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Abstract. Hashtags are creative labels used in micro-blogs to characterize the 
topic of a message/discussion. However, since hashtags are created in a sponta-
neous and highly dynamic way by users using multiple languages, the same top-
ic can be associated to different hashtags and conversely, the same hashtag may 
imply different topics in different time spans. Contrary to common words, sense 
clustering for hashtags is complicated by the fact that no sense catalogues are 
available, like, e.g. Wikipedia or WordNet and furthermore, hashtag labels are 
often obscure. In this paper we propose a sense clustering algorithm based on 
temporal mining. First, hashtag time series are converted into strings of symbols 
using Symbolic Aggregate ApproXimation (SAX), then, hashtags are clustered 
based on string similarity and temporal co-occurrence. Evaluation is performed 
on two reference datasets of semantically tagged hashtags. We also perform a 
complexity evaluation of our algorithm, since efficiency is a crucial perfor-
mance factor when processing large-scale data streams, such as Twitter.  

1 Introduction 

Hashtags are frequently, though not systematically, used by Twitter users to tag the 
content of their messages. Given the 140 character limits of messages, hashtags pro-
vide a natural way to better characterize the topics a message deals with. However, 
hashtags’ popularity surge and decay, and furthermore, the same hashtag might have 
different meanings in different time periods. For example, recently Jawbone tried a 
#knowyourself campaign on Instagram1, only to find that the hashtag was already 
being used generically by thousands of users in all sorts of different contexts.  

In addition to polysemy, there is also a problem of synonymy: since new hashtags 
are freely and continuously introduced by users, different hashtags may share the 
same meaning, also as a consequence of multilinguality. These two problems reduce 
the effectiveness of hashtags both as a mean to trace users’ interests in time (because 
of sense shifts), and to capture the worldwide impact of emergent topics (because of 
synonymy and multilinguality).  On the other side, better methods to analyze the se-
mantics of hashtags would be definitely needed, since hashtags are readily available, 

                                                           
1 http://blog.bufferapp.com/a-scientific-guide-to-hashtags- 
 which-ones-work-when-and-how-many 
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while textual analysis techniques are limited both by complexity constraints, when 
applied on large and lengthy micro-blog streams, and by the very reduced dimension 
of micro-blog texts.  Additionally, real-time detection of sense-related hashtags could 
be used to improve the task of hashtag recommendation, thus further facilitating the 
monitoring of on-line discussions. 

In this paper we propose a methodology for hashtag sense clustering based on tem-
poral co-occurrence and similarity of the related time series. We first convert tempor-
al series into strings of symbols, to reduce complexity. Then, we cluster hashtags  
co-occurring in the same temporal window and with same, or similar, strings. The 
paper is organized as follows: in Section 2 we briefly summarize the state of the art 
on temporal clustering. Section 3 describes our technique to efficiently derive tem-
poral clusters from large and lengthy micro-blog streams. Section 4 is dedicated to 
performance evaluation. Section 5 analyzes complexity, a relevant issue when dealing 
with very large data streams. Finally, Section 6 presents our concluding remarks.  

2 Related Work 

Hashtags have been used in literature to cluster tweets with similar topics.  For exam-
ple, in [1] hashtags are used as a pooling schema to improve LDA topics learned from 
Twitter. In [2] hashtags are manually associated to a set of 8 categories, plus an addi-
tional “catch-all” category. Tweets with hashtags in the same categories are conflated 
and a model is learned for each category; finally, the model is used for real-time clus-
tering of new messages.  

A number of papers deal with hashtag clustering, as we do. The standard technique 
adopted in literature is based on contextual similarity. In [3] the authors represent a 
hashtag h by the set of words in the messages including h, and then use K-means on 
map-reduce to create clusters. In [4] the authors cluster hashtags based on their con-
textual similarity and then use this information to expand context vectors associated 
to tweets including these hashtags. In [5] hashtags from different languages are clus-
tered using a machine translation tool, MOSES. Finally, in [6] a combination of co-
occurrence frequency, graph clustering and textual similarity is proposed.  

