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Chapter 40
Multi-Scale Fault Frequency Extraction Method 
Based on EEMD for Slewing Bearing Fault 
Diagnosis
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Abstract	 In	 view	 of	 the	 large	 low-speed	 slewing	 bearing,	 the	 vibration	 signals	
are	always	very	weak	and	overwhelmed	by	other	strong	noise,	which	makes	fault	
feature	extraction	 from	 the	 signals	very	difficult.	 In	order	 to	 solve	 this	problem,	
a	denoising	method	based	on	multi-scale	principal	component	analysis	(MSPCA)	
and	the	ensemble	empirical	mode	decomposition	(EEMD)	is	proposed	with	a	new	
intrinsic	mode	functions	(IMFs)	selection	strategy.	After	that,	the	vibration	signal	is	
reconstructed	by	the	selected	IMFs.	Finally,	a	method	of	multi-scale	fault	frequency	
extraction	of	slewing	bearing	based	on	EEMD	is	applied	to	denoise	the	vibration	
signals.	The	application	of	this	method	is	demonstrated	with	laboratory	accelerated	
slewing	bearing	life	test	data.	Results	show	that	EEMD-MSPCA	is	more	effective	
in	multi-scale	fault	frequency	extraction	of	low-speed	slewing	bearing.

Keywords	 Slewing	bearing · Ensemble	empirical	mode	decomposition	(EEMD) · 
Principal	component	analysis	(PCA) · Denoising · Fault diagnosis

40.1  Introduction

Slewing	 bearing	 is	widely	 used	 in	wind	 turbines,	 engineering	machineries,	 coal	
mine	machineries,	marine	platform,	military	 equipment,	 and	other	 large	 rotating	
machinery.	As	the	key	component	of	large	rotating	machinery.	when	it	has	failure,	
it	will	cause	great	economic	loss	and	sometimes	may	endanger	the	security	of	the	
operator.	Therefore,	 strengthen	 slewing	bearing	diagnostic	 technique	 of	 research	
work	has	significant	to	prevent	potential	failures	of	the	slewing	bearing.

In	recent	years,	some	scholars	have	done	some	research	on	the	fault	diagnosis	of	
slewing	bearing.	Liu	et	al.	[1]	put	forward	a	brief	review	about	the	fault	diagnosis	
of	 slewing	bearing	based	on	 vibration	 signal,	 temperature	 signal,	 friction	 torque	
signal,	acoustic	emission,	and	stress	wave.	Wahyu	et	al.	[2] used the adaptive multi-
scale	decomposition	characteristics	of	the	ensemble	empirical	mode	decomposition	
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(EEMD)	 for	 analyzing	 the	 vibration	 signals	 collected	 from	 lab	 slewing	 bearing	
subject	 to	an	accelerated	life	 test	and	the	real-case	data	from	a	sheet	metal	com-
pany.	Matej	et	al.	[3]	presented	a	new	method	in	terms	of	fault	diagnosis	of	slewing	
bearing	based	on	EEMD	and	principal	component	analysis	(PCA),	and	its	validity	
is	shown	by	a	simulation	fault	slewing	bearing	experiment.	After	that,	Matej	et	al.	
[4]	considered	the	nonlinear	characteristics	of	slewing	bearing	vibration	and	then	
improved	the	combined	method	of	a	previous	publication	in	PCA	parts	with	kernel	
PCA.	Recently,	Wahyu	[5]	presented	a	novel	application	of	circular	domain	features	
such as circular mean, circular variance, circular kurtosis, and circular skewness 
calculation-based	condition	monitoring	method	for	low-speed	slewing	bearing.

Through	the	research	on	the	slewing	bearing	fault	diagnosis	above,	some	prob-
lems	have	been	found,	that	is	most	of	slewing	bearing	failure	was	artificially	simu-
lated	and	the	effectiveness	of	the	presented	method	was	proved	by	simulation	ex-
periments;	therefore,	we	performed	a	slewing	bearing	accelerated	life	test	to	obtain	
vibration	signal	of	slewing	bearing	from	its	normal	condition	to	fault	and	then	to	
final	failure.	This	study	is	concerned	with	finding	a	reliable	method	for	low-speed	
slewing	bearing	nature	defects	fault	diagnosis.

