetry in CA Generated Patterns Using Swarm Intelligence 85

Fig. 1. Sample CA generated symmetrical patters

over initial configuration, especially in multi-state CA, can generate complex
symmetrical patterns [12,22] which are extremely challenging to construct using
conventional mathematical methods. Figs. 1 and 2 show experimental patterns
generated by the authors to demonstrate the generative capabilities of CA in
creating symmetrical patterns.

3 Symmetry and Aesthetic

Symmetry, having proportionality and balance is an important element of aes-
thetics. The association of aesthetics and symmetry has been investigated exten-
sively in literature. A study to investigate the effect of symmetry on interface
judgements, and relationship between a higher symmetry value and aesthetic
appeal for the basic imagery, showed that subjects preferred symmetric over
non-symmetric images [4]. Further studies found that if symmetry is present in
the face or the body, an individual is judged as being relatively more attractive
and if the body is asymmetric the face is rated unattractive, even if the person
doing the rating never sees the body [25,10]. Symmetry plays a crucial role in
theories of perception and is even considered a fundamental structuring principle
of cognition [15]. In the Gestalt school of psychology things [objects] are affected
by where they are and by what surrounds them... so that things [objects] are
better described as more than the sum of their parts [5]. The Gestalt principles
emphasise the holistic nature of perception where recognition is inferred, during
visual perception, more by the properties of an image as a whole, rather than
its individual parts [13]. Thus, during the recognition process elements in an
image are grouped from parts to whole based on Gestalt principles of percep-
tion such as proximity, parallelism, closure, symmetry, and continuation [23]. In
particular, symmetric objects are more readily perceived [8]. It is not surpris-
ing that we humans find sensory delight in symmetry, given the world in which

86 M.A. Javaheri Javid, M.M. al-Rifaie, and R. Zimmer

Fig. 2. Sample CA generated symmetrical patters

we evolved. In our world the animals that have interested us and our ancestors
(as prey, menace, or mate) are overwhelming symmetric along at least one axis
[24]. Evolutionary psychologists examine physical appearances like as symmetry,
and perceived level of aesthetics as an indirect measure in mate selection [21,20].
In this view symmetrical faces are examined as more attractive faces. In other
words symmetry is positively linked with both psychological and physiological
health indicators [28]. In geometry symmetrical shapes are produced by apply-
ing four operations of translations, rotations, reflections, and glide reflections.
However developing computational methods which generate symmetrical pat-
terns is still a challenge since it has to connect abstract mathematics with the
noisy, imperfect, real world; and few computational tools exist for dealing with
real-world symmetries [16]. Applying evolutionary algorithms to produce sym-
metrical forms leaves the formulation of fitness functions, which generate and
select symmetrical phenotypes, to be addressed . Lewis describes two strategies
in evolutionary algorithms approach for generating and selecting symmetrical
forms: “ A common approach is to hope for properties like symmetry to grad-
ually emerge by selecting for them. Another strategy is to build in symmetry
functions which sometimes activate, appearing suddenly. However this leads to
a lack of control, as offspring resulting from slight mutations (i.e., small steps in
the solution space) bear little resemblance to their ancestors [14]”.

The next section explains the swarm intelligence algorithm which will be used
in detecting symmetrical patterns.

Detecting Symmetry in CA Generated Patterns Using Swarm Intelligence 87

4 Swarm Intelligence Algorithm

The swarm intelligence algorithm used in this work is Stochastic Diffusion Search
(SDS) [6,1] which is a probabilistic approach for solving best-fit pattern recog-
nition and matching problems. SDS, as a multi-agent population-based global
search and optimisation algorithm, is a distributed mode of computation utilis-
ing interaction between simple agents [19]. Its computational roots stem from
Geoff Hinton’s interest 3D object classification and mapping. See [11,17] for Hin-
ton’s work and [6,7] for the connection between Hinton mapping and SDS. SDS
algorithm has been used in various fields including optimisation and generative
arts (e.g. [2,3]).

In order to introduce SDS, a social metaphor, the Mining Game, is introduced.

4.1 The Mining Game

The mining game provides a simple metaphor outlining the high-level behaviour
of agents in SDS:

A group of friends (miners) learn that there is gold to be found on the
hills of a mountain range but have no information regarding its distribu-
tion. On their maps the mountain range is divided into a set of discrete
hills and each hill contains a discrete set of seams to mine. Over time,
on any day the probability of finding gold at a seam is proportional to
its net wealth.
To maximise their collective wealth, the miners need to identify the hill
with the richest seams of gold so that the maximum number of miners
can dig there (this information is not available a-priori). In order to solve
this problem, the miners decide to employ a simple Stochastic Diffusion
Search.
– At the start of the mining process each miner is randomly allocated

a hill to mine (his hill hypothesis, h).
– Every day each miner is allocated a randomly selected seam on his

hill to mine.
– At the end of each day, the probability that a miner is happy is

proportional to the amount of gold he has found.
– At the end of the day the miners congregate and over the evening

each miner who is unhappy selects another miner at random to talk
to. If the chosen miner is happy, he happily tells his colleague the
identity of the hill he is mining (that is, he communicates his hill
hypothesis, h, which thus both now maintain). Conversely, if the
chosen miner is unhappy he says nothing and the original miner is
once more reduced to selecting a new hypothesis - identifying the
hill he is to mine the next day - at random.

In the context of SDS, agents take the role of miners; active agents being
‘happy miners’, inactive agents being ‘unhappy miners and the agent’s hypoth-
esis being the miner’s ‘hill-hypothesis’. It can be shown that this process is

88 M.A. Javaheri Javid, M.M. al-Rifaie, and R. Zimmer

isomorphic to SDS, and thus that the miners will naturally self-organise and
rapidly congregate over hill(s) on the mountain range with a high concentration
of gold.

4.2 SDS Architecture

The SDS algorithm commences a search or optimisation by initialising its pop-
ulation (e.g. miners, in the mining game metaphor). In any SDS search, each
agent maintains a hypothesis, h, defining a possible problem solution. In the
mining game analogy, agent hypothesis identifies a hill. After initialisation two
phases are followed (for high-level SDS description see Algorithm 1):

– Test Phase (e.g. testing gold availability)
– Diffusion Phase (e.g. congregation and exchanging of information)

In the test phase, SDS checks whether the agent hypothesis is successful or not
by performing a partial hypothesis evaluation and returning a domain indepen-
dent boolean value. Later in the iteration, contingent on the strategy employed,
successful hypotheses diffuse across the population and in this way information
on potentially good solutions spreads throughout the entire population of agents.

In the Test phase, each agent performs partial function evaluation, pFE,
which is some function of the agent’s hypothesis; pFE = f(h). In the mining
game the partial function evaluation entails mining a random selected region on
the hill, which is defined by the agent’s hypothesis (instead of mining all regions
on that hill).

In the Diffusion phase, each agent recruits another agent for interaction and
potential communication of hypothesis. In the mining game metaphor, diffusion
is performed by communicating a hill hypothesis.

Algorithm 1. SDS Algorithm

01: Initialising agents ()
02: While (stopping condition is not met)
03: Testing hypotheses()
04: Determining agents’ activities (active/inactive)
05: Diffusing hypotheses()
06: Exchanging of information
07: End While

The next section details how SDS is instructed to detect symmetry in CA
generated patterns.

5 Experiments and Results

In this work Stochastic Diffusion Search is tasked to identify various types of
symmetry. The input to the system are some sample patterns to show the func-
tionality of the method and later some real world cellular automata generated
patterns are fed in the system to evaluate the overall performance of the algo-
rithm in detecting symmetry.

Detecting Symmetry in CA Generated Patterns Using Swarm Intelligence 89

Fig. 3. Figure showing the search space (5 × 5); hypothesis in green; and the micro-
features in blue

5.1 Applying SDS Algorithm

In order to adopt SDS to use for identifying symmetries, the following are con-
sidered:

– the search space comprises of the entire cells on the canvas (see Fig. 3 where
the search space size is 5× 5)

– SDS hypothesis is a cell index along one of the axes of a symmetry. See Fig.
3 where the hypothesis is highlighted in green (i.e. index = 0)

– the cells on either side of each axes of symmetry are considered micro-
features1 of the hypotheses (see Fig.3 where sample micro-features are high-
lighted in blue)

As shown in Fig. 4, there are four axes of symmetry in four-fold symmetrical
patterns. Fig. 5 shows each of these axes separately.

Fig. 4. Four axes of symmetry in a four-fold symmetrical pattern

The process through which the test and diffusion phases of SDS algorithm
iterates is explained below:

Initialisation Phase. During the initialisation phase one of the symmetrical
axes is chosen and is set as a model (to be used for comparing the cells on either
sides). Then each agent is associated to a cell index which is between 0 and the
length of the side of the screen (i.e. width or height). In other words each agent’s
hypothesis is set to one of the cells along the axis of symmetry.

1 Micro-features are used in the test phase of SDS to determine the status of the
agent (i.e. active or inactive).

90 M.A. Javaheri Javid, M.M. al-Rifaie, and R. Zimmer

Fig. 5. Individual axes of symmetry

Test Phase. During the test phase, each agent, which is already allocated to
an index on the axis of symmetry, picks a cell (micro-feature) from either side of
the axis and checks if the mirror of the cell has the same value. If the difference
between the two corresponding micro-features is zero, the agent becomes active,
otherwise inactive.

Diffusion Phase. The process in the diffusion phase is the same as the one
detailed in the algorithm description: each inactive agent picks an agent ran-
domly from the population; if the randomly selected agent is active, the inactive
agent adopts the hypothesis of the active agent (i.e. the cell index on the axis
of symmetry), otherwise the inactive agent picks a random cell index between 0
and the length of the side of the canvas.

After n number of iterations all agents converge on the points of symmetry.
One of the main features of SDS is partial function evaluation which here

manifests itself in: each time checking one cell on one side of the symmetrical
axis to its corresponding cell on the other side. Therefore even when an agent is
active, in the next iteration it picks another micro-feature and checks the point
from “a different perspective” to ensure that the symmetry holds.

Fig. 6 shows few iterations in which the cells are marked in blue (the current
micro-features) are checked. This feature is also useful in dynamically changing
environments where cells change their characteristics over time and as such might
lose their symmetrical patterns.

The process can be repeated to test other axis of symmetry. Fig. 7 shows
a pattern that is symmetrical on two points on one of the symmetrical axis.
Therefore, the agents converge to the ‘optimal’ points. Fig. 7(1) shows that
all agents except the one at the bottom are active (green); the micro-features
selected for the inactive agents are clearly not identical (black on the left hand
side and white on the right hand side). Therefore, now that the agent is inactive,

Detecting Symmetry in CA Generated Patterns Using Swarm Intelligence 91

Fig. 6. Regular change in picking mico-features in the test phase

it selects another cell (during the diffusion phase) along the symmetrical line. It
selects the one on top as shown on Fig. 7(2) where there are two micro-features
on each side been tested by the algorithm (during the test phase). This process
is repeated until all agents converge to the points where symmetry or partial
symmetry is detected in the pattern (see Fig. 7(4)).

(1) (2) (3) (4)

Fig. 7. Identifying partial symmetry

Using this approach, the algorithm allocate its resources “wisely” and repeat-
edly tests the already maintained points of interest against any asymmetrical
discovery.

Fig. 8 shows a larger pattern which is fed into the system and the algorithm
confirms its symmetrical nature against all four axes of symmetry.

92 M.A. Javaheri Javid, M.M. al-Rifaie, and R. Zimmer

Fig. 8. Detecting four-fold symmetry in a cellular automata generated pattern

6 Conclusion

CA provide perspective and powerful tools in generating computer graphics.
The multi-state CA rule space is a vast set of possible rules which can generate
interesting patterns with high aesthetic qualities. The interaction of CA rules at
local level generates emergent global behaviour, that can sometimes demonstrate
attractive complexity. Some characteristics of CA, such as the regularity and
complexity of the rules that are employed locally, suggest that they could be
well suited to generating computer graphics.

This paper demonstrates the capability of a swarm intelligence algorithm –
Stochastic Diffusion Search – in detecting symmetrical patterns along various
axes of symmetry. Evaluating the symmetry of cellular automata generated pat-
terns is often a difficult task partly due the the large size of the search space
or canvas, and partly due to the constantly changing, dynamic environment in

Detecting Symmetry in CA Generated Patterns Using Swarm Intelligence 93

which the cellular automata patterns are generated. These factors contribute to
making the detection of symmetrical patterns computationally expensive. One
of the main features of Stochastic Diffusion Search is partial function evaluation
which is particularly useful when dealing with large problems with high dimen-
sions. The performance of this algorithm is explained in the paper and the results
are accordingly reported. In addition to identifying symmetry along one or all
axes of symmetry (four-fold symmetry), the algorithm demonstrates its ability
in identifying partial symmetry.

Following the introduction of this novel technique, among the future research
topics are: conducting a comparisonwith other evolutionary and non-evolutionary
techniques, computing the correlation between the size of search space and the
computational complexity of the process, and applying this method on dynami-
cally evolving cellular automata generated patterns.

References

1. al-Rifaie, M.M., Bishop, M.: Stochastic diffusion search review. Paladyn, Journal
of Behavioral Robotics 4(3), 155–173 (2013)

2. al-Rifaie, M.M., Bishop, M., Blackwell, T.: Information sharing impact of stochastic
diffusion search on differential evolution algorithm. J. Memetic Computing 4(4),
327–338 (2012)

3. al-Rifaie, M.M., Bishop, M., Caines, S.: Creativity and autonomy in swarm intelli-
gence systems. J. Cognitive Computation 4(3), 320–331 (2012)

4. Bauerly, M., Liu, Y.: Computational modeling and experimental investigation of
effects of compositional elements on interface and design aesthetics. International
Journal of Man-Machine Studies 64(8), 670–682 (2006)

5. Behrens, R.R.: Design in the visual arts. Prentice-Hall (1984)
6. Bishop, J.: Stochastic searching networks. In: Proc. 1st IEE Conf. on Artificial

Neural Networks, pp. 329–331. IET, London (1989)
7. Bishop, J., Torr, P.: The stochastic search network. In: Neural Networks for Images,

Speech and Natural Language, pp. 370–387. Chapman & Hall, New York (1992)
8. Carroll, M.J. (ed.): HCI Models, Theories, and Frameworks: Toward a multidisci-

plinary science. Morgan Kaufmann Publishers, San Francisco (2003)
9. Dawkins, R.: The blind watchmaker. New York: Norton & Company, Inc. (1986)

10. Gangestad, S.W., Thornhill, R., Yeo, R.A.: Facial attractiveness, developmen-
tal stability, and fluctuating asymmetry. Ethology and Sociobiology 15(2), 73–85
(1994)

11. Hinton, G.F.: A parallel computation that assigns canonical object-based frames
of reference. In: Proceedings of the 7th International Joint Conference on Artificial
Intelligence, vol. 2, pp. 683–685. Morgan Kaufmann Publishers Inc. (1981)

12. Javid, M.A.J., te Boekhorst, R.: Cell Dormancy in Cellular Automata. In:
Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS
2006. LNCS, vol. 3993, pp. 367–374. Springer, Heidelberg (2006)

13. Jiang, H., Ngo, C.W., Tan, H.K.: Gestalt-based feature similarity measure in trade-
mark database. Pattern Recognition 39(5), 988–1001 (2006)

14. Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.)
The Art of Artificial Evolution. Natural Computing Series, pp. 3–37. Springer
(2008)

94 M.A. Javaheri Javid, M.M. al-Rifaie, and R. Zimmer

15. Leyton, M.: Symmetry, causality, mind. Bradford Books, MIT Press (1992)
16. Liu, Y.: Computational symmetry. In: CMU Robotics Institute (2000)
17. McClelland, J.L., Rumelhart, D.E., Group, P.R., et al.: Parallel distributed pro-

cessing. Explorations in the Microstructure of Cognition 2 (1986)
18. McCormack, J.: Interactive evolution of l-system grammars for computer graphics

modelling. Complex Systems: from biology to computation, 118–130 (1993)
19. de-Meyer, K., Bishop, J.M., Nasuto, S.J.: Stochastic diffusion: Using recruitment

for search. In: McOwan, P., Dautenhahn, K., Nehaniv, C.L. (eds.) Evolvability and
interaction: evolutionary substrates of communication, signalling, and perception
in the dynamics of social complexity, Technical Report 393, vol. 393, pp. 60–65
(2003)

20. Møller, A.P., Cuervo, J.J.: Asymmetry, size and sexual selection: meta-analysis,
publication bias and factors affecting variation in relationships, p. 1. Oxford Uni-
versity Press (1999)

21. Møller, A.P., Thornhill, R.: Bilateral symmetry and sexual selection: a meta-
analysis. Am. Nat. 151(2), 174–192 (1998)

22. Nowak, M.A.: Evolutionary dynamics: exploring the equations of life. Harvard
University Press (2006)

23. Park, I.K., Lee, K.M., Lee, S.U.: Perceptual grouping of line features in 3-D space:
A model-based framework. Pattern Recognition 37(1), 145–159 (2004)

24. Railton, P.: Aesthetic Value, Moral Value and the Ambitions of Naturalism. In:
Aesthetics and Ethics, vol. 3, University of Maryland (2001)

25. Randy, T., Steven, G.: Human facial beauty. Human Nature 4, 237–269 (1993)
26. Roth, T.O., Deutsch, A.: Universal synthesizer and window: Cellular automata as

a new kind of cybernetic image. In: Imagery in the 21st Century, pp. 269–288. The
MIT Press (2011)

27. Rucker, R.: Seek!: Selected Nonfiction. Running Press Book Publishers (1999)
28. Shackelford, T.K., Larsen, R.J.: Facial symmetry as an indicator of psychological

emotional and physiological distress. Journal of Personality and Social Psychol-
ogy 72 (1997)

29. Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference
on Computer Graphics and Interactive Techniques, pp. 15–22. ACM (1994)

30. Todd, S., Latham, W., Hughes, P.: Computer sculpture design and animation. The
Journal of Visualization and Computer Animation 2(3), 98–105 (1991)

Vehicle Routing in a Forestry Commissioning

Operation Using Ant Colony Optimisation

Edward Kent, Jason A.D. Atkin, and Rong Qu

Automated Scheduling Optimisation & Planning Group
The University of Nottingham, Nottingham NG8 1BB UK

{eqk,jaa,rxq}@cs.nott.ac.uk

Abstract. This paper formulates a vehicle routing problem where con-
straints have been produced from a real world forestry commissioning
dataset. In the problem, vehicles are required to fully load wood from
forests and then deliver the wood to sawmills. The constraints include
time windows and loading bay constraints at forests and sawmills. The
loading bay constraints are examples of inter-route constraints that have
not been studied in the literature as much as intra-route constraints.
Inter-route constraints are constraints that cause dependencies between
vehicles such that more than one vehicle is required to perform a task.
Some locations have a lot of consignments at similar times, causing vehi-
cles to queue for loading bays. The aim is to produce an optimal routing
of consignments for vehicles such that the total time is minimised and
there is as little queuing at forests and sawmills as possible. In this pa-
per, the problem has been formulated into a vehicle routing problem with
time windows and extra inter-route constraints. An ant colony optimisa-
tion heuristic is applied to the datasets and yields feasible solutions that
appropriately use the loading bays. A number of methods of handling the
inter-route constraints are also tested. It is shown that incorporating the
delay times at loading bays into the ant’s visibility produces solutions
with the best objective values.

Keywords: Ant Colony Optimisation, Forestry Commissioning, Inter-
route Constraints.

1 Introduction

The problem discussed in this paper is a vehicle routing problem faced by a
forestry commissioning operator in Dumfries, Scotland. The data has been pro-
vided by Optrak, a vehicle routing and consultancy company. This is a vehicle
routing problem with time windows and loading bay capacity constraints.

Models of similar vehicle routing problems with time window constraints have
been presented by Fisher et al [6] and by Solomon [11] and are used in this pa-
per. The travel times in this problem are also non-euclidean, asymmetric and
the triangle rule does not apply. Such conditions cause problems for many tra-
ditional heuristics such as those discussed by Solomon et al [10]. The loading
bays capacity constraints are examples of inter-route constraints similar to the

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 95–106, 2014.
c© Springer International Publishing Switzerland 2014

96 E. Kent, J.A.D. Atkin, and R. Qu

inter-tour resource constraints in Hempsch et al [7], which are much less studied
in the literature than intra-route constraints [3]. This paper presents a number
of methods to mitigate delays at the loading bays.

Smaller forestry commissioning operations have been solved using methods
such as column generation (Epstein et al [4,5]) and mixed integer linear pro-
gramming models. For larger optimisation problems it is common to turn to
heuristics to produce good solutions.

An ant colony optimisation (ACO) heuristic, which is a population based
search that is both “robust and versatile” [2], is used to find the routing of
vehicles between consignments and minimise the inter-consignment duration and
violations of constraints. The heuristic can be easily adapted to accommodate
a variety of different constraints, specifically the loading bay constraints in this
case. It was suggested by Epstein et al [4] that solutions with periodic vehicle
arrivals at loading bays may be easier to use. A variety of methods have been
developed in this research for handling the loading bay constraints during the
construction of solutions, such as making consignments “invisible” if they cannot
be fulfilled without causing waiting time. These methods are compared and
analysed in this paper.

The rest of this paper is structured as follows: Section 2 describes the problem
and the loading bay constraints faced by this problem. Section 3 describes the
ant colony optimisation heuristic and a number of adaptations to handle the
loading bay constraints. Section 4 shows the experimental results using various
adaptations to the ant colony optimisation heuristic, and discusses the conse-
quent loading bay usage. Section 5 concludes the findings in this paper.

2 Problem Description

2.1 Routing the Forestry Commissioning Operation

The problem presented in this paper is a vehicle routing problem with time
windows and additional loading bay constraints. The objective is to minimise
the total time to transport logs from a set of forests to a set of sawmills. Forests
have been paired with sawmills a-priori into tuples called consignments. Each
consignment describes a task that needs to be fulfilled by exactly one vehicle;
wood must be picked up from the forest and then driven directly to the paired
sawmill. Since the start and end locations of consignments differ from each other,
the driving times are asymmetric, non-euclidean and the triangle inequality does
not hold, making some heuristics that exploit these characteristics potentially
unsuitable for this problem.

Multiple consignments may share the same forest or the same sawmill (or
both). Also, some consignments may need to be fulfilled simultaneously by dif-
ferent vehicles, meaning that multiple vehicles can arrive simultaneously at a
forest or sawmill with a limited number of loading bays. Inter-route constraints
are used to model the usage of these loading bays, as described below.

VRP in a Forestry Commissioning Operation Using ACO 97

2.2 Loading Bay Constraints

Let Πib be a variable that is 1 if bay b is used by order i and 0 otherwise. Let
Ai be the pickup location of consignment i and l represent the loading duration,
assumed to be a constant of one hour in this problem. Let O represent the set
of consignments and B represent the set of loading bays.

(Πib +Πjb ≤ 1) ∨ (Ai + l ≤ Aj) ∨ (Aj + l ≤ Ai)

∀b ∈ B, ∀i, j ∈ O, i �= j, (i and j share the same location)
(2.1)

Constraints (2.1) state that if two different consignments i and j use the same
loading bay at a forest/sawmill (pickup/delivery location), then either the finish
time of the first consignment must be before the start time of the second con-
signment or vice versa. Figure 1 shows how the pickup loading bay constraint
(2.1) is violated (the shaded area) if two consignment loading bay usage times
overlap. A vehicle that arrives at a busy pickup/delivery location (with no free
loading bays) is allowed to wait. However, it sometimes may be preferable for a
vehicle to service a different consignment first and service this consignment later,
when the location becomes free again.

3 Algorithm Description

This section describes the ACO heuristic and a number of adaptations and im-
plementations that handle inter-route constraints.

3.1 Ant Colony Optimisation

Ant colony optimisation (ACO) is a population based adaptive constructive
heuristic [2]. It was used in Mazzeo et al [8] to build routes for a capacitated
vehicle routing problem (CVRP) (without inter-tour constraints) and obtained
better results than Tabu Search in some cases. Riemann et al [9] also used an
ACO heuristic in a similar way for vehicle routing problems.

Fig. 1. The pickup constraint is violated when there is a loading bay usage overlap
(e.g when Ai + l > Aj ∧Ai < Aj + l. Ai: the arrival time of a vehicle at order i, l: the
loading time.)

98 E. Kent, J.A.D. Atkin, and R. Qu

ACO uses a set of constructive agents called “ants” to create paths on a graph
using knowledge (“pheromones”) from previous iterations. After each iteration,
for every solution, the pheromones on each arc of the graph are updated based
on the fitness of the solutions that used that arc. Solutions that have a better
fitness will add more pheromone to the arcs it uses than solutions that have a
worse fitness.

Pheromones evaporate over time at a rate of ρ to prevent the heuristic con-
verging too early. Shorter arcs with strong pheromone will attract more ants
per iteration than longer arcs with weak pheromone. When more ants traverse
an arc throughout the iterations, the pheromone on the arc becomes stronger.
Eventually the heuristic should identify a selection of arcs in good solutions.

In this paper, the ants in the ACO heuristic represent vehicles. Unlike the
standard ACO heuristic for the travelling salesman problem (TSP) [2], more
than one vehicle is needed to create a full solution for the VRP, so “ant groups”
are formed that share a list of fulfilled consignments, preventing consignments
from being scheduled more than once. A number of ant groups are performed in
the same iteration and leave pheromones on arcs for use by later iterations of ant
groups. The ACO algorithm can be found in Dorigo et al [2]. In this paper, the
ACO heuristic has been further modified to handle time window constraints and
loading bay constraints. Let O denote the set of consignments. Each ant in an ant
group starts at the depot and a probability of pj,∀j ∈ O is determined for each
unassigned consignment based on a number of things: the amount of pheromone
on the arc that connects the ant’s current position to the consignment, the length
of this arc, whether waiting time is required for a vehicle to be serviced at the
forest/sawmill for the consignment and, finally, whether the time windows can
be met for both the pickup and delivery parts of the consignment. Consignments
that cause constraint violations when added to the ant’s route can be avoided by
setting the probability pj to 0. Let Ψ represent the set of consignments that are
avoided by the ant. Given that the ant is at consignment i, pj can be calculated
using function (3.1), for all j /∈ Ψ .

pj =
ταijη

β
ij

∑
k∈O\Ψ ταikη

β
ik

(3.1)

Let τ represent the amount of pheromone on the arc from the ant’s current posi-
tion i to the first customer in the consignment j. Let η represent the “visibility”,
which is typically 1/tij where tij is the travel time from consignment i to con-
signment j. Let α be the amount of influence that the pheromone has on the
determination of the next consignment and let β be the amount of influence of
the visibility. Using inequality (3.2), where r is a random number r ∈ [0, 1), the
decision to determine the next consignment j in the route is weighted towards
“better” choices with higher values of pj .

j−1∑

i=0

pi ≤ r ≤
j∑

i=0

pi j ∈ O (3.2)

VRP in a Forestry Commissioning Operation Using ACO 99

3.2 Constraint Handling

ACO heuristics can be implemented differently to fit particular constraints. For
example, a “Heuristic function” is used in the place of the visibility in [1] to
solve a vehicle routing problem with time windows and time dependent travel
times (traffic conditions). This function includes the duration of the arc as well
as the waiting time required to service the customers. A similar approach can
be adopted to use loading bay waiting times to influence the ant’s choice of
consignment. During the construction of the route, an ant can check a loading
bay to see if there is time available for both the sawmill and the forest visits
for a consignment. The ant can also calculate the total duration of waiting time
that will be required at the forest and the sawmill and use this in the decision
making. The loading bay schedule is updated for that group each time an ant
visits a particular place, to ensure that there are no loading bay conflicts and to
calculate delays.

Three options for handling the loading bay constraints have been considered:

Ignoring and Repairing. In this method, the loading bay usage is ignored
during the ACO heuristic so infeasible solutions can be created. A repairing pro-
cedure (such as a local search heuristic) is used to re-schedule the routes after
each iteration to remove loading bay conflicts. This method does not require
analysis of arrival times at customers until the repairing procedure, which may
reduce the runtime. However, it may not be possible to re-arrange the consign-
ments effectively in the repair procedure, or at least without a large increase in
the solution’s objective value.

Avoiding Conflicts. For any consignment j, let ωj be the waiting time, which
is the shortest time before the current ant can be serviced at consignment j.
The simple avoidance method will set pj = 0 for all consignments j such that
ωj > 0. Figure 2 shows how a loading bay usage window can be tested against a

Fig. 2. A forest/sawmill j with 2 loading bays, and an example of when a visit is
accepted at the loading bay and and example of when a visit is rejected (when pj is
set to 0)

100 E. Kent, J.A.D. Atkin, and R. Qu

customer’s schedule. It shows an example of a customer with two loading bays.
The first example (Accepting) shows that the loading bay usage (labelled insert)
can be inserted into the second loading bay without any waiting time. The second
example shows that the loading bay usage window cannot be directly inserted
into the schedule without having to consider adding waiting time. This method
avoids queuing entirely. However, for a hard dataset, queuing may be required
to get to a feasible solution.

Scheduling & Penalising Waiting Times with W1 and W2. Let ωj denote
the waiting time for consignment j, as above. Rather than preventing the usage,
an alternative approach is to penalise the delays. This can be achieved by using
a weighted visibility ηij calculated by equation (3.3) where W1 and W2 are
constants, rather than setting ηij =

1
tij

in equation (3.1).

ηij =
1

W1tij +W2ωj
(3.3)

For large values of W2, waiting times can be avoided where possible since ants
will be diverted, due to small values of visibility (ηij). However, a strong penalty
could impair the solution in a similar way to setting the probability (pj) to 0.
Consignments that cannot be scheduled without waiting times would be left until
the end of the day because their corresponding probabilities have to compete
with consignments that do not have waiting times. This can lead to infeasible
solutions where these consignments miss their time windows.

3.3 Observing Loading Bay Usage

Although the main objective of the model is to reduce the total time (waiting
and driving) the consecutive arrivals of the loading bays can be measured to give
an insight into how well the loading bay capacity constraint handling techniques
work. Solutions that have a large number of consecutive arrivals and no space
between the loading operations may be harder to manage. Although this property
is not measured in the objective value, it is possible that such solutions that
have good loading bay usages could be better than those that have a lot of
consecutive arrivals due to having fewer delays at loading bays. The schedule
for each specific loading bay is also analysed separately. For a given loading bay
schedule, clusters of loading bay usages are identified by checking for entries that
are “close” together within the duration of the load/unload time (which in this
case is an hour), which is considered to be far enough apart that the deliveries
are independent. Clustered entries are then measured using the ratio between
the loading time and the time between the entries. Figure 3 presents an example
of clusters of loading bay schedule entries that are used in the calculation of the
ratio. A solution that has a low average ratio means that there may be many
consecutive entries in the loading bay schedules.

VRP in a Forestry Commissioning Operation Using ACO 101

Fig. 3. A loading bay with a number of vehicle visits. The “close” visits have been
clustered together, and the sum of the ratio of the time gap between the visits and the
loading time is used in the calculation of the average ratio.

4 Computational Results

The six datasets which were used in this research were generated from real
world data from south west Scotland. All datasets have a number of loca-
tions that are particularly busy (with many consignments in a short duration)
with only one or two loading bays available. These datasets can be found at
http://www.cs.nott.ac.uk/~rxq/benchmarks.htm. The purpose of these ex-
periments is to analyse the different constraint handling techniques. A number
of parameter settings for the penalty method are also tested, to analyse their
effect on the objective values and the number of delays.

One experiment shows results without the loading bay constraints (for the
purpose of comparing objective values). The other experiments use a waiting
time penalty multiplier W2 set to 0, 1 or 2. An experiment was also performed
with W1 = 2, to see whether better objective values can be achieved if the
waiting time is not prioritised as much as the driving time.

4.1 Results

Results are given in tables 1-6 for different test datasets. Each row in each table
gives the average results over ten runs of the ACO heuristic, with the same
parameter settings. In each column, the parameter settings and the average
values for the following properties are given: the average waiting time across all
final ant groups in each run; the average objective function value for the best
ant group in each run (in seconds); the average number of times there was a
delay across all final ant groups; the average of the loading bay ratios across
all final ant groups; the average (upper bound on the) optimality gap for the
best ant group for each run. The lower bounds of each dataset were calculated
in CPLEX, by assuming a single asymmetric TSP tour that goes through all
consignments without time window constraints. Since CPLEX failed to find the
optimal solution for any of the asymmetric TSP relaxations, the lower bound of
the a-TSP was used to determine (the lower bound for) the optimality gap.

A variety of parameter settings were tried. Firstly, the number of ant groupswas
set to a low value (10) to view the effects of the parameter settings more quickly. ρ
was set to 0.99with α = 0.5 and β = 5 as suggested by Dorigo et al [2] for travelling
salesman problems. However, these values failed to produce good results, which is
unsurprising since it is well known that different problems often require different

http://www.cs.nott.ac.uk/~rxq/benchmarks.htm

102 E. Kent, J.A.D. Atkin, and R. Qu

parameter settings. After testing small changes in other parameter settings, the
heuristic produced results with better objective values with ρ = 0.9, α = 0.7 and
β = 1.5 in preliminary tests, so these values were used for the experiments. Small
changes to these parameters did not havemuch effect upon the objective value, but
changing α to values above 1.0 or β to values below 1.0 produced worse solutions
as the heuristic converged too quickly. ρ is set to a lower value because only 1000
iterations were used in order to keep the runtime low.

Table 1. 300 Consignments, 40 Vehicles, 79 Points

Expt. W1 W2 Waiting Time Objective Delay Ratios Gap %

1 off N/A 5.464E6 N/A N/A 15.01
2 avoid N/A 5.512E6 N/A 0.46 15.74
3 1.0 0.0 5.463E5 5.493E6 9.51 0.4 15.45
4 1.0 1.0 5.412E5 5.48E6 9.49 0.4 15.26
5 1.0 2.0 5.451E5 5.485E6 9.5 0.4 15.33
6 2.0 1.0 5.38E5 5.485E6 9.59 0.4 15.32

Table 2. 350 Consignments, 40 Vehicles, 84 Points

Expt. W1 W2 Waiting Time Objective Delays Ratio Gap %

1 off N/A 6.297E6 N/A N/A 16.47
2 avoid N/A N/A N/A N/A N/A
3 1.0 0.0 6.656E5 6.431E6 26.6 0.36 18.2
4 1.0 1.0 6.697E5 6.43E6 26.74 0.36 18.19
5 1.0 2.0 6.691E5 6.431E6 26.66 0.36 18.21
6 2.0 1.0 6.649E5 6.435E6 26.72 0.36 18.25

Table 3. 400 Consignments, 40 Vehicles, 98 Points

Expt. W1 W2 Waiting Time Objective Delays Ratio Gap %

1 off N/A 7.016E6 N/A N/A 12.58
2 avoid N/A 7.09E6 N/A 0.46 13.49
3 1.0 0.0 5.752E5 7.072E6 19.6 0.38 13.27
4 1.0 1.0 5.8E5 7.079E6 19.8 0.38 13.36
5 1.0 2.0 5.717E5 7.082E6 19.7 0.38 13.39
6 2.0 1.0 5.771E5 7.076E6 19.72 0.38 13.32

VRP in a Forestry Commissioning Operation Using ACO 103

Table 4. 420 Consignments, 40 Vehicles, 93 Points

Expt. W1 W2 Waiting Time Objective Delays Ratio Gap %

1 off N/A 6.961E6 N/A N/A 13.33
2 avoid N/A 7.036E6 N/A 0.45 14.25
3 1.0 0.0 4.305E5 7.026E6 24.56 0.38 14.13
4 1.0 1.0 4.271E5 7.033E6 24.66 0.38 14.21
5 1.0 2.0 4.367E5 7.031E6 24.74 0.38 14.19
6 2.0 1.0 4.308E5 7.036E6 24.75 0.38 14.24

Table 5. 420 Consignments, 40 Vehicles, 95 Points

Expt. W1 W2 Waiting Time Objective Delays Ratio Gap %

1 off N/A 7.249E6 N/A N/A 12.25
2 avoid N/A 7.371E6 N/A 0.45 13.69
3 1.0 0.0 4.395E5 7.343E6 29.7 0.37 13.37
4 1.0 1.0 4.36E5 7.332E6 29.59 0.37 13.24
5 1.0 2.0 4.458E5 7.328E6 29.72 0.37 13.2
6 2.0 1.0 4.405E5 7.345E6 29.8 0.37 13.4

Table 6. 420 Consignments, 40 Vehicles, 95 Points

Expt. W1 W2 Waiting Time Objective Delays Ratio Gap %

1 off N/A 7.573E6 N/A N/A 12.34
2 avoid N/A N/A N/A N/A N/A
3 1.0 0.0 5.262E5 7.692E6 33.8 0.38 13.7
4 1.0 1.0 5.165E5 7.699E6 33.91 0.37 13.78
5 1.0 2.0 5.209E5 7.685E6 33.85 0.38 13.62
6 2.0 1.0 5.249E5 7.692E6 33.91 0.37 13.7

4.2 Discussion

The “avoid queuing” method failed to produce any feasible solutions for datasets
2 and 6. The time windows could not be met for these datasets because ants avoid
consignments that require queuing, so these consignments were assigned later in
the route and the time windows were missed. There may exist solutions where
vehicles travel times cause arrivals to be outside of each others loading bay usage
times. However, the ant colony algorithm could not find any of these solutions
for datasets 2 and 6.

For other datasets, this approach produced feasible solutions because the time
windows were lenient enough, or the loading bays were more plentiful. However,
the objective values were worse than the other loading bay constraint handling
methods. There are no delays for these solutions that are caused by loading
bays because vehicles do not drive to consignments that have no loading bays
available at the time of the vehicle’s arrival. This causes the vehicles to drive to
consignments that are further away and thus, routes are longer in these solutions.
However, the loading bay ratio was the best in these solutions, meaning that
the loading bays are less busy. Figure 4 shows an example of two loading bay

104 E. Kent, J.A.D. Atkin, and R. Qu

schedules; the first example shows vehicles that arrive at similar times, and so
the ratio of time between the loading bay usage and the total loading time is
small because the loading bay usage is consecutive. The second has vehicles
that arrive outside of each other’s loading bay usage times, thus there are gaps
between the entries and so the ratio is larger. The “ignoring queuing” method

Fig. 4. Possible Effects of W2 or of Avoiding Queuing. In (1), W2 = 0 and thus the
vehicles arrive in similar times and have to wait for the loading bay to be free. In (2),
W2 = 2 or the ants avoid queuing. The vehicles arrive slightly further apart, meaning
there is no queuing.

produces better objective values because the loading bay constraints are relaxed,
so the heuristic does not add waiting time to the entries at busy periods. The
ratio of the loading time and gaps between the loading times is not measurable
because entries are able to overlap. Of course, this makes the solutions infeasible
in practice.

Considering W1 and W2. The objective values and loading bay ratios of the
solutions obtained when different parameter settings of W1 and W2 are used are
similar. For this reason, a number of Mann-Whitney U tests were performed on
the results of the experiments on each dataset to test the difference in the results.
Specifically, for two given sets of data, a percentage is given for the number of
entries in the set that are larger than entries in the other. A percentage of
U = 100% means that all entries in the first set are larger than those in the
second set.

The objectives appear to vary with the different parameter settings. For ex-
ample, comparing W2 = 0 and W2 = 2 gives U = 30% in dataset 3 and U = 83%
in dataset 3. This means that objective values for W2 = 0 were generally smaller
than the objective values when W2 = 2 for dataset 3, but for dataset 5 they were
generally larger. However, over all tests over all datasets with settings W2 = 0
and W2 = 2, five of these datasets had larger objective values when W2 = 0
because U > 50%. Similarly, four out of six datasets had a result of U > 50% for
tests between W2 = 0 and W2 = 1. This implies that penalising waiting times

VRP in a Forestry Commissioning Operation Using ACO 105

can potentially aid the heuristic to find good solutions more so than setting
W2 = 0. Ignoring waiting time by setting W2 = 0 means that the heuristic is
able to accept solutions that have large waiting times, worsening the objective
values. For the comparisons between W1 = 1 and W1 = 2, four out of six datasets
showed that the objective values were larger for W1 = 2. These four datasets
were also the same four datasets where the objective values were larger when
W2 = 0 for the tests between W2 = 1 and W2 = 0. Thus, the behaviour of the
objective values is similar when setting W1 = 2 or W2 = 0.

A number of Mann-Whitney U tests showed that the loading bay ratios were
better when W2 = 0. This is because, when the waiting time at loading bays
is penalised, consignments that have no loading bays available are avoided until
the end of the day. Many vehicles then arrive at similar times at the end of the
day causing queuing at the loading bays. The Mann-Whitney U test results for
the loading bay ratios also coincided with the Mann-Whitney U tests for the
waiting times; the waiting time is worse when the loading bay ratios are small.

5 Conclusion

In this paper, a forestry commissioning routing problem was presented based on
real world problem datasets. The problem is a Vehicle Routing Problem with
time windows and inter-route constraints. These inter-route constraints consist of
loading bay capacity limitations at pickup and delivery points, meaning that only
a limited number of vehicles are able to be serviced simultaneously. The forestry
commissioning routing problem was explained and the loading bay constraints
were shown. These constraints contained information to ensure that loading bays
were used properly.

An Ant Colony Optimisation heuristic was used and a number of problem-
specific modifications to the heuristic were tested. These modifications were cre-
ated to handle the (inter-route) loading bay constraints to avoid loading bay
queues, ignore the inter-route constraints, or penalise waiting times. Results
showed that, for less constrained problems, queuing can be avoided, but only at
the cost of increased objective function values. Penalising the waiting time by
setting W2 = 1 or W2 = 2 in the visibility function was found to produce solu-
tions with better objective values and having no cost for waiting time. Setting
W2 = 0 could result in solutions with long waiting times. Similarly, using a large
penalty for travel times (W1 = 2), was also found to decrease solution value,
for the same datasets for which having no delay cost did so. The best objective
values were attained for the parameter settings W1 = 1 and W2 = 1 or W2 = 2.

The simple penalisation method for handling the loading bay constraints that
are present in this model can also be adopted in other heuristics. The waiting
times can be calculated and then included into the objective function of any
heuristic with a penalty value. This method may also work well in other problems
that have inter-route constraints and is worth further investigation.

106 E. Kent, J.A.D. Atkin, and R. Qu

References

1. Donati, A.V., Montemanni, R., Casagrande, N., Rizzoli, A.E., Gambardella, L.M.:
Time dependent vehicle routing problem with a multi ant colony system. European
Journal of Operational Research 185(3), 1174–1191 (2008)

2. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Management and Cybernet-
ics. Part B, Cybernetics: A publication of the IEEE Systems, Management and
Cybernetics Society 26(1), 29–41 (1996)

3. Drexl, M.: Synchronization in Vehicle Routing - A Survey of VRPs with Multiple
Synchronization Constraints. Transportation Science 46(3), 1–58 (2011)

4. Epstein, R., Morales, R., Seron, J., Verso, P.T.R.A.: A Truck Scheduling System
Improves Efficiency in the Forest Industries. Institute for Operations Research and
the Management Sciences 1996(26), 1–12 (1996)

5. Epstein, R., Sero, J., Weintraub, A.: Use of OR Systems in the Chilean Forest
Industries. Interfaces 29(1), 7–29 (1999)

6. Fisher, M.L., Jörnsten, K.O., Madsen, O.B.G.: Vehicle Routing with Time Win-
dows: Two Optimization Algorithms. Operations Research 45(3), 488–492 (1997)

7. Hempsch, C., Irnich, S.: Vehicle routing problems with inter-tour resource con-
straints. In: The Vehicle Routing Problem: Latest Advances and New Challenges,
pp. 421–444. Springer (2008)

8. Mazzeo, S., Loiseau, I.: An Ant Colony Algorithm for the Capacitated Vehicle
Routing Problem. Electronic Notes in Discrete Mathematics 18, 181–186 (2004)

9. Reimann, M.: D-Ants: Savings Based Ants Divide and Conquer the Vehicle Routing
Problem. Computers & Operations Research 31(4), 563–591 (2004)

10. Solomon, M.M.: Algorithms for the Vehicle Routing and Scheduling Problems with
Time Window Constraints. Operations Research 35(2), 254–265 (1987)

11. Solomon, M.M., Desrosiers, J.: Time window constrained routing and scheduling
problems. Transportation Science 22(1), 1–13 (1988)

Extrapolated States, Void States, and a Huge

Novel Class of Distillable Entangled States

Michel Boyer1 and Tal Mor2

1 DIRO, Université de Montréal, Canada
boyer@iro.umontreal.ca

2 Technion, Israel
talmo@cs.technion.ac.il

Abstract. A nice and interesting property of any pure tensor-product
state is that each such state has distillable entangled states at an arbi-
trarily small distance ε in its neighbourhood. We say that such nearby
states are ε-entangled, and we call the tensor product state in that case,
a “boundary separable state”, as there is entanglement at any distance
from this “boundary”. Here we find a huge class of separable states that
also share that property mentioned above – they all have ε-entangled
states at any small distance in their neighbourhood. Furthermore, the
entanglement they have is proven to be distillable.

Keywords: quantum computing and quantum information, entangle-
ment, distillability.

1 Introduction

The search for interesting entangled states always fascinated researchers in quan-
tum information processing. A few interesting examples are the Werner states [8],
bound entangled states [6,1], and the W-states [2].

Obviously, any pure tensor product state has entangled states near it, at any
distance. Also, a Werner-state λ/3[ρψ+ + ρϕ+ + ρϕ−] + (1− λ)[ρψ−] (built from
the four Bell states) with λ = 1/2 has entangled states near it, at any distance.

Is the property of being separable yet having entangled states nearby at any
distance common? Or is it rare? Furthermore, what can we learn about the type
of entanglement that those nearby entangled states have? For two qubits, it is
known [4] that the entanglement is always distillable. For qudits, cf proposition 6.

2 Notations and Terminology

2.1 Boundary Separable States and ε-Entangled States

We call boundary separable state a separable density operator ρb such that for
any ε > 0, there is an entangled state ρe for which δ(ρb, ρe) ≤ ε, where δ is the

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 107–118, 2014.
c© Springer International Publishing Switzerland 2014

108 M. Boyer and T. Mor

trace distance (δ(ρε, ρb) =
1
2Tr|ρε−ρb|), i.e. there are entangled states arbitrarily

close to ρb. Notice that for any density operator ρ1, and 0 ≤ ε ≤ 1, if

ρε = (1− ε)ρb + ερ1 (1)

then δ(ρε, ρb) =
ε
2Tr|ρ1 − ρb| = εδ(ρ1, ρb) and thus

δ(ρε, ρb) ≤ ε .

The trace distance between ρε given by (1) and the (boundary) separable state
ρb is at most ε but it may be much smaller than ε; it is ε iff δ(ρ1, ρb) = 1 i.e. if
ρb and ρ1 are orthogonal (have orthogonal support).

An entangled state ρe such that there is a boundary separable state ρb for
which δ(ρe, ρb) ≤ ε will be called ε-entangled ; it is at trace distance at most ε
from a boundary separable state. As an example, the Werner state with λ = 1/2
is a boundary separable state and mixing it with ρψ− gives epsilon-entangled
states.

There are separable states ρb for which there exists a state ρ1 such that all
the states ρε given by (1) are entangled for ε small enough, ε �= 0: there is a
continuous path starting from ρb and going straight in the direction of ρ1 whose
initial section contains only ε-entangled states. Note that for ε = 0 the resulting
state ρ0 is the boundary separable-state ρb itself; ρ0 = ρb. As an example, again,
the Werner state with λ = 1/2 is a boundary separable state, such that mixing
it with ρψ− as in (1) gives epsilon-entangled states, and there is continuous path
from this Werner state and all the way to the fully entangled state ρψ− .

2.2 “Extrapolated States” and “Void States”

Given any two states ρ0 and ρ1, the operators ρt = (1 − t)ρ0 + tρ1 are clearly
always hermitian with trace 1; when 0 ≤ t ≤ 1, they are (mixed) states, all on
a straight line segment between ρ0 and ρ1; those mixed states are obtained by
interpolation (convex combination) of two states. Let us now introduce three
additional definitions:

a) When t < 0, ρt is on the same straight line but is no longer between ρ0 and
ρ1; in general, if ρ0 �= ρ1 and all the eigenvalues of ρ0 are strictly positive,
then there are values of t < 0 such that ρt is a state; we call such states
extrapolated states.
Note that if ρ0 = |0〉〈0| and ρ1 = |1〉〈1|, then (1− t)ρ0 + tρ1 = (1− t)|0〉〈0|+
t|1〉〈1| is not a state (it is not positive semi definite) as soon as t < 0 (or
t > 1).
There may be some value m < 0 such that ρt is no longer positive semi-
definite, thus no longer a state (hence it is not a physical entity), for t < m,
while it is still semi-definite for t = m.
The condition that the eigenvalues of ρ0 be all positive is sufficient for defin-
ing extrapolated states, but not necessary. One can extrapolate carefully-
chosen states that have some 0 eigenvalues. Extrapolation somewhat behaves

Void States, Extrapolation, and Distillable Entangled States 109

like subtraction: if t < 0, then ρt = (1 + |t|)ρ0 − |t|ρ1. We will be interested
only with extrapolations with t < 0 though t > 1 could also provide extrap-
olations.

b) A void state is a quantum state that has exactly one zero eigenvalue. Namely,
when diagonalized, it has exactly one zero on the diagonal.

c) A k-void state (of dimension N > k) is a quantum state that has exactly k
zero eigenvalues1.

3 Two Qubits

Our first example of 2-party boundary separable-states (and the derived ε-
entangled states) is obtained by starting from a completely mixed state and
“fully subtracting” one of the eigenstates, to obtain a separable void state. Our
second example uses a different—yet very interesting state to start with—the
thermal state. As in the first example, a void-state is generated from the thermal
state (via extrapolation) by subtracting one of the eigenstates. Our third exam-
ple uses a 2-void state instead of a simple (1-)void state (and we also discuss
here the case of 3-void state which in this case is a tensor product state). Our
last two 2-qubit examples provide generalizations to less trivial cases. Since two
qubit states that are entangled are all distillable [4], the states obtained are thus
also distillable.

3.1 Example 1 – The Extrapolated Pseudo-Pure State of Two
Qubits

Mixing a completely mixed state ρ0 with an arbitrary state ρ1 to yield the
pseudo pure state (PPS) ρ = (1 − t)ρ0 + tρ1 is found to be extremely useful
in quantum information processing (e.g. in NMR quantum computing). To the
best of our knowledge, an extrapolated state of the form ρ = (1 + |t|)ρ0 − |t|ρ1
was never used. This “extrapolated pseudo pure state” (EPPS), whenever it is
a legal quantum state, shares with the conventional PPS the fact that applying
any unitary transformation acts only on ρ1.

An interesting special case of this EPPS is when |t| is exactly sufficiently large
to make one eigenvalue disappear (become zero). If ρ1 is a pure tensor product
state, then the resulting ρ is a void state. We assume here that the subtracted
tensor product state is written in the computational basis, e.g., it is |11〉〈11| and
m = t = −1/3.

Proposition 1. If the standard basis is the eigenbasis of a state ρ on H2 ⊗H2,
and if the eigenvalue of |11〉 is 0, and the other three eigenvalues are 1/3, then
there are states arbitrarily close to ρ that are entangled. [The same holds, with
obvious adjustments, for any other tensor-product eigenstate that has a zero
eigenvalue.]

1 Note that a separable N − 1-void state is a tensor product state.

110 M. Boyer and T. Mor

We avoid proving this proposition as we later (in example 4) prove a more
general result, containing the above (and also example 2) as special cases. The
above mentioned (very basic) example is mainly given for historical reasons, as
it was the first example we found.

For j fixed, let

ρ =
4

3

[
1

4

3∑

i=0

|i〉〈i|
]

− 1

3
|j〉〈j| = 1

3

3∑

i=0;i�=j

|i〉〈i|

This is obtained by choosing |j〉 (viewed as a two bit integer from 0 = 002 to
3 = 112) to be any product state j ≡ jAB = jA ⊗ jB, where the two parties are
A for Alice’s qubit and B for Bob’s. In fact, for all values of t between 0 and
−1/3, the hermitian operators

ρt = (1− t)

[
1

4

3∑

i=0

|i〉〈i|
]

+ t|j〉〈j|

are separable states; for t < −1/3, ρt is no longer a state since it is no longer
positive semi definite, the eigenvalue of |j〉 becoming negative. Finally, if |j〉 =
|11〉, proposition 1 tells us that there are entangled states arbitrarily close to

1

3

2∑

i=0

|i〉〈i|.

3.2 Example 2 – The Thermal State of Two Qubits

The thermal state on two qubits is the state

ρΘ =
(1 + η)2

4
|00〉〈00|+ 1− η2

4

[
|01〉〈01|+ |10〉〈10|

]
+

(1 − η)2

4
|11〉〈11|

The state |11〉 is a 0-eigenstate of ρp = (1+p)ρΘ−p|1〉〈1| if (1− η)2(p+1) = 4p
and a proposition similar to proposition 1 can be written for ρp. However, both
cases of Sections 3.1 and 3.2 will be dealt with, by a generalization done in
example 4.

The thermal state will get more attention later on, when we discuss N qubits.

3.3 Example 3 — 2-Void State

Example 3, using a 2-void state, is as follows:

Proposition 2. In H2 ⊗H2 there are entangled states arbitrarily close to the

state ρ =
1

2

[
|01〉〈01|+ |10〉〈10|

]
.

Void States, Extrapolation, and Distillable Entangled States 111

Proof. Here again, |11〉 is an eigenstate of ρ of 0 eigenvalue. Let ρ1 = |ψ+〉〈ψ+|
with |ψ+〉 = 1√

2

[
|01〉+ |10〉

]
and ρε = (1− ε)ρ+ ερ1. Then (T⊗ I)(ρε), where T

is the transpose operator, is

(T⊗ I)

⎡

⎢
⎢
⎣

0 0 0 0
0 1/2 ε/2 0
0 ε/2 1/2 0
0 0 0 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 0 ε/2
0 1/2 0 0
0 0 1/2 0
ε/2 0 0 0

⎤

⎥
⎥
⎦

with characteristic equation (λ − 1/2)2(λ2 − ε2/4) = 0 and eigenvalues 1/2, ε/2
and −ε/2; by the Peres criterion2 [7], ρε is thus entangled for all 1 > ε > 0 and,
of course, δ(ρ, ρε) ≤ ε.

In fact, there was no need to solve the characteristic equation to show that
(T ⊗ I)(ρε) is not positive semi definite. That can be seen directly from the
matrix of (T ⊗ I)(ρε) because there is a 0 on the main diagonal for which the
corresponding row and column are not zero: This is a consequence of the following
well known lemma with |ϕ〉 = |11〉 and |ψ〉 = |00〉; indeed 〈11| (T⊗I)(ρε) |11〉 = 0
but 〈11| (T⊗ I)(ρε) |00〉 �= 0.

Lemma 3. Let A be a hermitian operator on H ; if there are |ϕ〉 and |ψ〉 such
that 〈ϕ|A|ϕ〉 = 0 and 〈ϕ|A|ψ〉 �= 0 then A is not positive semi definite.

Proof. See appendix C.

3.4 Example 4 — A Generalization

Example 4 generalizes examples 1, 2 and 3:

Proposition 4. If the standard basis is the eigenbasis of a state ρ on H2 ⊗H2,
and if the eigenvalue of |11〉 is 0, then there are states arbitrarily close to ρ that
are entangled. The same holds for any other eigenstate.