As we motivated in the introduction, a better approach seems anchoring hashtag 
sense clusters to time. A number of works deal with the temporal aspects of hashtags 
and their persistence: [7] is concerned with the association of usage patterns and hash-
tag semantics, and [8] analyzes variations in the spread of hashtags.   In [9] common 
shapes of Twitter hashtags are detected using K-Spectral Centroid clustering. Our 
objective in this paper is however different: rather than using a time-invariant meas-
ure of shape similarity to detect “generic” patterns of human attention, we cluster 
temporally co-occurring hashtags with a similar shape, to induce sense similarity. To 
the best of our knowledge, this is the first paper in which temporal similarity is used 
for hashtag sense clustering, however there are a several papers dealing with temporal 
mining for event detection in micro-blogs [10-17]. Among the most cited, in [10] a 
temporal analysis technique, named wavelet analysis or EDCoW, is used to discover 
events in Twitter streams. As a first step, signals are built for individual words by 
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applying wavelet analysis on the frequency-based raw signals of the words. Autocor-
relation is applied to measure the bursty energy of each word.  Then, cross-correlation 
between each pair of bursty words is measured. Finally a cross-correlation table is 
used to build a graph, and graph-partitioning techniques are applied to discover rele-
vant events. In [11] a technique named TopicSketch is proposed to achieve real-time 
detection of events in Twitter. Like for EDCoW, events are characterized as “bursty 
topics”, i.e. a set of words showing a sudden surge of popularity followed by a decay. 
TopicSketch computes in real-time the acceleration (the second order derivative) of 
three quantities: a) the total Twitter stream; b) each word in the stream; c) each pairs 
of words in the stream.  Given these (known) quantities, the distributions of words 
over a set of bursty topics Tk{ }is estimated by modeling the mixture of multiple hete-

rogeneous processes of topics as a Poisson process, and then solving an optimization 
problem. Hashing techniques and process parallelization are used to keep the problem 
tractable in terms of memory cost and computational complexity. In fact, one of the 
main problems with temporal mining when applied to large and lengthy data streams 
is its computational cost. With respect to these two algorithms, we will show in Sec-
tion 5 that our method is at least one order of magnitude more efficient.  

3 Clustering Hashtag with Symbolic Aggregate ApproXimation 
(SAX) 

In this Section we describe our algorithm, named SAX*, and its application to hashtag 
sense clustering. The underlying idea of SAX* is that hashtags (or words) with a simi-
lar temporal behavior are semantically related. The nature of this relatedness is either 
limited to a specific temporal slot, e.g. when hashtags describe a unique event 
(#pope,#habemuspapam), or is more systematic and repetitive, for example when 
hashtags refer to possibly recurrent, culturally related, issues (such as #followfri-
day,#thanksgodisfriday). SAX* consists of three steps: in step 1, temporal series of 
hashtags are sliced into sliding windows and converted into strings of symbols, using 
Symbolic Aggregate ApproXimation. Then, strings are matched against an automati-
cally learned regular expression representing a generalized pattern of collective atten-
tion, in order to discard those hashtags that do not spread across the network. Finally, 
co-occurring hashtags with similar strings are clustered together.  

To tune and evaluate our approach we collected 1% of Twitter traffic, the maxi-
mum freely allowed traffic stream, for one year from June 2012 to May 2013, using 
the standard Twitter API2. Other datasets are available, e.g. the Twitter 2011 or 2013 
datasets3, the second being much larger than the first, but still spanning over only two 
months. A larger time span was indeed necessary to trace a sufficiently large variety 
of hashtags. Our dataset, hereafter referred to as the 1% Twitter stream, is about 700 
million tweets, with respect to 250 millions tweets of the Twitter 2013 collection, 
which is, to the best of our knowledge, the largest available collection used so far in 
micro-blog analysis.    

                                                           
2 https://dev.twitter.com/docs/streaming-apis 
3 https://sites.google.com/site/microblogtrack/ 
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In what follows, we first describe Symbolic Aggregate ApproXimation (SAX), the 
algorithm used to represent hashtag time series in a compact way, then, similarly to 
[9], we identify a class of temporal patterns indicating collective attention. Finally, we 
present the methodology to obtain SAX* clusters. 

