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Abstract. The sequence of values that are measured at time intervals equally 
spaced is time series data. Finding shapelets within a data set as well as 
classifying that data based on shapelets is one of the most recent approaches to 
classification of this data. In the classification using shapelets, Euclidean 
distance measure is adopted to find dissimilarity between two time series 
sequences. Though the Euclidean distance measure is known for its simplicity 
in computation, it has some disadvantages: it requires data to be standardized 
and it also requires that the two data objects being compared be of the same 
length. It is sensitive to noise as well. To overcome the problem, Mahalanobis 
distance measure can be used. In the proposed work, classification of time 
series data is performed using time series shapelets and used Mahalanobis 
distance measure which is the measure of distribution between a point and 
distribution. Correlations between data set is considered. It does not depend on 
scale. The cost complexity pruning is performed on decision tree classifier. The 
Mahalanobis distance improves the accuracy of algorithm and cost complexity 
pruning method reduces the time complexity of testing and classification of 
unseen data.  The experimental results show that the Mahalanobis distance 
measure leads to more accuracy and due to decision tree pruning the algorithm 
is faster than existing method. 

Keywords: Time series classification, Shapelets, Mahalanobis distance 
measure, Decision trees, Information gain, Cost complexity pruning.  

1 Introduction 

For a decade, there have been a number of papers on time series classification. Spaced 
at equal time intervals, it is an ordered sequence of values. The analysis of time series 
data includes various methods that try to perceive such data. That is, time series 
analysis includes either understanding the underlying data context or forecasting. 
Applications of its classification is not limited to: scientific investigations, economic 
and sales forecasting, study of natural phenomena, engineering experiments, analysis 
of customer behavior, stock market analysis, medical treatments.  

The major interest of research in the mining of time series data covers classification, 
indexing, summarization, clustering and anomaly detection. In classification, an 
unlabeled time series should be assigned to a class predefined. In indexing, for a given 
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sequence and measure similarity/dissimilarity, we need to retrieve sequences that are 
akin to those of time series. In summarization, given a time series object Q containing n 
data points where n is a large number, an estimation of Q retaining its primary 
properties is created. In clustering, the time series objects need to be grouped under 
some similarity/dissimilarity measure. In detecting anomalies, given a time series Q 
along with some model of normal behavior, all sections of Q containing abnormal 
behavior are found. 

Time series classification algorithms are broadly categorized as distance-based, 
feature-based and, model-based. In the algorithms that are based on distance, the 
classification of the data is based on the distance between the objects. The distance 
measures used to compare the time series data are : Euclidean distance, Dynamic 
Time Warping (DTW), Longest Common Subsequence (LCSS), Edit Distance on 
Real sequence (EDR), Edit Distance with Real Penalty (ERP), Sequence Weighted 
Alignment model (Swale), search of similarity based on Threshold Queries 
(TQuEST), Spatial Assembling Distance (SpADe). In feature-based classification, the 
time series sequence is converted to feature vector on which the usual classification 
methods are applied. Here, feature selection plays an important role. Some of the 
most popular feature selection/data reduction techniques are: Discrete Fourier 
Transform (DFT) [1], Discrete Wavelet Transform (DWT) [2], Discrete Cosine 
Transformation (DCT) [3], Singular Value Decomposition (SVD) [1], Piecewise 
Aggregate Approximation (PAA) [4], Adaptive PAA [5], ChebyShev Polynomial [6], 
Symbolic Aggregate Approximation (SAX) [7], and Indexable Piecewise Linear 
Approximation [8]. The model-based methods construct a model for the data within a 
class and classify new data according to the model that best fits it. In the classification 
step, a new sequence is assigned to the class with the highest likelihood. 

A most promising recent approach of classifying time series data is finding 
shapelets within a data set [9]. A shapelet is a subsequence of time series data which 
represents a particular class. The algorithms that are based on shapelets are 
interpretable, accurate and faster than existing classifiers [10, 11].  

