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Abstract. We propose a unified approach to semantically rich knowledge rep-
resentation, querying and exchange for the Web, based on functional-logic pro-
gramming. JavaScript- and JSON-based so-called information scripts serve as a
unified knowledge representation and query format, with logical reasoning being
a constraint solving or narrowing task. This way, our framework provides a highly
versatile, easy to use and radically different alternative compared to conventional
forms of knowledge representation and exchange for the Web.
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1 Introduction and Related Work

With this position paper, we propose a functional-logic (FL) approach to expressive
knowledge representation, querying and exchange for the Web which is directly based
on a popular Web scripting language (JavaScript/JSON). Doing so, we aim to address
serious issues with existing Semantic Web (SW) and Linked Data (LD) technologies:
while RDF(S) has a foothold in the area of Linked Open Data (LOD), standard semantic
technologies (including RDF and OWL) are arguably lacking acceptance in other large
communities of potential SW/LD users, in particular those of Web software developers
and many non-institutional knowledge providers. Instead, the use of “non-semantic”
data formats like JSON, CSV, XML and relational database formats is prevalent in
these areas. Furthermore, RDF is severely restricted in terms of logical expressiveness
and reasoning capabilities (in particular in connection with SPARQL).

As a response to these issues, we propose so-called information scripts as a knowl-
edge format which is at the same time more versatile and likely much easier to use (for
non-logicians) than traditional SW or LD technologies. Information scripts are directly
encoded using plain JavaScript and/or JSON (JavaScript Object Notation) - languages
which are already familiar to many users. First-order features and querying are both
based on existentially quantified (query) variables (related to but going beyond RDF’s
blank nodes), and deduction as well as query processing can be realized in a unified and
expressive way as a straightforward constraint solving task. Main advantage over RDF
besides the likely better comprehensibility to many people is the ability to formalize
“real” logical formulas (including quantified variables, rules and negation).
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One flavor of our approach (Sect. 2.2) can be seen on the syntax level as an extension
of JSON-LD [1] and allows for the inclusion of links in the form of URIs, but there is
no requirement to make any link to RDF(S).

The closest related older approach is the Relational-Functional Markup Language
RFML [3]. However, whereas RFML is a new FL language with XML syntax, we pro-
pose the direct use of an existing off-the-shelf language (namely JS/JSON) for rep-
resentation, logical inference and queries. Other related works include approaches to
“semantic programming” [5]. But in contrast to these, we do not aim for an integra-
tion of existing SW languages into general purpose programming languages. The idea
to use query expressions for logic programming can also be found in [4], and the de
facto unification of queries and logical rules can already be found in Datalog [2]. The
concept of using boolean functions for logic programming is long known in the area of
FL programming (e.g., [6]). MiniKanren [7] shares with us the goal to integrate logic
programming directly into a host programming language, and can be implemented us-
ing general purpose languages including JS. However, our approach is syntactically
even more lightweight and focuses on being a knowledge representation framework,
compatible with JSON, while miniKanren focuses on being a programming language.

2 Information Scripts

We propose two concrete flavors of the idea outlined so far: 1) the direct use of a defined
subset of JavaScript (JS) as a knowledge representation language, and 2) a variant of
1) which uses JSON (or JSON-LD) as underlying serialization format. Both variants
(which can be combined) are called information scripts. Variant 1) uses syntactically
plain JS scripts which can be embedded in Web pages and transferred in exactly the
same way as any other parts of Web pages (e.g., microformats or embedded meta-
data). Only if we want to process queries over information scripts, we need additional
functionality, however, this functionality could be provided as JS code also.

JS programs are ideal for this purpose since they are already meant to be transferred
between hosts via the Internet, they can even be serialized to JSON if needed (if func-
tions are encoded as source code), and modern browsers have sophisticated security
mechanisms in place to ensure that programs do not harm client systems.

2.1 JavaScript as a Logic Language

The basic idea of FL programming is straightforward: logical rules and facts are repre-
sented by functions with a boolean result. Predicates become names of functions from
their respective domain to type boolean. Logical connectives (including negation) are
represented by boolean operators. Parameters of boolean functions correspond to uni-
versally quantified logical variables. Query expressions are used to obtain instantiations
of existentially quantified logical variables (EQVs) (sometimes called query variables
or just logical variables) for which boolean expressions with these variables evaluate
to true. EQVs are represented using ordinary JS variables. Various sound evaluation
mechanisms for FL programming languages exist, such as various forms of narrow-
ing [6] and constraint solving. A way to approach evaluation technically would be by
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adding basic constraint solving capabilities in the form of a JS library or some external
off-the-shelf constraint solver.