40.2  Basic Theory of PCA and EEMD

PCA	 is	 a	 feature	 extraction	method	which	 transforms	 a	 high-dimensional	 into	 a	
lower-dimensional	subspace	which	contains	most	of	the	original	data	information.	
This	prepares	the	ground	for	multi-scale	principal	component	analysis	(MSPCA)	
denoising	which	 is	 explained	 in	 Sect.	 3.	 For	 example,	 one	matrix	X	 can	 be	 de-
composed	into	a	score	matrix	T	and	a	loading	matrix	P	using	PCA,	its	calculating	
formula	is	as	follows:

 
(40.1)

where 1 2[ , , , ]n k k× = …T t t t , 1 2[ , , , ]m k k× = …P p p p ,	E	is	the	residual	matrix	and	k	is	
the	number	of	selected	principal	components.

When	a	PCA	model	is	built	and	a	new	data	sample	x	is	to	be	tested	for	fault	de-
tection,	its	calculating	formula	is	as	follows:

 (40.2)

where  T∧ =x PP x	 is	 the	 projection	 on	 the	 principal	 component	 subspace,	 and	
 ( )T− = −x I PP x	is	the	projection	on	the	residual	subspace.

In	this	chapter,	we	use	Squared	prediction	error	(SPE)	statistic	to	detect	the	fault	
sample.	For	a	new	scale	measurement	sample	 n m×∈X R ,	the	SPE	statistic	is	respec-
tively	computed	as	follows:
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For	the	fault	detection	purpose,	we	can	compare	the	value	of	the	SPE	statistic	with	
the	corresponding	threshold	limit	SPElim.	The	fault	detection	logic	is	if	 limSPE SPE≤  
it	is	fault-free,	otherwise	faulty	[6, 7].

In	the	fault	diagnosis	of	machinery,	the	method	of	empirical	mode	decomposi-
tion	 (EMD)	has	 developed	more	 extensive	 researches	 and	 applications	 in	 recent	
years	[8, 9].	For	the	limitation	of	this	thesis,	the	algorithm	of	EMD	is	not	specifi-
cally	discussed;	however,	the	nonlinear	components	in	nonstationary	signals	may	
result	in	a	mode-mixing	effect	using	the	EMD	method.	Therefore,	the	EEMD	algo-
rithm	was	developed	from	the	original	EMD	method	by	Wu	and	Huang	[9], which 
added	white	noise	 into	EMD	procedures	 to	 restrain	 the	mode-mixing	effect.	The	
EEMD	decomposition	algorithm	can	be	shortly	given	as	follows.	First,	initialize	the	
number	of	ensemble	M	and	the	amplitude	of	the	added	white	noise	β .	After	that,	
follow	the	steps	given	below:

a.	 Add	a	white	noise	series	with	magnitude	β  to the original signal x(t) to generate 
a new signal ym(t).

 (40.4)

where	ym(t)	represents	the	noise-added	signal	of	the	mth	trial,	and	nm(t)	indicates	
the	mth	added	white	noise	series.

b.	 Decompose	the	signal	ym(t) into k	intrinsic	mode	functions	(IMFs)	Ci, m	( i = 1, 2, 
…, k)	using	the	EMD	method.	Ci, m represents the ith	IMF	of	the	mth decomposi-
tion,	and	k	is	the	number	of	IMFs.

c.	 If	m < M,	then	go	to	step	(a)	with	m = m + 1.	Repeat	steps	(a)	and	(b)	M	times	with	
a	different	white	noise	series	each	time	to	obtain	an	ensemble	of	IMFs.

d.	 Calculate	the	overall	ensemble	mean	of	the	corresponding	IMFs	of	the	decompo-
sition	as	the	final	result:

 (40.5)