Proof. Let indeed

ρ = λ00 |00〉〈00|+ λ01 |01〉〈01|+ λ10 |10〉〈10|

i.e. |11〉 has eigenvalue λ11 = 0. Let

ρ1 = ρψ+ =
1

2

[
|01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |10〉〈10|

]

and ρε = (1 − ε)ρ + ερ1. The matrix of ρ being with real entries, its partial
transpose with respect to the first system is ρ. The partial transpose of ρ1 is

(T⊗ I)(ρ1) =
1

2

[
|01〉〈01|+ |11〉〈00|+ |00〉〈11|+ |10〉〈10|

]
. (2)

2 Although Peres Criteria is well known, we provide it here, for completeness of the
manuscript, in appendix A.

112 M. Boyer and T. Mor

If follows that

〈11| (T⊗ I)(ρε) |11〉 = 0, 〈11| (T⊗ I)(ρε) |00〉 =
ε

2
;

by lemma 3, (T ⊗ I)(ρε) is not positive semi definite if ε > 0 and by the Peres
criterion it follows that the state ρε is then not separable; since δ(ρ, ρε) ≤ ε,
there are states arbitrarily close to ρ that are not separable. �	

Notice that all that is needed is that λ11 = 0. Nothing prevents λ10 = λ10 = 0.
That implies, after a suitable choice of basis for the two systems, that any product
state has arbitrarily close entangled states; being two qubit states, they are
also distillable [4], showing that there are arbitrarily close distillable states. By
symmetry, the result clearly holds if any of the other eigenvalues is known to be
0 instead of λ11.

3.5 A Generalization to Non-Trivial Bases

Example 5 generalizes the earlier examples to a non-trivial product basis, a basis
that has no classical analog.

Proposition 5. Let

ρ = λ00 |00〉〈00|+ λ01 |01〉〈01|+ λ1+ |1+〉〈1+|+ λ1- |1-〉〈1-|

If any of the eigenvalues is 0, then there are states arbitrarily close to ρ that are
entangled.

Proof. This time we first prove if λ00 = 0 i.e. if

ρ = λ01 |01〉〈01|+ λ1+ |1+〉〈1+|+ λ1- |1-〉〈1-|

Let again ρ1 = 1
2

[
|01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |10〉〈10|

]
and ρε = (1−ε)ρ+ερ1.

Then 〈00|(T ⊗ I)(ρε)|00〉 = 0 and 〈00|(T ⊗ I)(ρε)|11〉 = ε/2 so that ρε is not
positive semi-definite by Lemma 3 and ρε is thus entangled by the Peres criterion.
Had we written explicitly the matrix, we would have seen the following pattern

(T⊗ I)(ρε) =

⎛

⎜
⎜
⎝

00 01 10 11

00 0 ε/2
01
10
11 ε/2

⎞

⎟
⎟
⎠

with a 0 entry on the main diagonal for which the line is not identically 0 and
concluded that (T⊗ I)(ρε) is not positive semi definite if ε �= 0.

In this proof, it was assumed that λ00 = 0 but the same result holds if the
eigenvalue of any other basis element is 0; for instance, if the eigenvalue of |1-〉
is 0, then applying X ⊗ XH maps the basis onto itself and |1-〉 onto |00〉; for
|1+〉 we need to apply X ⊗H , and for |01〉 we apply I ⊗X .

Void States, Extrapolation, and Distillable Entangled States 113

4 Two Qudits (Quantum Digits)

We now consider bipartite systems, with each part of dimension at least two. We
shall restrict our attention to states with real matrices though a similar result
holds without such a restriction. It still holds that separable void states with a
separable 0 eigenvector are boundary separable states and have arbitrarily close
distillable (entangled) states.

Proposition 6. Let ρ be a state of a bipartite system HA ⊗ HB that has a
product state |ϕ1ψ1〉 as eigenstate with 0 eigenvalue; let us assume that ρ is
represented by a real matrix; let us also assume that the state |ϕ1〉 has real
coefficients. Then ρ is a boundary separable state; moreover there are entangled
states arbitrarily close to ρ that are distillable.

Proof. Let us simply denote |1〉A and |1〉B each of the state |ϕ1〉 and |ψ1〉 and
even drop the indices A and B when there is no ambiguity. Each of the two
Hilbert spaces HA and HB is assumed to be of dimension at least 2; there
is thus in each space a state orthogonal to their respective state |1〉 that we
may denote |0〉. In the general case, TA(|1〉〈0|) = |0〉〈1| (the transpose in the
A system), where the bar means the complex conjugation (the transpose is the
complex conjugate of the dagger). However, it was assumed that |1〉A = |1〉A.
Given a vector |1〉A with real coefficients we can always find |0〉A orthogonal to
it with real coefficients, so that TA(|0〉〈1|) = |1〉〈0| and TA(|1〉〈0|) = |0〉〈1|. We
choose such a state |0〉A of HA. Let |0〉B be any state of HB orthogonal to |1〉B.
Let now

ρ1 =
1

2

[
|01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |01〉〈01|

]
.

and let ρε = (1−ε)ρ+ερ1. Since the matrix of ρ is assumed to be real, its partial
transpose is ρ itself: (TA ⊗ IB)(ρ) = ρ. From the way ρ1 was chosen, its partial
transpose is the operator

(TA ⊗ IB)(ρ1) =
1

2

[
|01〉〈01|+ |00〉〈11|+ |11〉〈00|+ |10〉〈10|

]

and it is again clear that in this more general case

〈11| (TA ⊗ IB)(ρε) |11〉 = 0, 〈11| (TA ⊗ IB)(ρε) |00〉 =
ε

2

and thus ρε is entangled because its partial transpose is not positive semi definite.
We now prove that the entanglement of ρε is distillable. For two qubits this
is shown directly in [4], where it is proven that any two qubit entanglement
is distillable. In the general case, then PA = |0〉〈0| + |1〉〈1| (with indices A
understood) be the projection HA on Span(|0〉A, |1〉A), and PB = |0〉〈0|+ |1〉〈1|
(with indices B understood) be the projection of HB on Span(|0〉B, |1〉B). Then,
with n = 1, the (non normalized) state ρ′ε = (PA ⊗ PB)ρ

⊗n
ε (PA ⊗ PB) is clearly

such that its partial transpose is not positive semi definite, giving an entangled
normalized state ρ̂′ε of Span

(
|0〉A, |1〉A

)
⊗ Span(|0〉B, |1〉B)
 H2 ⊗ H2. By a

result of Horodecki [5] [cf appendix B], since ρ̂′ε is entangled, ρε is distillable. �	

114 M. Boyer and T. Mor

The conditions that the states have real coefficients can in fact be removed and
the conclusions of the proposition still hold. The proof is however more tricky
since it is then no longer true that the state that (TA ⊗ IB)(ρ) is equal to ρ and
the construction of ρ1 needs to take into account complex conjugations. In any
case, all our examples are with real matrices and the more general result will
not be needed.

5 States of Larger Dimensions

5.1 Extrapolated Pseudo-Pure States of N Qubits

Let us consider again states of the form

ρt = (1− t)
I

2N
+ t|11...1〉〈11...1|

where I is the identity matrix, but this time of size 2N × 2N , and t < 0. With
(1 − tb) + 2N tb = 0 i.e. tb = − 1

2N−1 , ρb = ρtb becomes a 1-void state, with
|11...1〉 as 0-eigenvector. The states ρt for tb ≤ t ≤ 0 are all clearly separable;
their matrix is diagonal in the standard basis, with non negative eigenvalues.
Only the eigenvalue of |11...1〉 decreases.

ρb Is a Boundary Separable State. We choose arbitrarily the first bit and
show that there are ε close entangled states for which the first qubit is entangled
with the others. Let |1〉 = |1N−1〉, i.e. N − 1 bits equal to one. The eigenstate of
ρb with 0 eigenvalue is |1N 〉 = |1〉|1〉. That state has real entries when expressed
in the standard basis. So does the state ρ. Proposition 6 thus applies.

Trace Distance Between ε-Entangled States and the CompletelyMixed
State. The trace distance between ρb and I/2N is

1

2
tr
∣
∣
∣(1− tb)

I

2N
+ tb|1N 〉〈1N | − I

2N

∣
∣
∣ =

|tb|
2

tr
∣
∣
∣
I

2N
− |1N 〉〈1N |

∣
∣
∣

The trace of
∣
∣I/2N − |1N 〉〈1N |

∣
∣ is (2N − 1)× 1/2N + 1− 1/2N = 2− 2/2N . The

trace distance is thus

δ(
I

2N
, ρb) =

1

2N − 1

(

1− 1

2N

)

=
1

2N

Conclusion: for any ε > 0 there are entangled states at distance at most 2−N + ε
of the completely mixed state. Indeed, by the triangle inequality,

δ(
I

2N
, ρε) ≤ δ(

I

2N
, ρb) + δ(ρb, ρε) ≤ 2−N + ε

Void States, Extrapolation, and Distillable Entangled States 115

5.2 The N Qubit Thermal State

The thermal state of one qubit is

ρΘ =

[1+η
2 0

0 1−η
2

]

=
1 + η

2
|0〉〈0|+ 1− η

2
|1〉〈1|

The thermal state of N independent qubits (with the same η) is

ρNΘ = ρ⊗N
Θ =

∑

i∈{0,1}N

(
1 + η

2

)N−|i| (
1− η

2

)|i|
|i〉〈i|. (3)

where |i| is the Hamming weight of the string i, i.e. the number of bits equal to 1
in i, each 1 giving a minus sign, and each 0 a plus sign. The thermal state is not
only separable but it has an eigenbasis consisting of product states The smallest
eigenvalue is given by the eigenvector |i〉 = |1N 〉, i.e. all qubits are 1 and it is

λ|1N 〉 =
(
1− η

2

)N

which is exponentially small with N .

Extrapolated States Close to the Thermal State. Let us consider the
extrapolated states

	t = (1− t)ρNΘ + t|1N〉〈1N |
for t < 0 (t = −p for some positive real number p). They are all separable and
when the eigenvalue of |1N〉〈1N | becomes 0, 	t is a void state. That happens

when (1− t)
[
(1− η)/2

]N
+ t = 0 i.e

tb = −
λ|1N 〉

1− λ|1N 〉
= −λ|1N 〉 − λ2

|1N 〉 − . . .

a very small value, equal to −λ|1N 〉 = −((1−η)/2)N if we neglect terms of higher

order. The trace distance between 	b and ρNΘ is

δ(b, ρ
N
Θ) =

1

2
tr
∣
∣
∣(1− tb)ρ

N
Θ + tb|1N〉〈1N | − ρNΘ

∣
∣
∣ =

|tb|
2

tr
∣
∣
∣ρNΘ − |1N 〉〈1N |

∣
∣
∣

The eigenvectors of ρNΘ − |1N 〉〈1N | are those of ρNΘ and the eigenvalues are left
unchanged except for the eigenvector |1N〉 whose eigenvalue of λ|1N 〉 is decreased
by 1 which implies that the sum of the absolute values of the eigenvalues is
increased by 1− λ|1N 〉 and

δ(ρNΘ , 	b) =
|tb|
2

(
2− λ|1N 〉

)
=

1

2

λ|1N 〉
1− λ|1N 〉

(
2− λ|1N 〉

)
=

1

2

(

λ|1N 〉 +
λ|1N 〉

1− λ|1N 〉

)

= λ|1N 〉 +
1

2
λ2
|1N 〉 +

1

2
λ3
|1N 〉 . . .

which is λ|1N 〉 if we neglect terms of higher order. That distance is exponentially
small with N .

116 M. Boyer and T. Mor

�b Is a Boundary Separable State. We now show that there are entangled
states arbitrarily close to 	b. We choose again arbitrarily the first bit and show
that there are ε close entangled states for which the first qubit is entangled with
the others. Let |1〉 = |1N−1〉, i.e. N − 1 bits equal to one, and let |v〉 be any
N − 1 bit string with at least one bit equal to zero. The eigenstate of 	b with
0 eigenvalue is |1N 〉 = |1〉|1〉. That state has real entries when expressed in the
standard basis. So does the state 	b. Proposition 6 thus applies again.

Entangled States Close to the Thermal State. We have just proven that
or any ε > 0, there are entangled states 	ε such that δ(b, 	ε) ≤ ε. By the triangle
inequality (since the trace distance is a distance in the sense of metric spaces),
the distance between those states 	ε and ρNΘ is such that

δ(ρNΘ , 	ε) ≤ δ(ρNΘ , 	b) + δ(b, 	ε) ≤ δ(ρNΘ , 	b) + ε

which implies that for any ε > 0 there are entangled states in a ball of trace-
distance radius

ε+

(
1− η

2

)N

+
1

2

(
1− η

2

)2N

+
1

2

(
1− η

2

)3N

. . .

around the thermal state ρNΘ of N qubits where

(
1− η

2

)N

= λ|1N 〉 is exponen-

tially small in N .

Appendix

A The Peres Separability Criterion

An n partite state represented by a density operator on H1 ⊗ · · · ⊗Hn is said
to be separable if it can be produced as follows: each party i prepares locally ρki
with with probability pk. More precisely a state ρ of H1⊗· · ·⊗Hn is separable if
there exist states ρki of Hi for 1 ≤ i ≤ n and probabilities pk (pk ≥ 0,

∑
k pk = 1)

such that
ρ =

∑

k

pk ρk1 ⊗ · · · ⊗ ρkn

For any state ρk1 , its transpose T(ρk1), which is the complex conjugate of its
dagger, is simply ρk1 , its complex conjugate. If party 1 systematically sends ρk1
instead of ρki , the resulting state

ρ′ =
∑

k

pk ρk1 ⊗ · · · ⊗ ρkn

is also a (separable) state and is, in particular, positive semi-definite. Such a
partial transposition can be applied to any number of subsystems. This leads to

Void States, Extrapolation, and Distillable Entangled States 117

the Peres criterion [7] that states that a state is entangled i.e. is not separable if
it admits a partial transpose that is not positive semi-definite.

Note that the opposite is not true: If a state admits a positive partial transpose
it may be seperable, but it does not have to be entangled. Furthermore, if a
state ρppt−ent is entangled and admits a positive partial transpose then it is not
distillable (namely, one canot distill a singlet state out of many copies of ρppt−ent

via local operations and classical communication). Such states are said to have
“bound entanglement”.

The partial transpose is easy to calculate when states are written in the braket
notation. On a bipartite system, the density matrix can always be written as ρ =∑

ij |i〉〈j| ⊗ ρij where ρij are non normalized and |i〉 is the standard basisr. The
partial transpose (T⊗I)(ρ) of ρ is

∑
ij |j〉〈i|⊗ρij . If other states than the standard

basis are used then if ρ =
∑

ij |ϕi〉〈ϕj | ⊗ ρij , (T ⊗ I)(ρ) =
∑

ij |ϕj〉〈ϕi| ⊗ ρij :

indeed T
(
|ϕi〉〈ϕj |

)
, which is the complex conjugate of the dagger of |ϕi〉〈ϕj |, is

|ϕj〉〈ϕi| where |ϕ〉 =
∑

i αi|i〉 if |ϕ〉 =
∑

i αi|i〉.
To decide on the positivity of the partial transpose, we shall need the fact that

the partial transpose of a hermitian operator is always hermitian. That follows
from elementary calculation: if A =

∑
ij |i〉〈j|⊗Aij , then A† =

∑
ij |j〉〈i|⊗A†

ij =∑
ij |i〉〈j| ⊗A†

ji and A is hermitian if and only if A†
ij = Aji. It then follows that

(T⊗ I)(A)† =
(∑

ij |j〉〈i| ⊗Aij

)†
=

∑
ij |i〉〈j| ⊗A†

ij = (T⊗ I)(A).

B Horodecki’s Distillability Criterion

Theorem 7. An arbitrary state ρ of HA ⊗HB is distillable if and only if there
exists n and projectors PA : H ⊗n

A → H2 and PB : H n
B → H2 (where H2

denotes a Hilbert space of dimension 2) such that if ρ̂′ is the state obtained by
normalizing the operator

ρ′ = (PA ⊗ PB)ρ
⊗n(PA ⊗ PB)

of the system H2 ⊗H2, then ρ̂′ is entangled.

Notice that it was proven in [3] that a state ρ̂′ of H2 ⊗H2 is entangled if and
only if it has a partial transpose that is not positive semi definite (the Peres
criterion is then a characterization of entanglement as well as of distillability for
bipartite states of two qubits).

C Proof of Lemma 3

Proof. Let us assume A is positive semidefinite: A =
∑

i λi|ϕi〉〈ϕi| with λi ≥ 0.
If 〈ϕ|A|ϕ〉 = 0, then

∑
i λi|〈ϕ|ϕi〉|2 = 0 and λi〈ϕ|ϕi〉 = 0 for all i and thus

〈ϕ|A|ψ〉 =
∑

i λi〈ϕ|ϕi〉〈ϕi|ψ〉 = 0 for all |ψ〉.

118 M. Boyer and T. Mor

References

1. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal,
B.M.: Unextendible Product Bases and Bound Entanglement. Phys. Rev. Lett. 82,
5385–5388 (1999), http://link.aps.org/doi/10.1103/PhysRevLett.82.5385

2. Dur, W., Vidal, G., Cirac, J.I.: Three Qubits Can Be Entangled in Two Inequivalent
Ways. Phys. Rev. A 62, 062314 (2000),
http://link.aps.org/doi/10.1103/PhysRevA.62.062314

3. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of Mixed States:
Necessary and Sucient Conditions. Physics Letters A 223(12), 1–8 (1996),
http://www.sciencedirect.com/science/article/pii/S0375960196007062

4. Horodecki, M., Horodecki, P., Horodecki, R.: Inseparable Two Spin- 1 2 Density
Matrices Can Be Distilled to a Singlet Form. Phys. Rev. Lett. 78, 574–577 (1997),
http://link.aps.org/doi/10.1103/PhysRevLett.78.574

5. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-State Entanglement and Distil-
lation: Is There a Entanglement in Nature? Phys. Rev. Lett. 80, 5239–5242 (1998),
http://link.aps.org/doi/10.1103/PhysRevLett.80.5239

6. Horodecki, P.: Separability Criterion and Inseparable Mixed States with
Positive Partial Transposition. Physics Letters A 232(5), 333–339 (1997),
http://www.sciencedirect.com/science/article/pii/S0375960197004167

7. Peres, A.: Separability Criterion for Density Matrices. Phys. Rev. Lett. 77(8),
1413–1415 (1996), http://link.aps.org/doi/10.1103/PhysRevLett.77.1413

8. Werner, R.F.: Quantum States with Einstein-Podolsky-Rosen Correlations Ad-
mitting a Hidden-Variable Model. Phys. Rev. A 40, 4277–4281 (1989),
http://link.aps.org/doi/10.1103/PhysRevA.40.4277

http://link.aps.org/doi/10.1103/PhysRevLett.82.5385
http://link.aps.org/doi/10.1103/PhysRevA.62.062314
http://www.sciencedirect.com/science/article/pii/S0375960196007062
http://link.aps.org/doi/10.1103/PhysRevLett.78.574
http://link.aps.org/doi/10.1103/PhysRevLett.80.5239
http://www.sciencedirect.com/science/article/pii/S0375960197004167
http://link.aps.org/doi/10.1103/PhysRevLett.77.1413
http://link.aps.org/doi/10.1103/PhysRevA.40.4277

Design of a Minimal System for Self-replication

of Rectangular Patterns of DNA Tiles

Vinay K. Gautam1, Eugen Czeizler2, Pauline C. Haddow1, and Martin Kuiper3

1 CRAB lab, Department of Computer and Information Science
The Norwegian University of Science and Technology

Trondheim, Norway
2 Department of Information and Computer Science

School of Science
Aalto University P.O. Box 15400, FI-00076 Aalto, Finland

3 Department of Biology
The Norwegian University of Science and Technology

Trondheim, Norway
{vkgautam,pauline}@idi.ntnu.no

eugen.czeizler@aalto.fi, martin.kuiper@ntnu.no

Abstract. Complex nanostructures assembled from DNA tiles cannot
be manufactured in large volumes without extensive wet-lab efforts. Self-
replication of tile structures would offer a low-cost and efficient nanoman-
ufacturing if it would be based on an automated dynamically controlled
assembly and disassembly of tiles — an attribute that is lacking in ex-
isting tile self-assembly framework. Here we propose self-replication of
rectangular two-dimensional patterns based on the abstract Tile Assem-
bly Model, by designing a system of tiles which replicate a target pattern
by replicating its “L”-shaped seed. Self-replication starts by the forma-
tion of a mold structure from a “L”-shaped seed of a target pattern. The
mold consists of switch-enabled tiles that can be dynamically triggered
to dissociate the seed and the mold templates. The dissociated mold and
seed structures each further catalyse assembly of new templates of seed
and mold structures, respectively, forming the basis of a cross-catalytic
exponential replication cycle.

Keywords: Nature-inspired materials, Minimal self-replication, DNA
tile, Self-assembly, Switch-enabled tiles.

1 Introduction and Motivation

DNA tile self-assembly [19] is an emerging paradigm for molecular computation
and nanomanufacturing. DNA tiles [21], the building blocks of tile self-assembly,
can be designed to interact with strength and specificity for the assembly of
logically and/or algorithmically directed periodic and aperiodic two-dimensional
(2-D) intricate patterns. Erik Winfree has introduced the abstract Tile Assembly
Model (aTAM) [14] for theoretical assessment of the tile assembly process. In
the aTAM framework, the assembly starts from a single seed tile and grows

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 119–133, 2014.
c© Springer International Publishing Switzerland 2014

120 V.K. Gautam et al.

in 2-D as more tiles adjoin one-by-one to the growing structure. Given any
desired rectangular tile pattern, where the tiles can be seen as coloured (or
functionalised) over a finite set of colours (or secondary structures), one can
always design a finite, though exhaustive, approximate-minimal set of tiles so as
to reliably and uniquely assemble the target pattern [2].

A minimal self-replicating chemical system [8] includes two elements: a tem-
plate molecule and a few substrate molecules capable of self-assembling an exact
replica of the template molecule. The assembled replica must be able to disso-
ciate from the template so as to result in two templates: the former template
and the newly created template. These templates need to then be able to catal-
yse a reiteration of the process by self-assembly of two new replicates on the
two templates. Such a process theoretically results in an exponential amplifi-
cation of the number of templates, and could be adopted to design a minimal
self-replication system of patterns in the tile self-assembly framework. However,
tile assembly was proposed as a purely passive process where tiles are inca-
pable of self-triggering any post-assembly rearrangements. This prohibits the
dynamic assembly and disassembly of tile structures, which is essential for the
self-replication in the tile assembly framework.

In previous work on self-replication, Schulman and Winfree [15,16] demon-
strated the self-replication in the tile self-assembly framework. The underlying
principle is that an externally forced random fragmentation of a self-assembling
lattice of tiles would create two new nucleation sites for regrowth of lattices.
Such a lattice growth followed by fragmentation would eventually result into an
amplified number of copies of the sequences. One approach for a post-assembly
dissociation of a tile is the use of an enzyme that can selectively break apart
fragments from an assembled tile structure. The self-replication of 2-D shapes
using such an enzyme- and staged self-assembly model was first demonstrated
by Abel et al. [1]. Although this is a shape-independent replication mechanism
applicable to both a precise and an infinite yield, usage of enzymes could pose
practical limitations.

Another paradigm of active tile self-assembly, without the use of enzymes,
is emerging by the joining of tile assembly methodology with associated con-
trol of dynamic strand displacement circuitry [13,22,4]. In this framework, tiles
can not only assemble in complex patterns through cooperative binding, but
tile substructures can also be triggered to disassemble and reassemble. Exponen-
tial self-replication of 2-D rectangular patterns of origami tiles [9] using such a
framework, namely the Signal Tile Assembly Model (STAM) [13,12], was demon-
strated by Keenan et al. [7]. The STAM is derived from the aTAM [14] where
tiles are modified to enable signalling and glue activation. A signal propagates
through the tile lattice by sending controlled signals to activate and deactivate
binding between two connected or remotely placed tiles. A signal-controlled dis-
sociation of tile assemblies provides the basis for separating template from the
replicated molecule. Although the technique provides an innovative approach
for enzyme-free self-replication of both 2-D and 3-D structures, design and

Design of a Minimal System for Self-replication of Rectangular Patterns 121

implementation of such tiles and their self-assembly would pose significant prac-
tical challenges [9,13].

We have drawn motivation from these pattern self-replicators to propose a de-
sign of a minimal system of self-replication for 2-D rectangular patterns within
the framework of the aTAM [14]. The design adheres to simplicity and imple-
mentation feasibility in four aspects: 1) double crossover (DX) tiles are used;
2) all glues are of strength 1; 3) tiles do not carry signals; 4) the replication
process is enzyme free. Pattern replication starts with formation of a mold struc-
ture around the “L”-shaped seed with the help of a set of SWitch-Enabled Tiles
(SWET) that can be activated to switch their binding state from bound (ON)
to free (OFF). Further, the assembled mold gets dissociated from the seed struc-
ture by a toehold-mediated switching control, which is cyclically triggered at
precise time intervals. The dissociated mold structure grows a new copy of the
“L”-shaped seed while the dissociated seed structure reiterates the process. The
remaining pattern is grown on these self-replicating seed structures by supply-
ing the system with an appropriate set of pattern forming tiles. The terms seed
(“L”-shaped seed) and pattern have been interchangeably used in the rest of the
article.

2 A Model of Switch-Enabled Tile Assembly

The abstract Tile Assembly Model (aTAM) [14], introduced byWinfree, provides
a framework where a 2-D target pattern can be self-assembled with the help of
a finite set of tiles. In the aTAM, a tile is represented as a unit square with
its four edges, North (N), East (E), South (S) and West (W), labelled from Σ,
where Σ is a finite set of ‘glues’, including the special empty glue “0”. Therefore,
a Tile t can be represented by the quadruple {σN (t), σE(t), σS(t), σW (t)}. A
zero value of the glue denotes the absence of a sticky-end i.e., zero binding
strength. We assume that our tile system is deterministic, and works under the
temperature−2 assumption. Moreover, all the glues/sticky-ends used herein are
assumed to be of strength 1.

Physical Basis of Switch-Enabled Tile Assembly. The concept of glue
activation/deactivation has earlier been demonstrated by [10,4], by introducing
innovative mechanisms of protection and deprotection of tile sticky-ends. Sig-
nal passing and glue activation/deactivation was explored in STAM [13]. In the
STAM framework, control signals pass through the tiles in order to activate or
deactivate the glues of remotely lying tiles. Such a signal traversal involves sev-
eral concomitant strand displacement steps. Further, in the STAM framework,
tiles carry the control signals, and the activation/deactivation of a remotely
lying tile would therefore depend on the success of a set of consecutive activa-
tion/deactivation events between tiles lying in the signal propagation path.

In order to design a tile assembly system with attributes of active assembly
where tiles can activate/deactivate their glues through a localised strand dis-
placement reaction, we introduce the concept of SWitch-Enabled Tile(SWET)

122 V.K. Gautam et al.

shown in Figure 1(a). A (DX-)tile can be converted to a SWET by extending its
sticky-end (S) with a short length switching toehold (SW) that serves as a local
switch between two tiles, where switching is controlled by a global signal cycli-
cally generated by an especially designed chemical oscillator system described in
Section 4. The switching toehold is used to mediate the binding-breaking (ON-
OFF) process in-between a SWET and a DX-tile, see Figure 1(b). In the ‘ON’
state, a SWET is able to bind a tile using as sticky end the domain (ij), where
sections i, j, ts are arbitrarily chosen to be 3, 7 and 3 nucleotides long, respec-
tively, and complementary sections are marked by (*). A periodically available
DNA strand (j∗, t∗s, sgc1) changes the binding state from ‘ON’ to ‘OFF’, where
the two tiles would eventually break apart.

ON OFF

j* ts*
sgc1

i j ts

i* j*
j*

i j
ts*

ts sgc1

(b)

Tile SWET

S S
SW

(a)
i* j*

Fig. 1. (a) A normal tile and a SWET tile, (b) Toehold-mediated ON-OFF switching
between a simple tile and a SWET tile

The toehold-mediated switching of the SWET, from ON to OFF and vice
versa is essential for accomplishing dynamic assembly-disassembly of the tile
structures. Such a control can be achieved by a cyclic and abrupt increase in the
supply of the inhibitor signal i.e., the DNA strand (j∗, t∗s, sgc1) in Figure 1(b).
This dynamic process can be implemented using an Oregonator autocatalytic
reaction-system [3], which in turn can be implemented using DNA molecules as
reported in [18]. Moreover, the methodology from [18], based itself on the strand
displacement technique, allows for various adjustments of the autocatalytic sys-
tem parameters, including the length and the amplitude of the cyclic signal, as
well as the steepness of its descent. In Section 4 we introduce an ODE-based
numeric simulation for the dynamics of one such paired SWET and inhibitor
signal showing that indeed the de-activation of the SWET is both cyclic and
abrupt as shown in Figure 4.

3 Proposed Self-replication System

In this section we define a minimal self-replicating system for rectangular pat-
terns of tiles as shown in Figure 2. Let P be the pattern to be replicated, and

Design of a Minimal System for Self-replication of Rectangular Patterns 123

structure S as its “L”-shaped South-West border, named in the following as
seed. Although the seed is usually assumed to be a single tile in various other
tile assembly frameworks, herein we consider an “L”-shaped structure as seed.
This is due to the fact that the glues placed on the interior border of such an
“L”-shaped structure uniquely identify the entire rectangular tile-pattern within,
assuming the system is deterministic.

MTS

MS

S + M
S + M

NSTS

Fig. 2. Minimal self-replicating system of rectangular patterns

The replication process starts by supplying a pre-assembled rectangular pat-
tern (P), which includes its seed structure (S), and a set of mold forming tiles
(MTS). We require that the pattern contains a unique, red-coloured tile on its
lower-left corner position, which is not used on any other position inside the pat-
tern. Observe that the MTS consists of a pre-assembled corner supertile (CST)
that is stable at temperature-2, and is designed to bind (using two strength-1
glues) on the special red-coloured tile. Thus, the CST initiates the mold forma-
tion, using as template the seed structure S. The mold assembly further proceeds
as more tiles cooperatively join one by one until the entire South-West boundary
of the seed structure is covered by a double layer of tiles, creating a seed-mold
complex (S+M). Tiles forming the inner layer of the mold are designed as SWET
type with switch enabled glue on the side that binds with the seed (pattern). The
assembled seed-mold complex undergoes a controlled dissociation, splitting into
the seed S and the mold M structures. Observe that the dissociated mold struc-
ture have two layers of tiles ensuring its stability under temperature-2 assembly
framework.

In the next replication cycle, the dissociated seed structure (S) repeats the
left hand side pathway, and thereby, creates two (S+M) complexes, whereas the
dissociated mold structure (M) drives the right hand side pathway supplied by a
pattern forming tile set (NSTS). Indeed, assuming we have at our disposal a tile
set capable of assembling the pattern (we call this set the Nano-Structure Tile
Set (NSTS)), we use the mold to first reassemble the seed S (using tiles from

124 V.K. Gautam et al.

NSTS) and then we reassemble the complete pattern P (using the same NSTS).
Thus, by supplying the system with sufficient many copies of the tiles within the
MTS and NSTS tile sets, and by continuing the process for n complete cycles,
the replicator could theoretically produce 2n−1 copies of both the mold and
the pattern structures (which is first the seed structure and then the complete
pattern). In a potential experimental implementation, one has to provide for an
expected time for both the mold formation process (from a template pattern)
and the seed formation process (using the mold as a seed). Then, one adjusts
the signal inhibitor cycle, which triggers the seed-mold dissociation such as to
be at least as long as the maximum of the two expected time values.

Although the above system deals with the replication of only one pattern (P),
the method can be easily generalised to other rectangular patterns. Indeed, in
Section 5 we are going to assume that we are provided with an arbitrary finite set
of patterns, any of them being a potential template for replication. Then, we are
going to design appropriate-minimal Mold- and Nano-Structure- Tile Sets, i.e.,
MTS and NSTS, respectively, such that by inserting any of the above patterns
within the system, or even a subset of them, it/they will act as a template for
replication. Thus, the result of the process will be an amplification of only the
inserted pattern(s).

4 Cyclic ON-OFF Activation of SWET

The centrepiece of the self-replicator is an especially designed autonomous chemi-
cal oscillator that cyclically releases an inhibitor signal (DNA strand (j∗, t∗s, sgc1)
in Figure 1(b)) so as to switch a SWET from ON to OFF and back. Oscillator-
controlled ON to OFF switching of the SWET(s) dissociates templates at the
end of each cycle. However, as long as the mold remains bound to the pat-
tern with only a few residual glues from SWETs that escape OFF switching
it would reassemble instantly with the pattern upon subsequent ON switching.
This would result in an overall lower efficient replication cycle, as it removes free
templates from the replication process. It is therefore essential that the switching
from ON to OFF occurs abruptly and completely, resulting in a comprehensive
splitting of all mold-pattern complexes. Herein, an Oregonator autocatalytic
reaction-system [3] is used to introduce the dynamics of a chemical oscillator.

Oregonator reactions, adopted from Soloveichik et al. [18], are shown by re-
actions (1-6) in Table 1. The mass-action based oscillatory dynamics can be
implemented by a set of DNA-strand displacement reactions using the mapping
proposed in Soloveichik et al. [18]. One of the key features of DNA-strand dis-
placement reactions is their modularity i.e., by attaching multiple moieties to
a single DNA strand, a hierarchical system of DNA strand-displacement reac-
tions can be realised. In order to drive the ON-OFF switching of SWET(s), the
inhibitor signal moiety (j∗, t∗s, sgc1, shown in Figure 1) would be attached with
the DNA strand representing the X2 species in the Oregonator reaction system.
The resulting reversible kinetics of the switching process is given by reaction (7)
in Table 1. A bimolecular toehold exchange [23] and a unimolecular thermody-
namic dissociation process represent the kinetics of the forward reaction (kfw)

Design of a Minimal System for Self-replication of Rectangular Patterns 125

and the backward reaction (kbw), respectively. We chose kfw to be 4000M−1s−1

for a toehold exchange involving both the invader and the incumbent toeholds
with lengths 3 nt, based on the toehold exchange model reported by Zhang and
Winfree [23]. The value of kbw = 0.1s−1 for a 3 nt long duplex is derived by inter-
polating dsDNA dissociation kinetics data reported by Morrison and Stols [11].

Table 1. Reactions (1)-(6) form the Oregonator model; the reversible reaction (7)
models the OFF/ON switching of the SWET(s)

Reaction Rate constant Species Initial Concentration

(1) X2 → X1 k1 = 0.0871s−1 X1 [X1]0 = 8.8× 10−10M
(2) X2 +X1 → φ k2 = 1.6× 109M−1s−1 X2 [X2]0 = 3.4× 10−7M
(3) X1 → 2X1 +X3 k3 = 520s−1 X3 [X3]0 = 10−9M
(4) 2X1 → φ k4 = 3000M−1s−1

(5) X3 → X2 k5 = 443s−1

(6) X3 → φ k6 = 2.676s−1

(7) X2 + SWon → SWoff kfw = 4000M−1s−1; SWon [SWon]0 = 9.8× 10−5M
kbw = 0.1s−1 SWoff [SWoff]0 = 1.8× 10−6M

A deterministic and ODE-based numerical simulation of the dynamics of the
X1, X2, and X3 species, shown in Figure 3, has been performed with the CO-
PASI software suite [6]. From the deterministic time course simulations per-
formed by the COPASI simulator, as depicted by the oscillations of the molecule
species shown in Figure 4, it is clear that the ON-state SWET and inhibitor
transitions from low to high and vice versa, are abrupt. A more realistic simu-
lation capturing the stochasticity of chemical kinetics would give even steeper
transitions. The time span in which a spike of the inhibitor signal has significant
levels should be larger than the time required to complete a strand displacement
process (ON to OFF switching of a SWET). As the oscillator module drives the
switching module of the SWET, and both modules are implemented by strand-
displacement reactions, a rational design of these reactions must satisfy different
timing constraints. In order to realise such a self-replicator system with maxi-
mum yield and reliability in a wet-lab implementation, two criteria must be met.
First, the dynamics of SWET switching from ON to OFF should be faster than
the inhibitor signal dynamics. Second, the SWET switching from ON to OFF
should be driven strongly and efficiently in the presence of the inhibitor signal,
ideally approaching completion.

In the simulation shown in Figure 4, ON to OFF switching is 95% complete
with arbitrarily chosen parameters of reversible kinetics (kfw = 4000M−1s−1

and kbw = 0.1s−1 for a three nucleotide long switching toehold) given by re-
action(7) in Table 1. In this case, a mold with up to 20 SWET tiles would
likely retain one tile that remains in the ON state (meaning a point of binding
between mold and pattern) during the switching cycle, constituting a possible
re-engagement point for mold and pattern. Although this would cause a reduc-
tion of the overall replication efficiency, the ON to OFF switching proportions

126 V.K. Gautam et al.

0 50 100 150 200
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

s

m
m
ol
/m

l

[X1]
[X2]
[X3]

a)

0 50 100 150 200
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

s

m
m
ol
/m

l

b)

Fig. 3. The dynamics of the Oregonator model; the system parameters are those from
Table 1 a) all three species X1, X2, and X3; the concentration of the X1 and X3 species
is overlapping in most of the cases, though at different amplitudes; b) the oscillatory
dynamics of the X2 species

Fig. 4. Cyclic, abrupt, and virtually complete deactivation of a SWET tile using an
inhibitor signal modulated by an Oregonator autocatalytic system. The blue line rep-
resents the dynamics of the inhibitor signal, while the purple one represents the con-
centration of the ON-state SWET. The total concentration (ON and OFF) of SWET
is 10−4M .

can further be very significantly improved by increasing the switching toehold
length [23] in the SWET. It therefore is reasonable to assume that a rationally
designed DNA-strand displacement reaction network would be able to meet both
the timing and efficiency demands of SWET-switching enabled template disso-
ciation.

5 Tile Set Design and Implementation

In this section we present the design of tile sets and implementation details
of the self-replication system for 2-D nanostructures. Let P be a finite set of
rectangular patterns, each of them being a potential subject for replication. We
can suppose without loss of generality that all the patterns have equal height,
but variable lengths; otherwise we just complete the pattern using a special tile
up to the desired height. We want to construct a finite collection of tiles, such

Design of a Minimal System for Self-replication of Rectangular Patterns 127

that by inserting within this system one (or several) of the pattern-types in P ,
these structures would act as a template and derive only the replication of the
chosen pattern (or patterns).

In the following we suggest designs of two sets of tiles — the Nano-Structure
Tile Set (NSTS) for the self-assembly of the pattern(s) to be replicated, see e.g.
Figure 5, and the Mold Tile Set (MTS) consisting of SWET tiles for the template
assembly of the mold along the boundary of the target nanostructure. All these
tiles contain only temperature 1 glues, while the temperature of the entire system
is 2. In other words, all tiles require a cooperative binding process from two input
sides, in order to stably attach to an existing assembly (or seed/mold).

Fig. 5. Pattern assemblies starting from different “L”-shaped mold structures: (a) A
three-bit binary counter pattern and a subset of the NSTS assembling it (b) the Sierpin-
ski pattern, and a (possibly different) subset of NSTS assembling it. The two assemblies
are initiated from (tile-content wise) different L-shaped mold structures.

5.1 Tile Set Design

NSTS: In order to derive an approximate-minimal tile set that can uniquely
self-assemble the nanostructure pattern(s) to be replicated, we are going to em-
ploy known PATS search algorithms [5]. Recall that the Pattern self-Assembly
Tile set Synthesis (PATS) problem asks to determine a set of coloured tiles such
that starting from an “L”-shaped bordering seed structure, the tiles would self-
assemble into a given rectangular coloured pattern. The task of finding such
minimum-size tile sets is known to be NP-hard [2], even for the case when the
coloured pattern is bounded to a predefined finite set of colours [17]. However,
there exists an efficient search algorithm for finding approximate-minimal solu-
tions for this problem [5].

Let P = {P1, P2, ..., Pm} be the finite set of patterns which might be subject
to the replication process. We require (by possibly inserting a new line or column)

128 V.K. Gautam et al.

that all of these patterns have on their lower left corner position a unique red-
coloured tile which does not appear on any other positions inside the patterns.
We now create a join pattern as shown in Figure 6, containing a bordered version
of the above m patterns. Namely, we introduce a new “grey” border-colour, and
create lower- and left-bordered versions for each of the patterns, after which we
horizontally concatenate all of them into a unique Master Pattern, pattP . By
applying the PATS search algorithm on pattP and then removing all the “grey”-
coloured tiles, we obtain the tiles of our NSTS tile set. Note that in the worst
case scenario, this set of tiles consists at most as many elements as the disjoint
union of all corresponding PATS solutions for each of the individual Pi patterns.

Fig. 6. (a) A set of three patterns subjected to the replication process; (b) The master
pattern created by the concatenation of the bordered patterns

MTS: Once the NSTS tile set is established, we can construct the Mold Tile
Set. This set can be split into the Bottom-Border (BottomB) tile set, forming
the lower part of the mold, the Left-Border (LeftB) set, forming the left side,
and the corner supertile (CST) serving as a seed for the mold assembly.

The CST seed can be seen as a merger of 8 tiles forming two layers of tiles
around the corner — an inner layer of the mold seed (ILMS) having tiles that as-
semble with the seed of the pattern and an outer layer of the mold seed (OLMS)
supporting the inner layer. The inner layer consists of ILMS-North (a SWET en-
abled with switching on its East glue), ILMS-middle, and ILMS-East (a SWET
enabled with switching on its North glue), forming a corner-type structure; rep-
resented in green inside all of the above Figures. The outer layer consists of five
tiles that are designed as to assemble with the tiles of the inner layer and form a
stable structure at temperature-2. In both cases, we require that the East glue
of the MS-North tile and the North glue of the MS-East tile agree with the cor-
responding West and South glues, respectively, of the special red-coloured tile
from the NSTS tile set. Also, we define two new glues, mb and mt, and require
that the North glue of the ILMS-North tile is mt, while the East glue of the
ILMS-East tile is mb.

Consider now the Bottom-NSTS (B-NSTS) and the Left-NSTS (L-NSTS) sets
consisting of those tiles in NSTS that appear in the bottom line, respectively
the left column, of any of the Pi patterns; alternatively, we can choose these sets
as the entire NSTS tile set. We define the Bottom-Glue (BG) and the Left-Glue
(LG) sets as containing all South glues of tiles within B-NSTS, and all West
glues of tiles within L-NSTS, respectively.

Design of a Minimal System for Self-replication of Rectangular Patterns 129

The BottomB tile set (within MTS) contains |BG| tiles that form inner layer
of the bottom border. For each glue a ∈ BG we create a SWET with glue a on
the North side that is enabled with switching control, and glue mbi on both its
East and West sides. Similarly, the LeftB tile set (within MTS) contains |LG|
tiles that form the inner layer on the left border. For each glue b ∈ LG we
create a corresponding SWET with glue b on the East side that is enabled with
switching control, and glue mti on its North and South sides. A fixed glue mbf
is designed for South sides of the tiles of the BottomB and LeftB tile sets, which
provides a binding for the tiles forming outer layer of the mold.

5.2 Implementation of the Self-replication Process

We describe here the implementation of the self-replicator for an example case
of a rectangular pattern of a 2-bit counter and its seed structure shown in Fig-
ure 7(a) and (b), respectively. It is assumed that a pre-assembled pattern or
seed is available at the start of the self-replication process. Tile sets required for
this replicator consist of NSTS and MTS as shown in Figure 7(c). The NSTS
consists of pattern forming tiles (marked by a, b, c and d) and the MTS consists
of MS seed, BottomB and LeftB tiles of type SWET. A cross-catalytic cycle of
self-replication involving intermediate states I to VII is illustrated in Figure 7(d).

The self-replication process starts with mold formation where the CST (seed of
mold structure) binds at the corner of the L-shaped seed of the pattern, as shown
in state I. The mold structure grows further as more tiles from LebtB and Bot-
tomB tile sets join as shown in states II, such that in stage III the nanostructure-
mold complex is completely assembled. Recall that the tiles within MTS are all
equipped with switching toeholds on their North edges. At the end of stage III,
these switches are turned off by sending the inhibitor signal (j∗, t∗s, sgc1), as de-
scribed in Figure 1. As a result the nanostructure-mold complex dissociates into
the L-shaped seed and the mold, as shown in states IV and V respectively. The
dissociated seed structure resumes the cycle involving the states (I, II, III, IV),
whereas the newly created mold serves as a seed for the assembly of a new copy
of the L-shaped seed that could also grow the rest of the pattern in parallel, see
states V, VI, VII, III. This process leads to the creation of a new copy of the
seed-mold complex, and therefore another cycle starts. The above two parallel
cycles, i.e., (I, II, III, IV) and (V, VI, VII, III), can produce a monotonically
increasing number of copies of both the nanostructure and the mold (i.e., 2n−1

such copies after n cycles), if supplied with an unlimited amount of tiles from
the sets NSTS and MTS. The replication system can also be tweaked to attain
a precise replication gain just by stopping the Oregonator oscillator activity.
This would result into halting both of the replication cycles. Thus, by stopping
the Oregonator cycle at an appropriate time-point, one could provide an exact
replication gain (of the form 2N , for some integer value N).

Taking the assumption that the tile assembly is deterministic, it can be further
assumed that both the mold (cycle involving states I, II, III, IV) and the seed
(cycle V, VI, VII, III) assemble in some finite time, say Tm and Ts respectively.
For a reliable self-replication, the ON-OFF cycles of the Oregonator oscillator

130 V.K. Gautam et al.

(I) (II)

(IV) (V)

(VI) (VII)

(III)

a a a

d

a

d

(b)

a a a

d b b

a d a

d c b

(a)

(d)

MS seed
(c)

a b c d

LeftB

BottomB

NSTS
M

TS

Fig. 7. Implementation of the replication process for a rectangular pattern of a 2-
bit counter: (a) 2-bit binary counter pattern of tiles, (b) L-shaped seed structure of
the pattern, (c) tile sets for replicator assembly and (d) cross-catalytic cycle of self-
replication process

model described in Section 4 have to be synchronised with the times Tm and
Ts, for example, the ON period should be larger than the largest of the Tm, Ts.
In order to test if the designed oscillator can be implemented for different time
periods of oscillations so as to synchronise it with the above timing requirement,
we performed a parameter scan only on the activation reaction, i.e., the backward
rate constant kbw of reaction (7) in Table 1. We observed that the time of each

Design of a Minimal System for Self-replication of Rectangular Patterns 131

Fig. 8. A parameter scan for the rate constant kbw in Table 1 for the values 0.085, 0.1,
and 0.115s−1, respectively

cycle, in between two spikes of the inhibitor signal X2, becomes highly tunable,
see e.g. Figure 8.

6 Conclusion and Future Work

To self-replicate 2-D rectangular patterns, we proposed a minimal self-replication
system of DNA tiles under the aTAM framework. The replication mechanism is
based on a cross-catalytic cycle, where an L-shaped seed of the desired pattern
is replicated and the remaining pattern grows in parallel. The self-replicator is
implemented with the help of DX-tiles and SWitching-enabled Tiles (SWET),
which form the basis of an active tile assembly process where structures are dy-
namically assembled and disassembled with the help of an autonomous chemical
oscillator that can be implemented using DNA strand displacement cascades.
We also proposed a strategy for designing an approximate-minimal tile set in
order to efficiently assemble a unique pattern (or a subset of patterns) out of a
finite collection of possible patterns that might be subject to replication.

This work is a step forward in the direction of nanostructure self-replication,
but assembly errors [20], which are common in the tile self-assembly process,
pose an important potential problem that should be addressed in further work.
A reliable self-replicator with error levels not exceeding a minimum threshold
may further open up new directions for investigation of fundamental principles
behind reproduction and selection-driven evolution.

References

1. Abel, Z., Benbernou, N., Damian, M., Demaine, E.D., Demaine, M.L., Flatland,
R.Y., Kominers, S.D., Schweller, R.T.: Shape replication through self-assembly and
RNase enzymes. In: SODA, pp. 1045–1064. SIAM (2010)

2. Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the
framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2013)

132 V.K. Gautam et al.

3. Field, R.J., Niyes, R.M.: Oscillations in chemical systems iv. limit cycle behavior
in a model of a real chemical reaction. Journal of Chemical Physics 60, 1877–1884
(1974)

4. Gautam, V.K., Haddow, P.C., Kuiper, M.: Reliable self-assembly by self-triggered
activation of enveloped DNA tiles. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B.,
Vega-Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 68–79. Springer,
Heidelberg (2013)

5. Göös, M., Lempiäinen, T., Czeizler, E., Orponen, P.: Search methods for tile sets
in patterned DNA self-assembly. J. Comput. Syst. Sci. 80(1), 297–319 (2014)

6. Hoops, S., et al.: COPASI - a complex pathway simulator. Bioinformatics 22(24),
3067–3074 (2006)

7. Keenan, A., Schweller, R., Zhong, X.: Exponential replication of patterns in the
signal tile assembly model. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS,
vol. 8141, pp. 118–132. Springer, Heidelberg (2013)

8. von Kiedrowski, G.: A self-replicating hexadeoxynucleotide. Angewandte Chemie
International Edition in English 25(10), 932–935 (1986)

9. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNA-
origami arrays. Angewandte Chemie International Edition 50(7082), 264–267
(2011)

10. Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles: Compact, robust pro-
grammable assembly and other applications. In: Garzon, M.H., Yan, H. (eds.) DNA
2007. LNCS, vol. 4848, pp. 15–25. Springer, Heidelberg (2008)

11. Morrison, L.E., Stols, L.M.: Sensitive fluorescence-based thermodynamic and
kinetic measurements of DNA hybridization in solution. Biochemistry 32(12),
3095–3104 (1993)

12. Padilla, J.E., Patitz, M.J., Pena, R., Schweller, R.T., Seeman, N.C., Sheline, R.,
Summers, S.M., Zhong, X.: Asynchronous signal passing for tile self-assembly: Fuel
efficient computation and efficient assembly of shapes. In: UCNC, pp. 174–185
(2013)

13. Padilla, J., Liu, W., Seeman, N.C.: Hierarchical self assembly of patterns from
the robinson tilings: DNA tile design in an enhanced tile assembly model. Natural
Computing 11(2), 323–338 (2012)

14. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of the Thirty-second Annual ACM Symposium on Theory
of Computing, STOC 2000, pp. 459–468. ACM (2000)

15. Schulman, R., Winfree, E.: Self-replication and evolution of DNA crystals. In:
Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.)
ECAL 2005. LNCS (LNAI), vol. 3630, pp. 734–743. Springer, Heidelberg (2005)

16. Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial in-
formation via crystal growth and scission. Proceedings of the National Academy
of Sciences 109(17), 6405–6410 (2012)

17. Seki, S.: Combinatorial optimization in pattern assembly. In: Mauri, G., Dennunzio,
A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 220–231.
Springer, Heidelberg (2013)

18. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemi-
cal kinetics. Proceedings of the National Academy of Sciences 107(12), 5393–5398
(2010)

19. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute
of Technology, Pasadena, USA (1998)

Design of a Minimal System for Self-replication of Rectangular Patterns 133

20. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorith-
mic self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp.
126–144. Springer, Heidelberg (2004)

21. Winfree, E., Liu, F., Wenzler, L., Seeman, N.C.: Design and self-assembly of two-
dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

22. Zhang, D.Y., Hariadi, R.F., Choi, H.M., Winfree, E.: Integrating DNA strand-
displacement circuitry with DNA tile self-assembly. Nature Communications 4
(2013)

23. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toe-
hold exchange. Journal of the American Chemical Society (2009)

Unconditionally Secure Quantum Bit

Commitment Protocol Based on Incomplete
Information

Naya Nagy2 and Marius Nagy1,2

College of Computer Engineering and Science
Prince Mohammad Bin Fahd University

Al Azeziya, Eastern Province, KSA
mnagy@pmu.edu.sa

School of Computing, Queen’s University
Kingston, Ontario, Canada

{nagy,marius}@cs.queensu.ca

Abstract. This paper is reversing the current belief on Quantum Bit
Commitment. Several papers have claimed and given a formal proof that
quantum bit commitment is impossible. Nevertheless, the hypotheses of
the formal mathematical model are too restrictive and do not exhaus-
tively reflect the original definition of the problem. They share the same
unnecessary restriction that the responsibility of hiding information and
committing to a bit value is attributed to the same communicating part-
ner. The protocol described here fully abides to the original description
of the bit commitment problem.The two communicating partners share
responsibilities, one partner is mostly responsible for hiding information
and the other one for committing to the bit value. The security of the
protocol derives from quantum properties such as the unclonability of un-
known states, the indistinguishability of non-orthogonal states and also
from randomly discarding and permuting qubits. The protocol is safe
from classical attacks and quantum attacks using entanglement. The
level of security can be made arbitrarily large by using more qubits. This
result opens the door for a whole set of cryptographic applications using
bit commitment as a building block: remote coin tossing, zero-knowledge
proofs and secure two-party computation.

Keywords: bit commitment, protocol, quantum, measurements, permu-
tation, entanglement.

1 Introduction

The field of quantum cryptography is best known for its results in two major
directions: key distribution and bit commitment. It is interesting to note that the
foundations of both directions were laid in the same seminal paper by Bennett
and Brassard in 1984 [1]. However, the destinies of the two results would prove
to be far from similar. A variety of quantum key distribution protocols were

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 134–143, 2014.
c© Springer International Publishing Switzerland 2014

Quantum Bit Commitment 135

proposed after the initial BB84, making key distribution the most successful
practical application of quantum mechanics to information processing.

On the other hand, things were not so straightforward with quantum bit com-
mitment. The classical problem of bit commitment can be described intuitively
as follows. Alice places a bit of her choice into a ”safe” or ”box” that she locks
up, before handing it over to Bob (the commit step). By guarding the ”box”,
Bob makes sure that Alice cannot change the bit she committed to. At a later
time, when Bob wants to find out the value Alice has locked in the box, he asks
Alice for the key (the decommit step). From the very beginning (BB84) it was
realized that entanglement would offer the ideal attack strategy on any quantum
bit commitment protocol, allowing someone to actually avoid commitment right
until the decommit step. Researchers in the field have tried ever since to some-
how circumvent this difficulty by resorting to a wide range of ideas, from some
clever use of measurements and classical communication to combining quantum
mechanics with other physical theories in order to achieve their goal.

Perhaps the best known exponent of the early efforts to achieve an uncondi-
tionally secure protocol for quantum bit commitment was the BCJL protocol,
developed in 1993 [4]. The future was looking bright for quantum cryptogra-
phy following this result, since many important applications could be realized
based on bit commitment (see [6] for example). The bad news came in 1996,
when Mayers [10] and, independently, Lo and Chau [8] discovered a flaw in the
BCJL protocol. Even worse, Mayers proved a more general result, stating that
an unconditionally secure quantum bit commitment protocol is impossible [11].

It may have been the importance of bit commitment for the general field of
cryptography or the intuition that the success of quantum key distribution could
be replicated for quantum bit commitment that still pushed people to look for
a solution. Several protocols were proposed that try to restrict the behavior of
the cheater in some way so as to obtain a secure bit commitment scheme [3,5,7].
It turned out that all these protocols were falling under the scope of Mayers’
impossibility result. This led to a general belief that the principles of quantum
mechanics alone cannot be used to create an unconditionally secure bit commit-
ment protocol. Therefore, recent advances on the topic either exploit realistic
physical assumptions like the dishonest party being limited by ”noisy storage”
for quantum information [12] or combine the power of Einstein’s relativity with
quantum theory [9]. Secure bit commitment using quantum theory alone is still
believed to be impossible.