3.1 SAX Representation of Time Series 

SAX is a technique to reduce a time series of arbitrary length W to a string of arbitrary 
length N, (typically N<<W). Given a time series S(t), this is first normalized through 
z-score4 normalization and then discretized,  using a well defined dimensionality re-
duction method called Piecewise Aggregate Approximation [17]. The PAA represen-
tation is as follows: given a (normalized) time series  in a window W, this can be 
discretized into N partitions of equal length ∆ (e.g. days, hours..). We denote with  

(i=1… , ∆ ) the mean value of the function falling into each partition i.  Then, 

the PAA representation is symbolized with a discrete string, using an alphabet Σ: , , . .  of n symbols. Since normalized time series have a highly Gaussian distri-
bution, we can determine the breakpoints . .   that produce |Σ| equally sized 
areas under the Gaussian curve. Once the breakpoints have been established, the PAA 
representation is turned into a string of symbols in the following way: ̂ , Σ,   

Figure 1 shows the SAX string (with Σ 2 and 0  associated with the norma-
lized time series  for the hashtag Olympics. The series refers to a 10 days win-
dow starting on July 25th, 2012, with a 1-day discretization (N=10, ∆= 1 day). The x 
axis represents the breakpoint and the dashed line shows the  values. Using the bi-
nary alphabet ,  , the correspondent SAX string for Olympics is aabbaaaa. Figures 
2 and 3 illustrate the effect of z-normalization: Figure 2 shows the time series, in the 
same window as in Figure 1, for the hashtags: Olympics, Olimpiadi2012, londra2012, 
London2012, Londres2012, while Figure 3 shows the same series after normalization. 
Even though the five hashtags do not display identical behavior, especially before 
normalization, their correspondent SAX strings are the same or very similar, intuitive-
ly suggesting a correlation.  

In our analysis, we are interested only in hashtags whose SAX representation de-
notes a pattern of collective attention. Rather than clustering time series as in  [9], we 
selected manually a number of words from Wikipedia Events5 2011, we generated the 
SAX strings for these selected words and related hashtags on a previously acquired 
1% stream6, and we used the RPNI algorithm [19], available in the libalf7 library, to 
generate compatible regular expressions. With an alphabet of 2 symbols, we finally 
learned the following regular expression: 

                                                           
4 z-normalization is described in  
  http://code.google.com/p/jmotif/wiki/ZNormalization 
5 en.wikipedia.org/wiki/Event 
6 This stream had several holes, therefore we only used to analyze patterns of attention.  
7 libalf.informatik.rwth-aachen.de/index.php?page=home 
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? ? ? ? ?                                      (1) 

This regex captures all the series with one or two peaks and/or plateaus in the ana-
lyzed window, such as, for example, the sequences in Figures 1 and 3. Incidentally, 
we note that this regex turns out to be a generalization of 5 out of 6 shapes of atten-
tion learned by the algorithm described in [9]8. The 6th shape has two major and one 
minor peak, which would require 3 symbols to be correctly represented.  

3.2 SAX* Clustering 

As suggested by the example in Figure 3, our aim is to cluster hashtags on the basis of 
the similarity of their time series. The SAX representation enables this similarity to be 
captured efficiently. 

 

Fig. 1. Binary SAX representation (| |  of the hashtag Olympics 

 

Fig. 2. Non-normalized time series for: Olympics,Olimpiadi2012,londra2012, London2012, 
Londres2012 

                                                           
8 See Figure 8 of the mentioned paper, in which 6 shapes of attention of Twitter hashtags are 

shown. 
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Fig. 3. Normalized time series for: Olympics, Olimpiadi2012, londra2012, London2012, Lon-
dres2012 

To create clusters, we proceed as follows. In our 1% Twitter stream, we consider 
sliding windows  partitioned in 10 slots of one day each. Our slots are days, but a 
more fine-grained discretization could be adopted. At each  execution of the cluster-
ing algorithm, the window is shifted by one day. Within each window, hashtags are 
converted into SAX binary strings. We also experimented different dimensions for the 
alphabet  (experiments are omitted for the sake of space) eventually finding that best 
results using our 1% Twitter stream are obtained with a binary alphabet. The parame-
ters 10, ∆ 1 , |Σ| 2 perform at best on the 1% stream since this is not 
sufficiently dense, and only allows it to detect world-wide phenomena. Previous work 
(e.g. [11]) on a locally dense stream (Singapore tweets during few weeks) has shown 
that shorter slots (days or hours) should be used to mine geolocated streams.  