The syntax of information scripts is simple: informally, an information script is a
non-empty set of JS function definitions of the form function pred(params) {...},
where pred is a predicate name. Each function needs to be referentially transparent,
must not have any side effects, and must return a value of type boolean (variants might
relax some of these restrictions, e.g., allow arbitrary result types). The list of parameters
(which can be of any type) can be empty. We also need two predefined functions which
both invoke the constraint solver (or some other kind of reasoner):

solveBind(qe[,v][,domains]) accepts a query expression qe in the form of
an anonymous boolean function which in turn accepts a number of query variables
(EQVs). solveBind returns an array of JS values which are those instances of
the EQVs for which the call of qe returns boolean value true. Optionally, the set
of EQVs whose instances shall be returned can be restricted to some subset (pa-
rameter v). Large or infinite domains could be handled by variants of solveBind
which return their results incrementally in a lazy fashion (e.g., as a data stream).
Inference using solveBind(qe) is undecidable, but if decidability is really re-
quired, information scripts would have to be restricted to some decidable fragment.
Optionally, domains for the EQVs can be provided.

exists(qe[,domains]) is similar to solveBind(qe), but it just returns false
or true - the latter if there are any instances of the EQVs for which qe is satisfied.

An information script is therefore encoded using a subset of plain JS (we use the EC-
MAScript 6 standard syntax in the examples below, just to be able to encode anonymous
functions syntactically nicely as Lambda abstractions). The syntax might look unusual
at first for a logic language, but even though this issue could easily be fixed using a
simple syntax preprocessor, a feature of this approach is precisely that the functional
nature of rules is not concealed - logical rules are actually also (boolean) functions,
and their “function nature” should allow programmers who are not familiar with logic
programming or SW technologies to understand the meaning of an information script
immediately, once the concept of query variables has been introduced. Example:

<script type="information">
function person(x) {

return x == "ann" || x == "bertrand" || x == "charles" ||
x == "dottie" || x == "evelyn" || x == "fred" ||
x == "george" || x == "bill"; }

function parent(x,y) {
return x=="dottie" && y =="george" || x == "evelyn" &&

y == "george" || x == "bertrand" && y == "dottie" ||
x == "ann" && y == "dottie" || x == "anne" && y == "bill"
|| x == "charles" && y == "evelyn"; }

function sameGenCousins(x,y) {
return (x == y && person(x) ||

exists(($x1, $y1) => (parent(x, $x1) && parent(y, $y1)
&& sameGenCousins($x1, $y1)) )); }

</script>

Functions person(x) and parent(x,y) are rules (in the FL programming sense)
although they actually define sets of ground facts such as person("ann"). Note that
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there is no requirement for the bodies of these functions to use boolean connectives;
just as well we could obtain within the bodies of person(x) and parent(x,y) the
person names and parent-relationships from some database or remote server using ap-
propriate JS code. sameGenCousins is a recursive rule which states that two persons
are same generation cousins whenever they are identical or if they have parents which
are in turn same generation cousins. In classical logic, we would write this rule as
∀x, y : x = y ∨ ∃x1, y1 : parent(x,x1) ∧ parent(y, y1) ∧ sameGenCousins(x1, y1) →
sameGenCousins(x, y). Function exists calls the constraint solver and returns true
iff for some instances of EQV $x1 and EQV $y1 condition
parent(x,$x1) && parent(y,$y1) && sameGenCousins($x1,$y1) is
satisfied. As an example for a query using the knowledge encoded in the script above,
we call solveBind(($x, $y) => sameGenCousins($x, $y)), resulting in an array of
tuples of same generation cousins
[["ann","ann"], ... , ["dottie","evelyn"], ["ann","charles"]].
Observe that our approach so far does not enforce the use of any ontology or schema,
or a namespace. There are at least two ways to add a schema or ontology if required:
1) switch from JS to a typed functional language (e.g., TypeScript or PureScript, which
both compile to plain JS). This allows to attach type information to function parame-
ters and thus simple schema functionality. 2) Model ontological constraints using the
information script itself: e.g., function person(x) {return user(x);} asserts
that every “user” is also a “person” (is-a relation of two concepts).

2.2 Non-ground JSON for Knowledge Representation and Queries

With the approach described above, ground knowledge is represented using JS terms
such as parent(dottie,charles). While this is compatible with data representation
formats using ground terms as in logic programming, a more compact format using
JSON as serialization format might be more handy in the context of the Web. In the
following, we therefore propose a variant of the above which employs JSON (or a JSON
application such as JSON-LD or Apache Avro) as representation format. We still require
solveBind (Sect. 2.1), but query expressions, non-ground facts and rules (again in
the form of boolean functions) can now optionally be embedded directly into a JSON
document, which thus might contain logical variables (in the form of EQVs).