The difficulty of the problem stems from the lack of trust between the parties.
Alice may want to defer commitment until the decommit phase and Bob may
want to find out Alice’s commitment during the commit phase. First, Alice
should be forced to commit during the commit phase, and Bob should be secure
of the necessity of Alice’s commitment. Bob should be able to test Alice’s fairness.
Secondly, Bob should not have enough information to allow him to find Alice’s
commitment during the commit phase. Alice should be able to ensure that she
is not revealing too much information to Bob.

136 N. Nagy and M. Nagy

These two major properties of any correct quantum bit commitment solution,
namely, binding Alice to her choice and hiding this choice from Bob, are consid-
ered mutually exclusive by Mayers. He states that in any protocol that is hiding,
the quantum states of the safe containing either 0 or 1 must be very similar (if
not identical) since otherwise Bob would be able to discern the difference and
gain knowledge about the committed bit prematurely. But the very fact that the
two states are virtually the same gives Alice the possibility to keep her options
open and postpone her commitment for later on.

In this paper, we show that quantum bit commitment is indeed possible if
Alice and Bob share the responsibilities of ensuring binding and concealing: Alice
is responsible to hide her choice, while Bob must make sure that Alice cannot
change her mind in the decommit step. Both properties can be achieved by
resorting to incomplete information. Thus, the quantum state of the ”safe” does
not have to be identical (or close to identical) for the two possible values of the
committed bit, but they have to appear as such to Bob, because he does not
have complete information about it. Similarly, incomplete information about
the ”structure” of the ”safe” prevents Alice from cheating in the decommit step.
Thus, the key to achieving bit commitment through quantum means lies in a
protocol in which none of the two parties has complete information on the ”safe”
throughout the entire commit phase.

The remainder of this paper is organized as follows. The next section describes
in detail the steps Alice and Bob should go through when they want to honestly
execute our quantum bit commitment protocol. Section 3 analyzes the security
of the protocol, proving that it is both binding and concealing. In particular,
we show how Bob can enforce the binding property without compromising the
concealing property. A discussion on why this protocol falls outside the scope
of Mayers impossibility result is offered in section 4. The main ideas that made
this result possible and its significance for the field of quantum cryptography are
summarized in the concluding section.

2 Protocol Description

We choose to describe our protocol in general terms, without restricting to a
particular physical embodiment for a qubit (such as photon polarization or par-
ticle spin). Consequently, in what follows we will refer to {|0〉, |1〉} as the normal
computational basis and to {H |0〉 = 1√

2
(|0〉+ |1〉), H |1〉 = 1√

2
(|0〉 − |1〉)} as the

Hadamard basis.

2.1 Commit Phase

The Commit Phase, depicted in Fig. 1, is comprised of the following steps:

1. Bob generates a sequence of N qubits in the state |0〉⊗|0〉⊗· · ·⊗|0〉⊗H |0〉⊗
H |0〉⊗· · ·⊗H |0〉, where N is some positive even integer. The first N/2 qubits
in the sequence are all in state |0〉, while the qubits in the second half are

Quantum Bit Commitment 137

Fig. 1. Commit Phase of the protocol

all in state H |0〉. Bob sends a random permutation of this sequence to Alice.
This step is repeated M times (for some positive integer M), such that in the
end Alice will have received from Bob M sequences, each sequence consisting
of N/2 qubits in state |0〉 and N/2 qubits in state H |0〉, in random order.
In an intuitive description of this step, Bob hands out to Alice a number of
M ”boxes”, each different from the others (different permutation), yet all
sharing the same characteristics (an equal number of qubits in each of the
two possible states).

2. Alice verifies that the ”boxes” she received correspond to the agreed speci-
fications. In detail, one of the M sequences (”boxes”) received is saved for
the actual commit step, while all remaining sequences are verified in order
to determine if Bob executed the protocol honestly. For each of the M − 1
sequences selected for verification, Alice asks Bob to disclose, qubit by qubit,
whether it was prepared in state |0〉 or in state H |0〉. Then, she can proceed
to measure each qubit in the proper basis: the normal computational basis
for a |0〉 qubit and the Hadamard basis for a H |0〉 qubit. In the first place, in
each group (or sequence), N/2 qubits must have been prepared in state |0〉
and N/2 in state H |0〉. Secondly, all measurements must yield a value of 0,
otherwise Bob has not been honest in telling the states in which the qubits
were prepared. If both conditions are satisfied, Alice is confident that Bob
has aboded by the protocol rules and as such, she concludes that the last (M -
th box) also contains N/2 qubits in state |0〉 and N/2 qubits in state H |0〉 in

138 N. Nagy and M. Nagy

a random order. Alice then proceeds to the next step. Otherwise, if Alice’s
test fails, the protocol is abandoned as Bob has been proven dishonest.

3. The only sequence left after the verification step is the box used by Alice
to hide the committed bit inside. If Alice decides to commit to 0, she leaves
the qubits in the sequence untouched, while in the case of a commitment
to 1, she applies a Hadamard gate to all N qubits composing that last se-
quence. Finally, she randomly permutes the qubits before sending them to
Bob. Applying the Hadamard gate or not corresponds to placing the commit-
ted bit inside the box, while the random permutation of the qubits amounts
to ”locking the box”.

4. Bob measures each received qubit either in the normal computational basis
or in the Hadamard basis. The choice is random for each measured qubit.
Bob records the outcome of each measurement and awaits the Decommit
phase.

2.2 Decommit Phase

When Alice wants to unveil the bit she committed to, she has to disclose to Bob,
for each of the N qubits sent, its index in the original sequence. In order to be
satisfied that Alice executed the protocol honestly, Bob proceeds to the following
verification.

Based on the index information provided by Alice, Bob can determine for
each qubit if it was measured in the ”correct” basis or not: for a qubit that was
originally in state |0〉 the correct basis is the normal computational basis, while
for a qubit whose state was originally H |0〉 the correct basis is the Hadamard
basis. Now, if Alice committed to 0, all the qubits measured in the ”correct”
basis must yield a value of 0. The other measurements will yield a 0 or a 1 with
equal probability. On the other hand, if Alice committed to 1, then the qubits
measured ”incorrectly” must all yield a value of 0 and the others have an equal
chance to be observed as 0 or as 1. Any other scenario for the measurement
outcomes (in the ideal case of an error-free environment) points to a dishonest
participant to the protocol.

3 Correctness

The protocol described above is both binding and concealing. Let us start by
showing the concealing property first.

3.1 Concealing Property

Since Bob is the one initiating the protocol, it appears that he is in the position
to set things to his advantage. In theory, he could distinguish between a commit-
ment to 0 and a commitment to 1, if the sequence selected as ”the box” is not
balanced between |0〉 and H |0〉 states. The closer we are to a constant sequence
(all qubits |0〉 or all qubits H |0〉), the higher the chances for Bob to guess the

Quantum Bit Commitment 139

committed bit correctly. Consider, for example, a sequence (box) made up of N
qubits, all in state |0〉. If Alice commits to 0, this exact sequence is sent to Bob,
otherwise a sequence made up of N qubits in state H |0〉 will be sent. Bob, when
receiving the N qubits, measures all of them in the normal computational basis.
If all measurements yield a 0, Bob is highly confident that the committed bit is
0 because, for a commitment to 1, he expects a 50− 50 probability distribution
between 0 and 1 in the outcomes obtained.

In summary, Bob’s chances to correctly guess the committed bit are directly
proportional to how unbalanced the sequence selected to act as the box is. Thus,
the probability of a correct guess varies between 0.5 (completely random guess)
and a value which can be brought as close to 1 as desired by increasing the
number of qubits in the sequence. This is also reflected in how close the density
matrix corresponding to a commitment to 0 is to the density matrix for the case
where Alice commits to 1. For a balanced sequence, the two density matrices are
identical:

ρ0 =
1

2
|0〉〈0|+ 1

2
|1〉〈1| = 1

2
(
|0〉+ |1〉√

2
)(
〈0|+ 〈1|√

2
) +

1

2
(
|0〉 − |1〉√

2
)(
〈0| − 〈1|√

2
) = ρ1.

(1)
On the other hand, the density matrices are at a maximum distance from one
another when the sequence is constant.

Now, Bob faces the following dilemma in his cheating strategy: the more
counterfeited boxes he prepares (sequences that are not balanced between |0〉
and H |0〉), the more chances one of them will be used by Alice, but at the
same time the more chances to be detected by Alice during the verification step.
Formally, we can distinguish between the following two cases:

1. Bob chooses to play safely and from the M sequences prepared, only a con-
stant number, say c, do not correspond to the agreed specifications. Here,
constant means that, always, only c sequences are ”counterfeited”, regard-
less of what the value for M is. In this situation, the probability ε1 that Alice
will choose one of the counterfeited boxes to place the committed bit inside
can be made infinitesimally small by increasing M (the number of boxes she
chooses from):

ε1 =
c

M
(2)

Thus, for a maximum allowed probability of picking a counterfeited box ε1,
the total number of boxes must satisfy the inequality:

M ≥
⌈
c

ε1

⌉

(3)

For example, suppose that Bob always prepares c = 10 counterfeited boxes
and we would like to limit the probability of picking a counterfeited box to
ε1 = 0.01. Then the total number of boxes to choose from should be at least
1000.

140 N. Nagy and M. Nagy

2. Bob plays aggressively and from the M boxes prepared, a certain fraction
f are counterfeited. In this case, even if one of the counterfeited boxes is
set aside by Alice for the commit step, the other f ·M − 1 will undergo the
verification step. By definition, a counterfeited box is a sequence in which
at least one qubit does not correspond to the agreed specifications. What is
the actual state of such a qubit is irrelevant, as long as there is a certain
non-zero probability p that Alice will catch Bob when verifying that qubit.
Again, by increasing the value of M , the probability of catching Bob can be
brought as close to 1 as desired, or equivalently, the probability ε2 of Bob
escaping detection can be made arbitrarily small:

ε2 = (1 − p)fM−1 (4)

Therefore, if we want to keep the probability of Bob escaping detection to
at most ε2, then a lower bound on the total number of boxes used in the
protocol is given by

M ≥
⌈
1 + log1−p ε2

f

⌉

(5)

Note that the above formula assumes that there is just one ”incorrect” qubit
in each counterfeited box. If there are more, like, for example, the whole
sequence is constant, then the lower bound is obviously smaller. Also, the
number of counterfeited boxes does not have to vary linearly with M , the
analysis remains valid for any increasing function of M . Going through a
concrete example again, let us assume that 10% of the boxes prepared by
Bob are counterfeited and there is a 25% chance of detecting a ”forged”
qubit when verified. Under these circumstances, in order to catch Bob with
a probability of 99%, the total number of boxes to choose from should be at
least 171.

Consequently, there is no winning strategy for Bob: with an arbitrarily high
probability (controlled by the value of parameter M), either he will be detected
as dishonest or none of his counterfeited boxes will be selected by Alice. This
result can be formally expressed as the following theorem:

Theorem 1. lim
M→∞

ε1 · ε2 = 0

Proof. The proof follows from the two cases discussed above. The more counter-
feited boxes Bob prepares, the higher the chances he will be caught. In other
words, in order to keep the probability of escaping detection above a certain
threshold τ

lim
M→∞

ε2 ≥ τ, (6)

Bob cannot create more than a certain number η of counterfeited boxes (where η
is a function of τ). But in that case, the chance to select one of the counterfeited
boxes to place the bit inside drops to zero as M grows unbounded:

Quantum Bit Commitment 141

lim
M→∞

ε1 = lim
M→∞

η

M
= 0. (7)

��

Note that in the above analysis, Bob is free to use any states he wants, with no
restrictions. Even entangled states will do him no good, since all measurements
performed by Alice must consistently yield a 0, with no exception. There is no
entangled state that will always be observed as 0, no matter how it is measured.

3.2 Binding Property

The only chance for Alice to postpone commitment until the decommit phase
is to know the ”structure” of the ”box” she has used, that is, to know exactly
what the quantum state of each qubit is in the sequence received from Bob.
That way, when Bob asks for the index of each qubit received and measured,
she can always pick a convenient index in the sequence, corresponding to a
qubit that matches her late commitment. Unfortunately for Alice, there is no
reliable way of distinguishing between |0〉 and H |0〉, as they are non-orthogonal
quantum states. Without this knowledge, if she tries to be dishonest, there is
always a probability of being revealed as a cheater for each qubit verified by
Bob. Therefore, by increasing the value of N (number of qubits composing each
sequence), the probability of catching a dishonest Alice can be made arbitrarily
high:

lim
N→∞

(1− pN) = 1, (8)

where p = 0.75 is the probability per qubit that Alice passes Bob’s verification.
Again, note that entanglement is of no use to Alice, since no entangled state

will consistently collapse (when measured) to the outcome expected by Bob.

4 Discussion

Since we have just shown that bit commitment through quantum means alone
is still possible, despite a contrary belief that has lasted for almost 20 years, the
obvious question is : How can this result be reconciled with Mayers’ impossibil-
ity result? The answer can be found in the framework in which that result was
obtained, a framework that is not general enough to encompass all possible pro-
tocols. To be more explicit, Mayers shows that in any protocol that is concealing,
Alice can cheat in a modified procedure commit’ by keeping everything at the
quantum level and ”never sending a register away to the environment except
when this register contains a classical bit that she must transmit to Bob via the
environment, using the phone for instance” [11]. The same is assumed for Bob
in a modified procedure commit”. Under these assumptions, the fact that the
expected value of the fidelity between the reduced density matrices on Bob’s side

142 N. Nagy and M. Nagy

is arbitrarily close to 1 implies that Alice can apply a unitary transformation to
steer the quantum state of her subsystem towards 0 or 1 in the decommit phase.

Our protocol does not fit this framework, because a key ingredient in it is the
fact that both Alice and Bob have to keep classical information (in the commit
phase) that is not to be sent to the other party. This classical information is the
missing information that prevents the other party from cheating. At the end of
the Commit Phase, all information in the system is actually classical, and Alice
cannot transform the state of the system from 0 to 1 without the information in
Bob’s custody (that is, the original quantum states of the qubits composing the
box chosen). Similarly, Bob cannot distinguish between a box containing a 0 and
a box containing a 1 without knowing the permutation applied by Alice. Because
no reduction exists that transforms our protocol into an equivalent one in which
no classical information is required (except for what needs to be communicated
classically), this protocol falls outside the scope of Mayers impossibility result.

5 Conclusion

We showed in this paper how a secure quantum bit commitment protocol can be
realized. The key idea that made this result possible was that at any time during
the protocol before the decommit phase, none of the two parties has complete
information on the box used to hide the committed bit. Although the box is
quantum in nature, the ”description” of the box is distributed to both Alice and
Bob, as classical information. Without knowledge of the information stored by
the other party, none of them is capable of mounting an effective cheating strat-
egy. The quantum nature of the box is essential because quantum mechanical
properties, like unclonability and indistinguishability of non-orthogonal quantum
states, are essential to ensuring the security of the protocol. Our scheme comes
with two security parameters, each controlling one of the two critical properties
of the protocol. The number M of boxes (or sequences) created initially by Bob
controls the concealing property: the higher the value of M , the lower the prob-
ability of Bob being able to cheat and identify the committed bit prematurely.
The number of qubits in a sequence (or the size of the box), on the other hand,
controls the binding property: the larger the value for N , the lower the probabil-
ity that Alice will guess correctly the ”structure” of the box and thus, be able
to pick the value of the bit in the decommit phase. A secure bit commitment
protocol realizable through quantum means alone has huge implications for the
field of quantum cryptography. Remote coin tossing, which might be used for
long-distance gambling, is immediately realizable based on bit commitment (see
[2] for example). Quantum oblivious mutual identification [6], another impor-
tant result built on secure quantum bit commitment can be exploited to avoid
frauds from typing PIN codes to dishonest teller machines. Other applications
may range from ensuring the security of remote voting to global financial trading.
The future looks bright again for the field of quantum cryptography.

Quantum Bit Commitment 143

References

1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers, Sys-
tems and Signal Processing, Bangalore, India, December, pp. 175–179. IEEE, New
York (1984)

2. Brassard, G., Crépeau, C.: Quantum bit commitment and coin tossing protocols.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 49–61.
Springer, Heidelberg (1991)

3. Brassard, G., Crépeau, C.: 25 years of quantum cryptography. SIGACT News 27(3),
13–24 (1996)

4. Brassard, G., Crépeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment
scheme provably unbreakable by both parties. In: Proceedings of the 34th Annual
IEEE Symposium on Foundations of Computer Science, pp. 362–371. IEEE Press
(1993)

5. Crépeau, C.: What is going on with quantum bit commitment? In: Proceedings of
Pragocrypt 1996: 1st International Conference on the Theory and Applications of
Cryptology, Prague (October 1996)

6. Crépeau, C., Salvail, L.: Quantum oblivious mutual identification. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 133–146. Springer,
Heidelberg (1995)

7. Kent, A.: Permanently secure quantum bit commitment protocol from a tempo-
rary computation bound (December 1997), los Alamos preprint archive, quant-
ph/9712002

8. Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Physical Re-
view Letters 78, 3410–3413 (1997)

9. Lunghi, T., Kaniewski, J., Bussières, F., Houlmann, R., Tomamichel, M., Kent, A.,
Gisin, N., Wehner, S., Zbinden, H.: Experimental bit commitment based on quan-
tum communication and special relativity. Physical Review Letters 111, 180504
(2013)

10. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. In:
Fourth Workshop on Physics and Computation – PhysComp 1996, Boston (Novem-
ber 1996)

11. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys-
ical Review Letters 78, 3414–3417 (1997)

12. Ng, N.H.Y., Joshi, S.K., Ming, C.C., Kurtsiefer, C., Wehner, S.: Experimental
implementation of bit commitment in the noisy-storage model. Nature Communi-
cations 3(1326) (December 27, 2012)

Quantum and Reversible Verification of Proofs

Using Constant Memory Space

Marcos Villagra� and Tomoyuki Yamakami

Department of Information Science, University of Fukui
3-9-1 Bunkyo, Fukui, 910-8507 Japan

Abstract. Non-interactive verification of proofs or certificates by de-
terministic verifiers in polynomial time with mighty provers is used to
characterize languages in NP. We initiate the study of the computa-
tional complexity of similar non-interactive proof-verification procedures
by quantum and reversible verifiers who are permitted to use only a
constant amount of memory storage. By modeling those weak verifiers
as quantum and reversible finite automata, we investigate fundamental
properties of such non-interactive proof systems and demonstrate that
languages admitting proof systems in which verifiers must scan the input
in real time are exactly regular languages. On the contrary, when we al-
low verifiers to move their tape heads in all directions, the corresponding
proof systems are empowered to recognize non-stochastic, non-context-
free, and NP-complete languages.

Keywords: quantum computing, Merlin-Arthur proof system, quantum
finite automaton, reversible finite automaton, NP, stochastic language.

1 Merlin-Arthur Proof Systems with Constant Space

Computational verification of a “proof” or “certificate” has been studied for five
decades using various models of two-party communication and computation,
where a proof refers to a piece of information that may contain sufficient data
to help a party verify the correctness of a target property (or a statement). Our
special interest lies on a communication game in which a party (called Merlin or
a prover) prepares such a proof, either correct or erroneous, and passes it on to
another party (called Arthur or a verifier), who operates a quantum computer
using only limited memory space for the purpose of verifying the correctness
of the proof. In particular, we are interested in the case where the space of
memory storage is upper-bounded by a certain absolute constant, independent
of inputs. Roughly speaking, a language L is said to admit an MA proof system
if there exists a constant-space machine (Arthur) such that, for every input x in
L, whenever a prover (Merlin) provides him a “correct” proof, Arthur verifies its
correctness and eventually accepts x; on the contrary, for every input x outside

� This author is supported by a research fellowship of the Japan Society for the Pro-
motion of Sciences (JSPS).

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 144–156, 2014.
c© Springer International Publishing Switzerland 2014

Quantum and Reversible Verification of Proofs 145

of L, no matter what proof is passed on by Merlin, Arthur refutes the proof
and eventually rejects x. Alternatively, we say that such an MA proof system
recognizes L.

In the past literature, a more general model of interactive proof (IP) sys-
tems using memory-restricted verifiers has been studied extensively. Dwork and
Stockmeyer [2] conducted an initial study on the strengths and weaknesses of
IP systems whose verifiers are particularly limited to 2-way probabilistic finite
automata (or 2pfa’s, in short). Taking quantum finite automata as verifiers,
Nishimura and Yamakami [7,8] investigated quantum interactive proof (QIP)
systems. In those proof systems, the number of interactions between a prover
and a verifier can be viewed as crucial computational resource that affects the
power of language recognition. Recent literature (e.g., [8,10,14]) has been also
focused on variants of QIP systems with weak verifiers.

Marriott and Watrous [5] studied quantum Merlin-Arthur (QMA) proof sys-
tems, which are a non-interactive model in which a quantum prover passes
an “entire” quantum proof to a quantum verifier at the start of a verification
procedure and the verifier checks the validity of the proof with no further com-
munication with the prover. Nevertheless, little attention has been paid to non-
interactive proof systems whose verifiers are “quantum finite automata.”

Merlin is used to take various forms. In a model of deterministic Merlin,1 he
chooses a (possibly non-recursive) function assigning a proof to each input and
sends such a proof to Arthur for its verification. When Arthur runs any 1-way2

deterministic finite automaton (or 1dfa, in short) working on a pair of inputs
and proofs, the associated MA proof system naturally induces nondeterministic
computation and becomes equivalent in power to 1-way nondeterministic finite
automata (or 1nfa’s). When Arthur operates any 1-way reversible finite automa-
ton (or 1rfa), because of its similarity, we intend to refer to its associated MA
proof system as a 1-way nondeterministic reversible automaton (or 1nrfa).

Unlike 1dfa verifiers, 1rfa verifiers are quite sensitive to their halting condi-
tion. As in the case of 2-way finite automata, we can generally assume that our
finite-automaton verifiers halt as soon as they enter halting states (i.e., either
accepting or rejecting states). In comparison, when verifiers are forced to read
off an entire input before checking a halting condition, the associated MA proof
systems form a model known as classical acceptance. To emphasize the use of
this classical-acceptance model, we append the special suffix “-cla”, resulting in,
e.g., 1nrfa-cla. It appears that the ability of 1nrfa-clas’s is quite restrictive when
recognizing languages.

This paper also studies a model of quantum Merlin, in which he is allowed
to apply any quantum operation to prepare a proof in the form of a (possibly

1 Here, the terminology “deterministic Merlin” is used purposely in comparison with
“randomized Merlin” (who generates a probability distribution of proofs) and “quan-
tum Merlin” (who generates a quantum state) discussed in the past literature.

2 In this paper, the term “1-way” means that a tape head of a given machine moves
from left to right without stopping at any computation step. This condition is some-
times called “real-time” in the literature.

146 M. Villagra and T. Yamakami

reduced) quantum state, which he passes it on to Arthur. We consider only the
case where Arthur is modeled as ameasure-once 1-way quantum finite automaton
(or mo-1qfa) [6], a measure-many 1-way quantum finite automaton (or 1qfa) [4],
or a 2-way quantum finite automaton (or 2qfa) [4]. The choice of those quantum
automaton models is to make our later arguments simple and concise as well as
to clarify the essential roles of quantum computation for proof verification.

For technicality, we can naturally differentiate two types of quantum Merlin.
The first quantum Merlin generates a proof in the form of a pure quantum
state, passes it on to Arthur, and does nothing afterwards. The second quantum
Merlin prepares a proof, sends Arthur only a portion of the proof (in a form
of reduced quantum state), and additionally applies any quantum operation to
his privately-retaining quantum data at every step when Arthur makes a move.
As quantum mechanics dictates, since the second quantum Merlin correlates his
retaining data with Arthur’s received data by way of quantum entanglement,
Merlin may potentially interfere with Arthur’s verification procedure simply by
modifying his own data privately. To distinguish those two types, we call Merlin
of the second type active (quantum) Merlin and the first type non-active Merlin.

2 A Short List of Major Contributions

A brief and informal list of the major contributions of this paper is given below.

(i) MA Proof Systems with 1rfa Verifiers.We show that the family 1NRFA
of all languages recognized by 1nrfa’s (namely, MA proof systems with 1rfa veri-
fiers) coincides with the family REG of regular languages (Theorem 1). Moreover,
we show two impossibility results: the existence of a regular language that admits
no 1nrfa-cla (Theorem 4) and the non-closure property of 1NRFA-CLA under
complementation (Proposition 6). Those results are, in fact, direct consequences
of a variant of pumping lemma, targeting languages recognized by 1nrfa-cla’s
(Lemma 2). We prove this lemma by employing a semigroup-theoretical argu-
ment (outlined in Lemma 3).

(ii) QMA Proof Systems with 1qfa Verifiers. We show that the family
QMA(1qfa) of all languages admitting 1qfa-verifier QMA proof systems coincides
with REG (Theorem 7). In our QMA proof systems, active quantum Merlin is
shown to be no more powerful than non-active quantum Merlin (Proposition 13).
We also demonstrate an important property, in which a “long” quantum proof
can be compressed into a much “shorter” proof without altering the behavior of
the corresponding verifier (Lemma 11).

(iii) QMA Proof Systems with 2qfa3 Verifiers. It is known that 2qfa’s can
recognize all regular languages and certain non-regular languages [4]. In 2qfa-
verifier QMA proof systems, if a proof-tape head of a verifier is allowed to stay
still, then we can show that the associated QMA proof systems recognize non-
stochastic languages (Theorem 17) and non-context-free languages. Moreover, if

3 A 2qfa has a read-only input-tape head that can move to the right, to the left, or
stay still while scanning the tape.

Quantum and Reversible Verification of Proofs 147

the proof-tape head can further move in all directions, then the associated proof
systems recognize even NP-complete languages (Lemma 19).

3 Quantum Merlin-Arthur Proof Systems

Due to page limit, we assume the reader’s familiarity with basic concepts of
quantum finite automata. Let Σ refer to an input alphabet and let Γ refer to
another (possibly the same) proof alphabet. The notation λ indicates both the
empty string and the blank symbol. Furthermore, N, R, C, and A respectively
denote the sets of all nonnegative integers, of all real numbers, of all complex
numbers, and of all algebraic complex numbers. In particular, C̃ expresses the set
of all polynomial-time computable complex numbers (i.e., both real and imagi-
nary parts are approximable in time polynomial in a given precision parameter).

Quantum Merlin and Quantum Finite Automata. In our QMA proof sys-
tem, Merlin (a prover) and Arthur (a verifier) access two tapes (i.e., an input
tape and a proof tape) and Arthur operates two tape heads on those tapes. An
input tape is a read-only infinite tape that holds an input string, surrounded
by two designated end-markers (|c and $). A proof tape is also a read-only infi-
nite tape that holds a proof (or a certificate) given by Merlin before Arthur’s
verification procedure begins. For technical reasons, we assume that the input
tape is circular and that the proof tape is infinite on both ends. Although the
proof tape is infinite, the number of non-blank cells is always finite. As a basic
computation model, we request Arthur to scan the proof tape from left to right
(unless staying stationary). For convenience, we refer to this as the “no-move-
back” requirement because, later in Section 6, we will lift this requirement to
investigate the power of the verifiers.

Let Hinput = span{||cx$〉 : x ∈ Σ∗} be a Hilbert space used to describe inputs.
Let Hp = span{|w〉 : w ∈ Γ ∗} denote a Hilbert space composed of Merlin’s
(quantum) proofs. Quantum Merlin accesses an input in Hinput and prepares in
Hp a proof, which is simply a pure quantum state.

As noted in Section 1, we model Arthur as quantum finite automata, par-
ticularly, mo-1qfa’s, 1qfa’s, or 2qfa’s. In a 2qfa model, Arthur owns his private
Hilbert space HA = span{|q, h, �〉 : (q, h, �) ∈ Q × N × Z}, where Q is a fi-
nite set of internal states, h is the position of an input-tape head, and � is the
position of a proof-tape head. Although Hp ⊗ Hinput ⊗ HA represents an en-
tire QMA proof system, we often omit Hinput when fixating an input string
throughout an entire computation. Now, Arthur A is expressed as an 8-tuple
A = (Q,Σ, {|c, $}, δ, q0, Qacc, Qrej , Γ), where δ maps Q× Σ̌ × Γ ×Q×D1 ×D2

to C, where Σ̌ = Σ∪{|c, $}, D1 = {−1, 0, 1}, and D2 = {0, 1}. Meanwhile, we fix
an input x = x1x2 · · ·xn and set x0 = |c and xn+1 = $. The function δ naturally

induces a transition matrix U
(x)
δ acting on Hp ⊗ HA as follows. Given s ∈ Γ ∗

and (q, h, �) ∈ Q × [0, n + 1]Z × N, this matrix U
(x)
δ transforms |s〉|q, h, �〉 to∑

(p,d,d′) δ(q, xh, s, p, q
′, d, d′)|s〉|p, h + d (mod n + 2), � + d′〉, where the sum is

taken over Q×D1 ×D2 and [0, n+ 1]Z = {0, 1, 2, . . . , n+ 1}.

148 M. Villagra and T. Yamakami

When proof |φ〉 is given, a computation of A proceeds as follows. The initial
state of the entire system is |ψ0〉 = |φ〉|q0, 0, 0〉 ∈ Hp ⊗HA. Arthur keeps apply-

ing U
(x)
δ and a projective measurement Π in turn until a certain halting state

(i.e., either an accepting state or a rejecting state) is reached. The probability
pacc,t(x, |φ〉) of accepting x with this proof |φ〉 within t steps is the sum of prob-
abilities, over all i ∈ [1, t]Z, with which A accepts x at step i. The acceptance
probability pacc(x, |φ〉) is further defined to be limt→∞ pacc,t(x, |φ〉). Likewise, we
define prej,t(x, |φ〉) and prej(x, |φ〉).

Generally, we say that a QMA system (P,A) recognizes language L (or alter-
natively, L admits (P,A)) if there exist a constant ε ∈ [0, 1/2) such that

– [completeness] for all x ∈ L, there exists a proof |φ〉 satisfying pacc(x, |φ〉) ≥
1− ε; and

– [soundness] for all x �∈ L and any proof |φ〉, prej(x, |φ〉) ≥ 1− ε.

In accordance with the notation of QIP(2qfa) in [8], we write QMA(2qfa) to
express the family of all languages recognized by 2qfa-verifier QMA systems and
we define QMA(2qfa, poly-time) to be a subclass of QMA(2qfa) by demanding
that the expected running time of Arthur’s verification procedure should be at
most p(|x|) for a certain fixed polynomial p. Furthermore, when Arthur is forced
to use amplitudes taken from set K, we write, e.g., QMAK(2qfa).

In the case where Arthur operates any 1qfa, Arthur’s private Hilbert spaceHA

becomes span{|q〉 : q ∈ Q}. The (global) time evolution of a 1qfa-verifier QMA
proof system is described formally as follows. Let V = (Hp ⊗HA) × R × R. A
vector Ψ = (|ψ〉, pacc, prej)T in V means that the QMA proof system is currently
in quantum state |ψ〉 with cumulative acceptance probability pacc and with cu-
mulative rejection probability prej . A norm ‖Ψ‖ of Ψ is (‖|ψ〉‖2 + pacc + prej)

1/2

(see, e.g., [3,12]). At each step i ∈ {0, . . . , n + 1}, the time evolution operator

T
(xi)
i modifies vector (|ψ〉, pacc, prej)T to another vector (ΠnonU

(xi)
i |ψ〉, pacc +

‖ΠaccU
(xi)
i |ψ〉‖2, prej+‖ΠrejU

(xi)
i |ψ〉‖2)T , where Πnon is a projector associated

with non-halting states. Given any input x, the initial vector is Ψ0 = (|ψ0〉, 0, 0)T
and the vector Ψi+1 after step i becomes T (x0x1···xi)Ψ0, where T

(x0x1···xi) denotes

T
(xi)
i T

(xi−1)
i−1 · · ·T (x0)

0 .
As a variant of QMA(2qfa), we define QMA(1qfa) by substituting 1qfa verifiers

for 2qfa verifiers in the definition of QMA(2qfa). Likewise, when Arthur runs any
mo-1qfa, we use the notation QMA(mo-qfa).

Deterministic Merlin and Reversible Finite Automata. In an MA proof
system, when Merlin behaves deterministically and Arthur operates a determin-
istic verification procedure, we naturally obtain a crucial concept of “nondeter-
minism” as in the proof-verification characterization of NP problems. Similarly,
using deterministic Merlin and 1rfa verifiers, we can obtain two “nondetermin-
istic” language families, denoted by 1NRFA and 1NRFA-CLA, in the following
fashion. Here, Arthur is modeled as a 1-way reversible finite automaton (or 1rfa,
in short) A = (Q,Σ, {|c, $}, δ, q0, Qacc, Qrej , Γ) equipped with proof alphabet Γ
and two endmarkers |c, $ /∈ Σ. In what follows, we fix an input x ∈ Σn.

Quantum and Reversible Verification of Proofs 149

Since Arthur operates a 1rfa, we treat deterministic Merlin as a (not neces-
sarily recursive) function η : Σ∗ → Γ ∗ that, on each input x, produces a proof
η(x) of length exactly |x|. Notice that each proof is uniquely determined from
the choice of the function η and input x.

Since an input-tape head of a 1rfa verifier always moves rightward without
stopping, we naturally require its proof-tape head to behave in the same manner.
This requirement makes it possible to truncate two tapes (i.e., input tape and
proof tape); as a result, we can take the following simple definition. Once proof
w is given to Arthur, the computation of the proof system proceeds as if (x,w)
is a single input. Let x = x1x2 · · ·xn and w = w1w2 · · ·wn. Pictorially, A has
one single tape consisting of two tracks (i.e., an input track and a proof track)
holding a string [x

w] made up of [x1
w1][

x2
w2] · · · [xn

wn] and a single tape head scans
symbol [xi

wi] at each step (as in the case of advice [12]). The transition function
δ maps Q × Σ̌Γ to Q, where Σ̌Γ = {[σ

γ] | σ ∈ Σ, γ ∈ Γ} ∪ {|c, $}. For ease
of later description, we define [x0

w0] = |c and [xn+1
wn+1] = $. At the ith step with

0 ≤ i ≤ n + 1, if A’s current internal state is q and δ satisfies δ(q, [xi
wi]) = q′,

then the next internal state of A becomes q′. Moreover, we demand that δ is
reversible; namely, for every tuple (q, q′, [σγ]), δ(q, [σγ]) = δ(q′, [σγ]) implies q = q′.

By obvious analogy with nondeterminism, unless there is any confusion, we
also call a 1rfa-verifier MA proof system with deterministic Merlin a 1-way non-
deterministic reversible automaton (or 1nrfa, in short). The notation 1NRFA
thus expresses the family of all languages admitting certain 1nrfa’s. When we
use a classical-acceptance model discussed in Section 1, the associated proof sys-
tem is succinctly called a 1nrfa-cla4 and the notation 1NRFA-CLA is used for
the family of all languages recognized by those 1nrfa-cla’s.

4 Reversible Computation with Deterministic Merlin

In classical automata theory, it is known that nondeterminism does not improve
the computational power of 1-way deterministic finite automata (or 1dfa’s). In
terms of MA proof systems, this means that any proof given by deterministic
Merlin does not help 1dfa verifiers recognize target languages. In contrast, de-
terministic Merlin still enhances the ability of both 1rfa verifiers and 1rfa-cla
verifiers to recognize languages. More specifically, we prove:

Theorem 1. 1RFA � 1NRFA = REG.

To prove Theorem 1, first note that the separation 1RFA �= 1NRFA follows
from the equality 1NRFA = REG. The containment 1NRFA ⊆ REG can be
shown by a straightforward simulation of every 1nrfa by an appropriate 1nfa.
For the converse containment, we take any 1dfa and, for each of its transitions,
we add a fresh proof symbol to guarantee the reversibility of a 1rfa verifier.

Let us turn our attention to 1NRFA-CLA. Since 1NRFA = REG by Theo-
rem 1, a standard pumping lemma holds for any language in 1NRFA. However,
languages in 1NRFA-CLA satisfy a much stronger pumping lemma stated below.

4 Our 1rfa-cla’s are also known as permutation automata or group automata [1].

150 M. Villagra and T. Yamakami

Lemma 2 (Pumping Lemma). Let L ∈ 1NRFA-CLA. For any u, v, w ∈ Σ∗,
there exists k ∈ N+ such that uv ∈ L implies uwikv ∈ L for all i ∈ N+.

To prove the lemma, we will utilize a semigroup-theoretical property of 1nrfa-
cla’s. In what follows, we assume the reader’s familiarity with basics of semigroup
theory (see, e.g., [9]). Let A be a 1nrfa-cla and let S(Q) be a set of all bijections
on a set Q of internal states of A. Since A is reversible, it is possible to define a
mapping μ : Σ∗×Γ ∗ → S(Q) so that, for every tuple (p, q, x, w), μ(x,w)(p) = q
holds if and only if there is a transition path between p and q on input x and
proof w. Let M be a set of all non-empty subsets of S(Q) and define a mapping
ϕ : Σ∗ → M as ϕ(x) = {μ(x,w) : w ∈ Γ |x|}. Given two subsets R, T ⊆ S(Q),
a product R • T is the set {r ◦ t : r ∈ R, t ∈ T }, where ◦ denotes standard
functional composition.

Lemma 3. If A is a 1nrfa-cla that recognizes language L, then the above-defined
(M, •) is a finite monoid that recognizes L. Furthermore, for any state q and
any idempotent e ∈ M, there exists a bijection r ∈ e satisfying r(q) = q.

Lemma 2 follows directly from Lemma 3. First, for any m ∈ M, define a
right action of m on Q as a binary operator · : Q ×M → P(Q) satisfying that
q′ ∈ q ·m exactly when there exists r ∈ m such that r(q) = q′. This right action
has the following distributivity property: for any m, s ∈ M and any q ∈ Q,
(q ·m) · s = q · (m • s).

Proof of Lemma 2. We proceed by induction on i. Let us consider the base case
of i = 1. Let A be a 1nrfa-cla for L and take a finite monoid (M, •) from Lemma
3. Assuming that uv ∈ L, it follows that qacc ∈ q0 · (ϕ(|cu) • ϕ(v$)) for a certain
accepting state qacc. Assume that q ∈ q0·ϕ(|cu) for a certain internal state q. Since
M is finite, for every string w ∈ L, there exists a positive integer k such that the
element ϕ(w)k is idempotent. Lemma 3 then implies that q ∈ q0 · (ϕ(|cu)•ϕ(w)k)
and qacc ∈ q · ϕ(v$). Thus, we obtain uwkv ∈ L.

For the induction step, assume by the induction hypothesis that the lemma
holds for i ≥ 1 and that qacc ∈ q0 · (ϕ(|cu) •ϕ(wik) •ϕ(v$)). Take q ∈ q0 · (ϕ(|cu) •
ϕ(wik)). By Lemma 3, we obtain q ∈ q0 · (ϕ(|cu)•ϕ(wik)•ϕ(w)k) because ϕ(w)k
is idempotent. Since qacc ∈ q · ϕ(v$) holds, uw(i+1)kv ∈ L follows. �

To demonstrate the usefulness of Lemma 2, we intend to exhibit two quick
applications of the lemma. Firstly, we show the existence of regular languages
that cannot be recognized by any 1nrfa-cla.

Theorem 4. 1NRFA-CLA � REG.

This theorem is obtained directly by studying the following three regular
languages: One = {w1 : w ∈ {0, 1}∗} and L01 = {0}∗{1}∗ defined over a binary
alphabet {0, 1}, and Two = {w2 : w ∈ {0, 1}∗} over a ternary alphabet {0, 1, 2}.

Lemma 5. One, Two, and L01 are not in 1NRFA-CLA.

Quantum and Reversible Verification of Proofs 151

Proof. We will prove only the case of L01. Assume that L01 ∈ 1NRFA-CLA.
Choose uv ∈ L01. Letting u = 01, v = λ and w = 0, Lemma 2 implies that
010k ∈ L01 for an appropriate number k ∈ N+. This contradicts the definition
of L01. �

The second application concerns a non-closure property of 1NRFA-CLA.

Proposition 6. The family 1NRFA-CLA is not closed under complementation.

This proposition is proven by constructing a 1nrfa-cla for the language {0}+
over a unary alphabet {0}. Obviously, its complement is finite. It is, however,
possible to prove by Lemma 2 that no finite language exists in 1NRFA-CLA.
Therefore, the complement of {0}+ is not in 1NRFA-CLA; thus, Proposition 6
holds.

5 Power of Quantum Merlin

Unlike deterministic Merlin, quantum Merlin can prepare a superposition of clas-
sical proofs. The main result of this section is the following theorem.

Theorem 7. 1. 1NRFA-CLA ⊆ QMA(mo-1qfa) ⊆ 1NRFA.
2. 1NRFA = QMA(1qfa) = REG.

Theorem 7 follows from Lemmas 8, 9, and 10 given below. Hereafter, we will
show those supporting lemmas. Firstly, since mo-1qfa’s are 1qfa’s, we obtain the
following.

Lemma 8. QMA(mo-1qfa) ⊆ QMA(1qfa).

It is also possible to directly simulate every 1nrfa (resp., 1nrfa-cla) by an
appropriate pair of quantum Merlin and 1qfa (resp., mo-1qfa) verifier.

Lemma 9. 1. 1NRFA-CLA ⊆ QMA(mo-1qfa).

2. 1NRFA ⊆ QMA(1qfa), or equivalently REG ⊆ QMA(1qfa).

The next goal is to show that a 1qfa verifier playing with quantum Merlin is
no more powerful in language recognition than any 1dfa alone is. More precisely,
we want to prove the following key containment.

Lemma 10. QMA(1qfa) ⊆ REG.

Before proving Lemma 10, we will show two useful properties. Given any proof
|φ〉, let Ψφ

0 denote |φ〉|q0〉 in Hp ⊗HA. When Arthur halts, the entire system on

input x results in T (|cx$)Ψφ
0 . Let Hp,n = span{|w〉 : w ∈ Γn} for any nonnegative

integer n. Clearly, for any m �= n, Hp,n and Hp,m are orthogonal subspaces of
Hp.

152 M. Villagra and T. Yamakami

Lemma 11. Let n, m, and t be nonnegative integers. For any triplet (x, y, z) ∈
Σn × Σm × Σt and any quantum states |φ〉 ∈ Hp,n+t and |φ′〉 ∈ Hp,m+t, there

exist two quantum states |φ̃〉 ∈ Hp,n and |φ̃′〉 ∈ Hp,m satisfying ‖T (|cxz)Ψφ
0 −

T (|cyz)Ψφ′
0 ‖ ≤ 1√

2
‖T (|cx)Ψ φ̃

0 − T (|cy)Ψ φ̃′
0 ‖.

Lemma 12. [4] Let D = {v ∈ V : ‖v‖ ≤ 1}, where V = (Hp ⊗ HA) × R × R

as defined in Section 3. Let E ⊆ D. If there exists a constant ε > 0 satisfying
‖v − v′‖ > ε for all pairs v, v′ ∈ V, then E is finite.

In the following proof of Lemma 10, we intend to show that Σ∗ is partitioned
into finitely many equivalence classes by a given language. This partition tech-
nique was previously used for 1qfa’s in [4] and 1qfa’s with advice in [12]. Here,
our technical achievement relies on an application of Lemma 11.

Proof of Lemma 10. Let L ∈ QMA(1qfa) and, for each ε ∈ [0, 1/2), let Aε

be a 1qfa verifier recognizing L with error probability at most ε. For any pair
(x, y) ∈ Σ∗ × Σ∗, we define a closeness relation x ∼=L y when ‖T (|cxz$)Ψφ

0 −
T (|cyz$)Ψφ′

0 ‖ < ε holds for any z ∈ Σ∗ and any two quantum states |φ〉 ∈ H|x|+|z|
and |φ′〉 ∈ H|y|+|z|. Moreover, we write x ≡L y exactly when, for any z ∈ Σ∗,
xz ∈ L holds if and only if yz ∈ L holds. Here, we want to claim that x ∼=L y
implies x ≡L y for any pair (x, y). This claim can be proven by contradiction
using Lemma 11.

Let S ⊆ Σ∗ be any set and assume that, for each pair (x, y) ∈ S2, x �∼=L y
holds. By Lemma 12, S is finite. Let d be the largest size of such S. Assume that
|Σ∗/≡L| > d. Let x1, . . . , xd+1 ∈ Σ∗ be strings such that xi �≡L xj for every
distinct pair i, j ∈ [d+1] and let S = {x1, . . . , xd+1}. The previous claim implies
that xi �∼=L xj for every distinct pair (i, j). Hence, the set S must have cardinality
at most d, a contradiction. Therefore, the number of equivalence classes in ≡L

is finite. It is known that L is regular if and only if the number of equivalence
classes in ≡L is finite. From this fact, we conclude that L is regular. �

As remarked in Section 1, we distinguish two types of quantum Merlin. For
the time being, we call current quantum Merlin defined in Section 3 non-active.
Active Merlin, by contrast, produces a pure quantum state, say, |φ〉 in his own
private workspace, sends only a “portion” of |φ〉 to Arthur by retaining the rest,
and modifies it at every step when Arthur moves. For clarity, we use the nota-
tion active-QMA(mo-1qfa) and active-QMA(1qfa) to emphasize the use of active
quantum Merlin. Surprisingly, we can prove that active Merlin is equivalent in
computational power to non-active Merlin.

Proposition 13. 1. active-QMA(mo-1qfa) = QMA(mo-1qfa).
2. active-QMA(1qfa) = QMA(1qfa).

Proposition 13 relies on the following key lemma.

Lemma 14. Let A be an mo-1qfa verifier in a QMA proof system with active
quantum Merlin. The acceptance and rejection probabilities of A are independent

Quantum and Reversible Verification of Proofs 153

of any change of private workspace data by Merlin during a computation. The
same holds even if A is either a 1qfa verifier or a 2qfa verifier.

The lemma follows from a fact that, since Merlin’s local operators {Pi}i≥0

acting on his own private workspace do not apply to Hp ⊗HA, it is possible to
swap the order of Merlin’s operators Pi and Arthur’s operators.

6 Proof Verification by 2qfa’s

We will study properties of QMA systems when verifiers are 2qfa’s. We start
with a closure property of QMA(2qfa). In comparison, it is not known whether
the family 2QFA of languages recognized by 2qfa’s alone is closed under union.

Proposition 15. The family QMA(2qfa) is closed under union.

Lemma 16. Let t be any function from N to N.

1. QMA(2qfa, t-time) ⊆ QIP(2qfa, t-time).
2. In particular, QMA

C̃
(2qfa, poly-time) ⊆ QIP

C̃
(2qfa, poly-time) ⊆ NP.

Although intuitively clear, Lemma 16(1) still requires an argument that (i) no
cheating-prover can fool a verifier even in the presence of entanglement and (ii) an
honest-prover demands the information on the proof-tape head of the verifier to
be dumped alongside the messages sent to the prover. Lemma 16(2) follows from
[8, Theorem 5.3] and a C̃-version of Lemma 16(1). Since QIP

C̃
(2qfa, poly-time) ⊆

NP [8], it follows from Lemma 16(1) that QMA
C̃
(2qfa, poly-time) ⊆ NP.

Let us quickly discuss the power of QMA(2qfa). Consider the following lan-
guage DUP = {ww : w ∈ {0, 1}∗}, which is known to be non context-free.
Now, we claim that DUP is in QMA

A
(2qfa). This claim obviously leads to a

simple separation: QMAA(2qfa) � CFL. To show this claim, it suffices to con-
struct a unidirectional 2qfa verifier M recognizing DUP as follows. On input
w = xy, M checks by moving its head rightward whether the input is of even
length. When reading |c, it splits with equal amplitudes the computation into
two paths. In those two paths, we check whether x = y using the given proof
that marks the boundary between x and y. Moreover, consider the language
LY S = {am−1bakm : m, k ∈ N+ ∧ m > 1}. This language was shown to be
non-stochastic [11]. It is possible to show that LY S is recognized by a certain
2qfa-verifier A-amplitude QMA system. This yields the following conclusion.
Let SLR denote the family of all stochastic languages (whose probabilities are all
drawn from R).

Theorem 17. QMAA(2qfa) � SLR

Let us recall that an input-tape head of our 2qfa verifier moves in all directions
but its proof-tape head is limited to moving in one direction. What happens if
we further allow the proof-tape head to move in all directions? To answer this
question, we first modify our original definition of 2qfa verifier by allowing its
transition function δ to be a mapping from Q × Σ̌ × Γ × Q × D1 × {−1, 0, 1}

154 M. Villagra and T. Yamakami

to C. Let QMA(2qfa, 2-way-proof) be the family of all languages recognized by
2qfa-verifier QMA systems using 2-way proof-tape heads. Clearly, QMA(2qfa) ⊆
QMA(2qfa, 2-way-proof) holds; however, it is not clear that even QIP(2qfa) in-
cludes QMA(2qfa, 2-way-proof), because a cheating-prover may potentially fool
a verifier when Arthur moves its proof-tape head in the left direction.

Here, we want to argue that QMA(2qfa, 2-way-proof) ⊆ L is unlikely.

Theorem 18. If QMAA(2qfa, 2-way-proof) ⊆ L, then L = NP.

Let us prove this theorem. First, we introduce a special language, called
CNF -SAT , which is a set of suitable encodings of CNF formulas. More pre-
cisely, let Σ4 = {−,+, 0,∧} be our alphabet and define the language CNF -SAT
over Σ4 as the set of all strings of the form c1 ∧ c2 ∧ · · · ∧ cm with ci ∈
{−,+, 0}k for certain indices k,m ∈ N+ that satisfy the following. We say that
ci = ci,1ci,2 · · · ci,k ∈ {−,+, 0}k represents a disjunctive clause Ci if Ci has the
form (

∨
j∈S+(i) xj) ∨ (

∨
j∈S−(i) xj), where S+(i) = {j ∈ [1, k]Z : ci,j = +},

S−(i) = {j ∈ [1, k]Z : ci,j = −}. We demand that the Boolean formula
C1∧C2∧· · ·∧Cm represented by c1∧c2∧· · ·∧cm is satisfiable. It is known from
the arXiv version of [13] that CNF -SAT is NP-complete under L-reductions.
Theorem 18 follows immediately from Lemma 19, which deals with CNF -SAT .

Lemma 19. CNF-SAT ∈ QMAA(2qfa, 2-way-proof).

Proof Sketch. Given an input x ∈ CNF -SAT , Merlin first provides Arthur
with the information on an assignment to all variables in the CNF formula,
say, C1 ∧ C2 ∧ · · · ∧ Cn associated with x. Arthur who runs a 2qfa M =
(Q,Σ, {|c, $}, δ, q0, Qacc, Qrej), where Γ = {0, 1, |c, $}, checks that, for each clause
Ci in the given formula, Ci is indeed satisfied with the help of the proof. More-
over, at each time when Arthur finishes checking one clause, he resets the proof-
tape head position so that he can start checking the next clause. Since he uses
the same assignment given as the proof to check each clause, the target formula
must be satisfied. When x /∈ CNF -SAT , no matter what proof Merlin gives
Arthur, Arthur correctly refutes any unsatisfied input. �

Theorem 20. QMA
C̃
(2qfa, poly-time, 2-way-proof) ⊆ NEXP.

Lemma 21. Let t : N → N be any time-constructible function.
QMA

C̃
(2qfa, t-time, 2-way-proof) ⊆ NTIME(2O(t(n))t(n)poly(n, log t(n))).

Theorem 20 follows by choosing any polynomial as t in Lemma 21.
In what follows, we will prove Lemma 21. For any function t : N → N, a t-

bounded 2qfaM is obtained from a 2qfa by requiring the following two conditions:
(1) we “cut” all computation paths of M after exactly t(n) steps and (2) we treat
any computation path that does not halt within t(n) steps as “non-halting.” Let
QMA(2qfa, t-bounded) be the family of all languages recognized by t-bounded
2qfa’s.

Quantum and Reversible Verification of Proofs 155

Proposition 22. Let t : N → N be any function.
QMA(2qfa, 2-way-proof, t-time) ⊆ QMA(2qfa, 2-way-proof, O(t)-bounded).

Note that, by setting t to be any polynomial, Proposition 22 yields the con-
tainment QMA

C̃
(2qfa, 2-way-proof, poly-time) ⊆ QMA, where QMA was defined

in [5]. Proposition 22 follows from Lemma 23.

Lemma 23. Let (M,A) be any 2qfa-verifier QMA system recognizing language
L in expected running time t(n) with error probability at most ε. For any x ∈ Σ∗,
if we cut the running time of A by t(n)/ε, then the same system (M,A) recognizes
L with error probability at most ε(2− ε).

Proof Sketch. By Markov’s inequality follows Pr[number of steps ≥ t(n)/ε] ≤
ε. If we cut all computation paths exactly after t(n)/ε steps, then at least a 1− ε
fraction of computation paths end in halting states. Hence, the probability of
either accepting or rejecting any string is at least (1− ε)2 = 1− ε(2− ε). �

Return to the proof of Lemma 21. By [8, Proposition 5.5], Merlin needs a
unitary operation whose dimension is at most |Q||Γ |t(n)n to generate a proof,
where Q is Arthur’s set of internal states and Γ is a proof alphabet. Similarly
to [8, Proposition 5.7], Lemma 21 follows using Proposition 22.

References

1. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata.
SIAM J. Comput. 31(5), 1456–1478 (2002)

2. Dwork, C., Stockmeyer, L.: Finite state verifiers I: the power of interaction. J.
ACM 39(4), 800–828 (1992)

3. Gruska, J.: Quantum Computing. McGraw-Hill (2000)
4. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:

Proc. of FOCS 1997, pp. 66–75 (1997)
5. Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. Computational Com-

plexity 14(2), 122–152 (2005)
6. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor.

Comput. Sci. 237(1–2), 275–306 (2000)
7. Nishimura, H., Yamakami, T.: An application of quantum finite automata to in-

teractive proof systems (extended abstract). In: Domaratzki, M., Okhotin, A., Sa-
lomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 225–236. Springer, Hei-
delberg (2005)

8. Nishimura, H., Yamakami, T.: An application of quantum finite automata to in-
teractive proof systems. J. Comput. System Sci. 75(4), 255–269 (2009)

9. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2000)
10. Yakaryilmaz, A.: Public-qubits versus private-qubits. Tech. Rep. TR12-130, Elec-

tronic Colloquium on Computational Complexity (2012)
11. Yakaryilmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small

space bounds. Inform. Comput. 279(6), 873–892 (2011)
12. Yamakami, T.: One-way reversible and quantum finite automata with advice. Inf.

Comput. (in press, 2014), An extended abstract appeared in: Dediu, A.-H., Mart́ın-
Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 526–537. Springer, Heidelberg
(2012)

156 M. Villagra and T. Yamakami

13. Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities, and
the hierarchy over the family of context-free languages. In: Geffert, V., Preneel, B.,
Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 514–
525. Springer, Heidelberg (2014), A complete version appeared at arXiv:1303.1717
(2013)

14. Zheng, S., Gruska, J., Qiu, D.: Power of the interactive proof systems with verifiers
modeled by semi-quantum two-way finite automata, arXiv:1304.387 (2013)

Solving 2D-Pattern Matching with Networks

of Picture Processors

Henning Bordihn1, Paolo Bottoni2,
Anna Labella2, and Victor Mitrana3,�

1 Department of Computer Science, University of Potsdam,
August-Bebel-Str. 89, 14482 Potsdam, Germany

henning@cs.uni-potsdam.de
2 Department of Computer Science, “Sapienza” University of Rome

Via Salaria 113, 00198 Rome, Italy
{bottoni,labella}@di.uniroma1.it

3 Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 010014, Bucharest, Romania

mitrana@fmi.unibuc.ro

Abstract. We propose a solution based on networks of picture proces-
sors to the problem of picture pattern matching. The network solving the
problem can be informally described as follows: it consists of two subnet-
works, one of them extracts simultaneously all subpictures of the same
size from the input picture and sends them to the second subnetwork. The
second subnetwork checks whether any of the received pictures is iden-
tical to the pattern. We present an efficient solution based on networks
with evolutionary processors only, for patterns with at most three rows
or columns. Afterwards, we present a solution based on networks contain-
ing both evolutionary and hiding processors running in O(n+m+kl+k)
computational (processing and communication) steps, where the input
picture and the pattern are of size (n,m) and (k, l), respectively.