Given the binary SAX representation of all the hashtags in our Tweet dataset, we 
consider only those matching the regex (1) in , thereby greatly reducing the compu-
tational and memory requirements of the subsequent clustering phase (this will be 
discussed in more detail in Section 5). Let  be the survived vocabulary of terms 
in . Over these terms we apply a bottom-up hierarchical clustering algorithm with 
complete linkage [20]. In complete linkage, the algorithm starts with singleton clus-
ters (e.g. each consisting of one term), and then progressively merges two clusters 
into larger ones, according to the aforementioned “smallest diameter” criterion, meas-
ured using a given distance function9. We stop hierarchical bottom-up clustering ag-
gregation for a cluster when , , where  SD is the standard 

deviation of the distance between all terms  in    and the cluster centroid. We 

further purge clusters smaller than f elements (f,  are tunable parameters . Let , …  be the clustering result in .  

                                                           
9 We use the euclidean distance, but other measures, e.g. the edit distance,  produce very similar 

results. 
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As an example, consider the 10-days window starting on July 27th 2012. In this 
window, we obtain the following multi-lingual hashtag cluster (the corresponding 
SAX* sequences are shown only for the cluster centroid): 

 

We can observe that in this case the window perfectly includes the pattern of for-
mula (1), as shown in Figures 2 and 3 (plotting some members of the above cluster), 
but this is not guaranteed in general. This is the reason for using sliding windows: 
sliding is better than slicing, since if a slice were to cut a pattern in two we wouldn’t 
be able to detect the correspondent cluster. On the other hand, since consecutive win-
dows overlap over 8 days, we may have many windows and many clusters that cap-
ture the same cluster or some of its subtopics. With reference to the previous cluster, 
the window W’ obtained by sliding W one day to the right, would still generate more 
or less the same clusters, while sliding three days would miss it, since the correspon-
dent sub-string does not match the regex (1).  Therefore, a method is needed to cap-
ture the relevant events on a day-to-day basis. To this end, we proceed as follows: For 
every temporal slot Δ  (Δ  is one day in our case) consider the set W of all windows 
such that Δ  (|W|=10 in our case). For each , select the subset of clusters 

in   with a peak in Δ , e.g., if a binary alphabet is adopted, whose centroid has a 

“b” in Δ . Then, the set of clusters in Δ  is: C cW . Note that clustering is per-

formed on 10-days sliding windows: day clusters are obtained in a post-processing 
step. Also note that in a day Δ  there might be zero or more clusters with a peak.  

4 Data Analysis and Evaluation 

We extracted the hashtags from our 1% Twitter Stream, we removed hastags below a 
given (language dependent) frequency threshold10 f in each W and we then run SAX* 
with W=10, |∑| 2, ∆ 1 , 0.35  (see Section 3.1). These parameters were 
experimentally selected, but given the limited Twitter traffic available (1%), we ob-
served that a more fine-grained analysis (larger alphabet and smaller Δ and W) pro-
duces less reliable results, as already remarked. Overall, we clustered a set H of 
124.345 hashtags in 365 sliding windows. The average number of clusters per win-
dow was 33.24 (with standard deviation SD=6.76) and the average cluster dimension 
was 10.29 (SD=3.29). However, except for few examples (as the large London 2012 
Olympic Games cluster shown in Section 3.2), hashtags are rather cryptic and exten-
sive manual evaluation is almost impossible. To provide an objective evaluation,  
we designed two experiment: the first is a manual evaluation against two reference 

                                                           
10 f  depends on the language and has been set to 99 (English), 17 (Spanish) 4 (French) 3 

(Italian), more or less proportional to the relative weight of Tweets in these languages. 

[london2012, londres2012, ItaliansAreSoHot, JJOO, London2012, Londra2012, Londres2012, 
Olimpiadi2012, Rai, london2012, londra2012,olimpadi2012, olimpiadi2012, tomorrowland, 
London2012, Olympics,olympicceremony,J02012, JJOO, JO, JO2012, JOLondres2012, Jo2012, 
London2012, Londres, Londres2012, Olympics, jo, jo2012, joRTBF] 

[centroid: aaabbaaaaa,  SD: 0.17692605382612614] 
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classifications, the second provides internal validity measures of cluster cohesion. 
Both are standard validation approaches adopted in clustering literature and in pre-
vious works on hashtag sense clustering [1-5]. Finally, we also evaluate the complexi-
ty of SAX* and compare it with other temporal and topic clustering algorithms.  