There are two types of classification algorithms: algorithms that consider the whole 
(single) time series sequence (global features) for classification and algorithms that 
consider a portion of a single time series sequence (local features) for classification. 
The shapelets are local features. In classification using shapelets, a shapelet that 
represents a particular class is identified and then, the classification is done based on 
the shapelet information. Because shapelets are small in size compared to the original 
data, algorithms that use shapelets for classification, result in less time and space 
complexity. Shapelets have successfully been used in many other applications like 
early classification [12], gesture recognition [13], and as a filter transformation for 
TSC [14].  

For classification with shapelets, decision trees (binary) are used, where each 
nonleaf node represents a shapelet and leaf nodes represent class labels. To know how 
well the shapelet classifies the data, information gain [15] is used. Apart from this, the 
measures, such as, the Wilcoxon signed-rank test [16], Kruskal-Wallis [17], and 
Mood's Median [18] can also be used.  The information gain/entropy measure is a 
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better choice among other measures, because, early entropy pruning can be done to 
avoid unnecessary computations performed when finding the shapelet. 

To compare two time series data, a metric distance measure should be used. A 
distance measure is metric, if it satisfies the: 1) Positive definiteness 2) Symmetry 3) 
Triangle Inequality.  

The rest of the paper is organized as follows. In Section 2, related work is 
reviewed. The definition and comparison of the distance measures is discussed in 
Section 3. The decision tree pruning is discussed in Section 4. The experimental 
results are discussed in Section 5. The paper is concluded in Section 6. 

2 Related Work 

The closest work is that of time series classification using shapelets [9]. Here, the 
authors classify the time series data using shapelets. It generates all possible 
subsequences of all possible lengths where a subsequence is subset of consecutive 
values of the time series sequence. Each subsequence is tested to see how well it can 
classify the data. For this, it generates an object histogram which contains all the time 
series objects distances to the given subsequence. To find the distance between two 
time series sequence or between a time series sequence and subsequence, Euclidean 
distance measure is used. The time series objects in the histogram are in increasing 
order of distance. An optimization in computing the distance between the time series 
and subsequence is performed. That is, instead of computing the final distance value 
between the subsequences of a given time series data and the given subsequence, the 
distance calculations can be stopped when the partial computation is more than the 
least distance. This is early abandon [19]. To find the best shapelet, information gain 
is used.  

Another optimization is performed to reduce the time complexity called entropy 
pruning. This is done during object histogram computation. Once a time series 
sequence is added to object histogram, it is checked to see if the remaining 
calculations of other time series objects with the given subsequence can be pruned. 
For this, the partially computed object histogram is taken. The remaining objects (for 
which the distance has not been computed to the given candidate) of one class are 
added to one end of the histogram and the objects of other class are added to the other 
end of the histogram and vice versa. Now, the information gain is computed. If it is 
greater than the best known so far, then the histogram computation is continued, 
otherwise the remaining calculations with the candidate are pruned.  

The classification of time series data with shapelets along with their corresponding 
split point produces a binary decision. Hence, binary decision trees are used. Because 
one shapelet is not sufficient to classify the entire time series data, a number of 
shapelets are used which clearly distinguishes one class from other.  The shapelets are 
used along with the distance threshold (split point), which divides the data into two 
sets.  The non leaf nodes of the decision tree specify shapelet and the distance 
threshold; and leaf nodes specify the class label. To predict class label, the time series 
sequence is fed into classifier, which moves it from the root to the leaf node. It gives 
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the predicted label. While moving from root to leaf node, the sequence is compared 
with every shapelet on the path using Euclidean distance measure.  

It is possible to have same the best information gain for different subsequences 
especially for small datasets. Such ties can be broken in favour of the longest 
subsequence, the shortest subsequence or the subsequence that clearly distinguishes 
one class from another.  