1 Introduction

Picture languages defined by different mechanisms have been studied extensively
in the literature. Two-dimensional matrix and array models describing pictures
have been proposed in [15,16,19,17]. On the other hand, models defining pictures
that are connected arrays, but not necessarily rectangular, have been proposed
as early as 70’s [14] and a hierarchy of these grammars was considered in [18].
A new model of recognizable picture languages, extending to two dimensions
the characterization of the one-dimensional recognizable languages in terms of
alphabetic morphisms of local languages, has been introduced in [7]. Similarly
to the string case, characterizations of recognizable picture series were proposed,
see, e.g. [5,12]. An early survey on automata recognizing rectangular picture
languages is [8], a bit more recent one considering different mechanisms defining

� Supported by the Visiting Professor Programme - “Sapienza” University of Rome
and the Alexander von Humboldt Foundation.

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 157–168, 2014.
c© Springer International Publishing Switzerland 2014

158 H. Bordihn et al.

picture languages, not necessarily rectangular, is [14] and an even more recent
and concise one is [6].

This work is a continuation of [4], where networks of evolutionary picture
processors acting on rectangular pictures as acceptors are considered. The paper
[4] is a first attempt to extend the investigation started in [10], where the data
is organized in the form of linear strings, and continued in a series of papers (see
[9] for a recent survey) to rectangular pictures. In [4], networks of evolutionary
picture processors where each node is either a row/column substitution node or
a row/column deletion node are considered. The action of each node on the data
it contains is precisely defined. For instance, if a node is a row substitution node,
then it can substitute a letter by another letter in either the top row only, the
bottom row only, or an arbitrary row. Moreover, if there are more occurrences
of the letter to be substituted in the row on which the substitution rule acts,
then each such occurrence is substituted in different copies of that picture. An
implicit assumption is that arbitrarily many copies of every picture are available.
A similar informal explanation concerns the column substitution and deletion
nodes. Local data is then transmitted over the network following a given protocol.
Only data which can pass a filtering process can be communicated. This filtering
process is regulated by input and output filters (defined by some very simple
context conditions) associated with each node. All the nodes simultaneously
send their data to, and receive data from, the nodes they are connected to. In [4]
we showed that these networks can accept the complement of any local language,
as well as languages that are not recognizable.

We consider here the pattern matching problem, which is largely motivated
by different aspects in low-level image processing [13], and try to solve it in a
parallel and distributed way with networks of picture processors. The network
solving the problem can be informally described as follows: it consists of two
subnetworks, one of them extracts simultaneously all subpictures of the same
size from the input picture and sends them to the second subnetwork. In its turn,
the second subnetwork consists of two subnetworks; one of them checks whether
any of the received pictures is identical to the pattern, while the other one halts
the computation if none of the received pictures is identical to the pattern. If
the pattern is of size (k, l), with 1 ≤ k ≤ 3, and l ≥ 1, we present an efficient
solution running in O(n+m+ l) computational (processing and communication)
steps, provided that the input picture is of size (n,m). Moreover, this solution
can be extended at no further cost w.r.t. the number of computational steps to
any finite set of patterns all of them of the same size.

We introduce a new operation and its inverse that can convert a visible
row/column into an invisible one and vice versa. The two operations which seem
to be relevant with respect to picture processing (see, e.g. “zoom-in”, “zoom-
out”) are called mask and unmask, respectively. We show how this variant of
networks of picture processors is able to solve efficiently (in O(n +m + kl + k)
computational steps) the problem of pattern matching of an arbitrary pattern
of size (k, l) in a given rectangular picture of size (n,m). Again, the solution can

Solving 2D-Pattern Matching with Networks of Picture Processors 159

be extended at no further cost w.r.t. the number of computational steps to any
finite set of patterns all of them of the same size.

2 Basic Definitions

The basic terminology and notations concerning two-dimensional languages are
taken from [6]. The set of natural numbers from 1 to n is denoted by [n]. The
set of all finite subsets of a set A is denoted by 2A. The cardinality of a finite set
A is denoted by card(A). Let V be an alphabet, V ∗ the set of one-dimensional
strings over V and ε the empty string. A picture (or a two-dimensional string)
over the alphabet V is a two-dimensional array of elements from V . We denote
the set of all pictures over the alphabet V by V ∗

∗ , while the empty picture will
be still denoted by ε. A two-dimensional language over V is a subset of V ∗∗ .

Let π be a picture in V ∗
∗ ; we denote the number of rows and the number of

columns of π by π and |π|, respectively. The pair (π, |π|) is called the size of the
picture π. The size of the empty picture ε is obviously (n,m) with nm = 0. The
set of all pictures of size (m,n) over the alphabet V , where m,n ≥ 1, is denoted
by V n

m. The symbol placed at the intersection of the ith row with the jth column
of the picture π, is denoted by π(i, j).

Let π be a picture of size (m,n) over V ; for any 1 ≤ i ≤ k ≤ m and 1 ≤
j ≤ l ≤ n we denote by [i,j]π[k,l] the subpicture of π having its left-hand upper
corner in π(i, j) and right-hand lower corner in π(k, l) (it starts and ends at (i, j)
and (k, l) in π, respectively). For any values i > k or j > l, we set [i,j]π[k,l] = ε.

Furthermore, we simply write π instead of [1,1]π[m,n].
For any alphabet V and a symbol a ∈ V , we denote by a≡ the invisible copy

of a; furthermore, we set V≡ := {a≡| a ∈ V }. We say that a picture π ∈ (V ∪ V≡)nm
is well defined if there exists 1 ≤ i ≤ k ≤ m and 1 ≤ j ≤ l ≤ n such that all
elements of [i,j]π[k,l] are from V and all the other elements of π are from V≡. In

this case, we say that [i,j]π[k,l] is the maximal visible subpicture of π. A rather
intuitive way to understand a well defined picture π is to consider that some rows
and/or columns of π are hidden but not deleted. Note that any picture over V
is a well defined picture. For the rest of this paper, we deal with well defined
pictures only. The minimal alphabet containing all visible symbols appearing in
a picture π is denoted by alph(π).

Let V be an alphabet; a rule of the form a → b, with a, b ∈ V ∪ {ε} is called
an evolutionary rule. We say that a rule a → b is: a) a substitution rule if both
a and b are not ε; b) a deletion rule if a �= ε, b = ε; c) an insertion rule if
a = ε, b �= ε. In this paper we shall ignore insertion rules because we want to
process every given picture in a space bounded by the size of that picture. We
denote the sets of substitutions and deletions by SubV = {a → b | a, b ∈ V } and
DelV = {a → ε | a ∈ V }, respectively. Given a rule σ as above and a picture
π ∈ (V ∪ V≡)nm, we define the following actions of σ on π following [4].

If σ ≡ a → b ∈ SubV , then σ←(π) is the set of all pictures π′ such that the
following conditions are satisfied:

160 H. Bordihn et al.

(1.) There exist 1 ≤ u ≤ v ≤ m and 1 ≤ s ≤ t ≤ n such that [u,s]π[v,t] is the
maximal visible subpicture of π,
(2.a.) There exists u ≤ i ≤ v such that π(i, s) = a; then π′(i, s) = b, and
π′(j, l) = π(j, l) for all (j, l) ∈ ([m]× [n]) \ {(i, s)}.
(2.b.) If the leftmostcolumn of [u,s]π[v,t] does not contain any occurrence of a,
then σ←(π) = {π}.
Informally, σ←(π) is the set of all pictures that can be obtained from π by
replacing an occurrence of a by b in the leftmost column of the maximal visible
subpicture of π. Note that σ is applied to all occurrences of the letter a in the
leftmost column of the maximal visible subpicture of π in different copies of
the picture π. We say that the rule σ is applied to the leftmost column of the
maximal visible subpicture of π.

In an analogous way, we define σ→(π), σ↑(π), σ↓(π), σ+(π), as the set of all
pictures obtained by applying σ to the rightmost column, to the first row, to the
last row, and to any column/row of the maximal visible subpicture of π.

If σ ≡ a → ε ∈ DelV , then σ←(π) is the picture obtained from π by deleting

the ith column of π provided that the maximal visible subpicture of π starts

at the position (i, j) in π, for some j, and the ith column of π contains an
occurrence of a. If the leftmost column of the maximal visible subpicture of π
does not contain any occurrence of a, then σ←(π) = π. We say that the deletion
rule σ is applied to the leftmost column of the maximal visible subpicture of π.

Analogously, σ→(π), σ↑(π), and σ↓(π) is the picture obtained from π by ap-
plying σ to the rightmost column, to the first row, and to the last row of the
maximal visible subpicture of π, respectively. Furthermore, σ|(π) (σ−(π)) is the
set of pictures obtained from π by deleting an arbitrary column (row) contain-
ing an occurrence of a from π. If more than one column (row) of π contains
a, then for each such column (row), there is a copy of π in σ|(π) (σ−(π)) hav-
ing this column (row) deleted. If π does not contain any occurrence of a, then
σ|(π) = {π}(σ−(π) = {π}).

For every rule σ, symbol α ∈ {←,→, ↑, ↓, |,−,+}, and L ⊆ (V ∪ V≡)∗∗, we
define the α-action of σ on L by σα(L) =

⋃

π∈L

σα(π). Given a finite set of rules

M , we define the α-action of M on the picture π and the language L by:

Mα(π) =
⋃

σ∈M

σα(π) and Mα(L) =
⋃

π∈L

Mα(π),

respectively. In what follows, we shall refer to the rewriting operations defined
above as evolutionary picture operations since they may be viewed as the 2-
dimensional linguistic formulations of local gene mutations.

We now define a new operation on pictures and its inverse, namely mask and
unmask. Let π be a picture of size (m,n) over V ∪ V≡ and a ∈ V .

– mask←(π) returns the picture obtained from π by transforming all visible
symbols from the leftmost column of the maximal visible subpicture of π into
their invisible copies. Analogously, one defines the mappings mask→, mask↑,
and mask↓.

Solving 2D-Pattern Matching with Networks of Picture Processors 161

– unmask←(π) returns the picture obtained from π as follows. If [i,j]π[k,l]

is the maximal visible subpicture of π, then all invisible symbols π(s, j − 1),
i ≤ s ≤ k, become visible. If j = 1, then unmask←(π) = π. Analogously, one
defines the mappings unmask→, unmask↑, and unmask↓.
For every α ∈ {←,→, ↑, ↓} and L ⊆ (V ∪V≡)∗∗, we definemaskα(L) = {maskα(π) |
π ∈ L}. Analogously, unmaskα(L) = {unmaskα(π) | π ∈ L}.

For two disjoint subsets P and F of an alphabet V and a picture π over V ,
we consider the following two predicates which we will later use to define two
types of filters:

rcs(π;P, F) ≡ P ⊆ alph(π) ∧ F ∩ alph(π) = ∅
rcw(π;P, F) ≡ alph(π) ∩ P �= ∅ ∧ F ∩ alph(π) = ∅.

The construction of these predicates is based on context conditions defined by the
two sets P (permitting contexts/symbols) and F (forbidding contexts/symbols).
Informally, both conditions require that no forbidding symbol is present in π;
furthermore the first condition requires all permitting symbols to appear in
π, while the second one requires that at least one permitting symbol appears
in π.

For every picture language L ⊆ V ∗∗ and β ∈ {s, w}, we define:
rcβ(L, P, F) = {π ∈ L | rcβ(π;P, F) = true}.

An evolutionary picture processor over V ∪ V≡ is a 5-tuple (M,PI, FI, PO, FO),
where:

– Either M ⊆ SubV or M ⊆ DelV . The set M represents the set of evolution-
ary rules of the processor. As one can see, a processor is “specialized” into one
type of evolutionary operation, only.

– PI, FI ⊆ V are the input sets of permitting/forbidding symbols (contexts)
of the processor, while PO,FO ⊆ V are the output sets of permitting/forbidding
symbols of the processor (with PI ∩ FI = ∅ and PO ∩ FO = ∅).

A hiding picture processor over V ∪V≡ is a 5-tuple (M,PI, FI, PO, FO), where
M is either mask or unmask, while the other parameters are identical to those
defined above for evolutionary processors.

An accepting network of picture processors (ANPP) is a 9-tuple
Γ = (V, U,G,N, α, β, In,Halt, Accept),

where:

– V and U are the input and network alphabet, respectively, V ⊆ U .
– G = (XG, EG) is an undirected graph without loops with the set of vertices

XG and the set of edges EG. G is called the underlying graph of the network.
Although in network theory, several types of graphs are common like com-
plete, rings, stars, grids, we focus here on complete underlying graphs (every
two vertices are connected by an edge), so that we can replace the graph G
by the set of its nodes.

– N is a mapping which associates with each node x ∈ XG the picture proces-
sor N(x) = (Mx, P Ix, F Ix, POx, FOx).

– α : XG −→ {←,→, ↑, ↓, |,−,+}; α(x) gives the action mode of the rules of
node x on the pictures existing in that node.

– β : XG −→ {s, w} defines the type of the input/output filters of a node. More
precisely, for every node, x ∈ XG, the following filters are defined:

162 H. Bordihn et al.

– input filter: ρx(·) = rcβ(x)(·;PIx, F Ix),
– output filter: τx(·) = rcβ(x)(·;POx, FOx).
That is, ρx(π) (resp. τx(π)) indicates whether or not the picture π can pass
the input (resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the
set of pictures of L that can pass the input (resp. output) filter of x.

– In,Halt, Accept ∈ XG are the input node, the halting node, and the accepting
node of Γ , respectively. Note that it is not obligatory the three nodes be
different from one another.

We say that card(XG) is the size of Γ . A configuration of an ANPP Γ as
above is a mapping C : XG −→ 2U

∗
∗ which associates a finite set of pictures

with every node of the graph. A configuration may be understood as the sets
of pictures which are present in any node at a given moment. Given a picture

π ∈ V ∗∗ , the initial configuration of Γ on π is defined by C
(π)
0 (In) = {π} and

C
(π)
0 (x) = ∅ for all x ∈ XG − {In}.
A configuration can change via either a processing step or a communication

step. When changing via a processing step, each component C(x) of the configu-
ration C is changed in accordance with the set of rules Mx associated with the
node x and the way of applying these rules, namely α(x). Formally, we say that
the configuration C′ is obtained in one processing step from the configuration

C, written as C =⇒ C′, iff C′(x) = M
α(x)
x (C(x)) for all x ∈ XG.

When changing via a communication step, each node processor x ∈ XG sends
one copy of each picture it has, which is able to pass the output filter of x, to
all the node processors connected to x and receives all the pictures sent by any
node processor connected with x provided that they can pass its input filter.

Formally, we say that the configuration C′ is obtained in one communication
step from configuration C, written as C � C′, iff
C′(x) = (C(x) \ τx(C(x))) ∪

⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Note that pictures that cannot pass the output filter of a node remain in that
node and can be further modified in the subsequent evolutionary steps, while
pictures that can pass the output filter of a node are expelled. Further, all the
expelled pictures that cannot pass the input filter of any node are lost.

Let Γ be an ANPP, the computation of Γ on an input picture π ∈ V ∗
∗ is

a sequence of configurations C
(π)
0 , C

(π)
1 , C

(π)
2 , . . . , where C

(π)
0 is the initial con-

figuration of Γ on π, C
(π)
2i =⇒ C

(π)
2i+1 and C

(π)
2i+1 � C

(π)
2i+2, for all i ≥ 0. Note

that configurations are changed by alternative steps. By the previous definitions,

each configuration C
(π)
i is uniquely determined by C

(π)
i−1. A computation as above

halts if there exists a configuration such that the sets of pictures existing in the
halting node is non-empty. As we consider here ANPPs as problem solvers, for
the rest of this paper we only deal with ANPPs that halt on every input. The
picture language decided by Γ is

L(Γ) = {π ∈ V ∗∗ | the computation of Γ on π halts with a non-empty
accepting node}.

An ANPP without hiding picture processors is called accepting network of evolu-
tionary picture processors (ANEPP) in [4]. The computational power of ANEPPs

Solving 2D-Pattern Matching with Networks of Picture Processors 163

has been investigated in [4]; we recall the following results, where the class of
recognizable and local languages, respectively, have been defined in [7].

Theorem 1.
1. There exist non-recognizable languages which can be accepted by ANEPPs.
2. The complement of every local language can be accepted by an ANEPP.

3 Solving Picture Matching With ANPPs

A natural problem is to find a pattern (a fixed picture) in a given picture. This
problem is widely known as the two-dimensional pattern matching problem and
is largely motivated by different aspects in low-level image processing [13]. The
more general problem of picture matching (it is not obligatory for the picture to
be a two-dimensional array) is widely known in Pattern Recognition field and is
connected with Image Analysis and Artificial Vision [11,20].

We discuss a solution to the problem of picture pattern matching based on the
networks defined in the previous section. For the sake of a better understanding,
we discuss first a solution based on ANEPP. A key step in our solution is to
construct a network able to decide the singleton language formed by a given
picture. If the given picture π is of size (k, n) or (n, k) for any 1 ≤ k ≤ 3 and
n ≥ 1, then an ANEPP can decide the language {π}.

Theorem 2. Let π be a picture of size (k, n) for some 1 ≤ k ≤ 3 and n ≥ 1.
The language {π} can be decided by an ANEPP.

Proof. Actually, we only prove the most difficult case, namely k = 3, the proofs
of the other cases that can be easily deduced from this one are left to the reader.
We construct the ANEPP Γ deciding {π} as follows. Let V be the alphabet of
π; the working alphabet of Γ is:

U = V ∪ {a(i), a(i), a(i) | a ∈ V, 1 ≤ i ≤ n} ∪ {[a, i] | a ∈ V, 1 ≤ i ≤ 4n} ∪ V ′

V ′ = {a′ | a ∈ V }.
The nodes of Γ are distributed in four groups for a better understanding of their
role.

Group 1.

In :

⎧
⎪⎪⎨

⎪⎪⎩

M = {π(1, 1) → π(1, 1)(1)},
P I = V, FI = U \ V,
PO = {π(1, 1)(1)}, FO = ∅,
α =↑, β = w.

Group 2.

x(i) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M = {π(3, i) → π(3, i)(i)},
P I = {π(1, i)(i), π(1, i+ 1)(i+1)},
F I = U \ (V ∪ {π(1, i)(i), π(1, i+ 1)(i+1)}),
PO = {π(3, i)(i)}, FO = ∅,
α =↓, β = s,
1 ≤ i ≤ n− 1

164 H. Bordihn et al.

x(i) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M = {π(1, i) → π(1, i)(i)},
P I = {π(1, i− 1)(i−1)},
F I = U \ (V ∪ {π(1, i− 1)(i−1)}),
PO = {π(1, i)(i)}, FO = ∅,
α =↑, β = s,
2 ≤ i ≤ n

x(i) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M = {π(2, i) → π(2, i)(i)},
P I = {π(1, i)(i), π(3, i)(i)},
F I = ∅,
PO = {π(2, i)(i)},
FO = ∅,
α =←, β = s,
1 ≤ i ≤ n

x
(i)
del :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M = {π(1, i)(i) → ε},
P I = {π(2, i)(i)},
F I = ∅,
PO = ∅,
FO = {a(i), a(i), a(i) | a ∈ V },
α =←, β = s,
1 ≤ i ≤ n− 1

x(n) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M = {π(3, n) → π(3, n)(n)},
P I = {π(1, n)(n)},
F I = U \ (V ∪ {π(1, n)(n)}),
PO = {π(3, n)(n)},
FO = ∅,
α =↓, β = s.

Group 3.

Node M PI FI PO FO α β

xerr1 {[a, i] → [a, i+ 1] | {[a, 1] | ∅ {[a, 4n] ∅ + w
a ∈ V, 1 ≤ i ≤ 4n− 1} a ∈ V } | a ∈ V }

xerr2 {[a, 4n] → a′ | a ∈ V }∪ {[a, 4n] V ′ U {[a, 4n] | + w
{a → a′ | a ∈ V } | a ∈ V } a ∈ V }

xdel1
err {a → ε | a ∈ V } V {[a, 4n] U ∅ ← w

| a ∈ V }
xdel2
err {a → ε | a ∈ V } V {[a, 4n] U ∅ ← w

| a ∈ V }

The halting and the accepting node, which are grouped together, are defined
respectively by

Group 4.

Halt :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M = ∅,
P I = U \ V,
FI = V,
PO = ∅,
FO = ∅,
α = ∗, β = s,

Accept :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M = {π(1, n)(n) → π(1, n)(n)},
P I = {π(1, n)(n), π(2, n)(n), π(3, n)(n)},
F I = V \ {π(1, n)(n), π(2, n)(n), π(3, n)(n)},
PO = ∅,
FO = {π(1, n)(n), π(2, n)(n), π(3, n)(n)},
α = ∗, β = s,

It is easy to note that the nodes from Group 2 and those from Group 3 will
never exchange pictures with each other. We analyze the computation of this
network on an input picture μ of size (k,m) for some k,m ≥ 1. In the input
node In, the following pictures are simultaneously produced: some pictures with

π(1, 1)(1) on the first row, provided that π(1, 1) appears in the first row of μ,
and several other pictures (at least one) all of them having exactly one symbol

[a, 1] for some a ∈ V . We first assume that at least one picture with π(1, 1)(1)

on its first row has been produced in In and follow the rest of the computation
on such a picture. For simplicity we consider the case k = 3 and m = n. All the

pictures with π(1, 1)(1) on the first row which go out from In can be received
only by either x(2), if n ≥ 2, or x(n), if n = 1. We assume n ≥ 2 and continue

Solving 2D-Pattern Matching with Networks of Picture Processors 165

the computation in x(2). Here an occurrence of π(1, 2) on the first row of all

pictures is replaced by π(1, 2)(2). All pictures where an occurrence of π(1, 2) has

been replaced by π(1, 2)(2) can leave x(2) and enter x(1) where an occurrence of

π(3, 1) on the last row is replaced by π(3, 1)(1). Now all pictures arrive in x(1)

where an occurrence of π(2, 1) on the leftmost column is replaced by π(2, 1)(1).
Note that if a picture does not have an occurrence of the symbol that is to be
replaced in any of the nodes x(2), x(1), and x(1), then it remains forever in that
node.

Pictures going out from x(1) can enter x
(1)
del only, where the leftmost column is

deleted provided that π(1, 1)(1) is situated on that column. The second condition
to continue the computation is that π(3, 1)(1) is also situated on the column

which is to be deleted in x
(1)
del. Therefore, the first column of μ must be

π(1, 1)
.
π(2, 1)
.
π(3, 1)

.

Now the process described above resumes for all pictures going out from x
(1)
del,

as all these pictures contain π(1, 2)(2) on their first row. Inductively, for every

1 ≤ i ≤ n − 2 every picture that has just gone out from x
(i)
del must contain

π(1, i+ 1)(i+1) on its first row. Further on, it must follow the following itinerary

through the network: x(i+2), x(i+1), x(i+ 1), x
(i+1)
del .

We now analyze the case when the symbol on the first row of a picture going

out from x
(n−1)
del is π(1, n)(n). This picture enters x(n) only, where an occurrence

of π(3, n) in the last row is replaced by π(3, n)(n) and then enters x(n) where an

occurrence of π(2, n) in the first column is replaced by π(2, n)(n). Now, if the

picture is
π(1, n)(n)

π(2, n)(n)
π(3, n)(n)

, then it enters simultaneously Halt and Accept, otherwise

it is lost. By these explanations we infer the followings:
– If μ is of size (3, n), then both nodes Halt and Accept become non-empty after
4n− 1 processing steps if and only if μ = π.
– If m < n, then the computation on μ will be eventually blocked after at most
m− 1 column deletions.
– If m > n, then the computation on μ will be eventually blocked after at most
n− 1 column deletions.
– If k < 3, then the computation on μ is blocked after the first column deletion.
– If k > 3, then the computation on μ will be eventually blocked after at most
n− 1 column deletions.
We now analyze the computation on a picture containing a symbol [a, 1] which
goes out from In. Such a picture enters xerr1, where [a, 1] is replaced successively
by [a, 2], [a, 3], . . . , [a, 4n]. Hence, after 4n − 1 processing steps all pictures in
xerr1 contain a symbol [a, 4n], for some a ∈ V . They can leave now xerr1 and
enter xerr2 only. A picture in xerr2 can be transformed in two ways: a symbol

166 H. Bordihn et al.

from V is replaced by its primed copy or [a, 4n] is replaced by a′. In the former
case, the picture cannot leave xerr2, while in the later, the picture leaves xerr2

and one copy enters xdel1 and another enters xdel2. In each of these nodes, the
leftmost column is deleted provided that it contains a symbol from V . Now a
“ping-pong” process starts between the two nodes xdel1 and xdel2. This process
continues until either the picture becomes empty or the leftmost column does
not contain any symbol from V . If the current picture contains symbols from V ′

only, it enters Halt and the computation halts. By these explanations, we infer
that Halt will always receive a picture from the nodes in Group 3 but not earlier
than 4n processing steps.

In conclusion, the computation on μ always halts. It halts after either 4n− 1
processing steps, which means that μ = π, or 4n − 1 + k′ + n′ − 1 > 4n − 1
processing steps, provided that the input picture is of size (k′, n′), hence μ �= π.

��

We give now a solution to the picture matching based on ANEPP, provided
that the pattern is of size (k, n) or (n, k) for any 1 ≤ k ≤ 3 and n ≥ 1.

Theorem 3. Let π be a picture of size (k, l) for some 1 ≤ k ≤ 3 and l ≥ 1. The
language {θ | π is a subpicture of θ} can be decided by an ANEPP.

Proof. We give only an informal description of the construction which is based
on a pretty simple idea. The network defined in the proof of Theorem 2 will be
used as a subnetwork as follows. The node In of that network is renamed xI

all the other nodes remaining unchanged. The network we intend to construct
contains nine nodes more:
– In, which is a substitution node where a symbol is replaced by itself everywhere
in the picture.
– two identical nodes deleting the leftmost column.
– two identical nodes deleting the rightmost column.
– two identical nodes deleting the uppermost row.
– two identical nodes deleting the undermost row.
All these nodes can receive pictures containing original symbols only such that
as soon as a picture entered one node from any of the Groups 1,2,3, it cannot
further returns to these nodes. As one can see, these new 9 nodes cut from
the input picture arbitrary subpictures. Clearly, all subpictures of the same size
are produced simultaneously. All subpictures of the same size received by the
subnetwork are matched against the pattern π in parallel. A short discussion is
in order here. Assume that an input picture is of size (m,n); all pictures of the
same size (k′, l′) will be sent to the subnetwork after exactly (m−k′)+(n− l′)+1
processing steps. If at least one of these subpictures is identical to π, both halting
and accepting node will eventually be non-empty afterm−k+n−l+4l processing
steps. In this case, the input picture is accepted. If the halting node is empty
after m− k+n− l+4l, it will definitely become non-empty after m+n+4l− 1
processing steps. As m + n + 4l − 1 > m − k + n − l + 4l, the input picture is
rejected. ��

Solving 2D-Pattern Matching with Networks of Picture Processors 167

Note that the network constructed in the previous proof (nodes, rules, filters,
symbols) does not depend on the input picture but on the pattern only.

Various algorithms exist for the exact two-dimensional matching problem. The
fastest algorithms for finding a rectangular picture pattern of size (k, l) in a
given picture of size (n,m) run in O(n ×m+ k × l) time, see, e.g., [3,21]. It is
rather easy to note that an ANEPP which decides whether a pattern of size (k, l),
1 ≤ k ≤ 3, l ≥ 1, appears in a given picture of size (n,m) does this in O(n+m+l)
computational (processing and communication) steps. On the other hand, the
space complexity of the algorithm proposed in [21] is O(n×m+ k× l), while in
our case the number of pictures moving through the network is exponential. We
recall that some biological phenomena are sources of inspiration for our model.
In this context, it is considered to be biologically feasible to have sufficiently
many identical copies of a molecule. By techniques of genetic engineering, in a
linear number of laboratory operations one can get an exponential number of
identical 2-dimensional molecules [1,2].

It is worth mentioning that the construction described above can be easily
extended to an ANEPP able to detect, in the same number of computational
steps, any pattern from a finite sets of pictures of the same size. It suffices to
construct an independent subnetwork for each pattern.

Theorem 4. Given a finite set F of patterns of size (k, l) and (l, k) for all
1 ≤ k ≤ 3 and l ≥ 1, the pattern matching problem with patterns from F can be
solved by ANEPPs in O(n+m+l) computational (processing and communication)
steps.

However, this approach is not suitable for detecting patterns of a different
size that those considered above. In the sequel, we show how the picture pattern
matching can be completely solved with ANPP, that is with networks having
both types of nodes: evolutionary processors and hiding processors. As the idea is
the same, it suffices to construct an ANPP able to decide the singleton language
formed by a given picture.

Theorem 5. Let π be a picture of size (k, l), for some k, l ≥ 1 over an alphabet
V . The language {π} can be decided by an ANPP.

The idea of the proof is the same as that from the proof of Theorem 2, namely
it consists in two disjoint subnetworks, one of them checking whether the input
picture is identical to π, and the other one making a sufficiently long computation
which ends in the halting node but allows the first network to complete its
computation. The complete proof is left to the reader.

We are now able to give the complete solution based on ANPPs to the problem
of picture matching:

Theorem 6. Given a finite set F of patterns of size (k, l) and (l, k) for any
k, l ≥ 1, the pattern matching problem with patterns from F can be solved by
ANPPs in O(n + m + kl + k) computational (processing and communication)
steps.

168 H. Bordihn et al.

Clearly, the networks including both evolutionary and hiding processors seem
to be more powerful than ANEPPs considered in [4]. A natural further step is to in-
vestigate the computational power and other computational properties of ANPPs.

References

1. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.: Running time and program size
for self-assembled squares. In: Proc. 33rd ACM STOC, pp. 740–748 (2001)

2. Aggarwal, G., et al.: Complexities for generalized models of self-assembly. SIAM
Journal on Computing 34, 1493–1515 (2005)

3. Amir, A., Benson, G., Farach, M.: Alphabet independent two dimensional matching.
In: Proc. 24th ACM STOC, pp. 59–68 (1992)

4. Bottoni, P., Labella, A., Mitrana, V.: Networks of evolutionary picture processors.
Fundamenta Informaticae 131, 337–349 (2014)

5. Bozapalidis, S., Grammatikopoulou, A.: Recognizable picture series. J. of Au-
tomata, Languages and Combinatorics 10, 159–183 (2005)

6. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Handbook of Formal
Languages, pp. 215–267. Springer (1997)

7. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern
Recognition and Artificial Intelligence 6, 241–256 (1992)

8. Inoue, I., Takanami, I.: A survey of two-dimensional automata theory. In: Dassow,
J., Kelemen, J. (eds.) IMYCS 1988. LNCS, vol. 381, pp. 72–91. Springer, Heidelberg
(1989)

9. Manea, F., Mart́ın-Vide, C., Mitrana, V.: Accepting networks of evolutionary word
and picture processors: A survey. In: Scientific Applications of Language Methods.
Mathematics, Computing, Language, and Life: Frontiers in Mathematical Linguis-
tics and Language Theory, vol. 2, pp. 523–560. World Scientific (2010)

10. Margenstern, M., Mitrana, V., Jesús Pérez-J́ımenez, M.: Accepting Hybrid Net-
works of Evolutionary Processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.)
DNA 2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)

11. Marriott, K., Meyer, B.E.: Visual Language Theory. Springer (1998)
12. Maürer, I.: Characterizations of recognizable picture series. Theoretical Computer

Science 374, 214–228 (2007)
13. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, New York

(1982)
14. Rosenfeld, A., Siromoney, R.: Picture languages – a survey. Languages of Design 1,

229–245 (1993)
15. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and

picture languages. Computer Graphics and Image Processing 1, 284–307 (1972)
16. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewrit-

ing rules. Information and Control 22, 447–470 (1973)
17. Subramanian, K.G., Siromoney, R.: On array grammars and languages. Cybernet-

ics and Systems 18, 77–98 (1987)
18. Wang, P.S.: Hierarchical structure and complexities of parallel isometric patterns.

IEEE Trans. PAM I 5, 92–99 (1983)
19. Wang, P.S.: Sequential/parallel matrix array languages. Journal of Cybernetics 5,

19–36 (1975)
20. Wang, P.S., Bunke, H. (eds.): Handbook on Optical Character Recognition and

Document Image Analysis. World Scientific (1996)
21. Zhu, R.F., Takaoka, T.: A technique for two-dimensional pattern matching. Com-

munications of the ACM 32, 1110–1120 (1989)

Unavoidable Sets and Regularity of Languages

Generated by (1,3)-Circular Splicing Systems�

Clelia De Felice, Rocco Zaccagnino, and Rosalba Zizza

Dipartimento di Informatica, University of Salerno, Italy
{defelice,zaccagnino,zizza}@dia.unisa.it

Abstract. Circular splicing systems are a formal model of a generative
mechanism of circular words, inspired by a recombinant behaviour of
circular DNA. They are defined by a finite alphabet A, an initial set
I of circular words and a set R of rules. Berstel, Boasson and Fagnot
(2012) showed that if I is context-sensitive and R is finite, then the
generated language is context-sensitive. Moreover, when I is context-
free and the rules are of a simple type (alphabetic splicing systems) the
generated language is context-free. In this paper, we focus on the still
unknown relations between regular languages and circular splicing sys-
tems with a finite initial set and a finite set of rules represented by a
pair of letters ((1,3)-CSSH systems). We prove necessary conditions for
(1,3)-CSSH systems generating regular languages. We introduce a spe-
cial class of (1,3)-CSSH systems, hybrid systems, and we prove that if
a hybrid system generates a regular language, then the full lineariza-
tion of its initial set is unavoidable, a notion introduced by Ehrenfeucht,
Haussler and Rozenberg (1983). Hybrid systems include two previously
considered classes of (1,3)-CSSH systems: complete systems and transi-
tive marked systems. Unavoidability of the full linearization of the initial
set has been previously proved to characterize complete systems gener-
ating regular languages whereas transitive marked systems generating
regular languages are characterized by a property of the set of rules. We
conjecture that this property of the set of rules, along with unavoidabil-
ity of the full linearization of the initial set, still characterizes hybrid
systems generating regular languages.

Keywords: Nature-inspired models of computation, splicing systems,
regular languages.

1 Introduction

Circular splicing systems were introduced in [14] along with various open prob-
lems related to their computational power (see [16,22] and [2] for a recent survey

� Partially supported by the FARB Project “Aspetti algebrici e computazionali nella
teoria dei codici e dei linguaggi formali” (University of Salerno, 2012), the FARB
Project “Aspetti algebrici e computazionali nella teoria dei codici, degli automi e dei
linguaggi formali” (University of Salerno, 2013) and the MIUR PRIN 2010-2011
grant “Automata and Formal Languages: Mathematical and Applicative Aspects”,
code H41J12000190001.

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 169–180, 2014.
c© Springer International Publishing Switzerland 2014

170 C. De Felice, R. Zaccagnino, and R. Zizza

on this topic). In the circular context, the splicing operation acts on two circular
DNA molecules by means of a pair of restriction enzymes as follows. Each of
these two enzymes is able to recognize a pattern inside one of the given circular
DNA molecules and to cut the molecule in the middle of such a pattern. Two
linear molecules are produced and then they are pasted together by the action of
ligase enzymes. Thus, a new circular DNA sequence is generated [13,16,22,27].
For instance, circular splicing models the integration of a plasmid into the DNA
of a host bacterium [15]. Depending on whether or not these ligase enzymes sub-
stitute the recognized pattern (in nature, both situations can happen), we have
the Pixton definition or the Head and Păun definition, which will be used in this
paper. Obviously a string of circular DNA can be represented by a circular word,
i.e., by an equivalence class with respect to the conjugacy relation ∼, defined by
xy ∼ yx, for x, y ∈ A∗ [19]. The set of all strings equivalent to a given word w
is the full linearization of the circular word ∼w. A circular language is a set of
circular words. It is regular (resp. context-free, context-sensitive) if so is its full
linearization, i.e., the union of the full linearizations of its elements.

The circular splicing operation is applied to two circular words and a circular
word may be generated. A Păun circular splicing system is a triple S = (A, I,R)
where A is a finite alphabet, I is the initial circular language and R is the set of
rules r, represented as quadruples of words r = u1#u2$u3#u4 [16]. The circular
language generated by a circular splicing system S (splicing language) is the
smallest language which contains I and is invariant under iterated splicing by
rules in R. In this paper by a splicing system we always mean a finite Păun system
S, i.e., a Păun circular splicing system with I and R being finite sets and with
no additional hypotheses. It is known that the corresponding class of generated
circular languages is not comparable with the class of regular circular languages
[4,21,26] and it is contained in the class of context-sensitive circular languages
[1]. In [1], the authors also proved that the splicing language is context-free if it
is generated by an alphabetic splicing system (i.e., a splicing system such that
in any rule u1#u2$u3#u4, the words uj are letters or the empty word). In this
framework, the following still open questions may be asked.

Problem 1 (P1). Given a splicing system, can we decide whether the correspond-
ing generated language is regular?

Problem 2 (P2). Given a regular circular language, can we decide whether it is
a splicing language?

Problem 3 (P3). Can we characterize the structure of the regular circular lan-
guages which are splicing languages?

A question similar to Problem 2 has been solved in [1]. Moreover, the above
problems have been solved for unary languages [4,5].

In this paper, we tackle Problem 1 for a special class of alphabetic splicing
systems, namely (1, 3)-CSSH systems. Păun circular semi-simple splicing sys-
tems (or CSSH systems), previously considered in [7,8,26], are such that both
u1u2, u3u4 have length one for any rule u1#u2$u3#u4. A (1, 3)-CSSH system is

Unavoidable Sets and (1,3)-Circular Splicing Systems 171

a CSSH system such that u2 = u4 = 1. Therefore R is a symmetric binary rela-
tion on A. We recall that Problems 1–3 have been already considered for some
classes of splicing systems, namely alphabetic, marked and complete systems. A
(1, 3)-CSSH system S = (A, I,R) is complete if R = A×A whereas S is marked
if I = A (see Section 3 for further details). The known results are summarized
in the following table. For each of the above Problems 1–3, the array below
indicates whether the answer is positive for the corresponding class of splicing
systems (see [4], [1], [10] and [6] for the results in the first, second, third and
fourth column respectively).

Card(A) = 1 alphabetic marked complete
P1 yes ? yes yes
P2 yes yes yes ?
P3 yes ? yes ?

In this paper, we prove necessary conditions for (1,3)-CSSH systems gener-
ating regular languages. Then, we introduce hybrid systems. Roughly, a hybrid
system S = (A, I,R) is a (1,3)-CSSH system such that the undirected graph
(A,R) is connected and all letters in the words of I appear in a rule of R. We
prove that if a hybrid system generates a regular circular language, then the
full linearization of I is unavoidable, a notion introduced in [11]. Hybrid sys-
tems include complete systems and (transitive) marked systems. Unavoidability
of the full linearization of I has been previously proved to characterize complete
systems generating regular languages whereas (transitive) marked systems gen-
erating regular languages are characterized by a property of the set of rules. We
conjecture that this property of the set of rules, along with unavoidability of
the full linearization of I, still characterizes hybrid systems generating regular
languages.

The paper is organized as follows. Basics on words and splicing are collected
in Section 2. Known results on Problem 1 with an outline of the results proved
in this paper are in Section 3. A necessary condition for the regularity of lan-
guages generated by (1, 3)-CSSH systems is stated in Section 4. Hybrid systems
are defined in Section 5 where we also prove one of the main results. Another
necessary condition for the regularity of languages generated by (1, 3)-CSSH sys-
tems is given in Section 6. Finally, in Section 7 we discuss future perspectives
that follow on from the above results.

2 Basics on Words and Splicing

We suppose the reader familiar with classical notions in formal languages
[12,17,19,24]. We denote by A∗ the free monoid over a finite alphabet A and
we set A+ = A∗ \ 1, where 1 is the empty word. For a word w ∈ A∗, |w| is the
length of w and for every a ∈ A, w ∈ A∗, we denote by |w|a the number of
occurrences of a in w. We also set alph(w) = {a ∈ A | |w|a > 0}. A word x ∈ A∗

is a factor of w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1xu2. If u1 = 1
(resp. u2 = 1) then x is a prefix (resp. suffix) of w. We denote by Pref(L) the

172 C. De Felice, R. Zaccagnino, and R. Zizza

set of all prefixes of the words in L. A language is regular if it is recognized by
a finite automaton.

Given w ∈ A∗, a circular word ∼w is the equivalence class of w with respect
to the conjugacy relation ∼ defined by xy ∼ yx, for x, y ∈ A∗ [19]. The notations
|∼w|, |∼w|a, alph(∼w) will be defined as |w|, |w|a, alph(w), for any representative
w of ∼w. When the context does not make it ambiguous, we will use the notation
w for a circular word ∼w. Let ∼A∗ denote the set of all circular words over A,
i.e., the quotient of A∗ with respect to ∼. Given L ⊆ A∗, ∼L = {∼w | w ∈ L}
is the circularization of L whereas, given a circular language C ⊆ ∼A∗, every
L ⊆ A∗ such that ∼L = C is a linearization of C. In particular, a linearization
of ∼w is a linearization of {∼w}, whereas the full linearization Lin(C) of C is
defined by Lin(C) = {w ∈ A∗ | ∼w ∈ C}. Notice that we will often write ∼w
instead of {∼w}. Given a family of languages FA in the Chomsky hierarchy,
FA∼ is the set of all those circular languages C which have some linearization
in FA. For instance, if Reg is the family of regular languages, then Reg∼ is the
class of circular languages C such that C = ∼L for some regular language L.
If C ∈ Reg∼ then C is a regular circular language. Analogously, we can define
context-free (resp. context-sensitive) circular languages. It is classically known
that given a regular (resp. context-free, context-sensitive) language L ⊆ A∗,
Lin(∼L) is regular (resp. context-free, context-sensitive) [17,18]. As a result, a
circular language C is regular (resp. context-free, context-sensitive) if and only
if Lin(C) is a regular (resp. context-free, context-sensitive) language [16].

A Păun circular splicing system is a triple S = (A, I,R), where A is a finite
alphabet, I is the initial circular language, with I ⊆ ∼A∗, I �= ∅, and R is
the set of rules, with R ⊆ A∗#A∗$A∗#A∗ and #, $ �∈ A. Given a rule, r =
u1#u2$u3#u4 and circular words ∼w′, ∼w′′, if there are linearizations w′ of
∼w′, w′′ of ∼w′′ and words h, k, such that w′ = u2hu1, w

′′ = u4ku3, then the
result of the splicing operation applied to ∼w′ and ∼w′′ by r is the circular word
∼w such that w = u2hu1u4ku3. Therefore, we set (∼w′,∼w′′)�r

∼w and we say
that ∼w is generated (or spliced) starting with ∼w′, ∼w′′ and by using a rule r.
The splicing operation is extended to circular languages in order to obtain the
definition of circular splicing languages. Given a Păun circular splicing system S
and a circular language C ⊆ ∼A∗, we set σ′(C) = {w ∈ ∼A∗ | ∃w′, w′′ ∈ C, ∃r ∈
R : (w′, w′′)�r w}. We also define

σ0(C) = C,

σi+1(C) = σi(C) ∪ σ′(σi(C)), i ≥ 0,

σ∗(C) =
⋃

i≥0

σi(C).

Then, L(S) = σ∗(I) is the circular language generated by S. A circular language
C is Păun generated (or C is a circular splicing language) if a Păun circular
splicing system S exists such that C = L(S). We will only consider finite circular
splicing systems, i.e. with a finite initial set and a finite set of rules. Moreover,
as observed in [6], in order to find a characterization of the circular splicing
languages, there is no loss of generality in assuming that the set R of the rules is

Unavoidable Sets and (1,3)-Circular Splicing Systems 173

symmetric (i.e., for each u1#u2$u3#u4 ∈ R, we have u3#u4$u1#u2 ∈ R). Thus,
in what follows, we assume that R is symmetric. However, for simplicity, in the
examples of Păun systems, only one of either u1#u2$u3#u4 or u3#u4$u1#u2

will be reported in the set of rules. A finite circular splicing system S = (A, I,R)
is a Păun circular semi-simple splicing system (or CSSH system) if both u1u2,
u3u4 have length one for any rule u1#u2$u3#u4 in R [7,8,26]. A (1, 3)-CSSH
system is a CSSH system such that u2 = u4 = 1.

3 Outline of the Results

In this paper, we will focus on (1, 3)-CSSH systems S = (A, I,R). Therefore R
is a symmetric binary relation on A and (ai, aj) will be an abridged notation
for a rule ai#1$aj#1 in R. We suppose that I does not contain the empty
word (adding the empty word to I will only add the empty word to L(S) [10]).
Moreover, set alph(I) = ∪w∈I alph(w) and alph(R) = {ai | (ai, aj) ∈ R}. We
also suppose that alph(R) ⊆ alph(I) (i.e., for any rule (ai, aj) there are x, y ∈ I
such that ai ∈ alph(x), aj ∈ alph(y)) and alph(w) ∩ alph(R) �= ∅, for any w ∈ I
(i.e., for any w ∈ I there is (ai, aj) in R such that ai or aj is in alph(w)). Indeed,
omitting rules or circular words in I which do not intervene in the application of
the splicing operation, will not change the language generated by a CSSH system,
beyond the finite set of words removed from I. This result was incorrectly stated
for Păun circular splicing systems in [10] but it is not difficult to see that it holds
for CSSH systems.

As said, a characterization of circular splicing systems generating regular cir-
cular languages is known for two classes of (1, 3)-CSSH systems. These results
are recalled below and were the starting point of our investigation. The definition
of unavoidable set is needed. This notion appeared in a paper by Schützenberger
[25], then explicitly introduced in [11] and considered also by other authors [9,23].
Notice that there are algorithms to check that a given finite set Y is unavoidable
(see Chapter 1 in [20]).

Definition 4. Let A be an alphabet, let X,Y be subsets of A∗. Y is unavoidable
in X if there exists k0 ∈ N such that for any x in X, with |x| > k0, there
exists y ∈ Y which is a factor of x, i.e., x = x1yx2. The integer k0 is called an
avoidance bound for Y . Y is unavoidable if Y is unavoidable in A∗. If Y is not
unavoidable, then it is avoidable.

A (1, 3)-CSSH system S = (A, I,R) is complete if A = alph(I) = alph(R) and
R = A×A. There is a close relation between complete systems and pure unitary
grammars introduced in [11]. Thanks to this relation, in [6] it has been proved
that a complete system S = (A, I,R) generates a regular circular language if
and only if Lin(I) is unavoidable. More generally, this condition characterizes
monotone complete systems generating regular circular languages (a monotone
complete system is a CSSH system such that for two fixed integers i, j, with
1 ≤ i < j ≤ 4, one has ui = uj = 1 in any rule u1#u2$u3#u4) [6].

174 C. De Felice, R. Zaccagnino, and R. Zizza

A (1, 3)-CSSH system S = (A, I,R) is a transitive marked system if the undi-
rected graph (A,R) is connected and I = A. Let G be the simple graph induced
by (A,R), i.e., obtained by dropping the self-loops - edges from a vertex to it-
self - in (A,R). In [3,10], it has been proved that S generates a regular circular
language if and only if every connected subgraph of G induced by a set of 4
vertices is not P4 = ({a1, a2, a3, a4}, {(a1, a2), (a2, a3), (a3, a4)}). As a matter of
fact, in [10], a solution to Problem 1 has been given for the more general classes
of marked and extended marked systems.

In Section 5, we introduce hybrid systems. Roughly they are (1, 3)-CSSH
systems S = (A, I,R) such that the undirected graph (A,R) is connected and
A = alph(I) = alph(R). Thus, transitive marked systems are hybrid and so are
complete systems. We conjecture that a hybrid system S = (A, I,R) generates a
regular circular language if and only if Lin(I) is unavoidable and every connected
subgraph of (A,R), with no self-loops, induced by a set of 4 vertices is not P4

(see Section 7). As a first step towards a solution of the conjecture, we prove that
unavoidability of Lin(I) is a necessary condition for regularity of L(S) (see Sec-
tion 5). This is a consequence of a more general result, stating the unavoidability
of Lin(I) in Pref(Lin(L(S))) as a necessary condition for the regularity of the
language L(S) generated by a (1, 3)-CSSH system S (see Section 4). Finally, we
prove another necessary condition for the regularity of the language generated
by a (1, 3)-CSSH system (see Section 6). The former necessary condition seems
to be unrelated to the latter.

4 Regular Languages and Unavoidable Sets

In this section we will prove that if a (1, 3)-CSSH system S generates a regular
circular language, then the full linearization of its initial set is unavoidable in a
special set related to L(S). This statement, along with all intermediate results,
is a generalization of statements and results in [11]. In particular, the following
proposition is well known [11].

Proposition 5. Let L be a regular language. There exists an integer N such
that if uv ∈ L, then there is v′ ∈ A∗ such that |v′| ≤ N and uv′ ∈ L.

Lemma 6. Let S = (A, I,R) be a (1, 3)-CSSH system, let Y = Lin(I). If w ∈
Lin(L(S)), then there is y ∈ Y which is a factor of w.

Proof. Let w ∈ Lin(L(S)). We prove the statement by induction on |w|. If w ∈
Y we have nothing to prove. Otherwise, by the definition of L(S), w ∼ x1x2

with x1, x2 words in Lin(L(S)), both shorter than w. Therefore, we may assume
w = zx2t with tz = x1. By induction hypothesis, there is y ∈ Y which is a factor
of x2 and so also of w.

�

Definition 7. For any finite, nonempty Y ⊆ A∗, we set �Y = max{|v| | v ∈ Y }.

The following lemma is close to a result proved in [11].

Unavoidable Sets and (1,3)-Circular Splicing Systems 175

Lemma 8. Let S = (A, I,R) be a (1, 3)-CSSH system, let Y = Lin(I). If uv ∈
Lin(L(S)) and |u| > (�Y − 1)|v|, then there is y ∈ Y which is a factor of u.

Proof. Let uv ∈ Lin(L(S)) with |u| > (�Y − 1)|v|. We prove the statement
by induction on |v|. If |v| = 0, then our claim holds by Lemma 6. Otherwise,
uv �∈ Y since |uv| > �Y and, by the definition of L(S), uv ∼ x1x2 with x1, x2

words in Lin(L(S)), both shorter than uv. Therefore, we may assume uv = zx2t
with tz = x1. Recall that zt is also in Lin(L(S)). If x2 is a factor of u, then
the statement holds for x2 = x2 · 1 (induction hypothesis) and so also for u.
If x2 is a factor of v, then zt = uz′t with z′t shorter than v. By induction
hypothesis, applied to zt and to its prefix u, there is y ∈ Y which is a factor
of u. Otherwise, set u = zu1 and v = v1t, with u1v1 = x2, u1 �= 1, v1 �= 1. If
t = 1, then u = zu1 = x1u1, hence the statement holds for x1 = x1 ·1 (induction
hypothesis) and so also for u. Assume t �= 1. Thus v1 and t are both shorter
than v. Since |u| > (�Y − 1)|v|, we have |u1| > (�Y − 1)|v1| or |z| > (�Y − 1)|t|.
By using induction hypothesis, applied to x2 in the first case and to zt in the
second case, there is a word y in Y which is a factor of a factor of u and so y is
a factor of u.

�

Proposition 9. Let S = (A, I,R) be a (1, 3)-CSSH system, let Y = Lin(I). If
L(S) is a regular circular language, then Y is unavoidable in Pref(Lin(L(S))).

Proof. Let L(S) be a regular circular language, where S = (A, I,R) is a (1, 3)-
CSSH system. Let N be the integer defined by Proposition 5 for Lin(L(S)).
We prove that Y is unavoidable in Pref(Lin(L(S))), with an avoidance bound
k0 = N(�Y − 1).

Let u ∈ Pref(Lin(L(S))) with |u| > k0. Then there is a word v such that
uv ∈ Lin(L(S)). Moreover, by Proposition 5, we may assume that |v| ≤ N .
Thus, |u| > N(�Y − 1) ≥ |v|(�Y − 1) and, by Lemma 8, there is y ∈ Y which is
a factor of u.

�

5 Hybrid Systems

In this section we investigate hybrid systems, defined below.

Definition 10. A hybrid system is a (1, 3)-CSSH system S = (A, I,R) such
that

(1) A = alph(R) = alph(I),
(2) For any ai, aj ∈ A there are b1, . . . , bk ∈ A, with k ≥ 2, such that:

b1 = ai, bk = aj,
∀h ∈ {1, . . . , k − 1}, (bh, bh+1) ∈ R.

Example 11. The (1, 3)-CSSH system S = (A, I,R), defined by A = {a, b},
I = ∼{ab, a, b} and R = {(a, b)}, is hybrid. For any ai, aj ∈ A, condition (2) is

176 C. De Felice, R. Zaccagnino, and R. Zizza

satisfied with k = 3 for ai = aj, with k = 2 otherwise. The (1, 3)-CSSH system
S′ = (A, I ′, R′), where I ′ = ∼{ab, a} and R′ = {(a, a)}, is not a hybrid system
since b is in alph(I ′) but b is not in alph(R′).

Corollary 13 is a direct consequence of Proposition 9 and of the following
result.

Proposition 12. If S = (A, I,R) is a hybrid system, then Pref(Lin(L(S))) =
A∗.

Proof. Let S = (A, I,R) be a hybrid system and let w ∈ A∗. We may assume
w = a1 · · · an, with ai ∈ A, 1 ≤ i ≤ n. We prove our claim by induction on
n. Since Y = Lin(I) is closed under the conjugacy relation and A = alph(Y),
we know that for any a ∈ A, there are words y′, z′ such that az′, y′a ∈ Y .
In particular, there is a word z′ such that anz

′ ∈ Lin(L(S)). This proves our
claim if n = 1. Otherwise, by induction hypothesis, there is a word x such that
a1 · · · an−1x ∈ Lin(L(S)). Let anz

′ = y′1c, with c ∈ A. Since S is hybrid, there
are b1, . . . , bk ∈ A, with k ≥ 2, b1 = c, bk = an−1 and (bh, bh+1) ∈ R, with
1 ≤ h ≤ k−1. Hence, there are also yh = y′hbh ∈ Y , 2 ≤ h ≤ k−1 (there may be
no such integers h if k = 2). Set y1 = anz

′ = y′1c. One can prove by induction on
k that the word w′ = y1y2 · · · yk−1 is in Lin(L(S)). Indeed, this holds for k = 2
by hypothesis. Moreover, if y1y2 · · · yj−1yj = y1y2 · · · yj−1y

′
jbj is in Lin(L(S))

then, by (bj , bj+1) ∈ R, we also have y1y2 · · · yjyj+1 = y1y2 · · · y′jbjy′j+1bj+1 in
Lin(L(S)). Let v, v′ be words such that w′ = y1y2 · · · yk−1 = anv = v′bk−1.
Hence xa1 · · · an−1 and w′ = y1y2 · · · yk−1 = v′bk−1 are both in Lin(L(S))
and (an−1, bk−1) = (bk, bk−1) ∈ R. By the definition of the splicing opera-
tion, the word xa1 · · · an−1w

′ = xa1 · · · an−1anv is in Lin(L(S)), which yields
a1 · · · an−1anvx ∈ Lin(L(S)). Thus w is in Pref(Lin(L(S))).