4.1 Experiment 1: Evaluation against Available Datasets 

In order to evaluate the quality of extracted clusters, we used two resources:  

i) The hashtag classification presented in [2]11: this dataset (named hereafter 
TSUR) includes 1000 highly frequent hashtags manually assigned to 9 catego-
ries: Music, Movies, Celebrity, Technology, Games, Sports, Idioms, Political and 
Other.  

ii) A user-populated hashtag taxonomy on the TWUBS on-line hashtag directory12: 
this taxonomy has three top categories (Event, Organization and Topic) and 32 
sub-categories. For example, Topic has the following categories: Art, Education, 
Entertainement, Gaming, Health&Beauty, etc. Note that in TWUBS a hashtag 
may belong to more than one class. We crawled TWUBS and we downloaded 
about 40,000 hashtags with related classifications. 

Both datasets use coarse categories, while our system captures more fine-grained 
senses, however, as already remarked, a manual evaluation is unfeasible, except for a 
number of very readable examples like the Olympic game cluster previously shown. 
The purpose of the evaluation is to show that SAX* clusters are “pure”, e.g. most, or 
all of their members belong the same category.  We also note that only a subset of the 
TSUR  and TWUBS hashtags meet the conditions to exceed the threshold f and to 
match the regex (1) in at least one of the 364 windows W in our 1% Twitter stream. 
Overall, 243 hashtags from the TSUR dataset and 617 from the TWUBS dataset were 
also found in our set H of  124.345 hashtags.  Let be the set of “active” hastags

 
in a window  and further let . . 13 be the clustering generated by SAX* 
in , and CT : t1, t2..tK{ }  the correspondent “ground-truth” classification (either 

TSUR or TWUBS), such that each cluster tm includes hashtags belonging to one cate-
gory14.  To assess the performance of our system we use the following measure of 

Precision: ∑∑ ∑
 
 were a true positive pair ( ) is a pair of hashtags 

such that:  hk, hj ∈ cnin CWt

 
hk, hj ∈ tmin CT . Note that we do not use the popular 

Rand Index15 since this index takes into account also the false negatives. However 
with SAX*, two hashtags that do not temporally co-occur are not clustered together, 
even though they could belong to the same semantic category. For this reason, we 

                                                           
11 We thank the authors for providing the dataset. 
12 twubs.com/p/hashtag-directory/ 
13 We here omit the apex denoting the window in which the cluster is generated, for the sake of 

simplicity. 
14 Note that K, the number of categories in Wi, is in general lower that the total number of 

available categories in the two classifications. Also note that TWUBS allows for multiple 
classifications, therefore some hashtag may belong to more than one tm.  

15 http://en.wikipedia.org/wiki/Rand_index 
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cannot compare our results with those in [2]. It is further to be said that the method 
proposed in that paper, besides being based on contextual similarity rather than tem-
poral similarity, is a trained method while SAX* is untrained. In addition to Preci-
sion, we also measure the Information Gain16, defined as the difference between the 
entropy of the original distribution and that of the derived classification: 

, | |∑ | |.. | |∑ | |....
| |∑ | |.. | || |..

| || |..  

In the formula, with reference to a clustering CWi of H(Wi) , bursty hashtags in win-
dow Wi, | | is the number of categories of the reference classification (either 
TSUR or TWUBS) having at least one member in H(Wi), N is the number of clusters 
generated by SAX*  in CWi, the minuend is the initial entropy of the set H(Wi), i.e. the 
initial impurity of the examples, and the subtrahend is the weighted sum of entropies 
of each cluster . The IG then provides a measure of the improvement of 
SAX* over a baseline classifier assigning a category based on the a-priori probability 
distribution of the various categories in H(Wt). We actually compute the normalized 
IG (NIG), since K may vary in each Wi.  Table 1 shows average and standard devia-
tion (SD) of NIG and Precision, over the 365 clusterings CWi derived in one year.  