Usually, the time series data are very large with many innumerable values in a 
sequence. Hence, it is very expensive and difficult to compare two time series. 
Several methods have been identified for comparing time series sequences. Some of 
the distance measures as mentioned in Section I are: Euclidean distance, DTW [20, 
21], LCSS [22], EDR [23], ERP [24], Swale [25], TQuEST [26], SpADe [27]. The 
Euclidean distance is summed up by the Euclidean measure between corresponding 
points in each time series. The metric is most intuitive for comparing time series data. 
It is very simple to compute with time complexity as O(n). But, the problem with it is 
that it is sensitive to noise and needs the two sequences of the equal length. It also 
needs standardization of the time series data, if scales differ. DTW is an elastic 
measure. The two sequences need not be of equal length. Time shifting is done 
between the two series by repeating the elements. It is based on dynamic 
programming, hence has quadratic time complexity. It is sensitive to noise. A 

threshold value, ǫ, is introduced by the LCSS technique. The scoring technique 
handles the noise. If the distance between two sequences is less than ǫ in each 
dimension, then they are supposed to match and are given a match reward of 1. If the 
distance is not less that ǫ in some dimension, they do not match, and therefore there is 
no reward. Hence, it is sturdy. It rewards matches, but does not penalize mismatched 
parts. It is also based on dynamic programming. EDR only scores gaps and 
mismatches, but do not reward matches. It is robust in presence of noise and time 
shifting. It is based on dynamic programming. ERP is similar to L1-norm, but also 
supports time shifting locally. It is a metric distance measure. It is sensitive to noise. 
DTW, LCSS, and EDR can handle time shifting locally. But the problem with them is 
that they are not metric. ERP is based on dynamic programming. Swale is similar to 
LCSS, but it also penalizes dissimilar parts. TQuEST specifies a threshold query 
which comprises a query time series TQ and a threshold th. The database time series 
are decomposed into time intervals of subsequent elements where the values are 
above th. The query sequence TQ is also decomposed in such a way. Each interval is 
considered as a point in two-dimensional space with x as starting time and y as the 
end of interval. How similar two sequences are, is computed by using Minkowski 
distance measure. Now, the threshold query returns all the sequences of the database 
that have a similar interval sequence. All the above distance measures show poor 
performance if there is shifting and scaling in amplitude dimensions which can be 
handled by SpADe distance measure.  

Our focus is on seeing the performance of Mahalanobis distance measure in time 
series classification using shapelets and to study the effect of cost complexity pruning 
on the proposed method. To the best of our knowledge, the proposed method gives 
more accurate and faster classification of time series data than the existing method.  
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3 Proposed Method 

The techniques of evaluating the similarity of time series sequences have attracted the 
attention of the database researchers. The selection of a distance function to find the 
similarity between two sequences is a challenging issue for researcher. There are two 
numeric measures to compare data objects: similarity & dissimilarity. The similarity 
measure tells about the extent of similarity of two objects. The value is more when 
objects have greater similarity. The value is often in the range [0, 1]. The dissimilarity 
measure specifies the difference between the two data objects. The difference is less 
when the objects have greater similarity. Zero is often the minimum dissimilarity. In 
this paper, the dissimilarity/distance measure is used to compare two data objects. 
Using the Mahalanobis Distance measure instead of the Euclidean distance measure 
improves the accuracy of the algorithm. 

3.1 Euclidean Distance Measure 

The Euclidean measure is geometric based on the Pythagorean formula, given as, 
 
 

      (1) 
      

 
where n stands for the number of dimensions and pk, and qk are the kth components of 
objects, p and q, respectively. 

The advantage of the Euclidean distance measure is its simplicity in computation. 
But it has some disadvantages. Firstly, it requires that when variables are of different 
scales, the data need to be standardized. Since, it is incorrect to compare time series 
data with different offsets and amplitudes, they must be normalized/standardized so 
that the mean is 0 and standard deviation is 1. The normalization of time series data 
can be performed by subtracting mean from each value of time series data and 
dividing the result by standard deviation. Consider a regression problem which makes 
use of class information regarding, age, test scores as well as time. If all are on 
different scale, then they cannot be compared. This issue can be surmounted by a 
normalized Euclidean measure. But it incorporates only variances and not covariances 
unlike Mahalanobis measure which covers both of them. The next disadvantage is that 
it requires that both the sequences under comparison must be of the same length, and 
thirdly, it is sensitive to noise. 