�

Corollary 13. Let S = (A, I,R) be a hybrid system, let Y = Lin(I). If L(S) is
a regular circular language, then Y is unavoidable.

Proof. Let S = (A, I,R), Y be as in the statement. By Proposition 9, Y is
unavoidable in Pref(Lin(L(S))) and, by Proposition 12, Pref(Lin(L(S))) = A∗.

�
Thanks to the previous result, we can state that the initial set of each hybrid

system generating a regular circular language must contain a power of each letter
of the alphabet.

Corollary 14. Let S = (A, I,R) be a hybrid system. If L(S) is a regular circular
language, then for any a ∈ A there exists n ∈ N such that an ∈ I.

Proof. Let S = (A, I,R) be a hybrid system such that L(S) is a regular circular
language. Let Y = Lin(I). If there existed a ∈ A such that Y ∩ a∗ = ∅, Y would
be avoidable. Indeed, for any n ∈ N, no word in Y would be a factor of an.

�

Unavoidable Sets and (1,3)-Circular Splicing Systems 177

6 A Necessary Condition for Regularity of Languages
Generated by (1, 3)-CSSH Systems

We now provide another necessary condition for regularity of languages gener-
ated by (1, 3)-CSSH systems, which seems to be unrelated to the one given in
Proposition 9.

Remark 15. Let w be a word over A such that Card(alph(w)) ≥ 2 and let a be
a letter in alph(w). Then either there exists an occurrence of a in w which is
followed by a different letter or there is a nonempty word x over A \ {a} such
that w = xat, t > 0. In both cases there exists w′, w′ ∼ w, ending with a and
starting with a different letter.

In the proof of the following proposition, we need the Myhill-Nerode charac-
terization of the regular sets [12]. We recall that the right congruence relation
≡L induced by a language L ⊆ A∗ is defined as follows. For a word w, let
FL(w) = {x ∈ A∗ | wx ∈ L}. Then, w ≡L w′ if and only if FL(w) = FL(w

′). A
language L is regular if and only if ≡L is of finite index, that is, the number of
equivalence classes induced by ≡L is finite.

Proposition 16. Let S = (A, I,R) be a (1, 3)-CSSH, let a ∈ A. If (a, b) ∈ R
for all b in A \ {a} and Lin(I) ∩ a∗ = ∅, then L(S) is not regular.

Proof. If Card(A) = 1 we have nothing to prove. Thus, assume Card(A) > 1. Let

a be a letter as in the statement. For any word w, set τa(w) =
|w|a
|w| . Moreover,

let M = max{τa(w) | w ∈ Lin(I)}. We may prove by induction that τa(w) ≤ M ,
for any word w in Lin(L(S)). This is clearly true if w ∈ Lin(I). Otherwise,
there is w′ ∼ w such that w′ = w1w2, with w1, w2 ∈ Lin(L(S)). Of course
τa(w) = τa(w

′) and moreover, by induction hypothesis, we have |w1|a ≤ M |w1|
and |w2|a ≤ M |w2|. Thus,

τa(w
′) =

|w′|a
|w′| =

|w1|a + |w2|a
|w′| ≤ M |w1|+M |w2|

|w′| = M.

Let w ∈ Lin(I) be such τa(w) = M . Since alph(R) ⊆ alph(I) we have M �= 0.
If Lin(I) ∩ a∗ = ∅, then Card(alph(w)) ≥ 2. Thus, there is w′, with w′ ∼ w and
such that w′ = bz, where z ends with a and b is a letter different from a (see
Remark 15). Since (a, b) ∈ R, the word bnzn is in Lin(L(S)) for any positive
integer n. On the other hand , for any integer m, with m > n, we have

τa(b
nzm) =

|bnzm|a
|bnzm| >

|bnzm|a
|bmzm| = τa(b

mzm) = τa((bz)
m) = M.

Therefore, the word bnzm is not in Lin(L(S)). In conclusion, bn �≡L bm, for any
n,m, with L = Lin(L(S)) and m > n. Hence there are an infinite number of
classes induced by ≡L and consequently Lin(L(S)) is not regular.

�

178 C. De Felice, R. Zaccagnino, and R. Zizza

7 Future Perspectives

In this paper we have presented necessary conditions for the regularity of lan-
guages generated by (1, 3)-CSSH systems. In particular, we have proved that if
a hybrid system generates a regular circular language, then the full linearization
of its initial set is an unavoidable set. One can ask whether the converse of this
statement is also true. The answer is negative, as Example 20 shows. Since hy-
brid systems include both transitive marked systems and complete systems, we
propose the following conjecture.

Conjecture 17. Let S = (A, I,R) be a hybrid system, let Y = Lin(I). Let G be
the simple graph induced by the undirected graph (A,R). The circular language
L(S) is regular if and only if Y is unavoidable and every connected subgraph of
G, induced by a set of 4 vertices, is not P4.

Notice that, if the conjecture were true, then given a hybrid system S =
(A, I,R), we could decide whether L(S) is regular. Indeed it is decidable whether
or not a finite set is unavoidable [11] and, of course, the above mentioned con-
dition on (A,R) is also decidable.

We have no counter-examples to the above conjecture. On the contrary, next
examples confirm it. The following result is needed: if S = (A1, I1, R1), S

′ =
(A2, I2, R2) are two circular splicing systems such that A1 ⊆ A2, I1 ⊆ I2 and
R1 ⊆ R2, then L(S) ⊆ L(S′) [10].

Example 18. Let S = (A, I,R) be the hybrid system defined by A = {a, b},
I = ∼{ab, a, b} and R = {(a, b)}. By the definitions, S is neither a marked
system nor a complete system. Observe that Lin(I) is unavoidable and P4 is not
a subgraph of (A,R). Let S′ = (A, I ′, R) with I ′ = ∼{a, b}. Then, {a, b}+\(a+a∪
b+b) = Lin(L(S′)) ⊆ Lin(L(S)) [10]. Clearly Lin(L(S)) ⊆ {a, b}+ \ (a+a ∪ b+b),
thus Lin(L(S)) = {a, b}+ \ (a+a∪ b+b). In conclusion, L(S) is a regular circular
language.

Example 19. Let S = (A, I,R) be the hybrid system defined by A = {a, b},
I = ∼{ab} and R = {(a, b)}. By the definitions, S is neither a marked system
nor a complete system. Morever, L(S) is not a regular circular language since
Lin(L(S)) ∩ a∗b∗ = {anbn | n > 0} [1,2]. Observe that P4 is not a subgraph of
(A,R) but Lin(I) is avoidable.

Example 20. Let S = (A, I,R) be the hybrid system defined by A = {a, b, c, d},
I = ∼{a, b, c, d, bc} and R = {(a, b), (b, c), (c, d)}. By the definitions, S is neither
a marked system nor a complete system. Observe that Lin(I) is unavoidable and
P4 is a subgraph of (A,R). Let S′ = (A, I ′, R) with I ′ = ∼{a, b, c, d}. Then,
L(S′) = L(S). Indeed, we know that L(S′) ⊆ L(S). Moreover, we can easily
prove that any word w in L(S) is also in L(S′). This is clear if w ∈ I, otherwise
we prove it by using induction on the number of applications of the splicing
operation that yield w. Since L(S′) is not regular, neither is L(S).

Unavoidable Sets and (1,3)-Circular Splicing Systems 179

We end this section by observing that we can transform any (1, 3)-CSSH sys-
tem S = (A, I,R) into an equivalent (1, 3)-CSSH system Sf = (A, If , Rf), with
alph(If) ⊆ alph(Rf) (as for the initial language in a hybrid system) and such
that L(S) is regular if and only if L(Sf) is regular. The objective is to transform
a (1, 3)-CSSH system into a more special system where the investigation of the
generating language is easier.

References

1. Berstel, J., Boasson, L., Fagnot, I.: Splicing systems and the Chomsky hierarchy.
Theoretical Computer Science 436, 2–22 (2012)

2. Boasson, L., Bonizzoni, P., De Felice, C., Fagnot, I., Fici, G., Zaccagnino, R., Zizza,
R.: Splicing systems from past to future: Old and new challenges (2015)

3. Bonizzoni, P., De Felice, C., Fici, G., Zizza, R.: On the regularity of circular splic-
ing languages: a survey and new developments. Natural Computing 9(2), 397–420
(2010)

4. Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: Circular splicing and regularity.
Theoretical Informatics and Applications 38(3), 189–228 (2004)

5. Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: On the power of circular splicing.
Discrete Applied Mathematics 150(1-3), 51–66 (2005)

6. Bonizzoni, P., De Felice, C., Zizza, R.: A characterization of (regular) circular
languages generated by monotone complete splicing systems. Theoretical Computer
Science 411(48), 4149–4161 (2010)

7. Ceterchi, R., Mart́ın-Vide, C., Subramanian, K.G.: On some classes of splicing
languages. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular
Computing. LNCS, vol. 2950, pp. 84–105. Springer, Heidelberg (2003)

8. Ceterchi, R., Subramanian, K.G.: Simple circular splicing systems. Romanian Jour-
nal of Information Science and Technology 6(1-2), 121–134 (2003)

9. Choffrut, C., Culik II, K.: On extendibility of unavoidable sets. Discrete Applied
Mathematics 9, 125–137 (1984)

10. De Felice, C., Fici, G., Zizza, R.: A characterization of regular circular languages
generated by marked splicing systems. Theoretical Computer Science 410(47-49),
4937–4960 (2009)

11. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-
guages. Theoretical Computer Science 27, 311–332 (1983)

12. Harrison, M.D.: Introduction to Formal Language Theory. Addison-Wesley Long-
man (1978)

13. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviours. Bulletin of Mathematical Biology 49, 737–759
(1987)

14. Head, T.: Splicing schemes and DNA. In: Rozenberg, G., Salomaa, A. (eds.) Lin-
denmayer systems: impacts on theoretical computer science, computer graphics,
and developmental biology, pp. 371–383. Springer (1992)

15. Head, T.: Circular suggestions for DNA computing. In: Carbone, A., Prusinkiewicz,
P., Gromov, M. (eds.) Pattern formation in biology, vision and dynamics. World
Scientific (2000)

16. Head, T., Păun, G., Pixton, D.: Language theory and molecular genetics: generative
mechanisms suggested by DNA recombination. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 295–360. Springer (1997)

180 C. De Felice, R. Zaccagnino, and R. Zizza

17. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley series in computer science, 2nd edn.
Addison-Wesley-Longman (2001)

18. Kudlek, M.: On languages of cyclic words. In: Jonoska, N., Păun, G., Rozenberg, G.
(eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 278–288. Springer,
Heidelberg (2003)

19. Lothaire, M.: Combinatorics on Words, 2nd edn. Cambridge University Press
(1997) (1st edn. 1983)

20. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press
(2002)

21. Pixton, D.: Regularity of splicing languages. Discrete Applied Mathematics
69(1-2), 101–124 (1996)

22. Păun, G., Rozenberg, G., Salomaa, A.: DNA computing - new computing
paradigms. Texts in Theoretical Computer Science. Springer (1998)

23. Rosaz, L.: Inventories of unavoidable languages and the word-extension conjecture.
Theoretical Computer Science 201(1-2), 151–170 (1998)

24. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
25. Schützenberger, M.P.: On the synchronizing properties of certain prefix codes. In-

formation and Control 7(1), 23–36 (1964)
26. Siromoney, R., Subramanian, K.G., Dare, V.R.: Circular DNA and splicing sys-

tems. In: Nakamura, A., Saoudi, A., Inoue, K., Wang, P.S.P., Nivat, M. (eds.)
ICPIA 1992. LNCS, vol. 654, pp. 260–273. Springer, Heidelberg (1992)

27. Zizza, R.: Splicing systems. Scholarpedia 5(7), 9397 (2010)

A Two-Dimensional Extension

of Insertion Systems

Kaoru Fujioka

International College of Arts and Sciences
Fukuoka Women’s University

1-1-1 Kasumigaoka Higashi-ku, Fukuoka 813-8529, Japan
kaoru@fwu.ac.jp

Abstract. Insertion systems are extended to two-dimensional models
that are used to generate picture languages. Insertion rules are defined
in terms of rows and columns. Using picture-insertion rules, we herein
introduce two types of derivations that depend on the position at which
the rules are applied. We obtain the relationships between the classes of
languages generated by picture-insertion systems for each type of deriva-
tion and a number of two-dimensional computing models, such as tiling
systems. Furthermore, we introduce regular control for the derivations in
picture-insertion systems. Finally, we compare the classes of languages
generated by picture-insertion systems with and without regular control.

Keywords: picture languages, insertion systems, tiling systems.

1 Introduction

A number of approaches to represent and generate picture languages (two-
dimensional languages), such as tiling systems, automata, regular expressions,
and grammars [11], [5], [9], [1], have been reported. Some of the ideas behind
these approaches are based on concepts related to string languages, and the cor-
responding results are proved which are extended from language properties into
two-dimensional languages.

On the other hand, insertion and deletion systems are computing models that
are based on the field of molecular biology and can characterize any recursively
enumerable language that was originally defined for string languages.

Several methods for generating two-dimensional languages based on insertion
and deletion operations have been proposed [8]. In [2], an array single-contextual
insertion deletion system for two-dimensional pictures (ASInsDelP) was intro-
duced based on DNA computation. With an insertion rule consisting of context-
checking picture u and inserting picture x, a picture αuxuβ is obtained from
a given picture αuβ by replicative transposition operation, which implies that
columns are inserted by the insertion rule.

Computing models based on DNA molecules have evolved and increasingly
complex structures have been introduced. Winfree [13] introduced a tile assembly
model with DNA tile over two-dimensional arrays. A specialized model for DNA

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 181–192, 2014.
c© Springer International Publishing Switzerland 2014

182 K. Fujioka

pattern assembly was proposed in [6] and theory of DNA pattern assembly has
been recently developed.

In this paper, we focus on insertion operations with double context-checking
strings while extending insertion systems from one dimension to two dimensions
and then introduce picture-insertion systems to generate picture languages. The
picture-insertion operation introduced herein is related to the (one-dimensional)
insertion operations of the form (u, x, v) to produce a string αuxvβ from a given
string αuvβ with context uv by inserting a string x between u and v [10].

A derivation proceeds using picture-insertion rules in order to generate arrays.
In one step of the derivation, pictures of the same size are inserted in either every
row or every column. We introduce two modes of applying picture-insertion
rules: alongside mode and independent mode. In the alongside mode, pictures
are inserted in the same column (resp. row) for any row (resp. column). In the
independent mode, there is no restriction as to the position of insertion regarding
rows or columns.

Furthermore, we introduce regular control for the derivations and demon-
strated that the proposed control properly increases the generative powers of
picture-insertion systems.

2 Preliminaries

In this section, we introduce the notation and basic definitions used in this paper.
The basics of formal language theory are available in [11] and [10].

For an alphabet Σ, a picture p is a two-dimensional rectangular array of
elements of Σ. Σ∗∗ (resp. Σ∗) is the set of all pictures (resp. strings) over Σ,
including the empty picture (resp. empty string) λ. A picture language (resp.
language) over Σ is a subset of Σ∗∗ (resp. Σ∗).

For a picture p ∈ Σ∗∗, let �1(p) (resp. �2(p)) be the number of rows (resp.
columns) of p. For a picture p in Σ∗∗, |p| = (m,n) denotes the size of the picture
p with m = �1(p) and n = �2(p). In particular, for a string w in Σ∗, |w| denotes
the length of w. For a string w = a1a2 · · ·an, wT is a vertical string, such as
a1
...
an

. For a picture p with |p| = (m,n), the transposition of p is a picture q with

|q| = (n,m) such that rows and columns of p are interchanged.
For any h ≤ m and k ≤ n, Bh,k(p) is the set of all sub-pictures of p of size

(h, k).
For pictures p and q, the row and column concatenations are denoted by p� q

and p |©q, respectively, which are defined if �2(p) = �2(q) (resp. �1(p) = �1(q))
holds. For k ≥ 0, pk� (resp. pk |©) is the vertical (horizontal) juxtaposition of k
p’s. For picture languages L1 and L2, L1�L2 (resp. L1 |©L2) consists of pictures
p such that p = p1 � p2 (resp. p = p1 |©p2) with p1 ∈ L1 and p2 ∈ L2.

Next, we present a number of two-dimensional computing models. A tile is
a square picture of size (2, 2). For a finite set θ of tiles over alphabet Γ ∪ {#},
LOC(θ) denotes the set {p ∈ Γ ∗∗ | B2,2(p̂) ⊆ θ}, where p̂ is a picture obtained

A Two-Dimensional Extension of Insertion Systems 183

by surrounding p with the symbol #. A picture language L over Γ is local if
L = LOC(θ) for some tile set θ.

For alphabets Γ and Σ, a coding ϕ : Γ ∗ → Σ∗ is a morphism such that
for any a in Γ , ϕ(a) ∈ Σ holds. A projection π : Γ ∗ → Σ∗ with Γ ⊇ Σ is a
morphism such that if a is in Σ then π(a) = a, otherwise π(a) = λ.

A tiling system is a tuple T = (Σ,Γ, θ, π), where Σ and Γ are alphabets, θ is
a finite set of tiles over the alphabet Γ ∪ {#}, and π : Γ → Σ is a projection.
A language L(T) defined by a tiling system T is L(T) = π(LOC(θ)). Let REC
be the class of picture languages generated by tiling systems.

Based on a pure context-free rule of the form a → α with a ∈ Σ and α ∈ Σ∗ in
one dimension, a pure 2D context-free grammar G = (Σ,Pc, Pr, A) is considered
in [12] , where Σ is an alphabet, Pc = {tci | 1 ≤ i ≤ m}, Pr = {trj | 1 ≤ j ≤ n},
and A ⊆ Σ∗∗ − {λ} is a finite set of pictures over Σ. A column table tci (1 ≤
i ≤ m) is a set of pure context-free rules such that for any two rules a → α,
b → β in tci , |α| = |β| holds. Similarly, a row table trj (1 ≤ j ≤ n) is a set of
pure context-free rules of the form a → αT , a ∈ Σ, α ∈ Σ∗ such that for any
two rules a → αT , b → βT in trj , |α| = |β| holds.

Let P2DCFL be the class of picture languages generated by pure 2D context-
free grammars.

A context-free matrix grammar (G1, G2) consists of two grammars G1 and G2,
where

– G1 = (H1, I1, P1, S) is a context-free grammar,H1 is a finite set of horizontal
nonterminals, I1 = {S1, · · · , Sk} is a finite set of intermediate symbols with
H1 ∩ I1 = ∅, P1 is a finite set of context-free rules, S is the start symbol in
H1,

– G2 = (G21, · · · , G2k), where G2i = (V2i, Σ, P2i, S2i) with 1 ≤ i ≤ k is a
regular grammar, V2i is a finite set of nonterminals with V2i ∩ V2j = ∅ for
i �= j, Σ is an alphabet, P2i is a finite set of regular rules of the form X → aY
or X → a with X,Y ∈ V2i, a ∈ Σ, S2i in V2i is the start symbol.

A regular matrix grammar is a context-free matrix grammar (G1, G2), where
both G1 and G2 are regular grammars. Let CFML (resp. RML) be the class of
picture languages generated by context-free (resp. regular) matrix grammars.

Let us conclude this section by presenting an insertion system for string lan-
guages [10], based on which we introduce a picture-insertion system in the next
section. An insertion system is a tuple γ = (Σ,P,A), where Σ is an alphabet,
P is a finite set of insertion rules of the form (u, x, v) with u, x, v ∈ Σ∗, and A
is a finite set of strings over Σ called axioms.

We write α =⇒ β if α = α1uvα2 and β = α1uxvα2 for some insertion rule
(u, x, v) ∈ P with α1, α2 ∈ Σ∗. The reflexive and transitive closure of =⇒ is
defined as =⇒∗. A language generated by γ is defined as L(γ) = {w ∈ Σ∗ |
s =⇒∗ w, for some s ∈ A}.

Let INS be the class of string languages generated by insertion systems.

184 K. Fujioka

3 Picture-Insertion Systems

We introduce a picture-insertion system with two types of tables consisting of
insertion rules for columns and rows, as follows:

Definition 1. A picture-insertion system is a tuple γ = (Σ, Ic, Ir, A), where Σ
is an alphabet, Ic = {tci | 1 ≤ i ≤ m}, (resp. Ir = {trj | 1 ≤ j ≤ n}) is a finite
set of column (resp. row) tables, and A is a finite set of pictures over Σ.

Each tci (1 ≤ i ≤ m) is a set of C-type picture-insertion rules of the form
(u,w, v) with u, v ∈ Σ∗ and w ∈ Σ+ such that for any two rules (u,w, v) and
(x, z, y) in tci , we have |u| = |x|, |w| = |z|, and |v| = |y|.

Each trj (1 ≤ j ≤ n) is a set of R-type picture-insertion rules of the form(
u,
w,
v

)

with uT , vT ∈ Σ∗ and wT ∈ Σ+ such that for any two rules

(
u,
w,
v

)

and

(
x,
z,
y

)

in trj , we have |u| = |x|, |w| = |z|, and |v| = |y|.

Intuitively, a C-type (resp. R-type) rule refers to an insertion rule for a row
(resp. column), then widen the column (resp. row) of pictures.

Next, we define two methods for applying insertion rules for pictures in order
to obtain arrays.

Definition 2. For pictures p1 and p2 in Σ∗∗, we say that p1 derives p2 denoted
by p1 =⇒a p2 with alongside mode if p2 is obtained from p1 by inserting pictures
with the same column (resp. row) for each row (resp. column) using C-type (resp.
R-type) insertion rules of some tci (resp. trj) in Ic (resp. Ir).

In a graphical representation of C-type picture-insertion rules, we have

=⇒a

α1

αk′

αk

u1 v1 β1 α1

αk′

αk

u1 v1 β1

· · ·

· · ·

· · ·

· · ·
uk′

uk

· · ·

· · · · · ·

· · ·
vk′

vk

βk′

βk

uk′

uk

· · ·
w1

· · · · · ·
wk′

wk

· · ·· · ·

· · · · · · · · · · · · · · ·
vk′ βk′

βkvk

We note that different C-type (resp. R-type) insertion rules might be applied
for rows (resp. columns) in the process of p1 =⇒a p2.

Definition 3. For pictures p1 and p2 in Σ∗∗, we say that p1 derives p2 denoted
by p1 =⇒i p2 with the independent mode if p2 is obtained from p1 by inserting
pictures for each row (resp. column) using C-type (reps. R-type) insertion rules
of some tci (resp. trj) in Ic (resp. Ir).

In a graphical representation of C-type picture-insertion rules, we have

A Two-Dimensional Extension of Insertion Systems 185

=⇒i

α1

αk′

αk

u1 v1 β1 α1

αk′

αk

u1 v1 β1

· · ·

· · ·

· · ·

· · ·
uk′

uk

· · ·

· · · · · ·

· · ·
vk′

vk

βk′

βk

uk′

uk

· · ·
w1

· · · · · ·
wk′

wk

· · ·· · ·

· · · · · · · · · · · · · · ·
vk′ βk′

βkvk

Different C-type (resp. R-type) insertion rules might be applied to rows (resp.
columns) in the process of p1 =⇒i p2.

Unlike the alongside mode in Definition 2, there is no restriction regarding the
position at which to apply picture-insertion rules in the process of p1 =⇒i p2.

The reflexive and transitive closure of =⇒a (resp. =⇒i) is defined as =⇒∗
a

(resp. =⇒∗
i). A picture language generated by γ = (Σ, Ic, Ir, A) using the along-

side mode (resp. independent mode) is defined as La(γ) = {w ∈ Σ∗∗ | s =⇒∗
a w,

for some s ∈ A} (resp. Li(γ) = {w ∈ Σ∗∗ | s =⇒∗
i w, for some s ∈ A}).

Let INPA (resp. INPI) be the class of picture languages generated by
picture-insertion systems using the alongside mode (resp. independent mode).

4 Examples

In the following, we present examples of picture-insertion systems.

Example 4. Consider a picture-insertion system γ1 = (Σ, Ic, Ir, A), where Σ =

{a, b}, Ic = {tc1} with tc1 = {(λ, ab, λ)}, Ir = {tr1} with tr1 = {
(
a,
a,
λ

)

,

(
b,
b,
λ

)

},

A = {λ}.
The picture language La(γ1) generated by γ1 using the alongside mode is

{wk� | w is Dyck’s string language over {a, b}, k ≥ 0 }. For example, the
following pictures are generated using the alongside mode:

ab, ab
ab ,

ab
ab
ab

, aabb
aabb ,

aabb
aabb
aabb

, aabbab
aabbab ,

aabbab
aabbab
aabbab

,
aabbabab
aabbabab
aabbabab
aabbabab

.

From the R-type insertion rules in tr1 and the definition of the alongside
mode, all of the row strings are the same.

On the other hand, we consider the picture language Li(γ1) generated by γ1
using the independent mode. For example, the following pictures are generated
using the independent mode:

ab, ab
ab ,

ab
ab
ab

, aabb
abab ,

aabb
abab
abab

, aaabbb
ababab ,

aaabbb
ababab
ababab

,
aaaabbbb
aaaabbbb
abababab
abababab

.

Any picture generated by γ1 using the independent mode satisfies the condi-
tion that any row must consist of a Dyck language over Σ. From the definition
of the independent mode, Li(γ1) includes a picture with different row strings.

Furthermore, we have the inclusion La(γ) ⊂ Li(γ).

186 K. Fujioka

As shown in Example 4, picture-insertion systems are two-dimensional gener-
alizations of insertion systems in linear cases. Actually, for the case with Pr = ∅,
the picture-insertion system generates strings using both the alongside mode and
the independent mode. Then, a Dyck language is generated, as noted in Lemma
7. Note that a Dyck language is not regular (in a one-dimensional sense), which
implies that both INPA and INPI include a picture language which is not
regular.

Example 5. Consider a picture-insertion system γ2 = (Σ, Ic, Ir, A), where
Σ = {a, b, d, e},
Ic = {tc1, tc2},
Ir = {tr1, tr2},
tc1 = {(u, ab, λ) | u ∈ {a, b}} ∪ {(u, de, λ) | u ∈ {d, e}},
tc2 = {(λ, ab, v) | v ∈ {a, b}} ∪ {(λ, de, v) | v ∈ {d, e}},

tr1 = {
(
u,
w,
λ

)

| w = (ad)T , u ∈ {a, d}} ∪ {
(
u,
w,
λ

)

| w = (de)T , u ∈ {d, e}},

tr2 = {
(
λ,
w,
v

)

| w = (be)T , u ∈ {b, e}} ∪ {
(
λ,
w,
v

)

| w = (be)T , v ∈ {b, e}},

A = { ab
de }.

The following are examples of the pictures generated by γ using the alongside
mode:

aabb
ddee ,

aaabbb
dddeee ,

abab
dede ,

ababab
dedede ,

aabb
aabb
ddee
ddee

,
abab
dede
abab
dede

.

Note that the pictures generated by γ2 using the alongside mode are Chinese
boxes, which are nested boxes with two-dimensional Dyck analogue structures.
The symbol a (resp. b, d, and e) implies the upper left (resp. upper right, lower
left, and lower right) corner of the box.

5 Properties and Comparisons of Picture-Insertion
Systems Using the Alongside Mode

We first consider picture-insertion systems using the alongside mode and obtain
the following result.

Lemma 6. The class of INPA is not closed under the operations of union,
column catenation, or row catenation. The class is closed under transposition.

Proof. Consider the picture language La(γ1) in Example 4 and the picture lan-
guage L1, which is obtained by replacing b with d in La(γ1).

Suppose that there is a picture-insertion system γ′ = ({a, b, d}, P ′
c, P

′
r, A

′)
such that La(γ1) ∪ L1 = La(γ

′). For infinite pictures over {a, b} in La(γ1),
there is a picture-insertion rule (u,w, v) with |w|a = |w|b. Similarly, for L1, we
have a picture-insertion rule (x, z, y) with |z|a = |z|d. In order to generate only
pictures in La(γ1) ∪ L2, any picture-insertion rule (u,w, v) with |w|a = |w|b
satisfies |uv|b > 0. Otherwise, γ′ generates a picture p which satisfies |p|b > 0
and |p|d > 0.

A Two-Dimensional Extension of Insertion Systems 187

Similarly, for infinite pictures over {a, d} in L1, a picture-insertion rule (x,
z, y) with |z|a = |z|d satisfies |xy|d > 0.

Let n = max{|u|, |v|, |w| | (u,w, v) be a picture-insertion rule for γ′}, �a =
max{�1(α) | α ∈ A′}, and N > n + �a. Consider the string aNabaNb2N in
L1 ⊂ La(γ

′). There is no way to generate the string by a picture-insertion rule
(u,w, v) with |uv|b > 0 and |w|a = |w|b due to the substring ab between aN and
aN .

The non-closure property under column catenation and row catenation can
be determined by considering La(γ1)� L2 and La(γ1) |©L2, respectively.

The closure property under transposition can be determined if we substitute
column (resp. row) tables with row (resp. column) tables by replacing the rule

(u,w, v) (resp.

(
uT ,
wT ,
vT

)

) with

(
uT ,
wT ,
vT

)

(resp. (u,w, v)) and consider transposi-

tion axiom. ��

From the construction of tiling systems, defined by the projection of local
languages, tiling systems are considered to be two-dimensional generalizations
of one-dimensional regular languages. In one-dimensional cases, for the class of
regular languages denoted by REG, the proper inclusion REG ⊂ INS holds,
where INS is the class of languages generated by insertion systems in one dimen-
sion. In contrast to the one-dimensional cases, for the class of picture languages
generated by tiling systems denoted by REC, we obtain the following result.

Lemma 7. The class of INPA is incomparable with the class of REC.

Proof. Consider a picture-insertion system γ2 = (Σ, Ic, Ir, A), where Σ = {a, b},
Ic = {tc1} with tc1 = {(λ, ab, λ)}, Ir = ∅, A = {λ} derived from Example 4.

The class of REC coincides with that of regular languages if restricted to one
dimension. A language La(γ2) in a one-dimensional language is a Dyck language
which is not regular. Therefore, there is a picture-insertion system γ2 such that
La(γ2) is not generated by a tiling system.

Consider a picture language Ls over {a, b}, where Ls consists of squares, the
positions in the main diagonal of which are covered by a and the remaining
squares are covered by b. From [11], Ls is in the class of REC.

Suppose that there is a picture-insertion system γ such that Ls = La(γ). For
a picture w in {a, b}∗∗, there is a derivation w =⇒a w′ using the C-type insertion
rule such that |w| = (m,m) and |w′| = (m,m′) with m′ > m. For the picture w′

in Ls, |w′| = (m,m′) with m �= m′ holds. Thus, we have a contradiction.
Thus, the lemma is proved. ��

We compare the class of INPA to the class of P2DCFL as follows.

Lemma 8. The class of INPA is incomparable with the class of P2DCFL.

Proof. Consider a pure 2D context-free grammar G = (Σ,Pc, Pr, { aba
ded }), where

Σ = {a, b, d, e}, Pc = {tc}, Pr = {tr} with tc = {b → aba, e → ded} and

tr = {a → a
d , b → b

e } [12].

188 K. Fujioka

Suppose that there is a picture-insertion system γ = (Σ, Ic, Ir, A) such that
L(G) = La(γ). Any row in L(G) consists of strings such that anban or dnedn

with n ≥ 1.
There is no picture-insertion rule that can generate these strings, which can be

proved by contradiction. Briefly, a picture-insertion rule (u,w, v) with w ∈ {a}∗
(resp. w ∈ {d}∗) needed for infinitely long anban (resp. dnedn) generates a string
aibaj (resp. diedj) with i �= j.

On the other hand, consider a picture-insertion system γ3 = ({a, b}, Ic3, Ir3,
A3) such that Ic3 = {tc3} with tc3 = {(ab, ab, λ)}, Ir3 = {tr3} with tr3 =

{
(
a,
a,
λ

)

,

(
b,
b,
λ

)

}, A3 = {a3b3ab, a3b3}. A picture language La(γ3) consists of

pictures such that (a3b3(ab)n)m� with m ≥ 1, n ≥ 0. From [7][12], there is no
pure 2D context-free grammar which generates La(γ3).

Thus, the lemma is proved. ��
In the following, we consider two types of matrix grammars. First, from the

picture language La(γ2) in Lemma 7 and the fact that a Dyck language is not
regular in a one-dimensional sense, we obtain the following result.

Corollary 9. There is a picture language in the class of INPA which is not in
the class of RML.

Lemma 10. Every picture language in the class of RML is a coding of a lan-
guage in the class of INPA.

Proof. (Outline)
The proof is based on the idea that in a one-dimensional sense, the class of
regular languages REG is included in the class of insertion systems INS [10].

Consider a regular matrix grammar (G1, G2), where G1 = (H1, I1, P1, S) and
G2 = (G21, · · · , G2k) with G2i = (V2i, Σ, P2i, S2i) (1 ≤ i ≤ k) are regular.

For regular languages L(G1) and L(G2i) (1 ≤ i ≤ k), there are picture-
insertion systems γ′

1 = (I1, P1, A1), γ
′
2i = (Σ,P2i, A2i) and integers n1, n2i such

that L(G1) = L(γ′
1), L(G2i) = L(γ′

2i), and the axiom in γ′
1 (resp. γ′

2i) is no more
than n1 − 1 (resp. n2i − 1). (See [10] for more details about how to define the
integers n1 and n2i.)

Let N be the least common multiple of n2i (1 ≤ i ≤ k).
We construct a picture-insertion system with the additional symbols γ =

(Σ ∪ {S2i | 1 ≤ i ≤ k} ∪ {#}, Ic, Ir, A) and a coding ϕ : (Σ ∪ {S2i | 1 ≤ i ≤
k} ∪ {#})∗ → Σ∗ with ϕ(a) = a for a ∈ Σ and ϕ(a) = λ otherwise.

Roughly speaking, the regular language L(G1) is simulated by C-type picture-
insertion rules in γ and the regular language L(G2i) is simulated by R-type
picture-insertion rules in γ. Finally, the coding ϕ deletes the redundant symbols
S2i (resp. #) required to simulate G2i (resp. G1).

A finite set of pictures A satisfies A = { w
#n | w ∈ A1, |w| = n}. We construct

C-type picture-insertion rules (u,w, λ) and (#m,#n, λ), where (u,w, λ) is in P1

concerning γ′
1 and |u| = m, |w| = n. The symbol # lies in the bottommost of

each picture.

A Two-Dimensional Extension of Insertion Systems 189

We construct R-type picture-insertion rules

– R1-type:

(
S2i,
z2i,
#

)

, where z2i ∈ L(G2i), �1(z2i) ≤ N − 1

– R2-type:

(
u2i,
w2i,
λ

)

, �1(u2i) ≤ N − 1, 1 ≤ �1(w2i) ≤ N derived from P2i.

Let Ic (resp. Ir) consists of column (resp. row) tables, where each table in-
cludes all the C-type (resp. R-type) picture-insertion rules with the same length
of triplet.

By the context-checking of picture-insertion rules, concerning R-type picture-
insertion rules, the R1-type rules are applied first and only once. Then, R2-type
picture-insertion rules are used to simulate L(G2i).

The topmost row generated byG1 can be simulated by C-type picture-insertion
rules, and each column can be simulated by R-type picture-insertion rules. Fi-
nally, we eliminate the symbols S2i and # using the coding ϕ. ��

Corollary 11. The class of INPA is incomparable with the class of CFML.

Proof. In the one-dimensional case, the class of insertion systems is incomparable
with that of context-free languages. Thus, the corollary holds for these one-
dimensional language relationships. ��

6 Properties and Comparisons of Picture-Insertion
Systems Using the Independent Mode

Next, we consider picture-insertion systems using the independent mode and
obtain the following results.

Lemma 12. The class of INPI is not closed under the operations of union,
column catenation, or row catenation. The class is closed under transposition.

Proof. Consider the picture languages Li(γ1) in Example 4 and the picture lan-
guage L4 which is obtained by placing d in the place of b as for Li(γ1).

The proof is similar to the proof for Lemma 6 for picture-insertion systems
using the alongside mode. ��

For the generative powers, in the following, we compare picture-insertion sys-
tems with tiling systems.

Lemma 13. The class of INPI is incomparable with the class of REC.

Proof. The proof is similar to the proof for Lemma 7. ��

Lemma 14. The class of INPI is incomparable with the class of P2DCFL.

190 K. Fujioka

Proof. The proof is almost the same as Lemma 8.

Consider a pure 2D context-free grammar G = (Σ,Pc, Pr, { aba
ded }) in Lemma

8. As in Lemma 8, we can prove by contradiction that there is no picture-insertion
system γ such that L(G) = Li(γ).

Next, we consider a picture-insertion system γ3 = ({a, b}, Ic, Ir, A) in Lemma
8. A picture language Li(γ3) consists of pictures such that (a3b3(ab)n)m� with
m ≥ 1 and n ≥ 0.

From the above two results, we obtain the claim. ��

Note 15. Consider a picture-insertion system γ = (Σ, Ic, Ir , A), the C-type rule
of which is of the form (a, w, λ) with a ∈ Σ, w ∈ Σ∗, and the R-type rule is of

the form

(
a,
wT ,
λ

)

with a ∈ Σ, wT ∈ Σ∗.

Then, there is a pure 2D context-free grammar G such that Li(γ) = L(G).
The proof is obvious from the definition. For example, a C-type picture-insertion
rule (a, w, λ) can be simulated by the rule a → aw. Therefore, a restricted
insertion system using the independent mode is simulated by a pure 2D context-
free grammar.

Lemma 16. Both, INPA and INPI are incomparable.

Proof. Consider the picture-insertion system γ1 over Σ = {a, b} in Example 4.
We show that the picture language La(γ1) in INPA is not in INPI.

Suppose that there is a picture-insertion system γ such that La(γ1) = Li(γ).
Each column table in γ consists of one C-type picture-insertion rule. For any
string w in a Dyck language, and C-type picture-insertion rule, the derivation
in γ proceeds deterministically, i.e., there should be only one place where the
picture-insertion rule can be applied. Otherwise, the picture-insertion rule can
generate a picture with different row strings.

For a C-type picture-insertion rule (u,w, v) which satisfies αuvβ =⇒a αuwvβ
with α, u, w, v, β ∈ Σ∗ and αuvβ, αuwvβ ∈ La(γ1). For the string αuvβαuvβ in
La(γ1), there are two substrings uv in αuvβαuvβ for which we can apply the
picture-insertion rule (u,w, v). Thus, we have a contradiction.

On the other hand, we show that the picture language Li(γ1) in INPI is not
in INPA. Suppose that there is a picture-insertion system γ′ = (Σ, Ic, Ir, A)
such that Li(γ1) = La(γ

′). Let n = max{�1(α) | α ∈ A}+max{|uwv| | (u,w, v)
be a C-type picture-insertion rule in Ic}.

Consider a picture
a2nb2nab
aba2nb2n . For the first row a2nb2nab, a picture-insertion

rule is applied to the nested structure of a2nb2n at least twice. On the other
hand, for the second row aba2nb2n, the substring ab without a nested structure
is followed by a2nb2n. Therefore, there is no way to generate the picture using
the alongside mode.

From the above two results, we obtain the claim. ��

A Two-Dimensional Extension of Insertion Systems 191

7 Picture-Insertion Systems with Regular Control

We introduce an additional function for picture-insertion systems to control the
application of picture-insertion rules. As is noted in [12], controlling the applica-
tion with a regular language remains the generative power in general. However,
the control for pure 2D context-free grammars properly increases their genera-
tive power. We apply regular control to picture-insertion systems and present
the results below.

Definition 17. A picture-insertion system with regular control γ(R) is a tuple
(γ,R), where γ = (Σ, Ic, Ir , A) is a picture-insertion system and R is a regular
language over Γ with a set of table labels of Ic and Ir.

For pictures p1 and p2 in Σ∗∗, we write p1
t

=⇒a p2 (resp. p1
t

=⇒i p2) if
p1 derives p2 using the alongside mode (resp. independent mode) using C-type
(resp. R-type) insertion rules in the column table t in Ic (resp. Ir).

For a picture-insertion system γ = (Σ, Ic, Ir, A) and a regular language R
over Γ , a regular control picture-insertion language La(γ(R)) using the alongside

mode is a set of pictures w ∈ Σ∗∗ such that S
α

=⇒a w, α ∈ Γ ∗, α ∈ R. Similarly, a
regular control picture-insertion language Li(γ(R)) using the independent mode

is a set of pictures w ∈ Σ∗∗ such that S
α

=⇒i w, α ∈ Γ ∗, α ∈ R.
Let INPAC (resp. INPIC) be a set of regular control picture-insertion lan-

guages using the alongside mode (resp. independent mode).

Example 18. Consider a picture-insertion system γ1 = (Σ, Ic, Ir, A) in Example
4 and a regular language R = {(tc1tr1tr1)n | n ≥ 1} with tc1 = {(λ, ab, λ)} and

tr1 = {
(
a,
a,
λ

)

,

(
b,
b,
λ

)

}.

The C-type insertion rule in tc1 inserts picture ab and widens two columns.
Each R-type rule in tr2 inserts the picture a or b and widens one row. The regular
control language (tc1tr1tr1)

n with n ≥ 1 enables the generated pictures to be
proportionate to the lengths of rows and columns.

Lemma 19. INPA ⊂ INPAC. INPI ⊂ INPIC.

Proof. From the definition of INPAC and INPIC, the inclusions INPA ⊆
INPAC and INPI ⊆ INPIC are obvious.

As noted in Lemma 7, there is no picture-insertion system γ such that L(γ)
consists of squares.

From Example 18, there is a picture language which consists of infinitely many
square pictures in INPAC and INPIC. Then, the proper inclusion is proved.

��

The lemmas imply that regular control properly increases generative power
for picture-insertion systems.

192 K. Fujioka

8 Concluding Remarks

In this paper, we introduced picture-insertion systems which generate picture
languages and for the language classes generated by picture-insertion systems, we
considered comparisons with two-dimensional computing models. Furthermore,
in order to perform the derivations, we defined regular control of the picture-
insertion systems, which properly increases the generative powers.

In the future, as in the one-dimensional case, picture insertion-deletion sys-
tems can be defined in which we can use not only picture-insertion operations
but also deletion operations.

Using insertion systems together with some morphisms, characterizing and
representation theorems have been given for the one-dimensional case [3] [4].
We discuss whether similar representation theorems are possible in the two-
dimensional case.

Acknowledgments. The present study was supported by JSPS KAKENHI
Grant Number 23740081.

References

1. Cherubini, A., Crespi-Reghizzi, S., Pradella, M., Pietro, P.S.: Picture lan-
guages: Tiling systems versus tile rewriting grammars. Theoretical Computer Sci-
ence 356(1-2), 90–103 (2006)

2. Easwarakumar, K.S., Murugan, A.: Possibilities of constructing two dimensional
pictures in DNA computing: Part I. Int. J. Comput. Math. 82(11), 1307–1321
(2005)

3. Fujioka, K.: Morphic characterizations of languages in Chomsky hierarchy with
insertion and locality. Inf. Comput. 209(3), 397–408 (2011)

4. Fujioka, K.: Morphic characterizations with insertion systems controlled by a con-
text of length one. Theoretical Computer Science 469, 69–76 (2013)

5. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation
acceptors. Information Science 13(2), 95–121 (1977)

6. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE Trans.
on CAD of Integrated Circuits and Systems 27(5), 963–967 (2008)

7. Maurer, H.A., Salomaa, A., Wood, D.: Pure grammars. Information and Con-
trol 44(1), 47–72 (1980)

8. Murugan, A., Easwarakumar, K.S.: Possibilities of constructing two dimensional
pictures in DNA computing: Part II. Int. J. Comput. Math. 83(1), 1–20 (2006)

9. Pradella, M., Cherubini, A., Reghizzi, S.C.: A unifying approach to picture gram-
mars. Information and Computation 209(9), 1246–1267 (2011)

10. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing
Paradigms. Springer (1998)

11. Rozenberg, G., Salomaa, A. (eds.): Handbook of formal languages. Springer-Verlag
New York, Inc., New York (1997)

12. Subramanian, K.G., Ali, R.M., Geethalakshmi, M., Nagar, A.K.: Pure 2D picture
grammars and languages. Discrete Appl. Math. 157(16), 3401–3411 (2009)

13. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and Self-assembly of Two-
dimensional DNA Crystals. Nature 394, 539–544 (1998)

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 193–204, 2014.
© Springer International Publishing Switzerland 2014

Differential Evolution-Based Weighted Combination
of Distance Metrics for k-means Clustering

Muhammad Marwan Muhammad Fuad

Forskningsparken 3, Institutt for kjemi, NorStruct
The University of Tromsø - The Arctic University of Norway, NO-9037 Tromsø, Norway

marwan.fuad@uit.no

Abstract. Bio-inspired optimization algorithms have been successfully used to
solve many problems in engineering, science, and economics. In computer
science bio-inspired optimization has different applications in different domains
such as software engineering, networks, data mining, and many others. One of
the main tasks in data mining is clustering, namely k-means clustering. Distance
metrics are at the heart of all data mining tasks. In this paper we present a new
method which applies differential evolution, one of the main bio-inspired
optimization algorithms, on a time series k-means clustering task to set the
weights of the distance metrics used in a combination that is used to cluster the
time series. The weights are obtained by applying an optimization process that
gives optimal clustering quality. We show through extensive experiments how
this optimized combination outperforms all the other stand-alone distance
metrics, all by keeping the same low complexity of the distance metrics used in
the combination.

Keywords: Evolutionary Computing, Differential Evolution, Distance Metrics,
k-means Clustering, Time Series Data Mining.

1 Introduction

Global optimization is a ubiquitous problem that has a very broad range of
applications in engineering, economics, and others. In computer science optimization
has different applications in software engineering, networking, data mining and other
domains. Optimization can be defined as the action of finding the best-suited solution
of a problem within given constraints. These constraints can be in the boundaries of
the parameters controlling the optimization problem, or in the function to be
optimized. Optimization problems can be classified according to whether they are:
discrete/continuous/hybrid,constrained/unconstrained, single objective/multi-
objective, unimodal (one extreme point) / multimodal (several extreme points).

Formally, an optimization task can be defined as follows: Let []nbp21 x,...,x,xX =

be the candidate solution to the problem for which we are searching an optimal

solution. Given a function RR →⊆ nbpU:f , find the solution []*
nbp

*
2

*
1

* x,...,x,xX =

194 M.M. Muhammad Fuad

(nbp is the number of parameters) which satisfies () UX,XfXf * ∈∀≤⎟
⎠
⎞

⎜
⎝
⎛ . The

function f is called the fitness function, the objective function, or the cost function. It is
worth mentioning here that it is a convention for optimization problems to be
expressed as minimization problems since any maximization optimization problem
can be transformed into a minimization problem.

Metaheuristics are probabilistic optimization algorithms which are applicable to a
large variety of optimization problems. Many of these metaheuristics are inspired by
natural processes, natural phenomena, or by the collective intelligence of natural
agents, hence the term bio-inspired, also called nature-inspired, optimization
algorithms.

Bio-inspired optimization can be classified into two main families; the first is
Evolutionary Algorithms (EA). This family is probably the largest family of bio-
inspired algorithms. EA are population based algorithms that use the mechanisms of
Darwinian evolution such as selection, crossover and mutation. Of this family we cite
Genetic Algorithms (GA), Genetic Programming (GP), Evolution Strategies (ES), and
Differential Evolution (DE). The other family is Swarm Intelligence (SI). This family
uses algorithms which simulate the behavior of an intelligent biological system. Of
this family we mention Particle Swarm Intelligence (PSO), Ant Colony Optimization
(ACO), and Artificial Bee Colony (ABC). Fig. 1 shows the main bio-inspired
metaheuristics.

Fig. 1. Some of the main bio-inspired metaheuristics

Bio-inspired Optimization

Swarm IntelligenceEvolutionary Algorithms

Genetic Algorithms

Differential Evolution

Genetic Programming

Evolution Strategies

Particle Swarm Optimization

Artificial Ant Colony

Artificial Bee Colony

 Differential Evolution-Based Weighted Combination of Distance Metrics 195

Data mining is a field of computer science which handles several tasks such as
classification, clustering, anomaly detection, and others. Processing these tasks
usually requires extensive computing. As with other fields of computer science,
different papers have proposed applying bio-inspired optimization to data mining
tasks [11], [12], [13], [14], [15].

In this paper we apply one bio-inspired optimization technique on a particular task
of time series data mining which is k-means clustering. This task includes using a
distance metric or a similarity measure. In this work we use a weighted combination
of distance metrics to cluster the time series. The novelty of our work is that the
weights of the combination are obtained through an optimization process using
differential evolution as an optimizer. The experiments we conducted clearly show
how the proposed combination can enhance the quality of the k-means clustering of
time series compared with the clustering quality obtained when using the distance
metrics that constitute the combination as stand-alone distances.

The rest of the paper is organized as follows; the related work is presented in
Section 2, in Section 3 we introduce the new algorithm, which we test in Section 4.
We conclude this paper with Section 5.

2 Related Work

A time series is an ordered collection of observations at intervals of time points.
These observations are real-valued measurements of a particular phenomenon.

Time series data mining handles several tasks such as classification, clustering,
similarity search, motif discovery, anomaly detection, and others.

Clustering, also called unsupervised learning, is partitioning of the data objects into
groups, or clusters, so that the objects within a cluster are similar to one another and
dissimilar to objects in other clusters. [8]. There are several basic clustering methods
such as Partitioning Methods, Hierarchical Methods, Density-Based Methods, and
Grid-Based Methods. k-means, is a centroid-based partitioning technique which uses
the centroid (also called center) of a cluster; ci, to represent that cluster. Conceptually,
the centroid of a cluster is its center point. The centroid can be defined in various
ways such as by the mean of the objects assigned to the cluster. k-means is one of the
most widely used and studied clustering formulations [9] . In k-means clustering we
are given a set of n data points in d-dimensional space Rd and an integer k and the
problem is to determine a set of k points in Rd, the centroids, so as to minimize the
mean distance from each data point to its nearest center [9]. More formally, the k-
means clustering error can be measured by:

 ()∑∑
= =

=
k

1i

n

1j
iij

j

c,udE (1)

196 M.M. Muhammad Fuad

Where uij is the ith point in the jth cluster, and nj is the number of points in that
cluster. The quality of the k-means clustering increases as the error given in relation
(1) decrease. Fig. 2 shows the flow chart of the k-means algorithm.

The number of clusters is decided by the user, or application-dependent, or given by
some cluster validity measure.

Fig. 2. Flow chart of the k-means clustering algorithm

The k-means starts by selecting the centroids ci , which are usually chosen
randomly. In step two the membership of each of the n data points is determined by
assigning it to the nearest cluster centroid. In step three ci are re-calculated assuming
the memberships obtained in step two are correct. If none of the n data objects have
changed its membership the algorithm stops otherwise it goes back to step tow. Fig. 3
shows an example of the different steps of the k-means clustering with n=30 and k=3.

The concept of similarity on which clustering, and other data mining tasks, is based
is a fundamental one in data mining. In the similarity search problem a pattern or a
query is given and the similarity search algorithm seeks to retrieve the data objects in
the database that are “close” to that query according to some semantics that quantify
this closeness. This closeness or similarity is quantified using a principal concept
which is the similarity measure or its strongest form; the distance metric. Distance
metrics satisfy the well-known metric axioms (non-negativity, symmetry, identity,
triangle inequality). Metric spaces have many advantages, the most famous of which
is that a single indexing structure can be applied to several kinds of queries and data

Specify a value for k

The k-means clustering is obtained

Any of the n data
objects changed

membership? Yes

 No

Initialize the k cluster
centers randomly

Generate a new partition by assigning the n data
objects to the nearest cluster center

Re-calculate the k cluster centers
 based on the new membership

 Differential Evolution-Based Weighted Combination of Distance Metrics 197

types that are so different in nature. This is mainly important in establishing unifying
models for the search problem that are independent of the data type. This makes
metric spaces a solid structure that is able to deal with several data types [16]

 c1

 c3 c2

 c1

 c3

 c2

 c1

 c2

 c3

 c1

 c2

 c3

 c1

 c2

 c3

Fig. 3. The different steps of the k-means clustering algorithm

198 M.M. Muhammad Fuad

There are many similarity measures and distance metrics that are widely used in the
field of time series data mining; the most-widely known is the Minkowski distance.
This is actually a whole family of distances, the most famous of which are:

i- Euclidean Distance (L2)- defined between time series S and T as:

 () ()∑
=

−=
n

1i

2
ii2 tsT,SL (2)

ii- Manhattan Distance (L1)- defined as:

 () ()∑
=

−=
n

1i
ii1 tsT,SL (3)

This distance is also called the city block distance.

iii- Maximum Distance (L∞)- defined as:

 () ()ii
i

tsmaxT,SL −=∞ (4)

This distance is also called the infinity distance or the chessboard distance. Fig. 4
shows a few examples of the Minkowski distance.

It is important to mention here that one of the advantages of the members of the
Minkowski distance is their low computational complexity which is O(n). It is also
important to emphasize, and this is related to the experimental section of our paper,
that the aforementioned distances are all distance metrics. A last note about this,
which is also related to the experimental section of this work, is that all these
distances are applicable only to time series of the same length.

Fig. 4. From left to right; the Manhattan distance, the Euclidean distance, and the infinity
distance

L1

 •

L2

 •

L∞

 •

 Differential Evolution-Based Weighted Combination of Distance Metrics 199

3 Using a Combination of Distance Metrics for k-Means
Clustering

Instead of using one similarity measure or distance metric to handle data mining
tasks, we can use a combination of several similarity measures or distance metrics to
get better results. This idea has been proposed by several researchers before. In [2] the
authors propose utilizing a similarity function defined as a weighted combination of
several metrics to handle the similarity search problem. A similar idea was proposed
in [3] where the authors present a retrieval method based on a weighted combination
of feature vectors. However, these two works do not suggest using any optimization
algorithm to determine the weights.

In this paper we propose utilizing a weighted combination of distance metrics to
handle the k-means clustering task of time series data. The novelty of our method is:
(i) the weights are determined as the outcome of an optimization process and (ii) it
proposes a combination of distance metrics to handle a clustering task of time series
data.

Formally, we perform a k-means clustering task of time using a combination d
which is defined as:

 () ()∑
=

=
n

1i
ii T,SdT,Sd ω (5)

where []1,0i ∈ω .

Notice that we could also impose that ∑ =
i

i 1ω , but this would not make any

difference as this latter condition is simply a normalized version of the one used in
(5).

As mentioned earlier, we determine the weights iω through an optimization

process, where the objective function to be maximized is the quality of the k-means
clustering. The optimization algorithm we use is differential evolution.

3.1 Differential Evolution

Differential Evolution (DE) is an optimization method based on the principles of
genetics and natural selection. DE is considered as one the most powerful stochastic
optimization algorithms for continuous parameters [4]. DE has the same elements as a
standard evolutionary algorithm; i.e. a population of individuals, selection according
to fitness, crossover, and random mutation. DE creates an environment in which a
population of individuals, representing solutions to a particular problem, is allowed to
evolve under certain rules towards a state that minimizes the value of the fitness
function.

200 M.M. Muhammad Fuad

As with other evolutionary algorithms, the first step of DE is defining the problem
variables and the fitness function. The range of the variable values can be constrained
or unconstrained. A particular configuration of variables produces a certain value of
the fitness function and the objective of DE is to find the configuration that gives the
optimal value of the fitness function.