40.3  Multi-Scale Denoising Method Based on EEMD  
and PCA

The	 proposed	 multi-scale	 denoising	 method	 has	 been	 improved	 by	 the	 wavelet	
multi-scale	decomposition	algorithm	[6].	The	EEMD	technique	was	used	instead	of	
wavelet	analysis	(WT)	because	the	wavelet	transform	is	a	nonadaptive	decomposi-
tion algorithm, which has the shortcoming that its analysis results depend on the 
choice	of	the	wavelet	base	function.	However,	the	full	data-driven	EEMD	does	not	
suffer	from	this	limitation	due	to	its	adaptive	empirical	nature.	Figure	40.1 shows 
the	multi-scale	denoising	and	fault	frequency	extraction	mode.
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The	proposed	method	of	multi-scale	denoising	technique	requires	two	steps.	In	
the	first	step,	the	normal	vibration	signal	is	decomposed	by	EEMD	into	k	different	
timescale	IMFs,	then	a	normal	MSPCA	mode	is	constructed	by	these	single	IMFs,	
and	the	normal	statistical	 limits	SPElim	of	each	timescale	PCA	model	are	calcu-
lated.	In	the	second	step,	the	newly	measured	vibration	signal	is	also	decomposed	
into	k	IMFs	using	the	EEMD	method;	then	the	newly	decomposed	IMFs	component	
is	 projected	 onto	 the	 corresponding	 normal	 PCA	models	 constructed	 in	 the	 first	
step.	Lastly,	according	to	the	statistical	limits	SPElim	it	is	determined	whether	each	
timescale	mode	follows	normal	operation	or	not,	and	the	certain	timescale	(IMFs)	
which	has	the	failure	existed	to	reconstruct	the	signal	is	selected.

40.4  Analysis of Real-Case Slewing Bearing Vibration 
Signal

In	order	to	further	verify	the	efficiency	and	performance	of	the	proposed	method	
for	the	real-case	slewing	bearing	vibration	signal	denoising	and	fault	diagnosis,	the	
proposed	method	was	applied	to	the	slewing	bearing	accelerated	life	experimental	
data	and	the	results,	analysis,	and	description	are	presented	below.

40.4.1  Slewing Bearing Experiment Bench

The	experiment	bench	is	an	independent	design	and	developed	by	our	team	to	sim-
ulate	 the	 actual	 operation	 conditions	 of	 large-size	 bearing	which	 can	 be	 used	 in	
a	variety	of	applications	experiment.	Figure	40.2 shows the slewing bearing test 
bench	which	can	bear	axial	load,	radial	load,	and	overturning	torque.	In	this	experi-
ment,	the	test	bench	operated	in	one	direction	of	rotation	at	a	speed	of	4	rpm.	In	

（
）

Fig. 40.1   EEMD	multi-scale	fault	frequency	extraction	mode
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this	slewing	bearing	accelerated	life	test,	four	accelerometer	sensors	were	placed	on	
the	slewing	bearing	at	90°	to	each	other.	The	slewing	bearing	fault	frequencies	are	
shown	in	Table	40.1.

  40.4.2  Analysis of Experimental Data

In	order	to	ensure	the	extracted	vibration	data,	which	provides	sufficient	fault	in-
formation,	we	must	 extract	 enough	vibration	data	 to	 analyze	 it.	Referring	 to	 the	
fault	frequencies	presented	in	Table	40.1,	the	lowest	frequency	was	0.49	Hz.	After	
simple	calculation,	0.49	Hz	is	2	s,	we	should	extract	at	least	2-s-vibration	data	that	
can	ensure	to	represent	all	fault	frequencies;	therefore,	in	this	chapter,	we	extract	
3-s-vibration	data	which	are	enough	to	represent	all	fault	information	and	reduce	the	
EEMD	algorithm	computation	time.