3.2 Mahalanobis Distance Measure 

The Mahalanobis measure is the one between a point and distribution as presented by 
P. C. Mahalanobis in the year 1936 [28]. It is a unitless measure used to identify and 
gauge the similarity of an unknown sample set to a known sample. It differs from the 
Euclidean by considering the equivalence of the data set and is invariant of scale. 
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Given a time series x(k), let the ith data point be )(k
ix . First, compute the (sample) 

covariance matrix C = (cij) of a family of time series x(1), x(2),…, x(N) of lengths n by 
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The Mahalanobis measure is case of the generalized ellipsoid measure DM(x, y) = 
(x - y)T M (x - y). M is proportional to inverse of covariance matrix i.e., Mα  C-1. 
Though the Mahalanobis distance measure is often defined by setting M to the inverse 
of the covariance matrix (M = C-1), it is convenient to normalize it when possible so 

that the determinant of the matrix M is one: M = 1
1

))(det( −cc n where n is the time 

series sequence length. The Mahalanobis distance measure minimizes the sum of 
distances between time series ∑ yx yxMD, ),(  subject to a regularization constraint on 

the determinant (det(M) = 1). In this sense, it is optimal. 
When the covariance is non-singular (det(C) ≠ 0), then the covariance is positive 

definite, and so is the matrix M: it follows that the square root of the generalized 
ellipsoid distance measure is a metric. That is, DM(x, y) = 0 ⇔  x = y, it is symmetric, 
non-negative, and also satisfies the inequality of triangle. 

3.3 Euclidean vs. Mahalanobis Distance Measure 

Mahalanobis measure takes the co-variances of data objects into consideration leading 
to elliptic decision boundaries in the 2D case, whereas the Euclidean distance measure 
leads to circular boundaries. In statistics, the distance is measured by the scale of the 
data. Standard deviation is scale. For univariate data, an object, one standard 
deviation away from the mean, is closer to the mean than the one which is five 
standard deviations away. By computing z-score, the distance from the mean can be 
specified, for normally distributed data. The z-score of x is computed as z = (x-μ)/σ, 
where μ is mean of the time series data and σ is the standard deviation. This is 
dimensionless quantity. 

The graph in Fig. 1 shows simulated bivariate normal data overlaid with prediction 
ellipses. The ellipses are 10%, 20%, and so on till 90%. The prediction ellipses are the 
outlines of the bivariate normal density function. For ellipses near the origin, the 
probability density is high, and for farther ellipses, it is low. 

In Fig. 1, there are 2 red marks. One is at (4, 0), and the other at (0, 2). To see 
which mark is closer to the origin, let us consider the two distance measures. The 
Euclidean values are 4 and 2. Hence, according to the Euclidean distance measure, the 
point at (0, 2) is more nearer to the origin. For this distribution, variance in X axis is 
more than that in Y axis. Therefore, the point (4, 0) is fewer standard deviations away 
from the origin than the point (0, 2). Hence, it is less likely to see an observation near 
(0, 2) than at (4, 0). Thus, according to Mahalanobis distance, the point at (4, 0) is 
more nearer to the origin than the point at (0, 2). 
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Fig. 1. Bivariate normal data with predicted ellipses 

The prediction ellipses is a multivariate generalization of units of standard 
deviation. The bivariate probability outlines can be used to compare distances to the 
bivariate mean. Point a is nearer to the origin than point b if the ellipse containing a is 
enclosed within the ellipse containing b. 

Mahalanobis measure has the qualities as given below: 1) The variances are 
different for each dimension. 2) The covariance between variables is considered. 3) 
For uncorrelated variables with unit variance, its performance is similar to that of 
Euclidean measure. 

4 Decision Tree Pruning 

The decision tree classifier is built for time series dataset using shapelets as explained 
in Section II. It has been observed that while a decision tree is being built, the 
branches reflect anomalies in the training data owing to noise or outliers. The 
methods of pruning the tree tackle the data overfitting problem. These methods 
normally use numerical measures to remove the branches that are least reliable. 
Pruned tree is small and simple and easy to understand. Pruned trees are fast and good 
at classifying than unpruned trees. 