DE has many variations, but in the following we present the classical DE. DE starts
with a collection of randomly chosen individuals constituting a population, whose
size is popsize . Each of these solutions is a vector of nbp dimensions and it

represents a possible solution to the problem at hand. The fitness function of each
individual is evaluated. The next step is optimization. In this step for each individual

of the population, which we call the target vector iT at this stage, three mutually

distinct individuals 1rV , 2rV , 3rV , and different from iT , are chosen at random from

the population (hence the minimum value of popsize is 4). The donor vector D is

formed as a weighted difference of two of 1rV , 2rV , 3rV , added to the third; i.e.

()3r2r1r VVFVD −+= . F is called the mutation factor or the differentiation constant

and it is one of the control parameters of DE. F is usually chosen from [[10, .

The trial vector R is formed from elements of the target vector iT and elements of

the donor vector D according to different schemes such as the exponential and the
binomial ones [1]. In the following we present the crossover scheme presented in [6]
which we adopt in this paper; an integer Rnd is randomly chosen among the
dimensions []nbp,1 . This guarantees that at least one of the dimensions will be

changed. Then the trial vector R is formed as follows:

() [[() ()

⎪⎩

⎪
⎨
⎧ =∨<−+

=
otherwiset

iRndC,randifttFt
t

j,i

rj,ir,ir,ir,i
i

10321
 (6)

where nbp,...,i 1= . rC is the crossover constant, which is another control

parameter. The control parameters of DE are determined by the algorithm designer.
The next step of DE is selection. This step decides which of the trial vector and the

target vector will survive in the next generation and which will die out. The selection
is based on which of the two vectors; trial and target, yields a better value of the
fitness function.

Crossover and selection repeat for a certain number of generations NrGen , which is
the third control parameter of DE. Most algorithms add a stopping criterion, which
terminates DE if met, even if NrGen has not been reached.

 Differential Evolution-Based Weighted Combination of Distance Metrics 201

4 Experiments

We conducted extensive experiments using time series datasets of different sizes and
dimensions available at UCR [10]. This archive makes up between 90% and 100% of
all publicly available, labeled time series datasets in the world, and it represents the
interest of the data mining/database community, and not just one group [5].

The distances we are using in the combination in relation (5) are the Euclidean
distance, the Manhattan distance, and the maximum distance (relations (2), (3), and
(4)).

In the time series data mining community Dynamic Time Warping (DTW) [7] is
widely used, however we decided not to include it in the combination for several
reasons; first, DTW is a similarity measure and not a distance metric, while L2, L1, L∞

are all distance metrics, so their combination will result in a distance metric, while
combining a similarity measure (such as DTW) with distance metrics will result in a
similarity measure (this can be easily proved mathematically). The second reason why
we are not adding DTW to the combination is that DTW has a higher complexity,
which is O(mn) (or O(n2) if the two time series have the same length), whereas, the
three other distances have a complexity, as mentioned in Section 2, of O(n) . The third
reason for not adding DTW is that it is applied to time series of different lengths,
which is not the case with the other three distances. For all these reasons we decided
to exclude DTW from the combination despite its widespread use in time series data
mining, so our final combination is:

 () () () ()T,SLT,SLT,SLT,Sd 32211 ∞++= ωωω (7)

We tested our method on a variety of datasets; the length of the time series varied
between 60 (Synthetic_control) and 1639 (CinC_ECG_torso). The size of the training
sets varied between 20 (SonyAIBORobot Surface) and 467 (ChlorineConcentration).
The size of the testing sets varied between 30 (OliveOil) and 3840
(ChlorineConcentration), so as we can see, we tested our method on a wide range of
datasets of different lengths and sizes to avoid getting biased results.

For each dataset the experiment consists of two phases; the training phase and the
testing phase. In the training phase we perform an optimization process where the
parameters of the optimization problem are the weights []3,1i;i ∈ω . The objective

function is the k-means clustering quality which we seek to maximize. The outcome
of this optimization problem is the weights ωi which give the optimal k-means
clustering quality (c.f. Section 2).

In the testing phase, these optimal weights are used on the corresponding testing
datasets to evaluate the quality of the k-means clustering.

 As for the elements of the DE, we used the following : the population size popsize
was 12, the number of generations NrGen was set to 100, the differentiation constant
F was set to 0.9, and the crossover constant Cr was set to 0.5. The dimension of the
problem nbp, as we mentioned earlier, is ωi. Table 1 summarizes the values of the
control parameters of DE used in the experiments.

202 M.M. Muhammad Fuad

Table 1. The values of the control parameters of DE used in the experiments

popsize Population size 12

NrGen Number of generations 100

F Differentiation constant 0.9

Cr Crossover constant 0.5

nbp Number of parameters 3

Table 2 shows the optimal weights for the three distances metric for the different
training datasets after running the algorithm for 100 generations. As we can see the
weights vary between 0 and 0.97, which proves that some distance metrics are more
effective for clustering certain datasets than others.

In the next phase we use these weights shown in Table 2 on the corresponding
testing datasets to get the k-means clustering quality. Table 3 shows the k-means
clustering quality for the combination together with those for L2, L1, L∞ for
comparison.

Table 3 shows that the clustering quality of the combination of the three distance
metrics for all the datasets outperforms that of all the other three distance metrics for
L2, L1, L∞ as stand-alone distance metrics, which proves the validity of our proposed
algorithm.

Table 2. Weights assigned to each distance metric after 100 generations on the training datasets

dataset ω1 ω2 ω3

Synthetic_control 0.34 0.39 0.76
OSULeaf 0.95 0.94 0.25
Lighting2 0.57 0.09 0.97
Lighting7 0.86 0.21 0.27
SonyAIBORobotSurfac 0.55 0.80 0.22
FaceFour 0.40 0.16 0.58
ECG200 0.01 0.02 0.93
Yoga 0.34 0.88 0.11
OliveOil 0.72 0.83 0.87
CinC_ECG_torso 0.43 0.20 0.38
ChlorineConcentration 0.00 0.00 0.67
Haptics 0.63 0.51 0.26
MedicalImages 0.63 0.11 0.69
Cricket_X 0.02 0.01 0.88
Cricket_Y 0.36 0.12 0.76

 Differential Evolution-Based Weighted Combination of Distance Metrics 203

Table 3. The k-means clustering quality of the combination and L2, L1, L∞ on the testing
datasets

dataset
k-means clustering quality

L1 L2 L∞ combination
Synthetic_control 0.57 0.71 0.64 0.73
OSULeaf 0.39 0.40 0.33 0.41
Lighting2 0.56 0.63 0.63 0.65
Lighting7 0.54 0.57 0.50 0.64
SonyAIBORobotSurfac 0.87 0.66 0.69 0.92
FaceFour 0.61 0.54 0.55 0.67
ECG200 0.69 0.69 0.62 0.72
Yoga 0.50 0.48 0.48 0.51
OliveOil 0.57 0.57 0.57 0.58
CinC_ECG_torso 0.49 0.47 0.46 0.52
ChlorineConcentration 0.40 0.40 0.40 0.41
Haptics 0.33 0.32 0.32 0.34
MedicalImages 0.33 0.34 0.30 0.37
Cricket_X 0.30 0.27 0.30 0.31
Cricket_Y 0.31 0.32 0.36 0.38

5 Conclusion

In this paper, we presented a new algorithm for k-means clustering of time series data
using a combination of weighted distance metrics. The weights of the combination are
obtained through an optimization process where the optimizer is differential
evolution; one of the most effective bio-inspired optimization algorithms for
continuous optimization problems, all by keeping a low complexity of the
combination. The extensive experiments we conducted show the superiority of our
proposed combination over other, widely-used distance metrics, as stand-alone
distance metrics.

As future work, we like to study how our proposed algorithm can be extended to
cluster streaming data as an important application in time series data mining.

References

1. Biswas, A., Dasgupta, S., Das, S., Abraham, A.: A Synergy of Differential Evolution
And Bacterial Foraging Algorithm for Global Optimization. Neural Netw. World 17(6),
607–626 (2007)

2. Bustos, B., Skopal, T.: Dynamic Similarity Search in Multi-metric Spaces. In: Proceedings
of the ACM Multimedia, MIR Workshop, pp. 137–146. ACM Press, New York (2006)

3. Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranić, D.: Automatic Selection and
Combination of Descriptors for Effective 3D Similarity Search. In: Proceedings of the
IEEE International Workshop on Multimedia Content-based Analysis and Retrieval, pp.
514–521. IEEE Computer Society (2004)

4. Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-Art. IEEE
Trans. on Evolutionary Computation (February 2011)

204 M.M. Muhammad Fuad

5. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and Mining of
Time Series Data: Experimental Comparison of Representations and Distance Measures.
In: Proc of the 34th VLDB (2008)

6. Feoktistov, V.: Differential Evolution: in Search of Solutions (Springer Optimization and
Its Applications). Springer- Verlag New York, Inc., Secaucus (2006)

7. Guo, A., Siegelmann, H.: Time-warped Longest Common Subsequence Algorithm for
Music Retrieval. In: Proc. ISMIR (2004)

8. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan
Kaufmann (2011)

9. Kanungo, T., Netanyahu, N.S., Wu, A.Y.: An Efficient K-means Clustering Algorithm:
Analysis and Implementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 24(7) (2002)

10. Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana, C.A.: The
UCR Time Series Classification/Clustering Homepage, http://www.cs.ucr.edu/
~eamonn/time_series_data/

11. Muhammad Fuad, M.M.: ABC-SG: A New Artificial Bee Colony Algorithm-Based
Distance of Sequential Data Using Sigma Grams. In: The Tenth Australasian Data Mining
Conference - AusDM 2012, Sydney, Australia, December 5-7 (2012)

12. Muhammad Fuad, M.M.: Differential Evolution versus Genetic Algorithms: Towards
Symbolic Aggregate Approximation of Non-normalized Time Series. In: Sixteenth
International Database Engineering & Applications Symposium– IDEAS 2012, Prague,
Czech Republic, August 8-10, pp. 8–10. BytePress/ACM (2012)

13. Muhammad Fuad, M.M.: Particle swarm optimization of information-content weighting of
symbolic aggregate approximation. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA
2012. LNCS, vol. 7713, pp. 443–455. Springer, Heidelberg (2012)

14. Muhammad Fuad, M.M.: Towards Normalizing the Edit Distance Using a Genetic
Algorithms–Based Scheme. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA 2012.
LNCS, vol. 7713, pp. 477–487. Springer, Heidelberg (2012)

15. Muhammad Fuad, M.M.: Using Differential Evolution to Set Weights to Segments with
Different Information Content in the Piecewise Aggregate Approximation. In: 16th
International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems, KES 2012, San Sebastian, Spain, September 10-12. Frontiers of Artificial
Intelligence and Applications (FAIA), IOS Press (2012)

16. Zezula et al.: Similarity Search - The Metric Space Approach, Springer (2005)

Inferring Multiobjective Phylogenetic

Hypotheses by Using a Parallel Indicator-Based
Evolutionary Algorithm

Sergio Santander-Jiménez and Miguel A. Vega-Rodŕıguez

Department of Technologies of Computers and Communications,
University of Extremadura, Escuela Politécnica, Campus Universitario s/n,

10003 Cáceres, Spain
{sesaji,mavega}@unex.es

Abstract. The application of multiobjective optimization techniques
to solve biological problems has significantly grown in the last years. In
order to generate satisfying approximations to the Pareto-optimal set,
two key problems must be addressed. Firstly, we must distinguish solu-
tion quality in accordance with the optimization goal, usually measured
by means of multiobjective quality indicators. Secondly, we must under-
take the development of parallel designs to carry out searches over expo-
nentially growing solution spaces. This work tackles the reconstruction
of phylogenetic relationships by applying an Indicator-Based Evolution-
ary Algorithm. For this purpose, we propose a parallel design based on
OpenMP which considers the computation of hypervolume-based indi-
cators in fitness assignment procedures. Experiments on four biological
data sets show significant results in terms of parallel scalability and multi-
objective performance with regard to other methods from the literature.

Keywords: Applications of Natural Computing, Parallel Computing,
Indicator-Based Evolutionary Algorithm, Phylogenetic Inference.

1 Introduction

Current trends on bioinformatics must deal with optimization problems whose
solution cannot be addressed in polynomial times. In this sense, the multiobjec-
tive nature of a wide range of biological processes requires the optimization of
multiple criteria, which can support conflicting solutions for a same biological
data. When dealing with multiobjective optimization problems (MOPs) [3], we
seek to find those Pareto solutions s in a decision space X which optimize n ob-
jective functions f1, f2 ... fn belonging to an objective space Y . A common way
to compare solutions in a context where multiple objectives are involved is the
application of the dominance relation. Given two solutions s1 and s2 to a MOP,
s1 dominates (�) s2 iff ∀ i ∈ [1, 2...n], fi(s1) is not worse than fi(s2) and ∃ i ∈
[1, 2...n], fi(s1) is better than fi(s2). Those solutions which are non-dominated
with regard to the overall decision space compose the Pareto-optimal set.

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 205–217, 2014.
c© Springer International Publishing Switzerland 2014

206 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

Due to the large amount of possible solutions to be considered, most MOPs
show NP-hard complexities which motivate the infeasibility of finding this set.
Therefore, multiobjective approaches often rely on soft computing techniques to
achieve good approximations to the Pareto-optimal set in reasonable times. How-
ever, when multiple time-demanding objective functions are taken into account,
the development of parallel multiobjective metaheuristics is required [15].

This research focuses on the application of parallel multiobjective approaches
to tackle one of the hardest biological problems: the reconstruction of phyloge-
netic hypotheses [9]. When inferring evolutionary relationships among species,
phylogenetic methods have to deal with search spaces which grow exponentially
with the number of species, along with computationally intensive evaluation pro-
cedures. Early bioinspired attempts to tackle these issues suggested the relevance
of taking advantage of parallel architectures to reduce execution times [10]. As a
result, multiple researches have proposed algorithmic designs for phylogenetics
based on parallel [1] and natural computing [5]. In fact, current state-of-the-
art proposals for single-criterion phylogenetic analysis focus heavily on these
principles. We can highlight RAxML [14], a widely-used method for performing
parallel phylogenetic analyses according to the maximum likelihood criterion.

One of the reasons which motivate the formulation of phylogenetic inference
as a MOP is given by the need to solve those situations where different optimality
criteria support conflicting evolutionary relationships [11]. Given the additional
complexity of performing phylogenetic searches attending to multiple criteria
simultaneously, the requirement of designing parallel bioinspired approaches be-
comes more remarkable. In [2], Cancino et al. addressed the problem of inferring
phylogenetic hypotheses according to two principles: maximum parsimony and
maximum likelihood. For this purpose, they applied a parallel multiobjective ge-
netic algorithm known as PhyloMOEA, achieving significant performance when
using master-worker designs under different parallel technologies.

Traditionally, runtime searches in dominance-based multiobjective methods
like PhyloMOEA were governed by the classification of solutions based on Pareto
rankings. The post-hoc assessment of the generated outcome can be carried out
by using quality indicators which map a Pareto set to a real number for mea-
suring its quality. In order to obtain improved solutions, modern multiobjective
designs consider the idea of introducing quality indicators as fitness measure-
ments to guide the search [16]. Taking into account this strategy, we address
in this paper the inference of phylogenetic trees attending to parsimony and
likelihood. For this purpose, we apply a parallel Indicator-Based Evolutionary
Algorithm (IBEA) supported by the standard OpenMP to perform phylogenetic
searches on multicore machines. The assessment of this approach will be carried
out by experimentation on four real nucleotide data sets, making comparisons
of parallel results, multiobjective performance, and biological quality with other
parallel phylogenetic methods and dominance-based multiobjective proposals.

The remainder of this paper is organized as follows. The next section intro-
duces the basis of phylogenetics, formulating the two optimality criteria to be

Inferring Multiobjective Phylogenies by Using a Parallel IBEA 207

considered. Section 3 discusses the concept of quality indicator and describes
the parallel design of IBEA. Experimental results are presented and assessed in
Section 4. Finally, conclusions and future work lines are provided in Section 5.

2 Inferring Phylogenetic Relationships

The current availability of sequence data from different species represents an
opportunity for researchers to provide new hypotheses about the evolution of
living organisms. Phylogenetic inference methods aim to describe evolutionary
relationships by studying the molecular features observed in the species under
review. Such features are characterized by data sets containing N biological se-
quences of L sites represented in accordance with a state alphabet α, usually
taken as α={A,C,G,T} in the case of DNA-based inference. The results of the
inference process are represented by using tree data structures known as phyloge-
netic trees. A phylogeny T=(V,E) identifies evolutionary relationships between
living and hypothetical organisms in the node set V by means of branches in E.

Two main sources of complexity explain the NP-hard nature of this problem
[9]. Firstly, the number of possible phylogenetic topologies is determined by the
number of species N in the input dataset. Data sets with more than ten species
cannot be tackled by using exhaustive searches, as increasing values of N lead to
an exponential growth of the tree space. Secondly, the evaluation times required
by the computation of objective functions grow linearly with the length L of
the input sequences. Due to the current need to analyze sequences involving
hundreds and thousands of molecular sites, the assessment of solutions according
to time-demanding criteria represents a noticeable source of complexity.

2.1 Optimality Criteria

The different principles supported by different phylogenetic methods often give
as a result conflicting phylogenies for the same biological data [11]. A multiob-
jective approach must deal with the problem of inferring not a single solution
according to a single objective function, but a set of multiple Pareto trees sup-
ported by multiple criteria simultaneously. As a result, bioinspired and parallel
developments must be undertaken. In this research, we will consider two well-
known principles to conduct multiobjective analyses: parsimony and likelihood.

The parsimony criterion seeks for the simplest explanation to the evolution
of the input species. Such hypothesis is given by the phylogenetic tree which
reduces the amount of state changes observed between related species. Given a
biological dataset containing N sequences of length L, this criterion aims to find
the phylogeny T=(V,E) which minimizes the parsimony length P(T) [9]:

P (T) =

L∑

i=1

∑

(a,b)∈E

C(ai, bi), (1)

208 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

where (a, b) ∈ E refers to the evolutionary relationship between two nodes a, b ∈
V , ai and bi are the states at the i-th character of the sequences related to a
and b, and C(ai, bi) quantifies the number of state changes between ai and bi.

On the other hand, likelihood-based approaches are supported by the assump-
tions made by evolutionary models, which provide the probabilities of observing
mutations at molecular level. Using this information in the inference process,
likelihood procedures aim to find the phylogenetic tree which represents the
most likely evolutionary history, the hypothesis which maximizes the likelihood
statistical function. Given a dataset composed of N sequences of L characters
whose states are defined according to an alphabet α, and a phylogenetic topol-
ogy T=(V,E) rooted by r ∈ V with descendant nodes u, v ∈ V , we define the
likelihood of T under the evolutionary model μ L[T, μ] in the following way [9]:

L[T, μ] =

L∏

i=1

∑

x,y∈α

πx [Pxy(tru)Lp (ui = y)]× [Pxy (trv)Lp (vi = y)], (2)

where πx refers to the stationary probability of x ∈ α, Pxy(t) is the mutation
probability from a state x to y within a time t, and Lp(ui = y), Lp(vi = y) the
partial likelihoods of observing state y at the i-th site in u and v sequences.

3 Parallel Indicator-Based Evolutionary Algorithm

In order to address phylogenetic inference as a MOP, we will apply an algorithmic
approach based on the concept of quality indicator. This section introduces the
algorithmic features of IBEA and proposes a parallel design for phylogenetics.

3.1 Quality Indicators

The performance of multiobjective algorithms is usually assessed by means of
quality indicators. A quality indicator is defined as a function that maps the
outcome of a multiobjective optimizer to a real number which can be used as a
performance measure. Given an indicator I, the aim of the optimization process
is to find the set of Pareto solutions S which optimize the value I(S). This
concept can also be applied to distinguish the quality of different solutions by
integrating the computation of quality indicators into fitness calculations. Under
this assumption, Zitzler and Künzli proposed IBEA [16], a population-based
metaheuristic which incorporates the information provided by quality indicators
into the selection mechanism to improve multiobjective results.

A wide variety of quality indicators can be found in the literature [3]. One
of the most widely-used and reliable multiobjective metrics is hypervolume. For
a MOP involving two objectives, hypervolume gives the area of the objective
space bounded by two reference points (ideal and nadir) which is dominated by
the outcome of a multiobjective algorithm. Higher hypervolume values suggest
better multiobjective quality. On the basis of this metrics, a hypervolume-based

Inferring Multiobjective Phylogenies by Using a Parallel IBEA 209

quality indicator named as IHD was proposed in [16]. Given two sets of Pareto
solutions R and S, we can compute IHD as follows:

IHD(R,S) =

{
IH(S)− IH(R) if ∀s ∈ S, ∃s′ ∈ R : s′ � s,
IH(R+ S)− IH(R) otherwise.

(3)

In this expression, IH(R) and IH(S) refer to the area of the objective space
dominated by R and S, respectively, with regard to a reference point Z, so
IHD(R,S) represents the space dominated by S but not by R. This definition can
be applied to compare two solutions si and sj directly, by considering R = {si}
as the set containing the solution si and S = {sj} as the set composed of sj .

3.2 Algorithmic Design

IBEA manages a population P of individuals representing possible solutions
to the problem, whose multiobjective quality is measured by means of quality
indicators. Our proposal for phylogenetic inference will use the hypervolume-
based indicator IHD for fitness measurement purposes. The input parameters
for IBEA include the number of individuals in the population (popSize), the
maximum number of evaluations considered as a stop criterion (maxEvaluations),
crossover and mutation probabilities (crossoverProb, mutationProb), a scaling
factor used in fitness computations (κ), and the IHD reference point (Z).

With the aim of adapting this algorithm to phylogenetic inference, individuals
in P are represented by using NxN symmetric floating-point matrices of genetic
distances, where N is the number of species under study. In a distance matrix m,
each entry m[i,j] represents the evolutionary distance of the path between the
organisms i and j. By processing such structures, we can perform searches over an
auxiliary matrix space, mapping the obtained results into the tree topology space.
For this reason, we apply BIONJ [9], a well-known tree-building method which
takes as input the matrices processed by IBEA and generates the corresponding
phylogenetic topologies. We have used the C++ bioinformatics library Bio++
[8] for implementation purposes.

The initialization of P is performed by assigning initial matrices generated
from randomly selected starter topologies contained in a repository of 1000
phylogenies. Afterwards, the main loop of IBEA operates over P by applying
indicator-based selection, generating new individuals by using distance-based
crossover and mutation operators. Each generation involves the following tasks.
Firstly, the current state of P is examined by ranking each individual accord-
ing to how useful it is attending to the considered quality indicator. The fitness
assignment for an individual Pi is carried out by normalizing its objective func-
tions scores (parsimony and likelihood) to the interval [0,1] and then summing
up its IHD values with respect to each remaining individual Pj [16] as follows:

Pi.F itness =
∑

Pj∈P\{Pi}
−e−IHD({Pj},{Pi})/c·κ. (4)

210 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

In this equation, c refers to the maximum absolute indicator value, which is
included to avoid widely spread indicator scores. By using these fitness values, an
environmental selection is performed in a second step to keep the most promising
popSize individuals. This mechanism is implemented by removing iteratively the
individual Pk with the smallest fitness value from P until the size of the popu-
lation fits the parameter popSize, updating the fitness values of the remaining
individuals Pi as: Pi.F itness = Pi.F itness+ e−I({Pk},{Pi})/c·κ.

From these popSize individuals, an offspring population P ′ is generated by
applying the following genetic operators. In the first place, parent selection is
carried out by performing binary tournaments in accordance with the calcu-
lated fitness values. Offspring matrices are then generated by applying a uniform
crossover operator which swaps randomly chosen rows from the parent matrices,
along with a repair operator based on BLX-α [12] to preserve symmetry. Fi-
nally, the mutation operator applies the gamma distribution observed in genetic
distances [10] to modify randomly chosen entries in the offspring matrices. Af-
ter obtaining the resulting matrices P ′

i .m, the corresponding phylogenetic trees
P ′
i .T are inferred, optimized via topological rearrangements [6], and evaluated

according to parsimony and likelihood. Both populations P and P ′ are combined
and a new generation takes place. IBEA pseudocode is shown in Algorithm 1.

Algorithm 1. Parallel IBEA Pseudocode
1. #pragma omp parallel (num threads)
2. P ← Initialize Population (popSize, dataset, num threads), ParetoSet ← 0
3. while ! stop criterion reached (maxEvaluations) do
4. #pragma omp single
5. P ← Scale Objective Values (bounds(P))
6. #pragma omp for schedule (schedulingType)
7. for i = 1 to |P | do
8. for j = 1 to |P | do
9. indicatorValues[i][j] ← Compute IHD Values (Pi, Pj , Z) /* i�=j */
10. end for
11. end for
12. #pragma omp single
13. Pi.F itness ← Assign Fitness Values (indicatorValues) /* ∀i: i=1 to |P| */
14. while |P | > popSize do
15. k ← Remove the Individual with the Smallest Fitness Value (P)
16. Pi.F itness ← Update Fitness Values (indicatorValues, k) /* ∀i: i=1 to |P| */
17. end while
18. #pragma omp for schedule (schedulingType)
19. for i = 1 to popSize do
20. selectedParent1,selectedParent2 ← selectParents (P)
21. P ′

i .m ← Apply Crossover (selectedParent1.m, selectedParent2.m, crossoverProb)
22. P ′

i .m ← Apply Mutation (P ′
i .m, mutationProb)

23. P ′
i .T ← Apply Tree-Building Method (“BIONJ”, P ′

i .m, dataset)
24. P ′

i .scores ← Evaluate Solution (P ′
i .T , dataset)

25. end for
26. #pragma omp single
27. P ← P ∪ P ′

28. ParetoSet ← updateParetoSet (P , ParetoSet)
29. end while

Inferring Multiobjective Phylogenies by Using a Parallel IBEA 211

3.3 Parallel Approach

The pseudocode in Algorithm 1 describes an OpenMP-based parallel design for
IBEA. The suitability of this algorithm to be parallelized is given by the fact
that the loops for computing IHD values and generating offspring solutions show
no dependencies between different iterations. By exploiting multicore architec-
tures, we can reduce the times required by these loops, which contain the most
computationally expensive steps of the algorithm. In this sense, the most time-
demanding operations are given by the tree-building and optimization procedure
and the parsimony and likelihood computations for evaluation purposes, which
depend on the size of the matrix/topology and the length of the input sequences.
Furthermore, the evaluation step often represents an interval of 60-80% over the
overall execution time in most phylogenetic methods [1]. This is the reason which
motivates the need to take advantage of parallelism in this context.

The parallel design of IBEA defines a pool of num threads OpenMP threads
which will be used in accordance with the needs of parallel processing. For this
purpose, the directive #pragma omp parallel encloses the main loop of IBEA
(line 1 in Algorithm 1). This idea aims to minimize those thread creation and
destruction overheads which arise when #pragma omp parallel for directives
are iteratively called inside a loop. While data-dependent functions and data
structure management operations are carried out by using #pragma omp single
directives, we apply#pragma omp for directives to distribute IHD computations
(lines 6-11) and the generation of the offspring population P ′ (lines 18-25) among
OpenMP threads. Regarding this last step, load balance techniques are also
introduced by defining a guided scheduleType in order to avoid idle threads
when divergent times appear in the inference and evaluation of topologies.

4 Experimental Results

This section details the methodology we have used to evaluate IBEA, reporting
the experimental results obtained by experimentation on four real biological
data sets [2]: rbcL 55, 55 sequences (1314 nucleotides per sequence) of rbcL
plastid gene; mtDNA 186, 186 sequences (16608 nucleotides per sequence) of
human mitochondrial DNA; RDPII 218, 218 sequences (4182 nucleotides per
sequence) of prokaryotic RNA; and ZILLA 500, 500 sequences (759 nucleotides
per sequence) of rbcL plastid gene. Our analyses were carried out under the
widely-used General Time Reversible (GTR+Γ) evolutionary model [9].

The hardware architecture considered in our experiments is composed of two
12-core AMD Opteron Magny-Cours 6174 processors at 2.2 GHz (a total of
24 processing cores) with 32GB DDR3 RAM, running Scientific Linux 6.1. We
compiled our software by using GCC 4.4.5 with the GOMP CPU AFFINITY
flag enabled to ensure CPU-thread affinity. The assessment of evolutionary al-
gorithms needs to find, in a first step, the configuration of input parameters
which allows the approach to maximize performance. For this purpose, we have
studied by experimentation a range of different input values for each parameter,
assessing the outcome of each configuration by using the hypervolume metrics.

212 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

In accordance with our experiments, the optimal settings found for IBEA are
given by the following values: maxEvaluations=10000, popSize=96, crossover-
Prob=70%, mutationProb=5%, κ=0.05, and Z=(2,2).

Parallel Scalability. Firstly, we will examine the scalability achieved by the
OpenMP version of IBEA on system configurations involving 4, 8, 16, and 24 ex-
ecution cores. For this purpose, 11 independent runs were carried out per dataset
and system configuration, measuring parallel performance by applying two met-
rics: speedup and efficiency. Table 1 provides the observed median speedups (SU,
columns 2, 4, 6, and 8) and efficiencies (Eff., columns 3, 5, 7, and 9), along with
the serial times needed to complete a phylogenetic analysis on each dataset.

According to this table, IBEA is able to achieve meaningful scalabilities in all
the analyzed data sets, obtaining efficiencies in the interval 70.14 - 86.36% for 24
cores. In order to show the relevance of the obtained results, Table 1 also reports
a comparison with the POSIX-based multicore version of RAxML [14]. With
the aim of making a fair comparison, experiments with RAxML were carried
out under the same experimental conditions as IBEA, configuring RAxML in
accordance with IBEA serial execution times. As can be observed, the parallel
design of IBEA outperforms the speedup factors reported by RAxML when
considering system sizes of 16 and 24 cores. A graphical representation of the
scalabilities shown by IBEA and RAxML is given by Figure 1.

According to these results, our speedup factors show an improvement as we
increase the number of species in the input dataset. This can be explained in
accordance with the implications of the Amdahl’s law for multicore machines.
By considering growing number of species, the generation and evaluation of
offspring solutions will involve more computations over growing matrix and tree
data structures. As these operations take place inside parallel regions defined
by #pragma omp for directives, an increase in the parallelizable fraction of this
application is expected, leading the design to better parallel results.

Table 1. Speedup and efficiencies

4 cores 8 cores 16 cores 24 cores
rbcL 55 (IBEA serial time = 5367.60 seconds)

Algorithm SU Eff.(%) SU Eff.(%) SU Eff.(%) SU Eff.(%)
IBEA 3.66 91.56 6.95 86.87 12.32 77.01 16.83 70.14

RAxML 3.68 91.94 6.26 78.23 8.33 52.04 8.77 36.56
mtDNA 186 (IBEA serial time = 47630.98 seconds)

Algorithm SU Eff.(%) SU Eff.(%) SU Eff.(%) SU Eff.(%)
IBEA 3.83 95.83 7.21 90.12 12.90 80.60 17.56 73.17

RAxML 3.96 99.12 7.24 90.47 10.39 64.93 12.89 53.70
RDPII 218 (IBEA serial time = 51657.38 seconds)

Algorithm SU Eff.(%) SU Eff.(%) SU Eff.(%) SU Eff.(%)
IBEA 3.86 96.44 7.30 91.21 13.37 83.56 18.01 75.03

RAxML 3.52 88.06 6.54 81.72 9.31 58.19 11.35 47.27
ZILLA 500 (IBEA serial time = 71754.79 seconds)

Algorithm SU Eff.(%) SU Eff.(%) SU Eff.(%) SU Eff.(%)
IBEA 3.87 96.73 7.68 96.05 14.57 91.08 20.73 86.36

RAxML 3.73 93.33 5.99 74.89 7.41 46.33 7.72 32.17

Table 2. Speedup com-
parison with PhyloMOEA
(16 cores)

PhyloMOEA
Dataset MPI Hybrid
rbcL 55 7.30 8.30

mtDNA 186 7.40 8.50
RDPII 218 9.80 10.20
ZILLA 500 6.70 6.30
Dataset IBEA
rbcL 55 12.32

mtDNA 186 12.90
RDPII 218 13.37
ZILLA 500 14.57

Inferring Multiobjective Phylogenies by Using a Parallel IBEA 213

(a) rbcL 55 (b) mtDNA 186

(c) RDPII 218 (d) ZILLA 500

Fig. 1. Parallel performance - scalabilities with regard to the theoretical linear speedup

In order to make comparisons with other parallel multiobjective methods
for phylogenetics, Table 2 introduces a comparison with the speedup factors
reported by PhyloMOEA in [2] for 16 execution cores. Two parallel designs
of PhyloMOEA were proposed in the literature: an MPI-based master-worker
design and a hybrid OpenMP/MPI scheme. In accordance with Table 2, IBEA
improves significantly the results published for both PhyloMOEA versions in all
the considered data sets, showing the relevance of IBEA parallel implementation.

Multiobjective Results. The next step of this study is the multiobjective
evaluation of the approach. For this purpose, we present a comparison with
a well-known dominance-based multiobjective metaheuristic, NSGA-II [4]. We
have implemented this algorithm by considering the same individual represen-
tation and crossover/mutation operators described for IBEA. This comparison
has been conducted by performing 31 independent runs per dataset of each algo-
rithm, evaluating their outcomes by using the hypervolume metrics. Due to the
stochastic nature of these approaches, we will check for significant differences
in hypervolume samples by applying a statistical methodology [13] based on
Kolmogorov-Smirnov, Levene, Wilcoxon-Mann-Whitney, and ANOVA tests.

214 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

Table 3 shows the median hypervolume scores and interquartile ranges (IQR)
obtained by IBEA (columns 2, 3) and NSGA-II (columns 4, 5), as well as the sta-
tistical testing results (columns 6, 7) and the ideal/nadir points used to compute
hypervolume (columns 8-11). In addition, Figure 2 shows the hypervolume box
plots reported by each algorithm. Our experiments suggest that IBEA achieves
a statistically significant improvement over NSGA-II in all the considered data
sets, pointing out that the introduction of quality indicators as a way to guide
the inference process leads to considerable multiobjective performance.

Table 3. Multiobjective performance evaluation under hypervolume

Hypervolume metrics Hypervolume reference points
IBEA NSGA-II Statistical testing Ideal Nadir

Dataset Median Hyp. IQR Median Hyp. IQR P-value Significant? Pars. Like. Pars. Like.
rbcL 55 71.31 0.07 71.01 0.22 1.64E-06 Yes 4774 -21569.69 5279 -23551.42

mtDNA 186 69.81 0.11 69.69 0.09 1.40E-05 Yes 2376 -39272.20 2656 -43923.99
RDPII 218 74.24 0.08 73.58 0.06 1.27E-11 Yes 40658 -132739.90 45841 -147224.59
ZILLA 500 72.32 0.04 71.77 0.03 1.08E-11 Yes 15893 -79798.03 17588 -87876.39

(a) rbcL 55 (b) mtDNA 186

(c) RDPII 218 (d) ZILLA 500

Fig. 2. Multiobjective performance - box plots for hypervolume

Inferring Multiobjective Phylogenies by Using a Parallel IBEA 215

Biological Comparisons. Now we examine the biological quality of the phy-
logenetic topologies inferred by IBEA in the median hypervolume execution.
To this end, we compare our maximum parsimony and likelihood trees with the
ones generated by two single-criterion proposals from the literature: TNT [7] (for
maximum parsimony) and RAxML (maximum likelihood). We will search for sta-
tistically significant differences in tree quality by applying a Kishino-Hasegawa-
Templeton (KHT) test for parsimony and a Shimodaira-Hasegawa (SH) test for
likelihood [9]. The results of applying these tests are given by Tables 4 and 5.
From a biological perspective, the extreme Pareto trees inferred by IBEA are
able to match the parsimony and likelihood quality found by the state-of-the-art
tools TNT and RAxML, as no statistically significant differences are reported.
Therefore, the indicator-based parallel approach allows an efficient exploitation
of multicore resources, giving significant results not only from a multiobjective
perspective, but also attending to biological criteria.

Table 4. KHT Comparison with TNT

Pars. Std. KHT
Dataset Diff. Dev. output

rbcL 55 0.00 8.95 No stat. significant diff.
mtDNA 186 0.00 4.90 No stat. significant diff.
RDPII 218 31.00 51.53 No stat. significant diff.
ZILLA 500 0.00 12.81 No stat. significant diff.

Table 5. SH Comparison with RAxML

IBEA RAxML SH
Dataset P-value P-value output

rbcL 55 0.621 0.379 No stat. significant diff.
mtDNA 186 0.380 0.620 No stat. significant diff.
RDPII 218 0.592 0.408 No stat. significant diff.
ZILLA 500 0.324 0.676 No stat. significant diff.

Finally, the study of biological results with regard to PhyloMOEA is given
by Table 6. As PhyloMOEA only considers the Hasegawa-Kishino-Yano evolu-
tionary model (HKY85+Γ), we have conducted new sets of 31 experiments per
dataset with IBEA under this model. Our parsimony and likelihood trees outper-
form the ones generated by PhyloMOEA in all the considered data sets, showing
the relevance of applying IBEA to address real phylogenetic analyses.

Table 6. Biological comparison with PhyloMOEA - HKY85+Γ model

rbcL 55 mtDNA 186 RDPII 218 ZILLA 500
Method Best pars. Best like. Best pars. Best like. Best pars. Best like. Best pars. Best like.

IBEA 4874 -21821.11 2431 -39888.07 41517 -134260.26 16218 -80974.93
PhyloMOEA 4874 -21889.84 2437 -39896.44 41534 -134696.53 16219 -81018.06

5 Conclusions

In this work, we have applied an indicator-based multiobjective metaheuristic
to tackle the reconstruction of phylogenetic trees according to parsimony and
likelihood. Due to the NP-hard nature of the problem, we have introduced a par-
allel design which aims to reduce the times required to perform real phylogenetic
analyses on multicore machines. Experiments over four nucleotide data sets have
pointed out a successful exploitation of a 24-core shared memory architecture,

216 S. Santander-Jiménez and M.A. Vega-Rodŕıguez

showing improved scalabilities with regard to other parallel phylogenetic meth-
ods of the literature. In addition, statistically reliable comparisons with NSGA-II
and single-criterion biological approaches suggest that the introduction of qual-
ity indicators in multiobjective searches allows IBEA to infer high-quality Pareto
trees attending to both multiobjective and biological perspectives.

As future research lines, we will focus on the design of new parallel and
bioinspired developments for inferring phylogenetic histories. In this sense, the
combination of swarm intelligence principles and quality indicators represents a
promising line to maximize the multiobjective and biological quality of the in-
ferred Pareto sets. Such designs will be implemented on the basis of parallel com-
puting, introducing supercomputing and GPGPU/accelerator-based techniques
to conduct multiobjective analyses over data sets with increasing complexity lev-
els. Finally, we will undertake the comparison of the proposed approaches with
other multiobjective metaheuristics available in the literature, along with other
parallel biological methods.

Acknowledgments. This work was partially funded by the Spanish Ministry
of Economy and Competitiveness and the ERDF (European Regional Develop-
ment Fund), under the contract TIN2012-30685 (BIO project). Sergio Santander-
Jiménez is supported by the grant FPU12/04101 from the Spanish Government.

References

1. Bader, D.A., Stamatakis, A., Tseng, C.W.: Computational Grand Challenges in
Assembling the Tree of Life: Problems and Solutions. In: Advances in Computers,
vol. 68, pp. 127–176. Elsevier (2006)

2. Cancino, W., Jourdan, L., Talbi, E.-G., Delbem, A.C.B.: Parallel multi-objective
approaches for inferring phylogenies. In: Pizzuti, C., Ritchie, M.D., Giacobini, M.
(eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 26–37. Springer, Heidelberg (2010)

3. Coello, C., Dhaenens, C., Jourdan, L.: Advances in Multi-Objective Nature In-
spired Computing. Springer, Heidelberg (2010)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multi–
Objective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197
(2002)

5. Fogel, G.B.: Evolutionary Computation for the Inference of Natural Evolutionary
Histories. IEEE Connections 3(1), 11–14 (2005)

6. Goëffon, A., Richer, J.M., Hao, J.K.: Progressive Tree Neighborhood Applied to the
Maximum Parsimony Problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(1),
136–145 (2008)

7. Goloboff, P.A., Farris, J.S., Nixon, K.C.: TNT, a free program for phylogenetic
analysis. Cladistics 24(5), 774–786 (2008)

8. Guéquen, L., et al.: Bio++: efficient extensible libraries and tools for computational
molecular evolution. Molecular Biology and Evolution 30(8), 1745–1750 (2013)

9. Lemey, P., Salemi, M., Vandamme, A.-M.: The Phylogenetic Handbook: a Practi-
cal Approach to Phylogenetic Analysis and Hypothesis Testing. Cambridge Univ.
Press, Cambridge (2009)

Inferring Multiobjective Phylogenies by Using a Parallel IBEA 217

10. Lewis, P.O.: A Genetic Algorithm for Maximum-Likelihood Phylogeny Inference
Using Nucleotide Sequence Data. Mol. Biol. Evol. 15(3), 277–283 (1998)

11. Macey, J.R.: Plethodontid salamander mitochondrial genomics: A parsimony eval-
uation of character conflict and implications for historical biogeography. Cladis-
tics 21(2), 194–202 (2005)

12. Poladian, L.: A GA for Maximum Likelihood Phylogenetic Inference using
Neighbour-Joining as a Genotype to Phenotype Mapping. In: Genetic and Evo-
lutionary Computation Conference, pp. 415–422 (2005)

13. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures,
5th edn. Chapman & Hall/CRC Press, New York (2011)

14. Stamatakis, A.: RAxML Version 8: A Tool for Phylogenetic Analysis and Post-
Analysis of Large Phylogenies. Bioinformatics 30(9), 1312–1313 (2014)

15. Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello,
C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K.,
Miettinen, K., S�lowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252,
pp. 349–372. Springer, Heidelberg (2008)

16. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004)

Combining Finite Element Method

and L-Systems Using Natural Information Flow
Propagation to Simulate Growing Dynamical

Systems

Jean-Philippe Bernard1, Benjamin Gilles2, and Christophe Godin1

1 Inria, Virtual Plants Project-Team, Université Montpellier 2, Bâtiment 5,
CC 06002, 860 rue de Saint Priest, 34095 Montpellier Cedex 5, France

2 CNRS, Laboratoire d’Informatique, de Robotique et de Microélectronique de
Montpellier, Université Montpellier 2, Bâtiment 5, CC 06002, 860 rue de Saint Priest,

34095 Montpellier Cedex 5, France

Abstract. This paper shows how to solve a system of differential equa-
tions controlling the development of a dynamical system based on finite
element method and L-Systems. Our methods leads to solve a linear
system of equations by propagating the flow of information throughout
the structure of the developing system in a natural way. The method is
illustrated on the growth of a branching system whose axes bend under
their own weight.

1 Introduction

Plants are complex branching organisms that undergo continuous development
throughout their lifetime. To understand the key processes that control this
development, a new type of modeling approach, called Functional-Structural
Plant Models (FSPM) [8,19,17], has been developed in the last two decades.
FSPMs combine a detailed description the plant architecture (in terms of axes
or stem units) and physiological processes that participate to the branching
system development (photosynthesis, water/sugar/mineral element transport,
carbon allocation, bud growth, hormonal transport and regulation, interaction
with gravity, etc.).

To build FSPMs, L-systems [16] have emerged as a dominant paradigm to
describe both the development plant branching systems in time and to model
the different bio-physical processes of interest [14,3]. L-systems make it possible
to model the development of a plant by specifying rules of development for the
different types of considered plant constituent in a declarative manner. At each
time step, the language engine scans the constituents of the branching structure
being computed and applies the developmental rule that corresponds to its type.
Interestingly, at no moment the modeler needs to index the plant elements. As
the rules are supposed to be local, it is sufficient in the rule specification to
access the immediate neighbor components, for example referring in the rule to
the predecessor and successor components of the current plant component.

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 218–230, 2014.
c© Springer International Publishing Switzerland 2014

FEM and L-Systems Using Natural Information Flow Propagation 219

The propagation of a signal from the basis of the plant to the top provides
a good example of such a principle of locality. Let a plant be represented a
bracketed string I I [I I] I [I] I. This string represents a branching
structure containing 7 components, all of type I (note that the structure contains
no indexing of the components). Two consecutive I’s represent two consecutive
segments in the same axis of the plant, while a bracket indicates a branch inserted
at the top of preceding left-hand component (Fig. 1). Then, let us imagine that
the leftmost component in the string (at the plant basis) contains a signal x = 1,
and that the signal x is set to 0 in all the other components. To propagate the
signal in time through the plant body, one needs to define a simple local rule
such as (in pseudo-code form):

I --> { if predecessor ().x == 1 then current ().x = 1
} produce I

meaning that a I symbol should be transformed over one time step in a I symbol
(produce statement) after having set its internal signal value x to 1 if the x
signal of the predecessor components in the plant was itself at set at 1. This
local rule makes it possible to get completely rid of indexes when transferring
information through the plant structure [13]. This specific feature of L-systems
was used in the last decade to develop computational models for which the flow of
information propagates in a natural way over the plant structure from component
to component, e.g. [1] for the transport of carbon, [15] for the transport of water,
and [10,5] for the reaction of plants to gravity. All these algorithms use finite
difference methods (FDM) for which the plant is decomposed into a finite number
of elements and quantities of interest (water content, sugar concentration, forces,
displacements, etc.) correspond to discrete values attached to each component.
Different FDM schemes have been developed for this based either on explicit or
implicit methods [7,9].

FDM approaches use a local Taylor expansion to approximate differential
equations and are easy to implement. However, the quality of the approximation
between grid points is generally considered poor. The Finite Element Method
is an alternative solution that uses an integral formulation. While more com-
plex to implement, the quality of a FEM approximation is often higher than in
the corresponding FDM approach [11]. In this paper, we intend to adapt the

I

I

I

I

I
I

I

I

I

I

I

I
I

I

I

I

I

I

I
I

I

I

I

I

I

I
I

I

Fig. 1. Branch represented L-string I I [I I] I [I] I with information x = 1
(red segments) propagation to others segments (blue)

220 J.-P. Bernard, B. Gilles, and C. Godin

FEM approach to be used in the context of L-systems and natural computing,
i.e. strictly respecting the paradigm of computational locality, and solving the
differential equation by propagating information flows throughout the structure
being computed. We illustrate and assess our generic approach on the problem
of computing the effect of gravity on growing branching systems.

2 Natural Computing of Branch Bending Using Finite
Difference Method (FDM) and L-Systems

2.1 Mechanical Model of Branch Bending

We model a branch as a set of inextensible elastic cantilever beams rigidly con-
nected to each other and forming a branching network. Each beam represents a
botanical axis and is conceptualized as a mean curve C of length L with natural
parameter s ∈ [0, L] denoting the arc-length distance of a point P (s) from the
base of the stem and a section S(s) (Fig. 2a).

Each point P (s) is associated with an orthonormal local frame R(s) =
{H(s),L(s),U(s)} (heading, left and up) similar to the Frenet’s coordinate
system [16]. We assume that vector H(s) is tangent to the rod axis and vectors
L(s) and U(s) are C0-continuous with respect to s. Since all vectors H(s) have
unit length the point P (s), s ∈ [0, L] is defined by:

P (s) = P (0) +

∫ s

0

H(u) du. (1)

Let P (s) and P (s + ds) be two infinitesimally close points on the curve C.
Then the local frame R(s + ds) can be obtained from R(s) by a rotation of
axis Δ(s) and angle θ(s). It is convenient to represent this rotation by a vector
Ω(s), called the generalized curvature, whose direction is the rotation axis Δ(s)
and whose norm is θ(s) (Fig. 2b) [10]. If the arc length ds is infinitesimal, this
rotation can be factorized as a rotation around the tangent (twist) and a rotation
around the normal (curvature) of the mean curve C at the point P (s). Starting
from an initial frame R(0), the frames R(s) can be obtained thanks to the
ordinary differential equation (2) [10]:

dsR(s) = [Ω(s)]×R(s), (2)

where [Ω(s)]× denote respectively the skew-symmetric matrix corresponding to
the cross product of Ω(s) with an other vector (Eq. (3))and R(s) denotes the
column matrix

[
H(s),L(s),U(s)

]
.

Ω × v =

⎡

⎣
Ω0

Ω1

Ω2

⎤

⎦×

⎡

⎣
v0

v1

v2

⎤

⎦ =

⎡

⎣
0 −Ω2 Ω1

Ω2 0 −Ω0

−Ω1 Ω0 0

⎤

⎦

⎡

⎣
v0

v1

v2

⎤

⎦ = [Ω]×v (3)

At rest, the branch geometry is characterized by its generalized curvature Ω
and defines the reference configuration. At each point P (s), the elastic deforma-
tion of the material induces internal moments M I(s) (departure from the rest

FEM and L-Systems Using Natural Information Flow Propagation 221

C
P (s)P

S(s)
H(s)

L(s)

U(s)

R(s)

(a) Continuous representation of a beam:
mean curve C, section S(s) and frame
R(s).

P eq(s) Ωeq(s)

P (s)

Ω(s)

P (s)

Ω(s)

(b) Reference, calculated and equi-
librium configurations.

P (s)

f

(c) External forces.

ME(s)
F (s)

MI(s)

FR(s)

P (s)

(d) Beam’s reaction to the external
stresses.

Fig. 2. Actors of the continuous model

configuration). We assume here for simplicity a linear constitutive law (Hooke’s
law). Classical beam theory [4] allows to compute those moments (Eq. (4)), as a
function of the difference between the reference and actual generalized curvatures
Ω and Ω:

M I(s) = R(s)C(s)R(s)T (Ω(s)−Ω(s)) = K(s) (Ω(s)−Ω(s)) , (4)

where K(s) is the stiffness matrix. Note that the Hooke matrix C(s) expressed in
the local frame R(s) is diagonal. Its coefficients are the twist rigidity CH(s) (in
the plane (L(s),U(s)), as a function of section S(s) and shear modulus G) and
the flexural rigidities CL(s) and CU (s) (respectively in the planes (U(s),H(s))
and (H(s),L(s)), as a function of section S(s) and young modulus E):

C(s) =

⎡

⎣
CH (s) · ·

· CL(s) ·
· · CU (s)

⎤

⎦ ;

⎧
⎪⎨

⎪⎩

CH(s) = G
∫
S(s)

u2 + v2 dS

CL(s) = E
∫
S(s) u

2 dS

CU (s) = E
∫
S(s) v

2 dS

, (5)

where (u, v) are the coordinates in the plane (L(s),U(s)), with origin P (s).
When external forces f (such as the weight f = ρg, Fig. 2c) are applied to the

branch, external moments are induced. They result exclusively from the force

densities f([s, L]) present downstream of P (s). Denoting F (s) =
∫ L

s f (u) du

222 J.-P. Bernard, B. Gilles, and C. Godin

the external force applied to segment [s, L] due to gravity, we can express the
external moments as a function of forces F and tangents H:

ME(s) =

∫ L

s

(P (u)− P (s))× f (u) du =

∫ L

s

H(u)× F (u) du. (6)

At equilibrium, the internal torque (induced by deformation) exactly balances
the external torque (induced by external forces) (Fig. 2d):

K(s) (Ω(s)−Ωeq(s)) +ME(s) = 0, (7)

where Ωeq denotes the generalized curvature at equilibrium:

Ωeq(s) = Ω(s) +K(s)−1ME(s). (8)

2.2 FDM Discretization and Natural Integration Using L-Systems

Let us discretize the curve C into a set of I + 1 nodes Ni of curvilinear abscissa
si, i = 0 . . . I (usually regularly spaced though not necessarily) so that N0 =
P (0) and NI = P (L). Each node is associated with its position P i, frame
Ri, external moments ME

i or accumulated downstream forces F i. If distances
dsi = ‖si+1 − si‖ are small enough, we can express (1), (2), and (6) thanks to
Taylor’s series at order 1 (Euler methods) [12].

Interestingly, point P i+1 and frame Ri+1 can be recursively expressed in
terms of the previous point P i and frame Ri, which allow us to compute these
quantities in a single pass from the basis of the curve to its tip [18].

P i+1 = P i + dsi Hi, (9)

Ri+1 = Ri + dsi [Ωi]×Ri. (10)

Likewise, external moments ME
i−1 and accumulated forces F i−1 can be recur-

sively expressed in terms of ME
i and F i at the next node. Their computation

can thus be carried out in a single pass from curve tip to basis.

ME
i−1 = ME

i + dsi−1 H i × F i, (11)

F i−1 = F i +

∫ si

si−1

f(u) du. (12)

Due to large deformations, (7) is non-linear in terms of generalized curvature.
To solve it, we use an explicit iterative method, and, specifically, a relaxation
method [12] with a factor r ∈]0, 1[:

Ωt+1(s) = (1 − r)Ωt(s) + r(Ω(s) +Kt(s)−1MEt
(s)), (13)

with Ω0(s) = Ω(s). The iterative process stops when the difference between two
successive solutions is smaller than a tolerance ‖Ωt+1 −Ωt‖ < ε.

The above recursive formulation makes it possible to define local L-system
rules that will propagate in two pass across the branch structure, from node to
node. The flow of computation goes as follows between two time steps:

FEM and L-Systems Using Natural Information Flow Propagation 223

Input: branch at time t
Output: branch at time t+ 1
do:

L-system pass from tip to basis

computation of (11), (12), (13)
L-system pass from basis to tip

computation of (9), (10)
until convergence condition of (13) reached

Sketch of a L-system rule used for the tip-to-basis pass

N --> { ds = abs(successor ().s - current ().s)

current ().F = successor ().F + ds * successor ().f
... computation of (11) and (13)

} produce N

Sketch of a L-system rule used for the basis-to-tip pass

N --> { ds = abs(predecessor ().s - current ().s)

current ().P = predecessor ().P + ds * predecessor .H
... computation of (9), (10)

} produce N

3 Natural Computing of Branch Bending Using Finite
Element Method (FEM) and L-Systems

3.1 Computing Axis Bending by Axial Information Propagation
with FEM

In FDM and FEM, continuous model domains are approximated using informa-
tion at a finite number of discrete locations called nodesNi, i = 0, . . . , I. Whereas
in FDM, solutions are only evaluated at nodes (and not elsewhere within the
domain), in FEM the set of nodes correspond to the vertices of polygonal ele-
ments that tile the domain of interest. The solution is evaluated at each node
using an integral formulation and interpolated over the whole domain using a
basis of shape functions ϕi associated with each node Ni) [2]. Here, our aim is
to compute the generalized curvature Ω that characterizes the axis shape on the
whole domain (i.e. on the curve C). For this we decompose Ω on the set of shape
functions:

Ω(s) =

I∑

i=0

Ωiϕi(s), (14)

where Ωi is a vector. Shape functions ϕi are usually low order polynomials that
are null on all node Nj �= Ni and have value 1 at node Ni. They are interpolating
and form a partition of unity [2]. Their support is compact and their values at
one node influences those of neighboring elements.

224 J.-P. Bernard, B. Gilles, and C. Godin

To compute values Ωi on nodes Ni, we have to solve the linear system MX =
B defined by 15, [2]:

I∑

i=0

Ωi︸︷︷︸
=XT

i

∫

C
ϕi(s)ϕj(s) ds

︸ ︷︷ ︸
=Mji

=

∫

C
Ω(s)ϕj(s) ds+

∫

C
K(s)−1ME(s)ϕj(s) ds

︸ ︷︷ ︸
=BT

j

, (15)

where Mij correspond to the energy of the cross influence of nodes Nj and Ni on

the axis, Xi = ΩT
i and Bi to the energy of forces along the axis which influence

the generalized curvature Ωi of the node Ni. If the mass-matrix coefficient Mji

can be analytically computed (shape function are known) and expressed as a sum
of integrals on each element, we have to compute numerically the right hand-
side Bj . Because this term is not linear, we split up each element in several
integration areas and use midpoint method [12] to numericaly approach the
integrals (note that one may also use the Gauss points method [12]).