Table 1. Precision and Information Gain of SAX* in the hashtag clustering task 

Golden Classifications: TSUR (max K=9) TWUBS (max K=32) 

Average NIG 0.967 0.778 

SD(NIG) 0.042 0.1002 

Average Precision 0.88 0.77 

SD(Precision) 0.127 0.128 

Total # of evaluated hashtag pairs  5,678 10,206 

Average # of clusters with |ci|>1 in Wi 4.85 7.86 

The Table shows that the quality of SAX*-induced clusters can be considered in-
deed very good. The average NIG is close to the maximum of one bit for TSUR and 
slightly lower for TWUBS, which also has a lower precision. This is coherent with 
the fact that the number of available categories is more than three times higher for 
TWUBS (32 against 9) and in addition, in TWUBS some hashtags have multiple clas-
sifications. In general, clusters are very pure (e.g. members belong to a unique catego-
ry), as shown in the following two clustering examples, in which hashtags have been 
replaced by their semantic labels in TWUBS: 

• On: <Jun 01, 2012>: [[MOVIES]  [SPORTS,MOVIES,MOVIES]  [MOVIES,MOVIES]  

[SPORTS,SPORTS,SPORTS][SPORTS]  [TECHNOLOGY,TECHNOLOGY,GAMES,TECHNOLOGY,GAMES]]  

(NIG= 0.920] 

                                                           
16 http://en.wikipedia.org/wiki/Information_gain_ratio 
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• On: <Jun 25, 2012>: [[SPORTS]  [MOVIES,MOVIES]  [MOVIES]  [SPORTS,SPORTS] 
[IDIOMS,IDIOMS,IDIOMS,IDIOMS,IDIOMS] [POLITICAL,POLITICAL]  [MOVIES,MOVIES] 

[IDIOMS,IDIOMS,IDIOMS,IDIOMS,IDIOMS]]  (NIG=1.00) 

We remark that numbers in Table 1 refer only to the set of hashtags in the two 
“golden” classifications that also appear in our clusters, since, as stated in the intro-
duction of this Section, our clusters are much larger.  As an example, we list some co-
clustered pairs with a clear meaning:  Giants-sfgiants, MyWeakness-factsaboutme, 
football-giants, Obama-healthcare, Obama-Obamacare, Dodgers-redsox, apple-iPhone, 
ff-followfriday, CNN-politics, HabemusPapam-Pope. The examples show that our sense 
clusters are indeed more fine grained than what captured by the reference classifica-
tions, however there is no practically feasible way to evaluate such senses manually. 
Another problem is that TWUBS and TSUR categories are fixed, and do not capture 
the temporal shift of hashtag meaning, which was one of the objectives of this paper. 
Next Section analyzes this issue.  

4.2 Experiment 2: Internal Cluster Validity Measures 

In this experiment we provide a measure of cluster quality based on the semantic 
similarity of messages including hashtags in clusters. Similarly to other papers [2,4], 
we represent each hashtag with a tfidf vector of the document  created by conflat-
ing all tweets including a given hashtag h, but we also add the constraint that tweets 
must co-occur in the same window . We introduce three metrics: the first two are 
well known measures commonly used to evaluate the similarity of two items ,  belonging either to the same or to different clusters in a window . The third-
one computes the similarity between the same two items ,  when occurring in 
two different randomly chosen windows , . The objective of this third measure 
is to verify our hypothesis of a temporal shift of hashtag meaning. For each hashtag 
pair ,   and for all clusters   detected in window  we compute the 
average intra-clusters similarity , based on the cosine similarity17 , : 

1| | 1| | | | 1 ,,    

Then, for each hashtag pair  ,    and all clusters CWi detected in win-
dow  we compute the average inter-clusters similarity  based on the 
cosine similarity , : 

 ∑ | | ∑ ,  ,    ,   

Finally, for each hashtag pair ,   and all clusters CWt detected in window 
 we compute the average random clusters similarity  based on the 

                                                           
17 en.wikipedia.org/wiki/Cosine_similarity 
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cosine similarity ,  when ,  occur in two non-overlapping randomly 
selected windows ,  where i  and , . 

1| | 1| | | | 1 ,,  ,     

The main purpose of  is to compare the similarity of  ,   when 

the related tweets co-occur in a cluster in the same window (i , and when, 
instead, they do not co-occur (i . Inspired by the Information Gain, we com-
pute the Similarity Gain by the following formula:  

 

Table 2 shows the values and SD of ,  and .  

Table 2. Cluster similarity measures 

  Intra Inter Rand Gain 

Average 0.2219 0.0083 0.0999 1.3331 

St. Deviation 0.2504 0.0042 0.0434 1.6241 

The Table shows that, as expected,   but also  . This demonstrates the main point of our experi-
ment: hashtag similarity is time-related. Consider for example two hastags, CNN and 
America, that co-occur in a cluster starting on October 22nd, 2012. Two examples of 
tweets in this window are (common words are underlined):  

#America #CNN 
Oct 23rd 2012: Final presidential debate is tonight tune in #America!!! 
Oct 24th 2012: Final Debate, Tune in on #CNN 

However, the same two hashtags may be used in very different contexts when found 
in separate temporal windows, as for example:  

#CNN: 
Oct 29th,  2012: Might watch a bit of #CNN to follow #Sandy 
#America: 
Dec 14th 2012: Very sad day in #America. Pray for the families in Connecticut. 