The	slewing	bearing	accelerated	life	test	began	on	May	16,	2013.	In	order	to	ac-
celerate	the	slewing	bearing	defect,	the	slewing	bearing	was	continuously	running	
with	full	load.	After	continuous	operation	of	slewing	bearing	for	12	days	(up	to	May	
28),	we	were	aware	 that	 failure	could	occur	 in	slewing	bearing	on	 the	basis	 that	
vibration	and	noise	increase.	Therefore,	according	to	the	EEMD	multi-scale	failure	
frequency	extracted	mode,	two	vibration	data	groups	were	analyzed:	the	vibration	
signal	at	midnight	on	May	16	as	the	normal	sample	(Fig.	40.3)	and	the	vibration	
signal	at	midnight	on	May	28	as	the	fault	sample	(Fig.	40.4).	Nevertheless,	when	
we	used	 the	EEMD	multi-scale	fault	 frequency	extraction	mode,	 two	parameters	
should	be	determined	in	EEMD	method	in	order	to	obtain	an	optimum	decompo-

Fig. 40.2   Slewing	bear-
ing test bench 

Table 40.1   Slewing	bearing	fault	frequencies
Defect	mode Fault	frequencies/Hz
Outer	ring	(BPFO) 3.18
Inner	ring	(BPFI) 3.28
Rolling	element	(BSF) 2.21
Cage	train 0.49
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sition	result.	In	this	chapter,	the	white	noise	magnitude	β 	of	0.02	is	used	and	en-
semble	number	E	of	100	is	selected.	The	vibration	signal	on	May	28	after	filtering	
is	shown	in	Fig.	40.5	on	the	basis	of	the	steps	described	in	Sect.	3.1.	Then,	the	fault	
frequencies	of	the	filtering	signal	were	extracted	by	EEMD	as	shown	in	Table	40.2.	
According	to	the	results	in	Table	40.2,	the	frequencies	2.33	Hz	and	3	Hz	are	close	
to	the	corresponding	characteristic	defect	frequency	of	the	rolling	element	and	outer	
ring	(BPFO)	in	Table	40.1,	so	we	infer	that	the	fault	occurs	in	the	rolling	element	
and	the	outer	ring.	Finally,	slewing	bearing	was	removed	to	inspect	each	compo-
nent,	and	it	was	found	that	some	rolling	elements	have	been	damaged,	and	there	
appeared	a	little	bit	of	corrosion	in	the	outer	ring.	The	damaged	rolling	element	and	
outer	ring	were	shown	in	Figs.	40.8 and 40.9.	Therefore,	the	fault	diagnosis	method	
proposed	in	this	chapter	was	applied	to	the	slewing	bearing	accelerated	life	experi-
ment,	and	the	results	verify	its	validity	and	feasibility	(Figs.	40.6 and 40.7).

40.5  Conclusion

Based	on	EEMD	and	principal	component	analysis,	this	chapter	proposes	a	method	
in	combination	of	the	multi-scale	denoising	and	the	multi-scale	fault	frequency	ex-
traction	of	slewing	bearing	fault	diagnosis.	In	the	presented	method,	the	method	of	
multi-scale	denoising	with	EEMD	is	performed	to	preprocess	slewing	bearing	vi-
bration	signals.	Through	the	slewing	bearing	accelerated	life	experiment,	vibration	
signal	analysis	results	demonstrate	that	the	proposed	method	can	reliably	recognize	
the	faults.

Fig. 40.4   Vibration 
signal	on	May	28
 

Fig. 40.3   Vibration 
signal	on	May	16 
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Table 40.2   EEMD	multi-scale	fault	frequency	extraction	results	(May	28)
IMF Frequency/Hz IMF Frequency/Hz
1 759.7 7 5.333
2 240.7 8 3
3 145.3 9 2.333
4 68 10 1.667
5 26.67 11 0.667
6 14 12 0.333

IMF	intrinsic	mode	function

Fig. 40.6   Outer ring 
fault	frequency

 

Fig. 40.5   Result	of	
multi-scale denoising
 

Fig. 40.7   Rolling ele-
ment	fault	frequency
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Fig. 40.8   Outer race 
failure
 

Fig.  40.9   Rolling ele-
ment	failure
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