Properties of mass-matrix (symmetric and positive definite) allow us to use a
Cholesky decomposition [12] (product of a low triangular matrix with its trans-
pose) to solve in two data propagation through the structure thanks to forward
substitution (17) and backward substitution (18) algorithms [12].

M = LLT ,

⎧
⎪⎪⎨

⎪⎪⎩

Lij =
Mij −

∑j−1
k=0 LikLjk

Ljj
, ∀0 � j < i � I

Lii =
√
Mii −

∑i−1
k=0 L

2
ik, ∀0 � i � I

(16)

LY = B , Y i =
Bi −

∑i−1
k=0 LikY k

Lii
, ∀0 � i � I (17)

LTX = Y , Xi =
Y i −

∑I
k=i+1 LkiY k

Lii
, ∀I � i � 0 (18)

Cholesky decomposition (16) and forward substitution (17) algorithms can be
computed together with one pass, e.g. from basis-to-tip (resp. from tip to basis)
and the backward substitution (18) algorithm can be computed with an a pass
in the reverse direction, e.g. from tip to basis (resp. from basis to tip).

3.2 Extension to Branching Systems

We now need to extend the previous algorithm so that it can cope with branching
organizations of beams that would represent plant structures. As in a branch-
ing structure, each element has only one parent, ramifications do not influence
forward propagations (update of frames R(s) and points P (s)).

Solving the linear system MX = B is more difficult in case of ramification
than in the case of a single axis. Non-null elements Mij in the matrix M corre-
spond to branch segments between nodes Ni and Nj such that the product of
the shape functions ϕi and ϕj along these segments is non-null. Therefore, the
position of non-null elements in M depends on the indexing of the tree nodes. We

FEM and L-Systems Using Natural Information Flow Propagation 225

consider two indexing strategies: a forward and a backward strategies indexing
respectively the elements from basis to tip (matrix Mf) and from tip to basis
(matrix Mb). Using either of indexing strategies, matrices have a block structure
according to the set of nodes between two branching points (Fig. 3).

A B
C

Fig. 3. Sets of nodes corresponding to each block of matrices Mf and Mb

Mf =

⎡

⎣
M

f
AA sym

M
f
AB M

f
BB

M
f
AC · M

f
CC

⎤

⎦ ; Mb =

⎡

⎣
Mb

BB sym
· Mb

CC

Mb
AB Mb

AC Mb
AA

⎤

⎦ . (19)

With the same notations, we can compute Lf and Lb the Cholesky decomposi-

tion matrices of Mf = LfLfT and Mb = LbLbT respectively. Then, building the
direted acyclic graphs that correspond to data propagation in Cholesky decom-
position algorithm. It is possible to show that only the Cholesky decomposition
Lb keeps non-null coefficients at exactly the same places as those of the original
matrix Mb (Fig. 4) [6].

L
f
AA

L
f
AB L

f
BB

L
f
AC L

f
BC L

f
CC

M
f
AA

M
f
AB M

f
BB

M
f
AC M

f
BC M

f
CC

= 0

�= 0

(a) Forward indexing.

L
b
BB

L
b
BC L

b
CC

L
b
AB L

b
AC L

b
AA

M
b
BB

M
b
BC M

b
CC

M
b
AB M

b
AC M

b
AA

= 0

= 0

(b) Backward indexing.

Fig. 4. Direted acyclic graphs that correspond to data propagation in Cholesky de-
composition algorithm. With a forward indexing, Lf

BC �= 0 whereas Mf
BC = 0 contrary

to a backward indexing where Lb
BC = 0 = Mb

BC .

226 J.-P. Bernard, B. Gilles, and C. Godin

3.3 Natural Computing Using L-System

On an axis, elements and integration domains are segments. Since a node has
influence only on its neighboring elements (possibly at order greater than 1), we
can express our model in L-systems:

– a node is represented by a module of type N,
– an element between two nodes is represented by a module of type E,
– elements E are decomposed into integration segments represented by modules

of type I.

Because two elements can be decomposed into two different number of inte-
gration segments, and a node influences always the same number of neighboring
elements, we chose to use a multiscale L-string representation [3] to carry out
the integral calculus. Thus the axis is represented at two scales: the scale of
nodes and elements and the scale of integration points. The first scale is used to
assemble the mass-matrix Mb and solve the linear system MbX = B whereas
the second scale is used to compute B.

N N NE E

I I I I I I

NEIIINEIIIN...

(a) Axis seen as multiscale L-string for
FEM model (L-string and tree graph).

E
E

I I I I I I

N N
N

(b) Each L-string module corre-
sponds to a part of the axis.

Fig. 5. Different representations of a multiscale L-string

stored in the node Ni.
When a ramification exists, we deal with it in L-system by adding brackets

after a node N to begin a new axis having this node as a root. The L-string
NEN[EN]EN corresponds to a simple branch composed of a segment axis E di-
vided in two axis segments (Fig. 6a and 6b). Like previously, each element E is
decomposed into several integration segments I at a lower scale.

Using this data structure and storing each row of matrices from their diagonal
to their last coefficient in the corresponding node, it is possible to compute
the Cholesky decomposition and the forward substitution (and therefore all the
mechanical quantities) in a tip-to-basis pass using the following algorithm:

Input: M, B and order of shape functions n
Output: L and Y

init :

N --> { current ().Ltmp = current ().M

current ().Y tmp = current ().B
} produce N

FEM and L-Systems Using Natural Information Flow Propagation 227

N N N

N

E E

E

NEN[EN]EN

(a) L-string at elements and nodes
scale for FEM model in case of rami-
fication (L-string and tree graph).

E

E

E

N

N

N

N

(b) Each L-string module is
equivalent to a part of the
tree at elements and nodes
scale.

Fig. 6. Different representations of a ramification L-string at nodes and elements scale

Cholesky decomposition :

N --> { current ().L0 =

√

current().Ltmp
0

for i = 1 . . . n:

current ().Li =
current().Ltmp

i

current().L0

forall k, p in { predecessors () of order k � i }:

p.L
tmp
i = p.L

tmp
i − current ().Lk * current ().Li

} produce N

Forward substitution :

N --> { current ().Y =
current().Y tmp

current().L0

forall i, p in { predecessors () of order i � n }:

p.Y tmp = p.Y tmp - current ().Li * current ().Y

} produce N

4 Results

We first tested our algorithm on a simple branching system composed of a rigid
trunk, a horizontal branch and a secondary branch borne by the former one.
The method is able to account for bending and twist, Fig. 7. Only few nodes
were needed (here, only at each end of the branch and at each of its ramification
nodes) to obtain curvature along the axis (Fig. 7d). Note that if we do not have
enough integration points (Fig. 7b), the number of nodes and integration points
are not enough to converge correctly.

To analyze this resolution issue, we compared our result to the model pre-
sented in the section 2 (green curves in Fig. 8). We present two simulations:

228 J.-P. Bernard, B. Gilles, and C. Godin

(a) Reference config-
uration.

(b) 2 points per ele-
ment.

(c) 10 points per ele-
ment.

(d) 100 points per el-
ement.

Fig. 7. Branch bending with one ramification. 1 node (red spheres) at each end and
ramification. Integration points are located on the midpoint of each brown segment
(integration areas).

– one with only two nodes (at the beginning and at the end of the axis): we
are only varying the number of integration points (blue curves in Fig. 8),

– another one where we are varying the number of nodes and where the number
of integration points per element is fixed to 10 (red curves in Fig. 8).

(a) Execution time (in seconds) as
function of integration points num-
ber (in FDM, integration points
and nodes numbers are the same).

(b) Convergence (norm of the de-
flection) as function of nodes num-
ber except for blue curve: as func-
tion of integration points number.

Fig. 8. Performances of our method on a single axis bending compared to FDM (ref-
erence mode, green curves). Two approaches are studied: nodes number fixed and
increase the points integration numbers (2 nodes, blue curves); increase nodes number
with fixed integration points number per element (red curves).

Fig. 8a shows us that our method is faster than a finite difference method.
In general, the execution time increases roughly linearly with the number of
integration points. Furthermore, for a given number of integration points, the
less nodes we use the faster is our method. On Fig. 8b, we observe that our
method converges more rapidly than a FDM method for a similar number of
nodes. The error (distance between the simulated and the theoretical values) is
a decreasing function of number of nodes. However, decreasing the number of
integration points does not change the convergence speed but may affect the
convergence itself (blue curve). A minimal density of integration points must
therefore be used to obtain correct physical results.

FEM and L-Systems Using Natural Information Flow Propagation 229

Our method allows to compute branch bending with different kinds of growth
rules (Fig. 9): we can play with reference curvature, material properties (density,
Young and shear modulii, . . .), order of ramifications, children number at each
ramification, sections, segment’s length. . .

(a) 3 growth steps. (b) 6 growth steps. (c) 10 growth steps.

Fig. 9. Branch bending on growing tree with 2 perspectives

5 Conclusion

In this paper, we extended FDM to FEM integration in L-systems. For this we
had to use a multiscale approach where the plant is represented at two scales to
model both the nodes and the integration points of a FEM approach. We showed
that we could solve symmetric and definite positive linear systems thanks to a
Cholesky decomposition in L-systems, that made it possible to use the branching
structure itself to propagate the numerical integration as a flow of information
from the basis of the plant to the tip and reciprocally.

Our comparative analysis showed that our L-system FEM converges more
rapidly for our application than L-system FDM (with same model). This ap-
proach, illustrated on a mechanical problem of branch bending, can be readily
extended to the resolution of other systems involving differential equations on
branching systems.

References

1. Allen, M., Prusinkiewicz, P., DeJong, T.M.: Using L-systems for modeling source-
sink interactions, architecture and physiology of growing trees: the L-PEACH
Model. New Phyotologist 166, 869–880 (2005)

2. Bathe, K.: Finite Element Procedures. Prentice Hall (1996)
3. Boudon, F., Pradal, C., Cokelaer, T., Prusinkiewicz, P., Godin, C.: L-Py: an L-

system simulation framework for modeling plant architecture development base on
a dynamic language. Frontiers in Plant Science 3(76) (2012)

4. Chou, P.C., Pagano, N.J.: Elasticity: tensor, dyadic, and engineering approaches.
Courier Dover Publications (1992)

5. Costes, E., Smith, C., Renton, M., Guédon, Y., Prusinkiewicz, P., Godin, C.: MAp-
pleT: simulation of apple tree development using mixed stochastic and biomechan-
ical models. Functional Plant Biology 35(10) (2008)

230 J.-P. Bernard, B. Gilles, and C. Godin

6. Featherstone, R.: Efficient Factorization of the Joint-Space Inertia Matrix for
Branched Kinematic Trees. The International Journal of Robotics Research 24(6),
487–500 (2005)

7. Federl, P., Prusinkiewicz, P.: Solving differential equations in developmental models
of multicellular structures expressed using L-systems. In: Bubak, M., van Albada,
G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 65–72.
Springer, Heidelberg (2004)

8. Godin, C., Sinoquet, H.: Functional-structural plant modelling. The New Phytol-
ogist 166(3), 705–708 (2005)

9. Hemmerling, R., Evers, J.B., Smoleňova, K., Buck-Sorlin, G., Kurth, W.: Exten-
sion of the GroIMP modelling platform to allow easy specification of differential
equations describing biological processes within plant models. Computers and Elec-
tronics in Agriculture 92(C), 1–8 (2013)

10. Jirasek, C., Prusinkiewicz, P., Moulia, B.: Integrating biomechanics into develop-
mental plant models expressed using L-systems. Plant Biomechanics 24(9), 614–624
(2000)

11. Peiró, J., Sherwin, S.: Finite Difference, Finite Element and Finite VolumeMethods
for Partial Differential Equations. In: Springer Netherlands Handbook of Materials
Modeling, Dordrecht, pp. 2415–2446 (2005)

12. Press, W.H., Teukolsky, S.A., Vettering, W.T., Flannery, B.P.: Numerical Recipes:
The art of scientific computing. Cambridge University Press (1987)

13. Prusinkiewicz, P.: Geometric modeling without coordinates and indices. In: IEEE
Computer Society Proceedings of the IEEE Shape Modeling International, pp. 3–4
(2002)

14. Prusinkiewicz, P.: Modeling plant growth and development. Modeling plant growth
and development 7(1), 79–83 (2004)

15. Prusinkiewicz, P., Allen, M., Escobar-Gutierrez, A., DeJong, T.M.: Numeri-
cal methods for transport-resistance sink-source allocation models. Frontis 22,
123–137 (2007)

16. Prusinkiewicz, P. and Lindenmayer, A.: The algorithmic beauty of plants. Springer
(1990)

17. Prusinkiewicz, P., Runions, A.: Computational models of plant development and
form. The New Phytologist 193(3), 549–569 (2012)

18. Taylor-Hell, J.: Incorporating biomechanics into architectural tree models. In: 18th
Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI
2005. IEEE (2005)

19. Vos, J., Evers, J.B., Buck-Sorlin, G.H., Andrieu, B., Chelle, M., de Visser, P.H.B.:
Functional-structural plant modelling: a new versatile tool in crop science. Journal
of Experimental Botany 61(8), 2101–2115 (2010)

Morphogenesis Model for Systematic Simulation

of Forms’ Co-evolution with Constraints:
Application to Mitosis

Abdoulaye Sarr, Alexandra Fronville, and Vincent Rodin

UMR CNRS 6285, Lab-STICC, CID, IHSEV
Computer Science Department

Université de Brest
20 Avenue Le Gorgeu, Brest, France

{abdoulaye.sarr,alexandra.fronville,vincent.rodin}@univ-brest.fr

Abstract. We present a new approach to understand forms’ emergence
in a cellular system. We set the hypothesis that beyond the influence of
mechanical forces and gene expression, constraints applied to the cells
over time play a key role in the acquisition of specific shape. We consider
that these constraints are the fundamental principles and basic cause
of morphogenesis. In our model, it’s due to these constraints that cells
choose a particular direction while dividing, migrate or die. Our approach
of morphogenesis based on constraints has been used to get effectively
for a given form all possible evolutions by growth at latter times. Such
work ensures to do some pattern prediction.

Keywords: Developmental systems, Virtual biology, Morphogenesis,
Mathematical morphology, Viability theory.

1 Introduction

Facing the experimental complexity, understanding of the living is more and
more focused on in silico models. The convenience of implementation of a vir-
tual lab has made possible the formulation and testing of many hypotheses in
Biology, particularly in Morphogenesis. This gave birth to a multitude of mod-
els in this area. But we note that they mostly aim to make an integration of
the dynamic interactions between different spatial and/or temporal scales. This
approach introduces some complexity in models that limits their understanding
and effectiveness with respect to their purpose. Thus, we consider that the cell
must be the focus, which determines both causalities and downgrades. In other
words, as a first step of a better understanding, observations must be restricted
to a single spatial and temporal scale of the biological organization.

Thanks to advances in microscopy and imaging, very detailed data on com-
ponents and structures of living organisms are now available. Melani and al.
achieved a tracking of cell nuclei and the identification of cell divisions in live
zebra fish embryos using 3D+time images acquired by confocal laser scanning

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 231–242, 2014.
c© Springer International Publishing Switzerland 2014

232 A. Sarr, A. Fronville, and V. Rodin

microscopy [5]. While the zebrafish embryo contains a few pairs of cells, we
noticed:

1. a geometrical segmentation during cellular proliferation
2. a specific arrangement of cells at each stage

Theses observations allow us to formulate a set of principles so as to propose a
model. First, the noticed geometrical segmentation allow us to adopt a 2D model,
discrete in time and space to study the forms appearing in the early stages of
morphogenesis. Besides, we make the hypothesis that we can define a morpho-
logical dynamic based only on spatial constraints of the cells. Furthermore, we
assume that this dynamic is the fundamental principle of morphogenesis and is
therefore able to describe all evolutions of a form, both those that modify it and
those that maintain it.

The main contribution of this paper is to present the formalization and imple-
mentation of such a model. It’s organized as follows, section 2 provides a quick
overview of some existing models and finishes by our positioning with respect to
these models. Section 3 presents the mathematical morphological dynamic rely-
ing on the viability theory [1]. Then we present in section 4 a system based on
that model which allow to construct and reach over time all possible evolutions of
a given form. Section 5 studies the coupling between constraints and organisms
(co-evolution) with various types of constraints considered by epigenetics as very
important to understand the development of living. Finally section 6 concludes
this paper by giving some applications of this work and then highlighting the
perspectives we should address in coming work.

2 Related Works

Morphogenesis is an important research field within Developmental Biology. It
can be defined as the set of processes that generates shapes in the embryo.
There exists many models in the area depending on the main factors considered
in biological form creation and also the studied organisms (prokaryotes, animals,
plant etc.).

Tensegrity model is for example interested in cells’ shape changing. This model
considers biomechanical forces between cells and the extracellular matrix. The
stretching of cells adhering to the extracellular matrix may result from local
reshuffle in this latter. According to this model, growth-generated strains and
pressures in developing tissues regulate morphogenesis throughout development
[3]. It is therefore the biomechanical forces which play the key role. For exam-
ple by modulating cell differentiation, influencing the direction of division or
deforming tissues. However, the question of cell diversity even arises before the
acquisition of shape [7]. Indeed, when the embryo has only a few pairs of cells,
we can see already a diversification of biochemical content or a diversification
of embryonic cells morphology. That may be the result of genetic and molecu-
lar interactions. Indeed, the emergence of forms also stems from the acquisition
of differential properties, of cell mobility and gene expression throughout cell
development.

Systematic Simulation of Forms’ Co-evolution 233

Among the mechanisms of cell morphogenesis, we have also artificial Regu-
latory Networks. They define a series of regulatory genes and structural genes.
The firsts consists of a network of rules determining the evolution of the system
and the latter are intended to each generate a simple specific pattern. They can
be seen as a dynamic system following different trajectories in a state space [4].
However, even if the detailed knowledge of genomic sequences allow to determine
where and when different genes are expressed in the embryo, it is insufficient to
understand how the organism emerge [6].

So, focusing only on the cellular constraints, we tried to define a mechanism
of morphogenesis including the cellular dynamics and allowing to describe and
get all possible evolutions of a form over time.

3 Mathematical Morphological Dynamic

In Mathematics, the viability theory offers concepts and methods to control a
dynamical system in a given fixed environment, in order to maintain it in a set
of constraints of viability. Applied to Morphogenesis, this means that we should
have at least one co-viable evolution of the cells’ state and their environment
based on each state-environment pair. This formalization allows us to establish
rules in terms of cell plus action. The application of such rules by a cell, on
the one hand is subject to the observance of an array of constraints and, on the
other hand causes some biological effects both on the cell and the overall form.

K ⊂ P(X)1 denotes the morphological environment2 (X = �
2 denotes the set

of containment cells, contained in the complement of vitellus 3).
Cells x ∈ X ∪ ∅ are either characterized by their position (living cells) or by

their death made of tissues L which are subsets of cells (L ∈ P(X)).
The subset of eight genetic actions d of cells is:

A := {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1), (0, 0, 0), ∅}

A is made of the six geometric directions, the origin and the empty set. Here,
we restrict morphogenesis in the plan:

A := {(0, 1), (0,−1), (1, 0), (−1, 0), (0, 0), ∅}

For convenience, we replace (0, 1), (0,−1), (1, 0), (−1, 0), (0, 0) and ∅ respec-
tively by 1, 2, 3, 4, 5 and 6.

A := {1, 2, 3, 4, 5, 6}

These genetic actions allow to describe cells’ behaviour:

1 Supplied with the structure of max-plus algebra for the operation ∪ and + (where
K + ∅ := ∅ with K a cell tissue).

2 For instance, K := {K ⊂ M} is the family of subsets contained in a given subset M .
3 In biology, the vitellus is the energy reserves used by the embryos during its devel-
opment.

234 A. Sarr, A. Fronville, and V. Rodin

1. Transitions x �→ x+ d, where d ∈ {1, 2, 3, 4} (action)
2. Quiescence x �→ x+ 5 = x (no action)
3. Apoptosis x �→ x+ 6 = 6 (programmed cell death)

This injunction (d�, d�) is described by the genetic inclusion

x �
{
x+ d�, x+ d�

}

where the mother cell x

– first migrates from x to x+ d� using the migration action d� ∈ A at a new
position (including x and {6}),

– then divides, giving birth to a cell at position x+d� using the division action
d� ∈ A \ {5} .

The composition of these actions produce a mother-daughter cell pair

{x+ d�, x+ d�}.
Hence the basic behaviours of the mother cell are described by:

1. sterile migration by taking d� ∈ A and d� = 6
2. stationary division by taking d� = 5 and d� ∈ A
3. migrating division by taking d� ∈ A \ {5} and d� ∈ A \ {5}

3.1 Gene and Status Expression

To define the genetic actions that cells must take in each time, we intro-
duce genetic processes. They indicate the behaviours of cells over time while
taking into account constraints they must face. The chosen actions in genetic

processes is the basis of the morphological dynamic and lead to state changes
for the cells. The possible states we define here are: proliferating, divided and
quiescent cells. At the beginning of cycles (duration time for all cells to do an
action), all cells are marked “proliferating”. When a mitosis occurs, the mother
cell is marked “divided” while the daughter cell is marked “quiescent”. And only
proliferating cells are enabled to make mitosis. Since we have associated a color
to each genetic process, cells are coloured with respect to their current ap-
plied genetic process (gene expression) and in a color level according to their
state (status expression). The color level codes are:

– light for the “divided”
– intermediate for the “proliferating”
– dark form the “quiescent”

Lifts from a genetic process to another make differentiation occurs for both
mother and new created daughter cell. They adopt the associated color of the
new genetic process. This mechanism ensures gene expression in forms.

In order to define the genetic process, we introduce the set of permutations
σ of the set A of genetic actions. A genetic process is the ordered sequence
of actions dσ := {dσ(1), ..., dσ(8)} ∈ A. We denote by G the subset of genetic

Systematic Simulation of Forms’ Co-evolution 235

processes of the actions inA (subset of permutation of six elements). Operating
a genetic process under a given criterion, either for migration or for division,
means that the process scans successively x + dσ(1), ..., x + dσ(8) until the fist
time when the criterion is satisfied. Since the empty set ∅ (action 6) belongs to
any genetic process, any sequence of operations stops before the six genetic

actions of the genetic process.
Before establishing the morphological evolutionary mechanism, we distinguish:

– the calendar (or algorithmic) time n ≥ 0 that identifies the cycles
– and at each time n, a process time j = 1, ..., jm are the time process for each

cell. That’s why a cycle lasts as long as there are cells. This is mostly due to
the requirement that at each process time, a cell pair cannot occupy the same
position.

We can now define the genetic regulon. It’s a map4 associating with each
triple (n, L, x) the pair (G�(n, L, x), G�(n, L, x)) ∈ G×G of genetic processes

satisfying the non-overlapping property.
⎧
⎪⎪⎨

⎪⎪⎩

∀x ∈ L,
i is the time process when we first have x+G�(n, L, x)(i) ∈ x ∪ �L,
ji is the time process when we first have x+G�(n, L, x)(ji) ∈{
x \ x+G�(n, L, x)(i)

}
∪ �L,

The first property describes the migration of the mother cell, it can stay at the
same position or move to an unoccupied position in the morphological environ-
ment. The second property describes the division and the birth of the daughter
cell (it cannot take the position of any existing cell).

In what follows, we will describe the morphological evolutionary mechanism.
We first define the local morphological dynamics and then the global morpho-
logical dynamics.

3.2 Local Morphological Dynamics

The genetic regulons (G�, G�) are assumed either to be given or constructed
to respectively regulate or describe viable evolutions. They are the input of the
controlled morphological inclusion we are about to define. First, the map H
defined by:

H(G�, G�)(n, L, x) := (x+G�(n, L, x)(i), x+G�(n, L, x)(ji))

associates with any pair (G�, G�) of genetic processes the mother-daughter
cell pair and the transitions transform ϕ(n, L, x;G�, G�) of the subset L (rep-
resenting the cell tissue at time n).

ϕ(n, L, x;G�, G�) := L ∪H(G�, G�)(n, L, x)

It transforms L at time n after transitions of the cell x ∈ L.

4 A single-valued map for the time, since no other parameters, biological ones, are
involved at the stage of this study.

236 A. Sarr, A. Fronville, and V. Rodin

3.3 Global Morphological Dynamics

Let Kn ∈ P(x) be a subset constructed, described and coded by an ordered list
(x1, . . . , xpKn

). Hence, we construct φ in the following way:
Kn being given, we define the sequence Kn(x1) := ϕ(n,Kn, x1;G

�, G�).

∀p = 2, . . . , pKn , Kn(x1, . . . , xp) := ϕ(n,Kn(x1, . . . , xp−1), xp;G
�, G�).

Thus we can set φ(n,Kn) := ϕ(Kn(x1, . . . , xpKn
);G�, G�).

4 Sets of Evolutions

Giving a mathematical formalization of cells’ actions and behaviours, defining
the gene and status expressions and describing the morphological dynamics, we
aim now to use this mathematical foundation to describe the possible evolutions
of a form by growth. Indeed, we don’t take into account migration and death.
Hence, given an initial form, we construct and generate exhaustively its all evo-
lutions at later times. It’s also possible to keep only evolutions passing through
specific paths while generating sets(see figure 1). To do so, a filter catalogue is
set to be applied to some given sets of evolutions.

Fig. 1. Construction of the sets of evolutions over time

Systematic Simulation of Forms’ Co-evolution 237

4.1 Implementation

The program is developed in C++, sets are represented with the library Boost

Graph and the algorithm operates a redundancy control in sets to ensure that
either a form or its different geometrical transformations (symmetries, rotations
and translations) are stored only once (reduced a set by 87%). Since the sets’
size increase asymptomatically, we have also developed a parallel implementation
with Boost Thread, that allowed us a significant gain in execution time (more
that 30x faster). The program offers a view on all details of each evolution:

– at each time which cell were created,
– which one created it
– and by which genetic action

Besides, while constructing evolutions, genetic processes are also constructed
and thus allow to describe each evolution. Therefore, in the output results viewed
with Scilab, we display the genetic process of each evolution. Furthermore,
gene and status expressions can be observed in the evolutions by their colors and
color levels. In the following figures for example, are represented the evolutions
of a single cell when it becomes 2, 4, 8 and 16 cells.

Fig. 2. Set of evolutions at 2 cells (size 1)

Fig. 3. Set of evolutions at 4 cells (size 4)

238 A. Sarr, A. Fronville, and V. Rodin

Fig. 4. Set of evolutions at 8 cells (size 61)

Fig. 5. One of the evolutions at 16 cells. The size of the entire set is 1029

5 Co-evolution between Forms and Constraints

A Multicellular organism is a complex system which can be defined as a compo-
sition of a significant number of elements interacting locally to produce a global
behaviour. According to Doursat [2], whether inanimate structures or living or-
ganisms, all processes of form emergence are instances of decentralized morpho-
logical self-organization. When cells evolve, they modify their organism which in
its turn impacts their behaviour. This is what biologists mean by co-evolution
with constraints. Epigenetics considers that this coupling between organism and
constraints can not be ignored in understanding the development of living or-
ganisms [8]. These constraints may arise from the environment, the dynamics or
the form itself. To highlight the importance of this interaction between forms
and constraints, we’ll study two cases:

Systematic Simulation of Forms’ Co-evolution 239

1. a co-evolution of commuting parts of a same form;
2. and form’s evolutions in a very restrictive morphological environment

5.1 A Commutative Growth

We introduce an evolution lock factor (ELF) that handles the commutating
process. We begin by defining a starting form where some cells are being allowed
to divide (ELF is set to off) whereas the others are forebidden to divide (ELF is
set to on): see figure 6.

Fig. 6. The initial form with two cells: the dark coloured with an ELF set to on and
the light coloured with an ELF set to off

Then, the possible evolutions of this form until the end of the cycle are ob-
tained only by the possible transitions of the first ones with regard to the con-
straints making by the second ones (see figure 7). The proliferating cells give
birth to proliferating cells too. At the end of the current cycle, here meaning
that the number of cells = 2n, we invert the ELF for each form of the current
set. The proliferating part of the form becomes locked and the former locked part
can now proliferate (see figure 8). Here, we lift the restrictions on the mother
and daughter cells, they can divide as far as possible during the cycle. We thus
have implemented an original co-evolution system ensured by commuting parts
of the form through phases marked by the end of cycles. The gene expression
method doesn’t change for the commutative evolution but since we have only
two possible cell state (locked and free), we thus have two color levels. For the
cells whose the ELF is set to on, they are dark coloured and those for which the
ELF is set to off are light coloured.

Fig. 7. The five possible evolutions at 4 cells of the initial form

240 A. Sarr, A. Fronville, and V. Rodin

Fig. 8. Here are some possible evolutions at 8 cells of the initial form. They are
the result of the first ELF’s inversion (done in the 4 cells forms). To seek the next
evolutions, the ELF will be inverted in each of the total of 232 forms.

The co-evolution with a constraint of commutative growth has a significant
impact on forms’ development. Indeed, without this constraint, from that ini-
tial form, it would be possible to get 369 forms of 8 cells. Therefore, the
commutative evolution reduces by 37% the possibilities.

5.2 Growth in a Restrictive Morphological Environment

The more relevant and more natural way to highlight the influence of constraints
on forms’ development is to consider those arising from their morphological en-
vironment. Commonly, we make forms grow in a very basic environment that is
a 2D Grid. Here, we propose to change the environment a little quirky. Then
we place a single cell in this restrictive environment to see how many possibles
forms of 8 cells can we get from it (see figure 9).

Fig. 9. Left : a single cell (blue) is placed in the restrictive environment (pink) to grow.
Right : Growth of the single cell at 8 cells achieves only 2 forms.

Systematic Simulation of Forms’ Co-evolution 241

Considering the morphological dynamic defined in section 4, from a single
cell, we had 61 forms of 8 cells. So, the choice of a quirky morphological en-
vironment has drastically reduced (by 97%) the potential of forms’ development.
Besides, in this morphological environment the biggest forms that we can reach
are made by 12 cells and are only 5 (see figure 10), we can’t go beyond.

Fig. 10. Growth of the single cell stops at 12 cells. It achieves 5 forms. We can notice
that within these forms, the proliferating cells (with a intermediate color level) can’t
no longer divide due to constraints imposed by the environment. Thus growth stops.

6 Discussion

To study and understand the developmental process at the early stage of the
embryo when it contains just a few pairs of cells, constraints play a key role. In
support of this hypothesis, we have presented a mathematical model based on
the viability theory where the morphological dynamics depend on constraints.
All cells’ behaviours are able to be described in the model and according to the
constraints, cells can apply one or another action. Due to constraints and applied
actions, cells have respectively status expression and gene expression leading to
a differentiation in colors and color levels. With this model, we developed a pro-
gram to identify sets of forms that could be obtained from the growth of an initial
form over the time. This is a systematic simulation where we use the existing
computing powers, particularly with a parallel implementation on multicores

processor, to explore the entire space of possibles. We have also highlighted the
importance of constraints in cell development. Indeed, by restricting the mor-
phological environment or by imposing a commutative evolution to forms, the
possibilities of growth have been significantly reduced.

242 A. Sarr, A. Fronville, and V. Rodin

The interest is to have a view of all possible growth cases of any form. Having
a starting form and a final form, the implementation of a method determining
the genetic processes that allow to reach the latter from the first can be used
either for pattern prediction or for forms’ growth controlling.

We aim now to describe the possible evolutions of a form with another cellular
dynamic: the programmed cell death or apoptosis. In pattern prediction, this will,
for example, provides controls that make a form decreasing. Besides, describing
sets of possible evolutions of a given form, both by mitosis and apoptosis, for any
potential disturbances in it, in terms of necrosis or proliferation, we will be able
to provide suitable regulations that allow to compensate them. This would be an
autopoietic system that Varela defined in [9]. However, despite the simplicity
of the underlying model, algorithms of systematic determination of the space of
possibles pose significant challenges on Computing. First, representation of the
sets of evolutions over time requires huge memory. In addition, running these
sets is often time consuming.

References

1. Aubin, J.P.: Viability theory. Birkhauser (1991)
2. Doursat, R.: Organically grown architectures: Creating decentralized, autonomous

systems by embryomorphic engineering. Understanding Complex Systems, pp.
167–200 (2008), organic computing

3. Henderson, J., Carter, D.: Mechanical induction in limb morphogenesis: the role of
growth-generated strains and pressures. Bone 31(6) (2002)

4. Kauffman, S.A.: The Origins of Order: self-Organization and Selection in Evolution.
Oxford University Press, USA (1993)

5. Melani, C., Peyriéras, N., Mikula, K., Zanella, C., Campana, M., Rizzi, B., Veronesi,
F., Sarti, A., Lombardot, B., Bourgine, P.: Cells tracking in the live zebrafish embryo.
In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 1, pp. 1631–1634 (2007)

6. Müller, G., Newman, S.: Origination of organismal form: beyond the gene in devel-
opmental and evolutionary biology. MIT Press (2003)

7. Peyriéras, N.: Morphogenèse animale. Morphogénèse: L’origine des formes, pp.
179–201 (2006)

8. Varela, F.J.: Principles of Biological Autonomy. Developments in Marine Biology.
North-Holland (1979)

9. Varela, F.J.: Autonomie et connaissance: essai sur le vivant. Seuil (1989)

The Power of Extra Analog Neuron

Jǐŕı Š́ıma�

Institute of Computer Science, Academy of Sciences of the Czech Republic
P.O. Box 5, 18207 Prague 8, Czech Republic

sima@cs.cas.cz

Abstract. In the effort to refine the analysis of computational power
of neural nets between integer and rational weights we study a hybrid
binary-state network with an extra analog unit. We introduce a finite
automaton with a register which is shown to be computationally equiv-
alent to such a network. The main result is a sufficient condition for a
language accepted by this automaton to be regular which is based on the
new concept of a quasi-periodic power series. These preliminary results
suggest an interesting connection with the active research field on the
expansions of numbers in non-integer bases which seems to be a fruitful
area for further research including many important open problems.

Keywords: Neural computing, analog state, beta-expansion.

1 Introduction

The computational power of neural networks with the saturated-linear activation
function1 depends on the descriptive complexity of their weight parameters [25,
30]. Neural nets with integer weights corresponding to binary-state networks
coincide with finite automata [3, 9, 11, 16, 29, 31]. Rational weights make the
analog-state networks computationally equivalent to Turing machines [11, 27],
and thus (by a real-time simulation [27]) polynomial-time computations of such
networks are characterized by the complexity class P. Moreover, neural nets
with arbitrary real weights can even derive “super-Turing” computational capa-
bilities [25, 26]. For example, their polynomial-time computations correspond
to the nonuniform complexity class P/poly while any I/O mapping (including
undecidable problems) can be computed within exponential time. In addition, a
proper hierarchy of nonuniform complexity classes between P and P/poly has
been established for polynomial-time computations of neural nets with increasing
Kolmogorov complexity of real weights [4].

It follows that our understanding of the computational power of neural net-
works is satisfactorily fine-grained when changing from rational to arbitrary real
weights. In contrast, there is still a gap between integer and rational weights

� Research was supported by the projects GA ČR P202/10/1333 and RVO: 67985807.
1 The results are valid for more general classes of activation functions [14, 24, 28, 32]
including the logistic function [13].

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 243–254, 2014.
c© Springer International Publishing Switzerland 2014

244 J. Š́ıma

which results in a jump from regular to recursive languages in the Chomsky hier-
archy. It appears that Turing machines can be simulated by the neural networks
that, apart from binary-state neurons interconnected via integer weights, in-
clude only two analog-state units with rational weights implementing two stacks
of pushdown automata, a model equivalent to Turing machines [27]. A natural
question arises: what is the computational power of hybrid binary-state networks
with one extra analog unit having rational weights? Our investigation which was
originally motivated by the quest of refining the analysis along this direction,
has revealed interesting connections with other active research fields such as rep-
resentations of numbers in non-integer bases [1, 2, 5, 7, 8, 15, 19, 20, 22, 23]
and automata with multiplication [6, 10, 12, 17, 21]. In addition, our analysis
leads to interesting open problems and even to new concepts which are worth
investigating on their own.

The present paper which initiates our preliminary study, is organized as fol-
lows. In Section 2, we give a brief review of basic definitions concerning the
language acceptors based on a hybrid model of binary-state neural networks
with an extra analog unit. In Section 3, we introduce a new notion of a finite
automaton with a register whose domain is partitioned into a finite number of
intervals, each associated with a local state-transition function. This automaton
is shown to be computationally equivalent by mutual simulations to a neural
network with an analog unit. Our main technical result in Section 4 provides
a sufficient condition when a finite automaton with a register accepts a regular
language, which is based on the new concept of a quasi-periodic power series.
In section 5, related results on so-called β-expansions of numbers in non-integer
bases are surveyed and emerging directions for ongoing research are discussed.

2 Neural Language Acceptors with Extra Analog Unit

We will specify a hybrid model of a binary-state neural network with an analog
unit (NN1A) N which will be used as a formal language acceptor. The network
consists of s units (neurons), indexed as V = {1, . . . , s}, where s is called the
network size. All the units in N are assumed to be binary-state perceptrons (i.e.
threshold gates) except for the last sth neuron which is an analog unit. The
neurons are connected into a directed graph representing the architecture of
N , in which each edge (i, j) leading from unit i to j is labeled with a rational
weight w(i, j) = wji ∈ Q. The absence of a connection within the architecture
corresponds to a zero weight between the respective neurons, and vice versa.

The computational dynamics of N determines for each unit j ∈ V its state

(output) y
(t)
j at discrete time instants t = 0, 1, 2, The states y

(t)
j of the first

s − 1 perceptrons j ∈ V \ {s} are binary values from {0, 1}, whereas y
(t)
s of

analog unit s ∈ V is a rational number from the unit interval I = [0, 1] ∩ Q.

This establishes the network state y(t) = (y
(t)
1 , . . . , y

(t)
s) ∈ {0, 1}s−1 × I at each

discrete time instant t ≥ 0. At the beginning of a computation, the neural
network N is placed in an initial state y(0) which may also include an external
input. At discrete time instant t ≥ 0, an excitation of any neuron j ∈ V is

The Power of Extra Analog Neuron 245

defined as ξ
(t)
j =

∑s
i=0 wjiy

(t)
i , including a rational bias value wj0 ∈ Q which

can be viewed as the weight w(0, j) from a formal constant unit input y
(t)
0 ≡ 1.

At the next instant t+1, the neurons j ∈ αt+1 from a selected subset αt+1 ⊆ V

compute their new outputs y
(t+1)
j = σj(ξ

(t)
j) in parallel by applying an activation

function σj : R −→ R to ξ
(t)
j , whereas y

(t+1)
j = y

(t)
j for the remaining units

j ∈ V \ αt+1. For perceptrons j ∈ V \ {s} with binary states yj ∈ {0, 1} the
Heaviside activation function σj(ξ) = σH(ξ) is used where σH(ξ) = 1 for ξ ≥ 0
and σH(ξ) = 0 for ξ < 0, while the analog-state unit s ∈ V employs the saturated-
linear function σs(ξ) = σL(ξ) where

σL(ξ) =

⎧
⎨

⎩

1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0 .

(1)

In this way, the new network state y(t+1) at time t+ 1 is determined.
Without loss of efficiency [18] we assume synchronous computations for which

the sets αt, defining the computational dynamics of N , are predestined deter-
ministically. Usually, sets αt correspond to layers in the architecture of N which
are updated one by one (e.g., a feedforward subnetwork). In particular, we use a
systematic periodic choice of αt so that αt+d = αt for any t ≥ 0 where an integer
parameter d ≥ 1 represents the number of updates within one macroscopic time
step (e.g., d is the number of layers). We assume that the analog unit s ∈ V is up-
dated exactly once in every macroscopic time step, say s ∈ αdτ for every τ ≥ 1.

The computational power of neural networks has been studied analogously
to the traditional models of computations so that the networks are exploited as
acceptors of formal languages L ⊆ {0, 1}∗ over the binary alphabet. For the finite
networks the following I/O protocol has been used [3, 4, 9, 11, 24–27, 30, 31].
A binary input word (string) x = x1 . . . xn ∈ {0, 1}n of arbitrary length n ≥ 0
is sequentially presented to the network bit by bit via the first, so-called input
neuron 1 ∈ V . The state of this unit is externally set (and clamped) to the
respective input bits at microscopic time instants, regardless of any influence

from the remaining neurons in the network, that is, y
(d(τ−1)+k)
1 = xτ for τ =

1, . . . , n and every k = 0 . . . , d − 1 where an integer d ≥ 1 is the time overhead
for processing a single input bit which coincides with the microscopic time step.
Then, the second, so-called output neuron 2 ∈ V signals at microscopic time
instant n whether the input word belongs to underlying language L, that is,

y
(dn)
2 = 1 for x ∈ L whereas y

(dn)
2 = 0 for x /∈ L. Thus, a language L ⊆ {0, 1}∗

is accepted by NN1A N , which is denoted by L = L(N), if for any input word
x ∈ {0, 1}∗, x is accepted by N iff x ∈ L.

3 Finite Automata with a Register

We introduce a (deterministic) finite automaton with a register (FAR) which is
formally a nine-tuple A = (Q,Σ, {I1, . . . , Ip}, a, (Δ1, . . . , Δp), δ, q0, z0, F) where,
as usual, Q is a finite set of automaton states including a start (initial) state

246 J. Š́ıma

q0 ∈ Q and a subset F ⊆ Q of accept (final) states. We assume Σ = {0, 1} to be
a binary input alphabet. In addition, the automaton is augmented with a register
which stores a rational number z ∈ I = [0, 1] ∩ Q. Domain I is partitioned into
a finite number of intervals I1, . . . , Ip, possibly of different types: open, closed,
half-closed, or degenerate (containing a single point) bounded intervals with
rational endpoints. Each such an interval Ir is associated with a usual local
state-transition function δr : Q × Σ −→ Q which is employed if the current
register value z falls into this interval Ir .

Moreover, we have a rational shift function Δr : Q×Σ −→ Q for each interval
Ir, r = 1, . . . , p. The register is initialized to a start (initial) value z0 ∈ I, and
during each state transition, its value z ∈ I is updated to σL(az +Δr(q, x)) ∈ I

by applying a linear mapping with saturation (1) having a fixed slope a ∈ Q

called multiplier and an y-intercept Δr(q, x) ∈ Q given by the shift function
Δr for z ∈ Ir which depends on current state q ∈ Q and input bit x ∈ Σ. In
summary, for current state q ∈ Q, register value z ∈ I, and input bit x ∈ Σ, the
global state-transition function δ : Q × I×Σ −→ Q× I produces the new state
and the new register value of automaton A as follows:

δ(q, z, x) = (δr(q, x), σL(az +Δr(q, x))) if z ∈ Ir . (2)

A binary input word x ∈ Σ∗ is accepted by A if automaton A, starting at
initial state q0 with start register value z0, reaches a final state q ∈ F by a
sequence of state transitions according to (2) while reading the input x from left
to right. A language L ⊆ {0, 1}∗ is accepted by FAR A, which is denoted by L =
L(A), if for any input word x ∈ Σ∗, x is accepted by A iff x ∈ L. The concept of
FAR is reminiscent of today’s already classical definition of finite automaton with
multiplication [10]. In the following theorems, we will show by mutual simulations
that the binary-state neural networks with analog unit introduced in Section 2
are computationally equivalent to the finite automata with register.

Theorem 1. For any binary-state neural network with an analog unit, there is
a finite automaton with a register such that both accept the same language.

Proof. Let L ⊆ {0, 1}∗ be a language accepted by NN1A N , that is, L = L(N).
We will construct a FAR A such that L(A) = L. Let Q = {0, 1}s−2 be a finite set

of automaton states corresponding to all possible binary states (y
(dτ)
2 , . . . , y

(dτ)
s−1)

of neurons in V \ {1, s} at macroscopic time τ ≥ 0, excluding the input and

analog unit. The start state q0 = (y
(0)
2 , . . . , y

(0)
s−1) ∈ Q of A is defined using the

initial state of N and F = {1} × {0, 1}s−3 represents the set of accept states.
At any time instant t ≥ 0, the computational dynamics of N ensures

y
(t+1)
j = 1 iff

∑s−1
i=0 wjiy

(t)
i + wjsy

(t)
s ≥ 0 for a non-input binary-state neuron

j ∈ {2 . . . , s− 1} ∩ αt+1. For wjs 	= 0, this condition can be rewritten as

y
(t+1)
j = 1 iff

(
wjs > 0 & y(t)s ≥ cj

(
ỹ(t)

))
∨
(
wjs < 0 & y(t)s ≤ cj

(
ỹ(t)

))
(3)

where ỹ(t) = (y
(t)
1 , . . . , y

(t)
s−1) and cj(y) = (−

∑s−1
i=0 wjiyi)/wjs ∈ Q for y ∈

{0, 1}s−1. Let C = {(cj(y), 1−σH(wjs)) ∈ I×{0, 1} | 1 < j < s such that wjs 	= 0,

The Power of Extra Analog Neuron 247

y ∈ {0, 1}s−1}∪{(0, 0), (1, 1)} be a finite set of all possible values cj(y) ∈ I asso-
ciated with the opposite signs of corresponding weights wjs, which is extended
with the endpoints 0, 1 of I. We sort the elements of C lexicographically as
(0, 0) = (c1, s1) < (c2, s2) < . . . < (cp+1, sp+1) = (1, 1), which defines the parti-
tion of I to rational intervals I1, . . . , Ip as Ir = [cr, cr+1) if sr = 0& sr+1 = 0,
Ir = [cr, cr+1] if sr = 0& sr+1 = 1, Ir = (cr, cr+1) if sr = 1& sr+1 = 0, and
Ir = (cr, cr+1] if sr = 1& sr+1 = 1, for r = 1, . . . , p. It follows from (3) that for
any interval Ir (1 ≤ r ≤ p) of this partition, for every neuron j = 2, . . . , s−1 and

for any ỹ(t) ∈ {0, 1}s−1, the inequality
∑s−1

i=0 wjiy
(t)
i + wjsy

(t)
s ≥ 0 either holds

for all y
(t)
s ∈ Ir or it is not satisfied for all y

(t)
s ∈ Ir . This means that y

(t)
s ∈ I

influences the state y
(t+1)
j only by its membership to particular interval Ir and

not by its exact analog value.
We can define local state-transition functions δr : Q×Σ −→ Q ofA for each in-

terval Ir , r = 1, . . . , p. Given an automaton state q = (y
(d(τ−1))
2 , . . . , y

(d(τ−1))
s−1) ∈

Q corresponding to the network state y(d(τ−1)) at microscopic time τ −1 when a

current input bit y
(d(τ−1))
1 = xτ ∈ Σ is read, and let y

(d(τ−1))
s ∈ Ir, we know that

y
(d(τ−1)+k)
1 = y

(d(τ−1))
1 and y

(d(τ−1)+k)
s = y

(d(τ−1))
s for every k = 1, . . . , d− 1, as

the input and analog units are updated only at microscopic time instants. Hence,

for this interval Ir, the neuron states (y
(dτ))
2 , . . . , y

(dτ))
s−1) = q′ ∈ Q depend only

on state q ∈ Q and input bit xτ ∈ Σ using the computational dynamics of N ,
which define δr(q, xτ) = q′.

Finally, the register of A is initialized as z0 = y
(0)
s ∈ I. We define the multiplier

a = wss ∈ Q and the shift functions Δr : Q × Σ −→ Q for r = 1, . . . , p

as Δr(q, x) =
∑s−1

i=0 wsiy
(dτ−1)
i ∈ Q for q = (y

(d(τ−1))
2 , . . . , y

(d(τ−1))
s−1) ∈ Q and

x = y
(d(τ−1))
1 = y

(dτ−1)
1 ∈ Σ, and y

(d(τ−1))
s = y

(dτ−1)
s ∈ Ir, which is a correct

definition since the network state y(dτ−1) is uniquely determined by the state
y(d(τ−1)) at the last microscopic time instant τ − 1 using the computational
dynamics of N . By induction on microscopic time τ , the register of A stores the

current state y
(dτ)
s of analog unit s ∈ V , as its value z = y

(d(τ−1))
s = y

(dτ−1)
s ∈ Ir

is updated to σL (az +Δr(q, x)) = σs

(
wssy

(dτ−1)
s +

∑s−1
i=0 wsiy

(dτ−1)
i

)
= y

(dτ)
s

according to (2) and (1). This completes the definition of global state-transition
function δ which ensures that A simulates N . �

Theorem 2. For any finite automaton with a register, there is a binary-state
neural network with an analog unit accepting the same language.

Proof. Let L ⊆ {0, 1}∗ be a language accepted by FARA = (Q,Σ, {I1, . . . , Ip}, a,
(Δ1, . . . , Δp), δ, q0, z0, F), that is, L = L(A). We will construct a NN1A N such
that L(N) = L. Apart from the input, output, and analog neurons {1, 2, s}, the
set of neurons V contains four types of units corresponding to the automaton
states from Q, to the given partition I1, . . . , Ip of domain I, to all triples from
Q × Σ × {I1, . . . , Ip}, and to the endpoints 0 ≤ c2 ≤ · · · ≤ cp ≤ 1 of rational
intervals from the partition (excluding the left endpoint c1 = 0 of I1 and the
right endpoint cp+1 = 1 of Ip), respectively. For simplicity, we will identify the

248 J. Š́ıma

names of neurons with these objects, e.g. cr has two different meanings, once
denoting neuron cr ∈ V and other times standing for rational number cr ∈ I.
The initial network state y(0) ∈ {0, 1}s−1 × I is defined as an almost null vector

except for the input unit receiving the first input bit y
(0)
1 = x1 ∈ Σ = {0, 1},

the output neuron whose state y
(0)
2 = 1 iff q0 ∈ F , the neuron corresponding to

the initial automaton state q0 ∈ Q with output y
(0)
q0 = 1, and the analog unit

implementing the register initialized with its start value y
(0)
s = z0.

Each microscopic time step of N is composed of d = 4 updates. At the first
time instant 4(τ − 1) + 1 within the microscopic step τ ≥ 1, each neuron cr

(1 < r ≤ p) corresponding to the left endpoit of Ir fires, i.e. y
(4(τ−1)+1)
cr = 1

iff either y
(4(τ−1))
s ≥ cr for left-closed interval Ir or y

(4(τ−1))
s ≤ cr for left-open

interval Ir, which is implemented by weights w(s, cr) = 1 and biases w(0, cr) =
−cr for left-closed Ir , and w(s, cr) = −1 and w(0, cr) = cr for right-closed Ir,
for every r = 2, . . . , p. Thus, α4(τ−1)+1 = {c2, . . . , cr} ⊆ V . At the second time
instant 4(τ − 1) + 2, neuron Ir (1 ≤ r ≤ p) representing the interval Ir from

the partition of I fires, i.e. y
(4(τ−1)+2)
Ir

= 1 iff the current register value falls in

Ir, that is, iff y
(4(τ−1))
s = y

(4(τ−1)+1)
s ∈ Ir. This is implemented by the following

weights: w(cr, Ir) = 1 if Ir is left-closed whereas w(cr , Ir) = −1 if Ir is left-open,
for r = 2, . . . , p ; w(cr+1, Ir) = 1 if Ir is right-closed whereas w(cr+1, Ir) = −1 if
Ir is right-open, for r = 1, . . . , p − 1 ; w(0, Ir) = −2 if Ir is closed, w(0, Ir) = 0
if Ir is open, and w(0, Ir) = −1 otherwise, for r = 2, . . . , p− 1, while the biases
of units I1 and Ip having only one incoming edge are by 1 greater than those
defined for I2, . . . , Ip−1. Thus, α4(τ−1)+2 = {I1, . . . , Ir} ⊆ V .

At the third time instant 4(τ − 1) + 3, units in α4(τ−1)+3 = Q × Σ ×
{I1, . . . , Ip} ⊆ V are updated so that the only firing neuron (q, x, Ir) ∈ V among
α4(τ−1)+3 indicates the current triple of state q ∈ V , input bit x ∈ Σ = {0, 1},
and the interval Ir such that y

(4(τ−1))
s ∈ Ir. For any q ∈ Q and every r = 1, . . . , p,

this is simply implemented by weights w(q, (q, x, Ir)) = w(Ir , (q, x, Ir)) = 1 for
any x ∈ Σ, w(1, (q, 1, Ir)) = 1, w(1, (q, 0, Ir)) = −1, and biases w(0, (q, 1, Ir)) =
−3, w(0, (q, 0, Ir)) = −2. At the next time instant 4τ when α4τ = Q∪{2, s} ⊆ V ,
the new automaton state is computed while the output neuron signals whether
this state is accepting. For any q, q′ ∈ Q, x ∈ Σ, and r = 1, . . . , p, we define
the weight w((q, x, Ir), q

′) = 1 iff δr(q, x) = q′, and the bias w(0, q′) = −1,
while w((q, x, Ir), 2) = 1 iff q ∈ F , and w(0, 2) = −1. Finally, the register
value is properly updated according to (2) using the weights wss = a and
w((q, x, Ir), s) = Δr(q, x) for any q ∈ Q, x ∈ Σ, and every r = 1, . . . , p. This
completes the construction of network N simulating FAR A. �

4 A Sufficient Condition for Accepting Regular Languages

In this section, we prove a sufficient condition when a finite automaton with
a register accepts a regular language. For this purpose, we introduce a new
concept of a quasi-periodic power series. We say that a power series

∑∞
k=0 bka

k

is eventually quasi-periodic with maximum period M ≥ 1 and period sum P

The Power of Extra Analog Neuron 249

if there is an increasing infinite sequence of its term indices 0 ≤ k1 < k2 <
k3 < · · · such that 0 < mi = ki+1 − ki ≤ M and for every i ≥ 1, Pi =
(
∑mi−1

k=0 bki+ka
k)/(1 − ami) = P where k1 is the length of preperiodic part,

that is, for any 0 ≤ k0 < k1, P0 	= P . For example,
∑∞

k=1 bka
k is eventually

quasi-periodic with maximum period m ≥ 1 if associated sequence (bk)
∞
k=1 is

eventually periodic, that is, there exists k1 ≥ 0 such that bk = bk+m for every
k ≥ k1. For |a| < 1, one can calculate the sum of any eventually quasi-periodic

power series as
∑∞

k=1 bka
k =

∑k1−1
k=0 bka

k +
∑∞

k=k1
bka

k where
∑∞

k=k1
bka

k =
∑∞

i=1 a
ki
∑mi−1

k=0 bki+ka
k = P ·

∑∞
i=1 a

ki (1− ami), which gives

∞∑

k=1

bka
k =

k1−1∑

k=0

bka
k + ak1P (4)

since the absolutely convergent series
∑∞

i=1 a
ki(1 − ami) =

∑∞
i=1(a

ki − aki+1)
sums up to ak1 . It follows that the sum (4) of eventually quasi-periodic power se-
ries does not change if any quasi-repeating block bki , bki+1, . . . , bki+1−1 satisfying
Pi = P is removed from associated sequence (bk)

∞
k=1 or if it is inserted in be-

tween two other quasi-repeating blocks, which means that these quasi-repeating
blocks can also be permuted arbitrarily.

Theorem 3. Let A = (Q,Σ, {I1, . . . , Ip}, a, (Δ1, . . . , Δp), δ, q0, z0, F) be a finite
automaton with a register satisfying |a| ≤ 1. Denote by C ⊆ I the finite set
of all endpoints of rational intervals I1, . . . , Ip and let B =

⋃p
r=1 Δr(Q × Σ) ∪

{0, 1, z0} ⊆ Q be the finite set of all possible shifts including 0, 1, and the initial
register value. If every series

∑∞
k=0 bka

k ∈ C with all bk ∈ B is eventually
quasi-periodic, then L = L(A) is a regular language.