In decision tree induction process, if a tightly stopping criteria is used, it will lead 
to small and underfitted trees. But, if loosely halting criteria is used, it will lead to 
generation of giant decision trees overfitted to the training data set. Many methods to 
prune decision trees have been introduced to solve the later problem [29]. The two 
methods of tree pruning are prepruning and post pruning. In the first method, a tree is 
pruned by halting its construction early. Then the node becomes a leaf holding the 
most recurrent class among the subset tuples or the probability distribution of those 
tuples. In post pruning approach, some of the subtrees are withdrawn from a fully 
generated one. A subtree at a given node is pruned by removing its branches and 
substituting it with a leaf. That is, given a decision tree classifier C and an inner (non-
root, non-leaf) node t. Then pruning of C with respect to t is the deletion of all 
successor nodes of t in C which makes t a leaf node. The leaf is labeled with the most 
recurrent class among the subtrees that are substituted. This process is repeated on all 
nonleaf nodes. The removal of the subtree should not result in reduction of the 
accuracy of the decision tree. Hence it leads to a smaller and accurate decision tree.  
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4.1 Cost Complexity Pruning 

Cost-complexity pruning is performed in two levels. At the first level, a set of trees 
DT0, DT1, . . . , DTk are built on the training data. Here, the original tree before 
pruning is DT0 while DTk is the root tree. In the second level, based on its error 
appraisal, one of these trees is chosen as the pruned tree. The tree DTi+1 is procured by 
substituting one or more of the sub–trees in the preceding tree DTi with suitable 
leaves. The sub–trees that are pruned are the ones which get the lowest increase in 
obvious error rate per pruned leaf: 
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where er(DT, Smp) indicates the error rate of the tree DT over the sample Smp and 
|leaf(DT)| indicates the number of leaves in DT. prd(DT,dt) indicates the tree secured 
by substituting the node dt in DT with a suitable leaf. 

In the second level, the error of each tree that is pruned DT0, DT1, . . . , DTk is 
appraised as leading to the selection of the pruned tree that is best ever. 

5 Experimental Results 

The experiments are conducted on standard datasets such as wheat, mallet, coffee, 
gun, projectile points, historical documents, beef, car etc. [30]. On all the datasets, our 
proposed method has shown around 10% – 15% increase in accuracy and 15% – 22% 
decrease in time complexity. 

The wheat dataset contains 775 spectrographs of samples of wheat, which were 
grown in Canada between 1998 and 2005. There are various kinds of wheat, such as 
Soft White Spring, Canada Western Red Spring, and Canada Western Red Winter. 
The wheat grown in a particular year is the class label. For this dataset, the proposed 
method has shown 12% increase in accuracy as shown in Fig. 2. And there was 20% 
increase in speed (due to decision tree pruning) during testing phase and classification 
of unseen data.  

There has been extensive study on Gun/NoGun motion capture time series dataset 
[10], [31]. This data has two classes: Gun and No Gun. The classification algorithm 
should be able to identify whether the actor is holding gun or not. The difference 
between the two classes can be identified if the time series data of the actor is 
observed: how he puts his hand down by his side. The proposed method has shown 
8% increase in accuracy for Gun/NoGun problem as shown in Fig. 3. Hence, the 
proposed method has more accuracy than the existing method. And there was 16% 
improvement in speed (due to decision tree pruning) during testing phase and during 
classification of unseen data. Hence, the proposed method is more accurate and fast 
than existing method. 
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complexity pruning on the generated decision tree. The pruning method reduces the 
size of the decision tree which leads to reduction in time taken in testing phase and 
also in classification of unseen data. In future, there is scope to compare the proposed 
method with other distance measures. And also to check how the algorithm will 
perform on reduced representation of time series dataset. Further, there is also scope 
to do signature verification using the proposed method.  
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