A similar example is provided by the pair Obama, Obamacare: 

#Obama,#ObamaCare: 
Jun 29th, 2012: @UserName01 What's your point of view on #OBAMA health care plan? 
Jun 28th, 2012: #Obamacare Gives millions the opportunity to have health care plan. 
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The hashtag Obama however may appear in quite different contexts, such as:  

#Obama: 
Oct 21st, 2012: @UserName02 it is in the best interest of #Iran to help President    #Obama 
win. They will say anything to help in the next few weeks 

5 Complexity Analysis 

In this Section we perform a complexity evaluation of SAX*, and we compare it with 
EDCoW [10] and TopicSketch [11]. For SAX*, the complexity analysis is based on 
[18] and on personal communication with the author; for EDCoW and TopicSketch 
our computation is based on the algorithm description presented in the respective 
papers, which we briefly summarize. We introduce the following parameters: 

 
D number of  tweets in W 

t average document (tweet) length 

L vocabulary dimension  (lexicon) in W 

L' vocabulary dimension after pruning 

(when applicable) 

 re-sampling window in EDCoW 

W window length 

K number of discovered events/topics 

(this is a manually defined parameter 

in TopicSketch) 

H number of hash functions in Topic-

Sketch 

I number of iteration of outer loop in 

TopicSketch 

i number of iteration of Newton-

Raphson method in TopicSketch 

 
In what follows, in line with [10] and [11], we consider the problem of words tem-

poral clustering rather than hashtags, however the nature of clustered items does not 
affect the complexity computation.   

5.1 SAX* Complexity 

The first step requires reading the documents, indexing the terms, and creating a tem-
poral series for every term. Supposing an average length per document of t terms, this 
step takes order of (hereafter the big-o notation will be implicit) . Then, we read 
the lexicon, pruning all terms below a given frequency, with cost L. Let  be the 
pruned lexicon. Finally we remove all terms that do not match the regex (1), with a 
cost that is linear in the dimension of the window W: . Let  be the final dimen-
sion of the lexicon. The worst case is when  though in general . The 
number of comparisons among symbolic strings during hierarchical clustering with 

complete linkage depends on the string length, which is ∆  (since ∆ 1) , there-

fore the worst-case cost is 1 . After the clustering step, K clusters are 
generated. Finally, we apply cluster pruning – small clusters are removed - with a cost  
K. To summarize, the cost is:   1 +K    
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5.2 EDCoW Complexity 

A detailed  description of the algorithm is found in [10] As for SAX*, the first step 
consists of the transformation of terms in documents into temporal series with cost 

.  In the first stage  of the algorithm, every term-related signal si is converted into 
another signal ; the new signal is obtained by applying Shannon Wavelet Entropy to 
sub-sequences of length Θ of the original signal si. In other terms a value  is com-
puted every Θ values of si. In stage , two contiguous values ,  are aggregated. 

The cost of the first stage operation is then: Θ Θ . The second stage filters 

signals   (of length ) using the autocorrelation function; this part has a cost  log   and produces a sub-lexicon . Next, EDCoW builds the cross-

correlation matrix for all pairs of remaining terms. The cost needed to build the cross-

correlation matrix is .In the subsequent phase EDCoW detects events though 

modularity-based graph partitioning that is efficiently computed using power iteration 
at cost . 