Proof. We will construct a conventional finite automaton A′ = (Q′, Σ, δ′, q′0, F
′)

with binary input alphabet Σ = {0, 1} simulating FAR A so that L(A′) = L,
which shows that L is regular. According to (2) and (1), a current register value

z =

h∑

k=0

bka
k ∈ I (5)

is uniquely determined by the complete history of shifts b0, b1, . . . , bh ∈ B since
the last time instant when either the register was initialized with start value
bh = z0 or its value saturated at bh = 0 or bh = 1. For a = 0 or |a| = 1, the set of
all possible register values proves to be finite, and henceforth assume 0 < |a| < 1.

Let C′ = C ∩ {
∑∞

k=0 bka
k | all bk ∈ B} = {c1, . . . , cγ} be a subset of the

interval endpoints from C that are reached by eventually quasi-periodic series
according to the assumption of the theorem, where γ = |C′|. We choose an
integer κ′ ≥ 0 so that each such series

∑∞
k=0 bka

k ∈ C′ meets k1 + 2M ≤ κ′ + 1
where k1 is the length of its preperiodic part and M is its maximum period, while
we set κ′ = 0 if γ = 0. It follows that one can decide whether

∑∞
k=0 bka

k /∈ C
with all bk ∈ B, based only on the first κ′ + 1 terms b0, b1, . . . , bκ′ . We observe
that there exists an integer κ ≥ κ′ such that for every series

∑∞
k=0 bka

k /∈ C

250 J. Š́ıma

with all bk ∈ B, the interval I(b0, b1, . . . , bκ) = [zκ +
∑∞

k=κ+1 minb∈B

(
bak

)
, zκ +∑∞

k=κ+1 maxb∈B

(
bak

)
] where zκ =

∑κ
k=0 bka

k, does not contain any c ∈ C,

since the opposite would force c =
∑∞

k=0 bka
k by Cantor’s intersection theorem.

A finite set Q′ = Q×Bκ × {<,=, >}γ is now composed of the states of A
which are extended with a limited history of register shifts b0, b1, . . . , bκ ∈ B up
to the last κ state transitions. If h < κ, then bk = 0 for every k = h + 1, . . . , κ.
Moreover, a critical information �j ∈ {<,=, >} is recorded from the “prehistory”
when h > κ, which is specific to each cj ∈ C′ for j = 1, . . . , γ. In addition,
let q′0 = (q0, z0, 0, . . . , 0,=, . . . ,=) ∈ Q′ be an initial state of A′, while F ′ =
F ×Bκ × {<,=, >}γ ⊆ Q′ represents the set of final states.

We define the transition function δ′ : Q′ ×Σ −→ Q′ of A′ by using the local
state transition and shift functions of A as follows:

δ′((q, b0, . . . , bκ, �1, . . . , �γ), x)

=

{
(δr(q, x), Δr(q, x), b0, . . . , bκ−1, �

′
1, . . . , �

′
γ) if 0 < zκ < 1

(δr(q, x), σL(zκ), 0, . . . , 0,=, . . . ,=) otherwise,
(6)

for q ∈ Q, b0, . . . , bκ ∈ B, �1, . . . , �γ ∈ {<,=, >}, and x ∈ Σ. In the following
we will describe two cases of choosing the parameter r in definition (6) which
depend on whether or not the arguments b0, . . . , bκ coincide with the first κ+ 1
coefficients of a series from C′. We first consider the case when for any series∑∞

k=0 b
′
ka

k ∈ C′ with all b′k ∈ B,

bk 	= b′k for some 0 ≤ k ≤ κ . (7)

In this case, parameter r is chosen so that zκ ∈ Ir. Obviously, the actual register
value (5) is approximated with zκ in (6), which gives a correct simulation of A
by A′ according to (2), as long as h ≤ κ implying z = zκ. Note that the register
saturates properly at value σL(zκ) ∈ {0, 1} if zκ ≤ 0 or zκ ≥ 1. Nevertheless,
the correctness of the simulation must still be proven for h > κ, and henceforth
assume h > κ. Condition (7) implies {zκ, z}∩C = ∅, and {zκ, z} ⊆ I(b0, . . . , bκ).
It follows from the definition of κ that there is only one r ∈ {1, . . . , p} such that
I(b0, . . . , bκ) ⊂ Ir while I(b0, . . . , bκ) ∩ Ir′ = ∅ for the remaining r′ 	= r, which
gives zκ ∈ Ir iff z ∈ Ir in this case.

Now consider the case when the arguments b0, . . . , bκ ∈ B do not satisfy
condition (7), which means there exists a quasi-periodic series

∑∞
k=0 b

′
ka

k =
cj ∈ C′ with all b′k ∈ B, maximum period M ≥ 1, and period sum P such that

bk = b′k for every k = 0, . . . , κ . (8)

Let 0 ≤ k1 < k2 < k3 < · · · be the increasing infinite sequence of its term indices,
which delimit the quasi-periods mi = ki+1 − ki ≤ M with Pi = P for i ≥ 1, so
that the shifts b0, . . . , bh ∈ B defining the register value (5) coincide with the
coefficients of the series

∑∞
k=0 b

′
ka

k = cj ∈ C′ up to the first d quasi-repeating
blocks for the maximum possible d ≥ 1 over the permutations of these blocks,
that is,

bk = b′k for every k = 0, . . . , kd+1 − 1 , (9)

The Power of Extra Analog Neuron 251

where κ ≤ kd+1 − 1 ≤ h according to (8). Recall that cj ∈ C′ may serve
as an endpoint of possibly three neighbor intervals Ir including a degener-
ate one. According to (2), parameter r in (6) can thus be chosen uniquely
based on whether z � cj for � ∈ {<,=, >}. In particular, z � cj rewrites to

z = (
∑k1−1

k=0 bka
k +

∑d−1
i=1 aki

∑mi−1
k=0 bki+ka

k + akd
∑h

k=kd
bka

k−kd) � cj which

reduces to (akd
∑h

k=kd
bka

k−kd) � (akdP) according to (9) and (4). Furthermore,

we divide this inequality by akd−k1 	= 0 and add
∑k1−1

k=0 bka
k to both its sides,

which yields

z′ =

(
k1−1∑

k=0

bka
k + ak1

h∑

k=kd

bka
k−kd

)

�′ cj (10)

where �′ ∈ {<,=, >} differs from � ∈ {<,>} iff

a < 0 & kd − k1 =

d−1∑

i=1

mi is odd. (11)

It follows that z � cj can be replaced by z′ �′ cj where z′ is determined by the
history of shifts b0, . . . , bk1−1, bkd

, . . . , bkd+1
, . . . , bh according to (5) in which the

terms bk1 , . . . , bkd−1 corresponding to the first d − 1 quasi-repeating blocks of∑∞
k=0 b

′
ka

k = cj , are excluded.
By the definition of κ′, we know that κ ≥ κ′ ≥ k1 + 2M − 1 ≥ k1 + md +

md+1 − 1 ≥ k1 + kd+2 − kd − 1 which gives kd+2 − 1 ≤ kd + κ− k1. In addition,
suppose that the history for z′ in (10) exceeds κ+1 shifts (c.f. assumption h > κ
for z), that is, k1 +h− kd > κ implying h > kd+κ− k1. This yields z 	= cj since
otherwise cj could be expressed as a finite sum (5) with h = kd+1 − 1 producing
a contradiction κ′ + 1 ≤ κ + 1 < k1 + kd+1 − kd = k1 + md ≤ k1 + M . Hence,
there is an index kd+1 ≤ k ≤ kd+2 − 1 such that bk 	= b′k due to the maximality
of d. By the definition of κ, condition z � cj can further be reduced to

z′κ =

(
k1−1∑

k=0

bka
k + ak1

kd+κ−k1∑

k=kd

bka
k−kd

)

�′ cj (12)

which only includes the history of κ+ 1 shifts from (10).
Based on the preceding analysis, we can now specify �′1, . . . , �

′
γ ∈ {<,=, >} in

definition (6) of δ′ which make the correct choice of parameter r possible in the
case of (8). According to (6), �1, . . . , �γ are set to default = whenever the regis-
ter value z saturates at 0 or 1, including the initial state q′0. The value of �j for
1 ≤ j ≤ γ is then updated only if the arguments b0, . . . , bκ ∈ B of δ′ start with
any quasi-repeating block b′ki

, . . . , b′ki+1−1 of a quasi-periodic series
∑∞

k=0 b
′
ka

k =

cj ∈ C′, which means bk = b′ki+k for every k = 0, . . . ,mi−1 wheremi = ki+1−ki.
Otherwise set �′j = �j. Moreover, the update of �j depends on whether or
not the block is followed by another quasi-repeating block of the series. If it
is not the case, the value of �′j is chosen to satisfy the inequality (

∑k1−1
k=0 b′ka

k +

ak1
∑κ

k=0 bka
k) �′j cj anticipating (12) with kd = ki. If, on the other hand,

252 J. Š́ıma

b0, . . . , bκ start with at least two quasi-repeating blocks of the series (i.e. i < d),
then �′j differs from �j ∈ {<,>} iff a > 0 and mi is odd, complying with (11).
It follows from (12) and (11) that inequality z �′j cj holds when the arguments
b0, . . . , bκ meet (8), which automaton A′ exploits for deciding whether z ∈ Ir,
particularly at the endpoint cj ∈ C′ of interval Ir. This determines parameter r
in definition (6) for the case of (8) and completes the proof of the theorem. �

5 Directions for Ongoing Research

In the effort to fill the gap in the analysis of computational power of neural
nets between integer a rational weights we have investigated a hybrid model of a
binary-state network with an extra analog unit. We have shown this model to be
computationally equivalent to a finite automaton with a register. Our main result
in Theorem 3 formulates a sufficient condition for a language accepted by this
automaton to be regular. Our preliminary study leads to natural open problems
for further research such as completing the statement in Theorem 3 for |a| >
1, finding a corresponding necessary condition for accepting regular languages,
analyzing the algebraic properties of quasi-periodic power series, characterizing
the full power of finite automata with register, e.g. by comparing them to finite
automata with multiplication [10, 12] etc.

Even more important, our analysis of computational power of neural nets has
revealed interesting connections with an active research on representations of
numbers in non-integer bases (see [1, 2, 5, 7, 8, 15, 19, 20, 22, 23] including
references there). In particular, a power series

∑∞
k=0 bka

k can be interpreted as
a representation of a number from [0, 1] in base β = 1/a using the digits from a
finite set B, which is called a β-expansion when β > 1 and B = {0, 1, . . . , �β�−1}
(usually starting from k = 1). Any number from

[
0, �β�−1

β−1

]
has a β-expansion

which need not be unique. Obviously, for any integer bases β ≥ 2 when multiplier
a has the from 1/β, the β-expansion of c ∈ [0, 1] is eventually periodic iff c is
a rational number, which satisfies the assumption of Theorem 3. For simplicity,
we further assume a binary set of digits B = {0, 1} corresponding to 1 < β < 2,
that is, 1

2 < a < 1, although the analysis has partially been extended to sets of
integer digits that can even be greater than �β� − 1 [15].

It has been shown [23] that for β ∈ (1, ϕ) where ϕ = (1 +
√
5)/2 is the

golden ratio, which means for 0.618033 . . . ≤ a < 1, any number from [0, 1]
has a continuum of distinct β-expansions including those not quasi-periodic,
which breaks the assumption of Theorem 3. For β ∈ (ϕ, qc) where qc is the
(transcendental) Komornik-Loreti constant (i.e. the unique solution of equation∑∞

k=1 tkq
−k
c = 1 where (tk)

∞
k=1 is the Thue-Morse sequence in which tk ∈ {0, 1}

is the parity of the number of 1’s in the binary representation of k), that is,
for 0.559524 . . . < a < 0.618033 . . ., there are countably many numbers in [0, 1]
having eventually periodic unique β-expansions, which are candidate elements
to C in Theorem 3, while for β ∈ (qc, 2) corresponding to 1

2 < a ≤ 0.559524 . . .,
the set of numbers from [0, 1] having unique β-expansions has the cardinality of
continuum and a positive Hausdorff dimension (although its Lebesgue measure

The Power of Extra Analog Neuron 253

remains zero) [7]. In addition, for 0 < a < 1
2 (i.e. β > 2 whereas B = {0, 1}),

not every number from [0, 1] has a β-expansion (in fact, the β-expansions create
a Cantor-like set in this case), which can fulfill the assumption of Theorem 3 if
the elements of C do not have β-expansions.

Furthermore, for every m ≥ 2, there exists βm ∈ [ϕ, 2) corresponding to
1
2 < am < 0.618033 . . . such that there exists a number from [0, 1] that has a
periodic unique β-expansion of period m if a < am, while there is no such a num-
ber for a ≥ am [2]. In addition, a so-called greedy (resp. lazy) β-expansion has
been considered which is lexicographically maximal (resp. minimal) for a given
number. Denote by Per(β) a set of numbers having a quasi-periodic greedy β-
expansions. If I ⊆ Per(β), then β is either a Pisot or a Salem number [22] where
a Pisot (resp. Salem) number is a real algebraic integer (a root of some monic
polynomial with integer coefficients) greater than 1 such that all its Galois con-
jugates (other roots of such a unique monic polynomial with minimal degree) are
in absolute value less than 1 (resp. less or equal to 1 and at least one equals 1).
For any Pisot number β, it holds I ⊆ Per(β), while for Salem numbers this impli-
cation is still open [8, 22]. It follows that for any non-integer rational β (which
is not a Pisot nor Salem number by the integral root theorem) corresponding to
irreducible fraction a = a1/a2 where a1 ≥ 2 and a2 are integers, there always
exists a number from I whose (greedy) β-expansion is not quasi-periodic.

It appears that the computational power of neural nets with extra analog
unit is strongly related to the results on β-expansions which still need to be
elaborated and generalized, e.g. to arbitrary sets of digits B. This opens a wide
field of interesting research problems which undoubtedly deserves a deeper study.

References

1. Adamczewski, B., Frougny, C., Siegel, A., Steiner, W.: Rational numbers with
purely periodic β-expansion. Bulletin of The London Mathematical Society 42(3),
538–552 (2010)

2. Allouche, J.P., Clarke, M., Sidorov, N.: Periodic unique beta-expansions: The
Sharkovskĭı ordering. Ergodic Theory and Dynamical Systems 29(4), 1055–1074
(2009)

3. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by
neural nets. Journal of the ACM 38(2), 495–514 (1991)

4. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural net-
works: A characterization in terms of Kolmogorov complexity. IEEE Transactions
on Information Theory 43(4), 1175–1183 (1997)

5. Chunarom, D., Laohakosol, V.: Expansions of real numbers in non-integer bases.
Journal of the Korean Mathematical Society 47(4), 861–877 (2010)

6. Dassow, J., Mitrana, V.: Finite automata over free groups. International Journal
of Algebra and Computation 10(6), 725–738 (2000)

7. Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer
bases. Mathematical Research Letters 8(4), 535–543 (2001)

8. Hare, K.G.: Beta-expansions of Pisot and Salem numbers. In: Proceedings of the
Waterloo Workshop in Computer Algebra 2006: Latest Advances in Symbolic Al-
gorithms, pp. 67–84. World Scientific (2007)

254 J. Š́ıma

9. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Networks 9(2), 243–252 (1996)

10. Ibarra, O.H., Sahni, S., Kim, C.E.: Finite automata with multiplication. Theoreti-
cal Computer Science 2(3), 271–294 (1976)

11. Indyk, P.: Optimal simulation of automata by neural nets. In: Mayr, E.W., Puech,
C. (eds.) STACS 1995. LNCS, vol. 900, pp. 337–348. Springer, Heidelberg (1995)

12. Kambites, M.E.: Formal languages and groups as memory. Communications in
Algebra 37(1), 193–208 (2009)

13. Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural net-
works. Information and Computation 128(1), 48–56 (1996)

14. Koiran, P.: A family of universal recurrent networks. Theoretical Computer Sci-
ence 168(2), 473–480 (1996)

15. Komornik, V., Loreti, P.: Subexpansions, superexpansions and uniqueness proper-
ties in non-integer bases. Periodica Mathematica Hungarica 44(2), 197–218 (2002)

16. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

17. Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Applied
Mathematics 108(3), 287–300 (2001)

18. Orponen, P.: Computing with truly asynchronous threshold logic networks. Theo-
retical Computer Science 174(1-2), 123–136 (1997)

19. Parry, W.: On the β-expansions of real numbers. Acta Mathematica Hungar-
ica 11(3), 401–416 (1960)

20. Rényi, A.: Representations for real numbers and their ergodic properties. Acta
Mathematica Academiae Scientiarum Hungaricae 8(3-4), 477–493 (1957)

21. Salehi, Ö., Yakaryılmaz, A., Say, A.C.C.: Real-time vector automata. In: G ↪asieniec,
L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 293–304. Springer, Heidelberg
(2013)

22. Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bulletin
of the London Mathematical Society 12(4), 269–278 (1980)

23. Sidorov, N.: Expansions in non-integer bases: Lower, middle and top orders. Journal
of Number Theory 129(4), 741–754 (2009)

24. Siegelmann, H.T.: Recurrent neural networks and finite automata. Journal of Com-
putational Intelligence 12(4), 567–574 (1996)

25. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhäuser, Boston (1999)

26. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theo-
retical Computer Science 131(2), 331–360 (1994)

27. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. Jour-
nal of Computer System Science 50(1), 132–150 (1995)

28. Š́ıma, J.: Analog stable simulation of discrete neural networks. Neural Network
World 7(6), 679–686 (1997)

29. Š́ıma, J.: Energy complexity of recurrent neural networks. Neural Computa-
tion 26(5), 953–973 (2014)

30. Š́ıma, J., Orponen, P.: General-purpose computation with neural networks: A sur-
vey of complexity theoretic results. Neural Computation 15(12), 2727–2778 (2003)

31. Š́ıma, J., Wiedermann, J.: Theory of neuromata. Journal of the ACM 45(1),
155–178 (1998)

32. Šorel, M., Š́ıma, J.: Robust RBF finite automata. Neurocomputing 62, 93–110
(2004)

Model Predictive Control of Linear Parameter

Varying Systems Based on a Recurrent Neural
Network

Zheng Yan1, Xinyi Le2, and Jun Wang2

1 Huawei Shannon Lab, Shenzhen, China
yanzheng@huawei.com

2 Department of Mechanical and Automation Engineering,
The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong
{xyle,jwang}@mae.cuhk.edu.hk

Abstract. This paper presents a model predictive control approach to
discrete-time linear parameter varying systems based on a recurrent neu-
ral network. The model predictive control problem is formulated as a
sequential convex optimization, and it is solved by using a recurrent neu-
ral network in real time. The essence of the proposed approach lies in its
real-time computational capability with extended applicability. Simula-
tion results are provided to substantiate the effectiveness of the proposed
model predictive control approach.

Keywords: Recurrent neural network, model predictive control, linear
parameter varying system.

1 Introduction

Linear parameter varying (LPV) systems constitute an important class of dy-
namical systems whose state space representations depend on time-varying, and
often state-dependent, parameters [23]. LPV systems have attracted a lot of
attention as they can capture the dynamic behaviors of many engineering prob-
lems in aeronautics, aerospace and mechanics [2, 16]. The LPV framework offers
a middle ground between linear and nonlinear systems. Many nonlinear control
systems can be synthesized in framework of LPV systems using linear control
approaches with minor changes, such as the gain scheduling technique [22]. Due
to the time-varying nature, it is desired to develop real time control methods for
LPV systems to improve performances.

Model predictive control (MPC) is a popular model-based optimal control
strategy that has achieved great successes in both academia and industries [17].
Unlike most control methods that compute off-line feedback laws, MPC itera-
tively predicts and optimizes system performances over a moving time window
in real time. As such, optimal control signals are generated by solving a online
sequential optimization problem. MPC has several attractive features for LPV

A.-H. Dediu et al. (Eds.): TPNC 2014, LNCS 8890, pp. 255–266, 2014.
c© Springer International Publishing Switzerland 2014

256 Z. Yan, X. Le, and J. Wang

systems such as its ability to deal with time-varying multivariable control prob-
lems, as well as its capability to take account of input and output constraints.

There are many results on MPC of LPV systems in the literature. For exam-
ple, an MPC approach based on a convex optimization involving linear matrix
inequalities was proposed where the LPV systems are treated as uncertain linear
systems [10]. The MPC problem was formulated as a minimization of the upper
bound of a finite horizon cost function based on relaxation matrices [11]. Bounds
on the rate of variation of the time-varying parameters were taken into account
in the MPC design and implementation [9]. An off-line MPC strategy was de-
veloped to reduce the online computational burden [3]. A parameter-dependent
MPC approach was proposed by exploiting the time-varying parameters for feed-
back [28]. An MPC approach was developed based on nonlinearly parameterized
Lyapunov functions [5]. However, these results share a common limitation: it
was assumed that the time varying parameters varied inside a convex polytope
with a finite number of vertices. This assumption can not be satisfied in many
real-world applications such as flight control [16]. It is necessary and rewarding
to further study MPC of LPV systems to extend the applicability.

Real-time optimization is a significant issue for MPC design and synthesis.
Due to the large dimensions and stringent time requirement, numerical opti-
mization methods may not be sufficiently efficient for solving MPC problems in
real time. Neurodynamic optimization using recurrent neural networks (RNNs)
emerged as a promising computational approach to real time optimization since
middle 1980s. Neural networks are designed as goal-seeking computational mod-
els for optimization problems. The essence of neural optimization lies in its inher-
ent nature of parallel and distributed information processing and the availability
of hardware implementation. Various RNN models have been developed for con-
strained optimization, such as a one-layer neural network with a hard-limiting
activation function [14], a neural network for nonlinear convex optimization with
inequality constraints [24], an improved dual network [7], a finite-time conver-
gent neural network [15], and neural networks for generalized convex optimiza-
tion [6, 13, 12]. These RNNs have shown superior performance with guaranteed
global convergence properties and low model complexity.

Some research on neural networks based MPC were carried out. The use of
neural networks in MPC framework generally fall into three categories: (1) using
neural networks for system identification [21, 8, 19], (2) using neural networks
for real time optimization [4, 25–27], (3) using neural networks for off-line con-
trol law approximation [20, 1]. In these works, neural networks showed distinct
advantages for MPC design.

In this paper, a recurrent neural network based MPC approach was proposed
for LPV systems. The time varying parameters are explicitly taken into account
for model prediction. The MPC problem is formulated as a convex optimization
problem. A one-layer recurrent neural network model is applied for computing
the optimal control input in real time. One major contribution of the proposed
approach is that the conventional assumption on the topology of LPV systems

MPC of LPV Systems Based on a RNN 257

is relaxed. Simulation results are included to demonstrate the characteristics of
the proposed approach.

The rest of this paper is organized as follows: Section 2 discusses the problem
formulation. Section 3 presents a neural network based MPC approach. Section
4 reports simulation results. Finally, Section 5 concludes this paper.

2 Problem Formulation

Consider a discrete LPV model as follows

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k), (1)

where x(k) ∈ �n is the state vector, u(k) ∈ �m is the input vector, θ ∈ �q

is a vector of time-varying parameter, and A(θ(k)) and B(θ(k)) are matrices
with compatible dimensions. The following assumptions hold throughout the
discussion in this paper.

Assumption 1. θ(k) is available at any time instant k.

Assumption 2. θ(k + j) can be determined by x(k + i) and u(k + i) for all
i ∈ {0, 1, . . . j}.

It is worth pointing out that θ in (1) does not necessarily lie in a convex
polytope. There may also be infinite many realizations of θ during the evolution
of the system. There are many LPV systems fall into this category, such as LPV
models obtained by state transformation where state coordinates are changed to
remove nonlinearity in the dynamics.

MPC is an iterative optimization technique: at each sampling time k, the
optimal control signals are obtained by solving a finite-horizon constrained opti-
mization problem, using the current state as the initial state. The MPC problem
for (1) is commonly formulated as:

min
u

J(x, u) =

k+N−1∑

j=k

�(x(j)− r(j), u(j)) + F (x(N))

s.t. x(j) ∈ X, u(j) ∈ U, j = k, · · · , N − 1,

x(N) ∈ Xf , (2)

where r(j) is a reference vector, �(x, u) is a stage cost satisfying �(0, 0) = 0 and
�(x, u) > 0 for all (x, u) �= 0, F (x(N)) is a cost on the terminal state within
the prediction horizon N , X and U are respectively state and input constraints,
and Xf is a terminal constraint. The purpose for introducing F and Xf is to
ensure the closed-loop stability. The state and input constraints are commonly
expressed as X = {x|xmin ≤ x ≤ xmax} and U = {u|umin ≤ u ≤ umax}.

Denote J(x, k,N) as the optimal value of the cost function in (2) at the time
instant k, then using the optimal finite horizon cost as a Lyapunov function, a
sufficient closed-loop stability condition can be obtained as following:

J(x, k,N)− J(x, k + 1, N) > 0, ∀x �= 0. (3)

258 Z. Yan, X. Le, and J. Wang

The inequality (3) can be further rewritten as

J(x, k,N)− J(x, k + 1, N) = �(x(k), u(k))

+(J(x, k + 1, N − 1)− J(x, k + 1, N)). (4)

Define �(x(k), u(k)) = xT (k)Qx(k) + uT (k)Ru(k) where Q and R are strict
positive definite matrices, then the first term in (4) is positive. If J(x, k+1, N−
1)−J(x, k+1, N) is nonnegative, then the closed-loop system is asymptotically
stable. Define the terminal cost in form of F (x) = xTPx, a sufficient condition of
ensuring the nonnegativity of J(x, k+1, N − 1)−J(x, k+1, N) can be obtained
using the similar procedures in [29]:

Q+KTRK + (A(θ(k +N)) +B(θ(k +N))K)TP

× (A(θ(k +N)) +B(θ(k +N))K)− P ≤ 0, (5)

where P is positive definite, K is a feedback gain matrix such that the eigenvalues
of A(θ(k+N))+B(θ(k+N))K lie within the unit ball. Note that the exact values
of A(θ(k + N)) + B(θ(k + N)) cannot be precisely known at the current time
instant k as they are dependent on the value of θ(k+N) which is only measurable
at the time instant k+N . A approximation strategy is proposed herein to remedy
this problem. Under the MPC framework, a sequence of optimal control input
ū∗(k − 1) = (u∗(k − 1), u∗(k), . . . , u∗(k +N − 1)) was obtained at the previous
time instant k − 1, but only u∗(k − 1) was applied as the actual control input.
In addition, future states x(k + j|k − 1, j = 1, . . . , N can be predicted by by
applying ū∗(k − 1). In view of the Assumption 2, the value of θ(k + j) can be
numerically estimated based on x(k+ i|k−1) and u∗(k+ i) for all i ∈ {0, 1, . . . j}.
Denote θ(k + j|k) as the estimated value of θ at the future time instant k + j.
The future states of the system (1) can be predicted as

x(k + 1|k) =A(θ(k))x(k) +B(θ(k))u(k),

...

x(k + j|k) =A(θ(k + j − 1|k))x(k + j − 1|k)
+B(θ(k + j − 1|k))u(k + j − 1|k),
...

x(k +N |k) =A(θ(k +N − 1|k))x(k +N − 1|k)
+B(θ(k +N − 1|k))u(k +N − 1|k).

MPC of LPV Systems Based on a RNN 259

Therefore, the MPC problem (2) can be written as

min
u(k)

J(x(k), u(k)) =

N∑

j=1

‖r(k + j)− x(k + j|k)‖2Q

+

Nu−1∑

j=0

‖Δu(k + j|k)‖2R + xT (k +N |k)Px(k +N |k)

s.t. Δumin ≤ Δu(k + j|k) ≤ Δumax, j = 0, 1, . . . , Nu − 1,

umin ≤ u(k + j|k) ≤ umax, j = 0, 1, . . . , Nu − 1,

xmin ≤ x(k + j|k) ≤ xmax, j = 1, 2, . . . , N, (6)

where ‖·‖ denotes the Euclidean norm, Q and R are weight matrices with com-
patible dimensions, Δu(k|) = u(k|k) − u(k − 1|k), Nu ≤ N is a control horizon
and it is assumed that u(i|k) = u(Nu|k), ∀i = Nu + 1, . . . , N − 1.

Define the following vectors

x̄(k) = [x(k + 1|k) . . . x(k +N |k)]T ∈ �Nn,

Δū(k) = [Δu(k|k) . . . Δu(k +Nu − 1|k)]T ∈ �Num,

ū(k) = [u(k|k) . . . u(k +Nu − 1|k)]T ∈ �Num,

r̄(k) = [r(k + 1|k) . . . r(k +N |k)]T ∈ �Np,

where r̄(k) is known in advance. For the sake of brevity, denote Aj = A(θ(k +
j|k)), Bj = B(θ(k + j|k)) j = 1, · · · , N . The predicted state vector x̄(k) can be
expressed as follows

x̄(k) = Sx(k) + V u(k − 1) +MΔū(k), (7)

where

S =

⎡

⎢
⎢
⎢
⎣

A1

A2A1

...
AN · · · A1

⎤

⎥
⎥
⎥
⎦
∈ �Np×n,

V =

⎡

⎢
⎢
⎢
⎣

B1

B2 +A2B1

...
BN +ANBN−1 + . . .+ΠN

i=2AiB1

⎤

⎥
⎥
⎥
⎦
∈ �Np×m,

M =

⎡

⎢
⎢
⎢
⎣

B1 . . . 0
B2 +A2B1 . . . 0

...
. . .

...
BN + . . .+ΠN

i=2AiB1 . . . BN + . . .+ΠN
i=Nu+1AiBNu

⎤

⎥
⎥
⎥
⎦
∈ �Np×Num.

The terminal state within the prediction horizon N can be expressed as

x(k +N |k) = S̃x(k) + Ṽ u(k − 1) + M̃Δū(k), (8)

260 Z. Yan, X. Le, and J. Wang

where S̃, Ṽ , and M̃ are the last rows of S, V , and M , respectively. Therefore, the
MPC of the LPV system (1) can be obtained by solving the following constrained
optimization problem:

min
Δū(k)

‖Sx(k) + V s(k − 1) +MΔx̄(k)‖2Q + ‖Δū(k)‖2R

+
∥
∥
∥S̃x(k) + Ṽ u(k − 1) + M̃Δū(k)

∥
∥
∥
2

P
,

s.t. Δūmin ≤ Δū(k) ≤ Δūmax,

ūmin ≤ ū(k − 1) + ĨΔū(k) ≤ Δūmax

x̄min ≤ Sx(k) + V u(k − 1) +MΔū(k)x̄max, (9)

where

Ĩ =

⎡

⎢
⎢
⎢
⎣

I 0 . . . 0
I I . . . 0
...
...
. . .

...
I I . . . I

⎤

⎥
⎥
⎥
⎦
∈ �Num×Num,

and P can be obtained by solving the inequality

Q+KTRK + (AN) + BNK)TP (AN + BNK)− P ≤ 0, (10)

Up to this point, letting Δū = Δū(k) ∈ �Num for brevity, problem (9) can be
put in a compact form as follows

min
1

2
ΔūTWΔū+ pTΔū,

s.t. Δūmin ≤ Δū ≤ Δūmax,

EΔū ≤ b, (11)

where

W =2(MTQM + M̃TPM̃ +R) ∈ �Num×Num,

p =2MTQ(Sx(k) + V u(k − 1))

+ 2M̃TP (S̃x(k) + Ṽ u(k − 1) ∈ �Num,

E =
[
−Ĩ Ĩ −M M

]T
∈ �(2Num+2Nn)×Num,

b =

⎡

⎢
⎢
⎣

−ūmin + ū(k − 1)
ūmax − ū(k − 1)

−x̄min + Sx(k) + V u(k − 1)
x̄max − Sx(k)− V u(k − 1)

⎤

⎥
⎥
⎦ ∈ �2Num+2Nn.

As Q and R are chosen to be positive definite, W is also positive definite. So
the objective function in (11) is strictly convex. As P is positive semi-definite, the

MPC of LPV Systems Based on a RNN 261

feasible region defined by the constraints is convex. The problem (11) is shown
to be a convex optimization problem, and the solution to (11) is unique and
satisfies the Karush-Kauhn-Tucker (KKT) optimality conditions. The solution
to (11) gives optimal control increment vector Δū which can be used to compute
the optimal control vector u∗(k).

3 A One-Layer Recurrent Neural Network

A one-layer recurrent neural network was developed based on the penalty func-
tion method in [12]. It is proved that the neural network can converge to the
feasible region in finite time and can be globally convergent to the unique opti-
mal solution of the problem (11). The neural network is applied for solving (11)
to generate the optimal control incremental vector in real time.

Rewrite (11) in a general form:

min J(Δū) =
1

2
ΔūTWΔū+ pTΔū,

s.t. g(Δū) ≤ 0, (12)

where

g(Δū) = [g1(Δū), g2(Δū), g3(Δū)]T

=

⎡

⎣
Δū− ūmax

−Δū+ ūmin

EΔū− b

⎤

⎦

The dynamical equation of the neural network for solving (12) is described as
follows

d

dt
Δū ∈ −∇J(Δū)− λ∂g+(Δū) (13)

where ∇J = WΔū + p, which denotes the gradient of J , ∂g+ denotes the gen-
eralized gradient of g+, g+ =

∑3
i=1 max(gi(Δū), 0), and λ is a positive penalty

parameter.
As shown in [12], the neural network (13) with any initial condition is guar-

anteed to be be convergent to the feasible region defined by g(Δū) ≤ 0 in finite
time and stays there thereafter if λ is sufficiently large. Moreover, the state of
(13) converges to the unique optimal solution of (11) with initial condition. The
estimation method for the lower bound of λ is presented in [12].

The MPC approach to discrete-time LPV systems based on the one-layer
neural network is summarized as follows:

1. Let k = 1. Set control time terminal T , prediction horizonN , control horizon
Nu, and weighting matices Q and R.

2. Compute the prediction model (7) based on the prediction of θ.
3. Compute P in view of (10).
4. Compute neural network matrices ∇J(ū), g(ū), and ∂g+(ū).
5. Solve the convex optimization problem (11) by using neural network (13) to

obtain the optimal control input u∗(k).
6. If k < T , set k = k + 1, go to Step 2; otherwise end.

262 Z. Yan, X. Le, and J. Wang

4 Simulation Results

In this section, simulation results on two LPV systems are provided to substan-
tiate the effectiveness of the proposed neural network based MPC approach.

Example 1: Consider a discrete-time two-mass-spring system which has many
industrial applications such as flexible robot arms [30]:

x1(k + 1) =x1(k) + 0.1x3(k),

x2(k + 1) =x2(k) + 0.1x4(k),

x3(k + 1) =− (0.05 + 5(x2(k)− x1(k))
2)x1(k)

+ (0.05 + 5(x2(k)− x1(k))
2)x2(k) + 0.1u(k),

x4(k + 1) =(0.05 + 5(x2(k)− x1(k))
2)x1(k)

− (0.05 + 5(x2(k)− x1(k))
2)x2(k), (14)

where x1 and x2 are the positions of the two masses, x3 and x4 are the velocities,
and u is the control input. The system is subject to input constraint |u| ≤ 1.
The control objective is to steer all states to the origin from an initial state. Let
θ(k) = 0.5+50(x2(k)−x1(k))

2, an LPV model can be obtained for the nonlinear
model (8).

x(k + 1) = A(θ(k))x(k) +Bu(k), (15)

where

A(θ(k)) =

⎡

⎢
⎢
⎣

1 0 0.1 0
0 1 0 0.1

−0.1θ(k) 0.1θ(k) 1 0
0.1θ(k) −0.1θ(k) 0 1

⎤

⎥
⎥
⎦ , B = [0 0 0.1 0]T . (16)

The MPC of (15) is formulated in the form of (11) where N = 25, Nu = 20,
Q = I, and R = I. P is calculated as

P =

⎡

⎢
⎢
⎣

0.33 ∗ ∗ ∗
0.09 0.70 ∗ ∗
−0.06 0.20 0.25 ∗
−0.19 −0.06 −0.11 0.31

⎤

⎥
⎥
⎦ .

Due to the parametric uncertainty, the nominal value of θ is assumed to be
θ̃(k) = 0.45 + 55(x2(k) − x1(k))

2. The initial state is x(0) = [1 1 0 0]T and
the initial input is u(0) = 0. The optimization problem is repeatedly solved
by using the neural network (13). To show the computational efficiency, the
convergence of the neural network within the first sampling interval depicted in
Fig. 1. The controlled state trajectories are depicted in Figs. 2-3, the control
inputs are shown in Fig. 4. To compare the effectiveness of the proposed RNN
based MPC approach, the LQR method is also applied for stabilizing (14). The
input constraint is not always satisfied by using the LQR method (see Fig. 4).
The proposed approach results in much better control performance.

MPC of LPV Systems Based on a RNN 263

0 0.5 1 1.5 2

x 10
−6

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

 t (s)

Δ
u

Fig. 1. RNN convergence during the
first sampling interval in Example 1

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

Sampling time k

x 1

RNN based MPC

LQR

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

Sampling time k

x 2

RNN based MPC
LQR

Fig. 2. Positions in Example 1

0 50 100 150 200 250 300 350
−0.6

−0.4

−0.2

0

0.2

Sampling time k

x 3

RNN based MPC
LQR

0 50 100 150 200 250 300 350
−0.6

−0.4

−0.2

0

0.2

Sampling time k

x 4

RNN based MPC
LQR

Fig. 3. Velocities in Example 1

0 50 100 150 200 250 300 350
−1.5

−1

−0.5

0

0.5

1

Sampling time k

u

RNN based MPC
LQR

Fig. 4. Control inputs in Example 1

Example 2: Consider a discrete-time model of a vertical takeoff and landing
aircraft [18]:

x1(k + 1) = x1(k) + tsx2(k)

x2(k + 1) = x2(k) + ts(− sin(α(k))u1(k) + cos(α(k)u2(k))

y1(k + 1) = y1(k) + tsy2(k)

y2(k + 1) = y2(k) + ts(cos(α(k))u1(k) + sin(α(k)u2(k))− g

α(k + 1) = α(k) + tsω(k)

ω(k + 1) = ω(k) + tsu2(k)

where x1 and y1 are positions, x2 and y2 are velocities, α is the angle, ω is the
the angular velocity, and ts the sampling period. This model can be equivalent
put into an LPV form with

264 Z. Yan, X. Le, and J. Wang

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ts 0 0 0 0
0 1 0 0 0 0
0 0 1 ts 0 0
0 0 0 1 0 0
0 0 0 0 1 ts
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

B(θ(k)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
−ts sin(θ(k)) ts cos(θ(k))

0 0
ts cos(θ(k)) ts sin(θ(k)) − g/u2

0 0
0 ts

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where θ(k) = α(k). The constraint is u2 ≥ 1. The control objective is to stabi-
lize the system to the origin. Let x(0) = [x1(0), x2(0), y1(0), y2(0), α(0), ω(0)] =
[2, 3, 4, 1, π/3, 1]. Set Q = 10I, R = I, N = 15, Nu = 5, P = 0, ts = 0.1. The
control results are shown in Figs. 5-6. The constraint on u2 is not violated.
The fulfilment of this constraint is essential to the validity of the LPV model.
The proposed RNN based MPC is effective for the stabilization of the vertical
takeoff and landing aircraft.

0 50 100 150
−5

−4

−3

−2

−1

0

1

2

3

4

5

k

x

x1
x2
y1
y2
α
ω

Fig. 5. State variables in Example 2

0 50 100 150
−20

−15

−10

−5

0

5

10

15

k

u

u1

u2

Fig. 6. Control inputs in Example 2

5 Conclusions

In this paper, a model predictive control approach is presented for a class of linear
parameter varying systems based on a one-layer recurrent neural network. The
time-varying parameter is estimated online and is explicitly exploited for system
prediction. The model predictive control problem is formulated as a sequential
convex optimization. A globally convergent neural network designed using the
penalty function method is applied for solving the optimization problem in real-
time. The effectiveness of the proposed approach is demonstrated by simulation
results on linear parameter varying models.

MPC of LPV Systems Based on a RNN 265

Acknowledgments. The work described in the paper was supported by the Re-
search Grants Council of the Hong Kong Special Administrative Region, China
under Grants CUHK416812E.

References

1. Akesson, B., Toivonen, H.: A neural network predictive controller. J. Process
Contr. 16, 937–946 (2006)

2. Bamieh, B., Giarre, L.: Identification of linear parameter varying models. Int. J.
Robust Nonlinear Control 12, 841–853 (2002)

3. Bumroongsri, P., Kheawhom, S.: An ellipsoidal off-line model predictive control
strategy for linear parameter varying systems with applications in chemical pro-
cesses. Systems & Control Letters 61, 435–442 (2012)

4. Cheng, L., Hou, Z., Tan, M.: Constrained multi-variable generalized predictive
control using a dual neural network. Neural Comput. Appl. 16, 505–512 (2007)

5. Garone, E., Casavola, A.: Receding horizon control strategies for constrained lPV
systems based on a class of nonlinearly parameterized Lyapunov functions. IEEE
Trans. on Automatic Control 57, 2354–2360 (2012)

6. Guo, Z., Liu, Q., Wang, J.: A one-layer recurrent neural network for pseudoconvex
optimization subject to linear equality constraints. IEEE Tran. Neural Networks 22,
1892–1900 (2011)

7. Hu, X., Wang, J.: An improved dual neural network for solving a class of quadratic
programming problems and its k-winners-take-all application. IEEE Tran. Neural
Networks 19, 2022–2031 (2008)

8. Huang, J., Lewis, F.: Neural network predictive control for nonlinear dynamic
systems with time-delay. IEEE Tran. Neural Netw. 14, 377–389 (2003)

9. Jungers, M., Oliveira, R.C., Peres, P.L.: MPC for LPV systems with bounded
parameter variations. International Journal of Control 84, 24–36 (2011)

10. Kothare, M.V., Balakrishnan, V., Morari, M.: Robust constrained model predictive
control using linear matrix inequalities. Automatica 32, 1361–1379 (1996)

11. Lee, S.M., Park, J.H., Ji, D.H., Won, S.C.: Robust model predictive control for
LPV systems using relaxation matrices. IET Control Theory & Applications 1,
1567–1573 (2007)

12. Li, G., Yan, Z., Wang, J.: A one-layer recurrent neural network for constrained
nonsmooth invex optimization. Neural Networks 50, 79–89 (2014)

13. Liu, Q., Guo, Z., Wang, J.: A one-layer recurrent neural network for constrained
pseudoconvex optimization and its application for dynamic portfolio optimization.
Neural Networks 26, 99–109 (2012)

14. Liu, Q., Wang, J.: A one-layer recurrent neural network with a discontinuous hard-
limiting activation function for quadratic programming. IEEE Tran. Neural Net-
works 19, 558–570 (2008)

15. Liu, Q., Wang, J.: Finite-time convergent current neural network with hard-limiting
activation function for constrained optimization with piecewise-linear objective
functions. IEEE Tran. Neural Networks 22, 601–613 (2011)

16. Marcos, A., Balas, G.J.: Development of linear-parameter-varying models for air-
craf. Journal of Guidance, Control, and Dynamics 27, 218–228 (2004)

17. Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive con-
trol: stability and optimality. Automatica 36, 789–814 (2000)

266 Z. Yan, X. Le, and J. Wang

18. Olfati-Saber, R.: Global configuration stabilization for the vtol aircraft with strong
input coupling. IEEE Trans. Automatica Control 47, 1949–1952 (2002)

19. Pan, Y., Wang, J.: Model predictive control of unknown nonlinear dynamical sys-
tems based on recurrent neural networks. IEEE Trans. Ind. Electron. 59, 3089–3101
(2012)

20. Parisini, T., Zoppoli, R.: A receding-horizon regulator for nonlinear systems and a
neural approximation. Automatica 31, 1443–1451 (1995)

21. Piche, S., Rodsari, B., Johnson, D., Gerules, M.: Nonlinear model predictive control
using neural networks. IEEE Control Syst. Mag. 20, 53–62 (2002)

22. Rugh, W., Shamma, J.: Research on gain scheduling. Automatica 36, 1401–1425
(2000)

23. Shamma, J.S., Athans, M.: Guaranteed properties of gain scheduled control for
linear parameter-varying plants. Automatica 27, 559–564 (1991)

24. Xia, Y., Feng, G., Wang, J.: A novel neural network for solving nonlinear opti-
mization problems with inequality constraints. IEEE Tran. Neural Networks 19,
1340–1353 (2008)

25. Yan, Z., Wang, J.: Model predictive control of nonlinear systems with unmodeled
dynamics based on feedforward and recurrent neural networks. IEEE Trans. Ind.
Informat. 8, 746–756 (2012)

26. Yan, Z., Wang, J.: Model predictive control of tracking of underactuated vessels
based on recurrent neural networks. IEEE J. Ocean. Eng. 37, 717–726 (2012)

27. Yan, Z., Wang, J.: Robust model predictive control of nonlinear systems with
unmodeled dynamics and bounded uncertainties based on neural networks. IEEE
Tran. Neural Netw. 25, 457–469 (2014)

28. Yu, S., Böhm, C., Chen, H., Allgöwer, F.: Model predictive control of constrained
lpv systems. International Journal of Control 85(6), 671–683 (2012)

29. Yu, Y., Arkun, Y.: Quasi-min-max MPC algorithms for LPV systems. Automat-
ica 36, 527–540 (2000)

30. Zhang, L., Wang, C., Chen, L.: Stability and stabilization of a class of multimode
linear discrete systems with polytopic uncertainties. IEEE Trans. Ind. Electron. 56,
3684–3692 (2009)

Author Index

al-Rifaie, Mohammad Majid 83
Atkin, Jason A.D. 95

Bernard, Jean-Philippe 218
Bin, Simon 47
Bordihn, Henning 157
Bottoni, Paolo 157
Boyer, Michel 107

Caralp, Mathieu 11
Cutillas-Lozano, José-Mat́ıas 59
Czeizler, Eugen 119

De Felice, Clelia 169

Freivalds, Rūsiņš 1
Fronville, Alexandra 231
Fujioka, Kaoru 181

Gautam, Vinay K. 119
Gilles, Benjamin 218
Giménez, Domingo 59
Godin, Christophe 218
Gutierrez, Jonathan 71

Haddow, Pauline C. 119
Harada, Shoichi 23

Javaheri Javid, Mohammad Ali 83

Kent, Edward 95
Kuiper, Martin 119

Labella, Anna 157
Le, Xinyi 255

Middendorf, Martin 47
Mitrana, Victor 157

Mor, Tal 107
Muhammad Fuad, Muhammad Marwan

193

Nagy, Marius 134
Nagy, Naya 134
Naredo, Enrique 35
Niebert, Peter 11

Qu, Rong 95

Rodin, Vincent 231

Santander-Jiménez, Sergio 205
Sarr, Abdoulaye 231
Scheuermann, Gerik 47
Š́ıma, Jǐŕı 243
Sorenson, Megan 71
Strawbridge, Eva 71

Tagawa, Kiyoharu 23
Trujillo, Leonardo 35

Urbano, Paulo 35

Vega-Rodŕıguez, Miguel A. 205
Villagra, Marcos 144
Volke, Sebastian 47

Wang, Jun 255

Yamakami, Tomoyuki 144
Yan, Zheng 255

Zaccagnino, Rocco 169
Zimmer, Robert 83
Zizza, Rosalba 169

	Preface
	Organization
	Table of Contents
	Ultrametric vs. Quantum Query Algorithms
	1Introduction
	2Ultrametric Algorithms
	3p-adic Numbers and p-ultrametric Algorithms
	4Kushilevitz's Function
	5Conclusions

	Cellular Programming
	1 Introduction
	2Cellular Programming Model
	3A Dedicated Programming Language
	3.1Synchronous Programming with Coroutines
	3.2Synchronous Communication with Shared Variables

	4Cellular and non Cellular Algorithms
	4.1Distributed Signal Processing
	4.2Distributed Simulation

	5Implementation, ``LED's CHAT''
	5.1Hardware
	5.2Software

	Multi-Noisy-objective Optimization based on Prediction of Worst-Case Performance
	1Introduction
	2Related Work on Multi-Noisy-objective Optimization
	3Problem Formulation
	3.1Noisy-objective and Prediction Interval
	3.2Multi-Noisy-objective Optimization Problem
	3.3Selection of Sample Size

	4Differential Evolution for MNOP
	5Proposed Approach to MNOP
	6Numerical Experiments
	6.1Experimental Setup
	6.2Results and Discussion

	7Conclusion

	Generalization in Maze Navigation using Grammatical Evolution and Novelty Search
	1Introduction
	2Grammatical Evolution
	3Novelty Search
	4Related Work
	5Maze Navigation Experiments
	6Results
	6.1Results and Analysis for a Maximal of 100 Moves
	6.2Results and Analysis for a Maximal of 500 Moves

	7Conclusions and Future Work

	Comparing the Optimization Behaviour of Heuristics with Topology Based Visualization
	1Introduction
	2Visualization Method
	3Heuristic Algorithms and Test Instance
	4Results
	4.1Fitness Landscape
	4.2Neighbourhood Relation
	4.3Optimization Behaviour

	5Conclusions

	Parameterized Message-Passing Metaheuristic Schemes on a Heterogeneous Computing System
	1Introduction
	2A Parameterized Scheme of Metaheuristics
	3A Parameterized Message-passing Metaheuristic Scheme
	4Computational Results
	5Conclusions and Future Work

	Modeling Fluid Flow Induced by C. elegans Swimming at Low Reynolds Number
	1Introduction
	2Materials and Methods
	3The Navier-Stokes Equation
	3.1Nondimensionalization
	3.2Regularized Stokeslets
	3.3Method of Images

	4The Model Nematode
	5Results
	5.1Velocity Field
	5.2Velocity Magnitude and Distance from the Wall
	5.3Particle Tracking

	6From Theory to Experiment
	6Conclusion

	Detecting Symmetry in Cellular Automata Generated Patterns Using Swarm Intelligence
	1Introduction
	2Cellular Automata
	3Symmetry and Aesthetic
	4Swarm Intelligence Algorithm
	4.1The Mining Game
	4.2SDS Architecture

	5Experiments and Results
	5.1Applying SDS Algorithm

	6Conclusion

	Vehicle Routing in a Forestry Commissioning Operation using Ant Colony Optimisation
	1Introduction
	2Problem Description
	2.1Routing the Forestry Commissioning Operation
	2.2Loading Bay Constraints

	3 Algorithm Description
	3.1Ant Colony Optimisation
	3.2Constraint Handling
	3.3Observing Loading Bay Usage

	4Computational Results
	4.1Results
	4.2Discussion

	5Conclusion

	Extrapolated States, Void States, and a Huge Novel Class of Distillable Entangled States
	1Introduction
	2Notations and Terminology
	2.1Boundary Separable States and -Entangled States
	2.2``Extrapolated States'' and ``Void States''

	3 Two Qubits
	3.1Example 1 – The Extrapolated Pseudo-Pure State of Two Qubits
	3.2Example 2 – The Thermal State of Two Qubits
	3.3Example 3 — 2-Void State
	3.4Example 4 — A Generalization
	3.5A Generalization to Non-Trivial Bases

	4Two Qudits (Quantum Digits)
	5States of Larger Dimensions
	5.1Extrapolated Pseudo-Pure States of N Qubits
	5.2The N Qubit Thermal State

	6The Peres Separability Criterion
	7Horodecki's Distillability Criterion
	8Proof of Lemma 3

	Design of a Minimal System for Self-replication of Rectangular Patterns of DNA Tiles
	1Introduction and Motivation
	2A Model of Switch-Enabled Tile Assembly
	3Proposed Self-replication System
	4Cyclic ON-OFF Activation of SWET
	5Tile Set Design and Implementation
	5.1Tile Set Design
	5.2Implementation of the Self-replication Process

	6Conclusion and Future Work

	Unconditionally Secure Quantum Bit Commitment Protocol based on Incomplete Information
	1Introduction
	2Protocol Description
	2.1Commit Phase
	2.2Decommit Phase

	3Correctness
	3.1Concealing Property
	3.2Binding Property

	4Discussion
	5Conclusion

	Quantum and Reversible Verification of Proofs Using Constant Memory Space
	1Merlin-Arthur Proof Systems with Constant Space
	2A Short List of Major Contributions
	3Quantum Merlin-Arthur Proof Systems
	4 Reversible Computation with Deterministic Merlin
	5 Power of Quantum Merlin
	6Proof Verification by 2qfa's

	Solving 2D-Pattern Matching With Networks of Picture Processors
	1Introduction
	2Basic Definitions
	3Solving Picture Matching With ANPPs

	Unavoidable Sets and Regularity of Languages Generated by (1,3)-Circular Splicing Systems
	1Introduction
	2Basics on Words and Splicing
	3Outline of the Results
	4Regular Languages and Unavoidable Sets
	5Hybrid Systems
	6A Necessary Condition for Regularity of Languages Generated by (1,3)-CSSH Systems
	7Future Perspectives

	A Two-Dimensional Extension of Insertion Systems
	1Introduction
	2Preliminaries
	3Picture-Insertion Systems
	4Examples
	5Properties and Comparisons of Picture-Insertion Systems Using the Alongside Mode
	6Properties and Comparisons of Picture-Insertion Systems Using the Independent Mode
	7Picture-Insertion Systems with Regular Control
	8Concluding Remarks

	Differential Evolution-Based Weighted Combinationof Distance Metrics for k-means Clustering
	1 Introduction
	2 Related Work
	3 Using a Combination of Distance Metrics for k-MeansClustering
	3.1 Differential Evolution

	4 Experiments
	5 Conclusion
	References

	Inferring Multiobjective Phylogenetic Hypotheses by Using a Parallel Indicator-Based Evolutionary Algorithm
	1Introduction
	2Inferring Phylogenetic Relationships
	2.1Optimality Criteria

	3Parallel Indicator-Based Evolutionary Algorithm
	3.1Quality Indicators
	3.2Algorithmic Design
	3.3Parallel Approach

	4Experimental Results
	5Conclusions

	Combining Finite Element Method and L-Systems Using Natural Information Flow Propagation to Simulate Growing Dynamical Systems
	1Introduction
	2Natural Computing of Branch Bending Using Finite Difference Method (FDM) and L-Systems
	2.1Mechanical Model of Branch Bending
	2.2FDM Discretization and Natural Integration Using L-Systems

	3Natural Computing of Branch Bending Using Finite Element Method (FEM) and L-Systems
	3.1Computing Axis Bending by Axial Information Propagation with FEM
	3.2Extension to Branching Systems
	3.3Natural Computing Using L-System

	4Results
	5Conclusion

	SMorphogenesis Model for Systematic Simulation of Forms' Co-evolution with Constraints : Application to Mitosis
	1Introduction
	2Related Works
	3Mathematical Morphological Dynamic
	3.1Gene and Status Expression
	3.2Local Morphological Dynamics
	3.3Global Morphological Dynamics

	4Sets of Evolutions
	4.1Implementation

	5Co-evolution between Forms and Constraints
	5.1A Commutative Growth
	5.2Growth in a Restrictive Morphological Environment

	6Discussion

	The Power of Extra Analog Neuron
	1Introduction
	2Neural Language Acceptors with Extra Analog Unit
	3Finite Automata with a Register
	4A Sufficient Condition for Accepting Regular Languages
	5Directions for Ongoing Research

	Model Predictive Control of Linear Parameter Varying Systems Based on a Recurrent Neural Network
	1Introduction
	2Problem Formulation
	3A One-Layer Recurrent Neural Network
	4Simulation Results
	5Conclusions

	Author Index