Concretely, we lift JSON to the first-order level by allowing certain JavaScript ex-
pressions and logic variables as property (key) values. We call such “higher-order JSON
documents” non-ground JSON (NG-JSON). NG-JSON documents are valid JSON doc-
uments. They can contain expressions and logical variables in string form (e.g.,
"age": "$age >= 18") and their semantics is operationally defined by a grounding
process which maps them to their instances, i.e., a (possibly empty) set of ground JSON
files where non-ground expressions have been replaced with their respective results (this
does not imply that such an extension must be actually performed). The denotation of
a NG-JSON document is not ground if values of logical variables are functions them-
selves (in JS, functions are first-class citizens), but we ignore this possibility here for
lack of space. Note that the extensional form does not need to be finite (infinite ground-
ings, if required, could be handled again by using lazy data streams). The NG-JSON
document, which might be significantly more compact than its set of groundings, can
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either be directly transmitted to the client or knowledge consumer, or it could be ex-
panded to ground data on server-side (similarly to stored procedures in DBMS). As an
example for NG-JSON, consider the following document which specifies properties of
persons (some omitted for lack of space):

[ { "name": "John Smith",
"@id": "http://johnsmith.com",
"age": 23,
"parents": [

{ "name": "Alice Springs" },
{ "name": "Tom Smith" } ],

"adultSiblings": "$x.age > 17 && isSibling(this, $x)"
},
{ "name": "Mary Hippler",

"age": 25,
"parents": [

{ "name": "Alice Springs" },
{ "name": "Tom Smith" } ]

},
{ "name": "William Smith",

"age": 16,
"parents": [

{ "name": "Alice Springs" },
{ "name": "Tom Smith" } ]

} ]

Like any NG-JSON, this example is a valid JSON file (with optional JSON-LD ele-
ments which are handy in a Web context, like @id for URIs). Only non-ground property
is John’s property ”adultSiblings”, which represents all objects (instances of EQV $x)
which fulfill constraint isSibling(this, $x). In our example, the only valid in-
stance of $x is the person with name Mary Hippler.
$x.age > 17 && isSibling(this, $x) is just syntactic sugar for
($x) => $x.age > 17 && isSibling(this, $x). this is a JS keyword which
here refers to person John (as a JS object). The definition of rule isSibling is omitted
(isSibling is a boolean function which simply checks if two persons are different and
have the same parents. It could be provided either as a function-type property or in the
way described in Sect. 2.1). An even more compact way to write this example could
avoid the repetition of the values of parents using a JS expression.

Grounding is a context-sensitive operation - we need to know the domains of EQVs.
In the example, the domain of $x is the set of all top-level objects in the NG-JSON
document, but this is not necessarily so. We could allow for, e.g., numerical ranges or
databases as domains, and provide a way to specify a context which is shared among
different documents (a solution might involve JSON-LD’s @context).

The same NG-JSON document can be seen both as a data generator (which “gen-
erates” all valid expansions of non-ground slots) and as a query (which instantiates the
EQVs with values from the context, e.g., from some given database or objects in the
NG-JSON document itself).

To obtain ground document(s), there are two possibilities: we can expand a non-
ground expression to an array obtained from a solveBind call (see Sect. 2.1) (the
result for the example would look like the NG-JSON document, but with
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"adultSiblings": [{"name":"Mary Hippler", "age": 25, ...}] instead
of the current non-ground key/value pair "adultSiblings": "$x...).

Alternatively, we can create a set of ground JSON documents where each ground
document represents one particular logical variable assignment. E.g., if the non-ground
value of John’s property “age” would be "$age >= 21 && $age <= 23", ground-
ing this way would generate three ground JSON documents with three different per-
sons with name John Smith with three different ages 21, 22 and 23. Properties which
trigger the former kind of expansion should be appropriately labeled in the NG-JSON
document (this is omitted in the example code above).

Technically, the grounding of a NG-JSON document is a two-step process (details
omitted for lack of space): firstly, we parse (de-serialize) the document as normal into
an array of objects (here: persons), with the exception that each property value which
is a string containing a lambda expression is converted into the respective anonymous
function (this can be done by providing JSON.parse() with a suitable key (property)
handler). Secondly, the array of objects is traversed and for each property p (here:
adultSiblings) which contains an anonymous function, the anonymous function is
passed as an argument to function solveBind. The result of solveBind is then used to
ground property p. Some care is required to pass on the proper execution object context
for keyword this with each solveBind and isSibling call.

3 Conclusions

With this paper, we have proposed a new, script-based approach to formal knowledge
representation, querying and sharing. While this work certainly leaves room for refine-
ments (e.g., how to express properties of properties?) and does not strive for coverage
of all technical details, it is hoped that it provides a contribution towards semantic tech-
nologies which are more suitable for many Web-related tasks and Web-related software
development than most existing Semantic Web approaches. Future work includes tech-
nical refinements and additions (such as formal specifications of query semantics and
contexts), and an experimental evaluation.
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