For each cluster Ε (|E|=K) the final cost is bounded by  . The final step 
consists of selecting the clusters on the basis of their related sub-graph and can be 
included in the previous phase without additional cost. The total cost of the algorithm 
is then summarized by the following formula: 

     
5.3 TopicSketch Complexity 

In [11] the authors present a detailed description of the algorithm, though they do not 
provide a complete complexity analysis. As for the other algorithms, the first step 
consists of reading the stream and collecting terms statistics with cost . Then a 
dimension reduction is applied with cost H 1 ⁄  , where H are hash functions 
mapping words to bucket [1… ]18 uniformly and independently. The cost of the sub-
sequent phase is summarized by the computational cost of maintaining all the H  
accelerations (this cost is provided by the authors). The last step is a topic inference 
algorithm, modeled as an optimization problem. The gradient-based method19 to op-
timize the objective function f is based on the Newton-Raphson approach, whose 
complexity depends on the multiplication function20. Using a very conservative value 
of 32 bit precision the cost is at least:  · · · · · log 32 . Though some minor 
costs are ignored for the sake of simplicity, the final complexity is order of: H 1 H · · · · · log 32   

 

                                                           
18 [1…B] in the original paper [11]. 
19 Table I of [11]. 
20 http://en.wikipedia.org/wiki/Computational_complexity_of_ 
  mathematical_operations 
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5.4 Complexity Estimates 

Given the above formulas, we can now provide quantitative complexity estimates. We 
set the parameters as follows: 

• the length t of documents is set to 9.4 words21;  
• the size of  D grows from 100 to 10 million tweets, which is about the actual average size 

(9.163.437) of English tweets in a 10 days window in a 1% Twitter stream;  
• the vocabulary L grows according to a Zipfian law  with parameter 1,127 estimated 

on  our Twitter stream. L’ grows with the same law (starting from L), with an estimated pa-
rameter 0,41456. 

• Θ 3  as reported in [10] the window W is 10 days, and ∆ 1 day. Note that, in TopicS-
ketch,  indirectly impacts on performance, since it limits to a manageable value the  
dimension L of the words to be traced, as the authors say. The impact of W and ∆  is ac-
counted by the cost of maintaining the accelerations, H . 

• the number of clusters is set to 50  
• according  to [11] we set H to 6, I to 50 and i to 25. 

Table 3 shows that SAX* is one order of magnitude less complex than ECDoW and 
TopicSketch, on a realistic stream of 10 million tweets. Note that, with respect to the 
empirical efficiency computation performed in [11], the complexity is here estimated on 
the theoretical ground and is henceforth independent from parameters, parallelization 
techniques and computing power. We note that ECDoW is mostly influenced by the first 
stage of signal transformation and TopicSketch is penalized by the Topic Inference algo-
rithm. Furthermore, while SAX* and ECDoW are not influenced by the K parameter (the 
number of clusters), using TopicSketch on large Twitter streams with growing K be-
comes prohibitive, as shown by the complexity formula: in practice, the authors set K=5 
in their paper but they do not analyze the effect of this parameter on performance.  

Table 3. Complexity analysis as a function of the corpus dimension 

 

D t L L' Θ W K SAX* EDCoW TopicSketch 

100 9.4 179 9 3 10 50 7,784 25,341 16,117,823 
1K 9.4 2,401 25 3 10 50 73,086 306,630 47,259,589 
10K 9.4 32,155 74 3 10 50 665,382 3,820,434 138,620,347 
100K 9.4 430,593 217 3 10 50 6,042,708 48,659,378 407,068,448 
1M 9.4 5,766,068 635 3 10 50 55,434,549 629,661,338 1,200,080,494 
10M 9.4 77,213,473 1,862 3 10 50 517,658,362 8,238,768.,557 3,584,819,505 

 

6 Concluding Remarks 

In this paper we introduced a hashtag clustering algorithm based on the novel notion 
of temporal similarity. We presented SAX*, an algorithm to convert temporal series 
of hashtags into a sequence of symbols, and then to cluster hashtags with similar and 
co-occurring sequences. SAX* hashtag clusters, generated from a large and lengthy 
dataset of Tweets collected during one year, have been evaluated in three ways:  

                                                           
21 In agreement with http://firstmonday.org/ojs/index.php/fm/article/ 
  view/4366/3654 
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• First, we evaluated the quality of clusters using two available datasets of semanti-
cally tagged hashtags, showing that SAX* is able to create almost “pure” clusters;  

• Second, we used two standard cluster internal validity measures, inter and intra 
cluster similarity, along with a new measure, the similarity gain. We have shown 
that tweets including two hashtags are more similar to each other when they 

co-occur in the same temporal window and same cluster, than when they occur in 
different temporal windows; 

• Finally, we also conducted a complexity analysis of our algorithm, and compared 
it with two other temporal clustering methods presented in recent literature, show-
ing that SAX* is one order of magnitude more efficient than the other compared 
methods.   
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